
HAL Id: tel-02801407
https://hal.inrae.fr/tel-02801407

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyse et propagation de l’incertitude dans l’analyse de
cycle de vie en agriculture

Xiaobo Chen

To cite this version:
Xiaobo Chen. Analyse et propagation de l’incertitude dans l’analyse de cycle de vie en agriculture.
Sciences du Vivant [q-bio]. AGROCAMPUS OUEST, 2014. Français. �NNT : �. �tel-02801407�

https://hal.inrae.fr/tel-02801407
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

 

THESE / AGROCAMPUS OUEST 

Sous le label de l’Université Européenne de Bretagne 

pour obtenir le diplôme de :  

DOCTEUR  DE L'INSTITUT SUPERIEUR DES SCIENCES AGRONOMIQUES, 

AGRO-ALIMENTAIRES, HORTICOLES ET DU PAYSAGE 

Spécialité : « Biologie et Agronomie » 

Ecole Doctorale : « Sciences de la Matière» 

 présentée par : 

« Xiaobo CHEN »  

Analyse et propagation de l’incertitude dans l’analyse de cycle de vie 

en agriculture 

soutenue le 31 octobre 2014 devant la commission d’Examen 

 

 

Composition du jury :  

  

David Makowski Rapporteur Directeur de recherche AgroParis Tech 
   

Christian Bockstaller Rapporteur Ingénieur de recherche INRA Colmar 
   

Lucile Montagne Référent établissement Professeur Agrocampus Ouest 
   

Claudine Basset-Mens Membre Ingénieur de recherche CIRAD 
   

Patrick Durand Directeur de thèse Directeur de recherche INRA Rennes 
   

Michael Corson Co-directeur de thèse Chargé de recherche INRA Rennes 

Laboratoire d’accueil :  

Unité Mixte de Recherche INRA – Agrocampus Ouest : Sol Agro-hydrosystèmes et Spatialisation 

N° ordre : 2014-19 

N° Série : D-74 



 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I can live with doubt and uncertainty and not knowing. I think it is much more interesting to live not 

knowing than to have answers that might be wrong. If we will only allow that, as we progress, we 

remain unsure, we will leave opportunities for alternatives. We will not become enthusiastic for the 

fact, the knowledge, the absolute truth of the day, but remain always uncertain … In order to make 

progress, one must leave the door to the unknown ajar.”  

― Richard P. Feynman
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Abstract 

Life Cycle Assessment (LCA) is a methodological framework for assessing environmental 

impacts of a product, a service or a system throughout its life cycle: from extraction of raw materials, 

through production and use, to recycling and waste treatment (i.e., “cradle to grave”). Its wide 

applicability to agricultural systems provides useful information for decision makers to estimate 

environmental impacts of products, compare environmental impacts of different systems, and make 

suggestions to improve systems. However, the LCA’s need for large amounts of data and high-quality 

models yields several sources of uncertainty that influence the feasibility of LCA of agricultural 

systems and the credibility of its results. For example, it is difficult to obtain measurements of nitrate 

emissions due to fertilizer or manure applications, but estimating emissions using emission factors 

may not represent all conditions, especially in regions with specific farming practices (conventional 

vs. organic). Therefore, the scientific objectives of this thesis are to identify sources of uncertainty in 

agricultural LCAs and help practitioners use appropriate methods to represent different types of 

uncertainty in agricultural systems and analyze their influence on total uncertainty in environmental 

impacts through LCA. 

Uncertainty in LCA can be divided into two types according to its nature: epistemic uncertainty 

(lack of knowledge) and variability (inherent difference). Both types of uncertainty have 

fundamentally different definitions, and distinguishing them helps practitioners reduce epistemic 

uncertainty (e.g., by improving measurements) and better understand variability in the system (e.g., by 

seeking more representative information). To be more explicit, each type of uncertainty can be divided 

into three sub-categories depending on its source: parameter, model, or scenario uncertainty and 

spatial, temporal, or natural variability. The type of uncertainty determines the method(s) used to 

represent and propagate it; their characteristics and limits depend on both the context of the 

agricultural site studied and that of the study itself. Therefore, to better address uncertainty in LCA 

studies, the decision tree developed in this thesis can help LCA practitioners choose which method(s) 

to use. Application of the methods, however, should be performed on a case-by-case basis, because 

particular situations may occur in real case studies that cannot be covered by a general guideline. 

Sometimes other factors, such as computational cost and acceptable confidence level, should also be 

considered when performing uncertainty analysis in LCA.  

The probabilistic approach is commonly used to quantify both natural variability and parameter 

uncertainty, while intervals (“fuzzy” or “crisp”) may be more appropriate for representing parameter 

uncertainty. In agricultural systems, both types of uncertainty often occur together. Therefore, the two 

methods were applied to represent natural variability in farm characteristics and parameter uncertainty 

in emission factors, respectively, to estimate environmental impacts of dairy farms in Brittany, France. 

These uncertainties in input variables were propagated using Monte-Carlo simulation to the 
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uncertainty in estimated impacts, which was represented using Dempster-Shafer theory (DST). In 

parallel, correlations among farm-characteristic input variables were maintained using multivariate 

probability distributions, which yield more realistic estimates than random independent distributions. 

Representing uncertainty in impacts using DST distinguished variability in potential impacts from 

epistemic uncertainty in their mean values. Hence, interpretation of the uncertainty analysis should 

carefully explain the differences between them. The attitude of decision makers to risk (i.e., 

confidence index) can be integrated into this DST-based form of representation to create a single 

weighted distribution of impact, which seems easier to interpret than an impact whose range is 

bounded by two separate distributions. However, there are some limits to applying DST in uncertainty 

analysis, and studies should be performed in the future to focus on maintaining correlations between 

variables that are represented imprecisely, using ad hoc optimization algorithms to increase 

propagation efficiency, and integrating other types of uncertainty in the same LCA framework. In 

addition, there is a need to apply the DST in more case studies to validate its use.  

In conclusion, uncertainty analysis, as an important component of LCA, should provide 

reasonable and realistic assessment of studied systems in the face of many sources of uncertainty. The 

existence of uncertainty, which is unavoidable, should not restrict research and decision making, but 

rather help LCA practitioners to improve their understanding of studied systems by identifying the key 

information needed. The existence of a variety of methods for uncertainty analysis provides LCA 

practitioners with an array of methods to choose from, depending upon the context of the agricultural 

system and that of the LCA study.  Moreover, using an appropriate method provides credible estimates 

of impacts, which reflect the real state of knowledge and may encourage scientists to seek more 

information.         

 

 

Keywords: life cycle assessment; agricultural system; environmental impacts; epistemic uncertainty 

and variability; probability theory; fuzzy intervals; Dempster-Shafer theory; Monte-Carlo simulation  
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Résumé 

L’Analyse du Cycle de Vie (ACV) est un cadre méthodologique pour évaluer les impacts 

environnementaux d'un produit, d’un service ou d’un système tout au long de son cycle de vie: depuis 

l'extraction des matières premières, jusqu'au recyclage ou à la mise en déchet (« du berceau au 

tombeau ») en passant par les processus de production et d’utilisation. Ses larges applications dans 

l'agriculture offrent des informations utiles pour les décideurs pour évaluer des impacts 

environnementaux des produits, comparer des impacts environnementaux entre les systèmes 

différents, et améliorer un système de production. Cependant, l'exigence en données et en modèles de 

bonne qualité utilisés en ACV entraîne différentes sources d'incertitude qui influent sur la faisabilité de 

l'ACV des systèmes agricoles et la crédibilité de ses résultats. Par exemple, il est difficile d'obtenir des 

mesures des émissions de nitrate après l'application d'engrais ou de fumier au sol, et l'estimation des 

émissions avec des facteurs d'émission ne peut pas représenter toutes les conditions, surtout dans une 

région où les pratiques agricoles sont particulières (gestion conventionnelle versus biologique). En 

conséquence, les objectifs scientifiques de cette thèse sont d'identifier les sources d'incertitude en ACV 

agricole et d'aider les analystes à choisir les méthodes appropriées pour représenter différents types 

d'incertitude dans le système agricole et pour analyser leurs influences sur l'incertitude totale des 

impacts environnementaux. 

L'incertitude en ACV peut être divisée en deux types selon sa nature: incertitude épistémique 

(manque de connaissances) et variabilité (différence intrinsèque). Les deux types d'incertitude ont les 

définitions fondamentalement différentes, et la distinction entre eux aide les analystes ACV à réduire 

incertitude épistémique (ex., en améliorant des mesures) et à mieux comprendre la variabilité du 

système étudié (ex., en recherchant des informations plus représentatives). Pour être plus explicite, 

chaque type d'incertitude peut être divisé en trois sous-catégories selon la source : l’incertitude 

paramétrique, de modèle, ou de scénario et la variabilité spatiale, temporelle, ou naturelle. Le type 

d'incertitude détermine la méthode utilisée pour le représenter et propager, dont chacune a ses propres 

caractéristiques et limites en fonction du contexte du système agricole étudié et de l’étude elle-même. 

Donc, afin de mieux aborder l’incertitude dans les études ACV, l’arbre de décision proposé dans cette 

thèse permet les analystes ACV d'avoir plusieurs choix de méthodes face à différents types 

d'incertitude. Cependant, l'application de méthodes différentes doit être réalisée au cas par cas, parce 

que des situations particulières peuvent se produire dans une étude de cas réelle qui ne peuvent pas 

être traité dans une guide générale. Parfois d’autres facteurs, comme le coût de calcul et le niveau de 

confiance acceptable, doit aussi être considéré lors de l'analyse de l'incertitude en ACV.  

L'approche probabiliste est en général utilisée pour quantifier la variabilité naturelle et 

l'incertitude paramétrique, tandis que les intervalles (flous ou précis) peuvent être plus appropriés pour 

représenter l'incertitude paramétrique. Dans les systèmes agricoles, les deux types d'incertitude se 
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produisent souvent ensemble. En conséquence, les deux méthodes ont été appliquées pour représenter 

la variabilité naturelle sur les caractéristiques des fermes agricoles et l'incertitude paramétrique sur les 

facteurs d'émission, respectivement, pour estimer des impacts environnementaux des exploitations 

laitières en Bretagne (France). Ces incertitudes des données d’entrée ont été propagées par la 

simulation de Monte Carlo vers l'incertitude finale des impacts potentiels, représentés avec la théorie 

de Dempster-Shafer (DST). En parallèle, les corrélations entre les variables d'entrée de caractéristiques 

des exploitations ont été contrôlées en utilisant des distributions de probabilité multidimensionnelles. 

Cette démarche permet d'avoir une estimation plus réaliste que d'utiliser des distributions aléatoires 

indépendantes. La représentation de l'incertitude totale avec la DST a distingué la variabilité sur les 

impacts potentiels de l'incertitude épistémique sur ses valeurs moyennes. Ainsi, l'interprétation de 

l’analyse d’incertitude devrait expliquer soigneusement les différences entre eux. Les attitudes des 

décideurs en face du risque (i.e., l’indice de confiance) peuvent être intégrées dans la représentation 

DST sous la forme d’une seule distribution pondérée d’impact, qui semble plus facile à interpréter 

qu’un impact dont son étendue des valeurs est limitée par deux distributions séparées. Cependant, il y 

a des limites sur l'application de la DST à l’analyse de l’incertitude, et d'autres études devraient être 

réalisées à l'avenir sur les corrélations entre les variables qui sont représentées de manière imprécise, 

les algorithmes d'optimisation ad hoc pour améliorer l'efficacité de la propagation et l'intégration 

d'autres types d'incertitude dans le même cadre de l'ACV. En outre, il est nécessaire d'appliquer la 

DST dans plusieurs études de cas pour la valider.  

En conclusion, l'analyse de l’incertitude, comme un composant important de l’ACV, devrait 

offrir une évaluation raisonnable et réaliste des systèmes étudiés face à diverses sources d'incertitude. 

L'existence d'incertitude, qui est inévitable, ne devrait pas restreindre la recherche et la prise de 

décision, mais au contraire devrait aider les analystes ACV à compléter leurs connaissances par 

rapport au système étudié, en identifiant les informations clés nécessaires. L’existence de plusieurs 

méthodes d'analyse de l'incertitude donne aux analystes ACV des choix flexibles dans les différents 

contextes de système agricole ou d’étude ACV. De plus, utiliser une méthode appropriée fournit des 

estimations crédibles des impacts, qui reflètent l'état réel des connaissances et peut encourager les 

scientifiques à chercher plus d'informations. 

 

 

Mots-clés: analyse du cycle de vie ; système agricole ; impacts environnementaux ; incertitude 

épistémique et variabilité ; théorie de probabilité ; intervalles flous ; théorie de Dempster-Shafer ; 

simulation de Monte Carlo  
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1.1 Contexte : l’agriculture et l’environnement  

Les principales formes d’agriculture ont été pratiquées par l’humanité depuis le néolithique, 

pour atteindre un objectif initial : l’autosuffisance alimentaire (Mazoyer and Roudart 1997). Beaucoup 

plus récemment, le développement de l’agriculture fait face à un grand challenge à cause de 

l’augmentation de la population mondiale, ce qui provoque des exigences d’économie supplémentaires 

(économie financière et économie des ressources naturelles) et de préservation de l’environnement 

(Espagnol and Leterme 2010).  De nombreuses études ont mis en évidence le lien entre l’activité 

agricole et l’environnement. L’environnement contrôle la production forestière et agricole. Par 

exemple, une hausse des températures (de 1 à 3 °C) locales pourrait augmenter le potentiel de 

production alimentaire (Pachauri and Reisinger 2007) ; les événements climatiques extrêmes peuvent 

endommager des prairies, des cultures et des forêts (Vert et al. 2013). A l’inverse, les pratiques 

agricoles affectent l’environnement. Par exemple, l’utilisation des fertilisants dans l’agriculture est 

responsable de l’accroissement des quantités d’azote et de phosphore dans la biosphère (Bennett et al. 

2001; EMEP-CORINAIR 2002). En 2011, les surfaces agricoles et forestières émettent plus de dix 

milliards tonnes de gaz à effet de serre (GES), parmi lesquelles, les cultures et les élevages 

représentent environ 5,3 milliards tonnes, une augmentation de 14 % par rapport à 2001 (FAO 2014). 

Les sources d’émissions agricoles viennent principalement de la fermentation entérique (40 %), puis 

des émissions au pâturage (16 %) et des engrais synthétiques (13 %). En particulier, les secteurs 

d’élevage (environ 80 % des émissions agricoles) engendrent des impacts directs et indirects sur le 

changement climatique, la pollution du sol et de l’eau, la dégradation des services écosystémiques, les 

ressources naturelles et la biodiversité (Steinfeld et al. 2006). De ce fait, les progrès des sciences de 

l’agriculture ne visent plus seulement à satisfaire l’autosuffisance alimentaire pour l’humanité, mais 

aussi à prendre en compte ses influences sur les autres aspects (ex., environnement, économie et 

société).  

Plusieurs méthodes multicritères ont été développées pour estimer et évaluer les impacts 

environnementaux de l’agriculture, ainsi que pour identifier des pistes d’amélioration du système 

agricole (van der Werf and Petit 2002). L’Analyse du Cycle de Vie (ACV) est l’une des méthodes 

d’évaluation environnementale largement utilisées actuellement. La structure d’ACV, dont l’idée 

initiale a été proposé depuis les années 1970 pour l’industrie, a pour la première fois été standardisée 

par la Société de Toxicologie et de Chimie Environnementales (SETAC) en 1993 (SETAC 1993). La 

SETAC fournit une plateforme d’échange scientifique qui se consacre à traiter les sujets importants 

(ex, évaluation des impacts, qualité des données) sur l’implémentation de l’ACV par les groupes de 

travail (Klöpffer 2006). À partir de 2000, l’Organisation Internationale de Normalisation (ISO) a 

publiée une série de normes ISO 14 000 sur le système de management environnemental. Parmi les 

normes, la série ISO 14 040 (2006) concerne la pratique de l’ACV, qui est détaillée par les normes 
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complémentaires (ISO 14 041, ISO 14 042, ISO 14 043), et puis intégrées dans la norme ISO 14 044 

(2006). Plusieurs pays adoptent ces normes ISO comme une base de référence pour le management 

environnemental dans leurs réglementations. Une troisième organisation internationale engagée dans 

le développement de l’ACV est le Programme des Nations Unies pour l’Environnement (UNEP). 

L’UNEP, en collaboration avec la SETAC depuis 2002 (lancement de l’Initiative pour le Cycle de 

Vie),  a pour objectif de développer et diffuser l’ACV au niveau mondial. En parallèle, des méthodes 

et des données spécifiques ont été développées au sein de l’ACV, telles que, les guides opérationnels 

de l’ACV (Guinée et al. 2002; Heijungs et al. 1992) et la base de données d’inventaire ecoinvent 

(Frischknecht et al. 2005). La méthode d’ACV sera détaillée dans la prochaine section.                 

1.2 Analyse du Cycle de Vie 

1.2.1. La définition de l’ACV 

Selon la norme standard ISO 14 040 (2006), l’ACV est un cadre méthodologique pour évaluer 

des impacts environnementaux d’un produit, d’un service ou d’un système en considérant l’ensemble 

de son cycle de vie, depuis l’extraction de la matière première (« berceau ») jusqu’à son recyclage ou 

sa mise en déchet (« tombeau »). L’ACV estime les charges environnementales du produit, du service 

ou du système « du berceau au tombeau » en agrégeant ses émissions et utilisations de ressources, 

exprimées dans un inventaire des flux de matière ou d’énergie (ex., émissions de nitrate, méthane, 

dioxyde de soufre, consommation d’électricité), dans quelques indicateurs d’impact. Ces indicateurs 

peuvent refléter des flux vers l’air (ex., changement climatique provoqué par des GES), vers l’eau (ex., 

eutrophisation provoquée par les nitrates) et vers le sol (ex., toxicité terrestre provoquée par des 

métaux lourds). Elle fournit des informations pouvant être utilisées par plusieurs secteurs (ex., 

gouvernement, entreprise, consommateurs) lors de la prise de décision (Jolliet et al. 2010). Les 

applications principales de l’ACV sont (1) d’analyser les charges environnementales d’un produit, 

d’un service ou d’un système particulier, (2) d’identifier les actions prioritaires pour améliorer les 

processus du système en respectant l’environnement et (3) de comparer les charges environnementales 

entre les produits, les services ou les systèmes différents (Guinée et al. 2002). La méthodologie de 

l’ACV est divisée en quatre étapes (Boeglin and Veuillet 2005; ISO 14040 2006; JRC 2010): 

définition des objectifs et du champ de l’étude, analyse de l’inventaire, évaluation de l’impact et 

interprétation (Fig. 1). Ces quatre étapes sont interdépendantes tout au long de l’étude, ce qui rend une 

ACV itérative. 
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Figure 1. Les quatre étapes du cadre de l’analyse du cycle de vie (ACV) reprise de Boeglin & Veuillet (2005). 
Les applications de l’ACV ne font pas partie du cadre. 

• La définition des objectifs et du champ de l’étude permet de définir les objectifs de l’étude en vue 

de ses applications, et de déterminer le champ de l’étude, y compris la frontière du système, les 

choix méthodologiques, la fonction du produit ou du système, l’unité fonctionnelle (UF), et les 

exigences de qualité des données (ISO 14044 2006). Ces éléments essentiels doivent être décrits 

clairement pour l’exécution des étapes suivantes afin de répondre aux objectifs définis. Par 

exemple, la frontière du système détermine les processus du système inclut dans l’ACV. Dans des 

systèmes agricoles, la frontière est souvent délimitée jusqu’à la sortie de l’exploitation (Aubin et 

al. 2009; van der Werf et al. 2009). Mais certain études (Cederberg et al. 2013; FAO 2010) ont 

inclus des processus après l’exploitation (ex., la transformation alimentaire et le transport vers les 

distributeurs). Les choix méthodologiques concernent le choix des valeurs et des méthodes 

utilisées pour les calculs (Steen 2006). La fonction définit les caractères de performance du 

produit ou du système, et l’UF quantifie cette fonction, dans laquelle les flux de matières, 

d’énergies et d’émissions sont effectués. Lors d’une étude comparative, les produits ou systèmes 

doivent être basés sur une fonction commune, et l’UF offre une référence de comparaison en 

normalisant les flux entrants et sortants (les « flux de référence ») des systèmes. Le choix de l’UF 

est crucial pour répondre aux objectifs de l’étude. L’UF est généralement basée sur la masse de 

produit (ex., par kg de produit) (Basset-Mens et al. 2009; Nguyen et al. 2012), mais plusieurs UFs 

peuvent être utilisées pour considérer, par exemple, la fonction d’occupation de surface ou du 

service écologique (par ha de surface agricole) ou la fonction économique (par euro de chiffre 

d’affaires) (van der Werf et al. 2009).  

Ainsi, les données choisies dépendent des objectifs et du champ de l’étude. En réalité, les données 

récoltées sont un mélange de sources de données différentes (ex., empirique, observée, calculée, 
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estimée). Donc, la qualité des données doit être vérifiée spécifiquement dans cette première phase, 

en ce qui concerne la précision, la complétude, la représentativité, la cohérence, la couverture 

temporelle, géographique et technologique, et l’incertitude (Weidema and Wesnaes 1996). 

Comme cette première phase se précise de manière itérative, le champ de l’étude peut être modifié 

tout au long de l’étude lorsque les informations supplémentaires sont obtenues. 

• L’analyse de l’inventaire : une fois que le champ de l’étude est défini, la deuxième phase de 

l’ACV est de quantifier des ressources extraites ou occupées (ex., matières premières, surfaces de 

terre), des consommations d’énergie (renouvelable et non-renouvelable) et des émissions des 

substances polluantes vers l’air, l’eau et le sol au cours du cycle de vie du produit, du service ou 

du système étudié. La réalisation de calcul exige une recherche de données d’inventaire soit à 

partir d’expérimentations ad hoc, soit dans la littérature (Jolliet et al. 2010). Plusieurs bases de 

données sont disponibles pour fournir des données d’inventaire au niveau local ou global, et la 

base de données ecoinvent intègre plusieurs sources de données pour avoir une base de données 

générique incluant la fonction d’évaluation de la qualité de données (Frischknecht et al. 2005). Par 

ailleurs, certains processus d’un système génèrent plus qu’un produit (un produit principal et des 

« co-produits » ; ex., lait et viande d’une l’exploitation laitière). Par conséquent, les charges 

environnementales d’un processus sont attribuées (« allouées ») à chaque co-produit. Pour 

quantifier la contribution aux charges uniquement du produit principal, des méthodes d’allocation 

différentes s’effectuent au sein de l’analyse de l’inventaire (Ardente and Cellura 2012; De Vries 

and De Boer 2010; Wardenaar et al. 2012).  

• L’évaluation de l’impact permet d’évaluer des impacts environnementaux reliés avec les 

émissions des substances différentes, les extractions des ressources et les consommations 

d’énergies du système. Le choix des indicateurs d’impact intermédiaires (ex., changement 

climatique, eutrophisation, acidification, utilisation de ressources naturelles, toxicité), ainsi  que 

des indicateurs de dommage (ex., sur la santé humaine, sur l’environnement naturel 

biotique/abiotique), est réalisé dans la première étape de l’ACV. Par exemple, à travers l’outil 

EDEN (Évaluation de la Durabilité des ExploitatioNs), un inventaire de l’utilisation de ressources 

et les émissions était établi pour évaluer des impacts environnementaux des exploitations laitières 

en Bretagne en France (van der Werf et al. 2009) (Fig. 2). Donc, cette phase classifie les émissions 

et les extractions de ressources selon leurs effets sur les indicateurs d’impact. La quantification des 

impacts se fait par la multiplication des émissions avec les facteurs de caractérisation 

correspondants (ex., Eco-indicator 99 (Goedkoop and Spriensma 1999), Impact 2002+ (Jolliet et 

al. 2003)). D’ailleurs, comme les différentes catégories d’impact ont des unités différentes, ceci 

peut être difficile de juger l’impact le plus critique ou de comparer les résultats entre les différents 

systèmes. Pour cette raison, trois étapes optionnelles sont comprises au sein de cette phase. Le 



 

7 

 

choix des facteurs et les bonnes pratiques associées à ces trois étapes ont été décrits en détail par 

Finnveden (2002).    

� la normalisation (rapport de la contribution d’impact du produit ou du système par rapport 

à l’effet total au niveau global ou local) permet d’exprimer les différentes catégories 

d’impacts avec la même unité. 

� le regroupement attribue (semi-)qualitativement des rangs d’importance aux indicateurs 

d’impact. 

� la pondération permet d’agréger les résultats normalisés par un facteur de pondération (un 

score  à valeur unique) afin d’exprimer l’impact environnemental global du produit ou du 

système. 

• L’interprétation permet d’interpréter les résultats obtenus par les phases précédentes à plusieurs 

niveaux (ex., au niveau des émissions, des impacts intermédiaires et des impacts de dommage). 

Dans cette phase, on identifie les points clés (avec plus d’impact) au sein des processus du 

système et propose des options pour réduire les impacts environnementaux du produit, du service 

ou du système. On évalue également la qualité des données, les points sensibles et les incertitudes 

au travers du cycle de vie. De plus, on tire une conclusion sur la limite du système ACV et 

propose les recommandations pour la recherche future. Cette phase doit apporter des informations 

transparentes et compréhensibles pour l’aide à la décision. 

 

Figure 2. Les ressources et les émissions agrégés (après multiplication par des facteurs de caractérisation, pour la 
plupart) par l’outil EDEN (van der Werf et al. 2009) pour estimer des impacts environnementaux des 
exploitations laitières.  
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Les premières trois étapes offrent une meilleure communication de la prédiction des impacts 

potentiels, qui est interprétée dans la dernière étape pour fournir des informations transparentes à la 

prise de décision. Cependant, plusieurs sources d’incertitude associées avec la qualité des données, la 

différence individuelle et le choix des méthodes, ...., affectent les prédictions de l’ACV. 

1.2.2. Une limitation de la mise en œuvre de l’ACV 

Bien que l’ACV soit bien définie et largement appliquée pour l’évaluation des impacts 

environnementaux en agriculture, il existe certaines limites (sources d’incertitude) sur la mise en 

œuvre de l’ACV (Guinée et al. 2002). Par exemple, la réalisation de l’ACV implique un certain 

nombre d’hypothèses sur les choix des valeurs, des modèles de calcul et des méthodes d’allocation, … 

Les hypothèses arbitraires peuvent être une source d’incertitude en ACV (De Schryver et al. 2013; 

Hertwich et al. 2000). La méthodologie ACV ignore souvent les informations temporelles et spatiales 

qui ont des influences sur l’évaluation des impacts (Potting and Hauschild 1997; Reap et al. 2008). Par 

exemple, les facteurs de caractérisation pour les GES montrent de grande différence en fonction du 

temps et de la localisation (Huijbregts 1998; Röös and Josefine 2013).  

Basset-Mens et al. (2009) ont considéré l’incertitude issue du choix des horizons temporels 

d’impact en utilisant les facteurs de caractérisations pour 20, 100 et 500 ans dans une analyse ACV de 

la production laitière en Nouvelle-Zélande. Une autre source d’incertitude principale est issue des 

données utilisées en ACV. La variabilité des données des exploitations (Henriksson et al. 2011), le 

manque des données pour cause de limites de mesure ou sources inaccessibles (Crosson et al. 2011) et 

les données de mauvaise qualité (Weidema and Wesnaes 1996) peuvent intervenir sur la qualité de la 

réalisation de l’ACV. Par exemple, IPCC (2006a) fournit des méthodes (de simple à complexe) pour 

calculer les émissions des GES dans des systèmes d’élevage. Le choix de méthodes dépend de la 

disponibilité des données qui sont variées en fonction de la variabilité des données de l’exploitation et 

de l’incertitude sur les facteurs d’émission. Dans ce cas, le manque de données spécifiques limite le 

choix des méthodes et influe les résultats estimés de l’ACV. De plus, une ACV agricole est plus 

compliquée que celle en industrie. Par exemple, un système agricole n’est pas un « pur » utilisateur 

des ressources naturelles, mais certaines ressources  agricoles (ex., fertilité des sols, graines et bétails) 

sont autoproduites au sein du système (Haas et al. 2000). Donc la balance des ressources doit être 

considérée proprement à l’intérieur du système. Par ailleurs, les systèmes agricoles sont souvent 

interconnectés, et un changement dans un système (ex., système de la culture pour produire les 

aliments animaux) peut influer un autre (ex. système d’élevage) (Harris and Narayanaswamy 2009). 

De ce fait, la maîtrise de ces limites (incertitudes) peut améliorer la faisabilité et la crédibilité de la 

méthodologie ACV.  
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1.3 Définition du problème  

Ignorée depuis longtemps, la prise en compte de l’incertitude dans les résultats de l’ACV est 

devenue un sujet de préoccupation, et des articles focalisent sur cette question (Benetto 2005; Geisler 

et al. 2005; Maurice et al. 2000). Bien que l’analyse des incertitudes soit bien définie et recommandée 

au sein de l’ACV (IPCC 2006b; ISO 14040 2006), l’intégration des incertitudes dans l’ACV est 

encore limitée (Reap et al. 2008), mais augmente avec le temps (Ciroth 2004). L’approche 

probabiliste, dans laquelle un jeu de données d’entrée est caractérisé par des distributions 

probabilistes, permet d’estimer leurs influences sur les résultats à travers de la simulation de Monte 

Carlo (MCS). Cette approche est la plus utilisée dans l’ACV pour analyser l’incertitude (Baker and 

Lepech 2009; Lloyd and Ries 2007). Par exemple, Payraudeau et al. (2007) l’ont utilisée pour estimer 

l’incertitude sur les pertes d’azote dans une ACV des exploitations en Bretagne.  

Actuellement, des logiciels de l’ACV (ex., SimaPro, Gabi, CMLCA) offrent la possibilité de 

faire de l’analyse probabiliste à partir de données présentant statistiquement des incertitudes (ex., écart 

type), qui se trouvent de plus en plus dans des bases de données ACV (ex., ecoinvent). Cette approche, 

cependant, considère les paramètres comme indépendants, alors qu’ils ne le sont pas dans certains cas 

réels. De plus, la forme de distribution (ex. normale) et les paramètres nécessaires (ex., moyen, écart 

type) pour pouvoir faire varier les variables sont souvent inconnus, voire estimés de façon imprécise. 

D’autres approches plus complexes (ex., intervalle flou (Tan 2008), propagation d’erreur par des 

expansions des séries de Taylor (Ciroth et al. 2004)) commencent à apparaître aussi, mais leur 

complexité rend leur utilisation marginale. Les différentes méthodes utilisées en ACV pour décrire et 

propager l’incertitude ont pour le moment très peu cherché à différencier les types d’incertitude mais 

au contraire à les agréger. Plus de recherche est donc nécessaire pour faire sauter les verrous de 

l’analyse d’incertitude en ACV: identification, estimation et hiérarchisation des sources d’incertitude; 

développement de méthodes pour visualiser les sources différentes et leurs impacts relatifs sur 

l’incertitude globale; et démarche pour prendre en compte des incertitudes lors de la prise de décision. 

1.4 Objectifs et structure de la thèse 

Les objectifs de la thèse porte sur (1) l’identification et la classification des incertitudes dans des 

systèmes agricoles, notamment le système d’élevage (car le plus complexe et présentant le plus de 

processus interdépendants), (2) l’analyse de la représentation de ces incertitudes et (3) l’analyse de 

leurs influences sur l’incertitude globale des indicateurs d’impact évalués par l’ACV. Ce travail a été 

réalisé en utilisant un jeu de données récolté pour et généré par l’outil d’analyse EDEN, qui est un 

outil ACV permettant d’évaluer des impacts environnementaux des exploitations laitières (van der 

Werf et al. 2009). Cette thèse comporte six chapitres (Fig. 3): le chapitre 1 (celui-ci) présente le 

contexte général et la problématique agro-environnementale, l’ACV agricole, et les objectifs de la 
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thèse. Le chapitre 2 est une recherche bibliographique sur les définitions des incertitudes différentes et 

les méthodes pour représenter et propager ces types d’incertitude ; ce chapitre a pour objectif de guider 

les analystes ACV à choisir les méthodes appropriées pour l’analyse des incertitudes. Une fois les 

sources d’incertitude classifiées, les chapitres d’après se focalisent sur l’analyse de l’incertitude 

paramétrique et la variabilité en suivant cet arbre de décision. Dans le chapitre 3, la MCS classique est 

appliquée pour estimer des impacts environnementaux potentiels des exploitations laitières dans une 

étude ACV en considérant l’incertitude paramétrique et la variabilité. De plus, la distinction entre 

l’incertitude paramétrique et la variabilité ainsi que la limitation de la méthode MCS sont discutées. 

