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Abstract 

Anaerobic digestion is an important pillar of the European circular economy, producing methane and 

organic fertilizers from waste. The development of the anaerobic digestion sector goes through co-

digestion and feeding strategy optimization. Its development requires the biological state estimation 

of the plant, substrate characterization and predictive models simulating the plant performances, for 

which current solutions are not suitable.  In this thesis, a titration sensor coupling pH and electrical 

conductivity for the estimation of volatile fatty acids, inorganic carbon and ammonia has been 

designed, improving the accuracy on volatile fatty acids estimation by 14.5 compared to current 

sensors. Along with biogas analyses, it allows estimating the biological state of the unit. Besides, fast 

near infrared spectroscopic analysis, estimating in a matter of minute carbohydrate, protein and lipid 

contents, chemical oxygen demand, methane production yield and kinetics, has been developed. Fast 

substrate characterization is then used to implement a modified Anaerobic Digestion Model n°1 

which predicts the performances of a plant under optimal condition. Coupling biological state 

estimation to this approach enables to correct the prediction with the current state of the plant. This 

approach provides a powerful predictive tool for advanced control of anaerobic digestion plants and 

feeding strategy optimization. 

Keywords: Anaerobic digestion, Titration, Near-infrared, PLS regression, Modelling, Characterization. 

Résumé 

La digestion anaérobie est un des piliers de l'économie circulaire européenne, produisant du 

méthane et des engrais organiques à partir de déchets. Le développement de ce secteur passe par la 

co-digestion et l’optimisation de l'alimentation des procédés. Cela nécessite l'estimation de l'état 

biologique du digesteur, la caractérisation du substrat ainsi que l’utilisation de modèles prédictifs 

simulant les performances du digesteur, pour lesquels les solutions actuelles ne sont pas adaptées. 

Dans cette thèse, un capteur titrimétrique couplant pH et conductivité électrique pour l'estimation 

des concentrations en acides gras volatils, carbone inorganique et azote ammoniacale a été conçu, 

améliorant la précision d'estimation des acides gras volatils de 14,5 par rapport aux capteurs actuels. 

Couplé à l’analyse du biogaz, il permet d'estimer l'état biologique du procédé. En parallèle, une 

analyse spectroscopique proche-infrarouge, estimant les teneurs en glucides, protéines, lipides, 

demande chimique en oxygène, rendement et cinétique de production de méthane a été développée 

réduisant le temps de caractérisation des substrats à quelques minutes. Cette caractérisation rapide 

des substrats est ensuite utilisée pour implémenter le modèle de digestion anaérobie ADM1 de l’IWA 

et prédire les performances d'un digesteur dans des conditions optimales. Le couplage de 

l’estimation de l'état biologique à cette approche permet de corriger la prédiction en prenant en 

compte l'état actuel du digesteur. Cette approche fournit un outil prédictif puissant pour le contrôle 

avancé des unités de digestion anaérobie ainsi que l'optimisation de la recette d'alimentation. 

Mots-clés: Digestion anaérobie, Titration, Proche-infrarouge, Régression PLS, Modélisation, 

Caractérisation.  

 



 
 

 

 



 

 
 

Résumé étendu 

Le développement de la digestion anaérobie passe aujourd’hui par la diversification des substrats 

utilisés et leur utilisation en co-digestion. La quantité de déchets organiques disponibles donne de 

belles perspectives au secteur de la digestion anaérobie, mais sa nouveauté et l'absence de solutions 

industrielles adaptées à la diversité des déchets organiques pénalisent la rentabilité et le 

développement de ce secteur. La conception des unités de co-digestion doit être rationnalisée pour 

améliorer la rentabilité des unités en termes d'investissements et de frais de fonctionnement. Cela 

permettra de rassurer les acteurs et investisseurs de la filière, facilitant l’émergence de nouveaux 

projets. Les digesteurs actuels souffrent en effet de la sous-optimisation de leur production de 

méthane, souvent liée à une mauvaise gestion de la recette d'alimentation, qui pénalise la rentabilité 

des unités. En parallèle, des problèmes de conception et d’importants soucis de supervision 

desservent le secteur de la digestion anaérobie. L’apport de solutions de supervision en termes de 

capteurs, méthodes et modèles d’optimisation de la recette d'alimentation doit se focaliser sur trois 

objectifs :  

 estimer l’état biologique réel du réacteur 

 définir la meilleure stratégie d'alimentation et ses performances associées dans des 

conditions de production optimales 

 définir, en fonction de l'état biologique et de la recette d’alimentation, les conditions 

opératoires permettant la meilleure production. 

L'état de l'art sur la supervision de la digestion anaérobie révèle que de nombreux capteurs, 

méthodes et modèles ont été mis au point ces dernières années afin d’optimiser les performances 

des digesteurs. En 2002, le développement du modèle de digestion anaérobie n°1 (ADM1) de l’IWA a 

été une avancée majeure pour l’optimisation du procédé de digestion anaérobie. ADM1 modélise en 

effet avec précision les performances de digestion anaérobie de l’unité, il prend en compte à la fois 

l’état biologique du digesteur et les caractéristiques des substrats. Cependant, il souffre d’un nombre 

élevé de paramètres dont les valeurs numériques sont difficiles à estimer. De plus, l’étape 

d’hydrolyse, développée originellement pour représenter la digestion anaérobie des boues de station 

d’épuration, est trop simplement modélisée pour représenter la complexité de l’hydrolyse des 

substrats solides. Ce type de modèle ne peut donc être utilisé qu’à condition de définir simplement 

les paramètres du modèle et de modifier l’étape d’hydrolyse.  

La première étape est donc de définir des capteurs et méthodes permettant l’estimation de l’état 

biologique du digesteur ainsi que la caractérisation des substrats adaptés à la co-digestion et à la 

diversité des recettes d’alimentation qu’elle implique. Les analyses de la production de dioxyde de 
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carbone et de méthane sont aujourd’hui matures et permettent d’apprécier la qualité et quantité de 

biogaz produit. Cependant, il est difficile de corréler la production de biogaz aux performances de 

l’unité sans connaitre ni les caractéristiques des substrats, ni les concentrations en intermédiaires 

réactionnels tels que les acides gras volatils ou l’azote ammoniacal. Or, les solutions disponibles pour 

estimer les intermédiaires réactionnels dans la phase liquide, restent peu adaptées à la co-digestion 

de substrats divers ainsi qu’aux changements fréquents de recette. Ce manque de capteurs 

disponibles pour estimer les intermédiaires réactionnels solubles restreint l’appréciation de l’état 

biologique du digesteur et constitue un premier frein à l’optimisation du procédé.  

Un second frein réside dans la difficulté de caractérisation des substrats. Les analyses permettant 

d’estimer les performances de digestion anaérobie des déchets organiques sont longues et 

fastidieuses, ce qui limite leurs utilisations. Le manque de caractérisation induit des risques 

d’inhibition importants en cas de changement de recette encourageant l’opérateur à conserver une 

recette d’alimentation fixe.  Ce manque de flexibilité dans la recette d’alimentation provoque des 

difficultés pour son optimisation. Ces difficultés d’optimisation de l’alimentation du digesteur 

s’aggraveront avec l’augmentation du stress sur les ressources/déchets due au nombre croissant 

d'installations de biogaz.  

Compte tenu du contexte actuel de la digestion anaérobie, cette thèse se concentre sur : 

• Une estimation précise des concentrations en intermédiaires réactionnels (à savoir les 

acides gras volatils (AGV), le carbone inorganique (IC) et l'azote ammoniacal (TAN)) dans le 

digesteur afin d'apprécier son état biologique 

• La caractérisation des déchets organiques solides par des analyses rapides, reproductibles 

et précises permettant d’estimer la teneur en protéines, glucides et lipides, la demande 

chimique en oxygène (DCO), le rendement en méthane et la cinétique de production de 

méthane d’une large gamme de substrats solides tels que les fruits, les légumes, les 

fumiers, les céréales, les huiles, les graisses, la viande et les poissons. 

• La modélisation dynamique du processus de digestion anaérobie avec un accent particulier 

sur la modélisation de l’étape d’hydrolyse et une implémentation facilitée du modèle 

ADM1. 

La première partie de cette thèse, basée sur l’estimation des intermédiaires réactionnels en milieu 

liquide révèle que les capteurs actuels basés sur une méthode de titration avec évaluation du volume 

titrant en point clés fournissent, dans certains cas, une estimation erronée des AGV, IC et TAN. En cas 

de changements limités dans la recette d'alimentation, un biais constant entre valeur estimée et 
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réelle est présent. Dans ces conditions, malgré une estimation biaisée, ces capteurs permettent de 

suivre la dynamique de production des AGV, IC et TAN. Cependant, un recalibrage des capteurs est 

nécessaire à tout changement de la recette d'alimentation. Ce type de capteurs n’est donc pas 

adapté au suivi des procédés fonctionnant en co-digestion, flexibles dans leur recette d’alimentation. 

Une solution plus prometteuse est l'estimation des AGV, IC et TAN sur la base de l'analyse non 

linéaire de la capacité du tampon sur l'ensemble du processus de titration.  

Nous montrons dans cette thèse que les analyses non-linéaires de la capacité tampon sont plus 

précises que les analyses en points clés du volume titrant et sont surtout moins sensibles à la 

présence d’autres constituants dans l'échantillon. Elles sont donc plus appropriées pour le suivi de la 

co-digestion. Néanmoins, la capacité-tampon, définie à partir du pH et du volume de titrant, est 

rapidement limitée pour distinguer les nombreux composés solubles présents dans les digesteurs, ce 

qui peut conduire à des estimations erronées. Cette étude montre que les méthodes existantes 

estimant les concentrations en AGV, IC et TAN ne sont pas assez précises et robustes pour la 

supervision des unités. Pour pallier à ce problème, un nouveau capteur nommé SNAC (Système de 

titration pour l’azote ammoNiacal, les Acides gras volatils et le Carbone inorganique) a été développé 

dans cette thèse. Il utilise une méthode de résolution non linéaire combinant conductivité électrique 

et pH pour identifier plus précisément les différents composés et les concentrations en AGV, IC et 

TAN.  

SNAC a été testé sur 24 échantillons de différents digesteurs dans une gamme de 0-0,16 mol.L-1 TAN, 

0,01-0,21 mol.L-1 IC and 0-0,04 mol.L-1 AGV. L’écart type de la gamme d’échantillons testés est de 

0,012 mol.L-1 TAN, 0,015 mol.L-1 IC and 0,003 mol.L-1 AGV. Le coefficient de détermination R² entre 

valeurs estimées par SNAC et valeurs de référence est de 0,95, 0,94 and 0,95 pour respectivement 

TAN, IC et AGV. Sur les mêmes échantillons, les méthodes de titration couramment utilisées et 

basées sur une analyse du volume titrant en points clés fournissent des erreurs types 14,5 et 1,2 fois 

plus élevées pour l’estimation des concentrations en AGV et IC respectivement. Ces résultats valident 

la précision de SNAC. Cette thèse montre que l'estimation précise des intermédiaires réactionnels 

tels que les AGV, IC et TAN est possible par titration en combinant la conductivité électrique et le pH 

avec des méthodes de résolution non-linéaires. Elle a abouti à la conception, la réalisation et la mise 

au point d’un prototype du capteur SNAC en cours d’utilisation sur site industriel. Combiné avec les 

débits de gaz et l’analyse de leur composition, SNAC fournit une solution adaptée pour l'estimation 

de l’état biologique des digesteurs. Une description de l’invention ainsi que des résultats obtenus 

sont publiés dans Water Research (Charnier et al., 2016). De plus, SNAC a fait l’objet d’une demande 

de brevet d’invention (n°15/59767). 
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La seconde partie de cette thèse traite de la caractérisation des déchets organiques solides pour la 

prédiction des performances des procédés. Les substrats utilisés en digestion anaérobie sont 

composés de matière organique complexe et hétérogène. Pour faciliter leur analyse, leur 

composition est décrite par des paramètres généraux tels que les teneurs en glucides, protéines et 

lipides, la demande chimique en oxygène (DCO), le rendement du méthane et la cinétique de 

production de méthane. Ces paramètres sont nécessaires pour la supervision des digesteurs mais 

leur analyse est longue et coûteuse. De plus, les techniques de laboratoire associées ne sont pas 

encore adaptées à des analyses de déchets solides. Ainsi, ces paramètres sont rarement évalués 

conjointement. Dans un premier temps, les méthodes actuelles d’analyse biochimique des déchets 

solides ont été testées. Notre étude montre en particulier des erreurs sur l’estimation de la DCO et 

du taux de glucide des déchets solides donnant des résultats peu répétables. Nous avons montré 

qu’une hydrolyse acide de la matière organique préalable à l’analyse de la DCO et du taux de sucre 

améliore la précision et la répétabilité des résultats. Les erreurs standards de laboratoire (SEL), 

estimées sur 153 échantillons analysés en duplicat, sont de 60 mgO2.gMS-1 et 63 mgO2.gMS-1  pour 

respectivement la DCO et le taux de glucides avec pré-hydrolyse acide.  

Les relations entre composition biochimique et performances de digestion anaérobie ont été 

étudiées. Les corrélations existantes entre la DCO, le rendement en méthane, la biodégradabilité, la 

cinétique de la production de méthane et la teneur en glucides, protéines et lipides ont été évaluées 

sur 222 échantillons en utilisant une analyse en composantes principales et les coefficients de 

corrélation de Pearson. Ces travaux révèlent une corrélation positive entre le rendement méthane et 

la cinétique de production de méthane. Pour sa simplicité, l'analyse de DCO remplace souvent le 

rendement méthane, mais la corrélation négative révélée entre la DCO et la biodégradabilité indique 

que la DCO ne peut, en réalité, pas remplacer l'analyse de rendement en méthane. Les teneurs en 

glucides, protéines et lipides modulent différemment les performances de digestion anaérobie. Dans 

les conditions expérimentales étudiées, les glucides sont corrélés avec la matière organique 

facilement biodégradable tandis que les protéines sont légèrement anti-corrélées avec la 

biodégradabilité. Les lipides sont corrélés avec un rendement en méthane élevé, mais une 

production lente. Les corrélations obtenues révèlent que des relations entre la composition de la 

matière organique et les performances de digestion anaérobie existent.  

Ces résultats conduisent à l'idée que la cinétique de production de méthane, fastidieuse à estimer, 

pourrait être prédite à partir de la composition biochimique. Cependant, une régression des 

moindres carrés partiels (PLSr) utilisant le rendement méthane, la DCO et les teneurs en glucides, 

lipides et protéines ne permet pas de prédire avec précision la cinétique de production de méthane. 
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Ceci démontre que ces indicateurs fournissent une description insuffisante de la matière organique. 

Néanmoins, ils révèlent une relation entre composition biochimique et performance de digestion 

anaérobie. Ces travaux ouvrent la voie vers la caractérisation de la matière organique avec des 

méthodes plus descriptives qui pourraient être utilisées pour la prédiction des performances du 

processus de digestion anaérobie.  

La spectroscopie proche infrarouge (SPIR) et la spectroscopie par fluorescence 3D couplée à 

l'extraction chimique séquentielle ont été rapportées comme deux méthodes rapides fournissant 

une description suffisante de la matière organique pour prédire sa biodégradabilité via une PLSr. 

Ainsi, les avantages et inconvénients de SPIR et de la fluorescence 3D couplée à l'extraction chimique 

séquentielle pour la prédiction du rendement méthane et de la DCO ont été évalués sur 28 

échantillons divers, divisés en 24 échantillons de calibration et 4 échantillons de validation. Les 

échantillons balayent une gamme de 0,141-0,717 LCH4.gMS-1 et 935-2334 mgO2.gMS-1 pour le 

rendement méthane et la DCO respectivement. En utilisant la spectroscopie par fluorescence 3D 

couplée à l'extraction chimique séquentielle, les erreurs standards de validation croisée et de 

prédiction sont respectivement de 0,314-0,155 LCH4.gMS-1 pour le rendement méthane et 324-459 

mgO2.gMS-1 pour la DCO. Avec la SPIR, les erreurs standards de validation croisée et de prédiction 

sont respectivement de 0,057-0,092 LCH4.gMS-1 pour le rendement méthane et 120-193 mgO2.gMS-1 

pour la DCO. Les résultats montrent que la fluorescence 3D couplée à l’extraction chimique 

séquentielle a l'avantage de prédire la bio-accessibilité de la matière organique, mais que la SPIR est 

plus rapide et précise pour la prédiction de la DCO et du rendement méthane. Ainsi, pour la suite de 

l’étude, la SPIR a été préférée pour caractériser les substrats.  

Nous avons construit des modèles PLSr pour prédire la composition biochimique, le rendement 

méthane et le temps de production de méthane, à partir duquel est calculée la cinétique de 

production de méthane. Les modèles ont été calibrés avec près de 300 échantillons et validés avec 

un ensemble indépendant de 43 échantillons dans un large éventail de déchets solides utilisés par les 

unités de digestion anaérobie. Les erreurs standards de validation croisée sont de 90 mgO2.gMS-1  

pour les glucides, 2,5.10-2g.gMS-1 pour les lipides, 7,2.10-3g.gMS-1 pour l’azote, 99 mgO2.gMS-1 pour la 

demande d'oxygène chimique, 0,026 LCH4.gMS-1 pour le rendement méthane et 0,34 jours en 

moyenne pour le temps de production de méthane. Les erreurs standards de prédiction sont de 35 

mgO2.gMS-1 pour les glucides, 9,4.10-3g.gMS-1 pour les lipides, 5,2.10-3g.gMS-1 pour l’azote, 39 

mgO2.gMS-1 pour la DCO, 0,025 LCH4.gMS-1 pour le rendement méthane et 0,24 jours en moyenne 

pour le temps de production de méthane. Cette étude montre que la SPIR permet une estimation 

rapide et efficace de la composition biochimique et des performances méthanogènes des déchets 
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solides. Ces travaux ont fait l’objet d’un article scientifique : Charnier, C., Latrille, E.,Jimenez, J., 

Lemoine, M., Boulet, J.C., Miroux, J., Steyer, J.P. Fast characterization of solid waste content with 

near infrared spectroscopy in anaerobic digestion (Soumis en avril 2016 à Waste Management). 

Afin d'assurer l'application industrielle de l'analyse par SPIR, des indicateurs de l'intervalle de 

confiance ont été développés pour la prédiction des teneurs en glucides, azote et lipides, la DCO, le 

rendement du méthane et le temps de production de méthane. Cette estimation de l’intervalle de 

confiance de la prédiction est basée sur la distance euclidienne minimale entre l'échantillon et 

l'ensemble d'étalonnage. L’estimation de l’intervalle de confiance améliore la robustesse de l’analyse 

SPIR facilitant l’optimisation de la recette d’alimentation des unités de digestion anaérobie.  

Si ces différents paramètres sont des indicateurs clés pour optimiser la recette d’alimentation, ils 

sont toutefois peu informatifs sur le lien entre la composition moléculaire de la matière organique et 

les performances de la digestion anaérobie. Les modèles PLSr calibrés pour la prédiction de ces 7 

indicateurs sont une occasion unique d'étudier en profondeur la relation entre la composition de la 

matière organique et ces indicateurs. La contribution des différentes longueurs d'onde est obtenue 

par l'analyse des b coefficients. Ces longueurs d’ondes sont ensuite comparées avec l'absorbance des 

molécules en SPIR de composés purs rapportés dans la littérature. L’étude parallèle des b coefficients 

et des longueurs d'onde donne un aperçu des contributions de chaque molécule à ces 7 indicateurs. 

Elle met en évidence le rôle du phénol dans la fraction non biodégradable de la matière organique et 

l'importance des alcanes et alcènes sur le rendement en méthane d'un substrat. La prédiction de la 

teneur en glucides est liée avec la teneur en molécules oxygénées telles que les alcools. Dans une 

deuxième étape, les b coefficients des modèles PLSr ont été comparés les uns aux autres. Les 

relations analysées confirment le lien entre les molécules lipidiques et le rendement en méthane ou 

la demande chimique en oxygène.  Ces relations indiquent aussi un impact négatif de la teneur en 

alcools sur la DCO, mais positif sur le rendement méthane et la biodégradabilité. Les molécules 

biodégradables sont liées avec une cinétique de production de méthane rapide. En contradiction 

avec la pensée dominante, les b coefficients impliqués dans les prédictions de la DCO et du 

rendement du méthane sont anti-colinéaires et presque orthogonaux avec ceux liés à la prédiction 

de la cinétique de production de méthane. Les relations obtenues par l’analyse des b coefficients 

sont compatibles avec les corrélations évaluées entre la composition biochimique et les 

performances du procédé de digestion anaérobie analysées par corrélation de Pearson. Seule la 

teneur en protéines est liée avec des molécules rapidement et hautement biodégradables par 

analyse de b coefficients alors qu'elle n’est pas corrélée avec le rendement ou la cinétique de 

production de méthane par corrélation de Pearson. Ceci pourrait être expliqué par une légère 
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différence sur le jeu de données utilisé. Ces travaux ont fait l’objet d’un article scientifique : Charnier, 

C., Latrille, E.,Roger, J.M. , Miroux, J., Steyer, J.P. Parallel study of PLS b coefficients and near infrared 

wavelengths to assess molecules contribution to chemical oxygen demand, methane production 

yield and kinetics (soumis prochainement). 

 

Comme nous le montre l’étude du contexte actuel du secteur de la digestion anaérobie, 

l’optimisation de la stratégie d'alimentation est un enjeu essentiel de la co-digestion et nécessite une 

caractérisation rapide du substrat, la connaissance de l’état biologique du digesteur mais aussi 

l’utilisation de modèles prédictifs. Les deux premières étapes ayant été traitées, la suite de cette 

thèse se concentre sur l’utilisation de modèles prédictifs. Le modèle ADM1 a été choisi pour ses 

qualités prédictives mais l’étape d’hydrolyse/désintégration a dû être modifiée. Le mécanisme 

d'hydrolyse est mécanistiquement mal compris ce qui rend les modèles parfois non appropriés pour 

décrire les résultats expérimentaux. Des travaux précédents ont montré que plusieurs cinétiques de 

bio-dégradation sont observées correspondant à des fractions de substrat de bioaccessibilités 

différentes. La question étudiée ici est, en présence de plusieurs fractions biodégradables, celles-ci se 

dégradent-elles de façon simultanée ou séquentielle ? Nous avons montré qu’un modèle qui 

considère la dégradation simultanée des fractions peut ne pas avoir la résolution nécessaire pour 

représenter correctement les différentes cinétiques. Cette étude propose d'abord une discussion sur 

la structure du modèle d’hydrolyse de la matière organique (en bioprocédés aérobies et anaérobies). 

La modélisation de l'hydrolyse séquentielle des multiples fractions de matière organique a été 

évaluée comme une alternative à l'hydrolyse simultanée. Le modèle de l'hydrolyse séquentielle 

convient à tous les substrats biodégradables tandis que le modèle de l'hydrolyse simultanée n’est 

parfois pas applicable. L’hydrolyse séquentielle est donc préférée pour la modélisation de l’hydrolyse 

des substrats solides bien que le mécanisme biologique d’hydrolyse ne soit pas pleinement compris.  

Ces travaux ont fait l’objet d’un article scientifique : Jimenez, J., Charnier, C., Latrille, E., Torrijos, M., 

Harmand, J., Patureau, D., Sperandio, M., Morgenroth, E., Beline, F., Ekama, G., Vanrolleghem, P.A., 

Robles, A., Seco, A., Batstone, D.J., Steyer, J.P., Modelling hydrolysis: simultaneous versus sequential 

biodegradation of the hydrolysable fractions (soumission en cours). 

Un des inconvénients majeurs d’ADM1 réside dans l’estimation des paramètres du modèle. Les 

travaux sur la SPIR développés dans cette thèse permettent une estimation rapide des paramètres 

décrivant le substrat nécessaire à l’implémentation de l’ADM1. Ces données sont ensuite 

implémentées dans l’ADM1 modifié afin de simuler les performances de digestion anaérobie. Cette 

approche a été validée par comparaison des données expérimentales par rapport aux données 

prédites par simulation sur différentes expériences. Elle facilite l'utilisation d’ADM1 pour prédire les 
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performances optimales de dégradation. L'utilisation de cette approche permet de prédire 

l’évolution de chaque variable estimée dans le modèle ADM1 telle que la concentration d’AGV, 

d’ammoniaque ou encore la composition du biogaz. Elle fournit ainsi un outil de contrôle avancé des 

unités de digestion anaérobie et d'optimisation de leur recette d'alimentation. Cette approche 

couplant SPIR et ADM1 pour la prédiction des performances d’un digesteur a fait l’objet d’une 

demande de brevet d’invention (n°16/51050), d’une demande divisionnaire du brevet d’invention 

n°16 51050 ainsi que d’un article scientifique (Charnier, C., Latrille, E.,Jimenez,J., Torrijos,M., 

Sousbie,P., Lemoine, M., Miroux, J., Steyer, J.P. Fast prediction of methane production rate for 

anaerobic digestion control using near infrared spectroscopy (soumission en cours)).  

Cette thèse montre que la SPIR couplée à la PLSr permet une estimation rapide des paramètres 

décrivant le substrat dans ADM1 alors que le capteur SNAC permet l'estimation de l'état biologique 

du réacteur nécessaire pour ajuster les paramètres relatifs à l’état du digesteur d’ADM1. L’utilisation 

combinée de la SPIR et SNAC permet donc une implémentation facilitée de l’ADM1 modifié afin de 

prédire les performances de digestion anaérobie liées à une recette d’alimentation. Ce travail vise à 

aider la supervision des unités de méthanisation par l’opérateur humain. L’utilisation combinée des 

outils « SPIR/SNAC/ADM1 modifié » pourrait être un outil puissant pour l’optimisation du 

fonctionnement des unités de méthanisation, en particulier pour l’optimisation de la recette 

d’alimentation et la prédiction des performances associées. 

Cependant, l’application de ses solutions à échelle industrielle nécessite de futurs développements. 

La méthode SNAC, développée en laboratoire doit être validée pour le suivi d’un digesteur industriel. 

A cette fin, un capteur utilisant la méthode SNAC a été prototypé et installé sur site industriel. Le 

prototype estime la température, le pH, la conductivité électrique, le ratio d’alcalinité et les 

concentrations en AGV, IC et TAN. L’utilisation conjointe de SNAC, du débit et de la composition du 

biogaz produit devrait permettre l’estimation et le suivi de l’état biologique du digesteur. Par 

exemple, les concentrations en composés inhibiteurs et l’activité des micro-organismes pourront être 

estimées au fil du temps. L’étape suivante consistera à estimer les paramètres ADM1 relatifs au 

procédé en utilisant SNAC ainsi que le débit et la composition du biogaz produit. L’estimation de ces 

paramètres couplés à la SPIR permettra l’implémentation de l’ADM1 modifié afin de prédire les 

performances de l’unité. Ce test à échelle industrielle permettra de comparer les performances 

prédites par ADM1 avec les performances réelles de l’unité. Des difficultés pourraient résider sur la 

prédiction du pH, l’adaptation de la flore microbienne ou encore la présence de composés non 

mesurés tels que le souffre ou les antibiotiques. Si cette approche est validée à échelle industrielle, 

elle pourrait être étendue afin de mieux contrôler et anticiper la qualité et quantité de digestat 
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produit. Un projet a été soumis à l’ADEME permettant de tester et améliorer SNAC ainsi que 

l’approche SPIR plus ADM1 à l’échelle d’un territoire afin d’y optimiser les flux de déchets 

organiques. 

Enfin, l'analyse par SPIR doit actuellement être effectuée sur des échantillons secs. Trois 

inconvénients sont liés au séchage : les composés volatils ne peuvent pas être analysés, le processus 

de séchage ralentit considérablement l'analyse et l’utilisation de la SPIR en  ligne n’est pas 

envisageable. Pour une application à grande échelle, la haute fréquence de changement et 

l'hétérogénéité des substrats est une menace pour la caractérisation du substrat et, de fait, la 

prédiction des performances des unités associées à une recette d’alimentation. L'approche 

développée sur échantillons secs utilisant la SPIR permet de caractériser plus d'échantillons à partir 

d'un substrat hétérogène dans un court laps de temps, ce qui correspond d’avantage aux besoins 

industriels. Néanmoins, un futur développement intéressant serait d'adapter cette technologie à des 

échantillons humides pour la réalisation de capteurs SPIR capables de caractériser en temps réel tout 

substrat de l’unité. L'obstacle est l'absorption de l’eau en SPIR qui perturbe l'analyse. Des travaux 

sont actuellement en cours pour déterminer la faisabilité de cette approche sur substrat humide. 
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 « Combien de belles épopées bactériennes, combien de drames, combien de 

bonheurs bactériens demeureront à jamais ignorés de nous, plus récents 

occupants de la croûte terrestre... 

Dans le cœur de tout homme, il y a une bactérie qui sommeille.» 

Encyclopédie du savoir relatif et absolu, Bernard Werber. 
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1.1  Chapter Guidelines 

This chapter provides the context to the Anaerobic digestion (AD) sector in Europe. Based on world 

energy report, AD European report and French current AD sector status assessment, it explains why 

this PhD focuses on developing solutions to monitor the co-digestion of solid waste.  
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1.2 Technical and Graphical Abstracts 

Positive change about global warming occurred in 2014 when worldwide economy and CO2 emissions 

increase appeared to be decoupled for the first time in 40 years. It is a positive signal on the 

development of low carbon energy supply, even if nonrenewable energy such as nuclear energy 

represents more than 63% of them. Among the renewable energy in operation, anaerobic digestion 

is of particular value in Europe for its ability to produce both fertilizer and energy from waste. 

However, the sector, led by Germany far ahead with 9,035 of the 14,572 plants installed in Europe, is 

penalized by the deceleration of the German biogas industry. Indeed, the German model has 

been criticized by the European commission which reported environmental issues from the use of 

energy crops for biogas production. Thus, forerunner countries such as France or United Kingdom 

producing biogas from sewage, organic waste and on landfills are without any doubt the most 

promising alternatives for AD development. The quantity of available resources promises a great 

future to this alternative model. Nonetheless, its novelty and diversity penalize the first plants 

profitability which suffers from immature technologies, unadapted plants monitoring and under-

exploitation. 
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1.3 World Energy Challenge 

The global energy system is one of the main 21st century challenges. Until 2014, a continued increase 

in global greenhouse-gas emissions has been observed, correlated with the global economy 

development. A very positive change occurred in 2014 when global economy and CO2 emissions 

increase appeared to be decoupled for the first time in 40 years. Indeed, that year, global energy-

related CO2 emissions stayed flat at 32.2 Gt while global economy increased by 3% (International 

Energy Agency, 2015).  

Low-carbon energy supply plays an important role in decoupling economic growth to CO2 emission. 

In 2014, new equipment capable of producing 128 GW were installed which represented an increase 

of 50% of the total low carbon energy supply (International Energy Agency, 2014). Deploying low-

carbon technologies aims to save 37 Gt CO2 over the next years until 2040. Nonetheless, 63% of the 

low carbon power came from nuclear power in 2014 and aims to be reduced to 50% in the 450 

Scenario relative to the Bridge Scenario, even if nuclear power is facing an uncertain future 

(International Energy Agency, 2015). Renewable energy technologies must play a critical and rising 

role in the low-carbon energy supply. In 2014, wind power accounted for the largest share of growth 

in renewables-based generation (34%), followed by hydropower (30%) and solar technologies (18%). 

The agreement reached at the 21st Conference of the Parties (COP21) in Paris in 2015 could reverse 

current unsustainable global energy system if the levers available to accelerate research, 

development, demonstration and deployment in renewable energies are mobilized to give the right 

signals to innovators and financiers.  

Since cities drive economic, energetic and population growth, sustainable actions in urban areas, 

such as urban waste valorization or rooftop solar panels, are the instruments of a transition to a 

sustainable global energy system. Among the promising developments, this thesis will focus on the 

production of energy from waste using Anaerobic Digestion (AD). By its own, wastewater treatment 

represents 2-4% percent of the energy consumption in developed countries. The ability of AD to turn 

waste treatment from an energy-consuming process into an energy-producing process could thus 

have a major impact on CO2 emission reductions.  

1.4 Biogas over European Union 

The use of fertilizer is coupled with economic growth and is foreseen to increase in the next years 

(Figure 1). If the forecast for global supply increases faster than the global demand, West Europe will 

continue to depend on nitrogen and phosphate imports (FAO, 2015). Thanks to the current reliance 

on both natural gas and fertilizer imports of the European Union countries as well as the 20% 
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renewable energies target by 2020, anaerobic digestion is gaining in popularity. AD is indeed an 

important pillar of the European circular economy: it produces renewable methane and recycles 

nutrients in the form of organic fertilizers. In 2013, the European Union (EU) produced 13.4 million 

tons oil equivalent of biogas primary energy. The total installed electrical capacity from biogas 

reached 7,852 MW with 47.5 TWh of electricity delivered to the network and 48.7 TWh of thermal 

energy produced. The electricity produced from biogas in Europe is equivalent to seven nuclear 

reactors with the addition of thermal energy production and it covers the energy consumption of 5.4 

million average European households (EBA, 2014). Additionally, if all the landfilled biodegradable 

waste were anaerobically digested, it would produce 400,000 tons of nitrogen, 120 tons of 

phosphorus and 450 tons of potassium (EBA, 2015) which represent respectively 12%, 8% and 32% of 

the fertilizer imports in West Europe in 2014.  

 

Figure 1: World global nutrients (N+P2O5+K2O) consumption and forecast (FAO, 2015). 

The European AD sector, composed of 14,572 plants, is led by Germany and Italy far ahead with 

9,035 and 1,390 biogas units respectively, and then comes Switzerland at the third place with 620 

biogas plants (Figure 3). Two third of the European plants are agriculture-based biogas plants that 

run on energy crops and agricultural residues. Agricultural based biogas plants are driven by 

Germany and Italy in which they represent more than 80% of the biogas plants. On July, 28th 2013, 

the European Commission published a working document on the sustainability of solid and gaseous 

biomass used for electricity, heating and cooling. In the section about biogas, the European 

commission reported environmental issues from the use of energy crops for biogas production. The 

report fostered the use of organic waste to reduce greenhouse gases emissions and the competition 

with food crops. These recommendations impacted the actual mainstream anaerobic digestion 
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model and slowed down the sector. According to EurObserv’ER, growth was about 10.2% in biogas 

production and 5.5% in the plants installation in 2013 while in 2012 biogas production increased by 

16.9% in biogas production and by 12% in biogas plant installation (EurObserv'ER, 2014). The 

deceleration is expected to continue. Indeed since August 2014, the German biogas industry is 

suffering from cut in the Feed-In-Tariffs (FIT) because of the reform of the Renewable Energy Act 

(EEG). The deceleration is foreseen to pursue in 2016 with cutting of the FIT for biogas plants 

above 100 kW in Germany (EBA, 2014). 

 

 

Figure 2: Percentage of biogas plants in European countries in 2013 by type (EBA, 2014). 

While the global anaerobic digestion sector is penalized by the deceleration of the German biogas 

industry, other economic models gain in interest. In accordance with the European Commission 

recommendations, AD producing biogas from sewage, organic waste and on landfills grow in 

forerunners countries such as France, United Kingdom (UK), Poland and Finland (Figure 3). On 

October 14th 2014, the amendment 2102 of article 27 of the energy transition reinforced the will of 

France to develop a new AD model and prohibited the use of dedicated energy crops. The 

potentialities offered by AD from bio-waste are indeed enormous. In 2015, only a third of the bio-

waste generated over the year across EU is valorized through anaerobic digestion and composting 

(BSAG, EBA, ECN, ESPP, 2015). The development of anaerobic digestion in circular economy could 

bring benefits for the EU balance of payments with an estimated household cost savings of 1.7–2.9 

billion €/year for the EU (Ellen MacArthur Foundation / McKinsey), synergies with bio-energies and 
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bio-fertilizers both reducing CO2 emission. From this statement, indicators show that, after Germany, 

France could be the Europe’s new vector for growth of AD. 

 

 

Figure 3: Number of biogas plant evolution in Europe in 2012 and 2013 (EBA, 2014). 

 

1.5 France, a Potential Vector of Growth for the European Anaerobic 

Digestion Sector 

According to EurObserv'ER, (2014), along with UK, France is without any doubt the most promising 

country for AD development. The French Observation and Statistics Office reported an increase in 

the biogas production by 17% in 2013 and by 13% in 2012. For 10 years, regulation and public aids 

have been in favor of AD development in France. Ecology Minister, Ségolène Royal, reaffirmed her 

support for AD with the project to launch 1 500 biogas plants between 2014 and 2017. Public 

supports focus especially on biogas plants treating farm waste with the governmental project “Plan 

EMAA” (“Energie Méthanisation Autonomie Azote”) which aims to increase the number of 

agricultural biogas plants from 90 in 2012 to 1000 in 2020, with an average rate of 130 plants per 

year between 2013 and 2020. Biogas plants treating farm waste are strongly supported thanks to 
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their ability to produce both biogas and fertilizers. Digestate, the byproduct of biogas, is indeed 

supposed to replace conventional fertilizers and reduce the environmental impact of agriculture.  

France is the leader in Europe of the young organic waste AD sector. Since the deceleration of the 

market in their own country, German companies are eager to valorize their strong know-how on AD 

of energy crops and to install biogas plants in the emerging French market. Besides, new companies 

commercialize very new processes thought to be adapted to the sector. The actual statement reveals 

a lack of knowledge when dealing with the large diversity of substrates used in France. The 

technologies developed on energy crops indeed turns out to be unadapted to agricultural waste and 

appropriate solutions are slow in coming. 

Although only a third of waste resources are today exploited, 40% of the biogas plants reported 

difficulties in substrates supply to feed the plants in 2015 (E-cube, 2015). These supply difficulties are 

mainly due to the lack of available resources inventory, many resources localization remaining 

unknown to the plant operators. Furthermore, the biogas plant operators are suspicious of accepting 

new substrate and changing the feeding strategy. Only few data about the resources are available 

and feeding poorly characterized substrates can lead to process inhibition or failure. 

