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"Ondine scrute l'océan où sa mère doit..., où son père doit chasser le congre ou le bar.  

Le congre que le bar abhorre ou le bar que le congre hait.  

Car Ondine a la dalle et la mère a les crocs.  

Selon qu'il aura pris la barque à bars ou la barque à congres,  

le père devra remplir la barque à bars à ras bord de bars ou  

la barque à congres à ras bord de congres.  

Or, il n'a pas pris la barque à congres ; Il a pris la barque à bars.  

A l'arrière plan, le spectateur voit, au flanc de la montagne rouge feu, moutonner un maquis vert.  

Il y serpente des chemins rares qui débouchent soudain sur des criques sauvages où nul imbécile, 

cintré dans sa bouée Snoopy ne vient jamais ternir de son ombre grasse et populacière, l'irréelle clarté 

des fonds marins mordorés, où s'insinue le congre que donc, le bar abhorre.  

Oui : le bar abhorre le congre par atavisme. Le congre est barivore. Et donc le bar l'abhorre.  

Le bar est fermé aux congres du même fait que le palais des congres est ouvert au bar." 

Pierre Desproges, 1986 

 

Puisse ce travail contribuer à remplir la barque à bars à ras bord de beaux bars… d'élevage bien sûr !  
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1 General introduction 

1.1 Aquaculture: a fast-growing animal production deserving optimisation 

In historic times, the sea has always been considered as an inexhaustible source of high quality food 

for humanity. It is only very recently that it became more and more evident that this was not the 

case. When FAO records on capture fisheries started in 1951, 70 % of the world fisheries were 

considered undeveloped, and less than 10% were fully exploited, while in 1999 the picture was quite 

the opposite: 50% of the fisheries were fully exploited, and more than 40% were overfished or 

collapsed (Froese and Kesner-Reyes, 2002). This can also be seen in the production curve, where 

growth of fisheries production has stopped and is even declining since the 80's despite a continuous 

increase in fishing effort (FAO, 2009). Nowadays, although propositions are done by scientists to help 

better manage capture fisheries (e.g. Pauly et al., 2002), nobody seriously expects that world capture 

fisheries production will ever produce more than they did in the 1980's, and some authors argue that 

capture fisheries could even completely collapse by the middle of the 21th century (Worm et al., 

2006). 

Facing this rise and fall of capture 

fisheries, the demand for seafood 

has continuously increased, and 

indeed the total world production 

of fish1 has never stopped growing 

since 1950 (FAO, 2009). Where does 

the difference come from? It comes 

from aquaculture, which is the 

fastest growing animal production 

in the world for more than 20 years 

(Figure 1-1).  Aquaculture became 

more important than sheep and 

goats in the 1990s, and is now 

catching up with bovine meat and 

eggs production. When compared with capture fisheries, aquaculture now provides ca. 50% of the 

human consumption of  fish  (FAO, 2009). Thus, all the increase in fish production at the world level 

since the 1980's comes from aquaculture. This has to be mitigated by the fact that the bulk of 

aquaculture production comes from Asia, with 60-70% of the production originating from just China. 

Consequently, the world production trend may not be the same in all countries, and especially in 

Europe, the growth of the production is much slower. Still, in addition to significant inland 

productions like common carp (Cyprinus carpio) in Central Europe or rainbow trout (Oncorhynchus 

mykiss) all over Europe, there are some success stories. These are mainly marine aquaculture, - 

another difference with the global situation where freshwater aquaculture dominates. These 

successful European species are Atlantic salmon (Salmo salar) in Northern Europe, European sea bass 

(Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) in the Mediterranean area. The 

                                                           
1
 in this section, the generic term "fish" represents finfish, mollusks and crustaceans. 

 

Figure 1-1: World production of farmed animal products (except milk) 
since 1960 (FAOSTAT data) 
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methods to rear those last two species were developed only in the mid 80's, and since then the 

production of each of them has grown to more than 130,000t/year in 2008 (FEAP, 2008). 

This very fast growth of aquaculture inevitably raises questions about its sustainability. Important 

concerns were raised about the use of fish meal and fish oil, originating from small pelagic fisheries 

(especially in Peru and Chile) in the aquaculture of carnivorous fishes. Some estimations of the global 

efficiency of the system led to the conclusion that aquaculture was not producing more fish, but 

indeed increased the pressure on wild fish stocks (Naylor et al., 2000). However, the composition of 

fish feeds is evolving quickly with inclusion of more and more oils and proteins from plant origin, and 

provided this trend continues, feed source is not seen as a major threat to the sustainability of 

aquaculture production anymore (Tacon and Metian, 2008; Naylor et al., 2009).  

Selective breeding has been shown to be a major driver in the improvement of production efficiency 

in terrestrial species. In broiler chickens for example, it has been shown that selective breeding was 

responsible for more than 80% of the increase in growth rate observed between 1957 and 2001 

(Havenstein et al., 2003b). The same experiment also revealed an improvement in feed conversion 

ratio (1.62 in the selected strain vs. 2.14 in the control strain) and in meat yield (breast yield at 71 

days: 21.3% in the selected strain, vs. 11.0% in the control strain - Havenstein et al., 2003a). Such 

important productivity improvements have also been seen in almost all terrestrial livestock species 

(reviewed in Van Der Steen et al., 2005), with a correlated improvement in production efficiency 

allowing a  reduced production of greenhouse gases per ton of animal product (Hume et al., 2011). 

Therefore, it can be reasonably forecast that genetic improvement also has potential to dramatically 

increase the productivity and efficiency of aquaculture production. This is of crucial importance as 

aquaculture will play an ever-increasing role in the production of aquatic products at the world level. 

1.2 Starting from the wild: domestication and selective breeding in fish 

A major difference between terrestrial livestock and aquaculture species is their domestication 

status. In terrestrial livestock, the bulk of the production (>90% in volume2) is based on four species, 

pig (Sus scrofa domesticus), chicken (Gallus domesticus), cattle (Bos taurus) and  sheep (Ovis aries). 

All those species are long domesticated, between 10000 and 1500 years before present (reviewed in 

Mignon-Grasteau et al., 2005). It should be noted that domestication involves an evolutionary 

process by which animal populations become adapted to man and the environment he provides, in 

addition to environment induced ontogenic changes at the level of the animal itself (Price, 1984). For 

this reason, only species which went through many generations of captive breeding can be 

considered domesticated.  

In the case of fish, the two species considered domesticated are the common carp and the goldfish 

Carassius auratus (Balon, 2004), both domesticated at the end of the Middle Ages. The real 

possibility to domesticate other species arose with the discovery of artificial fertilization of salmonids 

in the 17th century (Coste, 1853). However, in many important species for aquaculture, the life cycle 

has been completely closed (by controlled reproduction of captive-born fishes) only very recently. In 

salmon for example, this occurred in the 1970's, thus leading to ca. 10 generations of captive 

breeding until 2010. In the European sea bass and the gilthead sea bream, the techniques for captive 

reproduction and efficient larval rearing were only established in the mid-1980's, but this does not 

ensure a domestication of those species, as many hatcheries still use wild broodstock. Moreover, 

                                                           
2
 Based on FAOSTAT data 2009, http://faostat.fao.org/site/569/default.aspx#ancor  

http://faostat.fao.org/site/569/default.aspx#ancor
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even hatcheries which conduct breeding programmes on these species were only between 3 and 5 

generations from the wild in 2009 (Chavanne, pers.comm.). 

Domestication of fish is expected to increase the adaptation of fish lines to the farming environment, 

producing bolder animals, with increased motivation for food, losing anti-predator and reproductive 

behaviour (reviewed in Ruzzante, 1994; Gross, 1998; Vandeputte and Prunet, 2002). As one of the 

main determinants of domestication is "natural selection" for the captive environments, it can be 

foreseen that domestication may act very rapidly in fish species, where fertility is very high (up to 106 

eggs/kg female weight in many species), as the intensity of this natural selection may be very high 

(Doyle, 1983; Doyle et al., 1995). Thus, domesticating fish is a first step towards farmed fish lines 

which has proven very efficient: when comparing wild and domesticated rainbow trout, after a few 

tens of generations of captive breeding, the difference in growth rate between the offspring of 

domesticated  and wild trout lines is spectacular (from ca. x2  to x27 for body weight at a given age -

Devlin et al., 2001; Morkramer et al., 1985). In Coho salmon Oncorhynchus kisutch, domestication 

has also been shown to increase growth rate after four generations, although to a lesser extent 

(Hershberger et al., 1990). 

The next step of genetic improvement following domestication is selective breeding for one or 

several traits of interest. Indeed, as we indicated before that in most fish species domestication is 

very recent, most of the time, unlike what happened in livestock, selective breeding starts as soon as 

the life cycle is closed. The reason for this is that the theory of breeding and the gains it can generate 

is well known, which was not the case for cattle 10,000 years ago! The first trait to be selected is 

always growth rate, which has the advantage to be easily measured and to give a visible result. The 

result is important genetic gains in growth rate in many species, in the range of 9-20% per generation 

as reviewed by Gjedrem and Thodesen (2005). More recent results are in the same range: 21.5% per 

generation in brown trout (Chevassus et al., 2004), 7.1-18.7% in Nile tilapia Oreochromis niloticus 

(Khaw et al., 2008; Thodesen et al., 2011) and 10.2-13.9% in Coho salmon (Neira et al., 2006).  

These successful achievements are the consequence of 1) the relatively high heritability of body 

weight in fish (mostly between 0.20 and 0.50 -  see review by Gjedrem and Olesen, 2005), 2) the high 

coefficient of variation of body weight (20-35% vs. 7-10% in land animals - Gjedrem, 1998) and 3) the 

possible use of high selection intensities, due to the high fertility and small individual size of fish.  

Heritability has been estimated for a number of other traits like reproduction traits, processing 

yields, body shape, fat content, disease resistance,... and in most cases significant genetic variation 

can be identified, allowing the development of breeding programmes on virtually any trait (see 

Gjedrem and Olesen, 2005, for a general review, Quillet et al., 2007 and Odegard et al., 2011 for 

reviews focused on disease resistance traits).  

Altogether, we can conclude that like in terrestrial livestock, and probably even more owing to the 

high possible selection intensities, domestication and selection have the potential to be major 

contributors to the development of efficient aquaculture industries throughout the world. 

  



4 

 

1.3 Selective breeding in fish: accessing the pedigree? 

An important point, in any optimized selective breeding programme, is the capability to keep track of 

the pedigree. The knowledge of the pedigree has three main interests: 

 allowing a better management of inbreeding, as with a known pedigree inbreeding can be 

calculated and constrained through optimized matings; 

 permitting the estimation of heritability and genetic correlations through the evaluation of 

the within and between-family variance components for the trait(s) of interest, a strategy 

much more efficient than realized heritability, which is limited to one trait and requires a 

selected and a control line; 

 setting up more efficient breeding programmes using family information as a means to 

improve the precision of the selection index. 

In fish, knowledge of the pedigree is complicated by the fact that hatchlings are very small in size 

(from a few tens of micrograms to 150 mg) and cannot be physically tagged. There are three ways to 

solve the issue of using pedigrees in fish breeding programmes: (i) not use them (which is the case 

with mass or individual selection),  (ii) use separate rearing of progenies until they reach a size where 

they can be tagged (usually ca. 20g mean body weight) or (iii) use genotyping of polymorphic 

markers to assess the parentage of individuals. 

1.3.1 Not using the pedigree: individual selection 

Using individual selection can yield interesting gains owing to the high selection intensity possible, 

and remains a choice of interest for selecting traits that can be measured directly on live breeding 

candidates. This method produced positive results selecting for body weight in channel catfish  

Ictalurus punctatus (Dunham and Smitherman, 1983), gilthead sea bream (Knibb et al., 1998), Nile 

tilapia (Basiao and Doyle, 1999), brown trout (Chevassus et al., 2004) and common carp  Cyprinus 

carpio (Vandeputte et al., 2008). However, this was not always the case, and unsuccessful trials in 

common carp (Moav and Wohlfarth, 1976) and Nile tilapia (Teichert-Coddington and Smitherman, 

1988; Huang and Liao, 1990) initially led some to think that selection was not operating in fish 

(Gjedrem, 2012). It was also the rationale to develop the “Prosper” method, an optimized individual 

selection method for growth that proposes to control non genetic maternal effects and competition 

effects (Chevassus et al., 2004) and has been the basis of the development of many breeding 

programmes in France (Haffray et al., 2004; Vandeputte et al., 2009a).  

Other traits have also been successfully selected for by mass selection, like body shape in common 

carp (Ankorion et al., 1992) and muscle fat content, estimated with a Distell Fat-meter, in rainbow 

trout (Quillet et al., 2005).  

Individual selection has the advantage that it is the easiest and cheapest to implement of selection 

methods, making it particularly suitable for small or medium companies. However, it also suffers 

from serious drawbacks. The first one is that this method is likely to generate important rates of 

inbreeding if not properly managed (Gjerde et al., 1996; Dupont-Nivet et al., 2006). Second, it cannot 

be used on traits that cannot be recorded (directly or indirectly) on the live breeding candidates. In 

addition, the genetic parameters of the traits selected remain generally unknown. Realized 

heritability for the selected trait can be estimated if a control line is maintained in parallel, but this is 

a rough estimate of the true heritability, and most of all the genetic parameters of other potentially 
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interesting traits (and the genetic correlations among those) will remain unknown unless specific 

selection experiments for these traits are set up. Finally, selection might be more effective, especially 

with low heritability traits, if family information can be used (Falconer and Mackay, 1996). This will 

be especially true when selection applies to a combination of several traits - and it is a normal fate 

for breeding programmes to incorporate more traits over time. 

1.3.2 Separate rearing of the families 

Family-based selection with separate rearing of progenies is the method which has been used and 

developed in the first "modern" breeding programmes for fish in the 1970's-1980's in Norway 

(Gjedrem, 2010, 2012) and in North America (e.g. Hershberger et al., 1990). Typically, in such 

breeding programmes, each male is mated with 2-3 females in a hierarchical system, then progenies 

are reared separately until tagging (100-400 separate rearing units needed). After tagging3 at ca. 20g 

(almost 1 year in Atlantic salmon - Gjerde et al., 1994), some breeding candidates remain on the 

breeding site, while other tagged fish from the different families are sent to on-farm growing tests or 

to challenge testing for diseases (Gjedrem, 2010). This type of breeding programme was then 

extended to other species, with famous programmes like the GIFT (Genetically Improved Farm 

Tilapia) in the Philippines (Eknath and Acosta, 1998), the programme for the improvement of rohu 

Labeo rohita in India (Gjerde et al., 2005) or several programmes for the Pacific white shrimp 

Penaeus vannamei (e.g. Gitterle et al., 2005).  

Knowledge of the multi-generational pedigree allows the use of optimal methods, like BLUP (Best 

Linear Unbiased Prediction) for the prediction of breeding values. Undoubtedly, such breeding 

programmes have generated the bulk of the genetic gain in the major genetically improved species 

of world aquaculture like Nile Tilapia, Atlantic salmon and Pacific white shrimp (Neira, 2010; Rye et 

al., 2010). While they are very convenient to include traits recorded on sibs in challenge tests 

(including farm ongrowing data), the initial rearing phases are done in conditions that differ a lot 

from industry standards, owing to the necessity to have all families reared separately in small volume 

tanks or hapas. A fish that starts its life at a few milligrams (or tens of milligrams in the case of 

salmonids) has already increased its body weight by a factor of 200 to 2000 when it reaches 20g, 

while the way to commercial weight only implies a further multiplication by a factor of 20 to 200.  

Therefore, common environment effects (= "tank effects") are expected to be large, and indeed they 

may be so when measured:  10-30% of the phenotypic variance for body weight in common carp 

(Ninh et al., 2011), a "substantial" amount in rohu carp (Gjerde et al., 2005), from 2 to 20% in Atlantic 

Salmon (Gjerde et al., 1994), from 3 to 12% in Atlantic cod Gadus morhua (Gjerde et al., 2004; Tosh 

et al., 2010), 14-17% in rainbow trout (Henryon et al., 2002). In some cases however, it appears that 

tank effects are contained to limited level (0 to 9% of phenotypic variance in rainbow trout- Elvingson 

and Johansson, 1993). High tank effects are problematic as they may bias the estimated family 

values, and then the estimated breeding value of individuals. In addition to this, the need to 

minimize family (and then rearing units) number tends to promote hierarchical mating designs, as for 

a given effective population size (needed to avoid inbreeding) they imply the production of less 

families than most factorial mating designs. However, hierarchical designs perform less than factorial 

designs both for estimation of genetic parameters (Vandeputte et al., 2001) and conservation of 

                                                           
3
 Initially, tagging was performed by freeze branding, abaltion of fins or use of external tags (Gjedrem, 2010. Today, the 

majority of fish is tagged by injection of RFID glass tags  (called PIT-tags) which provide reliable individual tagging at a 
modest cost (1-2 € per – reusable- tag) 
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genetic variability (Dupont-Nivet et al., 2006).  A last problem of using separate rearing of families is 

the initial cost of building the infrastructure. While the benefit to cost ratio of fish selective breeding 

is so high that at the industry level this initial cost should have no significant impact on the 

profitability of a breeding programme (Ponzoni et al., 2008), this initial investment can clearly be a 

constraint for a small-medium company to engage in a breeding programme. 

1.3.3 A posteriori parentage assignment with genetic markers 

The last solution to access pedigree information is the use of genetic markers. This had been thought 

of a long time ago in fishes (Brody et al., 1976; Moav et al., 1976; Brody et al., 1980), but at that time 

the available genetic markers (allozymes) did not exhibit enough variability to resolve parentage in 

more than a few families and involved highly invasive (even lethal) sampling. The idea had a second 

life when microsatellite markers became available, as those markers have a much higher genetic 

variability, and sampling is limited to a small piece of fin kept in ethanol at ambient temperature. 

Then, using either exclusion of incompatible parent pairs (Dodds et al., 1996) or maximum likelihood 

approaches (SanCristobal and Chevalet, 1997), a new possibility to trace family relationships arose. 

The first small scale trials were done in salmon and cod (Doyle et al., 1995; Doyle and Herbinger, 

1995; Herbinger, 1995), and it soon became evident theoretically that large crosses with several tens 

of parents could be dealt with (Estoup et al., 1998; Norris et al., 2000; Villanueva et al., 2002). The 

first large scale trials were done in rainbow trout and Atlantic salmon (Fishback et al., 2002; Norris 

and Cunningham, 2004), with single assignment rates higher than 90%.  

Several assignment softwares have been developed, some more focused on wildlife (CERVUS: 

Marshall et al., 1998; PARENTE: Cercueil et al., 2002; PAPA: Duchesne et al., 2002), on forest trees 

(FAMOZ: Gerber et al., 2003) or on aquaculture species (PROBMAX: Danzmann, 1997; VITASSIGN: 

Vandeputte et al., 2006; FAP: Taggart, 2007). Differences between assignment results can appear in 

complex situations, especially with likelihood-based softwares in which more hypotheses are needed 

than with simple exclusion (Herlin et al., 2007). The main drawback of exclusion-based softwares is 

their sensitivity to genotyping errors, which generates "impossible" genotypes and then unassigned 

offspring. This proportion of unassigned offspring can reach high levels even with modest genotyping 

error rates (Vandeputte et al., 2006), but this problem can be easily solved by accepting a limited 

number of allelic mismatches (1 to 2 in general) in the evaluation of an offspring-sire-dam triplet 

(Vandeputte et al., 2006; Christie, 2010). In this way, practical assignment rates higher than 90% can 

be obtained most of the time (Vandeputte et al., 2011). 

Compared to separate rearing systems, the major advantage of a posteriori parentage assignment is 

that all fish can be reared as a single batch from the beginning, thus completely eliminating the 

confusion of tank and family effects. This may be particularly important in species with small eggs 

(carps, marine fishes), where larval mortalities can be high (50 to 90%) and strongly interact with 

recorded growth rates at the larval and post-larval stages through rearing density effects. The 

possibility to have all families in a single batch also allows the use of industry rearing structures from 

the first stages, thus permitting a more realistic evaluation of the breeding values of the families, 

from a farmer's point of view. The third advantage of this method is that it allows the use of any type 

of mating design, including factorial designs which are the most informative and the best ones to 

keep genetic variability during the selection process (Dupont-Nivet et al., 2006). Finally, from a 

practical point of view, genotyping is only an operating cost, and no initial investment is needed to 

use this methodology in practice, making it quite cost-effective in many cases (e.g. Ninh et al., 2011). 
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Moreover, it allows a transition from individual selection to family selection just by genotyping the 

breeding candidates in a pre-existing individual selection programme, as has been done in the French 

fish breeding industry  (Haffray et al., 2004; Vandeputte et al., 2009b). 

The main drawback of using parentage assignment is the cost of individual fish data - linked to the 

cost of genotyping. In separate rearing, the primary limiting factor is the number of families, and 

increasing the number of fish per family just increases feeding, handling and tagging costs. In a 

parentage assignment system, in addition to feeding, handling and tagging, each extra fish will also 

incur a genotyping cost, which can be substantial (from 4 to 15 € /fish - see review in Ninh et al., 

2011). This can be a problem to record data on challenged sibs (e.g. field growth tests, disease 

challenge tests, processing traits) where several tens of fishes per family are usually needed. An 

additional problem is that due to differential survival of families and sampling error, uneven numbers 

of fish per family will be obtained. This is seen by some as a major problem (Gjerde, 2005), as for a 

given number of families, disequilibrium in family size limits the number of families which can be 

used to estimate breeding values with reasonable precision. However, this could probably be at least 

partially solved by increasing the number of families produced, which can be done at little cost in 

such programmes. Theoretical optimisation has been done for estimation of genetic parameters 

using such technology (Vandeputte et al., 2001; Dupont-Nivet et al., 2002) and is on the way for the 

set up of breeding programmes (Sonesson, 2005; Sonesson et al., 2011). Additionally, breeding 

programmes using genotyping of progenies are implemented in 15 out of 37 European breeding 

programmes (Aquabreeding, 2009), showing their scope for practical application. 

1.4 The genetics of European sea bass 

At the time the present research was conceived, very little was known about the genetics of 

European sea bass. This is understandable as efficient rearing procedures allowing industry 

development only dated back a few years. Genetic studies first concentrated on the population 

genetics of the species, then a few trials attempted to describe genetic variability for some traits of 

interest. 

1.4.1 Population genetics of sea bass 

The study of population genetics in sea bass started with enzymatic markers, which showed some 

level of genetic variation between individual  stocks (both natural and farmed - e.g. Martinez et al., 

1991) , and a general picture with a strong differentiation between Atlantic and Mediterranean 

populations (Allegrucci et al., 1997) and some level of genetic differentiation  within the 

Mediterranean sea (Allegrucci et al., 1997) and locally in the North Atlantic (Child, 1992). The 

development of microsatellite markers (Garcia De Leon et al., 1995) allowed wider and more precise 

studies, which nevertheless ended up with the same conclusions:  there is a strong differentiation 

between Mediterranean and Atlantic populations, the limit being the Alboran sea in South-eastern 

Spain (Naciri et al., 1999). In the Mediterranean, there is a clear differentiation between East and 

West Mediterranean, while the populations seem very homogeneous in the Western part, and much 

more differentiated in the Eastern part (Bahri-Sfar et al., 2000; Castilho and Ciftci, 2005). Some 

samples collected in the wild in the Eastern part also show similarities to Western Mediterranean 

samples, and could be escapees from fish farms, which are very numerous in Greece and may use 

stocks from hatcheries using West-Mediterranean broodstock (Bahri-Sfar et al., 2005).  
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1.4.2 Genetic variation for quantitative traits 

Evaluation of populations were done for a West Mediterranean population, marine and lagoon 

populations from Egypt and crosses thereof (Gorshkov et al., 2004), showing small though significant 

differences of specific growth rate, condition factor and survival, with no evidence of heterosis in the 

crosses. However, the lack of replication in some of the experiments, and the small numbers of 

broodstock used, together with the use of mass spawnings, make these results rather uncertain. First 

estimates of heritability for growth traits were obtained from a 9-10 males *3 females full factorial 

mating (Saillant et al., 2006) where families were identified by genotyping. The overall heritability of 

body weight was 0.29±0.13, and was higher when the fish were raised at low temperature 

(0.50±0.19) or low density (0.60±0.22). Heritability of body weight tended to increase with age, and 

genetic correlations between body weights at different ages (average 0.70, range 0.61-0.85) was 

considered to be high enough to use early growth as a predictor for later growth, thus allowing early 

(and consequently less expensive) selection. Although these estimates had limited precision, as the 

number of parents used to generate the families was low, they constituted an incentive to go 

forward, as genetic variation seemed to be high enough to perform efficient breeding programmes in 

this species. 

1.5  Sex ratio in the sea bass: a difficult trait to deal with 
In most vertebrates, sex is genetically determined (Genotypic Sex Determination or GSD), in most 

cases by sex chromosomes, yielding stable 50:50 primary sex ratios. In the sea bass, it was soon 

discovered that farmed populations comprised a high proportion of males (75-95%, Piferrer et al., 

2005). This is seen as problematic, first because females grow faster than males (ca. 25% higher body 

weight at 1 year, Saillant et al., 2001b; Gorshkov et al., 2003) and mature one year later, thus making 

them more suitable for farming. A second problem, thinking of developing breeding programmes, is 

that both males and females are needed, and heavily biased sex ratios induce a lower selection 

intensity on the least present sex, which cannot be fully compensated by the higher selection 

intensity on the other sex.  

In rainbow trout or Nile tilapia, two major farmed fish species, the better performance of one sex has 

led to the development of monosex technologies. In rainbow trout, female (with XX sex 

chromosomes) juveniles are sex-reversed as "neomales" using methyltestosterone, and these XX 

neomales, when mated with normal XX females, only produce XX (female) offspring, which is the sex 

of interest in this species (Breton et al., 1996). In Nile tilapia, YY supermales can be obtained by 

mating feminized XY males with normal males (Mair et al., 1997). These supermales, when mated 

with normal XX females, produce near to 100% male offspring. Sex-reversal with steroids was also 

tried in sea bass, but the sex ratios of the offspring of the sex-reversed parents was not compatible 

with  a simple chromosomal sex determination system (Blazquez et al., 1999). Uniparental 

reproduction (gynogenesis) also ruled out the possibility that females could bear XX sex 

chromosomes, as gynogenetic progenies had the same sex ratio as bi-parental diploid controls (Felip 

et al., 2002; Peruzzi et al., 2004). 

In parallel, several studies investigated the effect of environmental factors on sex determination in 

sea bass, with a major interest on temperature. Indeed, temperature sex determination (TSD) is the 

most frequent case of environmental sex determination (ESD), and is rather common in reptiles, 

amphibians and fishes (see review in Kraak and Pen, 2002). In sea bass, it appears that high 
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temperatures (>17°C) during early development (before 60 days post fertilization -dpf) promote the 

appearance of increased numbers of males in the populations.  

This general interpretation, proposed by Navarro-Martin et al. (2009b), fits well with most of the 

published data (Pavlidis et al., 2000; Koumoundouros et al., 2002; Saillant et al., 2002; Mylonas et al., 

2005). However, some results are not explained by this interpretation. After a warm early rearing 

(20-24°C), Blazquez et al., 1998 exposed groups of young sea bass to high (25°C) or low (15°C) 

temperatures from 57 to 137 dpf, which resulted in 0% females in the low temperature group vs. up 

to 27% females in the high temperature group (13% on average). Similarly, fish reared at 13°C from 

hatching to 346 dpf had only 11% females, vs. 32% in groups reared at 20°C (Saillant et al., 2002). 

Moreover, variability of sex ratios in different batches (from different families or origins) exposed to 

the same temperature profiles remains very high (e.g. 21.7 to 90.0% females in four batches reared 

64 days below 17°C, Navarro-Martin et al., 2009b). Then, although the general tendency that cold 

early rearing would favour females seems quite established, its practical use remains unreliable, and 

the possibility that later cold temperatures may act in the opposite way cannot be excluded. Clearly, 

the TSD of sea bass is not as clearly defined as what is seen in some turtles, where a 2°C increase in 

nest temperature changes the sex ratio of the progeny from 100% male to 100% female (Bull et al., 

1982b). Environmental variables other than temperature, like rearing density (Saillant et al., 2003c), 

salinity (Saillant et al., 2003b) or photoperiod (Blazquez et al., 1998) were tested in sea bass but did 

not induce changes in sex ratios. Surprisingly, although many investigations were conducted to 

identify the environmental causes of the sex ratio disequilibrium in farmed populations, no studies 

provided convincing evidence about the natural sex ratio of sea bass in the wild, which was implicitly 

thought to be even, but without formal proof thereof. 

Finally, it was demonstrated that family or strain effects could have an important impact on the sex 

ratio of sea bass reared in the same environmental conditions (Saillant et al., 2002; Gorshkov et al., 

2003; Gorshkov et al., 2004). This was however achieved with a limited number of parents tested 

(2x2 factorial in Gorshkov et al., 2003, 9x3 factorial in Saillant et al, 2002), which prevented the 

quantification of this variability in sex ratio. Interestingly, significant sire*temperature interactions 

were also demonstrated (Saillant et al., 2002), although they were mainly explained by one sire 

which gave similar offspring sex ratios at both high and low temperatures, while the other 8 sire 

progenies had much less females at low temperature. Then, it clearly appears that the sex 

determination system in sea bass is not simple, and seems to be a complex mixture of genetic and 

environmental influences, with possible interactions inbetween. This is clearly not the best starting 

point for obtaining stable - and even monosex female- sex ratios for sea bass farming.  
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1.6 A two-steps approach for studying genetic variation and its application to sea 

bass culture 

In order to study the genetic variation of growth and sex ratio traits in sea bass, we followed a two-

steps approach:  first the between-family variation of traits was estimated in a partial factorial 

mating design, and second selective breeding for growth was undertaken in order to evaluate the 

realized selection response. We evaluated both the direct response on the trait selected (growth) 

and the correlated response on sex ratio. This two-steps approach was expected to give accurate and 

robust results, and to provide the basis for setting up efficient breeding programmes in sea bass. To 

implement this approach, we made a number of important scientific and technical choices. 

The first choice was to focus on the Atlantic sea bass population. This choice was governed by the 

availability of a large number of wild-caught Atlantic broodstock in our partner farm (Panittica 

Pugliese, Torre Canne di Fasano, Italy). Although some hatchery-reared broodstock might have been 

available, we chose this option of using wild caught fish as it was the guarantee to access a large 

genetic variability. Indeed, it is well known that, due to the general use of mass spawnings with 

uncontrolled participation of the broodstock present, it is not unusual to see low effective population 

sizes and consequently low genetic variability in hatchery-reared marine fish ( see Perez-Enriquez et 

al., 1999 in red sea bream or Chatziplis et al., 2007 in sea bass). Moreover, as many hatcheries 

(although not all of them) still use wild broodstock for their sea bass juveniles production, this was 

expected to be kind of a representative starting point for a selective breeding programme. Studying 

only fish from one base population was a limitation in the sense that a significant part of the genetic 

variation for production traits may lie between populations, as was seen for example in the Atlantic 

salmon (Refstie and Steine, 1978), brown trout (Chevassus et al., 1992), common carp (Wohlfarth, 

1993) or Nile tilapia (Bentsen et al., 1998). However, the comparison of wild populations was 

scheduled for a later phase and has now been done, although not published yet. 

The second important choice was to use genotyping of microsatellites to access the family structure 

of the experimental population chosen. This was indeed the only possible choice, as we did not have 

access to a family larval rearing unit that would have allowed separate rearing of independently 

produced families. Small-scale (in terms of family number) trials in the sea bass had proven the 

feasibility of this parentage assignment approach (Saillant et al., 2002), and larger scale uses of this 

technology has already been done in other fish species (Fishback et al., 2002; Norris and 

Cunningham, 2004; Vandeputte et al., 2004). A decisive advantage of this approach was the ability to 

use industry larval rearing protocols, directly in the fish farm, allowing the fish to express their 

performance in a rearing environment representative of the production sector. Another decisive 

advantage was the certainty, through the use of a "common garden" experiment, to avoid any 

confusion of family effects with common environment (tank) effects. Finally, as the number of 

families produced is not a limiting factor with this approach, it also gave us the opportunity to choose 

any type of mating design to produce the experimental families. 

This is where the third choice came in. Although in practice, all sea bass hatcheries use mass 

spawnings for their production of juveniles, we chose to use artificial fertilization. The main reason 

for this is that mass spawnings may give very unbalanced family representations, with only a small 

proportion of the present broodstock effectively participating to the reproduction. For example, in a 

mass spawning in with 58 female and 45 male sea bass parents, a single female contributed more 

than 95% of the progeny, with only 26 males participating, one of which sired ca. 50% of the progeny 
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(Chatziplis et al., 2007). This kind of outcome is clearly not optimal at all for estimating genetic 

parameters. The ability to get relatively balanced family sizes by artificial fertilization and common 

garden rearing had been demonstrated earlier (Saillant et al., 2002) on a small size mating design, 

and upscaling it to a larger size, although challenging, seemed feasible. Moreover, artificial 

fertilization allows the set up of factorial mating designs, which are the most informative for the 

estimation of genetic parameters, as not only of additive genetic variance, but also of non genetic 

maternal effects and dominance variance can be estimated. This was thought to be essential as 

maternal effects can be important in fish, as repeatedly demonstrated in salmonids (Aulstad et al., 

1972; Gall, 1974; Chevassus, 1976; Mckay et al., 1986b; Blanc, 2002; Vandeputte et al., 2002b). For 

dominance variance, very little data were available, but in salmonids the dominance component can 

represent up to 22% of the phenotypic variance (Rye and Mao, 1998; Pante et al., 2002; Gallardo et 

al., 2010), while most of the time it remained difficult to estimate. This difficulty was certainly at 

least partly due to the quite general use of nested designs in which dominance is confounded with 

the full-sib family effect, while it is not the case in factorial designs (Becker, 1984). A preliminary 

simulation study showed that common garden factorial designs with a few tens of sires tested were 

likely to give good estimates of additive and dominance variance (Vandeputte et al., 2001). 

A last important point to deal with was the possible existence of genotype by environment 

interactions for the traits of interest. Sea bass juveniles are typically produced in hatcheries which 

send their products for ongrowing in a variety of different structures (cages, ponds, tanks, raceways) 

with variable environmental conditions (temperature, salinity). As breeding programmes will be 

located in hatcheries, it is therefore extremely important to verify that the high performing families 

in one site will also perform well in another site. Therefore, we decided to conduct a multi-site 

estimation of genetic parameters, in order to quantify genotype by environment interactions 

through the estimation of genetic correlations between rearing sites for the same recorded trait. 

Studies of within population genotype by environment interactions (GxE) in fish have not been very 

numerous, and in most cases conclude that GxE interactions exist but not to a level requiring the 

building of environment-specific breeding programmes (e.g. Sylven et al., 1991; Kause et al., 2003; 

Kolstad et al., 2006; Khaw et al., 2012). However, in some rare cases, GxE interaction can be quite 

high with genetic correlations between environments below 0.5, like in Nile tilapia between 

freshwater and brackish water (Luan et al., 2008). Under the general hypothesis that GxE interactions 

should not be very high, we decided to use very different rearing systems, in order to maximize them 

if present. The general characteristics of the systems chosen are shown in Table 2-1 (p.17). As too 

many parameters differed between the sites, we did not expect to be able to infer the origin of 

eventual GxE interactions, so the partner fish farms were left free to raise the fish with their usual 

practices (notably in terms of feed and density).  

The second step of our approach was to estimate response to selection. To this end, we compared 

the performance of the offspring of fish either selected or not selected for growth. This estimation 

was done after only one generation of selection, and furthermore only comparing sires in a paternal 

testing design, as females start spawning only at three years of age while all males spermiate at two 

years. Moreover, as sex ratios in the first generation were highly male biased (18.2% females), it was 

easy to apply a high selection intensity (p=5%) on males. The high selection differential generated 

partially compensated the fact that a paternal testing design only allows the measurement of half of 

the additive genetic divergence between the lines tested.  Knowing that the observed divergence 

between lines might be limited, we used a common garden strategy also for the estimation of 
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selection response, with all genotypes mixed as early as incubation. This avoided confounding any 

environmental effect with genetic groups, and increased the statistical power to detect even modest 

differences. However, it is well known that in fish, there is a magnification of genetic differences in 

communal rearing (Moav and Wohlfarth, 1974; Blanc and Poisson, 2003), so we also set up 

triplicated separate tanks of the groups tested to try and estimate this magnification effect in case it 

would operate in sea bass. 

For the genetic groups tested, we compared sires mass selected for body length (5% selection 

pressure at commercial weight) to a control group of sires issued from the same parents, but which 

had an average length at the same age. Two more genetic groups were added to have a more 

complete description of the selection response. First, we also used a group of wild sires, in order to 

see if the control group had a modified breeding value linked to domestication selection, which is 

thought to operate quickly when starting from a wild fish stock (Doyle et al., 1995; Araki et al., 2007; 

Christie et al., 2012). Second, we used a second selected population of sires, which originated from 

the same wild parents as our selected and control fish, but which had been selected for growth in an 

commercial breeding programme in our partner farm, Panittica Pugliese, using a method derived 

from the Prosper individual selection scheme designed by Chevassus et al. (2004) on brown trout. In 

the case of sea bass, the control of maternal effects recommended in Prosper could only be done by 

using spawns produced on the same day, but not by mixing progenies of females with similar egg 

sizes, as there was no proof of the existence of maternal effects in sea bass, nor that they would be 

linked to differences in egg size. The main feature of this commercial breeding programme was the 

use of repeated growth challenges, recommended in Prosper to avoid the establishment of 

competition through behavioural hierarchies, and to assess fish on their “real” genetic potential for 

growth rate. Instead of selecting fish only on body length at commercial size, like we did in our mass 

selected sires, they were selected based on three successive growth challenges at different ages, two 

of which were based on body length, and one on body weight. The final selection pressure was the 

same, with 5% of the fish selected. 

Then, this selection response experiment allowed the comparison of two lines selected for growth, a 

massal (M) and a Prosper (P) line, with an unselected control line (which we called D  for 

domesticated), and the base Wild population (W). Thus, we expected to be able to estimate the 

effects of selection and domestication on growth, as well as the correlated response on other traits 

(especially sex ratio, but also quality traits which are not reported in the present thesis). The 

influence of competition on those traits could be estimated by comparing the results in separated 

and mixed rearing groups. 

The following chapters are a series of papers retracing the different steps in our approach: 

Chapter 2 presents the estimates of genetic variation for growth and sex ratio within an offspring 

group of sea bass issued from wild parents from an Atlantic population, reared in four different 

locations. This was conducted in the frame of the European project Heritabolum (Q5CR-2002-71720), 

funded by the EC and the private farms, Panittica Pugliese (Italy), Viveiro Villanova (Portugal) and 

Ardag (Israel). 

The first paper (section 2.1) deals with heritability and genotype by environment estimates for body 

size and body shape traits: "Heritabilities and GxE interactions for growth in the European sea bass 

(Dicentrarchus labrax L.) using a marker-based pedigree", by Mathilde Dupont-Nivet, Marc 
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Vandeputte, Alain Vergnet, Olivier Merdy, Pierrick Haffray, Hervé Chavanne, and Béatrice Chatain, 

was published in 2008 in Aquaculture (volume 275: 81-87) 

The second paper (section 2.2) came from a re-analysis of the same dataset, evaluating growth rates 

rather than body size and weight. We had focused the first paper on weight, as this is the commercial 

trait. However fish could only be tagged at 35g mean weight and were slaughtered at 400g, so that 

their final weight was indeed quite influenced by the tagging weight and finally not that much 

representative of GxE interactions, as all pre-tagging growth had been done in one site. This 

paper, "Genotype by environment interactions for growth in European sea bass (Dicentrarchus 

labrax) are large when growth rate rather than weight is considered" by Mathilde Dupont-Nivet, 

Bilge Karahan-Nomm , Alain Vergnet, Olivier Merdy, Pierrick Haffray, Hervé Chavanne,  Béatrice 

Chatain and Marc Vandeputte, was published in 2010 in Aquaculture (volume 306: 365-368). 

In section 2.3, I briefly present additional data about the genetic correlations of body weight and 

growth rate at different ages and in different sites, which were too many to include in the published 

papers but will be used in the general discussion to predict the outcome of various selection 

strategies to increase growth. 

The third paper (section 2.4) describes the between families variation in sex ratio and its co-variation 

with body weight, and tests several hypotheses about the underlying genetic determinism of sex 

ratio. There is no genotype by environment component in this paper, as sex was fully determined at 

tagging, and was therefore not likely to be influenced by the different ongrowing conditions. It is 

titled "A polygenic hypothesis for sex determination in the European sea bass" by Marc Vandeputte, 

Mathilde Dupont-Nivet, Hervé Chavanne and Béatrice Chatain and was published in 2007 in Genetics 

(volume 176: 1049-1057). Complementary (unpublished) information about the threshold model for 

sex determination and some genetic and environmental correlations between size and sex ratio at 

different ages is added at the end of section 2.4. 

Chapter 3 is about the response to domestication and selection for increased body size, in terms of 

growth and sex ratio. The related experiments were done in the frame of the European project 

Competus, funded by the farms Ardag (Israel), Ecloserie Marine de Gravelines (France), Les Poissons 

du Soleil (France), Tinamenor SA (Spain), Viveiro Vilanova (Portugal) and the European Union (COOP-

CT-2005-017633). 

Direct selection response in terms of growth is studied in section 3.1, where we compare the 

offspring of wild founders, domesticated (first generation hatchery bred) and selected (2 

populations, one mass selected for growth in Ifremer and the other in Panittica Pugliese, with a 

different protocol) sea bass populations. The paper, "Response to domestication and selection for 

growth in the European sea bass (Dicentrarchus labrax) in separate and mixed tanks" by Marc 

Vandeputte, Mathilde Dupont-Nivet, Pierrick Haffray, Hervé Chavanne, Silvia Cenadelli, Katia Parati, 

Marie-Odile Vidal, Alain Vergnet and Béatrice Chatain was published in 2009 in Aquaculture (volume 

286: 20-27). 