D’une part, cette démarche souligne la différence entre l’incertitude paramétrique et la variabilité, qui 

peut provoquer la recherche pour un alternatif à l’approche probabiliste pour représenter l’incertitude 

paramétrique. De l’autre part, elle révèle une des limites de l’application de la MCS classique (c.-à-d., 

la prise en compte de la corrélation). Donc, le chapitre 4 se focalise sur le contrôle des corrélations 

entre des variables d’entrée afin d’améliorer la précision de la méthode MCS. Le chapitre 5 intègre des 

méthodes différentes, pour analyser l’incertitude paramétrique et la variabilité (intervalle flou et 

distribution probabiliste, respectivement), basé sur la recherche du chapitre 2. Les impacts potentiels 

sont représentés sous forme de structure de Dempster-Shafer. Enfin, le chapitre 6 synthétise le travail 

de la thèse et discute ses limites et les perspectives pour la recherche future.  
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Figure 3. Schéma de la structure de la thèse  
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In general, LCA, as a systematic tool for assessing the environmental impacts of product system 

during its life cycle, is used to support decisions. The assessment process integrates multiple 

mathematical models to estimate resource consumption and pollution emissions. Hence, the 

confidence in LCA results relies on having selected appropriate models and data. However, these 

requirements may not be attained due to the existence of uncertainty. 

Uncertainty is a phenomenon that describes a lack of knowledge about a studied system. This 

state of knowledge contains inherent characteristics of the specific individual or system (variability) 

and measurements of these characteristics (epistemic uncertainty). Uncertainty analysis attempts to 

capture uncertainty in LCA to support decision-making with an acceptable confidence level. The 

objective of this study is to review classifications of uncertainty and various methods to represent and 

propagate uncertainties in previous studies, and to propose a guideline for choosing appropriate 

methods of uncertainty analysis in LCA studies. 

2.1 Terminology of uncertainty 

Uncertainty can be conceptualized as a state of having limited scientific knowledge. Many 

authors have addressed the classification and terminology of uncertainty (Baker and Lepech 2009; 

Benetto 2005; De Rocquigny et al. 2008; Huijbregts 1998a; Merz and Thieken 2005; Morgan and 

Henrion 1992; US EPA 1992, 1996; Vose 2008; Walker et al. 2003). Although they defined 

uncertainty in a variety of ways, most concurred that uncertainty can be divided into two types 

according to its nature: variability and epistemic uncertainty. 

Variability  refers to the inherent property of individuals in the real world. It is due to natural 

heterogeneity in physical phenomena, and it is not reducible. It has also been called “aleatory”, 

“stochastic”, “objective” or “irreducible” uncertainty. 

Epistemic uncertainty results from incomplete knowledge about the system studied. It is 

defined as the lack of knowledge, imprecision, ignorance and human errors. Thus, it is reducible 

by acquiring new knowledge or expert opinions or improving measurement accuracy. It has also 

been called “subjective” or “reducible” uncertainty.  

Some authors defined epistemic uncertainty only as lack of knowledge, excluding imprecision 

and ignorance of information. For example, Benetto (2005) considered imprecision due to 

measurement errors (bias) as an independent source of uncertainty apart from uncertainty and 

variability. Indeed, imprecision and ignorance may influence estimate of variability and thereby 

influence results. 

The importance of distinguishing variability from epistemic uncertainty is commonly 

emphasized in uncertainty analysis. Morgan and Henrion (1992) argued that it is important to 
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distinguish types and sources of uncertainty, whose variety may generate confusion. Thompson (2002) 

stated that the distinction between uncertainty and variability was important in risk management and 

communication, because knowing variability leads to better understanding the distribution of risk, and 

knowing uncertainty helps decision makers seek appropriate information and improve systems.  

Although variability and epistemic uncertainty are clearly distinguished by their definitions, 

application of approaches for uncertainty analysis is still limited in practice at this level of 

classification. Taking both variability and epistemic uncertainty into account with a single probability 

distribution may result in a loss of information about the proportion of the distribution in results due to 

randomness and the proportion due to ignorance about system (Vose 2008). Therefore, more detailed 

identification and prioritization of sources of uncertainty is helpful for choosing the most relevant 

methodologies to quantify different types of uncertainty (Baker and Lepech 2009; De Rocquigny et al. 

2008). 

2.2 Sources of uncertainty 

Uncertainty can be classified according to the sources of uncertainty. Heijungs and Huijbregts 

(2004) compared classifications of uncertainty, and stated that a classification is useful if it 

distinguishes between sources and types of uncertainty. The principal sources of epistemic uncertainty 

in LCA come from three sub-categories: parameter, model and scenario (Walker et al. 2003; WHO 

2008). As for variability in LCA, Huijbregts (1998a) classified three sub-categories: spatial, temporal 

and “sources and objects” (due to the use of different technologies).  

Parameter uncertainty is associated with data and methods to calibrate parameters in LCA 

models (Walker et al. 2003). It reflects incomplete knowledge about the true values of 

parameters. Inaccuracy, unrepresentativeness and lack of data are common raisons of parameter 

uncertainty (Huijbregts 1998a). In LCA, parameter uncertainty is considered as the main source 

uncertainty in most studies, including uncertainty in inventory data or, in impact assessment, 

uncertainty in characterization factors (Lloyd and Ries 2007). For example, inventory analysis is 

affected by poor data quality (inaccuracy), while the use of data from a different context may 

cause uncertainty (unrepresentativeness) (Bjorklund 2002; Reap et al. 2008). In addition, certain 

impacts such as biodiversity and human toxicity are difficult to estimate due to lack of data 

(Finnveden 2000). Moreover, uncertainty in parameter distributions (Heijungs and Frischknecht 

2005) and a lack of information about correlations between input parameters remains a 

challenge in most LCA studies (Heijungs and Huijbregts 2004; Payraudeau et al. 2007).  

Model uncertainty is defined as lack of knowledge about mechanisms of the system studied. It 

is due to simplification of models without considering parameters or ignorance of dependency 

among model parameters (WHO 2008). In LCA, model uncertainty results from the loss of 
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temporal and spatial characteristics in the model, assumptions of linear relations in impact 

assessment and calculation of characterization factors with simple models (Huijbregts 1998a). 

For example, LCA models that represent specific properties of substances can estimate 

environmental impacts more realistically than models based on general properties of the 

substances, but such detailed models are only available for a few substances. Hence, the lack of 

precise information about the substance-specific models may increase model uncertainty 

(Wegener Sleeswijk and Heijungs 1996). Moreover, univariate and multivariate models usually 

provide more realistic results than linear regression (Moreau et al. 2012). 

Scenario uncertainty (uncertainty due to choice) is associated with the information used to 

define scenarios. It indicates that choices made in the scenario may reflect the reality of the 

system studied. Scenario uncertainty arises when defining objectives of the LCA and choosing 

data and models to attain them. It also involves allocation methods used in the inventory 

analysis, waste-handling approaches, and differences in characterization factors in time or space 

(Huijbregts et al. 2003). These scenario choices can have considerable impacts on the outcomes 

of LCA studies (Wardenaar et al. 2012). Scenario analysis and the theory of combination of 

evidence are used to assess this type of uncertainty (Morgan and Henrion 1992; Sentz and 

Ferson 2002). Standardization of processes (Guinée et al. 2002; ISO 14040 2006; Lindfors 

1995) and expert judgment help reduce scenario uncertainty in LCA (Huijbregts 1998a). 

Spatial variability  is associated with the variation introduced by geographic differences in the 

system studied. In most LCA studies, environmental interventions are aggregated in impact 

assessment without spatial differentiation (a “site-generic” approach), which may introduce 

uncertainty in impacts of certain impact categories due to lack of site-specific data (Ross et al. 

2002). For these impact categories, the absence of spatial differentiation may decrease the 

credibility of LCA. On the other hand, a site-specific approach can lead to unnecessary 

complex, or even biased, evaluation of impacts at a global scale. Potting and Hauschild (1997) 

argued that a site-dependent approach using spatial modeling (i.e., incorporating spatial factors 

in models) can avoid the limits of two approaches (site-generic and site-specific). Thus, spatial 

differentiation factors need to be developed in LCA (Hauschild 2006). 

Temporal variability  is associated with variation introduced by temporal changes in the system 

studied. This variation can be due to a difference over time in factors modeled. For example, 

large variability in emission factors was observed over time in Swedish paper plants (Hanssen 

and Asbjørnsen 1996). In addition, temporal variability in characterization factors, caused by 

the lifetime of a reference substance, can be assessed by choosing different time horizons 

(Huijbregts 1998a). This source of temporal variability can be avoided by choosing appropriate 
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characterization factors for short-term or long-term impact assessment (scenario uncertainty). 

Also, inventory data are commonly collected annually, thus considering data over years may 

create another source of temporal variability. In such a case, the means and variances of these 

data can be estimated to represent the variability during the time period. 

Variability between sources and objects is associated with inherent variation among different 

technologies used to produce the same material or with differences between objects that 

determine the environmental impacts (Bjorklund 2002). Inherent differences in input variables 

may influence potential impacts. For example, large variation in the carbon footprint of milk 

resulted from a large variation in milk yields, feed dry-matter intake and nitrogen excretion of 

dairy farms in Sweden (Henriksson et al. 2011). Indeed, since variability between sources and 

objects represents the natural heterogeneity of individuals (e.g., farms, factories, humans, 

animals), it can be called natural variability and modeled using a probabilistic approach. 

Apart from the above six types of epistemic uncertainty and variability, some have identified 

uncertainty in linguistic imprecision, ambiguity and disagreement (Bedford and Cooke 2001; Benetto 

2005; Morgan and Henrion 1992). In LCA, these types of uncertainty are often dealt with arbitrarily 

using expert judgment (Krueger et al. 2012; Reap et al. 2008). Bjorklund (2002) included poor data 

quality (e.g., data inaccuracy or gaps, unrepresentative data), epistemological uncertainty, mistakes 

and estimation of uncertainty itself in the classification of uncertainty of Huijbregts (1998a). By 

definition, all of these types of uncertainty can be included as main sources of epistemic uncertainty. 

Indeed, the classification of uncertainty of Huijbregts (1998a) is commonly applied in most 

uncertainty analysis in LCA studies (Leroy and Lasvaux 2013; Lloyd and Ries 2007). Huijbregts 

(1998a) also showed examples of types of uncertainty in the phases of LCA (Table 1), indicating that 

inventory analysis, characterization and weighting process are the most important sources of all types 

of uncertainty. A variety of approaches has been developed to analyze uncertainty given available 

information (Benetto 2005; Bjorklund 2002; Ciroth et al. 2004; Huijbregts 1998a, b; Huijbregts et al. 

2003; Imbeault-Tetreault et al. 2013; Lloyd and Ries 2007; Morgan and Henrion 1992; Tan 2008; 

Vose 2008; Weidema and Wesnaes 1996). 
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Table 1. Examples of types of variability and epistemic uncertainty in the phases of LCA (Huijbregts 1998a) 

    Phase           

Uncertainty 
  Goal and 

scope 
Inventory Choice of 

impact 
categories 

Classification Characterization Weighting 

Parameter 
uncertainty 

  Inaccurate 
emission 
measurements 

  Uncertainty in life 
times of substances 

Inaccurate 
normalization 
data 

        

Model 
uncertainty 

  Linear instead of 
non-linear 
modeling 

Unknown 
impact 
categories 

Unknown 
contribution to 
impact 
category 

Characterization 
factors are not 
known 

Weighting 
criteria are not 
operational 

        

Uncertainty due 
to choices 

 Functional 
unit 

Use of several 
allocation 
methods 

Leaving out 
known 
impact 
categories 

 Using several 
characterization 
methods within one 
category 

Using several 
weighting 
methods 

        

Temporal 
variability 

  Differences in 
yearly emission 
inventories 

  Change in 
temperature over 
time 

Change of social 
preferences over 
time 

        

Spatial 
variability 

  Regional 
differences in 
emission 
inventories 

  Regional 
differences in 
environmental 
sensitivity 

Regional 
differences in 
distance to 
targets 

        

Variability 
between 
objects/sources 

    Differences in 
emissions 
between factories 
that produce same 
product 

    Differences in 
human 
characteristics 

Differences in 
individual 
preferences, 
when using panel 
method 

2.3 Approaches for uncertainty analysis  

Uncertainty analysis is defined as a procedure to quantity the uncertainty in the results of LCA 

due to input-variable uncertainties and their influences on reliability of the results (ISO 14044 2006). 

As mentioned in the previous section, different approaches to uncertainty analysis exist. Morgan and 

Henrion (1992) introduced a terminology of uncertainties and existing approaches to deal with 

uncertainties. Huijbregts (1998a, b) reviewed available approaches to deal with types of variability and 

epistemic uncertainty in LCA. Probabilistic approaches are widely used to analyze parameter 

uncertainty and variability in LCA (Baker and Lepech 2009), while other approaches, such as fuzzy-

interval analysis (Dubois and Prade 1991), analytical arithmetic (Heijungs 1996), Bayesian approaches 

(Hoff 2009) and Dempster-Shafer theory (Dempster 1966) can also be considered, depending upon the 

goal of the study, the availability of information or the suitability of the uncertainty analysis approach. 

In addition, uncertainty due to choice can be analyzed by scenario modeling, standardization and 

expert judgment. Model uncertainty and spatial/temporal variability can be addressed by modeling 
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approaches (e.g., linear/non-linear regression, multi-media modeling) (Huijbregts 1998a). This section 

describes and discusses approaches for uncertainty analysis. 

2.3.1 Probabilistic approach 

Probability theory is a mathematical theory concerned with the analysis of random phenomena 

(Felleb 1957). There are two basic views of probability. The frequentist view considers probability as 

the frequency that a random event occurs, while the subjective view considers it as a person’s degree 

of belief that an event will occur based on his/her experiences and opinions (Morgan and Henrion 

1992). The ISO standard (Bipm et al. 1995) distinguished these two views of evaluation of uncertainty 

in measurement as Type A (based on statistical analysis of observations) or Type B (based on the 

degree of belief). These distinct interpretations allow variability and parameter uncertainty to be 

distinguished.  

Based on the frequentist view, the probability distribution assigns a probability of any possible 

event in a random experiment. Suppose that random variable X, which is an element of all real 

numbers (ℛ), has a probability Pr(x) of having value x. In the discrete case (the number of random 

variables is countable), there exists a discrete probability distribution function (PDF): 

����� = ∑ 	���
∈� , ���ℎ	 ∑ 	��� = 1
∈ℛ  Eq. 1 

where d(x) is the frequency of observations of x, i.e. the number of observations of x divided by 

the number of trials. 

The discrete distributions characterize the countable random variables. For example, throwing a 

die to have an equal probability of each of six values (from 1 to 6) is a discrete case. Common discrete 

distributions are Bernoulli, Binomial and Poisson distributions. However, the number of observations 

is sometimes uncountable due to infinite numbers or measurement limits. In such cases, the continuous 

PDF can be used to calculate the probability of random variable x falling into a given interval [a, b]:  

���� ≤ � ≤ �� = � ���� ∗ 	�, ���ℎ � ���� ∗ 	� = 1�����  Eq. 2 

where f(x) is the PDF of observing x, and	ℛ	� 	�−∞,∞�. 
The continuous PDF can be described by its cumulative distribution function (CDF): 

#��� = ���$ ≤ �� = � ���� ∗ 	�
�� , �%�	�&&	$ ∈ ℛ Eq. 3 

which represents the probability that random variable X takes on a value less than or equal to x.  

In LCA, the most frequently assumed distributions are uniform, triangular, normal (Gaussian) 

and lognormal (Heijungs and Frischknecht 2005; Lloyd and Ries 2007) (Fig. 1). The properties of 

these distribution forms are given by Morgan and Henrion (1992):  
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• Uniform distribution : it is one of the simplest continuous distributions, defined only by minimum 

and maximum values. It is generally used when the shape of distribution is unknown; thus, it 

assumes that any value in the minimum-maximum range has equal probability, as stated in 

Laplace’s analytic theory of probabilities (de Laplace 1820).  

• Triangular distribution : it can be used when one value occurs more often than others within the 

minimum-maximum range. A trapezoidal probability distribution is a special case of the triangular 

distribution in which the mode is expressed as an interval. It can be symmetric or asymmetric 

depending on the location of the most likely value(s). When uncertainty is high, triangular 

distribution can be transformed to log-triangular distribution (Morgan and Henrion 1992). 

• Normal (Gaussian) distribution: it is a commonly used continuous distribution based on the mean 

and variance of a population. It is widely useful because of the central limit theorem (given a well-

defined mean and variance, the arithmetic mean (or the sum) of a large number of independent 

random variables from the same population is approximately normally distributed). Thus, the 

normal distribution can be used to model natural variability when the mean and variance of 

population are known (Smith 2002). However, it may be not appropriate for representing some 

strictly positive variables if three times the standard deviation is larger than the mean (i.e., there are 

negative values according to empirical rules1). In this case, a truncated normal distribution can be 

applied to avoid negative values (De Rocquigny et al. 2008). The symmetry of the normal 

distribution also limits its application when the variable has an asymmetric distribution.  

• Lognormal distribution : it is applied to represent the probability of random variable whose 

logarithm is normally distributed. It provides good representation of physical quantities that are 

only positive and non-zero. Due to its long tail, the lognormal distribution represents extreme 

events better than the normal distribution. It yields values with a skewed distribution, which is 

more appropriate for many LCA input variables (Frischknecht et al. 2005; Geisler et al. 2005; 

Huijbregts et al. 2003).  

The more common use of normal and lognormal distributions in LCA is to quantify the data 

quality associated with Data Quality Indicators (DQIs), developed by Weidema and Wesnaes (1996).  

Apart from the probability distributions mentioned above, there exist other useful but little-

developed distributions (Lloyd and Ries 2007). For example, the beta distribution is a family of 

continuous distributions of variables limited to the interval [0, 1] (transformable to any closed interval) 

                                                      
1 Empirical rule: when a standard normal model is used in statistics, about 68% of values fall within one standard 
deviation from the mean, about 95% of values fall within two standard deviations from the mean, and almost all 
the values (about 99.7%) fall within three standard deviations from the mean. It is also called the “68-95-99.7 
rule”. 
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and characterized by two positive shape parameters, α and β (Bedford and Cooke 2001). It is useful for 

representing uncertainty in variables whose distributions and associated parameters are not available 

but whose shape parameters and range endpoints can be specified; thus, it can be applied to model 

inventory data in LCA (Canter et al. 2002; Kennedy et al. 1996). In addition, the beta distribution is 

used as a prior distribution in Bayesian theory to determine the posterior distribution (Hoff 2009). 

Otherwise, t-distributions (Bjorklund 2002) and PERT distributions (Maurice et al. 2000) are more 

appropriate for representing small sample sizes than normal distributions and triangular distributions, 

respectively. Finally, the Poisson distribution predicts the number of discrete events that occur in a 

time period; thus, it can be used to represent temporal variability in a time series (Morgan and Henrion 

1992). 

 
Figure 1. Four principal continuous probability density distribution used in LCA: a. uniform, b. triangular, c. 
normal, d. lognormal. Parameters necessary to characterize each distribution are given (sd: standard deviation; 
mean-log: mean of logarithm of variable x; sd-log: standard deviation of logarithm of variable x). Blue zones 
indicate the probability that the value of a random variable x exceeds that limit. Dashed lines indicate the most 
likely value of each distribution, except for the uniform distribution, in which the dashed line indicates the 
median. 
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Parameterization of probability distributions is a delicate issue that depends on what data are 

available (Slob 1994; Venkatesh et al. 2011). Weidema et al. (2013), however, argued that the choice 

of distribution has limited influence on the overall uncertainty of a product system due to the 

aggregation of a large number of independent variables, which results in a normally distributed result 

according to the central limit theorem (Vose 2008). Thus, when the specific shape of distribution of 

individual parameters in LCA is unknown, some authors suggest using the same distribution for all of 

them to avoid bias among them (Geisler et al. 2005). Doing so, however, is questionable, because 

choosing different shapes of distribution may result in different outcomes, and statistically based 

parameterization is more appropriate for approximating the distribution of individuals (Cooper et al. 

2012). Bjorklund (2002) and Benetto (2005) explained that parameterization of uncertainty 

distributions should be determined from a large sample of data points. Specific distributions of 

individual parameters can be estimated by goodness-of-fit tests or maximum likelihood estimation 

(Firestone et al. 1997; IPCC 2000; Sankararaman and Mahadevan 2011; Sonnemann et al. 2003). 

Measurements are frequently unavailable in LCA, however; so, literature information and expert 

judgment can be incorporated to determine shapes of distributions and their associated parameters 

(Albert et al. 2012). For example, Weidema et al. (2013) recommended using the lognormal 

distribution to represent inventory data with uncertainty, in which data quality is considered as 

additional uncertainty and transformed into a quantitative indicator (pedigree matrix) based on expert 

opinions. Slob (1994) developed an arbitrary dispersion factor to characterize the parameters of a 

lognormal distribution and considered it a useful factor when data were scarce. Hence, the introduction 

of expert judgment is based on the subjective view of probability. 

Based on the subjective view, the occurrence of an event (e.g., value of a variable) is not seen as 

random, but as the probability of what the true value of a variable might be. According to this 

interpretation, the PDF or CDF can be used to describe epistemic uncertainty in model parameters and 

in the model itself. However, Huijbregts (1998b) argued that uncertainty factors and distribution 

shapes may not represent a “real-life” case if they are entirely arbitrary. Therefore, combining expert 

opinions in uncertainty modeling should be treated carefully (Krueger et al. 2012). Sometimes both 

empirical and subjective information about a physical system exists, and it is desirable to use both 

sources of information to make decisions. For example, when relevant data are not available to 

determine the shape of distribution, a Bayesian approach (Hoff 2009) can be used to combine the 

empirical data with expert opinion to adjust the distribution.  

Many authors (Basset-Mens et al. 2009; Geisler et al. 2005; Henriksson et al. 2011; Maurice et 

al. 2000; Payraudeau et al. 2007; Steen 1997) have applied probability theory to turn deterministic 

models into stochastic models in LCA-based studies, which can capture epistemic uncertainty and 

variability. Some of them also distinguished both types of uncertainty in the analysis. For example, 
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Basset-Mens et al. (2009) represented variability and epistemic uncertainty of an average New 

Zealand dairy farm using its standard deviation (SD) and standard error of mean (SEM), respectively. 

Geisler et al. (2005) highlighted the difference between variability and parameter uncertainty and 

argued that both types of uncertainty can be propagated into LCA results well using probabilistic 

simulation (Monte-Carlo simulation). However, it is sometimes not appropriate to use probability 

distributions when little information is available to determine them. Although the assumed distribution 

could be applied with little information, it seems too arbitrary, even with Bayes’s rule, which is 

currently not used much in LCA (Lo et al. 2005). 

Bayes’s theorem (Bayes 1763) is a mathematical interpretation of probability with subjective 
evidence. Based on it, expert opinions (defined as prior distribution) can be combined with the 
distribution of empirical data (likelihood function) to determine a probability distribution (posterior 
distribution) of an event by following Bayes’s rule (Hoff 2009). Therefore, approach updates available 
information with the belief of experts.  

Given a numerical value of	' ∈ (, there is a prior distribution )�'� to describe the belief that ' 
represents the true value of population. Assuming ' is true, the empirical sample (y) can be modelled 
as a conditional probability distribution	)�*|'�. Thus the posterior distribution	)�'|*�, which 
describes the belief that ' is true given the empirical sample y, is obtained according to Bayes’s rule: 

)�'|*� = )�*|'� ∗ )�'�)�*�  

2.3.2 Imprecise probability 

When the value of a parameter is expressed as a set of possible values with unknown 

distribution, the state of knowledge about this parameter is called “imprecise”. In this situation, 

making an arbitrary assumption may not represent the “real” world accurately. To overcome this limit, 

“imprecise probability” was developed as a generalization of classic probability (Walley 1991). It 

assigns an interval of probability to describe uncertainty in an imprecise manner. For an uncertain 

variable X (X ∈ ℛ), the PDF assigns a probability to each	�	�0 ≤ ����� ≤ 1�. When Pr(x) is not 

precisely known and can only be expressed as an interval of lower and upper probabilities, such 

as	.	�����, �����/, there is imprecision about the probability of variable X, and the true probability 

falls into this interval:  

����� ≤ ��	��� ≤ �����, � ∈ ℛ Eq. 4 

Likewise, the CDF of X with imprecise probability is expressed as: 

#��� ≤ #��� ≤ #���, � ∈ ℛ	 Eq.	5	
Risk analysts debate the use of imprecise probability in uncertainty analysis. Some believe that 

imprecise probability might confuse people due to its interpretation of imprecise results. For example, 

Lindley (2000, 2013) argued that imprecise probability leads to unnecessarily complicated statistical 
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procedures. Moreover, the subjective (or Bayesian) approach makes it easier for a decision maker to 

rank different sources of opinion with a single estimate of the probability (Soundappan et al. 2004). 

Others, however, state that making decisions in risk analysis based on imprecise results should not 

follow the subjective (or Bayesian) view of probability if expert judgment cannot provide more precise 

expression, because the subjective approach ignores imprecision (Aven and Zio 2011; Caselton and 

Luo 1992; Ferson and Tucker 2006; Hall 2006; Rinderknecht et al. 2012). Their debate raises 

questions about how to choose between methods requiring more empirical information vs. those 

requiring less, but more imprecise, information, according to the interests of practitioners and the 

confidence level accepted by decision makers. When both precise and imprecise information appear in 

the same study, combining both methods may provide a useful and practical interpretation of results. 

For example, information about variability is best conveyed by a single probability distribution, while 

information about imprecision is best conveyed using families of probability distributions (Walley 

1991). Ferson et al. (2002) used imprecise CDF (Eq. 5) to demonstrate a graphical box, called a 

“probability box” or p-box, in which the true distribution of an uncertain variable is located but 

unknown due to imprecision. The p-box constructs an interval probability distribution in which	#��� is 

the lower bound and #���	is the upper bound. It is able to distinguish natural variability from 

epistemic uncertainty due to imprecision (Ferson and Ginzburg 1996). Moreover, different expressions 

of imprecision can be integrated in an imprecise probability distribution, such as fuzzy intervals (see 

section 2.3.4). For example, the parameters (i.e. mean, SD) of a probability distribution can be 

modeled by fuzzy membership functions (Arunraj et al. 2013). Therefore, imprecise probability is 

more flexible than classic probability without requiring precise knowledge about the distribution (e.g., 

exact estimates of parameters) in situations when imprecision cannot be ignored. Indeed, both of these 

approaches are based on probability theory, but other approaches to express uncertain quantities exist. 

In the following sections, we introduce two non-probabilistic methods: Dempster-Shafer theory and 

the fuzzy-interval approach. 

2.3.3 Dempster-Shafer theory 

Dempster-Shafer theory (DST) is a “mathematical theory of evidence” introduced by Dempster 

(1967) and further developed by Shafer (1976) to represent the state of knowledge, based on all 

available evidence. As a generalization of Bayesian probability (Dempster 1968), DST evaluates the 

degree of belief about the probability of a related claim based on two basic functions: the belief 

function (Bel) and the plausibility function (Pl), which are defined from the basic probability 

assignment (bpa), also called “mass”. The properties of the bpa are: 

4: 27 → �0, 1� Eq. 6  4�∅� 	= 	0 Eq. 7  ∑ 4�:� = 1	;∈<=  Eq. 8  
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where 2Ω is the power set that comprises all possible subsets, including the empty set ∅. A is a 

given set (called a “focal element”) of the power set. Given a set A, its bpa (denoted m(A)) expresses 

the proportion of the available evidence which supports the belief that a particular element belongs to 

the set A only. Any additional evidence that supports the belief that a particular element belongs to a 

subset of A will change the degree of belief about the bpa of this subset. Hence, the bpa is measure of 

belief closely tied with the available evidence.  

The belief function of A is defined as the sum of the bpa of all subsets (B) of A (B ⊆ A): 

?@&�:� = ∑ 4�?�A⊆; , ?	� 	�&&	%�	�ℎ@	 B� @� 	%�	:, �C		? ≠ ∅ Eq. 9  

The plausibility function of A is defined as the sum of the bpa of any subset (C) of a power set, 

with the condition that the intersection of C and A is a non-empty set (C⋂A ≠ ∅): 

�&�:� = ∑ 4�F�, F ∈ 27, �C		F ≠ ∅	G⋂;H∅  Eq. 10  

In the probability distributions, each focal element of the uncertain parameter X can be 

expressed as an interval2 ([a i, bi] ) with mi (where ai ≤ bi for all i). The set of all the intervals with their 

corresponding mi can be expressed as: 

I���J, �J�, 4J�, ���<, �<�, 4<�, …	���L, �L�, 4L�M, �ℎ@�@	 ∑ 4N���N , �N�� = 1L�OP�O , � = 1,2, … , C Eq. 11 

For a discrete distribution, the belief and plausibility functions of uncertain parameter $ ∈ℛ	�ℛ	� 	�	�@�&	CB4�@��  can be obtained according to Eq. 3 as: 

?@&�$ ∈ ℛ� = ∑ 4�.�N,	�N/���O,�O�⊆
  Eq. 12 �&�$ ∈ ℛ� = ∑ 4���N,	�N��O,�O�⋂
H∅ �� Eq. 13  

For a continuous distribution, the CDF of X can be expressed as	#�$ ∈ �−∞, ���, � ∈ ℛ. Thus, 

the belief and plausibility functions of	$ ∈ �−∞, ��	can be obtained as: 

?@&�$ ∈ �−∞, ��� = ∑ 4�.�N,	�N/���O,�O�⊆���,
�  Eq. 14 �&�$ ∈ �−∞, ��� = ∑ 4���N,	�N��O,�O�⋂���,
�H∅ �� Eq. 15  

Next, Eq. 14 and 15 can be written as: 

?@&�$ ∈ �−∞, ��� = ∑ 4�.�N,	�N/��OP
  Eq. 16  �&�$ ∈ �−∞, ��� = ∑ 4���N,	�N�OP
 �� Eq. 17  

Properties of the belief and plausibility functions were given by Yager (1987): 

?@&�:� 	≤ 	���:� 	≤ 	�&�:� Eq. 18 ?@&�:� = 1 − �&�:Q� Eq. 19  �&�:� = 1 − ?@&�:Q� Eq. 20 ?@&�:� + ?@&�:Q� ≤ 1 Eq. 21 

                                                      
2 The continuous probability distribution can be considered as the accumulation of many intervals by using a 
discretization technique. In statistics, “discretization technique” refers to the process of converting continuous 
intervals (e.g., p-box) to a set of discrete values or intervals with a corresponding bpa. 
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�&�:� + �&�:Q� ≥ 1 Eq. 22 

where Ac is a complement set of A. According to their definitions and properties, the belief 

function measures the degree of belief that an event (or a claim about the “true” event) must occur, 

while the plausibility function measures the degree of possibility that an event (or a claim about the 

“true” event) could occur. With two functions, experts can conclude that the probability that an event 

occurs is at least Bel(A) and possibly as large as Pl(A). The difference between Bel(A) and Pl(A) is 

defined as ignorance, which indicates the imprecision of evidence. When Bel(A)=Pl(A) (ignorance = 

0), the evidence is perfect, and uncertainty is expressed by classic probability as Pr(A). Given the 

relation between belief and plausibility functions (Eq. 19 and 20), one function can be calculated from 

the other. 

Unlike classic probability (Bayesian) theory, which sometimes requires additional assumptions 

(e.g., the shape of prior distribution) beyond those already available in order to obtain a precise single-

value probability, DST can represent the state of knowledge with imprecise information without such 

assumptions (Soundappan et al. 2004). For example, the belief and plausibility functions constitute a 

DST structure, which is similar to a p-box. Thus, the DST structure is often illustrated as being 

bounded by two CDFs (Fig. 2). In this way, Ferson et al. (2002) compared DST structure with the 

upper and lower bounds of imprecise probability. They demonstrated how DST functions can be 

converted given the two bounds of imprecise probability using a discretization technique (Kotsiantis 

and Kanellopoulos 2006), and concluded that any characterization and aggregation method can be 

used with both objects.  

Besides using DST to express imprecise information, another important use of DST is to 

combine different independent and equally credible sources of evidence (i.e., information about the 

object gathered from multiple sources) (Dempster 1967; Moral and Del Sagrado 1998; Nau 2002; 

Sentz and Ferson 2002; Yager 1987). For example, models or scenarios coming from different sources 

of evidence are sometimes combined into a single expression when it is unknown which model or 

scenario is true. This single expression considers the uncertainty due to the choice of model or 

scenario. Ferson et al. (2002) compared methods to aggregate different sources of evidence, 

expressing their quantities as a DST structure or p-box. In this section, we describe four main 

operations: intersection, envelope, mixing, and Dempster’s rule (and its modifications). 
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Figure 2. Dempster-Shafer structure of an uncertain variable x. The green and blue lines indicate the belief and 
plausibility functions, respectively. The red area indicates a focal element [ai, bi] associated with a basic 
probability assignment (mi).  

