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Chapter 1
General Introduction

It is impossible to think about adaptation without thinking about Charles
Darwin and its book On the Origin of Species from 1859. Darwin and Wal-
lace pointed out natural selection as the main force responsible for the vast
diversity of species. Between 1920 and 1930, Fisher, Haldane and Wright
integrated the Mendelian rules of inheritance within the Darwin’s theory
of adaptation, while until there the two theories were thought as mutually
exclusive. The basis of this integration was the mathematical modeling of ge-
netic inheritance from one generation to the other, giving birth to population
genetics. Understanding the mechanisms of adaptation, and disentangling
adaptation forces from neutral ones, has been since then one of the major

concerns of population genetics.

The domestication of wild animals and plants by Humans is an outstand-
ing example of the role of selection in species evolution and diversification.
The first domesticated species were dogs (Vila et al., 1997), resulting in one
of the most easily noticeable example of phenotypic variation shaped by hu-
mans. Domestication with agricultural purposes began 10,000 years ago with
cattle, sheep, goats and pigs (Andersson, 2012). Horses and chickens were
domesticated around 3,000 years later, and rabbits about 1,500 years ago
(Carneiro et al., 2011). Domestication changed animal phenotypes through
natural and artificial selection. For example, in early times of domestication,

animals that were able to survive and reproduce in captivity were indirectly
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12 CHAPTER 1. GENERAL INTRODUCTION

favored. Later, humans intentionally selected animals based on specific traits
of agronomic interest, like meat, milk or wool production (Diamond, 2002).
Most animal domesticated species have their origins in the Eurasian conti-
nent, being naturally adapted to a certain clime, but then they were exported
all over the world and were challenged by new clime, seasons and diseases,
so new adaptations in this direction were also required (Andersson, 2012,
Diamond, 2002). Nowadays, domesticated animals still continue being se-
lected, and in the specific case of farm animals, intense artificial selection is
being applied in order to achieve optimal animal production. As a conse-
quence of their domestication history, farm animals represent a great model
for evolutionary biology. Indeed, in On the Origin of Species, Darwin (1859)
pointed out the importance of domestic species to understand the mecha-
nisms of adaptation: “ It is, therefore, of the highest importance to gain a
clear insight into the means of modification and co-adaptation. At the com-
mencement of my observations it seemed to me probable that a careful study
of domesticated animals and of cultivated plants would offer the best chance
of making out this obscure problem. Nor have I been disappointed; in this
and n all other perplexing cases I have invariably found that our knowledge,
imperfect though it be, of variation under domestication, afforded the best
and safest clue. I may venture to express my conviction of the high value of
such studies,although they have been very commonly neglected by naturalists.
From these considerations, I shall devote the first chapter of this Abstract to

Variation under Domestication.”

The detection of selection signatures in farm animals is not only a theoret-
ical challenge and a model for natural species, as it can also have substantial
agronomic outcomes. In the last 50 years, the scientific management of farm
animals based on quantitative genetics has resulted in a spectacular increase
of productivity, and more recently a lot of genome wide scans have high-
lighted genomic regions of agronomic importance. However, these scans gen-
erally focus on one specific production trait. On the opposite, genome scans
for selection have the potential to pinpoint functionally important regions of

the genome, which may be related to a large variety of traits.

In the last years, different techniques became available as dense genome
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wide genotyping and next generation sequencing. The production of large
amounts of data was facilitated, giving the chance to access to the genotypic
information from large samples of individuals from different populations and
parts of the world. Thanks to this type of data, we can look for signa-
tures of natural and artificial selection, being able to identify, for example,
genes of domestication by comparing domesticated species with their wild
counterparts. Many tests for detecting footprints of selection in the genome,
which are based on different mathematical and genetical models, have been
proposed recently. These tests are challenged by the novel genotyping and

sequencing technologies, essentially because of two features of the data.

First, with the novel technologies we can easily obtain sequences of 50,000
observed variables per individual, and up to millions of variables in the case
of genome wide sequencing. For each individual, the observed variables are
genotypes composed of genetic markers that are organized in chromosomes
(whose number depends on the species). As the number of markers that we
can observe increases, the average distance between observed markers de-
creases and the information provided by each marker is no more independent
from that of other markers. Some tests take advantage of the fact that alleles
at consecutive markers are generally transmitted together from one genera-
tion to the other, focusing on combinations of alleles at several consecutive
markers. These type of tests are called haplotypic tests. Other tests simply
try to account for correlations between adjacent markers and to exploit also
this information. Another issue that arises with the huge amount of observed

data is the computational cost associated to the tests.

Second, we get information from several populations at the same time.
To profit from this, several tests intend to detect signatures of selection using
the information that arises from comparing populations. Indeed, one specific
trait is generally selected in only a subset of the sampled populations. Thus,
comparing the genetic diversity observed in selected population(s) and non
selected one(s) should help to detect genomic regions associated to the evo-
lution of this trait. Many of the tests exploiting this idea have been designed
to compare only pairs of populations. As the amount of data is increasing,

it is very common to have genomic information from more than two popula-



14 CHAPTER 1. GENERAL INTRODUCTION

tions so tests considering more than two populations simultaneously should
be developed. On one hand, including more information in the model should
give a clearer picture of the evolution scenario and thus increase the power to
detect selected regions. On the other hand, this avoids the multiple testing
issues that arise when performing one genome scan per each population pair.

Extending cross population tests (comparing 2 populations) to multi-
population tests is however not trivial. When different populations are sam-
pled, some populations are more closely related than others, because they
derive from a more recent common ancestor. This leads to a data set with
hierarchical structure, where close related populations will contribute with
more correlated data, while more distant populations will be almost inde-
pendent.

The aim of this thesis is to develop statistical tests for the detection of
recent selection signatures using dense genetic data collected from multiple
populations, and to apply them to several data sets collected from farm
animal species. Although the initial motivation of these tests is the detection
of selection in farm animal species, which explains some of the assumptions
that I will make, I believe they should be also useful in many other types
of species, for instance in humans where very large data sets are already
available and where the detection of selection signatures has received much
interest in the last years. Two different tests will be proposed in order to
cope with different types of data: individual genotypes or population allele
frequencies. The test that takes individual information will naturally be
more computationally demanding than the test that considers just population

information.

The thesis is organized as follows. In Chapter 2 I introduce basic notations
and mathematical models related to population genetics theory within an
“ecological” scale of time as well as to the type of data that I will test. I
also describe important aspects of the genomic signatures left by positive
selection. In chapter 3 I shortly review the detection methods that, in my
opinion, are related to the tests I developed myself. In particular I will

describe a method that is fundamental to the further developed tests: the
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F-LK test. We can consider the new tests almost as extensions of this one.
The following chapters are presented under an article form. In Chapter 4 a
new haplotypic test for detecting selection, denoted hapFLK, is presented.
It is illustrated using real data from sheep, which was extracted from the
recently released Sheep HapMap dataset. In Chapter (5) I present a more
extensive analysis of the Sheep HapMap data set, based on hapFLK and
its single SNP equivalent FLK. Populations were included in this genome
scan for selection based on a preliminary study of population structure in
the Sheep HapMap data set, so details about this analysis are also provided.
Finally in Chapter 6 I consider the situation where genetic information is not
available at the individual level but at the population level. This situation
occurs for instance when the DNA of all sampled animals is sequenced in a
single pool, which provides genome wide information at a much lower cost
than individual sequencing. hapFLK can not be applied in this case, but I
present another test, based on local score theory, which also accounts for the
correlation between loci. I apply this test to several datasets, in particular
one dataset resulting from the pooled sequencing of two divergent lines of

quail.
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Chapter 2
Introduction

J.Felsentstein begins his notes on theoretical evolutionary genetics saying:
“Theoretical population genetics is arguably the area of biology in which
mathematics has been most successfully applied.” 1In this chapter T will
introduce some standard mathematical models describing how the genetic
material of a population evolves along generations. These models are essen-
tial to my work, because all the methodological developments presented in
the following chapters are based on them. In the first section, I will describe
how genetic information arising from biological measurements can be repre-
sented in a mathematical framework and introduce basic definitions. In the
second and third sections I will focus on models describing the neutral evo-
lution of allele frequencies, at a single locus or at several correlated loci. In
the last section I will describe the effect of selection, in particular of positive

directional selection.

2.1 A mathematical framework for genomic

data

2.1.1 Definitions

All the genetic material of an organism is packaged in its genome. A fixed

position on the genome is called a locus (pl. loci), which is arbitrarily
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18 CHAPTER 2. INTRODUCTION

Figure 2.1: SNP: The alleles of
this SNP are: G, the ancestral and
A, the derived.

composed of one or several DNA nucleotides. If several variants of the DNA
sequence exist at a locus, we call them alleles.

In the special case where the locus is a single nucleotide, we call it a
SNP: Single Nucleotide Polymorphism (Figure 2.1 ). SNPs are currently
the most commonly used genetic markers, because they are very common in
the genome and because several recent technologies allow to measure them
at a genome wide scale (see below).

Since the mutation rate per generation and per base pair is extremely
low (approximately 107® for mammals), it is generally assumed that every
single nucleotide in the genome can experience at most one mutation in the
history of a species (this is called the infinite site model). As a consequence,
SNPs are considered to have only two alleles in the genome: the ancestral
allele, which existed before the mutation event, and the derived allele, which
was created by the mutation. In practice, most SNPs have indeed only two
alleles, and those with more than two alleles, being a really small subset of
the total, can anyway be removed from the analysis.

SNPs represent 90% of the total variation in species Collins et al. (1998),
but they are not the only source of variation in the genome. For instance,
there are also microsatelites and copy number variations (CNVs). These type
of markers evolve in a different way that SNPs do, for example they have
different mutation rates, in general higher than nucleotide mutation rates,

and the number of alleles is in general greater than 2. In CNVs the alleles

! This figure was taken from http://www.ibbl.lu/personalised-medicine/

what-is-personalised-medicine/dna-genes-snps
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Figure 2.2: Haplotypes: (a) Aligned sequences. The SNPs of the set
of chromosomes are highlighted. (b) Haplotypes containing all the SNPs
present in the sample of the four chromosomes. (c) Depending on the tech-
nique that we use to extract the SNP information, we will recover a subset
of the total sample of SNPs, named tag SNPs.

are the number of times that a sequence is repeated, from where comes its
name. Thus, mathematical models differ from one type of marker to the

other. This work focuses on SNP datasets.

We denote haplotype a combination of alleles at different loci carried on a
same chromosome (Figure 2.22). Diploid individuals as livestock animals or
humans carry two copies of each chromosome, so they carry two haplotypes

that form a genotype.

Knowing the genotypes of an individual at several loci, as provided by
most available technologies (see below), does not imply that we know the
two haplotypes. If haplotypes are known, we say that the data is phased.
There are different ways to get phased data (both haplotypes) from unphased
data (genotypes). I will briefly introduce some of the models and softwares
available to do this further in this chapter (Section 2.3).

2 This figure was taken from http://www.brown.edu/Research/Istrail_Lab/proj_
cmsh.php
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2.1.2 The datasets considered in this study

Different technologies are commonly used to produce genomic data from a
sample of individuals. The most informative approach is individual sequenc-
ing, which provides the genotype of all sampled individuals for all the SNPs
found in the species. With the recent advent of next generation sequenc-
ing technologies (see Mardis (2013) for a historical review), this experimen-
tal design has become realistic, for instance the genomes of 1000 humans
from various populations or 1000 bulls from various breeds are currently
being produced by international consortia (http://www.1000genomes.org,
http://www.1000bullgenomes.com). However, this approach is still too ex-
pensive for lower scale projects, at least for “complex” species like mammals

whose genome is very large.

One alternative is to focus on a smaller (but still large) set of SNPs
distributed over the genome, and to obtain the genotype of each sampled
individual at these SNPs by hybridization using a genotyping array (see
http://www.sheephapmap.org/genseq.php for an example of how this can
be done). This approach has been widely used in the last decade in human
or animal genetics. The first dataset analyzed in this study (Chapters 4 and
5) has been obtained by this approach, analyzing about 3000 sheep with a
chip of 50K SNPs in the context of the Sheep HapMap consortium (Kijas
et al., 2012). A chip of higher resolution (700K) is currently being developed
for sheep, and is already available in cattle. High density genotyping chips
are also available in several other livestock species, for instance chicken, pig,

horse among others.

A second cheaper alternative to individual sequencing is pool sequencing.
In this approach, the DNA of sampled individuals is pooled before being
sequenced. This provides allele frequencies at all SNPs in the genome, but
individual information is lost. The second dataset analyzed in this study
(Chapter 6) was obtained using this design. Two selectively divergent quail
lines were considered, and one pooled sample of 10 quails was sequenced in

each population.

For the detection of natural selection, we will see in the following chapters
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that both approaches (individual data at a reduced set of SNPs obtained by
genotyping, or population data at all SNPs obtained by pool sequencing)
have their own advantages and drawbacks. Below we already illustrate in an
example (2.1) one difference between genomic information obtained at the

individual level and at the population level.

Example 2.1. Let us suppose that we observe the genotypes for individuals
at several biallelic loci, and that we denote A and a the two alleles that
are present at one locus. As diploid individuals carry two alleles, individual
genotypes can be AA, Aa or aa at this locus. We can recode the data by
counting the number of A alleles that the individual carries: aa — 0, Aa — 1
and AA — 2. Doing this at each locus each individual is represented by a
sequence of 0s, 1s and 2s. If each individual sequence is a line of a matrix,
we can do a Principal Components Analysis (PCA) and plot individuals in a
two-dimensional plane to have an idea of the population structure. If instead,
we had just the frequencies of each allele in each population (data coming
from pool-sequencing), we could also build a matriz, but each line contains
population information instead of individual information. A PCA can also
be done with this matriz.

In Figure 2.3 we see that at the population level (right) we can only have
an idea of the genetic proximity between populations. For example, we observe
that the Scottish and New Zealand Texel Breeds are the closest ones, and that
the Irish Suffolk breed is the farthest away from the rest of the breeds.

At the individual level, we see that there are two Irish Suffolk individuals
that are closer to other breeds than to the Irish Suffolk cluster. In fact, there is
one Irish Suffolk individual that lies in the middle of the Texels cluster. This
could come from a mislabeling, or signal a migrant individual from Scottish
Texel to Irish Suffolk. We also see that in the Scottish Texel breed there
are three distinct sub groups. The reason for that could be that the Scottish
Texel samples come from three different rams, being a little bit genetically
differentiated among them. We see also that the genetic diversity among
German Texel indiwiduals is larger than among other breeds.

As we see in this example, individual information can tell us a lot about

the structure of the populations to whom individuals belong, for instance the



22 CHAPTER 2. INTRODUCTION

Figure 2.3:  First 2 principal components of genetic data of sheep,
considering individuals or populations.

genetic homogeneity of populations, genetic variation among populations and
possible admizture (migrants from one population to another) and mislabel-
ing. But, this is not the only aspect, we will see that when looking for sig-
natures of selection, the type of data has a strong implication in the methods

that we can use, and the type of signals that we can detect.

It is worth to note that, when the data is obtained by dense genotyp-
ing we have to be careful with the ascertainment bias INDEX. This is the
bias produced in the allele frequency spectrum of the alleles, produced by
the choice of the SNPs. In Figure 2.4% we see a simulation of the expected
frequency spectrum depending on the amount of individuals used for detect-
ing the SNPs in a sequence of DNA. To get more information about the
uncommon SNPs we have to use more individuals. The bias can be also
produced when using individuals from one continent to produce the chip and

then genotyping individuals from other continent, because there can be some

3 Figure taken from http://bioinformatics.be.edu/ marth/BI820/pages/afs AnalysisComputerSession.html
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Figure 2.4: The expected folded
spectrum under a simple, station-
ary history (constant effective pop-
ulation size), for a wide range of
values of discovery sample size.

mutations that do not exist in one continent but have a high frequency in
another.

In figure 2.1.2 we see a comparison between the site frequency spectra of
Human genotypes depending on the consortium that produced the data. In
the next chapters, we discuss the influence that the ascertainment bias can

have when scanning genomes for selection.

Figure 2.5: Ascertainment Bias
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2.2 Modeling the neutral evolution of allele
frequencies at a single locus under the

“ecological” time scale

In this section I will introduce mathematical models that describe the evolu-
tion of allele frequencies along generations under neutral evolution. Although
the focus on my work is on positive selection, describing neutral models is
important, because the detection of loci under selection requires to know the
distribution of genetic diversity that can be expected under neutrality. I will
focus here on biallelic markers, first because the derivations are easier and

thus more illustrative, second because the datasets I studied only included

SNP data.

The models presented in this manuscript consider a population as a pool
of genes that is carried by individuals and transmitted from one generation to
the other. Individuals are assumed to produce an infinite quantity of gametes,
and if an individual carries two different alleles, half of the gametes produced
by this individual will be of each type. During the reproduction phase, two
gametes are randomly and independently chosen from the population pool
to produce a new diploid individual, which is called the random mating
assumption.

Under these conditions, if the population size (i.e. the number of individ-
uals) is infinite, with equal genotype frequencies in both sexes, no differential
fertility or viability of the genotypes, no migration, no mutation and no selec-
tion, allele frequencies will remain constant along generations and genotype
frequencies will be in Hardy Weinberg Equilibrium, i.e. for two alleles A and
a with frequencies p and ¢, genotype frequencies will be p* for AA, 2pq for
Aa and ¢* for aa. This principle is called the Hardy-Weinberg Law. Any
departure of these assumptions will cause a change in the allele frequencies.

In the following sections, we will assume that there is no mutation, be-
cause we will work in a time scale, where there is a negligible probability that
a new mutation arises, and if so, its frequency will be so low (under 1%) that

we cannot distinguish it from a sequencing or genotyping error. Mutations
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have of course occurred in the history of the species, otherwise there would
be no SNPs at all, but we assume this was before the time period we con-
sider. For simplicity, we also assume that the genotype frequencies in both
sexes are equal, but this hypothesis could be relaxed, by conditioning on the
allele that a child receives from each of his parents. In the model presented
in the next section (2.2.1) the derivations are straightforward. But, if the
allele frequencies among sexes are different, when considering more than one
population, more than one locus at a time and/or selection, the derivations

can be really complicated.