The treatment of agricultural waste such as manure, slurry and straw with technologies adapted 

from energy crops remains a problem. 94% of the 56 installations surveyed by E-Cube (E-cube, 2015) 

reported operational incidents and 70% of the plants reported a profitability below their expectation. 

Moreover, 44% of the units reported a dysfunction of their AD plant and 31% a dysfunction in the co-

generation unit. The main reason for dysfunction of the AD plant is a poor adaptation of the material 

to the substrates. The diversity of substrates used induces quick changes in the operating conditions 

of the plant that can induce inhibitions or failures. The difficulties to anticipate the biological changes 

are attributed to a lack of formation for the operators as well as the instrumentation not adapted to 

the plant. A frequent solution found by constructors is the oversizing of biogas plants, which 

increases the cost of the installations. The hydraulic retention time ranges from a few hours up to 68 

days in industrial effluent treatment plants, from 6 to 40 days on wastewater treatment plants and 

from 20 to 200 days on farm waste treatment plants (ATEE-Club biogas, 2011). This under-

optimization of the plants affects the profits of this sector.  

Due to reactor-oversizing and the difficulty to duplicate the plant designs, initial investment in biogas 

units in France remains high and depends on the digested substrate. The mean values are about 

4,100 €/kWe (kiloWatt electric) for biogas plants treating industrial effluent, 6,300 €/kWe for biogas 

plants treating farm waste and 7,000 €/kWe for collective biogas plants treating mixed organic waste 

or wastewater treatment plants. Moreover, the cost of installation is not proportional to the capacity 
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of biogas production: for biogas plants treating farm waste, investments vary from 15,000 €/kWe for 

a capacity of 35 kWe to 5,600 €/kWe for a capacity of 500 kWe (Bastide, 2015). The type of substrate 

treated and the electrical capacity of the plant are difficult to decouple, mean electrical power is 200 

kWe, 441 kWe, 870 Kwe and 2,050 KWe for biogas plants treating agricultural waste (pulled up by 

collective biogas plants), industrial effluent, wastewater and household waste respectively. The 

investment needed to produce 1 kWe for a 200 kWe biogas plant treating farm waste is around 50% 

more expensive than for a 440 Kwe biogas plant treating an industrial effluent. Operational 

expenditures (OPEX) vary with operational choices from 500 €/kWe to 1,500€/kWe and do not 

depend on the biogas production (E-cube, 2015). Since 75% of the biogas plant incomes are from 

electricity sales, biogas plants treating farm waste are penalized by the initial investment and 

compensate the loss of earning treating waste with treatment fees, FIT and premium for agricultural 

waste treatment which decrease with the increase of electrical power.  

Government subsidies bring a financial support to biogas plant installations, targeted on the FIT and 

premiums for good practice, as reported in Table 1. Premiums are added to the FIT. In the case of 

“mixed” feedstock and biogas injection, the premium is weighted and calculated in proportion to the 

feedstock quantities used by the plant.  

Table 1: Feed in Tariffs and premiums for biogas injection and electricity production in 2016 in France 

 

FIT and premiums are based on the kWh production cost and decrease with the biogas produced, 

encouraging the development of small biogas plants treating farm waste despite the high initial 

investment needed. Thanks to public aids, as shown in Figure 4, the rate of return after subvention is 

equivalent for each type of unit, but farm biogas plants profitability is today subventions dependent.  

 

Feed in 

Tariffs (FIT)

Energy 

efficiency

Livestock 

processing

Hazardous waste 

treatment

Exclusively 

agricultural or 

agri-business 

waste

Exclusively 

household 

waste

min  €/kWh 0.119 0 0

max  €/kWh 0.1337 0.04 0.026

min  €/kWh 0.45 0.02 0

max  €/kWh 0.95 0.03 0.05

Electricity production

Biomethane injection 0.24
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Figure 4: Biogas rate of return depending on the type of substrate they are digesting (G.Bastide, 2014). 

To conclude, AD is probably the major biological process involved in waste valorization. AD is a 

microbial process that converts organic matter into biogas mainly composed of CO2 and CH4. It has a 

low energy requirement, low sludge production and the potentiality to produce both valuable 

intermediates and energy (Moletta, 2011).  

French biogas sector is interesting for its will to digest organic waste and could represent a strong 

innovation place thanks to government subsidies for R&D and demonstration of industrial system. 

The quantity of available resources promises a great future for the sector but its novelty and diversity 

penalize its development. The first plants profitability suffers from immature technologies, 

unadapted plants monitoring and the under-exploitation of the plants. From the current study, four 

points of French AD model development are highlighted: 

 Improvements of the plants design are required to be more cost-efficient and adapted to 

the AD of solid organic waste, reducing both investment and operational expenditure.  

 Sensors must be adapted to estimate the biological state of AD plants digesting a great 

diversity of organic waste.  

 Process monitoring must be adapted to the development of new supervision systems, 

taking into account the complexity of the AD biological reactions and a fine control of 

processes with feeding changes. It aims to secure the plant without plant oversizing and 

to optimize global performances and profitability 

 Characterization and inventory of the available resources must be done. Biogas plants 

suffer already of feeding optimization difficulties while stress on available resources will 

increase with the number of biogas plants. Standard and fast methods of 
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characterization have to be developed to better anticipate the AD performances of the 

substrates. 

1.6 Contents of the Thesis 

This PhD will specifically focus on the three last points, mainly concerning biogas plant monitoring. 

AD technology has been successfully monitored for many years, see for example (Jimenez et al., 

2015b). AD processes dealing with liquid effluent have been monitored using simple measurements 

such as biogas output flowrate and pH (Steyer et al., 1999) and AD technology applied on organic 

solid waste has been reported as mature (Mata-Alvarez et al., 2000).  

In the current AD context of energy production detailed in this chapter, diversification of substrates 

and development of Anaerobic co-Digestion (AcoD) are needed in order to keep a highly performant 

and profitable process. The development of AcoD for the production of energy from organic waste, 

the growing number of installations, their diversity, their instability, the accumulation of inhibitors 

and the non-adapted process monitoring are real challenges for the long-term viability of the 

installations (Steyer et al. (2006), Chen et al., (2008)). Maintaining a highly performant process goes 

through an increase in the robustness, the performance and the monitoring of these installations. 

Since the feeding strategy is the major factor governing the overall process, the development of 

AcoD requires defining optimal feeding strategies. Challenges are related to the variability and 

diversity of the available inputs and to the difficulty to forecast process performances (Karthikeyan 

and Visvanathan, 2013). Thus, for an appropriate process monitoring, it is fundamental to deeply 

characterize the inputs, to estimate the biological state of the process, and eventually to develop 

advanced dynamic models that enable to predict the performances of the process depending on its 

feeding strategy and its current biological state. 

The state of art on anaerobic digestion monitoring, which will be develop in Chapter 3, Chapter 4 and 

Chapter 7, reveals that many sensors, methods and models have been developed other the years to 

optimize plant performances. However, the developed solutions are not fully adapted to frequent 

changes in the inputs. To answer the need of flexibility in the feeding strategy, new sensors, methods 

and models must be developed based on a fast characterization of the substrate, an estimation of 

the plant biological state and modelling co-digestion of the solid organic waste. Plants feeding 

strategy optimization will be studied through 3 axes: 

 First axis is based on the estimation of the actual biological state of the reactor. While 

carbon dioxide and methane production analyses are matured, the sensors developed 
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for liquid phase analysis are not adapted to solid organic waste co-digestion. Most of the 

cost efficient sensors estimating soluble compounds concentrations are based on 

titration methods but have a high risk of failure in case of frequent change in the inputs. 

The development of a sensor which would enable the estimation of main indicators of 

the biological state without calibration depending on the inputs is strongly needed. 

 Second axis is based on the prediction of the substrate AD performances to optimize 

feeding strategy. Current laboratory methods are not standard and sometimes poorly 

adapted to solid organic waste characterization. Their accuracy and time of analysis 

penalize the substrate characterization and therefore feeding strategy optimization. Fast 

characterization of the solid organic waste based on spectroscopic analyses has been 

developed. While promising, the methods developed focused on BMP estimation. BMP 

is essential but not sufficient for feeding strategy optimization. Other parameters such 

as biochemical composition, COD and methane production kinetics are needed. Thus, 

studies on fast spectroscopic characterization must be pursued to provide a detailed 

characterization of the substrate. 

 Third axis is based on the modelling of AD process. The complexity of AD makes the 

plant monitoring tricky for the human operator. First, the relation between the inputs 

characterization and the AD plant performances must be deeply understood. Second, 

since plant performances depend on both biological state and feeding strategy, the 

development of a dynamic model taking into account both actual biological state and 

substrate performances, is extremely relevant to help the operator reaching its optimal 

level of production. Actual models such as the anaerobic digestion model n°1 (ADM1) 

provide a detailed overview of the process and enable to simulate accurately the 

process performances. However, hydrolysis step of ADM1 model which has been 

developed to represent the AD of wastewater sludge is unsuitable for the modelling of 

solid waste AD. Since hydrolysis is often the limiting step of solid organic waste AD, it 

must be studied to provide an accurate representation of the co-digestion process. 

After a section describing the materials and methods (Chapter 2) used during this PhD, these three 

axes are developed into 5 chapters as shown in Figure 5. First, Chapter 3 deals with the estimation of 

volatile fatty acids, inorganic carbon and ammoniacal nitrogen concentration in the plant to assess its 

biological state. The aim of this work is first to compare the accuracy of the estimations from 

Nordmann (1977), Ripley et al (1986), Purser et al (2014) and Zaher (2005) methods on 24 samples 

and second to develop an innovative sensor in order to improve the monitoring of AD plants. We 

decided to go further with the buffer capacity method since it is the most promising one to deal with 
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additional component interferences as recommended by Zaher et al. (2003). To do so, we added a 

variable that could allow differentiating the component of a plant sample in an easier way. Thus, an 

electrical conductivity sensor was implemented in the titration vessel. The method was applied to 24 

plant samples chosen to represent a wide range of AD process to assess the accuracy of prediction 

using  both buffer capacity and buffer conductivity. 

Chapter 4 described the relations between the biochemical composition of the organic matter and 

the AD performances. The aim of this chapter is to understand the existing correlations between 

carbohydrate, protein or lipid contents, COD, methane yield and the kinetics of methane production 

to facilitate plant monitoring with partial characterization of the substrates. For that purpose, the 

relations are highlighted using Principal Component Analysis (PCA). Then, Pearson’s correlation test 

was carried out on these parameters measured for 222 fully characterized samples to deeply 

investigate the existing correlations. Finally, since the analysis of the biochemical composition is 

faster than methane production performances analysis, PLS regression was carried out to evaluate 

the feasibility of methane production kinetics prediction from the biochemical composition. 

Chapter 5 is about solid organic waste characterization. This study is first focused on the 

development of repeatable and accurate analyses for the estimation of carbohydrate, protein, lipid 

contents and COD in a wide range of solid samples such as fruits, vegetables, manure, cereals, oils, 

fats, meat and fishes. Secondly, NIR analyses are performed on the same samples with the aim to 

correlate protein, carbohydrate, lipid contents and COD with NIR measurements. Eventually, the 

possibility to predict the Methane Production Rate (MPR) of solid substrate using NIR spectroscopy is 

discussed. 

Chapter 6 focuses on the interpretation of the partial least square b coefficients associated to the 

biochemical and AD performances parameters predictions. Parallel study of b coefficients and near 

infrared wavelengths allows sampling relevant wavelengths involved in the estimation of these 

parameters. The relation between these wavelengths and the potential molecules related to these 

wavelengths is established and discussed. Eventually, cosine between the b coefficients of the 

different PLSr calibrations developed in Chapter 5 is estimated to highlights the relations between 

the models. 

Chapter 7 is about dynamic modeling of the AD process by a modified ADM1. The first section will 

challenge the classical parallel concept of multi-substrates hydrolysis to provide a methodology 

applicable to different substrates. The second section of this study aims to reduce the difficulties of 

ADM1 parameters estimation. The composition of the substrate predicted by spectroscopic methods 
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is used to implement ADM1. This approach reduces the ADM1 parameters estimation such as 

methane yield or hydrolysis kinetics from 60 days to a matter of minute, making it suitable for 

industrial application. Eventually, the accuracy of this approach has been estimated on two case 

studies. 

Eventually, conclusion and outlooks of this thesis are discussed in Chapter 8. 

 

Figure 5: Feeding strategy optimization graphical abstract 
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2.1 Materials and Methods Guidelines 

This chapter does not present results but details every materials and methods used during this PhD. 

The choice of a single “Materials and Methods” section avoids repetitions. For an easier readability, 

at the beginning of each following chapter, a reference to the specific Materials and Methods 

sections used is made.  The first section, 2.2, focuses on titrimetric methods and liquid sample 

analyses, then analytical methods for solid waste are developed in section 2.3. Section 2.4 focuses on 

spectroscopic methods, section 2.5 details the different datasets used for correlation analyses and 

the calibration of spectroscopic methods and section 2.6 explains the mathematical tools used for 

correlation analyses and development of regression models. Eventually section 2.7 details the 

dynamic models used to predict AD performances. 
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2.2 Titrimetric Methods to Determine Ammonia Nitrogen, Volatile Fatty 

Acids and Inorganic Carbon Concentrations  

2.2.1 Experimental Titration Device 

Twenty four plant samples coming from diverse anaerobic digestion units were titrated, 9 from 

plants treating industrial effluents like vinasses or paper mill wastewater, 7 treating manure, sewage 

sludge and agri-food waste, 4 treating manure and cereal waste, 2 treating goat farm waste and 2 

treating sewage sludge. Details are available in Table 2. All the plant listed were CSTR working in 

standard mesophilic conditions except the plant treating manure, sewage sludge and agri-food waste 

n°4 which was a dry batch process. The energy production of the plants varies from 0 to 1500 

electrical kilowatts (kWe). Seven plants produce between 1000 and 1500 kWe, 4 plants produce 

between 500 and 1000 kWe and the other 13 plants produce less than 250 kWe. Dry matter content 

was in a range of 0.43-16.33 %. Hence, a protocol was designed depending on the dry matter content 

of the samples according to the protocol used for the titration of compost (Costello and Sullivan 

(2013)). If the dry matter content was below 10%, the titration was carried out with 2 L of digestate 

without pre-treatment. If the dry matter content was above 10%, the sample was diluted with 

distilled water to reach a maximum content of 10% and solubilized overnight; filtration (4 mm) was 

then used to remove the biggest particles with a colander. Titration was carried out in a 3 L stirred 

tank reactor (Applikon®, Delft, The Netherlands) with a working volume of 2 L. The reactor was 

equipped with a stirring system made of two Rushton impellers, stirring speed set to 530 rpm. Two 

sensors were connected to the reactor for measuring the pH and temperature (InPro 3253i/SG, 

Mettler Toledo®, Colombus, USA) and the conductivity and temperature (InPro 7100i/12/120, Mettler 

Toledo®, Colombus, USA). Both probes were connected to a computer for on-line data acquisition 

with one acquisition every 15 s for sensor and 30 s for actuator by a transmitter M300 (Mettler 

Toledo®, Colombus, USA). The analog to digital converter (ADC) was a TES module (Leroy 

Automation®, Toulouse, France). NaOH (1 M) and HCl (1 M) were added using two peristaltic pumps 

with a fix flow-rate of 4 mL.min-1. A peristaltic air-pump was connected to the sparger with an 

equivalent water flow-rate of 0.7 L.min-1. The pumps were controlled by the computer through 

on/off outputs. The gas output was connected to a liquid trap and a bottle of 500 mL containing 

400 mL of 3 M NaOH with 0.002 % Thymolphtalein in order to ensure a constant pressure inside the 

reactor and the safety of the gas output in case of H2S exhaustion. 
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Table 2: Reference analyses data of the samples used for the experiments. Volatile fatty acids (VFA) concentration was 

analyzed by GC, Inorganic Carbon (IC) by TOC and Total Ammoniacal Nitrogen (TAN) by TKN. Partial Alkalinity (PA) and 

Intermediate Alkalinity (IA) were estimated using the formula developed in Ripley et al (1986) 

Substrate characteristics 
Plant power 

(kWe) 
VFA 

(mol.L
-1

) 
IC 

(mol.L
-1

) 
TAN 

(mol.L
-1

) 
PA 

(mol.L
-1

) 
IA 

(mol.L
-1

) 

Manure, sewage sludge and 
agri-food waste 1 

[1000-1500] 0.003 0.098 0.090 0.058 0.038 

Manure, sewage sludge and 
agri-food waste 2 

[1000-1500] 0.020 0.098 0.090 0.055 0.052 

Manure, sewage sludge and 
agri-food wastes 3 

[1000-1500] 0.031 0.105 0.052 0.040 0.039 

Manure, sewage sludge and 
agri-food wastes 4 

[1000-1500] 0.011 0.211 0.104 0.089 0.030 

Manure, sewage sludge and 
agri-food wastes 5 

<250 0.004 0.115 0.060 0.044 0.031 

Manure, sewage sludge and 
agri-food wastes 6 

[500-1000] 0.002 0.215 0.135 0.102 0.071 

Manure, sewage sludge and 
agri-food wastes 7 

<250 0.029 0.115 0.060 0.044 0.046 

Manure and cereal waste 1 [500-1000] 0.001 0.066 0.033 0.031 0.081 

Manure and cereal waste 2 <250 0.005 0.111 0.031 0.038 0.026 

Manure and cereal waste 3 <250 0.039 0.111 0.059 0.038 0.045 

Manure and cereal waste 4 <250 0.025 0.054 0.036 0.028 0.029 

Goat farm waste 1 <250 0.002 0.007 0.004 0.003 0.0022 

Goat farm waste 2 <250 0.025 0.020 0.012 0.009 0.018 

Paper mill wasterwater 1 [500-1000] 0.000 0.038 0.076 0.016 0.009 

Paper mill wasterwater 2 [500-1000] 0.000 0.038 0.000 0.018 0.006 

Sewage sludge 1 <250 0.000 0.116 0.061 0.043 0.019 

Sewage sludge 2 <250 0.000 0.116 0.061 0.037 0.028 

Industrial effluent 1 [1000-1500] 0.001 0.132 0.034 0.064 0.011 

Industrial effluent 2 [1000-1500] 0.001 0.132 0.034 0.066 0.001 

Vinasses 1 <250 0.013 0.029 0.000 0.008 0.015 

Vinasses 2 <250 0.013 0.029 0.000 0.007 0.014 

Vinasses 3 <250 0.013 0.027 0.164 0.008 0.015 

Vinasses 4 <250 0.007 0.013 0.078 0.005 0.007 

Vinasses 5 <250 0.013 0.027 0.162 0.008 0.016 
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2.2.2 Titration Protocol 

Dealing with samples from plants treating complex substrate, a working volume of 2 L was chosen to 

have representative samples of the plants in non-homogenous conditions. Once 2 L of plant sample 

is added to the reactor, a stirring is applied for 20 minutes to reach the thermodynamic equilibrium 

in the closed reactor. Then, the down-titration is carried out by adding continuously HCl (1 M) until 

the pump is automatically switched off when pH is below 2. Then, stripping of CO2 lasts for 20 

minutes switching the air pump on. Eventually, up-titration is carried out by adding continuously 

NaOH (1 M) until the pump is automatically switched off when pH is higher than 11.5. The flasks 

containing NaOH and HCl are weighted to check and correct the flowrate of acid and base pumps. 

2.2.3 Analytical Methods for Reference Data 

VFA, IC and TAN concentrations were measured in the liquid fraction and after dilution in case of dry 

matter content up to 10 %. TAN was measured using TKN Buchi AutoKjeldahl Unit K-370 (Buchi®, 

Flawil, Switzerland), Kjeldhal method without acid hydrolysis. To analyze VFA and IC, the liquid 

fraction is filtrated to 0.45 µm with cellulose-acetate filter (Sartorius®, Goettingen, Germany). VFA 

were analyzed with a gas chromatograph Perkin Clarus 580 (PerkinElmer®, Waltham, USA) with an 

Elite‐FFAP crossbond® carbowax® 15 m column connected to a FID detector at 280 °C and nitrogen at 

6 mL.min‐1 as gas carrier. IC was measured using TOC-Vscn, total organic carbon analyzer, 

(Shimadzu®, Kyoto, Japan), liquid Inorganic Carbon method. 

2.2.4 Titration Model 

A first check was applied to the experimental data collected from the computer. The synchronization 

of the sensors and actuators was verified. Then, a smooth spline function was done using R® 3.03 to 

remove noise and to compute first and second derivatives. The pre-treated data were then exported 

to Scilab® 5.5.0. Four models have been implemented to check the hypothesis and the accuracy 

based on Nordmann, (1977); Ripley et al., (1986); Purser et al., (2014); Zaher, (2005). The five points 

method or the eight points method developed in Moosbrugger et al., (1993) and Lahav and 

Loewenthal (2000) were not implemented because they require both the concentrations in sulphide 

and phosphorous to be accurate, which is not compatible with an easy off-line application. The 

leastsq function was used to solve nonlinear problem with Scilab® 5.5.0. It minimizes the square 

value of a function which is usually the difference between experimental and modelled data. 
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2.2.4.1 Existing Model based on linear resolution 

Nordmann (1977) proposed to carry out a titration down to pH=5 and then to pH=4.4 and 

hypothesized that the whole IC is transformed into H2CO3 at pH=5 and that 30% of VFA are titrated 

between pH=5 and pH=4.4. The formula of Nordmann (1977) was first implemented as: 

𝐼𝐶 =
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5

𝑉𝑠
  𝑉𝐹𝐴 =

10

3
∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5−4.4

𝑉𝑠
         

(1)  

IC and VFA concentration are expressed in mol.L-1, 𝑉𝐻𝐶𝑙−𝑝𝐻5 is the needed volume of HCl to reach 

pH 5, 𝑉𝐻𝐶𝑙−𝑝𝐻5−4.4 is the added volume of HCl between pH 5 and 4.4 and [𝐻𝐶𝑙] is the concentration 

of HCl (1 M).  

Ripley et al (1986) worked with the notion of alkalinity. A first titration down to pH=5.75 provides the 

partial alkalinity (PA) while a second titration from pH=5.75 to pH=4.3 provides the Intermediate 

Alkalinity (IA). These authors assumed that PA relates to IC and IA approximates VFA and that the 

rate PA/IA provides a good indicator to monitor a plant. Jenkins et Morgan (1983) refined this 

method and assumed that IC contributes to 80% of PA and VFA about 65% of IA. Ripley et al. (1986) 

formula was implemented using the factor converting PA in IC and IA in VFA proposed by Jenkins et 

Morgan., (1983), respectively 
10

8
 and 

10

6.5
 as: 

𝐼𝐶 =
10

8
∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5.75

𝑉𝑠
   𝑉𝐹𝐴 =

10

6.5
∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5.75−4.3

𝑉𝑠
   (2) 

Purser et al (2014) recalibrated the equations of Nordmann (1977) and Ripley et al (1986) with a 

corrective factor for the VFA concentration estimation. The calibrations were done on animal slurry 

and energetic crops, and a second on food waste for Nordmann (1977) formula. These three 

recalibrations were implemented (equation 3.1-3.2-3.3). The obtained estimations of VFA were 

expressed in mg.L-1, thus, it was divided by 1000 and by the molar mass of acetic acid in order to 

have it in acetic acid equivalent (mol.L-1). This modification does not change the results since acetate 

was the main component of VFA in our samples.  
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The formulas proposed by Purser et al (2014) with the estimation expressed in mol.L-1 are: 

 Nordmann (1977) calibration for animal slurry and energetic crops:  

𝑉𝐹𝐴 = [−340 − 7160 ∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5

𝑉𝑠
+ 124540 ∗

[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5−4.4

𝑉𝑠
] /60000   

(3.1) 

 Nordmann (1977) calibration for food waste:  

𝑉𝐹𝐴 = [−523 − 5920 ∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5

𝑉𝑠
+ 131110 ∗

[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5−4.4

𝑉𝑠
] /60000  (3.2) 

 Ripley et al (1986) calibration for animal slurry and energetic crops: 

𝑉𝐹𝐴 = [−767 − 1197 ∗
[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5.75

𝑉𝑠
+ 54460 ∗

[𝐻𝐶𝑙]∗𝑉𝐻𝐶𝑙−𝑝𝐻5.75−4.3

𝑉𝑠
] /60000  (3.3) 

2.2.4.2 Existing model based on nonlinear resolution 

The model developed by Van Vooren (2000) and improved by Zaher (2005) was implemented. This 

method is based on the buffer capacity defined as  𝛽 =
𝑑𝐶𝑡

𝑑𝑝𝐻
  where Ct is the concentration of the 

associated counter-ions in solution used for the titration. A model simulates the buffer capacity 

during the titration based on this equation, assuming that the volume of titration is constant. In 

order to simplify the model, the compounds were supposed to be diluted enough to consider that 

the activity of the compounds can be estimated by their concentration:  

𝑑[𝐻3𝑂
+]

𝑑𝑝𝐻
=
𝑑[𝐻3𝑂

+]

𝑑𝑙𝑜𝑔([𝐻3𝑂
+])
=
𝑑[𝐻3𝑂

+]

−
𝑑[𝐻3𝑂

+]

ln(10)[𝐻3𝑂
+]

= −ln(10)[𝐻3𝑂
+]    (4.1) 

𝑑[OH−]

𝑑𝑝𝐻
=
Ke∗ln(10)

[H3O
+]

        (4.2) 

𝑑[𝑁𝐻4
+]

𝑑𝑝𝐻
= −

𝑁𝑡∗[H3O
+]∗ln(10)∗KN

(KN+[H3O
+])²

       (4.3) 

𝑑[VFA−]

𝑑𝑝𝐻
=
VFAt∗KAGV∗ln(10)∗[𝐻3𝑂

+]

(KAGV+H3O
+)²

      (4.4) 

𝑑[HCO3
−]

𝑑𝑝𝐻
=
[H3O

+]∗ln(10)∗𝐶𝑡∗KC∗([H3O
+]²−KC2KC)

(KC∗[H3O
+]+KC2∗KC+[H3O

+]2)²
     (4.5) 

where VFAt, Ct and Nt represent respectively the total amount of VFA, C and N in solution. KN is the 

equilibrium constant of NH4
+/NH3 (10-9.24 at 25°C), KVFA the one of acetate/acetic acid (10-4.76 at 25°C), 

KC is for HCO3
-/H2CO3 and KC2 for HCO3

-/CO3
2- (respectively 10-6.35 and 10-10.33 at 25°C). Zaher (2005) 
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used this equation for phosphorous and lactate as well. In order to fit every experimental data, blind 

buffers were also introduced based on the equation of their acid form (i.e., VFA if mono-acid and IC if 

di-acid). Eventually, using the electro-neutrality concept, the buffer capacity was modeled knowing 

the concentration of components: 

𝛽 = ∑𝛾 ∗
𝑑𝑋

𝑑𝑝𝐻
       (5) 

where X represents the components in solution and 𝛾 their valence. Thus, estimations of VFA, IC, 

TAN, lactate and phosphorous concentrations were obtained by minimizing the sum squared error 

between the model and the experimental data by nonlinear solver. In the case of a simplified 

equation taking into account only VFA, IC and TAN, equation 5 could be written for the up titration 

as: 

𝛽 =
𝑑HCO3

−

𝑑𝑝𝐻
+ 2 ∗

𝑑CO3
2−

𝑑𝑝𝐻
+
𝑑VFA−

𝑑𝑝𝐻
−
𝑑𝑁𝐻4

+

𝑑𝑝𝐻
+
𝑑OH

𝑑𝑝𝐻

−
−
𝑑𝐻3𝑂

+

𝑑𝑝𝐻
    

2.2.4.3 SNAC model based on nonlinear resolution 

Some modifications were done to the model developed by Van Vooren (2000) and Zaher (2005). First 

of all, we assumed a thermodynamic equilibrium between gaseous and liquid phase for TAN and IC. 

Supposing a species A with its basic form A- and acid form AH in equilibrium with the gaseous phase 

according to Henry’s law, the following equation is obtained: 

 

 

Using a liquid/gas phase equation in a dynamic model allows us to take into account the stripping of 

CO2 all along the titration, even during the equilibrium phase if the experimental conditions are 

designed to reduce the transfer in order to reach quickly the liquid/gas equilibrium. The solution 

retained in this study was to use a closed reactor. Models not taking the liquid/gas equilibrium into 

account tend to under-estimate the concentration of volatile species and usually solve it by a quick 

titration (Lahav and Morgan, 2004). Then, the possible variation of volume due to the addition of a 

titrant volume (V𝑡𝑖𝑡𝑟𝑎𝑛𝑡) during the titration was taken into account. 𝑛ion is the total amount of 

counter ion during titration expressed in mole, [𝑖𝑜𝑛]𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 is its concentration in the solution 

composed of the initial solution plus the added titrant volume, [𝑖𝑜𝑛]𝑡𝑖𝑡𝑟𝑎𝑛𝑡 is the molarity of the 

titrant solution. 

At= {
Agaz =

AH

KH

Asoluble = A
− + AH 



⇒At = 

AH

KH
+ A− + AH             (6) 
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{
𝑛ion = (V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + V𝑡𝑖𝑡𝑟𝑎𝑛𝑡) ∗ [𝑖𝑜𝑛]𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑛ion = [𝑖𝑜𝑛]𝑡𝑖𝑡𝑟𝑎𝑛𝑡 ∗ V𝑡𝑖𝑡𝑟𝑎𝑛𝑡 

  


⇒ V𝑡𝑖𝑡𝑟𝑎𝑛𝑡 =

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙∗[𝑖𝑜𝑛]𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

[𝑖𝑜𝑛]𝑡𝑖𝑡𝑟𝑎𝑛𝑡−[𝑖𝑜𝑛]𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
       (7) 

 

The concentration of the titrating counter ion can be defined by the equation 5 with the electro-

neutrality concept. The modification of the volume during the titration induces the dilution of the 

concentration of non-reactive ions during the titration. Thus, we introduced Z+ and Z- respectively the 

inert ions with a positive and a negative charge, for instance respectively K+ and Cl-. Z+ and Z- are 

estimated at the initial condition as the residual conductivity once the known component are 

subtracted assuming that Z+ balance the charge of negative ions and Z- the one of positive ions. An 

estimation of the molar conductivity of Z+ and Z- had to be made. Z+ was supposed to be mainly 

composed of Na+/ K+ and Z- of Cl-. This estimation was done because it allows us to obtain an 

estimated initial titrant volume of 0 estimating Z+ and Z- on the initial conductivity. It indicates that 

the estimation was correct. The conductivity of the solution (𝜎) was modeled depending on the 

concentration of the component listed below and their molar conductivity (λx) as: 

𝜎 = λOH− ∗ [OH
−
] + λH3O+ ∗ [H3O

+] + [λHCO3− ∗ [HCO3
−
] + λCO32− ∗ [CO3

2−
] + λAcetate ∗ [VFA

−] +

λNH4+ ∗ [NH4
+] +λCl− ∗ [𝑍

−] +
(λNa++λK+)

2
∗ [𝑍+]


] ∗

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡
 +λ𝑐𝑜𝑢𝑟𝑛𝑡𝑒𝑟𝑖𝑜𝑛𝑠 ∗ [𝑖𝑜𝑛]𝑡𝑖𝑡𝑟𝑎𝑛𝑡 ∗

V𝑡𝑖𝑡𝑟𝑎𝑛𝑡

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡
        (8) 

 

The molar conductivity was expressed in mS.m-2.mol-1 and set to λH3O+= 34.96;  λOH− = 19.8;  λNa+= 

5.01;  λCl− = 7.63;  λNH4+ = 7.35;  λK+ = 7.35;  λHCO3− = 4.45;  λCO32− = 13.86;  λAcetate = 4.09 (Lide, 

(2003)). The molar conductivity of the compounds is well known at infinite dilution. At concentration 

above 10-3 mol.L-1 the molar conductivity will start to be affected by the concentration of the 

compounds.  

The buffer capacity was calculated using the same principle as Van Vooren (2000) but taking into 

account that the volume of the solution and the concentration of TAN, IC and VFA change during the 

titration. The following formula is for instance obtained during the down titration using HCl as titrant 

solution. 
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𝛽 = (
𝑑[𝑁𝐻4

+]

𝑑𝑝𝐻
−
𝑑[HCO3

−]

𝑑𝑝𝐻
− 2 ∗

𝑑[CO3
2−]

𝑑𝑝𝐻
−
𝑑[AGV−]

𝑑𝑝𝐻
) ∗

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡
+
𝑑

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡

𝑑𝑝𝐻
∗

([NH4
+] + [𝑍+] − [𝑍−] − [HCO3

−] − 2 ∗ [CO3
2−] − [AGV−]) −

𝑑[OH−]

𝑑𝑝𝐻
+
𝑑[𝐻3𝑂

+]

𝑑𝑝𝐻
   

                        (9)  

The concept of “conductivity buffering” was introduced and defined as the derivative of the 

conductivity by the pH and defined theoretically as: 

dσ

𝑑𝑝𝐻

=
𝑑 (

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + V𝑡𝑖𝑡𝑟𝑎𝑛𝑡

(λHCO3−[HCO3
−] + λCO32−[CO3

2−] + λAcetate[AGV
−] + λNH4+[NH4

+] + λCl−[𝑍
−] + λNa+/K+[𝑍

+]))

𝑑𝑝𝐻

+ λOH− ∗
𝑑[OH−]

𝑑𝑝𝐻
+ λH3O+ ∗

[H3O
+]

𝑑𝑝𝐻
+ λ𝑐𝑜𝑢𝑟𝑛𝑡𝑒𝑟𝑖𝑜𝑛𝑠 ∗ 𝛽 

=
𝑑

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡

𝑑𝑝𝐻
∗ (λHCO3−[HCO3

−] + λCO32−[CO3
2−] + λAcetate[AGV

−] + λNH4+[NH4
+] +

λCl−[𝑍
−] + λNa+/K+[𝑍

+]) +
V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙

V𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝑖𝑛𝑖𝑡𝑖𝑎𝑙+V𝑡𝑖𝑡𝑟𝑎𝑛𝑡
∗ [λHCO3− ∗

𝑑[HCO3
−]

𝑑𝑝𝐻
+ λCO32− ∗

𝑑[CO3
2−]

𝑑𝑝𝐻
+ λAcetate ∗

𝑑[AGV−]

𝑑𝑝𝐻
+ λNH4+ ∗

𝑑[𝑁𝐻4
+]

𝑑𝑝𝐻
] + λOH− ∗

𝑑[OH−]

𝑑𝑝𝐻
+ λH3O+ ∗

𝑑[𝐻3𝑂
+]

𝑑𝑝𝐻
+ λ𝑐𝑜𝑢𝑟𝑛𝑡𝑒𝑟𝑖𝑜𝑛𝑠 ∗ 𝛽   

              (10) 

 

2.2.5 Signal Processing Coupling pH and Electrical Conductivity 

Measurements 

According to the experimental data, we defined four functions V𝑡𝑖𝑡𝑟𝑎𝑛𝑡 = 𝑓(𝑝𝐻),𝜎 = 𝑓(𝑝𝐻),𝛽 =

𝑓(𝑝𝐻),
𝑑𝜎

𝑑𝑝𝐻
= 𝑓(𝑝𝐻). Working with 

𝑑𝜎

𝑑𝑝𝐻
, a possibility to correct the pH shift between experimental 

data and the model has been found. This shift is due to a loss of accuracy of the pH sensor at extreme 

pH values. 

2.2.5.1 Experimental Error Correction Improving the Accuracy of the Estimation 

The first step of the analysis was to correct pH shifts between the model and the experimental data. 

The pH discrepancy is caused by measurement errors at extreme values. This error is difficult to 

predict and varies in each titration. The shift between experimental and theoretical data is calculated 

around pH=2, where only water impacts the curve. This shift is calculated on 
𝑑𝜎

𝑑𝑝𝐻
 because it keeps 

the same value between pH 2 and 2.5 which means that experimental and theoretical data are 
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represented by two parallel lines in this range. Then, the calculated shift is corrected by a translation 

of the experimental data. The pKa of VFA, IC and TAN are found by analyzing the second derivative of  

V𝑡𝑖𝑡𝑟𝑎𝑛𝑡 = 𝑓(𝑝𝐻) or𝜎 = 𝑓(𝑝𝐻) depending if the estimation is done either on the buffer capacity or 

the conductivity buffering. For more accuracy, the pKa are fixed in a range of ±0.4 pH unit of their 

theoretical values as recommend by Van Vooren (2000) for down titration and 0.3 for up titration.  

2.2.5.2 Coupling the Measurement of pH and Electrical Conductivity  

Six samples from vinasses digester, which have the advantage to be already well characterized in 

their composition, were first used to decide which variables could be used to obtain the most 

accurate estimation of VFA, TAN, and IC. As expected from Van Vooren (2000), estimation using the 

derivative functions gave more accurate results than using non-derivate functions. Nonetheless, 

these signals are also more sensitive to noise; thus, a cubic interpolation of the pH and electrical 

conductivity signals was performed in order to smooth them (see 2.2.4). Then, we focused on 

𝛽 = 𝑓(𝑝𝐻)and
𝑑𝜎

𝑑𝑝𝐻
= 𝑓(𝑝𝐻). These two functions have many interesting features; one of them is 

that they have local extremums at each component pKa. Thus, using their second derivative, the pKa 

of the components present in the solution were found. The conductivity gives another advantage: 

VFA and TAN have opposite responses. Indeed, a loss of charge during the titration decreases the 

electrical conductivity when an accumulation of charge increases it. So the up titration of NH4
+ to NH3 

induces a decrease of the electrical conductivity when the up titration of the acid form of VFA (VFAH) 

to the basic form of VFA (VFA-) increases it. Supposing a salt composed of the compound E+ and D-, 

the dissociation of E-D during down titration increases the electrical conductivity while the titration 

of acids decreases it. Thus, it becomes easier to distinguish the components present in the sample. 