• Intersection  

When each source of evidence comes with a strong claim that the quantity is sure to fall within 

given limits (e.g., interval, DST structure, imprecise probability, possibility distribution), intersection 

can be an appropriate operation. It defines overall uncertainty around the quantity as the smallest 

region in which all estimates agree. Suppose that there are n sources of evidence expressed as p-boxes 

(approximation of a DST structure):		#J = T#J, #JU,	#< = T#<, #<U, …,	#L = T#L, #LU. Thus, the DST 

structure base on the intersection is defined as: 

?@&��� ≈ 	#∗��� = 4��	�#J���, #<���,… , #L���		 Eq. 23	
�&��� ≈ #∗��� = 4�C	�#J���, #<���, … , #L���		 Eq. 24	

Since this method assumes that all sources of evidence are completely reliable (i.e., that they do 

not completely disagree), the intersection of all sources of evidence cannot be an empty set. Therefore, 

it is not appropriate to apply this operation when this assumption is not satisfied (i.e., there is complete 
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disagreement among the sources of evidence). If there are, the true value of the quantity could belong 

to any of the sources of evidence; thus, another operation (envelope) may be more appropriate. 

• Envelope 

When we know that at least one source of evidence contains the true distribution of the quantity, 

but do not know which one it is, the envelope operation should be used to combine estimates. It 

defines overall uncertainty around the quantity as the largest region in which any estimate is possible. 

Hence, given n p-boxes,	#J = T#J, #JU, #< = T#<, #<U, …,#L = T#L, #LU, the DST structure based on the 

envelope is defined as: 

?@&��� ≈ #∗��� = 4�C	�#J���, #<���, … , #L��� = ?@&���	 Eq. 25	�&��� ≈ #∗��� = max	�#J���, #<���, … , #L��� Eq. 26 

This operation is commonly used when the reliability of individual estimates is uncertain. Thus, 

any source of evidence could be the “truth”. It provides a conservative estimate of the quantity since 

the DST structure based on the envelope maximizes the range of probability of the quantity. However, 

its broad estimate of uncertainty in the quantity might be useless or misleading for decision makers, 

because a few estimates with large intervals may dominate and bias the result. 

• Mixing 

When different sources of evidence have variability due to different times, places or situations, 

the mixing operation is appropriate. The simplest mixture uses the arithmetic mean. For n p-

boxes,	#J = T#J, #JU, #< = T#<, #<U, …,#L = T#L, #LU, mixture is defined as: 

?@&��� ≈ #∗���= `#J���, +#<��� + ⋯+ #L���b /C Eq. 27 

�&��� ≈ #∗���= `#J��� +	#<��� +⋯+ #L���b /C Eq. 28 

Unlike an intersection operation, mixing can capture the differences in all conflicting sources of 

evidence believed to be reasonable. Like an envelope operation, mixing can combine two estimates 

whose intersection is empty, but it provides a narrower estimate because it averages sources of 

evidence (assuming equal weights) instead of maximizing them. It is also possible to combine 

estimates using different weights (i.e., unequally credible sources). Given n p-boxes, 	#J = T#J, #JU, 
#< = T#<, #<U, …,#L = T#L, #LU, with weights w1, w2, ..., wn, respectively, the weighted mixture is 

defined as: 

?@&��� ≈ #∗���= `�J#J���, +�<#<��� +⋯+�L#L���b /∑�N  Eq. 29 

�&��� ≈ #∗���= `�J#J��� + �<	#<��� + ⋯+ �L#L���b /∑�N Eq. 30 
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The weighted mixture can overcome the influence of large but infrequent biases from some 

sources of evidence on the mixed estimate. Hence, the weight of each source is often determined 

according to its frequency, which depends on experimental samples or the degree of expert belief 

(Moral and Del Sagrado 1998; Nau 2002).   

• Dempster’s rule 

Dempster’s rule, the theoretical center of DST, is commonly applied in risk analysis and 

decision-making studies (Caselton and Luo 1992; Dubois and Guyonnet 2011; Sentz and Ferson 

2002). Given two independent sources of evidence expressed by DST structures (focal elements of 

sources B and C with their own mass functions: mi and mj, respectively) for the same universal set X, 

the combination of B and C is: 

4�:� = ∑ dO�A�de�G�f∩hijJ�k , �ℎ@�@	l = ∑ 4N�?�4m�F�A∩Gn∅ 	�C			�, o = 1, 2, … , C Eq. 31 

where K is called the degree of conflict, and 1-K is a normalization factor used to exclude all 

conflicts (? ∩ F = ∅) in the sources of evidence. The following example illustrates application of 

Dempster’s rule to combine two imprecise discrete probabilities B and C (Table 2). With results from 

the intersection between two sources of evidence, we construct a DST structure of their combination 

according to Eq. 31 (Fig. 3). Using the same example, we also illustrate DST structures combined by 

the other three operations (Fig. 3). The envelope operation shows a wider bound of estimates, while 

the unweighted mixture averages estimates of both sources. Intersection and Dempster’s-rule 

operations have the narrowest bounds because they consider only the agreement among sources. 

Indeed, Dempster’s rule allocates conflicts (i.e., empty sets resulting from intersection among 

the sources) to each focal element by normalizing the degree of conflict (Sentz and Ferson 2002). It is 

appropriate to use when there are relatively small conflicts among sources of estimates; however, its 

use is criticized when large conflicts exist. For example, if two sources of information conflict 

completely, the normalization factor 1-K equals 0, and Dempster’s rule cannot be used. Zadeh (1986) 

showed that combining highly conflicting estimates with Dempster’s rule might lead to 

counterintuitive results. Consequently, extensions of Dempster’s rule have been developed to 

overcome this limit of application, such as Yager’s modified Dempster’s rule (Yager 1987), Inagaki’s 

rule (Inagaki 1991), Zhang’s center combination rule (Zhang 1994) and a disjunctive consensus rule 

proposed by Dubois and Prade (1992a). Even though the choice of combination rules depends on the 

sources of evidence and the application context, Sentz and Ferson (2002) compared them and 

concluded that Dempster’s rule might be appropriate when there are small or irrelevant conflicts and 

all sources of evidence are highly reliable, while Yager’s rule is better when high conflict cannot be 

ignored, because it does not use the normalization factor as a denominator (like Dempster’s rule), but 
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attributes conflicts to the universal set X. More details can be found in their report (Sentz and Ferson 

2002). 

Table 2. Intersection of two sources of evidence B and C by Dempster’s rule. Basic probability assignments (mi 
and mj) were calculated for each focal element (expressed as an interval with corresponding mi and mj) from the 
intersection of B and C. 

Source B (mi) m1 m2 m3 

 
[1, 5] [2, 6] [3, 7] 

Source C (mj) 0.2 0.4 0.4 

m1 [2, 7] [2, 5] [2, 6] [3, 7] 

0.3 0.06 0.12 0.12 

m2 [5, 9] [5 ,5] [5, 6] [5, 7] 

0.3 0.06 0.12 0.12 

m3 [7, 12] ⌀* ⌀* [7, 7] 

0.4 0.08 0.16 0.16 
* empty set due to the intersection of two intervals 

 

Figure 3. Dempster-Shafer structure (A) combining two sources of evidence B and C using four main operations: 
intersection, envelope, mixing and Dempster’s rule. 

2.3.4 Fuzzy-interval approach  

Fuzzy-set theory, the basis of possibility theory, was proposed by Zadeh (1965; 1978) as a way 

to represent imprecise, incomplete or vague information (Bosc and Prade 1997; Dubois and Prade 

1985). According to Dubois and Prade (1998), fuzzy-set theory is applied to three classes of 

applications: classification and data analysis, reasoning under uncertainty, and decision-making 
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problems. Fuzzy sets are an extension of so-called “crisp” sets (for which membership of elements is 

binary: yes or no) in which a gradual membership function (range = [0, 1]) is used to attribute a degree 

of possibility to each element of the set (Klir and Yuan 1995). Given a universal set X, there is a value 

of A(x) (:��� ∈ �0, 1�) which represents the degree of possibility that element x	 belongs	 to	 X. 

Therefore, the assignment of values A(x) to the elements x of the universal set X is called a 

membership function of the fuzzy set (Ayyub and Klir 2010). The membership function of a real value 

(� ∈ ℛ) can be described as: 

:��� = z����						�%�	� ∈ ��, ��1								�%�	� ∈ ��, {�|���					�%�	� ∈ �{, 	�0				%�ℎ@��� @ } , �ℎ@�@	� ≤ � ≤ { ≤ 		 ∈ ℛ Eq. 32 

in which f(x) is an increasing part of the membership function and g(x) is a decreasing part. The 

values a and b indicate the lowest and highest values of x, respectively, Like probability distributions, 

membership functions are constructed from expert judgment and empirical data. The following 

examples show two commonly-used membership functions: triangular and trapezoid, denoted 

as	:��~ , �� , ���	�C		:��~ , �~� , ��� , ���, respectively (Eq. 33 and 34), where �~ 	and			�� are the left 

(lowest) and right (highest) bounds of x, respectively, �� is the mode of the triangular membership 

function, and  [�~� , ���� is the range of the mode of the trapezoidal membership function (Fig. 4).  

:��~ , ��, ��� = z

�������� 						�%�	�~ ≤ � ≤ �� 	���
����� 					�%�	�� ≤ � ≤ �� 	0									%�ℎ@��� @ }	 Eq. 33 

 

:��~ , �~�, ��� , ��� =
���
�� 
���������� 						�%�	�~ ≤ � ≤ �~�1														�%�	�~� ≤ � ≤ ������
������ 					�%�	��� ≤ � ≤ �� 	0									%�ℎ@��� @ ���

��
 Eq. 34 

Several concepts describe membership functions, the essential elements for representing fuzzy 

sets of an uncertain value x. The interval between the lowest and highest limits of all possible values 

of x is called the “support”, while the most likely value of x is called the “core”. The core is the mode 

for a triangular membership function or the interval of modes for a trapezoidal membership function. 

Any interval between the support and the core is called an “α-cut interval”, associated with a degree of 

possibility, α. Indeed, the support and core can be considered as specific α-cut intervals in which α is 

zero and one, respectively. The set of all α-cut intervals, associated with their degrees of possibility, 

constitutes fuzzy intervals, ���N�: 
��� = 1� ⊆ ���N ∈ �0,1�� ⊆ ��� = 0�,where	� ∈ �0, 1� Eq. 35 

According to this definition, fuzzy intervals can be considered as a subjective evaluation of 

expert belief. Unlike the subjective view of probability, fuzzy intervals do not need to have the shapes 
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of distributions specified. It models an uncertain quantity based only on limited knowledge about the 

possibility of compatibility rather than the probability of occurrence. Hence, it is based on the notion 

that not all uncertainties can be appropriately described in terms of a frequency of occurrence (i.e., an 

unknown quantity is not randomly distributed). In this case, it is appropriate to model this type of 

uncertainty with a subjective degree of possibility to represent a degree of belief, as an alternative to 

subjective probability distributions (Dubois and Prade 1985; Tan 2008). This expression of uncertainty 

considers incomplete/imprecise information about the uncertain variable, such as an unknown 

distribution. It indicates that any possible probability distribution is likely to be “true” within the 

bound of limits. Thus, fuzzy intervals can be considered a family of all possible distributions, and their 

membership functions can be transformed into p-boxes, like those of imprecise probability (Dubois 

and Prade 1992b). Dubois and Prade (1993) addressed the relation between probability theory and 

fuzzy-set theory. They argued that possibility measures can be viewed as an upper probability 

(plausibility function) and discussed transformation between the two types of expressions. As 

mentioned, if the plausibility function is known, the belief function can be obtained (Eq. 19). Thus, a 

DST structure can be constructed from its fuzzy-interval membership function (Fig. 4). From their 

review of joint application of fuzzy sets and probability, Dubois and Prade (1993) concluded that 

building a bridge between the two theories is better than considering them as conflicting issues to 

strengthen the modeling of uncertainty and vagueness (imprecision)  

Fuzzy intervals have been used to represent uncertainty due to imprecise information in models 

for environmental assessment (e.g., Mertens and Huwe (2002), Assaghir (2010)) and also in several 

LCA studies (e.g., Weckenmann and Schwan (2001), Tan et al. (2008; 2002), Andre and Lopes 

(2012)). Among them, Tan et al. (2002) used fuzzy intervals to represent uncertainty in LCA, 

especially that of data imprecision. They concluded that this approach provided more accurate 

representation of non-random uncertain variables in LCA and more flexibility for datasets whose 

probability distributions were difficult to determine. Moreover, the propagation of uncertainty by this 

approach was more computationally efficient than probabilistic simulations. In contrast, Andre and 

Lopes (2012) concluded that although fuzzy intervals were computationally efficient and provided 

results comparable to those of a probability approach, they offered poor information about uncertainty 

in output (i.e., a rough confidence interval), which could be less useful for LCA purposes. Thus, 

interpreting fuzzy-set-based results for decision making appears to be a challenge (Frey 2007). 

Moreover, its practical application is still limited due to the complexity of the model studied. For 

example, Heijungs and Tan (2010) illustrated the feasibility of fuzzy propagation in matrix-based life 

cycle inventory (LCI) but observed that it had low efficiency when the model was not monotonic.  
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Figure 4. Top: Triangular (left) and trapezoidal (right) fuzzy-interval membership functions of an uncertain 
variable x denoted by :��~ , �� , ��� and	:��~ , �~�, ��� , ���, respectively. Bottom: DST structures of x. Green 
and blue dashed lines indicate belief and plausibility functions, respectively. 

2.3.5 Qualitative and semi-qualitative approaches  

Data/model quality is a crucial issue for the reliability of LCA results (De Smet and Stalmans 

1996). Although LCA practitioners try to ensure the accuracy of input data and models, it is 

sometimes necessary to use reference data (e.g., a global estimate of emissions instead of a site-

specific value) or a simple but less precise model, which may induce additional uncertainty due to the 

lack of specific information. The uncertainty in data/model quality is associated with the data 

collected, data sources and the choice of models or measurements in all LCA phases. When 

quantitative approaches (e.g., probabilistic, possibilistic) are infeasible, qualitative and semi-

qualitative approaches are useful for representing data and model uncertainty. They linguistically 

describe the quality (e.g. “poor”, “good”) of data and models used in the system. Several standards and 

guidelines (Basket et al. 1995; ISO 14040 2006; Lindfors 1995; Weidema et al. 2004) offer methods to 

improve data quality and deal with its associated uncertainty, such as including independent critical 

review to validate the data used, creating databases to be used in LCA for data-quality assessment and 

increasing the transparency of data. For example, a SETAC workshop (Fava 1992) provided 

guidelines for assessing data quality as a systematic method to identify and measure the suitability of 
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LCI data. A conceptual framework for LCA data-quality assessment was developed using data quality 

indicators (DQIs), which assess data quality in several qualitative and quantitative categories (e.g., 

consistency, representativeness, precision, completeness). However, some aspects of DQIs, such as the 

inclusion of other types of uncertainty and variability, make them less focused on data validity or 

model quality and more on basic uncertainties, such as statistical error or variability within a 

population. Later, Weidema and Wesneas (1996) developed a “pedigree matrix” of five DQIs to 

evaluate data quality that focus on reliability, completeness, temporal correlation, geographical 

correlation and further technological correlation. This method transforms DQI scores into uncertainty 

factors (i.e., variance) of input variables, combines them with the variables’ basic uncertainty, and 

propagates both using stochastic simulation (see section 2.4) (Maurice et al. 2000). Van den Berg et al. 

(1999) reviewed the literature on quality assessment in LCA and argued that most studies related to 

data quality assessment only concern the quality of input data (e.g., inventory data), ignoring model 

quality. Consequently, they developed a framework to extend quality assessment to models. Their 

DQIs cover four aspects related to the validity and reliability of input data and models through all 

phases of LCA. However, the final scores of each DQI are subjectively selected by practitioners, 

which may not account for disagreement in scores among experts. Pedigree matrices can be adapted to 

specific fields (e.g., industry vs. agriculture) or objectives of study (Kennedy et al. 1996; May and 

Brennan 2003; Rousseaux et al. 2001); consequently, the DQIs used and their arbitrary uncertainty 

factors may differ among studies.  

2.4 Approaches to propagating uncertainty 

Propagating uncertainty is one way to estimate uncertainty in final results due to uncertainty in 

related input variables, scenarios, model parameters and models themselves. Given an LCA 

framework (f) which contains input variables X=(x1, x2,…, xi) with means defined as	$ =��J, �<, … , �N�, output can be obtained as follows: 

* = ���J, �<, … , �N� Eq. 36 

with mean output corresponding to: 

* = ���J, �<, … , �N� Eq. 37 

Denoting uncertainty in the input variables with u1, u2,…, ui and uncertainty in the framework 

with uf, the uncertainty in output can be expressed as: 

B� = ��B� , BJ, B<, … , BN� Eq. 38 

where U represents the approach of uncertainty propagation. The ui can be expressed as SD, 

variance or coefficient of variation, etc.; here we define it as SD. The uncertainty on the framework 

itself (uf) includes parameter uncertainty in models, model uncertainty and scenario uncertainty; the 

expression of uf differs depending on the type(s) of uncertainty. The approach to apply to propagate 
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input uncertainties through the framework to LCA results depends on how uncertainty is represented 

(described in the previous section). Of the several well-understood approaches used in LCA (Heijungs 

and Huijbregts 2004; Lloyd and Ries 2007), we discuss five in this section: an analytical method, 

interval arithmetic, stochastic simulation, scenario analysis and combined methods.  

2.4.1 Analytical method 

This analytical method to propagate uncertainty is a well-defined estimate of output variance 

based on a first-order Taylor series approximation (Bipm et al. 1995; Morgan and Henrion 1992). 

Given a mathematical function (f(x)), Taylor series are defined as a function with an infinite order of 

derivatives of a constant real number a (means of input variables): 

���� = ���� + �����J! �� − �� + ������<! �� − ��< + ��������! �� − ��� +⋯ Eq. 39 

The application of a Taylor series keeps only the first-order of Eq. 39 to estimate output 

variance when the model is linear (Bipm et al. 1995). Thus, given a multivariate model defined by Eq. 

36, the deviation from the mean of output equals: 

* − * = ��$� − ��$� ≈ ���$��$ − $� − ���$��$ − $� = ���$��$ − $� Eq. 40 

where ���$� is a partial derivative	������. Thus, Eq. 40 is transformed into: 

* − * ≈ ∑ ��N − �NLNnJ � ����
O�  Eq. 41 

Thus, the variance of y is obtained as: 

����*� = ��* − *�<						�Expected	value	of	the	squared	deviation	from	the	mean�	
≈ � T�∑ ��N − �NLNnJ � ����
O��<U		
= � ¥∑ ∑ ��N − �N�LmnJ ��m − �mLNnJ � ����
O� ¦ ���
e¦§		
= ∑ ����N − �N�<�LNnJ ����
O�< + 2∑ ∑ ����N − �N�LN¨m ��m − �mLNnJ �� ����
O� ¦ ���
e¦		
= ∑ �����N�LNnJ ����
O�< + 2∑ ∑ F%©����N , �m�LN¨mLNnJ ����
O� ¦ ���
e¦  Eq. 42 

Assuming that the input variables are independent, the covariance between input variables is 

zero. Finally: 

����*� ≈ ∑ �����N�LNnJ ����
O�<    Eq. 43 

This analytical method works well for low uncertainties with relatively less complex functions 

(Baker and Cornell 2003) because it is more computationally efficient than Monte-Carlo simulation 

with many iterations. Heijungs (1996) applied the analytical method to a simple matrix-based LCA 

study to propagate uncertainty. He stated that it could identify the influence of input variables (so-
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called “key issues”) on outputs but pointed out that it may estimate uncertainty roughly due to a lack 

of knowledge about data uncertainty. More recently, Imbeault-Tetreault et al. (2013) confirmed the 

feasibility of the analytical method to propagate input uncertainties (expressed as geometric SDs) in a 

LCA case study. The sensitivity of input variables provided by this method was also useful in 

uncertainty analysis.  

The method’s formula (Eq. 43) is first based on the assumption that the input variables are 

independent, which may be not always true in LCA. Hence, it is likely to under- or over-estimate 

uncertainty in output if strong correlation among input data exists (Ciroth et al. 2004). To address this 

problem, Hong et al. (2010) applied a second-order approximate method that considered correlations 

among input variables to two scenarios in a comparative LCA study. They concluded that their 

analytical method generated results similar to those obtained by Monte-Carlo simulation (MCS, 

described next), but much more computationally efficient. Including correlations implies using a 

higher-order analytical formula that may improve the accuracy of results but also increases the 

complexity of calculations (Heijungs and Suh 2002). Despite its computational advantage, this 

analytical method is rarely used in LCA (Heijungs and Huijbregts 2004), perhaps because of its 

mathematical complexity (e.g., the feasibility of calculating partial derivatives for all input variables) 

and because its requirements for more precise input variances are not easily satisfied due to lack of 

data. Moreover, when the function is significantly nonlinear, Eq. 40 will not be acceptable, and higher-

order terms will be needed in a Taylor-series expansion. Doing so can also increase its mathematical 

complexity.  

2.4.2 Stochastic simulation 

When uncertain input variables are expressed by probability distributions, stochastic (random) 

simulation, such as MCS, can propagate their uncertainties into the uncertainty in output (Firestone et 

al. 1997). MCS involves 4 steps: 

1. Generate a value for each input variable based on a random value [0, 1] and the inverse 

function of its PDF. 

2. Repeat step 1 to obtain a set of input variables (�J� , �<� , … , �N��. 
3. Calculate the output	*� = ���J� , �<� , … , �N��. 
4. Repeat the previous steps many times (e.g., B=5 000) to obtain a mean and SD of y, which 

represent its predicted value and uncertainty, respectively. 

In general, a classic MCS merges uncertainty in more than one input variable (expressed by 

probability distributions) into a single CDF output. However, to better understand input variables and 

their parameter uncertainty and variability, two-dimensional Monte-Carlo simulation (2D-MCS) is one 

advanced modeling approach (Kentel and Aral 2005). The 2D-MCS uses two loops of simulation 
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(inner and outer) to characterize parameter uncertainty and variability, respectively, when both are 

represented by probability distributions. The result of 2D-MCS is an imprecise probability distribution 

that covers a family of single probability distributions. Since this approach has two iteration steps, its 

computational time greatly exceeds that of classic MCS. Application of 2D-MCS in risk analysis was 

discussed explicitly by Kentel and Aral (2005), who introduced a 2D fuzzy MCS to integrate fuzzy-set 

theory into a probabilistic approach in risk assessment studies. Details of this method are described in 

a following section (2.4.4). 

Since random MCS (using a random sampling technique), often used in LCA, assumes 

independence among input variables, all possible values of input variables can appear in a random set. 

This assumption, however, ignores any correlations between input variables, which may under- or 

over-estimate uncertainty in output if strong correlations exist (Bjorklund 2002). Correlations among 

variables (if known) can be considered in MCS using a covariance matrix. For example, Bojaca and 

Schrevens (2010) used multivariate normal distributions (based on a covariance matrix) in MCS in an 

LCA case study of potato production. This method yielded less uncertainty in impacts than a 

univariate normal distribution without correlations. Based on the same theory, we applied a modified 

MND method considering correlations in MCS using different probability distributions in a case study 

to estimate enteric methane emissions of cattle in French dairy farms (see Chapter 4). Besides 

correlations among input variables, correlation among systems implies that different systems of a 

comparative study use common input variables. Huijbregts et al. (2003) used an indicator to compare 

impacts of two production systems using MCS when input variables occur in both systems. In this 

way, the distribution of comparison indicator can be used to judge the significance between both 

product systems.  

Generally, MCS uses 1000 to 10,000 iterations to explore a wide range of possible values. In 

theory, increasing the number of iterations increases the precision of estimated distributions of input 

variables but in practice decreases computational efficiency due to the considerable time required for 

calculation (Vose 2008). Therefore, using more efficient sampling techniques, such as Latin 

Hypercube sampling (LHS) (Helton and Davis 2003; Wyss and Jorgensen 1998), modified LHS 

(Wang et al. 2004) or importance sampling (Smith et al. 1997), can reduce the number of iterations 

necessary for comparative predictions. Since application of sampling techniques in MCS was not an 

objective of this thesis, more details can be found in the references cited. 

MCS is widely used in uncertainty propagation in LCA (e.g., Röös and Josefine (2013), 

Henriksson et al. (2011), Gerber et al. (2010), Basset-Mens et al. (2009), Payraudeau et al. (2007), 

Sonnemann et al. (2003)) because of its flexibility and simple implementation via software packages 

(e.g., R, MATLAB®, Crystal Ball). This makes it feasible to use MCS for complex models (e.g., those 

with multiple sub-models or correlated input variables) (Hammonds et al. 1994). Moreover, 
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correlations between input variables can be controlled more easily in MCS than in analytical methods. 

However, MCS has some limitations (Ferson 1996). First, MCS requires a large amount of 

information, mainly from empirical data, to determine distributions of input variables. The lack of 

such information may limit the use of MCS, while arbitrarily assumed distributions may introduce 

additional uncertainty in input variables (see section 2.3.1). Second, based on probability theory, 

classic MCS can deal with stochastic uncertainty (i.e., natural variability), but is not appropriate for 

propagating non-statistical uncertainty due to imprecision or ignorance, nor can it handle model or 

scenario uncertainty. Finally, a high number of iterations requires considerable computational efforts, 

sometimes yielding calculation times too long to be achieved in practice. 

Bootstrap sampling (Efron 1979) is an alternative to MCS for estimating sample error of a 

specific statistic (e.g., median, coefficient of correlation, eigenvalue) when empirical data are available 

but sample sizes are small. Unlike MCS, bootstrap sampling can estimate a statistic’s confidence 

interval (CI) without needing distributions of input parameters. For example, an LCA case study using 

bootstrapped Principal Component Analysis to estimate the CIs of impacts of trout farming is 

illustrated (Appendix 1). 

2.4.3 Interval arithmetic  

Interval arithmetic is applied when input variables are expressed as intervals in the model. Its 

rules, developed by Moore (1966), calculate the smallest and the largest values of output under the 

following operations. Given real numbers a, b, c, d (� ≤ �, { ≤ 	): 

��, �� + �{, 	� = �� + {, � + 	� Eq. 44 ��, �� − �{, 	� = �� − 	, � − {� Eq. 45 ��, �� ∗ �{, 	� = �4�C��{, �{, �	, �	�,4����{, �{, �	, �	�� Eq. 46 ��, �� �{, 	�⁄ = �4�C�� 	⁄ , � {⁄ , � {⁄ , � 	⁄ �,4���� 	⁄ , � {⁄ , � {⁄ , � 	⁄ ��, ���ℎ	{ ≠ 0, 	 ≠ 0 Eq. 47 

The straightforward use of interval arithmetic to propagate uncertainty can yield robust results 

with best-case and worst-case estimates. It is an alternative propagation method when the 

computational burden of MCS appears too great. Although a single interval of output cannot take into 

account the level of belief, interval arithmetic can be used to propagate uncertainty of fuzzy intervals 

(Klir and Yuan 1995; Mauris et al. 2001). Given the output	* = ���J, �<, … , �N�, where input variables 

xi (i = 1, 2… n; n is the number of input variables) are expressed by fuzzy intervals as π(α)i, the 

operational steps of propagation are: 

1. Set the degree of possibility α=0 and calculate the minimum and maximum of output y with 

all possible combinations (2n) of input variables xi through the 

model:	*«n¬ = �4�C�������N�,4���������N��«n¬. 
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2. Set	� = � + Δ�	�@. |. , Δ� = 0.01� and repeat step 1 to obtain 	*«n«®¯« = �4�C�������N�,4���������N��«n«®¯«. 

3. Repeat step 2 until α=1, giving ° = 1 + 1 Δ�⁄  (e.g., N=1+1/0.01=101) fuzzy intervals yα 

with their corresponding α. 

Note that all combinations of input variables must be calculated to find the minimum and 

maximum of the output. Thus, increasing the number of intervals exponentially increases the number 

of combinations (2n). Indeed, Heijungs (1996) discussed shortcomings of this approach when looking 

for the minimum and maximum of combinations of all input variables in LCI; in particular, when 

recycling loops occur (i.e., non-monotonic functions), the minimum and maximum may not be 

predicted intuitively3. In such cases, it may be impossible to calculate results with a large number of 

LCI input variables (e.g., combinations = 210 000). Despite this limitation, several authors (Benetto 

2005; Mauris et al. 2001; Tan 2008) have used fuzzy-interval propagation in LCA case studies. For 

example, Tan (2008) showed its computational efficiency with a small number of iterations (e.g., N = 

101) in matrix-based LCI, when the smallest and largest emissions in inventory results can be 

determined without having to consider all combinations. Later, Heijungs and Tan (2010) validated this 

method for monotonic matrix-based LCI models. 

If the propagation assumes strong interdependence between the sources of input variables, the 

same degree of belief is used for all input variables in each iteration (Baudrit et al. 2006). This refers 

to a subjective dependence between input variables related to their degrees of belief; for example, all 

input variables should be the most possible at the same time. It should be noted that this subjective 

dependence differs from objective dependence (i.e., correlations) between input variables. The latter 

indicates a functional relation between input variables, which is rarely considered in fuzzy-interval 

propagation modeling in LCA. 

2.4.4 Combined methods 

The choice of propagation methods depends on how uncertainty is represented (Lloyd and Ries 

2007). Huijbregts et al. (2003) outlined different methods to account for different types of uncertainty 

simultaneously in a LCA case study for a Dutch one-family dwelling. They argued that simultaneous 

assessment can estimate combined effects of different types of uncertainty in LCA results. Helton et 

al. (2004) compared methods for representing uncertainty and discussed ways to aggregate their 

influence on model predictions. They translated different ways to represent input uncertainty into 

probabilistic structures (CDF or imprecise CDF) and propagated them through models with MCS. This 

propagation is similar to that of classic MCS, except that the sampling process generates a random 

                                                      
3 The minimum and maximum of simple addition (Eq. 44) or subtraction (Eq. 45) can be estimated intuitively, while those of 
multiplication (Eq. 46) and division (Eq. 47) are more complicated because they require minimizing and maximizing all four 
combinations of the two intervals [a, b] and [c, d]. 
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interval instead of a single random value. Then, each iteration is calculated with interval arithmetic. 

For example, given a model	* = ���J, �<, … , �N�, in which input variables xi (i = 1, 2… n; n is the 

number of input variables) are expressed as imprecise CDFs, the steps of propagation are as follows:  

1. Select a random value [0, 1] for an input variable and then generate an interval for it with 

minimum and maximum values ��N�, �N�� according to its inverse function of imprecise PDF. 

2. Repeat step 1 for each input variable to obtain a set of random intervals 

 (��J� , �J� �, ��<� , �<� �… , ��N�, �N���. 
3. Calculate the output interval using interval arithmetic 	�*�, *�� = �4�C�����J� , �J� /, ��<� , �<� �… , .�N�, �N�/��,4�������J� , �J� �, ��<� , �<� �… , ��N�, �N�����. 
4. Repeat the previous steps many times (e.g., B=5000) to construct an interval PDF of y.  

Combining MCS and interval arithmetic allows stochastic uncertainty and imprecise 

information to be considered simultaneously in the model when both types exist. This propagation 

method can also be developed to combine probability distributions and fuzzy intervals. For example, 

Clavreul et al. (2013) modeled inventory data using both trapezoidal probability distributions and 

fuzzy intervals (according to the type of uncertainty) to estimate potential impacts in an LCA study. 

Results were presented as a bounded probability distribution that distinguished the uncertainty due to 

randomness from that due to incomplete information. Others, such as Arunraj et al. (2013), Baraldi 

and Zio (2008), Baudrit et al. (2006; 2005) and Guyonnet et al. (2003) have developed hybrid 

approaches for joint propagation of probability distributions and fuzzy intervals in risk assessment. 

These studies considered the combined method an alternative propagation approach when information 

is scarce (e.g., parameter uncertainty is described by fuzzy intervals). Application of this method is 

limited, however, due to the computational intensity of both MCS and interval arithmetic. Otherwise, 

the interdependence between random and imprecise variables (or lack thereof) remains to be explored 

(Ferson et al. 2004).  