I will discuss here the situation where the infinite population size as-
sumption is relaxed, either without or with migration. Differential fertility
or viability, and in particular positive selection, will be discussed in the Sec-
tion 2.4.

2.2.1 Genetic drift in a single population

The first assumption from the Hardy-Weinberg Equilibrium that does not
hold when modeling real populations, is the infinite population size. Sam-
pling a finite number of alleles (2/V, where N is the population size) at each
generation will affect the allele frequencies randomly, not remaining constant
anymore. Sewall Wright (1931) and Ronald A. Fisher (1930) modeled the
stochastic fluctuation of allele frequencies through generations. This process
is called genetic drift, and their model (described below) is known as the
Wright-Fisher model .

Let us assume that generations do not overlap and that the population
has constant size N through generations. If we focus on a SNP that has
alleles A and a, let X (¢) be the number of copies of the A allele at generation
t and p(t) = )g—(]\? the frequency of this allele in the population. To build the
generation t + 1 we will sample alleles with replacement from generation ¢,
so the distribution of X (¢4 1) conditional on X (¢) is a binomial distribution
B(2N,p(t)). For i,5 € {0,1,...,2N}, the probability of having j copies of

alleles A at generation ¢+ 1 given that there were ¢ copies at generation t is:
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py = PO+ 1) = X0 =) = () (ﬁ) (1- %)QM 2.1)

Conditional on X(t), X (¢ + 1) is independent on the value of X (u) for
earlier generations (u < t). Thus, the process {X ()}, is a Markov Chain

with probability transition matrix P = (p;;) oy and initial state X (0),

§,j=0,...,
where p;; are given by Equation 2.1. This implies that :

E(X(t +1)[X(t)) = 2Np(t) = X (1)
Var(X(t +1)[X (1)) = 2Np(t)(1 — p(t))

For t = 0:
Ep() = EEEOm) = ECNm)  =po
Var(p(1)) = E(Var(p(1)|p)) + Var Ep(0lm)) = 5x:o(1 — p0)

To get the variance and mean of p(t+1) we have to condition and de-condition
on p(t), thus E(p(t + 1)) = E (E(p(t + 1)|p(t)) = E(p(t)) = po and

Var(p(t + 1)) = E(Var(p(t + 1)[p(1))) + Var(E(p(t + 1)|p(t)))

If N remains constant, for each ¢ we have:

po(1 —po) = Var(p(t+1)) = <1 - %) [po(1 = po) — Var(p(t))]

By recursion after ¢t generations we obtain:



2.2. MODELING ALLELE FREQUENCIES 27

Figure 2.6: Genetic drift: effect of the population size N on the evolution
of allele frequencies. 15 random trajectories are shown in black. The average
of these trajectories is in red.

As t increases, the expected value of p(t) remains constant but the vari-
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ance of p(t) increases. There is a inverse relation between the variance and
the population size: the smaller is N, the larger is the variance, so the fluc-
tuation of the frequencies is larger for smaller populations (Figure 2.6). One
of the direct consequences of a small population size, is that alleles get fixed

very fast, so it is easier to loose genetic variation in this cases.

Whatever the population size, eventually one of the two alleles will dis-
appear and the other will get fixed. This means that for some sufficiently
large ¢ we will have p(t) = 0 or p(t) = 1, which are the absorbing states
of the Markov Chain. Once an allele gets fixed or disappears, genetic drift
cannot change its frequency anymore. The only sources of new variation at
this locus are thus mutation (but we do not consider it here) or migration

from another population.

The variance of p(t) is related to the notion of identity by descent. We say
that two identical alleles are Identical By Descent (IBD) if they descend from
the same ancestral allele at generation 0. The probability of sampling two
IBD alleles at generation t is called the inbreeding coefficient of a population.

Under the previous assumptions (see Appendix A.1), this coefficient is equal

()]

Thus, the expected variance of the allele frequency at time ¢ can be writ-

to

Ft:

ten as

Var(p(t)) = Fipo(1 — po) (2.4)

Actually, the fact that the variance at time ¢ only depends on the initial
frequency py and on the inbreeding coefficient from time 0 to time ¢ holds
for much more general assumptions than those described here, and will be
used in the next subsection. Then, conditional to the ancestral population,
p(t) can be modeled by a normal distribution with the computed mean and
variance (Nicholson et al., 2002) (Figure 2.7):
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p(t) ~ N (po, Fipo(1 — po))

0.4-

Allele frequency

Figure 2.7: Top: effect of F; on the variation of population allele frequencies
(po = 0.2). Bottom: Histogram of the allele frequencies for different F; and

estimated normal distribution conditional to py and F; (in red).
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2.2.2 Genetic drift in several populations

In the previous subsection we considered one single population that de-
scended from an ancestral population. We now consider the situation of
n populations descending from the same ancestral population. This situa-
tion is central to my work, since my aim is to analyze genomic data sampled
in several populations. In this model, populations can experience variations
in population size, as bottlenecks or expansions, and can evolve indepen-
dently or have a common evolution up to some point where they split. For
the moment, we still assume that they do not exchange migrants.

Below I show that, under this model, the covariance matrix of the allele
frequencies in the final populations can be expressed using a kinship matriz,
which summarizes the history of the populations and is related to the in-
breeding coefficients. To make derivations more illustrative, I consider an

easy situation with only 3 populations, which is described in Figure 2.8

Figure 2.8: Example of tree-like evolution: construction of the kinship
matrix

Consistent with Bonhomme et al. (2010) we denote:

pi: the final allele frequency in population i (a leaf of the tree) withi € {1,...,n}

dyv: the variation of the inbreeding coefficient corresponding to the branch
from U (an internal node or the root of the tree) to V (an internal node

or a leaf of the tree)
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fi;+ kinship coefficient between populations ¢ and j

For i = 3, as already shown in the previous subsection (Equations 2.3,

2.4 ), we have:

Var(ps) = 603 - po(1 — po)

For i = 1,2 we have similarly:

E(pi|pX) = Px
Var(pilpx) = 6xi-px(1 —px)

Deconditioning on px leads to:

E(p:) = po

and

Var(p)) = Var(E(pilpx)) + E(Var(pi|px))
= Var(px) + E(dx; - px(1 — px))
= Var(px) +0xi(E(px) — E*(px) — Var(px))
= dx0 - po(l —po) + xi[po(1 — po) — doxpo(L — po)]
= po(1l —po)[1 — (1 — dox)(1 — dxi)]

Besides, we have cov(py, p2|px) = 0, because conditional on py (i.e. after
splitting in two different populations), the two populations evolve indepen-

dently, so:

COU<p17p2) = COU(E(pl |px), E(]b ’PX)) + E(COU(ZH,ZE ’px))
= cov(px,px) = Var(px)
= doxpo(l —po)

In summary, we can write:
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Cov(pi, p;) = fijpo(l — po) (2.5)

VC””(Pz‘) = fiipo(l - ]90) (2-6)

where the f;;s are given by:

fir= 1—(1—06x1)(1— dox)
foo= 1—(1—6x2)(1 —dox)

Js3 = o3 (2.7)
Jiz = dox
Jiz= 0
Jaz= 0
The covariance matrix of p = (p1,p2,p3) is thus given by Fpo(1 — po),
where F is
Juu fiz fiz
F = Jiz2 fa2  fas (2.8)
Jiz fas fa3

Note that f; corresponds to the inbreeding coefficient of population i (2.3).
We will denote it F; in the rest of this manuscript.

Nicholson et al. (2002) say that F; (written as ¢; in their article) might
be thought of as analogous to Fsr values but with one for each population.
In the case that all F; are identical, they are exactly equal to Fsp for the

entire group of populations. Fgr is defined in Section 3.1.

2.2.3 Models with admixture

Different scenarios including migration can be imagined, and each of them
leads to a different modification of the allele frequency distribution. His-
torically, a lot of studies in the field of population genetics have focused
on island models, where populations (the islands) exchange migrants con-

tinuously within each others, at a constant rate along generations. These
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models are considered to be at equilibrium, which means that populations
have always existed and are not related by any philogenetical history.

Here we will rather concentrate on scenarios where only a few migration
events have occurred in the recent history, which are also called admixture
models. In livestock species, the typical example of an admixture event is
when a breeder decides to cross his animals with those from another breed,
so that the descendants inherit one interesting trait from this other breed.
A drastic example is the Dorper sheep. This breed was born as a mix-
ture of Dorset Horn and Blackhead Persian (of Animal Science Oklahoma
State University, 1995). The Blackhead Persian breed is originally from So-
malia, though adapted to arid clime and the Dorset breed is an easy care
meat breed. By crossing these breeds, the South African Department of
Agriculture created a meat sheep adapted to the more arid regions of the
country.

Admixture models are also intensively studied in human genetics, where
notorious examples of admixture events have been documented or at least dis-
cussed (Laval et al., 2010, Liu et al., 2006), for instance between Africans and
Americans at slavery time (Tishkoff et al., 2009), between hunter-gatherers
and pastoralists in the Neolithic, between Sapiens and Neandertals in the
Palleolithic (Wall and Hammer, 2006).

Figure 2.9: Migration events. The main population receives a proportion
of m migrants from a donor population. The migrants can come from a
population that shares the ancestral population (right) or not (left).
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Let ¢ be the generation where admixture occurred. The population un-
der study receives migrants from another population. In this section the
former is called the main population and the latter the donor population.
The donor population can share the ancestral population with the main one
or not (Figure 2.9). Let also p(¢') be the frequency of allele A in the main
population. In contrast with the model without migration described in Equa-
tion 2.1, X (¢'+1) does not depend only on p(t’), the frequency of the A-allele
in the main population, but also on the proportion of alleles that are sam-
pled from the migrant population, denoted m, and the frequency of allele A
in the migrant population, denoted p,,. Indeed, X (¢’ + 1)|(p(t'), pm, m) has
a Binomial distribution B(2N, 7 (' + 1)), where the probability 7(t' + 1) of

choosing allele A is given by:

a7t +1) = P(X(#+1) = A)
= P(X(t' +1) = AlA comes from a migrant)P(migrant)
+P(X(t' 4+ 1) = AJA comes from main pop)P(main pop)
= pmm+p(t')(1 —m)

Consequently, we have

po if t <t
(1 —m)po + mpy, if t >t

E(X(1) = {

If the migrant population descends from the same ancestral population
as the main population, then E(p,,(t) = po) and E(X(t)) = po remain un-
changed. But if the migrant comes from a population that does not share
the ancestral population, depending on the proportion of migrants m and
the frequency of the A allele in the migrants p,,, the mean can be shifted. If
there is no information about the population that gives migrants, then the

modeling of the frequencies depends from variants that we cannot control.

The variance of X (¢) also remains as in Equation 2.3 if ¢ < #, but for
t =t + 1 we are sampling from two different populations. As we sample

from a larger population, the variance at this generation will be higher than
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in a non-migration scenario.

(Pickrell and Pritchard, 2012) generalized the kinship matrix for admixed
populations based on the same model that was presented above (Subsection
2.2.2), but with a slight modification to simplify the equations: when com-
puting the variances of the populations as in Equation 2.7, they approximate
1 —(1—=0x1)(1 —dox) by dx1 + dox. When both quantities are small this
approximation holds because dx; - dox =~ 0. They developed a software to

compute these type of trees called Treemiz.

2.3 Modeling the joint evolution of allele fre-

quencies at several linked loci

Until now, we considered the evolution of allele frequency at only one bial-
lelic locus. However, as two alleles that are located on the same chromosome
tend to be transmitted together from one generation to another, the allele
frequencies at distinct loci are generally not independent, and the informa-
tion provided by haplotype frequencies is richer than that provided by the
marginal allele frequencies.

Consider for example two loci with alleles A, a and B, b, and let us suppose
that we have two populations, one with 50% of haplotypes AB and 50%
of haplotypes ab, and the second with 50% of haplotypes Ab and 50% of
haplotypes aB. The allele frequencies in both populations are py = % and
PR = %, which would mean that populations are not differentiated. On the
other hand, haplotype frequencies make it clear that these populations are
very different.

This potential correlation between allele frequencies at two distinct loci

is called linkage disequilibrium, and can be quantified by the measure

Dap = pap —Dpa-Ds

= PABPab — PAbPaB

(2.9)

In this section, I will first briefly indicate how the derivations presented

for single locus evolution might be extended to model haplotype evolution.
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I will then introduce one approximative model that greatly simplifies statis-
tical inferences based on haplotype frequencies, which will be central in the

methodological development of Chapter 4.

2.3.1 Evolution of haplotype frequencies under the Hardy-
Weinberg hypotheses

Let us come back to the ideal situation of a single population satisfying the
Hardy Weinberg hypotheses, and consider two loci with allele frequencies p4
and pp (necessarily constant over time), and with an initial linkage disequi-
librium Dy at generation 0. The recombination rate r between two loci is
the probability for two alleles carried on a same chromosome to be inherited

on different gametes during the meiosis due to a crossing over.

Figure 2.10: Recombination event The recombination rate is 1%

To sample one haplotype AB at generation t, we have to choose either
one non recombining haplotype AB from generation ¢t —1, or two independent
alleles A and B that are put together by recombination. Consequently we

have:
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phs = (1—1p'5" +rpaps
= pO —paps = 1= %" — paps)
= Dt = (]_ - T)Dt—l

thus

D = (1—1)'Dy (2.10)

and

pas(t) = paps + (1 —7)' Dy (2.11)

The recombination rate varies from complete linkage (r = 0) to independent
segregation (r = %) If r =0, then p(ﬁg = p(fl); Vt, so pap remains constant.
If r # 0, D decreases exponentially with ¢ down to 0 and allele frequencies
at the two loci tend to linkage equilibrium, but the speed of this convergence
can be very slow for close loci, the recombination rate per generation and
per base pair being of order 10~% in mammals.

Relaxing the Hardy-Weinberg hypotheses, even under models of genetic
drift, the derivations become quickly more complex. Indeed, allele frequencies
do not remain constant, and from the above equations we can see that p(j;l)
does not only depend on p(ﬂ;, but also on all other haplotype frequencies.
Besides, the number of haplotypes increases exponentially with the number
of loci (2% haplotypes for L loci). To overcome this complexity and capture
the haplotype diversity in a sampled population, several approximate models
have been proposed, for instance Scheet and Stephens (2006), Stephens et al.
(2001) and Browning (2006). In the following subsection I present two of

them.

2.3.2 Multilocus models for linkage disequilibrium

The models described in this section were originally developed for inferring
the haplotypes that segregate in a sample based on the observed genotypes

in the sample, but they also provide a way to summarize the haplotype di-
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versity. They capture two essential features of haplotype diversity. First, if
we consider all homologous haplotypes found in a sample at a given set of
loci, we will observe that locally many of them look very similar and differ
only in a few sites, while others vary considerably in their sequence of allelic
patterns. This is due to a different level of shared ancestry: in the former
case, haplotypes have been carried on the same ancestral chromosome until a
quite recent generation, while in the latter they have evolved independently
for a much longer time and have become different due to successive recombi-
nations and mutations. To account for these different differentiation levels,
the models developed by Browning (2006), Scheet and Stephens (2006) aim
to cluster similar haplotypes. Second, recombination implies that the ances-
try of a sample changes continuously along the genome. Consequently, two
haplotypes can be very similar in a given region and very different in another
one. To capture this property, the cluster membership of each haplotype in
the sample is modeled as a Markov Chain along the genome. As patterns of
recombination change along the genome, Markov Chain based models, are
more suited than the approaches based on “block-based” clustering, which
allow the cluster membership to change only when changing from one block
to the other and cluster membership is the same for each haplotype along the
block. Small blocks can loose the structure given in large regions of strong
linkage disequilibrium and too long blocks loose information because there
will be too much noise if there are short regions of strong linkage disequi-
librium (see Greenspan and Geiger (2006) for an example of a block-based
algorithm).

Below I describe the model of (Scheet and Stephens, 2006) in more de-
tail because it is the model used in Chapter 4. Then I describe shortly
the model of Browning (2006), because it is close in spirit to the model of
Scheet and Stephens (2006) and could also have been used. The former is
the model on which the fastPHASE software is based, and the latter is for
the BEAGLE software. The main difference between the models underlying
fastPHASE and BEAGLE is that the model of fastPHASE is based on a
Hidden Markov Model for a fixed number of clusters K, while BEAGLE is

based on a Variable Length Markov Chain and the number of clusters varies
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along the chromosome.

Hidden Markov Model

First we will see the model without recombination, allowing recombination
in a second step. Then, I present the extension of the model to genotypes,
where the haplotype phase is not known. This last one is the model used in
Chapter 4.

A cluster model for haplotypes: Assume we have n haplotypes with
M SNP markers each. Let h; = (hj, ..., Rim, ..., hin) be the ¢ — th hap-
lotype, where h;,, is the allele carried by haplotype ¢ at SNP m, with ¢ €
{1,...,n}, me{1,..., M}

Let us assume that each haplotype comes from one of K clusters, la-
beled £k =1,..., K. Let z; be the cluster to which haplotype h; belongs, ay
be the frequency of cluster £ in the set of haplotypes, and 6, be the fre-
quency of allele 1 (allele A) at marker m in cluster k. The matrix 6 = (O,,)
contains the frequencies of allele 1 in all clusters at all loci and the vector
a=(ag,...,a,...,ak), all the cluster frequencies in the haplotype set.

Conditional on the cluster to which each haplotype belongs, the alleles
observed on each marker are independent Bernoulli variables, whose distri-

bution is determined by the allele frequency matrix. Consequently,

P(hi|z = k,0) = [IMW A (2.12)

However, haplotype cluster memberships are actually unknown (they are

latent variables), we have to sum over the distribution of the z;’s. Thus:

P(hilo,0) = S P(zi = kla)P(hy|z; = k,0)

(2.13)
:ZH%HWM—%)W

Ideally the coefficients of 6 are close to 0 or 1, so clusters might be essen-

tially seen as haplotypes, with a small uncertainty about the alleles at some
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positions.

