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Summary 
Matrix flow and preferential flow can occur concurrently in the same soil. Both 

flow regimes produce typical flow patterns that can be visualised in dye tracer 

experiments. To extract quantitative information from dye tracer studies a vast 

variability of approaches exists. One of them is to describe dye patterns by the so 

called dye coverage function, i.e. the percentage of stained area per soil depth. 

Based on extreme value statistics the dye coverage function can be reinterpreted 

as a probability function to find the tracer in a certain depth. Therefore, the two-

parametric probability distribution 1 – H, H being the generalised Pareto 

distribution, can be fitted to the dye coverage function. The form parameter of this 

distribution serves as a risk index for vertical solute propagation. 

We did tracer experiments with Brilliant Blue FCF at three different study 

sites: in a Norway spruce forest in southeast Germany, in a tropical mountain 

rainforest in southern Ecuador and on an agricultural field in southern France. We 

tested the ability of the risk index to summarise main information obtained in dye 

tracer studies and characterise flow patterns in different soils under varying 

boundary conditions. 

Our results suggest that the risk index is to some degree invariant to changing 

experimental conditions (such as irrigation rate). The initial soil moisture, 

however, seems to have a large influence on the risk index. It is difficult to adjust 

the parameters of the generalised Pareto distribution when the dye coverage 

function fluctuates or does not decrease monotonically. This might be due to 

tortuosity of paths, varying flow mechanism or changing soil physical properties 

(stratification). Thus, in stratified soil, we restricted the analysis to the lowest part 

of the profile. Since the theory of the risk index is based on extreme values of 

vertical solute propagation it is the lowest part of the profile that is the most 

interesting. 

We propose to combine the two parameters of the generalized Pareto 

distribution and to use the complete distribution 1 − H to estimate the risk of 

vertical solute propagation in soils. Despite a certain resistance to changes of 

experimental conditions, the risk index is not an intrinsic soil parameter. Since the 

flow regime in the same soil can be dominated either by preferential flow or by 

uniform matrix flow, the risk of vertical solute propagation will change. It is a 

 i

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



 

 ii 

physical reality and not a default in the risk index theory. The adjusted parameters 

of the generalised Pareto distribution will capture the dominant flow regime as 

reflected by tracer flow patterns. Bearing in mind the boundary conditions of the 

tracer experiment like irrigation rate, the tracer employed, soil initial moisture or 

type of vegetation (permanent or seasonal, deep rooted or shallow rooted) it is 

possible to compare different study sites or to consider the same site at different 

boundary conditions and to access the risk of vertical solute propagation. 

Pattern analysis based on the risk index for vertical solute propagation 

revealed the occurrence of preferential flow at the German study site. To gain 

insight in flow mechanisms and possible impacts of preferential flow on soil 

chemistry we analysed soil texture, fine root density, soil bulk density, 

exchangeable cations, pH and total C and N contents in preferential flow paths 

and soil matrix. Results from linear mixed-effects models suggested that at this 

study site roots constituted main preferential flow paths and induced macropore 

flow, especially in the topsoil. In the subsoil root density decreased and 

inhomogeneous infiltration from preferential flow paths into the soil matrix 

caused non-uniform flow. There were no textural differences between the flow 

domains, but smaller bulk densities in preferential flow paths. This is probably 

due to a higher soil organic matter content in preferential flow paths. We found 

smaller pH values, more Ca, more Mg, more C and more N in preferential flow 

paths. Compared to the adjacent soil matrix, more Al and more Fe (but small 

absolute amounts) were found in the subsoil where macropore flow along root 

channels decreases and heterogeneous matrix flow dominates. These distinct 

chemical properties can be explained by root activity and translocation of solutes 

and DOC (dissolved organic carbon) via preferential flow paths. During transport 

along preferential flow paths contact time between DOC and soil is reduced so 

that DOC is transported to greater depth where it potentially forms organo-

mineral associations. If this holds true, preferential flow is a mechanism that 

promotes C sequestration in subsoil and does not only influence its immediate 

environment around paths, but also underlying subsoil horizons. 

A major outcome of this thesis is the large number of images of flow patterns 

from different soils. Further studies could employ recent dimensionality reduction 

techniques to investigate whether there is a low dimensional structure underlying 

these images. 
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Zusammenfassung 
Matrixfluss und präferentieller Fluss können in ein und demselben Boden 

gleichzeitig auftreten. Beide Fließregime erzeugen charakteristische Fließmuster, 

die in Versuchen mit Farbtracern sichtbar gemacht werden können. Es existiert 

eine Reihe von Methoden, um Tracerversuche quantitativ auszuwerten. Eine 

davon ist die Beschreibung der Fließmuster durch die so genannte 

Deckungsgradfunktion, den Anteil der gefärbten Fläche pro Tiefe. Die Methoden 

der Extremwertstatistik erlauben eine Neuinterpretation der 

Deckungsgradfunktion als eine Wahrscheinlichkeitsfunktion, den Tracer in einer 

bestimmten Tiefe anzutreffen. Demzufolge kann die zweiparametrige 

Wahrscheinlichkeitsfunktion 1 – H (H: verallgemeinerte Paretoverteilung) an die 

Deckungsgradfunktion angepasst werden. Der Formparameter dieser Verteilung 

dient als Risikoindex für vertikale Ausbreitung von gelösten Substanzen. 

Tracerversuche mit Brilliant Blue FCF wurden an drei unterschiedlichen 

Standorten durchgeführt: in einem Fichtenwald in Südostdeutschland, einem 

Bergregenwald in Südostecuador und an einem landwirtschaftlichen Standort in 

Südfrankreich. Es wurde überprüft, ob die wichtigsten Ergebnisse aus 

Tracerversuchen auf unterschiedlichen Böden und bei verschiedenen 

Randbedingungen mithilfe des Risikoindex beschrieben werden können. 

Die Ergebnisse zeigen eine gewisse Unabhängigkeit des Risikoindex  von 

experimentellen Randbedingungen (wie z. B. Beregnungsintensität). Dagegen 

scheint die Bodenfeuchte eine zentrale Rolle zu spielen. Schwierigkeiten bei der 

Anpassung der Parameter der verallgemeinerten Paretoverteilung ergeben sich, 

wenn die Deckungsfunktion fluktuiert oder nicht monoton fallend ist. Dies kann 

möglicherweise auf die Tortuosität von Fließpfaden, variierenden 

Fließmechanismen oder sich verändernden bodenphysikalischen Eigenschaften 

(Stratifikation) zurückgeführt werden. Daher wurde die Musteranalyse in 

stratifizierten Böden auf den Unterboden begrenzt. Da die dem Risikoindex 

zugrunde liegende Theorie auf den Extremwerten der vertikalen Ausbreitung von 

gelösten Stoffen basiert, gilt das Hauptinteresse dem untersten Teil des 

Bodenprofils. 

Wir schlagen vor, die beiden Parameter der verallgemeinerten 

Wahrscheinlichkeitsverteilung zu nutzen, um das Risiko der vertikalen 

Ausbreitung von gelösten Stoffen in Böden abzuschätzen. Obwohl der 

Risikoindex eine gewisse Toleranz gegenüber sich ändernden Randbedingungen 

zeigt, ist er kein intrinsischer Bodenparameter. Da das Fließgeschehen in ein und 

demselben Boden sowohl vom Matrix- als auch vom präferentiellen Fluss 

dominiert werden kann, ändert sich das Risiko der vertikalen Ausbreitung von 

gelösten Stoffen. Dies ist physikalische Realität und kein Fehler in der Theorie 

des Risikoindex. Die angepassten Parameter der verallgemeinerten 
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Paretoverteilung erfassen das durch den Tracer sichtbar gemachte dominante 

Fließregime. Unter der Berücksichtigung der Randbedingungen des 

Tracerexperiments wie Beregnungsintensität, des verwendeten Tracers, 

Bodenfeuchte oder Art der Vegetation (einjährig, mehrjährig oder perennierend, 

tiefwurzelnd oder flachwurzelnd) ist es möglich, unterschiedliche Standorte zu 

vergleichen oder denselben Standort unter verschiedenen Randbedingungen zu 

betrachten und das Risiko der vertikalen Ausbreitung von gelösten Stoffen 

abzuschätzen. 