Despite its interest, conductivity buffering presents many signals during the down titration which are 

not taken into account by the model. These signals could be due to hydrolysis and cell destruction 

which disturb the response of electrical conductivity by releasing ions in solution.  

Thus, buffer capacity was chosen as the best variable to estimate VFA and IC concentration during 

down titration as assumed by Van Vooren (2000) but taking into account the variation of volume 

during the titration. Since IC represent the main component of down titration, it was not necessary 

to implement any other components than IC and VFA to fit the experimental data. Zaher (2005) 

demonstrated that the estimation of VFA concentration is more accurate on up titration than on 

down titration. In accordance with the results obtained by Zaher (2005), our first analysis validates 

that up titration is more accurate to estimate VFA concentration since IC is removed at the end of the 

down titration. Indeed, the pKa of IC and VFA are near each other hence, IC disturbs the estimation 

of VFA. 
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2.3 Analytical Methods for Solid Waste Characterization 

2.3.1 Biochemical Composition of Solid Waste 

2.3.1.1 Carbohydrate Measurements 

The protocol described by Dubois et al., (1956) was used because it has been reported as the most 

accurate and repeatable protocol for carbohydrate content determination (Jimenez, 2012). Two 

different methods were carried out on solid waste. Using the first methods, freeze-dried and grinded 

samples were suspended in distilled water at 1 g.L-1 as recommended by Buffiere et al., (2008). Using 

the second methods, 0.050 g of freeze-dried and grinded samples were suspended in a shaker for 6 h 

in 5 mL sulfuric acid (98% mass) instead of water. Subsequently, for both of them, 1 mL of the 

solution was added to 1 mL of phenol at 5% in a hemolysis tube. After vortexing, 5 mL of sulphuric 

acid (98% mass) were added. After 10 minutes, the tubes were closed and vortexed. Absorbance of 

the samples was measured at 490 nm with a spectrophotometer at least 30 minutes after closing the 

tubes. Results are expressed in glucose equivalents, and converted to COD equivalents by multiplying 

the glucose equivalent by 1065. The COD of glucose is expressed in mgO2.gTS-1.  

2.3.1.2 Protein Measurements 

Two different methods have been tested: total Kjeldahl nitrogen (TKN) and Folin reagent. The TKN 

method analyzed the nitrogen content of the samples which was then converted into protein using 

an average ratio of 6.25 (Izhaki, 1993)(Girault et al., 2012) while the Folin reagent method expressed 

a protein concentration in BSA equivalents. 

Folin reagent method: the applied protocol was described by Lowry et al., (1951). Bovine serum 

albumin (BSA) made from 0 to 100 mgBSA.L-1 was used for the calibration. The method was adapted 

to deal with solid waste; freeze-dried and grinded samples were suspended in molecular water at 

1 g.L-1. 0.5 mL of this solution was then added to a hemolysis tube containing 2.5 mL of a solution 

comprising 50 mL of sodium bicarbonate NaCO3 at 2% with NaOH (0.1N), 1 mL of copper sulfate 

CuSO4 solution at 1% and sodium and potassium tartrate C4H4KNaO6. After 10 minutes, 0.25 mL of 

Folin solution (commercial solution) was added. After vortexing, the tubes were stored in the dark 

and at room temperature during 30 minutes. The reaction provides a blue coloration which is 

proportional to the protein concentration. The absorbance of the samples was then measured at 

750 nm on a spectrophotometer. Results were expressed in BSA equivalent (mgBSA.L-1).  

TKN method: 0.050 g of dried and grinded samples were added to a matrix and then suspended in 

5 mL of distilled water. This was followed by the addition of 10 mL of sulfuric acid solution (98% in 
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mass) and 0.366 g.L-1 copper selenite. The sample was then heated up to 420°C until the hydrolysis 

was completed, generally for 3 hours. Total ammonia nitrogen was finally measured using TKN Buchi 

AutoKjeldahl Unit K-370 (Buchi®, Flawil, Switzerland), Kjeldhal method. Results were expressed in 

grams of nitrogen per gram of dry matter. 

2.3.1.3 Lipid measurements 

Lipids were analyzed as heptane extractable material (HEM). 1 g of freeze-dried and grinded sample 

was extracted with 25 mL of hot and pressurized heptane using an extra-Accelerated Solvent 

Extractor ASE 200 (Thermo Fisher Scientific®, Sunnyvale, California 94085 USA). The extracted 

solution was collected in a 60 mL glass vial. The heptane was evaporated under a N2 flow. The 

quantity of extracted fatty matter was measured once the remaining sample was dried at 105°C 

during 2 hours. Results were expressed in grams of HEM per gram of dry matter (g.gTS-1).  

2.3.1.4 COD measurements 

The COD of samples and extracts were measured according to the ISO15705:2002 international 

standard using a COD Vario Tube Test MR (Tintometer GmbH, Division Aqualytic, Dortmund, 

Germany). The validity range of the assay varies between 22 and 1 500 mg02.L
-1. A 2 mL liquid sample 

is required. For the negative control, 2 mL of distilled water were added to the test tube. Vials were 

heated to 150°C for 2 h and the resulting oxygen consumption was determined by 

spectrophotometry (Muller and Jimenez, 2014). Two different methods were carried out on solid 

waste. The first method implied the suspension of freeze-dried and grinded samples in distilled water 

at 1 g.L-1, as recommended by Buffiere et al., (2008). With the second method, 0.050 g of freeze-

dried and grinded sample was suspended in a shaker for 6 h in 5 mL of sulfuric acid (98% in mass) 

instead of water. The results were expressed in milligrams of O2 per gram of dry matter (mgO2.gTS-1). 

2.3.2 Bio-accessibility Assessment by Chemical Sequential Extraction 

The chemical sequential extractions were applied on fresh substrates based on Jimenez et al., 

(2015a):  

 Dissolved Organic Matter (DOM) was obtained by liquid/solid phase separation performed by 

sample centrifugation (18600 g, 20 minutes, 4°C)  

 Readily Extractible Organic Matter (REOM) obtained by a saline basic extraction (8 mL.gTS-1 

NaCl and NaOH 10 mM) during 15min, at 30°C and 300 rpm of the remaining pellet from 

DOM extraction 
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 Moderately Extractible Organic Matter (MEOM) obtained by 4 sequential strong basic 

extractions (8 mL.gTS-1 NaOH 0.1 M) of the remaining pellet during 4 h, at 30°C and 300 rpm 

of the remaining pellet from REOM extraction 

 Slowly Extractible Organic Matter (SEOM) was obtained by 2 sequential strong acid 

extractions (8 mL.gTS-1 sulfuric acid 72%) during 3 h, at 30°C and 300 rpm of the remaining 

pellet from MEOM extraction 

 The remaining pellet from SEOM extraction is considered as Non Extractible Organic Matter 

(NEOM).  

The percentage of extraction of each fraction was measured by a COD analysis of the supernatant. 

2.3.3 Anaerobic digestion experiments 

2.3.3.1  Batch Experiments to Determine Methane Yield and Methane Production 

Kinetics 

MPR was estimated from the biological degradation of the substrate. Experiments were carried out 

in 8.5 L batch reactors with 6 L of sludge under mesophilic conditions as described in García-Gen et 

al., (2015). The substrates were grinded to approximately 1 cm. The reactor was fed at 1 gVS.L-1 in 

eight successive batches with the same substrate to adapt the micro-organism to the substrate. The 

biogas produced passed through a moisture trap and through a milligas counter fitted with a digital 

output (MGC-1 gas flow meters, DR.-ING.RITTER APPARTEBAU GMBH & CO, Bochum, Germany); the 

data were recorded online. Biogas composition was determined using a gas chromatograph (Perkin 

Elmer GC Clarus 480) equipped with two columns: the first one (RtUBond) was used at 110°C to 

separate CO2 and H2S from other gases, the second (RtMolsieve) was used at 70°C to separate O2, N2 

and CH4. The injector and detector temperature was 200°C. The detection of gaseous compounds 

was done using a thermal conductivity detector. The calibration was carried out with a standard gas 

composed of 0.1% H2S, 0.5% O2, 10% N2, 25% CO2 and 64.4% CH4 (special gas from Linde gas S.A.). 

The methane production of the last batch was used to obtain the MPR of the substrate. Methane 

yield was estimated as the maximal methane produced from 1 gram of dry matter on the eighth 

batch. Methane production times were selected on the MPR as values corresponding to the times 

required to reach a certain ratio of the methane yield from 5 to 95% with a regular increment of 5%.  

2.3.3.2 BMP Test 

0.8 gVS of the substrate were digested in batch anaerobic flasks. The volume of each flask was 573 

mL, with a working volume of 200 mL. The flask contained a macroelements solution (NH4Cl, 26.6 g.L-

1; KH2PO4, 10 g.L-1; MgCl2, 6 g.L-1; CaCl2, 3 g.L-1), an oligoelement solution (FeCl2, 2 g.L-1; CoCl2, 0.5 g.L-
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1; MnCl2 , 0.1 g.L-1; NiCl2, 0.1 g.L-1; ZnCl2, 0.05 g.L-1; H3BO3, 0.05 g.L-1; Na2SeO3, 0.05 g.L-1; CuCl2, 0.04 

g.L-1; Na2MoO4, 0.01 g.L-1), bicarbonate buffer (NaHCO3, 50 g.L-1), an anaerobic sludge at 5 gVS.L-1 and 

substrate at 5 gTS.L-1. Once the flasks were prepared, degasification with nitrogen was carried out to 

obtain anaerobic conditions and the bottles were closed with red butyl rubber septum-type stopper 

which were air tight. Triplicate bottles were incubated at 35°C. Biogas volume was monitored by 

using a manometric device (LEO 2, KELLER). Biogas composition was determined using GC as for 

batch experiments (2.3.3.1). The endogenous biogas production was determined following the 

biogas production of the sludge in the same condition without addition of substrates. Then, 

endogenous biogas production was withdrawn from the biogas production of the BMP test. 

2.3.3.3 Batch Experiments for Hydrolysis Modelling 

Two additional batch experiments were carried out for hydrolysis modelling: 

 wheat straw: after each chemical sequential extraction step, the remaining pellet was used 

as substrate for a BMP digestion test in order to evaluate each fraction’s biodegradation 

 Apple: after each chemical sequential extraction step, the remaining pellet was used as 

substrate for a BMP digestion test in order to evaluate each fraction’s biodegradation 

2.4 Spectroscopic Analyses 

2.4.1 Near Infrared 

Freeze-dried and grinded samples were scanned in reflectance over 1000-2500 nm, with a resolution 

of 2.5*106 nm, using a BUCHI NIR-Flex N-500 solids spectrophotometer fitted with a vial accessory 

(Buchi®, Flawil, Switzerland). Each sample was measured three times and shaken between each 

replicate in order to evaluate sample homogeneity. The resulting spectrum was the average of the 

three replicates which was used to construct the Partial Least Squares regression (PLSr) model. Once 

the PLSr model calibrated, the Standard Deviation of Repeatability (SDr) of the PLSr was assessed 

comparing the variance in the estimation of the triplicate with equation 11. 

𝑆𝐷𝑟 = √
1

𝑁
∑𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡𝑟𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑒)        (11) 

Three different chemometric treatments of the spectrum were tested. Absorbance (A) was 

calculated from reflectance (R) as A=log(1/R). For treatment one, absorbance was calculated then 

SNV was applied. For treatment two, absorbance was calculated then SNV was applied and 

eventually Savitzky–Golay filter with a second derivative. For treatment three, absorbance was 

calculated then SNV, and ultimately, detrending were applied. 
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2.4.2 3D Fluorescence 

Each soluble fraction extracted by chemical sequential extractions (section 2.3.2) was analyzed by 3D 

fluorescence spectroscopy. The fluorescence spectrometer used was a PerkinElmer LS55 in liquid 

phase fluorescence mode (PerkinElmer®, Waltham, Massachusetts, USA). Excitation wavelengths 

varied from 200 to 600 nm with increments of 10 nm. The slit width of emission and excitation 

monochromators was fixed at 10 nm. Scanning monochromator speed was about 1200 nm.s-1. 

Fluorescence values were recorded every 0.5 nm between 200 and 600 nm. Based on Jimenez et al., 

(2014a), the spectrum were decomposed in seven zones, the intensity of each zone was recorded. 

For PLSr use, the sample was described by 21 indicators which are the intensity of fluorescence of 

one zone times the percentage of COD represented by the extracted fraction associated to the 

spectrum. 

2.5 Solid Waste Analyzed  

2.5.1 Samples Analyzed for Fast Spectroscopic Characterization 

This study was conducted with 90 samples chosen to represent a wide range of potential substrates 

for AD. More precisely, the analyses were conducted on 15 FOG, 25 fruits, 41 vegetables, 27 farm 

waste such as straw, manure or grass, 25 types of cereal, 6 kinds of meat or fish extracts, 4 types of 

micro-algae. All the samples were freeze-dried and grinded to less than 1 mm in size before any 

analysis. These 90 samples were mixed together to artificially increase the dataset with 195 mixed 

organic waste and improve the robustness of the regression models. The characteristics of these 

mixed organic waste were set as the weighted average of the initial substrates. The MPR of the 

mixed organic waste were created in silico using the modified ADM1 (2.7.1) with parameters of 

kinetics defined on the MPR of the initial substrates. This approach was validated by García-Gen et 

al., (2015a). It leads to a database of 338 samples for COD, carbohydrate and nitrogen contents. The 

analysis of the lipid content was only performed on 231 of these samples, as the required amount of 

organic matter for lipid analyses was sometimes too large for certain samples with limited 

availability. The analysis of the methane production time was performed on 275 of these samples. 

The analysis of the methane production yield was performed on 232 of these samples as the 

endogenous respiration disturbed the methane yield assessment on substrates with a slow methane 

production. 

Before any correlation with NIRs could be established, the dataset was split into two in order to 

produce an independent validation set as recommended by (Dardenne, 2010). Thus, an independent 

validation set comprising 43 samples (38 for lipids, 42 for methane production times) was created for 
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the model validation, including 7 vegetables and 36 mixed organic waste. The remaining dataset of 

295 samples (193 for lipids, 194 for methane production times) was used to calibrate the model. The 

mean content of the calibration set was about 723mgO2.gTS-1, 0.03 g.gTS-1, 0.06 g.gTS-1, 1229 

mgO2.gTS-1 and 0.316 L.gTS-1 for carbohydrates, nitrogen, lipids, COD and methane yield respectively. 

The mean contents of the validation set were about 672 mgO2.gTS-1, 0.032 g.gTS-1, 0.021 g.gTS-1, 

1284 mgO2.gTS-1 and 0.270 L.gTS-1 for carbohydrates, nitrogen, lipids, COD and methane yield 

respectively. Table 3 summarizes the data set characteristics, with Standard Deviance (SD), Relative 

Standard Deviance (RSD), minimal (min) and maximal (max) values.  
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Table 3: Dataset features for NIR calibration and validation 

  
Calibration set Validation set 

Carbohydrates 

Max (mg02. gTS
-1

) 1220 913 

Mean (mg02.gTS
-1

) 723 672 

Min (mg02.gTS
-1

) 0 299 

SD (mg02.gTS
-1

) 286 152 

RSD 0.40 0.23 

N-Sample 295 43 

Nitrogen 

Max (g.gTS
-1

) 0.14 0.09 

Mean (g.gTS
-1

) 0.03 0.03 

Min (g.gTS
-1

) 0.00 0.01 

SD (g.gTS
-1

) 2.9*10
-2

 1.8*10
-2

 

RSD 1.06 0.55 

N-Sample 295 43 

Lipids 

Max (g.gTS
-1

) 1.03 0.13 

Mean (g.gTS
-1

) 0.06 0.02 

Min (g.gTS
-1

) 0.00 0.01 

SD (g.gTS
-1

) 0.18 0.02 

RSD 2.88 0.94 

N-Sample 193 38 

COD 

Max (mg02.gTS
-1

) 2884 1605 

Mean (mg02.gTS
-1

) 1229 1284 

Min (mg02.gTS
-1

) 876 1103 

SD (mg02.gTS
-1

) 294 121 

RSD 0.24 0.09 

N-Sample 296 42 

Methane yield 

Max (g.gTS
-1

) 0.717 0.350 

Mean (g.gTS
-1

) 0.316 0.270 

Min (g.gTS
-1

) 0.129 0.167 

SD (g.gTS
-1

) 0.093 0.041 

RSD 0.294 0.152 

N-Sample 194 38 

Figure 6 represents the times required to reach a certain ratio of the methane yield, from 5 to 95%, 

of both calibration and validation sets. 
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Figure 6: Calibration and validation set features of the experimental data. Description of the methane production time 

required to reach a certain ratio of the methane yield from 5 to 95%.  

2.5.2 Samples Analyzed for Correlation Analyses 

In order to estimate the relation between carbohydrate, protein and lipid contents, COD, methane 

yield and methane production times, only fully characterized samples were considered, reducing the 

dataset detailed above down to 222 samples. In details, analyses were carried out on Fat, Oil and 

Grease (FOG), fruits, vegetables, farm waste, cereal, meat or fish extracts, micro-algae and mixed 

organic waste. The mean content was about 710 mgO2.gTS-1, 0.032 g.gTS-1, 0.034 g.gTS-1, 1205 

mgO2.gTS-1, 0.70 and 0.297 L.gTS-1 for carbohydrates, proteins, lipids, COD, biodegradability and 

methane yield respectively. From 5 to 95% of the methane yield, the methane production mean 

times were respectively 0.07 d-1, 0.12 d-1, 0.16 d-1, 0.22 d-1, 0.28 d-1, 0.35 d-1, 0.44 d-1, 0.54 d-1, 0.68 d-

1, 0.86 d-1, 1.10 d-1, 1.43 d-1 1.88 d-1, 2.53 d-1, 3.43 d-1, 4.55 d-1, 5.80 d-1, 7.13 d-1, 8.54 d-1. The standard 

deviations were about 246 mgO2.gTS-1, 0.029 g.gTS-1, 0.094 g.gTS-1, 148 mgO2.gTS-1, 0.15 and 

0.063 L.gTS-1 for carbohydrates, proteins, lipids, COD, biodegradability and methane yield 

respectively. From 5 to 95% of the methane yield, the standard deviation of the methane production 

times were respectively 0.05 d-1, 0.10 d-1, 0.14 d-1, 0.19 d-1, 0.25 d-1, 0.31 d-1, 0.38 d-1, 0.45 d-1, 0.52 d-

1, 0.59 d-1, 0.67 d-1, 0.75 d-1 0.81 d-1, 0.82 d-1, 0.77 d-1, 0.65 d-1, 0.51 d-1, 0.35 d-1, 0.18 d-1. Figure 7A 

summarizes the data set characteristics for carbohydrates, proteins, lipids, COD, biodegradability and 

methane yield using boxplot. Data were scaled and centered in order to represent the different data 

on the same figure. Figure 7B summarizes the data set characteristics of methane production time 

expressed in days needed to reach a percent of the methane yield from 5 to 95 %. 
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Figure 7: Boxplot of data set characteristics. Figure 7A represents the lipid, protein, carbohydrate (carbo) contents, 

COD, methane yield (CH4Yield) and biodegradability (BD) on centered and scaled data. Figure 7B represents the 

methane production time expressed in days needed to reach a percent of the methane yield from 5 to 95%. 
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2.6 Correlation Analysis and Regression Models 

2.6.1 Pearson’s Correlation and Cosine 

Pearson’s correlations calculate the correlations between the variables two by two by dividing their 

covariance with the product of their standard deviation. It provides a coefficient which varies in a 

range from -1 to 1, indicating respectively an anti-correlation or a correlation. Permutation tests with 

9999 permutations were performed on the Pearson Correlation Coefficient (PCC) indicating if the 

coefficients were significantly different (alpha=0.05) from 0.  

The correlations between the b coefficients chosen for each PLSr model were assessed using cosine, 

package lsa from R.3.2.2, which measures the cosine between two vectors. Cosine varies in a range 

from -1 to 1, indicating respectively a negative co-linearity or a positive co-linearity. A value of 0 

indicates the orthogonality of the two vectors. Heat maps and correlation networks were drawn 

using the package corrplot from R.3.2.2 which takes in consideration either PCC and p-values. The 

non-significant correlations were represented as non-existing correlations. 

2.6.2 Principal Component Analysis 

Principal Component Analysis (PCA) reduces the dimensionality of the data while retaining as much 

variance as possible (Al-Kandari and Jolliffe, 2005). PCA projects the data into the space spanned by 

orthogonal axis named principal components, which are a linear combination of the original 

variables. In this study, the original variables are carbohydrate, protein and lipid contents, COD, 

methane yield, biodegradability and methane production time expressed in days needed to reach a 

percent of the methane yield from 5 to 95%. For the PCA analysis, data were centered and scaled. 

The number of principal components has been chosen to represent 90% of the total variance. PCA 

was used as an exploratory tool to identify the variables that explain most of the variance within the 

data set and to assess the existing correlations between variables. In order to verify the accuracy of 

the PCA, projections of the samples on the principal components were also observed.  

2.6.3 Partial Least Square Regression Model and Performance 

2.6.3.1 PLS 

The PLS model was performed using the FACT tool box with Scilab® 5.5.0. The models were created 

individually for the prediction of carbohydrate, nitrogen and lipid contents, COD and methane yield. 

Methane production times were either considered as independent values when running the PLS 

regression with the tool box FACT, Scilab®5.5.0, or as a vector using the package MixOmics, R®3.2.2. 
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First, the models were calibrated using the calibration dataset. Cross-validations were performed on 

the latter to optimize the number of latent variables. The Jackknife method was used, splitting the 

dataset into 15 blocks of equivalent sizes. Each block was alternatively removed from the calibration 

dataset used for the cross-validation in order to estimate the accuracy of the prediction. Thanks to 

these results, the number of latent variables and the treatment applied to the spectra were chosen 

to maximize the accuracy and robustness of prediction. Finally the chosen treatment was applied to 

the spectra of the independent validation dataset. The PLS model was then built on the calibration 

dataset applied to the treated spectrum of the validation set. The final accuracy and robustness of 

the model was assessed, based on the recommendation of Dardenne (2010). For the calibration of 

the model Standard Error of Calibration (SEC), Standard Error of Cross Validation (SECV) and 

determination coefficients between predicted and reference values (R2) were followed. The SEC was 

unfortunately not accessible using MixOmics but the Q2 and SECV were used to assess the 

performance of the PLS. Parameters such as the Root Mean Square Error of Prediction (RMSEP), 

Standard error of Prediction (SEP) and bias were used to assess the accuracy of the PLS on the 

validation data set. 

2.6.3.2 Sparse-PLS 

In order to reduce the number of b coefficients, sparse PLS was used. Sparse PLS model was 

performed using the package MixOmics with R®3.2.2 (Fourati et al., 2016). The models were 

calibrated on a calibration dataset. Cross-validations were performed on it to optimize the number of 

latent variables, the number of variables to keep in X-loadings (KeepX) and assess a first estimation of 

the model performances. As for PLS (2.6.3.1), the Jackknife method was used for cross-validation. For 

the calibration of the model Standard Error of Calibration (SEC) and Standard Error of Cross 

Validation (SECV) were assessed, for the validation of the model, Standard error of Prediction (SEP) 

was assessed. Once the model validated, b coefficients were analyzed. The vectors of b coefficients 

returned by the sparse PLS had a dimension equivalent to the one of a spectrum. Positive and 

negative peaks of the vectors of b coefficients were visually compared to the data reported on the 

literature.  

2.6.3.3 Distance from the calibration set 

To define the relation between the Confidence Interval (CI) of prediction and the distance between a 

sample and the calibration dataset on the final PLSr model, groups of samples with similarity were 

subsequently removed from the calibration set and used as validation sets to simulate new samples 

that would be analyzed. The prediction errors were assessed as well as Euclidian and Mahalanobis 

distances as described in equations 12 and 13.  
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Mahalanobis distance: 

𝑀𝑑 = 𝑑𝑖𝑎𝑔(√𝑈 ∗ 𝑋′ ∗ 𝑋 ∗ 𝑈′)        (12) 

Euclidian distance: 

𝐸𝑑𝑚𝑖𝑛 = min[√𝑑𝑖𝑎𝑔[(𝑈 − 𝑋) ∗ (𝑈 − 𝑋)]]           (13) 

𝐸𝑑𝑚𝑒𝑎𝑛 = mean[√𝑑𝑖𝑎𝑔[(𝑈 − 𝑋) ∗ (𝑈 − 𝑋)]]  

where U represents the validation spectrum whose distance to the calibration set is analyzed. X 

represents the calibration set of the spectrum and diag the function that calculates the diagonal of 

the matrix. The samples of the calibration set with errors of calibration above 5% were removed from 

X for distance analysis. It was assumed that samples with high errors of calibration are not correctly 

taken into account by the PLS regression. These distances were calculated on the processed 

spectrum but also on the processed spectrum projected on the space described by the PLS loading 

vectors replacing U by Uproj and X by Xproj in equations 12 and 13 with Uproj and Xproj described as: 

𝑈𝑝𝑟𝑜𝑗 = 𝑈 ∗ (𝑋′ ∗ 𝑋) ∗ 𝑃 ∗ [(𝑃′ ∗ 𝑋′ ∗ 𝑋 ∗ 𝑃)−1] ∗ 𝑃′     (14) 

𝑋𝑝𝑟𝑜𝑗 = 𝑋 ∗ (𝑋′ ∗ 𝑋) ∗ 𝑃 ∗ [(𝑃′ ∗ 𝑋′ ∗ 𝑋 ∗ 𝑃)−1] ∗ 𝑃′     (15) 

where P represents the loading vectors of the PLS model. 

2.6.3.4 Modelling of the confidence interval based on the distance from the 

calibration set 

Based on the distance and prediction errors analyses (section 2.6.3.3), the relation between the CI 

and the distance between a sample and the calibration dataset were modelled. To do so, the samples 

were ranked from the lowest to the highest distances to the calibration set and split in 10 groups 

with equal number of samples. The first group contains the samples with the lowest distances to the 

calibration set and the last one, the samples with the highest distances from the calibration set. In 

each group, the 5% of samples with the highest errors of prediction were selected to represent the 

CI. The relation between the CI and the distance from the calibration set was modelled using 

equation 16: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑎 ∗ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛 + ‖𝑏‖      (16) 
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The parameters (a,b,n) were optimized in order to minimize the square value of the difference 

between the experimental confidence interval and the confidence interval modelled through 

equation 16 using the function leastsq from Scilab®.5.5.0. 

2.7 Dynamic Anaerobic Digestion Models 

2.7.1 Dynamic Models: Modified ADM1  

ADM1 benchmarked on the BSM2 report (Rosén and Jeppsson, 2008) was implemented in Scilab®. 

Using the same input as in the BSM2 report, a simulation of 200 days was run to reach steady state. 

Both relative and absolute errors between the 45 ADM1 variables output from the simulation and 

from the BSM2 report were investigated. Only minor errors were encountered, the largest relative 

and absolute errors were in the range of 10-4 and 10-5 respectively. ADM1 model was then modified 

based on the work of Ramirez et al., (2009). The degradation of the particulate organic matter has 

been implemented with Contois kineticss to describe both disintegration and hydrolysis. Hydrolysis 

was supposed to be non-limiting. Three micro-organism groups were considered for the hydrolysis of 

carbohydrates, proteins and lipids. A consortium regrouping all the hydrolytic micro-organism was 

considered for the disintegration. As recommended by (Jimenez et al., 2016), a modification of this 

model was tested and four different particulate inputs were implemented: XRC, XMC, XSC and XNE 

(Figure 8) corresponding to the fractionation simulating accessibility, i.e. DOM + REOM as readily 

hydrolysable fraction XRC, MEOM as moderately hydrolysable XMC and SEOM as slowly hydrolysable 

XSC and NEOM as poorly hydrolysable XNE (REOM, MEOM, SEOM and NEOM are detailed in section 

2.3.2). These four particulate inputs were degraded by the same biomass but had different µmax and 

composition in the modified ADM1. A “switching” function was also introduced to simulate 

sequential hydrolysis (Equation 17).  

𝜌(𝑖) = 𝑘𝑚 ×
𝑆(𝑖)
𝑋⁄

𝐾𝑆(𝑖)+
𝑆(𝑖)
𝑋⁄
× 𝑋 ×

1

1+
∑ 𝑆1𝑡𝑜(𝑖−1)

𝐾𝐼
⁄
       (17)   

where: 

 km is the growth rate of hydrolytic bacteria (d-1) 

 KS is the half-saturation coefficient of hydrolytic bacteria  

 S is the concentration of organic matter contained in the fraction considered (kg 

COD/m3) 

 X is the hydrolytic biomass (kg COD/m3) 
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 ∑ 𝑆1𝑡𝑜(𝑖−1)  represents the sum of the particulate inputs corresponding to more 

accessible fraction than S. 

 KI is the switching concentration for a fraction to another fraction in the switching 

function (kg COD/m3) 

 

 

Figure 8: Modified ADM1 with four different particulate inputs XRC, XMC, XSC and XNE. 

2.7.2 ADM1 Modelling Approach Using NIRs 

To shorten the time needed to implement ADM1, estimations based on NIRs have been used. 

Conversion of the NIRs predicted analyses values into ADM1 parameters are represented in Figure 9 

and detailed below. 
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2.7.2.1 Carbohydrate, Protein, Lipid and Inert Contents 

Nitrogen is converted in protein COD equivalent multiplying TKN in gram by 6.25*1.42. 

Carbohydrates prediction were based on DuBois et al., (1956) protocol in COD equivalent. Lipids 

prediction is expressed in gram under heptane extraction per gram of total solid, thus a conversion 

rate of 2.8 between gram and COD was applied (Batstone et al., 2002). It represents the averaged 

COD of 1 gram of oil. COD and methane yield prediction were used to assess the non-biodegradable 

content of the substrate.  

2.7.2.2 Methane Production Rate 

The prediction of the MPR is made of the predicted methane yield at each of the 19 methane 

production times (5-95 %). The initial point was added as zero methane produced at time 0. The MPR 

was then interpolated. A smooth spline with the function smooth.spline was done using R®3.2.2 to 

remove noise.  

2.7.2.3 Particulate Inputs with Different Bio-accessibility 

If XRC, XMC, XSC and XNE inputs were implemented, the repartition of the initial COD in XRC, XMC, XSC and 

XNE was determined by analyzing the changes in the methane production slope. To automatize this 

procedure, the methane production curve was estimated using linear regression on the first 10% of 

the methane produced. The first fraction end point is defined as the first point where the difference 

between the linear regression and the experimental data is above 10% of the methane produced. 

The percentage of XRC is then defined as the methane produced until the first fraction end point 

divided by the total amount of methane produced. From this point until an additional production of 

10%, a second linear regression is used to define the XMC percentage and so until the whole curve is 

estimated using linear regression. If the number of fractions is up to 4, the step of 10% is increased 

by 5% and so on until the number of fractions is inferior or equal to 4.   

2.7.2.4 Estimation of the Kinetics 

The kinetics was assessed based on the predicted MPR. For the initialization, a maximal specific 

growth rate (µmax) of 3 d-1 was set, representing the mean µmax found in the 275 samples. The 

initialization of the ADM1 was made in accordance with the experimental protocol. Seven batches 

were successively simulated with an input of 1 gTS.L-1 in a 6 liter reactor under mesophilic conditions. 

The estimation of the kinetics was made on the eighth batch. The estimation of the kinetics was 

considered as a non-linear problem. Using ADM1 from (Rosén and Jeppsson, 2008), the µmax of the 

first order disintegration kinetics was optimized in order to minimize the squared value of the 

difference between the predicted methane production and the modeled methane production using 
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the function leastsq from Scilab®.5.5.0. However, using the modified ADM1 (see Material and 

Methods 2.7.1), too many µmax terms are present (4) and their estimation had to be made by trial and 

error to minimize the difference between the predicted methane production and the modeled 

methane production.  

 

 

Figure 9: Modeling approach diagram 

 

2.7.2.5 Confidence Range of Simulation 

For the prediction of the confidence range of simulation, the same approach as detailed above was 

used, but ± 1 SEP were added to the 19 methane production times and the methane production yield 

before to produce the MPR. ± 1 SEP was also added independently to carbohydrate, protein and lipid 

contents and COD. Every scenario was then simulated. The confidence interval of the simulation was 

defined has the minimal interval containing all the scenarios.  
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3.1 Chapter Guidelines 

This chapter is based on the publication (Charnier et al., 2016) 

This PhD aims to develop a method that allows predicting the AD process performances based on 

feeding strategy. To do so, a required step is the estimation of the biological state. It can be seen as 

the starting point of the simulation. Thus, this chapter presents in section 3.3, the state of art on 

biological state estimation and focuses especially on analyses of soluble compounds using titrimetric 

methods. Then a short reference to the “Materials and Methods” section is made in 3.4. The second 

section, 3.5, presents the results obtained using the existing titrimetric methods for the estimation of 

volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia Nitrogen (TAN). The section 3.6 

presents the results obtained by the new titrimetric method developed in this PhD and finally, 

section 3.7, presents the prototype developed with SNAC method. 
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3.2 Technical and Graphical Abstracts 

Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in 

the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography 

and infrared spectrometry have been developed to follow the concentration of these compounds but 

none of these methods are affordable for small AD units. Only titration methods answer the need for 

small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack 

of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to 

estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device 

named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic 

Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC 

were tested on 24 different plant samples in a range of 0-0.16 mol.L-1 TAN, 0.01-0.21 mol.L-1 IC and 0-

0.04 mol.L-1 VFA. The standard error was about 0.012 mol.L-1 TAN, 0.015 mol.L-1 IC and 0.003 mol.L-1 

VFA. The coefficient of determination R² between the estimated and reference data was 0.95, 0.94 

and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH 

points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on 

IC. These results show that SNAC is an accurate tool to improve the management of AD plant. 
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3.3 Introduction of the Chapter 

3.3.1 Key Parameters to Estimate the Biological State of Anaerobic Digestion 

Processes 

 

Several variables are found to strongly influence the process such as micro-organisms activity, pH, 

temperature, alkalinity, concentrations of free ammonia, hydrogen, sodium, potassium, heavy 

metals, volatile fatty acids (VFA), ions concentration and other compounds (Appels et al., 2008). 

However, AD process performances are mainly evaluated through the methane production. Methane 

production is usually estimated from both biogas production and biogas composition. Biogas 

production is monitored through flow sensors that are frequently part of the standard digester 

instrumentation. Gas composition measurements are less common. The basic gas analyzers are 

based on infrared absorption measurements to determine carbon dioxide and methane 

concentrations and can be either on-line or off-line. Several of the sensors today available on the 

market are mainly found in units with a minimal production of 150-200 kWe (Jimenez et al., 2015b). 

More sophisticated gas analyzers can estimate specific compounds of interest for the process 

performances estimation or the biogas valorization such as hydrogen sulfide or volatile organic 

compounds.  

Temperature is another key variable of the process because it drives the microbial population and 

the kinetics of reactions according to the Arrhenius law and thermodynamic equilibrium such as gas-

liquid equilibrium according to Henry law or acido-bacic equilibrium affecting the pKa. Three 

commonly used temperature sensors are available: resistance thermometer, thermo-element, and 

thermistor (Jimenez et al., 2015b).  

pH is a critical variable, its value indicates the risk of acidification and process failure. Immersion of 

the pH probe in liquid phase for on-line measurements led to the development of hydraulic, 

mechanical and chemical cleaning strategies, to limit the development of biofilm and probes 

clogging. On-line liquid sensors such as temperature or pH sensors are usually accurate but 

depending on the mixing in the reactor, the sensors can be misleading, estimating local values not 

representative of the plant. For more details, Harremoes et al. (1993) provided an overview on the 

good practice of sensors installation in wastewater treatment plants for a guaranteed accuracy.  

In terms of monitoring, pH measurement cannot be the sole indication of acidification because in 

well-buffered medium, high acids concentration would have to form in order to cause a detectable 

drop in pH, by which process failure would already occur (Lahav and Morgan, 2004). Thus, acid 
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production, mainly represented by VFA production, has to be monitored. There has been a significant 

amount of research directed towards on-line VFA determination techniques in particular Gas 

Chromatography (GC) headspace techniques (Boe et al., 2007 and Boe et al., 2008) but these 

methods remain too expensive for most industrial plants.  

Mainly produced during acidogenesis, acid forms of VFA compounds inhibit the following steps of the 

process: methanogenesis and acetogenesis. Up to a threshold, VFAs accumulate in the reactor, slow 

down and eventually stop the whole process. The inhibition is represented by the acid form of VFAs 

and is therefore correlated with pH. Thus, a second important compound concentration to monitor is 

the concentration of inorganic carbon (IC). Indeed IC can buffer the plant acidification thanks to the 

pKa of H2CO3/HCO3
- which is at 6.3 at 25°C (Figure 10).  

Total Ammonia Nitrogen (TAN), the end-product of anaerobic digestion of proteins, urea and nucleic 

acids is another important variable to monitor. Unlike the importance of ammonia for bacterial 

growth at lower concentrations, high concentrations of ammonia may cause a severe disturbance in 

the anaerobic process performance (Rajagopal et al., 2013). Hejnfelt and Angelidaki, (2009) reported 

that 3 g.L-1 of TAN could inhibit 50% of the methanogenesis. TAN inhibitory effect depends on the pH, 

the inhibition is represented by free ammonia, the basic form of TAN (pKa = 9.2, at 25°C), because of 

its permeability through the cell membrane (Koch et al. (2010)). Due to their inhibition or pH 

buffering effects, VFA, IC and TAN concentrations are three of the main parameters to monitor AD 

plants (Molina et al. (2009)). 
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Figure 10: Effect of pH on ammonia and volatile fatty acids inhibition. Red arrows indicate the inhibitory effect of non-

ionized form of TAN and VFA on the bacteria. 