Local clustering of haplotypes If there is no recombination, each hap-
lotype belongs to a single cluster. But if there is recombination, the cluster
membership must be allowed to change along the genome. Due to linkage
disequilibrium, cluster membership between close loci will however be corre-
lated.

To account for this possible change, we now denote z;,, the cluster mem-
bership at marker m for haplotype 7. For each haplotype, the sequence of
cluster memberships z; = {21, . . . Zim, - . - zinr } s modeled as a Markov Chain
that takes values in {1,..., K}, with initial probabilities

P(zn = k) = am (2.14)

and transition probabilities at each marker

Pk = k') = P(zim = K |2igm-1) = Kk, a,7)

2.15
B e P+ (1—e g, K=k (2.15)
(1 — efﬁm)ak/m k' 7é k
where, for m = 2,... M, 5, and o, = {1, -, Qm, - - - Axm } are parame-

ters to be estimated.

The above transition probability (Equation 2.15) arises from the fact
that the Markov Chain is a discretized version of a continuous Markov jump
process, with jump rate (3,, and transition probabilities oy, given that a
jump occurred. So, when k = £/, the process either does not jump, or jumps
but reaches again the same state. When k # k" the process jumps and chooses
the state k. (3,, depends on d,,, the physical distance between markers m — 1
and m, and r,,, the recombination rate between these markers.

As in the previous model, the alleles observed at distinct loci are inde-

pendent conditional on the cluster membership, so we have:

M
P(hilzi, 0) = [ [ P(im|zim, 0) (2.16)
m=1
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Figure 2.11: Schematic representation of the Hidden Markov Model.

The subscript ¢ is omitted for simplicity. z,, takes values in {1,..., K'}. The

emission probability of the cluster #,,, depends on the status of z,,, so when
m =k, Om = Orm.

where P(hj|zim = k) = 92;’;1”(1 — O ). Since z; is unknown, we again get:

P(hi|a, 0, 8) = Z]P’ (hilzi, O)P(z]a, B), (2.17)
where P(z;|a, 8) is determined by (2.14) and (2.15).

Extension to local clustering of genotypes For modeling haplotypes,
phase data is needed. Here, we extend the model to genotypes to use it
directly on unphased data. Actually, the genotype model is then used to
phase data.

Let us note g = (g1, - - ., gn) the genotypes of n individuals, where g;,, = 2
if individual 7 carries two A-allele copies at locus m, 1 if it carries one, and
0 if it carries two a. Under Hardy-Weinberg equilibrium, we can re-write
the previous equations for unordered pairs of clusters Z;, from which the
genotype g;,, originates. Z; = {Z;1,. .., Zi} form a Markov chain with initial

and transition probabilities as follows:
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P(Zi1 = {k1, k2}) = { ey (2.18)

20,1002, k1 # ko

P({k1, k2} — {k1, k5})

P(ky — E))P(ky — k), otherwise
(2.19)

where P(k — k') is defined as in Equation 2.15. As previously, the alleles are

independent draws from the cluster allele frequencies, and we have:

M
P(gi|73i7 9) - H P(Qim|2ima 0)’
m=1
where
P(gim| = Zim = {k1, ka},0)
(1 - 9k17ﬂ)(1 - ekzm)a 9im =
= lem(l - 9k2m) + 6k2m<1 - 9k1m>7 Gim = 1
eklmekgma Gim =

And again, since Z; is unknown, we sum over all possible values:

P(gilo, 0, B) = ZIP’gzlzz, P(%|a, B), (2.20)

and P(Z;|a, B) is determined by the initial and transition probabilities.

These models are called Hidden Markov Models (HMM), because the
latent variables representing the cluster membership form a Markov Chain
(see Figure 2.3.2). Standard estimation and prediction procedures have been
developed for this class of models. Scheet (2006) developed fastPHASE,
which is based on a Baum-Welsh expectation maximization algorithm, that
estimates the parameters «, 3 and #, and returns the cluster membership

probabilities for each haplotype.
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Figure 2.12: A possible cluster classification for 20 haplotypes. Each
line corresponds to an haplotype and each column to a position on the
genome. Clusters are represented by colors, and allele 1 (allele A) at each
position is represented by a cross. The black vertical lines represent a possi-
ble choice of window size (6 SNPs). This shows that “block-based” models
would not have the same flexibility that the local clustering as if the clusters
were allowed to change just when changing from one window to another.

The cluster frequencies in each population give us an idea of the local
haplotype diversity in each population. If there are just a few haplotypes in
the population, we expect to have one or a few very frequent clusters, on the
other hand if there is a lot of haplotype diversity, we expect to get a lot of
more or less equally frequent clusters. In Figure 2.12 we present an example

of local clustering of haplotypes.
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Variable Length Markov Model

Based on the same idea as above, that locally haplotypes can be clustered
together, Browning (2006) proposed a local clustering model based on an
inhomogeneous Variable Length Markov Chain (VLMC). Here, the underly-
ing idea is that in the zones where linkage disequilibrium is high the Markov
Chain will have a long memory, but if the linkage disequilibrium is small,
then the memory will be shorter, because recombination events break it.
Browning (2006) claimed that VLMC do not require explicit modeling and
are flexible enough to closely approximate HMM.

The VLMC can be represented by a directed acyclic graph, where each
node has a level that corresponds to a locus (Figure 2.13). On level 1, there
is just one node that contains no information, being just a starting node. For
levels m = 2,..., M + 1, each level m represents a history or a collection of
possible haplotypes up to m — 1 and each edge going from a node at level m,
to a node at level m + 1 represents an allele at locus m.

On Figure 2.13A we see a representation of the sample of haplotypes,
without clustering. Figure 2.13B represents the same haplotypes after mod-
eling. Two edges arriving to the same node, represent a loss of memory of the
Markov Chain, which is caused by historical recombination. Two nodes are
merged if the transition probabilities corresponding to all descendant nodes
are sufficiently similar (Browning, 2006). Each haplotype is represented by
a path from the first node, to the node at level M + 1.

(Browning and Browning, 2007a) defined a clustering method, that is
locus dependent. Given an edge between two nodes at levels m and m + 1,
a local cluster is the set of all haplotypes that trace their path through this
edge. So local cluster membership changes depending on the locus that we
take as reference, although it is expected that haplotypes that were in the
same cluster when taking locus m as reference will be in the same cluster also
when taking locus m + 1 as reference. But, anyway the number of clusters

when considering locus m or locus m + 1 can change.

Other softwares have been proposed for phasing genotypes and summa-
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Figure 2.13: Tree graph constructed using haplotype data. (A) Cir-
cles represent nodes, and the values in them represent a level and a node
identifier within level. For example, 3.2 denotes node 2 at level 3. A solid
edge between nodes at levels m and m + 1 represents allele 1 at SNP marker
m; a dashed edge represents allele 0. Numbers above edges represent hap-
lotype counts. Thus, 137 over the edge between 3.3 and 4.4 represents 137
haplotypes that have allele 0 at the first SNP, 1 at the second SNP, and 1
at the third SNP. Although directional arrows are not shown, a left-to-right
direction is implied. (B) The graph from figure A after merging. Nodes 3.1
and 3.3 in figure A have been merged, as all nodes at level 5. Notation is as
described for panel A. This figure was extracted from Browning (2006). The
model was presented in the context of multilocus association mapping. So
edges that are marked with T were tested in this context.

rizing haplotype diversity, as PHASE Stephens et al. (2001). PHASE soft-
ware is based in a Product of Approximate Conditionals (PAC) model. The
principle is to compute the probability of observing a new haplotype in the
sample as a combination of existing ones (i.e. conditional to existing ones).
When developing fastPHASE, Scheet and Stephens (2006) aimed to combine
the flexibility to capture patterns of linkage disequilibrium of the PHASE
model with the computational convenience of “block-based” models. Even if
it could loose a little bit of accuracy, fastPHASE is much faster than PHASE,
allowing to analyze much bigger datasets. Although, in terms of speed BEA-
GLE (Browning and Browning, 2007b) is anyway the fastest one, because its
model is the easiest one to fit and thus largely used to phase data. In the

next chapter we will see the advantages and drawbacks of using these models
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when the aim is to detect selection.

2.4 The impact of selection on genetic diver-
sity

I have focused so far on neutral evolution models, where all genotypes at
a given locus have the same fertility and viability. A locus is considered
under selection when this assumption does not hold, that is when some of
the genotypes will have a higher or lower probability to be transmitted from
one generation to the other. In this section I will briefly describe how allele
frequencies evolve at a single locus under selection. I will then focus on
positive selection, which is the type of selection I am mostly interested in in
this work, and describe how it affects the genotype and haplotype diversity

at neutral loci that are linked to the locus under selection.

2.4.1 Different types of selection

In order to illustrate the effect of natural selection on the evolution of allele
frequencies at one single locus, I start again from the Wright-Fisher model of
Section 2.2.1. But in contrast with the neutral situation, we now assume that
the genotypes aa, aA and AA have different viabilities, which are denoted
Waa, Waa and wyy. Consequently, the probability of sampling one allele A
from generation ¢ is no longer equal to p(t) but to

p(t) [p()waa + (1 = p(t))waa]

pi(t) = p- ,

where @ = p*(t)waa + 2p(t) (1 = p(t) wan + (1 = p(t))* waa

Different types of evolution scenarios can be distinguished according to
the viability values Balding and Bishop (2007):

Directional selection: wag4 > Wea > Wae OF Was < Woa < Wgaq- In
the former situation the frequency of A (or @ in the latter) will tend to

increase until fixation (Figure 2.14). Within this category, one generally
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Figure 2.14: Directional selection: Effect of different selection intensities
s > 0 on the evolution of allele frequencies. was = (1+5)%, Waq = 148, Waq =
1. When s = 0 the frequencies evolve under genetic drift (the neutral model).
N=1000. The red line is the mean frequency of the simulated trajectories.

makes a further distinction between negative (or purifying) selection, where
the derived allele has a lower viability than the ancestral one and tends to
be removed quite rapidly from the population, and positive (or adaptative)
selection, where the derived allele has a higher viability and thus has a chance

to maintain or even get fixed in the population.

Balancing selection: w4, w,, < wea. In this situation heterozygotes are

selected so the polymorphism tends to be stable at the locus (Figure 2.15).
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Figure 2.15: Balancing selection: Effect of different selection intensities
s > 0 (columns) and initial allele frequencies (rows) on the evolution of allele
frequencies. N=1000, was = 1, wa, = 145, w,, = 1 The red line is the mean
frequency of the simulated trajectories.

WAA, Waq > Wag: In this case the polymorphism is unstable: either A or a
eventually gets fixed, depending on the initial frequencies (2.16). When the
initial frequency of A is higher, it is more probable that A gets fixed. If the
initial frequency is 0.5, both alleles have the same probability of being fixed.
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Figure 2.16: Effect of different selection intensities s < 0 (columns) and
initial allele frequencies (rows) on the evolution of allele frequencies. N=1000,
was = L, waq = 1+ s,waq = 1 The red line is the mean frequency of the
simulated trajectories.

2.4.2 Signatures of selection

In Section 2.3 we noted that under neutrality, allele frequencies at linked sites
did not evolve independently from each other. Similarly, positive selection at
one locus modifies the allele frequencies of neutral loci in a neighborhood of
the selected locus, and the linkage disequilibrium pattern around it. Genetic

diversity around the selected locus will thus have a particular spatial pattern.
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Maynard Smith and Haigh (1974) first noted that a new positively selected
mutation could modify the frequency of neutral alleles due to physical linkage
and called this phenomenon the hitch-hiking effect. They described what is
now known as a hard sweep scenario. After this pioneer study, a lot of work
was devoted to describe the expected genetic pattern left by hitch-hiking,
and to predict hard sweeps from genetic data, for instance Gillespie (1997),
Kim and Nielsen (2004), Kim and Stephan (2002), Stephan et al. (2006).

More recently, a growing interest was put on selection from standing
variation (Hermisson and Pennings (2005), Innan and Kim (2004), Pennings
and Hermisson (2006a,b), Przeworski et al. (2005)), where selection starts
acting on an allele that is already segregating in the population at a given
frequency, and on other selection scenarios leading to different patterns than
the classical hard sweep. Examples of such soft sweep scenarios are found
in selection for malaria resistance (the Duffy blood group locus, Hamblin
and Di Rienzo (2000), Hamblin et al. (2002) and G6PD gene Tishkoff et al.
(2001)), or lactase persistence (Tishkoff et al. (2007)) in humans.

Separately, Hernandez et al. (2011) computed the probability of fixation
of a single allele, depending if it was a new mutation or if it was already segre-
gating in the population and (Pritchard et al., 2010) computed the probabil-
ity that a sweep is from standing variation given that it is a sweep, depending
on the size of the mutational target, i.e. the number of sites that can produce
a phenotypic change, and the intensity of selection. Both concluded that the
probability of fixation is larger for alleles coming from standing variation.
The reason is that the probability for a signature of selection to arise from
a hard sweep scenario is very small, because it implies that a new mutation
occurred and provided an advantage to the individuals carrying it. Then,
even if the selected advantage was huge, when the frequency of the mutation
is really low, it can be easily lost right away due to the stochasticity in the
sampling procedure for passing from one generation to the next one. On
the other hand if selection from standing variation occurred, the allele was
already available at a non negligible frequency, reducing the probability of
stochastic loss compared to a single copy mutation. In addition, there is no

waiting time for the mutation to appear, alleles are ready for being selected
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(Hermisson and Pennings (2005)). When the reason of selection is either an
environmental change, or selection for a beneficial trait by a breeder, selection
from standing variation is the most probable scenario.

Innan and Kim (2004) pointed out that in domesticated species the pro-
portion of soft sweeps compared to hard sweeps was very high, and described
using simulations the expected pattern left by selection from standing varia-
tion (see more details below). Hernandez et al. (2011) analyzed 179 human
sequences and pointed out that hard sweeps were rare in humans also. They
found that aminoacid and putative regulatory sites were not significantly en-
riched in highly differentiated alleles between populations, and that diversity
levels near exons and conserved noncoding regions decrease, in contrast to
what could be expected under a hard sweep scenario.

Below the different possible sweep scenarios that have been described so
far in the literature and the corresponding genetic signatures are described.
All these scenarios involve positive selection, but they differ in the initial and
final frequency of the selected allele or in the amount of selected alleles on a

locus and have been named according to these differences (Price et al., 2010).

Hard sweep

In this scenario, a new advantageous mutation appears in the population

1 . . .
7 ), increases in frequency and gets fixed in

the population in a relatively short lapse of time. The neutral alleles that

(its initial frequency is py =

were present on the haplotype where the mutation appeared also raise in
frequency. Those that are very close to the selected locus will also have
a very high probability of getting fixed in the population, resulting in the
elimination of almost all possible genetic variation in a neighborhood of the
selected locus (Figure 2.4.2).

As the distance from the selected locus increases, neutral alleles that were
initially associated to the advantageous allele are more likely to be separated
from it by recombination, so the fixation probability is reduced and the
expected genetic diversity converges again towards that of a neutral model.

The expected size of the region with reduced genetic variation depends on
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Figure 2.17: Hard sweep: One haplotype increases in frequency together
with the selected mutation.

the strength of selection (the stronger the selection, the larger the region),
on the recombination rate (the more recombination, the smaller the region)
and on the demography of the population under selection (the smaller the
population, the larger the region).

Hard sweep scenarios are relatively easy to detect using genomic data from
the population under selection. Indeed, hard sweep regions are characterized
by a deficit of segregating sites and an excess of low frequency and high
frequency derived alleles, which can be detected even with single marker data.
If genetic data in neutral related populations is available, the hard sweep
signature should be even clearer. Indeed, the genetic differentiation between
the selected population and the neutral populations is also increased in the
sweep region, because some alleles that are rare in the neutral populations
will show an important raise in frequency in the selected population, which

can not be explained by drift alone.

Partial sweep

This scenario, which is also called ongoing sweep or incomplete sweep, is
similar to a hard sweep scenario except that the selected allele has not yet

been fixed. One haplotype is found at high frequency around the selected
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locus, but other haplotypes are still segregating.

Genetic variation in the population is reduced, but not completely re-
moved, around the selected locus, so such scenarios are generally difficult to
detect based on single marker data from the selected population. Linkage
disequilibrium around the selected locus has a specific structure, which has
been studied by Stephan et al. (2006) modeling the evolution of three linked
loci: two neutral and one under selection. Linkage disequilibrium across the
selected locus (that is between one SNP upstream the locus and one SNP
downstream the locus) increases until the selected allele reaches a frequency
of 50%, but decreases back from this threshold. This counter-intuitive re-
sult comes from the fact that if there is a recombination event between two
SNPs, the selected allele will be in a new haplotype, raising its frequency
also, creating blocks of linkage disequilibrium. As recombination events are
independent on each side of the selected locus, they do not create linkage
disequilibrium across the locus. On the other hand, focusing on one side
of the selected alleles, the linkage disequilibrium in the flanking regions of
the selected locus (between two SNPs upstream or two SNPs downstream)
remains very high until fixation of the selected allele. But the recombination
events are not symmetric, so the patterns of linkage disequilibrium will not
be symmetric either. Thus, there can be a lot of linkage disequilibrium on
one side of the locus, but not too much on the other side. This means, that
when detecting regions under selection, the selected locus does not need to
be in the middle of the region.

As in hard sweep scenarios, genetic differentiation with related neutral
populations is elevated around the selected locus. Although this increase is
less pronounced than in hard sweep scenarios, it might still be distinguished
from that expected under neutral evolution. Sometimes, this differentiation
could be not really clear when looking at the frequencies of the alleles, but it
should be clear when looking at haplotypes, because we expect that there is
one long haplotype that rises its frequency in the selected population, while
in the neutral, it could exist, but in a really low frequency.

