C. Albenne, H. Canut, G. Boudart, Y. Zhang, S. Clemente et al., Plant Cell Wall Proteomics: Mass Spectrometry Data, a Trove for Research on Protein Structure/Function Relationships, vol.2, pp.977-989, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00430612

S. Andersson-gunneras, E. J. Mellerowicz, J. Love, B. Segerman, Y. Ohmiya et al., Biosynthesis of celluloseenriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis, Plant Journal, vol.45, pp.144-165, 2006.

M. Arend, Immunolocalization of (1,4)-beta-galactan in tension wood fibers of poplar, Tree Physiology, vol.28, pp.1263-1267, 2008.

K. Baba, Y. W. Park, T. Kaku, R. Kaida, M. Takeuchi et al., Xyloglucan for Generating Tensile Stress to Bend Tree Stem, Molecular Plant, vol.2, pp.893-903, 2009.

R. K. Bamber, The origin of growth stresses: a rebuttal, IAWA Bulletin, vol.8, pp.80-84, 1987.

W. Bao, D. M. O'malley, and R. R. Sederof, Wood contains a cell-wall structural protein, Proceedings of the National Academy of Sciences, vol.89, pp.6604-6608, 1992.

J. R. Barnett and V. A. Bonham, Cellulose microfibril angle in the cell wall of wood fibres, Biological Reviews, vol.79, pp.461-472, 2004.

W. Boerjan, J. Ralph, and M. Baucher, Lignin biosynthesis, Annual Review of Plant Biology, vol.54, pp.519-546, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02766568

A. Boudet, Lignins and lignification: Selected issues, Plant Physiology and Biochemistry, vol.38, pp.81-96, 2000.

V. Bourquin, N. Nishikubo, H. Abe, H. Brumer, S. Denman et al., Xyloglucan endotransglycosylases have a function during the formation od secondary cell walls of vascular tissues, The Plant Cell, vol.14, pp.3073-3088, 2002.

A. J. Bowling and K. C. Vaughn, Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose, American Journal of Botany, vol.95, pp.655-663, 2008.

J. D. Boyd, Tree growth stresses -Part V: Evidence of an origin in differentiation and lignification, Wood Science and Technology, vol.6, pp.251-262, 1972.

N. C. Carpita and D. M. Gibeaut, Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth, The Plant Journal, vol.3, pp.1-30, 1993.

N. C. Carpita, Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and Other (1 -> 4)-beta-D-Glycans, Plant Physiology, vol.155, pp.171-184, 2011.

G. I. Cassab, Plant cell wall proteins, Annual Review of Plant Physiology and Plant Molecular Biology, vol.49, pp.281-309, 1998.

S. S. Chang, B. Clair, J. Ruelle, J. Beauchene, D. Renzo et al., Mesoporosity as a new parameter for understanding tension stress generation in trees, Journal of Experimental Botany, vol.60, pp.3023-3030, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00387861

B. Clair, T. Almeras, G. Pilate, D. Jullien, J. Sugiyama et al., Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction, Plant Physiology, vol.155, pp.562-570, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01602029

B. Clair, T. Almeras, H. Yamamoto, T. Okuyama, and J. Sugiyama, Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation, Biophysical Journal, vol.91, pp.1128-1135, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112572

B. Clair, J. Gril, K. Baba, B. Thibaut, and J. Sugiyama, Precautions for the structural analysis of the gelatinous layer in tension wood, Iawa Journal, vol.26, pp.189-195, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004517

B. Clair, J. Gril, D. Renzo, F. Yamamoto, H. Quignard et al., Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood, Biomacromolecules, vol.9, pp.494-498, 2008.

B. Clair, J. Ruelle, J. Beauchene, M. F. Prevost, and M. Fournier, Tension wood and opposite wood in 21 tropical rain forest species 1. Occurrence and efficiency of the Glayer, Iawa Journal, vol.27, pp.329-338, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112579

D. Cosgrove and M. Jarvis, Comparative structure and biomechanics of plant primary and secondary cell walls, Frontiers in Plant Science, vol.3, 2012.