3.3.2 Available Sensors for VFA, IC and TAN Concentrations Measurement 

Over the years, research has been focused on developing a methodology and a sensor that allow 

estimating the concentrations of VFA, IC and TAN in AD samples. An often encountered problem is 

the volatility of IC, TAN and to a smaller extent VFAs, which can induce a loss of IC, TAN and VFA from 

samples to be analyzed. Nonetheless, a simple titration method is deemed to be adapted as 

demonstrated by Spanjers and Van Lier (2006). Nowadays, most of the titration tools used in 

anaerobic digestion are based on titrant’s volume analysis on key points. Nordmann (1977) and 

Ripley et al. (1986) developed two similar methods to estimate the ratio VFA/IC. In both methods, a 

first step of the titration provides an estimation of IC followed by a second step of the titration to 

estimate VFA.  

Several studies have been conducted to adapt these formulas to on-line titrators for liquid industrial 

effluents. A first study on wastewater from textile finishing industries designed an on-line device 

using commercially available component to estimate VFA concentrations (Feitkenhauer et al. (2002)). 

It was followed by Bouvier et al. (2002) who designed a on-line sensor estimating both VFA and IC 

concentrations using a recalibration of the Ripley et al. (1986) equations. This device found 
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commercial applications under the name Anasense® (Applitek Belgium) and has proven to be 

suitable to monitor industrial scale plants (Ruiz et al., 2005). Even if these methods are suitable for 

industrial effluents, their common drawback is the underlying assumption that VFA and IC represent 

the whole alkalinity of the samples. 

Thus, additional studies have been done to estimate the true value of VFA and IC concentrations 

taking into account already known concentrations of phosphorous and sulphide compounds to 

calculate alkalinity. Moosbrugger et al. (1993) recommended a first accurate method to estimate IC 

and VFA concentration based on 5 pH points. Two of these pH points are at 0.5 unit to each side of 

the pKa of acetate, two to the pKa of HCO3
-/H2CO3 and the last point is usually between pH=3 and 

pH=2 in order to correct the pH values measured. Hence, knowing the concentration of sulfur and 

phosphate compounds in solutions, these authors advocated that the equations and the software 

developed estimated an accurate value of IC and VFA concentrations. A method using eight pH points 

was also proposed using almost the same methodology (Lahav and Loewenthal, (2000)). Even if more 

accurate than the equation developed by Nordmann (1977) and Ripley et al (1986), this method is 

difficult to apply because its accuracy depends on the exact knowledge of the concentrations of 

sulphide and phosphorous. Moreover, they are not the only components that account for total 

alkalinity.  

While there was no major study published on this topic over the last years, Purser et al. (2014) 

recently advocated for a recalibration of the method developed by Nordmann (1977) depending on 

the substrate used. These new equations reduced the absolute mean error by 600 % to 800 % 

depending on the substrate (Figure 11). The same year, Vannecke et al., (2014) evaluated the use of 

the methods developed by Moosbrugger et al., (1993) and Lahav and Loewenthal, (2000) and 

concluded that the method developed by Moosbrugger et al., (1993) is more accurate to monitor 

anaerobic digesters treating solid waste. Eventually, Lützhøft et al., (2014) confirmed the interest of 

titration methods to monitor AD plants. They compared the different methods and concluded that 

the simpler the method (eg., using only two pH points as did Nordmann (1977) and Ripley et al 

(1986)), the better the results. However linear correlation between titration results and GC VFA 

measurements was found in this study, it highlighted that the use of titration methods on complex 

matrix such as digested manure with high concentrations of interfering components induces an 

overestimation of VFA concentration. 
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Figure 11: Estimation of total VFA (tVFA) concentrations from the recalibrated equation of Ripley et al., (1986) (equation 

4) and the recalibrated equation of Nordmman (1977) (equation 5) plotted against the tVFA measured by gas 

chromatography for 52 energy crop and slurry digestate samples (Purser et al., (2014)). 

All these methods have a major drawback as they only take a limited number of components into 

account. Thus, the only way to obtain accurate results is to recalibrate each method for each new 

substrate. Hence, some researches focused on a method able to provide accurate results with any 

kind of component present in the solution (Van Vooren, (2000), Van De Steene et al., (2002)). This 

method is based on the whole titration curve and the buffer capacity is calculated as 𝛽 =
𝑑𝐶𝑡

𝑑𝑝𝐻
 where 

Ct is the concentration of the associated counter-ions used for the titration of the solution (Figure 

12). A model simulates the buffer capacity during the titration depending on the concentrations of 

VFA and IC. By minimizing the error between the model and the experiment, an estimation of VFA 

and IC concentrations is obtained. However, even if promising, this method can make errors in 

distinguishing different components.  
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Figure 12: Buffer capacity curve for a complex aqueous system containing 5mg CO2.L
-1

, 7 mg o-PO4-P.L
-1

, 15 mg NH4
+
-N.L

-1
 

and 0.6 meq.L
-1

 of an unspecified soap (Van Vooren 2000). 

This work was followed by Zaher et al (2003) and Zaher (2005) who proposed to develop this method 

adding an up-titration to remove IC from the equation and to estimate TAN concentration. These 

authors also recommended implementing other components than VFA, IC and TAN in the model, like 

lactic acid, phosphorus or even blind buffer in order to better fit experimental data. This method 

meets the problem of the very large number of different components that can be present in a plant 

sample and loses its accuracy in case of a solution with too many components. Another problem is 

the presence of complexes which are impossible to distinguish from acids with only a pH probe.  

The aim of this thesis is first to compare the accuracy of the estimations from Nordmann (1977), 

Ripley et al (1986), Purser et al (2014) and Zaher (2005) methods on 24 samples and secondly to 

develop an innovative sensor in order to improve the monitoring of AD plants. We decided to go 

further with the buffer capacity method since it is the most promising one to deal with additional 

component interferences as recommended by Zaher et al. (2003). To do so, we added a variable that 

could allow differentiating the component of a plant sample in an easier way. Thus, an electrical 

conductivity sensor was implemented in the titration vessel. It has been shown that combining pH 

and conductivity can be a powerful tool for the estimation of VFA and IC concentration (Aceves-Lara 

et al. (2012)). Because the conductivity is influenced by the ionic charge of the component in the 

media, it becomes easier to distinguish the components. Using buffer capacity, the effect of 

compounds on the titration curve depends only of their concentration and pKa, while the effect on 

the electrical conductivity depends on the concentration and the pKa but also on the molar 
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conductivity which is specific to the compounds. The protocol of titration was adapted with the 

addition of up-titration after down-titration in a closed reactor in order to obtain an estimation of IC, 

VFA and TAN concentrations. Then a way to treat and combine these variables was developed to 

obtain a robust and accurate method. This was applied to 24 plant samples chosen to represent a 

wide range of AD process. 

3.4 Materials and Methods Related to this Chapter 

Detailed information about the materials and methods related to this chapter are provided in the 

“Materials and Methods“ section 2.2. 

3.5 Results of the Existing Methods 

3.5.1 Estimation of VFA and IC 

As described in the “Materials and Methods” sections 2.2.4.1 and 2.2.4.2, the four methods 

(Nordmann, (1977); Ripley et al., (1986); Purser et al., (2014) and Zaher (2005)) were tested on the 

data collected during the titration of the 24 AD plant samples. Nordmann (1977), Ripley et al. (1986) 

and Zaher (2005) provided acceptable estimation of IC concentration with a strong correlation, 

respectively R²=0.91, R²=0.87 and R²=0.87 and standard errors of  0.019, 0.044 and 0.033 mol.L-1 

since IC is the main component influencing the down titration (Figure 13). Nonetheless, Zaher (2005) 

and in a stronger manner, Ripley et al (1986) tend to underestimate IC with a coefficient of the 

regression of 0.65 and 0.60 respectively while using Nordmann (1977) the regression coefficient is 

about 1.03. Thus, the assumption that 80% of the IC was titrated at pH=5.75 made by Jenkins et 

Morgan, (1983)  was not accurate for the samples analyzed and a recalibration of this assumption 

could be made as it was done for VFA. But we agreed on the choice of Purser et al. (2014) not to 

work on the recalibration of IC estimation since good correlation was observed using Nordmann 

(1977) equations.  
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Figure 13: Estimation of IC concentrations by the method of Nordmann (1977), Ripley et al (1986), Purser et al (2014) and 

Zaher (2005) 
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VFA has usually a low impact in the titrant volume. Thus, its estimation is easily disturbed by other 

compounds and the complexity of the samples induced errors when estimating VFA concentration. A 

determination factor of R²=0.02 were found for equation of Nordmann (1977) and R²=0.05 for 

equation of Ripley et al (1986) between the GC values of VFA concentration and the estimations 

provided by these methods (Figure 14). The recalibrations proposed by Purser et al (2014) provided 

more accurate estimations (equation 3.1: R²=0.03; equation 3.2: R²=0.03; equation 3.3: R²=0.11).  But 

it seems that the equations were not calibrated for this kind of sample. Indeed Purser et al., (2014) 

calibrated their equations on samples containing VFA in a range of 0-4.5 g/L when our samples were 

in a range from 0-3 g/L. Moreover, their equations were adapted to one kind of plant sample when 

we used a huge variety of plant samples. The method developed by Zaher (2005) has been tested 

and has shown more accurate results in the 24 AD plant samples. The correlation between the 

estimated value and the GC value is about R²=0.58 for VFA.  
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Figure 14: Estimation of VFA concentrations by the method of Nordmann (1977), Ripley et al (1986), Purser et al (2014) 

and Zaher (2005). The bisector is represented by a straight line on the graphics. 
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These results tend to show that a method based on the analysis of the titrant volume on key points 

cannot be accurate for a wide variety of complex samples and that non-linear resolution on the 

buffer capacity, as used by Zaher (2005), increases the accuracy of the estimation. Indeed, in case of 

key point analysis, the same equation is applied independently from the number of components in 

the sample, thus assuming strong hypotheses on its composition. For instance, lactic acid which has a 

pKa=3.9 will influence the estimation of VFA using equation developed by Nordmann (1977), Ripley 

et al (1986) or Purser et al (2014). The buffer intensity of lactic acid, IC and VFA is represented in 

Figure 15. The buffering effect of water is observed from pH 3. It can be seen that lactic acid has a 

non-zero buffer intensity between the VFA thresholds (pH 4.4 and 5) where only VFA and IC are 

supposed to influence the titration. Concretely, according to the Nordmann (1977) formula, the 

buffer intensity of lactic acid will be considered as the one of VFA, overestimating VFA concentration.  

 

Figure 15: Buffer intensity of lactic acid, acetate and carbonate and their influences on the estimation of VFA and IC by 

Nordmann (1977). The VFA analysis thresholds indicate the range of pH in which only IC and VFA are supposed to 

influence the titration using Nordmann (1977) equations.  

Nonetheless, the methods developed by Nordmann (1977) and Ripley et al. (1986) are widely used to 

monitor industrial AD plants. A commercial argument of the firm commercializing the associated 

devices is that it can be a powerful tool to follow the variation of VFA and IC in an AD plant supposing 

that only VFA and IC vary in time. Since in Figure 15, it has been shown that lactic acid concentration 

but also IC concentration impact the estimation of VFA using Nordmann (1977) method, this 
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hypothesis has been checked running a simulation in which only VFA and IC vary in time during the 

AD process with sinusoidal variations. This purely theoretical simulation allows us to follow the 

evolution of the estimation of IC and VFA with wide variations. A simulation was run on 100 days 

with a constant concentration of lactic acid (0.03 mol.L-1), variation of IC from 0 to 0.1 mol.L-1 and 

variation of acetate from 0 to 0.033 mol.L-1. Estimation of VFA and IC was performed using Nordmann 

(1977) method and compare to the theoretical data (Figure 16).  

 

Figure 16: Simulation of Nordmann (1977) estimation for IC and VFA on 100 days supposing a constant concentration of 

lactic acid (0.03 mol.L-1) 

The use of different phase for the sinusoidal variations of IC and VFA highlights slight effects of VFA 

and IC concentrations on the estimation of each other. Nonetheless, it demonstrates that, as 

supposed, even if the absolute estimation of VFA is wrong, it allows us to follow the trend of the 

evolution of VFA and IC if the composition of the other components is stable. A limit of this approach 

is the stability assumption of the other components that cannot be verified by the device. The use of 

this assumption must be made carefully, evermore if the characteristics of the substrates to be 

digested changes. 
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The method developed by Zaher (2005) was also tested to estimate TAN on the 24 plant samples. 

The coefficient of determination between the estimated values and the TKN values is about R²=0.82 

for TAN. Despite the good correlation, the accuracy of the estimation of TAN concentration 

decreases with the concentration of TAN (Figure 17, left part). 

 

Figure 17: TAN concentrations estimation based on buffer capacity using the method developped by Zaher (2005) on the 

left part and SNAC on the right part. 

The method was limited by two main factors. First, it assumes that the volume does not change 

during the titration, which is not a good assumption when the concentration is high. The adding 

titrant volume can represent 20% of the total volume of the solution which dilutes the TAN 

concentration. This phenomenon is illustrated by the estimation of TAN concentration on the highest 

values (Figure 17). It could be solved diluting the samples before the titration in order to reduce the 

amount of TAN. However, the problem is that the accuracy on VFA estimation will decrease due to a 

lower VFA impact on the signal and thus, a higher sensibility to noise. The second solution is to 

increase the molarity of the titrant, even if the experiment is carried out at 1 M and Zaher, (2005) 

recommended 0.5 M. It could be applied but in case of low concentration of TAN and VFA, it would 

drastically reduce the amount of data recorded during the titration and impact the accuracy of the 

estimation. Another limit of the resolution on buffer capacity is that the buffer capacity is not charge-

sensitive. Thus, for instance, the dissociation of a salt will be seen as the acidification of an acid on 

the buffer capacity curve. And we noticed that this phenomenon happened many times in our 

experiments, compromising the use of buffer capacity alone. 
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The previous model (section 2.2.4.2) was modified to correct the drawbacks highlighted. First of all, 

we assumed a thermodynamic equilibrium between gaseous and liquid phase for TAN and IC. This 

hypothesis relies on the fact that titration is made in a closed reactor at constant pressure (equation 

6, section 2.2.4.3). Then the possible variation of volume during the titration is taken into account 

(equation 7, section 2.2.4.3).  These modifications corrected the effect of dilution observed using the 

Zaher (2005) method as shown in Figure 17. 

3.6 Accurate Estimation of VFA, IC and TAN Concentrations by Coupling 

pH and Electrical Conductivity Measurement. 

If buffer capacity was used for down titration, up titration was more challenging. Indeed both buffer 

capacity and buffer conductivity provide interesting data and a decision tree had to be designed. A 

first estimation was made on buffer capacity and a second one on buffer conductivity for up titration 

(Figure 18). 

 

Figure 18: Comparison of the estimation on buffer conductivity and buffer capacity for VFA and TAN concentration on up 

titration 

The Figure 18 shows that the estimations on buffer capacity overestimate VFA concentrations while 

the estimations based on buffer conductivity underestimate VFA concentrations. Actually, these data 

are complementary. As explained in “Materials and Methods” section 2.2.5.2, one measurement is 

charge-sensitive and the other is not. To go in details with this, an example is provided in the 

following. During up titration, VFA and a complex salt E-D are assumed to be present in the sample. 

Before up titration starts, under acidic conditions, the salt is dissociated to E+ and D-. The addition of 

sodium hydroxide induces the complexation of these salts into E-D, thus, two charges are lost 
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decreasing the electrical conductivity. This complexation consumes sodium hydroxide and buffers 

the solution. Around the same pH value, VFAH is titrated to VFA- increasing the electrical 

conductivity. This transformation from VFAH to VFA- consumes sodium hydroxide too and buffers the 

solution. Hence, on one hand, buffer capacity data results from the addition of the effect of these 

two base-consumer components. On the other hand, the conductivity buffering data is the average 

of their opposite effects. Thus, working on both buffer capacity and buffer conductivity, we can 

manage to get back on the response of VFA only. It explains why buffer capacity and conductivity 

buffering together could be chosen to estimate the component concentration in case of complex 

solutions with many components. This effect was not clearly observed on TAN estimations. Indeed, 

even if the same effects were expected, the high concentration of TAN and low impact of other 

components around the pKa of ammonium made it not observable.  

3.6.1 Building of a Decision Tree 

Three unknown concentrations (i.e., TAN, VFA and IC concentrations) have to be estimated by the 

algorithm. TAN and VFA concentrations are calculated with the buffer capacity and conductivity 

buffering on up titration. The estimations made on buffer capacity and conductivity buffering are 

compiled to remove the disturbance of other components. Eventually, the estimation of VFA 

concentration on down titration is discarded and IC is estimated from down titration. Thus, the 

algorithm provides an estimation of IC, VFA and TAN concentrations following the decision tree of 

Figure 19. 
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Figure 19: SNAC decision tree 
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3.6.2 Example of a Titration Using SNAC 

Here is shown the example of the titration of a sample from a plant treating an industrial effluent 

from a paper mill wastewater. Observing when the derivative of buffer capacity and conductivity 

buffer goes to 0, it reveals 3 components: VFA, TAN and also one other component with pKa at 6.2 as 

indicated by the derivative of conductivity buffering and buffer capacity. The titration of this 

component induces a decrease of electrical conductivity interpreted as a loss of charge. Around pH 

4.7, the titration of VFA increases the electrical conductivity. Thus, it increases the corresponding 

peak of buffer capacity and decreases the one of conductivity buffering (Figure 20). Around pH 9.2, 

the titration of TAN induces a decrease of electrical conductivity and an increase of the buffer 

capacity. The simulation of VFA and TAN with the reference values was performed. It can be 

observed that the curve representing the simulation made with the estimation of SNAC reproduces 

the signal of VFA and TAN without being disturbed by the third component. Figure 20 shows that 

combining buffer capacity and buffer conductivity, it is possible to estimate accurately the 

concentration of TAN and VFA in complex media with many other components. 
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Figure 20: Titration of an industrial effluent, comparison of buffer capacity and buffer conductivity 
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3.6.3 Discussion of the Advantages between the Existing Methods and SNAC  

It has been shown that key point analysis on the titrant volume is accurate to measure the main 

components which are mainly IC but does not provide accurate values in case of complex solutions to 

estimate the concentration of secondary components such as VFA because of its lower effect on the 

titration. Nonetheless, these methods are widely used because, with the assumption that the other 

components do not change, it provides a cost efficient tool to monitor the dynamics of VFA and IC 

concentrations (Figure 16). The use of the method developed by Van Vooren (2000), Van De Steene 

et al. (2002) and improved by Zaher (2005) provides more accurate values. Nonetheless, using buffer 

capacity alone, it is hard to distinguish and estimate all the components that could be present in a 

solution. In case of complex samples with many components, their signals overlapped each other too 

much to estimate them accurately. Combining electrical conductivity and pH sensors provides new 

information and allows improving the robustness and accuracy of titration sensors used in wide 

range of plant samples (Figure 21). 

 

Figure 21: Comparison of VFA estimation using buffer capacity, Zaher (2005), or buffer capacity coupled to buffer 

conductivity (SNAC) 
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previous recalibration. As shown in Table 4, the standard errors were reduced to 0.003 mol.L-1 for 

VFA, 0.012 mol.L-1 for TAN and 0.015 mol.L-1 for IC concentration. It has been shown that 

implementing IC, VFA and TAN in the model coupling buffer capacity and buffer conductivity 

improved the accuracy of the estimation. Indeed as shown in Figure 20, coupling these two variables, 

the model estimates VFA and TAN without being disturbed by the other components. Nonetheless, 

improvements have to be made. First of all, the volume of sample titrated must be reduced to 

consume less acid and base during the titration. Finding the ideal volume can be challenging, because 

it must be as small as possible but still big enough to be representative from a non-homogenous 

plant. Second, if the improvement of the experimental signal accuracy succeeds, it would be 

interesting to come back on the model and implement other possible components or reactions to 

recreate with precision the experimental signal. 
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Table 4: comparison of accuracy of the estimation between the existing methods and SNAC on volatile fatty acids, 

inorganic carbon and total ammonia nitrogen 

 

Nordman 

(1977) 

Ripley et al 

(1986) 

Purser et al 

(2014) slurry 

energy 

Zaher 

(2005) 

SNAC  

(this study) 

AGV           

R² 0.02 0.05 0.03 0.59 0.95 

Maximal error 0.177 0.124 0.092 0.021 0.005 

Standard error 0.049 0.045 0.023 0.008 0.003 

Standard error  

(% of the average) 458.5% 419.7% 212.3% 75.5% 31.7% 

IC           

R² 0.91 0.87 ND 0.87 0.94 

Maximal error 0.048 0.088 ND 0.074 0.002 

Standard error 0.019 0.044 ND 0.033 0.015 

Standard error  

(% of the average) 8.8% 20.5% ND 15.4% 7.2% 

TAN           

R² ND ND ND 0.82 0.95 

Maximal error ND ND ND 0.067 0.017 

Standard error ND ND ND 0.026 0.012 

Standard error  

(% of the average) ND ND ND 16.1% 7.3% 
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3.7 SNAC Prototype 

The aim of the SNAC method is to develop a sensor that enables an accurate estimation of the VFA, 

IC and TAN concentrations in an AD plant. To enable the use of the SNAC method at industrial scale, 

the method has been patented (n°15/59767) and a prototype has been done and is currently tested 

in an industrial plant. The prototype estimates the temperature, pH, conductivity and alkalinity ratio 

and VFA/IC/TAN concentrations of the plant. SNAC prototype has been designed to be simple of use 

(Figure 22). It is composed of: 

 A titration vessel including a beaker easily transportable and a lid containing the probes 

and pipes 

 1 vial of acide and 1 vial of base 

 1 gas trap and 1 gas filtration vial, filtrating the gas and imposing a constant pressure 

 2 peristaltic pumps 

 1 fully automated acquisition and control system 

 1 tablet with a web interface designed in Rshiny that enables to control the titration 

 

Figure 22: SNAC prototype, front picture. 

The web interface (Figure 23) is available from tablets, smartphones or computers and is used to 

collect the information related with the titration like the sample name, date, volume, operator 
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name…etc. It also allows launching and following the titration. Eventually, a titration report is 

automatically generated in pdf at the end of the titration which sum up the information related with 

the titration (Figure 24).  

 

Figure 23: SNAC web interface designed in Rshiny 

 

Figure 24: Part of the SNAC titration report in French 
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3.8 Conclusion 

The chapter draws four main conclusions: 

 Estimations of VFA and IC based on key point analyses can be worth it to follow AD plants 

but provide non-accurate absolute estimation. 

 Non-linear estimation based on buffer-capacity are more accurate than key point 

analyses and less sensitive to the composition of the sample. 

 The combination of electrical conductivity and pH sensors has improved the accuracy 

estimating VFA, IC and TAN concentration with non-linear methods. 

 Accurate estimation helps decision support tools but constant bias in the estimation still 

provide an accurate estimation of the plant dynamics. 

Thanks to the prototype, SNAC method is currently tested on an industrial unit. Along with the biogas 

production and composition, it should enable us to estimate the biological state of the plant which is 

a required condition for plant performances prediction and feeding strategy optimization. 

A missing step for feeding strategy optimization is the anticipation of the substrates AD 

performances. Hence, the next chapters will first focus on analyzing the relations between organic 

matter composition and AD performances; and on investigating fast methods of characterization for 

the estimation of AD performances. 
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4.1 Chapter Guidelines 

In Chapter 3, an accurate solution to estimate VFA and TAN in a plant sample has been proposed. 

Coupled with gas flowrate and its composition, it allows estimating the biological state of the plant, 

which is the first step of AD process performances prediction. A second key step consists in 

anticipating the AD performances of the substrate.  It requires the assessment of both biochemical 

composition and methane production features of the substrate. Thus, this chapter presents, in 

section 4.3.1, the state of art on solid waste characterization and, in section 4.3.2, the existing 

methods for methane yield and kinetics estimation. Then a short reference to the “Materials and 

Methods” section is made in section 4.4. The existing methods about biochemical composition 

analyses are then tested and adapted to solid waste in section 4.5. In section 4.7 to section 4.9, 

correlations between AD performances and biochemical composition of the substrates are 

investigated using different methods, in order to help us understanding their links. Eventually, with 

the aim to reduce the time of analysis, the prediction performances of methane production kinetics 

based on biochemical composition are assessed (section 4.10). 
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4.2 Technical and Graphical Abstracts 

Substrates for anaerobic digestion are composed of heterogeneous and complex organic matter. 

General parameters of the organic matter can be used to describe its composition such as 

carbohydrate, protein and lipid contents, Chemical Oxygen Demand (COD), biodegradability, 

methane yield and kinetics of methane production. These parameters are required for the 

monitoring of digesters but their characterization are time consuming and expensive. Moreover, 

laboratory techniques are not yet fully adapted to the analyses of solid waste. Thus, these 

parameters are rarely assessed all together. We first validated biochemical analyses on solid waste. 

Then, we investigated the existing correlations between COD, methane yield, biodegradability, 

kinetics of methane production and carbohydrate, protein and lipid contents on 222 samples using 

principal component analysis and Pearson’s correlation coefficient. Our work aims at providing a 

support to human operators when only a partial characterization of the substrates is available. 

Positive correlation between methane yield and methane production kinetics but also unexpected 

independence of COD and methane yield are shown. Under the experimental conditions, 

carbohydrates, proteins and lipids modulated differently the anaerobic digestion performances. 

Carbohydrates are correlated with readily biodegradable organic matter while proteins are slightly 

anti-correlated with biodegradability. Lipids are correlated with high methane yield but slow 

methane productions. Finally, partial least square regression points towards more descriptive organic 

matter characterizations that could be used to predict the kinetics of methane production. 
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4.3 Introduction of the Chapter 

Among the parameters influencing AD processes, many result from the type of organic matter used 

and from the applied organic loading rate. Thus, a smart monitoring of the AD performances of a 

plant passes through its feeding strategy optimization. For example, ammonia is produced by the 

degradation of nitrogenous matter present in the substrates (eg., proteins). It has been seen in 

section 3.3.1 that a 3g.L-1 of TAN inhibit the process but besides, concentrations below 200 mg/L are 

beneficial to AD processes (Chen et al., 2008). The feeding of nitrogenous matter should therefore be 

controlled. Lipid substrates such as fat, oil and grease (FOG) also affect the performances of the 

process. Due to their high Biochemical Methane Potential (BMP), FOGs are usually reported as a way 

to improve digester performances (Long et al., 2012). However, digestion of waste with high lipid 

content causes inhibition of acetoclastic and methanogenic micro-organisms (Long et al., 2012). 

Operational problems also appear, such as flotation, linked to the low density of lipids. Knowing that 

the parameters that influence the biogas production are numerous, the characterization of 

carbohydrate, protein and lipid contents as well as the COD, methane yield and methane production 

kinetics are part of the main parameters required for optimizing digesters (Batstone et al., 2002).  

Besides biogas production, digestate is the object of a rising interest due to its high added-value 

when used as fertilizer for crop farming (Madsen et al., 2011a). Its valorization is indeed being today 

integrated into agriculture as a key factor of AD profitability and environmental record. Organic 

matter in the digestate affects the mineralization and humification processes in soils (Lashermes et 

al., 2009). The fertilizing quality of the digestate therefore mainly depends on its organic matter and 

nitrogen composition (Massaccesi et al., 2013). Recently, environmental and economic problems 

were reported, related to digestate spreading into fields due to the incomplete degradation of the 

organic matter in the reactor before storage (Monlau et al., 2015). AD plant operators would thus 

benefit in maximizing the methane production yield while concomitantly reducing the biodegradable 

COD of the digested material (Ward et al., 2008). This can be achieved via a better management of 

the plant but also through the selection of appropriate substrates in the context of co-digestion 

(Alburquerque et al., 2012).  

4.3.1 Analytical Methods for Biochemical Characterization of Substrates 

Nowadays, methods for the estimation of the biochemical composition are still difficult to find 

(Jimenez et al., 2015b). Moreover, the recovery of COD from solid waste has been reported to be 

challenging. Different methods can however be found in the literature. The total lipid content is 

obtained after drying, which correspond to errors of approximately 10% depending on the 

laboratory. Howeverand grinding to powder (<1 mm), by soxhlet extraction as the percentage of 
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heptane extractable materials (HEM) (Girault et al., 2012). The total protein content is measured 

with Folin reagent (Souza et al., 2013) following the protocol described in Lowry et al. (1951) or by 

the Kjeldahl procedure (Madsen et al., 2011). The latter is robust for the determination of nitrogen 

but tricky for the conversion of nitrogen into protein because the nitrogen content of protein 

depends on its nature (Izhaki, 1993; Jimenez et al., 2014). The total carbohydrate content is 

estimated by colorimetric measurements for which it is recommended to use the protocol described 

in DuBois et al., (1956) (Jimenez, 2012; Ugwuanyi et al., 2005). Finally, the estimation of COD using 

the international standard method ISO15705:2002 has been adapted for the estimation of soluble 

COD from solid waste (eg., freeze drying, grinding and suspending the substrate in distilled water 

before the COD analysis (Buffiere et al., 2008)). 

The heterogeneity of the methods proposed in the literature to assess the contents of carbohydrate, 

protein, lipid or COD in solid samples suggests that many of them are substrate-specific and that the 

development of a robust and accurate method for a wide range of samples can be challenging. 

Similar problems are reported for the estimation of the methane production performances. 

4.3.2 Biodegradability and Methane Production Rate Estimation 

Methane production performances are commonly assessed from the Biochemical Methane Potential 

(BMP) which is obtained anaerobically by digesting a substrate in batch under controlled optimal 

conditions and over 30 to 50 days (Hansen et al., 2004). A solution containing the microbial inoculum 

and a medium composed of nutrients, micro-nutrients and vitamins is prepared. The solution is 

degassed and the inoculum activity is checked using ethanol or acetic acid. Once the inoculum 

activity is validated, the substrate to analyze is grounded with a controlled size and added to the 

solution (Angelidaki et al., 2009). The details of the BMP method vary, inducing large fluctuations in 

the results. For example, Raposo et al., (2011) reported an international inter-laboratory 

benchmarking study with measured methane yields of 350 ± 33, 350 ± 29, 380 ± 42, 370 ± 36 and 370 

± 35 mL CH4.g
−1

VSadded for starch, cellulose, gelatine and mung bean respectively, no significant impact 

of the inoculum concentration, inoculum age, inoculum source, working volume, temperature, 

mixing, headspace gas used to flush the bottles, pH and nutrient media were found. Despite several 

attempts of standardization, variations of ± 10% remain on the BMP value estimation, and recently, 

Bellaton et al., (2016) even estimated errors of ± 25%. 

From the measurements of COD and BMP, the biodegradable part of the organic matter is calculated 

as the ratio between the theoretical and the experimental methane production as described in 
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equation 18. This formula is also reported in (Jimenez et al., 2014) with XBD the content of 

biodegradable organic matter. 

𝑋𝐵𝐷 =
𝐵𝑀𝑃

𝐶𝑂𝐷∗350
          (18) 

Nevertheless, kinetics estimation remains a challenge and only few methods are available (Jensen et 

al., 2011). From the BMP digestion experiments described in (Angelidaki et al., 2009) or (Hansen et 

al., 2004), the methane production rate (MPR) can be calculated and the kinetics estimated. A 

procedure of kinetics estimation consist in optimizing the hydrolysis and disintegration kinetic 

parameter so that the ADM1 model fits the MPR (Yasui et al., 2008). However, Batstone et al., (2009) 

suggested that this approach underestimates the kinetics of methane production in continuous 

reactors because kinetics depends on the micro-organisms adaptation to the substrate (Figure 25). In 

order to address this issue, García-Gen et al. (2015) proposed a very interesting alternative running 

several successive batches using the same substrate and wait until MPR curves converge towards 

similar trends and values before estimating the kinetics.  

No matter the methods used, the estimation of methane production kinetics requires long term 

experiments which makes it as one of the most difficult parameters to obtain. The procedures 

described in the literature, indeed, tend to be tedious and time-consuming, thus restricting their use 

at the industrial scale.  
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Figure 25: Confidence regions for khyd (day
-1

), and fd (frac) using different fitted data sets, including whole full-scale 

gasflow data sets (480 measurements for each digester), effluent solids (450 measurements for each digester), one 

example of a 30-day gasfllow data set (30 measurements), and the BMP tests (10 gas measurements in triplicate 

batches). The arrows around estimates on solids data indicate that the confidence regions are unbounded in khyd. The 

inset (top left) indicates a magnified view of the batch test confidence region (Batstone et al, 2009). 

 

According to the difficulty of estimation of the biochemical composition reported in section 4.3.1, 

this chapter firstly focuses on the development of repeatable and accurate analyses of the 

biochemical composition of a wide range of solid samples such as fruits, vegetables, manure, cereals, 

oils, fats, meat and fishes. Since no relevant solutions are available to shorten the estimation of the 

methane production kinetics, the second part of this chapter investigates the relation between the 

biochemical composition and the kinetics in order to better anticipate the methane production. In 

that aim, Principal Component Analysis (PCA) and Pearson’s correlation were carried out to 

understand the existing correlations between carbohydrate, protein or lipid contents, COD, methane 

yield and the kinetics of methane production. Finally, PLS regression was carried out to evaluate the 

feasibility of methane production kinetics prediction from the biochemical composition of the 

substrates to facilitate plant monitoring. 
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4.4 Materials and Methods Related to this Chapter 

Detailed information about the materials and methods related to this chapter are provided in the 

“Materials and Methods” sections 2.3.1, 2.3.3.1, 2.4.1, 2.5.1, 2.5.2, 2.6.1, 2.6.2, 2.6.3.1. 

4.5 Validation of Biochemical Analyses on Solid Waste 

First, the protocols described by Lowry et al., (1951) and Dubois et al., (1956) with a suspension of 

solid a sample in distilled water, regarded as standard methods, were applied to straw and potatoes. 

Table 5 suggests that these protocols under-estimate the concentration of carbohydrates in straw. 

All results were expressed in mgO2.gTS
-1 equivalent in order to work with the same units for all 

methods. Grams of glucose were multiplied by 1065 and grams of BSA by 750, the calculations being 

based on their biochemical composition (Haag et al., 2003a). Grams of nitrogen were multiplied by 

6.25*1.42 times the COD sample (Shi et al., 2014). Giving a closer look at these measurements, the 

carbohydrates were estimated at 185 mgO2.gTS
-1 for straw out of a total COD of 1200 mgO2.gTS

-1, 

thus representing about 15 percent of the COD. However, straw is mainly composed of 

carbohydrates such as cellulose and hemicellulose. According to the literature, its composition varies 

between 65 and 80% of the total COD (Bauer et al., 2009) (Motte et al., 2014). Contrastingly, the 

carbohydrate content in potatoes can reach up to 90%. These results lead to the assumption that 

colorimetric methods are not sufficiently robust. Samples with soluble and easily hydrolysable 

carbohydrates have been correctly estimated while others have been clearly underestimated. When 

using a suspension in water (Buffiere et al., 2008), the solubility of the sample in water is 

fundamental to ensure repeatable sampling. Moreover, the Dubois et al., (1956) method was 

developed on monosaccharides and readily hydrolysable polysaccharides such as starch but not on 

cellulose with glucose linked in β1-4 which are much more difficult to hydrolyze.  Consequently, the 

solubilisation and hydrolysis of the solid sample seemingly needed to be improved. An efficient way 

to solubilize solid organic matter, in particular cellulose and hemicellulose (Jimenez et al., 2015a), is 

to induce an acid hydrolysis of the polymers using sulfuric acid. Therefore, in order to test its 

efficiency and accuracy, the protocol described by DuBois et al., (1956) with a pre-hydrolysis in 

sulfuric acid, was tested on glucose at 16 different known concentrations, straw, cellobiose and 

potatoes. Figure 26 illustrates how acid hydrolysis does not affect the estimation of glucose 

concentration.  
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Figure 26: Effect of pre-sulfuric acid hydrolysis on glucose estimation 

It has also been validated on cellobiose and starch, with carbohydrate concentration respectively of 

94 and 104 % of their theoretical value. The results on straw and potatoes in Table 5 present a good 

repeatability of the analyses and results that are coherent with the known composition of straw 

(Bauer et al., 2009) (Motte et al., 2014). 

Table 5 also presents repeatable and similar estimations of the proteins content using either the 

Lowry et al., (1951) protocol or TKN. TKN results were expressed in mgO2.gTS-1 equivalent in order to 

be comparable with Lowry et al, (1951) estimations. Both methods provided similar results. 

According to the previous results using colorimetric methods for carbohydrates estimations, there is 

a risk that proteins could be underestimated in certain samples using Folin reagent in the Lowry’s 

method, mainly depending upon the solubility of the protein in water. Protein analysis using Folin 

reagent requires a really specific pH and is not compatible with sulfuric acid hydrolysis. Hence, to 

avoid any risk of protein content underestimation, the TKN method was preferred to the Lowry’s 

protocol.  

Finally, lipid estimation as HEM was validated with a less than 3% error, using commercial table oil 

for which the composition is known.  
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Table 5: Comparison of analysis methods for the estimation of proteins and carbohydrates. Selected methods are in bold. 

 Carbohydrates: 

Dubois et al., (1956) 

 

Carbohydrates: 

Dubois et al., (1956) 

with acid hydrolysis 

Proteins : 

Lowry et al., (1951) 

Proteins: 

Total Kjedhal 

nitrogen  

Straw 

Mean value 

(mgO2.gTS
-1

) 
185 ± 37% 925 ± 10% 55 ± 5% 56 ± 3% 

Potatoes 

Mean value 

(mgO2.gTS
-1

) 
922 ± 9% 832 ± 6% 76 ± 5% 82 ± 10% 

 

For COD determination on solid samples, the experimental work was focused on the suspension of 

the solid samples in distilled water or sulfuric acid. First, distilled water suspension was used for COD 

analysis on six samples (manures, cereals, vegetables), with at least two replicates for each sample. 