Correlated responses in terms of sex ratio to domestication and selective breeding for body size is 

the subject of section 3.2., where we first present evidence on the sex ratio in natural populations of 

sea bass. As pointed out before, this essential information was lacking in the numerous studies about 

the causes of sex ratio variations in farmed sea bass, and we felt it was a necessary starting point to 
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examine the possible environmental and genetic influences implied. We achieved this by exploiting 

the fisheries literature, where data about sea bass growth in natural population indeed comprised 

the sex of the recorded fish, although sex ratio was not their primary interest. This piece of work, 

"Are sex ratios in wild European sea bass (Dicentrarchus labrax) populations biased ?", by Marc 

Vandeputte, Edwige Quillet and Béatrice Chatain, was published in 2012 in Aquatic Living Resources 

(volume 25: 77-81). 

Then, we tested our predictions formulated in section 2.3 that frequency-dependent selection should 

increase the proportion of females in the offspring of domesticated sea bass, while selection for 

growth should result in a further increase in the proportion of females. This paper, "Impact of 

domestication and artificial selection for growth on population sex ratios in the European sea bass 

(Dicentrarchus labrax L.)" by Marc Vandeputte, Mathilde Dupont-Nivet, Hervé Chavanne, Alain 

Vergnet, Edwige Quillet and Béatrice Chatain has been submitted. Additional data about genetic 

correlations of body size and sex ratio, estimated in the selection response experiment, are added at 

the end of section 3.2. 

In section 3.3, I present a stochastic simulation model aiming at predicting the mid-term evolution of 

sex ratio (and growth) in selected populations of sea bass. The evolution of sex ratio in selected 

populations cannot be predicted simply by the breeder’s equation, as sex ratio is not only submitted 

to direct or indirect selection (when growth is the trait selected), but also to frequency-dependent 

selection as soon as there is an uneven sex ratio in the population, which is indeed the general case 

in farmed sea bass. This part of the work was not published in a peer-reviewed journal, but the 

results of the simulations were used in several communications in French and international 

workshops and symposia. 

Chapter 4 is the general discussion of the thesis, with a double focus: after a summary of the main 

findings in section 4.1, I first examine the consequences of our findings on the design of breeding 

programmes for the sea bass, taking into account both growth and sex ratio (section 4.2). Then, in 

section 4.3, I more deeply discuss the evolutionary aspects of a polygenic sex determination system 

where sex tendency and growth are genetically linked, and try to infer new hypotheses that can be 

useful for improved farming of sea bass (which remains the primary focus of this thesis) through sex 

ratio control. 

For the sake of homogeneity, I used the final version of the published manuscripts rather than the 

offprints, in order to put them in a homogeneous format. Some “additional data” sections were 

added after published manuscripts when needed for a better general interpretation of data. All 

bibliographic references were merged in a single list at the end of the manuscript, to avoid 

repetitions and save space.  

  



15 

 

2 Genetic variation as revealed by between-family variation in common 

garden experiments 
 

2.1 Genetic variation for body size 

This section has been published in 2008 in Aquaculture 275 (81-87) as:  

"Heritabilities and GxE interactions for growth in the European sea bass (Dicentrarchus labrax L.) 

using a marker-based pedigree" by Mathilde Dupont-Niveta,*, Marc Vandeputteb, Alain Vergnetb, 

Olivier Merdya, Pierrick Haffrayc, Hervé Chavanned, Béatrice Chatainb 

a
 INRA, UR544 Unité de Génétique des Poissons, F-78350 Jouy-en-Josas, France 

b
 Ifremer, Chemin de Maguelone, F-34250 Palavas-les-Flots, France 

c
 Sysaaf, Section aquacole, Station SCRIBE, Campus de Beaulieu, F-35042 Rennes, France 

d
 Panittica Pugliese, Torre Canne di Fasano, Italy 

*
 Corresponding author: Tel : +33 1 34652349; Fax: +33 1 34652390; E-mail : mathilde.dupont-nivet@jouy.inra.fr 

doi: 10.1016/j.aquaculture.2007.12.032 

2.1.1 Introduction 

Domestication of sea bass Dicentrarchus labrax began in the 1980’s and some breeding programmes 

already exist for the species (Italy, Greece, France …). However this is still the very beginning and 

some hatcheries still use wild broodstock. As in any animal production, breeding programmes are 

expected to provide important increases in productivity. However, to optimise breeding 

programmes, reliable estimates of genetic parameters in a wide range of rearing systems are 

needed. Some heritability estimates for growth traits exist for marine fish, but mainly for species 

other than sea bass, for example turbot Scophthalmus maximus (Gjerde et al., 1997), Atlantic cod 

Gadus morhua (Gjerde et al., 2004; Kolstad et al., 2006), black bream Acanthopagrus butcheri (Doupe 

and Lymbery, 2005) and gilthead seabream Sparus aurata (Knibb et al., 1997). Concerning sea bass, 

heritability estimates were published by Saillant et al. (2006), but based on a small design (3 dams X 

10 sires). 

One major constraint for estimating genetic parameters in fish is the inability to tag hatchlings, and 

consequently the need to separately rear the families until tagging size. This limits the number of 

families that can be used, and may bias family means by tank effects, thus biasing (full-sibs designs) 

or reducing the precision of (half-sibs designs) the estimated genetic parameters. An interesting 

alternative to separate rearing of families is the use of mixed rearing of progenies with a posteriori 

reconstruction of pedigrees using highly variable markers such as microsatellites. This was first 

proposed more than ten years ago (Herbinger, 1995; Estoup et al., 1998) but it is only recently that 

mating designs of a size permitting reliable estimations of genetic parameters are being used (Norris 

and Cunningham, 2004; Vandeputte et al., 2004). The major benefits of this methodology are the 

absence of between families environmental effects, and the possibility to use factorial designs which 

allow precise estimation of additive, maternal and dominance effects (Vandeputte et al., 2001). Most 

of the previously cited heritability estimates in marine fish were obtained using the separate rearing 

method. 

  

http://dx.doi.org/10.1016/j.aquaculture.2007.12.032
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Sea bass farming takes place in very different system managements, and thus genetic and 

environment correlations of the same trait in different environments are also needed to set up 

optimised breeding programs. Indeed, it is a key point to know if a genetically improved strain in one 

environment would express superiority in other environments. This issue has been seldom studied in 

marine fish and never in sea bass except by Saillant et al. (2006) but with a small design.  

The present work reports results from a large scale experiment involving 253 full sib families, 

communally reared, originating from 33 males and 23 females and distributed to four contrasted 

environments (France, Portugal, Italy and Israel). In this paper, we focus on growth traits (weight, 

length and condition factor) which are traits of high economical interest. The large design allows 

precise estimates of maternal and additive genetics effects as well as correlations between traits and 

genetic correlations between growth traits in each environment (genotype environment interactions) 

2.1.2 Material and methods 

2.1.2.1 Animals 

The parents of the studied animals were wild fish of Atlantic origin collected by Panittica Pugliese 

(Italy) on the Northern coast of Brittany (France). Sperm was collected before the crossing and 

cryopreserved in 250 ml straws according to the method described in Fauvel et al. (1998). Further 

reproduction operations took place at Panittica Pugliese farm. Eggs were obtained by manual 

stripping following hormonal induction of ovulation. For all parents a fin clip was collected and kept 

in 90 % ethanol for DNA analyses and parentage assignment. 

253 full-sib families from 33 males and 23 females were produced according to a partly factorial 

mating design. Crosses were conducted with three sets of different parents: 11 males X 9 females, 11 

males X 7 females and 11 males X 7 females. Within each set a full factorial crossing was 

accomplished. All crosses were made by individual fertilization of identical volumes of eggs, and five 

minutes after fertilisation, eggs from the same female were mixed for further incubation. 

Eggs were incubated (one female per incubator) for 48 hours after which two milliliters of floating 

eggs from each female were sampled and mixed to constitute a single batch of eggs that hatched in a 

0.5 m3 incubator four days after the fertilization. They were all kept in the same tank for larval 

rearing until day 64. After which, they were transferred to a concrete raceway until they reached day 

130. During larval rearing, the temperature gradually increased from 13 (at hatching) to 18°C (at day 

15) after which it stabilised at the latter temperature. Fish were fed on artemia for 40 days, then 

weaned on dry food (Nippay, Hendrix). Food was first distributed manually to satiation, then, starting 

from day 66, one or two automatic feeders were used. During the pregrowing phase, the water 

temperature and salinity varied from 14.2 to 19.3°C and from 19.5 to 37.5 ‰, respectively. 

At 134 days post hatch (about 4g), a random sample of 16000 fish was sent to Ifremer station in 

Palavas (France) and pregrown in a 5 m3 tank in a recirculating system (10-30% renewal/day, 18°C, 

34 ‰ average salinity). At 156 days, the batch of fish was split at random into four 5 m3 tanks to 

lower the density. At 238 days, their weight was higher than scheduled, so the temperature was 

lowered to 14°C (0.5°C per day). 

At 370 days, fish had reached a mean weight of 35 g and 7000 were randomly selected, individually 

PIT-tagged and fin-clipped (kept in 90% ethanol for further DNA analyses). Four batches of 1750 fish 
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each (on average, 6.9 per fullsib family) were constituted and each one was kept in a 5m3 tank prior 

to distribution to four different farms.  

The four farms were 

chosen for their varying 

growing or rearing 

conditions. Main rearing 

conditions are reported in 

Table 2-1. One batch was 

kept at the Ifremer station 

in France (Farm A) in tanks 

where the density was 

maintained below 30 

kg/m3. The temperature 

was raised progressively 

from 14°C and maintained 

throughout the whole 

experiment at 20-22°C. 

A second batch arrived at 423 days at Panittica Pugliese in Italy (Farm B) where it was reared in a 12 

m3 concrete raceway supplied with 19°C (constant temperature) borehole water. A third one arrived 

at Viveiro Villanova in Portugal (Farm C) at 420 days and was first reared in an 8m3 tank. Then, they 

were transferred to a semi-intensive estuarine pond at 588 days. The last batch of fish was reared 

from day 513 in a 216 m3 sea-cage in tropical conditions at Ardag in Israel (Farm D). This batch was 

kept in the farm B from day 423 to day 510, due to transportation problems. 

2.1.2.2 Data collection. 

In each farm, fish were measured at commercial size (average 400 g), varying from 338 g (farm B) to 

487 g (farm D). Number of fish measured, mean weight and age are reported in Table 2. Fish were 

starved 3 days prior to harvest. On harvest day, all fish were euthanized in an excess dose of 2-

phenoxyethanol (0.6 ml.l-1) or eugenol (0.1 ml.l-1, farm B). In farm A, the fish were not euthanized 

but only anaesthetized (0.3 ml.l-1 phenoxyethanol). 

Each fish was weighed (to the nearest 0.1g) and its length measured (to the nearest 1 mm) and its 

tag read to determine and record its parentage. The condition factor (K) was calculated. In farms B, C 

and D, internal deformities were scored after opening each fish. In farm A, fish were then reared until 

1 kg and were slaughtered at this stage. Internal deformities were then noted at this later stage. Sex 

was determined by examination of the gonads. 

2.1.2.3 Parentage assignment 

Parentage assignment was performed by Landcatch Natural Selection (Scotland) using six 

microsatellite markers organised in a single PCR multiplex. 

Assignments were redrawn using software (written by Landcatch) for pedigree analysis. The software 

uses two separate algorithms for pedigree assignment: a Bayesian probabilistic calculation computes 

the most likely parents; and a simple text matching algorithm compares parental and offspring 

Table 2-1: Growing conditions in the four rearing sites.  

  Rearing 
period 
(days) 

Rearing system Temperature 
(°C) 

Volume 
(m

3
) 

Rearing 
density 
(kg/m

3
) 

Farm A 420-714 semi-closed 
recirculation 
system 

20-22 5 (x4) < 30 

Farm B 423-795 concrete tank with 
borehole water 

19-20 12 < 46 

Farm C 420-873 semi-intensive 
estuarine 

9-25 400 < 2 

Farm D  513-734* floating cage in 
tropical waters 

22-27 216 < 4 

*: fish of farm D were reared in farm B during the period 423-510 days post 
hatching. 
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genotypes at each locus sequentially and excludes mismatches in turn. The two sets of results were 

then compared. There was almost perfect concordance between the two sets of assignments. 

2.1.2.4 Statistical analyses 

One major problem for data analysis was the high occurrence of spinal deformities (mainly lordosis). 

In most cases, even when accounted for by a fixed effect, deformities introduced uncontrolled 

variation in the models, and we preferred to work only on normal fish, as the increase of precision 

brought by the use of exclusively normal fish overcame or at least compensated the loss in precision 

due to the lower number of fish used when eliminating the deformed ones from analyses. An 

exception was done for farm A where the number of normal fish was so low that some slightly 

deformed fish were also used in the analysis. Occurrence of deformities and our method for 

accounting for them will be presented further in the Results section. 

To determine the potential significant fixed effects, data were first analysed using proc GLM of the 

SAS ® System. Tank effect was not significant (P > 0.1) for all traits but sex effect was kept in further 

models (P < 0.05). A farm effect (P<0.05) was also included when all data were analyzed together. 

Interactions were not significant. A model with the deformity as a fixed effect was also tested to 

make decisions about including or not deformed fish in the analysis (see Results section). 

Heritabilities, non genetic maternal effect and dominance were first analyzed for all data using 

Asreml (Gilmour et al., 2002). An animal model with dominance and maternal effect (model 1) or 

without dominance effect (model 2) or without dominance nor maternal effect (model 3) was used. 

Y = Xβ + Z1u + Z2m + Z3fs + e   (model 1) 

where Y is the vector of observations, β is the vector of fixed effects (overall mean, sex and farm), u is 

the vector of random additive genetic effects, m is the vector of random maternal effects, fs is the 

random vector of fullsib family effect (i.e. accounts for dominance) and e is the vector of random 

residual effects. X, Z1, Z2 and Z3 are known incidence matrices. Dominance effect was very low (see 

Results section) and was removed for further analyses. Then genetic parameters were also estimated 

for each site using model 2 (without dominance effect) without farm effect.  

Genetic by environment interactions (GxE interactions) were estimated through genetic correlations 

between the trait of interest in environment 1 and the same trait in environment 2, considered as 

two different traits in the analysis. GxE interactions is the difference between 1 and the genetic 

correlation, and the closer the genetic correlation is to 1, the smaller is the interaction. 
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2.1.3 Results  

Parental origin could be traced for 99.2% of the fish. The full-sibs family sizes were variable (from 0 to 

66), but only 37 families (15%) had less than half the number of expected offspring and only one 

family had zero offspring. 

The number of fish 

remaining at the final 

slaughtering and their age 

are given in Table 2-2. The 

survival during the 

ongrowing phase was 

satisfactory in all sites, 

ranging from 67 to 95%. Sex 

ratio was similar in all sites, ranging from 17 to 19.4% of females. Weight of females was 24% higher. 

The growth rate was different among sites, as expected, and the differences between sites were 

largely due to temperature differences. The proportion of deformed fish (from the scoring of internal 

deformities) reached 83, 60, 55 and 58% in farm A, B, C  D, respectively. The main type of deformity 

was lordosis often associated with scoliosis, while a few fusions and cyphosis were also observed.  

Estimates of heritabilities of 

weight, length and K in 

farm C are presented in 

Table 2-3 for all fish, normal 

+ mildly deformed fish or 

normal fish only. A 

correction by introducing a 

fixed effect of deformity 

was also tested. Results are 

presented only for farm C 

but the conclusions were 

the same for other farms. 

Deformities seem to have 

almost no effect on the 

estimation of the 

heritability of weight. 

However, one can see that 

the precision of the estimation is not better when using the full data set, compared to the normal 

fish only, despite the 2 to 2.5 fold increase of the number of fish. This is probably due to a decrease 

of precision in the estimation of additive genetic values when deformed fish are integrated in the 

analysis. Deformities have an important effect on estimations for length and even more for K. This 

was expected, as deformities have an obvious impact on length and thus on the length-weight 

relationship. Despite this high impact of deformities, the correction with a fixed effect was not really 

efficient in most cases: heritability estimates remain lower with correction than when considering 

only normal fish. Thus, we have chosen to use only normal fish in the rest of our analysis. 

Table 2-2: Number, age and mean weight of measured animals in each site. 

 Age 
(days) 

Number Mean 
weight (g) 

Proportion of 
deformed fish 
(%) 

Survival 
rate (%) 

Palavas (A) 714 1473 398 83 84.2 
Panittica (B) 795 1651 338 60 94.8 
Vila Nova (C) 873 1177 358 55 67.3 
Ardag (D) 734 1667 487 58 95.7 

 

Table 2-3: Effects of deformities on heritability estimates (h²) and their standard 
errors (s.e.) at harvest size,  for farm C (Vila Nova, Portugal), depending on the 
groups of fish kept for analysis and on the models used : with (corrected data) or 
without ( raw data) a fixed effect accounting for the occurrence of deformities. 

Trait Fish kept for 
analysis 

Sample size h² for raw 

data ( s.e.) 

h² for corrected 

data ( s.e.) 
Weight All fish 1151 0.62  0.06 0.62  0.06 
Weight Normal + mildly 

deformed 
789 0.65  0.07 0.65  0.07 

Weight Normal 523 0.64  0.07 - 

Length All fish 1151 0.54  0.06 0.58  0.07 
Length Normal + mildly 

deformed 
789 0.64  0.07 0.66  0.07 

Length Normal 523 0.70  0.08 - 

K All fish 1151 0.19  0.04 0.23  0.04 

K Normal + mildly 
deformed 

789 0.40  0.06 0.49  0.07 

K Normal 523 0.53  0.07 - 
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Table 2-5: Sample size and means ( standard deviations) of growth traits in 
the reduced data sets used for estimation of heritability and genetic 
correlations at commercial size, in four different sites (A: Palavas, France; B: 
Panittica, Italy; C: Vila Nova, Portugal; D: Ardag, Israel) 

 Number Weight (g) Length (cm) K 
Farm A 610 415.4  119.2 25.9  2.2 2.33  0.24 
Farm B 648 336.6  94.3 25.4  2.4 1.99  0.16 
Farm C 491 358.5  71.7 26.4  1.7 1.93  0.13 
Farm D 629 516.6  139.4 28.2  2.9 2.25  0.32 

 
 

This considerably reduces the 

size of the available datasets: 

from 1177-1675 to 250-648 

animals. For farm A, there 

were only 250 normal animals 

and we considered that this 

number was too low relative 

to the number of families. 

Thus we have added mildly 

deformed fish to reach a 

sample size of 610, for the 

sake of models stability. 

Moreover, as the deformities 

were scored at a later age in 

farm A, it is quite likely that 

fish scored as mildly deformed 

there could have been scored 

as normal if they had been 

slaughtered at 400g like in the 

other sites. In Table 2-5, 

sample size and means of the 

reduced data set are given for 

each trait. 

Estimations of heritabilities for 

all farms together and 

according to models 1, 2 and 3 

are given in Table 2-4. For all 

three traits, dominance effect 

is clearly non significant and 

can be removed from the 

model. According to 

differences of –2LogL between 

models, maternal effect is not 

significant for the three traits. 

However for weight and 

especially for length, maternal 

effect is not negligible and 

even (for length) at border of significance if we consider S.E. Moreover, if maternal effect is removed, 

heritability estimates are highly increased.  

Table 2-4: Estimates ( Standard Error) of heritabilities (h²) and maternal 
effects (m²) for growth traits at commercial size using model 1 (dominance 
and maternal effect), model 2 (without dominance) or model 3 (without 
dominance nor maternal effect) for all data. The relative explanatory powers 
of models are accounted for by the differences in -2Log-Likelihood between 
both models. 

Trait Model h²  S.E m² ± S.E d² ± S.E - 2 Log L 

Weight Model 1 0.34  0.09 0.06  0.05 0.01  0.01  23952.0 

 Model 2 0.35  0.09 0.06  0.05  -   23953.8 

 Model 3 0.46  0.08 - -  23955.4 

Length Model 1 0.24  0.07 0.10  0.05 0.02  0.01 17208.14 

 Model 2 0.25  0.06 0.10  0.05 - 17212.84 

 Model 3 0.43  0.07 - - 17217.46 

K Model 1 0.34  0.09 0.01  0.04 0.00  0.01 16366.22 

 Model 2 0.34  0.09 0.01  0.04 - 16366.22 

 Model 3 0.36  0.06 - - 16366.32 

 

Table 2-6: Estimates ( Standard Error) of heritabilities (h²) and maternal 
effects (m²) for growth traits at commercial size using model 2 with 
maternal effect and no dominance effect, in four different sites (A: Palavas, 
France; B: Panittica, Italy; C: Vila Nova, Portugal; D: Ardag, Israel).  

Trait Farm h²  S.E m² ± S.E. 

 
Weight 

A 0.40 ± 0.14 0.07 ± 0.07 
B 0.44 ± 0.14 0.04 ± 0.07 
C 0.39 ± 0.14 0.13 ± 0.08 
D 0.38 ± 0.14 0.08 ± 0.07 

 
Length 

A 0.41 ± 0.15 0.07 ± 0.07 
B 0.33 ± 0.12 0.09 ± 0.07 
C 0.34 ± 0.13 0.19 ± 0.09 
D 0.27 ± 0.11 0.10 ± 0.06 

 
K 

A 0.46 ± 0.15 0.05 ± 0.07 
B 0.45 ± 0.15 0.04 ± 0.07 
C 0.51 ± 0.18 0.03 ± 0.08 
D 0.26 ± 0.11 0.03 ± 0.05 

 
 



21 

 

Table 2-7: Phenotypic (above diagonal) and genetic correlations ( S.E. below diagonal) between weight, length and K at 
commercial size in sea bass for all farms, and in each of the four farms (A: Palavas, France; B: Panittica, Italy; C: Vila Nova, 
Portugal; D: Ardag, Israel) 

 Weight Length K 
All farms    
Weight  0.87 0.47 
Length 0.95  0.02  0.08 

K 0.27  0.15 -0.05  0.16  

Farm A    
Weight  0.91 0.39 
Length 0.91  0.01  0.01 

K 0.34  0.11 -0.07  0.12  

Farm B    
Weight  0.95 0.01 
Length 0.96  0.01  0.03 

K 0.23  0.11 -0.05  0.12  

Farm C    
Weight  0.88 0.13 
Length 0.94  0.01  -0.32 

K 0.02  0.12 -0.32  0.11  

Farm D    
Weight  0.93 0.44 
Length 0.95  0.01  0.15 

K 0.35  0.11 0.05  0.13  

 
 

Table 2-8: Estimations of genetic correlations for weight at commercial size 
measured in different environments (A: Palavas, France; B: Panittica, Italy; 
C: Vila Nova, Portugal; D: Ardag, Israel) 

 Farm A Farm B Farm C 
Farm B 0.99  0.05   

Farm C 0.84  0.08 0.88  0.07  

Farm D 0.97  0.03 0.96  0.04 0.70  0.10 
 
 

Heritabilities estimated in each site using model 2 are reported in Table 2-6. Heritabilities were all 

medium to high. They are little higher in farm C, but in this latter farm the CV of weight within sex 

was lower (18.9% versus 24-26% in other sites). For length and K, heritability seems lower in farm D. 

Phenotypic correlations and genetic correlations estimated with model 2 are gathered in Table 2-7 

for all farms and for each farm. Correlation between weight and length is always very high (> 0.9). 

Genetic correlations between weight or length and K can change widely from one site to another. 

Genetic correlations for weight 

between different farms are 

summarized in Table 2-8. They 

are especially high (thus very 

small interaction) between farm 

A, B and D. They are lower 

between farm C and other farms 

(<0.9), especially farm D (0.70) 

which suggests higher genotype-

environment interactions.  
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2.1.4 Discussion 

2.1.4.1 Deformities 

The cause of the deformities was apparently not to be sought during larval rearing, as the fish that 

were kept by farm B for its breeding programme, which were produced from the same parents on 

the same day and reared in the same conditions, did not suffer (at least externally) from such 

deformities. The most probable cause is the rearing conditions in farm A, prior to tagging. Indeed, the 

small fish that arrived from farm B (134 days, 3.6 g mean weight) were reared in 5m3 circular tanks, 

where a strong circular water current induced tank self-cleaning. However, it is known that the 

intensive swimming provoked by such water current is not suitable for this size of fish that have not 

completed their bone calcification (Chatain, 1994). 

As the fish were chosen at random to constitute the different farm batches, we can make the 

hypothesis that the rate of deformities was initially the same in all batches. The differences observed 

at slaughter then should come from environmental effects of the rearing systems, allowing the fish 

to recover or not, or at least worsening or not the initial deformities. The much higher proportion of 

deformed fish in farm A is probably also accounted for by the bigger size (1 kg) at which the scoring 

was done. We cannot exclude a bias on estimates of genetic parameters even with removal of 

deformed fish. However this should lead to a decrease of estimates unless heritability of deformities 

is very high which is not the case (h² = 0.16-0.29 on the underlying scale). 

2.1.4.2 Maternal effect 

With our results, it is still difficult to conclude on maternal effects in growth of sea bass. Statistics 

show that they are not significant. Considering the small egg size in sea bass, the absence of maternal 

effects in large fish is not surprising. Similar results were found by Saillant et al. (2006). More 

generally maternal effects have been often described in different marine fish but only on early life 

history traits such as larvae weight or yolk-sac volume [see for example, Bang et al., 2006 in Atlantic 

herring, Saillant et al., 2001a in sea bass]. For later stages, to our knowledge, maternal effects in 

marine fish are not very well documented. In Atlantic cod, Gjerde et al.( 2004) found 0.03 to 0.12 as 

an estimation of common full-sibs effect for body weight at 25 g. This effect contains maternal effect 

but also tank effects and dominance, and maternal effect was thus probably low in this experiment. 

Doupe and Lymbery, 2005 in black bream found that maternal effect decrease gradually with age 

from 9.4 % (75 days old, 0.6 g) to 1.8% (180 days old, 17.2 g). In salmonid fish for which egg size is 

much larger and maternal effects are high in early stages, they are also known to decrease with age 

(for example, McKay et al., 1986b; Crandell and Gall, 1993). 

However, in our experiment, a systematic increase of heritability is observed when maternal effect is 

removed. This could be due to the introduction in the model of a non significant - and thus difficult to 

estimate - maternal effect than to a real maternal effect. But, the higher is the estimate of maternal 

effect, the higher is the increase of heritability estimate. Maternal effects are probably at the border 

of significance in our dataset and thus we cannot reject their existence. It is not impossible that egg 

quality can be the origin of a small but real maternal effect. We finally choose a conservative 

attitude, and kept the maternal effect in further models. Since it leads to lower heritabilities, we 

prefer this choice which leaves room for more genetic progress than expected. However introduction 

of maternal effect in the model mainly affects heritability estimates: estimations of genetic 
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correlations between traits are not changed and genotype by environment interactions little 

affected. 

 

2.1.4.3 Heritability estimates 

Our results show moderate to high heritabilities. These results are in the range of those obtained by 

Saillant et al., 2006. These authors published the first heritability estimates in sea bass, however our 

paper gives much more reliable estimates, obtained in different rearing conditions, with a large 

number of families and a design which prevents biases by dominance, maternal or other common 

environment effects. In other marine fish, medium to high heritabilities have also been found: 0.45-

0.70 for body weight of turbot (Gjerde et al., 1997), but probably overestimated because of the 

mating design (sires nested within dams)), 0.29 ± 0.27 to 0.52 ± 0.26 for body weight at 25 g for 

Atlantic cod (Gjerde et al., 2004) and 0.51 ± 0.10 for body weight at two years in Atlantic cod (Kolstad 

et al., 2006). However in black bream with a small design (five dams mated to six sires), Doupe and 

Lymbery, 2005) found moderate heritability of growth traits in juvenile stages. 

Therefore, comparing to classically selected fish species, like salmonids, the heritability of growth 

seems a little larger in sea bass. Indeed, in salmonids, estimates generally range between 0.2 and 0.4 

(for a review, see Gjerde, 1986). The fact that sea bass is not domesticated (here, all parents were 

caught from the wild) could be one explanation.  

These heritability values are promising for genetic progress, at least in the short term. As an example, 

for weight, the expected genetic gain for a mass selection with a pressure of 5% should range 

between 16 and 25% of the mean per generation. But this has to be confirmed by selection 

experiments as many examples in litterature show unsuccessful selection experiments in fish (for 

example, Moav and Wohlfarth, 1976; Hulata et al., 1986; Huang and Liao, 1990; Gjedrem, 1998, for a 

review). 

2.1.4.4 Genotype by environment interactions 

Low interaction between farm B and D is not surprising knowing the long common life of both 

batches. The highest interactions are seen between Farm C and other farms. It is plausible that the 

semi-intensive nature of the Farm C rearing system, together with its low temperature in winter, 

leads to different rankings of the families, compared with the other sites which are all warmer and 

more intensive (the warmest being Farm A and Farm D). 

For sea bass aquaculture, these results show that in most cases there would be similar response on 

weight if fish selected in one site would be reared in another site, except with highly divergent 

systems. This leaves open both the possibility to undertake a single breeding programme and the 

possibility to set up site-specific breeding programmes. Another possibility would be a single 

breeding programme with multisite testing and site-specific multiplication according to the best 

ranking families in each site. The choice is open for each farm, according to its characteristics and 

objectives. We must also underline that in the present work, all fish are reared in a common 

environment before being sent to the various rearing sites (farms), thus limiting the possible GxE 

interaction effects to the only on-growing period. 
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The genotype-environment interactions obtained here are much lower than those already reported 

in sea bass by Saillant et al.(2006). In Saillant et al.(2006), each experimental group was exposed to 

the different environmental conditions from fertilization time, thus extending the interaction action 

from the early larval stages. Therefore, it should be really interesting to test genotype environment 

interactions in the early stage in a larger design. Moreover, the significantly lower precision of 

estimates reported in the latter experiment reduces the accuracy of results. 

In fish, genotype-environment interactions for growth traits have been studied mainly in salmonids, 

catfish, carp and tilapia species. They have been estimated through reaction norms or, as in this 

paper, through genetic correlations of a trait measured in different environments and considered as 

different traits, or through selection response in different environments. Most papers indeed studied 

GxE interactions through reaction norms: different strains or genotypes reared in different 

environments. Significant genotype-environment (environments were generally characterised by 

different temperature/photoperiod/nutritional environment/density) for growth was found in many 

fish species: carp (Wohlfarth et al., 1983), catfish (Dunham et al., 1990), tilapia (Romana-Eguia and 

Doyle, 1992), Rainbow trout (Iwamoto, 1986) and in marine fish: turbot (Imsland et al., 2000), 

Atlantic halibut (Jonassen et al., 2000) and Atlantic cod (Imsland et al., 2005). Papers estimating 

genetic correlations between the same trait in different environments are less numerous and results 

highly variable. In rainbow trout, Sylven et al. (1991) found genetic correlations ranging from 0.58 to 

0.86 between slaughter weight in freshwater (Sweden), brackish water (Sweden) and salt water 

(Norway), i.e. higher interactions than in our experiment. Still, in rainbow trout, Bagley et al., 1994 

found genetic correlations ranging from 0.32 to 0.9 for different stocking densities. Again in rainbow 

trout, Palti et al. (2006) found similar family rankings reared under a classical fishmeal diet or a 

gluten-based diet. In Atlantic salmon, Hanke et al. (1989) found similar family rankings for different 

photoperiods while Stefansson et al. ( 1990)  found significant family x photoperiod interactions. In 

tilapia, Ponzoni et al. (2005) show small interactions for weight of selected fish (GIFT strain) in cages 

or ponds and concluded that ‘selection response was being achieved in both environments and that 

there was not enough evidence to justify the conduct of separate genetic improvement programmes.  

Generally speaking, GxE interactions depend on the traits, populations and environments studied 

and are still difficult to predict. It is however a key point when setting up a breeding programme in 

species with wide range of environments and large geographical area like in sea bass.  

2.1.4.5 Correlations between growth traits 

As the genetic correlation is high and heritabilities of both traits are also similar, selection on weight 

or length should yield the same results on weight. However, because of the correlations with K, 

selecting on weight or on length is not equivalent. 

In farms A, B and D, the genetic correlation between length and K is close to zero, so selection on 

length would have no impact on K, but the positive genetic correlation between weight and K would 

lead to the selection of “fatter” fish if weight was used as a selection criterion. In this case, selection 

on length should be preferred. On the opposite, in farm C, the genetic correlation between weight 

and K is close to zero so that selecting on weight would have no impact on the global shape of the 

fish. However, the genetic correlation between length and K is negative, so selection on length would 

lead to leaner, though heavier, fish. This kind of fish is generally appreciated as it looks more like a 
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wild fish, and finally selection on length will probably be preferred again. In other sites, a specific 

selection on K would be necessary to obtain leaner fish. 
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2.1.5 Summary 

253 full-sib families from 33 males and 23 females of European sea bass were produced in a partly 

factorial mating design. All fish were reared in the same tank during 14 months, then 7000 of them 

were dispatched in four farms to different locations (France, Israel, Italy, Portugal) representing a 

wide variety of environmental conditions. Around 400 g mean weight, 1177 to 1667 fish in each 

site were weighed and length was measured. Condition factor (K) was calculated. Pedigrees were 

redrawn a posteriori using microsatellites markers: parental origin could be retraced for 99.2 % of 

fish. Due to a high incidence of deformities, the useful sample size was reduced to 491-670 fish per 

site. Maternal effects were small. Using a simple animal model, heritability of weight ranged from 

0.38±0.14 to 0.44±0.14 in the different sites. Length was highly correlated to weight, with similar 

heritabilities. GxE interaction, estimated through genetic correlations of weight across the 

different environments ranged from 0.70±0.10 to 0.99±0.05. Genetic correlations between weight 

or length and K were not similar in the different sites.  
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2.2 Genetic variation for growth rate 

This section has been published in 2010 in Aquaculture 306 (365-368) as:  

"Genotype by environment interactions for growth in European sea bass (Dicentrarchus labrax) are 

large when growth rate rather than weight is considered", by Mathilde Dupont-Niveta,*, Bilge 

Karahan-Nommb, , Alain Vergnetc, Olivier Merdya, Pierrick Haffrayd, Hervé Chavannee, Béatrice 

Chatainc, Marc Vandeputtea,c 

a
 INRA, UR544 Unité de Génétique des Poissons, F-78350 Jouy-en-Josas, France 

b
 Ege University, Fisheries Faculty, Aquaculture Department, 35100 Izmir, Turkey 

c
 Ifremer, Chemin de Maguelone, F-34250 Palavas-les-Flots, France 

e
 Sysaaf, Section aquacole, Station SCRIBE, Campus de Beaulieu, F-35042 Rennes, France 

e
 Panittica Pugliese, Torre Canne di Fasano, Italy 

*
 Corresponding author: Tel : +33 1 34652349; Fax: +33 1 34652390; E-mail : mathilde.dupont-nivet@jouy.inra.fr 

doi: 10.1016/j.aquaculture.2010.05.025 

2.2.1 Introduction 

European sea bass is a major aquaculture species in the Mediterranean region and in the southern 

part of the north east Atlantic Ocean (Portugal, Canary Islands). Its domestication began in the 1980s, 

and while some breeding programmes are starting (France, Greece, Israel), some hatcheries still use 

wild broodstock. Breeding programmes are expected to provide important increases in productivity, 

as in all fish species (Gjedrem and Thodesen, 2005), especially because heritabilities of growth traits 

range from medium to high in this species (Saillant et al., 2006; Dupont-Nivet et al., 2008). High 

selection response (+23-42 % per generation) for weight at commercial harvest size was obtained in 

an individual selection experiment in a recirculating system (Vandeputte et al., 2009b). However, 

hatcheries can provide fingerlings to a wide range of fish farms with very different culture conditions, 

thus efficient selective breeding for growth requires the knowledge of any GxE interactions. They are 

efficiently approached by calculating genetic correlations using a common family structure under 

different environmental conditions, and considering the traits at each site as separate traits. We 

previously published estimates of GxE interactions for weight at commercial size (Dupont-Nivet et al., 

2008), and showed that they were small in most cases (genetic correlation rA between sites >0.84), 

while it was moderate (rA=0.70) between the two extreme sites in terms of rearing systems, 

especially regarding temperature. Fish in the experiment reported in this previous paper were tagged 

at a mean weight of 35g and harvested around 400g, and this relatively late tagging leaves the 

possibility that final weight performance was significantly influenced by weight at tagging (where all 

fish were in the same environment), thus reducing the possibilities to see GxE interactions. Thus, 

using the same dataset, we report in the present paper an additional analysis: GxE interactions for 

growth rate expressed as Daily Growth Coefficient (DGC).  

2.2.2 Material and methods 

2.2.2.1 Animals 

Details regarding the production of experimental animals were given in Dupont-Nivet et al. (2008). 

Briefly, 253 full-sib families from 33 males and 23 females were produced according to a partly 

factorial mating design, and all families were reared as a single batch, starting at 48h post-

fertilization. They were all kept in the same tank (Panittica Pugliese, Torre Canne di Fasano, Italy) 

until they reached 134 days post-fertilization (dpf), where a random sample of 16,000 fish was sent 

to the Ifremer station in Palavas (France) and pre-grown in a 5 m3 tank. At 156 dpf, the batch of fish 

mailto:mathilde.dupont-nivet@jouy.inra.fr
http://dx.doi.org/10.1016/j.aquaculture.2010.05.025
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was split at random into 

four 5 m3 tanks to lower 

stocking density. At 370 

dpf, fish were 35 g (mean 

weight) and 7000 were 

randomly selected, 

individually PIT-tagged and 

fin-clipped (fin clips were 

kept in 90% ethanol for 

further DNA analyses). 

Four batches of 1750 fish 

each were distributed to 

four different farms.  

The four farms were 

chosen for their varying 

growing or rearing conditions (Table 2-9), including a recirculating system (Palavas, France, Site A), a 

concrete raceway with well water (Torre Canne di Fasano, Italy, site B), semi-intensive estuarine 

earthen ponds (Vila Nova de Milfontes, Portugal, site C) and tropical seawater cages (Eilat, Israel, site 

D). These farms differed in many factors other than rearing system, such as water temperature 

(mean and variation), fish density, feed composition, feeding practices, associated pathogens and 

water quality. All these factors, and others not identified, may have contributed to GxE interactions. 

It must be noted that due to logistical problems, the batch of fish for site D remained at site B from 

423 to 510 dpf, and they stayed at site D from 513 to 734 dpf. Each site used its own rearing 

procedures and feeds, the only restriction being that the fish had to be kept as one batch and should 

not at any time be sorted. 

2.2.2.2 Data collection 

At each farm, fish were measured at 

commercial size (average 400 g), 

varying from 338 g (farm B) to 487 g 

(farm D). Number of fish measured, 

mean weight, age and DGC (defined 

below) are reported in Table 2-10. 

Each fish was measured (weight, 

length) and individually identified with 

its tag. At farms B, C and D, internal 

deformities (defined below) were 

scored after opening each fish. At 

farm A, fish were put back in the tanks 

after measurements, reared until 1 kg and were slaughtered at this stage. Internal deformities then 

were noted at this later stage. Sex was determined by examination of the gonads. Parentage 

assignment was performed by Landcatch Natural Selection (Scotland) using six microsatellite markers 

organised in a single PCR multiplex. The assignments were recovered with a home-made program 

(see details in Dupont-Nivet et al., 2008). Parentage assignment yielded 99.2% unique assignments.  

Table 2-9 Growing conditions in the four rearing sites.  

  Rearing 
period 
(days) 

Rearing system Temperature 
(°C) 

Volume 
(m

3
) 

Rearing 
density 
(kg/m

3
) 

Farm A 
France 

420-714 semi-closed 
recirculation 
system 

20-22 5 (x4) < 30 

Farm B 
Italy 

423-795 concrete tank with 
well water 

19-20 12 < 46 

Farm C 
Portugal 

420-873 semi-intensive 
estuarine 

9-25 400 < 2 

Farm D  
Israel 

513-734* floating cage in 
tropical waters 

22-27 216 < 4 

*: fish of farm D were reared in farm B during the period 423-510 days post 
hatching. 

 

 
Table 2-10 : Number, age, mean weight, mean daily growth coefficient 
(DGC), proportion of deformed fish and survival rate at each site. 

 Age 
(days) 

Number 
(N) 

Mean 
weight 

(g) 

Mean 
DGC 

Proportion 
of 

deformed 
fish (%) 

Survival 
rate (%) 

Farm A 
France  

714 1473 398 1.18 83 84.2 

Farm B 
Italy  

795 1651 338 0.86 60 94.8 

Farm C 
Portugal 

873 1177 358 0.76 55 67.3 

Farm D 
Israel 

734 1667 487 1.25 58 95.7 
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2.2.2.3 Statistical analyses 

To account for the growth rate of the fish in the different sites, we used the daily growth coefficient 

[DGC = 100 × (final individual weight1/3 − initial individual weight1/3)/days], which was chosen because 

it is much more independent of initial body weight than weight gain and specific growth rate (Cho, 

1992), and its use for estimating growth rate in aquaculture is therefore recommended (Bureau et 

al., 2000). We also analysed the weight at tagging and the final weight (ie body weight at commercial 

size) of fish at the different sites. To test the potential significance of fixed effects on DGC, initial 

body weight (IBW) and final body weight (FBW) data were first analysed using proc GLM of the SAS ® 

System. Tank (prior to tagging) and sex were significant effects (P <0.05) for all traits. Deformities 

(coded 1 for deformed fish, 0 for undeformed) were significant for FBW (P <0.05) but not for other 

traits. A deformity effect was then kept as a fixed effect in the analysis model.  

A very high proportion of the fish suffered from spinal deformities (65% of all examined fish had one 

or more kinds of deformities), mostly lordosis and scoliosis (43% and 30%, respectively). These 

probably were generated by forced swimming due to inappropriate hydrodynamics in the 5m3 tanks 

in Palavas in the early phases of the experiment (from 3 to 35 g mean weight - Bardon et al., 2009). 

Because, in our previous paper (Dupont-Nivet et al., 2008), where we analyzed body weight, length 

and condition factor, as these traits, especially length and condition factor were affected by 

deformities, we chose to work on a reduced dataset in order to avoid potential effects of imperfect 

correction by a fixed effect. As seen before, there was no impact of deformities on DGC and IBW, and 

only moderate impact on FBW. Heritability and genetic correlations involving FBW were similar when 

including or not deformed fish, but standard errors of genetic correlations were larger when 

deformed fish were removed. Then, for this paper, we used the full dataset, including data from 

deformed and undeformed fish, in order to increase the precision and relevance of estimates.  