When working with dense data (for example 50K chip), we do not con-

sider that new mutations could hit the haplotypes, because new mutations
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will not be considered in the chip. But, when working with higher density or
sequencing data, new mutations could have hit selected haplotypes. Haplo-
types are expected to be shorter, than when working with chip data, because
these new mutations break long haplotypes down. The signals captured by
tests for selection are going to be shorter, which could make easier to find

the selected site, or at least the candidate gene.

Soft sweep

Almost all the remaining scenarios that imply positive selection at one locus
are called a soft sweep. In contrast to the hard and partial sweep scenarios,
in a soft sweep scenario the positively selected mutation has already drifted
in the population when it becomes advantageous, and is thus found in several
different haplotypes. These haplotypes can all raise in frequency when the
mutation becomes advantageous.

There are mainly two situations under which a soft sweep scenario may
occur. The first one is the single origin soft sweep scenario. As described
in Hermisson and Pennings (2005), Innan and Kim (2004), in this scenario
an allele that was neutral or slightly deleterious becomes positively selected
due to a change of environment or of artificial selection objective. As the
allele already drifted in the population, several copies of this allele exist, and
are associated to several haplotypes, which were created by recombination
and mutation. All these copies have a single common ancestor (they are
identical by descent). Because of genetic drift, not all haplotypes carrying
the positively selected allele will raise in frequency, but certainly more than
one will (otherwise we are again, by chance, in the hard sweep scenario).
This scenario is also called selection from standing variation.

The second scenario is the multiple origin soft sweep. In this case all
the copies of the new allele are not identical by descendant, instead there
was a collection of independent copies of the new allele. These independent
copies can either arise before or after the allele began to be selected. The
collection of haplotypes carrying the selected allele can be wider than in the

single origin soft sweep because there are no longer identical by descent. This
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difference between single origin and multiple origin sweep is mainly seen at
the closest loci to the selected one. This scenario was studied by Pennings
and Hermisson in two different situations (Pennings and Hermisson, 2006a,b).
First, as recurrent mutations are needed, a high mutation rate and large
effective population size are needed for mutation to hit several times the
same locus. Then, once a mutation arises, as in the hard sweep scenario,
there is little chance that it persists in the population, because even under a
high selection rate, the new mutation can be lost just by stochasticity. So the
chance of having a soft sweep with multiple origins, depends mostly on the
probability of mutation per generation, and not that much on the selection
intensity.

Soft sweep scenarios are more diverse than hard sweep scenarios, and
the expected genetic pattern around the selected locus depends on several
factors as the mutation rate before selection starts, or the frequency pg of
the favorable allele when it becomes favorable. Consequently, the signature
left by soft sweeps is not as marked as that left by hard sweeps.

The best situation for detection is a single origin scenario with a small pg
(under 5% according to Innan and Kim, and under ﬁ according to Prze-
worski et al. (2005), which are equivalent in general). This second condition
is for instance quite likely if the allele is slightly deleterious. In this case, pro-
vided mutation rate is not too high, there is little chance that mutations hit
the initial haplotype carrying the favorable allele, so we expect that only one
or a few haplotypes will carry this allele when selection starts. Since these
haplotypes segregate in the population during a possibly long time before
becoming selected, it will be shortened by recombination. We thus expect
a signature that is similar to that of a hard sweep, but in a shorter region
around the selected locus. This signature might thus be detected quite easily,
provided we have sufficiently dense genomic data.

If the favorable allele was previously neutral, its frequency at the time
when selection starts can vary from ﬁ to almost 1. Thus, depending on
the mutation and recombination rates, there can be just a few or a lot of
haplotypes carrying the selected allele and thus becoming selected. When

looking only at allele frequencies, such scenarios will thus be very difficult to
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distinguish from neutrality, and in the extreme case their genetic signature
could even look more similar to that left by balancing selection than by
directional selection. Haplotype frequencies in a neighborhood of the selected
locus might still provide some specific signal, but this will depend on the

amount of haplotypes whose frequency has raised.

In the particular case of artificial selection as modeled by Innan and
Kim (2004), the breeder samples a part of the main population, creating
a bottleneck and starts to select animals based on a specific trait. Then
the population is multiplied and recovers the census that it had before the
breeder began the selection process. In this particular case, an important part
of the population genetic variation is lost because of the initial reduction in
population effective size. If the selected allele was previously neutral, we
noted above that there can be a lot haplotypes carrying it. But, because of
the bottleneck, only a few of them are going to stay in the new population. If
the favorable allele frequency before the bottleneck is not too high (typically
po < 20%), Innan and Kim pointed out that the selective signature should
be detected, because the polymorphism is significantly reduced around the
selected locus. This assertion is made for tests based on one population and
in allele frequencies. But, one also expects to find some haplotype structure
in the population. On the other hand, if py > 50%, they observed that the
probability of detecting the sweep is very low. Nevertheless Innan and Kim
say that power might be improved if we can compare the selected population
with its wild progenitor using the shared polymorphisms. Pennings and
Hermisson made the same assertion but considering a close related neutral
population instead of the wild progenitor. The reason of this, is that new
mutations (after the population split) that hit the haplotypes carrying the
mutations noise the signal.

In conclusion, under a soft sweep scenario we generally expect a reduc-
tion of variability around the selected locus, but not as pronounced as in
the hard sweep scenario. On the opposite, high linkage disequilibrium is ex-
pected across the selected locus. There might be several haplotypes carrying
the favorable allele, but still with a higher frequency than expected under

neutral evolution, so the differentiation between the selected population and
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related neutral populations will be higher than in the rest of the genome.
When looking at the allele frequencies there might be shifts on their fre-
quencies higher than expected under the neutral model, but for capturing
these frequencies, good information about the ancestral frequencies might be

needed.

Polygenic adaptation

Previously, I presented the patterns that selection on one locus can leave.
In polygenic selection (Price et al., 2010) there are several loci that can be
selected because all of them contribute to a single phenotype. Thus, selection
towards an optimal value of this phenotype leads to small allele frequency
changes at all or several of these loci, and no allele reaches fixation. This
type of selection is also known as canalising selection (SanCristobal-Gaudy
et al., 1998). This concept is a bit more general, because the responsible
of the phenotypic optimum could be just one locus, that does never reach
fixation.

In breeding populations, the experience from several decades of quanti-
tative trait locus detection has shown that production traits (milk quantity
or quality for instance) are mostly polygenic. Since recent artificial selec-
tion in breeding populations has essentially focused on such traits, polygenic
selection appears as an important model for the detection of selection sig-
natures in this field. A textbook example is human height. In Europeans,
several genome wide scans showed that 50 different loci contribute to this
phenotype ((Aulchenko et al., 2009, Gudbjartsson et al., 2008, Lettre et al.,
2008, Weedon et al., 2008)) in increasing about with 3-6 mm the height of
the individual. When selection occurs in traits like this, small shifts on the
frequencies of the different loci (and not all at the same time) modify the
phenotype very quickly allowing a very rapid adaptation.

Depending on the amount of loci involved in the trait, and if there are
close together or dispersed along the genome, they could create a soft-sweep
type of signal, with some haplotypes raising in frequency (if they are close)

or several low frequency partial sweeps (if they are far away). But, as the
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changes can be very small, this type of selection is certainly really difficult to
detect at least with the methods proposed till now. Because of the complexity
of this type of selection and of all possible scenarios under which it can
happen, there is no estimation about the proportion of selective signatures

that could have been created by polygenic selection.

2.4.3 Conclusion

The majority of tests for selection have been created under the models of
hard sweep detection, but as shown by Hernandez et al. (2011), Innan and
Kim (2004) hard sweeps are not the most common recent selection events.
The motivation for using differentiation tests, is that the pattern left by soft
sweeps can be confused with a neutral pattern when looking at the selected
population alone. The chances of confounding is even higher when looking
just at allele frequencies, instead of haplotypes. Innan and Kim (2004) sug-
gested that we could gain some power by comparing this population with
the wild ancestral one. In the absence of ancestral population information,
if a parental population is large enough and if its divergence from the target
population is not too old, we expect that the genetic patterns observed in
this population will be sufficiently close to those that were present in the an-
cestral population. Innan and Kim (2008) showed through simulations that
“selection causes a drastic change in the pattern of polymorphism in the
derived population, but not in the parental population”. Sometimes, such
ideal parental populations are not available, therefore adding more related
populations could help to infer the patterns that existed in the ancestral
population. Even if most of domesticated populations have somehow been
selected for one or a few specific traits in a specific window of time, a popu-
lation that has been selected for a different trait than the tested population,

can serve as a parental population for the comparison.
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Detection Methods

In this chapter I will shortly review several approaches for detecting signa-
tures of adaptive selection from genomic data, and some specific methods that
are representative of these approaches. The number of existing approaches
is extremely large, so I will concentrate on those that are related to some
extent to the tests I introduce later in the manuscript. These approaches
include differentiation tests, which compare the genetic diversity in several
related populations, but also those single population tests that attempt to
account for linkage disequilibrium information rather than just single marker
patterns. Indeed, comparing several related populations should provide a
great gain of power for detecting soft sweeps, as discussed in the previous
chapter. On the other hand, single population tests that account for linkage
disequilibrium information may be extended in order to use data from several
populations at the same time, so they are also of interest for us.

I remind, that in this work we always consider an ecological scale of time

(Sabeti et al., 2006), so tests between different species are not presented here.

3.1 Detecting selection from single marker al-

lele frequencies in multiple populations

Genetic differentiation between a group of n populations can be measured
using the statistic Fsp (Wright, 1951), defined as: “the correlation between

99
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random gametes, drawn from the same subpopulation [population here], rel-
ative to the total [the group of n populations, here|”. Different statistics
have been proposed to estimate Fgr from the data (Weir and Cockerham,
1984, Weir and Hill, 2002) The sampling distribution of Fsr can be estimated
genome wide as follows.

Considering one SNP with alleles A and a, let p = (p1,...,pi,...,pn) be
the vector of the A-allele frequencies per population, as in section 2.2.2 and
p and 512) the sampling estimates of the mean and variance of p.

Genetic differentiation between populations at this locus [ can be mea-

sured by (Weir and Cockerham, 1984):
3120 _ ﬁ 22;1 (pi — ﬁ)2
Wi-5  p1-D)

This means that Fj; is defined as the ratio between the variance of the

Fl. = (3.1)

allele frequency between populations and the maximum possible variance
that can be reached when alleles have gone to fixation in all populations.

Fsr is the most widely used statistic to measure population differentia-
tion and is the basis to detect selection in many tests. Cavalli-Sforza (1966)
pointed out, that while demographic changes such as expansions, bottle-
necks or migration will affect the genome entirely, selection would affect it
locally. Therefore, neutral loci should have the same Fgr distribution along
the genome, and loci with excessively high (small) Fsr , compared to the
rest of the genome, may be subject to directional (balancing) selection (see
Beaumont (2005) for a review).

Lewontin and Krakauer (1973) proposed a formal statistical test to detect
selection at a locus based on Fsr. If genotypes at L SNPs are available, the
LK test statistic at locus [ is defined as:

T =21 p0 (3.2)
LK = ST :
ST
where Fgr is the average of F S(l% over the L loci. Lewontin and Krakauer
(1973) showed that, under neutral evolution, this statistic approximately

follows a chi-square distribution with (n — 1) degrees of freedom, assuming
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that the p;’s are i.7.d. and normally distributed. They consequently proposed
to reject neutrality based on the quantiles of this chi-square distribution.

The LK test was rapidly criticized (Robertson (1975b)) because of its too
strong assumptions. In particular, these assumptions do not hold as soon as
the populations do not have a star-like tree, or have unequal effective sizes.
High mutation rates or migration would also cause a departure from the
chi-square distribution (Lewontin and Krakauer (1975), Nei and Chakravarti
(1977), Nei et al. (1977), Nei and Maruyama (1975), Robertson (1975a),
Tsakas and Krimbas (1976)).

Indeed, as described in Section 2.2.2, under genetic drift the first two

moments of allele frequencies at a single locus are given by:

E(p) = poln
Var(p) = Fpo(l — po),

where pq is the allele frequency in the ancestral population, 1, is a n-vector

(3.3)

of I’'s and F is the kinship matrix defined in (2.8). From this formula we can
see that the p;’s are independent only if the non diagonal elements of F are 0,
which implies a star-like evolution. Besides, the p;’s can only be identically
distributed if the diagonal terms (the F;’s) are all equal, implying that the
tree has equal branch lengths. To relax these hypotheses, Bonhomme et al.
(2010) proposed an extension of the LK test accounting for any possible F
matrix. More details about this method are provided in the next section.
Besides, assuming that allele frequencies are normally distributed is rea-
sonable for intermediate py values, but not for extreme ones (close to 0 or
1) where the fixation probability becomes important and stops the random
evolution due to drift. Beaumont and Nichols (1996) showed for instance
that the distribution of Fsr also depends on the heterozygosity. They con-
sequently proposed to account for heterozygosity, rather than for allele fre-
quency when looking for locus with extreme Fgp values. In the same spirit,
Vitalis et al. (2001) proposed a robust way to evaluate the genetic differ-
entiation between a pair of populations, accounting for the heterozygosity
variation among locus. They then conduct simulations, conditioning on the

population branch lengths and on the meta population allele counts, to get
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the expected joint distributions of the branch lengths and detect outlier loci

from this distribution.

3.1.1 Two step methods

As we saw in the previous section, demographic effects affect the distribution
of Fsr values. But, once they are controlled, we can hope to detect the loci
under selection using an outlier approach. The demographic parameters can
be either estimated from independent markers assumed to be neutral, like
neutral microsatelites, or using all available SNPs. This second strategy is
based on the assumption that only a small proportion of these SNPs are
affected by selection, and that these few SNPs should not bias too much the
estimation of demographic effects, which in contrast leave a genome-wide
signature.

Li et al. (2012) reviewed the potential difficulties that can be encoun-
tered when trying to disentangle demographic effects from selective ones.
For example, in drosophila it seems that selection acts continuously, so it
is expected that due to hitch-hiking and interferences between the selected
regions, a neutral demography would not be easy to infer. Based on previous
studies, Hahn (2008) claimed that “anywhere between 30% and 94% of all
amino acid substitutions were fixed by adaptive natural selection”. On the
other hand, Wright et al. (2005) compared a domesticated modern maize
population with its wild ancestor and estimated that around 4 — 10% of the
genome has been selected since domestication. This last scenario is closer
to that of domesticated animal species, where we look for recent selection

events.

F-LK test

A natural two step extension to the LK-test, when testing hierarchically
structured populations, is the F-LK test (Bonhomme et al., 2010). The F
in this name comes from the kinship matrix F, which is estimated in a first
step, to account for the population structure. Once F is estimated, it can

be included in the statistic used for detecting selection in the data.
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In this test F is computed using the Reynolds distance.

Reynolds distance

An estimation of F is based on the Reynolds distance matrix DR.
Let M be the matrix shown in Table 3.1.1, whose rows are the popula-

tions, and the columns are the frequencies of all alleles at all loci.

locus 1 locus L
(@) (1) 1) (1)
_ pop 1 Piy---P1a " Pri- pLA
pop n p ol el

Table 3.1: Data organization

If [ denotes the locus and a the alleles, the Reynolds distance can be

calculated as:

13, 3, (vl — pid)?
25 (1= S, pipd)
where L is the number of loci. The matrix DR is defined as the matrix whose
elements are the d;;, DR = (d;;)

To build the F matrix the lengths of the branches of the phylogenetic tree
built using the neighbor joining method (Saitou and Nei (1987)) are used.

ij =

This method is based on clustering principles and requires knowledge of the
distance between each pair of populations (d;;’s). In order to be able to root
the tree, an outgroup is also needed.

The test

If the p;’s are normally distributed, it follows immediately from Equation
(3.3) that the quadratic form in p:

Tr_1k(po) = (p — poln) Var(p) ™ (p — poly)
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follows a chi-square distribution with n degrees of freedom. If the ancestral
allele frequency py was known, this would be an interesting statistic for testing

if the p;’s evolved under neutrality.

However, pg is generally unknown, so it has to be estimated from the
data. Since the p;’s are not i.1.d., the average frequency p is no longer an
optimal estimator of pg, so Bonhomme et al. (2010) used the linear unbiased

estimator with minimal variance:

. UFp

W=y, 34

Note that this estimator is not the maximum likelihood estimator, even under

the normality assumption.

Replacing po by po, Bonhomme et al. (2010) defined the T'r_j i statistic
as :
N ~ -1 A~
Tr 1k = (p—poln)'Var(p) (p—pols) (3.5)

and showed that it follows approximately a chi-square distribution with n—1

degrees of freedom. Below I briefly report some important steps of this proof.

Denoting:
Po = w'p, (3.6)
with:
F 11,

the first two moments of py are:

E(po) = w'E(p) = po
Var(py) = w'Var(p)w

po(1—po)
1,711,

and it follows that



3.1. DETECTING SELECTION IN MULTIPLE POPULATIONS 65

B(n(1 — ) = 1~ ) (1= 1y ) (33)

As Var(p) = Fpo(1—po), to estimate this variance one needs to estimate

po(1 — po). From equation (3.8), we see that this quantity can be estimated

without bias by po(1 — po) (1 — ﬁ) . Consequently, one can re-write

the statistic as:

(p - ﬁOln)l'F_l(p - ﬁO]-n)

Tr 1k = - (3.9)
Po(1 — po) (1 - ﬁ)
It can be shown that:
E((p — pol,) F 1 (p — pol,
E(Tr )~ —P = Pola) P (p = o 3)1 U
E []50(1 — Do) <1 - ﬁ) }
(3.10)
— Pol,) F 1 (p — pol
V(IT(T_F_LK) ~ Var((p pO n) F (p pO n)) = 2(” — 1)

o1
E? {ﬁo(l — Do) <1 - ﬁ) }

The normality assumption further implies that T»_x follows approximately
a x2_, distribution under neutral evolution.

Consequently, if the T'»_px observed at one locus shows a significant
departure from this distribution, the allele frequencies at this locus are not
compatible with a neutral evolution whose demography is summarized by
the kinship matrix. As this matrix was computed from the data, the most
likely hypothesis is that selection has been acting on that locus.