On these samples, the Standard Error of Laboratory (SEL) was assessed at 200 mgO2.gTS
-1. As the 

repeatability was not acceptable, the suspension of the solid samples in distilled water was assumed 

to lead to non-homogeneous sampling for COD analyses. Thus suspension in sulfuric acid was tried. 

The accuracy of the measurement was verified on glucose, cellobiose and starch for which the 

theoretical COD is known (Haag et al., 2003b). The measurement accuracies were respectively 

100.5%, 99.7% and 99.9% of the theoretical values with a SEL on duplicates of 14 mgO2.gTS
-1. It thus 

demonstrated that suspension in sulfuric acid does not denature the sample and that COD 

measurements after sulfuric acid suspension were accurate and repeatable. 

Owing to these results, the choice of reference methods for the present study was directed towards 

the analysis of solid samples according to Dubois et al., (1956) with acid pre-hydrolysis for 

carbohydrates (mgO2.gTS
-1). TKN was used for nitrogen content (g.gTS-1) determination and heptane 

extractible matter for lipid content determination (g.gTS-1). The choice was also made to use the 

suspension in sulfuric acid for the measurement of COD in all the samples. Once the methods 

validated, TKN, carbohydrates and COD were measured in duplicate on the whole dataset describing 

in section 2.5.1, the standard error of laboratory (SEL) was assessed on the duplicates using the same 

method as SDr (section 2.4.1) to 1.7*10-3 g.gTS-1 and 63 mgO2.g-1, 60 mgO2. gTS-1 for TKN, 

carbohydrates and COD respectively. The SEL corresponds for instance to 4.9% of the mean value of 

analyzed samples. The accuracy and repeatability of the protocols were thus assumed to be 

validated. 
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4.6 Dataset Exploration Using a Principal Component Analysis 

Once the reference laboratory analyses validated, our work has been focused on investigating the 

existing relation between the biochemical and the AD performances of a substrate. A principal 

component analysis has been carried out on the dataset (“Materials and Methods” section 2.5.2) to 

explore the potential correlations between carbohydrate, protein and lipid contents, COD 

concentration, methane yield, biodegradability and methane production times which have been seen 

in the introduction (0) to be the most relevant parameters to characterize a substrate. We decided to 

focus on the three first principal components (PC) since they take into account more than 90% of the 

total variance. Figure 27 shows the samples of the dataset represented on the three PC of the PCA. 

Spheres has been colored depending on their biochemical composition, turquoise spheres have a 

lipid content above 50%, yellow spheres have a protein content above 50% and red spheres have 

carbohydrates content above 50%, grey spheres represent the remaining data. Four different groups 

of samples can be observed: 

 The majority of the samples rich in carbohydrates are represented in the Ellipse 

Hoteling’s T2 (95%).  

 Another group is composed by two samples with a high score on PC1 and PC2. It 

corresponds to the FOG samples, characterized with a high content of lipids.  

 Seven samples composed a third group, with high score on PC1 and PC3 but low on PC2, 

it matches the farm waste samples rich in carbohydrates and proteins.  

 Finally, samples present a low score on PC1 and PC2 but a high score on PC3, 

corresponding to protein rich substrate like meat and fish extracts and micro-algae.  

The three first components differentiate farm waste, FOG and meat and fish extracts or micro-algae 

from cereal, fruits and vegetables. Samples are fairly represented on the three PCs and samples seem 

to be classified depending on their carbohydrate, protein and lipid contents, with farm waste rich in 

proteins and carbohydrates; meat, fish or micro-algae rich in proteins; and FOG rich in lipids. 
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Figure 27: 3D representation of the dataset on the three first principal components of the PCA. Spheres are colored 

depending on their biochemical composition, turquoise spheres: lipid content up to 50%, yellow spheres: protein 

content up to 50%, red spheres: carbohydrate content up to 50%, grey spheres represent the remaining data. 

4.7 Variables Correlation Exploration Using a Principal Component 

Analysis 

To further investigate the correlations, PCA variables have been plotted on the PC1/ PC2 and 

PC1/PC3 (Figure 28). PC1, accounting for 65 % of the variance, is mainly supported by the methane 

production time. It shows correlations between the methane production times. These correlations 

make sense since the production time at a certain percentage of the methane yield is necessarily 

above the production times corresponding to lower percentages of the methane yield. Lipids and 

COD in a smaller manner also participate to PC1 and seem correlated with methane production times 

while carbohydrate content and biodegradability are in opposition with the methane production 

times in PC1. In PC2, methane yield, COD, early kinetics of methane production and lipid content are 

opposed to carbohydrate content and late kinetics of methane production. PC3 is supported by 

protein content which is in opposition to biodegradability, carbohydrate content and methane yield. 

To sum up the variable analysis on PCA, methane production times are represented as correlated to 

each other and represent, with lipid content, most of the variance. PC2 represents a smaller part of 

the variance and opposes proteins and carbohydrates. PC3 opposes biodegradability and 

Carbohydrate content >50% 
 Protein content > 50% 

 Lipid content > 50% 

 Others 
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carbohydrate content to protein content. Biodegradability is opposed to carbohydrate content on 

PC2. Their correlation on PC3 indicates that PC3 does not contain any discriminating information 

between carbohydrates and biodegradability. Biodegradability is shown as anti-correlated with lipid 

content and COD but correlated with methane yield on PC1-2-3. 

Relations found using PCA will be validated by a PCC analysis in the part 4.8 before being discuss in 

part 4.9. 
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Figure 28: PCA variables representation on PC1/PC2 (up part) and PC1/PC3 (down part). BD and CH4Yield stand 

respectively for biodegradability and methane yield. Time 05 to 95 represent the times needed to reach a percent 

of the methane yield from 5 to 95%. 
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4.8 Variables Correlation Analysis using Pearson Correlation 

Coefficients 

PCA has been used as an exploratory tool to assess potential correlations between carbohydrate, 

protein and lipid contents, COD, methane yield, biodegradability and methane production times 

expressed in days needed to reach a percent of the methane yield from 5 to 95 %. To validate these 

correlations, Pearson Correlation Coefficients (PCC) must be used (details about PCC are provided in 

“Materials and Methods” section 2.6.1). This led to a correlation matrix which has been plotted as a 

heatmap (Figure 29). From the p-values analysis, correlations revealed as non-significant are shown 

as non-existing correlation (i.e. PCC=0). Thus, every correlation shown in Figure 29, even low, is 

significant. As it can be seen in Figure 29 and PCA analysis, methane production times are correlated 

to each other. Nonetheless, weak correlations, around 0.2, are found between early and late 

methane production times. This indicates that the methane production is represented by at least two 

distinct kinetics as validated on sludge or fruits and vegetables AD by Jimenez et al., (2014) and 

García-Gen et al., (2015).  

Relationships between biochemical composition and methane production times can be observed in 

Figure 29. Lipid content is correlated with methane production time from 5 to 70% of the methane 

yield with decreasing PCC respectively from 0.81 to 0.21. Carbohydrate content is anti-correlated 

with the methane production times from 5 to 75 % of the methane yield with PCC from -0.20 to -

0.38. Protein content is anti-correlated with methane production times from 80 to 95 % of the 

methane yield with PCC of respectively -0.24, -0.28, -0.29. COD is correlated with methane 

production times, with decreasing PCC from 5 to 70 % of the methane yield in a range from 0.61 to 

0.19, and anti-correlated with methane production time of 95 % of the methane yield (PCC: -0.23). 

Methane yield is weakly correlated with methane production times, with decreasing PCC from 5 to 

15 % of the methane yield in a range from 0.21 to 0.13, and anti-correlated with methane production 

time, with decreasing PCC from 50 to 95 % of the methane yield in a range from -0.15 to -0.47. 

Biodegradability is anti-correlated with methane production times, with decreasing PCC from 5 to 

95% of the methane yield in a range from -0.14 to -0.44.  

Correlations and anti-correlations between the indicators of the biochemical composition of the 

organic matter are also shown in Figure 29. Lipid content is correlated with the methane yield, 

weakly with protein content and anti-correlated with the carbohydrate content with PCC of 

respectively 0.44, 0.16, -0.49. Carbohydrate content is anti-correlated with lipid and protein content 

and COD with PCC of respectively -0.49, -0.85, -0.40. Proteins content is weakly correlated with lipid 
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content and COD with PCC of respectively 0.16, 0.19. Biodegradability is anti-correlated with COD 

with a PCC of -0.23. Eventually, methane yield is correlated with COD with a PCC of 0.35. 

 

Figure 29: Matrix of Pearson’s correlation coefficients between lipid, protein and carbohydrate contents, COD, 

methane yield (CH4YIELD) and biodegradability (BD), methane production time expressed in days needed to reach 

a percent of the methane yield from 5 to 95%.  

4.9 Discussion about Variables Correlation Analysis  

From PCA and Pearson’s correlation coefficients, a first conclusion can be drawn about the existing 

correlations between lipid, protein and carbohydrate contents. Part of the organic matter such as 

lignin is not analyzed as carbohydrates, proteins or lipids. Thus, one hypothesis could be that 

biodegradable organic matter represented by carbohydrates, proteins and lipids are correlated 

between each other and as a consequence, anti-correlated with the non-biodegradable organic 

matter (eg., lignin). However, protein and lipid contents were correlated indicating that high-protein 
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content in a sample is often correlated with important lipid content. Meat or micro-algae are good 

examples of the correlation between protein and lipid contents. But lipid and protein content were 

both anti-correlated with the carbohydrate content, which could be explained by the difference 

between animal cells with high protein content and vegetal cells with high carbohydrate content.  

From PCA and PCC analyses, COD is strongly correlated with biochemical composition in 

carbohydrate, protein and lipid contents. Carbohydrates are shown to be highly biodegradable but 

with a lower COD than proteins which has a lower COD than lipids. COD and methane yield are both 

indicators of the energy contained in the organic matter and their ratio represents the 

biodegradability. Nonetheless, correlations found on COD cannot be extended to methane yield. The 

low correlation between COD and methane yield and the anti-correlation between COD and 

biodegradability observed indicate that methane yield and COD are quite independent parameters. 

Indeed, supposing a constant methane yield, the higher the COD, the lower the biodegradability. 

Hence, COD cannot be used to estimate the methane yield. 

Correlations between methane production time and biochemical composition are complex. From 

Figure 6 (“Materials and Methods” section 2.5.1), it can be observed that the highest standard 

deviation between methane production time is observed at 70% of the methane yield. Thus, the time 

needed to reach 70% of the methane is the most informative point about methane production 

kinetics. In order to simplify correlation analyses, a correlation network between methane 

production time at 70% of the methane yield and carbohydrate, protein and lipid contents, COD, 

methane yield and biodegradability has been plotted in Figure 30. It reveals that methane production 

time at 70% of the methane yield is mainly correlated with lipid and COD and anti-correlated with 

carbohydrates, biodegradability and methane yield. This indicates that, within the set of waste 

analyzed, readily degradable organic matter is highly biodegradable and rich in carbohydrates and 

vice versa. Lipids and high COD compounds, which are strongly correlated, are found to be mainly 

slowly degradable. This conclusion was also drawn on the PCA even though, from Figure 27, the 

correlations with lipid content where shown to be supported by only two substrates. Therefore, 

these correlations have to be validated on a dataset containing more FOG. 
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Figure 30: Correlation network between lipids, proteins and carbohydrates content, COD, methane yield 

(CH4YIELD) and biodegradability (BD), methane production time expressed in days needed to reach 70 percent of 

the methane yield. The level correlation is represented by the intensity and thickness of the link. 

Figure 29 provides detailed information about kinetics of methane production. Methane yield, lipid 

content and COD have a negative impact on early methane production kinetics (i.e., positive 

correlation with the time). Carbohydrate content affects positively the early methane production 

kinetics. Protein content is correlated with the time needed to reach the methane yield. Only 

biodegradability impacts positively the whole kinetics of methane production (i.e. the higher 

biodegradability, the lower methane production times). In conclusion, most of the substrates with a 

high content of carbohydrates were composed of readily degradable organic matter, such as glucose 

or starch that account for approximately 70% of the methane yield, and slowly degradable organic 

matter that account for the last 30% of the methane yield. According to Alibardi and Cossu, (2016), 

readily biodegradable carbohydrates are carbohydrates reserve of fruits and vegetables while slowly 

biodegradable carbohydrates are structuring carbohydrates such as cellulose. The impact of lipids on 

the methane production time could be explained by a first phase in which the anaerobic digestion 

process is inhibited by volatile fatty acids and long chain fatty acids, followed by a quick methane 

production once the inhibitions is overcome.  
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4.10  Predictability of the Kinetics of Methane Production from 

Biochemical Composition 

An important question arises from the correlation observed between the biochemical composition 

and methane production time: could methane production kinetics be anticipated from the 

biochemical composition? In the introduction (4.3.2), kinetics estimation has been reported as labor-

intensive and time-consuming, whereas biochemical composition was said to be simpler to assess. 

Thus, prediction of the kinetics from the biochemical analysis is of great interest. A PLS regression has 

been carried out in order to predict the time required to reach 70% of the methane yield that was 

demonstrated to be the most informative methane production time. Carbohydrate, protein and lipid 

contents together with COD, methane yield and biodegradability were used as input variables of the 

PLS regression model. The Standard Error of Cross Validation (SECV) reaches a minimal plateau from 

4 to 6 latent variables. Thus 4 latent variables were selected for the PLS regression model. The PLS 

regression provides a SECV of 0.65 days and a Standard Error of Calibration (SEC) of 0.62. The results 

between estimated and reference production time can be observed in Figure 31. The coefficient of 

determination R2 was about 0.38. These results show that even if correlations exist between 

methane production times and biochemical composition of the organic matter, no prediction of the 

methane production times or kinetics can be made from the biochemical composition indicators that 

are currently used. Indeed, it can be expected that macro-indicators of the biochemical composition 

such as lipid, protein and carbohydrate contents or COD, methane yield and biodegradability are not 

precise enough. From the correlation analysis of the variables, the study already revealed that, 

depending on the types of carbohydrates, they can be either slowly or readily biodegradable. It can 

thus be supposed that, with a more detailed organic matter method of characterization, the 

methane production time could be predicted from the biochemical composition analysis.  

Near InfraRed spectroscopy (NIRs) could help in this direction. NIRs is indeed known to give insights 

about the organic matter composition and the quantitative prediction of the organic matter 

biochemical composition in carbohydrates, proteins and lipids (Núñez-Sánchez et al., 2016). NIR 

absorption bands are composed of overtones and combinations of the molecular vibrations of C–H, 

N–H, and O–H bonds which are correlated with molecules such as phenol, acids, alkane, amines, 

amides and celluloses content (Ward, 2016; Williams and Norris, 2001). Moreover, NIR spectroscopy 

is widely used for methane yield prediction (Lesteur et al., 2011). It is a powerful tool for anaerobic 

digestion process monitoring (Jacobi et al., 2012; Krapf et al., 2013). Thus, it can be assumed that NIR 

spectroscopy could provide an additional and accurate description of the organic matter. This will be 

assessed in the next chapter, trying to correlate NIR spectra with methane production kinetics. 
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Figure 31: Prediction of methane production time needed to reach 70% of the methane yield using carbohydrate, 

protein, lipid contents, COD, biodegradability and methane yield as variables of PLS regression model. 

4.11 Conclusion on the Existing Relation between the Biochemical 

Composition and the Methane Production Performances 

Correlations between methane production times, methane yield, COD, biodegradability, 

carbohydrate, protein and lipid contents have been assessed using PCA and Pearson correlation 

coefficients analysis. It revealed that, among the 222 samples analyzed, carbohydrates are mainly 

readily biodegradable while lipids are correlated with high methane yields but also with slow 

methane production kinetics which could be related to process inhibition in the early methane 

production times. A negative correlation between COD and biodegradability indicates that COD 

cannot replace methane yield analysis. Eventually, correlations between biochemical composition 

and kinetics of methane production were highlighted leading to the idea that the kinetics of methane 

production could be predicted from the biochemical composition. However, the indicators currently 

used to assess biochemical composition provide a vague description of the organic matter which is 

not sufficient to accurately predict kinetics of methane production using PLSr. Nonetheless, it points 

towards more descriptive organic matter characterizations such as NIR spectroscopy that could be 

used to predict the kinetics of methane production. 
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5.1 Chapter Guidelines 

This chapter follows the work started in Chapter 4 in terms of assessing methane production 

performances in a shorter time.  Chapter 4 highlights that a correlation between biochemical 

composition and AD performances exists. It supposes that the prediction of methane production 

kinetics based on biochemical composition of the substrate is feasible but requires a deep 

characterization of the organic matter.  The state of art developed in section 0 and the results of 

Chapter 4 point towards spectroscopic methods as new methods for a fast characterization of the 

substrate. A short reference to the “Materials and Methods” section is made in section 5.4. The 

following section, 5.5, compares the performances of prediction of the different reported 

spectroscopic methods on a reduced dataset. Based on the results of section 5.5, the performances 

of prediction of the most promising methods are assessed for the prediction of the carbohydrate, 

protein and lipid contents, COD  (section 5.6) and methane production yield and kinetics (section 

5.7). 
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5.2 Technical and Graphical Abstracts 

The development of anaerobic digestion involves both co-digestion of solid waste and optimization 

of the feeding recipe. Within this context, substrate characterisation is an essential issue. The 

biochemical composition in carbohydrates, proteins and lipids, the chemical oxygen demand and 

both methane production yield and kinetics are required characteristics of the inputs to optimize the 

feeding strategy. Fast estimation of methane production yield has been developed using near 

infrared spectroscopy. Although widely used, the methane production yield alone is not sufficient to 

optimize the operation of anaerobic digestion plants. Moreover, the estimation of the biochemical 

composition and especially of methane production kinetics is labor-intensive and requires time-

consuming analyses. Here we show that near infrared spectroscopy allows a fast and efficient 

estimation of the contents in carbohydrate, lipid and nitrogen, of the chemical oxygen demand and 

of methane production yield and kinetics, in solid waste. We build a Partial Least Square regression 

model to predict the biochemical composition and the methane production time, on which methane 

production kinetics is calculated. The model is calibrated with 275-295 solid waste samples and 

validated with an independent set of 43 samples across a wide range of solid waste found in 

anaerobic digestion units. The standard errors of cross-validation are 90 mgO2.gTS-1 carbohydrates, 

2.5*10-2 g.gTS-1 lipids, 7.2*10-3g.gTS-1 nitrogen, 99 mgO2.gTS-1 chemical oxygen demand and 0.34 days 

methane production time. The standard errors of prediction are 35 mgO2.gTS-1 carbohydrates, 

9.4*10-3 g.gTS-1 lipids, 5.2*10-3g.gTS-1 nitrogen, 39 mgO2.gTS-1 chemical oxygen demand and 0.24 days 

methane production time. These results show that near infrared spectroscopy is a new fast and cost-

efficient way to characterize solid waste content and improve their anaerobic digestion monitoring. 

 

  



Chapter 5: Characterization of Solid Waste Using Spectroscopic Analyses  

110 
 

  



Chapter 5: Characterization of Solid Waste Using Spectroscopic Analyses  

111 
 

5.3 Introduction of the Chapter  

Standard characterization methods have been carried out on carbohydrate, protein and lipid 

contents and COD for solid organic waste in Chapter 4. Nonetheless, it has been seen that the 

estimation of the methane production yield and kinetics remains complicated and time consuming. 

Hence, shorten their estimation is a hindrance to overcome for feeding strategy optimization in an 

industrial purpose (Batstone et al., 2015). 

5.3.1 BMP Estimation on Early Biogas Production 

Fast biological tests have been developed for BMP or biodegradability estimation, hypothesizing a 

relationship between aerobic and anaerobic biodegradability. Since aerobic reactions are faster than 

anaerobic ones, several aerobic tests have been indeed used to quickly estimate the anaerobic 

biodegradability of the substrate (Lesteur et al., 2010). For instance, Cossu and Raga, (2008) 

successfully correlated (R2=0.80) the aerobic respiration at 4 days index (RI4) with the anaerobic 

biogas production at 21 days (GB21) on landfill waste and concluded that RI4 is faster and has to be 

preferred for biodegradability estimation (Figure 32). 

 

Figure 32: Correlation between respiration index (RI4) and biogas production (GB21) measured in samples of excavated 

waste from landfills (Cossu and Raga, 2008). 

Other tests are based on the assessment of the BMP through the early micro-organism activity 

during the anaerobic digestion of the sample. A first method assumes that the batch methane 

production follows a specific kinetics model. Model parameters are calibrated on a reliable set of 

initial data using first order, Monod or Gompertz kinetic terms. Then, for each new sample, the 

model previously calibrated is fitted on the first 3 days of methane production to extrapolate the 

total methane production (Figure 33). BMP and other key information such as substrate toxicity can 

then be calculated (Strömberg et al., 2015).  
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Figure 33: Accumulated specific methane production for three different samples (i.e. mixed food waste as a household 

waste, banana stem as an agricultural waste, and butter residues as a lipid rich waste). The experimental data is 

represented by the solid line, waste, and butter residues as a lipid rich waste). The experimental data is represented by 

the solid lines and the symbols, while the predicted gas profile is shown by the dashed line (Strömberg et al., 2015). 

A second method – the Envital® kit developed by the French company Envolure – correlates linearly 

BMP values with early microbial activity (Figure 34). A component named resazurin is introduced in 

the digestion broth and reduced by the micro-organisms into resofurin, which fluoresces at 600 nm. 

The fluorescence is recorded every 30 min for 48h. Bellaton et al., (2016) confirmed the correlation 

between the kinetics of resazurin reduction and the metabolic activity of anaerobic sludge. BMP 

measurements from Enivtal® kit and Automatic Methane Potential Test System II (AMPTS II, 

Bioprocess Control AB, Lund, Sweden) were compared on 18 wastewater sludge samples and similar 

results were obtained, supposing however 25% of error on AMPTS II estimations (Bellaton et al., 

2016). 
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Figure 34: Scheme of an example of Envital® assay in microplate based on fluorescence measurement (Bellaton et al., 

(2016)). 
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5.3.2 Spectroscopic Analyses 

Several other methods have been proposed using spectroscopic measurements to obtain a fast 

estimation of BMP values. For example, Muller et al., (2014) developed an informative and quick 

method for the determination of the complexity of organic matter using chemical sequential 

extraction and 3D fluorescence spectroscopy. These authors calibrated their method by 

decomposing the 3D spectra into seven zones (zone I to VII) corresponding to families-like molecules 

(Figure 35). 

 

Figure 35: Molecule families-like in 3D spectra of manure based on (Muller et al, 2014). I: Tyrosine-like II: Tryptophan-like 

III: Microbial product protein-like IV: Fulvic acid-like V: Glycolated protein-like VI: Lignocellulose-like VII: Humic acid-like 

Jimenez et al., (2014) predicted the biodegradability of municipal sludge (Figure 36) from the mean 

intensity of the seven zones corresponding to the families-like molecule shown in Figure 35, and their 

bioaccessibility from the chemical sequential extraction. Jimenez et al., (2015a) added a new step in 

the chemical sequential extraction for the characterization of a wider range of organic substrates. 

They suggested that chemical sequential extraction coupled with 3D fluorescence spectroscopy could 

be a powerful tool for the prediction of both biodegradability and bioaccessibility, thus reducing the 

time of analysis from 30-100 days to one week. Since fluorescence emissions are mainly due to 

aromatic cycle, this work could be correlated with Buffiere et al., (2006) who suppose a link between 

lignin content, composed of many aromatic cycles and biodegradability. 3D fluorescence 

spectroscopy was also used by Wan et al., (2012) to monitor the COD removal of an AD plant.  
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Figure 36: Observed versus predicted biodegradability using chemical sequential extraction and 3D fluorescence (Jimenez 

et al., 2014). 

Another fast method has been recently proposed using NIR spectroscopy (Lesteur et al., 2011, Jacobi 

et al., 2012), reducing the time of BMP measurements from 30-100 days to a matter of minutes 

(Ward, 2016). BMP indeed depends on the bio-chemical composition of the organic matter (Buffiere 

et al., 2006) (Appels et al., 2011) and NIR spectroscopy (NIRs) is already used in the agro-food 

industry to predict the biochemical composition of samples such as milk, cereals, fruits or vegetables 

(Bagchi et al., 2016, Núñez-Sánchez et al., 2016). It has therefore been hypothesized that protein, 

carbohydrate and lipid contents of waste could be assessed by NIR spectra, together with COD 

concentration.  

 

Figure 37: Predicted using NIR spectra vs measured BMP values. The solid line indicates the 1:1 relationship. For each 

point, horizontal lines indicate the Standard Deviation of the BMP test of the duplicates samples and the vertical lines 
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indicate the Standard Deviation of the NIR measurement of the triplicates samples. The dotted line represents the Dunne 

effect. Calibration data set are represented by blue circles and validation data set by purple squares (Lesteur et al., 2011). 

The challenge associated to NIRs analysis in AD is the complexity of the spectrum resulting from both 

chemical and physical interactions. This needs to be correlated with the biochemical composition of a 

large diversity of samples. Mathematical treatment of the spectrum has to be carried out (Bertran et 

al., 2001) . Detrending, Savitzky–Golay filtering and Standard Normal Variate normalization (SNV) are 

widely used for spectrum processing (Nicolai et al., 2007). Detrending subtracts the best straight-line 

fit from the spectra, while SNV centers and scales individual spectrum using their average and 

standard deviation and Savitzky–Golay filtering smooths and derives the signal in order to remove 

noise and baseline or additive effects. For AD waste characterization, SNV, in addition to detrending, 

could be an efficient treatment but the robustness should increase using SNV and Savitzky–Golay 

filtering (Lesteur et al., 2011).  

To conclude, the most promising method for organic solid waste is NIRs or 3D fluorescence coupled 

with chemical sequential extraction despite a tedious and time consuming calibration phase needed 

before their first use. 3D fluorescence coupled with chemical sequential extraction has the advantage 

to predict both bioaccessibility and biodegradability but is expensive in term of experimentation time 

compared to NIRs. Beside, NIRs has been successfully used to predict the gas production kinetic 

parameters of forage digestibility, organic matter composition and inhibitory components (Lesteur et 

al., 2010). NIRs has the advantage of being very easy to perform, very fast, cost efficient and non-

disruptive. 

This chapter aims to define a fast, accurate and robust method of substrate composition 

characterization. Since both sequential chemical extractions coupled with 3D fluorescence 

spectroscopy or NIRs have been reported efficient for the estimation and qualification of the 

biodegradable organic matter, this chapter first assess the advantages and drawbacks of each 

method on a preliminary dataset composed of 28 samples. Eventually the most promising method is 

extended to a wider range of solid waste such as fruits, vegetables, manure, cereals, oils, fats, meat 

and fishes to create an important dataset with the aim to predict carbohydrate, protein and lipid 

contents, COD, methane yield and the Methane Production Rate (MPR) with fast spectroscopic 

analyses. 

5.4 Materials and Methods Related to this Chapter 

Detailed information about the materials and methods related to this chapter are provided in the 

“Materials and Methods” sections 2.3.1, 2.3.2, 2.3.3.1, 2.4, 2.5.1, 2.6.3.1, 2.6.3.3, 2.6.3.4. 
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The literature reports drawbacks in the conversion of TKN into protein using a conversion factor of 

6.25. This factor has been observed to depend on the type of sample (Girault et al., 2012). Since this 

factor is uncertain and the protein content of a substrate is primarily used for monitoring the 

nitrogen release in the digester (Chen et al., (2008), Rajagopal et al., (2013)), in the case of fast 

spectroscopic analyses, the decision was taken not to convert TKN into protein and to work with 

nitrogen content per grams of dry matter. 

5.5 Comparison of 3D Fluorescence and Near Infrared Spectroscopy for 

Biodegradability Prediction 

As seen in the introduction of this chapter (0), 3D fluorescence spectroscopy coupled with chemical 

sequential extractions and NIRs has been successfully used to predict biodegradability (calculated 

from the BMP to COD ratio) and BMP respectively on different kinds of samples. Thus, the 

preliminary dataset was used to compare 3D fluorescence spectroscopy coupled with chemical 

sequential extractions and NIRs for the prediction of both methane yield and COD. The preliminary 

dataset was composed of a calibration set of 24 substrates and a validation set of 4 substrates. Table 

6 summarizes the preliminary dataset features with minimal (min), maximal (max) and mean (mean) 

values together with the standard deviation (SD). 

Table 6: Dataset features used for methane yield and COD prediction 

  Calibration set Validation set 

Methane 

yield 

Max (L.gTS
-1) 0.717 0.495 

Mean (L.gTS
-1) 0.33 0.311 

Min (L.gTS
-1) 0.141 0.199 

SD (L.gTS
-1) 0.119 0.130 

Number of samples 24 4 

COD 

Max (mg02.gTS
-1) 2334 1445 

Mean (mg02.gTS
-1) 1251 1221 

Min (mg02.gTS
-1) 935 1001 

SD (mg02.gTS
-1) 291 182 

Number of samples 24 4 

 

Preliminary experiments have been made to assess the advantages and drawbacks of both methods. 

Prediction of methane yield and COD were carried out using the 21 indicators of chemical sequential 

extraction coupled with 3D fluorescence (7 fluorescence zones on 3 extracted fractions) or NIR 
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spectra treated by pseudo absorbance and SNV for COD and pseudo-absorbance, SNV and Savitzky–

Golay filter for methane yield prediction. The results are summed up in Table 7. Using 3D 

fluorescence coupled with chemical sequential extraction, SEC and SECV are higher than the standard 

deviation of the calibration set and R2 is below 0.1 for both COD and methane yield predictions. SEC, 

SECV and R2 indicate that 3D fluorescence coupled with chemical sequential extraction is poorly 

adapted to the prediction of methane yield and COD on a wide variety of samples. SEC and SECV are 

around 3 times lower for COD prediction and around 5 times lower for methane yield prediction 

using NIRs. These results tend to show that methane yield and COD predictions are more accurate 

using NIRs than 3D fluorescence but this hypothesis needs to be confirmed using an independent 

validation set. 
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Table 7: PLS model performance on cross validation and validation set for COD and methane yield prediction using 3D 

fluorescence spectroscopy coupled with chemical sequential extraction (FLUO) or near infrared spectroscopy (NIRs). 

  FLUO NIRs 

Methane yield 

SEC  (L.gTS
-1) 0.122 0.023 

SECV  (L.gTS
-1) 0.314 0.057 

R2 cross-validation 0.07 0.76 

Latent variables 3 6 

SEP (L.gTS
-1) 0.155 0.092 

COD 

SEC (mg02.gTS
-1) 285 70 

SECV (mg02.gTS
-1) 324 120 

R2  cross-validation 0.00 0.84 

Latent variables 4 7 

SEP (mg02.gTS
-1) 459 193 

 

The independent set of 4 samples was used for the model validation and it confirmed that the 

predictions using NIR are more accurate than using 3D fluorescence coupled with chemical 

sequential extraction with SEP of respectively 193 mg02.gTS
-1 and 459 mg02.gTS

-1 for COD prediction 

and SEP of respectively 0.092 L.gTS
-1 and 0.155 L.gTS

-1 for methane yield prediction. Calibration and 

validation results are plotted in Figure 38 which confirmed that NIR have higher performances. 3D 

fluorescence shows low performances of prediction compared to the literature (Jimenez et al., 2014). 

3D fluorescence was accurate analyzing organic matter containing many aromatic compounds such 

as biological sludge but is almost blind analyzing fruits, vegetables, meat, fat which contains a lower 

content in aromatic compounds. Thus, 3D fluorescence is not adapted to the analysis of a large range 

of solid waste. Nonetheless, 3D fluorescence coupled with sequential chemical extraction has the 

advantages to characterized well aromatic compounds like lignin. Most of all, it also indicates the 

accessibility of the organic matter (Jimenez et al., 2014). However, NIR analysis lasts for few minutes 

on a dry sample while 3D fluorescence coupled with chemical sequential extraction lasts for 5 days. It 

was thus decided to focus on NIR spectroscopy in the following of this study.  
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Figure 38: Comparison of cross-validation and validation PLS performances of NIR (left) and 3D fluorescence coupled with 

chemical sequential extraction (right) for the prediction of methane yield (up) and COD (bottom). The blue squares ( ) 

represent the prediction of the independent validation set whereas the red crosses (+) represent the estimation of the 

calibration set. The line represents the bisector between reference and predicted or estimated values. 
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5.6 Fast Characterization of Solid Waste Biochemical Composition with 

Near Infrared Spectroscopy 

In order to further investigate the potential of NIRs, we developed a dataset of 338 samples as 

described in the “Materials and Methods” section 2.5.1. The following work focuses on the 

elaboration of a PLSr model to predict the biochemical composition of the substrate. 

5.6.1 Combinations of the Calibration Model Using PLS Regression 

Chemometric pretreatments like absorbance, SNV, Savitzky–Golay and Detrend have been applied to 

each spectra (see also the “Materials and Methods” section 2.4.1). The aim was to remove additive 

and multiplicative effects on the NIR spectra. The efficiency of this pretreatment is difficult to assess 

due to the great diversity in samples. The efficiency of the treatment was therefore evaluated using 

PLS performances. PLS regression was carried out to correlate the treated spectra with carbohydrate, 

nitrogen and lipid contents and COD independently. Table 3 summarizes the results of the calibration 

of the PLSr models. First of all, as expected in Lesteur et al., (2011), all treatments provided 

acceptable results for cross validation and calibration without any need to remove outliers. For 

instance, all determination coefficients (R2) reached 0.6. Thus, the choice of the pretreatment 

focused on the estimation of either the accuracy or the robustness of the PLSr model. For nitrogen 

content, the Absorbance/SNV/Detrend appears to provide the best estimation, mean, minimum and 

maximum values in accordance with the experimental data. Standard error of calibration SEC is 

indeed equal to 3.7*10-3 g.gTS-1 and standard error of cross-validation SECV to 5.3*10-3 g.gTS-1, which 

is more than 10 times less than the mean value of prediction. The NIR repeatability was also excellent 

with a SDr of 1.4*10-3 g.gTS-1. Nonetheless, eighteen latent variables were yet required. This 

constraint is high and may lead to over-fitting on the calibration dataset. Hence, 

Absorbance/SNV/Savitzky–Golay pretreatment was preferred, providing similar results with SEC 

value equal to 5.5*10-3 g.gTS-1 and SECV values equal to 7.2*10-3 g.gTS-1 and only ten latent variables. 

 For the calibration of carbohydrate content prediction, based on the same criteria, 

Absorbance/SNV/Detrend pretreatment was preferred with nine latent variables for a standard error 

of calibration SEC equal to 77 mg02.gTS-1, a cross-valibration SECV equal to 90 mg02.gTS-1 and 

excellent repeatability with a SDr of 14 mg02.gTS-1. The main weakness of the model was the minimal 

predicted value at -170 mg02.gTS-1 for a minimal real value at 0 mg02.gTS-1.  

Absorbance/SNV and Absorbance/SNV/Detrend pretreatments for the calibration of lipid content 

prediction provided equivalent performances, respectively SEC equal to 1.6*10-2 g.gTS-1 for both, 

SECV equal to 2.5*10-2 g.gTS-1 and 2.3*10-2 g.gTS-1, SDr equal to 6.2*10-3 g.gTS-1 and 6.4*10-3 g.gTS-1, 
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mean at 6.0*10-2 g.gTS-1 and 6.1*10-2 g.gTS-1, R2 of 0.98 for both. However, Absorbance/SNV was 

preferred as it presented a slightly better accuracy at low values of lipid contents, as it is the case for 

many substrates (data not shown).  

For COD prediction calibration, Absorbance/SNV and Absorbance/SNV/Detrend pretreatments 

presented very similar performances respectively with SEC of 89 and 82 mgO2.gTS-1, SECV of 101 and 

99 mgO2.gTS-1, R2 of 0.88 and 0.89. Minimal, maximal and mean estimated values were also similar. 

Absorbance/SNV/Detrend was preferred as it required one latent variable less and a slightly better 

SEC, however both treatments still remained acceptable. 
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Table 8: Influence of spectra treatment on PLSr performances, selected model values are in bold. For calibration dataset 

details, see Materials and Methods section 2.5.1. 

 
Treatment Absorbance / SNV     

Absorbance / SNV / 
Savitzky–Golay 

Absorbance / SNV / 
Detrend 

Nitrogen 

Max (g.gTS-1) 0.15 0.14 0.14 

Mean (g.gTS-1) 2.8*10-2 2.8*10-2 2.8*10-2 

Min (g.gTS-1) -3.0*10-2 -1.0*10-2 -2.0*10-2 

SEC (g.gTS-1) 6.5*10-3 5.5*10-3 3.7*10-3 

SECV (g.gTS-1) 6.0*10-3 7.2*10-3 5.3*10-3 

R2 0.96 0.94 0.97 

SDr (g.gTS-1) 1.4*10-3 1.6*10-3 1.4*10-3 

Latent variables 18 10 18 

Number of samples 295 295 295 

Carbohydrates 

Max (mg02.gTS-1) 1122 1180 1161 

Mean (mg02.gTS-1) 721 726 721 

Min (mg02.gTS-1) -148 -141 -170 

SEC (mg02.gTS-1) 71 70 77 

SECV (mg02.gTS-1) 84 102 90 

R2 0.91 0.87 0.9 

SDr (mg02.gTS-1) 15 17 14 

Latent variables 14 10 9 

Number of samples 295 295 295 

Lipids 

Max (g.gTS-1) 1.068 0.982 1.111 

Mean (g.gTS-1) 6.0*10-2 5.6*10-2 6.1*10-2 

Min (g.gTS-1) -2.2*10-2 -4.6*10-2 -2.0*10-2 

SEC  (g.gTS-1) 1.6*10-2 2.0*10-2 1.6*10-2 

SECV (g.gTS-1) 2.5*10-2 7.0*10-2 2.3*10-2 

R2 0.98 0.86 0.98 

SDr 6.2*10-3 7.9*10-3 6.4*10-3 

Latent variables 10 5 8 

Number of samples 193 193 193 

COD 

Max (mg02.gTS-1) 2912 2765 2916 

Mean (mg02.gTS-1) 1225 1211 1225 

Min (mg02.gTS-1) 943 426 947 

SEC (mg02.gTS-1) 89 83 82 

SECV (mg02.gTS-1) 101 179 99 

R2 0.88 0.63 0.89 

SDr (mg02.gTS-1) 10.89 15.79 11.94 

Latent variables 8 7 7 

Number of samples 296 296 296 
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5.6.2 Model Validation on an Independent Dataset 

The model previously developed for carbohydrate, nitrogen and lipid contents and COD prediction 

was tested on an independent dataset, as described in the “Materials and Methods” section 2.6.3.1. 