  Extremwertstatistikgestützte Musteranalyse zeigte das Auftreten von 

präferentiellem Fluss auf dem Standort in Südostdeutschland. Um die 

Fließmechanismen und mögliche Auswirkungen des präferentiellen Flusses auf 

die Bodenchemie aufzudecken, wurden Textur, Feinwurzeldichte, 

Trockenraumdichte, austauschbare Kationen, pH, Gehalt an totalem C und N in 

präferentiellen Fließwegen und Bodenmatrix analysiert. Ergebnisse aus 

gemischten Modellen zeigen, dass auf diesem Standort präferentielle Fließwege 

durch Wurzeln gebildet werden, und zwar hauptsächlich im Oberboden. Im 

Unterboden nimmt die Durchwurzelung ab, und heterogene Infiltration aus den 

präferentiellen Fließpfaden in die Bodenmatrix führt zu ungleichmäßigem 

Matrixfluss. Es wurden keine signifikanten Unterschiede in der Textur gefunden. 

Allerdings ist die Trockenraumdichte in den präferentiellen Fließwegen geringer 

als in der Bodenmatrix, wahrscheinlich bedingt durch den erhöhten Gehalt an 

organischer Materie. Weiterhin wurden in den präferentiellen Fließwegen 

niedrigere pH-Werte, höherer Gehalt an Ca, Mg, C und N gemessen. Im Vergleich 

zur umgebenden Bodenmatrix wurde im weniger durchwurzelten und von 

heterogenem Matrixfluss dominierten Unterboden höherer Gehalt an Al und Fe 

(allerdings kleine absolute Mengen) festgestellt. Diese klar unterschiedlichen 

chemischen Eigenschaften lassen sich durch Wurzelaktivitäten und den Transport 

von gelösten Substanzen (darunter auch DOC: gelöster organischer Kohlenstoff)  

durch präferentielle Fließwege erklären. Während des Transports ist die 

Kontaktzeit zwischen dem DOC und dem Boden verkürzt, so dass der Kohlenstoff 

in tiefere Bodenhorizonte transportiert wird, in denen er eventuell organo-

mineralische Komplexe bilden kann. Dies würde bedeuten, dass präferentieller 

Fluss unter Umständen die Kohlenstoff-Sequestration im Unterboden begünstigen 

könnte, und nicht nur seine unmittelbare Umgebung, sondern auch die tiefer 

liegenden Bodenhorizonte beeinflusst. 

Ein wichtiges Ergebnis dieser Untersuchungen ist die große Anzahl an 

Bildern der Fließmuster in verschiedenen Böden. In nachfolgenden Arbeiten 

könnte mit den  neuesten Methoden der Reduktion der Dimension untersucht 

werden, ob diesen Bildern eine niedrigdimensionale Struktur zugrunde liegt. 
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Résumé 
Des écoulements matriciels et des flux préférentiels peuvent se produire 

concurremment dans le même sol. Ces deux régimes d’écoulements se 

manifestent par des empreintes de flux caractéristiques qu’on peut visualiser par 

des essais de traçage. Afin d’extraire l’information quantitative des essais de 

traçage un grand nombre de méthodes existe.  On peut, entre autre, décrire les 

empreintes de traceur par ce qu’on appelle la fonction de couverture, c’est à dire 

le pourcentage de région teintée par un traceur coloré en fonction de la profondeur 

du sol. En utilisant la statistique des valeurs extrêmes cette fonction peut être 

réinterprétée comme une fonction exprimant la probabilité de trouver le traceur à 

une profondeur donnée. Ainsi, la fonction de probabilité à deux paramètres 1 – H, 

H étant la distribution de Pareto généralisée, peut être ajustée. Le paramètre de 

forme de cette fonction est utilisé comme indice de risque de propagation verticale 

des solutés. 

Nous avons effectué des essais de traçage au Bleu Brillant FCF sur trois sites 

différents : dans une forêt d’épicéa dans le sud-est de l’Allemagne, dans une forêt 

tropicale humide montagnarde en Équateur et sur un champ agricole au sud de la 

France. Nous avons examiné la capacité de l’indice de risque à rassembler 

l’information principale des essais de traçage et à caractériser les empreintes de 

flux dans des sols différents, sous conditions aux limites diverses. 

Nos résultats indiquent que l’indice de risque est, dans une certaine mesure 

insensible aux changements des conditions aux limites (comme l’intensité 

d’irrigation). Par contre, l’humidité initiale du sol semble influencer cet indice de 

façon importante. L’ajustement des paramètres de la fonction Pareto généralisée 

s’avère difficile si la fonction de couverture fluctue ou ne décroît pas de manière 

monotone. Ceci peut être dû à la tortuosité des chemins d’écoulement, à la 

variation des mécanismes de flux ou aux changements de propriétés physiques du 

sol (stratification). Ainsi, dans des sols stratifiés nous avons restreint l’analyse à la 

partie inférieure du profil de sol. En effet, étant donné que la théorie de l’indice de 

risque est basée sur les valeurs extrêmes de propagation verticale de solutés c’est 

la partie inférieure qui est la plus intéressante. 

Nous proposons de combiner les deux paramètres de la fonction Pareto 

généralisée et d’utiliser la distribution 1 – H complète afin d’estimer le risque de 

propagation verticale des solutés dans le sol. Bien que l’indice de risque montre 

une certaine invariance vis-à-vis du changement des conditions aux limites il n’est 

pas un paramètre intrinsèque de sol. Comme le régime d’écoulement dans un 

même sol peut être dominé soit  par le flux matriciel soit par le flux préférentiel le 

risque de propagation verticale des solutés change. Ceci est une réalité physique et 

non un défaut dans la théorie de l’indice de risque. Les paramètres de la fonction 

de Pareto généralisée capturent le régime d’écoulement dominant représenté par 
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les empreintes du traceur. En prenant en compte les conditions aux limites de 

l’essai de traçage comme l’intensité d’irrigation, le traceur utilisé, l’humidité 

initiale du sol ou la nature de la végétation (pérenne ou saisonnière, type 

d’enracinement) il est ainsi possible de comparer des sites différents ou des 

résultats obtenus sur le même site sous conditions aux limites différentes et 

d’estimer le risque de propagation verticale de solutés. 

L’analyse d’image d’empreintes de flux basée sur le risque de propagation 

verticale de solutés a révélé l’existence d’écoulements préférentiels sur le site 

allemand. Afin de comprendre les mécanismes de flux ainsi que les impacts 

éventuels des flux préférentiels sur la chimie du sol nous avons analysé la texture 

du sol, la densité racinaire, la densité du sol, la concentration des cations 

échangeables, le pH, et les teneurs en C et N total dans les chemins préférentiels 

et la matrice du sol. Les résultats de la modélisation indiquent que sur ce site les 

racines constituent les chemins préférentiels et créent les écoulements le long des 

macropores, surtout dans la partie supérieure du sol. Dans la partie inférieure la 

densité racinaire diminue et l’infiltration hétérogène à partir des chemins 

préférentiels dans la matrice provoque un écoulement non-uniforme. Nous 

n’avons constaté aucune différence significative de texture, mais des différences 

de densité du sol dans les chemins préférentiels par rapport à celle de la matrice. 

Ceci est probablement dû à la quantité de matière organique plus élevée dans les 

chemins préférentiels. Nous avons également trouvé des pH plus acides, plus de 

Ca, plus de Mg, et plus de C et de N dans les chemins préférentiels. Comparé à la 

matrice, des quantités plus importantes d’Al et de Fe (mais de petites quantités 

absolues) ont été trouvés dans la partie inférieure du sol où l’écoulement 

préférentiel le long des macropores créés par les racines diminue et le flux 

matriciel hétérogène domine. Ces propriétés chimiques distinctes peuvent 

s’expliquer par l’activité racinaire et la translocation de solutés et du carbone 

organique dissous (COD) le long des chemins préférentiels. Le temps de contact 

entre le COD et le sol étant réduit il est transporté plus bas dans le profil où il peut 

potentiellement créer des complexes organo-minéraux. Ainsi, l’écoulement 

préférentiel est un mécanisme qui peut promouvoir la séquestration de C en sous-

sol et n’influence pas uniquement son environnent immédiat, mais aussi les 

horizons sous-jacents. 

