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No entiendo. Esto es tan vasto que supera cualquier entender. 
Entender es siempre limitado. Pero no entender puede no tener 
fronteras. Siento que soy mucho más completa cuando no entiendo. 
No entender, del modo en que lo digo, es un don. No entender, pero 
no como un simple estado de ánimo. Lo bueno es ser inteligente y no 
entender. Es una bendición extraña, como tener locura sin ser loco. 
Es un manso desinterés, es una dulzura de estupidez. Sólo que de vez 
en cuando viene la inquietud: quiero entender un poco. No 
demasiado: pero por lo menos entender que no entiendo. 
 

Clarice Lispector 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Não entendo. Isso é tão vasto que ultrapassa qualquer entender. 
Entender é sempre limitado. Mas não entender pode não ter 
fronteiras. Sinto que sou muito mais completa quando não entendo. 
Não entender, do modo como falo, é um dom. Não entender, mas 
não como um simples estado de espírito. O bom é ser inteligente e 
não entender. É uma benção estranha, como ter loucura sem ser 
doida. É um desinteresse manso, é uma doçura de burrice. Só que de 
vez em quando vem a inquietação: quero entender um pouco. Não 
demais: mas pelo menos entender que não entendo. 
 

Clarice Lispector 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

Genetic improvement of the resistance to infectious diseases represents an 
essential step for the development of sustainable and economically viable animal 
production systems. Control of salmonellosis in swine herds generates increased 
production costs and public health issues due to the risk of dispersal of antibiotic 
resistant strains. Therefore, the breeding of resistant animals, in combination with 
good hygiene practices offers a promising strategy to fight against Salmonella in 
pigs. Recently, functional genomics approaches combining the power of gene 
mapping technologies, gene expression studies and modern bioinformatics tools 
have begun to contribute to a better understanding of the host response to 
microbial diseases. In light of this, this thesis aimed to identify and describe the 
molecular pathways and interactions involved in the porcine intestinal immune 
response to Salmonella enterica serovar Typhimurium (S. Typhimurium). 
 
The first, second and third studies that constitute this thesis aimed to explore the 
molecular mechanisms occurring in porcine mesenteric lymph-nodes (MLN) at 1, 
2 and 6 days post-infection (dpi) with S. Typhimurium. Firstly, the differential 
expression of immune-related genes was analysed in correlation with changes in 
tissue morphology and pathogen burden. Results revealed that infection resulted 
in a substantial infiltration of phagocytes and up-regulation of pro-inflammatory 
genes. Of note, host defence mechanisms led to a relevant reduction of S. 
Typhimurium load in tissue, but pathogen was found to maintain itself in MLN at 
6 dpi. Subsequently, DIGE-based proteomics was carried out, uncovering that 
infection caused changes in abundance of proteins involved in diverse host 
cellular functions, leading to the induction of processes such as phagocyte 
infiltration, cytoskeleton remodelling, pyroptosis and antigen presentation in 
infected MLN. Finally, host response to infection was accessed by microarrays 
analysis and then complemented with gene expression data from pathogen found 
in tissue. The conjunctive analysis of both parties involved in infection revealed 
that although S. Typhimurium was able to express virulence factors in porcine 
MLN, host succeeded in counteracting pathogen strategies by modulating 
infected cell death and inducing an early cytotoxic response. 
 
The forth and fifth studies reported in this thesis were focused on the role of 
porcine Peyer’s Patches (PP) upon S. Typhimurium infection. Initially, laser 
microdissection coupled to qPCR technology uncovered that both innate and 
adaptive immunity mechanisms are effectively triggered in PP follicles during 
infection. Afterwards, microarray analysis was carried out to better-explain results 
from this preliminary approach. It could be confirmed that the bacterial challenge 
provoked a remarkable inflammatory response and the establishment of multiple 



 

levels of adaptive response against S. Typhimurium in PP follicles. Interestingly, 
several evidences of cross-presentation triggering were observed in follicles, 
besides the induction of humoral responses.  
 
As conclusions, this thesis highlights that in spite of the sophisticated strategies 
evolved by pathogen to cause disease, swine appear to induce pyroptosis and 
inhibit apoptosis of infected cells in MLN to promote clearance of bacteria in the 
extracellular milieu during S. Typhimurium infections. This mechanism might 
enable MLN to act as a firewall to prevent pathogen spread beyond intestinal 
tract. Simultaneously, host might mediate an early cytotoxic response against 
Salmonella by cross-presentation of bacterial antigens in these organs, 
coordinating both arms of immunity in order to control infection. Additionally, it 
could be observed that besides eliciting B-cell-mediated immune responses, PP 
follicles mediate the generation of effector and memory CD8 T cells during 
infections by S. Typhimurium, which could represent a novel function for this PP 
area during Salmonella infections.  
 

 

 



 

 

Resumen 

La mejora de la resistencia genética a las enfermedades infecciosas representa 
una etapa fundamental para el desarrollo de sistemas de producción animal 
económicamente viables y sostenibles. El control de la salmonelosis porcina 
genera elevados costes de producción y supone un riesgo para la salud pública 
por la posibilidad de desarrollo y dispersión de cepas resistentes a antibióticos. 
Por lo tanto, la cría de animales resistentes, asociada a buenas prácticas de 
higiene durante la producción, representa una estrategia prometedora para la 
lucha contra infecciones por Salmonella en cerdos. Recientemente, la genómica 
funcional, al combinar la potencia de las tecnologías de mapeo genético, los 
estudios de expresión génica y las modernas herramientas bioinformáticas 
empieza a contribuir a una mejor comprensión de la respuesta del hospedador a 
las infecciones microbianas. Debido a esto, en esta tesis doctoral se planteó como 
objetivo identificar y describir las rutas e interacciones moleculares involucradas 
en la respuesta a la infección con Salmonella enterica serovar Typhimurium (S. 
Typhimurium) en la especie porcina. 
 
Los tres primeros estudios que componen esta tesis doctoral tuvieron como 
objetivos explorar los mecanismos moleculares que ocurren en los nódulos 
linfáticos mesentéricos (NLM) porcinos tras 1, 2 y 6 días post-infección (dpi) con S. 
Typhimurium. Inicialmente, la expresión diferencial de genes relacionados con la 
respuesta inmunitaria fue analizada y correlacionada con cambios en la 
morfología tisular y carga de patógeno. Los resultados revelaron que la infección 
resultó en una abundante infiltración de fagocitos y sobre-expresión de genes 
pro-inflamatorios. Notablemente, una significativa reducción de la presencia de la 
bacteria en el tejido fue observada, en asociación con la activación de los 
mecanismos de defensa del hospedador. A pesar de ello, el patógeno logró 
mantenerse en los NLM, siendo detectado a los 6 dpi. A continuación, un análisis 
proteómico mediante DIGE fue llevado a cabo, poniendo de manifiesto que la 
infección resultó en cambios en la abundancia de proteínas involucradas en 
distintas funciones celulares del hospedador, promoviendo en los NLM infectados 
la inducción de procesos como la infiltración de fagocitos, remodelación del 
citoesqueleto, piroptosis y presentación antigénica. Finalmente, la respuesta del 
hospedador a la infección fue evaluada mediante análisis de micromatrices y los 
resultados obtenidos fueron complementados con datos de expresión génica 
procedentes del patógeno presente en tejido. En conjunto, el estudio reveló que, 
aunque S. Typhimurium expresa factores de virulencia en NLM porcinos, el 
hospedador contrarresta de forma efectiva las estrategias de virulencia del 
patógeno, mediante la modulación de la muerte celular de células infectadas y la 
inducción de una respuesta citotóxica temprana. 



 

 

Los estudios cuarto y quinto reportados en esta tesis doctoral estuvieron 
centrados en el estudio de la función de las placas de Peyer (PP) porcinas durante 
la infección con S. Typhimurium. Inicialmente, la técnica de microdisección laser, 
asociada a ensayos de PCR cuantitativa, reveló que mecanismos de respuesta 
inmune innata y adaptativa son efectivamente inducidos en los folículos de las PP 
durante la infección. Dichos resultados fueron confirmados y ampliados mediante 
un análisis de micromatrices que permitió observar que la infección con S. 
Typhimurium provocó una notable respuesta inflamatoria en los folículos de las 
PP, resultando al mismo tiempo estimulada la respuesta adaptativa a diferentes 
niveles. Interesantemente, evidencias de la inducción de cross-presentation y 
desarrollo de respuesta humoral fueron también observadas. 
 
Como conclusiones, esta tesis doctoral pone de manifiesto que, pese a las 
sofisticadas estrategias desarrolladas por S. Typhimurium para causar 
enfermedad, en los NLM porcinos se inducen de manera coordinada mecanismos 
innatos y específicos de defensa que tienen como objetivo el control de la 
infección. Entre estos mecanismos, la inducción de piroptosis y la inhibición de la 
apoptosis de las células infectadas podrían jugar un papel crítico en la función de 
los NLM porcinos como una barrera para prevenir la dispersión del patógeno más 
allá del tracto intestinal. A la vez, la infección determinó la activación de una 
respuesta citotóxica temprana contra Salmonella, mediante la cross-presentation 
de los antígenos bacterianos. Por otro lado, además de la estimulación de la 
respuesta mediada por células B, los folículos de las PP promueven la producción 
de células T CD8 efectoras y de memoria, lo que representa una función no 
observada hasta el momento en este tejido en su papel como órgano de 
respuesta frente a la infección con Salmonella. 
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 3 

1.1 The biology of Salmonella 

 Salmonella are Gram-negative bacilli belonging to the Enterobacteriaceae 

family, considered a major cause of disease in cold-blooded and warm-blooded 

animals (Jacobsen et al., 2011). According to the contemporary nomenclature, 

the genus Salmonella contains only two species: Salmonella enterica and 

Salmonella bongori. S. enterica subdivides into the subspecies enterica, salamae, 

arizonae, diarizonae, houtenae and indica, while S. bongori has no subspecies 

(Sánchez-Vargas et al., 2011). To date more than 2,500 different Salmonella 

serovars/serotypes have been characterized, being most of them classified as 

part of the Salmonella subsp. enterica (Andrews-Polymenis et al., 2010). The 

characterization of Salmonella serovars is based on their surface antigens: the O 

(somatic) antigens, which consist in a part of the variable long chain 

lipopolysaccharide, and the two H (flagellar) antigens (Jacobsen et al., 2011). 

Besides, Salmonella serotypes can be divided into host restricted, host specific, 

and generalist serotypes. Host restricted serotypes are predominantly associated 

with one species, but are able to infect other species as well (ex. S. enterica 

subsp. enterica ser. Dublin). Host specific only cause disease in one host (ex. S. 

enterica subsp. enterica ser. Typhi) and host generalist serotypes commonly 

cause disease in a broad range of hosts (ex. S. enterica subsp. enterica ser. 

Typhimurium) (Hoelzer et al., 2011). 

1.2 Human infections by foodborne Salmonella  

 Disease caused by Salmonella in humans ranges from gastroenteritis to 

systemic infections (Monack, 2012). Depending on the clinical syndromes caused 

in this host, strains can be classified into two groups: typhoid Salmonella and 

non-typhoid Salmonella. The former group comprises the causative agents of 
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enteric fever (S. enterica subsp. enterica ser. Typhi and S. enterica subsp. enterica 

ser. Paratyphi), whereas the latter one includes the remaining serovars (Sánchez-

Vargas et al., 2011). 

 Gastroenteritis by Salmonella is a major concern in developed and 

developing countries. Majowicz et al. (2010) estimates that each year, non-

typhoid Salmonella causes 93.8 million illnesses, of which 80.3 million are 

foodborne, and 155,000 deaths worldwide. Additionally, these authors highlight 

that Salmonella infections represent approximately 3% of diarrhoeal illnesses 

occurring at global scale. In the United States, it is reported that Salmonella alone 

causes approximately 1 million foodborne infections and costs $365 million in 

direct medical expenditures annually (CDC, 2010). Similarly, the European Food 

Safety Authority (EFSA) state that Salmonella was the most frequently reported 

cause of foodborne outbreaks in 2011 (EFSA, 2013). 

 A screening by the World Health Organization Global Foodborne 

Infections Network revealed that S. Enterica and S. Typhimurium are respectively 

the most common and second most common Salmonella serovars isolated from 

human infections worldwide, except for North America and Oceania, where the 

highest prevalence is observed for S. Typhimurium (Hendriksen et al., 2011). S. 

Typhimurium has a broad host range, causing disease in a variety of animals. In 

humans, infections by this serovar generally results in a self-limiting 

gastroenteritis. However, multidrug resistant strains of this pathogen have been 

reported to cause recurrent systemic infections in humans (Monack, 2012).  

1.3 Porcine salmonellosis and public health 

 Salmonella prevalence estimates for pig farms seem to differ 

considerably by production and management type. In the USA, average between-

herd estimates equals 53%, exceeding 80% for some farrow-to-finish production 
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systems, while within-herd estimates range from 3.5 to 28% (Foley et al., 2008). 

At EU level, 28.7% of breeding holdings are Salmonella positive but among the 

Member States a wide variation (0–64%) exists (De Busser et al., 2013). 

 Salmonella serovars commonly associated with swine are a major public 

health concern, being S. Typhimurium is the most frequently reported serovar in 

pigs and pork in European countries (EFSA, 2013). Infections of pigs with S. 

Typhimurium may result in long-term asymptomatic carriage of these organisms 

(Boyen et al., 2008a). Thus, carrier animals can act as reservoirs of pathogen and 

produce the cross-contamination of carcasses during slaughterhouse operations 

(Methner et al., 2011). In fact, human infections by this pathogen are mostly 

associated with the consumption of contaminated pig and meat thereof (EFSA, 

2013). The risk of Salmonella infection from consumption of contaminated pork 

depends on factors that include the level of infection in the pig herd, hygiene 

during carcass processing in the slaughterhouse, meat storage and distribution 

conditions and finally the handling of undercooked pork by the consumer (Boyen 

et al., 2008a). 

 Pork meat is the most widely consumed meat in Europe and its 

consumption has grown steadily during the last years (Resano et al., 2011). Since 

pigs are relevant reservoirs of Salmonella, this tendency increases the potential 

of exposure to this pathogen (Foley et al., 2008). Curiously, data from the EFSA 

Panel on Biological Hazards indicate that the contribution of pigs to the 

prevalence of human infection by Salmonella is currently higher than that of 

laying hens and eggs. Around 56.8% of the human salmonellosis cases could be 

attributable to pigs, while the contributions of total reservoirs associated with 

laying hens, broilers and turkeys are estimated to be 17%, 10.6% and 2.6%, 

respectively (EFSA, 2013).  
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1.4 Epidemiology, control and economic impact of S. Typhimurium 

infections in swine 

 S. Typhimurium can cause infection without disease and persist in the 

host with intermittent faecal shedding. These asymptomatic carriers are difficult 

to be detected by bacteriological or serological methods (Boyle et al., 2008) and 

represent the most important source of Salmonella introduction onto pig farms 

(Hoelzer et al., 2011). However, contact with people, contaminated slurry or 

sharing contaminated equipment was also proven to be risk factors for the 

transmission of Salmonella between pig herds and from cattle to pig herds. 

Additionally, Salmonella infected rodents have been identified as a source of 

bacteria in pig herds (Wilhelm et al., 2012).  

 Contaminated feed is recognized as a source of Salmonella for both 

livestock and poultry. Nevertheless, Doyle and Erickson (2012) state that feed 

should play only a minor role in the swine industry. Indeed, influence of feed in 

the prevalence of pig salmonellosis is related to the provision of wet or dry feed 

in farms. It is reported that dry feed enhances the risk of Salmonella shedding 

compared to wet feed (Farzan et al. 2006). 

 Salmonella transmission to pigs occurs mostly via the faeco-oral route, 

but oro-pharyngeal secretions can also be contaminated so allowing nose-to-

nose spread of disease (De Busser et al., 2013). Although all age groups are 

susceptible to Salmonella infection, disease is most commonly observed among 

weaned pigs more than eight weeks of age (Hoelzer et al., 2011). It is inferred 

that the increase in Salmonella shedding by piglets at this stage of production is a 

consequence of feed transition and a decrease in sow colostral antibodies (Fosse 

et al., 2009). 

 Studies highlight the implication of infection status of sows on Salmonella 

infections in fattening pigs. A high level of seropositivity in sows was observed to 
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be related to a progressive increase of seropositivity in pigs during farrowing, 

post-weaning and fattening periods (Lurette et al., 2008). Environmental 

contamination may also play an important role in maintaining endemic 

infections. A previous work demonstrated that Salmonella free finishing herds 

can be produced from endemically infected herds if pigs are strategically moved 

to clean stalls as they move through the farrow-to-finish system (Hoelzer et al., 

2011). In line with this, hygiene measures in farrowing rooms were uncovered to 

exert a great impact on Salmonella occurrence among all factors explaining 

Salmonella status in pig herds. Moreover, other factors as mixing pig batches 

along production, antibiotic treatment during the fattening period or a high 

number of animals per herd seem to increase the risk of transmission of 

Salmonella (Correia-Gomes et al., 2013). 

 Effective food safety interventions to reduce or control foodborne 

pathogens are needed throughout the food continuum, from the farm to the end 

user (Methner et al., 2011). Thus, the development of on-farm practices aiming 

to reduce the number of Salmonella-contaminated animals arriving at the 

processing plants might contribute significantly toward a reduction of Salmonella 

contamination of pork (Foley et al., 2008). In order to effectively accomplish this 

aim, attention should be paid to pig feed, cleaning and disinfection procedures at 

farms and purchase of animals (Wilhelm et al., 2012). Significant reductions of 

Salmonella in finisher swine can be further achieved by the use of vaccines that, 

despite of showing disadvantages of limited protection are able to reduce the 

length of infectious period and consequently reduce the risk of pathogen 

dispersal (De Ridder et al., 2013; Doyle and Erickson, 2012).  

 According to De Busser et al. (2013), interventions at slaughterhouse 

level are, at present, more likely to produce larger reductions of human illness 

than actions at the level of primary production. Nevertheless, reducing the 

prevalence of Salmonella in herds is particularly important because prevalence at 



General introduction  

 

 8 

slaughter tends to be considerably higher than on farm. Stress during transport 

may enhance shedding of Salmonella by non-apparent carriers and subsequently, 

cause the infection of trucks or interinfection of pigs during lairage, increasing the 

risk of carcass contamination along the slaughter line. Thus, fasting procedures 

before slaughter, animal handling during loading and transport and lairage 

conditions should be critically evaluated to protect food supply from Salmonella 

(Fosse et al., 2009). Besides, carcass decontamination in addition to hygiene, 

cleaning and disinfection measures at the slaughter stage as well as education 

and training are essential to achieve this goal (Botteldoorn et al., 2003). 

 Efficient improvement of food safety also involves economic 

considerations. Using a model based on data from Danish programs, Baptista et 

al. (2011) assert that a substantial cost reduction of about € 400,000 per year for 

the finisher pig sector would be obtained if no herd surveillance activities were 

carried out to reduce the prevalence of Salmonella in carcass. Besides, these 

authors observed that interventions at slaughtering are less cost-effective in 

small and medium-sized abattoirs compared to large ones. Another study also 

carried out in Denmark uncovered that costs of pig carcass decontamination 

ranged from €4 to €5.4 million per year, depending on the decontamination 

method employed (Lawson et al., 2009). Although measures aiming to control 

Salmonella represent relevant economic efforts to porcine production system, 

their importance is unquestionable. Failures at controlling Salmonella in the 

primary production could lead to the spread of bacteria to other species and the 

environment, resulting in an increased public health risk via direct transmission 

and contamination of vegetables (Baptista et al., 2011). Additionally, initiatives 

during slaughterhouse operations are essential to mitigate the risk of Salmonella 

in pork (Goldbach et al., 2006). 
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1.5 Structural and functional aspects of mesenteric lymph-nodes 

and Peyer’s Patches  

 In vertebrates, the immune system is subdivided into the innate and 

adaptive arms of immunity. The innate immune system is composed of anatomic, 

physiologic, phagocytic and inflammatory barriers that consist in the first line of 

defence against infectious disease. At the same time, innate immune 

components also interact extensively with adaptive components to help them to 

generate specific humoral response and immunologic memory (Burkey et al. 

2009). The integration of the complex cellular interactions that trigger immune 

responses takes place most efficiently within the organized architecture of 

secondary lymphoid organs, which include the spleen, lymph nodes, Peyer 

Patches (PP), tonsils and adenoids (Matsuno et al., 2010). These organs are 

similarly organized, although differences in their vasculature, mode of antigen 

entrance, local environment and the stimuli they are subjected may differ. All of 

them exhibit a compartmentalized T and B areas, antigen presenting cells (APC), 

lymphoid chemokines, high endothelial venules (HEV), lymphatic vessels and in 

some cases M cells  (Ruddle et al., 2009).  

 Thus, in addition to the physical barrier provided by epithelia, the 

intestinal mucosa immune system also uses the gut-associated lymphoid tissues 

(GALT) to protect the organism and to mediate subsequent innate and adaptive 

immune responses (Burkey et al., 2009). Traditionally, GALT comprises four 

distinct lymphoid compartments: the Peyer’s patches (PP) and other lymphoid 

follicles associated with the follicle associated epithelium (FAE); the lamina 

propria; intraepithelial lymphocytes (IELs); and mesenteric lymph nodes (MLN) 

(Acheson and Luccioli, 2004).  
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1.5.1 Mesenteric lymph-nodes 

 Mesenteric lymph-nodes (MLN), as other lymph-nodes consist of the 

outer/superficial cortex, inner/deep cortex, medullary cord and marginal, cortical 

and medullary lymphatic sinuses (Figure 1). The cortical region is composed of 

primary follicles of densely packed naïve B cells and follicular dendritic cells (FDC), 

surrounded by the interfollicular area (Matsuno et al., 2010). Upon antigenic 

stimulus, antigen-activated B cells proliferate giving rise to secondary follicles and 

germinal centers (Elmore et al., 2006). The inner cortex is the T cell area with DC 

and HEV. The medullary cord is the plasma cell area with some B cells, while the 

lymphatic sinuses are populated by macrophages (Newberry and Lorenz, 2005). 

The collected lymph and cell contents enter the lymph-node via afferent 

lymphatic vessels and filter the node through the lymphatic sinuses in the 

medulla or move via the subcapsular sinus to leave through efferent lymphatic 

vessels. Cells and antigens also enter the lymph-node via an arteriole, which 

branches into a capillary bed (Ruddle et al., 2009).  

 In swine, lymph-nodes show some peculiarities when compared to other 

animals. Both peripheral and mucosa-associated lymph-nodes have a specific 

structure that is called inverted and are mostly composed of cortex and 

paracortex, lacking a larger medullary area (Scharek et al., 2007).  Besides, 

lymphocyte trafficking in porcine also differs from that in other animals. As usual, 

the immigration of lymphocytes into the lymph-node takes place either by 

afferent lymph vessels or HEV (Rothkotter, 2009). However, in pigs very few 

lymphocytes leave lymph-nodes in the lymph, since they emigrate via 

paracortical post-capilary venules and not via efferent lymph vassels (Scharek et 

al., 2007).  
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1.5.2 Peyer’s Patches 

 PP are islands of organized lymphoid tissue located in the small intestine. 

In human and swine, PP are predominantly found in the ileum show a prenatal 

development (Makala et al., 2002). As other secondary lymphoid organs, PP 

contain areas populated by B and T lymphocytes (Figure 2). Follicles are pear 

shaped zones composed of B-cells and FDC, which are separated by the 

interfollicular area (T-cell area) (Matsuno et al., 2010). These structures are 

overlaid with the FAE, which harbours specialized antigen-sampling M cells 

Figure 1 – Schematic drawing of the structure of the lymph-node and trafficking routes for T 
cells (T) and B cells (B). Numbers in the square indicate the direction of the lymph flow from 
the initial lymphatic capillary in peripheral organs to the draining lymph-node and then to the 
blood circulation via the central thoracic duct. A: artery, DC: interdigitating dendritic cell, HEV: 
high endothelial venule, Mf: sinus macrophage, MM: marginal macrophage, P: plasma cell, V: 
vein (Matsuno et al., 2000). 
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interdigitated within the epithelium (Burkey et al., 2009). The PP region between 

the follicles and the FAE is called the dome and contains mainly T cells, plasma 

cells, interdigitating DC and macrophages (Makala et al., 2002). 

 PP are strategically integrated to intestinal surface as a forward defensive 

system, acting as sites of antigen sampling and induction of mucosal immune 

responses (Newberry and Lorenz, 2005). Gut antigens enter this organ via uptake 

by M cells located in the specialized FAE (Rothkotter, 2009). Subsequently, 

antigens encounter numerous professional APC in the dome that prime naïve T 

and B cells. These lymphocytes become memory or effector cells and migrate 

from PP to MLN via efferent lymph and then via the thoracic duct to peripheral 

blood for subsequent extravasation at mucosal effector sites (Brandtzaeg, 2009). 

 
Figure 2 – Schematic drawing of the structure of Peyer’s patches and trafficking route of T cells 
(T), B cells (B). HEV: high endothelial venule (Matsuno et al., 2010). 
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1.6 The biology of Salmonella Typhimurium infections 

1.6.1 The murine model  

 Murine infections by S. Typhimurium have been largely exploited as a 

model for the study of typhoid and general salmonellosis. S. Typhimurium causes 

in mice a systemic disease with a pathogenesis resembling typhoid fever in 

humans (Wick, 2010). S. Typhimurium is a food- and water-borne pathogen. 

Thus, following ingestion, a proportion of inoculum that succeeds in tolerating 

the low pH environment of the stomach enters the small intestine to establish 

infection (Álvarez-Ordóñez et al., 2011). At this point, S. Typhimurium must 

adhere itself to epithelial cells in the gut by several adhesins and fimbriae and 

subsequently cross the intestinal epithelium (Broz et al., 2012). As depicted in the 

Figure 3, multiple traversal routes are involved in Salmonella penetration of host 

mucosa (Tam et al., 2008).  

 The host-Salmonella interaction is dominated by the broad array of 

sophisticated weaponry used by bacteria to overcome host defences (Andrews-

Polymenis et al., 2010). S. Typhimurium preferentially targets the M cells located 

in the PP follicle-associated epithelium, manipulates their function and moves 

through them, accessing lymphoid cells of GALT (Martinoli et al., 2007). However, 

this pathogen can also induce its internalization in enterocytes through its 

virulence-associated type III secretion system (TTSS) encoded by Salmonella 

pathogenicity Island 1 (SPI-1) (Ly and Casanova, 2007). TTSS encode needle-like 

complexes that inject bacterial effector proteins that are able to hijack host cell 

functions, including those associated with cytoskeleton remodelling and 

immunomodulatory activity (Garai et al. 2012). Invasion also has been proposed 

to occur by paracellular pathways following disruption of epithelia tight junctions 

and via DC intercalated between epithelial cells. However, the importance of 
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these invasion-independent alternative pathways remains to be determined 

(Broz et al., 2012). 

 

Figure 3 – Entry and capture of orally acquired Salmonella. Salmonella can cross the intestinal 
epithelium and enter the host at different sites, mostly at the distal ileum. Two of these sites are 
organized lymphoid structures, Peyer’s patches (PP) and solitary intestinal lymphoid tissue 
(SILT). The third site is the intestinal villus. Salmonella can also invade using different 
mechanisms, which are indicated with numbers. Within PP, Salmonella can traverse the 
intestinal barrier through: (1) M cells in the follicle-associated epithelium (FAE); (2) epithelial 
cells forming the FAE, in particular after bacteria compromise M cells and the intestinal barrier; 
(3) DCs located in the FAE, could capture Salmonella. Once bacteria cross the FAE they can be 
captured by DCs located in the subepithelial dome (SED). DCs containing Salmonella can then 
initiate an adaptive immune response by stimulating T cells in the PP (marked T in the figure) or 
migrate to the mesenteric lymph node (MLN) to initiate adaptive immunity. In addition, 
Salmonella can cross the intestinal barrier through SILT, probably in a similar manner as in PP, as 
represented in (4). At villi, Salmonella can enter in different ways: (5) through M cells; (6) 
captured by DCs extending dendrites; or (7) passing through or between compromised epithelial 
cells. After the bacteria reach the lamina propria, they can access the MLN within migrating DCs, 
which are abundant in the lamina propria. Finally, the bacteria may be able to reach the blood 
stream, presumably transported by CD18+ phagocytes, as shown in (8). In addition to being 
transported to the MLN via lymph within DCs, it remains possible that free bacteria could be 
transported in lymph. (9) Bacteria can exit the MLN as free bacteria or possibly associated with 
cells and seed other tissues in the body (Tam et al., 2008). 
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  After crossing the epithelium, Salmonella is taken by phagocytes located 

in the PP dome that work to remove invading microbes by phagocytosis and alert 

other immune cells of the infection, either directly or by releasing pro-

inflammatory cytokines (Tam et al., 2008). Indeed, a rapid recruitment of 

neutrophils to infected tissue is the pathological hallmark of gastroenteritis 

caused by non-typhoidal Salmonella serovars (Andrews-Polymenis et al., 2010). 

For initiation of responses against microbes, macrophages and dendritic cells 

express multiple pathogen recognition receptors, including the cytosolic 

nucleotide-binding and oligomerization domain (NOD)-like receptors (NLR) and 

the Toll-like receptors (TLR) located on the cell surface or within a vacuolar 

compartment (Wick, 2011). Furthermore, a subset of NLR induces the assembly 

of a large multiprotein signaling complex called the inflammasome, which in 

cooperation with the adaptor protein ASC and activated caspase-1 (CASP1), leads 

to production and secretion of mature interleukin-1β and IL18 (Figure 4). CASP1 

activation also initiates a proinflammatory cell-death called pyroptosis (Miao and 

Rajan, 2011). 