Results are presented in Table 9.  No relevant bias has been observed between the predicted and 

reference data, which indicates that the model does not over-estimate or under-estimate the values. 

SEP are low. In details, assuming a normal error distribution, the confidence intervals for 68% of the 

estimated values were: ± 1.4*10-2g.gTS-1 of the predicted value of nitrogen, 70 mgO2.gTS-1 for 

carbohydrates, ± 1.88*10-2g.gTS-1 for lipids and ±78 mgO2.gTS-1 for COD. The predictions on the 

validation data set were excellent (see Table 9).  It can be noticed that SEP can be below SECV. Two 

explanation are possible. First, in the calibration set, which is wider than the validation set, some 

sample are poorly predicted because of reference analyses not accurate or strong differences with 

the other samples of the calibration set. As a reminder, not outlier was removed of the calibration 

set. Second, the samples of the validation set could have some correlation between each other. 

Table 9: Validation of the model on an independent dataset for nitrogen, carbohydrate and lipid contents and COD 

prediction. For validation dataset details, see Materials and Methods section 2.5.1. 

Parameters Nitrogen  Carbohydrate Lipid COD 

Unit g.gTS-1 mg02.gTS-1 g.gTS-1 mg02.gTS-1 

Min 1.2*10-2 329 8*10-3 1125 

Mean 3.0*10-2 691 3.3*10-2 1299 

Max 8.3*10-2 927 12.6*10-2 1667 

R2 0.92 0.95 0.79 0.91 

SEP 5.2*10-3 35.2 0.94*10-3 39 

Bias 0.00 18.8 0.01 14 

Number of samples 43 43 38 42 

 

5.6.3 Discussion Regarding the Selected Model 

The ideal calibration and validation set should have a mean value representing 33% of protein, 33% 

of carbohydrate and 33% of lipid which correspond to 0.05 g.gTS-1 for nitrogen, 351 mgO2.gTS-1 for 

carbohydrates and 0.33 g.gTS-1 for lipids. However, the dataset was chosen to rather represent the 

substrates usually treated in AD plants. This consequently represents a mean calibration value 

respectively set to about 0.03 g.gTS-1, 723  mgO2.gTS-1 and 0.06 g.gTS-1  for nitrogen, carbohydrate 

and lipid contents. The mean values of the validation set are respectively 0.03 g.gTS-1, 672 mgO2.gTS-1 

and 0.02 g.gTS-1 for nitrogen, carbohydrates and lipids (Table 9). In both calibration and validation 

data sets, carbohydrates were over-represented while lipids were under-represented. Nonetheless, 

extreme values in the calibration set define the maximal potential range. In the validation set, the 
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lipid maximal value represents 13% of the maximal existing value. The validation set is in agreement 

with the range of potential sample values for carbohydrates and proteins whereas lipids agree too 

poorly with a validation set covering 0 to 13 % of the potential sample values. The samples selected 

for the study represent a large range of the waste used for AD. Unsurprisingly, most samples were 

observed to be rich in carbohydrates while only a few were rich in lipids. Thus, current development 

focuses on samples with high lipid content to improve the robustness of lipid content prediction. 

Figure 39 illustrates the wide range of values for carbohydrates, with a relatively homogeneous 

distribution between 0 and 1200 mgO2.gTS-1 and with a higher density between 800 and 1000 

mgO2.gTS-1.   

Estimated values from the validation set also indicate a good dispersion and homogeneous 

distribution. Based on this chart and on the criteria in Table 9, the constructed PLS model can be 

expected to produce significant estimations of carbohydrate contents. The nitrogen content was also 

represented over a wide range of values, continuously between 0 and 0.15 g.gTS-1. A high density of 

samples ranging between 0 and 0.03 g.gTS-1 was observed. It matched with samples containing fruits, 

vegetables, cereals or a mixture of these. The samples with the highest contents in nitrogen have 

been reported to be meat or fishes, whereas samples with medium-values were micro-algae or 

diverse mix waste.  As neither meat nor fish were part of the validation set, the validation set did not 

comprise the highest measured values. Nonetheless, the observed dispersion was equivalent to the 

calibration set. COD was distributed between 876 and 2884 mgO2.gTS-1. 876 mgO2.gTS-1 matched 

oxygenated samples while 2884 mgO2.gTS-1 matched fat samples with low-oxygen content which are 

good representatives of the variety of samples that can be found in AD. The 1600 to 2200 mgO2.gTS-1 

range does not correspond to any samples. It rather characterises protein-rich samples for the 

maximal value and lipid-rich samples for the minimal one. It could be worthwhile to add samples 

within this range that might contain a mixture of lipids and proteins or/and carbohydrates. However, 

the miscibility of hydrophilic and lipophilic compounds might be an issue for the analysis of this kind 

of sample. Indeed, samples in this study were generally fresh, containing of an important amount of 

water which is not miscible with lipids. Samples with similar contents in hydrophilic and lipophilic 

compounds were thus split into two sets, one with a low lipid content and one with a high lipid 

content. The lack of intermediate values remains an experimental problem that is still difficult to 

solve. Hence, the samples used for calibration and validation represent experimental means for 

accurately determining the diversity of samples that can be used for AD. 
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Based on this chart and the previous data, the constructed PLS model can be considered as relevant 

for carbohydrate, nitrogen and lipid contents and COD estimations over a wide range of sample 

types.  

  

  
Figure 39: Prediction performances of carbohydrate, nitrogen and lipid contents and COD, respectively on the top left, 

top right, bottom left and bottom right. The blue squares ( ) represent the prediction of the independent validation set 

whereas the red crosses (+) represent the estimation of the calibration set. The line represents the bisector between 

reference and predicted values. 
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5.7 Prediction of the Methane Production Rate in Batch Conditions 

Using NIR Spectroscopy 

As just shown, NIRs can successfully predict the biochemical composition of solid waste. But can it 

also provide information on methane production yield and dynamics of these solid waste during 

anaerobic digestion? 

5.7.1 Prediction of the Methane Yield 

The methane yield, defined in “Materials and Methods” section 2.3.3.1, was predicted according to 

(Lesteur et al., 2011) using chemometric treatment Absorbance/SNV/Savitzky–Golay using the 

dataset described in section 2.5.1. Based on the cross-validation performances, the PLS regression 

model was calibrated using 13 latent variables. On the calibration set, the SEC was about 0.019 L.gTS-

1, a SECV about 0.026 L.gTS-1 and R2 about 0.92. The model was validated on the independent 

validation set with SEP of 0.025 L.gTS-1.The SEP found on the methane yield prediction is comparable 

with the SEP of 0.028 L.gVS-1 reported in (Lesteur et al., 2011). The prediction of the methane yield 

using NIRs will especially be used in Chapter 7 to set the parameters needed for ADM1 simulation. 

5.7.2 Prediction of the Methane Production Time  

First, the durations required to reach from 5% to 95% of the methane yield with step increases of 5% 

have been considered as independent values. The choice of the chemometric treatment was based 

on the PLS performance on cross-validation and calibration. SEC, SECV and R2 between predicted and 

reference values in cross-validation are represented in Figure 40. For all pretreatments, SEC and SECV 

increased until 70% of the methane yield and were even multiplied by approximately 6 from 5% to 

70%. Then both decreased. The variations of SEC and SECV are correlated with the variance within 

the dataset which increases with the methane yield to reach a maximal variance at 70% as suggested 

in Figure 40. The experimental standard deviation and the standard deviation of the predicted values 

in cross-validation have been also plotted in Figure 40. The standard deviation reaches a maximum of 

1.24 day at 70% of the methane yield. Thus, the most important difference between the samples is 

reached at 70% of the methane yield. This explains the increase of both SEC and SECV up to this 

point. Then, the variance decreased indicating a homogenization of the samples. 70% of the methane 

yield is, thus, the most discriminant production time. It assumes a strong decrease in the methane 

flow rate and a slow degradation speed above 70% of the methane yield which suggests that the 

remaining organic matter is slowly degradable.  

About the chemometric treatment, both SEC and SECV were minimized using treatment 

Absorbance/SNV/Savitzky–Golay at any ratio of the methane yield with respectively values from 0.05 
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to 0.37 days and 0.07 to 0.55 days. R2 was maximal using treatment Absorbance/SNV/Savitzky–Golay 

until 70% of the methane yield whereas treatment Absorbance/SNV/Detrending showed slightly 

improved R2 after 70% of the methane yield compared to treatment Absorbance/SNV/Savitzky–

Golay. Treatment Absorbance/SNV/Savitzky–Golay maximized the PLS regression performances for 

production time prediction and was chosen as the reference chemometric treatment for this 

purpose.  

PLS regression was conceived to treat also the production time as a vector of correlated values. The 

advantages of this approach are to acknowledge correlation between the production times at any 

ratio of the methane yield. The disadvantage is the necessity to set a unique number of latent 

variables for every ratio of the methane yield. Using treatment Absorbance/SNV/Savitzky–Golay, 

both approaches were compared considering either the time of production as a correlated vector or 

as independent values. SEC was not accessible using MixOmics (MixOmics is used to predict the time 

as a correlated vector, see “Materials and Methods” section 2.6.3.1) and is thus absent in Figure 40. 

Q2 was used to set the number of latent variables to 5 which corresponds to the first Q2 value below 

0.0975 with a local minimum. The number of latent variables considering production time as 

independent values varies from 6 to 12. A reduction of the number of latent variables is usually 

acknowledged as a gain in robustness. Nonetheless, SECV increased considering production time as a 

vector with values from 0.07 to 0.60 days and R2 decreased with values from 0.79 to 0.47. On 

average, SECV increased by 8.5% and R2 decreased by 6.1% considering the production time as a 

vector. From these results, it can be concluded that the performances are maximized considering the 

time of production as independent values with treatment Absorbance/SNV/Savitzky–Golay.  

The resulting PLS regression model was then tested on the validation set. SEP is presented in Figure 

41. The same pattern as for SECV and SEC estimation was observed for SEP which a reached maximal 

value at 70% of 0.47 day. The standard deviation of the validation set also confirmed an increase of 

the dispersion until 70% of the methane yield (Figure 41). SEP is approximately 2 times lower than 

the standard deviation of the validation set which proves that PLSr was able to discriminate the 

production time of the samples.  It also shows that the errors of prediction are low, for instance at 

65% of the methane yield, the SEP was 0.47 day to predict values in a range from 1.15 to 4.75 day 

with a mean value of 2.32 day. The model previously built on the calibration set can thus be 

considered as suitable to predict the times of degradation at any methane yield ratio.  

The cross-validation and validation results using Absorbance/SNV/Savitzky–Golay pretreatment and 

considering the times required to reach a certain percentage of the methane yield as independent 

values are detailed at the bottom of Figure 41. In these two figures, the methane production times 
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are represented without any distinction on the methane yield ratio. Figure 41 confirms the accuracy 

of the PLSr model but also shows that the error of prediction decreases with the predicted time.  The 

methane production times above 6 days are usually representing a methane production above 70% 

of the methane yield. It has been previously observed that the variance decreased after 70% and this 

goes with a decrease of SECV and SEP which explains the decrease in the error of prediction.  On the 

cross-validation results, one sample is strongly under-predicted at several methane yield ratios. It is 

actually the only sample represented by oil. It shows that oil is under-estimated on the current 

dataset of calibration. This error is not found on validation because no oil was contained in the 

validation set. Nonetheless, from these results, it can be concluded that the prediction of production 

time is feasible using NIR spectroscopy and PLS model, even if an improvement of the dataset on oil 

could be made.  
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Figure 40: PLS regression performances on cross-validation with 3 different chemometric treatments and considering the 

methane production time as correlated or independent values. Treatment 1 corresponds to absorbance and SNV, 

treatment 2 to absorbance, SNV and Savitzky-Golay filter and treatment 3 to absorbance, SNV and detrending. 
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Figure 41: PLS performances on the validation set (up) and representation of the predicted value of both cross-validation 

and validation (bottom). 
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5.7.3 Methane Production Rate Prediction 

A case study was carried out on two samples from the validation set – salad and cauliflower – 

considered as representative of bio-wastes, to assess the feasibility of the methane production rate 

(MPR) prediction. As explained in the “Materials and Methods” section 2.7.2, the MPR was predicted 

using both methane production times and methane yield predicted by NIR analyses. Then MPR was 

interpolated from these 19 points. These curves are represented as “NIR prediction” in Figure 42 and 

compared to the experimental cumulated methane production. It shows that NIR prediction 

represents properly the production of methane. Both methane yield and production time were 

correctly predicted. The errors of prediction on the methane yield were about 6.7% on salad and 3.5 

% on cauliflower. On the experimental data, the methane flow decreased after 0.4 and 1 day and 

increased again after 1 and 1.5 day for respectively salad and cauliflower. These behaviors were not 

accurately predicted by NIR. One possible explanation is an inhibition of the readily degradable 

substrate on the slowly degradable substrate that is not properly predicted by NIR. Another 

hypothesis leading to similar results can be found in Yasui et al., (2008): the readily accessible organic 

matter is degraded first followed by the slowly accessible organic matter, keeping in mind that slowly 

accessible can be readily degradable. 

 

Figure 42: Cumulated Methane production curve for anaerobic of salad (left) and cauliflower (right) in batch. Comparison 

of predicted with reference data 

5.7.4 Simple Indicator of Methane Production Performances 

MPR is a relevant indication that allows to differentiate the methane production performances of 

two substrates, but MPR analysis becomes difficult when the number of samples to compare 

increases. The time needed to reach 70% of the methane yield has been reported in section 5.7.2 to 
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be the most discriminant time and it allows differentiating substrates with fast kinetics of methane 

production. In Figure 43, the samples of the validation set (Materials and Methods section 2.5.1) 

have been plotted depending on their predicted methane production time needed to reach 70% of 

the methane yield and their predicted methane yield. Figure 43 shows that the NIR spectroscopy 

analysis of the substrate provides the human operator with a fast and unique opportunity to select 

the most relevant substrates on a simple graph, based on methane yield and kinetics of methane 

production. 

  

Figure 43: Estimation of the validation set substrates performances expressed as a function of the methane yield and the 

production time of 70% of the methane yield. Abscissa arrow indicates the methane production kinetics and ordinate 

arrow the methane yield. 
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expertise on the calibration set is needed and indicators stating for which the estimation is 

acceptable must be assessed. 

Bellon-Maurel et al., (2010) reported in a review that the confidence interval of a NIRs soil quality 

attributes prediction can be estimated based on the Malahanobis distance between the spectrum of 

the new sample and the centre of the calibration set. Since this indicators depends on the diversity of 

samples used and since it was never validated on the prediction of solid waste composition, Euclidian 

distance from the nearest spectrum or from the mean spectrum and Mahalanobis distance were 

compared on processed spectra but also on the spectra projected on the space of PLS loading vectors 

of the calibration set. Taking the example of methane yield prediction, Figure 44 shows, as reported 

by Bellon-Maurel et al., (2010), that the confidence interval enlarges with the distance. Nonetheless, 

in the specific case of solid waste composition, where an important diversity of sample is found, the 

most noteworthy pattern was obtained when correlating the minimal Euclidian distance between the 

samples and the calibration dataset. Comparing the minimal Euclidian distance between the samples 

and the calibration set and the minimal Euclidian distance between the samples projected into the 

PLS space and the calibration set projected into the PLS space, it can be observed that the projection 

into the PLS space reduces to 0 the distances of samples which used to be far from the calibration 

set. Indeed the projection into the PLS space removes the part of the spectrum orthogonal to the PLS 

space, hence the projection of the spectrum which were previously far from the calibration set are 

found to be near to the projected calibration set. Thus, it can be concluded that the projection into 

the PLS space for distance analysis is not relevant. Similar results were obtained for carbohydrate, 

protein and lipid contents, COD and methane production times and it was thus decided to focus on 

the minimal Euclidian distance. The relation between the error of prediction and the minimal 

Euclidian distance between the samples and the calibration dataset is plotted in Figure 45 for all the 

predicted parameters. A relation between the Confidence Interval (CI), representing at least 95% of 

the samples, and the Minimal Euclidian Distance (MED) is observed for the prediction of all variables. 

As does the distance, the relation between the MED and the CI seems to be strongly affected by the 

chemometric pretreatment.  



Chapter 5: Characterization of Solid Waste Using Spectroscopic Analyses  

135 
 

To assess the relation between the CI and the MED, CI has been modelled according to “Materials 

and Methods” section 2.6.3.4 as a function of the MED. Figure 45 shows that the relation between 

MED and CI can be modelled by the equation: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑎 ∗ 𝑀𝐸𝐷𝑛 + ‖𝑏‖ 

Details of the parameters a, b and n are provided in Table 10. As it can be seen, the parameter b is 

always equal to 0, indicating that when MED is equal to 0, there is no error of prediction. Thus, it 

demonstrates that every spectrum is specific: a unique value of the variables is associated to each 

spectrum.  Moreover, for each chemometric treatment, similar orders of magnitude can be found for 

both n and the ratio a/SECV. It shows that a depends on the SECV and on the chemometric 

  

  

Figure 44: Relations between the distance of a spectrum from the calibration set and its error of prediction. Example of 

the methane yield prediction 
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pretreatment. Using a bigger dataset, further investigation could be carried out to highlight the 

relation between CI, SECV, MED and the chemometric treatment to propose an equation based on 

SECV and MED to predict CI depending on the chemometric treatment.  

Table 10: Relation between the Minimal Euclidian Distance (MED) and the Confidence Interval (CI) for carbohydrate, 

nitrogen and lipid contents, COD, methane yield and methane production time prediction at 70% of the methane yield.  

In the table, the variables are ranked by chemometric treatment.  

Predicted variable     Chemometric treatment 
Equation: 

 𝑪𝑰 = 𝑎 ∗𝑀𝐸𝐷𝑛+ ‖𝑏‖ 
Ratio a/SECV 

Lipid content (g.gTS
-1

) Absorbance / SNV     𝐶𝐼 = 0.012 ∗ 𝑀𝐸𝐷1.54 0.523 

Carbohydrate content 
(mgO2.gTS

-1
) 

Absorbance / SNV / Detrend 𝐶𝐼 = 193 ∗ 𝑀𝐸𝐷0.46 
2.14 

COD (mgO2.gTS
-1

) Absorbance / SNV / Detrend 𝐶𝐼 = 173 ∗ 𝑀𝐸𝐷0.63 1.74 

Nitrogen content (g.gTS
-1

) 
Absorbance / SNV / 

Savitzky–Golay 
𝐶𝐼 = 0.52 ∗ 𝑀𝐸𝐷0.70 

72.0 

Methane yield (L.gTS
-1

) 
Absorbance / SNV / 

Savitzky–Golay 
𝐶𝐼 = 4.40 ∗ 𝑀𝐸𝐷0.84 

169 

Methane production time at 
70% of the methane yield 

(days) 

Absorbance / SNV / 
Savitzky–Golay 

𝐶𝐼 = 43.47 ∗ 𝑀𝐸𝐷0.68 

79.0 
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Figure 45: Predictions confidence interval depending on the minimal Euclidian distance from the spectrum to the 

calibration dataset for carbohydrate, nitrogen and lipid contents, COD, methane yield and methane production time at 

70% of the methane yield. The purple line models the confidence interval. 
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Figure 46: Prediction errors on the validation set depending on the minimal Euclidian distance from the spectrum to the 
calibration dataset for carbohydrate, nitrogen and lipid contents, COD, methane yield and methane production time at 
70% of the methane yield. The purple line corresponds to the equations of the confidence interval established on the 
calibration set (Table 10). 
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The relations established on the calibration set between the CI and the MED (Table 10) were 

validated on the validation set. Figure 46 demonstrates that these relations remain valid since 95% of 

the samples are included in the confidence range, expect for lipid content prediction. Lipid content 

prediction in samples with less than 5% of lipids has low performances as shown in Figure 39, Figure 

45, Figure 46. Unfortunately the reference method being known as unprecise for low lipid content, it 

is difficult to improve the performances of prediction below this threshold.   

5.9 Conclusion on NIRs Characterization 

In the previous chapter, correlation between biochemical composition and methane performances 

were highlighted, pointing towards more descriptive organic matter characterizations such as NIR or 

3D fluorescence spectroscopy. This hypothesis was investigated in this chapter. To do so, both 

laboratory analyses for the estimation of carbohydrate, nitrogen, lipid contents and COD in solid 

samples and batch experiments using adapted micro-organisms have been performed to create a 

dataset for NIR prediction. Based on the PLSr performances, models were established and optimized. 

They show excellent accuracy of prediction for both cross validation and validation with an 

independent data set. Moreover, the accuracy of predictions can be warrantied according to CI based 

on the distance between the sample and the calibration dataset. If the sample should be too far from 

the calibration dataset, the prediction should not be used and the sample ought to be analysed with 

reference methods. Furthermore, the sample should ideally be added to the calibration dataset. This 

would increase its size and relevance. It would also reduce the cost of dataset improvement, 

selecting only the most relevant sample (i.e., with an important distance from the calibration set).  

These results on the correlation between distance and CI are a worthwhile approach for improving 

NIR confidence for industrial applications. 

All these results proved that NIR spectroscopy is a new and efficient way to characterize solid waste 

content for industrial-scale applications. The black box models developed are also a unique 

opportunity to investigate the link between the composition of the organic matter and the process 

performances. In the next chapter, the PLS models will be deeply investigated to better understand 

the molecules contribution to the prediction of each parameter. Nonetheless, the anticipation of the 

methane performances of the unit based only on a detailed characterization of substrate would be 

unsatisfactory. Indeed, dynamic models taking into account both biological state of the unit and 

substrate composition have to be used. Thus Chapter 7 will investigate the use of the PLSr developed 

in this chapter to implement a dynamic model for process performances prediction. 
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6.1 Chapter Guidelines 

The novelty of this chapter consists mainly on its approach. The classical approach for predictive 

models consists in collecting knowledge in order to create an expert model that links the predictors 

to the predicted values. In this chapter, the approach is different in the sense that a black box model 

does not require any previous knowledge. Thus, the black box model is investigated to understand 

the existing relations between the predicted values and the predictors. In the current situation, the 

models previously developed in Chapter 5 are deeply investigated to give clues about the molecules 

involved in the prediction of AD performances. It specially focuses on the b coefficients of the 

models. The introduction of the chapter (0) recalls the principles of the PLS and b coefficients before 

reporting the known absorbance of molecules in near infrared (NIR). A short reference to the 

“Materials and Methods“ is made in section 6.4. Then section 6.6 compares the b coefficients to the 

reported molecules absorbance to assess the contribution of the molecules to both biochemical 

composition and the prediction of AD performances.  Eventually, section 6.7, investigates the 

relations between the different models to go further in determining the contribution of each 

molecule to the prediction. Since the analysis of the b coefficients and the comparison of the models 

needs a deep understanding of the correlations existing between the different predicted values, this 

chapter often refers to Chapter 4. 
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6.2 Technical and Graphical Abstracts 

Near infrared coupled with partial least square regression can be used to predict biochemical 

parameters such as carbohydrate, protein and lipid contents but also chemical oxygen demand, 

methane production yield and kinetics. The aim of this chapter is to interpret the partial least square 

b coefficients associated to the parameters predictions. Parallel study of the b coefficients and near 

infrared wavelengths provides an insight on molecules contribution to these parameters. It highlights 

either the role of phenol in non-biodegradable fraction or the importance of alkane and alkene on 

the methane yield of a substrate. In a second step, the b coefficients of the partial least square 

regression models were compared to each other. The relations were analyzed and confirmed the link 

of lipid content with methane yield or chemical oxygen demand. It also highlights relations that 

affect plant monitoring strategy as, for instance, anti-collinearity between the b coefficients used for 

the prediction of chemical oxygen demand and the one used for the prediction of biodegradability, 

or the independence of the methane production yield and kinetics. Eventually, this study reveals that 

proteins and biodegradable molecules are positively related with methane production kinetics and 

thus readily biodegradable. The interest of this work is twofold, it evaluates the molecules 

contribution to the methane production performances and it validates the use of the b coefficients as 

an investigation tool. 
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6.3 Introduction of the Chapter 

Indicators such as methane yield, COD or dynamics of methane production provide macro-

information useful to monitor anaerobic digestion plants but are poorly informative on the 

composition and structure of the organic matter. As it was previously shown in Chapter 5, PLSr 

models between NIR spectra and carbohydrate, protein and lipid contents, COD, methane yield or 

kinetics of methane production can be efficiently built to estimate these variables. Thus, the features 

selected by the PLSr can be trusted as indicators of the molecules involved in the determination of 

these parameters.  

PLSr is a multivariate projection based method that performs local regression. Working with NIRs, 

PLSr maximizes the covariance between the spectrum and the parameters to predict, seeking for 

linear combinations of the variables from both sets. To do so, PLSr performs successive regressions 

using projection onto latent vectors. It results in a linear combination with the spectra intensities of 

each wavelength. Considering Y the parameter to predict: 





p

1i

ii R.AbbY 0          (19) 

with b0 the intercept, bi, the PLSr b coefficient for wavelength I, Ai, the intensity value of wavelength I 

and R the model residuals.  

In these models, the wavelengths contribution, through the analysis of the b coefficients, can provide 

additional information of importance. NIR absorption indeed corresponds to vibration of the atomic 

and molecular bounds. Thus, the PLSr model provides information on the wavelengths contribution 

regarding carbohydrate, protein or lipid contents and COD, methane yield or kinetics of methane 

production prediction.  

A particular interest of the b coefficients is found with the Net Analyte Signal (NAS). NAS is the part of 

the measured signal that a calibration model relates to the analyte concentration. It has been 

demonstrated that NAS could be estimated by the b coefficients (Ferré et al., 2001) and thus, the b 

coefficients can be interpreted as the spectrum of the properties of interest. Hence, the b 

coefficients from each PLS regression model can be compared with spectra of known components. 

 PLSr b coefficients take both positive and negative values; their analysis gives an insight on the 

contribution of the wavelengths into the prediction. One of the difficulties of b coefficients analysis in 

NIRs is the use of continuous spectra with correlation between the wavelengths instead of 
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independents variables. Negative b coefficients on a wavelength can be interpreted as the removal of 

an undesired molecule absorbance which absorbs in the same wavelength as relevant molecules or 

as the effect of a correlation within the dataset. b coefficients interpretation complexity can be 

reduced using of variable selection to help assessing the most relevant b coefficients. A solution is to 

use variable selection but the information on the b coefficients shape and value are altered. To 

overcome this problem, sparse-PLS is preferred, performing variable selection by Lasso penalization 

of the loading vectors (Le Cao et al., 2008).  

No strict rules establish a link between the wavelengths and the molecules which increase the 

complexity of molecules contribution assessment through b coefficients analysis. Indications on the 

potential link between wavelengths and several groups of organic molecules has been provided 

(Osborne and Fearn, (1986), Williams and Norris, (2001), BenDor et al., (1997)). Table 11 to Table 14 

sum up the impact of the molecules on the spectra at different wavelengths.  

Table 11: Influence of alkane and alkene on NIR spectra. The black marks represent the range of absorbance 

 

 

Wavelength (nm)
Molecule 2200 2300 2400 2500800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
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Table 12: Influence of alcohol, ketone, ester, epoxide, aldehyde and carboxylic acid on NIR spectra. The black marks 

represent the range of absorbance 

 

 

2400 2500Molecule

Wavelength (nm)

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
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Table 13: Influence of organic molecules containing nitrogen on NIR spectra. The black marks represent the range of 

absorbance 

 

 

Table 14: Influence of organic molecules containing sulfur on NIR spectra. The black marks represent the range of 

absorbance 
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Wavelength (nm)
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Despite the difficulty of interpretation, b coefficients analysis is considered as a relevant tool to 

better understand the link between the organic matter composition and the indicators used for 

anaerobic digestion. In the first instance, the current study will assess the contribution of 

wavelengths involved in the estimation of AD indicators through the b coefficients analysis. The 

relation between these wavelengths and the potential molecules represented from Table 11 to Table 

14 will be established and discussed. Eventually cosine between the b coefficients of different PLSr 

model calibrations will be estimated to highlight the relations between the models. 

6.4 Materials and Methods Related to this Chapter 

Detailed information about the materials and methods related to this chapter are provided in the 

“Materials and Methods“ sections 2.3.1, 2.3.3.1, 2.4.1, 2.5.1, 2.6.1, 2.6.3.1, 2.6.3.2. 

6.5 Homogenization of the Chemometric Treatment 

As does the spectrum, b coefficients are strongly impacted by the chemometric treatment selected 

and it is difficult to compare the b coefficients selected on different chemometric treatments. 

However it is relevant to assess the relation between the b coefficients selected as the NAS of COD, 

methane yield and production time or carbohydrate, protein and lipid contents. To overcome the 

problem of homogeneity between the b coefficients, it was decided to use the same chemometric 

treatment for every PLSr model. According to Lesteur et al., (2011) and Chapter 5, if only one 

chemometric treatment had to be applied before every PLSr model, absorbance/SNV/detrending is 

the most appropriate one, providing the best accuracy. The prediction using this pretreatment and 

sparse PLSr performances were assessed in order to insure the validity of the associated models (see 

“Materials and Methods” section 2.6.3.2). Table 15 sums up the number of latent variables, the 

number of variables to keep in X-loadings (KeepX), Standard Error of Cross Validation (SECV) on the 

calibration set and the Standard Error of prediction (SEP) on the validation set. The values given for 

the production time correspond to the quadratic mean value for the 19 points predicted along the 

methane production. The performances of the sparse PLSr models prediction were comparable to 

the performances reported in Lesteur et al., (2011) and in Chapter 5. From the cross-validation and 

validation performances shown in Table 15, sparse PLSr established using absorbance, SNV and 

detrending as a chemometric pretreatment can be considered as accurate for the prediction of all 

variables. The resulting b coefficients of sparse PLS are considered as relevant to work on. 
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Table 15: Sparse PLSr performances. Methane production time is expressed as a mean quadratic error for the 19 time 

predicted along the methane production curve from 5 to 95% of the methane yield.  

 Carbohydrate  Protein  Lipid 

 

Methane 

yield 

 

Biodegradability  COD 

 

Methane 

production 

time 

Latent 

variable 

11 13 15 10 11 8 5 

KeepX 38 51 24 4 20 36 41 

SECV  0.070 

mgO2.mgO2
-1 

0.031  

g. gTS-1 

0.008  

g. gTS-1 

0.041  

l. gTS-1 

0.116 

mgO2.mgO2
-1 

83.1 

mgO2.gTS-1 

0.31 d 

SEP  0.034 

mgO2.mgO2
-1 

0.025  

g. gTS-1 

0.011  

g. gTS-1 

0.027  

l. gTS-1 

0.087 

mgO2.mgO2
-1 

44.5 

mgO2.gTS-1 

0.31 d 

 

6.6 b Coefficients Analysis and Molecules Contribution to the Predicted 

Parameters 

In order to select only the most relevant variables involved for the prediction, b coefficients of 

sparse-PLS were considered. Because sparse-PLS selects the variables with a maximal covariance 

between wavelength intensities and values to predict, these variables can be considered as 

fundamental and linked with molecules strongly related with the parameters to predict. The 

complexity of the b coefficients in Figure 47 indicates that many wavelengths are considered as 

fundamental by the sparse PLSr. The high number of peaks could be related to the diversity of 

substrates used and the complexity of the parameters to predict. The b coefficients were analyzed 

and compared to the assignments found in the literature summed up from Table 11 to Table 14. 
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Figure 47: b coefficients (Bcoef) of carbohydrate, protein and lipid contents, biodegradability, COD, methane yield and 

methane production time prediction from spectra pretreated by absorbance/SNV/detrending 

b coefficients involved in the prediction of carbohydrate content revealed positive peaks at 1045-

1142-1250-1422-1486-1607-2034-2256-2327-2417-2424 and from [1764-1906] nanometers. It 
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revealed negative peaks at 1380-1720-1970-2297-2358. It can be observed that one wavelength 

often implies many molecules. Indeed, NIR signal results from the interaction of both molecule 

bounds and matrix effect. It is sometimes difficult to separate the influence of each family of 

molecules for the b coefficients analysis. Nonetheless, for carbohydrate content prediction, 

comparing data from Table 11 to Table 14, to the b coefficients, it can be seen that alcohols, ketone, 

aldehyde, carboxylic acid, phenol and epoxy are positively involved while alkane and alkene are both 

positively and negatively contributing to the carbohydrate content prediction. Ammoniac is positively 

and negatively contributing to the carbohydrate content while positive contribution of amine and 

amide seems to be observed. All in all, the prediction of carbohydrate content seems to be in strong 

relation with molecules containing oxygen (details in Annex of this chapter, table 1). These 

observations make sense since carbohydrates are composed of alcohols and often of ketone, 

carboxylic acid or aldehyde. The contribution of amide to the prediction of carbohydrate content 

could be explained by its presence in carbohydrates but also by the similar absorbance of amide and 

alcohols that makes the separation of each family of molecules difficult. 

b coefficients involved in the prediction of protein content indicate that proteins prediction is 

associated with positive peaks at 1043-1182-1315-1395-1520-1980-2052-[2180-2220]-2287-2343-

2424 nanometers. Wavelengths at 1256-1418-1456-1662-1770-1883-2022-2150-2262-2400-2500 

nanometers contribute negatively. Alkane, alkene, benzene, alcohol, aldehyde, ketone, carboxylic 

acid, ester, epoxy, phenol, sulfonic acid and disulfide were associated with many of the b coefficients. 

The study reveals an equivalent number of positive and negative contributions for each of them. In 

addition, a majority of positive b coefficients were associated with the molecules containing nitrogen 

such as ammoniac, amines, ketamine and amides. Many of the positive b coefficients in relation with 

molecules containing proteins were also in relation with alkane, alkene, benzene, alcohol, aldehyde, 

ketone, carboxylic acid, ester, epoxy, phenol, sulfonic acid or disulfide. These positive b coefficients 

are counterbalanced by negative ones in the case of molecules non containing nitrogen (details in 

Annex of this chapter, table 2). Thus, it can be concluded that the sparse PLSr model targeted 

molecules containing nitrogen and subtracted the contribution of molecules rich in oxygen with 

negative b coefficients. Molecules rich in oxygen have a negative impact on the protein content 

prediction since they are strongly correlated with the prediction of carbohydrate content which is 

itself anti-correlated with protein content (see Chapter 4, Figure 30). 

b coefficients involved in the prediction of lipids indicate that lipids prediction is associated with 

positive peaks at 1000-1050-1395-1663-1722-1770-1950-2145-2242-2329-2402 nanometers and 

with negative peaks at 1260-1418-1678-2050-2198-2210-2268-2323-2394 nanometers. Alcohols, 
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benzene, aldehyde, ketone, carboxylic acid, anhydric acid, amides, thione and sulfonic acid are either 

positively or negatively contributing to the lipid content prediction. Unexpectedly, carboxylic or ester 

function were ignored by the sparse PLSr model even if present in many fatty acids. A first 

explanation would be its low relative contribution to the fatty molecules and a second one, its 

contribution to both lipids and carbohydrates which are anti-correlated (see Chapter 4, Figure 30). 

Ammoniac seems to contribute negatively to lipid content but amines contribute positively. These 

two contributions could be due to absorption wavelengths shared with molecules of interest for the 

lipid prediction. Eventually, it can be observed that the positive b coefficients are mainly associated 

with alkane and alkene, which represent the main part of fat molecules (details in Annex of this 

chapter, table 3).  

Overall, the analysis of the b coefficients shows that they are often associated with many known 

molecules. It has been seen that molecules rich in oxygen contribute to carbohydrate content 

prediction, while molecules rich in nitrogen contribute to protein content prediction and alkane and 

alkene contribute to lipid content prediction. These relations are in accordance with the biochemical 

composition of carbohydrates, proteins and lipids. Negative b coefficients could be explained by the 

anti-correlation in the calibration set between carbohydrate content and; protein and lipid contents 

reported in Chapter 4. It shows that the relation deriving from the b coefficients analysis is reliable.  

b coefficients analysis has been extended to COD, methane yield, biodegradability and methane 

production time in which less background on the expected contribution is available. b coefficients 

involved in the prediction of methane yield indicated that methane prediction is associated with 

positive peaks at 1143-1372-1780-1900-2054-2133-2160-2248-2285-2418 nanometers and with 

negative peaks at 1420-1657-2264-2390 nanometers. A limited number of variables have been 

selected by the sparse PLSr, strongly related with methane yield prediction. Alkane, alkene, alcohols, 

carboxylic acid, aldehyde, benzene sulfonic acid, amine and amide were mainly associated with 

positive peaks (details in Annex of this chapter, table 4). The current analysis of b coefficients 

suggests that alkane, alkene, alcohols, carboxylic acid, aldehyde, amine and amide are biodegradable 

and contribute to the methane yield. 

b coefficients involved in the prediction of COD indicate that COD prediction is associated with 

positive peaks at 1150-1210-1450-1676-1721-1770-2064-2134-2308-2351-2390 nanometers and 

with negative peaks at 1000-[1045-1100]-1256-1400-1660-1880-2030-2287-2325 nanometers. The 

wavelengths associated with the b coefficients imply many molecules. Alkane, benzene, ketone, 

carboxylic acid, ester, anhydric acid, amides and sulfonic acid are either positively or negatively 

contributing to the COD prediction. As expected, alcohols are negatively related with COD prediction. 
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Indeed the oxygen contained in alcohols reduces the COD as shown by the negative correlation 

between COD and carbohydrate content (see Chapter 4, Figure 30). The analysis revealed a negative 

contribution of amines to COD (details in Annex of this chapter, table 5). It could be explained by a 

relation between amines and oxygen-containing groups as for instance in glycoproteins. Alkene was 

related with positive b coefficients. Indeed, alkene has an important COD, nonetheless, the 

contribution of alkane to COD prediction was expected to be more significant (Long et al., 2012).  

b coefficients involved in the prediction of biodegradability indicate that peaks at 1355-1406-1658-

2052-2145-2228-2287-2415 nanometers contribute positively and peaks at 1257-1456-1673-1728-

1982-2035-2262-2314-2347-2390 nanometers contribute negatively to the prediction of 

biodegradability. Either positive or negative b coefficients were associated with alkane, alkene, 

alcohols, ketone, carboxylic acid, ammoniac, amines, ketimine, amides, disulfide and sulfonic acid. 