Un des acquis majeurs de cette thèse est le nombre important d’images 

d’empreintes de flux issues des sols différents. Dans les études qui suivront les 

méthodes récentes de réduction de dimensionnalité peuvent être employées afin 

de trouver d’éventuelles structures de basse dimensionnalité dans ces images.  
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Chapter 1  
 
 
 
General introduction 
 
 
 

1.1 Water flow in soils 
Two distinct categories of water flow in soils can be identified: uniform flow 

(1911) and non-uniform i.e. preferential flow (Lawes et al., 1882). The former 

describes a relatively slow movement of water through soil micropores. The latter 

one covers all phenomena where water flows through localised pathways 

bypassing a portion of the soil matrix (Hendrickx & Flury, 2001). Although 

discovered in the late 19th century, preferential flow has been considered for a 

long time as exceptional. Nowadays, it has been recognized that uniform and 

preferential flow can occur concurrently in the same soil. Whether matrix flow or 

preferential flow dominates depends on: 

(i) Intensity and variability of rainfall. Gish et al. (2004), for instance, 

showed that an irrigation rate of 4.4 mm h-1 could generate preferential 

transport of bromide at steady state conditions in the field. Tymchak & 

Torres (2007) analysed the effect of variable rainfall intensity on 

timing and magnitude of soil water content response. Variable rainfall 

rates produced faster wetting responses: a possible indicator for 

preferential flow.  

(ii) Water repellency. In a bromide tracer experiment Hedrickx et al. 

(1993) demonstrated that solutes travelled faster to the groundwater in 

a water-repellent soil than in a wettable soil. While for initial water 

content below a critical value preferential flow paths developed, for 

moister conditions uniform flow could occur (Ritsema & Dekker, 

2000).  

(iii) Soil structure and initial soil moisture. Structured soils are more 

susceptible to develop preferential flow than unstructured ones. In 
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Visualization and analysis of flow patterns 
 

contrast, the effect of initial soil moisture is less evident (Flury et al., 

1994; Vogel et al., 2006). 

(iv) Biological factors such as distribution of roots (Mitchell et al., 1995) 

and earthworm burrows (Farenhorst et al., 2000; Shuster et al., 2002; 

Weiler & Naef, 2003) that increase flow rates by creating macropores. 

Preferential flow can further be classified in macropore flow, unstable flow 

and funnel flow. Macropore flow describes water movement along root channels, 

earthworm burrows, soil fissures, cracks or large inter-aggregate voids in 

cultivated soils (Beven & Germann, 1982). A detailed review on macropore flow 

can be found in Jarvis (2007). Unstable flow is common in coarse-textured soils 

and can be induced by variations in texture, water repellency, air entrapment or 

continuous non-ponding infiltration. Lateral redirection of water caused by 

textural boundaries is referred to as funnel flow (Hendrickx & Flury, 2001). 

In summary, non-uniform flow results in rapid water movement and solute 

transport to greater depths than predicted by the classical concept of flow through 

unsaturated soils (Richards’ equation). The impact on groundwater quality might 

be considerable if preferential flow – especially through continuous macropores – 

becomes a dominant mechanism of transport of agrochemicals to greater depths 

(Jarvis, 2007). 

1.2 Visualization and analysis of flow patterns 
Uniform and preferential flow lead to different flow patterns that can be visualised 

by dye tracer experiments (e.g. Pickering et al., 1988; Flury et al., 1994; Forrer et 

al., 2000). Brilliant Blue FCF – a food dye – is frequently used in vadose zone 

hydrology for such tracing studies, because it is easily seen against most soil 

colours and has acceptable toxicological characteristics for environmental use 

(Flury & Flühler, 1994). Among numerous studies using staining techniques to 

analyse water flow in soils two major groups can be distinguished, one using 

images of stained profiles for pattern analysis and another deriving concentration 

maps of the dye tracer. Our research is part of the first group. 

Flow regime (uniform or preferential) and flow patterns are interrelated. 

Weiler & Flühler (2004) for instance used the width of stained objects in order to 

identify flow regimes in macroporous soils. To distinguish between different 
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transport mechanisms Kulli et al. (2003) performed a hierarchical clustering of 

dye patterns. Other investigations were based on the proportion of staining, the 

dye coverage (Flury et al., 1994). Öhrström et al. (2002), for instance, analysed 

spatial variability of preferential pathways at catchment scale and found that 

variability of dye patterns increased with scale. To investigate the influence of 

water repellency on flow patterns Lipsius & Mooney (2006) compared dye 

coverage functions by analysis of variance. Numerous other studies analysing the 

percentage of stained area as a function of soil depth exist (e.g. Weiler & Naef, 

2003; Sander & Gerke, 2007). This variability of techniques shows clearly the 

difficulty to summarize the relevant information from dye tracer studies in a 

compact way. Thus appreciation of susceptibility of soils to induce preferential 

flow and of a potential vulnerability of groundwater is often based on expert 

knowledge. This lack of theoretical foundation makes comparisons between soils 

difficult and subjective. 

To overcome this problem Schlather & Huwe (2005) introduced a new 

theoretical base for the dye coverage function. They used the peak-over-threshold 

approach that usually serves to investigate extreme events in time-series analysis 

and reinterpreted the dye coverage as a probability function to find the tracer 

below a certain depth. By fitting the Generalised Pareto Distribution – a two 

parametrical extreme value distribution – to the dye coverage they defined the 

form parameter as a risk index for the vulnerability of groundwater by pollutants. 

Thus, they summarised data from a dye staining experiment in one real-valued 

quantity. Furthermore, the authors hypothesised that the risk index was an 

intrinsic soil parameter showing some persistence of its value against small 

variations of boundary, i.e. experimental and initial conditions.  

1.3 Objectives of the thesis 
The first goal of the theses was to consider in detail the behaviour of the risk 

index for different experimental and initial conditions. We wanted to know 

whether extreme value statistics could be used as a tool to analyse and classify 

flow patterns under varying boundary conditions. This first study was conducted 

in a Norway spruce forest in southeast Germany (Chapter 2.1). 
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Experimental sites 
 

The second objective was the application of the risk index to stained patterns 

obtained from different soils in different ecosystems. We worked in a tropical 

mountain rainforest in southern Ecuador – an environment characterised by a 

varying degree of anthropogenic disturbance – and on an agricultural filed with 

shallow ground water in southern France (Chapter 2.2 and Chapter 2.3). 

And last but not least, after analysis of flow patterns we investigated the 

underlying flow processes and their impacts on soil chemistry at the German 

study site in details (Chapter 3). 

These aims required the refinement of field, laboratory and data analysis 

methods. For field wok, the sprinkler proposed by Ghodrati et al. (1990) had to be 

modified in order to improve its portability and flexibility of control. A laboratory 

method to rapidly determine the concentration of Brilliant Blue in soil samples 

was lacking (Appendix A). And finally, we adapted image analysis techniques 

originally developed for industrial machine vision to process pictures of stained 

patterns in soils. 