2.4.5 Scenario propagation  

Pesonen et al. (2000) defined an LCA scenario as “a description of a possible future situation 

relevant for specific LCA applications, based on specific assumptions about the future, and (when 

relevant) also including the presentation of the development from the present to the future.” 

“Assumptions” refers to uncertainty in predicting the future, and this uncertainty can be addressed by 

scenario analysis, the comparison of different possible futures of a system. Approaches for assessing 

scenario uncertainty depend on the purpose of the research. There are two basic approaches in LCA 

(Pesonen et al. 2000): “what-if” scenarios and cornerstone scenarios. The what-if scenario approach is 

widely used to compare systems under different assumptions (e.g., alternative processes, different 

products, and different models). For example, Basset-Mens and van der Werf (2005) compared the 
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environmental performance of current and alternative systems of pig production. Potential impacts of 

“favorable” and “unfavorable” scenarios indicated an overall uncertainty range. Compared to the one-

by-one analysis of what-if scenario approach, the cornerstone scenario approach combines multiple 

possible scenarios with long-term horizons to serve as basic guidelines for future prediction of the 

studied field. If considered as independent cases, all possible scenarios can be considered as 

probabilistic events and propagated via stochastic simulation (e.g., MCS or bootstrap sampling). 

Huijbregts et al. (2003) assigned a probability (i.e., a degree of belief) to each normative choice of 

LCA practitioners and quantified potential impacts as a probability distribution reflecting the 

uncertainty due to different normative choices. Hence, a probabilistic approach can integrate scenario 

uncertainty with parameter uncertainty in the same framework.  

It should be noted that the previous example referred to a case when probability assignments 

came from a single source of information (i.e., evidence). If there is more than one source of 

information (e.g., different experts or observations), evidence theory (e.g., DST) can express the 

degree of belief of each scenario by combing the sources. For example, Chowdhury (2013) assessed a 

water treatment plant using certain factors as risk indicators. They classified factors into five linguistic 

levels (i.e., “very poor” to “very good”) provided by multiple experts and used Dempster’s rule (see 

2.3.3) to obtain the factors’ bpa. When multiple sources of information are available, DST-based 

combination rules represent the status of a studied system better than a single arbitrary assignment of 

probability. As mentioned, the bpa is used in DST to define belief and plausibility functions, which 

are identical to lower and upper probabilities, respectively. Thus, scenario uncertainty can be 

expressed in probabilistic form (p-box) and propagated via MCS. 

2.5 Choice of uncertainty analysis in LCA 

Although the consideration of uncertainty in LCA is mentioned in its ISO standards (ISO 14044 

2006), it provides little guidance about how to perform uncertainty analysis in LCA, and a lack of 

consensus about this issue remains (Bjorklund 2002). LCA practitioners have applied various methods 

to deal with uncertainty (Lloyd and Ries 2007), but decisions about methods raise concerns because 

results can vary depending on which method is chosen (Reap et al. 2008). Therefore, LCA 

practitioners should explicitly identify in the first step of LCA (goal and scope) the types of 

uncertainty in their studies and the uncertainty analysis methods they chose. Huijbregts (1998a) 

reviewed tools for addressing epistemic uncertainty and variability in LCA, including ways to 

represent and propagate uncertainty (e.g., stochastic simulation), reduce epistemic uncertainty and 

better represent variability (e.g., additional measurements, standardization). Based on his work, we 

mainly reviewed approaches that focus on representing epistemic uncertainty and variability (Table 3).  
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Probabilistic approaches include both classic (precise) and imprecise probability distributions. 

Bayes’s theorem can be considered as a subjective probabilistic approach to estimate the posterior 

distribution of an uncertain variable using both expert opinions (prior distribution) and observed data 

(likelihood function). Non-probabilistic approaches (e.g., interval, fuzzy intervals, DST) assign a level 

of belief to express the state of knowledge. DST combination rules (e.g., Dempster’s rule) can 

combine multiple sources of information; thus, they can be used to integrate different choices (sources 

of evidence) into the same framework. In addition, we considered expert judgment and peer review 

(e.g., rule of thumb) only as an assessment of data quality; thus, these two subjective assessments are 

replaced by the qualitative approach when evaluating data/model quality. Scenario analysis includes 

ways to treat uncertainty due to choice (see section 2.4.5). Among them, “what-if” scenario analysis 

can be applied to address spatial or temporal variability (e.g., using specific or generic data). It should 

be noted that scenario analysis also refers to propagation of scenario uncertainty, since the results of 

scenario analysis contain information about different scenarios. We classified modeling approaches 

(non-linear/multi-media modeling) as ways to account for model uncertainty using multiple complex 

models, if they exist. Moreover, modeling approaches can incorporate spatial and temporal 

information that make models more complete; however, complex models may introduce other sources 

of uncertainty (e.g., parameter uncertainty) related to spatial and temporal factors or the fact that they 

require more parameters, for some of which information may be scarce. For example, the IPCC (2006) 

provides three tiers to estimate CO2 emissions from mineral fertilization. The model-based method 

(Tier 3) can be applied when detailed activity data is available; if not, uncertainty in these activity data 

may influence predictions significantly or even make model use infeasible. In such a case, the IPCC 

recommends using a simpler equation (Tier 2 or Tier 1) for a generic rather than site-specific estimate, 

but less complex methods may predict emissions less precisely. Finally, statistical correlation and 

regression analysis can be integrated into other approaches (e.g., correlation control using multivariate 

distributions) if the information is available. 

Since a given type of uncertainty can be expressed by more than one approach (Table 3), there 

is a need to help LCA practitioners choose appropriate approaches. Considering the properties of each 

approach for representing uncertainty, we propose a guide for choosing appropriate approaches to 

represent different types of uncertainty (Fig. 5). The guidelines start by identifying the types of 

uncertainty according to their natures and sources. Then, depending on their objectives and the 

information available, LCA practitioners can follow its specific questions to find approaches 

appropriate for representing a given type of uncertainty. For example, natural variability can be 

represented with a classic probability distribution (red arrows). In the same way, parameter uncertainty 

(green arrows) can be represented with probability distribution when the parameter is (or is assumed to 

be) randomly distributed (see chapters 3 and 4). If not, (fuzzy) interval analysis (blue arrows) can be 

applied (see chapter 5). However, it should be noted that addressing one type of uncertainty may 
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induce another source of uncertainty. For example, a spatial or temporal model can be used to consider 

spatial or temporal variability, respectively, but that model may have uncertainty in its associated 

parameters. Hence, this decision tree can be used iteratively when new sources of uncertainty are 

identified. 

Table 3. Overview of approaches for representing uncertainty in LCA and their suitability for different types of 
uncertainty (based on Huijbregts, 1998a) 

Approach 

Type 
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Probabilistic approach (classic and imprecise 
probability distribution, Bayes’s theorem) 

+  +   + 

       
Non-probabilistic approach (interval, fuzzy 
intervals, Dempster-Shafer theory) 

+     + 

Combination rules (e.g., Dempster’s rule)   +    

Qualitative/semi-qualitative method + +    + 
       
Scenario analysis (bootstrap sampling, “what-if” 
scenario analysis, cornerstone analysis) 

  + + +  

       
Non-linear/multi-media modeling  +  + +  

Ultimately, the choice of propagation methods depends on how uncertainty is represented. MCS 

is widely used when probability distributions (both precise and imprecise) are applied. Interval 

arithmetic can provide a rough estimate of output intervals (minimum-maximum), especially to 

propagate parameter uncertainty represented by classic intervals or fuzzy intervals. The combined 

methods based on DST makes it feasible to integrate both of the above methods. The analytical 

method is useful for dealing with parameter uncertainty and variability when models and variances of 

uncertain variables are well-known. However, as previously mentioned, application of the analytical 

method is limited due to its mathematical complexity and data requirements. Finally, bootstrap 

sampling can estimate overall impacts of several scenarios if they are judged to be equally probable. In 

addition, bootstrap sampling can also be applied to propagate sampling errors (e.g., SEM) from input 

variables onto impacts when observed samples are given (Annexe). 

2.6 Discussion and Conclusions 

Despite the existence of many terminologies of uncertainty, we follow the classification of 

uncertainty applied by Huijbregts (1998a), which explicitly separates states of knowledge according to 

their natures and sources. First, this classification allows LCA assessors to better understand inherent 
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differences (e.g., variability) in the system and readily assess the potential to improve the system by 

reducing epistemic uncertainty. Second, sub-classes of variability and epistemic uncertainty focus on 

the sources of uncertainty, which provide detailed understanding about the key points where 

uncertainty appears. Finally, this classification and the definitions of uncertainties have been accepted 

in most LCA studies that provided good examples of representing and propagating uncertainty. 

In general, the classic probabilistic approach is the mainstream way to treat parameter 

uncertainty and natural variability in LCA. It is commonly applied by most LCA practitioners, because 

(1) its basic theory is well developed in many fields (e.g., risk analysis, environmental assessment) and 

easy to understand, (2) its application is practical with the aid of statistical software (e.g., Microsoft 

Excel®, R, MATLAB®) and LCA software (e.g., SimaPro®, OpenLCA) that can perform MCS to 

propagate uncertainty through LCA models, and (3) results are easy to interpret using single values for 

the common statistical terms (e.g., mean, variance). However, this classification of uncertainty 

suggests that (1) natural variability and parameter uncertainty are different by definition, so it is better 

to interpret them separately, and (2) other types of uncertainty (e.g., scenario uncertainty, spatial 

variability) also occur in LCA that most likely will influence estimates of environmental impacts. The 

probabilistic approach is less feasible when available information is scarce, since too many 

assumptions about variable distributions may result in arbitrary estimates. Consequently, alternative 

methods are necessary to address different types of uncertainty. These methods enable LCA 

practitioners to have more flexible choices depending on the information they have available. For 

example, imprecise assessment (e.g., imprecise probability, interval analysis) can provide conservative 

estimates and require less information or sometimes computational time than a classic probability 

distribution when a high confidence level is not absolutely necessary. On the other hand, other types of 

uncertainty (e.g., scenario uncertainty) can be integrated into uncertainty analysis, though the ability to 

address them is still limited in LCA. For example, DST combination rules can merge information 

about models or scenarios from different sources of evidence into the same LCA framework. In 

addition, although interpretation of DST-based results seems complex and harder to understand than a 

single probabilistic distribution, which Lindley (2013) argued simplified representation of uncertainty, 

DST structures (p-box) have the advantage of considering imprecision and ignorance for uncertainty 

analysis and providing more realistic estimates. 

This chapter illustrated several methods adapted for LCA to represent and then propagate 

different types of uncertainty. Many factors determine the choice of methods, such as type of 

uncertainty, the information available, study objectives, and acceptable confidence levels. Based on 

these factors, we developed a decision tree for choosing appropriate methods to represent different 

types of uncertainty (Fig. 5). It offers initial guidelines for LCA practitioners to analyze uncertainties 

using different methods. The method selected may influence how impact assessment is modeled. For 
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example, dynamic models are used with probabilistic methods, while static models are used with 

deterministic input variables. Hence, construction of LCA models should consider how to integrate 

uncertainty during the assessment process. However, application of uncertainty-analysis methods 

should be performed on a case-by-case basis, since this general guideline cannot cover all 

circumstances. Sometimes, computational costs or practitioner preferences also play an important role 

in the choice of method. Therefore, uncertainty analysis should be described explicitly in a separate 

section of an LCA study when a confidence level about potential impacts is required. 
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Figure 5. Decision tree of the choice of methods to represent different types of uncertainty. For example, red arrows indicate representation of natural variability with probability distributions 
(chapters 4 and 5). Green arrows indicate representation of uncertainty in randomly distributed parameters, either with probability distributions (red arrows, chapter 3) or fuzzy interval analysis 
(blue arrows, chapter 5). The dashed arrow indicates iterative use of the decision tree when new sources of uncertainty are identified in temporal or spatial models.  
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Chapitre 3.                                                                
Influence of emission-factor uncertainty and farm-

characteristic variability in LCA estimates of 
environmental impacts of French dairy farms 
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Abstract 
Life Cycle Assessment (LCA) is a useful framework for environmental assessment; however, the 

reliability of LCA results suffers from many sources of uncertainty and variability. Now that systematic 

uncertainty analysis in LCA is recommended, it can be useful to revisit past LCA studies to see whether 

inclusion of uncertainty (or additional types of it) changes interpretation of their results. In this study, we added 

uncertainty in 67 emission factors (EFs) to the variability in farm characteristics of 47 French dairy farms 

analyzed in a previous LCA study (van der Werf et al., 2009). We propagated uncertainty in EFs with Monte-

Carlo simulation to estimate contributions of uncertainty and variability to uncertainty in potential climate 

change, acidification, and eutrophication impacts. For individual farms, uncertainty in emission factors added 

uncertainty to the farm’s formerly deterministic impacts (coefficients of variation of 2-7% for climate change, 4-

11% for acidification, and 2-46% for eutrophication). By farm type (conventional vs. organic), the addition of 

uncertainty in EFs increased uncertainty in impacts. Although uncertainty in emission factors contributed less to 

impact uncertainty than variability in farm characteristics did, it did add enough to potentially change decisions 

about whether differences in certain impacts between farm types were significant, depending upon the 

significance level and functional unit chosen. Variance-based sensitivity analysis identified emission source 

categories whose uncertainty contributed most to the uncertainty in impacts: manure deposited in pasture for 

climate change, cattle housing and manure storage for acidification, and leachate for eutrophication. Although 

larger uncertainties in potential impacts decrease apparent differences between the systems or scenarios studied, 

considering more than one type of uncertainty provides decision makers with a more complete and realistic 

assessment of the state of knowledge. Based on the degree of uncertainty in impacts, they can decide which 

location on impact intervals (e.g., mean, lower limit, upper limit) is best suited for decisions in a given system. 

Future studies should explore additional methods to combine multiple sources of uncertainty in LCA and express 

their relative influences on potential impacts. 
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61 

 

1. Introduction 

Environmental impacts of agricultural systems have become an increasingly important issue in 

the past several years. As a framework for environmental assessment, Life Cycle Assessment (LCA) 

can estimate potential environmental impacts and resource use of entire farming systems (van der 

Werf and Petit 2002). LCA results can help decision makers assess environmental impacts of a given 

production system or compare different systems to identify those with lower impacts (International 

Organization for Standardization (ISO) 2006). Application of LCA, however, requires many 

simplifying assumptions, methodological choices, and input data. Unfortunately, the influence of 

uncertainty in these assumptions, choices, and data on potential impacts is not systematically assessed 

(though its frequency is increasing), which may lead to inaccurate or overly confident interpretations 

of potential impacts or their differences between systems. Thus, uncertainty analysis in LCA can 

illustrate how uncertainties affect the reliability of its results, providing more useful information for 

decision making (International Organization for Standardization (ISO) 2006; Weidema and Wesnaes 

1996). 

The broadly defined concept of uncertainty includes two types with different natures: 

uncertainty and variability (Huijbregts 1998a; Thompson 2002). Uncertainty (sometimes called 

“epistemic uncertainty” (Clavreul et al. 2013; Helton and Oberkampf 2004) for clarity), defined as 

incomplete or imprecise knowledge, can be further subdivided into parameter, model, and scenario 

uncertainties (Huijbregts 1998a; WHO 2008), which can arise from uncertainty in data about the 

system, choice of models used to calculate emissions, and choice of scenarios to define system 

boundaries, respectively (Röös and Josefine 2013). These types of uncertainty can be reduced by 

increasing measurement accuracy, increasing model accuracy, and collecting data that better represent 

systems of interest, respectively. Unlike epistemic uncertainty, variability, defined as inherent 

differences over time, space, or within a group, cannot be reduced, but it can be represented more 

precisely if more information about the group is available (Morgan and Henrion 1992). 

Most LCA studies considering uncertainty use probability distributions to represent both types 

of uncertainty in inventory data (Heijungs and Huijbregts 2004; Huijbregts 1998b) and Monte-Carlo 

simulation (MCS) to propagate them through LCA models to estimate uncertainty in potential impacts 

(Lloyd and Ries 2007). MCS generates hundreds or thousands of sample sets of input data, each 

containing a combination of input variables taken randomly from their distributions (Firestone et al. 

1997). For complex models, such as those in LCA, it is more feasible and efficient to apply MCS than 

analytical methods (Hammonds et al. 1994; Leinonen et al. 2012). With MCS, predicted impacts can 

be expressed as probability ranges instead of single values, which provides more complete information 

for decision makers about the magnitude of uncertainty in predictions (Sonnemann et al. 2003).  
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Now that assessment of uncertainty in LCA predictions is strongly recommended (Lazarevic et 

al. 2012; Williams et al. 2009), it can be useful to revisit past LCA studies to see whether inclusion of 

uncertainty (or additional types or sources of uncertainty) changes interpretation of their results. We 

did so for a previous study (van der Werf et al., 2009), whose authors had performed LCA for each of 

47 dairy farms in Brittany, France, with a custom-built tool, EDEN-E (Evaluation de la Durabilité des 

ExploitatioNs). Because (1) that study had already estimated uncertainty in impacts due to variability 

in farm characteristics and (2) the configuration of EDEN-E precluded including some key farm 

characteristics in MCS (described later), we focused our study on estimating how the addition of 

uncertainty in emission factors (EFs) influenced uncertainty in impacts of the dairy farms. This 

approach had the advantage of separating the two sources of uncertainty (EFs and farm 

characteristics), allowing us to assess each one’s influence on impacts, which may affect how decision 

makers interpret them. 

2. Material and methods 

2.1. EDEN-E tool and inventory data 

We used data previously collected and calculated with the EDEN-E tool, developed (in 

Microsoft Excel®) to estimate LCA-based environmental impacts of individual dairy farms (van der 

Werf et al. 2009). Tables in EDEN-E contain an inventory of farm inputs and characteristics, such as 

energy carriers, mineral fertilizers, animal feeds, and machinery, which are used in built-in emission 

models or multiplied by per-unit environmental burdens to calculate emissions and resource use. Other 

factors such as animal production (e.g., meat, milk), number of animals by age and sex, and usable 

agricultural area (UAA) are also used to estimate emissions from farm activities (Fig. 1). 

Consequently, EDEN-E can distinguish “direct” environmental interventions (occurring on the farm’s 

UAA) from “indirect” interventions (associated with upstream inputs, emissions, and UAA to produce 

materials imported to the farm) when predicting impacts. Thus, direct impacts consider only on-farm 

activities and hectares, while total impacts (i.e., direct + indirect) also include estimates of off-farm 

activities and hectares. It should be noted that intensive dairy farms importing feedstuff from lower-

impact crop farms may have direct impacts per ha (on-farm) that exceed total impacts per ha (on- and 

off-farm). Data collected with EDEN-E in the previous study represented one year of operation of 47 

dairy farms of two production modes (41 conventional, 6 organic) in Brittany, France, during the 

period 2003-2005.  

2.2. System boundary, functional units, and impact categories 

We used the same two system boundaries as the previous study (van der Werf et al. 2009) to 

calculate impacts (direct and total) according to two functional units, respectively (Fig. 1). Per ha of 

on-farm UAA, the boundary included all interventions, while per 1000 kg of fat-and-protein-corrected 



 

 

milk (FPCM) sold, the boundary excluded all inputs, output and UAA of cash crops (i.e., produced but 

not auto-consumed) to leave only the milk

crop and animal products). To facilitate interpretation of results, we predicted impacts only for those 

impact categories regrouping emissions that would vary due to uncertainty in the EFs ultimately 

selected for analysis: climate change (from nitrous oxide (N

(NOx)), acidification (from ammonia (NH

(PO4)). 

Figure 1. Flow diagram of dairy farms and system boundaries used to calculate impacts per ha of usable 

agricultural area (UAA) (dotted line) and per 1000 kg of fat

2.3. Variability in farm characteristics and uncertainty  in emission factors

Since certain key farm characteristics, such as feed rations and manure management, are stored 

as codes in EDEN-E, they could not be assigned probability distributions for inclusion in MCS. 

Reconstructing EDEN-E’s dairy
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study. We thus focused on exploring the influence of uncertainty (epistemic uncertainty and variability 

milk (FPCM) sold, the boundary excluded all inputs, output and UAA of cash crops (i.e., produced but 

consumed) to leave only the milk-production subsystem (thereby avoiding allocation between 

l products). To facilitate interpretation of results, we predicted impacts only for those 

impact categories regrouping emissions that would vary due to uncertainty in the EFs ultimately 

selected for analysis: climate change (from nitrous oxide (N2O), methane (CH4), and nitrogen oxides 

)), acidification (from ammonia (NH3)), and eutrophication (from nitrate (NO

. Flow diagram of dairy farms and system boundaries used to calculate impacts per ha of usable 

area (UAA) (dotted line) and per 1000 kg of fat-and-protein-corrected milk (FPCM).

Variability in farm characteristics and uncertainty  in emission factors

Since certain key farm characteristics, such as feed rations and manure management, are stored 

E, they could not be assigned probability distributions for inclusion in MCS. 

E’s dairy-farm LCA model in another form (e.g., SimaPro) to allow 

propagation of variability in all farm characteristics, besides being a study unt

changed LCA predictions, at odds with our objective of adding uncertainty to results of a pre
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combined) in EFs with MCS. As in the previous study, variability in impacts due to variability in farm 

characteristics within the sample of each farm type (conventional and organic) was considered. 

We used the same default EFs as in the previous study, despite the advanced ages of some of 

them (1997-2007), since our objective was to compare results between studies (Table 1). Most of the 

EFs selected convert quantities of manure or fertilizer into emissions of nitrogenous gases (i.e., NH3, 

N2O, NOx). As in van der Werf et al. (2009), NO3 emissions were set equal to the farm-gate N balance 

minus these gaseous N emissions. EFs for manure varied as a function of its type (e.g., species, water 

content), season, and site of excretion (e.g., on pasture or in buildings). EFs for CH4 emissions from 

enteric fermentation and manure management were estimated with the Tier 2 method of the IPCC 

(2006a). The EF for PO4 emissions from manure application came from Rossier and Charles (1998). 

Uncertainty shapes and ranges (usually 95% confidence intervals (IPCC 2006c)) for EFs for CH4 were 

taken from IPCC (2006a), those of N2O were taken from IPCC (2006b), and those of other nitrogenous 

compounds were taken from Payraudeau et al. (2007) (Table 1). We assumed an uncertainty range for 

the EF for PO4 of ±50% due to lack of data. Although the references we used described differences 

between uncertainty (i.e., epistemic) and variability, they did not separate them when estimating 

uncertainty ranges for EFs. Hence, the uncertainty ranges we used included both epistemic uncertainty 

(e.g., due to measurement error) and variability (e.g., due to site-specific characteristics, such as 

temperature and humidity). 

2.4. Monte-Carlo simulations and comparison with deterministic results 

We propagated uncertainty in EFs into predictions of environmental impacts of each of the 47 

farms using MCS (1000 iterations per farm in Excel®). Two EFs were excluded from MCS because 

they could be calculated from other EFs or input variables and thus were not independent: the EF for 

dinitrogen (N-N2) was three times that for N-N2O (Webb 2001), while dairy-cow enteric CH4 

emissions were a function of milk production per cow. We assumed that the remaining 67 EFs in the 

MCS were independent. After the 1000 iterations, we calculated mean impacts for each farm and their 

coefficients of variation (CVs) due to uncertainty in EFs. For each of the 1000 MCS iterations, we 

calculated mean impacts and their CVs for each farm type (conventional and organic) to express 

variability in farm characteristics. Then, we expressed mean impacts, their variabilities, and p-values 

of differences in means over the 1000 iterations as 95% confidence intervals (2.5th-97.5th percentiles) 

due to uncertainty in EFs. We also recalculated the results of the previous study (van der Werf et al., 

2009) using default values of EFs. We used R software (R Development Core Team 2012) to perform 

all statistical tests and, to remain consistent with the previous study, inferred significant differences at 

the significance level α=0.05. 
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2.5. Sensitivity analysis 

We performed a simple sensitivity analysis to identify which emission sources contributed most 

to variances predicted in direct impacts only, since the indirect portion of total impacts did not change 

when EFs varied. We grouped direct emissions into seven source categories: mineral fertilization, 

cattle housing and manure storage, manure deposited in pasture (N2O, NH3, NOx, and CH4 for all 

three), manure spreading (N2O, NH3, NOx, and PO4), leachate (NO3), N2O emissions due to both 

atmospheric NH3 deposition and NO3 in leachate, and “other” (e.g., direct fuel and plastic use). Then 

we estimated contributions to the variance (CTVi,j) in direct impacts from variation in the source 

categories using an equation of Geisler et al. (2005): 

F±�N,m = �N,m< /�∑ �N,m<LN �                                                                                                                      Eq. 1 

where ri,j is the Spearman’s rank-order correlation coefficient (which represents non-linear 

correlation more robustly than the Pearson correlation) between impacts from source category i for 

impact category j, and n is the number of source categories. The combined effect of sample size and 

variability in farm characteristics on CTVs was represented with 95% confidence intervals of mean 

CTVs for each farm type. 
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Table 1. Default values, uncertainty ranges, and distributions (normal (N) or log-normal (L)) of emission factors 
and their sources. Ranges in percentages indicate 95% confidence intervals. 

Emission factor Value Unit Range  Dist. 
Cattle housing and manure 
storage 

NH3-N emitted in housing 0.12a kg NH3-N/kg N 
excreted 

±60%e N 

NH3-N emitted during 
storage 

0.06a kg NH3-N/kg N stored ±60%e N 

N2O-N from solid manure 0.01c kg N2O-N/kg N 
excreted 

0.005-0.02c L 

N2O-N from liquid manure 0.005c kg N2O-N/kg N 
excreted 

0.0025-0.01c L 

Pasture NH3-N emitted in pasture 0.08a kg NH3-N/kg N 
excreted 

±30%e N 

N2O-N emitted in pasture 0.02d kg N2O-N/kg N 
excreted 

0.007-0.06d L 

NH3 from manure 
spreading in winter 

Solid cattle or pig manure 0.57b kg NH3-N/kg TANk ±60%e N 
Liquid cattle manure 0.20h kg NH3-N/kg TAN ±60%e N 
Liquid pig manure 0.15h kg NH3-N/kg TAN ±60%e N 
Solid poultry manure 0.338b kg NH3-N/kg TAN ±60%e N 
Liquid poultry manure 0.15g kg NH3-N/kg TAN ±60%e N 

      
NH3 from manure 
spreading in spring, 
summer, autumn 

Solid cattle or pig manure 0.76b kg NH3-N/kg TAN ±60%e N 
Liquid cattle manure 0.25h kg NH3-N/kg TAN ±60%e N 
Liquid pig manure 0.20h kg NH3-N/kg TAN ±60%e N 
Solid poultry manure 0.45b kg NH3-N/kg TAN ±60%e N 
Liquid poultry manure 0.20g kg NH3-N/kg TAN ±60%e N 

      
Mineral fertilizer 
application 

NH4NO3, (NH4)2SO4, 
Ca(NO3)2, CaCN2, KNO3 

0.02a kg NH3-N/kg N ±20%e N 

CO(NH2)2 0.15a kg NH3-N/kg N ±20%e N 
NH3  0.04a kg NH3-N/kg N ±20%e N 
(NH4)2HPO4 0.05a kg NH3-N/kg N ±20%e N 
Other NPK compounds 0.02a kg NH3-N/kg N ±20%e N 
NO-N from applications 0.003i kg NO-N/kg N applied ±60%j N 

N2O-N from manure or fertilizer application or crop 
residues 

0.01d kg N2O-N/kg N 
applied or in residues 

0.003-0.03 d L 

Atmospheric deposition of NH3-N 15.00g kg NH3-N/year/ha 10.00-20.00e N 
N2O-N from NO3 leaching 0.008d kg N2O-N/kg N 

leached 
0.0005-0.025 d L 

N2O-N from atmospheric deposition 0.01d kg N2O-N/kg NH3-N + 
NOx-N volatilized 

0.002-0.05 d L 

PO4 from manure or fertilizer application 0.01f kg PO4/kg PO4 applied ±50% j N 
      
CH4 from enteric 
fermentation  

Heifers or males 0-1 year 37.20c kg CH4/head/year ±20%c N 
Heifers or males 1-2 years 84.60c kg CH4/head/year ±20%c N 
Heifers 2+ years or bulls 90.30c kg CH4/head/year ±20%c N 

CH4 from manure: 
emission of VSm  

Cows 5.10c kg dry 
matter/head/day 

±20%c N 

Other 3 animal classes 
above 

2.60c kg dry 
matter/head/day 

±35%c N 

      
CH4 from manure: 
potential CH4 production 
(Bo) 

Cows 0.24c m3 CH4/kg VS ±15%c N 
Other 3 animal classes 
above 

0.18c m3 CH4/kg VS ±15%c N 

aEMEP-CORINAIR(2002), bEMEP-CORINAIR(2001), cIPCC(2006a), dIPCC(2006b), ePayraudeau et al. (2007), 
fRossier and Charles (1998), gExpert judgment (INRA UMR SAS, Rennes, France), hMorvan and Leterme 
(2001), iSkiba et al. (1997), jAssumption, kTAN: total ammoniacal nitrogen, mVS: volatile solids 
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3. Results 

3.1 Impacts of individual farms 

For individual conventional farms, uncertainty (expressed as a CV) in acidification (8-14%) was 

higher than that in climate change (3-6%) or in eutrophication (2-8%) for both functional units (Fig. 

2). For organic farms, however, half (three) had higher uncertainty in eutrophication, especially per ha 

of UAA (CVs of 15%, 19% and 46%).  

 

Figure 2. Strip plots of coefficients of variation (CVs) of total climate change, acidification, and eutrophication 
impacts (a) per 1000 kg fat-and-protein corrected milk (FPCM) sold and (b) per ha of usable agricultural area 
(UAA) of 41 conventional (circles) and 6 organic (triangles) dairy farms. Points represent uncertainties in 
impacts due to parameter uncertainty in emission factors, while their degrees of scatter for each impact category 
reflect inter-farm variability in CVs. 

3.2 Impacts by farm type 

Despite increased uncertainty in potential impacts by farm type caused by EF uncertainty, 

conventional farms always had higher direct and total climate change impacts than organic farms per 

ha of UAA (p<0.033, Table 2). In contrast, only total acidification and direct eutrophication impacts 

were always higher for conventional farms per ha of UAA (p<0.008 and p<0.041, respectively). The 

confidence intervals of their counterparts (direct acidification and total eutrophication) did not overlap 

but had confidence intervals of p-values that included p=0.05. Per 1000 kg FPCM, only direct climate 

a.Per 1000kg FPCM sold

Coefficient of variation
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b.Per ha of UAA

Coefficient of variation

Eutrophication

Acidification

Climate change
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change and direct and total acidification had confidence intervals of p-values (albeit wide ones) that 

included p=0.05. 

Confidence intervals of mean impacts, their variabilities, and p-values of differences in impact 

between farm types caused by EF uncertainty encompassed the corresponding deterministic values of 

the previous study, sometimes widely, indicating no change in mean impacts between studies (Table 

2). However, for five of the 12 direct and total impacts (direct climate change and direct and total 

acidification per 1000 kg FPCM, direct acidification and total eutrophication per ha of UAA), the 

confidence intervals of p-values obtained from propagating uncertainty in EFs now included α=0.05 

(and other commonly-used significance levels), indicating the potential to change interpretation of 

results. Instead of t-tests, cumulative distribution functions (CDFs) of p-values can be used to estimate 

the probability that significant differences exist between farm types. For example, if choosing α=0.05, 

probabilities of significant difference between impacts were 17% for total climate change per 1000 kg 

FPCM (Fig. 4a) and 60% for direct eutrophication per ha of UAA (Fig. 4b). 

3.3 Contributions of source categories to uncertainty in impacts 

According to the sensitivity analysis, the source categories whose uncertainty contributed most 

to uncertainty in impacts differed by impact and farm type, but these categories were similar for both 

functional units. Per 1000 kg FPCM (i.e., cash crops excluded), manure deposited in pasture 

contributed the most to variations in climate change impacts (mean CTV of 67% and 84% for 

conventional and organic farms, respectively) (Fig. 3). The source categories contributing most to 

variation in acidification impact were related to manure management: cattle housing and manure 

storage, manure deposited in pasture, and manure spreading (mean CTV of 66%, 20%, and 14% for 

conventional farms, respectively; 52%, 34%, and 14% for organic farms, respectively). For 

eutrophication, leachate NO3 had a mean CTV of 96% and 99% for conventional and organic farms, 

respectively. Contributions to variance per ha of UAA (i.e., cash crops included) were almost exactly 

the same, except for a slightly higher contribution of mineral fertilization and a slightly lower 

contribution of manure deposited in pastures (5 percentage points each) to climate change impacts of 

conventional farms (data not shown). 