Heritabilities and non-genetic maternal effect were first analyzed for all data using VCE6 (Groeneveld 

et al., 2008). A multi-trait animal model with maternal effect (model 1 shown below) or without 

maternal effect (model 2) was used: 

Y = Xβ + Z1u + Z2m + e   (model 1) 

where Y is the vector of observations, β is the vector of fixed effects (overall mean, initial tank, sex, 

deformity – for final weight only –, site when data from all sites are treated as a single trait), u is the 

vector of random additive genetic effects, m is the vector of random maternal effects, and e is the 

vector of random residual effects. X, Z1, and Z2 are known incidence matrices.  

Genotype-by-environment (GxE) interactions were estimated through genetic correlations between 

the trait of interest in environment 1 and the same trait in environment 2, considered as two 

different traits in the analysis, using model 1. The correlation of residuals between sites was zero, as 

one individual is present at only one site. GxE interaction is measured by the difference between 1 

and the genetic correlation; thus, the closer the genetic correlation to 1, the smaller the GE 

interaction. 
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Table 2-12 : Genetic correlations between sites and heritabilities 
within site (bold, on the diagonal) for Daily Growth Coefficient (DGC) 
and final body weight (FBW). Estimates ± S.E.  

trait  site A 
(France) 

site B 
(Italy) 

site C 
(Portugal) 

site D 
(Israël) 

DGC site A 0.19±0.04 0.39±0.12 0.21±0.14 0.34±0.16 

 site B  0.26±0.05 0.61±0.10 0.78±0.08 

 site C   0.35±0.06 0.42±0.14 

 site D    0.16±0.04 

FBW site A 0.42±0.09 0.81±0.06 0.81±0.06 0.86±0.06 

 site B  0.40±0.08 0.81±0.06 0.93±0.04 

 site C   0.44±0.08 0.75±0.09 

 site D    0.29±0.07 

 
 

2.2.3 Results and discussion 

The estimated heritability and 

maternal effects of DGC, IBW and FBW 

at each site and across all sites are 

given in Table 2-11. Maternal effects 

were not significant, but not taking 

them into account caused inflated 

heritability estimates, so they were 

kept for further analyses. Heritability 

of initial body weight was very high 

(0.61±0.14), while the values were 

more moderate for final body weight 

(0.29-0.45 among the different sites) 

and for DGC (0.16-0.34). Interestingly, 

the heritability estimate across sites 

for DGC (0.12±0.04) was lower than 

the estimates at individual sites. So, even if heritability of growth rate within site is relatively high, 

family re-rankings between sites may cause both smaller between-family variance and higher within-

family variance when all sites are considered, lowering heritability across all sites.  

Genetic correlations of DGC and FBW 

between sites are given in Table 2-12. 

Results for FBW were a little different, 

but consistent with results on the 

reduced dataset (without data from 

deformed fish) (Dupont-Nivet et al., 

2008). Genetic correlations of FBW 

were high (>0.80), revealing little GxE 

interaction, except between sites C 

and D (0.75). A very high value (0.93) 

was reached between site B and site 

D, where fish shared a longer common 

rearing period in site B, as noted 

above. In contrast, genetic 

correlations of DGCs between sites were much lower: although sites B and D were still close to each 

other (rA=0.78), the other values ranged from 0.21 to 0.61. As the standard errors were moderate 

(0.08 to 0.16), the genetic correlations clearly differ from 1, and then reveal significant GxE 

interactions. Existence of GxE interactions is further confirmed by the observation that the value of 

heritability across sites for DGC was lower than the individual values estimated within site, as noted 

above. 

Compared to our previous results, this genetic analysis of DGC between sites reveals a higher level of 

GxE interactions than previously expected based on commercial weight. We primarily focused on 

commercial weight, as it is the most important trait that generates income to the farmers. However, 

growth rate is also important, because in many cases the on-grower buys its fingerlings from a 

hatchery or a breeding company, fast growth rate during on-growing is of major interest as it 

Table 2-11 : Heritability (h²) and maternal effects (m²) estimates (± 
S.E.) for daily growth coefficient (DGC), initial body weight (IBW) and 
final body weight (FBW) at four sites and across all sites. Heritability 
estimates are given for models with (model 1) and without (model 2) 
maternal effects. Estimates for IBW are given only across all sites, as 
all fish were reared in a single site (site A) at that stage. 

Trait Parameter Site A 
(France) 

Site B 
(Italy) 

Site C 
(Portugal) 

Site D 
(Israël) 

All Sites 

DGC h²  model 1 
m² model 1 
h²  model 2 

0.19±0.07 
0.03±0.03 
0.25±0.06 

0.32±0.07 
0.00±0.00 
0.32±0.06 

0.34±0.10 
0.06±0.06 
0.45±0.08 

0.16±0.06 
0.04±0.03 
0.23±0.05 

0.12±0.04 
0.03±0.02 
0.17±0.03 

FBW h²  model 1 
m² model 1 
h²  model 2 

0.44±0.12 
0.06±0.06 
0.54±0.09 

0.45±0.12 
0.03±0.06 
0.51±0.08 

0.44±0.11 
0.09±0.07 
0.62±0.09 

0.29±0.09 
0.10±0.06 
0.48±0.08 

0.28±0.07 
0.04±0.04 
0.36±0.06 

IBW h²  model 1 
m² model 1 
h²  model 2 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

0.61±0.14 
0.05±0.07 
0.70±0.09 
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shortens the production cycle. Also, a faster growth rate is expected to generate improved feed 

conversion ratio (Thodesen et al., 1999; Kause et al., 2006; Quinton et al., 2007), and thus lower 

production costs. 

The GxE interactions estimated in this paper for DGC are similar to those observed by Saillant et al. 

(2006) on log (weight) in sea bass, who observed genetic correlations mostly in the 0.40-0.50 range. 

The major difference is that the environments tested by Saillant et al. (2006) were generated by 

manipulation of rearing parameters within the same facility (temperature, density), while the 

environments we tested were distinct, constrasting on-growing environments. Also, in Saillant et al. 

(2006), the range of conditions were applied since the early phases of rearing, making final weight a 

surrogate estimation of growth rate. In the present experiment, because our fish were tagged and 

separated between the environments relatively late, at 35g mean weight, it allowed the initial 

common rearing phase to have more impact on the final weight observed. This is reinforced by the 

very high heritability of weight at 35 g (0.61), which effectively makes divergences in size-at-tagging 

have a strong genetic component. Thus, these differences will still be present, at least partly, at 

commercial size, even if DGCs of the different families rank differently across the different rearing 

sites.  

In fish, genotype-environment interactions for growth traits have been studied in many species, but 

mostly as responses of geographic strains to contrasting environments. Studies at the family level 

investigating genetic correlations between environments are few, but quite consistently show GxE 

interactions, apart for Chinook salmon (Oncorhynchus tshawytscha) where no family re-rankings 

were apparent (Winkelman and Peterson, 1994). Genetic correlations between environments ranged 

from 0.58 to 0.86 for body weight of rainbow trout across different systems and salinities up to 2-3 

kg, starting from 1 year-old fish (Sylven et al., 1991). In the same species, different densities from 

start-of-feeding yielded genetic correlations in the range 0.32 - 0.90 for body weight (Bagley et al., 

1994). For sea bream, genetic correlations for body weight at commercial size (360-480g) between 

cage and intensive tank rearing systems were 0.70±0.10, with fish tagged and separated at 4.8g 

mean weight (Navarro et al., 2009). These results, together with those of Saillant et al. (2006) and 

our present results, suggest that high genetic correlations (i.e. low GxE interactions) for body weight 

across different environments are more an exception than a rule, especially when fish are reared 

separately for the largest part of their growth period.  

Because in most cases, marine fishes (including sea bass) are sold as fingerlings at a small size (<10g), 

some practices should be adapted to avoid GxE interactions in order to allow expression of the 

potential of growth-selected fish. These practices should include rearing selected fish in conditions 

resembling those of production environment. Our data do not allow us to test specific hypotheses 

about the major factors (temperature mean and variation, density, feed composition and feeding 

practices, associated pathogens) generating GxE interactions, as we cannot tease at causes of the 

genetic correlations observed, except for the high correlation (0.78) between sites B and D, which 

can be explained by the long common life. Another unanswered question is the temporal stability of 

such interactions; i.e. would the respective families rank the same in different years at the same 

sites, or would there be genotype*year interactions within site? Further research is needed to 

understand the determinants of GxE interactions in sea bass before developing breeding 

programmes adapted to the different type of rearing systems (cage, ponds, closed water system, 

raceway) used across the industry. 
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2.2.4 Summary 

Two hundred fifty three full-sib families from 33 males and 23 females of European sea bass were 

produced in a partly factorial mating design. All fish were reared in the same tank for 14 months 

until reaching mean weight of 35 g, then 7000 of them were individually tagged and weighed, and 

dispatched to four farms in different locations (France, Israel, Italy and Portugal) representing a 

wide variety of environmental conditions. Around mean weight of 400 g, 1177 to 1667 fish at each 

site were weighed. Daily growth coefficient (DGC) was calculated. Pedigrees were successfully 

redrawn for 99.2% of fish using microsatellite markers. Genetic correlations between sites were 

high for body weight (>0.80 in all cases but one, i.e. five cases over six), but only moderate for DGC 

(0.21-0.61), with one exception. This indicates significant GxE interactions for growth rate, which 

were not revealed when studying body weight due to shared common environment of the fish 

prior to separation to the different rearing environments.  

2.3 Additional data: genetic correlations between initial weight, slaughter weight 

and growth rate 

As we showed in section 2.2 that the heritability of initial body weight at tagging was very high (0.61), 

it could be of interest to perform selection at that stage to have high selection gains. However, as 

initial growth was done in one environment (recirculated systems at Ifremer Palavas), and there are 

high GxE interactions for growth rate between sites, it is interesting to know the genetic correlations 

of initial weight with slaughter weight (as well as growth rate) in the different sites. 

To this end, we used the same dataset as in section 2.2 with multi-trait animal models where Final 

body weight (FBW) as well as DGC in each site were considered as different traits, while initial body 

weight (IBW) was considered as the same trait for all sites (as all fish were reared in Palavas until the 

measurement of IBW). Fixed effects were overall mean, initial tank, sex and deformity, and a 

maternal random effect was added. two 

different models, one for FBW and one 

for DGC were fitted with VCE6.0 

(Groeneveld et al., 2008). A third model, 

where FBW and DGC in each site were 

considered as different traits, was fitted 

with the same software. Due to lack of 

convergence, maternal effects were 

omitted  in this model. 

The heritabilities and genetic 

correlations of IBW with FBW and DGC 

are given in Table 2-13. 

The heritability of IBW was 0.64±0.05 in 

both multi-trait models. The genetic 

correlation of IBW with FBW was high 

(>0.8) in all sites, and maximal in France (0.94). DGC from tagging to slaughter was positively 

genetically correlated with IBW in France (rA=0.54), was not significantly  genetically correlated with 

IBW in Italy and Israel, and was negatively correlated with IBW (rA= -0.31) in Portugal. 

Table 2-13: Heritabilities of Final body weight (FBW) and DGC in 
four rearing sites and genetic correlations with initial body weight 
(IBW). 

 h² of FBW 
± s.e. 

rA IBW-FBW h² of DGC 
± s.e. 

rA IBW-DGC 

Israel  0.38±0.06 0.83±0.04 0.17±0.04 -0.16±0.16 
France 0.55±0.07 0.94±0.02 0.20±0.04 0.54±0.11 
Italy 0.46±0.05 0.85±0.03 0.26±0.05 0.00±0.14 
Portugal 0.54±0.09 0.86±0.03 0.35±0.06 -0.31±0.11 
 

Table 2-14: Genetic correlations (± s.e.) of FBW in a site with DGC 
in the same (diagonal) or another (upper triangle) site. 

 Israel France Italy Portugal 
Israel  0.70±0.04 0.66±0.08 0.55±0.05 0.21±0.05 
France  0.80±0.03 0.22±0.07 0.02±0.09 
Italy   0.72±0.04 0.36±0.07 
Portugal    0.47±0.07 
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The high genetic correlations between IBW and FBW show that the variation in FBW is largely a 

consequence of the genetic variation in IBW. When DGC is considered, only France, which is the site 

where the fish were reared prior to tagging, shows a positive genetic correlation of DGC with FBW 

(Table 2-13). Under the hypothesis that all fish start at the same size at hatching, IBW is a surrogate 

for growth rate until 370 dpf. The conclusions that can be drawn from the present data are that  

1) genetic variation is higher for early growth rate (h²=0.64 for IBW) than for late growth rate 

(h²=0.38-0.55 for FBW and 0.17-0.35 for DGC),  

2) late growth rate is poorly genetically correlated with early growth rate,  

3) the high heritability of FBW is largely a consequence of the high heritability of IBW 

4) selection for fast growth until 1 year of age can have a null or even negative impact on growth rate 

in a different environment. 

The genetic correlations of FBW with DGC within and across sites are shown in Table 2-14. They 

imply  that selection for FBW should yield relatively high response on DGC in the same site (rA=0.70-

0.80), except for Portugal, where the genetic correlation between both is only 0.47. This is most likely 

because of the negative genetic correlation between IBW and DGC in this site, which should 

mechanically reduce the correlation between FBW (which integrates IBW and DGC) and DGC. Genetic 

correlations between FBW in one site and DGC in another site vary from 0.66 between France and 

Israel to 0.02 between France and Portugal, showing that selection for harvest weight done in the 

recirculated systems of Palavas would be totally inefficient in increasing growth rate in the semi-

intensive ponds of Portugal. 

In fish, the consensus is that within population GxE interaction is rather limited (e.g. Kause et al., 

2003; Khaw et al., 2012; Kolstad et al., 2006; Sylven et al., 1991). In this study, we find it very high, 

with even a negative genetic correlation, although in our case it is more than GxE, as the interaction 

is an interaction between genotype and a combination of age and environment.  

A possibility that might increase this genotype by environment interaction in our case is the impact 

of sexual maturation on growth. In sea bass, males generally mature at 2 years of age (some 

precociously at one year) and females mature at 3 years, and maturation occurs in winter/spring. It 

has been shown that the maturation status had an important effect on the growth of sea bass 

(Begtashi et al., 2004; Saillant et al., 2001b), and maturation is also known, in rainbow trout, to 

perturb the estimation of genetic parameters (Dupont-Nivet et al., 2010a). In the present study, until 

one year of age, fish were reared with a long photoperiod (16L:8D) aimed at limiting sexual 

maturation (Begtashi et al., 2004). Fish were measured for IBW then dispatched to the ongrowing 

sites in February 2003, in the middle of the reproduction season. As they were under long 

photoperiod until that time, probably none or a very limited amount of fish (and only males) had 

matured at that time. FBW was measured in Palavas in January 2004, in Israel in February 2004, in 

Italy in April 2004 and in Portugal in June 2004. All fish were in natural photoperiod except in Palavas, 

where they were kept under a long photoperiod. Thus, it is likely that almost all males matured in 

Italy, Israel and Portugal, while only a limited proportion matured in Palavas – and this could be a 

good explanation for the fact that genetic correlation between IBW and DGC is significantly positive 

only in Palavas.  
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Nevertheless, apart from what we showed in section 2.2, the lowest genetic correlation estimates 

evidenced before in fish between two environments were 0.45 for body weight (meaning it might be 

less on growth rate) in Nile tilapia between freshwater and brackish water (Luan et al., 2008), and in 

the same species 0.08-0.43 between intensive cage culture and pond environments (Bentsen et al., 

2012). The low estimates obtained in sea bass – and their possible causes -  will have to be taken into 

account for the design of breeding programmes.  
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2.4 Genetic variation for sex ratio 

2.4.1 A polygenic hypothesis for sex determination  

This section was published in 2007 in Genetics 176 (1049-1057) as:  

"A Polygenic Hypothesis for Sex Determination in the European Sea Bass Dicentrarchus labrax" by 

Marc Vandeputte*,†, Mathilde Dupont-Nivet*, Hervé Chavanne‡ and Béatrice Chatain† 

* INRA UR544 Génétique des Poissons, F-78350 Jouy en Josas, France 
† IFREMER, F-34250 Palavas les Flots, France 
‡ Panittica Pugliese, I-72010 Torre Canne di Fasano, Italy 

 
doi: 10.1534/genetics.107.072140  
  

2.4.1.1 Introduction 

In gonochoric species with genetically determined sex, a one to one sex ratio is known to be optimal 

in an infinite population of diploid individuals with random mating and Mendelian segregation 

(Fisher, 1930; Charnov, 1975). The observation of skewed sex ratios may imply, among others, non-

Mendelian segregation like in drosophila (Vaz and Carvalho, 2004), non-random mating (Hamilton, 

1967) or environmental sex determination (ESD - Bull, 1985). In the latter case, the sex of an 

individual is not fixed at conception, but is influenced by environmental conditions during its early 

life. ESD is expected to be favored when the offspring lives in patchy environments, which may 

confer advantages to being male or female, and neither the offspring nor the parent have control 

and/or predictive ability on the type of patch the offspring will live in (Charnov and Bull, 1977). 

Temperature (e.g. Bull and Vogt, 1979; Baroiller and D'Cotta, 2001) seems to be the main 

environmental factor implied, but density (Ellenby, 1954) and social status (Francis and Barlow, 1993) 

have been shown to be possible sex-determining environmental factors. In species with ESD, in many 

cases there is also a genetic variation (Bull et al., 1982a; Conover and Heins, 1987a; Janzen, 1992;  

Baroiller and D'Cotta, 2001), which in some cases has been described as polygenic (Bull et al., 1982a; 

Janzen, 1992). Polygenic sex determination, however, is considered to be evolutionary unstable 

(Rice, 1986) and its maintenance is still poorly understood. It is thought by some authors to be the 

ancestral type of sex determinism in fish (Kirpichnikov, 1981), but organisms where it is accepted 

that sex has a polygenic component are indeed very few: the parasitic wasp Nasonia vitripennis 

(Orzack and Gladstone, 1994), the turtles Graptemys ouachitensis (Bull et al., 1982a) and Chelydra 

serpentina (Janzen, 1992), and probably the swordtail Xiphophorus helleri (Kosswig, 1964). 

The European sea bass (Dicentrarchus labrax) is a gonochoristic teleost fish distributed in the North-

Eastern Atlantic, the Mediterranean and the Black Sea (Pickett and Pawson, 1994). They live in 

shallow, coastal waters, estuaries, lagoons and harbours, moving to deeper waters (up to 100 m 

deep) as they grow. Although they can live in waters under 5°C, their seek temperatures above 10°C, 

and even 15°C in their first year (Kelley, 1988b). They spawn in open waters in late winter-early 

spring, depending on the latitude. The eggs hatch in 4-9 days, and the young fish move inshore in 

their first month, towards the warmest waters, especially in estuaries (Pickett and Pawson, 1994). 

Sex remains undifferentiated for a long period: differentiation occurs between 128 and 250 days 

post-fertilisation - dpf (Saillant et al., 2003a). Records of sea bass sex ratio in wild populations are 

scarce. They show balanced sex ratios (Saillant et al., 2003a), excess of males (Menu, pers.comm.) or 

excess of females (Arias, 1980), but as a whole do not contradict the hypothesis of balanced sex 

http://www.genetics.org/content/176/2/1049.short
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ratios in the wild. The sea bass is an important species in Mediterranean aquaculture, and it appears 

that in all aquaculture populations, sex ratios are strongly biased towards males (75 to 95%, e.g. 

Blazquez et al., 1998; Saillant et al., 2002; Saillant et al., 2003a), which is a problem for farmers as 

males mature earlier and grow less than females. Temperature has been shown to have a major 

effect on sex determination in sea bass (Blazquez et al., 1998; Pavlidis et al., 2000; Saillant et al., 

2002; Mylonas et al., 2005). The effect of temperature is not fully understood, as two studies show 

an increased proportion of males with cold temperature (15°C: Blazquez et al., 1998, 13°C: Saillant et 

al., 2002) while the other two show an increased proportion of females at 13 and 15°C (Pavlidis et al., 

2000; Mylonas et al., 2005). The current hypothesis is that low temperatures early in development 

(before 100 dpf) may favor female sex differentiation, but that long-lasting low temperatures, 

through a negative effect on growth, may preclude female differentiation and result in an increased 

proportion of males (Piferrer et al., 2005). Thus, the excess of males observed in culture would be 

due to the use of temperatures higher than in nature, for productivity reasons. From the genetic 

point of view, in addition to the environmental effect on sex, simple female homogamety can be 

excluded, as the sex ratios of normal diploid and gynogenetic offspring are equivalent (Felip et al., 

2002; Peruzzi et al., 2004). The sex ratio of the offspring from masculinized females is not female 

biased and would rule out both XX-XY (female homogamety) and ZW-ZZ (male homogamety) systems 

(Blazquez et al., 1999). In this latter study however, the possible male bias induced by high rearing 

temperatures (22.5°C), and the impossibility to ascertain the genetic sex of the sex-reversed parents 

makes the demonstration a little weak. Therefore, male homogamety with environmentally male-

biased sex ratios would still be a possibility. Additionally, parental influence on the sex ratio of 

progenies has also been demonstrated, however with very limited experimental settings (Saillant et 

al., 2002; Gorshkov et al., 2003), showing that there is a genetic component of progeny sex ratio. 

Although it is clear that the sex of sea bass is determined both by genetic factors and by the 

environment (mostly temperature), the sex determination system of this species remains basically 

unknown (Piferrer et al., 2005). 

In this study, our aim was to describe the genetic component influencing sex ratio in sea bass, using a 

large number of families in classical aquaculture conditions, and to determine which genetic models 

could describe it best. We described sex using a threshold model with an underlying variable (sex 

tendency), as this type of model integrates both genetic and environmental effects, which are known 

to influence sex ratio in the sea bass. 

2.4.1.2 Material and methods 

A Partly Factorial Mating Design: The brood fish used were from a group of 33 males and 51 females 

of wild Atlantic origin, collected in 2000 on the French coasts of Brittany. Each brood fish was 

individually tagged and fin clipped for DNA extraction. The sperm of males was cryopreserved in 250 

µl straws (Fauvel et al., 1998). In January 2001, 51 females were injected with 10 µg/kg LHRH 

(SIGMA, D-TRP6-LHRH), and eggs were stripped 72 hours later. Twenty-three females gave a 

sufficient quantity of good quality oocytes. From these spawns, we produced a mating design 

combining 33 males and 23 females in 3 full factorial sets of 11♂ x 9♀, 11♂ x 7♀ and 11♂ x 7♀, for a 

total of 253 families. All full-sib families were fertilized individually, then eggs were grouped by 

female for incubation (48 hours at 13°C), after which 2 ml of viable eggs per female (approx. 2.000 

eggs/female) were collected to create one batch containing all families. Standard rearing conditions 

were used, with temperature gradually increasing from 13 to 18°C in the first 64 days. Temperature 

was then kept at 18°C until 238 days (mean length of fish 117 mm, mean weight 23.6 g), then 
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lowered to 14°C in order to slow down growth until the time scheduled for tagging. Although late low 

temperatures are suspected to masculinize the progenies (Piferrer et al., 2005), this does not apply at 

238 days, as it was shown before that lowering temperature from 20 to 13°C at 149 days (mean 

length 81 mm) had no impact on the sex ratio (Saillant et al., 2002). 

Recording of Traits and Parentage Assignment: At 370 days, the fish had reached a mean weight of 

35 g. Seven thousand of them were randomly selected, on which individual weight and length were 

measured. Each fish was individually tagged and fin clipped for DNA extraction. The fish were then 

sent to four different sites (1.750/site), where they were reared until approx. 400 g mean weight. 

This rearing in different sites was designed for estimating genetic parameters and genotype-

environment interactions for growth and quality traits, in parallel of the present study. Still, it was 

not expected to have any impact on the sex ratio, as the differentiation period is over well before 

370 days. At 400 g, the remaining fish (5.988) were slaughtered and sex was recorded by visual 

observation of the gonads after dissection, and 5.960 of those had an identifiable sex phenotype. In 

all sites, the difference between males and females was straightforward (female gonads were 

orange, and male gonads pink/white), and only 28 fish in total could not be determined with 

certainty. Parentage assignment was done by Landcatch Natural Selection (Alloa, UK) using 6 

microsatellite markers on both parents and offspring. Out of the 5.960 offspring with a sex 

phenotype, 5.896 (98.9%) could be assigned to a single parental pair. 

Statistical Methods: Sire 23 (set 3) gave only 3 offspring, probably due to bad sperm quality. It was 

removed from the analysis, as it created a major disequilibrium in the data, thus reducing the 

number of families studied from 253 to 246. Then, the base data set comprised 5.893 offspring from 

246 families. Apart from sire 23, 245 of 246 possible families had offspring. No offspring were found 

in the sire 9 x dam 2 family (set 1), probably due to a bad quality straw of cryopreserved sperm, as 

both male 9 and female 2 gave satisfactory results in all other crosses. In order to avoid 

computational problems, these missing data were replaced by simulated data corresponding to the 

expected numbers of male and female offspring in this family (19 males and 3 females, which are the 

average numbers of males and females per family produced by male 9 and female 2) 

In a first analysis, the number of females was calculated in each paternal or maternal half-sib family, 

and compared to the expected number of females with a uniform proportion corresponding to the 

observed proportion of females in the whole sample, using chi-square tests, to test for the existence 

of significant genetic variation in progeny sex ratio. In a second step, the family sex ratios in each of 

the three full-factorial sets was analyzed by logistic regression using SAS® proc Logistic, where the 

proportion of females was explained by a sire and dam effect. The model fit was tested using the 

Hosmer and Lemeshow test (Hosmer and Lemeshow, 1989). In a third step, sex was considered as a 

threshold trait with a polygenic basis (Bulmer and Bull, 1982). Sex was analyzed using a single trait 

model including additive random effects for sire and dam, and a residual error. Restricted maximum 

likelihood (REML) estimates of variance components for the random effects in the model were 

obtained on the underlying liability scale using the ASREML software (Gilmour et al., 2002). Both sire 

and dam heritabilities were estimated, using standard formulae (Becker, 1984). Genetic correlations 

between sex and growth were estimated with a trivariate (sex, weight and length at 370 days) animal 

model, with sex coded on the observed scale (0 or 1), using the VCE5.0 software (Kovac and 

Groeneveld, 2003). This model included an animal additive genetic effect for all traits, and for length 

and weight, a fixed effect of sex, which was necessary due to sex dimorphism on length and weight 
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(females are larger than males). We used the observed scale since it produces unbiased genetic 

correlations as long as the threshold trait does not have both low heritability and low incidence 

(Olausson and Ronningen, 1975). We also estimated the heritability of sex dimorphism for growth 

using classic formulae of (co)variance for a difference (Chapuis et al., 1996). 

Then, we used the estimates generated to simulate samples of 5.893 fish from 23 dams and 32 males 

in three sets of 9x11, 7x10 and 7x11, using a heritability of sex of 0.62 on the underlying scale, and a 

mean proportion of females of 18.3%. We also generated simulated samples of the same size using a 

threshold model where the underlying sex tendency m would be determined, instead of polygenes, 

by one or two bi-allelic loci with effect size f, such that genotype aa had a genetic effect of –f on m, 

genotype Aa had a genetic effect of 0 and genotype AA had a genetic effect of +f. The allelic 

frequencies were 0.5 for each allele, except for the one locus case where allelic frequencies 0.2, 0.4, 

0.5, 0.6 and 0.8 were tested. The effect size f was tuned so that the proportion of genetic variance 

over phenotypic variance was 0.62, and a random residual effect representing 38% of the total 

phenotypic variance was added. This model is an extension to skewed population sex ratios of the 

two-factor model with environmental variance (Bull, 1983). Purely genetic threshold models were 

also tested, either polygenic with h²=1, or with one to five bi-allelic loci, but no residual 

environmental variance. For each model, we generated 10.000 samples, and compared the simulated 

distribution of full and half-sib family sex ratios with the observed one, to test for the coherence of 

the model with the observed dataset. 
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2.4.1.3 Results 

The overall proportion of females in the 

population was 18.3%, and there were no 

sex ratio differences between fish from 

each of the four growing sites (17.4%-

19.4%, χ²=4.62, 3 d.f., P>0.20). Family sex 

ratios are given in Appendix 2-1 (p.43). 

Comparison of observed values to 

expected values under the hypothesis of 

equal sex ratio in all families shows a 

strong inequality of contributions between 

half-sib families (χ²=350.6, 31 d.f., 

P<0.0001 for paternal half-sib families, 

χ²=327.6, 22 d.f., P<0.0001 for maternal 

half-sib families). Proportions of females 

ranged from 4.7% to 46.3% in paternal 

half-sib families, and from 0.5% to 40.3% in 

maternal half-sib families. The logistic 

regression analysis showed that both sire 

and dam had a highly significant effect on 

the progeny sex ratio (P<0.0001), and that 

this model without interaction was enough to explain the observed dataset, the Hosmer and 

Lemeshow chi-square tests being far from significance (χ²=6.04, 8 d.f., P>0.6 in set 1, χ²=1.94, 8 d.f., 

P>0.9 in set 2, χ²=6.04, 8 d.f., P>0.6 in set 3). The estimated heritability of sex on the underlying scale 

was 0.52 ± 0.13 (sire heritability), 0.72 ± 0.20 (dam heritability), or 0.62 ± 0.12 (sire+dam heritability). 

The maternal effect ratio (non genetic maternal variance/phenotypic variance) that would explain 

the difference between sire and dam heritability is m²=0.05 ± 0.06, which is clearly non significant. 

The heritability of growth sex dimorphism was low (0.15 for weight and 0.09 for length at 370 days). 

The estimated genetic correlation was 0.50 ± 0.09 between sex and weight, and 0.48 ± 0.09 between 

sex and length. Some graphical illustration of this can be seen on Figure 2-1, which shows that apart 

from the fixed effect of sex on weight (females being on average 40.8% heavier than males at 370 

days), larger fish tended to be found in the families with the highest proportion of females. The 

distribution of proportions of females among the 55 half-sib families scored (32 paternal half-sib 

families, 23 maternal half-sib families) is plotted on Figure 2-2, and compared with simulated 

distributions in the same experimental setting. Detailed information about models fit can be found in 

Table 2-15. Additive polygenes with h²=0.62 could explain the data with excellent fit. For a single 

locus with environmental variance, the best fit was observed with allelic frequencies of 0.6 for the 

male-orienting allele and 0.4 for the female-orienting allele, but this could not account for the 

observed half-sib data. 

  

 

Figure 2-1: Relationship between arcsine transformed 
proportion of females in sire half-sib families of European sea 
bass and mean weight at 370 days of male and female offspring 
in the same families. 
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a) b) c) 

   

 

Figure 2-2: Observed frequencies of females in 55 half-sib families of European sea bass, and expected frequencies under a 
threshold model with 18.3% females in the offspring and 38% environmental variance, where the genetic component of the 
underlying variable is: a) polygenic; b) 1 bi-allelic locus with p=0.6 for the masculinizing allele, q=0.4 for the feminizing 
allele; c) 2 bi-allelic loci with p=q=0.5. 

 

On the contrary, a two-locus system with environmental variance could fit both half-sib and full-sib 

observed data. No purely genetic model (without environmental variance) could explain the 

observed data, whatever the number of loci implied (from monogenic to polygenic). 

Table 2-15: Comparison of family sex ratio distributions observed in the present study with simulated distributions from 
various sex-determination models.  

 Half-sib families 

sex ratio distribution 

d.f.=6 

Full-sib families 
sex ratio distribution 

d.f.=11 

Model χ² P-value χ² P-value 
Polygenic, h²=0.62 2.07 >0.9 10.9 >0.4 
1 locus with envir. variance, p=0.2 

a 
58.1 <0.001 171 <0.001 

                    “                       , p=0.4 59.6 <0.001 18.4 >0.05 
                    “                       , p=0.5 22.9 <0.001 6.2 >0.8 
                    “                       , p=0.6 14.8 <0.05 10.2 >0.5 
                    “                       , p=0.8 18.2 <0.01 28.1 <0.01 
2 loci with envir. variance, p=0.5 1.42 >0.9 12.6 >0.3 
1 locus without envir. Variance 383 <0.001 865 <0.001 
2 loci without envir. Variance 23.9 <0.001 139 <0.001 
3 loci without envir. Variance 12.8 <0.05 63.3 <0.001 
5 loci without envir. Variance 6.33 >0.4 38.2 <0.001 
Polygenic without envir. variance (h²=1) 8.04 >0.2 40.1 <0.001 
 
P-value <0.05 shows incompatibility between simulated and observed data,  p= frequency of the male-orienting allele 
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2.4.1.4 Discussion 

The genetic influence on sex in sea bass: Our results are fully in accordance with a polygenic model, 

as described by Bulmer and Bull (1982), where the sex of an offspring is determined by the fact that 

an underlying sex tendency (determined both by polygenes and environmental effects) is greater or 

less than a threshold value. In our experiment, both sires and dams have an effect on the sex ratio of 

their progenies, and the effects are similar in size, pleading for an additive genetic effect on sex ratio. 

The heritability is high (h²s+d=0.62 ± 0.12), and clearly different from zero. It may not be biased by non 

additive genetic factors, as the mating design is factorial and all fish were in the same environment at 

the time of sex determination. Moreover, we verified that each dam (χ²=73, 66 d.f., P>0.2) and each 

sire (χ²=104, 93 d.f., P>0.2) contributed the same proportion of offspring in all sites, and that the 

same sex ratios were observed in all sites, so even unexpected late actions of the environment on 

the sex ratio would not bias the between-family data. The “classical” vertebrate chromosomal sex 

determination model is expected to give 50% males and 50% females, and clearly cannot explain the 

data obtained, even with eventual sex-reversal of genetic females to males due to temperature. This 

holds as long as sex reversal is homogeneous among families (i.e. not genetically determined). If sex 

reversal was not homogeneous among families, this would imply the existence of a secondary 

genetic component of sex ratio, in addition to the chromosomal system. Purely environmental sex 

determination (ESD) can also be excluded, as it is not supposed to yield any between families 

differences in sex ratios. This was already suggested by previous results (Blazquez et al., 1999; 

Saillant et al., 2002; Gorshkov et al., 2003; Peruzzi et al., 2004). As it is clear that environment can 

influence sex ratio in sea bass (Piferrer et al., 2005), the genetic component we evidence can be 

either considered as a genetic variation of the primary sex ratio, or as a genetic sensitivity to the 

environmental effects. As we tested only one environmental condition however, we cannot 

distinguish between both. The observed occurrence of intra-testicular oocytes in many (up to 62%) 

young sea bass males (Gorshkov et al., 1999; Saillant et al., 2003a) could be in favor of a polygenic 

primary sex ratio, with sex reversal occurring as a consequence of environmental effects. However, 

the existence of genetic by environment interactions, which would favor the second hypothesis, has 

already been evidenced (Saillant et al., 2002). Nevertheless, we show that whatever its true nature, 

there is a genetic effect which leads to a continuous distribution of family sex ratios in this species, at 

least in one (masculinizing) environmental condition. We also show that, in addition to the global 

effect of temperature, which certainly skewed sex ratio towards males in the present experiment, it 

is necessary to include environmental variance within this global environment to explain the 

observed distribution of sex ratio, meaning that a purely genetic model where individual sex would 

be uniformly influenced by the environment could not explain our data. Even with environmental 

variance allowed, a two-factor system can be excluded, but a four-factor system (two bi-allelic loci) 

can explain the observed data. Similarly, in the apple snail, it was concluded that a continuous 

variation in family sex ratios was most likely due to at least four sex factors (Yusa, 2007). Unlike what 

was seen in the silverside fish Menidia menidia (Conover and Heins, 1987b), we could not observe a 

multimodal distribution of family sex ratios, which was considered an indication of the existence of 

only a few sex factors in this species. Indeed, as pointed out by Bull (1983), it is extremely difficult to 

ascertain the polygenic nature of a sex determining system, when compared to a system with only a 

few factors and some environmental variance. Nevertheless, both systems are expected to behave in 

very similar manner, and may be described by the Bulmer and Bull threshold model, provided sex 

factors have individually weak effects (Bull, 1983). Finally, we showed there was considerable genetic 

variation for sex ratio in a given environment, as half-sib family sex ratios range from 0.5% to 46.3% 
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of females (the proportions range from 0 to 75% in full-sib families, but their small size – on average 

24 individuals – makes it less significant). We can compare this range of variation in female 

proportions to that produced by temperature treatments: 0-27% (Blazquez et al., 1998), 18-66% 

(Koumoundouros et al., 2002), 24-74% (Pavlidis et al., 2000) and 11-32% (Saillant et al., 2002). This 

shows that in this species, the genetic and environmental components of sex determinism are of 

comparable magnitude, which confirms there are no fundamental barriers between ESD and GSD, as 

proposed by Bull (1983). 

The genetic relationship between size and sex: An interesting feature of our results is the relatively 

strong genetic correlation between sex and size (rA=0.50 ± 0.09), which means that some of the 

genes acting on sex determination and growth are the same, or at least are strongly linked in our 

sample. This is in accordance with previous experimental evidence showing that females are larger at 

the time of sex differentiation (Blazquez et al., 1999; Saillant et al., 2001b). Still, we have shown that 

once corrected for this sex dimorphism, there was still a size advantage in families with high 

proportions of females (Figure 2-1). This strengthens a lot the connection that was established 

between growth and sex. Indeed, as sea bass is a group spawner, it is clear that the size of females 

should have a strong impact on their fitness, through their absolute fertility, whereas it may be less 

important for males. Therefore, the idea that a minimum size is needed at the time of sex 

differentiation to be able to differentiate as female is plausible, and strengthened by the fact that the 

size advantage of females is never as large as at the time of sex differentiation (+41% weight at 1 

year, +20% at 2 years in the present study, +67% at 10 months and +25% from 2 years in Saillant et 

al., 2001b). This type of determinism is observed in nematodes (Ellenby, 1954) and eels (Roncarati et 

al., 1997), where high density (hence limited resources for growth) favors male differentiation. 

However, density had no effect on sex ratio in sea bass (Saillant et al., 2003c), but in this latter case 

the densities and rearing conditions were chosen to avoid any impact on growth, in order not to 

confound effects of growth and density per se. 

Evolutionary consequences of polygenic sex in sea bass: Our heritability estimates for sex ratio are 

high (0.62), as in turtles, where high estimates (in the range of 0.5-0.8) have also been found (Bull et 

al., 1982a; Janzen, 1992). However, the estimates in turtles were likely inflated by maternal and/or 

dominance effects, due to the use of full-sib designs, which is not the case in our experiment. 

Moreover, in turtles, the impact of high heritability estimates was considerably lowered in natural 

conditions by the high variance between nests temperature, which, combined with the very narrow 

temperature range for complete sex change, reduces a lot the potential for selection on sensitivity to 

ESD (Bull et al., 1982a). In our case, although temperature has a large effect on sex ratio, it cannot 

produce 100% female progenies, and there is a wide spectrum (13-25°C) having an impact on sex 

determination. Still, the temperature of the coastal waters during the first year of life of the sea bass 

may be quite variable, and thus reduce the effectiveness of natural selection on polygenic sex ratio in 

this species. As our experimental growing conditions are different from natural ones (fish are 13.5 cm 

at 1 year, vs. 7-10 cm in the wild in the Atlantic -Pickett & Pawson 1994), and with the suspected 

genotype-environment interactions for sex ratio in sea bass (Saillant et al., 2002), variation which 

may be hidden in wild (low temperature) conditions may be expressed in experimental or farm 

(warm) conditions. This may be even accentuated by the growth-sex genetic relationship, as growth 

also has a high heritability in this experiment (0.54 ± 0.08 for weight), and is expected to have a 

higher heritability in fast-growing conditions than in slow-growing conditions. 
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Considering the high heritability of sex ratio 

observed in our conditions, we could 

calculate the effects of frequency-dependent 

selection on sex using the Bulmer and Bull 

(1982) model (Figure 2-3). It shows that 

equilibrium sex ratio should be reached in 7-8 

generations. This shift towards females, 

which are more interesting for aquaculture, 

could even be accelerated through artificial 

selection of female-producing families. If 

artificial selection on growth is also practiced, 

as is the case in several hatcheries, the shift 

in sex ratios in aquaculture populations 

should be even faster, and may lead to 

predominantly female populations. As 

aquaculture of sea bass expands in the 

Mediterranean area, the impact of 

aquaculture escapees, with modified sex 

determinism, will have to be carefully evaluated, as sex ratio is doubtlessly a major determinant of 

fitness, and may therefore have an important impact on the fitness of natural populations of this 

species (Lynch and O'Hely, 2001). 

Conclusion: We have demonstrated that sex determinism in the sea bass is not monogenic, is 

sensitive to within-tank variations in the environment, and that the genetic component is essentially 

additive, is linked to the growth capacity of the fish, is of the same magnitude as the environmental 

component controlled by temperature, and can be precisely described using a polygenic threshold 

model with h²=0.62 on the underlying scale. 

Selective breeding experiments are under way to explore the effective response to sex ratio selection 

and the correlated sex ratio response to selection for growth. They will also provide material for QTL 

search in the coming years, hopefully allowing us by that time to determine more precisely if sex 

determinism in this species is effectively polygenic or only oligogenic. 