1.4 Experimental sites 

1.4.1 Waldstein in the Fichtelgebirge (Germany) 
The experimental site is located in Waldstein in the Fichtelgebirge (775 m a.s.l), a 

mountain ridge in southeast Germany, densely forested by the Norway spruce 

(Picea abies). The mean annual temperature is 5.3 °C and annual precipitation 

1156.5 mm. Main soil groups are Haplic Poszols, Dystric Cambisols and 

Hostosols (IUSS Working Group WRB, 2007) developed on granite or gneiss 

bedrock. The content of rock fragments varies strongly within the site and with 

soil depths and ranges between few percent in the topsoil and up to 75 vol% in the 

subsoil. Extremely acidic pH values (in CaCl2) between 2.6 (organic horizons) 

and 4.3 (subsoil) were measured. High deposition of SO4 during several decades 

resulted in a strong acidification of the soil. A detailed description of the site can 

be found in Gerstberger et al. (2004); Foken (2003) gives an overview on climatic 

and meteorological conditions. 
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1.4.2 ECSF research station (Ecuador) 
The investigated area is situated in the Cordillera Real, in the eastern part of South 

Ecuadorian Andes and belongs to the “Reserva Biologíca San Francisco” that 

extends between 1800 m and 3160 m a.s.l. It comprises undisturbed tropical 

mountain rain forest and its anthropogenic replacement ecosystem where the 

forest has been cleared by slash and burn. The centre of the research area is the 

“Estacion Cientiíica San Francisco” (ECSF). The annual temperature averages 

19-13 °C between 1100-2200 m and 13-6 °C up to 3800 m. Since the spatial 

rainfall structure is highly heterogeneous, the annual precipitation in the studied 

area varies between 383 mm and >6000 mm. The soils are highly heterogeneous 

due to the diversity of parent material (metasiltsontes, sandstones, quartzites and 

schists) and altitudinal gradients. Additionally, the area displays a high landslide 

activity; therefore, the stone content in the topsoil varies between 80% on 

landslides and less than 10% in undisturbed forest soils. More details on the 

studied area are given in Beck et al. (2008) and references herein. 

1.4.3 INRA experimental site in Avignon (France) 
The research area is located on an alluvial plane at the confluence of Rhone and 

Durance rivers at 30 m a.s.l (Monjuvent, 1991). The alluvial sediments constitute 

an important aquifer with a shallow water table that can rise up to 3 m below the 

surface. The mean annual maximum and minimum temperature equals 19.3 °C 

and 9.1 °C respectively and the mean annual precipitation is 722.4 mm (Météo 

France). The soil is a Calcisol (IUSS Working Group WRB, 2007) with a pH (in 

H2O) of 8.5. It is highly structured due to important content of clay (>35%) and 

develops deep cracks during desiccation. Detailed overview on soil physical and 

chemical properties can be found in Di Pietro et al., (2004). 

1.5 Sy nopsis 

1.5.1 Behaviour of the risk index under different experimental 
and initial conditions (Chapter 2.1) 

To consider in detail the behaviour of the risk index for different experimental and 

initial conditions we did five tracer experiments in a Norway spruce forest in 

southeast Germany. We applied a tracer solution consisting of Brilliant Blue and 

the reference tracer potassium iodide at 32 mm hour-1 or 64 mm hour-1 on plots of 
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about 2 m2. The reference tracer was used to verify that Brilliant Blue was not 

substantially retarded and reflected well the flow patterns of water. Indeed, 

rainfall simulations with Brilliant Blue and iodide on soil columns extracted at the 

same study site showed clearly that when matrix flow dominated Brilliant Blue 

was heavily retarded with regard to iodide. In this case the transport behaviour of 

Brilliant Blue differs from flow behaviour of infiltrating water (Appendix B). The 

day after the irrigation, six vertical 1 m × 1 m soil profiles were excavated at 

intervals of 20 cm in the central part of the plot and photographed with a CCD 

camera. One to three profiles were treated with iron(III) nitrate and starch to 

visualize iodide (Lu & Wu, 2003). To account for changing light conditions in a 

forest environment we took photographs in the lossless RAW format in order to 

adjust white balance a posteriori in appropriate graphical software. Images of soil 

profiles were corrected for radial and perspective distortion using the software 

PTGui (New House Internet Services B.V., 2005), classified in stained and non 

stained parts and the dye coverage function p(d) (number of stained pixels per 

depth d) was calculated in Matlab 7.1 (The MathWorks, 2005b). The distribution 

1 − H (H being the generalised Pareto distribution) was fitted to the dye coverage 

function in order to estimate the risk index as defined by Schlather & Huwe 

(2005). 

In this study we slightly modified the interpretation of the risk index. We 

think that the form parameter of the generalized Pareto distribution should be 

interpreted as a risk index for vulnerability of groundwater to pollutants only in 

regions with fairly homogeneous geological material between the soil surface and 

the water table, as in sedimentary basins with shallow water tables. The 

groundwater at our site is 8 to 10 m below the surface, and so we prefer to qualify 

ξr as a risk index for vertical solute propagation. 

Our results support the hypothesis formulated by Schlather and Huwe (2005) 

that the risk index is to some degree invariant to changing experimental conditions 

(such as irrigation rate). The initial soil moisture, however, seems to have a large 

influence on the risk index. We propose to combine the two parameters of the 

generalized Pareto distribution to estimate the risk of vertical solute propagation 

in soils. A complete probability distribution 1 − H allows us to compare plots with 

various initial and experimental conditions or different tracers. 
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As mentioned by Schlather & Huwe (2005), in stratified soils when the flow 

process changes as a result of varying physical properties the dye coverage 

function cannot be represented by one single distribution 1 − H. Therefore, we 

used only the lowest part of the profile to calculate the risk index. This accords 

with the limit law of the extreme value theory stating that the behaviour of the 

process at great depths is independent of the behaviour near the origin (Schlather 

& Huwe, 2005). Additionally, as our analysis is based on extreme values of 

vertical solute propagation it is the lowest part of the profile that is the most 

interesting. To correctly access the risk of vertical solute propagation the depth 

where 1 − H was adjusted should be explicitly taken into account. Provided that 

the dye coverage function decreases monotonically, the estimated risk for vertical 

solute propagation can serve to classify soils. 

1.5.2 Application of the risk index to stained patterns obtained 
from different soils in different ecosystems (Chapter 2.2 
and Chapter 2.3) 

To apply the risk index to soils in a different ecosystem we did five tracer 

experiments in a mountain rainforest of south Ecuador (Chapter 2.2). Most tracer 

studies documented in literature were carried out on agricultural soils. To the 

authors’ knowledge, there are only few studies in young stony forest soils, 

landslides or in tropical soils in general. Therefore, the aim of this study was to 

investigate water flow in disturbed and undisturbed tropical soils, with special 

emphasis on stony forest soils. We did tracer experiments on a new landslide and 

on an old one, at two sites in a primary forest and on pastures. The field work was 

adjusted to difficult conditions in a mountainous tropical region and only one 

tracer (Brilliant Blue) was used. Image processing was similar to the first study 

except that the camera did not allow taking images in the RAW format. 

Infiltration depth and pattern complexity were higher on the old landslide than 

on the new one probably due to soil regeneration. Indeed, on the new landslide 

soil structure was destroyed by mass movement, producing a more or less 

heterogeneous mixture of soil material and stones. Pedogenetic processes and 

plant activities recreated soil structure on the old landslide, thus increasing the 

occurrence of preferential flow especially along bio-macropores such as root 

 7

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Synopsis 
 

channels or earthworm burrows. This was well reflected by the risk of vertical 

solute propagation that was higher on the old landslide. 

In the primary forest, stones amplified the development of preferential flow 

by funnelling water along their walls and reducing the cross-section for water 

flow thus inducing a higher risk of solute propagation. Stained patterns observed 

on pastures suggested that infiltrability was reduced by compaction of the soil 

surface due to changes in land use. This could explain the smaller amount of dye 

penetrated into the soil. The calculated risk index indicates a low propagation risk 

at this site. 

From this study we conclude that the complexity of stained patterns and 

infiltration depths are different at disturbed and undisturbed study sites. Our data 

indicate that soil structure, stone content, plant roots system and possibly land use 

are controlling factors for water flow in soils of this study area. The index 

proposed by Schlather & Huwe (2005) serves as a useful characteristic of flow 

regime and as a risk index for vertical solute propagation in a variety of soils. 

Thereafter, we characterised the flow regime on an agricultural study site in 

southern France (Chapter 2.3). In cultivated soils tillage is an important factor that 

influences processes on soil surface, is important for generation of surface runoff 

and affects soil erodibility and depression storage. Rough soil surfaces tend to 

store more water thus reducing runoff and increasing infiltration. While many 

studies on soil surface processes or flow patterns in soils exist, works relating both 

are rare in literature. We thus combined stereophotogrammetry to measure soil 

surface roughness and dye staining techniques on a tilled and compacted plot and 

a non-tilled one with a well developed system of open cracks to investigate 

processes at soil surface during simulated rainfall, analyse the resulting flow 

patterns and to relate both to tillage treatment. A special emphasise was given to 

connectivity of processes above and below the plough pan. 