Across impact categories and farm types, variation in emissions from mineral fertilization had 

no CTV for organic farms (since it is prohibited) and relatively small CTV for conventional farms (8% 

for climate change, 1% each for eutrophication) (Fig. 3). Since “other” emissions (e.g., fuel and plastic 

use) did not change when EFs varied, they had zero CTV. Confidence intervals of mean CTVs were 

relatively small for all impacts except acidification for organic farms (Fig. 3). 
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Figure 3. Mean contributions to variance (CTVs) and 95% confidence intervals (error bars) of seven categories 
of emission sources (due to epistemic uncertainty in emission factors) in direct climate change, acidification, and 
eutrophication impacts per ha of usable agricultural area of conventional (C) and organic (O) dairy farms in 
Brittany, France. Error bars reflect the combined effect of sample size and variability in CTVs due to differences 
in characteristics among farms. 

 

Figure 4. Cumulative distribution functions of p-values from 1000 Monte-Carlo simulation iterations for (a) total 
and direct climate change per 1000 kg fat-and-protein corrected milk (FPCM) and (b) total and direct 
eutrophication per ha of usable agricultural area (UAA). Dashed horizontal lines (red) indicate the probability of 
a difference in mean impact between farm types (conventional vs. organic) below a given significance level 
(here, α=0.05). 
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Table 2. Confidence intervals (95%) of mean values, their variabilities due to farm characteristics (coefficients of variation), and p-values of differences in means of three 
impacts per 1000 kg fat-and-protein-corrected milk (FPCM) sold and per ha of on-farm usable agricultural area (UAA) for conventional and organic dairy farms in Brittany, 
France, from Monte-Carlo simulation (MCS) and deterministic calculation (DC). Direct impacts consider only on-farm activities and hectares, while total impacts also include 
estimates of off-farm activities and hectares. Values in bold indicate differences between farm types with p-values always below 0.05. Values in italics indicate differences 
between farm types whose p-value confidence intervals include p=0.05. 

Impact category Unit Method 

  Per 1000 kg FPCM sold   Per ha of UAA 

Type Conventional farms Organic farms p   Conventional farms Organic farms p 

Climate change kg CO2-eq MCS Direct 872-901 (14-18%) 937-1026 (7-17%) 0.013-0.333  5877-6243 (21-23%) 4422-4877 (14-24%) 0-0.032 

Total 1024-1052 (13-16%) 1037-1126 (9-17%) 0.200-0.949  6123-6440 (17-19%) 4690-5117 (13-22%) 0.001-0.027 

DC Direct 886 (15%) 981 (10%) 0.071  6047 (21%) 4626 (18%) 0.005 

Total 1038 (14%) 1081 (12%) 0.47  6272 (17%) 4881 (16%) 0.005 

Acidification kg SO2-eq MCS Direct 5.1-5.5 (14-20%) 5.4-6.4 (6-24%) 0-0.833  34.8-39.4 (20-28%) 25.3-30.7 (13-31%) 0-0.077 

Total 7.4-7.8 (15-20%) 6.3-7.3 (10-26%) 0.013-0.675  46.2-50.2 (15-21%) 28.4-33.5 (16-31%) 0-0.007 

DC Direct 5.3 (13%) 5.9 (10%) 0.062  37.0 (21%) 28.0 (20%) 0.007 

Total 7.6 (16%) 6.8 (15%) 0.135  48.1 (16%) 31.0 (22%) 0.001 

Eutrophication kg PO4-eq  MCS Direct 6.4-6.5 (39-41%) 4.4-4.9 (64-77%) 0.182-0.311  41.2-43.0 (38-41%) 19.2-21.7 (81-97%) 0.022-0.040 

Total 7.0-7.2 (36-38%) 4.8-5.3 (69-81%) 0.191-0.302  39.2-40.8 (34-36%) 19.5-21.9 (81-96%) 0.037-0.060 

DC Direct 6.5 (40%) 4.7 (70%) 0.24  42.1 (39%) 20.5 (88%) 0.031 

Total 7.1 (37%) 5.0 (74%) 0.242   40.0 (35%) 20.7 (88%) 0.048 
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4. Discussion 

4.1 Effects of adding uncertainty in emission factors to potential impacts 

Propagating uncertainty in EFs with MCS added uncertainty to previously deterministic 

potential impacts for individual farms and also increased overall uncertainty in impacts by farm type. 

To clearly distinguish effects of EF uncertainty from those of farm-characteristic variability (expressed 

as CVs) on impacts by farm type, we chose to express the former differently, as confidence intervals, 

not only in mean impacts but in their variabilities and p-values of differences between them.  

For individual farms, MCS-based impacts did not differ significantly from deterministic impacts 

from the previous study because default EF values used to calculate the latter corresponded to the 

means of the normal/log-normal EF distributions propagated. Individual farms of both types had 

relatively similar uncertainties in impact, except for higher eutrophication uncertainty for three organic 

farms, in which the calculation of NO3 leaching was dominated by atmospheric N deposition and 

gaseous N emissions (and their uncertainty) due to their having smaller farm-gate N balances (mean = 

18 kg/ha UAA) than those of other farms (mean = 71 kg/ha UAA). Using similar calculations, 

Payraudeau et al. (2007) also observed that variability in farm-gate N balance and uncertainty in EFs 

influenced uncertainty in NO3 losses.  

Impacts by farm type also did not differ significantly (α=0.05) between studies. Adding 

uncertainty to the previously calculated variability, however, revealed a potential to change the 

interpretation of differences between certain impacts by farm type, in particular total acidification per 

1000 kg FPCM (now potentially significant) and total eutrophication per ha of UAA (now potentially 

non-significant). 

4.2 Uncertainty analysis in other studies 

Recent studies have used MCS in LCA-based approaches to assess effects of uncertainty in farm 

characteristics and/or EFs on climate change impacts (carbon footprints) of milk production. In a study 

of climate change impact of milk production in New Zealand, Basset-Mens et al. (2009) distinguished 

the variability of eight farm characteristics and eight EFs (estimated with standard deviations (SDs)) 

from uncertainties in their true values (estimated with standard errors of the mean (SEMs)) and 

analyzed their influence on climate change impact in 5000 MCS iterations. The 90% confidence 

interval (5th-95th percentiles) of climate change impact due to variability (~500-1582 kg CO2-eq. per 

1000 kg milk) was wider that that due to uncertainty (~856-1073 kg CO2-eq. per 1000 kg milk). 

Flysjö et al. (2011) modeled a representative dairy farm each in New Zealand and Sweden and 

estimated (via 5000 MCS iterations) the influence of uncertainties in a farm-specific EF for enteric 

CH4 emission and three N2O emission EFs on uncertainties in carbon footprints of milk. The 95% 
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confidence interval (2.5th-97.5th percentiles) of carbon footprint was wider for Swedish milk (828-1560 

kg CO2-eq. per 1000 kg energy-corrected milk (ECM)) than New Zealand milk (603-1520 kg CO2-eq. 

per 1000 kg ECM). Using the same Swedish dairy-farm LCA model, Henriksson et al. (2011) varied 

seven farm characteristics (including the farm-specific CH4 EF), based on surveys and national 

statistics, in 5000 MCS iterations to estimate their influence on carbon footprint. Their 95% 

confidence interval (940-1330 kg CO2-eq. per 1000 kg ECM) was narrower than that of Flysjö et al. 

(2011) but reflected variability in farm characteristics rather than uncertainty in EFs.  

While conclusions about the influence of uncertainty on milk-production impacts within or 

among studies that use the same models and assumptions appear valid, drawing conclusions from 

differences between different studies is challenging.  The difficulty increases since many factors may 

differ, such as the type(s) of uncertainties assessed, input variables included, default values used, 

ranges and shapes determined for uncertainties, and whether and how milk production is corrected. 

That the confidence interval of mean climate change impact (due only to uncertainty in EFs) for 

conventional farms in our study (1024-1052 kg CO2-eq. per 1000 kg FPCM) was narrower than 

corresponding confidence intervals in the other three studies may reveal more about differences in 

methodology (of both uncertainty analysis and LCA) than about differences in the systems studied. 

Uncertainty analysis thus adds an additional restriction to the fair comparison of LCA results from 

different studies: not only must their LCA models be similar, their uncertainty analyses must be 

similar, too. 

Other methods for assessing the influence of multiple types of uncertainty exist and have been 

used in LCA. For example, Clavreul et al. (2013) combined probability distributions of variability and 

fuzzy intervals of epistemic uncertainty and used MCS to propagate them in an LCA of willow 

production for bioenergy. Combining probability distributions with fuzzy intervals yields a set of 

distributions with an even wider range of uncertainty than when only probability distributions are 

combined, due to lower precision (but potentially more complete representation of the state of 

knowledge) of fuzzy intervals.  

4.3 Limitations of the study 

Uncertainty analysis cannot escape some aspects of its underlying data. As in the previous study 

(van der Werf et al., 2009), the low variability in economic performance of the dairy farms surveyed 

(e.g., all were profitable) and the small sample size (n=47), especially of organic farms (n=6), limits 

the representativeness of results in this study, even for dairy farms in Brittany. Increasing the sample 

size of dairy farms would better represent the population, change the variability in impacts due to that 

in farm characteristics, and perhaps increase the precision of the prediction of results. In addition, 

since most of the emission-factor references used by EDEN-E are now relatively dated (1997-2007), 

emission factors or their uncertainty ranges that have changed in more recent references should be 
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updated in future studies using EDEN-E that are not explicitly attempting to compare results with 

previous studies. 

We performed only 1000 MCS iterations per dairy farm, which increased the risks of 

insufficiently exploring the conceptual space of variable combinations or of a few extreme values 

skewing mean results. Increasing the number of MCS iterations from 1000 to 5000 for a few farms, 

however, increased the time necessary for MCS per farm far more (from 30 minutes to 90 minutes) 

than the corresponding increase in stability of estimates of mean values (data not shown). Thus, we 

considered 1000 iterations an acceptable trade-off.  

Nonetheless, use of MCS in LCA has some limitations. First, it requires defining a probability 

distribution of each input variable based on statistical parameters (e.g., mean, dispersion), which 

becomes more difficult if empirical information is lacking (Payraudeau et al. 2007). When it is, expert 

judgment can help determine means and shapes of distributions (IPCC 2006c), including uniform or 

triangle distributions in extreme cases (Langevin et al. 2010; Morgan and Henrion 1992), but this 

represents an additional source of uncertainty. IPCC (2006c) favors normal and log-normal 

distributions, which represent many physical variables used in LCA relatively well (Geisler et al. 

2005; Heijungs and Huijbregts 2004). 

Most MCS is performed assuming that no correlations exist between input variables; thus, 

ignoring strong correlations that do exist between influential variables may lead to unrealistic 

combinations of input values and estimates of uncertainty in results (Bjorklund 2002). Including 

known or assumed correlations between input variables tends to decrease uncertainty in MCS results 

(Payraudeau et al., 2007), though some have reported that doing so increased it (e.g., Basset-Mens et 

al. (2009)). Although techniques for representing multiple correlations in MCS, such as variance-

covariance matrices, have been developed in some LCA studies (e.g., Huijbregts et al. (2003)), they 

have been used less often in agricultural LCAs (e.g., Bojacá and Schrevens (2010)). By assuming no 

correlations between EFs in MCS, our results most likely reflect the largest uncertainties in impacts 

given the default values and ranges of EFs used (Chen and Corson 2013). 

Due to EDEN-E and time constraints, this study did not explicitly estimate the influence on 

potential impacts of uncertainty in farm characteristics using MCS, as other studies (Basset-Mens et al. 

2009; Henriksson et al. 2011) did. Doing so (with a different LCA model) would provide a more 

comprehensive assessment of the degree to which a variety of sources of uncertainty in input data 

influences impacts. Also, by examining only uncertainty (in EFs) and variability (in farm 

characteristics) in input data, this study excluded other potentially important sources of uncertainty, 

such as temporal, spatial, model, and scenario uncertainties. While the sample of all 47 farms covered 

the years 2003-2005, somewhat mitigating temporal uncertainty overall, each individual farm was 

sampled only once during those three years. Thus, variability in farm characteristics for each farm type 
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was based on only a single snapshot of each farm. Collecting data for each farm from multiple years 

would have decreased the influence of a particular year, especially if it had unusually extreme weather 

(e.g., 2003 in France) or market prices. A broader and more exhaustive study of uncertainty would 

need to include some of these other types, collecting data from additional regions or assessing the 

influence of specific models, methodological choices (e.g., allocation method), and assumptions (e.g., 

scenario characteristics). Sensitivity analysis can be used to test the influence of different models or 

allocation methods, while scenario analysis can test the influence of different characteristics or choices 

within scenarios (Hayashi et al. 2014). 

4.4 Interpreting uncertainty in impacts 

Expressing potential impacts as intervals yields imprecise predictions, which some decision 

makers might prefer (e.g., no oversimplified point estimates), but which others might find more 

challenging to interpret (Dubois and Guyonnet 2011). In particular, intervals of p-values (Fig. 4), 

while useful for close examination of differences between options, especially when the intervals 

include a preferred significance threshold (e.g., α=0.01 or 0.05), may be “too much information” for 

some individuals. Either way, the inclusion of additional types or sources of uncertainty assesses the 

state of knowledge about the system (or lack thereof) more completely. Decision makers can take this 

additional information into consideration, for example, using upper limits of impact intervals if they 

desire more conservative, precautionary decisions. When performing MCS in LCA, Basset-Mens et al. 

(2009) recommend that decision makers be presented with results based on “uncertainty” ranges (e.g., 

SEMs of input variables) rather than “variability” ranges (e.g., SDs of input variables) because 

variability represents something that they cannot reduce or control. 

In contrast, epistemic uncertainty, as mentioned, can be reduced by collecting additional, more 

accurate, and/or more representative data. In this study, since overall uncertainty in EFs came from 

both epistemic uncertainty and variability (albeit in unknown proportions), confidence intervals of 

mean impacts and their variabilities could be narrowed by decreasing the epistemic uncertainty. If 

desired, acquiring higher-quality data to do so could begin with the emissions identified as most 

influential in the sensitivity analysis: N2O and CH4 from manure deposited in pastures for climate 

change, NH3 and NOx from cattle housing and manure storage for acidification, and NO3 in leachate 

for eutrophication. 

Uncertainty analysis need not be too intricate nor significantly increase the time required to 

perform LCAs. It is useful to first perform sensitivity analysis to identify which factors (e.g., farm 

characteristics, EFs) contribute most to uncertainty in potential impacts and then to focus on these 

factors in uncertainty analysis. Screening LCAs may accept higher levels of uncertainty and thus could 

perform more rapid, less-detailed uncertainty analyses and consider significant differences at higher 

significance levels (e.g., α=0.10). 
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5. Conclusions 

Uncertainty analysis is crucial in LCA studies because consideration of uncertainty can make 

LCA results more reliable. Monte-Carlo simulation was an efficient probabilistic method to estimate 

effects of uncertainty in EFs and variability in farm characteristics on potential environmental impacts 

of dairy farms. Confidence intervals of mean impacts and their variabilities, due to uncertainty in EFs, 

resulted in wider ranges of predicted impacts, which gave the potential to change interpretation of 

differences in mean impacts between farm types. Nonetheless, how to express multiple types and 

sources of uncertainty and methods to combine them in the same LCA framework need further 

development to improve their understanding and interpretation by decision makers. 
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Abstract 

Purpose Monte Carlo simulation (MCS) is widely applied to analyze uncertainty in life cycle assessment (LCA). 

However, most LCA studies have ignored correlations among input variables by using independent univariate 

distributions in MCS, and doing so may under- or over-estimate the uncertainty in potential emissions. The 

objective of this study is to demonstrate a modified method based on the multivariate normal distributions 

(MND) that can maintain the correlations and different shapes of distributions of input variables. 

Methods We applied a method that creates a sample matrix of correlated input variables in MCS to estimate 

enteric methane emissions from cattle, considering only variability among farm characteristics. Data were taken 

from a previous LCA study of conventional dairy farms in France. A simple model was created to calculate the 

emissions. For comparison, we used a sample-based calculation as a sample-based scenario and defined three 

MCS scenarios: random MCS without correlations, MCS with correlation based on Spearman rank-order 

correlations, and MCS with the modified MND-based method. The sample matrices generated and their 

influence on estimated emissions were compared among the sample-based scenario and the three MCS scenarios. 

Results and discussion Since the random MCS scenario had no correlations among input variables, its predicted 

mean emissions were significantly higher and less realistic than those of the sample-based scenario. It had a 

wider range of uncertainty in emissions than the two MCS scenarios with correlations, which maintained the 

shapes of distribution of input variables. Of the two, the modified MND-based method is more flexible than the 

method based on Spearman correlations, because it can preserve both Pearson and Spearman correlations. 

However, the feasibility of correlation methods in LCA depends on the amount of information available about 

correlations. Lack of information about them, perhaps leading to arbitrary judgments, increases uncertainty in 

estimates of multivariable distributions. Therefore, one should carefully measure correlations among input 

variables to guarantee the feasibility of this method (i.e., test whether or not the correlation matrix is positive 

definite). In addition, considering only the strongly correlated input variables increases the computational 

efficiency of MCS.  

Conclusion Consideration of correlations in MCS provides more realistic emission estimates than random 

simulation. The modified MND-based method maintains correlations (Pearson and Spearman) among input 

variables and the shapes of distribution that fit observed samples. To improve computational efficiency, it is 

recommended to choose only strongly correlated variables when applying correlated MCS in LCA studies, 

leaving weakly correlated variables randomly distributed. Finally, application of this method is feasible in LCA 

studies provided enough information about correlations exists. If not, random MCS provides more precautionary 

predictions.     

 

 

Keywords Monte Carlo simulation; Multivariable normal distribution; Pearson and Spearman correlations; 

Cholesky factorization; life cycle assessment 
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1. Introduction 

Monte Carlo simulation (MCS) is commonly used to analyze uncertainty in life cycle 

assessment (LCA) (Lloyd and Ries 2007). It generates a set of uncertain input variables (e.g., 

inventory data, characterization factors) using probabilistic distribution functions and estimates 

emissions and/or impacts (e.g., climate change, acidification) based on the values of input variables 

generated. Repeating the above process many times, the emissions or impacts are calculated as 

probability distributions, each of which has a mean (i.e., expected value of a population) and a 

variance (i.e., uncertainty range of a population). MCS has shown its feasibility and efficiency in 

uncertainty analysis in a complex LCA models, but most of studies using MCS assumed independent 

input variables (Basset-Mens et al. 2009; Steinmann et al. 2014). Failure to incorporate correlations 

among input variables may result in unrealistic predictions (Bjorklund 2002; Firestone et al. 1997; 

Lloyd and Ries 2007). Therefore, more attention should be paid to consideration of correlations in 

MCS in LCA studies. 

In some LCA studies, the same variables (e.g., characterization factors) are used in more than 

one of the systems being compared. If MCS is run separately for each of these systems, results are 

likely to differ more than if MCS is run for all systems simultaneously, which can be done by 

introducing a comparison indicator (Sonnemann et al. 2003), recommended for considering this type 

of correlation (Huijbregts et al. 2003). Another type of correlation also exists among input variables, 

which is often ignored in MCS in LCA studies because the MCS requires independent values of input 

variables to generate the sample set of all possible combinations. However, assuming independence of 

input variables may under- or over-estimate output uncertainty (Bjorklund 2002). To avoid this 

problem, dependent variables should be modeled as a function of independent variables. Thus, 

dependent variables are no longer randomly distributed but vary with independent variables. Although 

a biophysical function between dependent and independent variables may not always exist, they may 

have a correlated relation (e.g., linear, monotonic). Based on this information, several methods have 

been developed to control correlations among input variables in MCS by generating a correlated 

sampling matrix.  

Iman and Conover (1982) considered correlations between model inputs by inducing Spearman 

rank-order correlations. Helton and Davis (2003) described this method when using Latin Hypercube 

Sampling (LHS) to propagate uncertainty in models of complex systems. This correlation method 

allows for all distribution shapes, maintains rank-order correlations among input variables, and can be 

used with a stratified sampling technique (e.g., LHS) to generate samples. Indeed, when variables have 

nonlinear relations, Spearman rank-order correlations (monotonic) express them better than Pearson 

correlations (linear) (Berthouex and Brown 2002). Despite this method’s advantages for controlling 

correlations in MCS, some analysts prefer to use Pearson correlations. The multivariate normal 
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distribution (MND) method was developed by Scheuer and Stoller (1962). It generates a set of 

variables whose Pearson correlations are controlled to be similar to desired correlations obtained from 

observations or empirical research (Cullen and Frey 1999; Morgan and Henrion 1992). IPCC (2000) 

mentioned both methods for controlling correlations but did not describe how to use them. Bojaca and 

Schrevens (2010) used MNDs in LCA uncertainty analysis of crop production and found that 

uncertainty in abiotic depletion and global warming impacts differed between simulations with 

correlations (multivariate) and without correlations (univariate). However, construction of MNDs 

requires that input variables have normal distributions; this may limit its application in LCA, because 

distributions of input variables vary depending on the information available about their shapes and the 

parameters (e.g., mean, variance) used to describe the distribution (Heijungs and Frischknecht 2005). 

This study aimed to demonstrate a modified method based on the MND method. The method 

developed considered both Pearson and Spearman correlations among input variables in MCS and all 

shapes of distributions. It also illustrated the method based on Spearman rank-order correlations. Then, 

the correlations among input variables calculated by these methods and their influence on predictions 

were compared in a simple case study of methane emissions from cattle. Finally, the potential 

application of both methods in LCA studies is discussed. 

2. Methods 

2.1 Correlation control 

Since classic MCS assumes that values of input variables are independent from one another, 

their values in each iteration ignore correlations among them. This process covers as many 

combinations of values as possible after many iterations. However, the degree of correlation among 

input variables may influence the variance of results. For instance, if z = x + y, the variance of z is 

calculated as follows: 

²³< = ²
< + ²�< + 2²
�                                                                                                                      Eq. 1 

where σx
2 and σy

2 are variances of xx and xy, respectively, and σxy is their covariance. Denoting 

their Pearson correlation coefficients as ρxy , there is: 

´
� = ²
� µ²
<²�<¶                                                                                                                       Eq. 2 

If x and y are not correlated, ρxy equals zero; so, their covariance (σxy) equals zero. However, if a 

high correlation exists, σxy should not be ignored; doing so may yield significantly a different estimate 

of variance of z. Therefore, the variance of z is influenced by the variance of input variables (x and y) 

and their correlations.  
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The MND is a generalization of a one-dimensional normal distribution to higher dimensions. 

For a random vector X=(x1, x2 … xn), if each variable xn ∊	X is normally distributed with a set of mean 

values µ= (E[x1], E[x2] … E [xn] ), and its variance-covariance matrix ∑ (n*n) is given based on 

empirical samples, the vector X corresponds to a n-dimensional random vector written as X ~ N (µ, ∑) 

(Scheuer and Stoller 1962):  

$ = ¸¹ + º                                                                                                                                   Eq. 3 

where z is a n-dimensional standard normal distribution (z ~ N(0,1)) and the matrix M is a lower 

triangular matrix of ∑ (symmetric and positive definite  matrix1), which can be obtained by Cholesky 

factorization (Eaton and Olkin 1987). There is: 

¸¸» = Σ                                                                                                                                   Eq. 4 

where the matrix MT (an upper triangular matrix) is a conjugate transpose of M . Based on this 

theorem (Eq. 4. 2), the MND of vector X has density function: 

��$� = J½�<¾�¿|À| exp	�− J< �$ − º�»Σ�J�$ − º��                                                                   Eq. 5 

As for the univariate normal distribution, the inverse of this density function allows n (the 

number of input variables) normal distributions of these variables to be generated, each with its own 

parameters (e.g., mean, variance and covariance), and whose variance-covariance matrix ∑ 

corresponds to their matrix of Pearson correlation coefficients (ρij , i, j ∊	n) according to Eq. 2. Hence, 

the MND, which creates a matrix of input values with correlations similar to those in the empirical 

data, is often used in MCS uncertainty analysis. However, its assumption of a normal distribution of 

all input variables may be inappropriate in some case studies. In this study, we used an alternative 

method to transform normal distributions to other distributions. Like the original MND method, the 

method first constructs n-correlated standard normal units (zi) of matrix Z (B*n, where B is the number 

of rows of Z) based on the desired Pearson correlation coefficients. Means of units in Z equal zero, and 

the variance-covariance matrix has the same values as the desired correlation matrix (Eq. 2) (i.e., 

variances equal one, covariance equals the Pearson correlations). If Spearman rank-order correlations 

(r ij) are known instead, the normal “copulas” function (Nelsen 1999) can be used to transform r ij into 

ρij : 

´Nm = 2 sin���Nm 6⁄ �                                                                                                                      Eq. 6  

Next, the correlated unit variables (zi of Z) are used to obtain their desired distributions (Ferson 

et al. 2004): 

                                                      
1 A symmetric n*n real matrix M is called positive definite matrix if zTMz (zT is the transpose of z) is 

positive for every non-zero column vector z of n real numbers. 
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�N = #�J�Φ�¹N��, � = 1, 2, … , C	                                                                                             Eq. 7 

 where Φ(zi) is the standard normal distribution function of zi and F-1 is the inverse of the 

desired distribution. Repeating the two steps for each row of matrix Z provides a matrix (B*n) of these 

variables. On one hand, the correlations are controlled by the MND-based method; on the other hand, 

the standard normal distribution function transforms the normal distributions of units into uniform 

distributions and then transforms them into the desired shapes of distribution. Hence, both correlations 

and distributions of variables are maintained when generating samples. In other words, any 

information about correlations and uncertainty (variance) in input variables is considered in the MCS. 

Iman and Conover (1982) developed a different method, based on Spearman rank-order 

correlation coefficients (r ij), to model correlated variables with different types of distributions. The 

main idea is to construct a standard matrix (using van der Waerden scores) whose rank-order 

correlations matrix has similar values as the desired rank-order correlations matrix (also based on 

Cholesky factorization) and then to rearrange the matrix of independently distributed variables into the 

same order as that of the standard matrix. Thus, the re-ordered matrix has the desired rank-order 

correlations, which reflect monotonic relations among the variables (More details in the appendix). To 

compare how these different methods control correlations in MCS, we applied them to a simple case 

study.  

2.2 Data collection in a case study 

Sample data were selected from a dataset of conventional Breton (France) dairy farms (n=41) 

collected previously by the LCA-based tool EDEN-E (Évaluation de la Durabilité des Exploitations) 

(van der Werf et al. 2009). Data for each farm include many input variables (e.g., number of animals, 

milk and meat production, energy use) and other factors (e.g., emission factors, characterization 

factors) used to build models to estimate the emissions and resource use of farm activities. For the 

sake of simplicity in this study, we chose a model from EDEN-E to estimate emissions of enteric 

methane (CH4) from cattle, which are calculated as a function of the number of cattle in each age- or 

sex-based category and a corresponding emission factor. EDEN-E classifies cattle in five categories: 

dairy cows (i.e., lactating females), bulls, and heifers of three age classes (<1, 1-2 and >2 years old). 

We calculated the mean and standard deviation of each input variable based on the sample of 41 farms 

(Table 1) and assumed the number of bulls was zero because its mean value was less than one. To 

calculate mean annual enteric CH4 emissions per animal category per year, EDEN-E applies the Tier 2 

method of the IPCC (2006). In this study, we directly used the values calculated by EDEN. To avoid 

the influence of uncertainty in emission factors, all emission factors were kept as constant values for 

each farm except the emission factor corresponding to dairy cows, which is a function of mean milk 

yield per cow, which in EDEN is a function of the quantity of milk sold, the number of heifer calves 

(<1 year old) (to estimate the quantity of milk consumed on-farm) and the number of dairy cows. 
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Keeping emission factors constant focused on the influence of correlations in input variables (source 

of variability) on estimates of CH4 emissions via MCS. 

Table 1. Statistical descriptions of input variables and CH4 emission factors corresponding to heifer categories 

Input variables Unit Mean 
Standard 
deviation 

Emission factor      
(kg CH4/yr/head) 

No. of dairy cows head 43.5 9.47 * 

No. of heifers (<1 year old) head 11.0 7.81 37.2 

No. of heifers (1-2 years old) head 13.2 9.42 84.6 

No. of heifers (>2 years old) head 5.4 4.76 90.3 

Quantity of milk sold l 289 040 75 161 

*CH4 emission factor of dairy cows varies as a function of quantity of milk sold, number of cows and number of heifer calves 

(<1 year old) on each farm. 

2.3 Monte-Carlo simulation with correlation 

We created three MCS scenarios (S1, S2, and S3) to compare their predicted emissions to those 

calculated from sample data (S0: sample-based scenario). All three MCS scenarios determined 

distributions of input variables (i.e., means, standard deviations, correlation matrix, variance-

covariance matrix) based on the data from the 41 farms. S1 used classic random-sampling MCS 

without correlation. Lognormal distributions were assumed for the number of dairy cows and the 

quantity of milk sold, according to goodness-of-fit tests. Truncated normal distributions were assumed 

for the other three input variables (number of heifers in each age class), since their values could not be 

negative. S2 used the samples generated from S1 and applied rank-order correlation coefficients to 

control Spearman correlations among input variables in MCS. S3 used a modified MND to model 

input variables according to their distributions (as in S1) and Pearson correlations. When considering 

Spearman correlations in S3, we first transformed the desired Spearman correlations into Pearson 

correlations (Eq. 6) and then generated a sample matrix that preserved Pearson correlations 

corresponding to the desired Spearman correlations. For all three MCS scenarios, the sampling process 

(10,000 MCS iterations) and statistical calculations (e.g., correlation matrix of input variables, mean of 

enteric CH4 emissions) were performed using packages (e.g., “mnormt” for MND, “truncdist” for 

truncated distributions) of the R software (R Development Core Team 2012). The sample-based 

scenario and the three MCS scenarios calculated both Pearson and Spearman correlations among input 

variables. Estimated CH4 emissions of all four scenarios were compared. Two-sample t-tests assuming 

unequal variance and two-sample Kolmogorov-Smirnov tests were applied to test for significant 

(p<0.05) differences in the means and fits of distributions of CH4 emissions, respectively, between the 

sample-based scenario and the three MCS scenarios.  
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3. Results 

3.1 Correlations between input variables  

The three MCS scenarios each generated a matrix (10,000 rows × 5 columns) of input variables. 

The number of dairy cows in the sample-based scenario had strong correlations (Pearson’s r and 

Spearman’s ρ ≥0.5) with the number of heifers <1 year old, the number of heifers 1-2 years old and 

quantity of milk sold (Table 2). In contrast, S1, the uncorrelated MCS scenario, had near-zero 

correlations (r and ρ<0.02). S2, the method based on Spearman rank-order correlations, had Spearman 

correlations similar to those of the sample-based scenario (difference <0.02) but Pearson correlations 

less similar to those of the sample-based scenario, especially for the quantity of milk sold (difference 

>0.1). Nonetheless, its Pearson and Spearman correlations were similar to each other (difference 

<0.013). The Pearson correlations of S3, the modified MND-based scenario, were more similar than 

those of S2 to those in the sample-based scenario (difference <0.006). When Spearman correlations 

were calculated in S3, they were also similar to those of the sample-based scenario (difference <0.02). 

Furthermore, the linear regression line of quantity of milk sold versus the number of dairy cows for S3 

when using Pearson correlations (adjusted R2 ≈ 0.68) overlapped that of the sample-based scenario (R2 

= 0.69) (Fig. 1). The same regression line for S3 when using Spearman correlations and for S2 also 

increased monotonically but deviated from that of the sample-based scenario (R2 ≈ 0.50 and 0.48, 

respectively). Ignoring correlations, the quantity of milk sold in S1 did not vary with the number of 

dairy cows (R2 
≈ 0).  Thus, S2 and S3 each generated a matrix of input variables that was similar to the 

Spearman and Pearson correlation matrix of the sample-based scenario, respectively. Moreover, the 

MND-based method in S3 also preserved Spearman correlations. In contrast, the matrix of input 

variables generated in S1 did not represent the observed samples in the sample-based scenario. 

Table 2. Pearson and, in parentheses, Spearman correlation coefficients between the number of dairy cows and 
the four other input variables for the sample-based scenario (S0) and three Monte-Carlo simulation scenarios: 
S1: truncated normal distributions and lognormal distributions without correlation, S2: method based on 
Spearman rank-order correlations, and S3: modified multivariate distributions with Pearson (Spearman) 
correlations. 