The main improvement of the F-LK test compared to other existing tests
for detecting selection was to account for hierarchically structured popula-
tions. Accounting for unequal branch lengths is also important, but several
alternative methods already did that, instead, there are not too much that ac-
count for correlations between frequencies, due to common evolution. Below
I illustrate on a small example why accounting for the hierarchical structure

of populations is very important in this context.
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Example 3.1. [ simulated the allele frequency at one locus under a 3 popula-
tion model, starting from a fized initial frequency po in the ancestral popula-
tion. Four scenarios were simulated, with and without hierarchical structure
and with and without selection. In the star-like evolution tree scenario (with-
out structure), 3 populations evolved independently from the ancestral one
during 200 generations. In the hierarchically structured scenario, 2 popula-
tions first evolved independently during 100 generations. Then, one of these
split into two populations, leading to a total of 3 populations which further
evolved during 100 generations. For both scenarios, when selection was sim-
ulated it was introduced in population 1, from the 100th generation to the

final generation.

Frequencies were computed for all generations and in all populations. As
the evolution history is known here, I could derive the kinship matriz theoret-
ically and did not need to compute it from the data. Similarly, py was fized
and did not need to be estimated.

To illustrate the importance of considering or not the population structure
when computing the test for selection, I computed the p-values of the F-LK
test using either the kinship matriz F or the diagonal matrix FsrZ. Note
that this second strategy is equivalent to the Lewontin and Krakauer test. In
the star-like tree scenario simulated here, the 3 branch lengths were equal.
In this case the LK and F-LK statistics are equal, so one single p-value was

computed.

On Figure 3.1, we observe that when populations evolve under a star-like
topology, their allele frequencies evolve completely independently. But when
populations evolve under a hierarchically structured topology (Figure 3.2),
the allele frequencies in populations 1 and 2 begin to differentiate only after
100 generations, so the differentiation level that they can reach is smaller
than in the star-like scenario. On the other hand, we expect a much larger
differentiation between population 3 and populations 1 or 2 than between
populations 1 and 2. If we take this structure into account in the test (F-
LK), the p-value that we get would not lead to reject the neutral hypothesis,
but if we do not consider the structure then population 3 is too differentiated

from populations 1 and 2 and we obtain a relatively small p-value (0.07),
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Figure 3.1: Star-like topol-
ogy, neutral evolution: The
p-values were computed for the
F-LK statistic using the kinship

Figure 3.2 Hierarchically
structured topology, neutral
evolution: The p-values were
computed for the F-LK statistic

matrix F, which is diagonal in
this case. Final allele frequencies
in each population are written at
the end of the frequency evolution
curve.

using either the kinship matrix
F (above) or the matrix FgrZ
(which is equal to the diagonal
of F). Final allele frequencies in
each population are written at

the end of the frequency evolution
curve.

which could lead to reject the neutral evolution hypothesis, creating a false

positive.

When selection occurs in population 1 under a star-like topology (Figure
3.3), the differentiation has to be large to be detected, because we expect a lot
of variation just because of the independent evolution between population. In
the structured scenario selection occurs in population 1 (Figure 3.4), which
is less differentiated from population 2, so smaller variation could already
indicate the presence of selection. In this case the p-value accounting for
structure is 0.048, so we probably reject the neutral evolution hypothesis and
we have a true positive. Again, if we do not consider the structure, the dif-
ferentiation does not seem too high and the neutral hypothesis is not rejected

(p-value=0.241), leading to a false negative.
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Figure 3.3: Star-like topology, Figure 3.4: Hierarchically

evolution with selection in structured topology, evolu-

population 1: Evolution under tion with selection in one

selection is indicated in green in branch: Evolution under selec-

the tree. See Figure 3.1 for other tion is indicated in green in the

details. tree. See Figure 3.2 for other
details.

In conclusion, not considering the structure underlying the populations

evolution, could both lead to an excess of false positives and false negatives.
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Tree-based likelihood ratio test

Bhatia et al. (2011) proposed a test that is similar in spirit to the F-LK
test, but focuses on datasets with 3 populations and considers the unrooted
tree formed by these 3 populations. As in F-LK, they first estimate the
branch lengths of the unrooted tree using the pairwise differences of allele
frequencies at all loci, and then detect the loci where allele frequencies are not
compatible with these branch lengths. One important difference is that they
consider the branch lengths from the central node and the allele frequency p.
in this central node, while F/-LK considers the branch lengths from the root
of the tree (i.e. the ancestral population) and the allele frequency in this
root. But the allele frequency in the central node is estimated by weighting
the alleles frequencies of the sampled populations according to the branch

lengths, similar to what is done in F-LK.
In contrast with F-LK, Bhatia et al. (2011) test for selection at one locus

independently in each population, using the likelihood ratio based statistic:

2

D+
2n(LRT) = ~5'*-,
Diggr,

where the subscript isp; € {1,2,3} refers to the tested population and
DiSEL
and is equal to p.(1 — p.)(2Fip + 1/n;), where (2F4r + 1/n;) is the branch
length according to Bhatia et al. (2011), n; is the sample size and Fl is the

= p; — Pe. In this formula a%iSEL is the expected variance of D;,,

re-estimate of Figr between population ¢ and the central population.

A Bonferroni correction for multiple testing is applied to the p-values, to

account for the fact that 3 tests are computed at each locus.

Extending this test to more that 3 populations requires to find out the
topology of the unrooted tree and to decide where to place the central node.
Although the number of possible unrooted tree topologies explodes when the
number of populations increases (there are (2n—5)!/[2]"3(n—3)!] topologies
for n populations, as pointed out by the authors), the first problem could be
solved using standard clustering or phylogeny heuristics. On the other hand,

the second problem is more fundamental and can only be solved using rooted
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trees as in F-LK, where the central node is the ancestral node. However,
this approach requires an outgroup.

Note also that in a 3-population rooted tree with topology ((1,2),3),
if the branch connecting populations 1 and 2 with the root is long, using
an unrooted tree could penalize population 3. Indeed, the branch from the
central node to population 3 will be much longer than the branch connecting
the ancestral population to population 3, so the expected allele frequency
variance under the unrooted tree model will be too high. But this effect
should be small in cases where Fgr is not too high, and the authors proposed
the test for closely related populations, with typically Fsr < 0.01.

The authors also proposed to account for admixture between populations,
recalculating the allele frequencies in the admixed population by subtracting

a weighted frequency from the original frequency.

3.2 Bayesian methods

Several Bayesian methods have been proposed for detecting selection based
on the genetic differentiation between populations. The concept of Fgr is also
central in these methods, where it is generally decomposed in a population-
specific effect and a locus-specific effect. Similar to the two step methods
described above, Bayesian methods are also suited to test several popula-
tions simultaneously, but the difference is that they also estimate population
specific effects (the F;s) and locus specific effects simultaneously.

A seminal work on this approach was proposed by Beaumont and Bald-
ing (2004), based on the work of Beaumont and Nichols (1996). Based on
this work Foll and Gaggiotti (2008) implemented BayeScan, a widely used
software to detect loci under selection. Gautier et al. (2009), Riebler et al.
(2008), Excoffier et al. (2009) and Foll and Gaggiotti (2008) developed detec-
tion methods based on the same ideas, but using different prior distributions
for the parameters, or different methods to estimate the posterior distribu-
tions like Monte-Carlo Markov Chains (MCMC) or reverse-jumping MCMC.
Gompert and Buerkle (2011) took advantage of the uncertainty that Bayesian

approaches permit to account for possible errors arising from next-generation
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sequencing. To illustrate the spirit of all these methods I will follow Gautier
et al. (2009).

Let x;; be the allele count of the A allele at locus [ and in population
i. The conditional distribution of x;; given the true allele frequency «y; is
assumed to be binomial with parameters 2n; and «y;, where n; is the number

of genotyped individuals:

x| ous, g ~iig B(2ng, ou;)

Following Nicholson et al. (2002), «y; is assumed to be sampled from a trun-

cated normal distribution on the (0,1) segment, that is:

au|ci, m ~iia Nt (1, ¢im(1 — )

where m ~;;q Beta(ag, by), ¢ ~iq Beta(ae, b)

To test for selection, Gautier et al. (2009) proposed to compute the Pos-
terior Predictive P-values (PPP-values), that are the Bayesian counterparts
of the frequentist p-values. In the same sense as p-values, small (large) PPP-

values, correspond to positive (balancing) selection.

Note that the distribution of the true sample allele frequencies («) in
this model, is almost the same as in Bonhomme et al. (2010), with m; being
equivalent to the ancestral frequency pg at each locus, and ¢; being equiv-
alent to the inbreeding coefficient F; in each population. The distribution
proposed in Nicholson et al. (2002) assumes a star-like tree (the ¢;s are i.1.d.),
so the test suffers from the same problems as LK does when looking for se-
lection in a hierarchically structured population. Indeed, Bonhomme et al.
(2010) showed using simulations that the F-LK test was more powerful than
the test proposed by Foll and Gaggiotti (2008) when the populations were

hierarchically structured.
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3.3 LD methods

In the previous section I described several differentiation tests and pointed
out the importance of considering the dependencies between populations,
which are generated by their hierarchical structure. All the tests I consid-
ered were based on allele frequency data at single loci, and used the loci
independently of each other. However, as discussed in Section 2.4, selection
at one locus impacts genetic diversity in the whole neighborhood of the locus,
and generally leaves specific haplotypic patterns. In this section I will review
several existing methods that try to account for linkage disequilibrium and
haplotype structure when looking for signatures of adaptive selection. These
methods can be divided in two quite different approaches. The first one con-
sists in cumulating tests that have been first obtained using single locus allele
frequency data, while the second is directly based on haplotype data. The
type of observed data is very important here. Indeed, methods that cumulate
single locus statistics can be applied to data at the population level, as that
obtained from pool sequencing, while methods that are based on haplotype
lengths or haplotype counts can not. More generally, all the methods de-
scribed in this section require relatively dense genomic data, otherwise the
linkage disequilibrium between adjacent SNPs is negligible and can not be

exploited.

3.3.1 Smoothing methods

Genome scans based on single locus statistics show a very high variability of
the signal between adjacent markers, whatever the statistic used, due to the
high stochasticity in the evolution of allele frequencies around their expected
value, for instance Fgr ((Weir et al., 2005), Figure 3.5) and F-LK (Figure
3.6).

Weir et al. (2005) proposed to reduce the noise in Fgr scans by combining
data from several adjacent markers. They studied the HapMap (Consortium,
2005) and Perlengen (Hinds et al., 2005) datasets with 3 and 4 populations
each, and observed that the Fgr followed approximately a y? distribution

with 2 or 3 degrees of freedom. To clarify graphical representations of the
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Figure 3.5: Fgr between two divergent lines of quail: Fs; between
positions 0.5 and 0.8Mb of chromosme 1 between two divergent quail lines
that were pool-sequenced. Each pool contained 10 indiviuals. Fs7 shows
high stochasticity, even in small regions.

Figure 3.6: Genome Scan using F-LK of North-European sheep

statistic genome wide, they proposed to average the Fgr values over 5Mb
windows. The distribution of the new averaged statistic followed approxi-
mately a normal distribution, with reduced variance compared with that of
the initial x?. The window size was chosen in a completely subjective way.
The authors mentioned that this choice should actually depend on the re-
combination rate in the region, but also acknowledged that it was not clear,
how to do it in this context.

Weir et al. (2005) also computed the expected correlation between the
variations of allele frequencies at close loci. They showed that this correlation
depends on the initial linkage disequilibrium (in the ancestral population),
which is not observed and can only be predicted from the linkage disequilib-

rium in the present generation. These predictions generally underestimate
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the true correlations. They acknowledge that the estimated correlations and
the correlations of Fgr values, are very similar. So when looking for clusters
of high Fgp values to detect selection, one has to be careful, because this
clusters can be originated just by linkage disequilibrium. This point will be
discussed further in Chapter 6.

Weir et al. (2005) proposed to consider a window as exceptionally ex-
treme if its average Fsp value differs by more than three empirical standard
deviations from the chromosome mean window value. They acknowledged
that this procedure has no specific statistical significance, but expect that
such extreme values are beyond the values that can be reached under neutral
evolution, and should be explained by selection.

Several authors have followed the averaging approach of Weir et al. (2005)
(Oleksyk et al. (2008)), with subjective variations in the statistic used, the

window size or the use of overlapping or non overlapping windows.

XP-CLR

Rather than averaging over windows, Chen et al. (2010) proposed a composite
likelihood approach called XP-CLR, where they compute the marginal likeli-
hood of the allele frequencies at each SNP under a given evolution model, and
then multiply these likelihoods over windows of k consecutive SNPs. While
computing the average or the maximum Fs over a window reduces the vari-
ance of Fgr values and smooths their distribution over the genome, but does
not really take advantage of the correlated evolution between adjacent SNPs,
XP-CLR is meant to take this information into account.

Similar to F-LK and several other tests described in this chapter, XP-
CLR is based on the assumption that under neutrality the frequency p; of
an allele in population 7 follows a normal distribution N(pg,w;po(1 — po)),
where py is the frequency of an ancestral population and w; is the inbreeding
coefficient starting from this ancestral population. The w; of (Chen et al.,
2010) is equal to F; in Equation (2.4).

Considering two populations that diverged from a common ancestral pop-

ulation, the allele frequencies p; and ps in these populations are both nor-
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mally distributed with mean py, where py is the allele frequency in the ances-
tral population. One key idea is then to use the fact that the allele frequency
evolution process can be reversed : we can think that it began in popula-
tion 2, with an initial frequency ps, went back to the ancestral population,
where it reached a frequency pg, and then continued until population 1 to
reach the frequency p;. Besides, as pg is unknown, we can actually skip this
evolution step and just model the process of going from p, to p;, assuming
that p1 ~ N (pg, (w1 + wa)p2(1 — p2)).

Following Maynard Smith and Haigh (1974) and Durrett and Schweins-
berg (2004), Chen et al. (2010) also extend this neutral model for a neutral
locus that is located in the vicinity of a locus under selection.

They derive an approximate density for p; conditional on py, on the re-
combination rate r between the two loci and on the selection coefficient s
(this density is denoted f(pi|r,s,p2,w)). For any window of k loci, they
compute the k£ marginal densities, assuming that a selected locus with selec-
tion coefficient s was located in the middle of the window, and multiply these
densities to obtain the composite likelihood. They finally test for selection
using a likelihood ratio between the alternative hypothesis (s # 0) and the
null hypothesis (s = 0). They claimed that the test does not depend on the
choice of k, provided the size of the window is large enough.

Chen et al. (2010) analyzed a human dataset with XP — CLR, CLR
(similar to X P — CLR but for single populations tests), XP — FHH and
iHS (both explained in next section). They found several overlapping signals,
but commented on two specific signals that were detected by XP — CLR
and not by XP — FHH. In the first signal 349 of 918 alleles were fixed
in one population, so they hypothesized that the selection signature should
be really ancient. This could explain why XP — FHH did not detect it,
because, as we will see, this test is rather designed to detect recent selection
events. There was no information about the genes in the detected region.
The second signal, which contains the NRX N3 gene, is likely a selection
signature from standing variation, because the authors found two haplotypes
with outstanding high frequency in the region. Again, it is not surprising that
X P — FHH did not detect it, because it is designed to detect hard-sweeps.
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Following the Bayesian approach described in Subsection 3.2, Guo et al.
(2009) proposed to account for linkage disequilibrium by introducing an au-
toregressive model when modeling the distribution of allele frequencies. This
model conditions the allele frequency at a locus on the allele frequencies at
all other loci located in the chromosome, but the correlation between loci are
weighted by a function that accounts for the distance between loci.

On one hand, when testing structured populations, this model also suffers
from the same problems as the other Bayesian methods do, because they
model the inbreeding coefficients independently. On the other hand, it is
computationally demanding. Authors did not analyze datasets larger than
3000 SNPs in human data. In simulations they analyzed 1000 SNPs at the
same time, but it is not totally clear, how the SNPs are related. They where
able to classify if each SNP was neutral or under selection, which is quite
surprising, because as they account for linkage disequilibrium, one would

expect that they detect zones, and not just one SNP.

3.3.2 Haplotype tests

As described in Section 2.4, we expect selection to leave a certain amount
of relatively long haplotypes. Depending on the type of selective sweep we
expect to observe in the population either one single long haplotype at very
high frequency (hard sweep), or a few long haplotypes at high frequency (soft
sweep). Here I will describe several tests that aim to capture these signals,

essentially those left by hard sweeps.

Single population tests

Single population haplotype tests are based on the principle that one can
distinguish the ancestral allele and the derived allele at each SNP, which is
indeed possible if data from outgroup species are available. Under neutral
evolution, derived alleles that segregate at high frequency in a population
have to be old, because drifting from a frequency close to 0 to a high fre-
quency requires a lot of time. Consequently, the haplotypes carrying high

frequency derived alleles are expected to be very short, due to the action of



3.3. LD METHODS 77

recombination during a long time period. On the other hand, alleles under
strong positive selection can reach the same frequency in a much shorter
time, so they can be carried by long haplotypes (Figure 3.7'). Finally, de-
rived alleles with low to moderate frequency could be young or old, so the
associated haplotypes can be either long or short.

Based on this idea, Sabeti et al. (2002) developed a Long Range Haplotype
test (LRH) which involves the notion of Extended Haplotype Homozygosity
(EHH). EHH is defined relative to a core region and the derived allele. For a
given test locus, EHH is the probability that two extended haplotypes around
a given locus are the same, given that they have the same allele at the locus.
The support of EHH is thus [0, 1], from no homozygosity at all to complete
homozygosity. Assume that M haplotypes are found in the core region, each
with C; chromosomes (i € 1...M). Denoting FH H; the EHH for haplotype
7, we can also define the Relative EHH for haplotype i as the ratio between
EHH; and the average EHH for other haplotypes, i.e.