  

 
Figure 2-3 : Expected evolution of sea bass sex ratio along 
generations of random mating in constant environmental 
conditions, using the frequency-dependent model of Bulmer 
and Bull (1982), with heritability 0.62 and initial sex ratio 
18.3% females (this study’s estimates) 
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Appendix 2-1. Numbers of males and females (M:F) in 246 European sea bass families, representing 5,893 fish from three 
full-factorial matings 

A) Set 1: 11 sires x 9 dams 

Dams   

Sires D34 D35 D36 D37 D38 D39 D40 D41 D42 
Mean   
proportion  
of  females 

Total  
offspring  
number 

S01 19:2 21:4 20:5 20:12 20:11 19:12 30:9 19:8 30:5 0.256 266 

S02 17:0 13:0 16:0 14:3 35:4 26:6 33:3 33:5 21:0 0.092 229 

S03 16:1 22:0 25:1 14:3 25:1 36:2 30:9 26:8 31:2 0.107 252 

S04 7:3 15:0 12:3 10:7 27:9 17:12 36:11 17:7 18:3 0.257 214 

S05 14:4 21:2 19:5 5:5 11:7 15:6 20:4 27:7 13:3 0.229 188 

S06 16:0 9:0 21:2 10:2 18:3 33:4 22:4 27:8 18:1 0.121 198 

S07 14:8 18:3 24:10 12:8 22:8 12:17 29:15 15:10 7:3 0.349 235 

S08 9:1 11:1 11:2 6:0 22:0 18:0 31:0 6:2 7:0 0.047 127 

S09 16:2 
a 

14:0 21:1 37:4 24:3 22:4 15:5 17:0 0.103 185 

S10 3:7 14:3 8:3 4:12 14:7 12:14 18:16 15:12 13:13 0.463 188 

S11 11:8 24:0 20:5 20:21 17:11 19:16 28:13 22:14 30:6 0.330 285 

Mean proportion 
 of females 

0.202 0.072 0.159 0.352 0.208 0.285 0.227 0.279 0.149   

Total offspring  
number 

178 181 226 210 313 323 387 308 241   

a 
no offspring observed in this family 

B) Set 2: 11 sires x 7 dams 

Dams   

Sires D43 D44 D45 D46 D47 D48 D49 
Mean   
proportion 
 of females 

Total  
offspring  
number 

S12 29:4 17:3 15:0 20:1 19:0 27:0 12:0 0.054 147 

S13 15:8 34:8 30:4 47:2 29:4 35:1 11:6 0.141 234 

S14 11:17 27:2 12:0 28:0 26:4 26:2 7:3 0.170 165 

S15 18:3 28:3 18:1 19:0 24:0 18:0 16:0 0.047 148 

S16 9:16 21:11 26:4 28:3 38:12 20:4 13:6 0.265 211 

S17 25:18 34:15 27:1 37:1 39:6 34:1 25:2 0.166 265 

S18 11:10 29:5 31:1 26:1 41:1 35:2 9:1 0.103 203 

S19 11:10 22:2 13:1 21:0 26:3 27:1 18:2 0.121 157 

S20 19:10 24:9 14:1 28:1 29:1 31:1 14:1 0.131 183 

S21 18:10 11:5 11:2 25:1 18:1 26:3 14:2 0.163 147 

S22 16:17 11:15 24:8 22:1 14:8 16:3 11:5 0.333 171 

Mean proportion  
of females 

0.403 0.232 0.094 0.035 0.117 0.058 0.157   

Total offspring  
number 

305 336 244 312 343 313 178   
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C) Set 3: 10 sires x 7 dams 

Dams   

Sires D50 D51 D52 D53 D54 D55 D56 
Mean  
proportion  
of females 

Total  
offspring  
number 

S24 3:1 4:0 5:0 5:0 5:1 7:0 13:2 0.087 46 

S25 13:3 24:9 12:2 29:0 24:9 18:1 43:20 0.213 207 

S26 34:9 9:5 10:1 32:0 12:2 11:0 15:7 0.163 147 

S27 22:4 17:6 9:0 27:0 22:2 6:0 21:4 0.114 140 

S28 44:4 19:2 8:0 23:0 24:4 9:0 18:2 0.076 157 

S29 13:8 9:9 4:3 10:1 6:4 5:1 6:9 0.398 88 

S30 37:10 21:9 17:2 33:0 38:7 16:0 20:7 0.161 217 

S31 33:6 20:9 14:1 25:0 18:11 14:1 19:15 0.231 186 

S32 29:3 31:4 16:0 18:0 28:2 6:0 30:0 0.054 167 

S33 26:0 27:3 9:0 12:0 22:1 11:0 24:5 0.064 140 

Mean proportion  
of females 

0.159 0.236 0.080 0.005 0.178 0.028 0.254   

Total offspring  
number 

302 237 113 215 242 106 280   

 

2.4.1.5 Summary  

 

Polygenic sex determination, although suspected in several species, is thought to be evolutionary 

unstable, and has been proven in very few cases. In the European sea bass, temperature is known 

to influence the sex ratio. We set up a factorial mating, producing 5,893 individuals from 253 full-

sib families, all reared in a single batch to avoid any between-families environmental effects. The 

proportion of females in the offspring was 18.3%, with a large variation between families. 

Interpreting sex as a threshold trait, the heritability estimate was 0.62 ± 0.12. The observed 

distribution of family sex ratios was in accordance with a polygenic model or with a four sex 

factors system with environmental variance, and could not be explained by any genetic model 

without environmental variance. We showed there was a positive genetic correlation between 

weight and sex (rA= 0.50 ± 0.09), apart from the phenotypic sex dimorphism in favor of females. 

This supports the hypothesis that a minimum size is required for sea bass juveniles to differentiate 

as females. An evolution of sex ratio by frequency-dependent selection is expected during the 

domestication process of D. labrax populations, raising concern on the release of such fish in the 

wild. 
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2.4.2 Supplemental information  

2.4.2.1 The threshold model for sex determination 

In chapter 2.4.1, we referred to a threshold model for polygenic sex determination which was 

introduced by Bulmer and Bull (1982). This model and its consequences are not necessarily intuitive, 

and due to the paucity of species with polygenic sex determination, it is indeed little used. Then, we 

will develop here a few aspects of this model to make it more familiar to the reader. 

In a quantitative genetics framework, the sex of an animal can be determined by a threshold model 

with an underlying liability called sex tendency. Sex tendency (t) has a genetic and an environmental 

component, both normally and independently distributed. If the value of the sex tendency is below  a 

fixed threshold, the animal becomes a male, while if it is over the threshold, it becomes a female. 

One thing that is important to consider is that in such a model, there is no hierarchy in environmental 

or genetic effects. Either one can modify sex tendency, and as a consequence make the animal cross 

the threshold that will make it male or female. 

In a given group of individuals (population of family), the observed sex ratio allows the calculation of 

the average sex tendency of males and females in the group (tm and tf, respectively – see Figure 2-4). 

In this thesis, we will use a fixed reference value, considering that a population with a mean sex 

tendency (tmean) equal to zero would have an even sex ratio. We also arbitrarily consider that the 

phenotypic standard deviation of t is unity, and that t follows a normal distribution. Under these 

hypotheses, in a group with a proportion Pf of females, the sex tendency parameters are calculated 

as follows, after adaptation from Bulmer and Bull (1982): 

                       (Equation 2-1) 

         
        

  
    (Equation 2-2) 

         
        

    
   (Equation 2-3) 

With probit the inverse of the cumulative 

distribution of the standard normal 

distribution and φ the probability density 

function of the standard normal 

distribution. tf is the average sex 

tendency of the females in the 

population, while tm is the average sex 

tendency of the males. Using the case of 

our G1 population, where Pf=0.182 as an 

example, we obtain the following values, 

plotted in Figure 2-4: 

 tmean=-0.91, tf=0.54, tm=-1.23. 

We will see later on (section 4.2.4) how this can practically be used to predict the evolution of sex 

ratio and sex tendency in a domesticated population of sea bass. 

 

Figure 2-4: Threshold model for sex ratio in a population with a 
normally distributed sex tendency and 20% of females. tm= mean 
sex tendency of males, tmean= mean sex tendency in the 
population, tf= mean sex tendency of females 
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2.4.2.2 Genetic and environmental correlations of sex tendency and body length at different ages 

We only reported before the heritability of sex tendency and its genetic correlation with growth 

measured by body weight or body length at 370 dpf. The same model also gave the heritability of 

body length at that stage: the raw value was 0.72±0.10, while the value with potential maternal 

effects removed (as suggested section 2.2) was 0.62±0.11. The environmental correlation of sex 

tendency with body weight (rE=-0.06±0.04) and body length (rE=-0.05±0.04) was also estimated. This 

value did not significantly differ from zero, however its interpretation is rather tricky as in the model 

concerned the phenotypic effect of sex on size is removed by a fixed effect. Then, as all fish are also 

reared in a common environment, it cannot be really expected that this environmental correlation 

would in any case depart from zero.  

For further predictions of what would happen if fish were selected for increased growth, we also 

estimated the genetic correlation of body length and sex tendency at slaughter size (around 400 g 

mean weight), adding a site effect in the model for body length to account for the different mean 

lengths of fish at slaughter in the different sites. In this case, the genetic correlation of body length 

and sex tendency reduced to 0.33±0.12, while the environmental correlation was still close to zero at 

-0.04±0.04. All these values will be useful to simulate the effects of selection for growth on sex ratio, 

as will be done in section 4.3. 
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3 Effects of domestication and directional selection for body length 

3.1 Selection response for growth 

This section was published in 2009 in Aquaculture 286 (20-27) as:  

" Response to domestication and selection for growth in the European sea bass (Dicentrarchus 
labrax) in separate and mixed tanks." by Marc Vandeputtea,b,*, Mathilde Dupont-Niveta, Pierrick 
Haffrayc, Hervé Chavanned, Silvia Cenadellid, Katia Paratid, Marie-Odile Vidalb, Alain Vergnetb, Béatrice 
Chatainb 
 

a 
INRA UR544 Unité de Génétique des Poissons, F-78350 Jouy-en-Josas, France 

b 
Ifremer, chemin de Maguelone, F-34250 Palavas les Flots, France 

c 
SYSAAF Section Aquacole, Campus de Beaulieu, F-35000 Rennes, France 

d
 Istituto Sperimentale Lazzaro Spallanzani, Località La Quercia, 26027 Rivolta d'Adda (CR), Italy 

*corresponding author 

doi: 10.1016/j.aquaculture.2008.09.008 

3.1.1 Introduction  

European sea bass (Dicentrarchus labrax) is a leading species of Mediterranean aquaculture, but a 

large proportion of the broodstock used today remains unselected, with many hatcheries using only 

wild brood fish. Sea bass culture would undoubtedly benefit from selective breeding for productivity 

traits. As in almost every species, the first trait for which selection is desired is growth. This is 

particularly critical for the sea bass, as its growth rate is slow: it is not exceptional to need 24 months 

from hatching to produce a commercial size (400g) sea bass. Still,  these figures may vary largely, 

depending on rearing conditions, and especially the temperature regime. Selective breeding for 

growth has already proven effective in many species (see review in Gjedrem and Olesen, 2005), with 

gains in the range of 5-20% per generation. 

The potential of sea bass for breeding has gained interest quite recently, thanks to the application of 

parentage assignment with microsatellite loci. They allow to identify families, and hence the 

quantitative variation among and within them, with fish reared in a single batch (Saillant et al., 2002; 

Saillant et al., 2006; Chatziplis et al., 2007; Vandeputte et al., 2007; Dupont-Nivet et al., 2008;). The 

availability of this method was particularly critical for this species, as, like other marine species, it 

goes through a difficult period of larval rearing, where the environmental (i.e. non genetic) variation 

of growth and survival between tanks is particularly high. This makes the use of separate family 

rearing (the alternative method to recover family information) particularly challenging. The use of 

microsatellite theoretically allows the use of any kind of progeny, including progeny from mass 

spawnings. Still, like in other marine species (Perez-Enriquez et al., 1999; Herlin et al., 2007), only 

very few parents may be represented in a mass spawning of sea bass (Chatziplis et al., 2007). Thus, 

for estimating accurate genetic parameters, another important point was the control of reproduction 

through artificial fertilization, allowing the use of particularly informative factorial designs 

(Vandeputte et al., 2001). The combination of artificial fertilization and parentage assignment has 

allowed the estimation of genetic parameters for growth in the sea bass (Saillant et al., 2006; 

Dupont-Nivet et al., 2008). The estimates of heritability for commercial weight are medium to high 

(0.31-0.60), giving good prospects for genetic improvement of growth. Nevertheless, these estimates 

were obtained in mixed tanks with possibly competing families. The advantage of mixed tanks is to 

prevent from biases in h² estimates due to common environment effects, but all fish compete for 

http://dx.doi.org/10.1016/j.aquaculture.2008.09.008
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growth in the same environment and this might lead to the selection of the most aggressive fish, 

which do not necessarily have the best genetic potential for growth (Ruzzante and Doyle, 1991). 

Competition effects might also increase the difference between genetic groups (here families) with 

different growth potentials, as seen in common carp Cyprinus carpio (Moav and Wohlfarth, 1974) 

and rainbow trout Oncorhynchus mykiss (Blanc and Poisson, 2003), which would likely lead to 

different heritability estimates in separate family tanks and mixed families system. 

In addition to the effect of selective breeding, domestication selection may occur when closing the 

cycle of sea bass, considering the fact that the starting point is wild fish.  Domestication selection 

may be defined as the process by which a captive population becomes adapted to the rearing 

environment through genetic modification along generations.  Domestication selection has been 

evidenced in many fish species (e.g. Fleming and Einum, 1997; Hershberger et al., 1990), and seems 

to be very strong in the first generation in cod Gadus morhua (Doyle et al., 1995). Domestication is 

very recent in marine fish species, but concerns a largely growing number of species (Duarte et al., 

2007). 

In the present experiment, the growth of offspring from wild, domesticated (first generation) and 

selected (first generation of selection for growth) sea bass were compared both in mixed tanks and in 

separate tanks. The contrast between the selected lines and the domesticated line will be the 

response to selection for growth, whereas the difference between the domesticated and the wild 

line is expected to estimate domestication selection (i.e. “natural selection” in captivity during the 

first captive breeding cycle). The comparison of responses in mixed and separate tanks will give a first 

estimation the effect of competition on growth in sea bass. 

3.1.2 Materials and methods  

3.1.2.1 Selection of sires 

The population in which the sires were selected originated from a partial factorial cross of 33 G0 sires 

and 23 G0 dams of wild European sea-bass, comprising 253 full-sib families (see Vandeputte et al., 

2007 for details). The mixed G1 families were reared as a single batch in a recirculated system, and at 

370 days post-fertilization (dpf), 2228 fish were randomly selected, individually tagged with Passive 

Integrated Transponder glass tags, and a piece of fin was collected in ethanol for further parentage 

assignment. The fish were reared as a single batch in a 5 m3 tank until 504 dpf (101g mean weight) 

then randomly separated in two 5 m3 tanks. At 594 dpf (202g mean weight), they were again 

separated at random in five 5 m3 tanks, where they were reared until 714 dpf (398g mean weight). At 

this age, each fish was individually measured for length and weight, and the 103 longest fish out of 

the 1953 remaining ones were sexed with a polypropylene endometrial suction curette (Pipelle de 

Cormier, Unimar, Neuilly-en-Thelle, France). When used for sexing fish, it is introduced in the genital 

duct until reaching the gonad where a small piece of genital material is biopsied. 60% of the fish in 

the population suffered from spine deformities, but only a very low proportion of fish were 

deformed in the longest ones. Out of these 103 longest fish, 31 undeformed putative males were 

identified (“massal” group, mass selected for growth), and separated to allow them to reach sexual 

maturation (under natural photoperiod and temperature). Additionally, 69 undeformed individuals 

were collected at random in the population and maintained in maturation conditions to constitute 

the control (domesticated) group. Among the remaining fish, 1473 were slaughtered and sexed, 

allowing to see that the female rate was 17.2% in the population, and to estimate the distribution of 
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length in the undeformed males in the population. Among the fish allowed to mature, 23 massal and 

25 domesticated males gave sperm which was cryopreserved (Fauvel et al., 1998). Seventeen massal 

males were selected among the 23 cryopreserved ones for their mean deviation to the population 

mean on length to be 2.07 phenotypic SD (equivalent to a 5% pressure in a normally distributed 

population) when related to the distribution of undeformed males in the population. Twenty 

domesticated males were chosen among the 25 cryopreserved ones for their mean phenotypic 

deviation from the mean for length to be –0.04 SD. 

We also randomly chose 20 cryopreserved males from the 33 initial G0 population wild males to be 

used as wild control. 

Finally, we had the opportunity to test males from the first generation of an industry breeding 

programme, ran by Panittica Pugliese (Torre Canne di Fasano, Italy). This programme started from 

the same larvae as our mass selected and domesticated populations, with 2 supplementary G0 

females from the same origin (25 instead of 23). We do not have all the details on how the selection 

was performed, but this programme is an adaptation to the sea bass of the PROSPER selection 

scheme developed by INRA on brown trout Salmo trutta fario (Chevassus et al., 2004). The eggs of 

the different females were initially grouped in homogeneous groups according to egg size. These 

groups were reared separately, and densities adjusted to make them reach the same mean size 

around 10 gram. Then, three repeated growth challenges were applied (one on weight, two on 

length) with the objective of a 5% selection pressure on males (identical to that of our massal group). 

The percentage of males in the population (75%) was assessed by slaughtering a sample of fish at the 

time of the first challenge, allowing the determination of the number of males to be kept in the end 

to reach the expected selection pressure. Nineteen cryopreserved sperms from PROSPER-like 

selected males were made available to us by Panittica Pugliese. 

To sum up, all the sire lines compared in the present experiment originate from the same G0 wild 

base population: the Wild sires were a random sample from the G0 population males, the 

Domesticated sires a random sample of the males from the G1 population (derived from a 33 sires by 

23 dams cross from G0 broodfish), the Massal sires were from the 5% longest sires at commercial 

(400g) size selected from the G1 population, and the Prosper sires were issued from the G1’ 

population (same crossing where two more G0 females were added) and selected with three 

challenges on growth totalizing a 5% selection pressure. 

3.1.2.2 Constitution of the experimental progeny 

The matings and the rearing of the progenies were done in the Ifremer experimental facility of 

Palavas (France). In March 2005, 19 wild females were injected with 10 µg/kg LHRH (SIGMA, D-TRP6-

LHRH), and eggs were stripped 72 hours later. Thirteen females gave a sufficient quantity of good 

quality oocytes. From these spawns, we produced a full factorial mating design using cryopreserved 

sperm from the 76 males previously chosen, i.e. 20 wild (W) males, 20 domesticated (D) males, 17 

mass selected (M) males and 19 PROSPER-like selected (P) males. DNA samples were available for all 

parents. An equal volume (150 ml) of each of the 13 spawns used was mixed in a single egg pool, 

which was then used to produce 76 aliquots of eggs (25 ml each) that were each individually 

fertilized by the cryopreserved sperm from one male and activated by hatchery sea water. The eggs 

were grouped by type of male for incubation (48 hours at 13°C), and at that time, floating eggs were 

dispatched in 12 larval tanks of 500l each, i.e.  3 tanks per group (W, D, M, P) were each seeded with 
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46 ml (ca. 27.000) eggs. Additionally, 3 “mixed” tanks were seeded each with equal volumes of eggs 

from each group (11.5 ml W + 11.5 ml D + 11.5 ml M + 11.5 ml P = 46 ml/tank).  

3.1.2.3 Rearing conditions and phenotyping 

A standard rearing protocol was applied (Chatain, 1994) until day 90 post-fertilization. At that stage, 

the fish were counted in each tank, and 2,500 fish per tank were randomly chosen and transferred to 

5 m3 tanks, keeping the same 12 tanks structure (3W, 3D, 3M, 3P, 3 mixed). The measurements 

started at 268 days, when the fish had reached a mean weight of 65 g. In each separate tank, 120 fish 

were randomly chosen, individually tagged, their weight and length were recorded, and they were 

reintroduced in their tank, together with 680 randomly chosen untagged fish from the same group, 

so that the number was adjusted to 800 fish/tank. In each mixed tank, 400 fish were randomly 

chosen, on which individual weight and length were recorded. Each of them was individually tagged 

and fin-clipped for DNA extraction. The 400 fish were reintroduced in their tank with 400 randomly 

chosen untagged fish from the same tank to adjust the number to 800 fish per tank. 

The tagged fish were individually measured for length and weight at days 338, 457 and 611. During 

all the rearing phases, the fish were fed ad libitum with a standard sea bass pellet (Le Gouessant, 

France). At day 457, the numbers were adjusted to 500 fish per tank removing randomly chosen 

untagged fish. At day 611, they were slaughtered, and sex, mouth deformities and spine deformities 

were recorded. Unexpected occurrence of nephrocalcinosis (whitish stones in the kidney) was 

noticed and recorded on all fish by visual inspection of the dissected kidney. 

3.1.2.4 Parentage assignment 

The 1,200 sea bass in the mixed tanks were assigned to their parents using microsatellite markers 

analysis. Eight markers were used, Dla016, Dla020, Dla105, Dla116, Dla119, Lab13, Lab3 and Dla022 

(Chistiakov et al., 2004; Ciftci et al., 2002; Garcia De Leon et al., 1995). 

Genomic DNA was extracted using AB6100 (Applied Biosystems) with Nuc-Prep (Applied Biosystems) 

chemistry.  Amplification was performed in a 20 µl polymerase chain reaction (PCR) mixture 

containing 25 ng of genomic DNA, 2.0 µl PCR buffer, 1.2 µl MgCl2, 0.4 units Amplitaq Gold (Applied 

Biosystems), 1.25 mM dNTPs mix (Applied Biosystems) and 10pmol for each primer. The reverse 

primers were 5’ end-labbelled with FAM, NED and VIC fluorochrome. The samples were amplified on 

a Thermal Cycler (Applied Biosystems 9600 Geneamp PCR System) according to the following 

protocol: 10min initial denaturation  at 95°C (hot start) followed by 30 cycles of 1 min at 94°C, 30 s at 

55°C,1 min at 72°C and extension at 72°C for 60 min. The polymorphism was screened in a capillary 

sequencer (Applied Biosystems 3100).  

The parentage assignment was established with a new software (Galli, in prep.) using the exclusion 

method based on Mendelian rules of inheritance (Jones and Ardren, 2003) or calculating the 

likelihood of each potential parental pair (Duchesne et al., 2002). Data were further tested with 

PROBMAX program (Danzmann, 1997). 
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3.1.2.5 Statistical analyses 

The individual data analyzed were weight (W) and length (L) as well as daily growth coefficient: 

100
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21 
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The analysis of data in the separate tanks was done using SAS-Mixed using the following model: 

ijklmnoninmlkjijklmno TlnmdsY   )(    [Model1] 

Where Yijklmno is the performance of individual o, μ is the general mean, sj is the fixed effect of sex j 

(1=male, 2=female), dk is the fixed effect of spine deformity (0= normal, 1=deformed), ml is the fixed 

effect of mouth deformity (0=normal, 1=deformed), nm is the fixed effect of nephrocalcinosis 

(0=normal, 1=affected), ln is the fixed effect of selection line (W, D, M, P), Ti(n) is the random effect of 

tank i nested within selection line n, and εijklmno is the random residual. First, a complete version of 

model 1 was used to determine the significant fixed effects. Following this, a reduced version, where 

non significant fixed effects were removed, was ran to assess the significance of the “selection line” 

effect and to estimate the least square means of the four selection lines, which were compared with 

a Tukey-Kramer test when the “selection line” effect was significant. The effect of selection line and 

the differences between least square means were tested using tank mean square as the error term 

(in fact an adjusted mean square provided by SAS using Satterthwaite’s approximation for degrees of 

freedom), thus testing the fact that selection lines differ relative to the random tank effects (i.e. 

significantly different selection line means that the differences seen between the offspring of the 

tested sire groups are not due to tank effects). Here, no information was known about the parents of 

any particular offspring.  

Another model was also used to describe the separate tanks data: 

ijklmnoninmlkjijklmno TbnmdsY   )(    [Model2] 

Where Yijklmno is the performance of individual o, μ is the general mean, sj is the fixed effect of sex j 

(1=male, 2=female), dk is the fixed effect of spine deformity (0= normal, 1=deformed), ml is the fixed 

effect of mouth deformity (0=normal, 1=deformed), nm is the fixed effect of nephrocalcinosis 

(0=normal, 1=affected), bn is the fixed effect of selection level (b=1 for M and P, b=0 for W and D), 

Ti(n) is the random effect of tank i nested within selection level n, and εijklmno is the random residual. 

Again, a reduced version with only the significant fixed effects was used to test the significance of the 

selection level effect. The difference between model 1 and model 2 is that model 2 considers only 

two levels of the selection effect, and compares selected fish with unselected fish, with 6 tank 

replicates for each level, giving more statistical power. This may seem a little artificial as it is clear 

that neither the M and P lines nor the D and W lines do originate from the same parents. However 

we did it considering that 1) they originate from the same base population 2) the M and P parents 

undergone the same selection pressure on growth, while the D and W parents were not submitted to 

any directional selection, so that a ‘selection level’ effect makes sense 3) it can be seen that in most 

cases the mean values of M and P  or D and W are very similar.  
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The analysis of data in the mixed tanks was done using SAS-Mixed first using the following model: 

ijklmnopqpnonmlkjiijklmnopq DSlnmdsTY   )(    [Model3] 

Where Yijklmnopq is the performance of individual q, μ is the general mean,  Ti is the random effect of 

tank i (i=1, 2, 3), sj is the fixed effect of sex j (1=male, 2=female), dk is the fixed effect of spine 

deformity (0= normal, 1=deformed), ml is the fixed effect of mouth deformity (0=normal, 

1=deformed), nm is the fixed effect of nephrocalcinosis (0=normal, 1=affected), ln is the fixed effect of 

selection line (W, D, M, P), So(n) is the random effect of sire o nested within selection line n, Dp is the 

random effect of dam p, and εijklmnopq is the random residual. Prior to using model 3, we had tested a 

more complete model including random interaction terms between tank and selection line, tank and 

dam and tank and sire. As these interaction terms were never significant (Wald test for random 

effects, P>0.05), they were excluded from the model to obtain model 3. As before, the significance of 

the fixed effects was assessed with the full version of model 3, and then a reduced version omitting 

non-significant fixed effects was ran to test for the effect of selection line and to estimate the least 

square means of the four selection lines, which were compared with a Tukey-Kramer test when the 

“selection line” effect was significant .The effects of selection line and the differences between least-

square means were tested using sire mean square as the error term (in fact an adjusted mean square 

provided by SAS using Satterthwaite’s approximation for degrees of freedom, accounting for 

different numbers of offspring per sire). Thus, we tested the fact that selection lines differ relative to 

the sampling of sires (i.e. significantly different selection line means that the true genetic mean of 

the populations from which the sires were sampled differ). 

In all models, residuals were checked for normality and homoscedasticity. Residuals for weights 

strongly departed from normality in models 1 and 2, which could be fixed by logartithmic 

transformation. However, the significance levels of all effects were the same in with or without 

logarithmic transformation. Therefore, we chose to present the results for weight with model 1 and 2 

using data in original scale. 

3.1.3 Results  

3.1.3.1 Parentage assignment 

Out of the 1,200 initial samples, 1,151 were assigned to a single parental pair (95.9%) with 1 

mismatch tolerated, 32 were assigned two pairs (2.7%), 15 were not assigned to any pair (1.3%), and 

2 had multi-allelic loci and were excluded. Then, 1,151 individuals could be used for further analysis 

in mixed tanks. Among those, 271 were from the W group (23.5%), 279 from the D group (24.2%), 

357 from the M group (31.0%) and 244 from the P group (21.2%). This representation was not even 

(χ²=24.5, d.f.=3, P<0.001) but still provided enough individuals per group for correct evaluation of the 

response to selection. 
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3.1.3.2 Selection response in separate tanks 

The separate tanks results are reported in Table 3-1 and Figure 3-1. The effect of selection line was 

significant for length at 268 days, where the D group was smaller than P, the other groups being in 

between. At 338 days, P was larger than both D and W, M being in between. Selection lines differed 

also for weight at day 338 with the same pattern as for length. For all other traits and periods, the 

effect was never significant. However, this is probably due to a limited number of tank replicates. 

When W and D were merged in an “Unselected” group, while M and P were merged in a “Selected” 

group (Model 2), the pattern was quite different: selected fish were larger than unselected ones at all 

times, both for length and weight (P<0.01 in most cases – see Figure 3-1). However, even with this 

new model, DGCs were never different (P>0.2) between selected and unselected fish. Tank effects 

were significant or close to significance on all traits at all periods. Sex effects were highly significant 

on weight and length at all ages (with females larger than males) but were never significant on DGC, 

showing a comparable growth rate of both females and males from day 268 to day 611. 

Nephrocalcinosis (recorded at day 611 – 6.2% incidence) had no impact on length at 268 days and 

weight at 268 and 338 days, but always had significant effects later on affected fish being smaller. Its 

effect on DGC was large at all periods, e.g. from 457 to 611 days, the DGC least-square mean of non-

affected fish was 0.82 while that of affected fish was only 0.53. Mouth deformities (9.9% incidence) 

had an impact on weight at 611 days, and on DGC457-611. Their effect on growth was negative. The 

effect of spine deformities (3.4% incidence) was seen on weight, but not length, at all ages, as well as 

on DGC268-338. Surprisingly, the deformed fish were heavier than the undeformed ones (e.g. mean 

 SE is 73.43.1 g for affected ones vs. 66.40.7 g for normal fish at day 268, and 37216 g vs. 3388 

g at day 611), as well as faster growing between 268 and 368 days. 

Table 3-1: Significance levels of model effects on growth in separate tanks for four selection lines (W, D, M, P) of sea bass. 
dpf= days post-fertilization. DGC= Daily growth coefficient. Nephro = nephrocalcinosis. Mouth, Spine = spine deformities. 
Significance levels for effects other than selection line and selection level are from Model 1. F-values, degrees of freedom 
and significance levels are from model 1 with non-significant fixed effects removed for selection lines, and from model 2 
with non-significant fixed effects removed for selection level. P-values noted 0.05 mean 0.05 < P < 0.06 (not significant). 
Non-integer dfs appear due to the use of Satterthwaites’s approximation. 

  Significance of model effects  Selection line effect  Selection level effect 
Trait Age 

(dpf) 
Tank Sex Nephro Mouth Spin

e 
 F value df Sig. 

level 
 F value df Sig. level 

Length 268 0.07 <0.001 0.49 0.79 0.07 5.63 3, 8.0 <0.05 19.3 1, 10.1 <0.01 
 338 0.07 <0.001 <0.05 0.67 0.05 6.90 3, 8.2 <0.05 14.4 1, 10.1 <0.01 
 457 <0.05 <0.001 <0.001 0.54 0.06 2.86 3, 8.1 0.11 7.03 1, 10.1 <0.05 
 611 0.06 <0.001 <0.001 0.10 0.07 3.46 3, 8.1 0.07 11.0 1, 10.1 <0.01 
Weight 268 0.05 <0.001 0.71 0.45 <0.05 3.81 3, 8.0 0.06 13.5 1, 10.1 <0.01 
 338 0.08 <0.001 0.23 0.39 <0.05 7.36 3, 8.2 <0.05 19.5 1, 10.2 <0.01 
 457 0.06 <0.001 <0.001 0.22 <0.01 3.32 3, 8.1 0.08 10.9 1, 10.1 <0.01 
 611 0.06 <0.001 <0.001 <0.05 <0.001 3.25 3, 8.1 0.08 11.6 1, 10.2 <0.01 
DGC 268-338 <0.05 0.98 <0.001 0.70 <0.05 1.80 3, 8.0 0.22 1.36 1, 10.0 0.27 
 338-457 <0.05 0.21 <0.001 0.35 0.10 0.36 3, 8.0 0.78 0.86 1, 10.0 0.37 
 457-611 <0.05 0.76 <0.001 <0.001 0.49 0.57 3, 8.1 0.65 1.28 1, 10.1 0.28 
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3.1.3.3 Selection response in mixed tanks 

The ANOVA results for mixed tanks are reported in Table 3-2 and Figure 3-1. The effect of selection 

line was always highly significant on length and weight where M and P outperformed D and W at all 

ages. Selection line also had an effect on DGC268-338 where P outperformed both unselected groups 

while M outperformed the D group but not the W group (P=0.08, still being close to significance). At 

later ages, no effect of selection line was seen on DGC, so most of the response was established 

before 338 dpf and even before 268 dpf.  Here, tank effects were never significant. 

 

Table 3-2: Significance of model effects on growth in mixed tanks for four selection lines (W, D, M, P) of sea bass. dpf= days 
post-fertilization. DGC= Daily growth coefficient. Nephro = nephrocalcinosis. Mouth, Spine = spine deformities. Significance 
levels for effects other than selection line and selection level are from Model 3. The sire effect is nested within selection 
line. F-values, degrees of freedom and significance levels for selection lines are from model 3 with non-significant fixed 
effects removed. P-values noted 0.05 mean 0.05 < P < 0.06 (not significant). Non-integer dfs appear due to the use of 
Satterthwaites’s approximation. NE: P-value not estimated as random covariance component estimated to be zero. 

  Significance of model effects   Selection line effect  
Trait Age (dpf) Tank Sex Nephro Mouth Spine Sire Dam   F value df Sig. 

level 
 

Length 268 NE <0.001 0.20 0.39 0.81 <0.001 <0.05   12.95 3, 67.7 <0.001  
 338 0.18 <0.001 0.26 0.42 0.71 <0.001 <0.05   13.00 3, 69.4 <0.001  
 457 0.25 <0.001 0.06 0.52 0.65 <0.001 <0.05   12.14 3, 66.1 <0.001  
 611 0.18 <0.001 <0.001 0.55 0.33 <0.001 <0.05   11.95 3, 65.5 <0.001  
Weight 268 0.22 <0.001 0.33 0.22 0.54 <0.001 0.05   9.32 3, 69.0 <0.001  
 338 0.18 <0.001 0.27 0.33 0.53 <0.001 0.07   11.02 3, 70.2 <0.001  
 457 0.35 <0.001 0.08 0.49 0.50 <0.001 0.06   10.43 3, 67.8 <0.001  
 611 0.17 <0.001 <0.001 0.49 0.24 <0.001 0.05   11.01 3, 68.5 <0.001  
DGC 268-338 0.16 0.77 0.28 0.17 0.92 <0.001 0.13   8.75 3, 65.2 <0.001  
 338-457 0.17 <0.05 <0.001 0.88 0.09 <0.01 <0.05   2.12 3, 60.1 0.11  
 457-611 0.17 0.16 <0.001 <0.05 0.17 <0.01 0.06   2.46 3, 61.4 0.07  

 

The effect of sex was always significant, except on DGC 268-338 and DGC 457-611. Still, female sex 

had a positive effect both on length and weight but had a negative effect on DGC338-457 

(0.9030.013 for females, 0.9300.013 for males). Nephrocalcinosis (3.9% incidence) again, had a 

negative effect on DGC but this effect started only on DGC338-457. Its effect on weight and length 

was noticed only on day 611. In mixed tanks, no effect of mouth deformity (12% incidence) was seen 

except on DGC457-611 (negative effect), and no effect of spine deformity (5.6% incidence) was seen 

at any time.  
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Figure 3-1: Evolution of Least-square means (± Standard Error) for body length, body weight and DGC (Daily Growth 
Coefficient) from 268 to 611 days post-fertilization in four selection lines of sea bass (=Wild, =Domesticated, =Mass 
selected for length, =PROSPER-like selected for length – see text for more details), reared in triplicates either separately 
(left column) or in mixed tanks (right column). Asterisks denote significance levels for the effect of selection lines (Model 1 
for separate tanks, Model 3 for mixed tanks). Asterisks between brackets in the “separate tanks” graphs denote significance 
levels of the Selected (M, P) vs. Unselected (W, D) effect (Model 2). *** P<0.001; ** P<0.01; * P<0.05. 
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3.1.4 Discussion  

3.1.4.1 Parentage assignment in mixed tanks 

The proportion of genotyped fish assigned to a single pair was 95.9% which is in the usual range of 

other parentage assignment studies in fish (in the 90-99% range, e.g. Fishback et al., 2002; Norris and 

Cunningham, 2004; Vandeputte et al., 2004; Wesmajervi et al., 2006). This is still a good result 

considering that we used a large mating scheme (76 x 13 full factorial) with related sires which may 

generate lower assignment rates (as seen in carp, Vandeputte et al., 2008). However, we had to 

increase the number of loci from an initially planned number of six to eight as the first run of 

assignments with 6 loci gave a proportion of uniquely assigned fish (88%) which was below our 

expectations. The proportion of unassigned fish was low (1.3%) as well as the number of fish for 

which one mismatch was needed to achieve unique assignment is also low (two fish in total). This is 

indicative of a low genotyping error rate (Vandeputte et al., 2006). Moreover, the proportion of fish 

with multiple parental pairs assigned is low (2.7%), indicating a good assignment power. Therefore, 

the assignment results obtained using mismatches can be used with good confidence for the genetic 

analysis. 

3.1.4.2 Response to selection  

The response to selection was high, both in separate and mixed tanks. However, differences between 

lines in separate tanks were significant only at 268 and 338 days for length, and at 338 days for 

weight. This partly results from the model used which uses the between-tank random variation as 

the residual, with only 8 dfs on average for the residual. Still, when both selected lines are pooled as 

a “selected” group and both unselected lines as a “control” group, significant differences in weight 

and length are seen between both groups, showing the reality of selection response in separate 

tanks. We also have to point out that all of the response seen on length and weight in separate tanks 

was established at the first measurement, as no differences in DGC appear at any time. In mixed 

tanks, some increase in response is seen between days 268 and 338, but not after.   Selection was 

done on length at 400 g mean weight in the M males with a selection differential of 2.11 phenotypic 

SD (SD) between the D and the M males. In the present response estimation experiment, the 

difference between the M and the D offspring at day 611 (390g) was 1.4 cm in mixed tanks (0.63 

phenotypic SD) and 0.8 cm in separate tanks (0.36 phenotypic SD). As we are using a paternal testing 

system, the difference between the offspring groups is expected to be half the true genetic 

difference between the parental groups. Therefore, the full response estimate between M and D 

would have been 1.26 phenotypic SD in mixed tanks and 0.72 SD in separate tanks, yielding realized 

heritability estimates of 0.60 and 0.34 on length, respectively. This is in the range of what was 

expected from heritability estimates in Palavas based on covariance between relatives (0.41, Dupont-

Nivet et al., 2008). The corresponding full correlated response on weight at day 611 is 131.2 g in 

mixed tanks and 79.4 g in separate tanks, respectively representing 42% and 23% of the mean of the 

unselected (D) strain least square mean for weight. This value is clearly in the high range of observed 

response to selection in fish (10-30% per generation, see review by Gjedrem and Thodesen, 2005), 

and is promising for the future of sea bass selective breeding. It is worth noting that both selected 

groups, Massal and Prosper-like, give mostly the same results. Both represent mass selection 

processes keeping the 5% largest males, but in different farms, and with different methods (one 

single selection event at 400g for the Massal, three progressive eliminations for the Prosper-like). 

This shows that selection for growth should be effective in several conditions, as predicted by the 

low G x E interactions (rA=0.99) that were formerly estimated for weight at commercial size between 
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Panittica and Palavas (Dupont-Nivet et al., 2008). Prosper was initially designed to be more efficient 

than mass selection, based on the control of maternal effects linked to egg size and the control of 

competition through recurrent size challenges. Although Prosper showed its efficiency in brown trout 

(+21.5% weight/generation, Chevassus et al., 2004), it has never been experimentally proven to be 

more efficient than mass selection. This is the first attempt to do so, and it is not conclusive. Among 

the possible reasons, the moderate level of maternal effects influencing growth in sea bass 

(estimated m²=0.10 on length, although not significant) might make the maternal effects control 

procedure of Prosper useless. We have no precise clue on how the recurrent growth challenges were 

performed in the Panittica breeding programme. Still, our data show that in this case Prosper is as 

efficient as mass selection in sea bass. 

Over time, selection response increased from day 268 to day 338, then decreased at days 457 and 

611 (Figure 3-2). The response in mixed tanks at 268, 338, 457 and 611 days  was higher than that in 

separate tanks by  45%, 43%, 71% and 67%, respectively. This raises three questions: 1) why is the 

response higher in mixed tanks , 2) why does it decrease and 3) why does it decrease more in 

separate tanks ? 

The fact that the response is higher in mixed tanks is likely to be due to a competition effect, as was 

seen in communal testing of common carp strains (Moav and Wohlfarth, 1974) or rainbow trout 

families (Blanc and Poisson, 2003), and in the comparison of up and down-selected sea bream Sparus 

aurata (Knibb et al., 1997). However, this competition does not seem to be active between days 268 

and 338, as the difference in response between separate tanks and mixed tanks remains the same. 

Similarly, this difference remains stable between days 457 and 611, but on the contrary largely 

increases from day 338 to day 457. Therefore, although it seems plausible that competition explains 

part of the difference in response between mixed and separate tanks, it seems unlikely that it would 

explain its evolution from day 268 to 611, which is not regular at all.  

It is interesting to see that the mean rearing 

density seems to be inversely correlated 

with selection response (Figure 3-2). In 

rainbow trout, density has been shown to 

interfere with genetic variance (Bagley et 

al., 1994), and in sea bass, it has already 

been shown that heritability of growth is 

higher at low densities (0.60) than at high 

densities (0.31 – Saillant et al., 2006). 

Conversely, it also has been shown in 

rainbow trout that density might increase 

phenotypic variation (Leary et al., 1991). All 

this indicates that density may seriously 

interfere with the expression of genetic 

variation between genotypes. Therefore, it 

is plausible that the selection response 

observed in the later stages was limited by 

density, possibly through an effect on water quality. Moreover, as the number of fish in each tank 

was the same, density was highest in the separate tanks containing selected fish (which were 

 

Figure 3-2: Mean weight superiority of selected over 
unselected sea bass ([mean weight of selected groups/mean 
weight of unselected groups]-1) in separate and mixed tanks 
from 287 to 611 days post-fertilization, plotted together with 
the mean rearing density of each period. Selected groups are 
Massal and Prosper-like, unselected groups are Wild and 
Domesticated 
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heavier). This could have limited their growth more than that of the unselected fish, and explain the 

decrease in response in separate tanks when density was high (days 457 and 611). In mixed tanks, as 

all fish are subjected to the same environment (density) conditions, the impact would have been the 

same for all genotypes. This could explain why selection response decreases more in separate tanks 

relative to mixed tanks. 

A third level of explanation would imply the effect of nephrocalcinosis: in mixed tanks, the absence 

of response on DGC is concomitant with the appearance of the nephrocalcinosis effect. This 

incidence is not different among selection lines within mixed or separate tanks (Chi-square test, 

P>0.05) but is different between separate and mixed tanks (3.9% vs. 6.2%, P<0.05). This pathology 

may be induced by excessive CO2 concentrations  (Fivelstad et al., 2003). This is likely to be caused by 

higher density, especially in a recirculated system with oxygenation where CO2 stripping is not always 

efficient enough (Summerfelt et al., 2000). Morevover, only fish which had kidneys showing evident 

signs of nephrocalcinosis were recorded as affected, but it is quite likely that some less affected fish 

were recorded as normal. It is therefore possible that a proportion of “normal” fish may have 

decreased late growth rates caused by nephrocalcinosis, thus decreasing the overall estimated 

growth rate of the population. 

Over all, the simplest answers to our three questions would be: 1) selection response is higher in 

mixed tanks because it is amplified by competition , 2) it decreases over time because of density and 

nephrocalcinosis effects and 3) it decreases more in separate tanks because density affects more 

selected fish in separate tanks. 

3.1.4.3 Effect of domestication 

All performances were similar between offspring from wild males and from domesticated males. 