Scenario No. of heifers  

(<1 year old) 

No. of heifers  

(1-2 years old) 

No. of heifers  

(>2 years old) 

Quantity of  

milk sold 

S0 0.557 (0.494) 0.521 (0.548) 0.242 (0.307) 0.836 (0.700) 

S1 0.007 (0.007) -0.013 (-0.012) -0.011 (-0.009) -0.013 (-0.016) 

S2 0.489 (0.477) 0.544 (0.531) 0.304 (0.298) 0.693 (0.681) 

S3 0.555 (0.482) 0.507 (0.547) 0.232 (0.297) 0.834 (0.689) 
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3.2 Influence on enteric CH4 emissions 

Mean CH4 emissions were significantly different (p<0.05) between the sample-based scenario 

and S1 but not between the sample-based scenario and S2 or S3 (Fig. 2). S1 overestimated CH4 

emissions, yielding a wider range of values and more uncertainty (coefficient of variation (CV) = 

70%) than the sample-based scenario (CV = 39%) or the other two MCS scenarios (CV = 38% and 

34%, respectively). In addition, all three MCS scenarios generated outliers beyond the higher whisker 

(the 75th percentile plus 1.5 times the interquartile range), probably because of the long tail of 

lognormal distributions assumed for the number of dairy cows and quantity of milk sold (Fig. 2). 

Cumulative density distributions of predicted CH4 emissions in S2 and S3 (Pearson correlations only) 

were not significantly different from each other or to that in the sample-based scenario. In contrast, 

predicted CH4 emissions in S1 deviated significantly from those in the sample-based scenario (Fig. 3).  

 

Figure 1. Quantity of milk sold (1000 l) versus the number of dairy cows (head) in the observed samples 
(triangles) and regression lines between them in observed samples (S0, solid black line) and three Monte-Carlo 
simulation scenarios: S1: truncated normal distributions and lognormal distributions without correlation (dashed 
gray line), S2: method based on Spearman rank-order correlations (dashed blue line), and S3: modified 
multivariate distributions with Pearson correlations (dashed red line) and with Spearman correlations (dashed 
green line)). 
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Figure 2. Box plots of methane emissions (t) from observed samples (S0) and three Monte-Carlo simulation 
scenarios: S1: truncated normal distributions and lognormal distributions without correlation, S2: method based 
on Spearman rank-order correlations, and S3: modified multivariate distributions with Pearson correlations. Red 
points indicate mean CH4 emissions. Ends of boxplot lower and higher whiskers represent the 25th percentile 
minus 1.5 times interquartile range and the 75th percentile plus 1.5 times interquartile range. The dashed gray 
line represents mean CH4 emissions from the sample-based scenario (a reference value). Points above or below 
the whiskers indicate outliers.   

 

Figure 3. Cumulative density functions of enteric methane emissions (t) from cattle from observed samples (S0, 
solid black line) and three Monte-Carlo simulation scenarios: S1: truncated normal distributions and lognormal 
distributions without correlation (dashed gray line), S2: method based on Spearman rank-order correlations 
(dashed blue line), and S3: modified multivariate distributions with Pearson correlations (dashed red line).   
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4. Discussion 

Incorporating correlations among input variables into MCS provided more realistic predictions 

of emissions and their uncertainty. For example, the samples generated in S2 and S3 maintained the 

shape of distribution of each input variable. Meanwhile, information about relations between variables 

was retained, such as the positive correlation between dairy cows and quantity of milk sold. While this 

relation is obvious, other systems analyzed in LCA have relations that are less obvious but no less 

influential, making retention of correlations potentially important. The method based on Spearman 

rank-order correlations preserves Spearman correlations, while the modified MND-based method is 

more flexible, preserving both Pearson and Spearman correlations. Both methods predicted emissions 

that were not significantly different and that had similar uncertainty ranges. It should note, however, 

that Pearson and Spearman correlations measure different aspects of variables. According to Hauke 

and Kossowski (2011), Pearson correlations measure the strength of linear relations among the 

variables and assumes that variables have a normal distribution. In contrast, Spearman correlations use 

rank scores rather than quantitative values to measure the strength of monotonic relations among 

variables without the assumption of a normal distribution. Therefore, one should be careful about the 

choice of type of correlation coefficient, selecting the one that better represents input variables in the 

model.  

Either type of correlation coefficient (Pearson or Spearman) describes the degree(s) of relation 

between two or more variables but does not indicate causation between them (Berthouex and Brown 

2002). Causation can only be addressed by knowing the mechanistic behavior of the system. For 

example, the emission factor for dairy cows was calculated as a function of milk production, which 

itself was a function of the number of dairy cows, the number of heifer calves (<1 year old) and the 

quantity of milk sold (independent variables). On the other hand, other strong correlations among 

input variables were observed in the observed samples, but their causation is unclear. Therefore, there 

is a need to incorporate information about correlations in LCA models; meanwhile, physical relations 

among variables should be studied to increase model accuracy. 

The rank-order and MND-based methods used Cholesky factorization, which requires that 

variance-covariance matrices and correlation matrices be “positive definite” (Eaton and Olkin 1987). 

If they are not, upper triangular matrices cannot be found. Correlation matrices must be tested to 

ensure that they are positive definite. Ferson et al. (2004) argued that, except in cases of human error 

or small sample sizes, input values obtained from observed samples always have positive definite 

correlation matrices. In addition, problems may arise when input variables come from different studies 

or when arbitrary judgments about correlations are made. To address such cases, researchers (Higham 

1988; Ince and Buongiorno 1991; Oren 1981) developed methods to build positive definite matrices 

that are similar to subjective correlation matrices or variance-covariance matrices. For instance, the R 
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package “corpcor” can compute the nearest positive definite matrix of a real symmetric matrix using 

the algorithm of Higham (1988). Since positive definiteness was not a problem in our study, we do not 

discuss details of these methods. However, we recommend confirming the positive definiteness of the 

desired matrix before applying the methods. 

Although the case study illustrated only simple calculation of emissions, these methods can be 

applied to larger numbers of correlated input variables in the inventory assessment phase of LCA 

(Bojaca and Schrevens 2010). However, the difficulty of considering correlations in MCS may 

increase with LCA model complexity. First, neither method can be applied if information about the 

correlations is unknown. Even though expert judgment can provide indications about correlations, 

arbitrary values may introduce additional uncertainty (e.g., missing some possible combinations when 

generating the sample matrix). So, one should be careful about estimating correlations when empirical 

data are not available. When information about correlation among input variables is lacking, assuming 

that they are independent is more conservative but yields a wider range of predictions. Second, 

simultaneous consideration of many correlated input variables in LCA could decrease the efficiency of 

MCS. Since the strong correlations among input variables may influence predictions greatly, we 

suggest choosing only the strongly correlated variables when building the sample matrix, leaving the 

others weakly correlated distributed randomly.  

5. Conclusions 

The study demonstrated a modified method based on MNDs to preserve Pearson and Spearman 

correlations among input variables in MCS. This method maintained the correlations and shapes of 

distributions of input variables and yielded more realistic predictions of CH4 emissions than those of 

classic uncorrelated MCS, depending on the reliability of the information about their correlations. For 

comparison, a method based on Spearman rank-order correlations was applied to the case study. 

Although emissions predicted by both methods were not significantly different, the sample matrix that 

each generated indicated different relations among input variables (linear versus monotonic), which 

can be chosen based on the analyst objectives. The modified MND-based method was more flexible, 

retaining correlations of both types of correlation coefficients. Both methods make it possible to 

consider correlations in uncertainty analysis via MCS, but the complexity of LCA studies (i.e., a large 

number of variables) may influence the feasibility of using these methods. Hence, we recommend 

choosing only strongly correlated variables in correlated MCS in LCA to improve computational 

efficiency, leaving weakly correlated variables randomly distributed. Finally, both methods require 

knowledge about the correlations. If this information is unknown due to lack of data, a classic random 

MCS provides more precautionary predictions by avoiding uncertainty due to arbitrary assumptions 

about correlations. 
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Appendix. Correlation control based on Spearman rank-order correlations 

Suppose that there are n correlated variables x1, x2 … xn, and we want to obtain a matrix (k*n) of 

these variables X, of which the desired rank-order correlation matrix C (n*n positive definite matrix). 

The upper triangular matrix (PT) of C can be found by Cholesky factorization: 

��» = F                                                                                                                                   Eq. 8 

Next, we create a matrix S (k*n) and transform it to matrix S*, whose rank-order correlation 

matrix has similar values as its Pearson correlation matrix, which itself has similar values as C: 

Ã∗ = Ã�»                                                                                                                                   Eq. 9 

To do so, Iman and Conover (1982) suggested creating matrix S (k*n) by using van der 

Waerden scores Φ-1(i/(k+1)), i=1, 2, ..., k, where Φ-1 is the inverse function of the standard normal 

distribution. So, for each column of the matrix, we randomly permute these scores without 

replacement (i.e., each column includes the same scores but in different orders). Indeed, the use of van 

der Waerden scores makes the rank-order correlations of S have similar values as its Pearson 

correlations. The second prerequisite of this equation is that the Pearson correlation matrix of S be 

similar to the identity matrix (no correlation (ρij = 0 for i ≠ j) among the variables) (Helton and Davis 

2003). This can be achieved by using correlation correction. So, denoting the Pearson correlation 

matrix as E (positive definite), according to Cholesky factorization, there is: 

ÄÄ» = Å                                                                                                                                 Eq. 10 

Next, S multiplied by (Q-1)TPT  (Q-1 is the inverse of the lower triangular matrix Q, T is the 

function that returns a given matrix to its transpose) transforms S into a matrix whose Pearson 

correlation matrix is the identity matrix, written as: 

Ã∗ = Ã�Ä�J�»�»                                                                                                                    Eq. 11 

Finally, we rearrange matrix X (k*n) of the n input variables, which are independently 

distributed and sorted in the same order as in matrix S*. Hence, the Spearman rank-order correlations 

of transformed matrix X is similar to the desired matrix C. 
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Abstract 

Probability distributions are commonly used to represent variability in populations, while fuzzy 

intervals are an alternative approach for representing epistemic uncertainty in parameters when 

information is incomplete or imprecise. Combining both approaches, we represented variability and 

epistemic uncertainty in parameters separately, propagated them with Monte-Carlo simulation through 

the LCA model, and then used Dempster-Shafer theory to represent final results. We applied 

approaches to a case study of dairy farms to estimate their potential direct environmental impacts. 

Results indicated that consideration of incomplete information greatly increases overall uncertainty in 

impacts, as measured by a “relative interval width”, which was useful for comparing the influence of 

input uncertainty among impact categories. Thus, our method provides conservative estimates of 

impacts by considering incomplete information, which is ignored by the classic probability method 

commonly used in LCA. 

 

 

Keywords: life cycle assessment; Dempster-Shafer theory; variability; epistemic uncertainty 
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1. Introduction 

Life Cycle Assessment (LCA) is a useful tool to estimate potential environmental impacts and 

resource use of farming systems (Thomassen et al. 2008; van der Werf and Petit 2002). The reliability 

of LCA results, which depends primarily on the quality of data and their pertinence for the system 

studied, is affected by uncertainty (Finnveden 2000; Weidema and Wesnaes 1996). Including 

uncertainty analysis in LCA may yield results that provide more useful information for decision 

making (Heijungs 1996; ISO 14040 2006). Therefore, there is a need to improve uncertainty analysis 

in LCA to increase the reliability of its results. 

Uncertainty analysis includes a variety of methods that are used to express and propagate 

uncertainty in many fields, such as risk analysis (Vose 2008) and LCA (Benetto 2005; Bjorklund 

2002). Most studies define two main types of uncertainty (variability and epistemic uncertainty), 

which have fundamental differences (Morgan and Henrion 1992). Variability (also called stochastic 

uncertainty) represents inherent differences among individuals in a population. It cannot be reduced 

but can be represented more precisely if more population data are available (De Rocquigny et al. 2008; 

Vose 2008). Probability distributions have been used widely in LCA (Basset-Mens et al. 2009; 

Henriksson et al. 2011; IPCC 2006b) to represent the variability due to randomness in the distribution 

of a given sample (e.g., with a mean, variance, and normal distribution). In contrast, epistemic 

uncertainty is defined as lack of knowledge (imprecise and incomplete information) about the true 

value of a variable or about the system mechanism. It can be decreased if more precise information or 

more accurate measurement becomes available. In LCA, epistemic uncertainty in parameters is often 

represented with probability distributions (Huijbregts 1998; Lloyd and Ries 2007), and both types of 

uncertainty are propagated by Monte-Carlo simulation (MCS), especially in complex models.  MCS is 

an effective and robust way to estimate the uncertainty in predicted potential impacts (Payraudeau et 

al. 2007; Sonnemann et al. 2003). Some authors (Andre and Lopes 2012; Chevalier and Téno 1996; 

Mauris et al. 2001; Reza et al. 2013; Tan 2008), however, emphasize the difference between 

variability and epistemic uncertainty and argue that fuzzy-set theory (Zadeh 1978), with subjective 

degrees of plausibility/possibility, better represents uncertainty due to imprecise and incomplete 

information.  

Since variability and epistemic uncertainty represent distinct states of knowledge, many studies 

have modeled them separately in the same framework. For example, Ferson et al. (2002) constructed 

“probability boxes” by combining probability theory and set theory. Baudrit et al. (2006) represented 

random variability and imprecision with probability and possibility distributions, respectively, and 

then propagated them for risk assessment. And Baraldi and Zio (2008) combined MCS and the 

possibilistic approach to propagate uncertainty. These three studies introduced the Dempster-Shafer 
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theory (Dempster 1966; Shafer 1976) to incorporate imprecise information into probabilistic models, 

making a bridge that combines different types of uncertainty (Yager 1987). 

Although variability and epistemic uncertainty have been defined, and sometimes analyzed, 

separately in some LCA studies (Basset-Mens et al. 2009; Heijungs and Huijbregts 2004), few studies 

(Clavreul et al. 2013) have modeled them in the same framework. The aim of this study is to 

demonstrate how to combine two types of uncertainty, via Dempster-Shafer theory, to estimate 

potential environmental impacts of dairy farms. We then compare this method to classic probability 

methods. 

2. Methods 

We used probability distributions and fuzzy intervals to represent variability and epistemic 

uncertainty in parameters, respectively. These two types of uncertainty were propagated into LCA 

results by MCS and interval arithmetic using R software (R Development Core Team 2012). For each 

impact category, distributions of impact were represented by a Dempster-Shafer structure and mean 

impacts were represented by fuzzy intervals. 

2.1 Representing variability with probability distribut ions 

In a frequentist approach, a probability distribution assigns a probability of any possible event in 

a random experiment. It is often used to represent the variability of a variable. A random variable X, 

which is an element of all real numbers (ℛ), has a probability Pr(x) of having value x. In addition, the 

probability distribution can be described by its cumulative distribution function (CDF) and explained 

as the probability that X takes on a value less than or equal to x: 

#��� = ���$ ≤ ��, �%�	�&&	$ ∈ ℛ                                                                                                   Eq.  1 

In general, determining a distribution requires empirical data to identify its shape and basic 

parameters (e.g., mean and variance). If the amount of empirical data is sufficiently large, it can be 

considered to represent the entire population. However, since data acquisition is often limited by time 

and cost in LCA studies, probability distributions are generally determined subjectively based on the 

literature or expert judgment (Heijungs and Frischknecht 2005). 

MCS is the most common method for propagating variability to estimate uncertainty in LCA 

studies. It consists of sampling input variables from their distributions and then calculating potential 

impacts through the model. By repeating the MCS many times, a CDF can be constructed to predict a 

probability range that represents overall uncertainty in impacts due to uncertainty in input variables. 
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Figure 1. Triangular (left) and trapezoidal (right) fuzzy-interval membership functions for an uncertain variable 
X defined by core, support and α-cut intervals. 

2.2 Representing epistemic uncertainty in parameters with fuzzy intervals 

Fuzzy-set theory is an alternative approach to express epistemic uncertainty in parameters. In 

this approach, an uncertain variable is modeled by a set of “fuzzy” intervals, each with a level of 

possibility (α) that ranges from 0 (least possible) to 1 (most possible). Denoting each fuzzy interval as 

π(αi), there is: 

 
      Eq. 2 

An uncertain variable can be mapped by a membership function defined by these “fuzzy” 

intervals and their corresponding levels of possibility. Commonly-used membership functions are 

shaped as triangles or trapezoids having minimum, maximum and mode values (mode intervals for the 

latter) (Fig. 1). For example, the minimum-maximum range of variable X, called the “support” (α=0), 

indicates all possible values of X. The mode (or mode interval), called the “core”, indicates the most 

likely value(s) (α=1). At any given α level, there is a corresponding interval (called the “α-cut 

interval”). To propagate uncertainty, the fuzzy intervals of input variables are decomposed at each α 

level, and interval arithmetic is applied to generate a set of fuzzy intervals of the final result (Mauris et 

al. 2001). 

2.3 Dempster-Shafer theory 

Dempster-Shafer theory (DST) is a “mathematical theory of evidence” introduced by Dempster 

(1966) and further developed by Shafer (1976). It is a generalization of discrete probability theory in 
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which probabilities are assigned to sets of values rather than a single value. One important feature of 

DST is that imprecise information can be used to represent the state of knowledge quantitatively. It 

includes three basic functions: the basic probability assignment (bpa) function (or “mass function”), 

the belief function (Bel) and the plausibility function (Pl). 

The bpa for a given set A (denoted m(A)) indicates the proportion of all available evidence that 

supports the supposition that a particular element of x belongs to set A. It has axioms such as: 

 
Eq. 3 

 
Eq. 4 

 

Eq.5 

where 2Ω is the power set that comprises all possible subsets, including the empty set ∅. A is any 

subset (called a “focal element”) of power set. The belief and plausibility functions are defined from 

the bpa. The belief function of A is the sum of the bpa of all of the subsets (B) of A (B ⊆ A): 

 

Eq. 6 

The plausibility function of A is the sum of the bpa of any subset (C) of power set with the 

condition that the intersection of C and A is a non-empty set (C⋂A ≠ ∅): 

 

Eq. 7 

The three concepts can also be used in continuous probability distributions where any element 

of the uncertain parameter X is expressed as an interval ([a i, bi] ) with bpai (where ai ≤ bi for all i). 

Thus, the power set of X is the collection of these intervals with their corresponding bpai, and the sum 

of bpai equals 1. So, Eq. 6 and 7 can be transformed as: 

?@&�$ ∈ �−∞, ��� = ?@&��� = ∑ 4�.�N,	�N/��OP
   Eq. 8  �&�$ ∈ �−∞, ��� = �&��� = ∑ 4���N,	�N�OP
 ��  Eq. 9  

The belief and plausibility functions can be considered the lower and upper probability 

functions of X with a given value x (Ferson et al. 2002), respectively, and the true probability function 

of X (Pr(x)) lies inside them, interpreted as: 

 
Eq. 10 

with an interval of the mean of X 

∑4N�N ≤ Å�$� ≤ ∑4N�N  Eq. 11 

4: 2Ω → �0, 1� 
4�∅� 	= 	0 

Ç 4�:� = 1	:∈2Ω

?@&�:� = Ç 4�?�?⊆: , ?	� 	�&&	%�	�ℎ@	 B� @� 	%�	:, �C		? ≠ ∅ 

�&�:� = Ç 4�F�, F ∈ 2Ω, �C		F ≠ ∅	F⋂:≠∅
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If uncertain parameter X is determined by a set of single value (ai = bi for all i) instead of 

intervals, the belief and plausibility functions converge on the same distribution, as in a classic CDF. 

We used probability distributions and fuzzy intervals to represent random variables (x1, x2…xk) 

and uncertain parameters (xk+1, xk+2…xn), respectively, and propagated them with MCS combined with 

interval arithmetic. Thus, assuming that impact category (y) is calculated by the model (f(x1, x2…xk, 

xk+1, xk+2…xn)), we: 

Generate a matrix (B rows (10,000) × k columns) of the first k variables using each one’s 

probability distribution while preserving correlations between them: Mb(x1, x2…xk). 

Select a possibility level αi (e.g., assign values from 0 to 1 with step 0.1) and its corresponding 

fuzzy interval (πk+1
, π

k+2
… π

n) for the last n-k uncertain parameters (xk+1, xk+2…xn). 

Using the variables in each row of Mb(x1, x2…xk), calculate minimum and maximum values of y 

with all possible combinations of the last n-k variables (= 2(n-k)) in αi, with a lower bound of L(y) = 

max [f(x1, x2… xn)] and an upper bound of U(y) = min [f(x1, x2… xn)]. For a model with only 

monotone functions, the computational optimization can be simplified by interval arithmetic.  

Repeat steps 2 and 3 for all αi to generate the fuzzy intervals of yb ([U(y), L(y)]b) and find the 

support of yb (denoted π (yb)α=0). Then attribute a mass (mb = 1/B) to the support. 

Repeat steps 2-4 B times to obtain a set of supports (π1, π2,…, πB) as focal elements, which is 

used to construct lower (belief function) and upper (plausibility function) bounds of y using Eq. 8 and 

9. 

Calculate the mean of the lower and upper bounds of y using Eq. 11 for each α to generate fuzzy 

intervals of the mean of y.  

In this way, uncertainty in the value of an impact can be represented by a DST structure. For 

example, assume that impact indicator Y is modeled by a function with two uncertain parameters (X1 

and X2), È = $J × $<, where X1 is normally distributed (X1 ~ Nprob(100,20)) and X2 is modeled by a 

triangular membership function (X2 ~ Tfuzzy(2, 6, 3)). Thus, we construct the lower and upper bounds of 

Y and fuzzy intervals of the mean of Y at each α (Fig. 2) by following the above steps. Consequently, 

this procedure generates a set of intervals (11, in this study) with their corresponding α, and the mean 

of Y is represented as a membership function of this fuzzy set that is determined by its support, core 

and other α-cut intervals. 
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Figure 2. Top: Lower (belief) and upper (plausibility) bounds of indicator Y at different possibility levels (α); 
Bottom: fuzzy intervals of the mean of Y with support (α=0), core (α=1) and two α-cut intervals (at α=0.3 and 
0.6). 

2.4 Case study 

We constructed an LCA model to estimate environmental impacts (climate change, acidification 

and eutrophication) of on-farm emissions of dairy farms. The functional unit was 1 metric ton of fat-

and-protein corrected milk (FPCM). This model was based on the EDEN-E (Evaluation de la 

Durabilité des ExploitatioNs) tool, developed previously to estimate LCA-based environmental 

impacts of individual dairy farms (van der Werf et al. 2009). In this study, we focused only on direct 

impacts of the milk-production subsystem, because they were affected directly by uncertainty in 

emission factors. We used data from 41 conventional dairy farms from EDEN-E datasets. We obtained 

input variables such as animal production (e.g., meat, milk), number of animals by age and sex, and 

usable agricultural area. Other variables such as quantities of nitrogen (N) in farm inputs and outputs 

(e.g., fertilizers, feed, waste, and animals), energy agents (e.g., diesel, gasoline, and electricity), 

lubricants and plastics were also taken from EDEN-E. In addition, emission factors were used to 

estimate gaseous emissions; their default values and ranges of uncertainty were taken from the 

literature (EMEP-CORINAIR 2001; IPCC 2006a). These variables were used in the model to estimate 

direct impacts of conventional dairy farms. We considered two types of uncertainty in input variables: 

variability in structural characteristics of sampled farms and epistemic uncertainty in emission factors. 

Impact categories were calculated by multiplying emissions with the characterization factors of the 

CML-IA database (Guinée et al. 2002). 
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To compare results with those of the classic probability method, we made three scenarios to 

analyze uncertainty in the LCA model. For all scenarios, we used truncated normal or uniform 

distributions to represent variability in each farm characteristic because they provided only non-

negative values. Means, standard deviations, and minimum/maximum values for each characteristic 

were determined from the empirical EDEN-E sample. Correlations between these variables were 

preserved using multivariable distributions (chapter 4). In the first scenario (S1), uncertainty in 

emission factors was ignored (default constants used). In the second scenario (S2), we considered 

uncertainty in emission factors with triangular probability distributions. In S2, default values and 

ranges of uncertainty were used as the mode and minimum/maximum values in the distribution, 

respectively. In the third scenario (S3), we used fuzzy intervals with triangular membership functions 

to represent uncertainty in emission factors. The same default values and ranges of uncertainty were 

used as the core and support in the membership function, respectively. Indeed, S1 can be considered a 

special case of S3 that considers only the core interval (α=1). Each emission factor was assumed to be 

independent. Scenarios S1 and S2 used MCS to propagate uncertainties, while S3 combined MCS and 

interval arithmetic to generate an interval distribution. Simulations were repeated 10,000 times. In S3, 

finding minimum and maximum impact values for each of the 10,000 replicates theoretically required 

calculating all possible combinations of emission factors (2m combinations, m = number of emission 

factors), but doing so would have increased calculation time considerably. Therefore, since the LCA 

model was monotonic (emission factors used only addition and multiplication), calculations were 

optimized by using the minimum and maximum of each α-cut interval of emission factors. 

Statistics (mean, 5th and 95th percentiles) of impact indicators were calculated as single values in 

S1 and S2 and as intervals in S3. To compare uncertainty in mean impact between categories, we 

calculated a “relative interval width” (RIW), equal to the maximum of a statistic’s interval minus its 

minimum, divided by its mode. Thus, the RIW of mean impact in S3 was the width of the indicator’s 

mean interval (i.e., its support) divided by its core (i.e., the most likely mean value). Because 

uncertainty in emission factors was assumed to be zero in S1 and a known distribution in S2, they 

were considered to have intervals of zero width. 

3. Results 

Statistics of the three impact categories differed by scenario (Table 1). For all three impact 

categories, the difference between the 5th and 95th percentiles (Ipercentile) in S1 and S2 was narrower than 

the difference between the minimum of the 5th-percentile interval and the maximum of the 95th-

percentile interval in S3, indicating higher overall uncertainty in S3. The increase in overall 

uncertainty was due to inclusion and representation of epistemic uncertainty in emission factors. The 

percentage increase in Ipercentile from S1 to S2 was 22% for climate change, 77% for acidification, and 

0% for eutrophication, while that from S1 to S3 was 205% for climate change, 379% for acidification 
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and 29% for eutrophication. Thus, overall uncertainty in impacts increased greatly when uncertainty in 

emission factors was considered as imprecise information. 

Table 1. Statistics of potential climate change, acidification and eutrophication impacts per t of fat-and-protein-
corrected milk (FPCM) in three scenarios that represented uncertainty in emission factors (EFs) differently: S1 - 
no uncertainty in EFs, S2 - probability distributions for EFs, S3 - fuzzy sets for EFs. 

  Climate change    Acidification    Eutrophication  

(kg CO2 eq./t FPCM) (kg SO2 eq./t FPCM) (kg PO4 eq./t FPCM) 

Statistics S1 S2 S3   S1 S2 S3   S1 S2 S3 

Lower limit (5th percentile)  668 746 [418, 1269] 8.3 9.6 [3.6, 18.4] 4.3 3.9 [2.5, 5.0] 

Mean (support of the mean) 925 1075 [603, 1719] 10.8 14.3 [4.8, 24.5] 8.7 8.3 [6.7, 9.5] 

Upper limit (95th percentile) 1275 1488 [861, 2271]   14.4 20.4 [6.3, 32.8]   14.1 13.7 [11.7, 15.1] 

When visualized as CDFs (Fig. 3), S1 and S2 were represented by a single CDF each, while S3 

was represented by two CDFs (plausibility and belief functions) defining upper and lower bounds of 

impact in each category (Fig. 3). These bounds were more widely separated for acidification and 

climate change impact than eutrophication. 

 

Figure 3. Cumulative density functions of direct (on-farm) climate change, acidification, and eutrophication 
impacts per t of fat-and-protein corrected milk (FPCM) in three scenarios that represented uncertainty in 
emission factors (EFs) differently: S1 - no uncertainty in EFs, S2 - probability distributions for EFs, S3 - fuzzy 
sets for EFs (solid curves bound 90% of possible values). Vertical gray lines indicate the mean impact (support 
of mean impact in S3) of each scenario. 
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Membership functions of mean impacts in S3 were nearly triangular, with minor skewness (Fig. 

4). For example, the support of climate change ranged from 603-1719 kg CO2 eq./t FPCM, with a core 

of 925 kg CO2 eq./t FPCM. Note that the core of mean impact in S3 equaled the mean impact in S1, 

for which default values (considered as the true values) were used for emission factors. RIWs of mean 

impacts in S3 indicate that uncertainty in mean acidification impact (134%) was larger than that in 

mean climate change (96%) or eutrophication (35%) impacts (Table 1). However, S1 and S2 each had 

a single mean (e.g., 925 and 1075 kg CO2 eq./t FPCM, respectively) and RIWs of mean impact of 0%. 

 

Figure 4. Fuzzy-interval distributions of means of climate change, acidification, and eutrophication impacts per t 
of fat-and-protein-corrected milk (FPCM) in scenario 3 (based on Dempster-Shafer theory). 

4. Discussion 

We focused on two sources of uncertainty in this case study: variability (in farm characteristics) 

and epistemic uncertainty (parameter uncertainty in emission factors). The classic probabilistic 

approach expresses both parameter uncertainty and variability with probability distributions; however, 

subjectively defining probability distributions may underestimate overall uncertainty. Therefore, 

unknown distributions should be considered as another source of uncertainty due to incomplete 

information and modeled with fuzzy intervals. If both probability distributions and fuzzy intervals 

exist in the same analysis, our DST-based method can combine them to estimate overall uncertainty in 

impact (S3). It provides a more conservative range of uncertainty (i.e. the interval between the 

minimum of the 5th percentile and maximum of the 95th percentile) than the classic probabilistic 

approach. Since S1 considered only variability in farm characteristics, the increase in overall 

uncertainty in impacts in S2 and S3 compared to S1 reflects the contribution of epistemic uncertainty 

in emission factors alone. Considering emission factors as fuzzy intervals (S3) increased overall 

uncertainty more than considering them as random values (S2). Unlike variability, epistemic 
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uncertainty in emission factors can be reduced when more precise information becomes available. For 

example, if the true values of emission factors (S1) or their distributions (S2) are known or assumed to 

be known, the real distribution of impact will be found inside the bounds of plausibility and belief, 

which yields a single mean value and a smaller range of uncertainty.  

In parallel, the imprecision in emission factors was propagated into mean impacts, which were 

constructed from membership functions of their fuzzy sets. Those who used a similar propagation 

procedure in LCA (Clavreul et al. 2013) or risk assessment (Baudrit et al. 2006) studies considered all 

fuzzy intervals of impact as a set of random intervals with equal probability and then calculated a 

weighted-mean interval from upper and lower bounds of distributions. In contrast, we separated this 

process into two steps: (1) estimate the overall range of all possible impact values using the supports 

of emission factors and (2) model mean impacts with fuzzy intervals. Indeed, showing the membership 

function of mean impact instead of a weighted-mean interval provides more information to decision 

makers, such as the levels of possibility corresponding to the most likely mean impact and mean 

impacts of best- and worse-case scenarios based on the degree of possibility. This information allows a 

more precautionary approach than a simple interval of mean impact for evaluating the magnitude of 

and uncertainty in predicted impacts. For fuzzy intervals, the RIW of mean impact is a comparative 

indicator that reflects the influence of explicitly representing the knowledge of information as 

incomplete (an unknown distribution), unlike the classic probability method, which ignores this source 

of uncertainty. It enables the influence of epistemic uncertainty in different impacts to be compared 

when calculating a coefficient of variation is difficult or complex (e.g., in S3, which comprised 

multiple probability distributions). Comparing RIWs among impact categories illustrates the relative 

influence of epistemic uncertainty on overall uncertainty in the impacts of each. If overall uncertainty 

is hindering decision making, this information could lead decision makers to focus on reducing the 

sources of epistemic uncertainty that contribute the most to uncertainty in impacts. For example, since 

epistemic uncertainty in emission factors had a larger influence on acidification than eutrophication 

impacts in this study, more precise measurement of acidification-related emissions would have a 

relatively larger influence in reducing overall uncertainty in an impact. 

For the sake of simplicity, we illustrated a simple LCA example based on a previous work. It 

had far fewer variables and parameters than a full LCA study; in addition, the model was monotonic, 

which simplified optimization of calculations in the simulation. However, when an LCA model is not 

monotonic, increasing the number of uncertain variables (especially imprecise variables) may increase 

the complexity of computation, because the number of iterations increases exponentially when 

searching for minimum and maximum impact values (i.e., 2m combinations, where m=number of 

imprecise input variables), and even may make results virtually meaningless when considering too 

much imprecision. Therefore, performing an initial sensitivity analysis of the LCA model is 
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recommended (Heijungs 1996; Henriksson et al. 2013) to focus on the input variables that influence 

potential impacts the most. This decrease in the number of uncertain input variables may accelerate 

calculations, especially in more complex and non-monotonic models. 