 Although pyroptosis and apoptosis are both programmed forms of cell 

death, pyroptosis is not considered immunulogically silent, since it causes the 

release of cellular contents and proinflamatory cytokines (Duprez et al., 2009). Of 

note, induction of pyroptosis was proved to be a mechanism that benefits host 

during Salmonella infections by eliminating the intracellular niche of the 

pathogen and re-exposing it to extracellular immune defenses, mainly clearance 

by neutrophils (Miao et al., 2010). Indeed, this evidence justifies the crucial role 

of neutrophils to prevent the dissemination of bacteria from the gut during 

salmonellosis, despite the fact that this S. Typhimurium is mainly considered an 

intracellular pathogen (Broz et al., 2012). 

 



 

  

Figure 4 - The intestinal innate immune response to Salmonella. (A) Following the invasion of the mucosa, the presence of Salmonella is detected 
by pattern recognition receptors. Extracellular Salmonella are detected by Toll-like receptors inducing a transcriptional response leading to the 
expression of proinflammatory cytokines such as IL-23. Intracellular Salmonella activate NOD-like receptors that can induce IL-23 expression, as 
well as the assembly of NLRC4/NLRP3 inflammasomes that activate Caspase-1, promoting the secretion of mature IL-1β and IL-18. (B) IL-18 and IL-
23 amplify the inflammatory response by paracrine signaling. IL-18 induces the release of IFNγ from T cells, while IL-23 induces the release of IL-
22 and IL-17. These cytokines induce the increased production of mucins and antimicrobial peptides, and promote the release of CXC chemokines 
leading to an influx of neutrophils into the mucosa. (C) Infiltrating neutrophils are crucial for the killing of extracellular Salmonella. Although 
considered an intracellular pathogen, Salmonella can be found extracellularly following transcytosis through M cells or after pyroptosis induced 
host cell lysis. Besides clearing the pathogen, neutrophil influx can also lead to damage to intestinal tissue, resulting in the loss of epithelial cell 
barrier function and promoting diarrhea (Broz et al., 2012). 
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 Despite innate mechanisms are triggered by host to fight against 

infection, Salmonella is able to maintain itself in an intracellular compartment 

named the Salmonella containing vacuole (SCV) following phagocytosis. To 

establish this niche, pathogen expresses its SPI-2-efectors that act stabilizing the 

vacuolar membrane, modulating endocytic trafficking and inducing delayed host 

cell death (Garai et al., 2012). The SPI-2 TTSS plays an essential role in preventing 

rapid pathogen clearance by promoting its survival within mononuclear 

phagocytes (Srikanth et al., 2011).  

 From intestine, Salmonella can reach the MLN via the draining lymph as 

free extracellular bacteria or be transported by cells, presumably DC, from the 

lamina propria and/or Peyer’s patches. At this stage of an orally acquired 

infection, pathogen is still confined to intestine and associated lymphoid tissue. 

However, in mice infections virulent Salmonella disseminate and reach other 

tissues such as the liver, spleen and bone marrow. To cause this systemic 

dissemination, Salmonella reach bloodstream via lymph that empties into the 

blood in the thoracic duct or possibly via CD18+ phagocytes infected in the gut 

(Tam et al., 2008).  

 Continuous spread of the bacteria from infected cells to new infection 

foci is one of the key features of murine systemic Salmonella infections. This 

spread avoids high intracellular bacterial densities within the phagosomal 

compartment, a situation that would render the bacteria either nutritionally or 

spatially constricted. Moreover, bacterial spread from established foci to new 

infection foci at immunologically unprimed sites is also likely to be a mechanism 

that allows Salmonella to stay one step ahead of the progressive local activation 

of the inflammatory response (Haimovich and Venkatesan, 2006). S. 

Typhimurium can be recovered from systemic sites up to one year after infection 

from asymptomatic mice. Although persisting bacteria sequestered within 

macrophages appear to enter a dormant-like state, S. Typhimurium survival and 
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replication in hemophagocytic macrophages may play a key role in the 

establishment of persistent infections (Monack, 2012).  

 Effective control and eventual eradication of bacteria during the late 

phases of a primary infection and the generation of protective immunity against 

subsequent infections require the development and active recruitment of 

adaptive immunity mediators (Dougan et al., 2011). However, accumulation 

evidences have shown that Salmonella is able to inhibit T-cell activation by 

interfering with the presentation of antigens on the DC surface (Bueno et al., 

2012). Since DC are important APC linking innate and adaptive immunity, 

interfering with their capacity to stimulate naïve T cells may allow pathogens 

evading adaptive immunity. Such interference would promote pathogen survival 

and dissemination, both crucial events in Salmonella pathogenesis (Swart and 

Hensel, 2012).  

1.6.2 Differences between infections in mouse and other hosts 

 When considering host response to salmonellosis, it is important to stress 

that most of available knowledge was accessed by the study of mouse model, as 

this has been worked on most extensively. Nevertheless, observations from this 

approach do not always correlate with human (Tsolis, 2011) and farm animals 

infections (Bearson and Bearson, 2011). In different hosts, the outcome of 

infection differs in terms of local versus systemic spread, influence of infecting 

isolate properties and specific breed responses to pathogen (Dougan et al., 

2011). While septicemic episodes have been reported for Salmonella in mice, 

colonization by S. Typhimurium in food-producing animals is usually limited to 

the gastrointestinal tract (Hoelzer et al., 2011). 

 Natural or experimental infection of calves with serotype Typhimurium 

results in an enteric disease with clinical and pathological features that parallel 



 General introduction 

 19 

the disease in man. The intestinal pathology and the predominant influx of PMN 

leucocytes observed in infected calves are strikingly similar to that of S. 

Typhimurium-induced enteritis in humans. In both species, PMN leukocytes are 

proposed to play a decisive role in the pathogenesis of serotype Typhimurium-

induced diarrhoea (Santos et al., 2001). Pig infections with S. Typhimurium are 

also clinically similar to those observed in human. However, besides some 

evidences indicating the influx of PMN cells to the porcine gut during S. 

Typhimurium infections, information on processes behind the induction of 

diarrhoea is still scarce (Boyen et al., 2008a). 

 Existing data from the mouse model support that the Peyer’s patch route 

predominates in traversal of Salmonella. Nevertheless, little is known about how 

Salmonella penetrates the mucosa in man and other species (Dougan et al., 

2011). According to Costa et al. (2012), S. Typhimurium induces ruffling of the 

plasma membrane at the apical side of intestinal epithelial cells during bovine 

infections, invading M cells and absorptive enterocytes. Similarly, it has been 

shown that Salmonella can invade porcine absorptive enterocytes, M-cells and 

even goblet cells (Boyen et al., 2008a). In a study by scanning and transmission 

electron microscopy, Meyerholz et al. (2002) demonstrate a preferential 

adherence of S. Typhimurium to M cells within 5 minutes post infection of swine 

ileum. In addition, these authors demonstrated that this pathogen may use sites 

of cell extrusion as an additional mechanism for early invasion. Moreover, in 

accordance to evidences from murine infections, Boyen et al. (2006) asserted 

that SPI-1 is necessary to promote the invasion of porcine intestinal epithelial 

cells by S. Typhimurium, thereby contributing to the efficient short-term 

colonization of the porcine gut and to the induction of influx of neutrophils into 

the intestinal lumen.  

  S. Typhimurium triggers the up-regulation of pro-inflammatory genes and 

a Th1 oriented immune response in porcine jejunal gut loops (Meurens et al., 
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2009). Moreover, swine jejunum, ileum and colon respond differently to in vivo 

infections with S. typhimurium. In spite of the up-regulation of genes coding for 

innate immunity mediators, ileum showed a down-regulation of IL12 and CASP1, 

both relevant molecules in the response of host to Salmonella. This result could 

represent an advantage to pathogen during pig infections and was inferred to be 

related to the preference of S. Typhimurium for invading intestinal mucosa 

through ileum (Collado-Romero et al., 2010).  

  In pigs, S. Typhimurium is sporadically present in liver and spleen shortly 

after experimental inoculation but does not seem to replicate and is cleared from 

these organs a few days after inoculation. However, bacteria are able to persist in 

the gut and gut-associated lymph nodes (Boyen et al., 2008a). Gut-associated 

lymph-nodes are considered important niches for S. Typhimurium during swine 

infections. In fact, Salmonella prevalence in lymph-nodes of slaughter pigs from 

EU countries ranges from 0% to 29% (Baptista et al., 2011). Basing on data from 

mouse infections, it could be inferred that S. Typhimurium reach MLN via 

intestinal lymph, being shuttled by infected phagocytes or as extracellular 

bacteria. Nevertheless, this issue has never been addressed to date by any 

available report. Uthe et al. (2007) observed that S. Typhimurium could be 

isolated from pig MLN at 8 hours post oral infection and verified that pathogen 

was able to maintain itself in these organs at least 21 days post infection. 

Macrophages located in mesenteric lymph nodes are considered to be important 

players in the induction of long-term persistence of S. Typhimurium in infected 

pigs (Boyen et al. 2008a). Epidemiological analysis has established that 

Salmonella persistent carriers are crucial targets for disease control, because they 

shed the pathogen in high enough numbers to transmit disease (Gopinath et al., 

2012). Indeed, asymptomatic carriers represent the most important source of 

Salmonella introduction onto pig farms (Hoelzer et al., 2011). For this reason, a 

comprehensive view of the processes involved in the maintenance of pathogen in 



 General introduction 

 21 

host lymphoid organs and the conversion of infected pigs to carriers consist in an 

essential step for controlling salmonellosis. 

 As previously discussed, SPI-2 effector are indispensable for systemic 

infection of mice, since they support the intracellular survival of Salmonella inside 

host cell, especially macrophages (Garai et al. 2012). Curiously, S. Typhimurium 

strains mutants for SPI-2 were found to be fully capable of colonizing the 

intestines of pigs and to establish a long-term intestinal persistent infection after 

oral inoculation (Boyen et al., 2008b), suggesting that S. Typhimurium might 

employ different strategies to promote the carrier state during mouse and pig 

infections. Therefore, this divergence highlights the need of models other than 

murine infections to elucidate the mechanisms involved in the induction of 

persistent infections by Salmonella and reinforces the notion that the 

extrapolation of data from murine model to other species should be done with 

prudence. 

1.7 Swine as a model for the study of Salmonella Typhimurium 

infections 

 Animal models are valuable tools for a better understanding of 

pathogenesis mechanisms behind human diseases. To date, mouse has been 

widely used to provide novel knowledge in distinct fields of biology and medicine. 

However, mouse disease models often do not faithfully mimic the relevant 

human conditions, bringing to light the need of better animal models (Luney, 

2007). 

 Swine are increasingly appreciated for their potential to model human 

disease and this tendency was further reinforced by the recent advances in pig 

genomics and proteomics (Prather, 2013; Bendixen et al., 2010). Besides, pigs 

and humans are remarkably similar in terms of physiology. Interestingly, the 
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porcine immune system shows a higher level of similarity to human one than 

murine. Genomic comparisons between human, murine and porcine sequences 

also demonstrate more resemblances between human and porcine than human 

and murine sequences (Luney, 2007).  

 The swine model has been used to study as a model for many human 

infectious diseases and represent a valuable intermediate species to validate the 

applicability of knowledge obtained using rodent models to human (Meurens et 

al., 2012). However, although former reports of experimental infections of pig 

with Salmonella can be found in the literature (Williams et al. 1978, Baskerville et 

al. 1972), it was the 1990s when the use of this species for the study of 

salmonellosis became more current. 

 Advances in mammalian models of Salmonella infection are expected to 

result in new understanding of salmonellosis pathogenesis, contributing to the 

control and cure of human cases (Gopinath et al., 2012). Upon infection with S. 

Typhimurium, swine undergo a self-limiting enterocolitis which parallels the 

clinical manifestation observed in man (Sanchez-Vargas et al. 2011; Boyen et al., 

2008a). In light of this and the potential of swine as models of human disease, 

pigs can be stressed as an ideal model for investigating the pathogenesis of 

human non-typhoidal salmonellosis. 

1.8 Use of functional genomics to identify target molecules and 

mechanisms for the improvement of resistance to infectious 

diseases in animals 

 Resistance and tolerance to infectious pathogens are important 

characteristics of livestock to counteract the potential detrimental impact of 

pathogens on animal health and production (Doeschl-Wilson et al., 2012a). 



 General introduction 

 23 

Strong evidence has accumulated that livestock species from birds to mammals, 

harbour genes that control protective responses to the various classes of 

pathogen from viruses to nematodes. However, there remains a gap for traits 

linked to disease resistance and tolerance because the main polymorphisms that 

underpin these traits have not been identified. This is partly because host-

pathogen interactions are highly complex, involving many different molecules 

and cell types which interact together over time (Glass, 2012). 

 Disease traits have been difficult to target by traditional selection, but 

recent developments in high throughput genomics provide opportunities to 

dissect host responses to infectious pathogens and to increase the accuracy of 

selection (Doeschl-Wilson et al., 2012b). Knowledge obtained from the complete 

genome sequencing of many species has enabled discovery of new aspects of the 

host–pathogen interaction. Moreover, the development of genomics, 

transcriptomics, proteomics and computational biology has resulted in the 

systematic study of the host–pathogen interaction. Thus, functional genomics 

approaches have enabled the integration of experimental data from the diverse 

high-throughput methods to create a global picture of host–pathogen interplay in 

space and time (Hartlova et al., 2011).   

 In order to gain access to the host environment, a pathogen must cross 

the mucosal surfaces of the gut, respiratory tract, mammary gland and genital 

tract. After invading, these organisms should be able to tolerate and overcome 

host immunity. Thus, genetic variance in molecules taking part in the distinct 

partners of host defence against invaders might play an important role in the 

development of resistance or tolerance to infections. Strikingly, some examples 

have been described in veterinary. Recently, genetic variants in bovine CD46 have 

been shown to influence cell permissiveness for bovine viral diarrhoea virus and 

thus carriers of CD46 alleles might vary in resistance to this pathogen. Besides, 

the gut receptor for E. coli F18 encoded by the FUT1 gene in pigs was found to 
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confer complete resistance to E. coli (Glass, 2012). Another report, exploring the 

genetic resistance of bovine to the tick-borne protozoan Theileria annulata, 

demonstrated that an up-regulation of SIRPβ and TGFβ2, both mediators of 

inflammatory response, is associated to greater virulence and also higher 

propensity for invasion observed Holstein cows compared to the Bos indicus 

cattle breed Sahiwal (Chauessepied et al., 2010).  

 In the case of S. Typhimurium infections, genetic resistance to systemic 

disease in mice has been linked to many factors including the major 

histocompatibility complex (MHC), Toll-like receptor 4 and the natural resistance 

associated macrophage protein (NRAMP1). NRAMP1 is the most studied of all 

these factors and exerts effects on macrophage activation including MHC 

expression, release of pro-inflammatory cytokines and the production of 

antimicrobial effectors such as nitric oxide and oxidative burst. Mutations in this 

gene result in mice susceptible to S. Typhimurium and other intracellular 

pathogens such as Leishmania and Mycobacterium (Wigley, 2004). In fowl, 

comparisons of different models have successfully identified the genomic regions 

carrying the genes TLR4, NRAMP1 and the QTL SAL1 as having roles in phenotypic 

variations related to Salmonella resistance (Calenge et al., 2010).  

 Control of salmonellosis in swine herds generates increased production 

costs and public health issues in the use of prophylactic antibiotic potentially 

leading to development of antibiotic resistant strains. Therefore, the breeding of 

resistant animals, in combination with good hygiene practices offers a promising 

low risk strategy to fight against Salmonella in this species. In pigs, NRAMP1 is 

strongly expressed on macrophages and neutrophils following stimulation with 

LPS, but any role for this gene in Salmonella infection is yet to be described 

(Wigley, 2004). On the other hand, other authors have demonstrated the 

influence of genetic variance in the outcome of S. Typhimurium infections in 

porcine. Uthe et al. (2009) asserted a positive association between genetic 
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polymorphisms in the CCT7 gene with Salmonella shedding in swine. Besides, 

another report by Tuggle et al (2010) detected transcriptional changes in blood of 

persistent Salmonella shedder pigs which resulted in increased levels of 

intracellular-oriented responses compared to low shedder animals.  

 In spite of the association between genetic variation and resistance to 

salmonellosis in swine, selective breeding for resistance traits aiming to control 

the disease or the carriage of Salmonella in this species is still not feasible. In fact, 

targeting of the key host molecules and mechanisms involved in bacterial 

pathogenesis is indispensable to address this issue and a robust analysis of S. 

Typhimurium–pig interactions by integrative approaches represent a necessary 

step towards this aim.  
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 Genetic improvement of the resistance to infectious diseases represents 

an essential step for the development of sustainable and economically viable 

animal production systems. This issue is of particular importance in the case of 

zoonotic diseases, since a safe food supply largely depends on controlling the 

infection in livestock hosts. Functional genomics approaches combining the 

power of gene mapping technologies, gene expression studies and modern 

bioinformatics tools have begun to contribute very recently to a better 

understanding of the host response to microbial diseases. The knowledge 

provided may reveal new tools, therapeutics, and improved strategies for the 

establishment of future programs to develop disease-resistant livestock breeds, 

which should be aimed at improving health and welfare of animals, and as a 

result, improved quality and food safety. 

 

 The overall objective of this thesis is to identify and describe molecular 

pathways and the interactions involved in the porcine intestinal immune 

response to Salmonella enterica serovar Typhimurium. To achieve this objective, 

an in vivo experimental infection model was established and the following five 

specific objectives were set up: 

 

1. Evaluate the differential expression of immune-related genes in the 

MLN of S. Typhimurium infected pigs, in correlation with changes in 

tissue cellularity and pathogen burden (Martins et al. Comp Immunol 

Microbiol Infect Dis. 2013. 36:149-160); 

2.  Explore the proteomic response of porcine MLN to S. Typhimurium 

infection (Martins et al. J Proteomics. 2012. 75:4457-4470); 

3. Generate a comprehensive view of the mechanisms underlying host-

pathogen interactions in MLN during pig infections with S. 
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Typhimurium, integrating gene expression data from host and 

pathogen (Martins et al. Vet Res. Under review);  

4. Use laser microdissection coupled to qPCR technology and 

bioinformatic analysis to provide a preliminary understanding of the 

immune response processes engendered in swine PP follicles during 

S. Typhimurium infections (Martins et al. Dev Com Immunol. 2013. 

41:100-104); 

5. Dissect the global transcriptional response of swine PP follicles to S. 

Typhimurium infection by microarray analysis coupled to 

bioinformatic data mining (Martins et al. J Infect Dis. Manuscript in 

preparation). 
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3.1 Exploring the immune response of porcine mesenteric 

lymph nodes to Salmonella enterica serovar Typhimurium: an 

analysis of transcriptional changes, morphological alterations 

and pathogen burden 
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Abstract 

 

Infections caused by Salmonella enterica serovar Typhimurium (S. typhimurium) 

cause important economic problems in the swine industry and threaten the 

integrity of a safe and healthy food supply. Controlling the prevalence of 

Salmonella in pig production requires a thorough knowledge of the response 

processes that occurs in the gut associated immune tissues. To explore the in vivo 

porcine response to S. typhimurium, MLN samples from four control pigs and 

twelve infected animals at 1, 2 and 6 days post infection (dpi) were collected to 

quantify the mRNA expression of gene coding for 42 innate immune-related 

molecules. In addition, the presence of S. typhimurium in MLN was examined and 

its effect on tissue micro-anatomy. Higher S. typhimurium loads were observed at 

2 dpi, triggering an innate immune response, marked by a substantial infiltration 

of phagocytes and up-regulation of pro-inflammatory genes. Such response 

resulted in a significant decrease in pathogen burden in MLN at 6 dpi, although 

Salmonella could not be completely eliminated from tissue. Furthermore, our 

results suggest that in porcine infections, S. typhimurium might interfere with 

dendritic cell–T cell interactions and this strategy could be involved in the 

conversion of Salmonella infected pigs to a carrier state. 

 

Keywords: Pig, Mesenteric lymph-node, Immune response, Salmonella enterica 

serovar Typhimurium 
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3.1.1 Introduction 

 Salmonella is one of the most frequent causes of food-borne outbreaks in 

Europe, with 108,614 confirmed cases of human salmonellosis in 2009 [1]. 

Worldwide, Salmonella causes 94 million cases of acute gastroenteritis, including 

155,000 that are fatal, with children in particular falling victim to the disease [2]. 

Among more than 2500 serovariants, the host-generalist Salmonella enterica 

serovar Typhimurium (herein S. typhimurium) is reported as the serovar most 

frequently associated with human illness, with S. typhimurium cases mostly 

associated with the consumption of contaminated pig and poultry meat [3]. 

 Infections by S. typhimurium in pigs lead to a localized enterocolitis and, 

in general, infected swine evolve into healthy carriers in which bacteria are able 

to persist without triggering clinical signs [3]. The existence of asymptomatic 

carriers is a major threat to public health given that such animals cannot be 

detected easily and thus serves as source of contamination in food industry [4]. In 

addition to its importance as zoonotic disease, salmonellosis has an important 

impact in porcine health and negative implications in the efficiency and economy 

of the porcine production systems [5].  

 As a result of food poisoning, Salmonella enters the body through the 

gastrointestinal tract. After location in intestinal lumen and attachment in 

epithelial cells, Salmonella actively invade intestinal cells, colonize the lamina 

propria and Peyer’s patches and rapidly invade host cells, especially 

macrophages, but also dendritic cells and neutrophils [6]. Consequently, these 

innate immune cells produce and release chemoattractant cytokines to recruit 

additional inflammatory cells into the site of invasion and initiate a T helper 1 

(Th1) response [7]. From intestine, Salmonella reaches mesenteric lymph nodes 

(MLN), can enter the bloodstream and spread to internal organs [8]. To prevent 
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systemic infection, MLN form a life-saving firewall that protects the host from 

rapid pathogen dissemination beyond the intestine to others organs, such as liver 

and spleen [9]. 

 One way to learn about the molecular interactions during Salmonella 

infection is to analyze the host response. To this end, infection experiments using 

isolated primary cells or cell lines have been carried out to generate most of the 

knowledge currently available on the molecular events during Salmonella–host 

interaction [10–12]. However, although these in vitro models can provide 

valuable information, it is clear that this approach does not enable the 

interaction of pathogens with a multitude of different interacting cells involved in 

the invasion process in vivo [13]. Moreover, in mammals, studies on the host 

mechanisms against Salmonella have been largely focused on mice infection 

models [14,15], although accumulating evidences suggest differences in virulence 

mechanisms, pathogen colonization and disease susceptibility in food-producing 

animals infections compared to the murine model of systemic disease [16]. Thus, 

while in mice S. typhimurium moves into the mesenteric lymph nodes, and from 

there bacteria spread via the efferent lymph to the circulatory system, causing a 

systemic disease [17], in pigs usually causes a self-limiting intestinal disease 

enterocolitis which is similar to gastroenteritis in humans [6]. Factors that could 

cause these differences have not been sufficiently clarified, but make the pig an 

ideal model for investigating enteric salmonellosis in humans.  

 In swine, in vitro and in vivo studies have generated valuable insight in 

the crosstalk between Salmonella and porcine tissues and cells [18–20]. 

Nevertheless, few studies have addressed the requirements for the gut-

associated lymph nodes in the development of immune responses, their effect on 

the protective immunity against Salmonella infection and the relationship 

between changes in MLN transcriptome, tissue cellularity and level of pathogen 

invasion. In order to contribute to improved knowledge on the role of porcine 
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MLN on S. typhimurium infection, in the current study we use a model of in vivo 

experimental challenge to evaluate changes in gene expression and tissue 

morphological alterations that occur in these organs following infection. 

3.1.2 Materials and methods 

3.1.2.1. Experimental infection 

 The experimental infection design was described elsewhere [19]. Briefly, 

sixteen weaned piglets of approximately 4 weeks of age and fecal-negative for 

Salmonella were penned in an environmentally controlled isolation facility at 

25°C with ad libitum access to feed and water. All the animals were randomly 

allocated to control group (4 piglets) or infected group (12 piglets). The four 

noninfected pigs were necropsied 2 h before the experimental infection. The 

animals belonging to the infected group were orally challenged with 108 CFU of 

S. typhimurium phagetype DT104. Afterwards, four infected pigs were randomly 

sampled and necropsied at 1, 2 and 6 days post infection (dpi). Fecal samples 

from the infected group were cultured for Salmonella to ensure the effectiveness 

of the experimental challenge. Furthermore, rectal temperature and clinical signs 

were daily recorded for each animal to observe the evolution of the infection. All 

procedures involving animals were performed in accordance with the European 

regulations regarding the protection of animals used for experimental and other 

scientific purposes. 

3.1.2.2. Histopathology and immunohistochemistry 

 Samples of MLN from all experimental animals were fixed in 10% neutral 

buffered formalin for 24 h and embedded in paraffin-wax for histological 

processing. Afterwards, 5 μm tissue sections were routinely processed as 



 Experimental study 1 – Martins et al., CIMID 36 (2013) 149-160 

42 

previously described [21], and stained with hematoxylin and eosin (H&E). 

Presence of bacteria in the tissue samples was demonstrated by using an anti-

Salmonella polyclonal antibody raised by immunization of a New Zealand rabbit 

with a formalin fixed bacterial suspension. Quantification of tissue infiltration of 

macrophages was carried out by using a monoclonal antibody specific for porcine 

macrophages (clone 4E9/11) [22]. Immunohistochemical staining of formalin-

fixed, paraffin-embedded sections of porcine MLN samples, subjected to heat-

mediated antigen retrieval in 0.01 M citric acid, with Salmonella antiserum and 

4E9 monoclonal antibody was performed by using the immunoperoxidase 

method as has been described elsewhere [21]. Neutrophils identify by 

morphology and immunolabeled macrophages were counted in 50 randomly 

selected high magnification fields (400×) in sections of two different MLN 

samples from each infected and control animal. Results were expressed as the 

mean number of cells per field. 

3.1.2.3. Nucleic acids purification 

 Samples of MLN from control and infected animals were aseptically 

collected after necropsies and immediately frozen in liquid nitrogen for DNA and 

RNA isolation. Then, after treatment with RNAlater-ICE (Ambion), a volume of 0.6 

ml of RLT buffer (Qiagen) was added per 30 mg of tissue followed by disruption in 

a rotor–stator homogenizer. DNA and RNA were isolated by using the AllPrep 

DNA/RNA/Protein Mini Kit (Qiagen) and eluted RNA was treated with RNase-Free 

DNase Set (Qiagen) according to manufacturer instructions. Afterwards, purified 

RNA and DNA were routinely precipitated with ethanol. RNA and DNA quality was 

checked by agarose gel electrophoresis before being quantified using a Nanodrop 

ND-1000 spectrophotometer (Thermo Scientific). 
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3.1.2.4. Quantitative real-time PCR   

 Real-time quantitative PCR (qPCR) technology was used to determine the 

relative expression of 42 immune-related genes along the time course of 

infection (1, 2 and 6 dpi). Total RNA (1.5 μg) from infected and control animals 

was reverse transcribed to cDNA using the iScript cDNA Synthesis kit (Biorad) in a 

total volume of 30 μl. cDNA solutions were diluted by adding 70 μl of UHQ water 

and stored at -20 °C. The qPCR assays were performed on an iQ5 Thermo Cycler 

(BioRad) using 96 well PCR plates. All samples were amplified in duplicate in the 

same PCR plate and plates were repeated at least twice. Twenty microliters qPCR 

reactions were prepared using 2 μl of cDNA as template and iQ SYBR® Green 

Supermix (BioRad) according to manufacturer’s instructions. Final concentration 

of the primers in the PCR reactions was 0.4 μM. Primers (Table 1) were designed 

using Beacon Designer (Biosoft International) as previously described [19]. The 

qPCR conditions were as follows: 95 °C for 5 min, 35 cycles of 94 °C for 30 s, 57 °C 

for 30 s and 72 °C for 45 s. After amplification, a melting program was run to 

ensure correct amplification of the expected amplicons. 

Table 1 - List of genes and primer sequences for quantitative PCR analysis. 