Therefore, no effect of domestication selection could be shown. This is in contrast with what was 

seen in coho salmon Oncorhynchus kisutch, where domestication selection was found to account for 

a significant part of the improvement in growth generated by the selective breeding process 

(Hershberger et al., 1990). Of course, this could be due to the fact that our domesticated males are 

only in their first generation, which limits the potential for efficient domestication selection, as well 

as the expected effect size of domestication selection. Moreover, as the comparison was only done 

through the use of different males on the same females, the observed difference is only half the 

expected additive genetic difference between the W and D populations, and might be too small to be 

detected. Still, it was shown in cod that large differential mortalities occur in the first generation of 

captive breeding (Doyle et al., 1995), leaving room for significant domestication selection, and it was 

also recently shown that just one generation of captive breeding could significantly impair the fitness 

of rainbow trout in the wild (Araki et al., 2007). In sea bass, domestication will have to be studied on 

later generations of captive breeding, using traits other than growth (survival, reproduction, 

behaviour, stress response,…) which may be more subject to natural selection in the rearing process. 

3.1.4.4 Possible application of the results at commercial scale 

In this experiment, realized heritability is higher in mixed tanks. However, farmers will never grow 

one selected and one non-selected line in the same rearing unit, and therefore the realized 

heritability to keep for economical simulations of potential genetic progress is the one observed 

when the two selection lines were reared separately (0.34). 
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In addition, these results underline the high potential gains expected from the application of 

optimized mass selection as performed here (artificial fertilization for creating factorial mating 

designs, management of potential non genetic maternal effect induced by different success at 

hatching between dams). Such selective breeding protocols (with or without repeated successive 

grading) should create a significant improvement of growth, as observed experimentally in the first 

generation. This potential progress needs to be balanced by the fact that in the present experiment 

the realized heritability was only tested between selected and control sires. As sex ratio is generally 

skewed towards high proportions (85-95%) of males (Piferrer et al., 2005), mass selection will not be 

equally efficient between sexes and a lower mean genetic progress should be observed as the 

selection pressure, and hence the response on females will be lower due to their lower number in 

the population of candidates. 

3.1.5 Summary 

Selective breeding of European sea bass (Dicentrarchus labrax) receives a growing interest, as the 

estimated heritability of growth is medium to high. In this study, we compared the offspring of 

four groups of sea bass sires, mated with the same wild dams: wild (W), first generation of 

domestication (D), first generation of mass selection for length (M), first generation of PROSPER-

like selection for length (P). The comparison was done both in replicated tanks (separate rearing) 

and in mixed tanks (mixed rearing) where sire origins were recovered by genotyping of eight 

microsatellite markers. Weight, length and growth rate were measured from day 238 post-

fertilization (69g mean weight) to day 611 post fertilization (390g mean weight). Both in mixed and 

separate tanks, both selected groups (P, M) were larger than unselected groups (W, D). No 

difference was seen at any time between W and D, nor between M and P. The selection response 

estimate on weight was larger in mixed tanks when compared to separate tanks (+42% in mixed 

tanks, +23% in separate tanks at day 611), yielding realized heritability estimates of 0.60 and 0.34, 

respectively, and confirming the excellent potential of the species for growth improvement 

through selective breeding. Both selection response and the amplification effect between mixed 

and separate tanks decreased as rearing density increased. Our hypothesis is that selection 

response is magnified by competition in mixed tanks, while sub-optimal rearing conditions lower 

the observed selection response, more in separate tanks (where selected thus larger fish are at a 

higher density than unselected ones) than in mixed tanks (where all fish experience the same 

density effects).  
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3.2 Selection response for sex ratio 

3.2.1 A necessary baseline: sex ratios in wild sea bass populations 

This section was published in 2012 in Aquatic Living Resources 25 (77-81) with the title: 

 "Are sex ratios in wild European sea bass (Dicentrarchus labrax) populations biased ?", by Marc 

Vandeputte1,2,3 *, Edwige Quillet1, Béatrice Chatain2  

1
 INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France 

2
 Ifremer, UMR110 INTREPID, Chemin de Maguelone, F-34250 Palavas-les-Flots, France 

3
 AgroParisTech, UMR1313 GABI, 16, rue Claude Bernard, F-75231 Paris, France 

*corresponding author, marc.vandeputte@jouy.inra.fr 

 
doi: 10.1051/alr/2012002 
 

3.2.1.1 Introduction 

The European sea bass (Dicentrarchus labrax) is a fish species that has been domesticated in the 

1980’s for aquaculture. Its production rose steadily since then, and it has become one of the major 

species of Mediterranean aquaculture, together with gilthead sea bream (Sparus aurata). It has been 

repeatedly observed that sex ratios in farmed populations were strongly biased towards males  (75 

to 95% Piferrer et al., 2005). This is not optimal for fish farming, as males may mature before 

commercial size, and then experience reduced growth. Moreover, at a similar age, females are larger 

than males (Saillant et al., 2001b). Finally, as selective breeding of sea bass becomes a reality, with 

high potential gains in productivity (Vandeputte et al., 2009b), a good balance between males and 

females in the populations is needed to allow efficient selection of both sexes. 

There is a wide variation in sex determination systems in fish, where sex can be determined by 

environmental factors (mainly temperature), major genetic factors like sex chromosomes and minor 

genetic factors, or a combination of those (see Baroiller et al., 2009 for a review). In the European 

sea bass, sex is not yet determined at hatching, and temperature has been shown to play a major 

role in its determination, although its effect is not yet fully understood. The current hypothesis is that 

high temperatures early in development (before 100 dpf) lead to decreased female rates (Piferrer et 

al., 2005), probably through an inhibition of female differentiation (Navarro-Martin et al., 2009b). 

However long-lasting low temperatures also produce an excess of males interpreted as caused by a 

low growth rate precluding female orientation (Navarro-Martin et al., 2009b). Thus, the excess of 

males observed in culture would be due to the use of temperatures higher than in the wild. In 

addition to temperature effects, between-families variation of sex ratio shows that genotypic effects 

also exist (Saillant et al., 2002; Vandeputte et al., 2007), and the distribution of family sex ratios was 

shown to be compatible with a polygenic system, but not with a “classical” GSD system with sex 

chromosomes (Vandeputte et al., 2007). This type of sex determination system has seldom been 

evidenced in Vertebrates (McGaugh and Janzen, 2011), and is believed to be evolutionarily unstable 

(Bulmer and Bull, 1982; Rice, 1986), as it should evolve in most cases towards a chromosomal system 

where sex is determined at conception. In some cases however, when the environment has 

differential effect on the fitness of both sexes (e.g., environment influences growth rate and females 

benefit more of a large size than males, as in Menidia menidia - Conover, 1984), the  polygenic 

system may in some rare cases be maintained or alternatively evolve towards a system where sex is 

determined by environmental factors only (Bulmer and Bull, 1982). 

http://dx.doi.org/10.1051/alr/2012002
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The genetic component of sex ratio evidenced in culture conditions is a strong lever for natural 

selection to act and stabilize sex ratios at 1:1, as predicted by Fisher's theory of equal investment in 

both sexes (Fisher, 1930). The rationale is simple: if there is more of one sex than of the other, then 

each individual of the more abundant sex will produce less offspring (and hence have a lower fitness) 

than individuals of the less abundant sex, which will then be favoured by natural selection. If the sex 

of an individual is governed by a system where there is a genetic variance for sex tendency (the 

propensity of an individual to differentiate as male or female), then frequency-dependent selection 

should stabilize the population at an even sex ratio. 

The environmental and genetic components of sea bass sex determination in farmed populations 

have been and remain subject to many investigations. However no reliable estimation of wild 

population sex ratios exists to date, although it is important to know if the excess of males is a 

characteristic of the species or is linked to farming conditions. The aim of the present study was to 

use published data from the fisheries literature to examine population sex ratios of the sea bass over 

its distribution range. When age class data were available, we also examined the possible variation of 

sex ratio between years, an indicator of environmental effects existing in the wild. 

3.2.1.2 Material and methods 

3.2.1.2.1 Data sets 

We used data from nine publications, covering the major part of the natural range of the species, 

with data from the Atlantic Ocean (Ireland, UK, Spain), the West of the Mediterranean Sea (France, 

Algeria), and the East of the Mediterranean Sea (Egypt, Turkey). These samples encompass the major 

populations (Atlantic, East and West Mediterranean) identified by population genetics (Naciri et al., 

1999; Bahri-Sfar et al., 2000). In those papers, sex ratio was not the parameter studied, but the sex of 

the fish was recorded, creating a valuable data base for our purpose.  

3.2.1.2.2 Statistical methods 

Observed numbers of males and females in each population were compared to the expected 

numbers under an even sex ratio hypothesis with a chi-square test. A significant difference indicated 

that the observed sex ratio departed from the expected 1:1. Such tests were also performed on 

population sub-samples comprising only younger fish (<30 cm body length) or older fish (>40cm body 

length). Body size limits were chosen as a surrogate for age, which was available in three populations 

only, but remain imperfect as their relation to age may be influenced by sex and water temperature. 

3.2.1.3 Results 

3.2.1.3.1 Population sex ratios 

Nine publications concerning thirteen population samples were examined (Table 3-3), with 

altogether 4889 wild sea bass sexed. The gross proportion of females across all population samples 

was 59.6%, which is higher than an expected 50% (χ²=180, 1 df, P<0.001). Some variation of sex 

ratios was seen between population samples (50.0 to 73.6% of females), and  twelve samples out of  

thirteen had an excess of females, although it was significant in  eight samples only. It should be 

noted that eight of the nine samples from the north Atlantic had a significant excess of females, 

while this was the case for only two of the five South Atlantic / Mediterranean samples.  
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When considering only 1314 young fish (<30cm), the proportion of females was 52.0%, not different 

from 50% (χ²=2.05, 1 df, P=0.15). None of the population samples, taken individually, did significantly 

depart from 1:1 (P>0.05, with observed sex ratios varying from 49.1% to 57.0%). So, the primary sex 

ratio can be considered to be even. On the contrary, the largest fish were mostly females (69.5% in 

1811 fish > 40cm, P<0.001). In this case, eight of the 10 population samples with available data 

significantly departed from 1:1 (observed sex ratios 58.2% to 95.6%), while two did not due to small 

sample size, although observed sex ratios were high (61 and 67% females, see Table 3-3) 

3.2.1.3.2 Age class/age group sex ratios 

In the study on Irish bass, age-class sex ratios were available, and three “good” brood years with a 

high contribution to the population were identified (Kennedy and Fitzmaurice, 1972). Among the 126 

fish (<4.5 kg, as all fish >4.5 kg were females) sampled from 13 year classes, 82 (65%) were born in 

those three years, and among those 65.9% were female vs 45.5% in the other 10 year classes, a 

significant difference (χ²=4.92, 1 df, P=0.03).  

Age group sex ratios were available in the Egypt study (Wassef and El Emary, 1989), but no “good “ 

brood years could be identified there, as the number of fish per age group was an essentially 

monotonous decreasing function of age. Of the 11 age groups with more than 10 fish (age groups X 

to XV were merged to obtain sufficient numbers of fish), six were balanced (46 to 61% females, 

P(χ²)>0.05), three had an excess of females (88% in age group VII, P<0.001, 100% in age groups IX and 

X to XV, P<0.01) and one was lacking females (26% in age group VI, P<0.01). In the Turkish population 

where age-group sex ratios were also available (Ergene, 1999), none of the six age groups with more 

than 10 fish significantly departed from the expected 50:50 sex ratio (P>0.05). 

3.2.1.4 Discussion 

Our analysis of the sea bass fisheries literature allowed to show that wild sea bass populations taken 

as a whole exhibited a slight but significant excess of females (59.4% females on average), and thus 

differed from the cultured populations where a large excess of males (75 to 95%) is the rule (Piferrer 

et al., 2005). The first question that comes is the representativeness  of samplings, as sex ratios can 

vary between locations and times of the year (Pawson and Pickett, 1996). 

 Most of the studies were done with repeated sampling all along the year, and sometimes over 

several years, thus eliminating the "time of the year" bias. Capture methods were diverse and 

included commercial fisheries (Arias, 1980; Pawson and Pickett, 1996; Wassef and El Emary, 1989), 

research vessels surveys (Pawson and Pickett, 1996), rod and line (Kelley, 1988a; Kennedy and 

Fitzmaurice, 1972; Pawson and Pickett, 1996), spear fishing (Barnabé, 1973; Kara, 1997), gill netting 

(Kara, 1997; Ergene, 1999) and fyke netting (Ergene, 1999). The homogeneity of the observed results 

would however rule out a large effect of capture method on the sex ratio. One more important point 

is that most of the captures were done in coastal or lagoon areas, and that offshore catches were 

little represented. Kelley (1988) suggested that large males might be more numerous in offshore 

areas - therefore one cannot exclude that at least some of the distortion of sex ratios in favour of 

females would be due to insufficient sampling in offshore areas. 
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Table 3-3: Numbers and proportions of male and female European sea bass sampled in 9 locations. Ref = reference; Nm = number of males; Nf = number of females.  Chi-square (χ²) test for 
H0: equal proportions of males and females (significant results are highlighted with italics). NA: not available. 

   All fish     Fish < 30 cm total length     Fish > 40 cm total 
length 

   

Area of capture Refc
  Nm Nf Female 

ratio (%) 

P<χ²  Nm Nf Female 
ratio (%) 

P<χ²  Nm Nf Female ratio 
(%) 

P<χ² 

Ireland 1  52a
 91 63.6 0.001  NA NA NA NA  NA NA NA NA 

Yealm & Blackwater, UK 2  30 30 50.0 1.00  30 30 50.0 1.00  NA NA NA NA 

Northern UK 3  169 309 64.6 <0.001  43 53 55.2 0.31  72 175 70.9 <0.001 

Central UK 3  241 339 58.4 <0.001  81 85 51.2 0.76  85 185 68.5 <0.001 

Southern UK 3  256 320 55.6 0.008  51 60 54.1 0.39  151 210 58.2 0.002 

Western UK 4  259b
 428b

 62.3 <0.001  81b
 85b

 56.0 0.30  116b
 258b

 69.0 <0.001 

Southern UK 4  96b
 256b

 72.7 <0.001  15b
 19b

 55.9 0.49  50b
 194b

 79.5 <0.001 

South-eastern UK 4  34b
 95b

 73.6 <0.001  NA NA NA NA  34 95 73.6 <0.001 

Cadiz, Spain 5  170 189 52.6 0.31  NA NA NA NA  NA NA NA NA 

Sète, Gulf of Lion, France 6  74 136 64.8 <0.001  44 43 49.4 0.92  17 56 76.7 <0.001 

Gulf of Annaba, Algeria 7  227 300 56.9 0.001  74 98 57.0 0.07  17 27 61.4 0.13 

Goksu Delta, Turkey 8  136 158 53.7 0.20  88 87 49.7 0.94  8 16 66.7 0.1025 

Alexandria, Egypt 9  232 262 53.0 0.18  172 166 49.1 0.74  2 43 95.6 <0.001 

TOTAL 

 

  1976 2913 59.6 <0.001  631 683 52.0   0.15  552 1259 69.5 <0.001 

a
 data from 1967 and 1968 captures (Table 7, p 579) 

b
Numbers of males and females from Kelley (1988) were estimated from the total numbers recorded and the proportions of males in each size class deduced from figure 10 of the article. In this 

case also, fork length was used instead of total length to classify fish.  
c
References: (1) Kennedy and Fitzmaurice, 1972 (2) Pawson et al., 2000 (3) Pawson and Pickett, 1996 (4) Kelley, 1988a (5) Arias, 1980 (6) Barnabé, 1973 (7) Kara, 1997 (8) Ergene, 1999 (9) 

Wassef and El Emary, 1989. 
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Females tended to grow faster than males in some cases (Kelley, 1988a; Pawson and Pickett, 1996), 

but also sometimes had the same size at age (Wassef and El Emary, 1989; Ergene, 1999). In general 

however, wild sea bass females tend to be slightly larger than males of the same age class (reviewed 

by Pickett and Pawson, 1994). The observed predominance of females in large fish could then partly 

be due to a faster growth of females, but this effect is expected to be limited as the body length of 

males and females of the same age differ by less than 5% on average (average of 5 populations 

reviewed by Pickett and Pawson, 1994). Another possible bias is that using size limits as a surrogate 

for age implies that the age limits of the size categories will differ among populations, depending on 

the growth conditions encountered.  However when age-group data are available, it is also apparent 

that there are usually more females in older fish (Kennedy and Fitzmaurice, 1972; Wassef and El 

Emary, 1989), which has been attributed  to a higher longevity of females (Kelley, 1988a).  

Finally, the sex ratio of the younger fish (<30 cm) was balanced between males and females, and 

then conformed to Fisher's theory. More females were present in older fish presumably because 1) 

males are shorter-lived than females and 2) biased sampling may occur if large males tend to live 

more offshore, as discussed before.  This observation of unbiased sex ratio in the wild shows that the 

excess of males observed in cultured populations is not linked to an intrinsic characteristic of the 

species to show male biased sex ratios. Previous experimental evidence showed that temperatures 

higher than 17°C in the larval rearing phase, which are typically used by the industry, have a male 

biasing effect (reviews by Piferrer et al., 2005; Navarro-Martin et al., 2009b). It can be then 

reasonably postulated that the excess of males in farmed populations is actually linked to the 

environmental conditions during larval rearing. 

Additional information was obtained from Irish data, in which ‘good’ brood years were correlated 

with warm summers or springs, and contributed a high proportion of the catches (Kennedy and 

Fitzmaurice, 1972). It appeared that in those good brood years, sex ratio was biased towards 

females. The 1959 year class, which was specially numerous, had 67.2% females. The same year class 

was also found to be very abundant in the UK by Kelley (1988), who also found a predominance of 

females (71.2%).  One of the major issues to explain the abundance of females in good brood years in 

these Irish and UK data is to know whether the fish in the good years are 1) issued from local spawns 

or 2) originating from Biscay and migrating North, as hypothesized by Kelley (1988). In the first case, 

the source of the higher female ratio would be linked to local environmental conditions, while in the 

second case it could also include genetic effects if the fish come from a different population. The 

general picture of sea bass population genetics is a genetic homogeneity of populations within the 

Atlantic (Naciri et al., 1999; Fritsch et al., 2007), although some local differences may occur. Then, 

even if fish were massively migrating it seems quite unlikely that genetic differences would impact on 

sex ratios. This is further supported by the remarkable homogeneity found in the present study 

among population level sex ratios in young fish. Therefore, the environmental cause for excess of 

females in some years seems more plausible than the genetic one. It has to be noted that in the 

Mediterranean, we could not identify “good” years  (specially abundant year classes) in the published 

data from Egypt (Wassef and El Emary, 1989) and Turkey (Ergene, 1999), though variation in age-

group sex ratios was evidenced in Egypt. In this latter case however, three cases of unbalanced age 

group sex ratios reflected excess of females in old age groups (>VIII), which can be explained by the 

higher longevity of females, as seen before. Still, the very low female ratio in age group VI (26.4%) 

cannot be explained by differential longevity between the sexes and should is likely to be the result 

of environmental variation between years. 
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There is little doubt that the variation in sex ratio between age classes, when it cannot be explained 

by differences in longevity or a sampling bias between sexes, is of environmental origin. However, 

the available data do not allow the determination of the time at which the differences appear and of 

the mechanism involved. Still, as temperature in early life has been shown to influence sex ratios, 

and temperature is highly variable between years, the fact that variation in natural temperature may 

also induce variations in sex ratio seems plausible. The European sea bass has a polygenic sex 

determination system, with an estimated heritability of 0.62±0.12 for sex tendency (Vandeputte et 

al., 2007). In such a system, when environmental variation induces different sex ratios in different 

years, evolution should drive the system towards chromosomal sex determination, or environmental 

sex determination if environment variations have different effects on the fitness of males and 

females (Charnov and Bull, 1977; Bulmer and Bull, 1982) As chromosomal sex determination has 

been excluded (Blazquez et al., 1999; Vandeputte et al., 2007), as well as purely environmental sex 

determination (Vandeputte et al., 2007), the only possibility remaining is polygenic (or at least 

oligogenic) sex determination, but this is expected to be only a transient state, as in most conditions 

it is evolutionary unstable (Bulmer and Bull, 1982; Rice, 1986; Hatcher and Tofts, 1995). As 

environmental conditions are expected to be quite variable in the Atlantic, the West Mediterranean 

Sea and the East Mediterranean Sea, it is likely that this system combining genetic variation and 

environmental influences on sex ratios could have reached different equilibrium states in the main 

wild sea bass populations, as has been observed in the Atlantic silverside Menidia menidia, where the 

relative influence of genetics and temperature on sex ratios differs along a latitudinal gradient 

(Lagomarsino and Conover, 1993), or in the lizard Niveoscincus ocellatus in which highland 

populations show genotypic sex determination and lowland populations show temperature-

dependent sex determination (Pen et al., 2010). Therefore, exploring the between population 

variation in sex determination patterns might be of great help to better control sex ratios in sea bass 

aquaculture, and to further increase our knowledge of the evolution of sex-determining mechanisms. 

3.2.1.5 Summary:  

Sex ratios in farmed European sea bass are highly biased towards males (75 to 95%), which is 

problematic for aquaculture. In this mini-review, we re-analyse fisheries literature data about sex 

ratios in wild sea bass from 13 population samples, representing altogether 4889 individuals 

covering the major part of the distribution range of the species. We find that as a whole, the sex 

ratio of wild populations is biased towards females (59.4% females, P<0.001), but that the sex ratio 

of the younger fish (<30 cm total length) is balanced (52.0% females, P=0.15), while the sex ratio of 

the older fish is heavily biased towards females (69.5% females, P<0.01). Possible causes of these 

differences (differential longevity, biased sampling) are discussed. When age-group sex ratios are 

available (three population samples out of 13), significant variation between age groups appears, 

part of which is most likely of environmental origin. This study shows that the excess of males in 

culture is not a characteristic of the species, but rather a consequence of the environments used in 

culture, interacting with a complex system where both environmental and genetic influences 

govern sex determination in sea bass. 
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3.2.2 Sex ratio changes in domesticated and selected populations 

This part of the work was submitted as: 

"Domestication and artificial selection for growth induce sex ratio shifts in the European sea bass 

(Dicentrarchus labrax L.)" by Marc Vandeputte1,2,3 *, Mathilde Dupont-Nivet1, Hervé Chavanne 4,5,Alain 

Vergnet 2, Pierrick Haffray6, Edwige Quillet1, Béatrice Chatain2 

1
 INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, F-78350 Jouy-en-Josas, France 

2
 Ifremer, UMR110 INTREPID, Chemin de Maguelone, F-34250 Palavas-les-Flots, France 

3
 AgroParisTech, UMR1313 GABI, 16, rue Claude Bernard, F-75231 Paris, France 

4
 Panittica Pugliese,  I-72010 Torre Canne di Fasano, Italy 

5
 Istituto Sperimentale Lazzaro Spallanzani, Località La Quercia, I-26027 Rivolta d'Adda (CR), Italy 

6
 SYSAAF, Campus de Beaulieu, F-35042, Rennes, France 

*corresponding author 

3.2.2.1 Introduction 

The evolution of sex ratios is a major subject in evolutionary biology, as it has important implications 

on fitness and allows testing of explanatory models with a relatively easily assessed phenotype, 

numbers of males and females (West and Herre, 2002). In gonochoristic species, two main types of 

sex determination have been described, genotypic (GSD) and environmental (ESD) sex 

determination. It has been proposed that these two categories were the extremes of a continuum 

(Kraak and de Looze, 1993; Kraak and Pen, 2002; Sarre et al., 2004), with GSD possibly subdivided 

between major and minor genetic factors (Baroiller et al., 2009). In fish, both types of sex 

determination are present, with ESD being in most cases studied temperature-dependent sex 

determination (TSD).  

The European sea bass is a gonochoristic fish distributed in the North-Eastern Atlantic, the 

Mediterranean and the Black Sea (Pickett and Pawson, 1994). It is also a major species in 

Mediterranean aquaculture, and in farmed populations, 75 to 95% of the fish are males (Piferrer et 

al., 2005).  

In this species, sex remains undifferentiated for a long period (Saillant et al., 2003a): differentiation 

occurs between 128 and 250 days post-fertilisation (dpf). Temperature has been shown to play a 

major role in sex determination of sea bass, but its effect is not fully understood. The current 

hypothesis is that high temperatures early in development (before 100 dpf) lead to decreased female 

rates (Piferrer et al., 2005), probably through an inhibition of female differentiation (Navarro-Martin 

et al., 2009b). However long-lasting low temperatures also produce an excess of males interpreted as 

caused by a low growth rate precluding female orientation (Blazquez et al., 1998; Saillant et al., 2002; 

Navarro-Martin et al., 2009b). In wild populations,  the primary sex ratio is 50:50, although some 

variation between year-classes, probably due to the environment, has been observed (Vandeputte et 

al., 2012). Thus, the excess of males observed in culture would mostly be due to the use of 

temperatures higher than in the wild early in development. In addition to the temperature effects, 

between-families variation of sex ratio shows that genetic effects (Saillant et al., 2002; Vandeputte et 

al., 2007) and genotype by environment interactions (Saillant et al., 2002) also exist. The distribution 

of family sex ratios was shown to be compatible with a polygenic system, or at least with an 

oligogenic system with a minimum of four sex factors and additional environmental variance, 

whereas pure ESD or pure GSD could be excluded (Vandeputte et al., 2007).  
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The aim of the present study was to demonstrate experimentally that, as predicted in our previous 

study (Vandeputte et al., 2007), sex ratio should evolve in farmed populations of sea bass as a result 

of frequency-dependent selection and selection for growth. For this, we compared the sex ratios of 

the offspring of growth-selected males, unselected males born in captivity and wild-born males. 

3.2.2.2 Material and methods 

3.2.2.2.1 G0 and G1 base populations for experimental selection 

The constitution of the first generation population (G1) was described in details in a previous paper 

(Vandeputte et al., 2007). Briefly, 253 families were produced by artificial fertilization according to a 

partly factorial mating design involving 33 G0 sires and 23 G0 dams of wild Atlantic origin. All families 

were reared as a single batch in a common garden experiment since fertilization.  Rearing 

temperature increased from 13 to 18°C in the first 64 days. Temperature was then kept at 18°C until 

238 days post fertilization (dpf), an age at which changes in temperature have no impact on progeny 

sex ratio any more (Saillant et al., 2002). Fish were individually tagged at 370 dpf, their pedigree was 

recovered by the genotyping of 6 microsatellite markers, and their sex was determined later on by 

visual observation of the gonads after dissection. The proportion of females among the offspring was 

18.2%, indicating that the G1 environment was masculinising as expected. 

Among the tagged G1 fish, 17 males were selected for high body length at 714 dpf, representing a 5% 

selection pressure (“Selected” or S group, on average +2.07 phenotypic standard deviations (σP) over 

the mean for body length), 20 unselected males were chosen to be representative of the average 

length of the population (“Domesticated” or D group, born in captivity but with average growth 

capacity, on average -0.04 σP for body length). We also randomly chose 20 cryopreserved males from 

the 33 initial G0 population wild males to be used as wild control parents (W group). More details on 

the selection procedures are available in a previous paper (Vandeputte et al., 2009b). 

3.2.2.2.2 Response to selection 

The matings and the rearing of the G2 progenies were carried out at the Ifremer experimental facility 

of Palavas (France) and were detailed elsewhere (Vandeputte et al., 2009b). The spawns of 13 wild 

females (West Mediterranean origin) were used to produce a full factorial mating design using 

cryopreserved sperm from the 57 males previously chosen, i.e. 20 wild (W) males, 20 domesticated 

(D) males and 17 selected (S) males (see before). Progenies from the factorial mating were reared 

according to different designs: 1) as a single batch with all progenies (W, D, S offspring) mixed since 

fertilisation in 3 replicated tanks 2) as triplicated separate batches in nine tanks (3 tanks for each of 

the W, D,  S groups).  Temperature increased from 16 to 20°C in the first 55 days, then sharply 

increased to 24°C, and progressively decreased to 20°C from 110 to 268 dpf. At 268 dpf, 962 fish 

from the mixed batches were individually tagged, and 859 survived until they were sexed at 611 dpf. 

Among those, 826 (96.1%) could be unambiguously assigned to their parents and genetic origin (W, 

D, S), using eight microsatellite markers, Dla016, Dla020, Dla105, Dla116, Dla119, Lab13, Lab3 and 

Dla022 (Garcia De Leon et al., 1995; Ciftci et al., 2002; Chistiakov et al., 2004) and the assignment 

software VITASSIGN (Vandeputte et al., 2006). In parallel, 970 fish from the 9 separate batches (84-

114 per batch) were sexed at 611 dpf. 

3.2.2.2.3 Statistical methods 

Sex ratios were compared among the three G2 offspring groups (W, D, S) in order to assess the 

effects of domestication, selection for growth and type of rearing (separate tanks vs. mixed tanks) on 
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progeny sex ratio. A logistic regression on proportion of females in the offspring was performed, first 

with a model including the effect of sire line (W, D, S), the effect of rearing type (mixed, separate), 

the interaction between sire line and rearing type, and a block effect, corresponding to three 

recirculation systems with 5 tanks each used for rearing the fish from 78 to 611 dpf  (Model 1). After 

removal of the non significant effects, the effects in the model were only sire line and rearing type, 

and this model (Model2) was used to estimate the significance of contrasts for offspring group and 

rearing type. 

3.2.2.3 Results 

The average proportion of females in 

unselected G1 fish was 18.2% (N=5915). The 

average sex ratio of G2 progenies was 46.6% 

females on a total of 1796 fish. Logistic 

regression (model 1) indicated that line (W, 

D, S) and rearing type (mixed, separate) had 

a highly significant effect on sex ratio 

(P<0.001), while neither line*rearing type 

interaction nor block were significant (P>0.4 

and P>0.9, respectively). These last two 

factors were removed in model 2, which was 

then used to estimate the contrasts between 

lines, as reported in Figure 3-3. Additionally, 

it can be noted that model 2 did not display 

overdispersion (P>0.8), nor lack of fit 

(Hosmer and Lemeshov test, P>0.7). 

Figure 3-3 shows that the overall proportion of females was higher in mixed rearing (51.5%) when 

compared to separate rearing (42.5%), and that the three lines had different sex ratios. As 

line*rearing interaction was not significant, line sex ratios were calculated on the whole dataset, and 

were 37.5% females for the progeny of Wild sires, 46.4% for Domesticated and 55.0% for Selected 

fish, which were all significantly different from each other (P<0.01). 

3.2.2.4 Discussion 

From the study of between-family variation for sex ratio and body size in G1 (Vandeputte et al., 

2007), we hypothesized that sex ratios in farmed populations of sea bass should evolve towards 

more females as a result of frequency-dependent selection in domesticated populations. The present 

selection experiment clearly showed that sex ratio was modified by simple domestication (W vs. D), 

as an adaptive response to a new environment producing male-biased sex ratios. As predicted by 

Fisher’s theory and its adaptation to the case of polygenic sex determination (Bulmer and Bull, 1982; 

Fisher, 1930), frequency-dependent selection tends to increase the proportion of females in the 

offspring of males born and reared in a masculinising environment. Our second hypothesis, based on 

a positive genetic correlation between body size and sex tendency (Vandeputte et al., 2007), was 

that selection for fast growth should further increase the proportion of females in the farmed 

populations. In the present experiment, we demonstrated that fast-growing males selected in G1 

produced more females in their G2 offspring than domesticated males did. It should be noted that S 

offspring were significantly larger than D offspring, which in turn had a size similar to that of W 

 

Figure 3-3: Proportion of females in G2 progenies of sea bass 
from different lines (Wild, Domesticated, Selected) reared in 
mixed tanks or in separate tanks.  ** P<0.01; ***P<0.001 
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offspring (Vandeputte et al., 2009b). Thus, the effect of domestication on sex ratio was not due to an 

indirect effect of growth, but to frequency dependent selection, while the effect of selection for 

growth on sex ratio could be seen as correlated effect of fast growth rate.  

The mean proportions of females in the offspring of wild sires in G1 (18.2%) and G2 (37.5%) were 

quite different, although both male-biased. We expected that the thermal profile in G2 would 

produce more females, through the stimulation of growth by high temperatures towards the end of 

the sex determination window. This is what we observed, but we must honestly state that the use of 

the same thermic profile in other experiments also sometimes gave very low sex ratios (ca. 10% 

females). Nevertheless the difference in mean sex ratio between separate and mixed rearing shows 

that environment effects on sex ratio (including temperature) are not fully understood yet. In the 

present experiment, it happened that the ‘rearing type’ effect was confounded with a ‘larval rearing 

room’ effect during the first 77 days. Both rooms had the same set point for temperature, but some 

very limited variation happened (S.D. for the difference in daily temperature between both rooms= 

0.7°C) and sex ratios were substantially modified (32.7 vs. 44.1%  females in the G2 offspring of wild 

sires reared separately or mixed, respectively). Then, the temperature profile can still be one reason 

for the shift in sex ratio between G1 and G2, but other environmental effects such as water quality or 

social effects, which may be different in mixed and separate groups could be invoked. A second 

possible reason is that the G1 fish were from Atlantic parents, but were crossed with Mediterranean 

females to produce the G2 - as we did not manage to have ready to spawn Atlantic females. Previous 

experience with this Mediterranean wild population did not yield remarkably high female ratios 

(usually 10 to 30% females), so a large additive genetic effect is unlikely. Dominance (heterosis) 

effect could be an explanation, considering the fact that Mediterranean and Atlantic populations 

show genetic divergence (Naciri et al., 1999). Then, different sex factors may develop under different 

environmental conditions, as seen in Atlantic silversides Menidia menidia (Lagomarsino and Conover, 

1993), and combine to yield an increased proportion of females in hybrids between populations. This 

possibility is supported by additional unpublished results with Atlantic and Mediterranean sea bass 

hybrids showing suggestive heterosis on sex ratio in a highly masculinizing environment (10.7% 

females in hybrids vs. 9.1% in Atlantic and 6.7% in Mediterranean so 7.8% on average in pure lines, 

2886 fish sexed, χ²=7.32, 1 d.f, P<0.01). Anyhow, if the global shift in sex tendency in G2 is caused by 

a genetic effect of the Mediterranenan population (additive or heterosis), it should apply to all 

groups which are all Atlantic x Mediterranean hybrids, all males being derived from the same Atlantic 

base population, and should therefore not bias the relative values of sex ratio between G2 offspring 

groups (W, D and S).  

Polygenic sex determination has not often been evidenced in vertebrates (ten species reviewed in 

McGaugh and Janzen, 2011), where GSD with sex chromosomes and to a lesser extent ESD are by far 

more represented. However, in fish, there are several cases of species with sex chromosomes (thus 

GSD) where minor genetic factors, sometimes influenced by the environment, allow modifications of 

the sex ratio (see Baroiller et al., 2009 for a review). Then, the idea that the ancestral sex 

determination system (in fish) would be polygenic (Kirpichnikov, 1981) remains an interesting 

hypothesis. The condition for a high genetic variance in sex ratio, like the one observed in sea bass, 

to exist in a polygenic system is a variable level (between years or locations) of environmental effects 

on sex tendency (Bulmer and Bull, 1982). This condition is plausible in the case of sea bass (coastal 

water temperatures are highly variable), but such a pattern also favours invasion of the population 

by major sex factors (Bulmer and Bull, 1982). If there is a differential response in fitness between the 
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two sexes for variations of the quality of the environment, the system is supposed to evolve towards 

“true” ESD, meaning sex ratio being essentially determined by the environment, with an abrupt 

change in sex ratio around a threshold environment value, as seen in many reptiles (Charnov and 

Bull, 1977; ; Bulmer and Bull, 1982; Bull, 1983). This is not the case in sea bass, as proven by the 

difficulties to precisely assess the effect of temperature on sex ratio (Piferrer et al., 2005; Navarro-

Martin et al., 2009b). When there is both temporal variability of environment and sex-specific fitness 

effects, the evolution towards ESD or genic (meaning GSD with major sex factors) sex determination 

should depend on the relative values of environmental effects on sex ratio and fitness (Bulmer and 

Bull, 1982; Pen et al., 2010). For a specific case where a major sex factor is closely linked to a gene 

with sex-specific fitness effects, the prediction is that the major sex factor should in general invade 

the population (Rice, 1986). If we consider that body size has a positive effect on female fitness in sea 

bass, as seen in the Atlantic silverside (Conover, 1984), a major sex factor in a region with growth 

promoting genes should then invade the population. However, it has been shown that growth was 

highly heritable in sea bass, but also subject to important genotype by environment interactions 

(Dupont-Nivet et al., 2010b), meaning that the genotypes favouring growth rate are not the same in 

different environments. In this case, the linkage of a major sex factor with growth would not be 

permanent, possibly preventing a fast increase in its frequency in the population. Finally, genotype 

by environment interactions were also evidenced for sex ratio, suggesting variable sensitivity to 

temperature of different genotypes (Saillant et al., 2002), and then again the possibility that genes 

with a direct effect on sex tendency would not be the same in all environments. This could be part of 

the subtle equilibrium allowing the maintenance of polygenic (or at least plurigenic) variation for sex 

tendency in sea bass. 

We have shown that population sex ratio could evolve rapidly in captive sea bass populations, due to 

a high genetic variance, and to an association with growth. The variation was expressed in captive 

breeding conditions, and the relative changes may be different in wild populations experiencing 

different environmental conditions, or having different genetic backgrounds. Previous reports on 

Atlantic silverside, another fish where environmental and genetic factors influence sex ratio, showed 

that populations from different latitudes may have different main sex determination systems 

(Lagomarsino and Conover, 1993). Our work was done on the Atlantic population of the sea bass, but 

it would be highly valuable to study the genetic variation of sex ratio also in the Mediterranean 

population, in order to see if the balance between genotypic and environmental sex determination is 

similar or not. This could also have applied outcomes, as both populations are used for developing 

selective breeding programmes in aquaculture. 

3.2.2.5 Summary 

In cultured populations of the European sea bass Dicentrarchus labrax, sex ratios are usually highly 

male-biased. It has been showed previously that there is a high between family variance in sex 

ratio, with a positive genetic correlation between growth and percentage of females.  Through 

experimental selection, we showed that there were more females (46.4%) in the offspring of 

captive-bred males (1st generation domestication) than in the offspring of wild males (37.5% 

females) when reared in the same environment . A further shift in sex ratio was observed in the 

offspring of males selected for fast growth rate (55.0% females). The genetic architecture of sex 

ratio, with high genetic variation and a linkage with growth rate probably has an adaptive value for 

the sea bass, and implies that farmed populations sex ratios will quickly be modified by 

domestication and selective breeding of the species, with important outcomes for aquaculture. 
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3.2.3 Additional data: genetic correlation of growth and sex tendency over time 

In section 3.2.2, we evaluated the effect of selection on body length and of domestication on 

offspring population sex ratios. We could especially do this in mixed populations thanks to the use of 

genotyping of microsatellites to recover parentage. Genotyping of microsatellites not only gave us 

the information on the group of sires each offspring originated from, information that we used in 

section 3.2.2), but also the family information, so which sire and dam each offspring had as parents, 

and this for 826 sexed offspring. For each of these fish, we also had measured body length at 238, 

338 and 457 dpf. In addition to these data, we measured the body length of 583 larvae at 10 dpf and 

of 637 juveniles at 90 dpf. All those fish were also genotyped, and  10 dpf larvae (n=560) as well as 90 

dpf juveniles (n=612) could be assigned to their parents. We did not have access to  the sex of these 

juveniles, however the pedigree allowed to link their performance to that of the 826 sexed fish. 

To this end, we used a multi-trait animal model where the traits were body length at 10, 90, 238, 338 

and 457 dpf and the binary sex trait. Using binary traits on the observed scale to estimate genetic 

correlations between the liability variable and 

continuous traits is expected to give unbiased 

results (Mercer and Hill, 1984; Olausson and 

Ronningen, 1975). The fixed effect in the model 

were larval rearing tank and sire type (W, D, M). 

The model was run with VCE6 (Groeneveld et al., 

2008). 

Genetic correlations between body length and 

sex tendency (Figure 3-4) were not stable at all 

over time, and peaked at 90 dpf (rA=0.77±0.16), 

showing that early growth seems to have a 

major link with sex tendency, while late growth 

would be less relevant. 

Due to the limited sample size and the special 

data structure however (only 826 fish with a sex 

phenotype), the standard errors of the genetic 

correlations estimated in this section were rather high. Another limitation is that, although sex has a 

phenotypic effect on body size which already exists at 84 dpf (Saillant et al., 2003c), this was not 

included in the model, because sex information was only available for the fish measured from 238 

dpf, and we wanted to treat body length data at all ages in a similar way. Not taking into account the 

fixed effect of sex on body length would be likely to inflate the genetic correlations estimated, 

because the average body length is expected to be larger in female-rich families, solely by the 

phenotypic effect of the larger size of females . Conversely, we chose to include a sire type effect in 

the model, and as the sire types have both different sex tendencies (section 3.2.1) and different body 

sizes (section 3.1), it can be expected that removing this with a sire type fixed effect is likely to 

decrease the genetic correlation. Not including the sire type effect would be possible but then the 

distribution of sire additive genetic values could not be considered to be random and normal, 

potentially causing estimation biases. 

 

Figure 3-4: Evolution over time of the genetic correlation 
between body length and sex tendency in sea bass. Error 
bars account for standard errors of estimates. 
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 It has been shown before that sex dimorphism for body size is already present at 84 dpf, long before 

the differentiation of gonads (Saillant et al., 2003c). As all fish initially start at the same size 

(constrained by egg size in the same pool of females), and there is genetic little correlation of sex 

tendency with size at 10 dpf (start feeding - see Figure 3-4) it is then likely that growth rate is strongly 

linked to sex tendency somewhere between 10 and 90 dpf. Whether growth rate acts on sex 

tendency or sex acts on growth rate at that stage remains unsolved, although we can note that this 

time window is well before the differentiation of the gonads, which starts around 150 dpf (or 80 mm 

standard length - Saillant et al., 2003a; Piferrer et al., 2005) although some differences in the 

expression profile of cyp450a can be seen as early as 120 dpf (Blazquez et al., 2009). In any case, no 

sign of differentiation has ever been seen before 120 dpf, so the idea that growth rate may influence 

sex orientation remains plausible.  
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3.3 Modelling the mid-term evolution of growth and sex ratio in farmed sea bass 

populations under selection for growth 

This part of the work has not been published in a peer-reviewed journal, but various outcomes of the 

simulation program have been used in several poster presentations in national and international 

conferences, among which: 

Vandeputte, M., Dupont-Nivet, M., Chavanne, H., Haffray, P., Chatain, B., 2007. La sélection sur le sexe chez le bar : 
comment produire des populations riches en femelles ? Journées Recherche Filière Piscicole, Paris, 3-4 juillet 2007. 