For this study, image analysis techniques originally used in machine vision 

were adapted for tracer studies. We calibrated the camera to correct radial and 

geometric distortion in images of stained soil profiles more accurately and rapidly. 

Additionally, the classification method to segment images in stained and non 

stained parts was adjusted. Since image analysis could be considerably speeded up 

soil profiles were excavated at intervals of 10 cm. 
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Our results showed that on the non-tilled plot soil roughness increased after 

tracer application probably due to surface consolidation. However, on the tilled 

plot it did not change because the applied simulated rainfall had not enough 

energy to induce significant erosion. Important surface storage was observed on 

the tilled plot, especially on the compacted part. Despite tillage preferential flow 

along cracks occurred on both plots and macropores buried below tillage pan 

functioned as preferential flow paths. 

We could demonstrate that the studied soil was susceptible to deep vertical 

solute propagation at dry no till conditions when cracks are open, connected down 

to the subsoil and infiltration rates through macropores are important. Keeping in 

mind the shallow water table at this site, the risk for groundwater contamination is 

high. Tillage destroys macroporosity in the topsoil and disconnects it from the 

subsoil, thus reducing the amount of solutes infiltrating into greater depths. 

However, it does not prevent macropore flow so that buried macropores could still 

function as preferred transport paths and allow solute and pesticide leaching down 

to the groundwater.  

1.5.3 Flow processes and their impacts on soil chemistry 
(Chapter 3). 

Pattern analysis based on the risk index for vertical solute propagation revealed 

the occurrence of preferential flow at the German study site. The second part of 

this thesis is devoted to statistical analysis of mechanisms of preferential flow 

(Chapter 3.1) and its impacts on soil chemistry (Chapter 3.2). We did three tracer 

experiments and qualitatively identified the dominant flow regime based on 

stained patterns. We sampled soil material and analysed soil texture, fine root 

density and soil bulk density from preferential flow paths and the soil matrix and 

tested whether these parameters differed significantly between regions of 

preferential flow and soil matrix and could give insight into mechanisms of water 

flow. 

The data were sampled hierarchically on three plots, in several profiles and 

different horizons. Since some horizons were bypassed by the flow we had to deal 

with missing values. Hierarchical sampling might induce dependencies in data so 

that classical statistical techniques like the analysis of variance are not applicable. 

Most studies that investigate differences between preferential flow paths and soil 
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matrix ignore the hierarchical nature of data sampled from different plots and use 

the paired t-test of mean values or its non-parametric equivalent and test different 

depths separately. We propose to employ mixed-effects models and to consider all 

plots and all depths in one single analysis. Mixed-effects models can account for 

fixed-effects representing parameters of the entire population or certain repeatable 

levels of experimental factors (like horizon) and for random-effects associated 

with individual experimental units drew at random from a population (like plots or 

profiles). Furthermore, they are robust against missing values (Pinheiro & Bates, 

2000). 

Our data showed that at this study site roots constituted main preferential flow 

paths and induced macropore flow, especially in the topsoil. In the subsoil, root 

density decreased and inhomogeneous infiltration from preferential flow paths 

into the soil matrix caused unstable flow. Due to the large sand content (i.e. high 

permeability) the dye spread from preferential flow paths into the soil matrix 

creating large stained objects. We found no significant differences in soil texture 

between preferential flow paths and soil matrix. In contrast, fine root density was 

higher in preferential flow paths indicating the importance of roots channels as 

macropores. Soil bulk density was lower in preferential flow paths probably 

because of higher organic matter content. Root turnover is an important source of 

soil carbon and decomposition of dead roots is a major input to soil organic matter 

(Tate et al., 1993; Guo et al., 2005). Soil bulk density is known to decrease with 

increasing content of organic matter (e.g. Balland et al., 2008). 

Root macropores promote preferential transport of solutes from the organic 

horizons to the subsoil. Furthermore, roots are known to strongly influence their 

immediate environment, the rhizosphere, by exudation of organic compounds. As 

a consequence distinct chemical compartments might develop with gradients in 

the transition zone between the soil matrix and preferential flow paths. For that 

reason, we analysed exchangeable cations, pH, and total C and N contents in the 

same soil samples to elucidate eventual impacts of preferential flow on soil 

chemistry by means of mixed-effects modelling. 

Brilliant Blue (C37H34N2Na2O9S3, molar mass 792.9 g mol-1) is an organic 

molecule consisting of 56% C and 4% N. Sorption of the dye on soil particles 

affects the C and N contents of soil and should be corrected. Usually, Brilliant 
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Blue concentrations are determined by extracting the dye with a water acetone 

solution or a 0.5 M K2SO4 (e.g. Bundt et al., 2001). This is a laborious procedure 

with changing accuracy due to varying mass recovery (Forrer et al., 2000). We 

developed a method to measure the content of Brilliant Blue by visible diffuse 

reflectance spectroscopy (VIS-DRS) directly on soil samples without extraction 

(Appendix A). We corrected the content of total C and N for presence of Brilliant 

Blue prior to mixed-effects modelling. 

We found smaller pH values more Ca, more Mg, more C and more N in 

preferential flow paths. Compared to the adjacent soil matrix, more Al and more 

Fe (but small absolute amounts) were found in the subsoil where macropore flow 

along root channels decreases and heterogeneous matrix flow dominates. These 

distinct chemical properties can be explained by root activity and translocation of 

solutes via preferential flow paths. Higher Ca and Mg concentration in 

preferential flow paths are probably due to transport from the soil surface after 

liming. Smaller pH values could be explained by transport of acid soil solution 

from organic horizons along preferential flow paths. Higher Al and Fe 

concentration in the subsoil probably results from release and translocation of 

these solutes during podzolisation. Rhizodeposition of organic compounds, 

decomposition of dead roots and transport of DOC from organic to mineral 

horizons are major sources of organic C input to the soil (e.g. Kuzyakov & 

Komansky (2000)). Higher root densities in preferential flow paths lead to a 

higher C input through roots, but also facilitate preferential transport of DOC. 

Indeed, there is strong experimental indication of transport of DOC via 

preferential flow paths at our study site (Schulze et al. 2009). DOC is strongly 

adsorbed in soils by Al and Fe oxides/hydroxides and clay minerals (Kalbitz et 

al., 2000). During transport along preferential flow paths contact time between 

DOC and soil is reduced so that DOC is transported to greater depth where it 

potentially form organo-mineral associations. If this holds true, preferential flow 

is a mechanism that promotes C sequestration in subsoil. We conclude that 

preferential flow does not only influence its immediate environment around paths, 

but also underlying subsoil horizons. 
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1.5.4 Concluding remarks 
This thesis began with the idea to summarize the main information from dye 

tracer experiments in one real-valued index, the risk index for vulnerability of 

groundwater to pollutants developed by Schlather & Huwe (2005). Bearing in 

mind the boundary conditions of the tracer experiment like irrigation rate, the 

tracer employed, soil initial moisture or type of vegetation (permanent or 

seasonal, deep rooted or shallow rooted) it is possible to compare different study 

sites or the same site at different boundary conditions and to access the risk of 

vertical solute propagation using extreme value statistics. 

By means of pattern analysis we identified main flow mechanisms and 

investigated flow processes and their impacts on soil chemistry. We have 

successfully applied a particular type of statistical analysis, the mixed-effects 

model to reveal distinct physico-chemical properties in preferential flow paths and 

soil matrix. Based on this type of analysis conclusions about differences between 

preferential flow paths and soil matrix are not affected by between-plot or 

between-sample variability. 

A major outcome of this thesis is the large number of images of flow patterns 

from different soils. Images, even binary ones, are high dimensional objects. 