Gene Name Foward Primer (5’ → 3’) Reverse Primer (5’ → 3’) Accesion number 

βActin CAGGTCATCACCATCGGCAACG GACAGCACCGTGTTGGCGTAGAGGT U07786 

CASP1 CTCTCCACAGGTTCACAATC GAAGACGCAGGCTTAACTGG NM_214162 

CCL2 ACCAGCAGCAAGTGTCCTAAAG GTCAGGCTTCAAGGCTTCGG NM_214214 

CCL3 TCTCGCCATCCTCCTCTG TGGCTGCTGGTCTCAAAATA AY643423 

CCL4 CAGCACCAATGGGCTCAGA TTCCGCACGGTGTATGTGA EF107667 

CCL5 CCAGCAGCAAGTGCTCCAT ACACCTGGCGGTTCTTTCTG NM_001129946.1 

CCL28 AACATCACAGCAAGAGGAACAG TGGCACAAAGGAACATTCACC NM_001024695 

CD11b GCGAGGACTCCCACGGAACTC GAAGATGGGGTGGTTTATGC Y11618.1 

CD14 ACCACCCTCAGACTCCGTAATG TTGCGCCACTTTCAGTACCTT EF051626 

CD40 TGGTTTCCAGAGTCGGATGAG ACAGGATCCCCAGCGTGAT NM_214194.1 

CD40L CAACACCCACAGTTCCTCCAA AGACTCCGCCCAAGTGAATG AB040443.1 
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Table 1 – Continued 

Gene Name Foward Primer (5’ → 3’) Reverse Primer (5’ → 3’) Accesion number 

CD209 CTGACTTGGCCCCTCCTTCT GAGACTGGTGGATCCTGGAAAC NM_001129972.1 

CXCL2 GGATAGCACGCTGTACCATC ACTGTCTCAATAAATAACAACCGAC AY578786 

CXCL8 TTCGATGCCAGTGCATAAATA CTGTACAACCTTCTGCACCCA M86923 

Cyclophilin-A CCTGAAGCATACGGGTCCT AACTGGGAACCGTTTGTGTTG AY266299 

DEFB1 ACCGCCTCCTCCTTGTATTC GGTGCCGATCTGTTTCATCT NM_213838 

DEFB2 CTGTCTGCCTCCTCTCTTCC CAGGTCCCTTCAATCCTGTT NM_214442 

IFNγ CAAAGCCATCAGTGAACTCATCA TCTCTGGCCTTGGAACATAGTCT X53085 

IL1β GGCCGCCAAGATATAACTGA GGACCTCTGGGTATGGCTTTC NM_214055 

IL4 TTGCTGCCCCAGAGAAC TGTCAAGTCCGCTCAGG AY294020 

IL5 TGGTGGCAGAGACCTTGACA CCATCGCCTATCAGCAGAGTT NM_214205.1 

IL6 TGGCTACTGCCTTCCCTACC CAGAGATTTTGCCGAGGATG NM_214399 

IL10 CAGATGGGCGACTTGTTG ACAGGGCAGAAATTGATGAC L20001 

IL12p40 GGAGTATAAGAAGTACAGAGTGG GATGTCCCTGATGAAGAAGC U08317 

IL13 AAGTGGCCCAGTTCGTAAAAGA ACCCGTGGCGAAAAATCA NM_213803.1 

IL18 AGGGACATCAAGCCGTGTTT CGGTCTGAGGTGCATTATCTGA EU118362.1 

IL23p19 GCTTGCAAAGGATCCACCAA GGCTCCCCTGTGAAAATGTC NM_001130236.1 

MyD88 TGGTGGTGGTTGTCTCTGATGA TGGAGAGAGGCTGAGTGCAA NM_002468 

NFB1 CTCGCACAAGGAGACATGAA ACTCAGCCGGAAGGCATTAT DQ834921 

NOD1 ACCGATCCAGTGAGCAGATA AAGTCCACCAGCTCCATGAT AB187219 

NOD2 CCTTTTGAAGATGCTGCCTG GATTCTCTGCCCCATCGTAG NM_001105295 

SELL CGCTTCCCTTCAGTCGTAG CCACACAGTCCTCCTTAGTC NM_001112678 

SLC11A1 CCAAAGCAGAGCAGAAC GGTCCAGGTAAGCAATG AF132037 

TLR1 TGCTGGATGCTAACGGATGTC AAGTGGTTTCAATGTTGTTCAAAGTC AB219564 

TLR2 TCACTTGTCTAACTTATCATCCTCTTG TCAGCGAAGGTGTCATTATTGC AB085935 

TLR3 AGTAAATGAATCACCCTGCCTAGCA GCCGTTGACAAAACACATAAGGACT DQ266435 

TLR4 GCCATCGCTGCTAACATCATC CTCATACTCAAAGATACACCATCGG AB188301 

TLR5 CAGCGACCAAAACAGATTGA TGCTCACCAGACAGACAACC NM_001123202 

TLR6 AACCTACTGTCATAAGCCTTCATTC GTCTACCACAAATTCACTTTCTTCAG AB085936 

TLR7 TCAGTCAACCGCAAGTTCTG GATGGATCTGTAGGGGAGCA NM_001097434 

TLR8 AAGACCACCACCAACTTAGCC GACCCTCAGATTCTCATCCATCC AB092975 

TLR9 CACGACAGCCGAATAGCAC GGGAACAGGGAGCAGAGC AY859728 

TLR10 CCTGTCCAACTGCCTCATTTG CTAAGTGTTCTAAGGATGTGTTTCTG AB219565 

TNFα CCTCTTCTCCTTCCTCCTG CCTCGGCTTTGACATTGG NM_214022 
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3.1.2.5. Salmonella quantification assay 

 TaqMan qPCR assays were used for quantifying the S. typhimurium load 

in MLN samples, following the method previously described by Park et al. [23]. 

DNA from the Salmonella strain employed in the experimental infection was 

extracted using DNeasy Blood & Tissue Kit (Qiagen) and subsequently diluted to 

final concentrations of 1.0x104, 5.0x103, 1.0x103, 5.0x102, 2.5x102, 1.0x102, 

5.0x101 and 0 genome equivalents (GE) per 1 μl. One genome equivalent of S. 

typhimurium corresponded to 5.46904 fg of DNA [23]. A 19-mer forward primer 

(5'GCGCACCTCAACATCTTTC-3’), a 22-mer reverse primer (5’-

GGTCAAATAACCCACGTTCA-3’) and a fluorogenic probe (FAM 

ATCATCGTCGACATGC MGB/NFQ) were used in the quantification assays. Each 25 

μl PCR reaction contained 12.5 μl IQ Supermix 2X (Biorad), 0.4 μm of each primer, 

0.2 μM probe, 1 μM MgCl2, 1μl DNA (at 800 ng/μl for porcine samples) and 10 μl 

UHQ water. PCR amplifications were performed on an iQ5 Thermo Cycler (Biorad) 

under the following conditions: 95 °C for 10 min and 35 cycles of 95 °C for 15 s 

and 60 °C for 1 min. Each MLN sample was tested by triplicate in three 

independent assays. Number of genome equivalents was deduced from the 

standard curve employing the quantification cycle (Cq) obtained for each sample. 

Results were shown as the number of genome equivalents of S. typhimurium per 

800 ng of MLN DNA (GE/800 ng DNA). 

3.1.2.6. Isolation of S. typhimurium from MLN samples 

 In order to verify the presence of live S. typhimurium in MLN samples, 1 g 

of tissue was drenched in 9 ml of buffered peptone water (Oxoid) and disrupted 

with sterile mortars and pestles. Tissue suspensions were transferred to sterile 

tubes and incubated at 37 °C with shaking at 200 rpm for 12 h. Afterwards, 10 μl 

of the resulting culture was streaked on XLD agar (Oxoid) plates and incubated at 
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37 °C for 24 h. The identification of the suspected colonies was confirmed by PCR 

assays. For this, 20 colonies with typical Salmonella morphology were collected 

from each plate, mixed in 300 μl of UHQ water and their DNA extracted by 

boiling. PCR was carried out in a final volume of 20 μl, containing 2 μl of DNA 

template, 400 nM of each primer, 200 nM of each dNTP, 2 mM MgCl2, 2 μl of 10X 

reaction buffer and 0.75 U Tth DNA polymerase (Biotools). Primers employed in 

this assay were the same used in the procedure of S. typhimurium quantification 

by TaqMan qPCR. PCR cycling protocol consisted of a denaturing step at 94 ◦C for 

5 min, followed by 35 cycles of 94 °C for 30 s, 60 °C for 30 s, 72 °C for 30 s, and a 

final step of 6 min at 72 °C. 

3.1.2.7. Data analysis 

 The relative gene expression was assessed by the 2−ΔΔCq method [24] as 

previously described [19]. Afterwards, fold change values (2−ΔΔCq) were 

standardized by a series of sequential corrections proposed by Willems et al. [25], 

which included log transformation, mean centering and autoscaling. A fold 

change of 1 denoted no change in gene expression. Values lower than 1 and 

higher than 1 denoted up and down-regulation, respectively. Standardized data 

were analyzed using the software SPSS 15.0 for Windows® (SPSS, Inc). Data were 

tested for normality and variance homogeneity by Shapiro–Wilk and Levene’s 

tests, respectively. Those data assumed to be from a normal distribution and 

which within-group variances were constant across groups were analyzed by one-

way ANOVA and Duncan post hoc test. Remaining data were analyzed by 

Kruskal–Wallis and Mann–Whitney tests. Differences in the rectal temperature 

among groups were assessed by ANOVA and Duncan post hoc test. Data from S. 

typhimurium quantification as well as neutrophil and macrophage count were 

analyzed by Kruskal–Wallis and Mann–Whitney tests. Spearman’s rank 
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correlation test was used to examine the association among S. typhimurium load, 

neutrophil and macrophage count and gene expression. A p-value below 0.05 

was considered statistically significant. 

3.1.3. Results 

3.1.3.1. Experimental infection 

 Animals experimentally infected were observed daily for development of 

clinical disease. The analysis of S. typhimurium fecal carriage revealed that all 

animals were positive after the bacterial challenge. In addition, infected pigs 

manifested clinical signs characterized as lethargy, weight loss and diarrhea. 

Rectal temperature changed significantly among groups (p = 0.000), fever began 

at 1 dpi (40.58±0.17) and peaked at 2 dpi (40.88±0.46 ◦C). However, at 6 dpi the 

rectal temperature declined to normal values (39.15±0.35 ◦C), not significantly 

different from those observed in control animals. 

3.1.3.2. Histopathology and immunohistochemistry 

 Lymphadenitis, marked by a strong infiltration of inflammatory cells was 

observed at 2 dpi (Fig. 1A). Similar pathological alterations were observed at 1 

and 6 dpi, although to a lesser extent than those seen at 2 dpi. Significant 

changes in neutrophil count were observed along the time course of the infection 

(p = 0.005). Thus, the number of neutrophils peaked at 2 dpi (Fig. 1C) and a broad 

infiltration of these cells around trabeculae was uncovered at this time point. 

Immunohistochemistry revealed that the presence of macrophages in MLN also 

changed significantly after S. typhimurium infection (p = 0.036). As shown in Fig. 

1D, macrophages count peaked at 2 dpi, being predominantly found in lymph 

nodes capsule and within the T-cell area near trabeculae (Fig. 1B). 
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Immunohistochemistry was also carried out to verify the level of tissue invasion 

by S. typhimurium.  

 

 

 As shown in Fig. 2A–C, bacterial labeling was observed in the cytoplasm 

of mononuclear cells. In addition, infiltrated neutrophils were located in the 

diffuse lymphatic tissue around trabeculae. Again, our results demonstrated that 

labeled cells were more prevalent in lymph nodes at 2 dpi than in groups of 

animals infected at 1 and 6 dpi. 

Figure 1. Histological analysis of MLN from S. typhimurium infected pigs. (A) Tissue-infiltrating 
phagocytes were visualized around trabeculae by H&E staining at 2 dpi. (B) 4E9/11 labeling 
shows the presence of macrophages within the lymph nodes T-cell area at 2 dpi. (C and D) 
Quantification of neutrophils and macrophages in tissue, respectively. Data are shown as the 
number of neutrophils or macrophages per microscope field. Different letters mean significant 
difference among groups (p < 0.05). 
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3.1.3.3. Expression of immune-related genes during S. typhimurium infection 

 In order to evaluate the porcine MLN response to S. typhimurium, qPCR 

expression profiling was performed on a panel of 42 immune-related genes 

encoding pattern recognition receptors, immune cells markers, 

innate/inflammatory and T cell response mediators. Statistically significant 

expression changes were observed in 26 genes along the time course analyzed 

(Table 2). Overall, the higher number of differentially expressed genes was 

observed at 2 and 6 dpi (20 and 14 genes, respectively) whereas only 6 genes had 

Figure 2. S. typhimurium labeling in MLN of infected pigs. (A) 100×, (B) 400× and (C) 1000×. (D) 
Quantification of S. typhimurium by TaqMan real-time PCR assay. Data are shown as the 
number of genome equivalents (GE) of S. typhimurium per 800 ng of MLN genomic DNA. 
Different letters mean significant difference among groups (p < 0.05). 
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their expression changed at 1 dpi. Interestingly, all the significant observed 

changes at 6 dpi consisted in down-regulation of gene transcripts (Fig. 3). 

Table 2 - Changes in gene expression relative to uninfected controls (0 dpi) in 
porcine MLN at 1, 2 and 6 days after S. typhimurium infection. Fold change (FC) 
values with the same letters above are not significantly different (p < 0.05). 

0 dpi  1 dpi  2 dpi  6 dpi 
Gene F. 

 change 
SD  

F.  
change 

SD  
F.  

change 
SD  

F.  
change 

SD 

CASP1 1.00a 0.19  0.76ab 0.19  1.53c 0.17  0.54b 0.09 

CCL2 1.00a 0.14  1.17ab 0.42  1.23a 0.27  0.62b 0.12 

CCL3 1.00 0.29  1.06 0.20  1.64 0.22  1.05 0.24 

CCL4 1.00 0.26  1.35 0.22  1.23 0.22  0.77 0.24 

CCL5 1.00 0.24  0.95 0.18  0.89 0.12  1.26 0.34 

CCL28 1.00a 0.25  0.74ab 0.24  0.35b 0.08  1.16a 0.14 

CD11b 1.00a 0.17  0.69ab 0.23  0.43b 0.11  0.76a 0.16 

CD14 1.00 0.24  1.32 0.36  1.79 0.56  0.92 0.33 

CD40 1.00 0.14  0.95 0.24  1.26 0.20  0.82 0.14 

CD40L 1.00a 0.18  0.71b 0.04  0.53c 0.03  0.90ab 0.16 

CD209 1.00a 0.28  0.72a 0.36  0.13b 0.02  0.46a 0.22 

CXCL2 1.00a 0.20  3.11b 1.22  2.85b 1.17  1.34ab 0.55 

CXCL8 1.00a 0.20  1.18a 0.15  2.84b 0.41  0.49c 0.09 

DEFB1 1.00 0.38  2.06 0.49  0.78 0.24  1.70 0.81 

DEFB2 1.00a 0.14  0.98a 0.26  2.52b 0.59  1.05a 0.41 

IFNγ 1.00a 0.31  1.91ab 0.66  3.50b 1.32  1.08a 0.41 

IL1β 1.00a 0.20  6.85b 3.36  10.07b 4.43  1.03a 0.28 

IL4 1.00a 0.27  0.50ab 0.12  0.23b 0.05  0.42b 0.11 

IL5 1.00 0.20  0.66 0.23  0.61 0.14  0.84 0.22 

IL6 1.00 0.35  0.97 0.42  0.93 0.32  0.62 0.10 

IL10 1.00ab 0.16  0.76bc 0.18  1.14a 0.15  0.63c 0.09 

IL12p40 1.00 0.24  0.63 0.22  0.37 0.17  0.47 0.17 

IL-13 1.00a 0.28  0.55ab 0.27  0.24b 0.03  0.39ab 0.17 

IL-18 1.00a 0.08  0.76b 0.11  0.51c 0.10  0.53c 0.08 

IL-23p19 1.00 0.19  0.93 0.22  0.94 0.06  0.84 0.24 

MyD88 1.00 0.15  0.85 0.17  0.80 0.14  0.67 0.07 

NFkB1 1.00a 0.17  1.00a 0.24  0.62b 0.16  0.61b 0.13 
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Table 2 – Continued 

0 dpi  1 dpi  2 dpi  6 dpi 
Gene F 

. change 
SD  

F. 
 change 

SD  
F.  

change 
SD  

F.  
Change 

SD 

NOD1 1.00 0.26  0.89 0.30  1.19 0.21  0.60 0.20 

NOD2 1.00ab 0.24  1.16bc 0.32  1.70c 0.26  0.68ª 0.17 

SELL 1.00a 0.23  0.76ab 0.18  0.56b 0.10  0.58b 0.12 

SLC11A1 1.00a 0.43  1.80a 0.58  8.40b 1.22  0.90ª 0.37 

TLR1 1.00 0.10  0.69 0.15  0.75 0.15  0.75 0.10 

TLR2 1.00a 0.09  1.01a 0.27  1.07a 0.21  0.59b 0.08 

TLR3 1.00a 0.07  0.73ab 0.18  0.51b 0.13  0.61b 0.16 

TLR4 1.00a 0.06  0.93a 0.22  0.82ab 0.22  0.58b 0.08 

TLR5 1.00 0.29  0.45 0.19  0.64 0.15  0.57 0.23 

TLR6 1.00a 0.12  0.58b 0.10  0.75ab 0.15  0.73b 0.11 

TLR7 1.00a 0.04  0.55b 0.08  0.58b 0.06  0.56b 0.08 

TLR8 1.00a 0.12  0.78a 0.12  1.30b 0.08  0.77ª 0.15 

TLR9 1.00 0.22  1.22 0.22  0.97 0.21  1.11 0.16 

TLR10 1.00 0.14  0.73 0.17  0.71 0.15  0.78 0.14 

TNFα 1.00a 0.23  1.41a 0.36  1.14a 0.23  0.65b 0.09 

 

 

 Changes in expression of genes coding for different innate/inflammatory 

response mediators were uncovered mainly at 2 dpi. Thus, significant mRNA up-

regulation of IL1β, CXCL2, CXCL8, CASP1, SLC11A and DEFB2 was observed at this 

time point, whereas expression of CCL28 and SELL resulted down-regulated. 

Moreover, mRNA expression of IL1β and CXCL2 were also significantly 

upregulated at 1 dpi whereas CXCL8 and CASP1 showed down-regulation at 6 dpi. 

In spite of the absence of significant difference in mRNA expression at 1 or 2 dpi 

compared to control, genes coding for TNFα and CCL2 showed downregulation at 

6 dpi. Many of the proinflammatory mediators up-regulated at 1 and 2 dpi have 

their mRNA expression under the control of the transcription factor NFκB. 

However, NFκB mRNA expression was significantly downregulated at 2 and 6 dpi.  
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 A down-regulation of genes coding for cytosolic and transmembrane 

pattern-recognition receptors (PRR) was asserted in our study, except for TLR8 

and NOD2, which were up-regulated at 2 dpi. 

Figure 3. Expression of immune-related genes in MLN of pigs experimentally infected with S. 
typhimurium by qPCR. Data are shown as the fold change in gene expression in infected pigs 
compared to controls. Values lower than 1 were calculated as 1/fold change. 
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 Expression of genes coding for other cell surface proteins described as 

phenotype markers of swine immune cells was checked to estimate changes in 

MLN cellularity after infection. Changes in gene expression were not found out 

for CD14 or CD40. However, genes coding for CD11b and CD209 showed 

significant down-regulation at 2 dpi and CD40L at 1 and 2 dpi.  

 Finally, a diverse mRNA expression profile was observed among Th1 

related genes. Although an up-regulation of IFNγ mRNA could be observed at 2 

dpi, statistically significant changes in expression were not observed for IL12p40 

and IL18 was down-regulated during the infection period studied. Concerning to 

Th2 response, down-regulation was verified for IL4 transcripts at 2 and 6 dpi and 

IL13 at 2 dpi. Furthermore, IL5 did not exhibited changes in expression after 

infection. Other genes encoding T cell costimulatory molecules were also studied. 

Thus, changes in IL23p19 mRNA expression were not detected and IL10 showed 

down-regulation at 6dpi. 

3.1.3.4. Isolation and quantification of S. typhimurium in MLN of infected pigs 

 TaqMan real-time PCR technology was employed to quantify the 

presence of S. typhimurium in MLN at different times after infection. As shown in 

Fig. 2D, S. typhimurium burden changed significantly (p = 0.005) along the time 

course of infection. Pathogen load could be quantified at 1 dpi (85.4± 79.7 

GE/800 ng DNA), peaked at 2 dpi (310.5± 171.1 GE/800 ng DNA), and decreased 

to unquantifiable levels at 6 dpi (0 GE/800 ng DNA), indicating the efficient 

clearance of most of bacteria from the tissue. Although Salmonella was not 

detected at 6 dpi or in one animal necropsied at 1 dpi, the screening by 

microbiological methods allowed us to determine the presence of live S. 

typhimurium in MLN of all animals belonging to groups 1, 2 and 6 dpi. 
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Nevertheless, the presence of bacteria was not detected in control animals, 

confirming their previously established Salmonella free status. 

3.1.3.5. Conjunctive analysis of S. typhimurium burden, phagocyte count and 

immune-related genes expression 

 Spearman’s rank correlation indicated a strong positive association 

between Salmonella burden and neutrophil count (Table 3 and Supplementary 

data file 1). Transcripts level of IFNγ, CXCL2, IL1β, CCL3 and SLC11a was also 

positively associated with the pathogen load in infected MLN, at a high level of 

significance (p < 0.01). Among genes which expression was negatively associated 

with Salmonella burden, TLR3, IL18, CD40L and CD11b could be highlighted. 

Expression of IFNγ, CXCL2 and IL1β was also positively associated with neutrophil 

count, whereas, mRNA levels of CD40L, IL4 and TLR3 were negatively associated. 

Differently from Salmonella load and neutrophil count, macrophages count 

showed a higher frequency of significant negative associations. Interleukin 13, 

CD209 and CD11b should be cited as genes which expression showed the most 

significant associations with macrophages count. 

3.1.4. Discussion 

 MLN are important sites for the induction of immune response against 

invading pathogens in the gut [26]. In this work, we applied an in vivo approach 

to obtain insight into the response of porcine MLN to S. typhimurium. The 

effectiveness of the performed bacterial challenge was confirmed by the 

manifestation of typical clinical signs of pig salmonellosis by infected animals. 

Moreover, the presence of S. typhimurium in MLN at 1, 2 and 6 dpi was 

demonstrated employing microbiological and DNA based techniques.  
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Table 3 - Statistical association between mRNA gene expression and S. 
typhimurium load and neutrophil and macrophage count. 

 S. Typhimurium  Neutrophils Macrophages 
S. Typhimurium --- 0.844** 0.517* 
Neutrophils 0.844** --- 0.594* 
Macrophages 0.517* 0.594* --- 
CASP1 0.415 0.288 0.059 
CCL2 0.452 0.226 -0.247 
CCL3 0.645** 0.518* 0.252 
CCL4 0.429 0.321 0.029 
CCL5 -0.088 -0.129 0.112 
CCL28 -0.311 -0.531 -0.392 
CD11b -0.712** -0.571* -0.710** 
CD14 0.519* 0.550* 0.085 
CD40 0.520* 0.338 0.091 
CD40L -0.731** -0.759** -0.616* 
CD209 -0.473 -0.547* -0.730** 
CXCL2 0.630** 0.624** 0.181 
CXCL8 0.605* 0.547* 0.203 
DEFB1 0.006 -0.026 -0.110 
DEFB2 0.541* 0.515* 0.423 
IFNγ 0.668** 0.703** 0.202 
IL1β 0.750** 0.650** 0.367 
IL4 -0.622* -0.720** -0.706* 
IL5 -0.595* -0.432 -0.286 
IL6 0.064 -0.100 -0.169 
IL10 0.312 0.144 0.108 
IL12p40 -0.515* -0.297 -0.602* 
IL13 -0.426 -0.397 -0.772** 
IL18 -0.739** -0.609* -0.638** 
IL23p19 0.035 -0.115 -0.286 
MyD88 -0.155 -0.294 -0.392 
NFκb -0.225 -0.365 -0.511* 
NOD1 0.290 0.053 0.066 
NOD2 0.550* 0.391 0.230 
SELL -0.436 -0.591* -0.549* 
SLC11A1 0.727** 0.594* 0.424 
TLR1 -0.201 -0.371 -0.418 
TLR2 0.388 0.235 -0.236 
TLR3 -0.771** -0.624** -0.521* 
TLR4 0.033 0.029 -0.498* 
TLR5 -0.163 -0.129 -0.395 
TLR6 -0.304 -0.347 -0.355 
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Table 3 Continued 
 S. Typhimurium  Neutrophils Macrophages 
TLR7 -0.415 -0.594* -0.424 
TLR8 0.429 0.365 0.186 
TLR9 -0.040 -0.085 0.303 
TLR10 -0.283 -0.521* -0.408 
TNFα 0.382 0.206 -0.222 

 

 

 Higher S. typhimurium loads were observed at 2 dpi, when a peak of 

corporal temperature was recorded and most of changes in gene expression 

were observed. In addition, histological analysis confirmed the existence of 

bacteria in the tissue and detected changes in MLN cellularity as a consequence 

of the infection. 

 Consistent with the latter, we observed that infection led to a strong 

infiltration of macrophages and neutrophils in MLN, which was highly correlated 

with S. typhimurium burden in the tissue. The recruitment of monocytes and 

neutrophils from blood to infected tissues is a requirement for controlling 

pathogens replication and ensuring host survival to infection [27]. L-Selectin 

(SELL), a glycoprotein constitutively expressed by porcine leucocytes [28], was 

down-regulated at 2 and 6 dpi. Negative correlations observed between the level 

of SELL transcripts and neutrophil/macrophage count in MLN confirms previous 

reports of SELL down-regulation by recruited monocytes [27] and neutrophils 

[29]. Chemokines are the main mediators involved in the recruitment and 

migration of leukocytes to and within tissues [30]. According with previously 

reported data [31,32], our experimental infection produced an up-regulation of 

chemokines in MLN. Moreover, significant correlations were observed between 

mRNA levels of CXCL8, CXCL2, and tissue neutrophil count. However, changes in 

expression of these chemokines were not significantly correlated to macrophages 

count. Interestingly, changes in expression of SLC11A1 showed positive 
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correlations with mRNA levels of most of pro-inflammatory genes, such as CXCL2, 

CXCL8, IFNγ, IL1β and CASP1 (Supplementary data file 1). SLC11A1 is an 

important innate host resistance factor to S. typhimurium, specially expressed in 

phagocytic cells, such as dendritic cells (DC) [33], macrophages and neutrophils 

[34]. In mice, the impact of SLC11A1 on the severity and outcome of S. 

typhimurium infection is determined by its influence on the speed and intensity 

of the host inflammatory response, facilitating the rapid activation of host 

defense [35]. In this work, we observed a strong up-regulation of SLC11A1 at 2 

dpi and its expression was significantly correlated to the grade of tissue invasion 

by Salmonella and neutrophils infiltration. Consequently, this could indicate that 

regulation of SLC11A1 acts as a mechanism of orchestration of inflammatory 

response in MLN of S. typhimurium infected pigs, as has been previously reported 

in mice [33]. 

 Herein, Salmonella infection resulted in downregulation of CD11b and its 

mRNA level was negatively correlated with pathogen burden as well as 

macrophages and neutrophils count in MLN. Differently from human, swine 

CD11b is only expressed by a subpopulation of granulocytes and lacks expression 

by monocytes and macrophages [36]. In addition, among the four DC 

subpopulations found throughout the porcine intestinal immune system, DC from 

Peyer’s patches (PP) have been described as CD11b−, whereas DC in MLN are 

predominantly CD11b+ [37]. Previous reports highlight S. typhimurium transport 

from intestine to the draining MLN via PP DC as the most predominant 

penetration route in infection models [9,35,38]. Therefore, down-regulation of 

CD11b could be attributed to an increase in MLN of cells that do not express this 

cell marker such as macrophages, and probably DC from PP.  

 Activated caspase 1 (CASP1) contribute to the control of Salmonella 

infection by processing and maturating the pro-inflammatory cytokines IL1β and 

IL18 [39]. In this study, CASP1 exhibited up-regulation at 2 dpi, followed by down-



 Experimental study 1 – Martins et al., CIMID 36 (2013) 149-160 

58 

regulation at 6 dpi. However, its substrates showed a different expression 

pattern: IL1β was strongly upregulated at 1 and 2 dpi, whereas IL18 was down-

regulated all along infection. In murine MLN and spleen, IL18 is the predominant 

CASP1 substrate that mediates resistance to oral S. typhimurium infection [40]. 

IL18 acts synergistically with IL12 in the induction of IFNγ production by antigen 

stimulated T cells in human and mice [41]. Nevertheless, we uncovered an 

increase of IFNγ expression, in spite of the absence of significant changes in 

IL12p40 regulation along infection. The lack of significant associations between 

mRNA levels of IL12p40/IL18 and IFNγ (Supplementary data file 1) could confirm 

the independence of IFNγ expression respect IL12p40 or IL18 regulation. 

Moreover, up-regulation of IFNγ could be explained by the fact that NK cells are 

important producers of this cytokine in pigs [41]. Together, these results might 

indicate that in porcine infections by S. typhimurium, IL18 and IL12 do not play 

the same role as in human and mice salmonellosis. It could also be inferred that 

repression of this cytokines is a mechanism whereby Salmonella may limit the 

protective cell-mediated immune response early in infection, as has been 

previously proposed [42]. 

 Our results also evidenced a decrease in mRNA levels of genes coding for 

cytokines and receptors related to DC-T-cell interaction. CD40L expression is 

induced shortly after T-cell activation and represents an early activation marker 

of T lymphocytes [43]. Activated T cells enhance IL-12 production by interaction 

of their receptor ligand CD40L with CD40 on DCs or macrophages [44]. Since 

CD40L was down-regulated at 1 and 2 dpi, this could also be related to the 

expression profile uncovered for IL12p40. CD209 was also down-regulated at 2 

dpi. This gene codes for a C-type lectin which mediates strong adhesion between 

DC to resting T cells and is essential in establishing the DC induced T cell 

proliferation [45]. Besides, it has been reported that CD209-driven interaction 
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between activated neutrophils and DC induce maturation of the latter and enable 

these cells to trigger an intense T cells proliferation and Th 1 polarization [46]. 

 Since MLN underwent substantial changes in cellularity after infection, 

neutrophil extravasation primarily, downregulation CD40L and CD209 could be 

attributed to the infiltration of cells that do not express these molecules. 

However, the decrease in mRNA levels of IL12p40, which production is induced 

by activated T cells, as well as reports asserting the prevention of T cells 

activation as a strategy used by Salmonella to evade immune response [8] lead as 

to infer that this machinery could be employed by the bacteria in swine MLN 

infection.  

 TLRs and NODs function as sentinels of infection via recognition of 

pathogen-associated molecular patterns (PAMPs) and induction of appropriate 

innate and adaptive immune responses to invaders [47]. In this work, we found 

that except TLR-8 and NOD2, which were up-regulated at 2 dpi, most of the PRR 

were significantly down-regulated after Salmonella challenge. Rydstrom and Wick 

[30] relate that the absence of signaling through TLR4, TLR5 or both TLR4/5 

simultaneously did not compromise phagocytes recruitment to PP and MLN. 

These authors inferred that such deficiency is probably compensated by 

recognition of bacterial ligands by other PRR. The occurrence of the TLR signaling 

at the very first moments of the bacterial challenge should not be excluded. 