Vandeputte, M., Dupont-Nivet, M., Haffray, P., Chavanne, H., Vergnet, A., Quillet, E., Chatain, B., 2011. Modification of 
population sex ratios by domestication and artificial selection in the European sea bass (Dicentrarchus labrax L.). Colloque 
de la Société Française de Génétique “Genetics, Epigenetics and Evolution of Sex Chromosomes”, Paris, 9-10 June 2011. 

Vandeputte, M., Dupont-Nivet, M., Haffray, P., Chavanne, H., Vergnet, A., Quillet, E., Chatain, B., 2011. Can we obtain 
monosex sea bass populations through selective breeding ? 62nd EAAP Annual Meeting, Stavanger, Norway - 29 August - 1 
September 2011. 

3.3.1 Why model the evolution of sex ratio under selection for growth ? 

European sea bass is an aquaculture species in which sex ratios of farmed populations are generally 

strongly biased towards males (75-95%, Piferrer et al., 2005). These skewed sex ratios are a 

characteristic of farmed populations, as wild European sea bass quite generally exhibit balanced sex 

ratios (Vandeputte et al., 2012). Several experiments have shown that temperature during early 

development is a key factor influencing sex determination in this species (reviewed in Navarro-

Martin et al., 2009b), and it seems very likely that the temperature profile during larval rearing, 

possibly interacting with other unknown environmental factors, is the key reason for these sex ratio 

biases. Nevertheless, it has been demonstrated that sea bass sex ratio also has a genetic component 

in both Mediterranean (Saillant et al., 2002) and Atlantic (Vandeputte et al., 2007) populations of sea 

bass. In the Atlantic population, sex ratio can be modelled as a threshold trait with an underlying sex 

tendency, the heritability of which was estimated to be 0.62±0.12 on the liability scale. Interestingly, 

it has also been shown, in the same Atlantic population, that there was a positive genetic correlation 

between body weight at one year and sex tendency (rA= 0.50±0.09), as well as between body length 

and sex tendency (rA= 0.48±0.09, Vandeputte et al., 2007). Based on these results, we hypothesize 

that  

1) frequency-dependent selection in closed farmed populations of sea bass should induce a shift in 

farmed population sex ratios, which would be expected to reach a balanced value in 7 to 8 

generations of domestication (Vandeputte et al., 2007), and  

2) selection for growth should speed up the modification of sex ratio towards females.  

These two predictions have been empirically verified by a selective breeding and domestication 

experiment (see section 3.2.2) where the offspring of wild sea bass males had a sex ratio of 37.5% 

females, while the offspring of first generation domesticated males were 46.4% females and the 

offspring of fish mass selected for body length were 55.0% females.  

As it can be foreseen that selective breeding will develop in this species, and that the first trait 

selected for in breeding programmes is almost always growth, it is of great interest to try and predict 

the impact of selection for increased body size on population sex ratios. This cannot be done in a 

straightforward manner, as due to the genetic correlation of body size and sex tendency, selection 

for body size is expected to increase sex tendency, and this will be accelerated by frequency 
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dependent selection as long as the proportion of females is lower than 50% in the population. 

Conversely, if the proportion of females in the population reaches values beyond 50%, frequency-

dependent selection will counteract the effect of selection for increased body weight towards an 

increased sex tendency (and hence more females in the population). We can empirically predict that 

the population will reach an equilibrium point, beyond 50% of females, at which both selection 

pressures will neutralize themselves.  

In this part of the work, we will examine by stochastic simulation the fate of a sea bass population 

submitted to selection for increased body size, in order to predict the rate and level of sex ratio 

shifts, and to estimate the equilibrium sex ratio reached in different situations. 

3.3.2 A stochastic simulation model 

We considered a population of sea bass selected for increased body length. Additive genetic and 

phenotypic values for body length, sex tendency and phenotypic sex in the population were 

simulated as described below. 

A base population of wild broodstock was simulated. The additive genetic values of each fish for 

body length (Al) and sex tendency (At) were drawn from a binormal distribution N(0, ΣA)  and the 

environmental values of each fish for body length (El) and sex tendency (Et) were drawn from a 

binormal distribution  N(0, ΣE),  where ΣA and ΣE were two variance-covariance matrices: 
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Where σAl is the additive standard deviation of body length, σAt is the additive standard deviation of 

sex tendency, rA is the genetic correlation between body length and sex tendency and rE is the 

environmental correlation between body length and sex tendency. Under a simple additive genetic 

model the environmental variance σE=1-σA, hence the values in matrix ΣE. 

The phenotypic values of the wild broodstock for body length and sex tendency were calculated as 

            and           . When Pt was positive (= exceeding a zero threshold), the 

phenotypic sex of a given wild broodstock was set as female, while it was set as male if Pt was 

negative. Thus, on average half of the wild broodstock was male and half was female, as observed in 

natural populations (Vandeputte et al., 2012). 

The first generation of unselected hatchery fish was generated using randomly drawn male and 

female wild broodstock. The phenotypic values for offspring i of sire s and dam d were generated 

with        
 

 
    

 

 
             and                 

 

 
    

 

 
             where Als 

is the additive value for body length of sire s, Ald is the additive value for body length of dam d, δAli is 

the mendelian sampling term of offspring I for body length and Eli is the environmental value of 

offspring I for body length. Similar notations were used for the terms relating to sex tendency, and 

probit(pf), with probit the inverse of the cumulative distribution of the standard normal distribution 

evaluated at pf, the average proportion of females in the hatchery conditions observed with offspring 

from wild broodstock. This probit term accounted for the environmental displacement of the mean 

sex tendency in hatchery conditions, as explained in section 2.4.2.1. This environmental term was 

kept constant over generations, under the hypothesis that rearing conditions (and their impact on 
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sex tendency) do not change over time. δAli and δAti were drawn from a binormal distribution 

N(0,½ΣA), while Eli and Eti were drawn from a binormal distribution N(0, ΣE). As before, the phenotypic 

sex of offspring i was male or female depending on whether Pti was negative or positive, respectively. 

However, due to the environmental effect on sex tendency accounted for by probit(pf), this resulted 

in a population of offspring where the expected proportion of females was pf and the expected 

proportion of males was (1-pf). 

The individual selection process for body length was modelled as follows: the number of male (Nm) 

and female (Nf) broodstock to be selected was fixed at each generation, as well as the size of the 

population of candidates (No, number of offspring from the previous generation). This resulted in a 

global proportion selected of ps=(Nm+Nf)/No. Within each sex, the candidates were ranked according 

to their phenotypic body length. The Nm largest males and the Nf largest females were selected and 

mated at random in a full factorial design. Then, the genotypic and phenotypic values of each 

offspring for body length and sex tendency were generated from the additive genetic values of their 

parents as explained previously. Simulations were run for 15 generations, with 30 replicate 

populations. The mean and standard errors of sex tendency were calculated from the 30 replicate 

values at each generation 

3.3.3 Parameters tested 

The size of the simulated population of candidates was 1000 individuals at each generation. The total 

number of parents selected was calculated as a function of the proportion selected chosen, i.e. 10 

parents for p=0.01, 50 parents for p=0.05, 200 parents for p=0.20, 500 parents for p=0.50. The 

number of male and female parents chosen was always equal to half the total number of parents. 

The basic genetic parameters used were a 0.62 heritability for sex tendency, a 0.62 heritability of 

body length (the conservative value for BL at tagging with potential maternal effect removed - see 

section 2.4.2.2) and a 0.48 genetic correlation between both. The coefficient of variation of body 

length was set to 0.10, the average value observed, and the phenotypic variance of sex tendency was 

arbitrarily set to 1. The environmental correlation between body length and sex tendency was set to 

zero, as it never significantly differed from this value (section 2.4.2.2). 

In a first simulation, we considered a proportion selected on body length equal to 0.05, and 

compared different initial proportions of females in the G0 hatchery population, in order to reflect 

the influence of the level of masculinisation induced by hatchery conditions. Initial proportions of 

females tested were 0.05, 0.182 (the one observed in section 2.4.1) and 0.50.  

In a second simulation, we investigated the effect of the proportion selected for body length. The 

values tested were 0.01, 0.05, 0.20 and 0.50, with an initial proportion of females set at 0.182. 

Then, we investigated the effect of different values for the heritability of body length (0.3 to 0.7), and 

the effect of different levels of genetic correlation (0.3 to 0.8) with constant heritabilities of body 

length (0.62) and sex tendency (0.62). 
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Figure 3-5: Simulated proportion of females over 
generations of selection for body length for different 
proportions of females (pf) in the unselected population.  
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3.3.4 Results and discussion 

The first set of simulations (Figure 3-5) showed 

that selecting the 5% largest fish for body 

length should quickly result in an increase in 

the proportion of females in the population, 

which then reaches an equilibrium value. 

Interestingly, the masculinising effect of the 

hatchery environment, reflected by the 

proportion of females in generation zero 

(unselected offspring of wild-caught parents), 

had no impact on the equilibrium proportion of 

females, which was 81.6% with the parameters 

chosen. The masculinising effect also had no 

impact on the time for reaching the equilibrium 

value, which was approximately 8 generations.  

However, it has to be noted that although the 

equilibrium sex ratio was the same whatever the masculinising effect of the rearing environment, the 

result in terms of genetic component of the sex tendency is different. The reason for this is the 

following: as the equilibrium sex ratio is always the same, we can derive from equation 1 in section 

2.4.2.1 that the mean population sex tendency is the same at the end. However, in generation zero, 

before the selection process starts, proportions of females largely differ. As the base population 

parents are always drawn from a wild population with an even sex ratio, their mean genetic 

component for sex tendency is the same, and then the difference comes from the environment. The 

mean effect of the environment in generation zero can be estimated by the mean sex tendency of 

the population at that time, namely t=-1.64 for pf=0.05, t=-0.91 for pf=0.182 and t=0 for pf=0.5. If we 

remove this environmental component from the equilibrium sex tendency (t=0.90 with 81.6% 

females), we end up with quite different levels of sex tendency: t=2.55 for pf=0.05, t=1.81 for 

pf=0.182 and t=0.90 for pf=0.5, which means that if offspring from the three different populations 

were put in the same environment, this would result in very different sex ratios. 

The second set of simulations investigated the 

influence of the selection intensity for body 

length (Figure 3-6). It clearly appeared that 

selection intensity had an impact on the level 

of the equilibrium value. In the range tested 

the equilibrium value was proportional to the 

standardized selection intensity i (Falconer and 

Mackay, 1996) on body length. This should 

however not be the case for very high selection 

intensities as there cannot be more than 100% 

females in the population! Here again, the 

plateau was reached at the same time (8-9 

generations) whatever the selection intensity. 

In the next set of simulations, we showed that 

the heritability of body length had an impact 

 

Figure 3-6: Simulated proportion of females over 
generations of selection for body length for different 
proportions selected (p).  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15

P
ro

p
o

rt
io

n
 o

f 
fe

m
al

e
s 

in
 t

h
e

 p
o

p
u

la
ti

o
n

Generations of selection for BL

p=0.01

p=0.05

p=0.20

p=0.50



78 

 

on the level of the plateau, but this impact was 

rather limited for the range of values tested 

(73.5% females for h²BL=0.30, 83.5% for 

h²BL=0.70 - Figure 3-7). The impact of genetic 

correlation was higher, with values of the 

plateau at 70.3% females for rA=0.30, 81.5% for 

rA=0.48 and 94.8% for rA=0.80 (Figure 3-8).  

We did not try to simulate different values for 

the heritability of sex tendency, as in the 

experiment where we had a good design to 

estimate it (section 2.4.1), we had only one 

estimate for the heritability of sex tendency, as 

the sex of individuals does not vary over time, 

contrary to length for which we had two 

genetic correlation values with sex tendency 

(0.48 for length at 1 year and 0.33 for length at 

slaughter - section 2.4.2.2). We also showed in a more limited design (section 3.2.3) that an even 

higher genetic correlation (0.76) was possible when considering length at 90 dpf. 

We already showed before that without 

selection, the domestication process of sea bass 

should lead to balanced sex ratios in 7-8 

generations by frequency-dependent selection 

(section 2.4.1). Here we show that selection for 

growth, which is the most commonly applied in 

domesticated stocks, should further increase 

the proportion of females in farmed 

populations. However, this is true in the 

population tested (Atlantic base population) 

and could be different, as heritabilities and 

genetic correlations may differ, in other 

(Mediterranean) populations of sea bass. 

Another important potential limitation is that 

genetic correlations may not be stable in 

variable environments (Simons and Roff, 1996) 

or after some generations of selection, although in this case their sign is expected to remain constant 

(Leroi et al., 1994). 

 

  

 

Figure 3-8: Simulated proportion of females over 
generations of selection for body length for with different 
genetic correlations between BL and sex tendency.  
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Figure 3-7: Simulated proportion of females over 
generations of selection for body length for with different 
heritabilities for BL.  
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4 General Discussion 

4.1 Summary of the main results 

The first important technical results of the present research were that the production of large 

numbers of reasonably balanced families using artificial fertilization was feasible in sea bass, and that 

pedigree tracing with microsatellites was reliable, with single assignment rates exceeding 95%. These 

results open the possibility to use such techniques in sea bass breeding programmes, with evident 

potential in terms of conservation of the genetic variability and of use of family information to 

improve the estimation of breeding values. 

The analysis of covariance between relatives showed that the heritability of body weight and body 

length is reasonably high (h²= 0.27-0.44), and in general moderately affected by non genetic 

maternal effects (m²= 0.04-0.19). Dominance variation for weight and length is low and can be 

reasonably ignored (d²≤ 0.02). Together with the high level of phenotypic variation observed for 

these growth traits, this gives good perspectives to increase harvest weight, either by direct selection 

on weight or by indirect selection on length as both traits were found to be highly genetically 

correlated (rA=0.91-0.96). When growth rate rather than body weight was considered, heritability 

estimates were still reasonable though lower (0.16-0.34 within sites). 

These good prospects were confirmed by comparing the offspring of first generation selected and 

unselected (domesticated) sires with that of wild sires. Two lines of selected fish showed a selection 

response of 23% body weight when compared to wild or unselected control. The two lines of 

selected fish both represented the top 5% males in terms of body weight and body length, but with 

two selection strategies: mass selection for length at 398g mean weight in the Ifremer experimental 

station, and an industry breeding programme (Panittica) with three successive cullings on weight (1) 

and length (2) at different ages. The offspring of the two selected lines had the same growth 

performance over the whole period studied, showing no superiority of the Prosper method in this 

case -  although the sampling variance inherent to selection does not allow us to conclude on this 

absence of differences. Similarly, no difference in growth could be observed between the offspring of 

domesticated and wild males - with the same limitation.  

Competition was shown to amplify differences between genetic groups, as the selection response 

when all four genotypes were mixed in the same tanks reached 42%, compared to the 23% observed 

in separate tanks. Realized heritability was 0.34 when selection response was evaluated in separate 

tanks, in agreement with the previous estimates from covariance between relatives. When selection 

response was estimated from mixed tanks, the realized heritability was estimated to be 0.60, a 

clearly over-estimated figure including the competition effect – this then has to be taken into 

account when designing experiments for comparing genetic groups of sea bass. Nevertheless, this 

selection response experiment, although done in a single environment, showed that very fast gains in 

growth could be achieved in sea bass by simple individual selection. 

The GxE interaction component of the study was double faced. We approached GxE interactions 

through the estimation of genetic correlations between the four farm sites: tropical sea cages in 

Israel, intensive recirculated system in France, raceways with well water in Italy and semi-intensive 

estuarine ponds in Portugal. When we studied the genetic correlations of harvest body weight (ca. 

400g) between sites, we found they were rather high: 0.84-0.99, with one exception of a genetic 
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correlation at 0.70 between Israel and Portugal, the extreme sites in terms of rearing temperature.  

The logical conclusion from this finding was that GxE interactions were not an important constraint 

for the development of sea bass breeding programmes.  

However, in this study, the fish were tagged at ca. 1 year of age and a mean weight of 35g, thus 

limiting the possibility for GxE interaction to have a very high impact on harvest weight. When we 

studied growth rate instead of body weight, the picture was completely different: genetic 

correlations between sites were low to moderate (0.21-0.61) with one exception (rA=0.78) between 

Israel and Italy, where a long common life due to transportation problems could explain the 

(relatively) high level of the genetic correlation. When choosing growth rate rather than body weight 

as the target trait, the GxE interaction is then expected to be high – which  is also revealed by the fact 

that the heritability of growth rate across sites is much lower (0.12) than the average of  within site 

heritabilities (0.25). Still, we can mention that we did not observe any negative genetic correlation 

between sites, meaning that selection for growth in a given site is not expected to generate adverse 

effects in any other site. However, a negative genetic correlation appeared between initial weight 

(before 370 dpf) in Palavas and growth rate in Portugal (rA=-0.31±0.11), showing that selection for 

early growth should be considered with caution, especially when the ongrowing environment differs 

from the selection environment. 

Through the analysis of the fisheries literature related to sea bass, we could show that, as predicted 

by Fisher’s theory, the sex ratio in wild sea bass populations, either from the Atlantic or from the 

Mediterranean, was 1:1 in young adults. Females were dominating in older fish, probably due to a 

higher longevity. This indirectly showed that the excess of males in farmed sea bass was neither an 

intrinsic characteristic of the species, nor linked to the genetic background of the farmed sea bass 

lines, and thus was actually linked to the farming environment, as hypothesized before on the basis 

of environmental manipulations in the early rearing phases (as reviewed by Navarro-Martin et al., 

2009b). Moreover, anecdotal evidence in some cohorts indicated that cohort sex ratios could also be 

male or female-biased in the wild, most likely due to specific environmental conditions in some (rare) 

brood years. This indicates that mimicking natural conditions should allow the production of 

balanced sex ratios in farmed sea bass populations, but also that the manipulation of the 

environment could lead to an excess of males (farmers know that...) or of females (which has not 

been reliably established until now). 

The average sex ratio in the first (covariance between relatives) experiment was 18.2% females, well 

in line with usual sex ratios in production. Between family variation for sex ratio was very high, with 

proportions of females ranging from 4.7 to 46.3% in paternal half-sib families and from 0.5 to 40.3% 

in maternal half-sib families. Full-sib families had 0 to 75% females, but their small size (21 fish on 

average) limits the significance of this last observation. Still, we could observe from logistic 

regression that sex ratios were mostly additive.  

We demonstrated that the distribution of sex ratios among families was not compatible with a purely 

genetic sex determination system (existence of environmental variance was a necessity, whatever 

the number of loci implied). Even with environmental variance, at least two bi-allelic loci were 

necessary to explain the distribution observed, while polygenic sex determination was also plausible.  

When sex ratio was described as a threshold trait with an underlying polygenic sex tendency, the 

heritability of sex tendency on the underlying scale was 0.62±0.12, and interestingly it was 
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significantly positively correlated with body weight (rA= 0.50±0.09). We concluded from these 

observations that closing a sea bass population in farming conditions should lead to balanced sex 

ratios in 7-8 generations through frequency-dependent selection. Due to the positive genetic 

correlation with growth, selection for growth would be expected to further increase sex-tendency, 

and fasten the reach of a balanced sex ratio – and even induce female-dominant populations in later 

generations. 

These hypotheses were tested in the selection response experiment where we compared sex ratios 

in the offspring of wild, first  generation domesticated  and first generation mass selected for growth 

sea bass males. Although the average sex ratio was higher in this experiment, probably due to 

environment conditions and/or an heterosis effect4, the proportion of females was significantly 

different between all groups, being 37.5%, 46.4% and 55.0% in the offspring of wild, domesticated 

and selected males, respectively. This qualitatively confirmed the predictions done from the analysis 

of sex ratios in the families of the first experiment, that domesticated fish should have more females, 

and that this should be further increased by selection for growth. In the same experiment, we could 

show that the genetic correlation between body length and sex tendency seemed to be maximal at 

the early juvenile stage (90 dpf) where it could reach 0.77±0.16. 

As indirect selection of sex tendency through selection for growth involves interactions between 

frequency-dependent selection and indirect selection, its outcome cannot be easily predicted in 

quantitative terms. To this end, I developed a tool in Excel-VBA to perform stochastic simulations of 

the evolution of growth and sex tendency under selection for growth. This allowed me to 

demonstrate that selecting the 5% longest fish should result in an increase in the female ratio in the 

population, reaching a plateau around 80% of females in 8-9 generations. The phenotypic level of the 

sex ratio plateau is positively influenced by the genetic correlation between body length and sex 

tendency, the selection intensity on body length and the heritability of body length, but not by the 

environmental level of masculinisation linked to the hatchery environment.  

We will now examine more precisely the consequences of these findings for 1) developing selective 

breeding programmes for the aquaculture of sea bass and 2) increasing our understanding of the 

very peculiar sex determination system in this species. 

  

                                                           
4
 as the males, from Atlantic origin, were mated to Mediterranean females which were the only ones available 

the year the experiment was performed 
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4.2 A perspective for sea bass domestication and breeding programmes 

4.2.1 A proof of concept of the use of marker-based parentage assignment  

Fish breeding programmes have historically been based on separate rearing of the progenies (for 

family based breeding programmes) or on individual selection, not using family information. The first 

option may be very efficient but costly in terms of structures and labour, while the second one may 

be easier to implement, but limited in terms of precision and most of all in terms of control and 

optimization of the selection process: the only heritability that can be known ( and only a posteriori, 

if a control line has been kept) is realized heritability of the one trait selected for, and there is a total 

ignorance of the efficiency or not of the methods used to conserve genetic variability and avoid 

inbreeding. In addition, selecting for lethal traits is difficult if not impossible in individual selection 

schemes, and selection on an index combining several traits cannot be optimized when genetic 

parameters are not known. 

In the present work, we have, for the first time in sea bass, used a mating design which is not too far 

from what a commercial sea bass breeding programme could be, using genotyping of microsatellites 

to recover parentage. The previous trials using molecular pedigrees with this species had been done 

on very small family numbers (9 sires*3 dams, Saillant et al., 2006). In other species, larger mating 

designs had been used (Table 4-1). 

Table 4-1 : Examples of parentage assignment with microsatellites in farmed fish, for different species, type of mating 
designs (FF: full factorial, IF: incomplete factorial, NE: nested, MS: mass spawning) with percentage of unambiguous 
assignment and estimated effective population size, based on two calculations, Ne1 which takes into account the sex ratio of 
broodstock and Ne2 which also incorporates the real numbers of participating broodstock and the disequilibrium in family 
sizes. 

Species mating (type) # full sib 
families

a
 

#markers % unique  
assignments 

Ne1
b
 Ne2

c
 Reference 

O.mykiss 48 ♂ x 4♀ (FF) 192 10 90 % 14.7 14.6 Chevassus et al., 2002 
O.mykiss 2 ♂ x 36♀ (FF) 96 14 91-95% 7.6 7.4 Fishback et al., 2002 
S.salar 78 ♂ x 149♀ (NE) 149 8 95.8% 204.8 ? Norris and Cunningham, 

2004 
C.carpio 24 ♂ x 10♀ (FF) 240 7-8 95.3% 28.2 22.3 Vandeputte et al, 2004 
C.carpio 147 ♂ x 8♀ (FF) 1176 6-11 75.7% 30.3 29.7 Kocour et al., 2007 
C.carpio 58 ♂ x 58♀ (IF) 135 (113) 7 96.8% ? ? Ninh et al., 2011 

H.molitrix 36 ♂ x 36♀ (IF) 144 10 96.4% 72.0 60.6 Gheyas et al., 2009 

D.labrax 41 ♂ x 8♀ (FF) 328 (261) 5-6 99.5% 26.8 18.0 Grima et al., 2010a 
D.labrax 33 ♂ x 23♀ (IF) 253 (252) 6 99.2% 54.2 52.0 This study (chap.2) 
D. labrax 76 ♂ x 13♀ (FF) 988 8 95.9% 44.4 29.8 This study (chap.3) 
G.morhua 24 ♂ x 26♀ (MS) 101 4 98.6% 49.9 ? Bekkevold et al., 2002 
G. morhua 30 ♂ x 70♀ (MS) (523) 5 91.2% 84.0 ? Wesmajervi et al., 2006 
P.major 250 ♂+♀ (MS) (87) 4 73.5% 84.6 63.7 Perez-Enriquez et al., 1999 

D. labrax 45 ♂ x 58♀ (MS)  6 59.9% 101.4 3.4 Chatziplis et al., 2007 
P.herzensteini 26 ♂ x 35♀ (MS)  5 92.2% 59.7 15.3 Kim et al., 2007 
 

a
theoretical number, observed number between brackets 

b
estimated by 4NmNf/(Nm+Nf), Nm=number of male parents, Nf=number of female parents 

c
estimated by 4NemNef/(Nem+Nef),with Nem=(Nmkm-1)/(km-1+Vm/km) and Nef=(Nfkf-1)/(kf-1+Vf/kf), where km (kf) is the average 

number of offspring per male (female) parent and Vm (Vf) is the variance of the number of offspring per male (female) 
parent (Kimura and Crow, 1963). 
 

In our results as well as in the literature (Table 4-1), it appears that high assignment rates (95%) can 

be achieved in most cases. In a few cases however, low assignment rates have been achieved. The 

first reason of this is the insufficient assignment power of the marker set used, which is often 
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developed with the aim to minimize the number of markers for a given projected assignment power. 

This can lead to disappointing results, where the observed power can be well below the calculated 

one (Jerry et al., 2004; Dong et al., 2006; Slabbert et al., 2009; Vandeputte et al., 2011). Population-

specific problems like the occurrence of null alleles (Hedgecock et al., 2004), or the use of related 

parents which share more alleles than unrelated parents (Matson et al., 2008; Villanueva et al., 2002) 

can also decrease the assignment power. Genotyping errors may also be a problem, but are easily 

dealt with both by exclusion-based (Christie, 2010; Vandeputte et al., 2011) and maximum-

likelihoods based (SanCristobal and Chevalet, 1997) assignment software as long as they are not too 

many. Last, but not least, missing parents, due to loss of samples over time or delayed collection are 

an avoidable but potentially serious problem, as exemplified in Chatziplis et al. (2007) where the 

59.9% single assignment rate comes together with 36.9% unassigned offspring, probably largely due 

to the fact that 15 parents out of 103 had missing DNA samples. 

Apart from parentage assignment success, the ability to have a good representation of families is 

essential for setting up a breeding programme as it has an impact on the conservation of genetic 

variability from one generation to another, and also on the value of family information. In the early 

days of the technique, this was seen as a major drawback of molecular pedigrees when compared to 

separate rearing of families (Gjerde, 2005).  

One way to have a synthetic view of the equilibrium of family sizes is the calculation of effective 

population size, using a formula that includes the effect of variance in family size (Ne2 in Table 4-1). 

As effective population size is extremely sensitive to variance in family size, the comparison with an 

estimation of Ne which does not include variance in family size (Ne1 in Table 4-1) is an efficient way to 

account for the impact of this imbalance on the conservation of genetic variance in a breeding 

programme. In our results, the difference between the two Ne estimates was -4.1% in our first 

experiment and -33% in the second one. The main difference between the two was that in 

experiment 1 the spawn of each females was split to be individually fertilized with several males and 

incubated separately, while in experiment 2 the eggs of the 8 females were pooled in equal 

quantities before they were separated in aliquots for fertilization by the individual males. When 

looking at other experiments summarized in Table 4-1, it appears that the experiment by Grima et 

al., 2010a, which also used pooling of eggs before fertilization, also exhibited a 33% reduction in Ne 

when variance of family size is accounted for. Other studies with separate incubation of females in 

salmonids also show very minor reductions in Ne (Chevassus et al., 2002; Fishback et al., 2002). The 

source of such variations is probably linked to differential fertilization rates between females, which 

can be compensated when eggs are mixed by equal volume once unfertilized eggs have been 

eliminated - which isnot possible when eggs are pooled before fertilization. However, this is not a 

general case, as in common carp one experiment with pooling of eggs prior to fertilization gave a  

significant Ne reduction (-21% in Vandeputte et al., 2004) while another did not (-2.0% in Kocour et 

al., 2007).  

When comparing these figures obtained by artificial fertilization under a controlled mating scheme to 

figures obtained in mass spawnings, it anyway appears that even mixing of spawns prior to 

fertilization is better than the disequilibrium incurred when collecting mass-spawned eggs (Ne 

reductions of -24.8% in red sea bream, Perez-Enriquez et al., 1999; -74.4% in brown sole, Kim et al., 

2007; and even -96.6% in European sea bass, Chatziplis et al., 2007 - see Table 4-1). All in all, it 

appears that combining artificial fertilization with parentage assignment seems an efficient way to 
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provide a usable family structure for fish breeding. If it is anticipated that the number of well-

represented families is to some extent below the expected number, this can easily be corrected by 

producing more families, as the number of families is not constrained by the number of rearing 

structures, as is the case when separate rearing is used. For a given offspring sample size, precision 

will always be lower with unequal family sizes, but using more families may also have a positive 

impact on the genetic gain through higher between family selection intensity, so the final result is 

uncertain and will require further modelling to take appropriate decisions. Increasing the number of 

families ultimately will also decrease the assignment power of the marker set used, but this effect is 

expected to be very small if the assignment power is high enough. Using the formulae of Villanueva 

et al. (2002), it can be estimated that a set of 10 loci with 5 equally frequent alleles would have a 

combined exclusion probability of 0.9999996177, resulting in a theoretical assignment rate of 99.6% 

in a 100*100 factorial mating, and the same marker set would still assign 98.5% of a progeny in a 

200*200 mating, with twice as many parents and four times more potential families. Thus, when the 

assignment power is high enough, the number of families (within a reasonable range) will have very 

little impact if any on the efficiency of parentage assignment. 

A decisive advantage of parentage assignment is that the "common garden" methodology allows to 

avoid any bias in genetic parameters linked to tank effects common to full-sibs, which can be high in 

some cases in fish, as highlighted before (section 1.3.2, p.5). A potential drawback is that as fish are 

reared together from hatching, maternal effects linked to egg size or egg quality may give initial 

advantages to some offspring, which may then persist over time. In the present study, although they 

were not significant, maternal effects could be high at some times: m² was estimated to be 0.19±0.09 

for body weight at slaughter in Portugal although the estimate for all data at slaughter was only 

0.06±0.05 (section 0). Still, this seemed rather dataset dependent, as this was estimated with a 

reduced dataset (without deformed fish) while with the full data set the same estimates reduced to 

0.09±0.07 and 0.04±0.04 (section 0). Nevertheless, when separate rearing is used, maternal effects 

are known to fade over time in salmonids (Gall, 1974; Mckay et al., 1986a; Mckay et al., 1986b; 

Blanc, 2002) while they may persist in mixed rearing (Blanc, 2002). In mixed rearing trials, maternal 

effects have been shown to be less than 0.04 in common carp (Vandeputte et al., 2004; Ninh et al., 

2011) but more data is needed to draw a general conclusion on this subject. 

Another advantage of parentage assignment is that it allows, without investment in rearing 

structures, to obtain precise estimates of genetic parameters (heritabilities, genetic correlations), as 

exemplified in Chapter 2. Moreover, these genetic parameters can be obtained in industry 

conditions, as the fish are reared in a single batch that can be reared as any production batch (with 

the exception that it should not be sorted by body size to avoid underestimation of heritability - 

Blonk et al., 2010). As there is no investment in structures, there is no need to start designing a 

breeding programme before the genetic parameters are known, and it is quite commonsense that 

the options for the design of breeding programmes may to a large extent depend on the estimates of 

genetic parameters (e.g., using family information is highly valuable when heritability is small, but 

may be much less relevant when it is moderate to high - Falconer and Mackay, 1996). Once the 

genetic parameters are known, all options (mass selection - without family information, family based 

selection with separate rearing or genotyping) remain open to practically establish a breeding 

programme, as they are not constrained by the initial methodology chosen. 
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Experimentally, genotyping of progenies can also be extremely useful to compare the performances 

of several genotypes (in our case wild, domesticated and selected - see Chapter 3) in a common 

environment. In fish, common environment or "tank effect" can be very high, and this may require a 

high number of replicate tanks to achieve enough experimental power in comparing various 

genotypes (e.g. Vandeputte et al., 2002a). Then, communal testing, where all genotypes are 

physically tagged and mixed in the same rearing structure has long been advocated as a way to avoid 

common environment effect and to increase statistical power to detect differences between 

genotypes (Wohlfarth and Moav, 1985). However, "classical" communal testing is flawed by the 

necessity to separately rear fish before they can be physically tagged (at least 3 g body weight - 

Navarro et al., 2006, most of the time 10-20g). The differences in growth established during this 

initial separate rearing phase, where genetic and environmental effects cannot easily be 

disentangled except with replication of rearing structures, may or may not impact growth in the 

communal rearing phase. In common carp, the multiply nursed samples method has been developed 

in Israel to overcome this problem, but it remains difficult to set up in practice (Wohlfarth and Moav, 

1972), as it involves creating artificial environmental divergences in an homogeneous genetic group 

during the separate rearing phase, and then mixing these "multiply nursed samples" with the tested 

groups to regress gains on initial environmental differences . Solving this question is quite 

straightforward when the pedigree is recovered by genotyping, as all fish can be mixed from the first 

stages (hatching, or even egg stage).  

However, as shown in Chapter 3, whatever the method chosen, the remaining problem, is that in 

communal rearing, competition may magnify differences in size between groups with different 

genetic potential for growth. This was also shown in other species such as rainbow trout (Blanc and 

Poisson, 2003), gilthead sea bream (Knibb et al., 1997) and common carp (Moav and Wohlfarth, 

1974). 

The main drawback of parentage assignment with markers remains its cost (4-15€per individual fish), 

and a precise assessment of its economic value will be needed in each situation. Such evaluations 

have seldom been published, but when they have, they showed that parentage assignment 

compared well to separate rearing on the economic side (Ninh et al., 2011). It is expected that Single 

Nucleotide Polymorphisms (SNP) genotyping would permit genotyping large samples of fish at a 

moderate cost in the future. The advantage of SNPs is their adaptability to high throughput 

automated genotyping methods and their low genotyping error rate, but more SNPs that 

microsatellites are needed to provide efficient parentage assignment (Hauser et al., 2011). However, 

in early 2012, there are still no routinely implemented SNP genotyping methods that outperform the 

cost/benefit ratio of microsatellite-based parentage assignment. 

Our results show that genotyping of progenies is an efficient tool to estimate genetic parameters and 

to conduct response to selection experiments in sea bass - although for this last use estimates of 

differences between genotypes may be biased upwards. Moreover, we showed that the technique 

was practical even in relatively large mating designs (Ne≈50), which could be subsets of a real size 

breeding programme for the species with Ne=100-200 as classically recommended to keep inbreeding 

to a level not impacting population fitness (Meuwissen and Woolliams, 1994).  
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4.2.2 Selection for increased body weight  

Body weight has always been and remains the main trait selected for in fish breeding programmes 

(Gjedrem and Thodesen, 2005). However, as breeding programmes develop on a given species, the 

tendency is to decrease the part of body weight in the selection index, to the benefit of quality and 

fitness (disease resistance) traits. Examples can be seen at http://aquagen.no for the breeding goals 

of Aquagen in Atlantic salmon and in Vandeputte et al. (2009a) for the French rainbow trout 

breeding system. However, the benefits of selection for body weight are not as straightforward as it 

seems, as faster growing fish will also eat more - so the increased output is not for free!  

One of the "objective" reasons to select for growth is the supposed correlated increase in feed 

efficiency, as has been observed in land animals where fast growers tend to direct a higher 

proportion of their energy budget to growth rather than to maintenance (e.g. Arthur et al., 2001 in 

young Charolais cattle). When simulating the economic gains of selection for growth in fish, it 

appears that a major parameter influencing profitability is the correlated response in feed efficiency 

(Ponzoni et al., 2007; Ponzoni et al., 2008). However though some results highlight a positive impact 

of selection for growth on feed efficiency in fish (Thodesen et al., 1999; Kause et al., 2006; Quinton et 

al., 2007), it is not always the case (Sanchez et al., 2001; Ogata et al., 2002; Mambrini et al., 2004). 

Then, the interest of selecting for body weight if no improvement in feed efficiency would occur 

would be questionable.  

Another way to see the question would be to consider that body weight is an easily recorded trait, 

which quite generally has a moderate to high heritability (0.20 to 0.50 in most cases, see review in 

Gjedrem and Olesen, 2005) and a high phenotypic variance, making it suitable for individual selection 

with high, visible genetic gains (10-30% per generation, reviewed by Gjedrem and Thodesen, 2005). 

In a given species then, it can be considered that selective breeding first has to prove its efficiency to 

farmers through increased weight gains (as was done in the Atlantic salmon in Norway, Gjedrem, 

2010), while more directly profitable - but more difficult to select- traits (disease resistance, quality, 

processing yields) will only be selected later on, as seen before. Whatever the real benefits of 

selection for growth, breeding programmes are now in their early generations in sea bass, and 

growth rate clearly remains an important breeding goal for the sea bass breeding companies. 

Our results show that the heritability of growth traits in sea bass is moderate to high, with many 

variations depending on the trait, age of the fish, ongrowing site and statistical model to analyze 

data: the highest estimate we obtained was h²=0.70±0.09 for tagging weight (at 1 year, 35g mean 

weight) in a model without maternal effects, while the lowest was h²=0.12±0.04 for growth rate 

(DGC) across all sites in a model with maternal effect (section 0). For designing a breeding 

programme, it is then clear that choices regarding the estimates used will have important 

consequences on the estimation of potential gains. 

First of all, we have to choose between heritability estimates obtained from models with or without 

maternal effects. As we saw that maternal effects were never significant, it would be tempting to use 

estimates of heritability obtained without maternal effects, which are higher. However, if maternal 

effects are existent but small (less than 0.05) they could noticeably bias heritability estimates, 

although not statistically significant. Therefore, we will rather use conservative estimates obtained 

from models integrating maternal effects. When maternal effects are large, technical ways to 

overcome them by separately rearing the offspring from different female groups with similar egg size 

http://aquagen.no/En/Breeding+Genetics/Broad+Selective+Breeding+Goals.9UFRrS3Q.ips
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have been proposed in trout, in the PROSPER methodology for individual selection (Chevassus et al., 

2004, Haffray et al., in press). However, using such a method is beneficial only if maternal effects are 

relatively large (m²>0.10), which is obviously not the case here, and moreover requires a measurable 

predictor of maternal effects. Such a predictor is available in salmonids, as egg size has been shown 

to explain most of the maternal effects, at least in the early stages (Blanc, 2002; Vandeputte et al., 

2002b), while in sea bass we have no idea of a predictor which could be egg size but maybe also any 

parameter linked to egg quality. It is then neither advisable nor efficient to take into account 

maternal effects in a sea bass breeding programme, apart from using conservative heritability 

estimates obtained with maternal effects included in the model. To increase growth, there are 

basically three traits that can be chosen: body weight, body length, and growth rate (as     

                 ). Each of them has its pros and cons: 

 Body weight, and especially body weight at harvest, is the trait chosen in many breeding 

programmes, as the weight of fish sold is directly linked to the economic turnover of the 

farms. When reviewing the aquaculture genetics literature, it is by far the most studied trait, 

and the most straightforward to use. One of its disadvantages is that it is generally positively 

genetically correlated with the condition coefficient K - and this is the case in sea bass with 

genetic correlations in the range 0.23-0.35, except in one site - thus leading to a correlated 

increase in K with the increase in body weight. As in many cases consumers prefer thin "wild-

like" shape, this can be seen as a negative consequence of selection for body weight. 

 Body length can be used as an indirect predictor of body weight, as the genetic correlation 

between both traits is very high (0.91 to 0.96), so it can be almost as efficient as direct 

selection for increasing body weight, but with a null to negative genetic correlation with K 

(-0.32 to +0.05 in our data), thus selecting thinner fish. We have proven the efficiency of the 

first generation of selection on body length in section 3.1, with a conservative estimate of 

the gain (in separate tanks) of 23% for one generation of selection with a proportion selected 

of 5% on body length. Other selection experiments have shown the ability to efficiently 

select for increased body weight using body length as a predictor: +21.5% in weight per 

generation in four generations of brown trout, with a correlated decrease in K (-9.6%, 

Chevassus et al., 2004). The advantage of using body length is also that it is extremely 

practical and fast to perform individual selection of fish above a given threshold, using a 

simple ruler. 

 Growth rate, measured as DGC, does not seem to be a direct economic trait, however it also 

has its interests. By construction, growth rate is linked to final body weight, so increasing 

growth rate will doubtlessly increase final body weight. If we consider an integrated system 

where selection and ongrowing are done by the same company, harvest weight or growth 

rate from hatching to slaughter describe the same phenomenon, and seem to be of equal 

interest.  However, in fish farming, breeding companies may be only hatcheries whose 

commercial product is juveniles, which are usually sold to ongrowing farms at 2-20 g mean 

weight in marine fish. For the buyer, it makes a big difference if the gain in growth is done 

before or after the moment when he buys the fish. For him, the important parameter will be 

the growth rate from fingerling to harvest size, which may be poorly predicted by final body 

weight, or even worse by fingerling weight at the hatchery stage (section 2.3). In this case, if 

the objective of a hatchery is to satisfy its customers, growth rate during the ongrowing 
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Table 4-2: Estimated  selection response (% of the mean per 
generation) for slaughter weight and DGC from 370 dpf to 
slaughter in sea bass in Ifremer Palavas conditions, for 
different traits and proportions selected.  

Selected trait proportion 
selected 

selection 
response 
slaughter 
weight 

Selection 
response 
DGC 

BW at 370 dpf 10% 32% 3.7% 

5% 37% 4.4% 

1% 48% 5.7% 

BL at 370 dpf 10% 30% 3.6% 

5% 36% 4.2% 

1% 46% 5.5% 

BW at slaughter 10% 29% 4.7% 

5% 34% 5.5% 

1% 44% 7.1% 

BL at slaughter 10% 23% 3.8% 

5% 27% 4.5% 

1% 35% 5.8% 

DGC 370dpf-
slaughter 

10% 15% 3.9% 

5% 18% 4.5% 

1% 23% 5.9% 

 

phase will be the trait to improve. This does not fully hold for hatcheries selling selected eggs 

and larvae, for which selection for final body weight may be appropriate, as the whole of the 

growth cycle is performed in the customer’s installations. 