Correlations between random variables (i.e., inter-farm variability) were preserved in this study, 

while independence was assumed between random variables and imprecise parameters (emission 

factors). This assumption allowed a conservative confidence interval of impacts to be generated for all 

three scenarios, because all possible combinations of input variables were included in the stochastic 

simulation. However, representing dependence between random variables and imprecise parameters (if 

known) could improve the precision of predicted impacts. More research is needed on this issue to 

improve the validity of LCA results. 

The DST-based method constructs two boundary distributions using belief and plausibility 

functions. This structure has been interpreted as “imprecise probability” (Ferson et al. 2002), which 

covers all possible probability distributions. Although it reflects the true state of knowledge (e.g., 

incomplete information about emission factors), an extremely wide range of potential impact is likely 

to be less useful for decision makers. Thus, simplifying interpretation of results by decision makers 

remains an open question. To address this problem in LCA, Clavreul et al. (2013) calculated a 

“confidence index” (Dubois and Guyonnet 2011) to generate a weighted probability distribution. 

Decision makers can choose this confidence index subjectively, depending on whether their decision 

policies are more optimistic (close to the upper bound) or pessimistic (close to the lower bound). We 

concur that this kind of confidence index is useful for decision making in LCA studies when 

uncertainty is modeled with imprecise and incomplete information. 

5. Conclusion 

The classic probability method is rigorous in that it requires precise information to express an 

uncertain variable, but subjective assumption about its distribution may underestimate uncertainty in 

the predicted result. In addition, it cannot separate epistemic uncertainty from variability, meaning that 

decision makers will have no information about the relative influence of each on overall uncertainty. 

Our proposed method overcomes this limit by integrating fuzzy intervals to represent imprecise data 

(e.g., emission factors) in probability models. As a consequence, a distribution with two bounds and 

fuzzy intervals of mean impact was generated. Combining the effects of variability and epistemic 

uncertainty yields a wider range of potential impacts, which may influence decision making. Fuzzy 

intervals of mean impact model the uncertainty in mean values. The RIW of mean impact, as a 

comparative indicator, reveals the influence of epistemic uncertainty on uncertainty in impacts, which 

may help decision makers adopt appropriate strategies if they want to improve the reliability of LCA 

results. 
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The paper demonstrated the application of DST in uncertainty analysis in a simple LCA study. 

Representing the lack of knowledge as fuzzy intervals differs from treating it as randomness. Thus, it 

provides a conservative but robust way to represent the state of knowledge in LCA studies when 

information is scarce. Its application in LCA is currently limited, however, due to its greater model 

complexity and, if epistemic uncertainty is large, greater difficulty in distinguishing potential 

differences among scenarios. Considering dependence among input variables is also important, since it 

gives more precise results, but techniques for doing so with fuzzy-interval variables are still in 

development. Therefore, more research is needed to focus on these issues to improve the feasibility of 

this method in LCA. 
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Chapitre 6.                                                                       
Synthèse générale, discussion et perspectives 
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Les objectifs initiaux de la thèse étaient d’identifier les sources d’incertitude dans les analyses 

du cycle de vie de systèmes de production agricole, et puis de proposer des démarches pour 

représenter et propager ces incertitudes jusqu’à l’incertitude totale sur les indicateurs d’impact à 

travers l’ensemble de la démarche de l’ACV. Pour atteindre ces objectifs, le travail de thèse a 

commencé par une revue bibliographique sur la méthodologie pour identifier et traiter les incertitudes 

différentes, et puis un arbre de décision a été proposé pour guider les analystes ACV à choisir les 

méthodes adaptées au traitement des incertitudes différentes. À l’aide de cet arbre de décision, le 

travail suivant s’est concentré sur l’application des méthodes différentes pour traiter la variabilité 

naturelle et les incertitudes paramétrique en ACV agricole, ainsi que sur l’interprétation des résultats 

en prenant en compte le degré de confiance. Ce dernier chapitre synthétise et discute les acquis du 

travail de thèse par rapport aux objectifs attendus de chaque chapitre et discute des perspectives 

qu’ouvre ce travail aux futures recherches sur l’incertitude dans le cadre de l’ACV. 

6.1 Le choix des approches pour l’analyse des incertitudes dans l’ACV 

agricole 

Le premier effort était de synthétiser une typologie des incertitudes et leurs définitions 

correspondantes dans le cadre de l’ACV (cf. chapitre 2). Cette typologie distingue en premier 

l’incertitude aléatoire (variabilité) et l’incertitude épistémique, dont les propriétés sont différentes par 

définition. La variabilité (incertitude aléatoire) représente la différence intrinsèque dans le système 

étudié, tandis que l’incertitude épistémique représente la limite des connaissances de ce système. 

Donc, l’incertitude épistémique peut être réductible en acquérant les informations supplémentaires 

(ex., plus d’échantillons, mesure améliorée), tandis que la variabilité est irréductible mais peut être 

mieux caractérisée en augmentant l’échantillonnage spécifiques (y compris, si nécessaire, temporelle 

ou spatiale). La typologie classifie six sous-catégories pour ces deux types d’incertitude, ce qui permet 

de mieux identifier les sources d’incertitude du système. Tous ces types d’incertitude, qui se 

présentent souvent dans toutes les étapes de l’ACV, ont une influence sur le résultat final. Malgré 

l’existence des terminologies différentes dans les sources, ce genre de typologie est générique et peut 

s’appliquer à toute analyse des incertitudes dans le cadre de l’ACV. 

Sur la base de cette typologie des incertitudes, la prochaine étape était d’étudier les approches 

utilisées actuellement dans le cadre de l’ACV pour représenter et propager des incertitudes différentes. 

Ces approches se sont principalement appliquées à représenter la variabilité naturelle et l’incertitude 

paramétrique, bien que le traitement d’autres types d’incertitudes soit, au mieux, seulement mentionné. 

Parmi ces approches, l’approche probabiliste traditionnelle est la plus commune pour représenter la 

variabilité et l’incertitude paramétrique en ACV, mais sa limite conceptuelle pour représenter 

l’incertitude paramétrique appelle le développement d’autres méthodes. En outre, l’ignorance et 
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l’imprécision sont souvent ignorées dans l’analyse de l’incertitude en ACV ; or s’est un domaine où, 

leur influence peut s’exercer fortement. En conséquence, des approches alternatives (ex., l’intervalle 

flou, la probabilité imprécise, la théorie de Dempster-Shafer (DST)) ont été développées pour 

distinguer l’incertitude épistémique de la variabilité. Lorsque les informations viennent de sources 

différentes, les méthodes de combinaison basées sur la DST (ex., règle de combinaison de Dempster) 

permettent de représenter l’incertitude totale en tenant compte de toutes les sources d’information. 

Enfin, l’approche (semi-) qualitative peut évaluer la qualité de données, quand l’analyse quantitative 

n’est pas faisable. Comme cette approche introduit le dire d’experts pour évaluer le niveau de qualité 

des données et des modèles, son résultat est dépendant du contexte de l’étude et du groupe d’experts.  

Dans la problématique de la propagation de l’incertitude, l’incertitude de modèle et la variabilité 

temporelle ou spatiale sont abordées : l’incertitude de scénario est traitée par l’analyse de scénario ; et 

des méthodes analytiques (ex., série de Taylor, arithmétique des intervalles) et stochastique (ex., 

simulation de Monte Carlo (MCS), bootstrap) peuvent être appliquées en propageant la variabilité 

naturelle et l’incertitude paramétrique selon leurs modes de représentation. Chaque méthode de 

représentation a ses propres avantages et ses limites. L’approche probabiliste, du point de vue 

pratique, est facile à mettre en œuvre dans les modèles ACV, notamment à travers de la MCS. Mais la 

détermination de la distribution est souvent subjective. L’intervalle flou et la probabilité imprécise 

sont appropriés pour représenter l’incertitude épistémique. La DST est suffisamment flexible pour 

intégrer des incertitudes différentes dans le même modèle et réussit à distinguer la variabilité et 

l’incertitude épistémique par l’interprétation de la structure de la DST. Pour ces dernières deux 

approches, cependant, le temps de calcul peut être considérable  à cause de l’utilisation d’arithmétique 

des intervalles, notamment quand le modèle n’est pas monotone, ou les variables imprécises sont 

nombreuses. Par exemple, le temps de calcul était plus grand pour le scénario avec la DST (80 

seconds) que pour celui avec l’approche probabiliste traditionnelle (10 seconds) dans le chapitre 5.  

Ce chapitre offre une vision générale sur l’analyse des incertitudes par rapport à leurs avantages 

et limites en ACV. Afin de les mettre en œuvre en ACV, un arbre de décision a été établi, qui permet à 

la fois d’identifier les types d’incertitude des variables d’entrée et de conduire les analystes ACV à 

choisir les méthodes adaptées pour représenter les incertitudes différentes en considérant plusieurs 

facteurs (ex., les types d’incertitude, les informations disponibles, les objectifs de l’étude). Donc, en 

suivant les différentes branches de l’arbre de décision (Fig. 1), le deuxième effort s’est porté sur 

l’application de ces différentes méthodes pour l’analyse des incertitudes, notamment la variabilité 

naturelle et l’incertitude paramétrique, qui sont plus communes en ACV agricole. 
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Figure 1. Arbre de décision pour choisir des méthodes appropriées pour  représenter différents types 
d’incertitude (Fig. 5 dans le chapitre 2). 

6.2 L’application de l’approche probabiliste classique avec simulation de 

Monte Carlo  

La première branche suivie était l’approche probabiliste classique pour traiter l’incertitude 

paramétrique, (cf. chapitre 3), qui est actuellement largement appliquée par les analystes ACV. Cette 

approche a été utilisée dans une ACV d’une étude de cas agricole déjà réalisée sans prise en compte de 

l’incertitude paramétrique sur les facteurs d’émission. Les résultats de l’ACV étaient fortement 

affectés par la prise en compte de l’incertitude paramétrique, bien que les moyennes des impacts 

estimés ne changent pas de façon significative. L’augmentation de l’incertitude totale sur les impacts 

environnementaux qui en résulte est susceptible de modifier les conclusions des analyses dans le cadre 

d’une étude comparative. En effet, le test de significativité statistique est affecté par la prise en compte 

de l’incertitude paramétrique. 

Pour distinguer clairement l’influence de l’incertitude épistémique et celle de la variabilité, elles 

ont été exprimées par intervalle de confiance et coefficient de variation (CV), respectivement. Donc la 

séparation de deux types d’incertitude a permis d’estimer la part d’incertitude sur les moyennes des 

impacts liée à l’incertitude sur les facteurs d’émission, et de prévoir les impacts potentiels liés à la 

variabilité sur les caractéristiques entre les fermes. Bien que ces expressions de l’incertitude soient 

imprécises, puisqu’on utilise une sorte « d’incertitude sur l’incertitude », qui est inhabituel pour 
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certains analystes ACV, la distinction des deux types d’incertitude peut servir à réduire l’incertitude 

épistémique en améliorant la technique de mesure pour obtenir des valeurs plus précises sur les 

variables d’entrée incertaines. D’autre part, la variabilité, issue d’information sur les échantillons 

observés, peut être utilisée pour prévoir les impacts potentiels. Parfois, la précision de mesure de la 

variabilité dépend des autres types d’incertitude (ex., incertitude paramétrique, incertitude de modèle). 

Par exemple, l’incertitude sur les facteurs d’émission a affecté les variances des impacts potentiels. 

La MCS est mise en œuvre facilement pour propager les incertitudes des variables d’entrée vers 

l’incertitude de la variable de sortie. Cependant, il y a quelques limites à l’utilisation de MCS en ACV. 

D’abord, la MCS classique suppose que les variables d’entrée sont distribuées indépendamment afin 

que les valeurs des variables de sortie venant de toutes les combinaisons possibles puissent être 

représentées. Donc, le nombre d’occurrences des valeurs de chaque variable n’influence pas celles des 

autres. En conséquence, l’ignorance de fortes corrélations entre les variables d’entrée, qui existent 

souvent en ACV agricole, entraîne à surestimer ou sous-estimer l’incertitude. Afin de résoudre ce 

problème, une technique mathématique a été adaptée permettant de créer un jeu de variables d’entrée 

ayant une structure corrélative similaire à celle des données observées (cf. chapitre 4). De plus, on 

dispose souvent de peu d’information pour déterminer les distributions probabilistes des variables 

d’entrée. Donc le choix de la distribution est souvent subjectif, basé sur le dire d’experts. Celui peut 

introduire une incertitude supplémentaire issue du choix subjectif. Le choix de distributions doit être 

basé sur l’information disponible et les déterminations subjectives nécessitent un test (c.-à-d. test de 

qualité de l’ajustement) pour qu’elles soient cohérentes avec les échantillons observés. Lorsque ce 

genre d’information est indisponible, ou bien que les variables d’entrée sont affectées par une 

incertitude paramétrique, les approches non-probabilistes peuvent être appropriées (cf. chapitre 5). 

Enfin, puisque la MCS demande de nombreuses itérations pour fournir une distribution assez robuste, 

le temps de calcul informatique est souvent considérable, voire rédhibitoire. De ce fait, la puissance de 

calcul peut être un facteur limitant pour la prise en compte de l’incertitude.  

6.3 La prise en compte des corrélations dans la simulation de Monte 

Carlo 

Afin de prendre en compte des corrélations entre les variables d’entrée dans la MCS, ce chapitre 

a exploré une démarche basée sur la loi normale multidimensionnelle (cf. chapitre 4). La prise en 

compte des corrélations entre des variables d’entrée dans la MCS a permis d’acquérir une estimation 

réelle de l’incertitude sur les variables de sortie, en particulier dans le cas où les corrélations sont 

fortes. Cependant, il existe certains cas où les corrélations n’ont pas nécessairement besoin d’être 

considérées. Lorsque les corrélations entre les variables sont très faibles, leur influence sur 

l’incertitude du résultat est souvent négligeable. Par ailleurs, lorsque l’information sur les corrélations 
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n’est pas disponible, la MCS avec échantillonnage aléatoire est plus conservatrice, puisque toutes les 

combinaisons possibles des variables d’entrée sont générées. 

De cette étude, seules les corrélations fortes entre des variables d’entrée ont été considérées. La 

méthode appliquée a la capacité à la fois de représenter l’information sur les corrélations entre des 

variables d’entrée à travers de la MCS, et de maintenir la forme de leurs distributions probabilistes, 

contrairement à la méthode d’origine, qui impose des distributions normales. De ce fait, on conserve la 

flexibilité du choix de la distribution, qui peut permettre d’éviter l’incertitude du choix subjectif. De 

plus, cette méthode est souple dans le sens qu’elle peut traiter la corrélation de Pearson mais aussi la 

corrélation de Spearman. L’utilisation de différents types de corrélation dépend de l’information 

disponible sur variables corrélées, ou bien de l’hypothèse que l’on fait sur ces corrélations : linéaire 

pour Pearson et monotone pour Spearman. En général, ce genre d’information provient d’études 

empiriques ou de dires d’expert, et l’établissement de la matrice de corrélations doit être faite avec 

précaution, car cette matrice doit être « définie positive » pour obtenir sa matrice triangulaire 

supérieure par la factorisation de Cholesky. Donc, je recommande aux analystes ACV de tester la 

faisabilité de la factorisation de Cholesky pour considérer les corrélations entre les variables d’entrée 

dans la MCS, avant de créer la matrice de corrélations des données de l’inventaire et les paramètres 

utilisés dans les processus d’évaluation des impacts. 

En fait, dans le cadre de l’ACV, plusieurs critères (catégories d’impact) doivent être considérés 

pour la prise de décision. Les corrélations entre ces catégories d’impact fournissent des informations 

importantes aux décideurs. Par exemple, de fortes corrélations positives entre des impacts 

environnementaux (ex., changement climatique, acidification, eutrophisation) sont observées dans le 

système de production des truites en France (cf. Annexe 1). Dans la méthode proposée, l’ensemble de 

valeurs des variables d’entrée généré a un ordre de permutation spécifique déterminé selon les 

corrélations désirées entre ces variables. Ainsi, les distributions des impacts estimés possèdent un 

ordre spécifique correspondant à l’ordre des variables d’entrée. Donc, la MCS avec prise en compte 

des corrélations entre les variables d’entrée permet aussi de montrer les corrélations entre les impacts 

différents, si les variables utilisées pour calculer ces impacts sont corrélées fortement. Autrement dit, 

l’information sur les corrélations entre les impacts est conservée dans la MCS par cette méthode. Bien 

que les techniques pour contrôler la corrélation soient bien connues, leur application en ACV est 

encore peu développée pour cause d’insuffisance d’information et/ou de temps de calcul trop 

important. Nous pensons avoir démontré que l’effort vaut la peine d’être consenti eu égard à son 

impact sur la qualité des résultats. 
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6.4 L’application de la théorie de Dempster-Shafer 

L‘arbre de décision a conduit à choisir des méthodes appropriées pour traiter des incertitudes 

différentes. Lorsqu’il existe à la fois une variabilité et une incertitude épistémique (plus précisément, 

l’incertitude paramétrique) dans le même cadre, l’approche probabiliste classique peut fusionner ces 

deux types d’incertitude au lieu de les séparer. Donc elle peut amener à sous-estimer l’incertitude sur 

le résultat final, car l’incertitude sur le choix de distribution est ignorée. Face à ce problème, la DST a 

été appliqué pour combiner deux approches différentes (la distribution probabiliste et l’intervalle flou) 

dans le même cadre d’étude (cf. chapitre 5). Ces deux approches ont été utilisées pour traiter la 

variabilité et l’incertitude paramétrique, respectivement, dans un contexte d’ACV agricole. En 

conséquence, les impacts potentiels et leurs incertitudes ont été estimés par une fonction de croyance 

(« belief function ») et une fonction de plausibilité (« plausibility function ») et illustrés par une paire 

de distributions cumulées inférieure et supérieure (p-box) qui contient la vraie distribution probabiliste 

du résultat. Cette forme de représentation estime un intervalle de probabilité sur les impacts potentiels 

(influence de la variabilité) et fournit une estimation plus conservatrice que l’approche probabiliste 

classique, parce qu’elle considère aussi l’imprécision sur l’état de connaissance en utilisant l’intervalle 

flou au lieu d’une distribution probabiliste supposée. En outre, la représentation de l’incertitude sur 

une valeur statistique (ex., moyenne) est influencée par l’expression de l’incertitude épistémique. Par 

exemple, les moyennes des impacts ont été exprimées par des intervalles flous. En théorie, 

l’incertitude sur la moyenne peut être éliminée lorsqu’il n’y a plus d’incertitude épistémique. C’est-à-

dire, quand on sait soit la valeur réelle du paramètre, soit la vraie distribution du paramètre, le 

processus de MCS génère une seule distribution sur le résultat estimé avec la moyenne sous forme 

d’un point de valeur. Par conséquence, l’application de la DST permet d’identifier les influences de la 

variabilité et de l’incertitude épistémique sur l’estimation des impacts. La distance entre les deux 

bornes (inférieure et supérieure) indique l’espace potentiel à améliorer en réduisant l’incertitude 

épistémique.  

Bien que la DST ait été développée depuis les années 1960 (Dempster 1967), l’utilisation de la 

DST est encore limitée en ACV. D’abord, le processus de propagation a besoin de déterminer les 

minima et les maxima du résultat associé avec des niveaux de possibilité en utilisant arithmétique des 

intervalles qui s’appuie sur les modèles ACV. Cependant, le temps de calcul peut devenir très grand 

pour un modèle compliqué ou non-monotone, en particulier avec de nombreuses variables incertaines 

exprimées par les intervalles flous. Ensuite, contrairement à l’approche probabiliste, il est difficile de 

conserver l’information sur les corrélations entre des paramètres incertains exprimés par l’intervalle ou 

l’intervalle flou. Sans considérer les corrélations entre ces paramètres, le résultat sous forme de p-box, 

qui contient toutes les combinaisons possibles, fournit une estimation conservatrice, mais la précision 

du résultat est plus ou moins affectée. Pour l’interprétation, les décideurs sont face à une situation 
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difficile, parce que les résultats sont exprimés sous forme d’intervalles (pour construire la structure de 

DST), plutôt que d’une seule distribution probabiliste. La décision basée sur les deux bornes inférieure 

et supérieure représente la situation optimiste et pessimiste. Cependant, un intervalle extrêmement 

large sur l’impact estimé peut être inutile pour prendre une décision significative. Face à ce problème, 

il est proposé d’utiliser un indice de confiance pour transformer les deux distributions cumulées à une 

distribution probabiliste pondérée en fonction de l’attitude du décideur, soit plus optimiste (proche de 

la borne inférieure), soit plus pessimiste (proche de la borne supérieure). Puisque l’indice de confiance 

intègre l’attitude du décideur subjective dans le résultat exprimé, cette étape doit être réalisée après 

l’évaluation de l’impact, et le choix de l’indice doit être jugé prudemment par les experts. Lorsque il 

n’existe pas d’information permettant de fixer l’indice de confiance, il est plus prudent d’employer 

l’intervalle pour exprimer le résultat afin éviter une décision trop subjective. 

6.5 Découvertes principales and recommandations  

Les travaux réalisés dans cette thèse amènent quelques contributions aux analystes pour aborder 

les incertitudes en ACV :  

• L’analyse de l’incertitude elle-même est un moyen d’aider les analystes ACV à mieux 

connaître l’état des connaissances sur les données et les modèles utilisés dans un système. Elle ne 

permet pas de réduire l’incertitude, mais d’évaluer son influence sur le résultat. Donc les analystes 

ACV devraient éviter de faire trop d’hypothèses pour essayer d’avoir une étude sans incertitude, et 

plutôt se focaliser sur la représentation réelle des informations en prenant en compte de l’incertitude 

dans une étude réelle. Le processus d’analyse est itératif, afin de mettre à jour les résultats dès que de 

nouvelles informations deviennent disponibles (ex., sachant la vraie valeur ou la distribution d’une 

variable, sachant les corrélations entre des variables).  

• L’analyse de l’incertitude, au lieu d’être une étape facultative adossée à la fin d’une ACV 

(comme elle l’est souvent actuellement), doit être considérée comme un processus important à réaliser 

dans toutes les étapes de l’ACV, et ce dès le début. On commence par identifier les sources 

d’incertitude dans l’étape « définition des objectifs et du champ de l’étude », qui va influencer le 

déroulement ou des choix dans les étapes qui suivent. Ensuite, les incertitudes sont représentées dans 

les modèles et les inventaires pour analyser leur influence sur les impacts. La propagation des 

incertitudes, à travers des étapes précédentes, donne des résultats qui intègrent les incertitudes sur les 

variables d’entrée. Enfin, l’interprétation des incertitudes et de leurs influences sur les résultats permet 

de compléter une étude ACV. 

• Comme il n’existe pas de méthode polyvalente optimale pour analyser l’incertitude, cette thèse 

a visé à aider les analystes ACV à choisir des méthodes qui conviennent aux types d’incertitude 
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rencontrés. La diversité des méthodes possibles ouvre la possibilité de traiter tout type d’incertitudes, 

même s’il y a peu information disponible. 

• À cause de leur différence conceptuelle, la variabilité et l’incertitude épistémique devraient 

être quantifiées séparément dans un même cadre du système. Cela demande une nouvelle visualisation 

de l’incertitude sur le résultat (ex., le « p-box », la structure DST), au lieu d’une distribution 

probabiliste. Par conséquent, l’interprétation du résultat doit distinguer leurs influences séparément sur 

le résultat. Parfois, la confiance jugée par les experts peut être ajoutée comme une information 

supplémentaire (ex., l’utilisation d’un indice de confiance) pour simplifier l’interprétation. En ce cas, 

une conclusion tirée sur le résultat doit préciser le niveau de confiance supposé. 

• La DST permet d’établir un « pont » pour lier deux façons de représenter l’incertitude au point 

de vue objective (aléatoire) et subjective (épistémique). La structure DST est un moyen souple pour 

représenter l’incertitude, et la mise à jour des informations permet de la transformer à une distribution 

probabiliste (c.-à-d., considérer que la variabilité) ou à un/des intervalle/s flou/s (c.-à-d., ne considérer 

que l’incertitude épistémique). 

• Les ACV réelles comportent souvent des modèles plus compliqués que l’étude de cas 

présentée dans la thèse. Donc le temps du calcul est considérable en utilisant la MCS, notamment 

quand plusieurs méthodes sont combinées pour représenter les incertitudes différentes. De ce fait, il 

vaut mieux faire un effort pour utiliser les algorithmes d’optimisation ad hoc afin d’augmenter 

l’efficacité de simulation. Par exemple, les modèles qui estiment les émissions des gaz, qui sont 

souvent relativement simples, peuvent être optimisés individuellement d’abord. Ensuite, les 

incertitudes sur les estimations des émissions de gaz, notamment celles qui sont représentées de 

manière imprécise, peuvent être regroupées pour évaluer les impacts potentiels là où les modèles de 

caractérisation (les émissions multipliées par leurs facteurs de caractérisation) sont souvent monotones 

croissants. Dans ce cas en effet, le minimum et le maximum des impacts peuvent être identifiés 

facilement selon l’arithmétique des intervalles.  De plus, la réduction du nombre des variables 

imprécises peut également diminuer le temps de calcul des incertitudes. Pour ce faire, une analyse de 

sensibilité peut être mise en place a priori pour identifier les variables les plus influentes sur 

l’incertitude finale (Heijungs 1996). 

6.6 Limites et perspectives  

Afin d’approfondir les recherches méthodologique présentées dans cette thèse, il est nécessaire 

de réfléchir à quelques points critiques sur l’application des méthodes pour traiter des incertitudes en 

ACV agricole dans les futures recherches. Les travaux réalisés lors de la thèse amènent aux 

conclusions suivantes : 
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• Cette thèse n’a traité que trois catégories d’impact liés aux émissions d’azote et de méthane. 

Cependant, il serait intéressant de prendre en compte l’influence de l’incertitude sur d’autres 

catégories d’impact (ex. toxicité, utilisation d’énergie, biodiversité). Par exemple, la biodiversité est 

menacée par des impacts (ex. pollution de l’air et de l’eau, dégradation du sol, déforestation) au sein 

des activités d’élevage (Steinfeld et al. 2006). En ce cas, la prise en compte de l’incertitude sur la 

biodiversité concerne plusieurs facteurs de ces différentes sources d’impact. Donc, un futur travail 

pourrait étudier d’autres catégories d’impact pour lesquelles les influences des incertitudes des 

variables entrées sont probablement plus complexes que celles des trois catégories d’impact étudiées 

dans cette thèse. 

• Pour valider la méthode DST dans le contexte ACV agricole, il sera nécessaire de l’appliquer 

dans des études supplémentaires. D’abord, l’étude de cas dans la thèse s’est limitée à considérer 

seulement la variabilité naturelle et l’incertitude paramétrique. Cependant, il existe d’autres types 

d’incertitudes en ACV (ex., allocations ou modèles différents), qui n’ont pas été traités dans cette 

thèse. En fait, les méthodes de combinaison basées sur la DST sont capables de combiner les 

différentes sources d’évidence (incertitudes de scénario) dans le même modèle, mais elles n’ont pas 

été appliquées dans les études de cas ACV. Donc un futur travail devra considérer ces types 

d’incertitude et propager leur influence sur l’incertitude sur les sorties pour tester sa pertinence dans 

les cas d’ACV réels. Par exemple, la méta-analyse étudie les données venant d’études différentes (ex., 

en agronomie) afin d’avoir une analyse plus précise des données (Philibert et al. 2012). Comme les 

données proviennent des sources différentes (c.-à-d. variabilité entre les études individuelles), il serait 

intéressant d’employer les règles de combinaisons pour exprimer les résultats d’une méta-analyse dans 

le cadre de l’ACV. 

• Une technique a été appliquée pour contrôler les corrélations entre des variables dans le 

processus de propagation. Cependant, cette technique ne s’applique qu’à l’approche probabiliste 

traditionnelle. Lors de l’utilisation des intervalles ou des distributions probabilistes imprécises, cette 

technique n’est plus valable dans la MCS. Donc il sera nécessaire d’étudier l’intégration des 

informations sur les corrélations et les dépendances entre des variables dont les représentations des 

incertitudes sont imprécises. Pour cela, le travail de Ferson et al. (2004) sur la dépendance en 

modélisation probabiliste dans le domaine de l’analyse des risques pourra offrir de bonnes pistes pour 

les travaux à venir. 

• La mise en œuvre de l’approche probabiliste s’applique en ACV pour évaluer la qualité des 

données avec l’aide de la matrice de pédigrée. Cependant, la méthode actuelle fusionne  l’incertitude 

sur la qualité (c.-à-d., incertitude épistémique) avec celle de base (c.-à-d., variabilité) (Weidema et al. 
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2013). Donc il sera intéressant d’étudier l’application de la DST en quantifiant séparément 

l’incertitude sur la qualité, afin de distinguer son influence sur les résultats en sortie. 

• Dans cette thèse, des méthodes ont été implémentées pour représenter et propager les 

incertitudes à l’aide des outils informatiques. Cependant, il n’y a pas de logiciel ACV qui intègre 

plusieurs méthodes pour que les analystes ACV puissent choisir les méthodes appropriées pour traiter 

les incertitudes. Donc la considération des incertitudes différentes demande le développement de 

logiciels ACV en intégrant plusieurs méthodes de traitement. Cet outil informatique devra fournir un 

guide pour choisir les méthodes. De plus, il devra être capable d’effectuer la simulation en propageant 

les incertitudes à travers le modèle ACV. 

En conclusion, un arbre de décision a été proposé pour guider les analystes ACV en choisissant 

les méthodes possibles pour traiter les incertitudes différentes et à démontrer leurs applications dans le 

cadre de l’ACV agricole. Le choix des méthodes doit être fait prudemment, en fonction des études de 

cas spécifiques. Les applications de chaque méthode et l’efficacité du calcul doivent être améliorées 

dans les futures recherches, notamment pour la DST, qui prouve sa flexibilité en combinant les 

approches probabiliste et non-probabiliste. Il est à espérer que ces travaux exploratoires ont permis 

d’atteindre les objectifs initiaux et fournissent une base et une vision intéressante pour engager les 

recherches futures. 
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Environmental assessment of trout farming in France by 

life cycle assessment: using bootstrapped Principal 
Component Analysis to better define system classification 
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Abstract 
Trout farming is the main fish production system in France. This article describes a system to 

classify trout farms based on environmental impacts calculated by life cycle assessment and technical 

and economic indicators. Since the number of surveyed farms was too small for a robust assessment, 

we combined principal component analysis (PCA) with a non-parametric bootstrap technique. French 

trout farms were surveyed to collect technical and economic indicators. The representativeness of the 

survey was verified by comparing it to a national inventory. Life cycle assessment was used to 

estimate environmental impacts of farms and the contribution of each production stage to impacts. 

PCA was used to evaluate both technical-economic and environmental indicators of the trout farms, 

which were separated into three groups based on the size of fish produced (pan-size, large and mixed-

size, and very large). Non-parametric bootstrap was used to compare the groups and to test the 

significance of PCA results. Results validated the fish-farm classification system based on the size of 

fish produced and indicated that farm operations and fish feeding contributed the most to 

environmental impacts. The PCA method distinguished three groups via their technical indicators, 

with non-significant differences among the groups in environmental impacts. However, environmental 

indicators showed strong links with technical and economic indicators. In conclusion, bootstrapped 

PCA offers the ability to assess groups of trout production system when the sample size is too small 

and provides more conservative results by considering uncertainty. Future studies should focus on 

providing reliable data to reduce uncertainty. 

 

 

Keywords: life cycle assessment; non-parametric bootstrap; principal component analysis; trout 

farming system  
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1. Introduction 

Trout farming is the main aquaculture production system in France. It is primarily based on 

farming rainbow trout (Oncorhynchus mykiss) in flow-through systems, in which inlet water is 

diverted from a river, passed once through the rearing tanks and then returned to the river. All 

nutrients are provided by exogenous formulated feed containing fish meal, fish oil and plant-based 

ingredients. Production is carried out in small (10 t/year) to large farms (900 t/year). The farms have 

different production objectives responding to different markets. For example, some farms produce 

pan-sized trout or large trout for filets; other farms produce fish for restocking rivers or ponds for 

angling. These different production strategies imply different practices (e.g., feed type, feeding 

management, oxygen supply, rearing densities, and water treatment). The trout farms in France are 

spread widely throughout the country, but their number is small (around 600) comparing to livestock 

systems. Since trout farming uses water of good quality, farm practices and the quality of water at 

their outlets are watched closely. 