According with both assumptions, we also observed an increase of phagocytes in 

MLN, in spite of repression of TLR2, TLR3, TLR4 TLR6 and TLR7. 

 Together, our results suggest a possible synergy between TLR8 and NOD2 

in the recognition of S. typhimurium in pig infections. TLR8 and NOD2 are 

expressed by monocytes, macrophages and DC [48–50]. Yrlid et al. [51] state that 

the application of the agonistic TLR7/8 ligand R848 triggered a massive migration 

of intestinal DC into MLN. Intriguingly, our results revealed a highly significant 

correlation (p < 0.01) between mRNA levels of TLR8 and NOD2 (Supplementary 
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data file 1). Moreover, expression of none of these genes was correlated with 

macrophage or neutrophil count in MLN. Therefore, upregulation of NOD2 and 

TLR8 at 2 dpi could be attributed to the migration of Salmonella infected DC from 

intestine to MLN. The higher tissue pathogen load observed at 2dpi, in addition 

to previous reports asserting DC-carriage as the most important mechanism of 

Salmonella dissemination from gut to MLN [9,35,38], cooperate with this 

hypothesis. 

 Different methods were employed in this work to assure the presence of 

Salmonella in the tissue and elucidate its influence in immune response. Results 

revealed that the Salmonella burden in the tissue fluctuated during infection 

depending on host immune response. A coincident up-regulation of pro-

inflammatory mediators and infiltration of phagocytes at 2 dpi reduced 

substantially the pathogen burden in MLN at 6 dpi. In spite of this, isolation of S. 

typhimurium from samples of pigs belonging to 6 dpi group revealed that the 

pathogen maintained itself in MLN. These findings are in agreement with 

published observations demonstrating that, after oral infection, S. typhimurium 

persists in myeloid cells in the MLN, despite host immune response [52]. 

 In summary, our results sustain MLN as a vital barrier preventing systemic 

dissemination of S. typhimurium and controlling infection in pigs. According with 

our previously published proteomic data [53], the presence of Salmonella in 

these organs triggered the induction of innate immune response, marked by a 

substantial infiltration of phagocytes and up-regulation of pro-inflammatory 

genes. Such response resulted in a relevant decrease in pathogen burden, but 

host mechanisms were not able to eliminate S. typhimurium from tissue 

completely. Although porcine salmonellosis by S. typhimurium result in milder 

disease compared to mice, our results also lead us to infer that, in swine 

infections, S. typhimurium might interferes with the DC-T-cells interaction. This 
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strategy could be related to the maintenance of infected animals as bacterial 

carriers. 
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Abstract 

In this study we employed for the first time an in vivo approach coupled toDIGE-

based proteomics to explore the response of porcine mesenteric lymph nodes 

(MLN) to Salmonella typhimurium infection. MLN samples were collected from 

four control and twelve infected pigs (at 1, 2 and 6 days post infection) for 

histological analysis, protein and RNA purification. Afterwards, expressed 

proteins were screened by differential in gel analysis and data were analyzed by 

bioinformatic tools to generate interaction networks, and identify enriched 

signaling pathways and biological annotations. S. typhimurium labeling in tissue 

and phagocyte infiltration were analyzed by immunohistochemistry and RNA was 

employed to determine the relative expression of immune-related genes by 

quantitative RNA analysis. The proteome response of porcine MLN to infection 

was associated to the induction of processes such as phagocyte infiltration, 

cytoskeleton remodeling and pyroptosis. Moreover, our results suggest that S. 

typhimurium antigens are cross-presented via MHC-I in a proteasome-dependent 

manner in porcine MLN. Since pathogen burden in tissue was noticeably reduced 

at the end of the time course, we infer that host innate and adaptive immunity 

act in association in MLN to control S. typhimurium dissemination in swine 

infections. 

Keywords: Pig, Salmonella typhimurium, Mesenteric lymph nodes,  DIGE, 

Pyroptosis, Cross-presentation 
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3.2.1 Introduction 

 European pig herd is acknowledged as the second largest in the world, 

taking charge of the production of the most consumed meat in Europe [1]. 

Among the wide range of hazards transmitted to humans by the consumption of 

pork or pork products, Salmonella is considered a major health threat worldwide 

[2,3]. According to the European Food Safety Authority (EFSA), Salmonella is the 

most frequently reported cause of food-borne outbreaks in the European Union 

(EU) [4]. Besides, it is supposed that approximately 30% of the human 

salmonellosis cases are caused by Salmonella enterica serovar Typhimurium 

(herein, S. typhimurium) from pork or pork products [2]. In spite of extensive 

contributions exploring the murine salmonellosis, the pathogenesis of pig 

infections with broad host range serotypes of Salmonella was largely neglected 

until recently [5]. Pigs are typically asymptomatic carriers of S. typhimurium and 

this commensal-like state establishes a significant reservoir for Salmonella 

contamination of food during harvest and processing [6]. Although the 

persistence of Salmonella in gut-associated lymph nodes of infected pigs has 

been previously reported, the extraintestinal part of a S. typhimurium infection in 

swine is not well-documented [5]. A recent report demonstrated that the 

prevalence of Salmonella in the lymph nodes of slaughter pigs ranged from 0%to 

39.6% in EU, being infected pigs the dominant route of transmission in countries 

with high Salmonella prevalence [4]. Therefore, a thorough knowledge of how S. 

typhimurium interacts with the porcine lymphoid organs and consequently 

maintains itself in infected hosts consists in an essential step for the development 

of efficient control measures aiming to protect our food supply in the farm-fork 

process. Infection induces changes in mRNA and protein expression profiles of 

host cells. Basing on this, comparative proteome analyses are often used to 
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generate more detailed understanding of molecular mechanisms behind diseases 

[7]. In fact, in vivo models combined with proteomic technological advances 

represent unprecedented means of characterizing host–pathogen interactions 

[8]. This approach enables a systematic identification and classification of host 

proteins involved in infection, providing new targets for disease prevention and 

treatment strategies [9]. For these reasons, in this study we employed a model of 

in vivo experimental infection followed by DIGE proteomics and bioinformatic 

data analysis to elucidate the molecular mechanisms undergone by swine porcine 

mesenteric lymph nodes (MLN) upon S. typhimurium infection. 

3.2.2 Material and methods 

3.2.2.1. In vivo Salmonella infection and tissue sampling 

 The experimental infection design was described elsewhere [10]. Briefly, 

sixteen weaned piglets of approximately four weeks of age and fecal-negative for 

Salmonella were randomly allocated to control (4 piglets) or infected groups (12 

piglets). Control (0 day post-infection — dpi) pigs were necropsied 2 h before the 

experimental infection and those ones belonging to the infected groups were 

orally challenged with 108 cfu of S. typhimurium phagetype DT104. Afterwards, 

infected pigs were randomly sampled and necropsied at 1, 2 and 6 dpi (four 

animals at each time point). Finally, MLN from all experimental animals were 

collected after necropsies and immediately frozen in liquid nitrogen for protein 

isolation or fixed in 10% neutral buffered formalin for histological processing. All 

procedures involving animals were performed in accordance with the European 

regulations regarding the protection of animals used for experimental and other 

scientific purposes. Piglets were housed in experimental isolation facilities of the 

University of León (Spain). Animal care and procedures were in accordance with 
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the guidelines of the Good Experimental Practices (GEP), under the supervision of 

the Ethical and Animal Welfare Committee of the University of León (Spain). 

3.2.2.2. Protein extraction and labeling 

 Samples were homogenized on ice in a proportion of 1.5 mL of buffer per 

100 mg of tissue using a glass tissue-lyser. Lysis buffer was composed of 7 M 

urea, 2 M thiourea, 4% w/v CHAPS, 0.5 mM PMSF and protease inhibitor cocktail 

(Roche, Basel, Switzerland). After sonication (3×20 s pulses on ice, with cooling 

intervals of 2 min in between) and centrifugation (14,000 g for 10 min, at 4 °C), 

supernatants were precipitated with 2D-Clean-Up Kit (GE Healthcare, 

Buckinghamshire, UK) and resuspended in 100 μL of DIGE buffer (10mMTris, 7 

Murea, 2 M thiourea, 2% w/v CHAPS). Subsequently, protein concentration was 

determined using Bradford Protein Assay (Bio-Rad, Hercules, CA, USA). CyDye 

labeling was performed following the manufacturer's instructions (GE 

Healthcare). Briefly, 50 μg of protein per sample was minimally labeled with 400 

pmol of Cy3 or Cy5 fluorochromes (dissolved in 99.8% DMF) for 30min on ice in 

the dark. Then, reactions were quenched with lysine (10mM/50 μg of protein). 

An internal standard, which was included in all DIGE gels, was prepared by 

pooling equal amounts of protein from each biological sample and labelling with 

Cy2 dye in the same conditions of separate samples.  

3.2.2.3. DIGE 

 Sixteen individual samples were randomly distributed across eight DIGE 

gels. To produce unbiased results and minimize system variation, half of samples 

from each time point were labeled with Cy5 and the remaining ones with Cy3 (for 

details, see Supplementary data file 1). For each gel, the same amount of internal 

standard, Cy3 and Cy5 labeled samples (50 μg each) was pooled and diluted with 
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an equivalent volume of rehydration buffer (7 M urea, 2 M thiourea, 4% w/v 

CHAPS, 100mMDTT and 2% pharmalytes, pH 3–11). Afterwards, pools were 

loaded into 24 cm 3–11 non-linear pH range IPG strips (GE Healthcare) by cup 

loading. Strips were previously hydrated for 8 h with 7 M urea, 2 M thiourea, 4% 

w/v CHAPS, 2% pharmalytes 3–11, DeStreak 100mM (GE Healthcare) and blue 

bromophenol traces. IEF was performed with an IPGphor II unit (GE Healthcare) 

at 20 °C. Before second dimension, stripswere equilibrated first for 12 min in 

reducing solution (6M urea, 100mM Tris–HCl pH 8.0, 30% v/v glycerol, 2% w/v 

SDS and 2% w/v DTT) and secondly for 5min in alkylating solution (6M urea, 

100mM Tris–HCl pH 8.0, 30% v/v glycerol, 2% w/v SDS and 2.5% w/v 

iodoacetamide). IPG strips were subsequently loaded onto homogeneous 12% T, 

2.6% C (piperazine diacrylamide) polyacrylamide gels and proteins were 

separated by electrophoresis at 20 °C, 15W/gel, using Ettan-DALTsix 

electrophoresis unit (GE Healthcare).  

3.2.2.4. Image acquisition and DIGE analysis 

 Proteins were visualized using a Typhoon 9400 scanner (GE Healthcare) 

with CyDye filters. For the Cy3, Cy5 and Cy2 image acquisition, the 532 nm/580 

nm, 633 nm/670 nm and 488 nm/520 nm excitation/emission wavelengths were 

used, respectively, and 100 μm as pixel size. Image cropping and filtering were 

carried out with Image Quant v.5.1 software (GE Healthcare). Analyses for 

detection of different abundance between spots from different replicates were 

performed with the DIA (differential in gel analysis) module of the DeCyder 6.5 

package (GE Healthcare). Inter-gel variability was corrected by matching and 

normalization of the internal standard spot maps using the Biological Variance 

Analysis (BVA) module. The internal standard image gel with the greatest number 

of spots was used as a master gel. BVA module was also employed for 
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comparative cross-gel statistical analyses, basing on spot normalized volume ratio 

(Cy3:Cy2 and Cy5:Cy2). Variation in abundance among all experimental 

conditions was accessed by One-way ANOVA. For paired comparisons, 

independent Student's t-test was carried out. Spots present in at least 85% of 

gels and exhibiting changes in abundancewith a p-value less than 0.05 were 

considered as differentially abundant spots. 

3.2.2.5. Mass spectrometry and protein identification 

 Differentially abundant spots were excised from gels for subsequent in-

gel reduction, alkylation and digestion with trypsin [11]. Briefly, spots were 

washed twice with water, shrunk for 15min with 100% acetonitrile and dried in a 

Savant SpeedVac for 30min. Samples were then reduced with 10mM DTT in 

25mM ammonium bicarbonate (56 °C, 30min) and alkylated with 55mM 

iodoacetamide in 25mM ammonium bicarbonate for 15 min in the dark. Finally, 

samples were digested overnight with 12.5 ng/μL sequencing-grade trypsin 

(Roche) in 25mMammoniumbicarbonate (pH8.5) at 37 °C. After digestion, the 

supernatant was collected, and 1 μL was spotted onto a MALDI target plate and 

allowed to air-dry at room temperature. Matrix (0.4 μL of a 3mg/mL) solution of 

α-cyano-4-hydroxy-cinnamic acid (CHCA; Sigma-Aldrich, St. Louis, USA) in 

50%acetonitrilewas added to the dried peptide digest spots and allowed again to 

air-dry at room temperature. MALDI-TOF MS analysis was performed in a 4800 

Proteomics Analyzer MALDITOF/TOF mass spectrometer (Applied Biosystems, 

Framingham, MA, USA) operated in positive reflector mode, with an accelerating 

voltage of 20,000 V. All mass spectra were calibrated internally using peptides 

from the autodigestion of trypsin. MALDI-TOF MS analysis produced peptide 

mass fingerprints and the peptides observed were collected and represented as a 

list of monoisotopic molecular weights with an S/N greater than 15. The suitable 



 Experimental study 2 – Martins et al., J Proteomics 75 (2012) 4447-4470 

76 

precursors for MS/MS sequencing analyses were selected and fragmentation was 

carried out using the CID on (atmospheric gas was used) 1 KV ion reflector mode 

and precursor mass Windows±5 Da. The plate model and default calibration were 

optimized for the MS/MS spectra processing. For protein identification, the 

UniProtKB/Swiss-Prot Data Base was searched in batch mode using GPS Explorer 

v3.6 software (Applied Biosystems) with a licensed version 2.1 of MASCOT. 

Search parameters were: carbamidomethyl cystein as fixed modification, 

methionine oxidation as variable modification, peptide mass tolerance 50–100 

ppm, peptide charge state +1, one missed trypsin cleavage site and MS/MS 

fragments tolerance 0.3 Da. The parameters for the combined search (peptide 

mass fingerprint and MS/MS spectra) were the same described above. In all 

protein identification, the probability scores were greater than the score fixed by 

MASCOT as significant with a p-value less than 0.05.  

3.2.2.6. Systems biology analysis 

 Protein data sets were uploaded into ArrayUnlock (AU, Integromics, 

Granada, Spain) and Ingenuity Pathway Analysis (IPA, Ingenuity Systems, 

www.ingenuity.com) for bioinformatic analysis. The AU “Biological Enrichment” 

tool was used to find biological annotations associated to the list of differently 

abundant proteins. To this end, AU applies a statistical test based on the 

hypergeometric distribution to compute p-values and the false discovery ratio 

(FDR) of Benjamini and Hochberg to correct them. GO terms and KEGG pathways 

were chosen as annotations to be evaluated in the analysis (refer to AU manual 

for detailed information: http://www.integromics.com). Protein interaction 

networks were automatically generated, ranked by score and depicted on IPA as 

follows: each node in the network diagram represented a protein and its 

relationship with other molecules was represented by a line (solid and dotted 
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lines represent direct and indirect association respectively). Nodes with a colored 

background were input proteins detected in this study while non-colored nodes 

were proteins inserted by IPA based upon the Ingenuity Knowledge Base to 

produce a highly connected network. Fisher's exact test was used to calculate a 

p-value determining the probability that each biological function assigned to the 

data set was due to change alone. Score estimated the probability that a 

collection of proteins equal to or greater than the number in a network could be 

achieved by chance alone. Scores of 3 or higher were considered to have a 99.9% 

confidence of not being generated by random chance alone. IPA Knowledge Base 

was used as a reference set for statistical analysis of enriched 

functions/pathways.  

3.2.2.7. Western blot analysis 

 Equivalent amounts of total protein (30 μg) from control and infected 

animals were electrophoretically fractionated in 12% (w/v) SDS-PAGE gels and 

transferred onto a PVDF membrane (Millipore, Bedford, MA, USA). After blockage 

with 5% skimmed milk in TBS-T (10mMTris pH 7.4, 150mMNaCl, 0.05%Tween-20) 

for 1 h at room temperature, membrane was incubated overnight at 4 °C with 

some of the following antibodies: antivimentin, clone V9 monoclonal antibody 

(Chemicon/Millipore, Billerica,MA, USA); rabbit polyclonal to FKBP52 (ab97306, 

Abcam, Cambridge, UK); anti-14-3-3 β (K-19) rabbit polyclonal antibody (Santa 

Cruz Biotechnologies, Santa Cruz, CA, USA) and anti-L plastin polyclonal antibody 

(kindly gifted by Dr. Francisco Rivero from University of Hull, UK). Secondary 

peroxidase-linked antirabbit or anti-mouse antibodies were used to generate 

immunocomplexes that were visualized with an enhanced chemiluminescence 

reagent (Chemiluminescent HRP substrate, Millipore). Membranes were scanned 

in a FLA-5100 imager (Fujifilm, Tokyo, Japan) and signal intensity was determined 
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using Multigauge software (Fujifilm, Tokyo, Japan). Student's t test was 

conducted between control and infected groups using SPSS 15.0 for Windows 

(SPSS Inc, Chicago, IL, USA). A p-value below 0.05 was considered statistically 

significant. To confirm equal sample loading, allmembranes were reblotted with 

anti-GAPDH monoclonal antibody (GenScript, Picastaway, NJ, USA).  

3.2.2.8. Histological analysis 

 Paraffin sections (5 μm) of formalin fixed sampleswere routinely 

processed and stained with hematoxylin and eosin (H&E). For 

immunohistochemistry, heat-mediated antigen retrieval in 0.01M citric acid and 

labeling were performed as described elsewhere [12], employing the anti-

vimentin monoclonal antibody (Chemicon/Millipore), a monoclonal antibody 

specific for porcine macrophages (clone 4E9/11) [13] and a rabbit antiserum 

against the somatic antigen of S. typhimurium.  

3.3.2.9. Real-time quantitative PCR 

 Real-time quantitative PCR (qPCR) technology was used to determine the 

relative expression of the genes coding for CASP1, IL1β, CXCL2, CXCL8 and IFNγ. 

RNA extractions, cDNA synthesis and qPCR assays were carried out according to 

Collado-Romero et al. [10]. Primer pairs used for amplifications can be found as 

supporting information (Supplementary data file 2). The relative gene expression 

was assessed by the 2−ΔΔCq method [14] using cyclophilin-A and beta-actin as 

reference genes [15]. Afterwards, fold change values were standardized as 

proposed by Willems et al. [16]. Fold changes of 1 denoted no change in gene 

expression. Values lower than 1 and higher than 1 denoted down and up-

regulation respectively. Standardized data were analyzed by Kruskal–Wallis and 

Mann–Whitney tests using the software SPSS 15.0 for Windows (SPSS Inc). 
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3.2.3 Results 

3.2.3.1. Experimental infection and histological analysis 

 Clinical signs characterized as fever, lethargy, weight loss and diarrhea 

were observed in infected pigs. Although symptoms peaked at 2 dpi, a clinical 

improvement of disease was noticed along the time of infection, since animals 

showed normal feces and corporal temperature at 6 dpi. Lymphadenitis marked 

by a strong infiltration of neutrophils and macrophages was observed in infected 

animals (Fig. 1A, B). Besides, immunohistochemistry assays confirmed the 

presence of S. typhimurium in MLN after infection. In the same way of the clinical 

profile observed, Salmonella was more evident at 2 dpi and poorly detected at 6 

dpi (Fig. 1C–F). Labeling of S. typhimurium antigens was observed in the 

cytoplasm of mononuclear cells and neutrophils located mainly in the diffuse 

lymphatic tissue around trabeculae. 

3.2.3.2. DIGE analysis and identification of differently abundant proteins 

 DIGE approach was employed to detect changes in the proteome of 

porcine MLN after oral infection with S. typhimurium. Differential in gel analysis 

uncovered 54 spots exhibiting significant abundance changes as a consequence 

of the bacterial challenge (Fig. 2A). Paired analyses between infected and control 

groups detected 16, 43 and 16 differently changed spots at 1, 2 and 6 dpi, 

respectively. Furthermore, a predominance of spots that were significantly more 

abundant in relation to controls was observed in all infected groups (Fig. 2B). 

Among the screened spots, 48 could be identified and corresponded to 38 unique 

proteins (Table 1, see Additional information). In some cases multiple spots were 

identified as the same protein, thus indicating the occurrence of post-

translational modifications or different isoforms.  
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Figure 1 – Histological analysis of porcine mesenteric lymph nodes (MLN) upon Salmonella 
typhimurium infection. (A) H&E staining demonstrates an evident phagocyte infiltration around 
trabeculae at 2 days post infection (dpi). (B) Infiltration of macrophages after infection was 
also observed by immunohistochemistry. (C–F) S. typhimurium labeling at 0 (C), 1(D), 2 (E) and 
6 (F) dpi. Labeling was more observed at 2 dpi and poorly detected at 6 dpi. 
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 As shown in Fig. 2C, by comparing data from each of the infected groups, 

we detected only seven proteins exhibiting significant changes along the whole 

time course. These are actin (ACTB), growth factor receptor-bound protein 2 

(GRB2), BTB/POZ domain-containing protein KCTD12 (KCTD12), protein-

Lisoaspartate (D-aspartate) O-methyltransferase (PCMT1), PDZ and LIM domain 

protein 1 (PDLIM1), tubulin gamma 1 (TUBG1) and vimentin (VIM).  

 

 

 

 

 

 

Figure. 2 – DIGE analysis of mesenteric lymph node proteins from controls and Salmonella 
typhimurium infected pigs. (A) Representative DIGE gel. Spots showing significant changes in 
abundance are indicated by numbers. (B) Bars demonstrate the number of spots exhibiting 
significant increase or decrease of abundance at 1, 2 and 6 days post-infection (dpi). (C) Venn 
diagram depicts the number of differently abundant proteins at each time point (1, 2 or 6 dpi) 
and commonly identified along the whole time course. 



 

 

Table 1 - List of differently expressed protein in porcine MLN after oral infection with S. typhimurium. 

1 vs 0 2 vs 0 6 vs 0 Spot 
no. 

Mass pI Score 
Sequence 
coverage 

(%) 

Protein 
ID 

Name Gene 
p-value Ratio p-value Ratio p-value Ratio 

ANOVA 

1491 27899 4.73 447 53 P63104 14-3-3 protein zeta/delta YWHAZ 0,16 -1,03 0,025 -1,18 0,01 -1,08 0,013 

438 72402 5.07 278 11 P11021 78 kDa glucose-regulated protein HSPA5 0,99 -1 0,046 1,3 0,91 1,01 0,049 

439 72402 5.07 337 31 P11021 78 kDa glucose-regulated protein HSPA5 0,77 1,02 0,058 1,22 0,56 -1,07 0,044 

437 72402 5.07 367 14 P11021 78 kDa glucose-regulated protein HSPA5 0,018 -1,25 0,32 -1,08 0,35 1,07 0,0033 

1001 42052 5.29 410 26 Q6QAQ1 Actin, cytoplasmic 1 ACTB 0,32 -1,05 0,075 -1,08 0,023 -1,16 0,04 

1014 42052 5.29 442 45 Q6QAQ1 Actin, cytoplasmic 1 ACTB 0,74 -1,01 0,0013 -1,13 0,1 -1,07 0,024 

1165 42052 5.29 220 17 Q6QAQ1 Actin, cytoplasmic 1 ACTB 0,039 -1,3 0,046 -1,3 0,54 -1,08 0,021 

879 47797 5.61 335 41 P61158 Actin-related protein 3 ACTR3 0,83 1,01 0,043 -1,08 0,81 -1,01 0,024 

1864 57341 6.43 242 17 Q2XQV4 
Aldehyde dehydrogenase, 
mitochondrial 

ALDH2 0,24 1,09 0,0012 1,59 0,22 1,15 0,0016 

1180 39020 6.43 224 23 P19619 Annexin A1 ANXA1 0,095 1,85 0,00016 2,86 0,59 1,15 0,0025 

1158 39020 6.43 427 48 P19619 Annexin A1 ANXA1 0,058 2,08 
5,40E-

06 
2,84 0,67 1,14 0,002 

1581 30307 5.48 75 23 P18648 Apolipoprotein A-I APOA1 0,74 1,04 0,012 -1,4 0,12 -1,21 0,0074 

1689 22017 5.32 63 5 Q8HXK9 
Apoptosis-associated speck-like 
protein containing a CARD 

PYCARD 0,022 -1,35 0,71 -1,03 0,48 -1,06 0,034 

1275 35964 5.51 101 23 Q96CX2 
BTB/POZ domain-containing 
protein KCTD12 

KCTD12 0,00092 -1,3 0,0016 -1,34 0,093 -1,28 0,031 

               



 

 

Table 1 – Continued 

1 vs 0 2 vs 0 6 vs 0 Spot 
no. 

Mass pI Score 
Sequence 
coverage 

(%) 

Protein 
ID 

Name Gene 
p-value Ratio p-value Ratio p-value Ratio 

ANOVA 

1279 35964 5.51 51 4 Q96CX2 
BTB/POZ domain-containing 
protein KCTD12 

KCTD12 0,015 -1,24 0,014 -1,27 0,013 -1,4 0,0064 

256 92698 4.75 98 10 Q29092 Endoplasmin HSP90B1 1 1 0,0094 1,27 0,19 1,13 0,03 

867 47096 6.30 303 46 A6M931 Eukaryotic initiation factor 4A-III EIF4A3 0,96 -1 0,35 -1,03 0,065 -1,08 0,041 

1487 25261 7.82 83 32 Q1JPH6 
Eukaryotic translation initiation 
factor 4H 

EIF4H 0,1 1,15 0,0063 1,39 0,14 1,13 0,0032 

1053 39851 8.30 91 12 P04075 Fructose-bisphosphate aldolase A ALDOA 0,13 -1,05 0,01 1,14 0,15 1,11 0,0072 

1587 25304 5.89 390 39 P62993 
Growth factor receptor-bound 
protein 2 

GRB2 0,041 1,15 0,016 1,28 0,043 1,11 0,022 

1575 24579 7.01 177 17 Q3T054 GTP-binding nuclear protein Ran RAN 0,63 -1,08 0,023 1,65 0,39 1,26 0,039 

1303 38151 5.60 298 25 P62871 
Guanine nucleotide-binding 
protein G(I)/G(S)/G(T) subunit 
beta-1 

GNB1 0,5 1,02 0,075 -1,09 0,82 -1,01 0,049 

491 70340 5.60 175 11 Q6S4N2 Heat shock 70 kDa protein 1B HSPA1B 0,96 1,01 0,012 1,61 0,4 -1,13 0,011 

484 71082 5.37 548 45 P11142 Heat shock cognate 71 kDa protein HSPA8 0,016 1,14 0,009 1,28 0,12 1,11 0,015 

502 71082 5.37 471 40 P11142 Heat shock cognate 71 kDa protein HSPA8 0,27 1,1 0,026 1,28 0,62 1,04 0,04 

315 85121 4.93 230 20 O02705 Heat shock protein HSP 90-alpha HSP90AA1 0,29 1,12 0,019 1,34 0,036 1,17 0,036 

               



 

 

Table 1 – Continued 

1 vs 0 2 vs 0 6 vs 0 Spot 
no. 

Mass pI Score 
Sequence 
coverage 

(%) 

Protein 
ID 

Name Gene 
p-value Ratio p-value Ratio p-value Ratio 

ANOVA 

317 85121 4.93 375 31 O02705 Heat shock protein HSP 90-alpha HSP90AA1 0,41 1,06 0,0078 1,41 0,33 1,12 0,015 

1852 16212 7.10 405 66 P02067 Hemoglobin subunit beta HBB 0,097 -1,46 0,0011 -2,02 0,033 -1,77 0,023 

465 69788 8.68 379 21 O60506 
Heterogeneous nuclear 
ribonucleoprotein Q 

SYNCRIP 0,72 1,05 0,01 2,23 0,53 1,08 0,0038 

1225 30097 6.61 97 12 Q14847 LIM and SH3 domain protein 1 LASP1 0,071 1,1 0,33 -1,06 0,022 1,2 0,0084 

1865 36716 6.16 141 7 P11708 
Malate dehydrogenase, 
cytoplasmic 

MDH1 0,27 -1,05 0,021 -1,15 0,71 -1,02 0,013 

1178 36314 6.76 112 14 Q5E9E1 PDZ and LIM domain protein 1 PDLIM1 0,022 1,34 0,00065 1,6 0,047 1,2 0,00089 

1105 41137 6.77 57 2 Q08752 
Peptidyl-prolyl cis-trans isomerase 
D 

PPID 0,024 1,22 0,0034 1,41 0,058 1,12 0,0017 

718 51839 5.31 147 17 Q9TRY0 
Peptidyl-prolyl cis-trans isomerase 
FKBP4 

FKBP4 0,21 1,15 0,03 1,32 0,068 1,23 0,019 

541 70815 5.20 388 29 P13796 Plastin-2 LCP1 0,015 1,13 0,19 -1,08 0,34 1,08 0,043 

1315 29092 4.57 185 30 P12004 Proliferating cell nuclear antigen PCNA 0,16 1,1 0,0036 -1,29 0,61 -1,04 0,015 

1682 11653 9.10 193 32 Q29576 
Proteasome subunit beta type-8 
(Fragment) 

PSMB8 0,91 1,02 0,00073 1,71 0,023 1,49 0,0014 



 

 

               
Table 1 – Continued 

1 vs 0 2 vs 0 6 vs 0 Spot 
no. 