As in most cases any of those growth traits have a moderate to high heritability (h²>0.25), if growth is 

the only trait considered, the most economical solution for selection will be individual selection, as 

family information will bring in only limited additional precision, but a much higher cost due to 

genotyping and individual tagging of the fish, while tagging will not be necessary for individual 

selection on harvest weight or length.   Individual selection for DGC however implies using repeated 

growth measurements on individual fish, thus making individual tagging of selection candidates 

necessary.  

For individual tagging, the use of RFID glass tags is technically operational, as demonstrated in our 

experiments and other ones with other species (e.g. Navarro et al., 2006 in sea bream). In practical 

farm conditions however, as tagged fish are not externally distinguishable from untagged fish, it 

might be difficult to use if there is a risk of mixing with fish that have to be sold for human 

consumption. Using tagged fish implies that selection candidates are reared separately from 

production fish, which differs from strategies where it was suggested that selection could be done on 

normal production batches (see the "walk-back" selection concept by Doyle and Herbinger, 1995). 

In Table 4-2, we give estimates of selection response for growth traits in one site, using genetic 

parameters estimated in the Ifremer Palavas experimental facility from our heritability estimation 

experiment (chapter 0). We calculated the direct selection response using the breeder's equation 

         (Falconer and Mackay, 1996) 

for individual selection, where ΔG is the 

genetic gain per generation, i is the 

standardised selection intensity (i=1.75 for 

10% selected, 2.06 for 5% selected and 

2.66 for 1% selected), h² is the heritability 

of the trait and σP is the phenotypic 

standard deviation of the trait. When trait 

#1 (e.g. body length)  was selected to 

obtain indirect response on trait #2 (e.g. 

slaughter weight), the following equation 

was used:                        

(Falconer and Mackay, 1996), where         

is the genetic correlation between trait 1 

and trait 2. In all cases, ΔG was 

standardized by the mean of the trait and 

expressed as percent gain per generation. 

Estimated selection responses for 

slaughter weight are high in general, and 

the best selection criterion appears to be 

BW at 370 dpf, meaning that due to its 

high heritability (0.61), it is more efficient than direct selection on slaughter weight. Even BL at 370 
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dpf (with the above mentioned advantage to also select thinner fish) is more efficient than direct 

selection on slaughter weight. The worst criterion is DGC, which yields approximately half the gain on 

BW compared to other selection criteria - and this is linked to its rather low heritability (0.19). In 

addition, we can see that the response in BW at slaughter when BL at slaughter is used as a selection 

criteria is estimated at 27%, while we observed 23% in our selection response experiment which was 

done in this way  (Chapter 3) - thus confirming the reliability of these estimates. 

If the objective is to increase DGC, the best trait to select for is by far slaughter weight. Direct 

selection on DGC or indirect selection for BL at slaughter or BL and BW at 370 dpf are all roughly 

equivalent in terms of gain. It should be noted that estimated gains in DGC are much smaller (3-7% 

per generation) than gains in body weight (15-48% per generation), due to both its low heritability 

and its relatively low coefficient of variation (11%, vs. 37% for BW at slaughter). 

 In our selection response experiment, the DGC of selected (M,P) and unselected (W,D) fish differed 

in the period 268-338 dpf (1.14±0.02 for selected vs. 1.04±0.02 for unselected, P<0.01) but were the 

same (0.780±0.018 for both groups, P=0.97) in the period 338-611 dpf, confirming the lower 

response on DGC after the first year, although selection was performed at 714 dpf in this experiment. 

This shows that the important weight gain we observed was mostly a consequence of early growth, 

although in this case negative interactions with rearing density could also partly explain the lack of 

response for late growth rate (section 3.1.4.2). 

From a technical point of view, our results also raise a question about the relevance of DGC to study 

growth rate in sea bass. DGC has been developed in salmonids based on the observation that under 

optimal growing conditions, the cubic root of body weight was a linear function of time in rainbow 

trout (Iwama and Tautz, 1981; Bureau et al., 2000). The consequence is that 

                      is constant over time t (and by extension independent of fish size). 

In sea bass however, we can see that DGC decreases with time in our selection response experiment 

(Figure 3-1, p56). Taylor series expansion of the calculation of weight gain as a function of DGC, time 

and IBW shows that variations in weight gains should be proportional to variations in DGC if DGC is 

constant over time. Therefore, it should be expected that the CV of DGC would be the same as the 

CV of weight gain (or of FBW if we consider the growth period from hatching to slaughter). The 

observation we do that the CV of DGC is approximately one third of the CV of body weight is 

therefore not expected. It could be the consequence of the decrease of DGC over time (or with body 

size), which would tend to mechanically underestimate growth rate in large fish while overestimating 

it in small fish. This reduced variability could then explain to some extent the parallel limitation of 

heritability estimates of DGC (0.24 on average), which are lower than estimates of heritability of BW 

(0.39 on average) in our data. Such difference is not seen in rainbow trout, where heritability of 

thermal growth coefficient (TGC, a temperature-adjusted DGC) between 43 and 440g mean weight is 

more similar to that of BW (0.46 vs. 0.61, Le Boucher et al., 2011). It may be necessary to develop 

new formulae for DGC in sea bass, as has been done in rainbow trout where it appeared that the 

exponents applied to weight were rather different depending on the mean weight of the fish, 

although stable inside relatively large intervals (BW0.21 from 0.2 to 20g, BW0.33 from 20 to 500 g, 

BW0.97 for BW>500g, Dumas et al., 2007). 

The simplest trait to select for then remains BW at slaughter, but BW or BL at 370 dpf may also be 

considered as they would decrease the cost of selection by avoiding the rearing of a large quantity of 
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selection candidates until slaughter. Precise economic evaluation has to be done, but rearing 20000 

fish up from zero to 35g (700 kg biomass) to apply a 1% selection pressure on BL at 370 dpf would 

give the same gain in DGC and a higher gain on BW than rearing 4000 fish from 0 to 400g (1600 kg 

biomass) to apply a 5% selection pressure on  BW at slaughter. 

These calculations are valid within one site, but an important question remaining is the definition of 

a strategy when the selection environment differs from the production environment, as we saw that 

GxE interactions could be high in some cases.  
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a) Selection on FBW-response on FBW 

 FBW 
Israel 

FBW 
Palavas 

FBW 
Italy 

FBW 
Portugal 

FBW Israel 16% 17% 17% 11% 

FBW Palavas 16% 24% 18% 14% 

FBW Italy 17% 19% 22% 14% 

FBW Portugal 15% 20% 18% 18% 

 

b) Selection on DGC-response on FBW 

 FBW 
Israel 

FBW 
Palavas 

FBW 
Italy 

FBW 
Portugal 

DGC Israel 8.2% 2.6% 7.9% 4.3% 

DGC Palavas 8.5% 12.8% 11.0% 8.2% 

DGC Italy 8.4% 4.1% 12.6% 5.8% 

DGC Portugal 3.7% 0.4% 7.3% 7.5% 

 

c) Selection on FBW-response on DGC 

 DGC 
Israel 

DGC 
Palavas 

DGC 
Italy 

DGC 
Portugal 

FBW Israel 4.0% 3.7% 4.2% 1.2% 

FBW Palavas 1.2% 5.4% 2.0% 0.1% 

FBW Italy 3.8% 4.9% 6.3% 2.4% 

FBW Portugal 2.8% 4.9% 3.9% 3.3% 

 

d) Selection on DGC-response on DGC 

 DGC 
Israel 

DGC 
Palavas 

DGC 
Italy 

DGC 
Portugal 

DGC Israel 4.2% 1.4% 4.3% 1.8% 

DGC Palavas 1.6% 4.5% 2.3% 1.0% 

DGC Italy 4.2% 2.1% 7.0% 3.3% 

DGC Portugal 2.6% 1.3% 5.0% 6.2% 

 

e) Selection on IBW-response on FBW 

 FBW 
Israel 

FBW 
Palavas 

FBW 
Italy 

FBW 
Portugal 

IBW(Palavas) 19.1% 27.0% 22.7% 17.8% 

 

f) Selection on IBW-response on DGC 

 DGC 
Israel 

DGC 
Palavas 

DGC 
Italy 

DGC 
Portugal 

IBW(Palavas) -1.3% 4.4% 0.0% -2.5% 

 

4.2.3 Genotype by environment interactions for growth: which consequences? 

In our genetic parameters estimation experiment, GxE interactions were limited for BW at slaughter 

(rA between different sites in the range 0.70-0.97), but rather high for DGC (rA=0.21-0.78). When 

genetic correlations were estimated between initial growth (BW at 370 dpf) and  DGC in different 

sites, negative correlations even appeared (-0.32 with Portugal). As sea bass hatcheries (and breeding 

programmes) are rather concentrated in a few places (Aquabreeding, 2009), it is important to figure 

out whether the genetic gains obtained could profit the whole ongrowing industry, and to propose 

ways to optimize them. 

We will first estimate the selection response for a 5% selection pressure on body weight in one 

environment on final body weight in another environment, as well as on DGC in another 

environment. The correlated effects of selection for DGC or initial body weight (IBW) on DGC and BW 

will also be examined. All these estimates are presented in Table 4-3 below 

Table 4-3: Predicted selection response(in % of the initial mean per generation) for final body weight (FBW) or DGC in one 
environment (columns) when  initial body weight (IBW), FBW or DGC are selected for in another environment (rows). 

Again, selection on FBW or IBW seems the most efficient to increase FBW. Selection response for 

FBW can decrease by a maximum of 42% when compared to selection response in the selection 

environment (14% for response in Portugal when selected in Palavas, vs. 24% for response in Palavas 

- Table 4-3a), but it is also striking to see that the predicted response on FBW when selecting for IBW 

in Palavas (Table 4-3e) is better than or equivalent to direct selection for FBW in the production 

environment (Table 4-3a). This may be indicative of the fact that due to late tagging at 35g mean 

weight, FBW is to a large extent a consequence of IBW, as hypothesized before. 

Selection on DGC always leads to limited responses in DGC (1.0-7.0% per generation, Table 4-3d), and 

in all cases but one selection response on the selection site is better than response on an alternative 
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site. The same is observed when selection on DGC is used to obtain gains in FBW (Table 4-3b). In this 

case, although response can be close to zero (FBW reponse in Portugal to DGC selection in Palavas), 

it is always positive. This is not the case anymore when IBW (in Palavas) is used as a criterion to 

improve DGC. In this case, response is positive only in Palavas, while it is zero in Italy and negative in 

Israel and Portugal). 

As discussed before, there are good reasons to think that DGC may not be an appropriate 

measurement of individual growth rate in sea bass, which may then affect its genetic and phenotypic 

variability estimates. Nevertheless, it has the advantage to measure growth rate on the ongrowing 

site, and to allow its study by removing at least part of the initial history of the fish. Genotype by 

environment interactions seem to be rather large and they could be even larger if fish had been 

dispatched at an earlier age. Had we tagged and dispatched fish at 3-4 g mean weight (a situation 

which better represents hatchery practices), they would have had the opportunity to multiply their 

body weight by 100 in the production environment, instead of 10 in the present experiment. In this 

case, it can be foreseen that GxE interactions could have been even larger. Conversely, we also have 

to take into account that we purposely chose highly divergent ongrowing environments, in order to 

maximize GxE interactions, as we anticipated that they would be limited based on the existing 

aquaculture literature. For further progress on this subject, it might be appropriate to set up a 

typology of rearing conditions in sea bass (temperature, water quality, structures, management) in 

order to be able to test sea bass families in environment really representative of the major rearing 

systems, and evaluate GxE interactions in these conditions.  

We can conclude that in sea bass, genotype by environment interactions are large, and have to be 

taken into account in breeding programmes if some of the production environments strongly differ 

from the selection environment. The way to take into account GxE interactions can be at the extreme 

to implement separate breeding programmes for different environments, but this also implies a 

multiplication of the costs. An alternative way is to evaluate fish in several environments, and select 

based on an index aimed at maximizing gains in all environments. This is what has been done in the 

GIFT selection programme in Nile Tilapia, where families were split in several test environments to 

evaluate their growth performance, as some genetic correlations between environments (especially 

between cage and pond environment) were very low (0 to 0.4, Eknath and Acosta, 1998). In the 

Norwegian Atlantic salmon breeding programme, families were also sent to several test stations 

representative of different test environments. Interestingly in this case, GxE interactions for growth 

rate were small, and the main purpose was to take into account GxE interactions for age at first 

maturation, which were rather important (Gjedrem, 2010). It is important to note that these 

strategies which imply sending and recording family samples imply the use of family information, so 

an extra cost compared to individual selection, which was the option we first considered due the 

relatively high level of heritability for BW. If individual selection is to be used, then it has to be done 

in an environment as close as possible to the possible ongrowing environments. 

Nevertheless, decisions concerning the need to implement one or several breeding programmes 

depend on complex economic calculations. In an estimation of the effects of GxE interactions on BW, 

survival and feed intake in common carp in Vietnam, it was concluded that a  breeding programme 

was industry-wise profitable even with genetic correlation of traits between environments equal to 

0.5 (Ponzoni et al., 2008). However, in this case (but not when rA was 0.7 or more), it was more 

profitable to run two breeding programmes instead of one. One limitation is that such calculations 
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are done at the whole industry level. In Europe, breeding programmes are commercial operations 

which are paid for by private companies and must be profitable. Then optimal structures and 

decision-making processes are probably quite different. 

4.2.4 Practical consequences of genetic variation for sex ratio 

 

One peculiarity of sea bass is that the sex ratio of 

farmed populations is usually highly biased towards 

males, influenced by early rearing temperature 

(review by Navarro-Martin et al., 2009b), but 

genetically variable and subject to frequency-

dependent selection (sections 2.4 and 3.2.2). In 

addition, females are known to be larger than 

males of the same age, at least in farming 

conditions (Saillant et al., 2001b). This body of 

observations will have important practical 

consequences for setting up breeding programmes 

in sea bass. 

The mechanism of frequency-dependent selection 

will drive sex ratios towards 50-50 in all cases 

where direct selection on sex ratio or a correlated 

trait (growth) is not applied. In section 2.4.1, we 

used the polygenic threshold model to predict the 

evolution of sex ratio in farmed populations of sea 

bass by frequency-dependent selection. The model 

for frequency-dependent selection can very easily 

be derived from the equations presented in section 

2.4.2.1 (p. 46). As both males and females are 

needed to produce offspring, the average sex 

tendency of the parents in a population of mean 

sex tendency t0 will be: 

                  
     

         
       

(Equation 4-1) 

and this will automatically create a selection 

differential between the mean of the parents and 

the mean of the population they are sampled from 

(t0) equal to: 

        
     

         
          (Equation 4-2) 

In a bisexual population, 0 < Pf < 1, and Pf(1-Pf) is 

always strictly positive. As       is also always 

 

 

 

Figure 4-1 : Frequency-dependent selection in three 
successive generations of sea bass, starting with 
10% females. tm= mean sex tendency of males, tf = 
mean sex tendency of females. The selection 
differential ΔS is the difference between (tm+tf)/2 an 
the mean sex tendency of the population. ΔG=h²ΔS 
is the genetic gain in sex tendency at each 
generation. 
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Figure 4-2: Ratio of the average selection intensity in 
males and females (im+if)/2  to the global selection 
intensity it as a function of proportion of females in 
the population of breeding candidates. p is the global 
proportion of candidates selected as broodstock for 
the next generation. 
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strictly positive, the sign of the selection differential will depend on the sign of 1-2Pf, and then be 

positive when Pf<0.5, negative when Pf>0.5 and zero when Pf=0.5. The response to selection will be 

       , and thus selection will always tend to move the population mean towards an even sex 

ratio, as shown in Figure 4-1. 

In case of selection for growth, the correlated response on sex tendency may increase the proportion 

of females over 50%, up to 70-90% (section 3.3). 

Concerning the sensitivity to rearing temperature, we can consider sex ratios as rather unpredictable. 

This is seen in practice, and confirmed by experimental data where replicates of temperature 

treatments highly vary in terms of observed sex ratio. In the experiments of Navarro-Martin et al. ( 

2009b), for example, the treatment with 64 dpf below 17°C led to female proportions varying 

between 21.7 and 90.0% among four replicate batches.  

Sex ratio will then change due to frequency-

dependent selection and eventually selection for 

growth, but also vary among batches of fish due to 

environmental variability. One consequence of this 

is that a sea bass breeder will never be able to rely 

on equal numbers of males and females in the 

population. As long as the population of breeding 

candidates is large enough, this should not lead to 

difficulties in obtaining sufficient numbers of males 

and females to propagate the next generation. 

However, one consequence is that selection 

intensity on any trait will not be similar in males 

and females, as the number of selection candidates 

of each sex will not be the same. Then, selection 

intensity will be the mean of selection intensity on 

males and females, but not the usual estimate of 

selection intensity estimated by the global proportion selected. The ratio of this mean selection 

intensity (im+if)/2 to the global selection intensity it, under the constraint that an equal number of 

males and females are kept as broodstock at each generation, is plotted in Figure 4-2. The ratio 

equals 1 when the proportion of females is 0.5, and decreases when it departs from 0.5. The 

decrease is larger for low selection intensities, but in most cases remains below 20% for values of Pf 

between 10 and 90%, and below 10% for values of Pf between 20 and 80%. Then, the efficiency of 

selection for growth (or any other trait) will be somewhat lower in the beginning of the selection 

process, when populations of sea bass are mostly male, and increase as frequency-dependent 

selection for sex ratio proceeds. If selection for growth increases proportion of females beyond 50% 

as a result of correlated selection response on sex tendency (section 3.3), the efficiency of selection 

for growth and other traits will again decrease to a certain amount. 

A last important point to consider is sex dimorphism for body size, with females larger than males 

(Saillant et al., 2001b). Male and female sea bass cannot be externally distinguished before maturity, 

and it seems reasonable to select for growth in non-maturing conditions, as maturation may 

interfere with growth and then lower the heritability of growth traits, as seen in the rainbow trout 
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Figure 4-3: Proportions of males (blue) and females (pink) in 
size classes of two sea bass populations: a) Italian batch of 
our genetic parameters estimation experiment (17% 
females) and b) massal group of our response to selection 
experiment (50% females) 
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(Dupont-Nivet et al., 2010a). However, the 

uncertainty of sex ratio, linked to the poor 

repeatability of environmental control with 

temperature and to the evolution towards 

females due to selection will lead to very 

different proportions of males and females in 

the top growers of a population. A practical 

demonstration of that can be seen in Figure 

4-3.  In the Italian batch of our genetic 

parameters estimation experiment, there was 

a total of 17% females. When we simulate the 

phenotypic selection of the 10% largest fish on 

this population, we end up with 35% females 

and 65% males in the selected fish (Figure 4-3 

a). In the massal group (separate rearing) of 

our response to selection experiment, we 

reached 50% females (section 3.2.2). In this 

case, if we simulate the selection of the 10% 

largest fish, the proportion of females in the 

selected batch reaches 90% (Figure 4-3 b). It is 

not difficult to figure out that the 10 % largest 

fish in a population with 80% females (which 

should happen after 7-8 generations of 

selection for growth, see 3.3) may comprise 

very few males if any. 

The solution to this problem is not straightforward. The first option is to find a way to distinguish 

males and females before maturation. Differences in external shape have been demonstrated to 

exist between males and females (Coban et al., 2011). However, translation of such differences in 

diagnostic tools have failed in some cases (Saillant, pers. comm) while in other cases the use of 

geometric morphometrics seems to give promising results (Costa, pers. comm.). Differential 

expression of several genes between males and females has also been established (Blazquez and 

Piferrer, 2004; Blazquez et al., 2008; Blazquez et al., 2009; Deloffre et al., 2009; Navarro-Martin et 

al., 2009c; Blazquez et al., 2011), but these molecular techniques are more directed towards sexing 

(and understanding the sex determination cascade) during or before the early stages of 

differentiation, and anyway require the sacrifice of sexed animals as brain or gonad samples are the 

base material of these studies. Until today then, only lethal measurements allow a reliable 

discrimination of male and female sea bass, through dissection and squash of gonads (Menu et al., 

2005). A promising method to sex fish is ultrasound tomography, which has been successfully used in 

many species (reviewed in Newman et al., 2008), although in striped bass Morone saxatilis, a species 

taxonomically and morphologically close to European sea bass, only adult (age V) male and female 

could be successfully sexed (Blythe et al., 1994) with high accuracy, while juveniles could not. In 

European sea bass, preliminary sexing trials with that method were not successful at 150g mean 

weight (Saillant, pers comm.).  

a) 

b) 
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Another possible option to sex fish would be to try to identify a few major sex QTLs, that would allow 

a prediction of the sex tendency of an animal, and thus of its likelihood to be male or female. If 

combined with a parentage assignment suite, the use of such markers could be done at a minor 

marginal cost. However, for the time being, this remains purely speculative as we do not know how 

many markers would be needed to reliably predict the sex tendency of an individual. Moreover, such 

markers would not take into account the micro-environmental variation in sex tendency, which is 

rather important (approximately half of the phenotypic variance). 

Until early sexing methods become available, one practical solution to consider is to raise the fish in 

conditions where they can mature (natural photoperiod and temperature) and sex males by stripping 

of sperm in the reproduction season. In natural photoperiod, a certain proportion of the males can 

precociously mature at 1 year (5.3% in Rodriguez et al., 2001, 21.9% in Begtashi et al., 2004, 67% in 

Navarro-Martin et al., 2009a), while virtually all males mature at 2 years (Rodriguez et al., 2001). As it 

seems clear that precocious males are larger than later maturing males around one year of age 

(Begtashi et al., 2004), it can be foreseen that letting maturation proceed probably would perturb the 

expression of growth, and possibly its heritability, as seen in rainbow trout (Dupont-Nivet et al., 

2010a). Moreover, precocious maturation appears at one year of age (100-150 g mean weight), well 

before commercial size, thus preventing accurate selection of fish on the trait of interest (growth at 

harvest size). A good alternative is probably to rear fish under controlled photoperiod with long or 

even continuous days in the first year (thus avoiding precocious maturation - Begtashi et al., 2004), 

while coming back to natural photoperiod in the second year to allow maturation. In this way, 

growth should only be marginally perturbed by maturation, and if fish are individually tagged, it 

would be possible to know which ones are males at 2 years of age by stripping, and then select them 

on the basis of their growth performance earlier on. In any case however, this strategy has a cost as 

it requires individual tagging of fish, repeated recording of growth and keeping of all selection 

candidates alive until their second year, in rearing conditions where artificial lighting is possible. One 

additional question could be the relevance of selecting fish on their growth rate before maturation, 

while presently sea bass populations are mostly male and sold at 18-24 months of age, so in 

maturing or pre-maturing conditions. However, if we anticipate that selection for growth works well, 

as well as sex ratio control methods, future sea bass could well be mostly female and sold well before 

sexual maturation – and in this case selection on immature body weight would be the good option. 

A second option to rationalize selection for growth could be the use of hormonal treatments to 

produce separate batches of males and females, which can be done using different hormones 

(Blazquez et al., 1995; Blazquez et al., 1999; Chatain et al., 1999; Blazquez et al., 2001; Navarro-

Martin et al., 2009a). This would allow full control of the number of male and female breeding 

candidates, and thus of the selection intensity in each sex. However, this may have other 

consequences and will be studied in the next section about selection for sex ratio. 

4.2.5 How to move towards monosex female sea bass populations? 

In fish, the sex phenotype is usually rather plastic, and can be influenced by hormonal treatments at 

an early age. As sex dimorphism for growth and age at puberty exists in many species, it is quite 

commonplace in aquaculture to manipulate phenotypic sex in order to obtain monosex populations 

of the most "advantageous" sex (reviewed in Devlin and Nagahama, 2002). In several species, sex 

determinism is a simple chromosomal system, as in salmonids and common carp where it is a 

mammalian-type system with sex chromosomes, XX for females and XY for males. Hormonal 
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inversion of XX rainbow trout produces XX "neomales", which produce male gametes (spermatozoa) 

carrying only the X chromosome. When mated with normal XX females, they produce only XX 

progeny, which is 100% female. This type of treatment is routinely used for rainbow trout 

production, which now widely uses those monosex female populations, which are of great interest 

due to the delayed maturation of fish (2-3 years instead of 1-2 years for males - Breton et al., 1996). 

In common carp, such a system can also be applied, but is little used as monosex female populations 

have little advantages over bisexual populations (Gomelsky et al., 1995; Cherfas et al., 1996; Kocour 

et al., 2003). This method of using neomales is of interest because it produces genetically monosex 

populations, without the need to use hormones to modify the sex on production batches directed to 

human consumption. In other species, hormonal inversion of sex may be used on production 

batches, for example in the Nile tilapia where use of methyltestosterone to produce all-male 

populations is quite commonplace (e.g. Phelps, 2001). However, such use of hormones, is today 

forbidden by EU regulations (Directive 96/22/EU) and suffers from a very negative image from the 

public. Then, genetic control of sex is viewed as highly preferable to direct sex inversion by steroid 

hormones.  

In the case of sea bass, the size advantage of females (+20-30% at harvest, Saillant et al., 2001b) as 

well as their delayed puberty compared to males makes them the "advantageous" sex, although their 

advantage in growth rate is clear in early stages (+67% in weight at 10 months of age), but less in the 

later stages, where the growth rate of females significantly exceeds that of males only during short 

periods (Saillant et al., 2001b). Sex reversal with androgens to obtain "neomales" of sea bass has 

been tested earlier on (Blazquez et al., 1995; Chatain et al., 1999), but mating of neomales with 

normal females failed to produce 100% female offspring , as only 5 to 50% females were found in 

different families (Blazquez et al., 1999). In light of our findings on the polygenic nature of sex 

determination in sea bass, such a result could be expected. 

We showed that simple domestication should result in an even sex ratio in farmed sea bass 

populations, and that complementing it with selection for growth should result in 70-90% females 

after 8-9 generations (section 3.3). As we showed that the genetic correlation between growth and 

sex tendency has a strong impact on the sex ratio response and is highest in young fish (section 

3.2.3), putting selection pressure on the younger stages (90 dpf) could help reaching the highest 

proportion of females (90% if the genetic correlation is 0.8, section 3.3.4). However, note that our 

previous results on selection for growth tend to suggest that for growth itself, early selection may 

well be suboptimal. Anyway, sex ratio values of 70-90% females, although interesting, do not 

correspond to monosex populations. Then, are there strategies that would lead to a monosex or 

quasi-monosex female status in farmed sea bass populations? 

The first possibility to exploit is the fact that the sex ratio equilibrium reached by selection for growth 

does not depend on the environmental masculinisation level of the selection environment (section 

3.3.4). The reason for this is that this equilibrium is reached when the selection against sex tendency 

by frequency-dependent selection compensates the indirect selection for sex tendency induced by 

selection for growth. If heritabilities and genetic correlations are constant, as well as the overall 

proportion selected for growth, the intensity of frequency-dependent selection against sex tendency 

only depends on the frequency of males and females in the population, and this is the same for 

indirect selection for sex tendency via growth (as the frequency of males and females also impacts on 

the intensity of selection for growth, as shown in section 4.2.4). However, we showed in section 3.3.4  
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that although the equilibrium was always the same 

in terms of sex ratio, it was very different in terms 

of sex tendency when the masculinising effect of 

hatchery environment differs: the equilibrium 

values of sex tendency we calculated (p.77) were 

t=2.55 for Pf0=0.05 (an initial proportion of females 

of 0.05 when wild parents are used), t=1.81 for 

Pf0=0.182 (the proportion observed in our genetic 

parameters estimation experiment) and t=0.90 for 

Pf0=0.5 (a case where we would be able to control 

the environment so that offspring of wild fish 

would have a balanced sex ratio). If we now 

consider that we have a temperature protocol for 

production (not selection) that would give even 

sex ratios in offspring of wild fish (e.g. the G90 

treatment in Navarro-Martin et al., 2009b), this 

means that such a treatment brings no 

environmental bias to sex tendency. Then, the 

proportion of females from the offspring of the 

selected animals can be calculated as Pf=Φ(t), with 

Φ(t) the cumulative distribution function of the 

normal distribution. This results in 99.5% females 

for Pf0=0.05, 96.5% females for Pf0=0.182 and 

81.6% females for Pf0=0.5.  

This highlights the fact that it is highly beneficial to   

use strong masculinising conditions in the selection 

environment, while feminizing or at least "neutral" 

conditions should be used for the production 

environment. The steps of progress in sex 

tendency using such an approach are described in 

Figure 4-4. Under such conditions, almost monosex 

female populations should be reached in 

approximately 8 generations. Still, there is a limit 

to the sex tendency that can be reached with this 

method, which is linked to the impact of 

frequency-dependent selection, which sets the 

asymptotic sex tendency to a level depending on 

the masculinising effect of the hatchery 

environment. It could be most efficient provided a 

very highly masculinising environment was 

available, but as we said before the repeatability of temperature treatments is rather low, and there 

is no temperature protocol available that repeatedly gives less than 5% females in the offspring of 

wild fish. 

Beyond this suggested method, the possibility to control phenotypic sex by hormonal treatments 

opens another range of possibilities to obtain monosex female populations in sea bass. We saw 

a) natural environment

 

b) 1
st

 hatchery-bred generation from wild parents 

 

c) after 8 generations selection for growth

 

d) raising offspring in a “natural-type” environment 

 

Figure 4-4 : Progress of sex tendency with selection for 
growth combined with manipulation of the 
masculinization level of the hatchery environment. 
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before that early trials using sea bass neomales failed to produce monosex progenies, and were 

therefore abandoned, except as a tool for studying the mechanisms of sex differentiation (e.g. 

Navarro-Martin et al., 2009a). Nevertheless, methodologies of hormonal inversion in early feeding 

stages are available and allow the production of 100% male (Blazquez et al., 1995; Chatain et al., 

1999; Blazquez et al., 2001; Navarro-Martin et al., 2009a) or 100% female (Navarro-Martin et al., 

2009a) fish batches. Use of 17α-methyltestosterone (MT) or 17α-methyldihydrotestosterone (MDHT) 

should be able to provide the strong (and maybe absolute) masculinisation tool that we cannot 

access through environmental manipulation – although their use has not yet been tested on strongly 

female-biased populations. Indeed, it is even more than that. Masculinising all of an offspring group, 

it would  nullify frequency-dependent selection on males which prevents sex tendency of growth 

selected fish to increase indefinitely. In this case, it would be possible, by separating offspring in two 

equal batches, one put in “normal” masculinising conditions and one reverted to neomales, to reach 

almost 100% females in the “normal” batch and keep having 100% males in the neomales group. One 

condition for maximal efficiency would be that there is no genotype by masculinization treatment 

interaction for growth, i.e. that the family ranks for growth would be the same in the “normal” batch 

and in the neomales batch. To the best of my knowledge, such information is not available in any fish 

species and should be acquired to really evaluate this strategy. 

An additional benefit of using neomales is that it would allow us to reach the monosex female status 

in the population even in the absence of genetic correlation between growth and sex tendency. We 

showed that the value of the genetic correlation is an important parameter determining the 

efficiency of growth mediated selection for sex tendency (section 3.3.4). We cannot take it for 

granted that this value is as high as we estimated it in any sea bass population. In the case of a 

population where there would be a null genetic correlation, selection for growth would have no 

impact on sex tendency, which would then rise to 50:50 as in the case of simple domestication. In 

this case, using neomales would make the sex tendency of the neomales population equal to the 

mean sex tendency of the population. If we go back to the corresponding equations (p 46), in 

generation g: 

                       in neomales   and               
        

     
   for the females in the “normal” 

batch , then in the next generation tm(g+1)=(tm(g)+tf(g))/2 =      
        

      
     

As φ(tm(g)) is always strictly positive, this shows that the sex tendency of the neomales (which is equal 

to that of the population as a whole) can only increase at each generation and ultimately reach a 

level where only females will be present in the “normal” group. 

We can conclude that selection on sex ratio is possible in sea bass, with or without use of hormonal 

inversion of broodstock, to reach more than 90% females in production batches in 8 generations or 

so. Reaching 100% females is more complicated, and almost certainly requires the use of hormonal 

inversion of some broodstock to produce neomales. It must be noted that these projections require 

considering sex tendency as a simple threshold trait with additive genetic variance. It might not be 

that simple, as the trait selected might be a reaction norm to hatchery temperatures, as could be 

suggested by the existence of GxE interactions for sex ratio in an earlier study in sea bass (Saillant et 

al., 2002). If this was the case, the selection scheme to be applied might have to be a little more 

complex, as successfully done in the Nile tilapia to select for temperature sensitivity of sex ratio, in 
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this case to obtain more males (Wessels and Hörstgen-Schwark, 2007; Wessels and Hörstgen-

Schwark, 2011). Similar selection was also shown to be possible in rainbow trout (Magerhans et al., 

2009; Magerhans and Hörstgen-Schwark, 2010), a species usually considered as having a XX/XY 

chromosomal sex determination system, although possibly altered by minor sex factors (Quillet et al., 

2002). In the case of sea bass, if genetic variation of sex ratio was linked not to a simple additive 

threshold trait but to the expression of a reaction norm to a specific environment (hatchery 

temperature), our previous developments on selective breeding strategies would still be valid, except 

that the environmental manipulation to go back to “natural-type” environment might not be as 

efficient as supposed here. 
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4.3 An evolutionary perspective on the genetic variation of sex ratio in sea bass, and 

its relations with growth 

In the previous section we saw many possibilities to exploit the genetic variation for growth and sex 

ratio in the sea bass. This genetic variation, which we revealed in the offspring of wild sea bass males 

and females, also has a meaning in the natural environment. This is especially true for sex 

determination, which exhibits a wide variety of systems in Teleost fishes (Mank et al., 2006; Mank 

and Avise, 2009) while it is highly conserved in birds and mammals (Fridolfsson et al., 1998; 

Potrzebowski et al., 2008). 

4.3.1 Polygenic sex determination: a very peculiar system ? 

Sex determination systems observed in gonochoristic Vertebrates are male heterogamety (XX/XY) or 

female heterogamety (ZZ/ZW), polyfactorial (polygenic5) sex determination and environmental sex 

determination (ESD - Bull, 1983). The first three systems are usually qualified as GSD (genotypic sex 

determination). Interestingly, all of those mechanisms are observed in Teleost fishes (Mank et al., 

2006), the most common being male heterogamety. Reproductive modes other than gonochorism 

also appear (sequential or simultaneous hermaphroditism, unisexuality - reviewed by Mank et al., 

2006) - but those are not considered as sex determination models but rather as patterns of sexuality 

in the terminology defined by Bull (1983). 

Polyfactorial sex determination was first suggested (Winge, 1932) to explain sex determination in the 

guppy, then developed as "polygenic sex determination" by Kosswig (1964), when studying the sex 

determination system of the swordtail Xiphophorus helleri.  In these cases however, the hypothesis 

was that several genes had an effect on phenotypic sex, but that phenotypic sex was completely 

determined by the sum of several individually small gene effects. The effect of the environment was 

invoked only in the case where the sum of masculinizing gene effects equalled that of feminizing 

gene effects , to "avoid" the formation of hermaphrodites. However, this does not correspond to the 

usual definition of polygenic genetic variation used by quantitative geneticists, where individually 

small genetic and environmental effects add up to build the phenotype, resulting in genetic and 

environmental variance for the trait considered. Bulmer and Bull (1982) were the first to clearly 

formalise polygenic sex determination in this framework, considering that there is an underlying “sex 

tendency” phenotype, which has a polygenic determinism and  which itself determines the observed 

phenotype (sex: male or female) depending on whether it is below or beyond a fixed threshold. It is 

important to realise that in this case, the usual classification of sex determination as GSD or ESD 

becomes meaningless, as any environmental or genotypic effect can equally affect the phenotype 

(sex tendency) and in the end put it below or beyond the threshold, and then determine the sex of 

the animal. We must remind that this is just a model,  which may be viewed as artificial by 

physiologists and geneticists dealing with sex determination, as it does not target any "master gene" 

that would be the initial cause of orientation towards one sex or another. However, this model is 

                                                           
5
 Bull (1983) uses both terms, polyfactorial and polygenic. Polygenic is widely used in quantitative genetic theory to qualify 

traits which conform to the infinitesimal model, where the genotypic part of performance is determined by very high 
number of genes which all have a very small effect – and where the environment explains the non genetic part of the 
performance. Polyfactorial refers more to a limited number of sex factors (which are also often referred to as “minor sex 
factors”), not necessarily influenced by environment, although this is commonly the case . However, as polyfactorial 
systems with more than three factors will behave in the same way as real polygenic systems in most cases (Bull, 1983), and 
then have similar evolutionary consequences, the difference between both is more a question of degree than of principle.  
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very commonly used in quantitative genetics to describe the genetic variation of binary traits, with a 

high predictive ability (Falconer and Mackay, 1996; Lynch and Walsh, 1998). 

Bull (1983) proposed three criteria to be able to demonstrate polyfactorial sex determination: (i) a 

large between-family sex ratio variance (ii) paternal and maternal effects on family sex ratio and (iii) 

a sex ratio response to selection. The last two conditions require the capacity to perform breeding 

experiments, which is not by far available in all species - and might be an explanation for the limited 

number of species with a proven polyfactorial sex determination. Sometimes, the first  condition only  

is then considered, but systems with two sex factors and environmental variance (so not 

polyfactorial) can satisfy it  and hence it cannot be considered a satisfying proof of polyfactorial sex 

determination (Bull, 1983). One additional difficulty raised by Bull is that all systems with more than 

three sex factors will generally satisfy the three conditions, making it very difficult to infer the real 

number of factors. In our study, the three conditions were demonstrated, although condition (iii) was 

only demonstrated through frequency-dependent selection and indirect selection of sex tendency by 

selection for growth. Anyway, other experimental evidence on a few families proves that direct 

selection on sex ratio is possible in sea bass (Ky et al., 2006). Then, the conditions proposed by Bull 

are all satisfied by the sea bass, which makes it one of the rare Vertebrate species with polygenic sex 

determination. 

Indeed, cases where sex determinism is considered polygenic are rare at least in Vertebrates. 

McGaugh and Janzen (2011) reviewed ten studies estimating the genetic variance of sex 

determination in Vertebrates with TSD, covering 8 species (three turtles Graptemys ouachitensis, 

Chelydra serpentina and Chrysemis picta, one lizard Eublepharis macularius, one crocodile Alligator 

mississipiensis and two fishes, the European sea bass - based on our results-  and the Atlantic 

silverside Menidia menidia). In the reptiles considered here, there are temperatures at which only 

males or females are produced, often with a very narrow transition: 100% males below 28°C and 

100% females beyond 30°C in G. ouachitensis and C.picta (Bull, 1980; Bull et al., 1982a), 100% males 

from 24 to 26°C, 100% females below 20°C and beyond 30°C in C.serpentina (Bull, 1980; Janzen, 

1992), 100% females at 31.5°C and below, 100% males from 32.5 to 33°C and again 100% females at 

35°C in A.mississipiensis (Lang and Andrews, 1994), 100% females  below 29°C and beyond 34°C in 

E.macularius (Rhen et al., 2010). This shows that some levels of temperature can entirely determine 

sex, hence the TSD classification of these reptiles. In both fish species, the result is quite different: no 

temperature treatment yields 100% of either sex, neither  in M.menidia (Conover and Heins, 1987a) 

nor in the sea bass (reviewed in Piferrer et al., 2005, with the exception of one 100% male batch of 

only 30 fish in Blazquez et al., 1998). Then, it is questionable to consider them as TSD species. 

Conversely, there are cases where GSD species also show a certain level of polyfactorial sex 

determination. In Tilapias, the occurrence of major sex factors has been well demonstrated (e.g. Mair 

et al., 1991; Cnaani et al., 2008). However, some experiments showed a high between-family 

variance in sex ratio in O. niloticus, with contributions from both males and females, and a potential 

to respond to selection (Wohlfarth and Wedekind, 1991). Similar observations were done in the 

rainbow trout, a species known to have a XX/XY chromosomal sex determination system (Magerhans 

et al., 2009; Magerhans and Hörstgen-Schwark, 2010). Those two experiments satisfy the three 

conditions put forward by Bull (1983) to ascertain polyfactorial sex determination. Interestingly, sex 

ratio variation in rainbow trout was revealed by a temperature treatment (30 days at 18°C instead of 

12°C, starting at 42 dpf, Magerhans et al., 2009), and temperature treatments had also been 
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previously shown to induce sex ratio shifts in another XX/XY salmonid, Oncorhynchus nerka (Azuma 

et al., 2004). In rainbow trout, it has been separately shown that a minor sex factor could lead to 

masculinisation of XX females, probably in interaction with other loci and with the environment 

conditions (Quillet et al., 2002). In Nile tilapia, where sex ratio shifts with temperature are well 

documented (reviewed by Baroiller et al., 2009), it also appears that the propensity to produce more 

males by means of a temperature treatment can be selected for (Wessels and Hörstgen-Schwark, 

2007; Wessels and Hörstgen-Schwark, 2011). In a third species, the turbot Scophtalmus maximus, sex 

determination mostly conforms with a ZZ/ZW system, but unusual sex ratios appear in some families, 

as well as an effect of early rearing temperature and a family*temperature interaction (Haffray et al., 

2009).  

So, it seems that both TSD and GSD can be influenced by minor and/or polyfactorial genetic effects. 

But there, terminology becomes important: there is an unresolved debate about the definition of 

GSD and TSD, and the links between both. One view is that TSD and GSD are discrete processes 

(Valenzuela et al., 2003), such that in GSD the sex of the zygote is determined at conception, while in 

TSD sex cannot be predicted by the zygotic genotype, and is permanently determined after 

fertilization by environmental factors. The other view is that GSD and TSD are the two ends of a 

continuum (Kraak and de Looze, 1993; Kraak and Pen, 2002; Sarre et al., 2004).  

Under the "discrete" hypothesis, coexistence of environmental and genetic effects is considered 

possible, but is generally considered as GSD with Environmental Effect (GSD-EE). The authors 

valuably argue that many of the temperature treatments which have been shown to modify sex 

ratios are outside the usual temperature range of the species during the period of sex determination. 

For the examples above, this is clearly true for the experiments with O. nerka and rainbow trout, 

where 18°C is out of the normal incubation range (8-10°C, reviewed in Ospina-Ãlvarez and Piferrer, 

2008). In this case, as highlighted by Ospina-Ãlvarez and Piferrer, aromatase, an enzyme that 

produces estrogens essential for female sex differentiation in fish (Piferrer et al., 1994), might be 

inhibited by temperature, as seen in fish and reptiles (Crews, 1994; Uchida et al., 2004), potentially 

causing increases in number of males by impairing sex differentiation (downwards sex 

determination).  