Further studies could employ recent dimensionality reduction techniques to 

investigate whether there is a low dimensional structure underlying these images 

(Weinberg & Saul, 2006). 
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1.6 List of manuscripts and specification of own 
contributions 

This thesis includes six manuscripts. Two of them are published, three are 

submitted to the European Journal of Soil Science and one is in preparation for the 

Soil & Tillage Research. The list below details the contributions of all co-authors. 

Manuscript 1 

Authors C. Bogner, B. Wolf, M. Schlather & B. Huwe 

Title Analysing flow patterns from dye tracer experiments in a 

forest soil using extreme value statistics 

Status published 

Journal European Journal of Soil Science 

Contributions  

 Bogner 40% idea, methods, data collection, data analysis, 

manuscript writing, figures, discussion, editing, 

corresponding author 

Wolf 35% idea, data collection, data analysis, discussion 

Schlather 15% idea, methods, manuscript writing, discussion, 

editing 

 Huwe 10% idea, discussion, editing 

Manuscript 2 

Authors C. Bogner, S. Engelhardt, J. Zeilinger & B. Huwe 

Title Visualization and analysis of flow patterns and water flow 

simulations in disturbed and undisturbed tropical soils 

Status published 

Book Gradients in a Tropical Mountain Ecosystem of Ecuador 

(eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F. & 

Mosandl, R.) 

Contributions  

 Bogner 60% idea, data collection, data analysis, manuscript 

writing, figures, discussion, editing, 

corresponding author 

Engelhardt 10% idea, data collection 

Zeilinger 20% idea, data collection, data analysis, discussion, 

editing 

 Huwe 10% idea, discussion, editing 
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Manuscript 3 

Authors C. Bogner, M. Mirzaei, S. Ruy & B. Huwe 

Title Relating flow patterns and processes on soil surface in an 

agricultural soil 

Status in preparation 

Journal Soil & Tillage Research 

Contributions  

 Bogner 65% idea, methods, data collection, data analysis, 

manuscript writing, figures, discussion, editing, 

corresponding author 

Mirzaei 10% idea, methods, data collection 

Ruy 15% idea, methods, data collection, discussion, editing

 Huwe 10% idea, discussion, editing 

 

 

 

Manuscript 4 

Authors C. Bogner, D. Gaul, A. Kolb, I. Schmiedinger & B. Huwe 

Title Investigating flow mechanisms in a forest soil by mixed-

effects modelling 

Status Submitted 7 April 2009 

Journal European Journal of Soil Science 

Contributions  

 Bogner 70% idea, methods, data collection, data analysis, 

manuscript writing, figures, discussion, editing, 

corresponding author 

Gaul 10% data collection, data analysis, discussion 

Kolb 5% data collection 

 Schmiedinger 5% data collection 

 Huwe 10% idea, discussion, editing 
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Manuscript 5 

Authors C. Bogner, W. Borken & B. Huwe 

Title Impact of preferential flow on soil chemistry in a forest soil 

Status Submitted 7 April 2009 

Journal European Journal of Soil Science 

Contributions  

 Bogner 80% idea, methods, data collection, data analysis, 

manuscript writing, figures, discussion, editing, 

corresponding author 

Borken 10% idea, discussion, editing 

 Huwe 10% idea, discussion, editing 

 

 

 

Manuscript 6 

Authors C. Bogner, I. Schmiedinger & B. Huwe 

Title Rapid analysis of Brilliant Blue by diffuse reflectance 

spectroscopy 

Status Submitted 7 April 2009 

Journal European Journal of Soil Science 

Contributions  

 Bogner 80% idea, methods, data collection, data analysis, 

writing, figures, discussion, editing, 

corresponding author 

Schmiedinger 10% method, data collection 

 Huwe 10% idea, discussion, editing 
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Summary 
Preferential flow of water in soil is now recognized as a common phenomenon. It 

results in complex flow patterns that can be visualized by dye tracers and 

increases the risk of pollutants’ reaching greater depths. We analyzed the 

behaviour of a risk index for vertical solute propagation based on extreme value 

theory. This risk index can be calculated from binary images of dye stained soil 

profiles and is defined as the form parameter of the generalized Pareto 

distribution. We did five tracer experiments with Brilliant Blue and iodide under 

changing experimental (variable initial soil moisture) and initial conditions 

(different irrigation rates). Our results indicate some persistence of the risk index 

against small changes of experimental conditions such as the irrigation rate. On 

the other hand, it seems to be affected by initial soil moisture. Comparisons of 

Brilliant Blue and iodide patterns show that the form parameter alone is not 

sufficient to estimate the risk of vertical solute propagation. Therefore we propose 

to combine the risk index with the scale parameter of the generalized Pareto 

distribution.  

2.1.1 Introduction 
Although preferential flow of water in soil was discovered in the late 19th century 

(Schumacher, 1864; Lawes et al., 1882), it was considered for a long time as 

exceptional. Today, it is regarded as a common phenomenon that depends on the 

spatial heterogeneity and intensity of rainfall (Gish et al., 2004), water repellency 

(Hendrickx et al., 1993; Ritsema & Dekker, 2000; Wang et al., 2000), soil 

structure (Flury et al., 1994; Kulli et al., 2003; Vogel et al., 2006) and biological 

factors such as the distributions of roots (Mitchell et al., 1995) and earthworm 

burrows (Farenhorst et al., 2000; Shuster et al., 2002; Weiler & Naef, 2003). 

Preferential flow results in complex flow patterns that can be visualized by dye 

tracers. Brilliant Blue is frequently used in vadose zone hydrology for such 

tracing studies although its adsorption behaviour is non-linear and depends on soil 

properties (Ketelsen & Meyer-Windel, 1999; German-Heins & Flury, 2000; 

Kasteel et al., 2002). However, it is readily seen against most soil colours and has 

acceptable toxicological characteristics for environmental use (Flury & Flühler, 

1994; Mon et al., 2006). 
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Usually, the main information obtained from dye stained profiles are binary 

images – photographs of soil profiles that are classified in stained (black) and 

unstained (white) parts. They are used for qualitative description of flow regimes 

and for the visualization of preferential flow (Öhrstöm et al., 2002; Kulli et al., 

2003; Weiler & Naef, 2003). Recent studies, however, took a quantitative 

approach to tracer studies in soils by establishing dye concentration maps (Aeby 

et al., 1997; Forrer et al., 1999; Forrer et al., 2000). This method needs calibration 

because the same dye concentration has different hues depending on soil colour. 

Forrer et al. (2000) reported 203 calibration samples in a ‘fairly uniform Eutric 

Cambisol’ on an agricultural field. Morris & Mooney (2004) used 100 samples to 

assess concentrations in a small intact soil block (200 mm × 200 mm × 200 mm). 

Such a calibration becomes complicated for soils with progressively changing 

colours because the number of calibration samples increases rapidly. This is the 

case at our study site. Indeed, we can distinguish four or five different main hues 

in our soil and varying degrees of their combinations. Each of these hues needs its 

own calibration between the possible concentration range of Brilliant Blue and the 

resulting RGB (Red, Green and Blue) values on images. Therefore, we needed 

some other approach to obtain quantitative information on flow processes from 

stained profiles, one that does not require any information on dye concentrations 

in the soil. Schlather & Huwe (2005) propose a risk index for groundwater 

vulnerability to pollutants based on extreme value theory. It can be calculated 

from binary images of dye stained soil profiles and does not require any additional 

information on soil properties. The goal of our study is to consider in detail the 

behaviour of the risk index for different experimental and initial conditions. 

2.1.2 Materials and methods 

Dye tracer experiments 

We did five tracer experiments in a Norway spruce forest in southeast Germany. 

The soil is a Cambisol or a Cambic Podzol with loam or sandy loam above loamy 

sand. The stone content is medium to high and the pH is 4. We used Brilliant Blue 

FCF and iodide as tracers. The latter served as reference because Brilliant Blue 

may be retarded with regard to infiltrating water as a result of adsorption on soil 

particles. Bowman (1984) reported that the sorption behaviour of iodide is similar 

to that of bromide, which is considered as the most suitable tracer for water 
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movement in soil (Flury & Wai, 2003). In order to have the same spatial 

resolution of flow patterns for both tracers, we visualised iodide by a spray 

method proposed by Lu & Wu (2003). Following this we applied a solution of 

iron(III) nitrate and starch directly on the excavated soil profile. Iron(III) oxidized 

iodide to iodine, which formed a dark-blue complex with starch. This method 

worked well; however, the time reported by Lu & Wu (2003) of about 1 to 2 

hours for the colour reaction was not sufficient for a good contrast to Brilliant 

Blue dye, and we let it develop during the night. Lu & Wu (2003) also proposed a 

visualization method for bromide, but the Prussian blue complex formed has a 

blue colour that would be too difficult to distinguish from Brilliant Blue. 