Mass pI Score 
Sequence 
coverage 

(%) 

Protein 
ID 

Name Gene 
p-value Ratio p-value Ratio p-value Ratio 

ANOVA 

676 57146 5.98 134 12 P30101 Protein disulfide-isomerase A3 PDIA3 0,048 1,22 0,0067 1,61 0,072 1,65 0,04 

1583 24745 6.71 76 15 P80895 
Protein-L-isoaspartate(D-aspartate) 
O-methyltransferase 

PCMT1 0,0091 1,13 0,00015 1,4 0,01 1,29 0,00017 

1524 23464 5.12 227 28 P19803 Rho GDP-dissociation inhibitor 1 ARHGDIA 0,6 1,03 0,032 -1,14 0,56 -1,03 0,03 

1558 23464 5.12 184 36 P19803 Rho GDP-dissociation inhibitor 1 ARHGDIA 0,79 1,01 0,0023 -1,19 0,095 -1,12 0,0071 

1609 22836 5.09 191 23 Q9TU03 Rho GDP-dissociation inhibitor 2 ARHGDIB 0,7 1,04 0,035 -1,27 0,44 -1,07 0,037 

1751 17292 5.76 158 54 Q6DUB7 Stathmin STMN1 0,016 1,23 0,19 -1,1 0,3 1,14 0,013 

1172 37833 7.03 89 9 Q2TBL6 Transaldolase TALDO1 0,096 1,13 0,0066 1,33 0,048 1,21 0,0075 

760 50804 4.94 507 58 Q2XVP4 Tubulin alpha-1B chain TUBA1B 0,11 1,07 0,086 -1,1 0,93 -1 0,013 

840 51458 5.75 154 20 Q0VCD2 Tubulin gamma-1 chain TUBG1 0,00032 1,24 0,01 1,28 0,0017 1,28 0,004 

955 53757 5.06 136 20 P31000 Vimentin VIM 0,028 -2,1 0,007 -2,54 0,0062 -2,15 0,0017 

989 51874 4.94 68 13 P48670 Vimentin (Fragment) VIM 0,15 -1,39 0,048 -1,74 0,026 -1,67 0,025 

505 N/A N/A N/A N/A N/A N/A  0,25 -1,14 0,89 -1,02 0,036 -1,37 0,023 

1055 N/A N/A N/A N/A N/A N/A  0,81 -1,01 0,037 1,2 0,068 1,09 0,032 

1140 N/A N/A N/A N/A N/A N/A  0,041 1,23 0,023 1,34 0,065 1,3 0,033 

1289 N/A N/A N/A N/A N/A N/A  0,94 1 0,041 -1,25 0,097 -1,15 0,034 

1582 N/A N/A N/A N/A N/A N/A  0,59 1,06 0,01 1,56 0,32 1,16 0,012 

1863 N/A N/A N/A N/A N/A N/A  0,096 1,3 0,025 1,13 0,0038 1,41 0,031 
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3.2.3.3. Validation of selected proteins by Western blot and 

immunohistochemistry 

 To validate DIGE results, we performed Western blot analysis for four 

proteins: VIM, plastin-2 (LCP1), 14-3-3 (YWHAZ) and peptidyl–prolyl cis–trans 

isomerase FKBP4 (FKBP4). All of them showed the same abundance trends 

revealed by differential in gel analysis (Fig. 3B–I). Additionally, we also checked 

changes in abundance of VIM by immunohistochemistry assays (Fig. 3A). 

Consistent with DIGE, immunohistochemistry demonstrated that VIM was less 

abundant in infected animals when compared to controls. Besides difference in 

abundance, distribution of VIM in tissue was markedly different before and after 

infection. At 0 dpi, VIM was diffusely labeled in lymph nodes whereas at 2 dpi, 

staining was restricted to germinal centers and large irregularly-shaped 

mononuclear cells located near trabeculae.  

3.2.3.4. Quantification of immune-related genes by qPCR 

 In order to confirm the regulation of host immune response mechanisms 

upon infection with S. typhimurium, qPCR expression profiling was performed for 

some genes encoding innate/ inflammatory and T cell response mediators. In 

general, screened genes showed a similar expression trend, which was marked by 

up-regulation at 2 dpi and decrease of mRNA levels or absence of significant 

changes at 6 dpi (Fig. 4). 

3.2.3.5. Biological data interpretation 

 Bioinformatic tools were employed to biologically interpret protein list 

obtained from DIGE analysis, aiming to gain an insight into networks, biological 

processes, molecular functions and pathways associated with the proteome 
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response of porcine MLN to S. typhimurium. Three interaction networks were 

generated by IPA data analysis (Table 2) and the nature of relationships displayed 

Figure 3 – Data validation by Western blot and immunohistochemistry. (A) Immunohistochemistry shows a 
decrease of VIM abundance in MLN and labeling of large irregularly-shaped mononuclear cells located near 
trabeculae after infection. (B–I) Standard abundance by DIGE and Western blot analysis of validated proteins at 1, 
2 and 6 dpi. (B, C) VIM, (D, E) YWHAZ, (F, G) LCP1, (H, I) FKBP4. 



Experimental study 2 – Martins et al., J Proteomics 75 (2012) 4447-4470 

89 

by the molecules integrated in each network was accessed based on the scientific 

information contained in the Ingenuity Knowledge Criteria. The major network 

depicted the existence of 83 direct and 39 indirect relationships which integrated 

20 of the proteins differently altered after S. typhimurium infection (Fig. 5). 

Furthermore, “Posttranslational modification”, “Protein folding” and “Cellular 

assembly and organization” were identified as putative functions associated to 

the proteins included in this network.  Network 1 also demonstrated the central 

role of the heat shock proteins in the proteome response of porcine MLN to S. 

Figure 4 – Expression profiling of immune-related genes in mesenteric lymph nodes of pigs 
experimentally infected with Salmonella typhimurium by qPCR. Data are shown as the fold change in 
gene expression in infected pigs compared to controls Values lower than 1 and higher than 1 denote 
down and up-regulation respectively. The same letters above the bars indicate no significant 
differences (p<0.05). 
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typhimurium as well as the regulatory interactions of these proteins with NFκB 

and caspase. As other relevant results of network analysis, the following could be 

highlighted: the activation relationship of GRB2 and ALDH2 (aldehyde 

dehydrogenase) with p38 MAP kinase depicted in network 2 and the direct 

activation/inhibition relationship between IFNγ and PSMB8 (proteasome subunit 

beta type-8) shown in network 3 (Supplementary data file 1). 

Table 2 - Protein interaction networks associated to the response of porcine MLN 
to S. typhimurium infection. 

ID Score1 
Focus 

molecule2 
Molecules in the network3 Top Functions 

1 54 20 

14-3-3, ACTB, Actin, ACTR3, Alpha 
tubulin, ANXA1, ARHGDIA, ARHGDIB, 
Arp2/3, Caspase, Ck2, EIF4A3, F Actin, 

FKBP4, HBB, Hsp70, Hsp90, HSP, 
HSP90AA1, HSP90B1, HSPA5, HSPA8, 

HSPA1B, LASP1, LCP1, MHC Class I 
(complex), NFkB (complex), PDIA3, 

PYCARD, RNA polymerase II, STMN1, 
TUBA1B, TUBG1, Tubulin, YWHAZ 

Post-Translational 
Modification, Protein 

Folding, Cellular 
Assembly and 
Organization 

2 20 10 

Akt, ALDH2, ALDOA, Ap1, APOA1, 
CaMKII, ERK1/2, FAM59A, FSH, GNB1, 

GRB2, Histone h3, Histone h4, IG9, 
Insulin, Jnk, LDL, Lh, LOC81691, 

MAP2K1/2, Mapk, MIR155HG, Nfat 
(family), P38 MAPK, PCMT1, PCNA, 
PDGF BB, PDLIM1, PI3K (complex), 
Pkc(s), PLC gamma, Rac, SYNCRIP, 

Trypsin, VIM 

Cellular Movement, 
Cell Cycle, Lipid 

Metabolism 

3 14 7 

BPNT1, CDC37L1, CEACAM3, CHI3L2, 
CLEC5A, DEFB104A/DEFB104B, 

DNAJB7, EIF4H, FKBP6, Gbp4, GBP6, 
H60a, HSP90AB1, IFNG, IKBKE, 

KCTD12, KMO, MDH1, MLEC, Myhs, 
NDRG4, PGRMC2, PPID, PSMB8, 
Raet1b, RAN, SLC28A1, SLC5A2, 

TALDO1, Taok2 (mouse), TGFB1, TNF, 
TRAF6, TREM3, TTC28 

Cell Death, Cell-To-Cell 
Signaling and 
Interaction, 

Inflammatory 
Response 

1 Calculated with Right-tailed Fisher’s Test; 2 Number of imput molecules in the network; 3 Input 
molecules are highlighted in bold. 
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Gene ontology (GO) annotations associated to differently abundant proteins 

were found out by the AU “Biological Enrichment” tool. “Cell motility” and 

“Antiapoptosis” were the top enriched biological processes identified 

(Supplementary data file 4). In addition, “Protein folding” and “Rho GDP-

dissociation inhibitor activity” were uncovered as the molecular functions more 

related to the differently abundant proteins (Supplementary data file 5). Pathway 

analysis was based on the Ingenuity Canonical Pathways Libraries and KEGG 

Figure  5 – Gene network analysis of porcine MLN after S. typhimurium infection. “Post-
translational modification, Protein folding, Cellular assembly and organization” gene networks. 
Activation relationships are highlighted in yellow. Blue lines represent interactions entailing heat 
shock proteins. Light blue lines represent interactions between heat shock proteins and other 
molecules. 
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database. The top canonical and KEGG pathways significantly altered after the 

bacterial challenge are described in Table 3. Corroborating data from network 

analysis, heat shock proteins were observed to take part in different molecular 

routes. We also detected a similar tendency in DIGE analysis for differently 

abundant proteins associated to the “Antigen processing and presentation 

pathway” (Fig. 6A). Interestingly, all of them exhibited an increase of abundance 

at 2 dpi (Fig. 6B). 

Table 3 - Top four enriched canonical and Kegg pathways in porcine MLN after S. 
typhimurium infection. 

Pathways p-value1 Ratio2 Input molecules 

Kegg Pathways    

Antigen processing and presentation 1.4E-06 5.7E-02 
PDIA3, HSP90AA1, HSPA8, 
HSPA5, HSPA1B 

Pathogenic Escherichia coli infection 2.7E-04 6.1E-02 TUBA1B, ACTB, YWHAZ 

MAPK signaling pathway 3.3E-04 1.8E-02 
HSPA1B, HSPA5, HSPA8, 
GRB2, STMN1 

Shigellosis 4E-04 6.1E-02 TUBA1B, ACTB, YWHAZ 

Ingenuity Canonical Pathways 
 

 
 

Glucocorticoid Receptor Signaling 5.9E-08 2.7E-02 
HSPA8, HSP90B1, HSPA1B, 
GRB2, ANXA1, FKBP4, 
HSP90AA1, HSPA5 

14-3-3-mediated Signaling 1.4E-07 5E-02 
GRB2, PDIA3, TUBG1, 
YWHAZ, VIM, TUBA1B 

Aldosterone Signaling in Epithelial Cells 9.8E-07 3.5E-02 
HSPA8, HSP90B1, HSPA1B, 
PDIA3, HSP90AA1, HSPA5 

Protein Ubiquitination Pathway 1.5E-05 2.2E-02 
HSPA8, HSP90B1, HSPA1B, 
HSP90AA1, PSMB8, HSPA5 

1 Fisher’s exact test; 2 Ratio (number of input molecules in a given pathway, divided by total 
number of molecules that make up that pathway) 



 

 

 

 

 

 
Figure 6 – Antigen processing and presentation pathway. Differently abundant proteins associated to this pathway are highlighted in red (A) and 
their standard abundance after infection by DIGE is depicted in (B). Dotted line indicates a pathway detail from Ingenuity Pathway Analysis. The 
image was generated by Kegg pathways from the Kanehisa laboratories and is subject to their copyright conditions. 
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3.2.4. Discussion 

 Proteome approaches are being increasingly used in many different 

systems to investigate host–microbe interactions. In this context, in vivo models 

are crucial to reflect the multiple events undergone by host upon pathogen 

infection. Although the systemic pathology induced by S. typhimurium has been 

extensively studied using the mouse model [6], the complex molecular 

mechanisms underlying the intestinal infection caused by bacteria in food-

producing animals are still not fully understood [17]. To address this issue, in this 

work we employed for the first time an in vivo approach coupled to DIGE based 

proteomic analysis to detect changes in the porcine MLN proteome in response 

to S. typhimurium infection. 

 After bacteria challenge, the effectiveness of the experimental infection 

was confirmed by the observation of clinical signs of enteric disease in all infected 

animals. Distinct to mice, S. typhimurium generally causes little or no systemic 

involvement in pigs [17]. Nevertheless, in our in vivo model we observed in MLN 

the presence of the pathogen associated to the cytoplasm of infiltrated 

phagocytes, in concordance with previously reported evidences that, in mice, S. 

typhimurium is shuttled to MLN by infected phagocytes [18,19]. Since major 

protein changes were detected at 2 dpi, coinciding with a higher presence of S. 

typhimurium in infiltrated phagocytes, it could be inferred that proteome 

response of porcine MLN to the infection is strongly related to changes in tissue 

cellularity and pathogen burden. Consistent with this, we found that “Cell 

motility” was the most significantly enriched biological process after S. 

typhimurium infection (see Supplementary data file 4). 

 In general, our results indicated a modulation of diverse normal host 

functions upon S. typhimurium infection. This can be related with the complex 
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interplay between Salmonella and its host that involves the coordinated 

stimulation and downregulation of cell functions by type III secretion systems 1 

and 2 (T3SS1 and T3SS2) effectors for benefits of bacteria [20]. Firstly, bacterial 

internalization involves manipulation of the Rho family GTPases resulting in actin 

cytoskeleton rearrangements [21,22]. In our study, we observed that regulators 

of Rho protein  signaling such as GDP dissociation inhibitors (GDI)ARHGDIA (Rho 

GDI-1) and ARHGDIB (Rho GDI-2) were less abundant after Salmonella infection. 

Because GDI hinder the dissociation of guanosine diphosphate from Rho 

proteins,maintaining GTPases in an inactive form [23], our proteomic data 

suggest an increasing of GTPases activity in porcine infected MLN as a result of 

the repression of Rho GDI activity. Although T3SS effectors modulate host Rho 

GTPases activity for the benefit of the bacteria, mechanisms of host immune 

response, such as phagocytosis and chemotaxis, are driven by extensive local 

reorganization of the actin cytoskeleton dependent on Rho GTPase activity. 

Therefore, cytoskeletal changes undergone by MLN in response to infection 

reflect amix of outcomes induced by both Salmonella and host. Following actin 

polymerization by activation of the Rho GTPases, recovery of normal cellular 

architecture was observed once S. enterica has completely invaded target cells 

[24]. However, after bacterial uptake, Salmonella can initiate a second round of 

actin polymerization, resulting in formation of an F-actin coat around replicating 

intracellular bacteria [20]. In line with this, we observed changes in proteins 

involved in processes such as actin filament binding and bundle formation. Thus, 

PDLIM1, a kinase known for their critical role in regulating actin polymerization 

downstream of the Rho GTPase cascade [25], was more abundant at 1, 2 and 6 

dpi. On the other hand, ACTB exhibited a decrease of abundance along the whole 

time course. According to Galan and Zhou [22] the Salmonella effector SipA binds 

to actin promoting a significant reduction in the concentration of its monomeric 

conformation. In addition, SipA increases the stability of actin bundles by 
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modulating plastin actin-bundling activity [26]. Interestingly, we observed that L-

plastin was more abundant in the beginning of infection and this result could 

consist in another evidence of SipA activity in MLN. In the same way of ACTB, 

VIM, one of the constituents of cytoskeletal intermediate filaments (IF) network, 

exhibited a decrease of abundance after infection. Moreover, 

immunohistochemistry assays revealed that this protein was evidently 

accumulated in cells which morphology and localization in tissue were equivalent 

to Salmonella infected phagocytes. Protective IF cages similar to those composed 

by F-actin also coalesce around Salmonella-containing vacuoles [27]. Assembly of 

both proteins during Salmonella intracellular replication is reported to be 

interdependent and disruption of either leads to release of bacteria in the 

cytoplasm [28]. Moreover, annexin A1 (ANXA1), which was initially related to 

anti-inflammatory functions [29], appears to be involved in controlling 

association of F-actin with phagosomes thereby affecting phagosome formation. 

ANXA1 binds to, bundles and colocalizes with F-actin during phagocytic cup 

formation and on mature phagosomes [30]. Intriguingly, this protein exhibited 

the most prominent increase of abundance in the porcine MLN after infection. 

Thus, the uncovered reduction of monomeric forms of actin and vimentin as well 

as the augment of PDLIM1 and ANXA1 in MLN probably causes rearrangements in 

the cytoskeleton of infected cells that are necessary for phagosome formation 

and Salmonella replication. Triggering of GTPase activity in MLN was also 

disclosed by the abundance increase of GTP-binding nuclear protein Ran (RAN), 

found in this study. RAN is a major regulator of nucleocytoplasmic transport, 

controlling its rate and directionality by cycling between inactive (GDP-bound) 

and active (GTP-bound) conformations [31]. Recent studies assert that RAN is 

noticeably upregulated in fish after viral or bacterial infection [32] and its activity 

is associated to the enhancement of phagocytosis [31]. Evidences inmammals 

demonstrate that RAN is also involved in LPS endotoxin response [33] and 
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nuclear import of STAT3 [34]. The increase of RAN abundance observed in this 

study could consist in a GTPase response carried out by the host against S. 

typhimurium. However, the role of this protein in Salmonella infections has not 

been elucidated so far. 

 In addition to cytoskeleton rearrangements, S. typhimurium infection 

induced cell death mechanisms, which in combination to the inflammatory cell 

infiltration observed in our study, could point toward the occurrence of 

pyroptosis in porcine MLN. Pyroptosis is a CASP1 dependent inflammatory form 

of cell death induced by Salmonella and other intracellular microorganisms that is 

characterized by the release of potent mediators of inflammation such as IL1b 

and IL18 [35]. Although our proteomic study did not allow for an observation of 

the changes in CASP1, we do see it at mRNA level at 2 dpi accompanied by a high 

increase of IL1b gene expression (Fig. 4). In agreement with that finding, 

functional analysis of the proteomic results disclosed an enrichment of the 

mitogenactivated protein kinase (MAPK) signaling pathway upon infection (Table 

3), additionally verified bymRNA quantification of the downstream pro-

inflammatory chemokines CXCL2 and CXCL8, which were both up-regulated at 2 

dpi. These results represent a further indication of pyroptosis induction, since the 

production of pro-inflammatory cytokines is carried out via activation of MAPK 

and consequent regulation of the transcription factors NF-κB and AP1 [22,36]. 

 Although pyroptosis represents an important innate immune effector 

mechanism against intracellular bacteria, Salmonella has developed strategies to 

overcome it [37,38]. Apparently, this pathogen voids pyroptosis effectiveness by 

delaying its onset and infecting new macrophages after escaping from lysed cells 

[35]. However, released bacteria should be able to survive to neutrophil uptake 

and killing by reactive oxygen species, in order to re-infect cells and maintain 

their replicative cycle in tissue [38]. Intriguingly, our results indicate that 

Salmonella burden in MLN was reduced along infection. This is probably related 
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to the strong infiltration of phagocytic cells observed at 2 dpi that could be 

causing the substantial decrease of S. typhimurium labeling in tissue at 6 dpi. In 

addition, we observed an enrichment of the anti-apoptosis process after 

infection. Although the role of each protein associated to this mechanism is 

unknown for us, we speculate that apoptosis is avoided by swine, hampering cell-

to-cell spread of bacteria through subsequent rounds of macrophage infection. 

Therefore, our results could demonstrate that in spite of manipulating host 

machinery, S. typhimurium is not able to effectively evade the porcine MLN 

response. Nevertheless, the presence of live S. typhimurium in tissue at 6 dpi 

(datanot shown) reinforces the hypothesis that this pathogen develops some 

mechanism to maintain itself in MLN at low levels. Further research will be 

necessary to bring significant insight into how and how long S. typhimurium 

persists in porcine MLN after infection.  

 Changes in proteins related to the modulation of host second line of 

defense were also identified after infection. Thus, we uncovered an increase in 

abundance of proteins involved in different steps of the antigen processing and 

presenting pathway (Table 3). Strikingly, these proteins exhibited similar 

quantitative changes, being all of them more abundant at 2 dpi, when S. 

typhimurium and proteome changes were more evident. Additionally, activation 

of T-cells was also deduced by the increase in mRNA levels of IFNγ (see Fig. 4), a 

cytokine that promotes Th1 differentiation leading to cellular immunity. 

Therefore, our data suggest that the process of antigen presentation properly 

functions in porcine MLN after S. typhimurium infection. 

 It is known that antigenic peptides presented by MHC-I are produced 

through cytosolic degradation of intracellular proteins by proteasome [39]. 

Otherwise, presentation of exogenous antigens has been classically attributed to 

MHC class II [40]. Additionally, the term cross-presentation was introduced as an 

alternative mechanism to define a process in which antigens acquired from the 
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extracellular environment are present by antigen-presenting cells (APCs) to CD8+ 

T cells via their own MHC-I molecules [41]. Interestingly, this mechanism could 

explain the clear indications of adaptive immunity induction via MHC-I which is 

derived from the proteomic results obtained in our work. Since Salmonella is 

confined in host cell inside phagosomes, its antigens theoretically would be 

protected from cytosolic degradation by proteasome, unless the phagosome is a 

competent organelle for antigen cross-presentation as has been previously stated 

by Houde et al. [42]. In this alternative scenario, phagocytosed proteins reach 

cytosol by chaperone retrotranslocation mechanisms, subsequently degradated 

by proteasomes located in the cytoplasmic side of phagosomes and then, the 

generated peptides gain access to the phagosome lumen via TAP, bind MHC-I 

molecules and activate CD8+ T-cells [40,42]. Transcriptomic analysis carried out 

by us (Martins et al., unpublished data) highlighted the upregulation of TAP and 

MHC-I mRNA in MLN of S. typhimurium infected pigs. In the proteomic study 

present here, HSP90 and other three chaperones associated with degradation 

and retrotranslocation of proteins to cytosol (HSP70, BiP/HSPA5 and 

BRp57/PDIA) [43] were detected at higher levels in infected samples. Also, the 

proteasome subunit beta type-8 (PSMB8 or LMP7) was also found to be more 

abundant in MLN after infection. The hydrolyzing activities of proteasomes are 

conferred upon stimulation of cells with IFNγ [39]. This process results in the 

replacement of its 20S core subunits by LMP2 (iβ1), MECL1 (iβ2) and LMP7 (iβ5), 

constituting the so-called immunoproteasome [42]. In line with the direct 

activation/inhibition relationship between IFNγ and PSMB8 depicted in network 3 

(see Supplementary data file 3) and the previously referred reports [39,41], we 

found out that the highest levels of PSMB8 in tissue is coinciding with the 

increase of IFNγ mRNA at 2 dpi. Since proteasomal activity is dependent on the 

ubiquitination of its targets [41], the significant enrichment of the “Protein 

ubiquitination pathway” uncovered by IPA analysis gives an additional evidence 
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of the enhancement of protein degradation by immunoproteasome as a result of 

infection.  

 In conclusion, our results suggest that, in spite of modulating normal host 

functions and replicating intracellularly, S. typhimurium fails to effectively 

damper immune response elements during infections in pigs. The proteome 

response of porcine MLN to infection was associated to the induction of innate 

immunity processes such as phagocyte infiltration and pyroptosis. Moreover, we 

could infer that S. typhimurium antigens are cross-presented via MHC-I in a 

proteasome-dependent manner and this mechanism probably triggers an early 

cytotoxic response against bacteria. Although both innate and adaptive immune 

responses might control pathogen dissemination, further research will be 

necessary to elucidate the strategies exploited by S. typhimurium to establish the 

asymptomatic-carrier state in swine infections.  

 Supplementary material related to this article can be found online at 

doi:10.1016/j.jprot.2012.03.045. 
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Abstract 

In this study, we sought to elucidate the early mechanisms triggered in porcine 

mesenteric lymph-nodes (MLN) upon in vivo Salmonella Typhimurium infection. 

For this, a robust approach was employed to analyse host response and verify the 

expression of virulence genes by pathogen found in tissue. Salmonella 

Typhimurium strain used in this bacterial challenge was able to express the 

screened virulence effectors in MLN, suggesting that the development of a mild 

disease in infected swine is not attributed to an absence of virulence strategies 

triggering by pathogen. In fact, results indicate that despite its capacity of 

hampering immune response, a combination of host triggered innate immunity 

mechanisms and early T-cell cytotoxic response might overcome virulence 

strategies employed by pathogen. Clathrin-mediated endocytosis appears to take 

part in the pathogenesis of infection, but the role of this pathway in host and 

pathogen-mediated processes remains to be clarified. Furthermore, we infer that 

due to an inability of Salmonella Typhimurium to suppress flagellin and prgJ 

expression in porcine MLN, host is able to induce infected cell death by 

pyroptosis, protecting itself of pathogen spread beyond gut-associated lymph-

nodes. 

 

Keywords: Pig, Salmonella enterica serovar Typhimurium, mesenteric lymph 

nodes, immune response, in vivo pathogen gene expression. 
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3.3.1 Introduction 

 Infections by Salmonella are a major health problem in the developing 

and developed world. In the European Union, despite the current decreasing 

trend of human cases, Salmonella persists as the main cause of food-borne 

outbreaks [1]. Pork is considered to be a significant source of Salmonella to 

humans next to eggs and poultry meat [2]. In fact, according to the European 

food safety authority (EFSA), Salmonella enterica serovar Typhimurium (herein 

Salmonella Typhimurium) is the second serovar most frequently reported in 

human salmonellosis and infection by this pathogen is mostly associated with the 

consumption of contaminated pork [1].  

Since food industry and direct contact with infected animals represent 

the main sources of non-typhoid Salmonella [3], prevention of human disease 

depends significantly on controlling infection in livestock hosts [4]. Salmonella 

Typhimurium infected pigs generally carry this serotype asymptomatically in the 

tonsils, intestines and gut-associated lymphoid tissue, posing an important threat 

to animal and human health [5]. Epidemiological studies assert that Salmonella 

prevalence in slaughter swine lymph nodes varies widely at country level, ranging 

from 0 to 29% [2]. Although salmonellosis in pigs has been subject of research [5], 

a thorough knowledge of the pathogenesis of porcine infections with broadhost 

range Salmonella serotypes is still necessary and a better understanding of the 

biological processes that control host-pathogen interaction and Salmonella 

persistence in porcine lymphatic tissue could provide new targets for treatment 

and control of salmonellosis in this species. 

Combination of system-wide approaches and in vivo infection models is 

expected to generate precise and novel data to the study of porcine 

salmonellosis [6]. In fact, whole-genome expression analysis has been used to 
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identify genes and molecular pathways involved in the pig response to 

Salmonella infections [7, 8]. More recently, proteomic techniques were employed 

by us as a step towards a detailed understanding of the disease mechanisms [9, 

10]. Thus, the objective of the current study was to expand the available 

knowledge by investigating the early processes carried out in the mesenteric 

lymph-nodes (MLN) of pigs experimentally infected with Salmonella 

Typhimurium. To achieve that, host response was monitored by several 

approaches including microarray gene expression, bioinformatic data 

enrichment, western blot, quantitative real-time PCR, immunohistochemistry and 

confocal microscopy analysis. In addition, selective capture of transcribed 

sequences (SCOTS) technique [11] was performed to analyze the in vivo 

expression of some Salmonella Typhimurium genes in order to investigate 

important pathogenesis determinants on the pathogen side.  

3.3.2 Materials and methods 

3.3.2.1 Experimental infection and tissue sampling  

 Sixteen crossbred weaned piglets of approximately four weeks of age, 

serologically and fecal-negative for Salmonella were used in an experimental 

infection described elsewhere [12]. Briefly, twelve piglets were orally infected 

with 108 cfu of a Salmonella Typhimurium phagetype DT104 strain isolated from a 

naturally infected pig [12], whereas control group (4 animals) received sterile 

medium. Non-infected control pigs were necropsied prior to the experimental 

infection (0 day post-infection – dpi) and four randomly chosen infected piglets 

were necropsied at 1, 2 or 6 dpi. Samples of MLN were collected from all 

experimental animals and immediately frozen in liquid nitrogen for RNA and 

protein isolation or fixed in 10% neutral buffered formalin for histological 
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processing. All procedures involving animals were performed in accordance with 

the European regulations regarding the protection of animals used for 

experimental and other scientific purposes. Piglets were housed in experimental 

isolation facilities of the University of León (Spain). Animal care and procedures 

were in accordance with the guidelines of the Good Experimental Practices (GEP), 

under the supervision of the Ethical and Animal Welfare Committee of the 

University of León (Spain). 

3.3.2.2 RNA purification 

 After treatment with RNAlater-ICE (Ambion, Inc, Austin, TX, USA), MLN 

samples were soaked in RLT buffer (Qiagen, Valencia, CA, USA) and disrupted in a 

rotor-stator homogenizer. RNA was isolated by using the AllPrep 

DNA/RNA/Protein Mini Kit (Qiagen), digested with the RNase-Free DNase Set 

(Qiagen) according to manufacturer instructions and routinely precipitated with 

ethanol. RNA integrity was evaluated using the Experion RNA chips (Bio-Rad, 

Hercules, CA, USA) before being quantified using a ND-1000 spectrophotometer 

(Nanodrop Technologies, Wilminton, USA). 