D. J. Cosgrove, Expansive growth of plant cell walls, Plant Physiology and Biochemistry, vol.38, pp.109-124, 2000.

D. J. Cosgrove, Growth of the plant cell wall, Nature Reviews Molecular Cell Biology, vol.6, pp.850-861, 2005.

C. Coutand, G. Jeronimidis, B. Chanson, and C. Loup, Comparison of mechanical properties of tension and opposite wood in Populus, Wood Science and Technology, vol.38, pp.11-24, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01190891

R. Decou, S. Lhernould, F. Laurans, E. Sulpice, J. C. Leple et al., Cloning and expression analysis of a wood-associated xylosidase gene (PtaBXL1) in poplar tension wood, Phytochemistry, vol.70, pp.163-172, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00696082

A. Dejardin, F. Laurans, D. Arnaud, C. Breton, G. Pilate et al., Wood formation in Angiosperms, Comptes Rendus Biologies, vol.333, pp.325-334, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02664282

A. Dejardin, J. C. Leple, M. C. Lesage-descauses, G. Costa, and G. Pilate, Expressed sequence tags from poplar wood tissues -A comparative analysis from multiple libraries, Plant Biology, vol.6, pp.55-64, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02681152

M. S. Doblin, I. Kurek, D. Jacob-wilk, and D. P. Delmer, Cellulose biosynthesis in plants: from genes to rosettes, Plant cell Physiology, vol.43, pp.1407-1420, 2002.

L. A. Donaldson, Lignification and lignin topochemistry -an ultrastructural view, Phytochemistry, vol.57, pp.859-873, 2001.

L. A. Donaldson and J. P. Knox, Localization of Cell Wall Polysaccharides in Normal and Compression Wood of Radiata Pine: Relationships with Lignification and Microfibril Orientation, Plant Physiology, vol.158, pp.642-653, 2012.

A. Driouich and T. I. Baskin, Intercourse between cell wall and cytoplasm exemplified by arabinogalactan proteins and cortical microtubules, American Journal of Botany, vol.95, pp.1491-1497, 2008.

S. Du and F. Yamamoto, An Overview of the Biology of Reaction Wood Formation, Journal of Integrative Plant Biology, vol.49, pp.131-143, 2007.

A. Ebringerova and T. Heinze, Xylan and xylan derivatives -biopolymers with valuable properties, 1 -Naturally occurring xylans structures, procedures and properties, Macromolecular Rapid Communications, vol.21, pp.542-556, 2000.

M. Ellis, J. Egelund, C. J. Schultz, and A. Bacic, Arabinogalactan-Proteins: Key Regulators at the Cell Surface?, Plant Physiology, vol.153, pp.403-419, 2010.

C. H. Fang, B. Clair, J. Gril, and S. Q. Liu, Growth stresses are highly controlled by the amount of G-layer in poplar tension wood, Iawa Journal, vol.29, pp.237-246, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00339066

M. Fournier, B. Chanson, B. Thibaut, and D. Guitard, Measurements of residual growth strains at the stem surface observations on different species, Annales Des Sciences Forestieres, vol.51, pp.249-266, 1994.

G. Freshour, C. P. Bonin, W. Reiter, P. Albersheim, A. G. Darvill et al., Distribution of Fucose-Containing Xyloglucans in Cell Walls of the mur1 Mutant of Arabidopsis, Plant Physiology, vol.131, pp.1602-1612, 2003.

S. C. Fry, The structure and functions of xyloglucan, Journal of Experimental Botany, vol.40, pp.1-11, 1989.

S. C. Fry, W. S. York, P. Albersheim, A. Darvill, T. Hayashi et al., An unambiguous nomenclature for xyloglucan-derived oligosaccharides, Physiologia Plantarum, vol.89, pp.1-3, 1993.

S. Fry, Polysaccharide-modifyng enzymes in the plant cell wall, Annual Review of Plant Physiology and Plant Molecular Biology, vol.46, pp.497-520, 1995.

Y. Gaspar, K. L. Johnson, J. A. Mckenna, A. Bacic, and C. J. Schultz, The complex structures of arabinogalactan-proteins and the journey towards understanding function, Plant Molecular Biology, vol.47, pp.161-176, 2001.