M

> (622 ) EHH,

j=1

REHH; = EHH,] |2

> (%

— \ 2

L J# i
In this formula the EH H of each haplotype is weighted by the probability

that two chromosomes randomly chosen from the whole sample carry this

haplotype. The support of REHH is [0, oo.

Sabeti et al. (2002) proposed to test for selection at one core locus by
computing REHH at different distances for this locus and comparing the
resulting values with those obtained under a wide range of demographic sce-
narios. They applied this strategy to only two genes. Performing a genome
wide scan using LRH would be difficult, because it would require to identify
all core haplotypes on the genome.

As the distance between the core locus and the test locus increases, the

!This figure was taken from Voight et al. (2006)
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Figure 3.7: Decay of EHH in Simulated Data for an Allele at Fre-
quency 0.5 Decay of haplotypes in a single region in which a new selected
allele (red, center column) is sweeping to fixation, replacing the ancestral al-
lele (blue). Horizontal lines are haplotypes; SNP positions are marked below
the haplotype plot using blue for SNPs with intermediate allele frequencies
(minor allele > 0.2), and red otherwise. For a given SNP, adjacent haplo-
types with the same color carry identical genotypes everywhere between that
SNP and the central (selected) site. The left- and right-hand sides are sorted
separately. Haplotypes are no longer plotted beyond the points at which they
become unique.(This figure and legend were taken from Voight et al. (2006))

probability of sampling two IBD segments between those loci decreases due to
possible recombination and mutation events. Consequently, EHH is expected
to decrease from 1 (at the core SNP) to 0 (at a sufficiently distant locus). To
summarize the information contained in this EHH trajectory, Voight et al.
(2006) proposed to integrate it against the distance from the core SNP. They
defined iH H as the sum of the two integrals (one from each side of the SNP)
from a specific core allele to an EHH threshold of 0.05. Denoting ¢H H 4
(tHHp) the iHH computed for the ancestral (derived) allele, they further
introduced the unstandardized 1H S

; oHH y
n
1HHp

If EHH has approximately the same value for both alleles, then

iHHy 1
iHHp
and 1H H ~ 0. Large positive values mean that the ancestral allele is carried
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by a long range haplotype, while large negative values mean that the derived
allele is carried by a long range haplotype.

Since in general low frequency alleles are expected to be younger as high
frequency alleles, and thus to be associated to longer haplotypes, the authors
proposed to bin the core SNPs according to their derived allele frequency,
and to standardize the statistics within each bin. For a SNP with derived

allele frequency p, the standardized statistic is thus given by :
in (i) o [in (i)
iHS = —~\MHv) 7L\ (3.11)
oo, 3 )

The authors noted that iHS is not a statistical test, but a measure of

how unusual the haplotypes are around a given SNP, and advised to look for
windows including several extreme iHS values.

One of the advantages of ¢HS is that it is robust to the heterogeneity of
the recombination rate. This comes from the two following features. First,
the integral is computed using the genetic distance, so cold spots are naturally
down weighted, and hot spots up weighted. Second, it is based on a ratio
between two alleles, which serve as internal control of each other (this second
argument also applies to LRH).

However, one limitation of iHS is that it would not be able to capture
selected alleles at low frequency, or near to fixation. To improve the power of
these tests, some authors (Sabeti et al. (2007), Tang et al. (2007)) proposed
to compare EHH values between populations. These extensions are described

below.

Cross populations tests

A direct extension of iHS in the case of two populations was proposed by
Sabeti et al. (2007). In each population, instead of computing the ratio of
tH H between the ancestral and derived alleles, they integrate the EH H pro-
files for the derived allele as in «H H for both populations and then compute
the ratio of the quantities obtained for each population. Positive (negative)

scores indicate that there was selection in the population corresponding to
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the numerator (denominator). Sabeti et al. (2007) called this test XP-EHH,
because it is a cross population test.

Tang et al. (2007) proposed an alternative way of measuring haplotype
homozygosity between two sites ¢« and j, which in contrast with EHH is not
related to the derived allele at the core locus. They defined EHH.S, ; as the
ratio between the homozygosity between sites ¢ and j, and the homozygosity

at site 7, i.e.:

E(Hoiy)

E(Ho;)

To avoid phasing the data, they also proposed to estimate FH H.S; ; as the

EHHSZ'J -

proportion of individuals that remain homozygous for intervals starting at ¢
in both directions. They again integrate the FHHS; ; values against phys-
ical distance, and denote iES the resulting integral. Finally, as in (Sabeti
et al., 2007), they detect selection using the standardized log-ratio between

populations:

1ES o1
In(Rsb;) =1 7 popl
il fish) ! (iESpozo?,i)

which in contrast to the other approaches are standardized independently of
the frequency bin. Note also that they integrate against physical distance
instead of genetic distance, arguing that using a population ratio is enough,
since each population serves as internal control (in regions with low recom-
bination, we will find long haplotypes in both populations so the effects will
cancel out).

Cross population tests represent a first step to multiple population tests
accounting for haplotype information rather than just allele frequency infor-
mation. However, because the differentiation measures are defined as ratios
between pairs of populations, it seems difficult to naturally extend these
tests to more than two populations. The authors of the cross population
tests observed that they allow to detect a wider range of selective sweep sce-
narios compared to related single population tests. Still, these tests detect
mostly ongoing or hard sweeps. Only Rsb seems to be able to detect sweeps

from standing variation (Tang et al., 2007). Indeed, it does not look for
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conserved haplotypes, but for IBD individuals, so the signals provided by
distinct extended haplotypes can sum up. On the other hand, two different
long haplotypes that would be carried by the same individual would not be
counted, because this individual would be heterozygote, so the power for

detecting selection from standing variation is still not very high.

3.4 Need for new two step methods

The EHH based tests presented above are mostly designed to detect high

frequ
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Chapter 4

A new haplotype-based test for

detecting signatures of selection

In the previous chapter I pointed out that despite of the variety of available
methods for detecting positive selection, there is still a great need for new
methods accounting for haplotype information, in particular when testing
more than two populations. In this chapter I present a new test, called
hapFLK | contributing to filling this gap. It is presented under the form of
an article, which has been published in march 2013.

In general, when testing more than two populations, some populations are
more closely related than the others. The population structure is hierarchical
and can be represented with a kinship matrix. As we saw in the previous
chapter, not accounting for this structure can lead to a loss of power and to
a higher rate of false positives. To avoid this issue, we therefore decided to
build a new haplotype test by including haplotype information in the F-LK
test (Section 3.1.1), which to our knowledge is almost the only existing test
that accounts for the hierarchical structure of sampled populations. To ex-
tend FLK into hapFLK, we took advantage of the clustering model of Scheet
and Stephens (2006) (presented in Section 2.3.2), which infers local haplo-
type clusters for all sampled individuals at each observed SNP position, and
included this individual haplotype information in a new multiallelic version
of F-LK.

83
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Through simulations we showed that this haplotypic extension results in
an increased detection power and in the possibility to detect a wider range
of selection scenarios. In a scenario with two populations, we showed that
hapFLK also had more power than XP — FHH (Section 3.3.2) especially
for detecting selection from standing variation. Similar to FLK, hapFLK
assumes a model without migration or admixture, but simulations proved
that it was robust to moderate levels of migration, as well as to eventual
bottlenecks.

Besides the detection step, we also proposed in this article two strategies
the population(s) under selection. One of them is based on a local estimation
of the kinship matrix. It is given more emphasis in the article because it
seems to be the most user friendly method. But the second approach, which
is based on a spectral decomposition of the hapFLK statistic and is described
as supplementary information, may also be helpful, for instance to elucidate
whether there is interference between several close selection signals. We also
present a cluster frequency representation of the signals, that gives a picture

of the frequency of the selected haplotype(s) in the sampled populations.

4.1 Article: Detecting Signatures of Selec-
tion Through Haplotype Differentiation
Among Hierarchically Structured Popu-

lations
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Detecting Signatures of Selection Through
Haplotype Differentiation Among Hierarchically
Structured Populations
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ABSTRACT The detection of molecular signatures of selection is one of the major concerns of modern population genetics. A widely
used strategy in this context is to compare samples from several populations and to look for genomic regions with outstanding genetic
differentiation between these populations. Genetic differentiation is generally based on allele frequency differences between
populations, which are measured by Fst or related statistics. Here we introduce a new statistic, denoted hapFLK, which focuses instead
on the differences of haplotype frequencies between populations. In contrast to most existing statistics, hapFLK accounts for the
hierarchical structure of the sampled populations. Using computer simulations, we show that each of these two features—the use of
haplotype information and of the hierarchical structure of populations—significantly improves the detection power of selected loci and
that combining them in the hapFLK statistic provides even greater power. We also show that hapFLK is robust with respect to
bottlenecks and migration and improves over existing approaches in many situations. Finally, we apply hapFLK to a set of six sheep
breeds from Northern Europe and identify seven regions under selection, which include already reported regions but also several new
ones. We propose a method to help identifying the population(s) under selection in a detected region, which reveals that in many of
these regions selection most likely occurred in more than one population. Furthermore, several of the detected regions correspond to

incomplete sweeps, where the favorable haplotype is only at intermediate frequency in the population(s) under selection.

HE detection of molecular signatures of selection is one

of the major concerns of modern population genetics. It
provides insight on the mechanisms leading to population
divergence and differentiation. It has become crucial in bio-
medical sciences, where it can help to identify genes related
to disease resistance (Tishkoff et al. 2001; Barreiro et al.
2008; Albrechtsen et al. 2010; Fumagalli et al. 2010; Cagliani
et al. 2011), adaptation to climate (Lao et al. 2007; Sturm
2009; Rees and Harding 2012), or altitude (Bigham et al.
2010; Simonson et al. 2010). In livestock species, where ar-
tificial selection has been carried out by humans since domes-
tication, it contributes to map traits of agronomical interest,
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for instance, related to milk (Hayes et al. 2009) or meat (Kijas
et al. 2012) production.

Efficiency of methods for detecting selection varies with
the considered selection timescale (Sabeti et al. 2006). For
the detection of selection within species (the ecological scale
of time), methods can be classified into three groups: meth-
ods based on (i) the high frequency of derived alleles and
other consequences of hitchhiking within population (Kim
and Stephan 2002; Kim and Nielsen 2004; Nielsen et al.
2005; Boitard et al. 2009), (ii) the length and structure of
haplotypes, measured by extended haplotype homozygosity
(EHH) or EHH-derived statistics (Sabeti et al. 2002; Voight
et al. 2006), and (iii) the genetic differentiation between
populations, measured by Fsy or related statistics (Lewontin
and Krakauer 1973; Beaumont and Balding 2004; Foll
and Gaggiotti 2008; Riebler et al. 2008;Gautier et al.
2009; Bonhomme et al. 2010). Methods of the latter kind,
which we focus on, are particularly suited to the study of
species that are structured in well-defined populations, such
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as most domesticated species. In contrast to methods based on
the frequency spectrum (i) or the excess of long haplotypes (ii),
they can detect a wider range of selection scenarios, including
selection on standing variation or incomplete sweeps, albeit up
to a given extent (Innan and Kim 2008; Yi et al. 2010).

The most widely used statistic with which to detect loci
with outstanding genetic differentiation between popula-
tions is the Fgr statistic (Barreiro et al. 2008; Myles et al.
2008). The general application of the Fsr-based scan for
selection is to identify outliers in the empirical distribution
of the statistics computed genome-wide. One major concern
with this approach is that it implicitly assumes that popula-
tions have the same effective size and derived independently
from the same ancestral population. If this hypothesis does
not hold, which is often the case, genome scans based on
raw Fgr can suffer from bias and false positives, an effect
that is similar to the well-known effects of cryptic structure
in genome-wide association studies (Price et al. 2010).
To cope with this problem several methods have been pro-
posed to account for unequal population sizes (Beaumont
and Balding 2004; Foll and Gaggiotti 2008; Riebler et al.
2008; Gautier et al. 2009); however, few solutions have
been proposed to deal with the hierarchical structure of
populations (Excoffier et al. 2009). Among them Bonhomme
et al. (2010) proposed an extension of the classical Lewontin
and Krakauer (LK) test (Lewontin and Krakauer 1973), where
the hierarchical population structure is captured through a kin-
ship matrix, which is used to model the covariance matrix of
the population allele frequencies. A similar covariance matrix
was also introduced in a related context to account for the
correlation structure arising from population geography (Coop
et al. 2010).

All Fsr-based approaches discussed above are single marker
tests; i.e., markers are analyzed independently from each other.
As dense genotyping data and sequencing data are now
common in population genetics, accounting for correlations
between adjacent markers has become necessary. Further-
more, haplotype structure contains useful information for
the detection of selected loci, as demonstrated by the
within-population methods mentioned above (class ii). Sev-
eral strategies for combining the use of multiple populations
and of haplotype information have thus been proposed re-
cently. These include the development of EHH-related sta-
tistics for the comparison of pairs of populations (Sabeti
et al. 2007; Tang et al. 2007), the introduction of dependence
between SNPs (single nucleotide polymorphisms) in Fgr-
based approaches through autoregressive processes (Guo
et al. 2009; Gompert and Buerkle 2011), or the computation
of Fsy using local haplotype clusters that are considered as
alleles (Browning and Weir 2010). However, none of these
approaches accounts for the possibility that populations are
hierarchically structured.

We present here an haplotype-based method for the
detection of positive selection from multiple population data.
This new statistic, hapFLK, builds upon the original FLK statistic
(Bonhomme et al. 2010). As FLK, it incorporates hierarchical
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structure of populations, but the test is extended to account for
the haplotype structure in the sample. For this, it uses a multi-
point linkage disequilibrium model (Scheet and Stephens
2006) that regroups individual chromosomes into local haplo-
type clusters. The principle is to exploit this clustering model to
compute “haplotype frequencies,” which are then used to
measure differentiation between populations. The idea of
using localized haplotype clusters to study genetic data on
multiple populations has been proposed before (Jakobsson
et al. 2008; Browning and Weir 2010). Browning and Weir
(2010) showed that using haplotype clusters rather than
SNPs allowed circumvention, to some extent, of the prob-
lems arising from SNP ascertainment bias. They also showed
that two genome regions known to have been under strong
positive selection in particular human populations exhibited
large population-specific haplotype-based Fsy. Jakobsson
et al. (2008) showed by using fastPHASE that there was a pre-
dominance of a single cluster haplotype in the HapMap pop-
ulation of Utah residents with ancestry from northern and
western Europe (CEU population) in the region of the LCT
gene and interpreted this signal as a recent selective sweep.
In this article, we examined in detail the ability of
statistics based on population differentiation at the haplotype
level to capture selection signals. Using computer simulations,
we study the power and robustness of our new haplotype-
based method for different selection and sampling scenarios
and compare it to single-marker [Fst and FLK (Bonhomme
et al. 2010)] and haplotype-based approaches (XP-EHH;
Sabeti et al. 2007). To illustrate the interest of this approach,
we provide a practical example on a set of six sheep breeds
for which dense genotyping data have been recently released
by the Sheep HapMap Project (International Sheep Genomics
Consortium 2012). In this context, we propose a new strategy
for the detection of outliers loci in genome scans for selection
and describe a method for the identification of the popula-
tions that have experienced selection at a detected region.

Methods
Test statistics

Fgr and FLK tests for SNPs: Consider a set of n populations
that evolved without migration from an ancestral population
and a set of L SNPs in these populations. For a given SNP, let
p = (P1,-- P, - -,pn)’ be the vector of the reference allele
frequency in all populations. Denoting p and sﬁ the sample
estimates of the mean and variance of the p;s, Fgr at this SNP
is given by sg /P(1 — p). Fs quantifies the genetic differenti-
ation between populations and is commonly used to detect
loci under selection. Loci with outstanding high (resp. low)
values of Fsp can be declared as targets of positive (resp.
balancing) selection.

However, if the sampled populations have unequal
effective sizes or/and are hierarchically structured, genome
scans based on raw Fgr values can bias inference. For instance,
a given allele frequency difference between two closely re-
lated populations should provide more evidence for selection



than the same difference between two distantly related popu-
lations. To account for these drift and covariance effects when
detecting loci under selection, Bonhomme et al. (2010) intro-
duced the FIK statistic

Trik = (p—poln)’ Var(p) ' (p — poln), @)}

where py is the allele frequency in the ancestral population
and Var(p) is the expected covariance matrix of vector p,
which they modeled as

Var(p) = fpo(l —po). (2)

Fii is the expected inbreeding coefficient in population i and
Fi is the expected inbreeding coefficient in the ancestral
population common to populations i and j. The entries of
the kinship matrix F represent the amount of drift accumu-
lated on the different branches of the population tree. They
can be derived as a function of the divergence times and the
effective population sizes along the population tree, as de-
scribed in Supporting Information, File S1.

In practice, these demographic parameters are unknown
and F must be estimated from genome-wide data. Here, it is
done as follows: first, pairwise Reynolds’ distances (Reynolds
et al. 1983) between populations (including an outgroup) are
computed for each SNP and averaged over the genome. Then,
a phylogenetic tree is fitted from these distances using the
neighbor-joining algorithm. The branch lengths of this tree
are finally combined to compute F entries. More details on
this procedure can be found in Bonhomme et al. (2010). Given
the estimation of F, the unbiased estimator of py is obtained as

. WF-1p
0= 1, WP
LF

and can be used in Equations 1 and 2 to obtain Tg;k.

Under the assumption that all populations diverged
simultaneously from the same ancestral population (star-
like evolution) and with the same population size, F is equal
to Fsrl,, where Fgr is the average Fgr over all SNPs and I, is
the identity matrix of size n. In this case, Tk is equivalent
to the LK statistic (Lewontin and Krakauer 1973):

FLK test for multiallelic markers: Considering haplotypes
as multiallelic markers, an extension of the FLK statistic in
the case where each locus presents more than two alleles is
required. Letting A be the number of alleles at a given locus,
the allele frequency vector becomes

P= Pi1,---,Plin,--- :(P1»~--7PA)I

allele 1

7PA1: e 7pAn
allele A

and a multiallelic version of the T,k statistic is provided by
Tpik = (P—Po®1,)' Var(P) (P — Py ®1,), (3)

where ® denotes the Kronecker product and Py = (p1g, - - -
Pao)’ contains the allele frequencies of the A alleles in the
ancestral population. Var(P) is written

Var(p;) Cov(p1,pa)
Var(P) = : Var(pg) :
Cov(pa,p1) Var(pa)
=By®F, (4)

with By = diag(Py) — PoRy. Each diagonal block of Var(P)
corresponds to the biallelic covariance matrix for one of he
A alleles, while the extra-diagonal blocks arise from the co-
variance terms between different alleles. Similar to the bial-
lelic case, Py is estimated by by = (Wp1,...,wpa)". Var(P) is
inverted using the Moore-Penrose generalized inverse.