Another reason to reject TSD is the existence of heteromorphic sex chromosomes, which is 

considered as a proof of GSD, as in TSD "there is little if any genetic difference between the sexes" 

(Valenzuela et al., 2003). This interpretation of the terms (no TSD when effective temperatures are 

ouside of the normal range or when heteromorphic sex chromosomes are present) has led to the re-

classification of sex determination systems in fish previously considered as TSD (Ospina-Ãlvarez and 

Piferrer, 2008). Out of 27 species6 initially considered as TSD, only 8 are considered as having true 

TSD, mostly based on these two criteria. Ironically, Menidia is considered as TSD in this study 

(Ospina-Ãlvarez and Piferrer, 2008), while it was considered as GSD in the initial paper proposing the 

dichotomous process (Valenzuela et al., 2003). Ospina-Alvarez and Piferrer consider Menidia as TSD 

because 1) there is no evidence of heteromorphic sex chromosomes and 2) sex ratio changes with 

temperatures within the range of temperatures during development in the wild (RTD), while 

Valenzuela et al. considered that what changes is the proportion of GSD and TSD individuals within a 

population, stating that "even in a species where sex is determined by the sum of polyfactorial genes 

                                                           
6
 in this count, 33 Apistogramma species are taken as one species as they all have the same pattern 
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plus a TSD gene, if a TSD gene puts the zygote above or below the necessary threshold, then that 

individual has TSD [so that...] at the individual level, the process is dichotomous". This last sentence 

could equally be turned the other way round, stating that if a polyfactorial gene puts the zygote 

above or below the necessary threshold, then that individual is GSD. Anyway, such considerations at 

the individual level are of little interest to qualify populations and their evolution: what is important 

in my view is the fact that an individual becomes male or female based on the combination of genetic 

and environmental influences, without a notion of order, which may be difficult if not impossible to 

prove (especially if the proof has to be done at the level of each individual).  Indeed, the GSD end of 

the dichotomic view can probably be at least partly explained as put forward by Mank and Avise 

(2009): "In scientific thinking and research, there is a bias towards sex chromosomes, which is 

primarily due to the fact that most of the major animal models, including humans, possess them [...] 

this produces a misconception that sex chromosomes are the predominant mechanism by which sex is 

conferred in animals". For the TSD part of the dichotomic view, we could do the same observation 

based on the predominance of TSD (with narrow pivotal range) in reptiles. But in the case of fish, 

heteromorphic sex chromosomes have been observed in only 10% or so of the species surveyed 

(Devlin and Nagahama, 2002), although this percentage might rise to 50% in teleosts if homomorphic 

(more recent) sex chromosomes are taken into account (Mank and Avise, 2009). Symmetrically, TSD 

in fish does not involve as narrow pivotal ranges as in reptiles (10 to 15°C wide, reviewed in Ospina-

Ãlvarez and Piferrer, 2008 , making it more difficult to see TSD as an all-or-none switch.  

Then, I clearly favour the GSD-ESD continuum hypothesis, which in my view is clearly supported by 

the fact that different populations of the same species can have different sex determination systems: 

GSD in the Nova Scotia population of Menidia menidia vs. ESD (with genetic variation between 

families...) in more Southern populations (Lagomarsino and Conover, 1993), TSD in lowlands and GSD 

in highlands for the lizard Niveoscincus ocellatus (Pen et al., 2010). Moreover, theoretical models 

show that a continuous state of equilibrium between heterogamety (the ultimate GSD model) and 

ESD exists if ESD is mediated by polyfactorial sex determination with environmental variance (Bull, 

1983; Bull, 1981; Bulmer and Bull, 1982). Then, all the above-mentioned systems can in my view be 

considered as systems mixing genotypic and environmental influences on sex, with various states of 

equilibrium towards one end or another of the GSD-ESD continuum. In this framework, the 

proposition that the sex determination of fish can be described as a position in a triangle formed by 

major genetic factors, minor genetic factors and environmental influences, done by several authors 

(Baroiller et al., 2009; Penman and Piferrer, 2008) would not be fully appropriate, as in reality we 

would have GSD and ESD, and in between modulation by minor (polyfactorial) genetic factors. We 

will come back to this later on when dealing with the evolution of sex-determining systems. 

Coming back to the sea bass, we can state that it stands in the middle of the continuum, as genotypic 

and environmental effect grossly have the same variance, so explain the same proportion of the 

variation in sex tendency, at least in our hatchery conditions. Here, we have to consider that some of 

the temperatures used in hatcheries (24°C at some time in our selection response experiment) are 

higher than the range of temperatures during development in the wild  (13-18°C, Ospina-Ãlvarez and 

Piferrer, 2008) and thus may induce sex ratio responses irrelevant to natural populations. 

Fortunately, the temperatures used in our genetic parameters experiment remain within this range, 

although they produce a male-biased sex ratio, so their relevance is less questionable. In addition, 

although the evidence remains anecdotal, we showed that biased sex ratios, probably linked to 

environmental influences, could happen in natural populations. Therefore, the fact that the sea bass 
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lies in the middle of the GSD-ESD continuum is probably not just an artefact generated by extreme 

experimental conditions. This makes it an interesting model to study the evolutionary implications of 

sex determination, considering that although "true" polygenic sex determination remains 

exceptional, implication of polygenes in sex determining systems in fish might be much more 

common than usually thought. 

4.3.2 The adaptive significance of polygenic sex determination (in sea bass) 

The literature about the evolution of polygenic sex determination is scarce, probably due to the fact 

that this system can be considered rare (at least "pure" polygenic sex determination) and raises less 

interest than the evolution of sex chromosomes or of TSD, as we just discussed. Nevertheless, when 

formalizing the threshold model with sex tendency, Bulmer and Bull (1982) performed a number of 

calculations and simulations to predict its possible evolution. The general outcome of these 

simulations is that the system is supposed to be evolutionarily unstable, which would explain its 

limited occurrence.  

The first possibility is evolution towards sex chromosomes, with the following rationale: as soon as 

the sex ratios are not even in the populations, especially due to environmental effects7, the variance 

of sex tendency among parents will be higher than the phenotypic variance of sex tendency in the 

population as a whole8, which will then tend to increase phenotypic variance in the next generation. 

Such disruptive selection tends to increase genetic variance by encouraging heterozygosity, and 

makes the population respond more quickly to frequency-dependent selection, but also will make it 

susceptible to invasion by any mutant with major effect on sex determination (Bulmer and Bull, 

1982). This mechanism will work both in the case where population sex ratios fluctuate between 

years, and in the case where they fluctuate among sub-populations exchanging gene flow.  

The second possibility for a polygenic system to evolve conforms to the Charnov-Bull model (Charnov 

and Bull, 1977), which remains one of the most widely accepted models explaining the potential 

benefits of ESD, due to its robustness and to empirical evidence (Valenzuela, 2004). The conditions 

for the Charnov-Bull model to operate are 1° a patchy environment, with "good" and "bad" 

environments influencing individual fitness 2° a differential effect of the environment on the fitness 

of both sexes and 3° an inability of the parents to predict the quality of the environment. When there 

is a variance in environmental effects, and differential fitness effects of the environments in males 

and females, the system is shown to evolve towards a reduction in genetic variance (stabilizing 

selection), which means that the phenotypic variance in sex tendency will also be reduced, and 

hence the pivotal environmental range will be reduced, ultimately leading to abrupt changes in sex 

for small variations of the environment variable - a typical feature of "true" ESD (Bulmer and Bull, 

1982). The magnitude of the environmental variance relative to the differential male/female fitness 

effects will influence the magnitude of the residual genetic variation, more environmental variance 

favouring more genetic variation, and hence more progressive transitions from one sex to the other 

around the pivotal environment value (Bull, 1983). Those more progressive transitions in TSD are 

observed in fish (Ospina-Ãlvarez and Piferrer, 2008) when compared to reptiles (Bull, 1980), 

                                                           
7
 as in an additive polygenic system, there is always environmental variance (as long as heritability is less than 1, which is 

the general case), and this implies that environment may have an effect on the phenotype (sex tendency, then sex ratio), as 
the phenotype is the sum of genotypic and environmental effects 
8
 this is because the variance among parents will be the average of the variance among males and of the variance among 

females plus a quadratic term of the difference in average sex tendency between males and females. Except when Pf=0.5, 
this variance term is always higher than the phenotypic variance (Bulmer and Bull, 1982, p. 20) 
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suggesting higher environmental variance in fish – although reptiles are already thought to favour 

TSD because of the very high environmental variance in nest temperatures which would override 

canalization of GSD mechanisms (Georges et al., 2010). Note that in this case “true” TSD is only the 

extreme of polygenic sex determination, and that the genetic variation in polygenes, although 

existing, cannot be seen out of the pivotal range. This does not prevent it to  be very high within the 

pivotal range: in the map turtle G. ouachitensis, a clear TSD species, a (high) heritability of 0.82 for 

sex tendency has been estimated within the pivotal temperature range (Bull et al., 1982a). However, 

as the pivotal range is very narrow, indeed in nature most of the nests are mostly male or mostly 

female, so that the genetic variance usable by selection is strongly reduced and could be as low as 

0.06 (Bull et al., 1982a). Similar results were obtained on the common snapping turtle Chelydra 

serpentina with heritability estimates of 0.34-0.76 for sex tendency within the pivotal range (Janzen, 

1992). 

Apart from evolving ESD or GSD from an initial polygenic system, it has also been shown that ESD 

could evolve from heterogametic GSD in a continuous manner provided that (i) environment can 

“revert” a proportion of the homogametic sex to the other sex, (ii) there is heritable variation in the 

ability of the homogametic sex to develop the sex phenotype of the heterogametic sex and (iii) the 

environment variable has male/female specific fitness effects (Bull, 1983; Bull, 1981).  

Another theoretical model involving polygenic sex determination has been developed by Rice (1986). 

In Bulmer and Bull’s model, a major sex factor is supposed to invade a population with polygenic sex 

determination if there is an environmentally induced fluctuation in sex ratio between years or 

connected populations. Rice proposed a model where such variation is not necessary, provided that 

the major sex factor Y has a pleiotropic positive effect on fitness or, more subtle, that it is linked to 

some extent to a gene having a positive effect on the fitness of the Y-induced sex.  

Finally, a last theoretical model shows that even in the absence of selection and mutation (i.e. 

appearance of major sex factors), polygenic sex determination in a finite population is expected to 

evolve by genetic drift towards ESD, heterogamety or a system combining both, but cannot remain 

polygenic (Hatcher and Tofts, 1995). The conclusion of this study is that polygenic sex determination 

in intrinsically unstable – however cases where there would be a selective advantage of GSD or ESD 

are not studied, thus limiting the generality of the model proposed. 

To summarize, GSD and ESD could well be the two ends of a continuum (Figure 4-5), as we could see 

that ESD and polygenic variation are intrinsically linked, ESD being possibly modelled as one extreme 

of polygenic sex determination, where genetic variation can be hidden by steep sex ratio responses 

to the environmental variable.  
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Figure 4-5 : Schematic representation of the GSD-ESD continuum. Top: response of sex ratio to changes in the 
environmental variable (adapted from Bull, 1983). Bottom: relative influence of major sex factors, polygenes (or minor sex 
factors) and environment on the determination of sex. Note that the decreasing effect of polygenes on the right end of the 
continuum is not necessarily due to a reduction in genetic variance, as shown in the map turtle (Bull et al., 1982a). 

Then, the GSD-EE model evoked earlier could in reality be a combination of major sex factors and a 

proportion of polygenic (including environmental) sex determination. When the temperature effect 

operates only outside of the natural temperature range during development (as seen in many cases 

by Ospina-Ãlvarez and Piferrer, 2008), this would be indicative of a good canalization of sex 

determination in nature, but still reveal the presence of cryptic genetic variation.  

Evolutionary shifts along the continuum, according to the available theory, could be done in both 

ways, from GSD to ESD in case of a patchy environment with differential male-female fitness effects 

of the environmental variable (the Charnov-Bull model), and from ESD to polygenic or even GSD in 

case of environmental fluctuations affecting sex ratios among years or populations9, the shift to GSD 

being speeded up by the appearance of major sex factors by mutation – and possible even in the 

absence of environmental fluctuations if the major factors are linked to sex-specific-fitness-related 

genes (the Rice model). Additionally, even in the absence of environmental fluctuations or sex-

specific fitness effects, just genetic drift could evolve a polygenic system in both directions (the 

Hatcher and Tofts model).   

However, one point has to be highlighted: GSD is expected to ultimately evolve towards 

heteromorphic sex chromosomes (Charlesworth et al., 2005), and in this case going back to a system 

with polygenic/environmental sex determination might be difficult due to accumulation of 

deleterious mutations and sex-specific fitness genes on the chromosomes (Bull, 2008), and may need 

strong environmental cues to override the canalization of genetic sex determination and reveal 

potential hidden genetic variation (Georges et al., 2010). These strong environmental cues are not 

expected to happen in mammals and birds where the environment of the embryo is highly stable, 

regulated by viviparity or brooding. Indeed, mammals and birds only exhibit GSD (with sex 

chromosomes), while TSD among vertebrates is restricted to poikilothermic clades, namely reptiles, 

amphibians and fishes. Phylogenetic analyses show both sex determination models (ESD and GSD) in 

                                                           
9
 Without sex-specific fitness effects in this case 
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fish (Mank et al., 2006) and in reptiles (Janzen and Phillips, 2006), and the distribution of GSD and 

ESD within fishes and reptiles seems little linked with the phylogeny. Although there is no definitive 

phylogeny in fish and reptiles, this strongly supports the fact that the evolution of ESD and/or GSD 

independently arose several times (Mank and Avise, 2009). It is also noteworthy that in many fishes, 

even in the case of GSD, sex determining chromosomes have not evolved to heteromorphic sex 

chromosomes, remaining proto sex chromosomes (Peichel et al., 2004; Charlesworth and Mank, 

2010), so not at the ultimate state of GSD.  I postulate that the genetic mechanism allowing these 

transitions is the polygenic variation, which should be attached to all environmental effects on sex 

determination. 

Coming back to the sea bass, we have no direct evidence of a differential effect of temperature on 

the fitness of either sex in this species. In Menidia, which also exhibits (at least in southern 

populations) an influence of rearing temperature and a family variation of sex ratio, Conover (1984) 

showed that 1) early spawning (linked with low water temperatures) yielded larger fish, with better 

winter survival, and 2) a large size probably benefited more to females than to males). If we make 

the parallel with Menidia, we could hypothesize that early spawning gives a longer growing season, 

and that female sea bass benefit more from a larger size than males as hypothesized by Ghiselin 

(1969) for protandrous hermaphroditic fishes. In this case, it would be expected that cold 

temperatures early in development (indicative of earliness in the season) would induce the 

development of more females, which is precisely what is observed (Navarro-Martin et al., 2009b).  

However, additional predictions can be done if this was the case. An alternative and often 

complementary way organisms use to assess precocity in the season is photoperiod (Bromage et al., 

2001). In particular, photoperiod is often a major driver in the control of the spawning season in fish 

(and particularly in the sea bass - Carrillo et al., 1989). It can then be anticipated that if starting 

development early in the season effectively favours females, early season photoperiods (so short or 

even photoperiods) should favour females. This could happen in two different ways, directly on the 

juveniles or through the genetic control of spawning date. For the first option, the effect of 

photoperiod on sex ratio in sea bass has been investigated by Blazquez et al. (1998). Unfortunately, 

this study was done with a late treatment (from 57 to 137 dpf) with an initial high rearing 

temperature during the first 57 days (20-24°C), a treatment now recognized to be highly 

masculinising (Navarro-Martin et al., 2009b). Indeed, a very high proportion of males was observed, 

and no significant effect of photoperiod was seen, with 97% males in the short photoperiod 

treatment (9L:15D) and 93% in the long photoperiod treatment10 (15L:9D). Therefore, adequate 

photoperiodic treatments with temperatures permitting the appearance of a significant proportion 

of females remain to be tested in sea bass. The second option, which relates to the genetic control of 

spawning date, also remains to be tested. There is no knowledge about the genetic variation of 

spawning date in sea bass, but this trait is known to present high genetic variability in fish species 

(e.g. h²=0.60-0.86 in rainbow trout, Gall et al., 1988), so it can be foreseen that genetic variability for 

this trait should also exist in sea bass11, and it would be interesting to compare sex ratio proportions 

in the offspring or early and late breeders from a given sea bass population. 

                                                           
10

 Only 30 fish were sampled from each treatment, thus making the difference non significant. 
11

 Genetic variation for spawning date is indirectly revealed by a 1-2 months difference between the spawning date of 
North Atlantic and West Mediterranean sea bass in the same housing conditions, Chatain, pers. comm. 
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The last interesting point is the relation between growth and sex, first with the phenotypic sex 

dimorphism in weight in favour of females, which is observed at all ages but particularly in the first 

year (+67% at 10 months Saillant et al., 2001b). This can be considered an indirect proof that fast 

growth should benefit more females than males, as hypothesized before. Second, it is rather 

intriguing to see that the sex dimorphism for growth is already present at 84 dpf (Saillant et al., 

2003c), long before the differentiation of gonads, which starts around 150 dpf (Piferrer et al., 2005; 

Saillant et al., 2003a) although some differences in the expression profile of cyp450a can be seen as 

early as 120 dpf (Blazquez et al., 2009). In addition to those phenotypic differences, we have also 

shown that body weight is highly genetically correlated with sex tendency, the highest correlation 

(0.77) being observed at 90 dpf. This can be interpreted in two different ways: either growth is 

beneficial to females, and then it is logical that female promoting genes are associated with growth-

promoting genes12, or fast growth (no matter whether mediated by genetics or by the environment) 

is an additional signal to the undifferentiated fish indicating the interest to differentiate as female. 

The high genetic correlation would tend to favour the first explanation, while the high sex 

dimorphism before any sign of sex differentiation appears would rather favour the second one. We 

presently have no means to choose between these two options or a combination of both.  

4.3.3 Sex determination and sex differentiation? 

In all the previous parts of this work, I did not mention any details about the mechanisms of sex 

differentiation in sea bass. The reason for this is rather simple: my objective is really to describe the 

genetic variation which determines the male or female orientation of a juvenile sea bass, and  the 

cascade by which these determinants happen to allow the differentiation of males and females has 

indeed little relevance, except if we were able to identify (and then to understand the regulations of) 

the “master switch” which initiates the cascade.  

However, this “master switch” concept is probably a mammalian-based concept, as in most 

eutherian mammals, sex is determined by a single gene located on the Y chromosome, SRY (Sinclair 

et al., 1990). However, this master switch concept is not universally accepted even in mammals as it 

has been proposed that this simple monogenic determinism would in fact be a quantitative threshold 

mechanism (Mittwoch, 2006). In birds, there is also a master gene DMRT1, located on the Z 

chromosomes, although in this case the situation is also more complex as its effect is dosage-

sensitive (Smith et al., 2009). In fish, only in the medaka Oryzias latipes has a homologue of DMRT1, 

DMY, been identified (Kondo et al., 2006; Matsuda et al., 2002), and indeed there might well be a 

number of different “master genes” upstream of a highly conserved differentiation cascade (Volff et 

al., 2007). For example, it has been shown that the sex determining locus maps to non homologous 

chromosomes in the closely related fish species threespine stickleback Gasterosteus aculeatus and 

ninespine stickleback Pungitius pungitius (Shapiro et al., 2009). Another very recent finding is the 

master sex determining gene in salmonids, SdY, which is conserved but maps on different linkage 

groups in different species - and which is not a gene with a known function in the sex differentiation 

pathway (Yano et al., 2012). Interestingly, the sex determination system in the zebrafish Danio rerio, 

which is influenced both by genetic factors and by the environment has long resisted identification 

(Siegfried and Nüsslein-Volhard, 2008; Traut and Winking, 2001), despite the availability of 

exceptional experimental animals (clones) and genomic resources. In this species, temperature 

                                                           
12

 as explained by Rice, 1986, mutations favouring female orientation will have a higher chance to invade the population if 
linked to a gene promoting female fitness through growth 
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effects during the sex differentiation phase (15-25 days post-hatching) have been shown to exist 

(Uchida et al., 2004), as well as earlier effects during the incubation phase (Abozaid et al., 2011). 

Recent research pointed out a ZZ-ZW system (Tong et al., 2010), a polygenic system (Liew et al., 

2012) or a mixture of major genetic factors, minor genetic factors and environmental effects 

(Abozaid et al., 2012) as possible sex determination systems in this species, thus pointing out the 

complexity of the situation. 

An important thing that we can learn from the study of genes implied early in the cascade of 

differentiation is that the same genes may be used in species with different sex determination 

systems, but keep some of their “initial” characteristics. For example, it has been shown that Wt1 

was implied in the gonadogenesis of two turtle species, one with GSD and the other one with TSD. 

Interestingly, Wt1 is highly regulated by temperature in the TSD species, and retains a relic 

thermosensitivity in the GSD species (Valenzuela, 2007). This type of expression control could be a 

way to explain how environmental variability may override the canalization of sex in GSD species, a 

necessity for ESD to be able to evolve from GSD (see before). Another very instructive experiment 

has been done with the worm Caenorhabditis elegans: using two mutant strains in which the 

mutations in sex determining genes induce thermal sensitivity of sex determination (Chandler et al., 

2009), an experimental evolution experiment was conducted over 50 generations. The results show 

that “after 50 generations, evolved lines clearly recovered toward wild-type phenotypes. However, 

changes in transcript levels of key sex-determining genes in evolved lines cannot explain their partially 

(or in some cases, nearly completely) rescued phenotypes, implying that wild-type phenotypes can be 

restored independently of the transcriptional effects of these mutations. [...This] highlight[s] the 

microevolutionary flexibility of sex determination pathways and suggest[s] that compensatory 

adaptation to mutations can elicit novel and unpredictable evolutionary trajectories in these 

pathways, mirroring the phylogenetic diversity, and macroevolutionary dynamics of sex 

determination mechanisms” (Chandler et al., 2012). This highlights the fact that under TSD there 

need not be one master gene, and that other previously unidentified genes can do the job to restore 

the effects of a mutation. This is strongly in favour of the polygenic + environmental hypothesis that 

we put forward before as a mechanism permitting the evolution of sex determining systems. 

If we come back to the sea bass, the “master switch” remains unknown. However, as in many fishes 

and reptiles, aromatase, the enzyme that converts androgen into oestrogens, seems to play an 

important role, rather upward in the sex determination/differentiation cascade. It has indirectly been 

shown during the thermolabile period that aromatase (cyp19a1a) expression was higher in future 

females, while 11βhydroxylase (cyp11b) expression was higher in future males, and this one month 

before the first signs of histological sex differentiation (Blazquez et al., 2009). For aromatase, the 

mechanism probably involves methylation of the promoter, as it could be observed that the 

methylation levels of the promoter were twice higher in males than in females and that methylation 

decreases the expression of aromatase (Navarro-Martin et al., 2011). Exposure to high temperature 

increased the cyp19a promoter methylation levels of females, indicating that temperature-induced 

masculinization involves DNA methylation-mediated control of aromatase gene expression (Navarro-

Martin et al., 2011). We saw before that cold temperatures could be a sign of earliness in the season, 

which, by analogy to Menidia, could be a reason to preferentially differentiate as females, which may 

benefit more from a higher growth. It seems that this temperature signal could then be mediated by 

the methylation of the aromatase promoter.  
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However, as we pointed out before, growth itself may also be an indicator of the advantage to 

differentiate as females. It could be observed that 89% of the young sea bass kept at a low 

temperature during the whole of the thermolabile period (13°C until 346 dpf – which causes very low 

growth) differentiated as males (Saillant et al., 2002). However, following the previous results, it 

could be postulated that the methylation level of these fish should be low, thus favouring 

differentiation as females. Then, we consider likely that low temperature is a kind of “priming” 

allowing preferential differentiation as females in case later growth would be high enough. Then, a 

second level of regulation, dependent on growth, may be acting later on, eventually with a different 

mechanism. The “priming” by low temperature would allow the young sea bass to make the 

difference between the late season, where growth may be high due to high temperatures, but 

limited in time, and the early season, where fish will both profit from a longer time to grow and from 

fast growth when temperature increases later on. More experiments would be needed to test this 

hypothesis, but interestingly a two-levels mechanism acting at different levels of the cascade would 

be a seducing hypothesis to explain genotype by environment interactions on sex ratio observed 

when families of fish are reared at different temperatures in the sea bass by Saillant et al. (2002), but 

also in Nile tilapia by Baroiller et al. (1995) and in Menidia by Lagomarsino and Conover (1993). 

One additional point relating to sex differentiation can help us better understand the process. It has 

been shown previously that a certain number of sea bass males exhibited intratesticular oocytes. This 

happens both in wild fish (Saillant et al., 2003a) and in farmed fish (Saillant et al., 2002; Saillant et al., 

2003a). Additionally, it appeared that among the 89% of males long-reared at low temperature we 

mentioned before, 63% had intratesticular oocytes, vs. only 36% in the less numerous males (68%) 

obtained at high temperature (20°C – Saillant et al., 2002). The excess in cold-reared fish was 

interpreted as an indication of masculinization by environmental factors of “sensitive” fish, which 

implicitly are considered as sensitive “protofemales”. It should be noted that the proportion of males 

in the high temperature group remained high (68%), which can be explained by a lack of “priming” by 

aromatase promoter methylation. However, the high percentage of males in the low temperature 

group requires an additional mechanism, as explained before. The idea that approximately half of the 

young sea bass are genetic females, which are masculinized by inadequate temperature treatments, 

has also been proposed by Navarro-Martin et al. (2009b). However, with the model of polygenic sex 

determination I defend, there need not be half of genetic females (and indeed the term “genetic 

females” has no meaning) – and it has been demonstrated elsewhere that some specific family 

crosses could exhibit a proportion of females as high as 82%, in environmental conditions where the 

average sex ratio was 38% females (Ky et al., 2006). 

Altogether, the mechanisms involved in sex differentiation in sea bass do not contradict our 

polygenic hypothesis, and observations done in other taxa suggest that there is room for such an 

hypothesis. However, environmentally influenced polygenic sex determination may rely on 

successive mechanisms, so as to maximize the chances for the largest fish to become females13. As 

pointed out by Valenzuela (2008), ESD implies a much longer time frame for the process of sex 

determination to take place when compared to pure GSD, where sex is fixed at conception.  

                                                           
13

 The fact that the sex dimorphism of weight  in favor of females and/or the genetic correlation of growth with sex 
tendency is highest early in the first year, and specifically around the initiation of sex differentiation for the genetic 
correlation, strongly (although indirectly) supports this hypothesis. 
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4.4 Conclusion 

We have demonstrated that the sea bass had a high potential for selective breeding, for the two 

major traits growth and sex ratio. Interestingly, both traits are linked making selection for growth 

also beneficial to improve the proportion of females in farmed populations. Then, there is a sound 

basis to start breeding programmes enhancing productivity in this species. Such breeding 

programmes have already started in France and Greece, and we can hope that positive results occur 

promptly. However, even for simple selection for growth, we pointed out that there was a need to 

better understand the connections between early growth and final growth rate, as well as the 

genetic by environment interactions which may act when fish are sent in rearing systems very 

different from the selection environment. So, even for a simple trait like growth, we cannot say that 

the story ends. One point that was uncovered and can quickly be solved is the provision of an 

adapted measurement of growth rate for sea bass, which would be independent of the age of the 

fish. 

For sex ratio, we saw that the sea bass had a rather peculiar polygenic system - indeed probably 

peculiar only because the influences of environment and of genetics on the determination of sex are 

of the same magnitude, which prevents choosing between the usual dichotomic ESD and GSD 

systems. Although peculiar, this system can be efficiently modeled as a quantitative threshold trait. 

Developing the implications of such a model, we showed that combined with selection for growth 

and environmental or hormonal manipulation of the sex phenotype in the broodstock, it was indeed 

rather flexible and gave perspectives to obtain monosex female populations in a few generations. 

Monosex female populations would be expected to grow faster and mature later, so would be highly 

favored by sea bass farmers. Another benefit of monosex female populations would be, combined 

with triploid induction, to allow hatcheries to sell only sterile fish to ongrowers. Induced triploidy by 

means of temperature of pressure shocks a few minutes after fertilization is possible in many fish 

species (reviewed by Piferrer et al., 2009), and especially in the sea bass (Peruzzi and Chatain, 2000). 

However, one frequent characteristic of triploids, which is verified in the sea bass, it that gonadal 

development is almost completely stopped in females while it may still be present in males (Peruzzi 

et al., 2004). Therefore, monosex female populations would be perfect to obtain complete sterility 

through triploidy. The potential advantages of sterile fish are three: 1) quality is improved as no 

detrimental effects of maturation on flesh quality occur 2) in case of escapes in the natural waters, 

there is no possibility to have genetic interactions with wild populations and 3) for a breeding 

company, selling sterile fish is an efficient way to protect its investment. Nowadays, use of sea bass 

triploids is hampered by the lower growth of these fish (Peruzzi et al., 2004), but also by the 

necessity to use artificial fertilization to produce triploids, as the temperature or pressure shock has 

to be applied a very precise timing following fertilization, which is not possible with mass spawning in 

tanks. Mass spawning is the usual way hatchery produce sea bass eggs, as it is less labour intensive 

and it provides an overall better productivity of female broodstock. More research is needed to 

achieve this, but the move towards farming of sterile fish is doubtlessly a major trend for the decades 

to come, mainly due to the pressure to avoid genetic impact of farmed fish on wild populations 

(Piferrer et al., 2009). 

Although monosex populations may in theory be obtained in a few generations, sea bass generations 

are rather long (2 years for the males, 3 years for the females), and it might be welcome to find ways 

to speed up the process. As we saw, the nature of polygenic sex determination makes it prone to 
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invasion by major sex factors, but it would also be likely that different sex factors would appear and 

be selected for in different populations (living in different environments). This paves the way to two 

options to speed up the establishment of monosex (or at least female dominant) populations: 

exploring the variability of wild populations, which may respond differently to the farming 

environment in terms of sex determination, and trying to identify potential major (or large) sex 

factors. QTLs for sex determination have already been found in Tilapia (Shirak et al., 2006) and turbot 

(Martinez et al., 2009), and the development of next generation sequencing now allows the 

identification and genotyping of thousands of Single Nucleotide Polymorphism (SNP) markers even in 

species where no sequence is available (Baird et al., 2008; Willing et al., 2011). The use of such 

technologies is clearly the way forward, for potential practical selective breeding applications but 

also for evolutionary biology, as it could help identify new sex determination factors - and thus 

answer more formally to the questions about the polygenic nature of sex determination in sea bass. 

More than those two simple (but necessary) productive traits, growth and sex ratio, there is a need 

to develop other selection criteria for aquaculture species in general: genetic improvement has been 

shown to be a major driver in productivity gains in terrestrial livestock species, and it seems clear 

that aquaculture needs improved productivity and sustainability. The future of fish production clearly 

depends on the development of aquaculture, as fisheries worldwide are not expected to deliver 

more fish than they presently do, and could be at a serious risk to collapse (Worm et al., 2006). 

Already today, aquaculture provides approximately half of the human consumption of fish 

worldwide. More sustainable breeding goals mean being able to produce more edible fish from less 

inputs, with a lower production of waste. Traits that can contribute to these sustainability goals are 

obviously feed efficiency, disease resistance, processing yields and adaptation to novel feed 

ingredients. The latter is important as the amount of fish meal and fish oil, which are essential 

ingredients of fish feeds, is limited - so they have to be substituted by other protein and lipid sources, 

mostly plant-based, although the culture of macro and micro algae could also provide interesting raw 

materials. Experiments have started to adapt carnivorous fish to plant-based ingredients by selective 

breeding, and show some room for improvement (Le Boucher et al., 2011; Overturf et al., 2011; 

Pierce et al., 2008; Quinton et al., 2007 in salmonids, Le Boucher et al., 2010 in sea bass). Genetic 

variation for feed efficiency also exists, but remains difficult to exploit due to the difficulty to 

measure individual feed intake in group-reared fish. Indirect criteria are necessary here, and some 

have started to be developed, especially in the sea bass (Grima et al., 2008; Grima et al., 2010b; 

Grima et al., 2010a). For disease resistance, genetic variation exists in many fish species, but has not 

yet been revealed for the major disease of the sea bass, Viral Nervous Necrosis (for which cod has a 

very high heritability of resistance Odegard et al., 2010). Improving fillet yield by selection seems 

feasible in some species (Gjerde and Gjedrem, 1984; Haffray et al., 2012; Kocour et al., 2007; Rutten 

et al., 2005), but is also difficult due to sometimes very small phenotypic variation (Powell et al., 

2008). In sea bass, fillet yield is not an issue yet as sea bass are mostly sold as round fish, but it will 

probably become important when growth rate will be sufficiently improved to make filleting 

economically feasible. Altogether, we can see that there is a wide array of criteria that could be used 

to increase the output of aquaculture production of edible fish through selective breeding, and it 

seems rather clear that these options have to be used to make aquaculture, as the future main 

provider of fish for human consumption, more sustainable.  

However, will this be enough for future development to take place in a sustainable way? Until now, 

this is not evident at all, although this is not specific to aquaculture, this problem being the same for 
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many sectors of today's economy. As all animal production systems, aquaculture uses a wealth of 

primary (often fossil) energy to produce its outputs. Edible protein energy from aquaculture products 

represents only a limited fraction of the industrial energy consumed in the whole production cycle, 

as can be accounted for by Life Cycle Analysis (Tyedmers and Pelletier, 2007) : 1.4 to 13% for 

intensive aquaculture, 13 to 100% for extensive aquaculture, to be compared to 8% on average for 

fisheries and 1.8 to 25% for various terrestrial livestock production. Although the relative positions of 

the different systems can certainly be debated, and energy consumption is not the only relevant 

sustainability indicator (greenhouse gases potential, eutrophication potential, land use are other 

important categories, see e.g. Aubin and Van der Werf, 2009), these values clearly indicate that non 

renewable energy consumption of aquaculture remains important. The fact that the best converter 

of intensive aquaculture (13% industrial energy converted to protein energy) is rainbow trout, which 

is probably the most domesticated species for intensive aquaculture, highlights the potential benefits 

of domestication and selective breeding of fish to improve the productivity of inputs. This 

improvement can be done and has to be done, but will it allow the production of fish to feed an 

increasing population with the same, or even a lower input level?  This would be needed to reach a 

level of decoupling of outputs and inputs satisfying the challenges of climate change and limited 

resources at the world level, as advocated by Jackson (2009). Efficiency enhancement of the fish 

alone cannot be the solution, and we will certainly also have to look for other production systems 

(other feed sources, extensive or multi-trophic systems) to increase resource use efficiency to a 

higher level (essentially using solar energy through primary production). This will also be an exciting 

challenge for fish geneticists, as the mass productivity of extensive systems is bound by primary 

production, making the use of "clever" breeding objectives (increasing conversion efficiency of inputs 

into edible fish flesh) a necessity. In the meantime, anticipating the change may be difficult, as for 

the moments we see no sign of extensification of aquaculture production – rather the opposite 

indeed, as we are still in the oil-doped economy! 
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Résumé 

Etude des variations génétiques de la croissance et du sex ratio chez le bar à l'aide de pedigrees 
moléculaires 
 
Le bar (Dicentrarchus labrax) est une espèce majeure de l’aquaculture méditerranéenne, dont la 
production est passée de presque rien en 1985 à plus de 100 000 tonnes annuelles aujourd’hui. Dans 
un grand nombre de cas, des géniteurs sauvages sont encore utilisés pour produire des juvéniles chez 
cette espèce, et l’on constate une forte prédominance des mâles, aux performances zootechniques 
inférieures, dans les populations d’élevage. Le but du présent travail de recherche était tout d’abord 
de quantifier les variations génétiques de la croissance et du sex ratio entre familles de bar produites 
par fécondation artificielle et élevées en commun, en utilisant le génotypage de locus microsatellites 
pour reconstruire les pedigrees des animaux mesurés. Dans un second temps, nous avons également 
étudié la réponse en termes de croissance et de sex ratio à une sélection expérimentale sur la 
croissance en longueur.  
Nous avons tout d’abord pu montrer que  la technique expérimentale choisie (fécondation 
artificielle, élevage en commun et reconstruction des pedigrees par génotypage) était efficace et 
susceptible d’être appliquée non seulement en expérimentation, mais aussi pour la mise en place de 
programmes de sélection chez le bar.  
La croissance chez le bar montre une héritabilité élevée pour le poids à taille commerciale de 400g 
environ (h²=0.38-0.44), mais plus modeste pour le taux de croissance de 35 à 400g (0.16-0.34), 
montrant l’importance de la croissance précoce, très héritable (h²=0.61) dans la construction de la 
performance à taille commerciale. Par ailleurs, la croissance du bar n’est pas significativement 
influencée par des effets maternels non génétiques ou de dominance. Nous avons estimé les 
interactions génotype-milieu pour la croissance entre des sites de grossissement très différents, et si 
ces interactions se sont révélées modestes pour le poids à taille commerciale (rA=0.70-0.99 entre 
sites), elles étaient beaucoup plus fortes pour le taux de croissance (rA=0.21-0.61 entre sites). Bien 
que nous ayons à dessein choisi des environnements très différents pour ce test, ceci souligne 
l’importance de conduire les programmes de sélection dans un environnement proche de 
l’environnement d’élevage. 
Nous avons montré que le sex-ratio des populations naturelles de bar ne différait pas de 50-50 en 
moyenne, mais que certaines classes d’âge pouvaient avoir un sex-ratio biaisé, vraisemblablement du 
fait d’effets environnementaux. En élevage, les sex-ratios sont variables entre familles et influencés à 
la fois par le père et par la mère. Aucun modèle purement génétique ne permet d’expliquer les 
distributions observées, qui peuvent être décrites soit par un modèle ayant au moins deux loci 
bialléliques et une variance micro-environnementale, soit par un modèle polygénique à seuil 
(h²=0.62 pour la tendance sexuelle sur l’échelle sous-jacente). Avec ce dernier modèle, on note une 
corrélation génétique positive (rA=0.50) entre tendance sexuelle et croissance. Ceci permet de 
prédire que la domestication devrait permettre un rééquilibrage du sex-ratio vers 50-50, la sélection 
croissance biaisant le sex-ratio vers plus de femelles. C’est ce que nous observons ensuite dans notre 
expérience de réponse à la sélection pour la croissance. Cette même expérience nous permet de 
confirmer le potentiel de l’espèce pour une amélioration génétique de la croissance, avec un gain de 
23% en première génération. 
Le modèle polygénique (ou à tout le moins polyfactoriel) de déterminisme du sexe est a priori rare 
chez les Vertébrés. Après avoir développé son utilisation possible pour obtenir à terme des 
populations de bars d’élevage monosexes femelles, le modèle polygénique est replacé dans la 
théorie du déterminisme du sexe chez les Vertébrés ectothermes, où il semble pouvoir être 
considéré comme beaucoup plus répandu qu’on ne le considère classiquement. Il pourrait être un 
moyen permettant aux espèces et aux populations de se déplacer le long du continuum ESD-GSD 
(déterminisme environnemental ou génétique du sexe).  
Mots-clés: Aquaculture, génétique, sélection, sex ratio, croissance, Dicentrarchus labrax 



 

 

Summary 
Genetic variation of growth and sex ratio in the European sea bass (Dicentrarchus labrax L.) as 
revealed by molecular pedigrees 
 
The European sea bass (Dicentrarchus labrax) is a major species of Mediterranean aquaculture, the 
production of which rose from almost nothing in 1985 to more than 100.000 tonnes annually at 
present. In many cases, wild-caught broodstock is still used to produce juveniles for aquaculture, and 
farmed population are predominantly male – which unfortunately perform less than females.  The 
aim of the present research was first to quantify the genetic variation of growth and sex ratio 
between families of sea bass produced by artificial fertilization and reared in a “common garden” 
approach, using the genotyping of microsatellite markers to reconstruct the pedigrees. In a second 
phase, we also studied the response in terms of growth and sex ratio to an experimental selection 
applied on body length. 
We first could show that the experimental technique chosen (artificial fertilization, common garden 
rearing and pedigree reconstruction by genotyping) was efficient and could be applicable not only to 
conduct experiments but also to set up breeding programmes in sea bass. 
Growth is a heritable trait in sea bass, with a high heritability for body weight at commercial size 
(h²=0.38-0.44 around 400 g mean weight), but a lower value for growth rate from 35 to 400g (0.16-
0.34), showing the importance of the highly heritable (h²=0.61) early growth in the building of the 
performance at commercial size. Additionally, we showed that sea bass growth was not significantly 
impacted by dominance or non genetic maternal effects. We estimated genotype by environment 
interactions for growth between highly divergent ongrowing sites, showing that although 
interactions were moderate for body weight at commercial size (rA= 0.70-0.99 between sites), they 
were much higher for growth rate (rA=0.21-0.61 between sites). Although we purposely chose very 
divergent ongrowing environments, this highlights the importance of conducting breeding programs 
in environments resembling the production environment. 
We showed that the sex ratio of natural populations in the wild did not differ from 50-50 on average, 
although some age classes could have a biased sex ratio, probably due to environmental effects. In a 
farmed population, sex ratios were shown to differ between families and to be equally influenced by 
the sire and the dam. No purely genetic model could account for the distributions observed, which 
could fit either to a model with a minimum of two bi-allelic loci plus micro-environmental variance, 
or to a polygenic threshold model with h²=0.62 for sex tendency on the underlying scale. This last 
model also revealed a positive genetic correlation (rA=0.50) between sex tendency and growth. This 
allowed us to predict that domestication should tend towards a balancing of the sex ratio at 50-50, 
while selection for faster growth should bias population sex ratios towards females. This is precisely 
what we observed later on in our selection response experiment, which also confirmed the potential 
of the species to be selected for faster growth, with a 23% gain in body weight in the first generation. 
The polygenic (or at least polyfactorial) model of sex determination is considered rare in Vertebrates. 
After developing its possible use to tend towards monosex female farmed populations of sea bass, 
we assessed its position in the theory of sex determination in  ectotherm Vertebrates, where it 
seems that it could well be more frequent as initially thought. Polygenic sex determination could be a 
means for species and populations to move along the ESD-GSD continuum (Environmental or Genetic 
Sex Determination). 
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