T. Gorshkova, N. Brutch, B. Chabbert, M. Deyholos, T. Hayashi et al., Plant Fiber Formation: State of the Art, Recent and Expected Progress, and Open Questions, Critical Reviews in Plant Sciences, vol.31, pp.201-228, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00939519

T. A. Gorshkova, O. P. Gurjanov, P. V. Mikshina, N. N. Ibragimova, N. E. Mokshina et al., Specific Journal of Plant Physiology, vol.57, pp.328-341, 2010.

L. Goswami, J. Dunlop, K. Jungnikl, M. Eder, N. Gierlinger et al., Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer, Plant Journal, vol.56, pp.531-538, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964568

M. Gray-mitsumune, E. J. Mellerowicz, H. Abe, J. Schrader, A. Winzéll et al., Expansins Abundant in Secondary Xylem Belong to Subgroup A of the ?-Expansin Gene Family, Plant Physiology, vol.135, pp.1552-1564, 2004.

F. Guillon, P. S. Bouchet, B. Devaux, M. F. Frasse, P. Jones et al., Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture, Journal of Experimental Botany, vol.59, pp.273-288, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02658895

J. H. Hamman, Composition and applications of Aloe vera leaf gel, Molecules, vol.13, pp.1599-1616, 2008.

J. Harholt, A. Suttangkakul, and H. V. Scheller, Biosynthesis of Pectin. Plant Physiology, vol.153, pp.384-395, 2010.

T. Hayashi, R. Kaida, T. Kaku, and K. Baba, Loosening xyloglucan prevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose, Russian Journal of Plant Physiology, vol.57, pp.316-320, 2010.

M. Hertzberg, H. Aspeborg, J. Schrader, A. Andersson, R. Erlandsson et al., A transcriptional roadmap to wood formation, Proceedings of the National Academy of Sciences of the United States of America, vol.98, pp.14732-14737, 2001.

M. Hoffman, Z. Jia, M. J. Peña, M. Cash, A. Harper et al., Structural analysis of xyloglucans in the primary cell walls of plants in the subclass Asteridae, Carbohydrate Research, vol.340, pp.1826-1840, 2005.

M. R. Jacobs, The growth stresses of wood stems, Commonwealth Forestry Bureau, vol.28, pp.1-67, 1945.

E. Jamet, H. Canut, G. Boudart, and R. F. Pont-lezica, Cell wall proteins: a new insight through proteomics, Trends in Plant Science, vol.11, pp.33-39, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00105840

K. L. Johnson, B. J. Jones, A. Bacic, and C. J. Schultz, The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules, Plant Physiology, vol.133, pp.1911-1925, 2003.

R. P. Jolie, T. Duvetter, A. M. Van-loey, and M. E. Hendrickx, Pectin methylesterase and its proteinaceous inhibitor: a review, Carbohydrate Research, vol.345, pp.2583-2595, 2010.

J. P. Joseleau, T. Imai, K. Kuroda, and K. Ruel, Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides, Planta, vol.219, pp.338-345, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00306805

C. P. Joshi, S. Thammannagowda, T. Fujino, J. Q. Gou, U. Avci et al., Perturbation of Wood Cellulose Synthesis Causes Pleiotropic Effects in Transgenic Aspen, Molecular Plant, vol.4, pp.331-345, 2011.

B. Jourez, A. Riboux, and A. Leclercq, Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv 'Ghoy'), 2001.

, Iawa Journal, vol.22, pp.133-157

B. Jourez, Le bois de tension. 1. Définition et distribution dans l'arbre, Biotechnology, Agronomy, Society and Environment, vol.2, pp.100-112, 1997.

T. Kaku, S. Serada, K. Baba, F. Tanaka, and T. Hayashi, Proteomic analysis of the G-layer in poplar tension wood, Journal of Wood Science, vol.55, pp.250-257, 2009.

S. Kerstens, W. F. Decraemer, and J. P. Verbelen, Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials, Plant Physiology, vol.127, pp.381-385, 2001.

J. S. Kim and G. Daniel, Distribution of glucomannans and xylans in poplar xylem and their changes under tension stress, Planta, vol.236, pp.35-50, 2012.