We applied 64 mm of tracer solution on plots of about 2 m2 using a sprinkler 

similar to that proposed by Ghodrati et al. (1990). The irrigation rate was either 32 

mm hour-1 (referred to as ‘low’) or 64 mm hour-1 (‘high’), and the concentration 

of both tracers in the solution was 5 g l-1. The maximum 10-minutes intensity 

recorded at the study site between 1999 and 2006 was 22 mm and the maximum 

1-hour intensity was 54 mm. So the applied irrigation rate was fairly high but not 

unrealistic. Before the experiment, plots 1 and 2 were covered for approximately 2 

weeks and are referred to as ‘moist’, plots 4 and 5 were covered for approximately 

5 weeks and are called ‘dry’. The initial matric potential before the plots were 

covered was −157 hPa at 0.2 m, −53 hPa at 0.3 m and −14 hPa at 1.0 m depth.  

Plot 3 was not covered and represented the actual field moisture conditions of the 

study site. Here, the matric potential before tracer application was −52 hPa at 0.2 

m, −46 hPa at 0.3 m and −25 hPa at 1.0 m depth. Plot 2 was additionally irrigated 

with 64 mm of water just before tracer application. Prior to irrigation, we removed 

the spruce cones as they covered a large portion of the soil surface, but left the 

litter untouched. Table 2.1.1 summarizes the experimental boundary conditions. 

The day after the irrigation, six vertical 1 m × 1 m soil profiles were 

excavated at intervals of 20 cm in the central part of the plot. We lit them by 

halogen projectors to supplement the natural daylight in the forest and 

photographed them with a CCD camera in RAW format. In this lossless format 

the image is not processed by the camera software and must be transformed in 

JPEG or TIFF by appropriate graphics software. Thus finer control is gained over 

white balance, sharpness or colour space. A rectangular frame and a grey scale 

were placed around the profiles for later correction of distortion and white balance 
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adjustment. Soil samples were taken for texture analysis in the laboratory, and 

Figure 2.1.1 summarizes the results. Nine profiles (one, two or three per plot) 

were treated with the indicator solution of iron(III) nitrate and starch to visualize 

iodide. They were photographed the same way as Brilliant Blue patterns. 

Table 2.1.1 Experimental conditions for dye tracer experiments. 

Initial moisture Irrigation rate /mm hour-1Plot 

1 ‘moist’a 64 

2 ‘moist’ 64b 

3 ‘natural’c 64 

4 ‘dry’d 64 

5 ‘dry’ 32 
acovered for approximately 2 weeks 
bpre-irrigated with 64 mm of water just before tracer application 
cnot covered 
dcovered for approximately 5 weeks 

In some sections of plot 3, large blocks of stone prevented us from digging 

deep enough. So we were obliged to diminish the spacing between profiles to 10 

cm to prepare them in sections without blocks. Nevertheless, only four profiles 

had the desired depth of about 1 m and were suitable for further analysis. 

 

Figure 2.1.1 Particle-size distributions of the soil fine fraction on plots 1 (a) to 
5 (e). Sand fraction is defined as 2000 - 63 m, silt 63 - 2 m and clay < 2 m. 
The different depth sections correspond to soil horizons. 
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Image processing 

The profiles were lit by halogen projectors, with the result that the colour 

temperature of the images differed from that of daylight. Therefore white balance 

was adjusted in Photoshop CS2 RAW-Converter (Adobe, 2005) via the grey 

scale. Then the photographs were corrected for perspective and radial distortion 

with the software PTGui (New House Internet Services B.V., 2005). Radial 

distortion is due to imperfections of the lens and was modelled by a fourth degree 

polynomial: 

  dest
2

dest
3

dest
4

destsrc 1 rcbarcrbrar  , (2.1.1)

where rsrc is the radius between a pixel and the center of the original image 

(source, measured in pixels), and rdest is the radius in the corrected image 

(destination, measured in pixels). The radii rsrc and rdest are scaled such that the 

value 1 corresponds to: 

height) (width,max
2

1
 , (2.1.2)

of the image. Parameters a, b and c are so-called lens parameters and can be 

adjusted in PTGui. Furthermore, the software PTLens (Niemann, 2005) offers a 

database of these values for many different types of cameras. Besides radial 

distortion, perspective distortion occurred because of rotation of the camera with 

respect to the photographed profile. We corrected it by setting control points all 

along the sides of the rectangular frame and adjusting them to horizontal and 

vertical lines. To decrease computing time, the image size was reduced such that 1 

cm corresponded approximately to six pixels. This reduction did not affect further 

calculations as preliminary tests with different image resolutions had shown. In 

some images parts of the plot surfaces or shadows of the frame were visible. 

These regions would disturb further processing and were cut off. So the upper 

boundary of the output image corresponded to the first line in the photograph 

where the plot surface was no longer visible. Using Matlab 7.1 (The MathWorks, 

2005b) and the Image Processing Toolbox (The MathWorks, 2005a), we extracted 

the blue patterns from Brilliant Blue stained images by a colour-based 

segmentation by k-means clustering (MacQueen, 1967) in the CIE 1976 L*a*b* 

colour space. Segmentation of iodine–starch patterns by k-means clustering 

algorithm was not good enough because the colour of the iodine–starch complex 
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and that of the upper soil horizons were similar. Therefore we tried a classification 

based on hyper cuboids, an approach implemented in HALCON (MVTec 

Software GmbH, 2005). Finally, after segmentation, we generated binary images 

with stained parts in black and non-stained in white and calculated the dye 

coverage function p(d) (the number of stained pixels per depth d). 

Extreme value model 

Schlather & Huwe (2005) proposed a method for quantitative analysis of images 

from dye tracer experiments based on extreme value theory (see Coles, 2001, for 

an introduction). They applied the generalized Pareto distribution, a limit 

distribution of the extreme value theory with two parameters, to an idealized 

model of dye drops that run through soil along paths. The main idea is that the 

maximum depth z of a dye stained path after n drops converges to the so called 

generalized extreme value distribution (GEV), if n →  and the following 

assumptions as stated in Schlather & Huwe (2005) are satisfied: 

‘(i) any drop stains the path continuously up to the travel distance; 

(ii) z is in the maximum domain of attraction of the generalised extreme value 

distributions (Resnick, 1987); 

(iii) the travel distances of the drops are independent and identically distributed.’ 

Statement (ii) means that the maxima of z become GEV distributed. Excesses 

below greater depths converge to the generalized Pareto distribution H: 

  r

1

r
r 11),,(












 


s

Dd
sdH , (2.1.3)

where D is the threshold depth beyond which the data are assumed to follow 

closely the Pareto distribution, d is the profile depth (d and D are measured in 

pixels on a photograph, d > D), ξr is the form parameter (ξr ℝ) and s is the scale 

parameter (s > 0), such that (1 + ξr (d − D) / s) > 0. Schather & Huwe (2005) 

argued that the dye coverage function p(d) is an estimate of the probability that a 

path is stained at least down to this depth, modulo a constant factor m. The 

distribution 1 − H is fitted to the normalized dye coverage function p(d)/m and 

describes the conditional probability that a path is still stained to a depth d, given 

that it is stained to the depth D (for d > D). The form parameter ξr is defined as a 

 25

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Analysing dye patterns by extreme value statistics 
 
 

risk index for vulnerability of groundwater to pollutants. Although the theoretical 

model describes drops travelling along distinct paths, Schather & Huwe (2005) 

stated that it could be applied both to preferential and matrix flow. In the case of 

matrix flow, paths are replaced by micropaths and drops by infinitesimal volumes 

of dye (the terms ‘micro’ and ‘infinitesimal’ are used in the sense of Marshall et 

al., 1996). So the model always describes the predominant flow regime. 