FLK test for haplotypes: The Scheet and Stephens (2006)
model summarizes local haplotype diversity in a sample
through a reduction of dimension by clustering similar hap-
lotypes together. These clusters can then be considered as
alleles to compute the haplotype version of Tk statistic. Let
& be the genotype observed for individual i at marker ¢. In
the hidden markov model of Scheet and Stephens (2006), gf
is associated to a hidden state z¢ = (z{!,2{2), where z{! and
22 represent the pair of clusters giving rise to the (diploid)
individual genotype. The Markov structure of z; = (2?,...,2})
along the genome implies that cluster memberships of close
markers are correlated, which allows us to account for link-
age disequilibrium effects. When this model is fitted to the
whole genotype data g, it provides for each individual i,
marker ¢, and cluster k the posterior probabilities
P(z* = k|g,®) and P(z? = k|g, ®), where O is a vector of
estimated model parameters (see Scheet and Stephens 2006
for more details). Cluster probabilities in each population j
are obtained by averaging the probabilities of the n; individ-
uals of this population, i.e.,

S (P! = Klg,0) + P2 = kg, ©)).  (5)
i=1

1
ij—z—nj

Considering clusters as alleles and population-averaged
probabilities as population frequencies, the allele frequency
vector of a marker ¢ is

'

[ 4 (
P = yPK1s -+ 3Pkn

cluster K

4
yPons - -

cluster 2

4 (4 4
P11>---5P1n>P215- - -

cluster 1

For each marker ¢, the multiallelic statistic Tgx is computed
according to Equation 3, with a small modification in the
derivation of Var(P). Clusters that are fitted in the present
population cannot exactly be considered as real alleles that
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already existed in the ancestral population, as assumed by
the original Tk statistic. Moreover, the generalized inverse
of By ® F was found numerically unstable for small P
values, which are very common when the number of alleles
is large. Consequently, the By matrix is replaced by the iden-
tity matrix I, in Equation 4, leading to the statistic

Trk = (P—Po®1,) (Z®F) H(P—Py®1,).  (6)

Simulations confirmed that this version of the test was more
powerful than the one including B, (Figure S1).

For the model of Scheet and Stephens (2006), parameter
estimates and cluster membership probabilities are obtained
using an expectation maximization (EM) algorithm. Because
this algorithm converges to a local maximum, it is useful to
run it several times from different starting points. Applying
the model to haplotype phasing, Guan and Stephens (2008)
and Scheet and Stephens (2006) observed that averaging the
results from these different runs was more efficient than keeping
the maximum-likelihood run, which may be due to the fact that
different runs are optimal in different genomic regions. Follow-
ing their strategy, we averaged the statistics obtained using
Equation 6 from different EM iterations to finally obtain the
haplotype extension of FLK. We denote this extension hapFLK.

The haplotype extension of the Fgy test, denoted hapFsr
in the simulation study, was obtained by replacing F by I, in
Equation 6, therefore ignoring the hierarchical structure of
populations.

Software and computational considerations: Software
implementing the hapFLK calculations is available at https://
forge-dga.jouy.inra.fr/projects/hapflk. hapFLK comes with an
increased computational cost compared to Fsr and FLK arising
from the need to estimate the LD model on the data. The
computational cost of the LD model used here, applied on
unphased genotype data, is in o(K2IL) with K the number of
clusters, I the number of individuals, and L the number of loci
on a chromosome. As an example, fitting the model on sheep
chromosome 1 with 5284 SNPs for 40 clusters and 278 indi-
viduals takes about 1 hr on a single processor. In our imple-
mentation of the Scheet and Stephens (2006) model, we
perform computations in a parallel fashion allowing the de-
crease of computational costs on multiprocessor computers.

Simulations

To evaluate the performance of hapFLK and compare it to
that of other tests, we performed a set of simulations
mimicking the data obtained from dense SNP genotyping
or full sequencing of samples from multiple populations. In
particular, we designed our simulation to match the data
produced within the Sheep HapMap Project (International
Sheep Genomics Consortium 2012) (analyzed below), in
terms of population divergence and SNP density.

Scenarios with constant size and no migration: Two
scenarios were simulated, one with two populations and the
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other one with four populations (Figure 1). The two-popu-
lation scenario was designed to be a subtree of the four-
population scenario, which allows comparison of the detec-
tion power obtained by testing the four populations jointly,
with the power obtained by testing all possible pairs of
populations.

The ancestral population was simulated using using ms
(Hudson 2002), with mutation rate y = 10~8, recombination
rate ¢ = 1078 (1 cM/Mb), and region length L = 5 Mb. The
effective population size and the number of simulated haplo-
types were N, = 1000 and ny, = 4000 for the two-population
case, and N. = 2000 and n;, = 8000 for the four-population
case. The generated haplotypes had ~200 SNPs/Mb. The first
two populations (top branches in Figure 1) were created in-
dependently by sampling half of the individuals from the
founder population. A forward evolution of the populations
after their initial divergence was then simulated with the simu-
POP Python library (Peng and Kimmal 2005), under the
Wright-Fisher model. During forward simulations, recombina-
tion was allowed but mutation was not.

Simulations were performed with and without selection.
For scenarios with selection, selection occurred at a single
locus, in the red branch shown in Figure 1. The selected
locus was chosen as the closest to the center of the simu-
lated region, among the SNPs with minor allele frequency
equal to a predefined value (0.1, 0.05, 0.10, 0.20, or 0.30).
The less-frequent allele of this SNP was given fitness 1 + s, with
selection intensity s = 0.05 (leading to a = 2 - N, - s = 100).
Individuals’ fitness was 1 for homozygotes with the nonselected
allele, 1 + s for heterozygotes, and (1 +s)* for homozygotes
with the selected allele.

At the end of each simulation replicate 50 individuals
were sampled from each of the final populations, and SNPs
with a minor allele frequency (MAF) >5% kept. Two differ-
ent genotyping densities were considered: 20 SNPs/Mb
(equivalent to that of 60K SNPs in sheep) and 100-125 SNPs/
Mb (all remaining SNPs). The statistics Try;, Thaprs, Trik, and
Thaprix Were computed at each SNP, assuming that the kinship
matrix F was known. The estimation of F is very accurate
for evolution scenarios with constant population size and no
migration (see Bonhomme et al. 2010 and Figure S2).
Parameters used for running the test were K = 5 (number
of clusters) and em = 5 (number of EM runs) for the two-
population scenario and K = 20 and em = 5 for the four-
population scenario. These values were chosen for maximizing
the detection power. Greater values did not improve this
power, but increased computation time. For the two-popula-
tion scenario, the XP-EHH statistic (Sabeti et al. 2007) was
also computed at each SNP, using software obtained from
http://hgdp.uchicago.edu/Software/ .

Power of the tests was computed as follows. Ten
thousand data sets were simulated under the null (neutrality)
and 3000 were simulated under the alternative (selection)
hypotheses, for each scenario considered. In simulations
under selection, only replicates where the final frequency of
the selected allele was >60% were kept. For each replicate



Figure 1 Population trees for the two simulated scenarios. The red branch
indicates the selected population and time during which selection acts.

and statistic S, the maximum value S™3* over the 5-Mb region
was recorded. This provides the distribution of S™#* under the
null and the alternative hypotheses. The power of a test with
statistic S, for a given type I error «, is the proportion of
simulations under selection for which S™& > q,, where ¢,
is the (1-a)th quantile of the null distribution of S™ax,

Scenarios with bottlenecks or migrations: To study the
robustness of the approach, more complex demographic
events were investigated through three scenarios. They
derived from the two-population scenario described above,
with the following modifications:

1. A bottleneck in a single population: the effective size in
this population was set to N. = 100 in the first five gen-
erations following the split and to N, = 1852 in later
generations.

2. Asymmetric migration: at generation 51, population 1
sent 10% of migrants to population 2.

3. Symmetric migration: at generation 51, population 1 sent
10% of migrants to population 2 and recieved 10% of
migrants from population 2.

In terms of expected drift at a single SNP, these scenario are
equivalent to the constant size scenario (see SI section 1.1
for a proof). Hence, they can be used to evaluate the
influence of the underlying demographic model on hapFLK,
while conditioning on a fixed value of F. To ensure that the
JF matrix used in hapFLK fits the one that would be estimated
from real data, 100 artificial whole genome data sets were
created for each of the scenarios i-iii and used to estimate F.
Each artificial whole genome data set was created by simu-
lating 500 independent genome segments of 5 Mb.

Robustness of hapFLK and XP-EHH were evaluated by
comparing quantiles of each statistic obtained under bottle-
neck or migration demography with those obtained under
a constant size evolution. No selection was applied in these
simulations.

Evaluation of the detection power of hapFLK and XP-
EHH under bottleneck (or migration) with selection was
performed as described above; i.e., distributions obtained
under neutrality provided quantiles used to calibrate type I

error. Because scenarios i and ii are asymmetric, each one
provided two different simulation scenarios under selection,
one with selection in population 1 and one with selection in
population 2.

Sheep data analysis

A whole genome scan for selection in sheep was performed
using the genotype data from the Sheep HapMap Project
(available at http://sheephapmap.org/download.php). The
sheep HapMap data set includes 2819 animals from 74
breeds, collected in such a way that it represents most of
the worldwide genetic diversity in the sheep. Genotypes at
48703 autosomal SNPs (after quality filtering) are available
for these animals. Focus was placed on the North European
group, all populations with <20 individuals being removed.
Populations resulting from a recent admixture were also
excluded because they are not compatible with the popula-
tion tree model assumed for our test. Finally, the following
populations were included in the analysis (sample size in
parentheses): Galway (49), Scottish Texel (80), New Zealand
Texel (24), German Texel (46), Irish Suffolk (55), and New
Zealand Romney (24). The Soay breed was used as an out-
group for computing the F matrix.

Parameters of the hapFLK analysis: To determine the
number of clusters to be used in the fastphase model, the
cross-validation procedure of fastPHASE, which indicated an
optimal number of 45 clusters, was used. As the computational
cost increases quadratically with the number of clusters, and
as the genome scans performed on one single chromosome
for 40 and 45 clusters provided very similar results, 40 clusters
were used for the rest of the analysis. A sensitivity analysis
indicated that on this data set 45 EM runs were required to
obtain a stable estimate of hapFLK.

Computation of P-values: In contrast to the simulated data
sets, real data do not provide null distribution allowing
computation of P-values from the hapFLK statistics. Also,
due to ascertainment bias in the SNP panel, we believe that
performing neutral simulations based on an estimation of F
is not a good strategy for this particular data set (see the
Discussion for more details). P-values were thus estimated
using an empirical approach (described below) exploiting
the fact that selected regions, at least those that can be
captured with hapFLK, affect a small portion of the genome.

The genome-wide distribution of hapFLK appeared to be
bimodal, with a large proportion of values showing a good fit
to a normal distribution and a small proportion of extremely
high values (Figure S3). Consequently, P-values were estimated
as follows, First, robust estimators of the mean and variance
of hapFLK were obtained, to reduce the influence of outliers.
For this estimation the rlm function of the package MASS
(Venables and Ripley 2002) in R was used. hapFLK values were
then standardized using these estimates and corresponding
P-values were computed from a standard normal distribution.
The resulting distribution of P-values across the genome was
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found to be close to uniform for large P-values, consistent
with a good fit to the normal distribution apart from the
outliers that exhibit small P-values. Using the approach of
Storey and Tibshirani (2003), the FDR estimated when call-
ing significant hypotheses with P < 1073 was 5%.

Pinpointing the selected population: Similar to all Fsp-
related tests, hapFLK detects genomic regions in which genetic
data are globally not consistent with a neutral evolution, but
does not directly indicate where selection occurred in the pop-
ulation tree. To investigate this question, branch lengths of the
population tree were reestimated for each significant region,
using SNPs exceeding the significance threshold. The principle
was to fit (using ordinary least squares) the branch lengths to
the local values of Reynolds genetic distances. For each branch
the P-value for the null hypothesis of no difference between the
lengths estimated from data in the region and in the whole
genome was computed. We did this local tree estimation using
either SNP or haplotype clusters frequencies. Details on the
procedure are provided in File S1, section 1.3.

Results
Simulation results

We performed a set of simulations to evaluate and compare
the performance of hapFLK and other tests (see Methods for
more details). To present the results of these simulations,
we begin with scenarios that fit the assumptions of our
model: a population tree without migration and with con-
stant size within each branch. We then move to more com-
plex demographic scenarios, which are expected to be less
favorable to our test.

Interest of using haplotypes over SNPs: We first simulated
data from two populations of the same effective size (Figure 1,
left). In this setting, the structure-aware tests (FLK and
hapFLK) are equivalent to their unaware counterparts (Fsr
and hapFsy resp.).

In simulations mimicking dense genotyping data, the use
of haplotype information (hapFLK) provides more detection
power than the use of single SNP tests (Fsr) (Figure 2). This
holds for both hard sweeps (po = 0.01) and soft sweeps de-
tection (po up to 0.3). XP-EHH, which also makes use of
haplotype information, has more power than Fst but less than
hapFLK for hard sweeps detection. The decrease in power for
soft sweeps is also more pronounced for XP-EHH (Figure 2),
which is expected because XP-EHH is designed to detect the
rise in frequency of one single haplotype.

Focusing on hapFLK, we further studied the evolution of
the detection power as a function of the initial and final
frequencies of the selected allele (Figure S5). Although soft
sweeps are obviously harder to detect, there is still reasonable
power to detect such events with hapFLK. For example, when
the initial frequency is 20% and the final frequency is 90%,
the detection power is >75%, for a type I error rate of 1%.
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When selection acts on mutations at initial low frequency, the
detection power is relatively high (around 60%) even for in-
complete sweeps with a final frequency of 50-60%.

We also compared FLK, hapFLK, and XP-EHH in simula-
tions mimicking data arising from full sequencing or impu-
tation from a sequenced reference panel. This increase in
marker density results in a greater power for all tests (Figure
S6). In this setting, FLK is the most powerful. This comes
from the fact that the selected SNP, where the allele fre-
quency difference between populations is expected to be
the largest, is always included in the sample in this simulation
setting. In contrast, the selected SNP itself is often missing
when analyzing genotyping data, and information concerning
this SNP is then better captured by haplotypes than by single
neighboring SNPs. All results below were obtained on simu-
lations mimicking dense genotyping data.

Hierarchical structure of populations: We then considered
a four-population sample, where populations are hierarchi-
cally structured (Figure 1, right). This allows to compare
hapFLK with related tests accounting for population struc-
ture only (FLK), haplotype information only (hapFst), or
none of these features (Fst). As expected, the least powerful
approach in this scenario is the classical Fgy. The gain in
power provided by using a haplotype-based approach is of
similar size to that provided by accounting for population
structure. Finally, combining the two within a single statistic
(hapFLK) results in an even greater power gain (Figure 3).
This result holds for initial frequencies >1% although the
difference between haplotype and single SNP tests tend to
decrease with increasing initial frequencies (Figure S4).

A classical approach for selection scans based on more
than two populations is to test pairs of populations. It is, for
instance, the only possible option for selection scans based
on XP-EHH. To evaluate the interest of this pairwise strategy,
we compared the detection power obtained by applying
hapFLK on pairs of populations or on the four populations
jointly and found that testing all pairs of populations is always
less powerful (Figure S7). Since XP-EHH also has less de-
tection power than hapFIK in the two-population scenario,
we can expect that applying hapFLK using the four popula-
tions jointly will be much more efficient than applying XP-
EHH on pairs of populations.

Robustness and power of hapFLK in complex demographic
scenarios: The model underlying hapFLK is that of pure drift
evolution, with constant population size in each branch of
a population tree with no admixture. These assumptions are
made (i) when estimating the population covariance matrix
F and (ii) when assuming allele frequency differences (ei-
ther SNP or haplotype) are due only to F. We studied the
robustness of hapFLK in presence of admixture or bottleneck
events by examining separately their consequences on (i)
the estimation of the F matrix and (ii) the distribution of
the hapFLK statistic. For this, we simulated the evolution of
two populations with a bottleneck in one of the populations,



Figure 2 Power of hapFLK, Fst, and XP-EHH as a function of the initial
frequency of the selected allele. The power is evaluated at a type | error
level of 5%.

migration from one population to the other, or migrations
between both populations (see Methods for details).

The estimation of the F matrix is slightly affected by
demographic events (Figure S2). When one of the popula-
tions has experienced a severe bottleneck (reduction in size
by a factor 10), the estimated branch length for this popu-
lation is increased by 10%. In the presence of migrations
between populations, the two branches remain of the same
length but the Reynolds genetic distance between the two
populations is smaller than it should be (5% smaller in the
one way migration case and 10% smaller in the two-way
migration case).

Using this information we were able to perform simu-
lations under pure drift evolution or bottleneck/migration
evolution that led to the same estimated F matrix. As
hapFLK is conditioned on this estimate, this approach allows
evaluation of the effect of demographic events on the statis-
tic, while integrating out their effect on 7. We found that
the distribution of hapFLK was not greatly affected by de-
viations from pure drift evolution, on par with XP-EHH
(Figure S8). Overall, these results show that while the es-
timate of F can be affected by deviation from the evolution
model, and therefore coefficients in F must not be inter-
preted too literally, the distribution of hapFLK conditioned
on this estimate is robust. In addition, the power of hapFLK
is only slightly reduced under migration scenarios and un-
changed under a bottleneck scenario (Figure S9).