J. P. Knox, The use of antibodies to study the architecture and developmental regulation of plant cell walls, International Review of Cytology -a Survey of Cell Biology, vol.171, pp.79-120, 1997.

F. Lafarguette, J. C. Leple, A. Dejardin, F. Laurans, G. Costa et al., Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood, New Phytologist, vol.164, pp.107-121, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682928

D. Lamport and M. J. Kieliszewski, Stress upregulates periplasmic arabinogalactanproteins, Plant Biosystems, vol.139, pp.60-64, 2005.

A. H. Liepman, C. J. Nairn, W. Willats, I. Sorensen, A. W. Roberts et al., Functional genomic analysis support conservation of function among cellulose syntahse-like A gene family members and suggests diverse roles of mannans in plants, Plant Physiology, vol.143, pp.1881-1893, 2007.

J. Lindeboom, B. M. Mulder, J. W. Vos, T. Ketelaar, and A. Emons, Cellulose microfibril deposition: coordinated activity at the plant plasma membrane, Journal of Microscopy, vol.231, pp.192-200, 2008.

A. Liwanag, B. Ebert, Y. Verhertbruggen, E. A. Rennie, C. Rautengarten et al., , 2012.

, Arabidopsis thaliana Is a beta-1,4-Galactan beta-1,4-Galactosyltransferase, Plant Cell, vol.24, pp.5024-5036

C. P. Macmillan, S. D. Mansfield, Z. H. Stachurski, R. Evans, and S. G. Southerton, Fasciclinlike arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus, Plant Journal, vol.62, pp.689-703, 2010.

A. Macquet, M. C. Ralet, O. Loudet, J. Kronenberger, G. Mouille et al., A naturally occurring mutation in an Arabidopsis accession affects a beta-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage, Plant Cell, vol.19, pp.3990-4006, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02660522

K. Maekaji, The mechanism of gelation of konjac mannan, Agricultural And Biological Chemistry, vol.38, pp.315-321, 1974.

S. E. Marcus, Y. Verhertbruggen, C. Herve, J. J. Ordaz-ortiz, V. Farkas et al., Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls, Bmc Plant Biology, vol.8, p.60, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02332860

S. E. Marcus, A. W. Blake, T. Benians, K. Lee, C. Poyser et al., Restricted access of proteins to mannan polysaccharides in intact plant cell walls, The Plant Journal, vol.64, pp.191-203, 2010.

E. Mellerowicz, M. Baucher, B. Sundberg, and W. Boerjan, Unravelling cell wall formation in the woody dicot stem, Plant Molecular Biology, vol.47, pp.239-274, 2001.

E. J. Mellerowicz, P. Immerzeel, and T. Hayashi, Xyloglucan: The Molecular Muscle of Trees, Annals of Botany, vol.102, pp.659-665, 2008.

E. J. Mellerowicz and B. Sundberg, Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties, Current Opinion in Plant Biology, vol.11, pp.293-300, 2008.

D. Mohnen, Pectin structure and biosynthesis, Current Opinion in Plant Biology, vol.11, pp.266-277, 2008.

L. Moreira and E. Filho, An overview of mannan structure and mannan-degrading enzyme systems, Applied Microbiology and Biotechnology, vol.79, pp.165-178, 2008.

C. Morvan, C. Andeme-onzighi, R. Girault, D. S. Himmelsbach, A. Driouich et al., Building flax fibres: more than one brick in the walls, Plant Physiology and Biochemistry, vol.41, pp.935-944, 2003.

M. Muller, M. Burghammer, and J. Sugiyama, Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction, Holzforschung, vol.60, pp.474-479, 2006.

C. Munoz, J. Baeza, J. Freer, and R. T. Mendonca, Bioethanol production from tension and opposite wood of Eucalyptus globulus using organosolv pretreatment and simultaneous saccharification and fermentation, Journal of Industrial Microbiology & Biotechnology, vol.38, pp.1861-1866, 2011.

N. Nishikubo, T. Awano, A. Banasiak, V. Bourquin, F. Ibatullin et al., Xyloglucan endotransglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar -A glimpse into the mechanism of the balancing act of trees, Plant and Cell Physiology, vol.48, pp.843-855, 2007.