3.3.2.3 Microarray analysis 

 Gene expression analysis was carried out using the GeneChip Porcine 

Genome Array by Affymetrix platform (Affymetrix Inc., Santa Clara, CA, USA) at 

the Genomics Unit of CABIMER (Andalusian Center for Molecular Biology and 

Regenerative Medicine, Seville, Spain). This chip contains 23,937 probe sets to 

interrogate 23,256 transcripts in pig, which represents 20,201 genes. The One-

Cycle Eukaryotic Target Labeling Assay was used to obtain biotinylated cRNA to 

be used in the subsequent chip hybridization according to manufacturer 

instructions (Expression Analysis Technical Manual, Affymetrix). The biotinylated 
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cRNA targets were then cleaned up, fragmented, and hybridized with the 

GeneChip Porcine Genome Array following Affymetrix recommended protocols. 

Chips were washed, stained with a GeneChip Fluidics Station 450 (Affymetrix) 

using the standard fluidics protocol and scanned with an Affymetrix GeneChip 

Scanner 3000 (Affymetrix). Probe signal intensities were captured and processed 

with the GeneChip Operating Software 1.4.0.036 (Affymetrix) and the resulting 

CEL files were reprocessed using robust multi-array average normalization (RMA) 

[13]. Because the aim of analysis was to detect changes in gene expression along 

the time-course, differentially expressed (DE) genes were accessed by the BATS 

(Bayesian Analysis of Time Series) software package [14], using default settings. 

Bayes Factor (BF) value of 0.05 was used as cutoff to rank significantly regulated 

transcripts. Since the Affymetrix Porcine GeneChip is not fully annotated in all the 

features, it was re-annotated with Blast2GO [15] with a minimum E-value of 10-10 

and a minimum similarity of 50%. 

3.3.2.4 Systems biology analysis 

 The list of genes that showed significant changes in expression was 

uploaded into Ingenuity Pathway Analysis (IPA, Ingenuity Systems, 

www.ingenuity.com) for bioinformatic analysis. Additionally, DAVID Bioinformatic 

Database [16] was used applying the default settings to refine some data from 

IPA analysis. Gene interaction networks were automatically generated, ranked by 

score and depicted on IPA as follows: each node in the network diagram 

represented a gene and its relationship with other molecules was represented by 

a line (solid and dotted lines represent direct and indirect association 

respectively). Nodes with a red background were input genes detected in this 

study while grey nodes were molecules inserted by IPA based upon the Ingenuity 

Knowledge Base to produce a highly connected network. Score estimated the 
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probability that a collection of genes equal to or greater than the number in a 

network could be achieved by chance alone. Scores of 3 or higher were 

considered to have a 99.9% confidence of not being generated by random chance 

alone. For statistical analysis of enriched functions/pathways, IPA Knowledge 

Base was used as a reference set and Fisher's exact test was employed to 

estimate the significance of association. P-values bellow 0.05 were considered 

statistically significant. For canonical pathways graphical representation, ratio 

indicated the percentage of genes taking part in a pathway that could be found in 

uploaded data set and –log(p-value) meant the level of confidence of association. 

Threshold line represented a p-value of 0.05.  

3.3.2.5 Relative gene expression analysis by qPCR 

 Real-time quantitative PCR (qPCR) assays were performed as previously 

described [12]. Fold change values were calculated by the 2−ΔΔCq method [17] 

using beta-actin as reference gene. Afterwards, data were standardized as 

proposed by Willems et al. [18] and analyzed by Kruskal–Wallis and Mann–

Whitney tests using the software SPSS 15.0 for Windows (SPSS Inc, Chicago, IL, 

USA). Fold changes of 1 denoted no change in gene expression. Values lower and 

higher than 1 denoted down and up-regulation respectively. To be represented in 

Table 1, fold change of down-regulated genes was calculated as -1/2−ΔΔCq. Primer 

pairs used for amplifications can be found as supporting information [see 

Additional File 1].  

3.3.2.6 Western blot analysis 

 For protein extractions, MLN samples from all experimental animals were 

separately homogenized on ice with lysis buffer (7 M urea, 2 M thiourea, 4% w/v 

CHAPS, 0.5 mM PMSF) using a glass tissue-lyser and protein lysate concentration 
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was determined using Bradford Protein Assay (Bio-Rad). Subsequently, protein 

from individual replicates belonging to the same group was pooled (30 ug total), 

electrophoretically fractionated in 12% (w/v) SDS-PAGE gels and transferred onto 

a PVDF membrane (Millipore, Bedford, MA, USA). Western blot assays were 

carried out as described by Martins et al. [10] employing the following primary 

antibodies: 4B7/8 (anti-SLAI) [19], 1F12 (anti-SLAII) [19], anti-CTLA4 

(Epitomics,Burlingame, CA, USA) and anti-Clathrin light chain (ab24579, Abcam, 

Cambridge, UK). To confirm equal sample loading, membranes were reblotted 

with anti-GAPDH monoclonal antibody (GenScript, Picastaway, NJ, USA) and no 

statistical differences for GAPDH abundance were observed between groups in all 

assays. Membranes were scanned in a FLA-5100 imager (Fujifilm, Tokyo, Japan) 

and signal intensity was determined using Multigauge software (Fujifilm, 

Tokyo,Japan) as previously described [10].  

3.3.2.7 Histopathology, immunohistochemistry and confocal microscopy 

analysis 

 Paraffin sections (5 μm) of formalin fixed samples were routinely 

processed and stained with hematoxylin and eosin (H&E) to evaluate tissue 

morphology. For immunohistochemistry assays, a standard avidin-biotin 

peroxidase method was performed as described elsewhere [20] employing 1F12 

monoclonal antibody for swine histocompatibility class II antigen detection and a 

biotinylated anti-mouse Ig (Dako, Barcelona, Spain) as secondary antibody. 

Immunofluorescence using confocal microscopy was performed employing the 

mouse anti-SLAII 1F12 antibody, rabbit anti-Salmonella somatic antigen [10] and 

rabbit anti-Salmonella Typhimurium flagellin [21]. Fluorescein isothiocyanate 

(FITC)-conjugated goat anti-rabbit IgG (Sigma-Aldrich, St. Louis, MO, USA) and 

Alexa Fluor 594 anti-mouse IgG (Life Technologies, Carlsbad, CA, USA) were used 
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as secondary antibodies. Immunostaining was performed as described by 

Robertson et al. [22]. Briefly, deparaffinized sections of formalin fixed MLN were 

blocked for 30 min with 1% bovine serum albumin and 2% foetal calf serum in 

PBS. Then, sections were overnight incubated at 4°C with primary antibodies, 

three times washed with PBS for 5 min and incubated for 1 h at 37°C with 

fluorescent secondary antibodies. For negative controls, primary antibody was 

omitted. Finally, sections were three times washed for 5 min in PBS containing 

1.43 μM 4',6-diamidino-2-phenylindole (DAPI, Life Technologies). Samples were 

subsequently evaluated and imaged using a LSM 5 Exciter confocal microscope 

(Carl Zeiss, Jena, Germany).  

3.3.2.8 Cell death analysis 

 Formalin fixed MLN samples were evaluated for cell death by Terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), employing the 

TUNEL Apoptosis Detection Kit for Paraffin-embedded Tissue Sections (GenScript, 

Picastaway, NJ, USA) according to manufacturer instructions. Briefly, proteinase K 

treated samples were permeabilized with 0.1% Triton X-100 and 0.1% sodium 

citrate for 10 minutes and incubated with Blocking Solution II (GenScript) for 30 

minutes. Subsequently, tissues were covered with 50 µl of TUNEL Reaction 

Mixture (GenScript), incubated at 37 ºC for 1 h in a dark humidified chamber and 

washed in PBS. Sections were examined in a LSM 5 Exciter confocal microscope 

(Carl Zeiss MicroImaging GmbH, Jena, Germany) using excitation wave 450-500 

nm and emission wave 515-565 nm (green). Fluorescence intensity was 

quantified with the ImageJ software 1.46r [23] and data were analyzed by ANOVA 

(p-value cutoff of 0.05) using SPSS 15.0 for Windows (SPSS Inc). 
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3.3.2.9 Selective capture of transcribed sequences (SCOTS) 

 Selective capture of Salmonella transcripts from MLN of pigs at 2 dpi was 

performed by the SCOTS method [11], following the procedure described by 

Sheikh et al. [24]. Briefly,5 μg of total RNA from infected MLN samples was 

converted into first strand cDNA by using random priming and Superscript III 

reverse transcription (Life Technologies). Subsequently second strand cDNA was 

produced employing DNA polymerase I (Klenow fragment, Life Technologies). To 

create a corresponding in vitro Salmonella Typhimurium cDNA sample for 

comparison, the same bacterial isolate employed in the experimental infection 

was grown to early-log growth phase  (OD600=0.3) and late-log growth phase 

(OD600=0.8) in Luria Bertani (LB) broth. Afterwards, Salmonella Typhimurium 

transcripts were selectively captured from in vivo and in vitro double stranded 

cDNA by hybridization to sonicated biotinylated genomic Salmonella DNA, which 

was previously blocked with Salmonella ribosomal DNA fragments. Microbial 

cDNA-genomic DNA hybrids were then captured by binding to streptavidin-

coated beads (Dynabeads M-280 streptavidin, Invitrogen) and bacterial 

transcripts were eluted by alkaline denaturation. Eluted bacterial cDNA was then 

PCR-amplified with conserved primers and finally purified using Qiagen PCR 

column purification kit (Qiagen). After that, one round captured and purified 

cDNA from both in vitro and in vivo conditions were quantified by 

spectrophotometry and used as template (10 ng) for qPCR assays as described 

above. Primer pairs used for amplifications can be found as supporting 

information [see Additional file 2]. Gene expression levels were estimated 

employing gyrA as reference gene. Since tissue from uninfected pigs was negative 

for Salmonella, those samples could not be used as reference for fold change 

calculations of pathogen gene expresion. Besides, most of screened genes 

showed Cq values inferior to those observed for gyrA in infected MLN. For these 
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reasons, gene expression levels were alternatively estimated as follows: gyrA Cq 

– target gene Cq.  Higher values meant higher expression levels and vice-versa.  

3.3.3. Results 

3.3.3.1 Overview of gene expression in porcine MLN upon Salmonella 

Typhimurium infection  

 Microarray technology coupled to a Bayesian analysis was employed to 

explore the transcriptional response of porcine MLN to Salmonella Typhimurium 

at 1, 2 and 6 dpi. BATS method was specifically designed for the analysis of time 

series microarray data [10]. For this reason, this strategy was established aiming 

to provide a general panorama of changes undergone by tissue at the mRNA level 

during the early response to infection. Taking into account the entire studied 

time course, a total of 290 transcripts, representing 285 unique genes, showed 

levels of expression that changed significantly (BF<0.05) over time as a result of 

the bacterial challenge [see Additional file 3].  

3.3.3.2 Validation of microarray data by qPCR 

 To validate microarray data, qPCR assays were performed on a panel of 

fourteen genes identified by BATS analysis. As expected, all of them were 

confirmed to be significantly regulated (p<0.05) after infection (Table 1). 

Furthermore, an identical expression trend along time was observed for most of 

the screened genes by qPCR and microarray analysis. 

3.3.3.3 Biological interpretation of microarray data 

 To translate microarray data into functional biological information, 

bioinformatics tools were employed to gain an insight into networks, functions 
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and pathways associated to the transcriptomic response of porcine MLN to 

Salmonella Typhimurium [see Additional file 4].  

Table 1   Microarray data validation by qPCR -  

MICROARRAY   qPCR 
Fold change  Fold change Gene  

1 dpi 2 dpi 6 dpi 
BF 

 1 dpi 2 dpi 6 dpi 
p-

value 

CD180 1.7 2.6 1.5 0.0000429  1.1 1.8 1.2 0.010 

CD1A 1.1 -1.4 1.2 0.00047793  -1.4 -2.5 1.2 0.013 

DAB2 -1.2 -2.6 -1.2 6.62E-13  -3.1 -6.5 -2.6 0.001 

EIF4H -1.1 -1.1 -1.1 0.0000101  -1.5 -1.4 -1.8 0.021 

ENPP6 1.3 2.0 -1.2 0.0000448  1.2 1.8 -1.7 0.000 

F13A1 1.4 2.2 -1.1 0.00000227  1 1.7 -2.2 0.012 

HLA-Bb 1.0 -1.1 -1.2 0.00023747  -1.4 -1.4 -1.9 0.047 

HLA-DRB5b 1.0 -1.1 1.0 0.0000311  -1.4 -1.6 -2 0.036 

HSPA1Ba 3.3 1.4 -1.1 0.0001166  2.5 1.4 -1.3 0.025 

HSPH1 2.3 1.7 -1.0 0.00000424  1.5 1.1 -2 0.003 

IL16 -1.0 -1.2 -1.1 8.12E-07  1 -1.1 -1.5 0.035 

LPCAT2 1.2 2.3 1.0 0.0000146  1.4 2 -1.3 0.010 

PSMC2 -1.0 -1.0 -1.1 0.00105861  -1.1 -1.4 -1.8 0.036 

TRAC -1.0 -1.1 -1.1 0.00000951  -1.5 -1.8 -1.8 0.010 
aData from microarray analysis are mean values from two different probes. bAmplified with 
SLA-B and SLA-DRB5 primers. 

 IPA analysis generated 17 gene interaction networks integrated by 

molecules associated to mechanisms that play a relevant role in infectious 

processes, such as cell-mediated immune response, cell-to-cell signalling and 

interaction, tissue morphology, cell movement and cell death. Significantly, 

networks 1 and 4 (Figure 1) revealed direct relationships between molecules 

taking part in five of the ten top enriched canonical pathways after infection 

(Figure 2). Moreover, network 4 demonstrated the central role of heat shock 

proteins and MHC encoding genes in the establishment of different mechanisms 

carried out in MLN in response to Salmonella Typhimurium.



 

 
  

Network 1 

Network 4 

Network 1 
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 IPA also ascertained the enrichment of biological functions other than 

those identified by network analysis (Table 2). Thus, “Inflammatory disease” was 

the Ingenuity biofunction more significantly related to the differently expressed 

genes, followed by “Protein synthesis” and “Antigen presentation”. Thus, 

“Inflammatory disease” was the Ingenuity biofunction more significantly related 

to the differently expressed genes, followed by “Protein synthesis” and “Antigen 

presentation”. 

Figure 1 (previous page) - Gene network analysis by Ingenuity Pathway Analysis (IPA) Visual 
representation of networks 1 and 4. Red and grey nodes are input and IPA-inserted molecules 
respectively. Colored lines highlight genes that take part in an enriched Canonical Pathway.  

Figure 2 - Top 10 enriched canonical pathways. Blue bars and yellow squares denote –log(p-
value) and ratio respectively. Threshold line represents a p-value of 0.05. 
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Table 2 - Top five biological functions enriched in MLN of pigs infected with 
Salmonella Typhimurium. 

Annotations p-Valuea Input genes (n) 

Inflammatory Disease 4,64E-05 -2,65E-02 13 

Protein Síntesis 6,52E-05 -1,86E-02 32 

Antigen Presentation 1,8E-04 -1,68E-02 5 

Cell Death 1,8E-04 -2,67E-02 78 

Cell-To-Cell Signaling and Interaction 1,8E-04 -2,67E-02 27 

 

 

3.3.3.4 Modulation of immune response mechanisms  

 Wide transcriptomic data analysis by bioinformatics tools revealed an 

enrichment of distinct mechanisms involved in the triggering of immune response 

in porcine MLN upon Salmonella Typhimurium infection. Furthermore, network 

analysis demonstrated a possible connection between them and regulation of 

common genes (Figure 1). To explain in depth the significance of these results, a 

series of assays including western blot, qPCR, immunohistochemistry and 

confocal analysis was performed. 

 As illustrated in Figure 3A, the association between pathways “CTLA-4 

signaling in cytotoxic T lymphocytes” and “Clathrin-mediated endocytosis 

signaling” was confirmed by the regulation of shared genes. Thus, we checked by 

western blot the abundance along time of cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4)  and clathrin light chain A (CLTA), the key molecules in each 

pathway. An opposite trend was observed for these proteins, since CLTA was 

more abundant in infected animals whereas CTLA4 showed reduced levels after 

infection (Figure 3B). Since changes in CTLA4 expression could not be detected by 

microarray analysis, we verified CTLA4 mRNA levels by qPCR (Figure 3C). In 

accordance with western blot assays, CTLA4 was observed to be significantly 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Interaction between CTLA-4 signaling in cytotoxic T lymphocytes and Clathrin-mediated endocytosis signaling pathways. A: visual representation of CTLA-4 
signaling in cytotoxic T lymphocytes pathway stressing the regulation of molecules taking part in Clathrin-mediated endocytosis signaling. Red and grey nodes are 
input and IPA-inserted molecules respectively. B: western blot analysis of CTLA4 and CLTA in MLN at 1, 2 and 6 dpi. C: mRNA quantification of CTLA4 by qPCR. D: 
expression pattern of CLTA mRNA by microarray analysis.  
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down-regulated in infected animals at 1 and 6 dpi. Concerning CLTA, a similar 

trend towards up-regulation was observed at mRNA (Figure 3D) and protein 

levels.  

 System biology analysis accomplished in this study also revealed the 

involvement of MHC encoding genes in many mechanisms triggered in MLN in 

response to Salmonella Typhimurium. For this reason, changes undergone by 

these molecules were evaluated employing different approaches. As shown in 

Figure 4A, western blot analysis demonstrated that major histocompatibility 

antigens class I (MHCI) and class II (MHCII) were more abundant in tissue at 1 dpi. 

Similarly, immunohistochemistry revealed a higher expression of MHCII at initial 

stages of infection, being labeling mainly detected in large irregularly-shaped 

mononuclear cells (Figure 4B-E). Interestingly, Salmonella location in MLN was 

previously observed by us in the cytoplasm of mononuclear phagocytes and 

neutrophils [10, 21]. So, confocal microscopic analysis was subsequently carried 

out to address the hypothesis that the increase of MHCII positive cells and the 

presence of Salmonella Typhimurium in tissue could be closely related events. As 

depicted in Figure 4H-K, Salmonella Typhimurium was detected in the cytoplasm 

of MHCII positive cells, morphologically identical to those identified by 

immunohistochemistry. Curiously, MHCI and MHCII (annotated in data sets as 

HLA-B and HLA-DRB, respectively) mRNA expression were found to be down-

regulated by microarray analysis. Furthermore, as exposed in Table 1 and Figure 

4F-G, similar results were uncovered by qPCR, confirming a divergence between 

transcriptomic and proteomic data obtained in MLN for these receptors.  

3.3.3.5 Tissue morphology and cell death 

 “Cell death” was one of the most significantly altered biological functions 

after infection and integrated the highest number of differently expressed genes  
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(n=78). In order to find GO subcategories associated to genes implicated in this 

function, data set arranged into “Cell death” by IPA was loaded in DAVID 

Bioinformatic Database. As expected, enriched terms were related to cell 

proliferation, differentiation and death [see Additional file 5]. Among them, 

“Negative regulation of apoptosis” and “Antiapoptosis” could be highlighted 

Figure 4 Analysis of MHC molecules in porcine MLN after Salmonella Typhimurium infection. 
A: western blot analysis of MHC class I and II at 1, 2 and 6 dpi. B-E: MHCII labeling in tissue at 0 
(B), 1(C), 2 (D) and 6 (E) dpi by immunohistochemistry. Scale bar = 20 μm. F-G: mRNA 
quantification of SLA-DRB5 (MHCII) (F) and SLA-B (MHCI) (G) by qPCR. H-K: confocal analysis of 
Salmonella Typhimurium infected MLN demonstrate the presence of the pathogen in MHCII 
positive cells. Salmonella Typhimurium-FITC (H), MHCII-Alexa Fluor® 594 (I), DAPI (J) and merge 
(K).  
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because most of genes taking part in these processes were overexpressed all 

along the time course, suggesting an inhibition of apoptosis. To deepen and 

sharpen these results, TUNEL analysis followed by confocal microscopy was 

performed aiming to elucidate the mechanisms of cell death in MLN after 

Salmonella Typhimurium infection. As shown in Figure 5A-D and 5I, DNA damage 

detected by TUNEL staining peaked at 1 dpi and decreased at 2 and 6 dpi 

compared to controls. Afterwards, expression level of the main pyroptosis and 

apoptosis inducers (CASP1 and CASP3, respectively) was quantified by qPCR. 

CASP1 mRNA was significantly up-regulated at 2 dpi and down-regulated at 6 dpi 

(Figure 5J), whereas no significant changes were observed for CASP3 (Figure 5K). 

Finally, lymph-node sections were additionally H&E-stained to analyse the 

structural changes undergone by tissue as a consequence of infection (Figure 5E-

H). Besides the loss of the typical lymph-node micro-architecture, phagocytes 

infiltration was the main tissue alteration revealed after infection, being observed 

mainly at 1 and 2 dpi. 

3.3.3.6 Salmonella Typhimurium localization and gene expression in vivo 

 Confocal microscopy analysis was performed to localize Salmonella 

Typhimurium in tissue. Although bacteria were detected in MLN along the whole 

time course, higher Salmonella labelling was observed at 2 dpi (data not shown), 

agreeing with our previous observations [10, 21]. Pathogen was labelled as 

spherical structures located in the perinuclear zone of mononuclear cells (Figure 

6A) as observed for bacteria confirmed to be localized in MHCII positive cells 

(Figure 4H-K). Conversely, in some cases, staining of regular bacilli shaped 

structures was uncovered (Figure 6B) and z-stack images suggested that 

Salmonella showing this labelling pattern could be positioned extracellularly [see 

Additional file 6]. Nevertheless, further experiments are necessary to confirm this 
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Figure 5 Cell death and histopathologic analysis of MLN from Salmonella Typhimurium infected pigs. A-D: Terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) analysis at 0 (A), 1(B), 2 (C) and 6 (D) dpi. Scale bar = 100 μm. E-H: H&E staining of at 0 (E), 1(F), 2 
(G) and 6 (H) dpi. Scale bar = 50 μm. I: Quantification of TUNEL fluorescent labeling shows an increase of positive nuclei at 1 dpi and decrease 
to levels inferior to controls at 2 and 6 dpi. J-K: mRNA quantification of CASP1 (J) and CASP3 (K) by qPCR. 
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Figure 6 Salmonella Typhimurium labeling and gene expression in porcine MLN. A-B: 
Different labeling profiles found for Salmonella Typhimurium in porcine MLN. Scale bar = 10 
μm. (A) Pathogen detection as spherical structures in the perinuclear zone of mononuclear 
cells. (B) Staining of bacilli shaped structures. E: Analysis of Salmonella Typhimurium gene 
expression by SCOTS in vivo and in vitro. Black dots and bars respectively represent individual 
and mean expression values from analysis of cDNA from pig infected MLN. Triangles (early 
logarithmic phase) and squares (late logarithmic phase) denote gene expression data from 
Salmonella Typhimurium cultures. Higher values mean higher expression levels and vice-versa. 
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hypothesis. Ultimately, expression of some Salmonella genes in vivo was also 

studied by SCOTS approach and compared to in vitro condition. Type III secretion 

systems (TTSS) encoded genes (sopB, avrA, sifA, sseL and prgJ) and spvB were 

found to be expressed by Salmonella Typhimurium in porcine MLN. Notably, 

comparing to in vivo condition, lower expression of these genes was detected in 

early log growth phase cultures. Similarly, higher levels of sifA, spvB and sseL 

mRNA expression were found in MLN when compared to late log growth phase 

culture. Results regarding genes coding for flagella components and regulators 

showed higher expression levels in vitro for fliA, fliC whereas fljA mRNA was 

observed more expressed in vivo (Figure 6C). 

3.3.4. Discussion 

 Gut-associated lymphoid tissues have been proved to be an important 

niche for Salmonella Typhimurium during pig infections [5]. For this reason, in 

this work we aimed to dissect host response mechanisms occurring in the porcine 

MLN upon interaction with Salmonella Typhimurium. Besides, attempting to 

integrate information from both parties involved in disease, expression in tissue 

of some Salmonella genes was also studied after pig oral inoculation. It is known 

that Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) TTSS genes are 

required for intestinal and systemic infection respectively [25, 26]. Here, we 

found that both SPI-1 (sopB and avrA) and SPI-2 (sifA and sseL) encoded virulence 

factors were expressed in infected tissue, suggesting that invasion and 

intracellular survival inducers were employed by Salmonella to adapt itself to 

MLN milieu and cause infection.  

 Furthermore, system biology analysis reported in this study uncovered 

the enrichment of different endocytosis pathways, according to accumulating 

observations that Salmonella interacts extensively with host endocytic pathways 
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[27]. Thus, “Macropinocytosis pathway” was found by us to be implicated in the 

response of MLN to infection, in agreement with available knowledge that 

Salmonella TTSS effectors promote massive actin polymerization and lead to 

bacterial internalization by macropinocytic membrane extensions [28]. In 

addition, “Clathrin-mediated endocytosis signalling” was identified as the second 

most significantly affected canonical pathway upon infection. Although studies 

have demonstrated that clathrin-mediated endocytosis is used in bacterial-

induced internalization, Salmonella is not able to employ this machinery to 

invade [29]. Therefore, we speculated that the enrichment of this process, added 

to the disclosed mediation of the “Protein ubiquitination pathway” after 

infection, is related to preceding evidences that Salmonella employ its SPI 

encoded effector SifA to remove mature MHCII complexes from cell surface, by 

enhancing their ubiquitination, in a clathrin and AP2-dependent way [30, 31, 32]. 

 We observed that the Salmonella Typhimurium strain used in this work 

was able to express sifA in porcine MLN, suggesting that this evasion strategy 

could be triggered by pathogen to circumvent host response. Salmonella is 

expected to induce a strong immune response through specific antigen 

presentation to CD4 restricted T cells in the context of MHCII antigens [33]. 

Nevertheless, by reducing MHCII levels in antigen presenting cells, this pathogen 

may limit the induction of host T helper 1 (Th1) response. In line with this, it was 

previously observed by us [21] and others [34] that pig infections with Salmonella 

Typhimurium do not produce an up-regulation of Th1 response inducers in MLN.  

 The disclosed involvement of MHC molecules in several enriched 

mechanisms highlighted the central role of these receptors in the pig response to 

Salmonella. Curiously, both MHCI and MHCII encoding genes were observed to 

be down-regulated in porcine MLN after infection, although results from western 

blot and microscopy analysis revealed a significant increase in the abundance of 

these receptors at initial stages of infection. We envisage that these finds could 
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be attributed to infected antigen presenting cells that, upon contact with bacteria 

in intestine, express high levels of MHC and migrate to MLN. As depicted here 

and previously [10, 21], infection results in substantial changes in tissue 

cellularity, marked mainly by infiltration of phagocytes. Additionally, we were 

able to detect Salmonella Typhimurium in the cytoplasm of cells showing high 

levels of MHCII and the enrichment of “Dendritic Cell maturation” pathway as a 

consequence of the bacterial challenge. Our inference could be further supported 

by previous studies that report shuttle of Salmonella Typhimurium from intestine 

to mesenteric lymph-nodes by infected antigen presenting cells [5, 35].  

 In spite of the sophisticated strategies evolved by Salmonella 

Typhimurium to modulate host defence, our data indicated that the induction of 

some components of porcine adaptive immunity appears not to be repressed in 

infected MLN. Network analysis also associated “Clathrin-mediated endocytosis 

signaling” to “CTLA4 signaling in cytotoxic T lymphocytes pathway”, bringing to 

light the role of the former process in adaptive immunity triggering. CTLA-4, an 

important negative regulator of the T cell immune response [36], is endocytosed 

via a clathrin and dynamin-dependent route in activated T-cells [37]. According to 

Johanns et al. [38], up-regulation of CTLA-4 in regulatory T cells restrains effector 

T cell activation at early infection time points and allows the increase of bacterial 

burden during murine salmonellosis. Similarly, Inoue et al. [36] state that CTLA-4 

mediated Treg immunosuppression is critical in preventing host from eliminating 

certain invasive pathogens. Given that, CTLA-4 down-regulation observed in this 

study, concurrent with clathrin up-regulation after the bacterial challenge could 

indicate the repression of a mechanism of T cell inhibition in porcine MLN upon 

Salmonella Typhimurium infection. However, since clathrin appears to be 

involved in the establishment of both host immunity mechanisms and virulence 

strategies evolved by pathogen, a deeper investigation of processes mediated by 
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this molecule during infection could provide novel knowledge on the 

pathogenesis of porcine salmonellosis.  

 High MHCI levels observed by western blot reinforce our previous 

evidences that Salmonella antigens are cross-presented in swine MLN [10], 

bringing out the induction of other adaptive immunity process upon infection. 

Cross-presentation results in CD8+ T cells priming by antigen presenting cells via 

their own MHCI molecules [33]. Interestingly, it has been reported that 

Salmonella is not able to reduce MHCI surface expression of infected cells and 

consequently avoid host early cytotoxic response [30, 31, 32]. Therefore, cross-

presentation might contribute to Salmonella Typhimurium clearance in porcine 

MLN, in agreement with the stimulation of Salmonella-specific CD8 T cells readily 

observed in mice and human infections [40]. In addition, an evidence of humoral 

response induction was also uncovered by us. CD180, an inducer of B cells 

proliferation, activation and differentiation [41], was up-regulated all along 

infection. So, besides cellular immunity, humoral response seems to be promptly 

carried out in porcine MLN after Salmonella Typhimurium infection.  

 Among several layers of immune defence developed by mammals, cell 

death is a key component of host response aginst infection. Elimination of an 

infected cell can be beneficial or detrimental to both host and pathogen. Thus, 

each party utilizes a number of strategies to regulate the outcome of this process 

in its favour [42]. In a previous study, we suggested that apoptosis is avoided and 

infected cell undergoes pyroptosis in MLN of Salmonella Typhimurium infected 

swine [10]. Cells dying by pyroptosis have biochemical and morphological 

features of both apoptotic and necrotic cells [43]. As in apoptosis, pyroptotic cells 

show DNA fragmentation, nuclear condensation and positive TUNEL staining [42]. 