Positive b coefficients were associated with aldehyde, anhydric acid. Negative b coefficients were 

associated with phenol and isocyanate (details in Annex of this chapter, table 6). The presence of 

isocyanate in the sample studied can be questioned because it is a toxic and reactive compound. 

Nonetheless its toxicity could explain a negative contribution to biodegradability. The negative 

contribution of phenol was expected. Phenol is, indeed, highly represented in lignin which represents 

a non-degradable organic matter (Buffiere et al., 2006). Many of the molecules with either negative 

or positive contributions to biodegradability prediction have been reported with a positive effect on 

both COD and methane which could explain their low impact on biodegradability prediction since 

biodegradability is correlated with methane yield but anti-correlated with COD (see Chapter 4, Figure 

30). 

b coefficients involved in the prediction of methane production-time indicate that peaks at 1000-

1125-[1250-1310]-1400-1670-1908-2497 nanometers contribute positively and peaks at 1052-1174-

1368-1520-1642-1984-2062-2157-2224-2291-2406 nanometers contribute negatively. Either positive 

or negative b coefficients were associated with aldehyde, ester, epoxy, phenol, disulfide and sulfonic 

acid. Negative b coefficients were associated with alkane, alkene, alcohols, ketone, carboxylic acid, 

anhydric acid, ammoniac, amines and amides. Positive b coefficients were mainly associated with 

nitrile indicating a positive contribution of nitrile (details in Annex of this chapter, table 7). One 

reaction that can possibly occur on nitrile is its reduction in amine. This reduction would use the 

reduction potential needed for the synthesis of methane, inhibiting its production. The contribution 

found on the b coefficients analysis shows that alkane, alkene, alcohols, ketone, carboxylic acid, 

anhydric acid, ammoniac, amines and amides decreased the degradation time. These results indicate 

that these molecules are readily bio-degradable.  
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From the study of the b coefficients, interesting contributions have been highlighted. Nonetheless, in 

many cases the complexity of the spectrum resulting from NIRs analyses made the relations difficult 

to interpret. The wavelength related with each molecule also depends on the matrix and the 

molecular environment (Nicolai et al., 2007). Thus the data found in the literature are not specific 

enough to draw some exact conclusions on the molecules related with the parameters predicted by 

the PLSr. 

6.7 Relations between the b Coefficients of the Models 

b coefficient from the PLS regression models established can be compared with each other as the 

NAS of the property of interest by analyzing the cosine of b coefficients of each PLS regression model. 

It makes it possible to compare, for instance, the similarity between features used to predict the 

biochemical composition of the substrate and the features used to predict the methane yield or 

production time. A matrix of collinearity was established between the b coefficients of the PLSr 

model for the prediction of carbohydrate, protein and lipid content, biodegradability, methane yield, 

COD and methane production time using the cosine between the b coefficients, as detailed in 

“Materials and Methods” section 2.6.1. The matrix is drawn as a heatmap in Figure 48.  

The analysis of cosine reveals that carbohydrate content predictors (i.e. b coefficients of the model) 

were positively related with biodegradability and methane yield predictors, while negatively related 

with the COD predictors (Figure 48). It shows a negative impact of the molecules involved in 

carbohydrate content predictors on COD. Indeed, carbohydrates contain oxygen that reduces the 

COD. On the other hand, carbohydrates are mainly composed of biodegradable compounds that 

affect positively both methane yield and biodegradability as it was demonstrated experimentally by 

Labatut et al., (2011).  

Protein content predictors were related with methane yield and biodegradability predictors too. 

Molecules rich in nitrogen contributing to protein content predictors can thus be considered as 

highly biodegradable. In section 3.3.1, is has been seen that total ammonia nitrogen (TAN) inhibits 

the AD process. Thus, the high biodegradability of the protein we highlighted indicates that the 

majority of the organic nitrogen introduce in the plant will be biodegraded to TAN which may leads 

to process inhibition. Nitrogen is rarely found in lipids or carbohydrates as highlighted by the 

negative relation between protein and carbohydrate or lipid contents predictors. Proteins predictors 

were also negatively related with COD predictors. It indicates that molecules with a high COD such as 

lipids were not acting on proteins prediction.  
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b coefficients involved in lipid content prediction presented a strong similarity with the one involved 

in COD prediction. Lipids are poor in oxygen and mainly composed of C and H which implies a high 

COD. The same conclusion can be drawn for methane yield supposing the COD of the substrate as 

biodegradable. Nonetheless, the relation between lipid content and methane yield predictors is 

weaker than between lipids and COD predictors. This indicates that an important part of the lipids 

are biodegradable and contribute to both methane yield and COD prediction. However, it also 

indicates that some lipids contribute only to COD prediction and are thus considered as not 

biodegradable.  

Methane yield predictors and biodegradability predictors have important similarity. Biodegradability 

is the result of the ratio methane yield to COD (Equation 18, section 4.3.2). Thus a high methane yield 

implies a high biodegradability. It can be noticed that methane yield and COD b coefficients are very 

poorly anti-collinear. This absence of relation is explained by the independency of methane yield and 

COD. It is quite an important result. Indeed, in many AD plants, COD is followed instead of methane 

yield because COD is faster and easier to obtain (Jimenez et al., 2015b). But, this implies that COD 

and methane yield are correlated. However, in our study, the independence of the b coefficients 

used for methane yield and COD prediction and their low correlation (see Chapter 4) shows that this 

hypothesis is far from being always true. This could explain why plant performances are often below 

the operator expectation. The independence of methane yield and COD also explains the anti-

collinearity between COD and biodegradability predictors and confirms that NIRs and PLSr enable to 

distinguish biodegradable and non-biodegradable molecules. Based on equation 18 (section 4.3.2), if 

the COD increases and the methane yield remain constant, biodegradability decreases.  

The relations between the b coefficients of the methane production time and the b coefficients of 

the methane yield, COD, biodegradability, carbohydrate, protein and lipid contents provide some 

clues about the impact of different molecules on the methane production time. It reveals very low 

similarity between the methane production time and; carbohydrate and lipid content, COD and 

methane yield predictors. Carbohydrates and lipids represent huge families of molecules. In these 

families, the kinetics of degradation varies a lot. For instance, the degree of polymerization, the 

crystalline structure and the type of bonds between the monomers impact a lot the process of 

biodegradation (Resch et al., 2014).  

The current results relate negatively the methane production time with biodegradability and protein 

content predictors, which indicates collinearity with the kinetics of methane production. The higher 

the biodegradability or protein content predicted, the faster the production of methane will be. It 

means that the predictors of protein content, and thus of nitrogen rich molecules, are associated 
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with readily degradable matter. In vegetal organic matter, proteins or nitrogen rich molecules usually 

have a role of energetic reserve. The role of proteins in animals is pretty different and they ensure 

many key functions. Proteins are commonly found in polymers for example muscle fibers. The 

similarity between kinetics and proteins predictors indicates that molecules rich in nitrogen 

considered either as reserves or fibers are readily bio-degradable. Non-degradable organic matter 

predictors are linked with complex polymeric structure such as lignin as detailed in section 3.2. The 

hydrolysis of such structures is slow and incomplete because of the difficulty for enzymes and micro-

organisms to access and degrade the organic matter while soluble organic matter is often readily 

accessible and degradable. Thus, the more biodegradable the organic matter, the faster its 

degradation.  

 

Figure 48: b coefficients (Bcoef) cosine matrix of carbohydrate, protein and lipid contents, methane yield (CH4Yield), 

COD, biodegradability and methane production time (ProductionTime). 
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6.8 Conclusion 

This study analyzes the b coefficients of PLSr models for the prediction of carbohydrate, protein, lipid 

contents and COD, biodegradability and methane production yield and kinetics. The simultaneous 

analysis of the b coefficients for these 7 parameters provides the opportunity to compare the b 

coefficients with the reported absorbance of molecules on NIR spectra but also to analyze the 

correlations between b coefficients for different predictive models. It revealed that: 

 Carbohydrate content predictors are related to oxygenated molecules content such as 

alcohols. The carbohydrate content impacts negatively the COD prediction but positively 

the methane yield and biodegradability. 

 Protein content predictors are related to any molecules containing nitrogen. The 

associated molecules are readily and highly biodegradable. 

 Lipid content predictors are related with alkane and alkene content. Moreover, the b 

coefficients implied in the lipids content prediction have important similarities with the 

one implied in COD and methane yield prediction. 

 Biodegradability is negatively related with lignin and positively with kinetics of methane 

production. 

 In contradiction to the mainstream thought, b coefficients implied in the COD and 

methane yield prediction are anti-collinear and revealed low relation with methane 

kinetics predictors. 

This highlighted the relations between the parameters mainly used to pilot AD plant. It is hoped that 

it will help human plant operators to determine the optimal feeding of the digesters with a better 

understanding of the links between the biochemical composition, COD, methane production yield 

and kinetics. This study also proposed the use of NIRs and b coefficients analysis to get an insight of 

the organic matter composition of complex samples. 
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Annex of the chapter 
 Table 1: Relation between b coefficients and molecules involved in the prediction of carbohydrate content 

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1045-1142-1250-1422-2256-2327-2417-
2424 

1380-1720-2297-2358 

Alkene 1142-1422 1380-1720 

Alkyne 1045 1970 

Benzene 1142-1607  

Primary alcohol 1045-1422-1486-1607  

Secondary 
alcohol 

1045-1422-1486-1607 1380-1970 

Tertiary alcohol 1045-1422-1486-1607  

Aldehyde 1045-1142-1422-2034 1380 

Ketone 2034-2256 1970 

Carboxylic acid 2034 1970 

Ester 2034  

Epoxy 1142-1422-1607  

Anhydric acid   

Cyclo anhydric 
acid 

[1764-1906]  

Phenol 1142-1422-1486-2034 1970 

Acyl halide   

Ammoniac 2034-2327 1970-2297-2358 

Primary amines 1045-1422-1486-1607-2034 1970 

Primary 
aldimine  

  

Nitrile 2424  

Primary 
ketimine 

1045 1970 

Secondary 
amine 

1045 1970 

Secondary 
ketimine 

  

Nitro 2256  

Isocyanate 2256-2417 2358 

Primary amides 1045-1422-2304 1970 

Secondary 
amides 

1045-1422-2034 1380 

Tertiary amides   

Sulfhydryl  1970 

Thione 2256  

Disulfide 2034 1970 

Acid sulfonic 1045-1422-2056 2297 

Diester sulfonic [1764-1906]  

 

 

Table 2: Relation between b coefficients and molecules involved in the prediction of protein content 

Molecule Wavelength reported with positive b Wavelength reported with negative b 
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coefficients (nm) coefficients (nm) 

Alkane 1043-1182-1395-[2180-2220]-2287-
2343-2424 

1256-1418-1456-1662-1770-2262-
2400-2500 

Alkene 1182-1395-1980-2052--[2180-2220] 1418-1456-1662-1770-2022-2050-
2262 

Alkyne 1980  

Benzene [2180-2220] 1662-2050-2500 

Primary alcohol 1043-1520-2052 1418-1456-2022-2050 

Secondary 
alcohol 

1043-1395-1520-1980-2052 1418-1456-2022-2050 

Tertiary alcohol 1043-1520-1980-2052 1418-1456-2022 

Aldehyde 1395-2052--[2180-2220] 1418-1456-2022 

Ketone 1980-2052-[2180-2220] 2022-2262 

Carboxylic acid 1980-2052-[2180-2220] 2022-2050 

Ester [2180-2220] 1883-2050 

Epoxy [2180-2220] 1418 

Anhydric acid  2050 

Cyclo anhydric 
acid 

1980-2052 2050 

Phenol 1520-1980 1418-1456 

Acyl halide  1883-2050 

Ammoniac 1520-1980-2287 2022 

Primary amines 1043-1520-1980-2052-2343 2022 

Primary 
aldimine  

 1662-1883 

Nitrile 2424 2500 

Primary 
ketimine 

1520-1980-2052 2022 

Secondary 
amine 

1043-1520-1980  

Secondary 
ketimine 

2052  

Nitro   

Isocyanate 2343 1883-2262-2400 

Primary amides 1043-1520-1980-[2180-2220]- 1456 

Secondary 
amides 

1043-1395-1980-2052-[2180-2220]- 1418-1456-2022-2050 

Tertiary amides   

Sulfhydryl 1980  

Thione -[2180-2220]- 2262 

Disulfide 1980-2052 1883-2022 

Acid sulfonic 1043-1520-[2180-2220]-2287 1418-1456-2050-2262 

Diester sulfonic   
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Table 3: Relation between b coefficients and molecules involved in the prediction of lipid content 

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1000-1050-1134-1395-1722-1770-2242-
2402 

1370-1418-2323  

Alkene 1134-1395-1663-1722-1770-2145-2242 1370-1678-1982-2198 

Alkyne 1050-2145 1982 

Benzene 1663 1678-2198 

Primary alcohol 1000-1050-2145 1418-2050 

Secondary 
alcohol 

1000-1050-1395-2145 1418-1982-2050 

Tertiary alcohol 1000-1050 1418-1982-2050 

Aldehyde 1000-1050-1134-1395 1370-1418-2050-2198 

Ketone 1950-2242 1982-2050 

Carboxylic acid 1950-2145 1982-2198 

Ester 2145 2198 

Epoxy  1418 

Anhydric acid 2145 2050 

Cyclo anhydric 
acid 

2145 1982-2050 

Phenol 1134-1950 1418-1982 

Acyl halide 1950  

Ammoniac  1982-2050-2323 

Primary amines 1000-1050-1950 1982 

Primary 
aldimine  

1663-1950-2145  

Nitrile   

Primary 
ketimine 

1050 1678-1982-2050  

Secondary 
amine 

1000-1050-1950 1982 

Secondary 
ketimine 

  

Nitro 2242  

Isocyanate 2402  

Primary amides 1000-1050-1134-1950 1982-1982 

Secondary 
amides 

1000-1050-1134-1395-2145 1370-1418-2050-2198 

Tertiary amides  2198 

Sulfhydryl 1950 1982 

Thione 2145-2242 2198 

Disulfide 1950 1982-2050 

Acid sulfonic 1000-1050-2145-2242 1418-2198-2323 

Diester sulfonic   
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Table 4: Relation between b coefficients and molecules involved in the prediction of methane yield 

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1143-1372-1780-2248-2285-2418 1420-2264-2390  

Alkene 1143-2054-1372-1780-2133-2160-2248 1420-1657 

Alkyne   

Benzene 1143-2133-2160 1657 

Primary alcohol 2054-2133-2160 1420 

Secondary 
alcohol 

2054-2133-2160 1420 

Tertiary alcohol 2054-2133-2160 1420 

Aldehyde 1143-1372-2054  

Ketone 1900-2054-2248 2264 

Carboxylic acid 1900-2054-2133-2160 2264 

Ester 1900-2133-2160  

Epoxy 1143 1420 

Anhydric acid 2054-2133-2160  

Cyclo anhydric 
acid 

2133-2160  

Phenol 1143-1900  

Acyl halide 1900-2133-2160  

Ammoniac 2054-2285  

Primary amines   

Primary 
aldimine  

1900 1657 

Nitrile 1900  

Primary 
ketimine 

2054  

Secondary 
amine 

1900-2054 1657 

Secondary 
ketimine 

  

Nitro  2264 

Isocyanate 2418 2390 

Primary amides 1900  

Secondary 
amides 

1372-2054-2133-2160 1420 

Tertiary amides 1900-2133-2160  

Sulfhydryl   

Thione 2160-2248 2264 

Disulfide 1900-2054  

Acid sulfonic 2160-2248-2285 2264 

Diester sulfonic   
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Table 5: Relation between b coefficients and molecules involved in the prediction of COD  

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1150-1210-1450-1721-1770-2308-2390 1000-1050-1144- 1256-1400-2287-
2325 

Alkene 1150-1210-1450-1676-1721-1770-2134 1144-1400-1660 

Alkyne  1050 

Benzene 1676 1660 

Primary alcohol 1450-2064-2134 1000-1050- 1400-2030 

Secondary 
alcohol 

1450-2064-2134 1000-1050- 1400-2030 

Tertiary alcohol 1450-2064-2134 1000-1050- 1400-2030 

Aldehyde 1150-2064 1000-1050-1144- 1400-2030 

Ketone 2064 2030 

Carboxylic acid 2064 2030 

Ester 2134 1880 

Epoxy 1150 1144-1400 

Anhydric acid 2064-2134 1880 

Cyclo anhydric 
acid 

2064-2134 1880-2030 

Phenol 1150-1450 1050-1144- 1400-2030 

Acyl halide 2134  

Ammoniac 2064 2030-2287 

Primary amines  1000-1050- 2030 

Primary 
aldimine  

1676 1660 

Nitrile   

Primary 
ketimine 

2064 2030 

Secondary 
amine 

 1660 

Secondary 
ketimine 

  

Nitro   

Isocyanate 2390 1880 

Primary amides 1450 1000-1050 

Secondary 
amides 

1450-2064-2134 1000-1050- 2030 

Tertiary amides   

Sulfhydryl   

Thione   

Disulfide 2064 1880-2030 

Acid sulfonic 1450-2308 1000-1400-2287-2325 

Diester sulfonic  1880 
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Table 6: Relation between b coefficients and molecules involved in the prediction of biodegradability 

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1355-1406-2287-2415 1257-1456-1728-2262-2314-2347-
2390  

Alkene 1406-2052-2145 1456-1673-1728-1982  

Alkyne  1982 

Benzene 2145  

Primary alcohol 1406-2052-2145-2228 1456-2035 

Secondary 
alcohol 

1406-2052-2145-2228 1456-1982-2035 

Tertiary alcohol 1406-2052-2228 1456-1982-2035 

Aldehyde 1355-1406-2228 2035 

Ketone 2052-2228 1982-2035--2262 

Carboxylic acid 2052-2145-2228 1982-2035 

Ester 2145  

Epoxy 1406  

Anhydric acid 2052-2145-2228 1982 

Cyclo anhydric 
acid 

2052-2145-2228 2035 

Phenol 1406 1456-1982-2035 

Acyl halide 2145  

Ammoniac 2228-2287 1982-2035-2314 

Primary amines 2052-2228 1982-2035 

Primary 
aldimine  

  

Nitrile   

Primary 
ketimine 

2052-2228 1982-2035 

Secondary 
amine 

 1982 

Secondary 
ketimine 

  

Nitro   

Isocyanate 2415 1673-2262-2347-2390 

Primary amides  1456-1982 

Secondary 
amides 

1355-1406-2052-2145-2228 1456-1982-2035 

Tertiary amides   

Sulfhydryl  1982 

Thione 2145  

Disulfide 2052-2228 1982-2035 

Acid sulfonic 1406-2145-2287 1456-2262-2314 

Diester sulfonic   
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Table 7: Relation between b coefficients and molecules involved in the prediction of methane production time 

Molecule Wavelength reported with positive b 
coefficients (nm) 

Wavelength reported with negative b 
coefficients (nm) 

Alkane 1000-1125-1400-1670-2497 1052-1174-1368-2224-2291-2406 

Alkene 1125-1400-1670 1174-1368-1642-1984-2062-2157-
2224 

Alkyne  1052-1984 

Benzene 1125 1642-2157 

Primary alcohol 1000-1400 1052-1520-2062-2157 

Secondary 
alcohol 

1000-1400 1052-1520-1984-2062-2157 

Tertiary alcohol 1000-1400 1052-1520-1984-2062 

Aldehyde 1000-1125-1400 1368-2062 

Ketone  1984-2062-2224 

Carboxylic acid 1908 1984-2062-2157 

Ester 1908 2157 

Epoxy 1400 1174 

Anhydric acid  2062-2157 

Cyclo anhydric 
acid 

 1984-2062-2157 

Phenol 1400-1908 1520-1984 

Acyl halide 1908 2157 

Ammoniac  1520-1984-2062 

Primary amines 1000 1052-1520-1984-2291 

Primary 
aldimine  

1670-1908 1642 

Nitrile 1908-2497  

Primary 
ketimine 

 1052-1520-1984 

Secondary 
amine 

1000-1908 1052-1520-1642-1984 

Secondary 
ketimine 

 2062 

Nitro 2497  

Isocyanate  2406 

Primary amides 1000-1125-1908 1052-1520-1984 

Secondary 
amides 

1000-1125-1400 1052-1368-1984-2062-2157 

Tertiary amides 1908 2157 

Sulfhydryl  1984 

Thione  2224 

Disulfide 1908 1984-2062 

Acid sulfonic 1000-1400 1052-2157-2224-2291 

Diester sulfonic   
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7.1 Chapter Guidelines 

The aim of this PhD is to develop an approach that allows predicting the AD process performances 

based on the feeding strategy. To do so, in Chapter 3, new performant methods for the biological 

state estimation have been developed. Then in Chapter 5, a fast estimation of the substrate 

composition using NIRs has been validated. The last step is thus to develop a dynamic model taking 

into account both biological state estimation and substrate composition. As it will be developed in 

the introduction of this chapter (7.3), AD has been modelled over the years but solutions remain 

unsuitable to solid waste co-digestion, mainly because of too simplistic hydrolysis models. The first 

part of this chapter (7.5) focuses on adapting the hydrolysis model of ADM1 to fit co-digestion of 

solid waste. Then, fast implementation of ADM1 is made using the PLSr models developed in Chapter 

5 and the ability of the ADM1 model to predict experimental methane production is discussed.  
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7.2 Technical and Graphical Abstracts 

Optimization of feeding strategy is an essential issue of co-digestion and requires both fast substrate 

characterization and predictive models. The hydrolysis mechanism is mechanistically not well 

understood yet. Consequently, models available in the literature are sometimes not appropriate to 

describe experimental results. In particular, when multiple fractions of organic matter are present, a 

model that considers simultaneous degradation of the substrates may not have the resolution to 

separate the different kinetics. This study first proposes a discussion of structural modelling of 

organic matter hydrolysis (in aerobic and anaerobic bioprocesses). We assess sequential hydrolysis of 

the multiple fractions of organic matter as an alternative to simultaneous hydrolysis. In a second 

part, the fast and efficient estimation of carbohydrate, protein and lipid contents and COD by near 

infrared spectroscopy is used to implement a modified Anaerobic Digestion Model n°1. Then, the 

disintegration kinetic parameters are fitted on the methane production rate predicted by near 

infrared spectroscopy. The development of this fast spectroscopic characterization reduces the time 

of analysis from 30 days to a matter of minutes. The modified Anaerobic Digestion Model n°1 is then 

used to simulate the performance of anaerobic digestion batch processes. This approach, validated 

by simulation of different experiments, aims to a powerful predictive tool for advanced control of 

anaerobic digestion plants and feeding strategy optimization. 
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7.3 Introduction of the Chapter  

In Chapter 5 and Chapter 6, a fast NIRs characterization of the waste for the estimation of its 

biochemical composition and methane production performances has been developed and discussed. 

NIRs analysis of the waste allows a good anticipation of the associated process performances, but it is 

not sufficient for plant monitoring. Co-digestion development from a large diversity of waste occurs 

simultaneously with the need for advanced dynamic models like Anaerobic Digestion Model 1 

(ADM1) (Batstone et al., 2015). ADM1 consists in a detailed modeling taking into account the main 

reactions of the AD process (Figure 49) (Batstone et al., 2002). ADM1 has been extensively used and 

analyzed in both academic and practical applications (Batstone et al., 2006). The use of such models 

requires a detailed biochemical characterization of the substrates (Jimenez et al., 2014). The first 

limit encountered while using such a complex model is that many parameters have to be set and 

depend either on the substrate or the process (Batstone et al., 2015). To set these parameters, a 

characterization of the substrate as input variables describing the substrate in protein, lipid, 

carbohydrate contents and Chemical Oxygen Demand (COD), biodegradability and kinetics of 

hydrolysis is needed. Unfortunately, they are not often measured all together in industrial plants and 

then, simpler models have to be used (Lauwers et al., 2013). However, the NIR analyses developed in 

Chapter 5 are a promising solution to solve the matter, giving the required information to implement 

ADM1 within minutes. 
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Figure 49: The ADM1 model with the following biochemical processes: (1) acidogenesis from monosaccharides (MS), (2) 

acidogenesis from amino acids (AA), (3) acetogenesis from long chain fatty acids (LCFA), (4) acetogenesis from 

propionate, (5) acetogenesis from butyrate (HBu) and valerate (HVa), (6) aceticlastic methanogenesis, and (7) 

hydrogenotrophic methanogenesis (Batstone et al., 2002). 

The second limit is that hydrolysis is recognized as the rate-limiting step (Appels et al., (2008), Vavilin 

et al., (2008)) and its modelling remains challenging. Hydrolysis is the breakdown of a polymer into 

monomers by addition of water molecules (Brock et al., 1991). This is a very general definition of the 

processes occurring in practice. In mathematical models, hydrolysis must be adequately described to 

be able to predict spatial and temporal availabilities of organic substrate for nutrient removal 

processes (Morgenroth et al., 2002). As process modelling needs to properly model the limiting step, 

a focus on hydrolysis models in waste biodegradation is required. 

According to a review made by Morgenroth et al. (2002), hydrolysis stoichiometry and kinetics in 

waste treatment applications are not well understood and first order processes are applied as an 

aggregate approximation (Eastman and Ferguson, 1981). 

Different approaches to hydrolysis have been applied for aerobic and anaerobic models. In the case 

of aerobic process models, since the first developed activated sludge models (ASM) (Henze et al., 

1987), the hydrolysis concept has been challenged, with first order processes generally dominating in 

applications due to difficulties in identifying higher order models. However, with ASM models, two 
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biodegradable fractions were considered, according to a biological response and not to a physical 

separation (Ekama et al., 1986; Henze et al., 1987). The associated kinetics was based on a surface-

limited equation and one micro-organism population. Ekama and Marais, (1979) divided the 

wastewater into two biodegradable fractions that are degraded at two different rates, a readily 

biodegradable fraction consisting mainly of soluble organic matter and a slowly biodegradable 

fraction that consists of large molecules, colloids and particles that have to be hydrolyzed before 

degradation. The distinction between these two fractions was also determined by experimental 

biological response analysis (Ekama et al., 1986; Spérandio and Paul,( 1999)). 

 In the case of anaerobic process models, only one biodegradable fraction was first considered. This 

biodegradable fraction was then split into biochemical fractions (i.e. carbohydrates, lipids, proteins, 

inerts) after a disintegration process as in the ADM1 (Batstone et al., 2002). Other previous studies 

such as (Shimizu et al., 1993) considered that the input variables are the biochemical fractions. First 

order equations have generally been applied.  

Despite these differences, when model simulations do not match with the experimental data, the 

strategy is the same for both aerobic and anaerobic process modelers: (i) increase the number of 

hydrolysable fractions (Orhon et al., 1998; Sperandio and Paul, 1999; Yasui et al., 2008; Mottet et al., 

2013; García-Gen et al., 2015), (ii) replace the first order kinetics by surface limitation equations (i.e. 

Contois, Vavilin et al., 2008; Mottet et al., 2013), or (iii) include a particle size distribution model 

(Dimock and Morgenroth, 2006; Sanders et al., 2000; Yasui et al., 2008).  

Vavilin et al. (2008) compared several kinetics of hydrolysis to predict anaerobic batch tests results. 

They concluded that the use of Contois kinetics on two phases (colonization and hydrolysis) were 

more effective than first order or Monod equations. Indeed, Mottet et al. (2013) introduced two 

hydrolysable fractions into ADM1 and considered Contois kinetics for hydrolysis and disintegration to 

predict biodegradation of a secondary sludge, in a continuous pilot scale digester (Figure 50). Results 

showed a significant improvement of biogas production fit using these modifications in comparison 

with the classical ADM1.  
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Figure 50: Disintegration COD flux in the modified model including two different fractions of composite, Xcr and Xcs 

(Mottet et al., 2013). 

Based on a common conclusion that the hydrolysis rate decreases when particle size increases, 

particle breakup models (Dimock and Morgenroth, 2006; Yasui et al., 2008) and shrinking particle 

models (Sanders et al., 2000) have been utilized (Figure 51). For example, Sanders et al. (2000) used 

surface-based kinetics, where the rate of hydrolysis is proportional to the available surface area of 

slowly biodegradable organic matter. This particle breakup can result in an increase of the available 

surface area while hydrolysis progresses (Dimock and Morgenroth, 2006). 

 

Figure 51: Conceptual comparison of surface-based kinetics with and without particle breakup (Dimock and Morgenroth, 

2006). 

When dealing with several hydrolysable fractions, some authors considered parallel degradation 

(Lagarde et al., 2005; Orhon et al., 1998; Mottet et al., 2013; Garcia-Gen et al., 2015)(Figure 52) and 

others recognized sequential degradation (Confer and Logan, 1997; Lagarde et al., 2005; Spérandio 

and Paul., 1999, Yasui et al., 2008)(Figure 53). There is no consensus on the concept involved in the 

hydrolysis of several fractions, leading to inconsistency.  
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Figure 52: Experimental batch assay of mango. (a) Cumulative biogas production per reactor volume. (b) Gas production 

rate (computed from cumulative derivative) (García-Gen et al., 2015b). 

 

Figure 53: Structure of simplified particle break-up model. Illustration of one hypothesis leading to sequential 

degradation based on the particle size (Yasui et al., 2008). 

While it is possible to evaluate multiple fractions simultaneously in a single batch test (Wang et al., 

2013), this is only effective when the fractions have very different kinetics. Some attempts have been 

made to describe this by particle breakup models (Dimock et al., 2006; Yasui et al., 2008) based on 

particle size characterization. Experimental approaches can also be found. Morgenroth et al. (2002) 

defined four experimental approaches quantifying (1) enzymes, (2) hydrolytic intermediates, (3) bulk 
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parameters, or (4) bacterial kinetics (Morgenroth et al., 2002). According to these authors, the first 

two approaches allow studying mechanisms involved in hydrolysis but it restricted their work to 

specific substrates (e.g. starch). The latter two approaches evaluate the overall processes but not the 

specific mechanisms involved in the hydrolysis process. Modelling oxygen uptake rate or methane 

production rate (MPR) curves often does not identify underlying kinetics due to a lack of resolution. 

Therefore, the challenge is to find an experimental way to study the mechanisms of hydrolysis in 

details. 

If we consider the definition of hydrolysis, it refers to the breakdown of organic substrate into 

smaller products that can subsequently be taken up and biodegraded by bacteria. But it also refers to 

all mechanisms that make slowly biodegradable substrate available for bacterial growth. In this latter 

definition, the key word “available” leads considering two majors concepts: bioaccessibility and 

biodegradability. Hydrolysis is mainly governed by the first two. Due to the complex organization of 

some organic residues, the concept of bioaccessibility was introduced and defines access to the 

molecule. It depends on the process duration, the hydrolytic activity or the pre-treatment applied. 

The biodegradability represents the part of the organic matter consumed by the microorganisms.   

While biodegradability tests are well known (Angelidaki and Sanders, 2004), characterization of 

bioaccessibility remains a challenge. Recently, a new promising methodology of organic matter 

characterization based on chemical sequential extraction (Figure 54) has been successfully developed 

to describe the organic matter bioaccessibility of organic residues (Jimenez et al., 2015a). This 

methodology concept is based the fact that the chemical accessibility simulates the bioaccessibility. 
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Figure 54: Illustration of the chemical sequential extraction (Jimenez et al., 2015a) to estimate the bioaccessibility. XRC, 

XMC and XSC stand respectively for readily, moderately and slowly accessible organic matter. 

This methodology is able to provide new organic matter variables for particulate organic matter. 

Jimenez et al., (2015a) showed that coupling this approach with 3D fluorescence analysis could be 

successfully used to implement a modified ADM1 model predicting biogas production performances 

and digestate quality of an anaerobic digester fed by sludge. 

The objective of this chapter is to provide a modelling approach that predicts the methane 

production performances. First, the classical parallel concept of hydrolysis of ADM1 is challenged to 

provide a model applicable to different substrates, particularly to solid substrates. The use of a new 

fractionation methodology, describing bioaccessibility, could indeed help to better understand and 

describe this phenomenon. The fractionation developed is used as anaerobic digestion model input 

variables for a plant wide organic waste treatment objective. The simultaneous or sequential 

hydrolysis of these fractions is tested to properly fit the experimental MPR. In a second objective, 

this study aims at using the NIR analysis developed in Chapter 5 to reduce the difficulties of ADM1 

parameters estimation. The predicted MPR and biochemical composition of the substrates provided 

by NIRs are used to implement ADM1. This approach reduces the time needed to estimate ADM1 

parameters from 30 days to a matter of minutes, making it suitable for industrial application. Finally, 

the accuracy of this approach has been estimated based on two case studies. 

7.4 Materials and Methods Related to this Chapter 

Detailed information about the materials and methods related to this chapter are provided in the 

“Materials and Methods” sections 2.3.2, 2.3.3, 2.4.1, 2.7.1, 2.7.2. 



Chapter 7: Challenging the Simultaneous Hydrolysis Concept and Fast Implementation of ADM1  

182 
 

7.5 Modelling Hydrolysis: Simultaneous versus Sequential 

Biodegradation of the Hydrolysable Fractions 

7.5.1 Definition of Simultaneous and Sequential Concepts 

First, a definition of both concepts, i.e. simultaneous versus sequential, has to be given. Figure 55 

gives a schematic overview of these definitions. In the case of the simultaneous concept, all the 

fractions XRC, XMC, XSC and XNE are degraded simultaneously. The first degradation period corresponds 

to the degradation of the sum of all the fractions, it ends when one fraction is completely 

biodegraded. Then, the second degradation period starts corresponding to the degradation of the 

sum of all the remaining fractions, it ends when a new fraction is totaly biodegraded, and so on until 

all the fractions are biodegraded. Consequentely, when the total degradation rate is studied, it is 

very difficult to distinguish the kinetics of each fraction. 

In the case of the sequential concept, the most accessible fraction (i.e. XRC) is degraded first. This 

fraction acts as a protection layer for the following accessible fraction (i.e. XMC), the latter protecting 

the following accessible fraction (i.e. XSC) itself protecting the least accessible fraction (i.e XNE). 

Consequentely, during the first period of degradation, XRC is the only fraction consumed, before the 

degradation of XMC , then of XSC and finally of XNE. In this concept, each kinetics is independant. Thus it 

is possible to have the fraction XSC faster than XMC , which is impossible using the simultaneous 

concept as it is demonstrated on Figure 55.  
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Figure 55: Schematic definition of simultaneous and sequential concepts. Xrc, Xmc and Xsc stands respectively for the 

readily biodegradable, the moderately biodegradable and the slowly biodegradable fractions. To simplify the figure, Xne 

is not represented. 

7.5.2 Results Obtained on Several Substrates 

Several substrates were tested on successive batches until the MPR has converged to similar curves 

to remove the microbial innoculum effect (see “Materials and Methods” section 2.3.3.1). 

Experimental biogas production resulting from these batch tests are summarised in Figure 56. 