P. H. Norberg and H. Meier, Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen, Populus tremula L.). Holzforschung, vol.20, pp.174-178, 1966.

T. Okuyama, H. Yamamoto, M. Yoshida, Y. Hattori, and R. R. Archer, Growth stresses in tension wood -role of microfibrils and lignification, Annales Des Sciences Forestieres, vol.51, pp.291-300, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00882950

A. M. Olsson, I. Bjurhager, L. Gerber, B. Sundberg, and . Salmén, Ultra-structural organization of cell wall polymers in normal and tension wood of aspen revealed by polarization FTIR microspectroscopy, Planta, vol.233, pp.1277-1286, 2011.

Y. B. Park and D. J. Cosgrove, Changes in Cell Wall Biomechanical Properties in the Xyloglucan-Deficient xxt1/xxt2 Mutant of Arabidopsis, Plant Physiology, vol.158, pp.465-475, 2012.

E. Paux, V. Carocha, C. Marques, A. M. De-sousa, N. Borralho et al., Transcript profiling of Eucalyptus xylem genes during tension wood formation, New Phytologist, vol.167, pp.89-100, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01183025

S. Persson, K. Caffal, G. Freshour, M. Hilley, S. Bauer et al., The arabidopsis irregular xylem8 mutant id deficient in glucuronoxylan and homogalacturonan, which are essential for secondary cell wall integrity, The Plant Cell, vol.19, pp.237-255, 2007.

G. Pilate, A. Dejardin, F. Laurans, and J. C. Leple, Tension wood as a model for functional genomics of wood formation, New Phytologist, vol.164, pp.63-72, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02682383

C. Plomion, G. Leprovost, and A. Stokes, Wood formation in trees, Plant Physiology, vol.127, pp.1513-1523, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01204210

M. C. Ralet, O. Tranquet, D. Poulain, A. Moise, and F. Guillon, Monoclonal antibodies to rhamnogalacturonan I backbone, Planta, vol.231, pp.1373-1383, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02667192

C. Ringli, B. Keller, and U. Ryser, Glycine-rich proteins as structural components of plant cell walls, Cellular and Molecular Life Sciences, vol.58, pp.1430-1441, 2001.

M. J. Roach, N. Y. Mokshina, A. Badhan, A. V. Snegireva, N. Hobson et al., Development of Cellulosic Secondary Walls in Flax Fibers Requires beta-Galactosidase, Plant Physiology, vol.156, pp.1351-1363, 2011.

G. Sachetto-martins, L. O. Franco, and D. E. Oliveira, Plant glycine-rich proteins: a family or just proteins with a common motif?, Biochimica et Biophysica Acta, vol.1492, pp.1-14, 2000.

D. Sandquist, L. Filonova, V. Schantz, L. Ohlin, M. Daniel et al., Microdistribution of xyloglucan in differentiating poplar cells, Bioresources, vol.5, pp.796-807, 2010.

H. V. Scheller and P. Ulvskov, Annual Review of Plant Biology, vol.61, pp.263-289, 2010.

W. R. Scheible and M. Pauly, Glycosyltransferases and cell wall biosynthesis: novel players and insights, Current Opinion in Plant Biology, vol.7, pp.285-295, 2004.

C. Schultz, P. Gilson, D. Oxley, J. Youl, and A. Bacic, GPI-anchors on arabinogalactanproteins: implications for signalling in plants, Trends in Plant Science, vol.3, pp.426-431, 1998.

C. J. Schultz, M. P. Rumsewicz, K. L. Johnson, B. J. Jones, Y. M. Gaspar et al., Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case, Plant Physiology, vol.129, pp.1448-1463, 2002.

G. J. Seifert and K. Roberts, The biology of arabinogalactan proteins, In Annual Review of Plant Biology, vol.58, pp.137-161, 2007.

A. M. Showalter, Structure and function of plant cell wall proteins, The Plant Cell, vol.5, pp.9-23, 1993.

A. M. Showalter, Arabinogalactan-proteins: structure, expression and function, Cellular and Molecular Life Sciences, vol.58, pp.1399-1417, 2001.