However, pyroptosis inherently results in inflammation due to caspase-1-

mediated maturation of pro-IL-1β and pro-IL-18 and release of the cytoplasmic 

content, whereas apoptotic cell is considered to be immunologically silent [44]. 
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  Evidences of pyroptosis induction and apoptosis dampening in infected 

MLN were disclosed in the current study, supporting our previous reports [10, 

21]. Besides the increase of TUNEL positive labelling at 1 dpi and infiltration of 

inflammatory cells observed in tissue, microarray data mining detected an 

enrichment of processes such as “Negative regulation of apoptosis” and 

“Antiapoptosis” after the bacterial challenge, in addition to up-regulation of 

genes encoding for inhibitor of apoptosis proteins (IAP) like XIAP and PDCL3. 

Induction of apoptosis has been asserted as a strategy that facilitates Salmonella 

cell-to-cell spread during systemic infection [45]. Nevertheless, it has also been 

reported that AvrA, a Salmonella effector protein, prevents the apoptotic 

elimination of host cell niche as a pathogen evasion mechanism [46].  Intriguingly, 

we observed in vivo expression of SpvB and SseL, both major Salmonella 

Typhimurium apoptosis inducers, and the apoptosis inhibitor AvrA, indicating 

that Salmonella appeared to execute virulence mechanisms to modulate 

apoptosis in porcine MLN in its favour. However, the balance of pathogen and 

host processes apparently avoided apoptosis induction and resulted in infected 

cell death by pyroptosis, producing pathogen discharge to the extracellular milieu 

and clearance of bacteria by innate mechanisms. In consequence of this 

response, swine MLN might be able to act as a barrier to dissemination of 

infection, as suggested by the notable reduction of pathogen burden in tissue 

previously reported by us [21]. 

 Concordant with this, an elegant study by Miao et al. [47] stated that 

Salmonella Typhimurium is able to damper pyroptosis for its own advantage by 

avoiding flagellin expression during infection of mice. Interestingly, we found out 

expression of Salmonella Typhimurium flagella component (FliC) and regulators 

(FliA and FljA) in infected MLN. Additionally, flagella expression by infecting 

bacteria found in tissue was also corroborated by labelling using a specific 

polyclonal antibody. S. enterica alternately expresses two different flagellar 
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filament proteins, FljB and FliC, in a process known as flagellar phase variation. In 

spite of the high homology level found between these proteins, their middle 

surface exposed sequence of amino acids are divergent, resulting in distinct 

antigenicities [48]. Of note, our results demonstrated higher expression levels for 

fliC and its regulator fliA in vitro than in vivo. On the other hand, fljA, which is 

cotranscribed with fljB, was more expressed in Salmonella Typhimurium found in 

vivo. Moreover, this gene was notably less expressed than fliA and fliC in both 

early and late logarithmic phase cultures. Basing on this, we deduced a skewing 

toward FliC flagellin expression by bacteria in vitro. Besides, we drew the 

inference that a more heterogeneous flagellin expression is found in Salmonella 

Typhimurium replicating in vivo and that induction of flagellar phase variation 

could be a strategy adopted by this pathogen to hinder pig immune response. 

Expression of prgJ was also uncovered in swine MLN. Curiously, repression of this 

efector has been reported as a mechanism of pyroptosis inhibition in vivo [49]. 

Thus, it could be inferred that absence of flagellin and prgJ repression by 

Salmonella Typhimurium found in tissue might enable pig to use pyroptosis to 

clear bacteria in gut associated lymph-nodes, protecting itself from pathogen 

dissemination. 

 Nevertheless, an issue that should be addressed by our assumption is 

why pathogen burden in tissue peaks after pyroptosis triggering. Miao and Rajan 

[49] state that in a single cell, pyroptosis only takes place at late times of 

infection, following bacteria replication. So, we speculated that increase of 

pathogen load at 2 dpi is resultant of release of replicated Salmonella from cells 

dead by pyroptosis. This could justify the detection of bacteria by confocal 

microscopy that, differently from structures labelled inside MHCII positive cells, 

showed a regular rod shape and appeared to be out of host cells. Extracellular 

localization of pathogen could be further supported by a previous report [50], 
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which asserts that Salmonella Typhimurium predominantly survives in an 

extracellular niche in the tonsils of infected pigs.  

 Notably, the presence of TUNEL positive cells in tissue was significantly 

reduced at 2 and 6 dpi, suggesting a decrease of cell death by apoptosis or 

pyroptosis. As with any physiological process, excessive pyroptosis is detrimental 

to host [42]. So, modulation of this pathway by host aiming to restore tissue 

integrity should be expected. Actually, we observed up-regulation of MAP3K7 

and TRAF7, both involved in NF-kB and survival pathways activation, at 2 and 6 

dpi. However, evidences indicate that inhibition of caspase-dependent apoptosis 

primes cells towards programmed necrosis [51]. Since mechanisms that dictate 

the cellular decision to survive by activating NF-kB or to die through apoptosis or 

necroptosis are still unclear [52], further research is necessary to clarify these 

results.  

 In conclusion, provided results led us to infer that although the 

Salmonella Typhimurium strain employed in this study was able to express some 

of its major virulence effectors in porcine MLN, a combination of host triggered 

innate immunity mechanisms and an early T-cell cytotoxic response might 

overcome virulence strategies employed by pathogen. Besides preventing 

apoptosis, swine appears to take advantage of flagellin and prgJ expression by 

pathogen to induce pyroptosis in MLN. In this context, pyroptosis might consist in 

a host protective mechanism that prevents pathogen spread beyond gut-

associated lymph-nodes. Furthermore, clathrin-mediated endocytosis appears to 

take part in the pathogenesis of infection. Nevertheless, role of this process in 

host and pathogen mediated processes remains to be clarified.  
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Abstract 

In this report we employed laser-capture microdissection (LCM) coupled to qPCR 

technology and bioinformatic analysis to characterize, for the first time, the 

response of Peyer’s patches (PP) from orally infected animals to Salmonella 

typhimurium, in a model of non-typhoidal salmonellosis. Pathogen was highly 

found in the cytoplasm of phagocytes in PP and differential gene expression 

analysis indicated an up-regulation of proinflammatory molecules, establishment 

of a Th1 driven response and triggering of DC and T-cell activity. Furthermore, 

predictions by bioinformatic analysis pointed to an activation of processes 

regarding stimulation and maturation of DC, influx of leukocytes in tissue and T 

lymphocytes priming and differentiation. In short, the approach used in this study 

proved to be a promising strategy to explore infectious processes. Indeed, it 

revealed an effective induction of innate and adaptive immune mechanisms in 

swine PP which appear to be distinct from those observed in mesenteric lymph 

nodes and closely related to response of gut mucosa. 

 

Keywords - Peyer’s patches, Salmonella typhimurium, Laser-capture 

microdissection, Immune response. 
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3.4.1 Introduction 

 Despite the current improvement in sanitation and hygiene, Salmonella 

persists as a significant cause of disease worldwide. Data from the Centers for 

Disease Control (CDC) assert that Salmonella alone causes approximately 1 

million foodborne infections annually in the United States (CDC, 2011). Similarly, 

Salmonella is reported as the main cause of food-borne outbreaks in the 

European Union, being Salmonella enterica serovar Typhimurium (herein 

Salmonella typhimurium) the second most frequently isolated serovar from 

human infections (EFSA, 2012). 

 Advances in mammalian models of Salmonella infection are expected to 

result in new understanding of salmonellosis pathogenesis, contributing to the 

control and cure of human cases (Gopinath et al., 2012). In this context, pigs can 

be stressed as an ideal model for investigating human non-typhoidal 

salmonellosis, since upon infection with S. typhimurium swine undergo a self-

limiting enterocolitis similar to the clinical manifestation observed in man. 

 Studies on the murine model of typhoid fever state that to cause 

infection, ingested S. typhimurium primarily invade M cells in the small intestine 

and then accesses Peyer’s patches (PP), resulting in a massive inflammatory 

response in these organs (Broz et al.,2012). Therefore, besides their role in the 

immune surveillance of the intestinal lumen, PP are relevant mediators of 

infections by S. typhimurium. Although previous studies have employed gut loops 

models to extrapolate the response of PP to S. typhimurium (Meurens et al., 

2009; Nunes et al., 2010), the function of these organs in the context of oral non-

typhoidal infections has never been explored to date. To address this issue, we 

employed for the first time laser-capture microdissection (LCM) coupled to qPCR 
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technology and bioinformatic analysis to provide an accurate view of the immune 

mechanisms modulated in PP of pigs orally infected with S. typhimurium. 

3.4.2. Material and methods 

3.4.2.1. Experimental infection 

 Eight crossbred piglets of approximately four weeks of age, confirmed to 

be fecal-negative for Salmonella, were randomly allocated to control or infected 

groups (four animals each), being control (0 day post-infection — dpi) pigs 

necropsied 2 h before the experimental infection. Pigs belonging to the infected 

group were orally challenged with 108 cfu of S. typhimurium phagetype DT104 

and euthanized at 2 dpi. Ileum samples were collected from all piglets and 

immediately frozen in liquid nitrogen for RNA isolation or fixed in 10% neutral 

buffered formalin for immunohistochemistry  

3.4.2.2. Laser-capture microdissection and RNA preparations 

 Frozen gut samples from all experimental animals were embedded in 

optimal cutting temperature compound (Sakura Finetek USA, Torrance, CA, USA) 

and cut into serial 20 lm sections. Before microdissection, eight cryostat sections 

from each pig were mounted on glass slides and treated with RNAlater-ICE 

(Ambion) according to manufacturer instructions. Subsequently, PP follicles were 

laser-microdissected and captured from terminal ileum sections avoiding 

contamination by adjacent cells with a PALM Micro-Beam device (Carl Zeiss 

MicroImaging GmbH, Jena, Germany), by Auto-Laser Pressure Catapulting (LPC) 

mode (Fig. 1A–C). Catapulted tissue was soaked in 15 ll of RLT buffer (Qiagen, 

Valencia, CA, USA) poured in 200 ll microtubes caps and RNA purifications were 

carried out employing the RNeasy Mini Kit (Qiagen). Eluted RNA was digested 
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with RNase-Free DNase Set (Qiagen) and RNA quality was checked by Experion 

RNA analysis (Bio-Rad, Hercules, CA, USA). Finally, RNA was amplified using the 

SuperScript™ RNA Amplification System (Invitrogen, Carlsbad, CA, USA), as 

indicated by manufacturer. 

3.4.2.3. Real-time quantitative PCR (qPCR) 

 Amplified RNA from infected and control animals was reverse transcribed 

to cDNA using the qScript cDNA Synthesis kit (Quanta BioSciences, Gaithersburg, 

MD, USA) and qPCR assays were performed according to Martins et al. (2013) to 

determine the relative expression of 30 genes coding for molecules taking part in 

distinct immune response processes such as inflammation, DC-T cell interaction 

and T helper cell response. Primers used for amplifications can be found as 

supporting information (see Supplementary File 1). Afterwards, relative gene 

expression was assessed by the 2-ΔΔCq method (Livak and Schmittgen, 2001). In 

this analysis, qPCR data were presented as the fold change in gene expression 

normalized to an endogenous reference gene and relative to the uninfected 

controls. Fold change values higher than 1 meant upregulation. Values inferior to 

1 were calculated as -1/fold change and denoted down-regulation. Data were 

analyzed by Student’s t-test using the software SPSS 15.0 for Windows® (SPSS, 

Inc). A p-value bellow 0.05 was considered statistically significant. 

3.4.2.4. Bioinformatic data analysis 

 Ingenuity Pathway Analysis (IPA, Ingenuity Systems, www.ingenuity.com) 

Downstream Effects tool was used to identify functions that are expected to be 

activated in tissue, given the observed gene expression patterns. Predictions 

were made by z-score algorithm and values higher and lower than 2 meant that 

activation state was statistically increased and decreased respectively. IPA Path 
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Designer was also employed to illustrate some mechanisms modulated by genes 

evaluated in this study. 

3.4.2.5. Immunohistochemistry 

 To verify the presence of S. typhimurium in PP, paraffin sections (5 μm) of 

formalin fixed samples were routinely processed and immunostained as 

described elsewhere (Martins et al., 2013), employing a specific anti-Salmonella 

rabbit antiserum. 

3.4.3 Results and discussion 

 Ileal loops models have provided valuable information regarding the 

response of gut mucosa to Salmonella. Nevertheless, accumulating evidences 

indicate that ingested Salmonella undergo phenotypical changes during its 

passage along host gastrointestinal tract that influence the infectious process 

(Alvarez-Ordóñez et al., 2011). Thus, it could be speculated that infection 

conditions employed by this approach is substantially different from those found 

in natural infections. Basing on this, in this report we describe for the first time 

the regulation of immune response mechanisms in the PP of orally infected 

animals, in the context of nontyphoidal salmonellosis. Besides, LCM was used to 

isolate and analyze cell exclusively from PP follicles. Microdissection has been 

successfully employed in cancer research to provide precise knowledge on tumor 

biology (Cheng et al., 2013). Here, LCM coupled to qPCR technology enabled us to 

characterize changes in infected PP with reduced interference from non-target 

cells, generating more accurate data than previously reported. 

 Immunohistochemistry assays demonstrated that S. typhimurium was 

notably found in PP (Fig. 1D and E), agreeing with preceding reports that highlight 

these organs as the main portal of pathogen entry  to  host  mucosa  (Broz et al., 
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A B C 

D E F 

G 

Figure 1. - Laser-capture microdissection, pathogen detection and gene expression analysis in Peyer’s 
patches of S. typhimurium infected pigs. (A–C) LCM: After their identification in tissue (A), PP follicles 
were selected (B) and collected by Auto-Laser Pressure Catapulting mode (C). (D–F) 
Immunohistochemistry: S. typhimurium was immunolabeled in control (D) and infected tissue (E–F). 
Yellow, white and blue bars correspond to 500, 200 and 50 lm respectively. (G) Visual representation 
of T-helper cell 
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2012; Schauser et al., 2004). Moreover, differential expression analysis revealed 

significant regulation of 21 out 30 genes encoding pattern-recognition receptors 

(PRR), chemokines, DC and T-cell activation markers, Th response mediators and 

other immune-related molecules (Table 1). Proinflammatory genes such as IL1b, 

CXCL2 and TNFa were found to be upregulated as a consequence of infection. 

This response could be associated to recognition of invading Salmonella via PRR 

by macrophages and dendritic cells in PP, resulting in pathogen phagocytosis, 

secretion of chemokines and recruitment of additional inflammatory cells into 

the site of invasion (Broz et al., 2012). In line with this, a strong up-regulation was 

uncovered for all screened PRR (TLR2, 4, 5, 8 and NOD2) and pathogen labeling 

was mainly observed in the cytoplasm of large irregular-shaped mononuclear 

cells and some polymorphonuclear cells (Fig. 1F). Inflammation induced by IL1 

has been considered a key mechanism in Salmonella pathogenesis at mucosa 

level (Raupach et al., 2006). However, a previous report employing porcine gut 

loops did not detect up-regulation of IL1β and chemokines encoding genes in PP 

upon S. typhimurium infection (Meurens et al., 2009). Although we believe that 

this discrepancy could be attributed to differences between approaches, PP areas 

not analyzed by us, such as dome and interfollicular zones, might affect the 

response of these organs to infection. Thus, this fact could also justify the 

observed differences between current study and others on the whole PP. 

 In general, results indicated that similarly to the murine typhoid model 

(Tam et al., 2008), mechanisms of innate immune response are effectively 

induced in PP during swine oral infections by S. typhimurium. Apart from 

contributing to bacterial clearance in tissue, as suggested by our previous 

observations (Martins et al.,2013), this response could be related to triggering of 

host second line of defense. Genes coding for molecules involved in DC activation 

(CD80, CD83, CD40, IL12p40, IL23p19 and CCR7) were found to be up-regulated 

in infected PP (Supplementary File 2).  



Experimental study 4 – Martins et al., DCI 41 (2013) 100-104  

151 

Table 1 - Relative gene expression in Peyer’s Patches of pigs experimentally 
infected with S.typhimurium, at 2 dpi. 

0 dpi 2 dpi 
Gene 

FCa SD FC SD 
p-valueb 

CASP1 1 1.26 2.66 3.51 0.266 

CCL19 1 0.12 3.47 0.81 0.000 

CCL21 1 0.72 2.98 3.09 0.292 

CCR7 1 0.57 5.98 2.16 0.002 

CD11b 1 0.32 6.53 1.51 0.000 

CD28 1 1.01 6.96 3.38 0.028 

CD40 1 0.29 3.66 0.89 0.001 

CD40L 1 0.27 2.02 0.56 0.020 

CD80 1 0.62 9.69 6.34 0.006 

CD83 1 0.20 2.07 0.41 0.012 

CD86 1 0.34 1.19 0.50 0.710 

CTLA4 1 0.69 3.96 2.91 0.142 

CXCL2 1 0.33 5.78 2.85 0.002 

IL1β 1 1.29 79.22 43.06 0.004 

IL4 1 1.02 1.38 1.05 0.868 

IL12p40 1 0.97 20.22 19.15 0.007 

IL13 n.a. n.a. n.a. n.a. n.a. 

IL16 1 0.73 1.43 1.41 0.902 

IL17A n.a. n.a. n.a. n.a. n.a. 

IL18 1 0.42 1.07 0.52 0.940 

IL21 1 0.32 3.93 2.97 0.032 

IL23 1 0.16 2.58 0.25 0.000 

IFNγ 1 0.96 17.66 9.94 0.005 

NOD2 1 0.72 16.48 20.82 0.042 

SELL 1 0.13 -2.5 0.026 0.000 

TLR2 1 0.82 17.14 8.37 0.013 

TLR4 1 0.11 2.23 0.92 0.015 

TLR5 1 0.38 14.05 7.45 0.001 

TLR8 1 0.56 4.67 2.17 0.005 

TNFα 1 0.24 2.41 0.51 0.002 
a Fold change mean values (n = 4 per group). Values higher than 1 meant upregulation. 
Those inferior to 1 were calculated as _1/fold change and denoted down-regulation. b p-
values bellow 0.05 were considered statistically significant. n.a.: not amplified. 
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 The same was observed for molecules required for T-cell mediated 

processes (IFNγ, CD40L, CD28, CCL19 and IL21). Of note, high mRNA levels were 

observed for IFNγ and IL12p40, despite the absence of IL18 up-regulation. 

Although this interleukin act synergistically with IL12 in the induction of IFNγ 

production and cell-mediated immunity, a previous study demonstrated that IL-

18 is relevant for resistance to the systemic infection but not during the intestinal 

phase of salmonellosis (Raupach et al., 2006). Concurrently, down-regulation or 

absence of expression was uncovered for Th2 (IL4 and IL13) and Th17 (IL17A) 

inducers, suggesting a trend to Th1 orientation in S. typhimurium infected PP (Fig. 

1G). In accordance with these observations, Collado-Romero et al. (2012) 

detected a general trend toward down-regulation of Th2 and Th17 responses in 

ileum mucosa of S. typhimurium infected pigs, validating the importance of 

processes carried out by PP in the development of immune response at mucosal 

level during non-typhoidal salmonellosis. To further confirm results from 

differential expression analysis, a bioinformatic algorithm was used to predict the 

modulation of some immunity mechanisms after infection, by combining results 

disclosed for the screened genes and relating them with the available literature. 

Processes such leukocytes recruitment, stimulation of DC and macrophages, DC 

maturation and influx of neutrophils were predicted to be activated as a 

consequence of infection. The same was detected for mechanisms of T 

lymphocytes proliferation, priming and differentiation (see Supplementary File 3).  

 Intriguingly, up-regulation of Th1 response was not observed by us in 

mesenteric lymph nodes (MLN) of S. typhimurium infected pigs. Furthermore, 

contrary to the clear induction of DC and T-cell activity uncovered by current 

results, DC-T-cells interaction was inferred to be compromised in these organs 

after infection (Martins et al., 2013). Therefore, it is tempting to speculate that, in 

spite of their similar functions as components of gut associated lymphoid tissue, 

PP trigger mechanisms distinct from those occurring in MLN upon oral infection 
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with S. typhimurium. Besides, it could be deduced that inhibition of T-cell 

activation by DCs, largely reported as an evasion mechanism evolved by S. 

typhimurium (Bueno et al., 2012), might not be induced in swine PP or is 

effectively counteracted by host response. 

 In short, combination of an in vivo infection model with LCM and gene 

expression analysis proved to be a promising strategy to clarify the role of specific 

cell populations during infectious processes. This approach enabled us to gain an 

insight into the immunity mechanisms carried out in PP during non-typhoidal 

salmonellosis. Results pointed to an effective induction of innate and adaptive 

immune responses in this organs, inferred to be different from those observed in 

MLN and closely related to the processes carried out at intestinal mucosa after 

infection. Data provided here could represent useful information for the 

establishment of control and therapeutic strategies focused on the enhancement 

of immunity against Salmonella at gut level. 
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Abstract 

In the current study we coupled our swine model of non-typhoid salmonellosis to 

laser microdissection and microarrays analysis to dissect the mechanisms carried 

out in PP follicles in response to Salmonella enterica serovar Typhimurium. (S. 

Typhimurium). Infection resulted in the assembling of different immunity 

mediators in PP follicles, enabling host to mount multiple levels of the adaptive 

response against pathogen. Results indicated the induction of antibody responses 

and long-lived humoral immunity at a short time (2 days) after infection. 

Interestingly, several evidences of cross-presentation triggering were found out, 

suggesting that besides eliciting B-cell-mediated immune responses, PP follicles 

might mediate the generation of effector and memory CD8 T cells during 

infections by non-typhoid Salmonella. Our results reveal a novel function for PP 

follicles during Salmonella infections that should be considered for development 

of therapies and vaccine approaches against salmonellosis. 

 

Keywords: Salmonella enterica serovar Typhimurium, laser microdissection, 

Peyer’s patches follicles, germinal center, cross-presentation. 
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3.5.1 Introduction 

 Salmonella species are a leading bacterial cause of disease, exerting 

considerable impact on global human health. It is estimated that 93.8 million 

cases of gastroenteritis due Salmonella occur worldwide leading to 155,000 

deaths each year (Majowicz et al., 2010). Data from the Centers for Disease 

Control (CDC) uncovered Salmonella as the main cause of hospitalization due to 

foodborne disease in the United States (CDC, 2013). Similarly, the European Food 

Safety Authority (EFSA) reported salmonellosis as the second most notified 

zoonotic disease in the European Union (EFSA, 2013). 

 Salmonella enterica serovar Typhimurium (herein S. Typhimurium), 

referred to as a non-typhoid Salmonella (NTS), is the second most commonly 

isolated serovar from human infections (Sanchez-Vargas et al 2011). Although the 

pathogenesis of infections caused by this pathogen has been extensively studied 

using the mouse model of systemic disease (Tsolis et al., 2011), one limitation of 

the murine typhoid model is that S. Typhimurium typically causes a self-limiting 

gastroenteritis rather than typhoid fever in humans (Majowicz et al., 2010). For 

this reason, the pathogenesis of NTS gastroenteritis remained largely unexplored 

until recently, when alternative animal models of infection became more widely 

used (Tsolis et al., 2011).  

 Accumulating evidences demonstrate the anatomic and physiological 

similarities between pig and human, highlighting swine as a valuable model for a 

number of infectious diseases relevant to human health (Meurens et al 2012). 

Indeed, pigs are ideal models for the study of salmonellosis by NTS, since upon 

infection with S. Typhimurium, swine undergo a self-limiting gastroenteritis which 

parallels the clinical manifestation observed in man (Boyen et al., 2008).  
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 PP are the main portal of Salmonella host entry into host mucosa (Broz et 

al., 2012; Tam et al., 2008). These organs are clusters of organized lymphoid 

tissue located in the small intestine, which act as sites of antigen sampling and 

induction of mucosal immune responses (Makala et al., 2002). Upon infection, PP 

follicles undergo substantial changes that involve numerous cellular and cell 

surface components, giving rise to the formation of germinal centers (GC). These 

structures are intimately associated with the production of B cell humoral 

immune response and host cell interactions which consist in a fundamental 

aspect of adaptive immunity and generation of immunological memory (El Shikh 

and Pitzalis., 2012). 

 Recently, laser microdisssection coupled to qPCR technology was 

successfully used to provide a preliminary view of the immune response carried 

out by Peyer’s patches (PP) follicles during oral infections with NTS (Martins et al 

2013b). Thus, in the current study, laser microdissection followed by microarray 

analysis and bioinformatic data mining was applied to our swine model of 

gastroenteritis by S. Typhimurium to generate a broader view of the biological 

processes carried out by PP follicles upon infection.  

3.5.2 Materials and methods 

3.5.2.1 Experimental infection and tissue sampling  

 Eight crossbred weaned piglets of approximately four weeks of age and 

confirmed to be fecal-negative for Salmonella were randomly allocated to control 

or infected groups (four animals each). Control (0 day post-infection — dpi) pigs 

were necropsied 2 h before the experimental infection, whereas infected group 

was orally challenged with 108 cfu of Salmonella Typhimurium phagetype DT104 

and subsequently necropsied at 2 dpi. Ileum samples were collected from all 
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experimental animals and immediately frozen in liquid nitrogen for RNA and 

protein isolation or fixed in 10% neutral buffered formalin for histological 

processing. Piglets were housed in experimental isolation facilities of the 

University of León (Spain). All procedures involving animals were performed in 

accordance with the European regulations regarding the protection of animals 

used for experimental and other scientific purposes, under the supervision of the 

Ethical and Animal Welfare Committee of the University of León (Spain). 

3.5.2.2 Laser microdissection and RNA preparations 

 Frozen gut samples from all experimental animals were embedded in 

optimal cutting temperature compound (Sakura Finetek USA, Torrance, CA, USA) 

and cut into serial 20 μm sections. Before microdissection, eight cryostat sections 

from each pig were mounted on glass slides and treated with RNAlater-ICE 

(Ambion) according to manufacturer instructions. Afterwards, PP cells were laser-

microdissected and captured from terminal ileum sections by Auto-Laser 

Pressure Catapulting (LPC) mode (Figure 1A and B) with a PALM MicroBeam 

device (Carl Zeiss MicroImaging GmbH, Jena, Germany). Catapulted tissue was 

soaked in 15 μl of RLT buffer (Qiagen, Valencia, CA, USA) poured in 200 μl 

microtubes caps and RNA purifications were carried out employing the RNeasy 

Mini Kit (Qiagen). Eluted RNA was digested with RNase-Free DNase Set (Qiagen) 

and RNA quality was checked by Experion RNA analysis (Bio-Rad, Hercules, CA, 

USA).  

3.5.2.3 Microarray analysis 

 Gene expression analysis was carried out using the GeneChip Porcine 

Genome Array by Affymetrix platform (Affymetrix Inc., Santa Clara, CA, USA) at 

the Genomics Unit of CABIMER (Andalusian Center for Molecular Biology and 
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Regenerative Medicine, Seville, Spain). This chip contains 23,937 probe sets to 

interrogate 23,256 transcripts in pig, which represents 20,201 genes. The One-

Cycle Eukaryotic Target Labeling Assay was used to obtain biotinylated cRNA to 

be used in the subsequent chip hybridization according to manufacturer 

instructions (Expression Analysis Technical Manual, Affymetrix). The biotinylated 

cRNA targets were then cleaned up, fragmented, and hybridized with the 

GeneChip Porcine Genome Array following Affymetrix recommended protocols. 

Chips were washed, stained with a GeneChip Fluidics Station 450 (Affymetrix) 

using the standard fluidics protocol and scanned with an Affymetrix GeneChip 

Scanner 3000 (Affymetrix). Probe signal intensities were captured and processed 

with the GeneChip Operating Software 1.4.0.036 (Affymetrix) and the resulting 

CEL files were reprocessed using robust multi-array average normalization (RMA) 

(Irizarry et al., 2003). Then, differentially expressed (DE) genes were accessed by 

the Rank Products (RP) method (Breitling et al., 2004), using default settings. A 

FDR adjusted p-value of 0.05 was used as cutoff to rank significantly regulated 

transcripts. Since the Affymetrix Porcine GeneChip is not fully annotated in all the 

features, it was re-annotated with Blast2GO (Conesa et al, 2005) with a minimum 

E-value of 10-10 and a minimum similarity of 50%. 

3.5.2.4 Systems biology analysis 

 For bioinformatic analysis of microarray data, the list of genes found to 

be significantly regulated after infection was uploaded into Ingenuity Pathway 

Analysis (IPA, Ingenuity Systems, www.ingenuity.com). Gene interaction 

networks were automatically generated, ranked by score and depicted on IPA. 

Score estimated the probability that a collection of genes equal to or greater than 

the number in a network could be achieved by chance alone and values of 3 or 

higher were considered to have a 99.9% confidence of not being generated by 
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random chance alone. For statistical analysis of enriched functions/pathways, IPA 

Knowledge Base was used as a reference set and Fisher's exact test was 

employed to estimate the significance of association. P-values bellow 0.05 were 

considered statistically significant. The Activation z-score was employed to 

predict the activation state of enriched functions and upstream regulators. 

Predictions with z-score values higher or lower than 2 and a p-value ≤0.05 

denoted a statistically increased or decreased activation state respectively. In 

pathways and networks diagrams, nodes represented a gene and its relationship 

with other molecules was represented by a line (solid and dashed lines 

represented direct and indirect associations respectively). Nodes with a red or 

green background were input genes found to be up or down-regulated 

respectively. Grey and white nodes were molecules inserted by IPA basing on the 

Ingenuity Knowledge Base to produce diagrams. Grey highlighted molecules 

without significant changes and white indicated genes not included in the 

analysis. In the canonical pathways bar graph, ratio indicated the percentage of 

genes taking part in a pathway that could be found in the uploaded data set and 

–log(p-value) meant the level of confidence of association. Threshold line 

represented a p-value of 0.05. 