Simulations (using ADM1 described in Materials and Methods section 2.7.1) obtained with the 

simultaneous (i.e. the switching function is always equal to 1 in the model) and sequential models 

(i.e. switching function varies) are also presented in Figure 56. The initial condition effect on 

simulation was removed running simulation of successive batches using the same approach as on 

experimental batches. The details of the parameters adjusted for each substrate are reported on 

Table 16. The parameters related to the biochemical composition were estimated by the laboratory 

analyses described in the “Materials and Methods” section 2.3.1, the COD per fraction was estimated 

by chemical sequential extraction (“Materials and Methods” section 2.3.2). The value of the 

switching function and the kinetic parameters were adjusted by trail and error to fit the methane 

produciton curve.  
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Table 16: Parameters of simulation of the batches using simultaneous model or sequential model 

  

Carrot Cauliflower Lettuce 
Wheat 
straw 

Potatoes 

C
O

D
 p

er
 

fr
ac

ti
o

n
 

(k
gD

C
O

.m
-3

) XRC 0.59 0.47 0.63 0.51 0.33 

XMC 0.21 0.21 0.08 0.56 0.11 

XSC 0.25 0.33 0.11 1.26 0.90 

XNE 0.16 0.32 0.40 1.61 0.00 

B
io

ch
em

ic
al

 c
o

m
p

o
si

ti
o

n
 (

%
) 

f_XRC_si 0.00 0.00 0.00 0.00 0.00 

f_XRC_xi 0.00 0.20 0.25 0.51 0.00 

f_XRC_ch 0.73 0.55 0.37 0.02 0.77 

f_XRC_pr 0.05 0.19 0.09 0.04 0.23 

f_XRC_li 0.22 0.01 0.18 0.43 0.00 

f_XMC_si 0.00 0.00 0.00 0.00 0.00 

f_XMC_xi 0.22 0.70 0.66 0.80 0.19 

f_XMC_ch 0.31 0.16 0.03 0.06 0.19 

f_XMC_pr 0.05 0.13 0.03 0.02 0.00 

f_XMC_li 0.43 0.01 0.28 0.12 0.62 

f_XSC_si 0.00 0.00 0.00 0.00 0.00 

f_XSC_xi 0.43 0.19 0.42 0.47 0.03 

f_XSC_ch 0.33 0.52 0.17 0.40 0.79 

f_XSC_pr 0.01 0.14 0.06 0.01 0.01 

f_XSC_li 0.23 0.16 0.35 0.13 0.17 

Se
q

u
en

ti
al

 

Switch 
(no unit) 

KIS 0.01 0.005 0.005 0.005 0.005 

Kinetics 
(d-1) 

KDIS_XRC 3.50 4.00 4.00 10.00 5.00 

KDIS_XMC 2.50 2.00 1.00 3.50 1.00 

KDIS_XSC 2.50 1.00 9.00 3.50 1.50 

KDIS_XNE 0.50 0.50 7.00 0.80 0.50 

Si
m

u
lt

an
eo

u
s 

ki
n

et
ic

s 
(d

-1
) KDIS_XRC 2.00 4.00 4.00 5.00 2.00 

KDIS_XMC 1.67 2.00 2.00 0.50 1.00 

KDIS_XSC 1.67 1.00 1.00 0.80 0.75 

KDIS_XNE 0.33 0.50 1.00 0.50 0.25 

 

When a desceding order of kinetics correspond to a descending order of bioaccessibility, the 

modifications of the kinetics with the sequential concept had no impact, as illustrated by the results 

for carrots (Figure 56a). However, others were better modelled with the sequential model than with 

the simultaneous one. This is the case for cauliflower, lettuce and wheat straw (respectively Figure 

56b, Figure 56c, Figure 56d). In these cases, it can be observed that kinetics of methane production 

of intermediate fractions is slower than the one of the last fraction, which is impossible using 

simultaneous concept. Consequently, the use of the sequential concept for all substrates is a solution 
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in order to reach a good fit of all MPR curves for all substrates, above all, when a desceding order of 

kinetics is not associated with a descending order of bioaccessibility. However, neither the sequential 

model nor the simultaneous model fitted experimental data of the potato biodegradation (Figure 

56e). 

 

Figure 56: Methane Production Rate curves (QBG) obtained experimentally and by the simulations with simultaneous 

model and with the sequential model (a: carrot, b: cauliflower, d: lettuce, e: wheat straw, e: potatoes). 

In this case, the hypothesis proposed to explain the observation is that the number of 

biodegradable fractions (4 fractions in these models) is insufficient. 
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7.5.3 Fractions Biodegradability: Case Studies on Apple and Wheat Straw 

Using chemical sequential extraction, at each extraction, a liquid fraction is extracted (REOM 

corresponding to XRC, MEOM to XMC or SEOM to XSC) and a pellet remains, containing the previous 

fractions minus the extracted fraction. XNE corresponds to the solid non extractible fraction NEOM 

which remains after all the extractions. Thus, after chemical sequential extraction, 3 pellets are 

created containing, XMC/XSC/XNE , XSC/XNE and XNE (extraction protocole is detailled in “Materials and 

Methods” section 2.3.2). XNE was not used for the experiments because the extraction of XSC using 

sulfuric acid made the pellet containing XNE not suitable for AD experiments. The others remaining 

pellets, XMC/XSC/XNE and XSC/XNE from an apple and a wheat straw (model substrate for lignocellulosic 

waste) were digested according to BMP tests protocole (Materials and Methods section 2.3.3.2). For 

each substrate, three cumulated biogas production curves were obtained from the digestion of the 

total substrate and the pellets: total substrate (XRC /XMC/XSC/XNE), total substrate after REOM 

extractions (XMC/XSC/XNE), and total substrate after REOM and MEOM extractions (XSC/XNE ). Results 

obtained are presented in Figure 57a and Figure 57b.  

In the case of the apple, as for carrot, the kinetics of biodegradability decreased with bio-

accessibility. The kinetics of each fraction could be obtained by subtraction and the simultaneous 

concept can be applied. 

In the case of wheat straw, the XRC fraction was not very important which explains the similarity that 

is found between biodegradability curves of total substrate and of total substrate minus XRC. 

However, when the BMP test was performed on the total substrate after REOM and MEOM 

extractions (XSC /XNE fractions only), the rate increased, compared with the total substrate after 

REOM extractions (XMC/XSC/XNE).  

 

Figure 57: Anaerobic biodegradation of the apple (a) and the wheat straw (b) fractions 
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The biodegradation kinetics associated the fractions XRC, XMC and XSC are assessed from these 

experiments. Supposing a simultaneous model, their are estimted by subtraction. For instance, the 

MPR associated to the fraction XRC was recreated substracted the MPR of the pellet XMC/XSC/XNE to 

the MPR of the total substrate ponderated by the importance of XMC/XSC/XNE into the total substrate. 

Figure 58 shows the results of this approach on wheat straw experiments. It can be observed that the 

kinetics obtained for the XMC  fraction is negative. This result is due to the fact that all hydrolysable 

fractions are considered to be hydrolysed in a simultaneous way. Another scenario, corresponding to 

sequential hydrolisis, is to consider that fraction n is not hydrolysed until fraction n-1 reaches a 

sufficiently low concentration. That corresponds to the second scenario of Figure 58. In this way, the 

proposed switching function has to be used in the hydrolysis modelling of each fraction.  

 

Figure 58: Conceptual scenarios proposed to explain accessible fractions hydrolysis kinetics and fed-batch digestion of 

wheat  

The extraction step to remove the MEOM fraction acts like an alkaline pre-treatment, allowing the 

partial solubilization recalcitrants in the wheat straw. Indeed, vegetables are generally composed of a 

recalcitrant wall which protects the plant. In the wheat straw case, a wax layer protects another layer 

containing cellulose and pectins (pectin is water soluble). MEOM extraction removed the wax layer 

and allows a quicker biodegradation of the XSC  and  XNE fractions (i.e. hemicellulose and cellulose). 

This means that the non-accessible feature of XSC and  XNE limits hydrolysis despite the high 

biodegradable potential of XSC. Similar results were obtained by (Rincker et al., 2013) after pre-

treatments applied on lignocellulose-like substrates. According to the authors, the lag phase could 

correspond to a colonization process. This colonization phase was also observed in the case of 

cellulosic fibers with low lignin content (toilet paper) found in primary sludge (Ginestet et al., 2002). 

Yasui et al. (2008) also observed such phenomenon between 2 fractions of organic matter  from 
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several primary sludge. As no inhibition was noticed,  the authors proposed a sequential model of 

hydrolysis based on the particle size to explain this observation.  

7.5.4 Case of Continuous Reactor 

Up to now, only batch data were used in order to calibrate the models. It has been shown that 

sequential approach using a switching function between the fractions allows a better fit on the 

experimental data. If we consider continuous reactor, sequential approach in batch can be 

interpreted by two different models: 

A. The hydrolysis mechanisms tend to a simultaneous biodegradation approach, after feeding 

substrates to the bioreactor, as illustrated in Figure 59. It induces, as for simultaneous model, 

to set the switching function to 1, but keeping the same kinetic parameters as fited in batch, 

which simulate usually a faster hydrolisis than using the parameter fitted using a 

simultaneous model 

B. The value of the switching function remains the same, which mechanistically correspond to 

an inhibition of the most bioaccessible fractions on the other ones. Thus in case of a 

continous reactor, the hydrolisis of the poorly accessible fraction such as XSC and XNE is 

drastically slown down, and they accumulate in the reactor. 

 

Figure 59: Illustration of the sequential approach in a continuous reactor 

To illustrate the differences between these models, a 6m3 digestor fed with a constant inflow of 0.05 

m3.d-1 of wheat straw at a concentration of 157 kgCOD.m-3 was simulated. The same simulation 

parameters as described in Table 16 were used for biochemical composition, kinetic parameters, 

switching function and COD repartition per fraction. The results of the simulation are shown in Figure 

XRC/ XMC/ 

XSC/ XNE 

XMC/ XSC/ 

XNE 

XSC/ XNE 
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60 for methane flow rate (top left), total VFA concentration (top right), not digested COD of the input 

(bottom right) and COD of the fraction in case of sequential model B (bottom left). The hypothesis A 

of sequential hydrolysis, based on bio-accessibility limitation, is represented by the “sequential 

access” curves while the hypothesis B is represented by the “sequential inhibition” curves. It can be 

seen that all the models give very different results. In case of sequential approach with the 

hypothesis B, only the fraction XRC and XMC are degraded; and XSC and XNE accumulate in the digestor 

(bottom right of Figure 60). The simultaneous approach and the sequential approach with the 

hypothesis A were more similar. Nonetheless, the hydrolisis of the fractions using the sequential 

approach (hypothesis A) is faster, due to higher µmax fited on the batch data (see Table 16), which 

induce first a more important methane production but then an earlier acidification of the reactor. 

The simulation results of Figure 60 help us to understand the differences of the sequential and 

simultaneous approaches. Differentiating the two different sequential models is feasible, even if 

experimental data are not yet available, it seems that hypothesis B is not realistic. However, identify  

the sequential model based on bioaccessibility limitation (hypothesis A) or simultaneous model is 

really difficult since it differs only by the µmax of the hydrolisis function. Thus it could be tricky to 

validate if the differences of kinetics observed between batch or continuous experiments come 

either from a sequential process or just a biomass gowth and adaptation.  
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Figure 60: Continuous reactor simulation using simultaneous model or sequential model based either on bio-accessibility 

limitation (access) or inhibition. 

Finally, the question of how these mechanisms (successive degradation, colonization) should be 

taken into account when modelling continuous systems still needs to be debated. Solid particles have 

a distribution of retention times in such systems, with different histories and degrees of degradation. 

Population balance models seem appropriate to describe this heterogeneity in hydrolysis (Lebaza et 

al., in press) but simplified approaches would probably also be suitable. 

7.5.5 Conclusion on Hydrolysis Modelling 

The objective was to discuss about hydrolysis modelling concepts, i.e. simultaneous versus sequential 

approaches. To illustrate the discussion and challenge the simultaneous approach, some 
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experimental case studies were modelled to test both concepts. Also, a new fractionation 

methodology was introduced in order to study the hydrolysis mechanisms in detail. This 

methodology, based on accessibility characterization, was successfully used to replace the ADM1 

variables describing particulate organic matter. The methodology also allowed testing simultaneous 

versus sequential hydrolysis. The sequential approach fitted all substrates biodegradation while the 

simultaneous approach was sometimes not applicable (like for wheat straw or lettuce 

biodegradation, Figure 57). While the ADM1 model with sequential hydrolysis allows effective fit to 

data, it only represents a hypothesis. Further proof needs to be obtainedand an experimental set-up 

should be designed, with a specific accessibility fractions study.  

Nethertheless, sequential hydrolysis model was considered to be more flexible and adapted for batch 

experiment modelling and was thus prefered to model the MPR estimated by NIR. Sequential 

chemical extraction gives an accurate definition of the fraction based on bio-accessibility but is time-

consumming.  Since every fraction has its own kinetics, it is possible to roughly estimate the fraction 

based on the MPR. Thus, in order to increase the applicability of the modified ADM1 for plant 

performances prediction, the fraction definition made by chemical sequential extraction was 

replaced by a slope analysis according to the methodology detailled in “Materials and Methods” 

section 2.7.2. Fast implementation using NIR estimation was applied on two case studies. The results 

are discussed on the second part of this chapter. 

7.6 ADM1 Implementation Assisted by Near Infrared Spectroscopy for 

the Anaerobic Digestion Performances Simulation  

7.6.1 ADM1 Calibration from NIR Prediction 

In Chapter 5, it has been proven that NIR spectroscopy can be used to estimate the carbohydrate, 

protein and lipid contents, COD, methane yield and MPR in batch conditions. It turns out to be also a 

powerful method to implement an ADM1 model able to predict the methane production 

performances of a substrate. The approach was applied to the case studies of salad and cauliflower, 

illustrating co-substrates used in farm plants. The curve predicted by NIR was used as a reference for 

the µmax optimization of the kinetic parameters according to the “Materials and Methods” section 

2.7.2.4.  

The ADM1 model using only one particulate input as firstly described by Batstone et al., (2002) was 

tested. Respectively for salad (Figure 61.A) and cauliflower (Figure 61.B), µmax were estimated at 1.92 

and 4.33 d-1. As envisaged previously in the first part of this chapter (7.5), it can be seen that, after 
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optimizing µmax, the model does not represent accurately the predicted MPR. Indeed, it tends to 

under-estimate the kinetics at the beginning of the production and to over-estimate it in the second 

part. Two different approaches can be used to fit the data, first, the other kinetic parameters of the 

ADM1 model can be modified, second more kinetic parameters describing the hydrolysis process can 

be set to represent efficiently the curve.  

Since the first part of this chapter shows that a sequential hydrolysis model with four different 

fractions is more accurate and flexible to represent batch digestion, it was decided to focus on the 

hydrolysis modeling. A second optimization was done using the modified ADM1 described in 

“Materials and Methods” section 2.7.1, with four fractions, four distinct µmax kinetic parameters and 

a sequential degradation. It can be seen that the use this model improved the fit between the 

modeled cumulated biogas production and the predicted cumulated biogas production. The 

degradation of XRC is faster than when considering a single input while the degradation of XMC, XSC and 

XNE are slower, which fits the predicted data. It can be seen in Figure 61.A-B that the NIR predicted 

data allows calibrating a modified ADM1 that accurately represents the experimental batch data.  

Since using NIR, as demonstrated in section 5.8, it is possible to predict the confidence interval of the 

prediction, it is also possible to predict a confidence range of simulation. If we consider a normal 

distribution of the error and a sample nearby the calibration set, 68.2 % of the reference values are 

contained in a range of ± 1 SEP of the predicted value. Thus, as detailed in Materials and Methods 

section 2.7.2, an error of ± 1 SEP was applied to each variables predicted by NIR (i.e each methane 

production time, methane yield, COD, carbohydrate, protein and lipid content) in order to obtain an 

envelope where 68.2 % of the possible scenario of methane production are included. Since COD, 

carbohydrate, protein and lipid contents affect parameters which were not recorded such as inert 

content, long chain fatty acids or ammoniacal nitrogen, the predicted confidence range on this data 

cannot be experimentally validated. However, applying an error of ± 1 SEP to each methane 

production time and to the methane yield provide an envelope where 68.2 % of the possible MPR 

curves are included. µmax of the Contois kinetic parameters were optimized to fit the most optimistic 

MPR, minus one SEP on methane production time and plus one SEP on methane yield, and to fit the 

most pessimistic MPR, plus one  SEP on methane production time and minus one SEP on methane 

yield by trail and error. The confidence range of the simulations is presented in Figure 61.C-D. It can 

be seen that the experimental MPR is included in the simulated range of confidence of the MPR. It 

shows that the predicted confidence range represents accurately the experimental MPR. This 

approach is interesting in order to predict the performance of the plant depending on the feeding 

strategy. The introduction of potential errors of prediction in the model also provided an estimation 



Chapter 7: Challenging the Simultaneous Hydrolysis Concept and Fast Implementation of ADM1  

193 
 

of the risk that the plant operator is taking (Južnič-Zonta et al., 2012). Thus it could provide key 

information to the human operator to optimize safely the production of a plant.  

  

  

Figure 61: Cumulated methane production curve for anaerobic of salad (left) and cauliflower (right) in batch. A and 
B, comparison of predicted and modelled data using ADM1 considering the particulate organic matter as a single input or 
fractioning the particulate organic matter in four inputs with their own kinetics of disintegration for salad and 
cauliflower respectively. B. C and D, modelling of the methane cumulated production for salad and cauliflower AD taking 
into account the error of prediction for salad and cauliflower respectively. Methane production times and methane yield 
were chosen at ± 1 SEP of the predicted value. The grey aera represents the range of confidence. 
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7.6.2 Discussion on the MPR Prediction Using NIR 

Batstone et al., (2009) have demonstrated that hydrolysis kinetic parameters estimated in BMP test 

translated to very poor model performance when BMP-estimated values were used in the 

continuous model. On the other hand, García-Gen et al., (2015) demonstrated that the calibrated 

ADM1 kinetic parameters from batch assays that allow micro-organisms to adapt to individual 

substrates can be used to model semi-continuous co-digestion operation treating simultaneously 5 

waste. In our case, we used  the same experimental protocol as García-Gen et al., (2015) and thus the 

model parameters can be assumed to be valid for continuous operation of the digester.  The main 

drawback of the batch experiments with adapted micro-organisms is the time needed, from 6 to 12 

weeks, which reduces its use. This study also shows that NIR spectrometry can be efficiently used to 

predict experimental batch MPR on adapted micro-organisms. Kinetic parameters of the ADM1 

model calibrated on the predicted batch MPR can be used for continuous co-digestion simulation. 

This approach gives the opportunity to replace time-consuming biological experiments by fast NIR 

analysis for feeding strategy optimization.  

7.7 Example of Industrial Application 

The approach NIRs plus predictive model is tested to monitor the anaerobic digester of a STEP unit. 

This unit is equipped with a supervision system MeMo® (BioEnTech, 74 avenue Paul Sabatier, 11100, 

Narbonne, France. Website: http://bioentech.eu) which calibrates ADM1 in real time. Thanks to lab 

analyses and on-line sensors data, ADM1 is calibrated on the calibration period and validated on the 

current period. In Figure 62, an example of the benefit of the NIR characterization is shown. NIRs has 

been used to analyze the substrates digested in the unit. From the information collected by MeMo 

and NIRs, simulation using ADM1 are run to predict the plant performances. A simulation of the 

addition of 8000 kgO2.d
-1 of a new substrate characterized by NIRs is run using the calibrated ADM1. 

Based on this simulation, variables such as biogas production and composition or COD removal 

efficiency are estimated. More complex indicators such as diagnostic of the plant (indicating risk of 

overload, toxicity and washout) are also predicted using the simulated data. It aims to assist the 

operator and help him taking the right decision. 
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Figure 62: Plant performances prediction using ADM1 plus NIRs 

This simulation is a case study that shows the potentiality of the approach. The next step will be to 

validate the prediction results comparing them with real performances.  

7.8 Conclusion 

The current study shows that: 

 Even if the biological mechanism of hyrolysis are not fully understood, the sequential 

hydrolysis model fits all substrates biodegradation while the simultaneous hydrolisis 

model is sometimes not applicable.  

 NIRs enables a fast estimation of the parameters describing the substrate needed to 

implement a modified ADM1. Thanks to this fast parameters estimation, it becomes 

possible to predict the optimal performances of degradation of any input.  

 This study demonstrates that the use of NIRs coupled with PLSr models and ADM1 

modeling can help the human operators to monitor the plant. This approach can be used 

as a powerful tool for plant monitoring and feeding strategy optimization. 
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8.1 Conclusion 

Anaerobic digestion development has to go through the development of co-digestion and 

diversification of the substrates used. The quantity of organic waste available as AD resources gives 

bright prospects for the sector but its novelty and the lack of industrial solutions adapted to the 

diversity of organic waste penalizes its profitability and development. Co-digestion plant conception 

needs to be more cost-efficient in term of investment and operational expenditures to improve the 

plant profitability and give the right signals to financiers. Moreover, AD plants suffer from under-

optimized performances related to poor feeding strategy optimization. To answer this issue, sensors, 

methods and models needed to optimize the feeding strategy have to answer three questions: 

1. What is the current biological state of the reactor?   

2. What is the optimal feeding strategy and which performances can be expected from it 

under optimal conditions?  

3. From the biological state and the feeding strategy, what are the operational conditions 

allowing to reach the optimal production and how to prevent drifting? 

The state of art on anaerobic digestion monitoring reveals that many sensors, methods and models 

have been developed over years to optimize plant performances but many of the solutions 

developed are not fully adapted to co-digestion. In 2002, the development of the ADM1 was a major 

step forward AD optimization. It is an accurate model for plant performances modeling which takes 

into accounts both biological state and substrates performances. Yet it suffers from the many 

parameters that have to be calibrated for an accurate use and its simplistic hydrolysis process 

modeling. Thus estimation of plant biological state and substrates features are critical factors of plant 

monitoring. However, sensors, substrates characterization and process monitoring must be adapted 

to monitor co-digestion. They need to take into account the complexity of the AD biological reactions 

and the diversity of feeding strategy in order to secure the plant feeding and to optimize its global 

performances. While carbon dioxide and methane production analyses are matured, the available 

solutions estimating the soluble process-intermediates (i.e. volatile fatty acids, inorganic carbon and 

ammoniacal nitrogen concentration) are not suitable for co-digestion of a wide diversity of 

substrates with frequent changes in the feeding. The lack of sensors estimating the soluble process-

intermediates restricts the biological state estimation which is a first break of feeding strategy 

optimization. A second break is the difficulties of substrates characterization. Analyses of organic 

waste AD performances are labor-intensive and time-consuming which limits their use. The poor 

waste characterization goes with high risk of inhibition in case of changes in the feeding strategy. It 

restricts the flexibility on the inputs and results in feeding optimization difficulties. The low flexibility 
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on the feeding strategy is a growing concern for AD plants since stress on resources will increase with 

the number of biogas plants.  

With the current context of AD in mind, this PhD developed three axes (Figure 63): 

 Accurate estimation of process-intermediates (i.e. volatile fatty acids, inorganic 

carbon and ammoniacal nitrogen concentration) in the plant to assess its biological 

state  

 Solid organic waste characterization with the development of fast, repeatable and 

accurate analyses for the estimation biochemical composition and AD performances 

in a wide range of solid samples such as fruits, vegetables, manure, cereals, oils, fats, 

meat and fishes.  

 Dynamic modeling of the AD process challenging the classical concept hydrolysis and 

facilitating the implementation of ADM1.  

On the one hand, our investigation on process-intermediates estimation reveals that current sensors 

using titration methods for VFA and IC estimation based on the analysis of the titrant volume on key 

points provide non-accurate absolute estimations. In case of limited changes in the feeding strategy, 

constant bias in the estimation is present. On the other hand, it can be worth it to follow AD plants 

since they provide an correct estimation of the dynamics of VFA, IC and TAN concentrations, but 

recalibrating sensors is required at any change in the feeding recipe. Therefore this type of sensors is 

not adapted to monitor co-digestion. A more promising solution is the non-linear estimation of VFA, 

IC and TAN based on buffer-capacity analysis on the whole titration process. Non-linear analyses of 

the buffer capacity are more accurate than titrant volume analyses on key-points and less sensitive 

to the composition of the sample. Thus, these analyses are more suitable to monitor co-digestion. 

Nonetheless, buffer-capacity, based on pH and titrant volume rapidly reaches a limit to distinguish 

between the numerous soluble compounds found on AD plants, which may lead to incorrect 

estimations. The combination of electrical conductivity and pH sensors facilitate the discrimination of 

the different compounds. Thus, it has improved the accuracy of VFA, IC and TAN concentration 

estimation using non-linear methods. This work showed that accurate estimation of soluble process-

intermediates such as VFA, IC and TAN are possible using titration methods, combining electrical 

conductivity and pH sensors, based on non-linear methods. It led to the development of the System 

of titration for total ammoniacal Nitrogen, volatile fatty Acids and Inorganic carbon (SNAC). 

Combined with gas flow and composition analysis, SNAC is aimed to provide a cost-efficient sensor 

for the biological state estimation. 
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Solution for solid organic waste characterization has been investigated to predict AD performances. 

Current COD and carbohydrate content measurement methods are not adapted to solid waste 

characterization and require an acid hydrolysis of the organic matter before using the usual methods. 

Relations between biochemical composition and AD performances have then been studied. 

Correlations between methane production time, methane yield, COD, biodegradability, 

carbohydrate, protein and lipid contents using PCA and Pearson correlation coefficients analysis 

reveals that a relation between the organic matter composition and the AD performances existed. 

Carbohydrates are mainly readily biodegradable while lipids have a high methane yields but a slow 

methane production kinetics. Due to its simplicity, COD analysis often replace BMP test, but a 

negative correlation between COD and biodegradability indicates that COD cannot replace methane 

yield analysis. The highlighted correlations between carbohydrate, protein and lipid contents, COD, 

methane yield, biodegradability and kinetics of methane production leads to the idea that kinetics of 

methane production, which is tedious to estimate, could be predicted from the biochemical 

composition. However, a PLS regression demonstrates that these indicators provide a vague 

description of the organic matter which are not sufficient to accurately predict methane production 

kinetics. Nevertheless, we could observe a relation between biochemical composition and AD 

process performances which points towards more descriptive organic matter characterizations that 

could be used for AD process performances prediction. 

NIR and 3D fluorescence spectroscopy coupled with chemical sequential extraction have been 

previously reported as two fast methods that provide a sufficient description of the organic matter to 

predict its biodegradability. Their advantages and drawbacks for COD and methane yield prediction 

were assessed on a wide variety of samples. 3D fluorescence coupled with chemical sequential 

extraction has the advantage to predict the bio-accessibility of the organic matter but NIRs is more 

accurate and time-efficient for the prediction of biodegradability. Hence NIRs has to be preferred for 

substrate characterization. Both biochemical analyses and batch experiments have been employed to 

create a dataset for NIR prediction of carbohydrate, nitrogen and lipid content, COD, methane yield 

and methane production times and PLSr models have been established. The PLSr predictive models 

demonstrate an excellent accuracy of prediction for both cross validation and validation with an 

independent data set. As suspected from the correlation found between the biochemical 

composition and the AD performances of a substrate, NIRs give a detailed overview of the organic 

matter which enables a complete, robust and fast estimation of both biochemical composition and 

AD process performances. A drawback of NIRs coupled with PLSr model is the accuracy of the model 

which depends on the distance from the analysed sample to the calibration set. The distance is tricky 

to estimate for the operator. To ensure the industrial applicability of the NIRs analyses, indicators of 
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the confidence interval of prediction have been developed based on the minimal Euclidian distance 

between each sample and the calibration set. Thanks to the PLSr models developed, NIRs is foreseen 

as a new and efficient way to characterize solid waste contents for large-scale applications. 

Carbohydrate, protein and lipid content, methane yield, COD or methane production time are useful 

indicators for feeding strategy optimization but are poorly informative on the link between the 

molecular composition of organic matter and AD performances. Since NIR spectra of pure 

compounds are available in the literature, the analysis of the b coefficients of the PLSr models 

considered as the Net Analyte Signal (NAS) of these indicators is a unique opportunity to deeply 

investigate the relations between the organic matter composition and these indicators. The 

wavelengths contribution assessed through the simultaneous analysis of the b coefficients associated 

with carbohydrate, protein and lipid content and methane yield, COD, biodegradability and methane 

production time prediction were compared with the reported absorbance of molecules on NIR 

spectra. Carbohydrate content prediction is related with the content of oxygenated molecules such 

as alcohols. Protein content prediction is related nitrogen containing molecules which makes sense 

since protein content prediction is calibrated on protein content estimation from TKN. Lipid content 

prediction is related with alkane and alkene. Biodegradability prediction is negatively impacted by 

phenolic compounds such as lignin. The similarities between b coefficients of each predictive model 

were also investigated. The carbohydrate content impacts negatively the COD prediction but 

positively the methane yield and biodegradability. Important similarities between the lipid content 

prediction and COD and methane yield prediction exist. b coefficients used for biodegradability or 

kinetics of methane production prediction are collinear. In contradiction to the mainstream thought, 

COD and methane yield prediction were anti-collinear and revealed low relation with methane 

kinetics prediction. The relations found are consistent with the correlation assessed by Pierson 

correlations between the biochemical composition and the AD process performances. Only the 

prediction of protein content relates with readily and highly biodegradable molecules while protein 

content did not correlate with methane production kinetics or methane yield using Pearson 

Correlation Coefficients (PCC) which could be explained by a slight difference on the dataset used. 

Eventually, predictive ADM1 model taking into account both biological state and substrates 

characterization was modified. The sequential hydrolysis model fits all substrates biodegradation 

while the simultaneous hydrolysis model is sometimes not applicable. Sequential hydrolysis is 

preferred for solid waste hydrolysis modelling but the biological mechanism of hydrolysis remains 

not fully understood. A major drawback of ADM1 was its parameters estimation. NIR spectroscopy 

enables a fast estimation of the parameters describing the substrate which are needed to implement 
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a modified ADM1. It facilitates the use of ADM1 to predict the optimal performance of degradation 

of any characterized input.  

Overall, this study demonstrates that NIR spectroscopy coupled with PLS regression enables a fast 

implementation of the parameters describing the substrate in ADM1 while SNAC estimates the 

process-intermediates for the biological state estimation of the reactor, which could be used to fit 

the process parameters of ADM1. The work detailed in this PhD aims to help the human operators 

monitor their plants. This approach can be used as a powerful tool for plant monitoring and feeding 

strategy optimization. 

 

Figure 63: Feeding strategy optimization, current and future development 
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8.2 Outlooks 

Nonetheless, for industrial application, further developments must be done to improve the 

approach, methods and tools developed (Figure 63).  

 The SNAC method, validated for the analysis of plant samples in laboratory must be 

validated on plant monitoring. For that purpose, a sensor using the SNAC method has 

been prototyped. The prototype estimates the temperature, pH, conductivity and 

alkalinity ratio and VFA/IC/TAN concentrations of the plant.  Along with the biogas 

production and composition, it aims to estimate the biological state of the plant. It will 

allow assessing for instance the inhibitory compounds concentration and micro-organism 

activity. The second step will be to use SNAC and gas flow rate and composition to set 

the ADM1 variable related to the process. 

 The current database used for NIR calibration will have to be increased for industrial 

application. Particularly FOG and sludge are not enough represented in the database 

 NIR analysis can be done on dry samples only. Three disadvantages are linked to drying: 

volatile compounds cannot be analyzed, the drying process considerably slow down the 

analysis and on-line application cannot be considered. In large scale application, the high 

change frequency of the inputs and the heterogeneity of the substrates are a threat for 

substrate characterization for plant performances prediction. The approach developed 

on dry samples using NIRs enables the characterization of various samples from an 

heterogeneous substrate in a shorter period of time which fits more the industrial 

expectancy. Nonetheless, a further interesting development or improvement of this 

technology would be to work with wet samples and to install online NIR sensors able to 

characterize in real time any input coming into the plant. The obstacle is the absorption 

of water using NIR that disturbs the analysis. Mayer (2015) provides for example some 

hints about the estimation of methane yield on wet samples using NIR 

 PLSr model is calibrated on NIRs to predict the MPR under non-limiting batch conditions 

in which the hydrolysis is the limiting step. For a better understanding of the potential 

inhibitory effects, it would be interesting to get further investigations on the process-

intermediate kinetics. Ammoniacal nitrogen, LCFA and VFA should be followed during the 

AD batch experiments to get more detailed information about the ammoniacal nitrogen 

release, LCFA and VFA production kinetics. 
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 Monitoring and feeding strategy optimization coupling SNAC, ADM1 and NIRs must be 

validated on industrial plant 

 pH could also be a problem of AD process performances prediction. Indeed, in the 

current study, the inputs influence the pH through VFA, IC and TAN production supposing 

a neutral pH of the inputs. But the inputs could be acid or basic, strongly affecting the 

[H+] concentration by their feeding before the production of VFA, IC and TAN production. 

Since the organic loading of the batch experiments is very low, the pH of the inputs 

affects only slightly the batch pH. But at industrial scale with a more important load, this 

has to be taken into account. 

 Other compounds such as sulfur, phosphorous and antibiotics affect the plant 

performances but are not yet taken into account neither in NIRs prediction nor in ADM1. 

Taking the example of sulfur, its estimation could be challenging because of the high 

sensitivity of the process to low variation in sulfur concentration.  

 Digestate encounters a growing interest for land field application and homologation of 

the digestates as fertilizers is regularly discussed in conferences. Since the fertilizing 

substances contained in the digestate are strongly related with the feeding strategy, 

monitoring the inputs to optimize the fertilizing substance concentration in the digestate 

will be an important challenge. 

 Eventually, the rheology of the inputs is a major concern of the plant operator since it 

strongly affects the pumpability of the inputs. For its simplicity, rheology is mainly 

assessed from the TS analysis even if recent studies decorrelate TS from rheology (Liu et 

al., 2015)). 

8.3 Projected development 

Projects are currently in the pipe to handle on these further developments. SNAC prototype has been 

recently installed in a farm unit equipped with supervision system to validate its advantages for plant 

monitoring.   

The approach NIRs plus SNAC and predictive model for feeding optimization should be tested on 

units equipped with supervision system. The results, currently under acquisition, are expected to be 

presented in the conference “Journées de la methanisation industrielle et agricole”, from the 6-8 

December 2016 in Chambery.  
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A project bringing together two Small and Medium-sized Enterprise (SME), one multinational and 

two public institutions has been submitted to ADEME. If the project is accepted, it will accelerate the 

industrialization of the solutions developed in this PhD. The project aims to: 

 facilitate the connections between waste producers, anaerobic digestion plants and 

digestate users 

 Collect and centralize the information related with organic wastes, AD plant demand 

and digestate on a platform, accessible by the actors of AD 

 Optimize the feeding strategy to increase the AD plant profitability  

To do so, one part of the preliminary budget is allocated to the deployment of the solution 

developed in this PhD. SNAC sensor will be produce in small series (10-20 sensors) to equip 10-20 

units and to assist the estimation of their biological states. A second part is allocated on the 

improvement of the dataset used for the calibration of the PLSr using NIRs on a wide range of waste 

with the aim to characterize the organic waste produced at territory scale. Eventually, the approach 

NIRs plus SNAC and predictive model (MeMo®) will be tested to monitor 5-6 units to optimize their 

feeding strategy and profitability.  

Another part of the project focuses on the extension of the work done to predict the performances 

of biogas production on digestate valorization. It first consists in the development of a fast method of 

characterization of the digestate fertilizing substances based on spectroscopic analysis to optimize 

their valorization path. Second, as ADM1 was used for the prediction of the biogas production, 

models should be created to anticipate the agronomical quality depending on the feeding strategy 

for a better valorization of the digestate. 

Eventually, extension of fast spectroscopic methods of prediction on wet samples, investigation on 

the prediction of the process-intermediate kinetics and pH modelling could be the basis of a new PhD 

project. 
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ANNEXES 



  



1.1 Guidelines of the annexes 

The annexes present supplementary results and materials. The section 1.2 presents the repartition of 
the COD fraction in proteins, carbohydrates, lipids and inert. The section 1.3 shows some 3D 
fluorescence spectra. The section 1.4 shows the NIR spectra. Eventually the section 1.5 provides 
some results of prediction with and without mixed samples into the dataset, taking the example of 
the methane production time and COD prediction. 

1.2 Repartition of the COD fractions of the substrate 

In this section are reported the sum of the COD fractions of 222 substrates included in the calibration 
set of NIR prediction with a full characterization in proteins, carbohydrates, lipids, biodegradability 
and COD. It mainly shows that the sum of the protein, carbohydrate and lipid fractions is around 90-
100% whereas the sum of the protein, carbohydrate, lipid and inert fractions overpass strongly 100%. 
It leads to the hypothesis that a part of the inert fraction is composed of proteins, carbohydrates and 
lipids. 

 

 

Figure 1: sum of the COD fraction on 222 substrates of the NIR calibration set with a full characterization in proteins, 
carbohydrates, lipids, COD and biodegradability. 
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1.3 Spectrum of 3D fluorescence 

In the section are reported some of the 3D fluorescence spectrum analyzed after chemical sequential 
extraction. They provide an illustration of the spectrum obtained for some substrates. In the abscissa 
is represented the absorption wavelength and in the ordinate, the emission wavelength. 

1.3.1  Micro-algae 

 

Figure 2: 3D fluorescence spectrum from micro algae. Fraction REOM, dilution 1000. 



 

Figure 3: 3D fluorescence spectrum from micro algae. Fraction MEOM, dilution 100. 

 

Figure 4: 3D fluorescence spectrum from micro algae. Fraction SEOM, dilution 1000. 

 

 



1.3.2 Straw 

 
Figure 5: 3D fluorescence spectrum from straw. Fraction REOM, dilution 2000. 

 

Figure 6: 3D fluorescence spectrum from straw. Fraction MEOM, dilution 200. 



 

Figure 7: 3D fluorescence spectrum from straw. Fraction SEOM, dilution 200. 

  



1.3.3 Carrot 

 

Figure 8: 3D fluorescence spectrum from carrot. Fraction REOM, dilution 500. 

 

Figure 9: 3D fluorescence spectrum from carrot. Fraction MEOM, dilution 100. 



 

Figure 10: 3D fluorescence spectrum from carrot. Fraction SEOM, dilution 50. 

  



1.4 Near infrared spectrum 

In this section are reported some the NIR spectrum analyzed by reflectance. They provide an 
illustration of the spectrum obtained. In the abscissa is represented the wavelength in nanometer 
and in the ordinate, the reflectance. 

1.4.1 Spectrum of the whole database 

 

Figure 11: Spectrum of the whole database in reflectance. Reflectance in ordinate and wavelength (nm) in abscissa. 

1.4.2 Example of some spectrum: carrot, straw, micro-algae, meat extract 

and table oil. 

 

 

Figure 12: Spectrum of the some samples of the dataset in reflectance. 

 

1.5 Prediction results with and without mixed samples 

In this section is presented the results of cross-validation obtained  for the methane production time 
at 70% of the BMP and the COD on a calibration set composed of only raw samples (without any 
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mixture of samples) and with mixed samples. It shows that the performances of prediction are 
similar. Mixing the samples increased the number of different spectra and thus increases the 
robustness of the PLS model but the accuracy of the model can’t be attributed to the presence of 
mixed samples into the calibration set. 

 

Figure 13: Cross validation results for methane production time at 70% of the BMP (up) and COD (down) on calibration 
sets composed of only raw samples (left and green) or raw and mixed samples (right and red). 
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