Application to the sheep Hapmap data set

To provide an insight into the advantages and issues of using
hapFLK on real data, we provide an example of application
to a subset of the data from the Sheep HapMap Project. In
sheep populations, drift accumulates rapidly, due to their

Figure 3 Power of Fs, FLK, hapFst, and hapFLK in the four-population
scenario as a function of the type | error rate. The initial frequency of the
selected allele is 1%.

small effective size, typically a few hundred individuals
(International Sheep Genomics Consortium 2012). As little
power is expected from analyses based on genetic differen-
tiation if populations are too distant, we focused on a group
of relatively closely related breeds from Northern European
origin. Six populations are included in this group, whose
population tree is shown in Figure 5 (top left).

The genome scan performed with FLK provides little
evidence for any sweep in these data, with P-values of the
order of 10~4, a hardly convincing figure, seen only on chro-
mosomes 2 and 14. This is in great contrast (Figure 4) to the
genome scan with hapFLK, which identifies seven genome-
wide significant regions (Table 1), consistent with the addi-
tional power provided by hapFLK on simulated data sets. For
each of these regions, we identified the population(s) under
selection by reestimating the local population trees and com-
paring it to the tree estimated from whole genome data (see
Methods for more details).

Figure 5 shows local trees for the two largest signals, on
chromosome 2 and 14 (local trees for the other significant
regions are provided in Figure S10).

The most significant selection signature (region 1 in Table 1)
corresponds to a 17-Mb region in chromosome 2. Selection
occurred in the three Texel breeds, most likely acting on the
myostatin gene GDF-8, which is located in the middle of the
region. Texel sheep carries a mutation in this gene, which
contributes to muscle hypertrophy (Clop et al. 2006), a strongly
selected trait in these populations. Although the mutation was
discovered in Belgian Texels, our results imply that it must be
present in these other Texel populations. SNPs within this re-
gion are almost fixed in the three Texel populations (Figure 6),
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Figure 4 Genome scan for selection in Northern European sheep using a haplotype-based (hapFLK, top) or single SNP (FLK, bottom) test. x-axis: position

on the genome. y-axis: —log10(P-value).

indicating a hard sweep signal. However, even in this “easy”
case, using haplotype information makes the detection sig-
nal more interpretable: while FLK exhibits only moderate
P-value decrease in the region, from which no clear conclusion
concerning the selected site position can be drawn, hapFLK
provides a continuous and strong signal covering the whole
region and almost centered on the selected site. The local
tree exhibits a large increase in branch length in the branch
ancestral to the three Texel populations and reduced branch
length between Texel populations (Figure 5). This is consis-
tent with a shared selection event predating the split between
populations. Finally, the example of region 1 also illustrates
that our test can detect selection signatures that are shared by
several populations, which we did not formally test in the
simulations. In contrast, to detect this region with a Fgr ge-
nome scan, based on single SNP tests, International Sheep
Genomics Consortium (2012) had to group the Texel breeds
and test them against all other populations.

In contrast to the selection signature around GDF-8, the
second most significant region (region 5, on chromosome 14)
shows no evidence of a hard sweep (Figure 4) and cannot be
identified using the single marker FLK test. The local tree
(Figure 5) computed using SNP data exhibits slightly in-
creased branch lengths, whereas the local tree computed us-
ing haplotype clusters presents very strong evidence for
selection in two breeds: the New Zealand Texel and the
New Zealand Rommey, together with reduced haplotype di-
versity (Figure S14). These two breeds are not historically
closely related (Figure 5, top left), but both have been
imported in New Zealand (in 1843 and 1991, respectively).
The selection signature could thus be due to a common recent
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selection pressure on the two breeds in the last decades. This
would be consistent with the relatively modest frequency of
the selected clusters and the fact that these selected clusters
are different in the two breeds, suggesting that selection
started on different haplotype backgrounds. One possible un-
derlying trait associated with this selection signal is resistance
to nematode-like parasites, an important disease affecting
sheep in New Zealand. Two studies (Hacariz et al. 2009;
Matika et al. 2011) found evidence for association between
genetic polymorphism and parasite resistance related traits in
this region of the genome in Texel breeds. Matika et al
(2011) also found these polymorphisms associated with mus-
cle depth. While the functional basis of these two effects is
still unclear (pleiotropy, linkage disequilibrium with growth
factors), it is possible that animal fitness in this region is re-
lated to multilocus haplotypes rather than to single SNPs.

We point the reader interested in details for all significant
regions in Table 1 to the supporting information. In partic-
ular, allele and haplotype cluster frequencies are provided in
Figure S11, Figure S12, Figure S13, Figure S14, Figure S15,
and Figure S16 and local trees in Figure S10. An alternative
approach for pinpointing the selected population(s) is also
described (section 1.2, File S1) and applied to these regions
(section 2.3, File S1; Figure S17, Figure S18, Figure S19,
Figure S10, Figure S20, and Figure S21).

Discussion

Haplotype vs. single marker differentiation tests

For the analysis of dense genotyping data, where the selected site
itself is generally not observed, we show that using haplotypes



Table 1 Selective sweeps detected by hapFLK within sheep populations from Northern Europe

Region Chr Position (Mb) Max (Mb) P-value Population(s) (fregs) Candidate genes
1 2 108.7-126.3 116.9 1.5x 10713 STX (0.85), NTX (0.87), GTX (0.63) GDF8

2 6 91.2-91.3 91.2 9.8 x 1074 ROM (0.36, 0.32)

3 11 12.6-14.0 13.7 42 x1074 ROM (0.75), GAL (0.45)

4 14 12.2-14.6 13.9 45x 1074 ISF (0.65)

5 14 40.1-55.0 48.8 8.8x 1078 ROM (0.29, 0.44), NTX (0.54) TFGB1, IRF3

6 22 19.1-24.0 21.7 55x 107> GTX (0.62)

7 22 38.5-38.8 38.6 8.6 x 1074 ROM (0.31, 0.35)

For each significant region are listed: the chromosome region (in megabases on assembly OAR v. 2.0), the position of the maximum value for the statistic, the corresponding
P-value, the suspected selected population(s) along with selected haplotypes frequencies, and potential candidate genes.

rather than single SNPs greatly improves the detection power
of selection signatures. An intermediate approach between
single SNP and haplotype-based tests consists in gathering
multiple consecutive loci within sliding windows into a single
windowed statistic (e.g., Browning and Weir 2010; Weir et al.
2005). However, in our simulation study, we found this ap-
proach to be less powerful at detecting selection (Figure
S23). In the case of sequencing data, we found that a single
SNP test was more powerful than hapFLK, consistent with
previous results of Innan and Kim (2008), who found in
a similar setting that an haplotype-based Fst was less power-
ful than a single locus one. However, our simulations involved
a single selected site and in many real situations, selection
will act rather effectively on multilocus haplotypes (Pritchard
et al. 2010), due, for instance, to recurrent mutations affect-
ing the same gene, or to polygenic selection. We expect hap-
lotype-based tests to be more powerful in such situations,
which according to us justifies their use also for the analysis
of sequencing data. In the particular case of low coverage
resequencing, which is becoming a common experimental de-
sign in population genetics, this analysis will have to account
for the additional uncertainity in genotype estimation, but we
believe this can easily be tackled by the clustering algorithm
used for hapFLK.

Different strategies for the inclusion of haplotype
information in differentiation

To extend the single marker FLK and Fgr tests into haplotype
based tests, we estimate local haplotype clusters from geno-
type data and consider these estimated clusters as alleles.
Using a multipoint model for linkage disequilibrium (LD) in
this context has several advantages. First, haplotypes are
generally unknown and must be inferred from genotypes,
which typically relies on a model for LD such as Scheet and
Stephens (2006). Using directly the model parameters as we
do has the advantage of allowing us to average over the
uncertainty in the distribution of possible haplotypes rather
than using a best guess that is known to include errors
(Marchini et al. 2006). On a more practical side, hapFLK
can be computed on unphased genotype data that are com-
mon in population genetics studies. Second, because the
model of Scheet and Stephens (2006) is a hidden Markov
model, it naturally accounts for variation in LD patterns
along the chromosome and alleviates the need to use

windowing approaches, which have notorious difficulties
accounting for this variation. Finally, several similar hap-
lotypes may be associated to the same selected allele, and
treating them independently should affect the detection
power of the tests. In the Scheet and Stephens model, similar
haplotypes are clustered together and will be considered as
a single allele.

Other haplotype-clustering models, for instance, Beagle
(Browning 2006), could certainly be used for constructing
hapFLK. For example, the pattern of haplotype frequencies
around the LCT gene in human populations was studied using
either fastPHASE (Jakobsson et al. 2008) or Beagle (Browning
and Weir 2010), and a strong evidence for selection in Europe
was observed in both cases. However, to go beyond these
observations and build a formal statistical test for selection,
it is important to realize that the distribution of hapFLK (or
hapFst) depends on the number of clusters used to model
haplotype diversity. This number is fixed in fastPHASE but
variable along the genome in Beagle. As this variation might
be due to natural selection, but also to other effects such as
variations in recombination or mutation rate, further studies
would be required to evaluate the influence of using different
clustering algorithms on the detection power.

Another important feature of hapFLK is its ability to
account for the hierarchical structure of the sampled
populations, arising from their evolutionary history within
the species. FLK was already shown to be more powerful
than the Fsy test in many simulated scenarios (Bonhomme
et al. 2010). It was also compared to the Bayesian differen-
tiation test of Foll and Gaggiotti (2008) in one simulated
scenario with hierarchically structured populations and
again provided more detection power. Consequently, we ex-
pect that hapFLK will also perform better than other haplo-
type-based differentiation tests (Guo et al. 2009; Browning
and Weir 2010; Gompert and Buerkle 2011) for hierarchi-
cally structured populations.

To build tests that account for both the differentiation
between populations and haplotype structure, all methods
discussed above propose including haplotype information
into single-marker differentiation tests. Another popular
strategy, developed in the XP-EHH (Sabeti et al. 2007)
and Rsb (Tang et al. 2007) statistics, is to compute a statistic
quantifying the excess of long haplotypes within each popula-
tion and to contrast this statistic among pairs of populations.
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Simulating a two-population sample, we found that XP-
EHH and hapFLK had relatively similar power for hard
sweep detection. However, one important difference was
that hapFLK maintained some power for soft sweep detec-
tion, in contrast to XP-EHH. Interestingly, the combination
of XP-EHH, FLK, and hapFLK allows a slight increase of
power in the two-population simulations (File S1, section
1.5 and Figure S22), indicating that these different statistics
do not capture exactly the same patterns in the data.
When more than two populations are sampled, compar-
ing only pairs of populations raises a multiple testing issue
leading to a significant decrease in power (Figure S7). Be-
sides, computing a single test at the meta-population level
seems more appropriate for several reasons. First, the signals
we detected in sheep suggest that favorable alleles are often
positively selected in several populations, either closely (re-
gion 1) or distantly related (region 5). Second, our ability to
detect loci under selection depends on our ability to estimate
the allele frequencies in this common ancestral population,
which is clearly improved when using all populations simul-
taneously. One potential difficulty arising from our meta-
population approach is the identification of the population
(s) under selection, which is more difficult than when com-
paring pairs of populations. We proposed addressing this
question using a local reestimation of the population tree,
as illustrated in the sheep Hapmap data analysis. An alterna-
tive approach, which is based on a spectral decomposition of
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Figure 5 Local population trees estimated in
two significant regions in the sheep data set.
Population tree of the Northern European
sheep populations from the Sheep HapMap
Project (top left). Local population trees were
estimated using Reynolds distance based on
SNPs (left) or haplotype clusters (right). Abbre-
viations: Irish Suffolk (ISF), German Texel (GTX),
New Zealand Texel (NTX), Scottish Texel (STX),
Galway (GAL), New Zealand Romney (ROM).

hapFLK, is also described in the supporting information and
applied to the sheep data.

Robustness of hapFLK and computation of P-values in
a general situation

In many genome scans for selection, all loci above a given
empirical quantile of the test statistic are considered as
potential targets of selection. However, this so-called outlier
approach does not allow control of the false-positive rate
and can be inefficient in many situations (Teshima et al.
2006). To overcome this limitation and quantify the statis-
tical significance of selection signatures, one must describe
the expected distribution of the test statistic under neutral
evolution, which depends on the demographic history of the
sampled populations. In the case of hapFLK, this neutral
distribution could be estimated by (i) fitting the kinship
matrix F from genome-wide SNP data and (ii) simulating
neutral samples conditional on F, using a simple model
with no migration and constant population size along each
branch of the population tree. This approach avoids estima-
tion of a full demographic model for the sampled populations
and was found to be robust to bottlenecks or to intermediate
levels of migration/admixture (Figure S8). For the analysis of
samples involving stronger departures from the hierarchical
population model assumed in this study (for instance, with
hybrid populations), the expected covariance matrix of allele
frequencies could also be modeled using relaxed hypotheses.



The strategies used in Bayenv (Coop et al. 2010) or TreeMix
(Pickrell and Pritchard 2012) could, for instance, be adapted
to the application of hapFLK.

However, in many situations (e.g., in the sheep HapMap
data), the neutral distribution of hapFLK is not only affected
by demography, but also by SNP ascertainment bias. Simu-
lating the ascertainment process is in general difficult: for
example, in the sheep data it involves animals from a large
panel of worldwide populations (International Sheep
Genomics Consortium 2012). For single SNP tests such as
FLK, this ascertainment issue can be circumvented by esti-
mating a neutral distribution for several bins of the allele
frequency in the ancestral population (Bonhomme et al.
2010), because we can assume that the only effect of SNP
ascertainment is to bias the allele frequency distribution. But
this strategy is not applicable to haplotype-based tests, for
which the effect of SNP ascertainment is more complex. We
consequently proposed a more empirical approach, in which
the null distribution of hapFLK is directly estimated from the
data using an estimator that is robust to outlier values. This
empirical approach might be useful in future genome scans
for selection, even if they are based on different test statis-
tics than hapFLK, but its validity will depend on each par-
ticular data set and needs to be checked carefully by looking
at the P-value distribution (see Methods for more details).

Figure 6 Allele (left) and haplotype cluster
(right) frequencies in detected region 1 (chro-
mosome 2) for each of the 6 sheep populations
used in the test. Blue bars indicate the limits of
the detected region and the position of maxi-
mum of the test. The reference allele used for
the SNP frequency representation is arbitrary.

The most significant selection signatures detected in sheep
using hapFLK exhibit extremely small P-values (down to
10~13), while the smallest P-values obtained with FLK for
the same data set were of order 10~#. This difference of mag-
nitude might be artificially inflated by the fact that we compute
hapFLK P-values using a normal distribution, and FLK P-values
using a chi-square distribution. However, we note that the
choice of these distributions is supported by the data. Besides,
we found that FLK P-values in simulated samples with selec-
tion using a chi-square distribution can go down to at least
10~11 (data not shown). We thus believe that the P-value
difference observed in sheep reflects the fact that hapFLK is
much more powerful than FLK, especially for SNP data where
ascertainment bias leads to remove SNPs with extreme allele
frequencies.

Soft or incomplete sweeps

While genome scans for selection have historically focused
on hard sweeps, several recent studies have pointed out the
importance of soft sweeps in the evolution of populations
(Pritchard et al. 2010; Hernandez et al. 2011) and described
the genomic signature of these selection scenarios (Hermisson
and Pennings 2005). We tested hapFLK for initial frequencies
of the favorable allele up to 30% and found that reasonable
power could be achieved also in this situation. The detection

Haplotype-Based Detection of Selection Signatures 939



of incomplete sweeps is another important issue, which has
not been much tackled in the literature. Detecting selected
alleles at intermediate frequency is almost impossible with
methods based on the allele frequency spectrum and very
difficult with EHH- or Fsr-based existing approaches. In con-
trast, hapFLK is quite powerful in the case of incomplete
sweeps, and several of the selection signatures detected in
the sheep HapMap data correspond to intermediate frequen-
cies of the selected haplotype (see Figure S11, Figure S15,
and Figure S16).

Few hard sweeps were actually detected in the sheep
data, although they are easier to detect than soft sweeps.
This might be due to the short divergence time between these
populations (a few hundred generations), which would limit
the rise in frequency of favorable alleles. On the other hand,
artificial selection has been associated with strong selection
intensities, especially in the last decades, which should
compensate for the short evolution time. One alternative
explanation could be the variation of the selection intensity or
direction over time, due to changes in agronomical objectives
(e.g., in the sheep from wool to meat production) or importa-
tions of animals in a new environment (e.g., in the Texel and
Romney breeds from Europe to New Zealand). The small num-
ber of hard sweeps can also be explained by the fact that
artificial selection on quantitative traits is in general polygenic.

As a final and general remark on all methods aiming at
discovering positive selection, selective constraints in func-
tional and nonfunctional regions are probably more complex
than what is usually simulated (with purifying and back-
ground selection, polygenic selection, balancing selection,
etc). Definitely more research effort needs to be done on
these aspects.

Conclusions

Overall, our study demonstrates that using haplotype in-
formation in Fgp-based tests for selection greatly increases
their detection power. Consistent with several recent other
studies (Excoffier et al. 2009; Bonhomme et al. 2010; Coop
et al. 2010), it also confirms the importance of analyzing
multiple populations jointly, while accounting for the hier-
archical structure of these populations. The new hapFLK
statistic, which combines these two features, can detect
a wide range of selection events, including soft sweeps, in-
complete sweeps, sweeps occurring in several populations,
and selection acting directly on haplotypes.
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1 Methods

1.1 Deriving the kinship matrix F in complex evolutionary scenarios

In the two population scenario of Figure 1 (main paper), the kinship matrix is

0.05 0
F*( 0 0.05)

because populations are independent conditional on the ancestral population, and
1\
Fii=Fo=1—-(1—-—
1,1 2,2 ( 9Ny ) )

with Ny = 1000 and ¢ = 100. Below we show that the kinship matrix in scenarios with migrations also
have the same kins