3.5.2.5 Real-time quantitative PCR (qPCR) 

 RNA from infected and control samples was reverse transcribed to cDNA 

using the qScript cDNA Synthesis kit (Quanta BioSciences, Gaithersburg, MD, 

USA) and real-time quantitative PCR (qPCR) assays were performed to access 

gene relative expression by the 2−ΔΔCq method (Livak et al., 2001) as previously 

described (Martins et al., 2013b). Beta-actin was used as reference gene and fold 

change values higher or lower than 1 meant up-regulation or down-regulation 

respectively. Subsequently, data were analyzed by Student’s t-test using the 
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software SPSS 15.0 for Windows® (SPSS, Inc) and a p-value bellow 0.05 was 

considered statistically significant. Primer pairs used for amplifications can be 

found as supporting information [see Supplementary File 1]. 

3.5.2.6 Western blot analysis 

 For protein extractions, catapulted tissue was homogenized with lysis 

buffer (150 mM sodium chloride, 1.0% NP-40, 50 mM Tris pH 8.00 and 5 mM 

PMSF) and incubated at room temperature for 30 min. Subsequently, samples 

were disrupted by vortexing for 30 sec and lysate concentration was determined 

using Bradford Protein Assay (Bio-Rad). Protein from individual replicates 

belonging to the same group was pooled (10 ug total), electrophoretically 

fractionated in 12% (w/v) SDS-PAGE gels and transferred onto a PVDF membrane 

(Millipore, Bedford, MA, USA). Western blot assays were carried out as described 

by Martins et al.(2012) employing the following primary antibodies: mouse anti-

swine histocompatibility class I (SLA-I) 4B7/8 (Bullido et al., 1997), rabbit anti-

NLRC5 antibody (ab105411, Abcam, Cambridge, UK) and mouse anti-porcine CD5 

1H6/8 (Pescovitz et al., 1998). To confirm equal sample loading, membranes were 

reblotted with anti-GAPDH monoclonal antibody (GenScript, Picastaway, NJ, 

USA). Membranes were scanned in a FLA-5100 imager (Fujifilm, Tokyo, Japan) 

and signal intensity was determined using Multigauge software (Fujifilm, 

Tokyo,Japan) as previously described (Martins et al., 2012). 

3.5.2.7 Histopathology, immunohistochemistry and confocal microscopy 

 Paraffin sections (5 μm) of formalin fixed samples were routinely 

processed for immunohistochemistry assays, as described elsewhere (Yubero et 

al., 2011). Mouse anti-porcine macrophage 4E9/11 (Bullido et al 1997), anti-

swine histocompatibility class I (SLA-I) 4B7/8 (Bullido et al 1997) and anti-porcine 
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TLR2 1H11 (Alvarez et al., 2008) as well as rabbit anti-NLRC5 (ab105411, Abcam) 

and anti-Apolipoprotein AI (ab75922, Abcam) were employed as primary 

antibodies. Biotinylated anti-mouse and anti-rabbit Ig (Dako, Barcelona, Spain) 

were used to detect immune complexes. Immunofluorescence using confocal 

microscopy was performed employing anti-SLAI 4B7/8 (Bullido et al. 1997) and 

anti-porcine macrophage 4E9/11 (Bullido et al 1997) mouse antibodies, anti-

NLRC5 polyclonal antibody (ab105411, Abcam) and a rabbit antiserum against 

Salmonella Typhimurium flagellin (Martins et al., 2013a). Fluorescein 

isothiocyanate (FITC)-conjugated goat anti-rabbit IgG (Sigma-Aldrich, St. Louis, 

MO, USA) and Alexa Fluor 594 anti-mouse IgG (Life Technologies, Carlsbad, CA, 

USA) were used as secondary antibodies. Immunostaining was performed as 

described by Robertson et al. (2008). Briefly, deparaffinized sections of formalin 

fixed MLN were blocked for 30 min with 1% bovine serum albumin and 2% foetal 

calf serum in PBS. Then, sections were overnight incubated with primary 

antibodies at 4°C, three times washed with PBS for 5 min and incubated for 1 h at 

37°C with fluorescent secondary antibodies. For negative controls, primary 

antibody was omitted. Finally, sections were three times washed for 5 min in PBS 

containing 1.43 μM 4',6-diamidino-2-phenylindole (Life Technologies). Samples 

were subsequently evaluated and imaged using a LSM 5 Exciter confocal 

microscope (Carl Zeiss, Jena, Germany).  

3.5.3 Results 

3.5.3.1 Genes are mostly up-regulated in Peyer patches follicles after S. 

Typhimurium infection 

 Microarray technology coupled to Rank Products analysis (Breitling et al., 

2004) was employed to explore the transcriptional response carried out in PP 
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follicles at 2 dpi with S. Typhimurium. A total of 164 transcripts, corresponding to 

152 unique genes, were found to be differently expressed as a consequence of 

infection (FDR adjusted p<0.05). Among them, 37 genes were down-regulated 

whereas 115 were up-regulated. [see Supplementary File 2] To validate 

microarray data, qPCR assays were performed on a panel of 22 genes filtered by 

Rank Products analysis. As expected, all of them were confirmed to be 

significantly regulated (p<0.05) after infection and showed the same expression 

pattern observed by microarray analysis (Table 1).  

Table 1 - Microarray data validation by qPCR 

Microarrays qPCR 
Gene 

Fold Change P-value Fold Change P-value 
B2M 1.9 0.039 3.3 0.008 
CCL2 2.1 0.013 8.9 0.024 
CCR5 2.1 0.018 18.2 0.001 
CD163a 2.5 0.012 24.6 0.02 
CD1A 1.8 0.038 3.1 0.001 
CD44 2.3 0.006 7.1 0.002 
CD80 2.3 0.004 7.0 0.006 
CXCL2 2.3 0.003 5.8 0.002 
DEFB1 14.4 0.000 3.1 0.002 
HLA-Aa 2.1 0.030 3.7 0.010 
IL1RN 2.2 0.013 10.0 0.011 
IL8 3.7 0.001 9.5 0.006 
IRF1 3.3 0.001 44.4 0.001 
LPCAT2 3.1 0.002 14.9 0.001 
MAP3K8 2.3 0.010 18.9 0.001 
NLRC5 3.6 <0.001 21.0 0.001 
STAT1 2.1 0.026 15.7 0.001 
SOD2 2.0 0.018 2.6 0.016 
TAP1 2.3 0.008 4.3 0.005 
TLR2 2.2 0.008 17.1 0.013 
WARSa 2.2 0.010 4.6 <0.001 
XISTa 0.2 0.004 0.01 <0.001 

aData from microarray analysis are mean values from more than one probe. 
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3.5.3.2 Processes related to cell movement and activation are primarily induced 

in Salmonella infected follicles 

 Bioinformatic tools were used to translate microarray data into biological 

information. It was revealed that infection mainly resulted in an enrichment of 

genes involved in cellular movement, followed by other host functions such as 

immune cell trafficking, inflammatory response and cell-to-cell signalling and 

interaction [see Supplementary File 3]. Subsequently, IPA z-score was employed 

to predict the effect of the uncovered gene expression changes on distinct 

biological processes. Results indicated that processes related to migration and 

activation of phagocytes and leukocytes were most significantly activated in S. 

Typhimurium infected PP follicles (Table 2). Besides, terms related to activation 

of lymphocytes, and especially T-lymphocytes, were uncovered to show the 

highest activation z-score values [see Supplementary File 3]. Thus, we carried out 

a series of assays to validate the predictions accessed by the bioinformatic 

engine. Firstly, hematoxylin-eosin staining disclosed a notably increase of 

phagocytes, mainly neutrophils, in PP upon infection (Figure 1C and D). This find 

could be further related to the presence of pathogen in tissue, being S. 

Typhimurium antigens detected mostly in the cytoplasm of polymorphonuclear 

cells (Figure 1E and F) found in areas of PP follicles where an accumulation of 

neutrophils was observed. Lastly, we checked the induction of lymphocytes 

activation in follicles by western blot assays, which uncovered higher levels of 

CD5 in infected samples (Figure 1G).  

3.5.3.3 Adaptive immune responses are properly induced in Peyer’s patches 

follicles during infections by NTS 

 Network analysis depicted direct and indirect relationships between 

genes involved in distinct processes of immune response [see Supplementary File  
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Figure 1 – Laser microdissection, histological analysis and CD5 quantification in PP follicles upon 
infection with S. Typhimurium. A-B: After their identification (A), PP follicles were microdissected 
by Auto-Laser Pressure Catapulting. C-D: H/E staining of ileum sections demonstrating PP follicles 
before (C) and after (D) the bacterial challenge. A highlighted in (D), infection resulted in a relevant 
infiltration of neutrophils. E: fluorescent labelling of S. Typhimurium in tissue. Pathogen was mainly 
detected in the perinuclear zone of polymorphonuclear cells. F: western blot assays uncovered 
increased levels of CD5 in infected tissue.  
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3]. The major generated network integrated genes involved in the 

communication between innate and adaptive immune cells and dendritic cell 

maturation (Figure 2A). Curiously, all genes involved in these processes were 

found to be up-regulated and were directly or indirectly related with I and type II 

interferon (IFN) genes. In light of the role of PP follicles in the establishment of 

immune response, we additionally verified the differential expression of a sort of 

genes involved in the formation of GC. This analysis revealed up-regulation of the 

main mediators of B-cell-T-cell interactions and cytokines involved in the 

triggering of B-cell mediated immunity (Figure 2B).  

Table 2 - Predicted activation state of biological functions and upstream 
regulators enriched in PP follicles during infections by S. Typhimurium 

Category 
Predicted Activation 

State 
Activation z-

score 
p-value 

Downstream effect    
Migration of phagocytes Increased 2,930 6,33E-13 
Cell movement of phagocytes Increased 2,928 4,09E-11 
Cell movement of leukocytes Increased 2,342 4,54E-10 
Cell movement of myeloid cells Increased 3,012 9,53E-10 
Leukocyte migration Increased 2,498 3,35E-09 
Activation of leukocytes Increased 3,213 4,77E-09 
Activation of blood cells Increased 3,514 4,96E-09 
Activation of cells Increased 3,378 1,80E-08 
Quantity of leukocytes Increased 2,564 1,92E-08 
Homing of leukocytes Increased 2,604 2,64E-08 

Upstream regulator    
IFNG Activated 4,211 1,04E-26 
lipopolysaccharide Activated 4,918 6,03E-23 
poly rI:rC-RNA Activated 4,291 4,60E-22 
Interferon alpha Activated 2,541 5,35E-21 
TNF Activated 4,107 1,46E-18 
IL1B Activated 4,096 1,05E-17 
STAT3 Activated 3,039 1,43E-17 
STAT1 Activated 3,110 2,58E-17 
IL6 Activated 2,861 4,18E-17 
NFkB (complex) Activated 4,092 6,77E-16 
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Figure 2 – Network analysis of microarray data and qPCR assays in S. Typhimurium infected PP 
follicles. A: major generated network depicted a common up-regulation of genes taking part in 
communication between innate and adaptive immune cells and dendritic cell maturation 
pathways. B: differential gene expression analysis by qPCR revealed an up-regulation of 
molecules involved in the formation of geminal centers in infected PP follicles. 
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3.5.3.4 IFNγ is the main upstream regulator of the transcriptional response 

carried out in Peyer’s patches during non-typhoidal salmonellosis 

 IPA z-score tool was also employed to identify and predict the activation 

state of upstream regulators, aiming to explain gene expression changes 

observed in tissue after infection. In this analysis, IFNγ was found to be the main 

regulator of transcriptional changes observed in PP follicles in response to S. 

Typhimurium, affecting the expression of 53 (35%) out 152 molecules in dataset  

[see Supplementary File 3, worksheet 5]. Thus, network analysis displayed that 

IFNγ up-regulation mostly lead to the activation of connected genes (Figure 3A). 

Interestingly, functional analysis of only IFNγ-target molecules revealed an 

enrichment of biological processes including migration of phagocytes and antigen 

presenting cells, bacterial infection of mammalia and activation of leukocytes, 

similarly to results observed for the whole dataset [see Supplementary File 3, 

worksheet 6]. Although significant changes in IFNγ mRNA levels were not 

detected by microarray analysis, we observed by qPCR that this gene was 18 

times more expressed in infected than control samples. Moreover, results of 

bioinformatic data mining could be further confirmed by the expression profile 

observed by qPCR for a panel of IFNγ-target genes (Figure 3B) and the uncovered 

abundance changes in tissue of two IFNγ-regulated molecules after infection 

(Figure 3C). Of note, STAT1 and STAT3, both transcriptional factors involved in 

interferon signalling, and IFNα were also detected among the upstream 

regulators most significantly implicated in tissue response to infection (Table 2).  

3.5.3.5 NLRC5 activates different molecules of the antigen presentation via 

MHCI pathway in Peyer patches follicles of S. Typhimurium infected swine 

 NLRC5 was also disclosed as a relevant mediator of host response to NTS. 

Network analysis followed by the IPA Molecule Activity Predictor tool revealed 
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Figure 3 – IFNγ is the main 
regulator of transcriptional 
response of PP follicles to non-
typhoid Salmonella. A: network 
analysis disclosed that IFNγ up-
regulation resulted in the activation 
or inhibition (orange and blue lines 
respectively) of 53 genes differently 
expressed after infection. Data were 
inconsistent for genes liked with 
yellow lines and effect could not be 
predicted for those linked with grey 
lines. B: differential gene expression 
analysis of a sort of IFNγ-target 
genes by qPCR confirmed the effect 
of this gene in the expression of 
downstream molecules.  C: 
immunohistochemistry assays 
further corroborated that up-
regulation of IFNγ gene also 
resulted in increase or decrease of 
target molecules at protein level. 
 



 

 

 

A B 

Figure 4 – NLRC5 activates the antigen presentation via MHCI pathway after infection with non-typhoid Salmonella. Network analysis (A) disclosed direct 
relationships between NLCR5 and distinct molecules involved in the antigen presentation via MHCI (B). 
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that NLRC5 up-regulation induces the activation of genes coding for molecules 

involved in different stages of the antigen presentation via MHCI pathway (Figure 

4A) Notably, all these genes were up-regulated after infection (Figure 4B). In 

order to clarify these results, we initially checked changes in the abundance of 

NLRC5 and MHCI in tissue by western blot. In accordance with transcriptomic 

data (Table 1), bacterial challenge also resulted in an increase of both molecules 

in tissue at protein level (Figure 5). Then, immunohistochemistry assays were 

carried out to verify the distribution of NLRC5 and MHCI in tissue. Higher levels of 

NLRC5 were detected at 2 dpi and labelling was observed in the cytoplasm and 

nucleus of mononuclear and polymorphonuclear cells (Figure 6A and B). Similarly, 

MHCI was also more detected in infected PP follicles, being mainly localized in 

the cytoplasm of mononuclear phagocytes (Figure 6C and D). Finally, 

immunofluorescence followed by confocal was executed to deepen and sharpen 

the role of NLRC5 and MHCI in the context of NTS. In spite of the diffuse labelling 

observed for NLRC5 over the whole follicle, high levels of this molecule were 

uncovered in polymorphonuclear cells located in the periphery of infected PP 

follicles (Figure 6E). Regarding MHCI, we observed that S. Typhimurium infected 

cells showed high levels of MHCI (Figure 6F). 

 

 

 

 

 

 

 

 

 

 
Figure 5 - Western blot assays of NLRC5 and MHCI in infected  and control follicles. 
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Figure 6 – S. Typhimurium infected PP follicles showed increased levels of NLRC5 and MHCI at 
protein level. A-D: Immunohistochemistry assays further detected increased levels of both NLRC5 
(A-B) and MHCI (C-D) in follicles after infection. E: confocal microscopy analysis revealed high levels 
of NLRC5 in polymorphonuclear cells. Merge image: NLRC5-FITC, MHCI-Alexa Fluor® 594 and DAPI. 
F: S. Typhimurium was detected in cells showing high levels of MHCI. Merge image: S. 
Typhimurium-FITC, MHCI-Alexa Fluor® 594 and DAPI. 
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3.5.4 Discussion 

 Until recently, the pathogenesis of infections by NTS was largely 

overlooked due to the dominance of the murine model of typhoid fever and the 

lack of alternative models for the study of salmonellosis (Tsolis et al., 2011). 

Porcine immune system show a high level of resemblance with human (Meurens 

et al., 2012) and differently from rodents, human and swine PP share common 

anatomical and physiological peculiarities such as a predominant localization in 

the ileum and prenatal development (Makala et al., 2002). In light of this and the 

similarity of disease caused by S. Typhimurium in human and pig (Sanchez-Vargas 

et al 2011, Boyen et al., 2008), in the current study we coupled our swine model 

of non-typhoid salmonellosis to LM and microarrays analysis to dissect the 

mechanisms carried out in PP follicles upon infection with S. Typhimurium.  

 PP follicles are aggregations of B cells and follicular dendritic cells (FDC) 

that after antigenic stimulus form the germinal center (GC). These specialized 

structures contain large B lymphoblasts, follicular T cells, macrophages and a 

tight network of FDC, playing a relevant role in the generation of protective 

antibody production and memory B-cells (El Shikh and Pitzalis, 2012). We 

observed that infection triggered in PP follicles the migration and activation of 

lymphocytes as well as the up-regulation of distinct genes involved in the 

formation of GC. Thus, it could be suggested that antibody responses and long-

lived humoral immunity are triggered at a short time (2dpi) in PP follicles during 

NTS infections. 

 During primary immune responses in PP, protein antigens are processed 

and presented by antigen presenting cells (APCs) which activate Ag-specific Th 

cells in the PP T-cell zones (Acheson and Luccioli.2004). These cells expand and 

differentiate into effector Th cells that move towards PP follicles to regulate the 

development of Ag primed B-cells and lead to the formation of a germinal center 
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Traditionally, T-cell help to B-cell has been attributed to the type-2 helper CD4+ T 

cells (Th2) (Coquerelle and Moser, 2010). However, T-follicular helper cells (Tfh) 

were recently described as CD4+ mature cells that are capable of providing help 

to B-cells during the GC reaction and switched Ag-specific antibody responses via 

IL21 (through STAT3 and STAT1), IL4 (through STAT6), IL10 and IFNγ (Cerutti et 

al., 2012, El Shikh and Pitzalis., 2012,Coquerelle and Moser, 2010). IL21 

production by naïve CD4+ T cells is induced by IL6 and IL12 released by DC located 

out of the follicle (Ma et al. 2012). However, FDC also stimulates Tfh 

differentiation by producing IL6 upon type I interferon signaling (Coquerelle and 

Moser, 2010) and collaborate with B-cell activation by releasing large amounts of 

active TGF-β (Cerutti et al., 2012). Interestingly, all these cytokines were found to 

be up-regulated, indicating that the cytokine environment necessary for B cell 

differentiation was established in infected PP follicles. 

 Apart from this, the fate of a responding B cell is determined by the 

interaction between T-cell and B-cell through mediators also uncovered by us to 

be up-regulated. A cognate interaction between T cell receptor and peptide-

MHCII on B cells must be assembled, as well as ligation of CD40 on B cells by 

CD40L and provision of CD80 and CD86 by B cells to ligate CD28 on T cells (Zotos 

and Tarlinton, 2012). B cells thereafter differentiate along the follicular pathway 

generating GC B cells that further differentiate into long-lived memory B cells and 

plasma cells producing high-affinity antibodies (Cerutti et al., 2012).  

 PP follicles underwent a marked infiltration of phagocytes upon infection, 

in line with the increased expression levels uncovered by microarray analysis for 

distinct chemokine encoding genes. Curiously, S. Typhimurium was 

predominantly labelled in the cytoplasm of polymorphonuclear cells (PMN) that 

were presumed to be neutrophils due to the notable presence of these cells in 

infected follicles. In spite of the accumulating evidences that the recruitment of 

neutrophils is crucial to prevent Salmonella dissemination (Broz et al., 2012), the 



Experimental study 5 – Martins et al., JID (Manuscript in preparation) 

178 

infiltration of inflammatory cells is usually observed in the PP subepithelial dome 

as well as interfollicular area during mice Salmonella infections (Tam et al., 2008). 

Therefore, the remarkable infiltration of neutrophils observed by us in PP follicles 

led us to speculate that apart from killing of bacteria, these cells could also take 

part in the induction of adaptive immune responses during infections by NTS. 

 Indeed, it has been reported that neutrophils may influence adaptive 

immunity by acting either directly on T cells or indirectly through DC modulation 

(Beauvillain et al., 2007). Thus, the first hypothesis considered by us was that 

infected neutrophils could carry Salmonella to follicles for further processing. 

Previously, Mengiovanni et al. (2006) and Morel et al. (2008) uncovered that 

physical interactions involving neutrophils, DC and T cells play a major role in the 

human immune response to Candida and Mycobacterium respectively, resulting 

in T cell activation following DC acquisition of antigens delivered by 

polymorphonuclear cells (PMN). More recently, Alfaro et al. (2011) found out 

that DC can uptake viable PMN and subsequently cross-present antigens 

previously internalized by these cells.  

 Cross-presentation defines the process by which professional APC 

present peptides from extracellular antigens via their own MHCI molecules to 

CD8+ T cells (Houde et al., 2003). Notably, several evidences of the induction of 

cross-presentation were found out in this study. Firstly, bioinformatic mining of 

microarray data disclosed an up-regulation of genes encoding molecules involved 

in different steps of the antigen presentation pathway via MHCI. BATF3, a 

transcription factor required for development of DC subsets capable of priming 

CD8 T-cell responses (Tussiwand et al., 2012) was also found to be up-regulated 

and IFNγ, followed by IFNα and their signal transducers STAT1 and STAT3 were 

identified as the most relevant upstream regulators of the transcriptional 

response carried out in follicles upon infection. Types I and II IFN up-regulate 

multiple functions within the class I antigen presentation pathway to increase the 
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quantity and diversity of peptides presented in the context of MHCI (Schroder et 

al. 2004). Infected tissue also showed increased levels of CD5, a marker of T-cell 

activation (Soldevila et al., 2011) and over-expression of CXCL9 and CXCL11, both 

strong inducers of cytotoxic lymphocytes (CTL) and type-1 helper CD4+ T cells 

(Th1) activation and migration (Groom and Luster, 2011). Additionally, we 

confirmed by western blot analysis and immunohistochemistry assays that MHCI 

was more abundant in tissue after the bacterial challenge and demonstrated by 

confocal analysis that S. Typhimurium infected phagocytes expressed high levels 

of this molecule. Therefore, on the whole, our results suggested that Salmonella 

antigens are cross-presented in infected PP follicles, in line with our previous 

observations in S. Typhimurium infected mesenteric lymph nodes (Martins et al., 

2012). These finds, supported by previous evidences (Alfaro et al., 2011, Morel et 

al., 2008, Mengiovanni et al., 2006), could highlight a relevant role for infected 

neutrophils in the response to S. Typhimurium, since these cells would be able to 

modulate DC function while transferring to them antigens to be employed in 

acquired immunity mechanisms.  

 However, the induction of cross-presentation in infected PP through 

other mechanisms/cells should not be dismissed. Interestingly, we observed that 

PMN cells located in the boundary of infected PP showed high levels of NLRC5, a 

NOD-like receptor newly identified as a key transcriptional regulator of genes 

involved in the MHCI antigen presentation pathway (Yao and Qian, 2013). 

Immunohistochemistry and western blot assays demonstrated that NLRC5 was 

increased at protein level in infected tissue and network analysis of microarray 

data also related the up-regulation of this gene with the activation of molecules 

involved in the Ag presentation via MHCI. Moreover, S. Typhimurium was found 

by us to induce up-regulation of NLRC5 and MHCI in porcine neutrophils infected 

in vitro (Data not shown). In light of this, we infer that infected neutrophils could 

directly cross-present S. Typhimurium antigens to CD8+ T cells. This presumption 
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can be further supported by a previous demonstration that neutrophils are able 

to cross-prime CD8+ T cells in vivo (Beauvillain et al., 2007). 

 Finally, we envisaged that cross-presentation in PP follicles could also be 

triggered by activated B cells. De Wit et al. (2010) reported that upon BCR-

mediated phagocytosis of Salmonella, human B-cell boosts antibody production 

and in addition, cross-present bacterial antigens in a proteasome-dependent 

manner. Nevertheless, besides the direct interaction with CD8+ T-cells, the 

functionality of B cells as professional APC could also enable them to work in 

synergy with infected neutrophils, to initiate and/or amplify T cell cytotoxic 

response to exogenous antigens. As previously discussed, this hypothesis could 

also justify the notably presence of infiltrating neutrophils in an area of PP mostly 

composed of B-cells, but further research is necessary to elucidate it. 

 Although we have discussed the distinct mechanisms that could trigger 

cross-presentation separately, it is probable that all of them occur simultaneously 

during infections. If true, this redundancy in cross-presentation induction could 

enhance the potency and efficiency of host cell-mediated immunity against 

Salmonella. Indeed, suicide cross-presentation of S. Typhi by DC is reported to 

generate mostly CD8+ effector memory T cells (Salermo-Gonçalves and Sztein 

2009), whereas infected B-cells are capable of activating both the central and 

effector memory CD8+ compartments (De Wit et al., 2010). 

 In summary, this study disclosed a prominent role for PP follicles in the 

establishment of immune responses against S. Typhimurium. It was 

demonstrated that infection resulted in the assembling of different mediators of 

immune response in PP follicles, aiming to induce early antibody responses and 

long-lived humoral immunity at a short time after infection. Interestingly, several 

evidences of cross-presentation triggering were found out by us, suggesting that 

besides eliciting B-cell-mediated immune responses, PP follicles might mediate 

the generation effector and memory CD8 T cells during infections by NTS. 
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Therefore, our results reveal a novel function for PP follicles during Salmonella 

infections that should be considered for development of therapies and vaccine 

approaches against salmonellosis. 
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Conclusions 

The conclusions of this thesis are: 

1. Swine salmonellosis could be successfully reproduced under experimental 

conditions (Martins et al. Comp Immunol Microbiol Infect Dis. 2013. 36:149-160). 

2. Salmonella burden in swine MLN fluctuated along the studied time course and 

picked at 2 dpi, when the most prominent transcriptomic and proteomic 

responses were observed (Martins et al. Comp Immunol Microbiol Infect Dis. 

2013. 36:149-160; Martins et al. J Proteomics. 2012. 75:4457-4470); 

3.  S. Typhimurium triggered the induction of innate immunity mechanisms in 

porcine MLN, marked by a substantial infiltration of phagocytes and up-

regulation of pro-inflammatory genes in tissue (Martins et al. Comp Immunol 

Microbiol Infect Dis. 2013. 36:149-160). 

4. Swine innate immune response reduced substantially S. Typhimurium burden 

in MLN. However, pathogen was able to maintain itself in tissue despite host 

defence mechanisms (Martins et al. Comp Immunol Microbiol Infect Dis. 2013. 

36:149-160). 

5. Proteome analysis revealed that S. Typhimurium mediated GTPases activity in 

infected MLN to give rise to cytoskeleton rearrangements necessary for 

phagosome formation and pathogen replication (Martins et al. J Proteomics. 

2012. 75:4457-4470) 
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6. The S. Typhimurium strain used in this work expressed both invasion and 

intracellular survival inducers in MLN during pig infections. Besides, genes coding 

for two different flagellar filament proteins were found to be expressed in MLN, 

suggesting that pathogen could employ flagellar phase variation to hinder pig 

immune response (Martins et al. Vet Res. Under review); 

7. Swine might take advantage of flagellin and prgJ expression by S. Typhimurium 

to induce pyroptosis of infected cells in MLN and consequently promote 

clearance of pathogen by innate mechanisms in the extracellular milieu. This 

process, concurrent with the inhibition of apoptosis might consist in a host 

protective response that prevents pathogen spread beyond gut-associated 

lymph-nodes (Martins et al. Vet Res. Under review; Martins et al. J Proteomics. 

2012. 75:4457-4470); 

8. Transcriptomic and proteomic analysis conjunctively indicated that S. 

Typhimurium antigens are cross-presented via MHCI in a proteasome-dependent 

manner in MLN of infected pigs, which might enable host to trigger an early CD8 

T cell mediated response to control infection (Martins et al. Vet Res. Under 

review; Martins et al. J Proteomics. 2012. 75:4457-4470); 

9. Combination of an in vivo infection model with laser microdissection and gene 

expression analysis proved to be a promising strategy to clarify the role of specific 

cell populations during infectious processes (Martins et al. Dev Com Immunol. 

2013. 41:100-104); 

10. S. Typhimurium induced a remarkable infiltration of phagocytes, mainly 

neutrophils, in PP follicles of infected pigs. Additionally, these structures were 

found to assemble distinct immunity mediators upon infection, enabling host to 
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mount multiple levels of the adaptive response against pathogen (Martins et al. 

Dev Com Immunol. 2013. 41:100-104; Martins et al. J Infect Dis. Manuscript in 

preparation); 

11. Swine PP follicles engendered the development of antibody responses and 

long-lived humoral immunity at a short time (2 days) after infection with non-

typhoid Salmonella (Martins et al. J Infect Dis. Manuscript in preparation); 

12. Besides eliciting B-cell-mediated immune responses, PP follicles mediate the 

generation of effector and memory CD8 T cells during infections by S. 

Typhimurium. Thus, this particularity should be considered for the development 

of therapies and vaccine approaches against salmonellosis (Martins et al. J Infect 

Dis. Manuscript in preparation); 

13. Pyroptosis and cross-presentation appeared to be the core processes in the 

establishment of immune-response to S. Typhimurium in swine lymphoid organs. 

For this reason, this work highlight NLRC4 and NLRC5, the main mediators of each 

of these processes, as attractive targets for genetic variation screenings, focused 

on the genetic improvement of resistance to salmonellosis in porcine (Martins et 

al. J Proteomics. 2012. 75:4457-4470; Martins et al. Vet Res. Under review; 

Martins et al. J Infect Dis. Manuscript in preparation). 
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