C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann et al., Toward a Systems Approach to Understanding Plant Cell Walls, Science, vol.306, pp.2206-2211, 2004.

J. Sommer-knudsen, A. Bacic, and A. E. Clarke, Hydroxyproline-rich plant glycoproteins, Phytochemistry, vol.47, pp.483-497, 1998.

L. Tan, S. Eberhard, S. Pattathil, C. Warder, J. Glushka et al., An Arabidopsis Cell Wall Proteoglycan Consists of Pectin and Arabinoxylan Covalently Linked to an Arabinogalactan Protein, Plant Cell, vol.25, p.270, 2013.

L. Tan, F. Qiu, D. Lamport, and M. J. Kieliszewski, Structure of a Hydroxyproline (Hyp)-Arabinogalactan Polysaccharide from Repetitive Ala-Hyp Expressed in, 2004.

, Transgenic Nicotiana tabacum, Journal of Biological Chemistry, vol.279, pp.13156-13165

T. E. Timell, The chemical composition of tension wood, Svensk Papperstidning, vol.72, pp.173-181, 1969.

T. Tryfona, H. C. Liang, T. Kotake, Y. Tsumuraya, E. Stephens et al., Structural characterization of Arabidopsis leaf arabinogalactan polysaccharides, Plant Physiology, vol.160, pp.653-666, 2012.

H. T. Wang, I. H. Liu, and T. F. Yeh, Immunohistological study of mannan polysaccharides in poplar stem, Cellulose Chemistry and Technology, vol.46, pp.149-155, 2012.

W. Willats, P. M. Gilmartin, J. D. Mikkelsen, and J. P. Knox, Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library, Plant Journal, vol.18, pp.57-65, 1999.

W. Willats, C. Orfila, G. Limberg, H. C. Buchholt, G. Van-alebeek et al., Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls: IMPLICATIONS FOR PECTIN METHYL ESTERASE ACTION, MATRIX PROPERTIES, AND CELL ADHESION, Journal of Biological Chemistry, vol.276, pp.19404-19413, 2001.

S. Wolf, K. Hematy, and H. Hofte, Growth Control and Cell Wall Signaling in Plants, SS Merchant, vol.63, pp.381-407, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01053127

S. Wolf, G. Mouille, and J. Pelloux, Homogalacturonan Methyl-Esterification and Plant Development, Molecular Plant, vol.2, pp.851-860, 2009.

Y. Y. Wu, M. Williams, S. Bernard, A. Driouich, A. M. Showalter et al., Functional Identification of Two Nonredundant Arabidopsis alpha(1,2)Fucosyltransferases Specific to Arabinogalactan Proteins, Journal of Biological Chemistry, vol.285, p.13638, 2010.

H. Yamamoto, J. Ruelle, Y. Arakawa, M. Yoshida, B. Clair et al., Origin of the characteristic hygro-mechanical properties of the gelatinous layer in tension wood from Kunugi oak (Quercus acutissima, Wood Science and Technology, vol.44, pp.149-163, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00544381

E. A. Yates, J. F. Valdor, S. M. Haslam, H. R. Morris, A. Dell et al., Characterization of carbohydrate structural features recognized by antiarabinogalactan-protein monoclonal antibodies, Glycobiology, vol.6, pp.131-139, 1996.

A. Yoneda, T. Ito, T. Higaki, N. Kutsuna, T. Saito et al., Cobtorin target analysis reveals that pectin functions in the deposition of cellulose microfibrils in parallel with cortical microtubules, The Plant Journal, vol.64, pp.657-667, 2010.

W. S. York, O. Neill, and M. A. , Biochemical control of xylan biosynthesis -which end is up?, Current Opinion in Plant Biology, vol.11, pp.258-265, 2008.

A. Zykwinska, J. F. Thibault, and M. C. Ralet, Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged, Journal of Experimental Botany, vol.58, pp.1795-1802, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02664310

A. W. Zykwinska, M. Ralet, C. D. Garnier, and J. Thibault, Evidence for In Vitro Binding of Pectin Side Chains to Cellulose, Plant Physiology, vol.139, pp.397-407, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02669834