Despite the rapid growth of fish farming throughout the world (mean increase of fish production 

volume of 12%/year in the last ten years) (FAO, 2012), trout production decreased in France from 47 

000 t in 1997 to 37 000 t in 2007 (Agreste, 2011). This production suffers from economic competition 

from other aquatic products and the application of water-quality regulations (e.g., European Union 

Water Framework Directive), which can cause farmers to abandon fish production. The decrease in the 

number of farms and the corresponding decline in production led the French aquaculture producer 

organization (CIPA) to assess the sustainability of French trout farming. To do so, different 

approaches were applied: development of indicators of economic, social and environmental 

sustainability; environmental assessment of farms based on biological and chemical-physical 

measurements (Aubin et al., 2011); and life cycle assessment (LCA). This paper focuses on the 

definition of a trout-farm classification system using LCA indicators and certain technical and 

economic indicators. 

LCA is a holistic method designed to estimate potential impacts associated with a product or 

service based on the resources consumed and pollutants emitted into the environment at all stages of 

its life cycle, from raw material extraction to its end-of-life (Guinée et al., 2002). It is an 

internationally accepted method described in ISO standards (ISO 14040 (2006), ISO 14044 (2006)). 

LCA has been adapted to fish farming (Papatryphon et al., 2004b) and applied in several studies to 

estimate environmental impacts of aquaculture in different contexts (Aubin, 2013; Cao et al., 2013; 

Henriksson et al., 2012). Salmonid production has been studied in particular, since it is common in 

Europe and North America. Moreover, it is a simple and well-controlled rearing system which fits 

with the industrial ecology rationale of LCA. Some studies about salmon production have investigated 

different rearing and feeding practices (Ayer and Tyedmers, 2009; Pelletier and Tyedmers, 2007; 
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Pelletier et al., 2009). Other studies have investigated trout production (Aubin et al., 2009; Gronroos et 

al., 2006; Papatryphon et al., 2004b; Samuel-Fitwi et al., 2013). All of these studies helped to 

understand the contribution of system components to environmental impacts and showed the 

overwhelming influence of feed composition and management. Nevertheless, these studies were based 

on small numbers of farms. 

To better understand the influence of rearing practices in trout farming, Papatryphon et al. 

(2004b) classified production systems into three classes according to the size of fish produced (pan-

size, large trout, and very large trout). They observed high variability in the impact categories (relative 

variation ranged from 41% in biotic resource use to 87% in energy demand). Moreover, variability in 

impacts was associated with different production techniques; for example, variation in eutrophication 

was related mainly to differing feed efficiency among farms. However, the small number of farms 

investigated (n=8) did not allow broader conclusions. As mentioned by Henriksson et al. (2012), the 

number of farms investigated often raises the question about the representativeness of aquaculture 

systems in LCA. As a consequence, environmental assessment of fish farms is relatively weak, 

making extrapolation of their potential environmental impacts delicate. To better characterize 

heterogeneous populations, especially in agricultural and aquacultural production, building 

classification systems is a common practice (Lazard et al., 2010). These classification systems are 

often based on surveys and statistical analysis, such as Principal Component Analysis (PCA). 

PCA reduces the dimensionality of an observed dataset with many correlated variables by 

transforming them into a new set of variables, named principal components (PCs), which retain as 

much as possible the variation of the observed dataset (Jolliffe, 2005). It is used to extract the most 

important information from the dataset to get an overview of it in a small number of dimensions (e.g., 

two or three) described by their eigenvalues (measures of variation in samples explained by the PCs), 

loadings (coordinates of original variables in the PCs) and scores (coordinates of individuals in the 

PCs). PCA is commonly used to represent the variability in observed samples. However, a small 

sample size (n<30) may not allow conclusions to be extrapolated to the entire population when the 

standard error of the mean is large (Berthouex and Brown, 2002). Hence, the consideration of 

uncertainty in the results due to small sample size is an important subject in statistical analysis. Indeed, 

this type of uncertainty can be expressed with a confidence interval (CI) or standard error (Luo et al., 

2013; Melia et al., 2012).   

Bootstrap sampling is a numerical method used to quantify uncertainty due to random sampling 

errors without assumptions about a variable’s distribution (Efron, 1979). A bootstrapped sample is 

created by randomly sampling from an observed sample repeatedly. Bootstrap sampling can be 

applied, for example, to estimate the accuracy and stability of PCA results by providing a CI for 

eigenvalues and loadings (Babamoradi et al., 2013; Daudin et al., 1988; Timmerman et al., 2007). 
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However, there are two shortcomings when using bootstrap-based PCA. First, the coordinates of 

component loadings and scores are arbitrary (Jackson, 1995; Jolliffe, 2005; Mehlman et al., 1995), 

which may overestimate the CI of loadings (reflection). Second, PCs may have a similar eigenvalues 

in a bootstrapped sample, which may change the order of PCs compared to the observed sample (re-

ordering) (Timmerman et al., 2007). To address these problems, reflection and re-ordering corrections 

are performed on each bootstrapped sample (more details in Peres-Neto et al. (2003) and Babamoradi 

et al. (2013)). 

In this study, we decided to bypass the problem of the small sample size of trout farms by using 

non-parametric bootstrap. This method has the advantage of being more robust than parametric 

bootstrap when the distribution of observed data fails a normality test. Therefore, to better understand 

the characteristics of French trout farms, this study used PCA to validate a classification system of 

French trout farms based on their types of commercial products. This system classifies trout farms 

based on their estimated environmental impacts and production techniques. The accuracy of PCA 

results (CI) is evaluated with the bootstrap method. 

2. Materials and methods 

2.1 Sample survey and national inventory 

A sample of 24 trout farms throughout France was selected based on the size of fish produced, 

hydrogeological characteristics of the environment, and farmer agreements. The farms were surveyed 

from 2007 to 2011, recording data such as farm production (types and quantities of products), farm 

inputs (types, quantities and origins, especially of energy sources, feed, juveniles, and water), 

infrastructure and equipment, and water quality (Aubin et al., 2011). Annual trout production of the 

farms varied from 20 to 667 t. Farms were divided into three groups according to the size of fish 

produced, as performed by Papatryphon et al. (2004b): G1, pan-size trout (250-400 g); G2, large and 

mixed-size trout (e.g., different sizes from 200 to 3000 g); and G3, very large trout (>2000 g). The 

number of farms per group was 5, 9 and 10, respectively. To check the representativeness of the trout 

farm sample in the survey, we compared it to a classification of trout farms (defined by the amount of 

feed consumed) available in a 2007 inventory of French trout farms (Agreste, 2009). 

2.2 Life Cycle Assessment  

LCA was conducted according to the four steps and general requirements of the methodology 

proposed by ILCD (European Commission, 2010). The methodology was adapted to characteristics of 

fish farming. The goal and scope of this study is the environmental assessment of trout farming in 

France at the farm scale in order to adapt improvement strategies as a function of farm type. The 

boundary of the production system mainly contains farm operations, feed production (including 

ingredient production and transportation), production of juveniles, infrastructure construction, 
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equipment manufacturing, and production of medicines and other inputs, such as liquid oxygen and 

energy carriers (Fig. 1). Despite the existence of thousands of processes in LCA of trout production, 

these processes are the most important contributors to overall impacts, according to the literature 

(Aubin, 2013).  

 

Figure 1. System boundary of trout farming in France. Rounded rectangles represent processes of the production 
system. Ellipses represent management factors of fish farms. “T” means transportation. 

The life cycle was defined up to the farm gate, and the functional unit (impact calculation basis) 

was one t of raw fish. Emissions of farm metabolic wastes (i.e., nitrogen and phosphorus compounds, 

suspended solids) into the aquatic environment were calculated using the mass-balance approach 

described by Papatryphon et al. (2005) and adapted by Aubin et al. (2011) to take into account internal 

dynamics of waste inside the farm. Specific information about feed ingredients came from Boissy et 

al. (2011). Economic allocation was used to divide environmental burdens among co-products in feed-

ingredient production. Secondary data (e.g., transport and electricity use) were extracted from the 

ecoinvent v. 2.2 database. LCA impact categories were selected to address a variety of environmental 

issues of fish farming. Climate change (kg CO2-eq.), acidification (kg SO2-eq.), eutrophication (kg 

PO4-eq.) were calculated using the characterization factors of CML2 baseline 2000 v. 2.03 (Guinée et 

al., 2002). To consider the contribution of fish farming to land use, we selected a land occupation 

(m2*y) indicator. Energy use of fish farming (energy demand (GJ)) was calculated according to the 

Cumulative Energy Demand method, v. 1.03 (Frischknecht et al., 2005). Water requirements of the 

activity (water dependence (m3)), including water consumption and water passing through the fish 

farm, was calculated according to Aubin et al. (2009). Net Primary Production Use (NPPU) (t C), 

which indicates the pressure of fish farming on biotic resources (especially marine resources), was 

calculated according to Papatryphon et al. (2004b). These LCA impact categories were selected based 

on previous studies and guidelines in the field of aquaculture LCAs (Aubin, 2013; Aubin et al., 2009; 
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Henriksson et al., 2012; Pelletier and Tyedmers, 2007). The calculation of LCA impact categories was 

performed with SimaPro v. 7. Other indicators of rearing performances were added to reflect technical 

and economic characteristics of the systems: annual production level (t), feed conversion ratio (FCR) 

and annual liquid oxygen consumption (t). In addition, on-farm human labor (human.day) was 

included to highlight the relationship between production factors and labor on trout farms. 

2.3 Comparing differences in group means with the bootstrap method  

To identify significant differences among the three groups, we used the bias-corrected and 

accelerated (BCa) bootstrap method (see appendix) to calculate 95% CIs around the differences in 

group means, because it adjusts both bias and skewness in the bootstrap distribution and provides a 

reasonably accurate CI. Significant differences were assumed at p<0.05. The re-sampling procedure 

was performed 1000 times (B=1000) using R (R Development Core Team, 2012). Thus, we assumed 

that each group was independent and taken randomly from its own population. The differences 

between groups were considered significant if the bootstrapped 95% CIs around the differences 

included zero. In other words, the null hypothesis (H0) was that differences between group means 

equaled zero. We chose a non-parametric bootstrap method to test differences between indicator 

means, because some of them (e.g., production level, liquid oxygen consumption, and acidification) 

might not satisfy normality or homogeneity of variance, two conditions required for parametric tests 

such as analysis of variance (ANOVA). 

2.4 PCA method 

To address the comparison problem due to the small sample size, we applied PCA (R 

“princomp” function) to a matrix of eleven independent variables (n=11) from observed samples 

(m=24) and bootstrapped samples (m*=24) (Fig. 2). Through PCA, three vectors were generated: 

eigenvalues, loadings and scores. The BCa method was used to estimate 95% CIs for the eigenvalues 

of PCs to determine how many PCs to keep (bootstrapped Kaiser-Guttman criterion (Lambert et al., 

1990)). So, only the components whose 95% CI for the eigenvalues exceeded 1 (mean of eigenvalues) 

were retained. The loadings of original variables and the scores of individuals from the observed 

sample were mapped. We also used bootstrapped PCA (B=1000) with re-ordering and reflection 

corrections to generate the component loadings and scores (Peres-Neto et al., 2003). The significance 

of correlations between variables was tested by calculating BCa 95% CIs for correlation coefficients. 

The significance of variable loadings was tested by calculating p-values. They were calculated as the 

number of bootstrapped loadings smaller (when the original loadings were positive) or greater (when 

the original loadings were negative) than zero, divided by B (Peres-Neto et al., 2003). Thus, variables 

were associated with the corresponding components when p<0.05. The individual scores of the three 

farm groups were distinguished by confidence regions (R “ellipse” package) of the centroids of 

bootstrapped scores at a 90% confidence level (Dehlholm et al., 2012). 
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Figure 2. Bootstrapped Principal Component Analysis (PCA) procedures with re-ordering and reflection 
corrections. 

3. Results 

3.1 Farm sample representativeness 

The observed sample included trout farms from all classes in the inventory except farms 

consuming less than 25 t of feeds per year (Table 1). Since this class represents only 6% of national 

feed consumption, it was not taken into account in our sample. The representativeness of the survey 

(expressed as the percentage of total national feed consumption) increased with the class size. The 

highest representativeness (40%) was for farms consuming more than 500 t of feed per year, while the 

lowest representativeness (5%) was for farms consuming 25-50 t/year. The larger farms (feed 

consumption more than 300 t/yr) are specialized in large trout production. Some of smaller farms (feed 

consumption less than 300 t/yr) are specialized in pan-size trout, while the others produced a 

combination of all sizes. 
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Table 1. Number of trout farms in each class (based on annual feed consumption (Q)) in the French inventory 
(Agreste, 2009) and this study’s survey of farms grouped by the size of fish produced (G1: pan-size fish, G2: 
large and mixed-size fish, G3: very large fish). 

Class 

National inventory    Trout survey 

Number 
of farms 

Total feed 
cons. (t/yr)   

Number 
of farms 

Total feed 
cons. (t/yr) 

Percentage of 
national total 

(%) 
G1 

(%) 
G2 

(%) 
G3 

(%) 
Q < 25 t 366 2627 0 0 0 0 0 0 
25 t ≤ Q < 50 t 59 2174 3 99 5 0 100 0 
50 t ≤ Q < 100 t 56 4143 4 239 6 27 73 0 
100 t ≤ Q < 200 t 56 7908 5 697 9 38 36 26 
200 t ≤ Q < 300 t 27 6819 3 769 11 34 35 31 
300 t ≤ Q < 500 t 25 9986 4 1686 17 21 0 79 
Q ≥ 500 t 11 10 090 5 4046 40 0 0 100 

          Total 600 43 747   24 7535 17*       
* Percentage of feed consumptions of trout samples in national feed consumptions    

3.2 Contribution analysis 

Among trout-production stages, feed (i.e., feed production, milling, and transport) was the main 

contributor to mean impacts, such as NPPU (≈94%), land occupation (>92%), climate change (67-

73%), acidification (63-69%) and energy demand (50-59%) (Fig.3). Farm running (i.e., farm 

operations and on-farm emissions) was the main contributor to eutrophication (81-82%) and water 

dependence (89-93%) and influenced energy demand (20-26%). Fry (i.e., production and transport of 

trout eggs or juveniles) contributed to acidification, eutrophication, climate change, energy demand 

and water dependence at a level of 7-14%. It had a slight contribution (1-6%) to NPPU and land 

occupation. The infrastructure and equipment (i.e., infrastructure, tank and building construction, 

equipment manufacturing and transport) only contributed to acidification, climate change and energy 

demand and their contributions were greatly variable among farm groups (2-16%), with the highest 

levels always observed in group G2. Liquid oxygen (i.e., liquid oxygen production and transport) had 

higher contribution to acidification, climate change and energy demand (7-10%) in groups G1 and G3 

than in group G2. Chemicals (i.e., production and transport of medicines, cleaning products and other 

chemicals) had negligible contribution (<1%). Except for land occupation and energy demand, all 

impacts decreased in this order: G2, G1, G3. 

3.3 Environmental impacts and rearing performance of the three groups 

Means and coefficients of variation (CV) of indicator values were calculated per group in the 

observed sample (Table 2).  G1 had lower variability in acidification (12%), eutrophication (6%) and 

climate change (6%) than G2 and G3 (>20%). G2 had higher variability in most indicators than the 

other two groups, except for FCR and land occupation. Variability in liquid oxygen consumption was 

much higher in G2 (260%) than in the other two groups (76% and 67%, respectively). 
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There were no significant differences in environmental impacts (e.g., acidification, 

eutrophication and climate change) or resource use (e.g., land occupation, energy demand and water 

dependence) between groups when comparing them with those of the bootstrap-based method (Fig. 3). 

However, there were significant differences in technical parameters between the groups, such as 

production level, feed consumption, liquid oxygen consumption, NPPU, water dependence and human 

labor. Although production level was significantly higher in G3 (440 t) than in G2 (79 t) and G1 (168 

t), FCR was not significantly different among the three groups. In addition, G2 had significantly 

higher NPPU and water dependence than G3, while no significant difference was found between G1 

and the other two groups. For human labor, G2 required significantly more working time than the 

other two groups. 

 

Figure 3. Contribution of system production stages to LCA impacts for trout farms grouped by the size of fish 
produced: G1 (pan-size), G2 (large and mixed-size) and G3 (very large). Error bars represent 95% confidence 
intervals around the means of total impacts. 
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Table 2. Means of environmental impacts, technical and economic indicators and their coefficients of variation 
(CV) for trout farms grouped by the size of fish produced: G1 (pan-size), G2 (large and mixed-size), and G3 
(very large). Superscript letters indicate significant (p<0.05) differences between groups. 

Indicator Unit 

G1   G2   G3 

Mean CV   Mean CV   Mean CV 

Production level  t 168a 56% 79b 94% 440c 42% 

Feed conversion ratio 1.09 8% 1.17 14% 1.2 18% 

Acidification kg SO2-eq. 14 12% 14 26% 13 23% 

Eutrophication kg PO4-eq. 63 6% 73 27% 60 21% 

Climate change kg CO2-eq. 2425 6% 2647 28% 2344 20% 

Land occupation m2*year 1099 53% 1339 34% 1472 56% 

Energy demand GJ 53 15% 53 29% 48 18% 

Water dependence 1000 m3 164ab 40% 196a 51% 117b 49% 

Human labor human.day 5.5b 58%   16.5a 89%   2.1b 60% 

3.4 PCA results 

The eigenvalues of the first three PCs in the bootstrapped PCA were 3.8, 2.6 and 1.8, 

respectively. Since the lower limits of 95% CIs calculated with the BCa method were less than 1, the 

first three PCs were selected, which explained a mean of 75% of the total variation in the observed 

sample, with a 95% CI of 71-82%. Significance tests of loadings indicated that acidification, 

eutrophication, climate change and energy demand were associated with the first PC (PC1); 

production level, liquid oxygen consumption, NPPU and human labor were associated with the second 

PC (PC2); and only FCR was associated with the third PC (PC3) (Table 3). 

Acidification, eutrophication, climate change and energy demand had strong and significantly 

positive correlations (r>0.5, p<0.05) with each other, while NPPU, water dependency and human labor 

had significant negative correlations with production level and liquid oxygen consumption (Table 4). 

Eutrophication and climate change were significantly and negatively correlated with production 

(-0.416 and -0.362, respectively). In addition, FCR had strong significant correlations with land 

occupation (r=0.610) and NPPU (r=0.405). Also, NPPU was significantly correlated with human labor 

(r=0.526), but not with water dependence. 

The sample-based variable loadings and individual scores of PC1 versus PC2 were mapped 

(Fig. 4). Considering the confidence regions around centroids of each group, farms of G2 and G3 had 

a wider distribution on the map and were distinguished by technical and economic indicators, while 

those of G1 and G2 overlapped, which indicates similar characteristics. Some farms had extreme 

values, such as farms 4 and 10 in G3, which contributed strongly to PC1 and had high production but 

low environmental impacts. Farms 9 (G3) and 13 (G2) contributed strongly to PC2 but had different 
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properties: the former consumed much more liquid oxygen, while the latter required more working 

time. Also, farm 18 in G2 had the highest environmental impacts.  

Table 3. Matrix of p values of the first three principal components of 11 technical and environmental indicators. 
Bold values mean variables are significantly (p<0.05) associated with corresponding PC via the bootstrap 
method. 

 Variable PC1 PC2 PC3 

Production level 0.085 0.029 0.150 

Feed conversion ratio 0.096 0.482 0.032 

Liquid oxygen consumption 0.143 0.019 0.147 

Acidification 0.017 0.165 0.305 

Eutrophication 0.011 0.388 0.233 

Climate change 0.015 0.170 0.366 

Land occupation 0.162 0.269 0.067 

Energy demand 0.034 0.164 0.273 

Net primary production use 0.216 0.030 0.160 

Water dependence 0.117 0.135 0.364 

Human labor 0.259 0.015 0.271 

 

Table 4. Correlation matrix of 11 technical and environmental indicators of French trout farms. Bold values 
indicate significant (p<0.05) correlation between variables via the bootstrap method. 

Prod. FCR Oxygen AC EU CC Land Energy NPPU Water Labor 

Prod. 1.000 

FCR -0.044 1.000 

Oxygen 0.828 0.146 1.000 

AC -0.378 0.235 -0.125 1.000 

EU -0.416 0.455 -0.255 0.706 1.000 

CC -0.362 0.231 -0.134 0.934 0.758 1.000 

Land 0.118 0.610 0.218 0.182 0.188 0.261 1.000 

Energy -0.243 -0.014 -0.096 0.668 0.432 0.771 0.241 1.000 

NPPU -0.410 0.405 -0.355 -0.180 0.169 -0.041 0.184 -0.027 1.000 

Water -0.493 0.144 -0.321 0.207 0.198 0.188 -0.099 0.140 0.425 1.000 

Labor -0.523 0.139 -0.414 -0.065 0.047 -0.081 -0.090 -0.262 0.526 0.192 1.000 

Prod: production level; FCR: feed conversion ration; Oxygen: liquid oxygen consumption; AC: acidification; 
EU: eutrophication; CC: climate change; Land: land occupation; Energy: energy demand; NPPU: Net primary 
production use; Water: water dependence; Labor: Human labor. 
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Figure 4. (A) Variable factors map of the first principal component (PC1) versus the second principal 
component (PC2) and (B) plot of individual farms (m=24) scores of PC1 versus PC2. The individuals were 
classified into three groups based on the size of fish produced: pan-size, large and mixed-size and very large. 
Dashed ellipses indicate 90% confidence regions of the bootstrapped scores for each group. 

4. Discussion 

4.1 Representativeness of the survey 

Since nearly all farm classes reported in the national inventory are represented in our survey, we 

consider the representativeness of the survey sufficient, especially for large farms. However, the 

national inventory did not collect data about the size of trout produced. Even though the results of this 

study tend to indicate that large and specialized farms have the best performances, it would be 

interesting to obtain information about the commercial size of trout produced in a larger survey or a 

future inventory.  

4.2 Comparison of impacts with previous studies 

Comparison of LCA results with those from previous studies is always a delicate question due 

to methodological differences, especially in definition of system boundaries and allocation of burdens 

among co-products (Aubin, 2013; Henriksson et al., 2012). Fortunately, most impact categories in 

LCA studies of salmonid farming are identical and based on the CML2 baseline 2000 v. 2.03 impact 

assessment method (Guinée et al., 2002). Therefore, one can compare the orders of magnitude of 

impacts in the same categories for similar types of production. 
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Mean acidification in our study ranged from 13 to 14 kg SO2-eq./t, which lies in the same order 

of magnitude as those in other studies of trout farming: 10.6-16.5 kg SO2-eq./t in Papatryphon et al. 

(2004b), 19.2 kg SO2-eq./t in Aubin et al. (2009), and 10.8 kg SO2-eq./t in Samuel-Fitwi et al.(2013). 

Mean eutrophication in our study ranged from 60 to 76 kg PO4-eq./t, which lies in the same order of 

magnitude as those of other studies of flow-through trout farms: 74 kg PO4-eq./t in Papatryphon et al. 

(2004b) and 60 kg PO4-eq./t in Samuel-Fitwi et al. (2013). These eutrophication impacts are higher 

than those observed in trout reared in recirculating aquaculture systems: 18-21 kg PO4-eq./t in Roque 

d’Orbcastel et al. (2009) and 42-48 kg PO4-eq./t in Boissy et al. (2011). Mean climate change in our 

study (2344-2647 kg CO2-eq./t) is similar to that in Samuel-Fitwi et al. (2013), somewhat higher than 

that in Papatryphon et al. (2004b) (1540-2410 kg CO2-eq./t), higher than that in Boissy et al. (2011) 

(2220 kg CO2-eq./t), and lower than that in Aubin et al. (2009) (2753 kg CO2-eq./t). Mean energy 

demand in our study (48-53 GJ/t) is within the range of that in Paptryphon et al. (2004b) (31.0-78.4 

GJ/t) and lower than those in Aubin et al. (2009) (78 GJ/t) and Boissy et al. (2011) (55-55.7 GJ/t). All 

values of acidification, eutrophication, climate change and energy demand in our study are higher than 

those in Papatryphon et al. (2004a), whose boundaries encompassed only feed production. NPPU in 

our study (114-153 t C/t) was at the same level as standard salmon (145 t C/t) and trout (112 t C/t) in 

the Boissy et al. (2011) study. The high variation in NPPU found in our study is due to the variability 

in feed composition and improvements in data on fish meal composition. 

4.3 Farm classification and contribution analysis 

The three groups had similar environmental impacts and were distinguished mainly by technical 

and economic indicators (e.g., production level, liquid oxygen consumption, NPPU, water 

dependence, and human labor). G1 farms show intermediate performances. These farms benefit from 

the biological performances of small trout, combined with more traditional practices than farms from 

the two other groups. G2 farms show the lowest efficiency of inputs, with high levels of water 

dependence, NPPU and human labor to produce 1 t of fish. Moreover, this group has less 

homogeneous characteristics, with higher variability in production level, liquid oxygen consumption 

and human labor. These characteristics reflect the lower level of specialization of the farms through 

the different markets they supply: small and large trout for food or restocking markets. These more 

opportunistic and variable strategies lead to lower rearing performances. These strategies can be 

driven not only by economic considerations, but by choices about quality of life by the farmers. They 

have the lowest mean production level. In contrast, G3 farms display high efficiency. Their water 

dependence and NPPU were the lowest of the three groups, and other indicators such as energy use 

and FCR were not significantly different from the two other groups, although their specialization in 

producing very large trout induces an increase in the biological FCR and the duration of the 

production cycle. These farms are the largest of the three groups and they use liquid oxygen to 
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optimize fish performances. These farms aim for maximum efficiency of inputs, including the human 

labor necessary to produce 1 t of fish, which is the lowest of the three groups. They generally have a 

high technical level and use genetically improved trout strains. 

4.4 Correlations among variables and bootstrapped PCA results 

The negative correlation between production level and FCR, climate change, energy demand, 

NPPU, water dependence and human labor indicates that farm production level strongly influenced 

technical and environmental efficiencies. Economies of scale exist, which lead to an appropriate level 

of production that balances economic constraints and environmental laws. The significant negative 

correlation between production and some environmental impacts (e.g., eutrophication, climate change, 

energy demand, and NPPU) indicates that increasing the size of fish produced tends to reduce these 

environmental impacts per t of fish. Therefore, an optimal level of production in each group that 

maximizes production while minimizing environmental impacts could be calculated using 

optimization modeling. NPPU was positively and significantly correlated with production level and 

FCR, which shows that the feed system has an important direct influence on trout production but a 

large indirect influence in regions where feed ingredients are produced. The positive correlations 

between acidification, eutrophication, climate change and energy demand show that improving the 

production system could improve all of these impact categories simultaneously. 

We used the bootstrapped Kaiser-Guttman criterion (the lower limit of CI for eigenvalues >1) 

(Guttman, 1954; Lambert et al., 1990) to determine which PCs to retain because this method considers 

the random sampling error that may influence the distribution of eigenvalues, in which mean value 

may be below the criterion value (i.e., equals 1). In such cases, the bootstrap-based method may be 

less arbitrary than the traditional Kaiser-Guttman criterion. However, although the bootstrapped 

Kaiser-Guttman criterion reduces the number of PCs, it may still overestimate that number (Jackson, 

1993). Our study shows that projecting the loadings of original variables and individual scores onto 

two or three PCs more clearly describes correlations among variables and identifies the most 

influential individuals. However, the explanation based on the observed sample may be less 

meaningful because its small sample size lacked normality, a prerequisite of PCA. Therefore, the 

bootstrap-based method shows advantages for interpreting the significance of PCA results. However, 

more attention should be paid to avoid the re-ordering and reflection problems during the resampling 

procedure. To overcome these problems, we applied the technique proposed by Peres-Neto et al. 

(2003) in this study, though orthogonal rotation is an equivalent method (Milan and Whittaker, 1995; 

Timmerman et al., 2007). 
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4.5 Bootstrap method 

Most significance tests (e.g., student t-test and ANOVA) assume that the population mean is 

normally distributed, especially when the expected value and variance of the population are known. 

Although the mean and standard deviation of observed samples are usually used to represent the 

expected value and the square root of variance of the population, it generally requires a sufficiently 

large sample size (n>30) or that the parameters of its distribution be known. However, this is not 

always the case in aquaculture studies (Henriksson et al., 2012; Papatryphon et al., 2004b). Several 

studies have compared tests of equality to overcome this shortcoming (Boos and Brownie, 2004; Efron 

and Tibshirani, 1993; Lim and Loh, 1996; Reiczigel et al., 2005). In our study, we used non-

parametric bootstrap to perform the significance tests. The 95% CIs around the differences in group 

means were used to judge whether or not the null hypothesis was rejected. Bootstrapped results were 

more conservative and realistic than those from the sample-based calculation because random 

sampling error was taken into account. Also, the non-normality of some indicators (e.g., production, 

liquid oxygen consumption, and acidification) suggests that non-parametric bootstrap was more robust 

than a parametric bootstrap (Potvin and Roff, 1993) because there was no assumption about the true 

distribution of indicators to represent the whole population. Another advantage of the bootstrap 

method is its ability to estimate CIs around some statistics which cannot be obtained from the 

observed sample. In this study, for example, BCa was used to estimate CIs for the correlations, which 

were used to validate their significance. As concluded by Medulsee (2003), non-parametric bootstrap 

was a robust method for estimating CIs for Pearson’s correlation coefficients. 

As an approximation method, however, the bootstrap method is designed to estimate uncertainty 

in any statistical value (e.g., mean, median and correlation coefficient), and the accuracy of 

bootstrapped results depends on the quality and quantity of the observed sample (Luo et al., 2013; 

Wisz et al., 2008). Nevertheless, when parametric assumption is justified (satisfying normality and 

homogeneity of variance), Efron (1988) suggested using parametric bootstrap, which is more accurate 

than non-parametric bootstrap. To do so, more data are required to increase the reliability of 

parametric bootstrap. In addition, the quality of secondary data used in an analysis may result in 

additional uncertainty (e.g., inaccurate measurement and unrepresentative data). Thus, increasing data 

quality could reduce parameter uncertainty and provide more accurate results (Henriksson et al., 2013; 

Weidema and Wesnaes, 1996). 

5. Conclusion 

In this study, a small sample of survey data was used to compare three types of trout production 

systems. The results showed strong links between technical/economic and environmental indicators. 

Non-parametric bootstrap and BCa-based CIs were applied to better estimate uncertainty in the 
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statistical values. PCA showed the relative influences of variable indicators and individual scores. 

Technical/economic indicators (production level, human labor) were the main drivers and were 

correlated with environmental impacts such as eutrophication and climate change. So, improving 

rearing performances is one way to decrease environmental impacts. The remaining variability in 

indicators within farm groups showed that there is room to improve farm management and decrease 

environmental impacts, especially in G2, whose less specialized production led to less control over 

management parameters. Feed and liquid oxygen consumption are the main factors that influence the 

environmental impacts. Furthermore, these indicators reflect practices such as the monitoring of fish 

growth, water quality, and feeding practices. The three groups had few differences in environmental 

impacts. Despite the small sample size, our bootstrapped PCA method reinforces this overall 

conclusion. 

Consideration of uncertainty in LCA is an improvement that is frequently cited. We applied a 

method to address the uncertainty due to a small sample size in an LCA-based case study. For the first 

time, non-parametric bootstrapped PCA has been used to assess groups of trout farms, and it is able to 

express uncertainty in statistical parameters of indicators. In the future, to provide reliable results, data 

quality and other types of uncertainty should be considered throughout the entire system.    
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Appendix. Bias-corrected and accelerated (BCa) bootstrap method 

The BCa method is used to estimate the confidence interval of a statistic of interest θ (e.g., mean 

and median) at significance level α (Efron and Tibshirani, 1993). Its lower and upper limits are found 

at the 100α1th and 100α2th percentile of bootstrap distribution, respectively: 

�J = Ê�¹¬ + ³Ë®³ÌJ���³Ë®³Ì��                                                                                                                   Eq. 1 

�< = Ê�¹¬ + ³Ë®³�ÍÎÌ�J���³Ë®³�ÍÎÌ���                                                                                                              Eq. 2 

where Φ is the standard normal cumulative distribution function, zα is the 100αth percentile 

point of Φ, and z0 is calculated as: 

¹¬ = Ê�J�ÏO∗ÐÏA �                                                                                                                       Eq. 3 

where	Ê�J	is the inverse of the standard normal cumulative distribution function, θi* is the ith  

bootstrap estimate of θ, and B is the number of the iteration. 

Skewness is corrected by the “accelerated indicator” 	�, which is calculated as: 

� = ∑ �Ï��Ï¿��¿iÍÑ∗�∑ �Ï��Ï¿�Ò�¿iÍ �/Ò                                                                                                            Eq. 4 

where 'L is the estimated statistic of interest from the observed sample without the nth row 

(jackknife replicate) and '�is the mean of 'L. 
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