In this study we slightly modified the interpretation of the risk index. We 

think that the form parameter of the generalized Pareto distribution should be 

interpreted as a risk index for vulnerability of groundwater to pollutants only in 

regions with fairly homogeneous geological material between the soil surface and 

the water table, as in sedimentary basins with shallow water tables. The 

groundwater at our site is 8 to 10 m below the surface, and so we prefer to qualify 

ξr as a risk index for vertical solute propagation. 

The parameter ξr determines the form of the generalized Pareto distribution. If 

it is negative, the distribution has an upper end point, i.e. dye infiltration stops 

before attaining a certain depth and the dye coverage function reaches zero. In this 

case, there is a low risk of solute’s propagating in greater depths. If ξr is positive 

then the distribution has no finite upper point, it decreases slowly and does not 

reach zero. Therefore the risk of solute propagation is high. Values of ξr around 0 

describe a transition zone. The scale parameter s ‘stretches’ the distribution and 

can easily be interpreted for negative form parameters. Given a fixed negative ξr, s 

depends monotonically on the maximum infiltration depth, i.e. the deeper the 

maximum infiltration depth the larger the value of s. So for the same value of ξr, 

the risk of solute propagation increases with larger values of s (Figure 2.1.2). For 

positive form factors, s is difficult to measure in the field. But for a fixed positive 

ξr, the portion of the stained area in a certain depth is greater for larger values of s. 

Indeed, as s ‘stretches’ the distribution, larger values of 1 − H, i.e. larger portions 

of stained pixels, can be found deeper in the soil. 

Schlather & Huwe (2005) affirmed that the scale parameter s depends 

strongly on experimental conditions such as the amount of sprinkled tracer 

solution or the time between irrigation and excavation of profiles. The behaviour 

of the form parameter ξr under changing initial or experimental conditions is not 

clear, even though it seems to show some persistence against small variations. 
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Figure 2.1.2 Effect of 
increasing values of scale 
parameter s on the probability 
distribution 1 − H. Form 
parameter ξr is fixed to −0.3, 
scale parameter s equals 100 
(solid line), 200 (dashed line) 
and 300 (dotted line), D 
equals 0. 

 

For a reliable estimation of the risk index of a soil, Schlather & Huwe (2005) 

proposed taking at least 15 pictures. We used 28 pictures from five different 

experiments. Our goal was not to characterize the site but rather to understand the 

behaviour of the risk index under various initial and boundary conditions. 

Parameter estimation 

As stated above, the generalized Pareto distribution describes excesses below 

greater depths, so we may not consider processes near the soil surface. We first 

estimated the parameter ξr and then s. The estimation of ξr is complex and recalls 

the ideas of Schlather & Huwe (2005) that are summarized in the following (see 

also the extension package SoPhy ver 1.0.25 (Schlather, 2005) of R (R 

Development Core Team, 2007)). Assume that we know the threshold D beyond 

which the data follow (approximately) the Pareto distribution. Then the parameter 

ξr and the parameter s can simultaneously be estimated by a non-linear parameter 

optimization, e.g. non-linear least squares or maximum likelihood. Since we do 

not know D, ξr has to be estimated for a range of values of D. We might expect to 

get the same value of ξr for any D, except for some (small) error. This, however is 

not true, and ideally ξr(D) behaves as in the sketch in Figure 2.1.3. 

The horizontal line designates the true value of ξr and the circles indicate the 

estimated values of ξr depending on the threshold depth D. Three areas of D can 

be distinguished, marked by the two vertical lines. The middle part gives the 

correct estimation of ξr. To the left, D is not large enough, so that we are outside 

the assumed asymptotics, i.e. the assumption that the data can be approximated by 

a Pareto distribution below such a threshold D is wrong. To the right, the number 
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of data available below the (large) threshold of D is small, so that larger variations 

in the estimation are visible. 

Figure 2.1.3 Schematic 
evaluation of the form 
parameter ξr with changing 
threshold depth D. The 
horizontal line designates the 
true value of ξr and the two 
vertical lines mark three areas 
of D: in the middle ξr is 
correctly estimated; to the left, 
D is not large enough and the 
data cannot be approximated by 
a Pareto distribution; to the 
right, the number of data is 
small, so that larger variations 
in the estimation are visible. 

Schlather & Huwe (2005) aimed (i) to find the middle part, (ii) to estimate ξr 

from the middle part and (iii) to do it automatically. To achieve (iii) they 

suggested to take as middle part the values of D, where the maximum number of 

stained pixels of p(d) (d > D) lies between 50% and 80%. For robustness, the 

median of the corresponding values of ξr(D) is taken to get a final estimate for ξr. 

In contrast to ξr, the scale parameter will depend on D even under idealized 

conditions. Hence, we cannot get a final estimate for s in a similar way. Instead, 

we chose as the value of D the depth where p(D) equalled 80%, and we estimated 

s in a next step whilst keeping ξr and D fixed. The maximum likelihood estimator 

is frequently used for fitting parameters, since it is possible to calculate 

confidence intervals because of its approximate normality (Coles, 2001). 

However, the maximum likelihood estimator did not behave well for our data, and 

so we preferred the least-squares estimator until a better estimator that provides 

confidence intervals is found. 

For stratified soil as at our study site, to find the middle part to estimate ξr was 

more complex. The dye coverage functions were multimodal with a more or less 

pronounced second maximum in the lower soil (see Figure 2.1.4d, the first 

maximum is at the soil surface, the second one in about 130 pixels depth). So, 

following the proposition in Schlather & Huwe (2005), we applied the Pareto 

distribution only to the lowest part of the soil profile. Undocumented comparisons 

between different fitting procedures showed best results when we used the part of 
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the dye coverage function where p(D) lies between 0% and 80% of the number of 

stained pixels at its second maximum. We took the median of these values to 

calculate the final ξr. We estimated the scale parameter s in R (R Development 

Core Team, 2007) by unweighted non-linear least-squares regression using the 

form parameter ξr determined in SoPhy (Schlather, 2005) and taking the depth 

where p(D) equals 80% of the number of stained pixels at the second maximum, 

as D. In forthcoming versions of SoPhy, the final estimation of the scale 

parameter s will be implemented. As a measure of goodness of fit, we calculated 

the coefficient of determination R2 defined as 









2

2

2

))((

))(ˆ)((
1

pdp

dpdp
R , (2.1.4)

where p(d) is the number of stained pixels in the depth d (d > D),  is the 

estimated number of stained pixels in the depth d and 

)(ˆ dp

p is the mean number of 

stained pixels in the part of the profile used for fitting the 1 − H distribution. The 

coefficient of determination can be negative if the enumerator is larger than the 

denominator i.e. if the adjusted function fits the data worse than a strait line 

through the mean of the data (Kvalseth, 1985). 

2.1.3 Results 

Qualitative analysis of flow patterns 

In the following section we adopt the nomenclature proposed by Weiler & Flühler 

(2004) to describe flow processes based on the appearance of flow patterns. 

Figure 2.1.4 shows examples of binary images and their corresponding dye 

coverage functions. The soil profiles we excavated had a litter layer up to 10 cm 

thick and its first few centimetres were homogenously stained on all plots. The 

infiltration front broke into preferential paths in the lower part of the litter layer. 

Thus infiltration into the loamy upper soil (see Figure 2.1.1 for soil texture data) 

was inhomogeneous, and water flow bypassed large portions of the soil matrix in 

the upper 10 to 20 cm of the profiles. Accordingly, the dye coverage function 

decreased rapidly. In the upper soil, we found blue stained roots, indicating that 

there had been macropore flow in root channels. 

The maximum of the dye coverage function was represented by large stained 

spots found between 20 and 40 cm. Texture analysis did not indicate any abrupt 
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changes, but the root system was less dense. So one possible explanation is that 

macropore flow in root channels decreased and the flow regime changed to 

predominantly heterogeneous matrix flow. Further studies should investigate if 

the root system is really responsible for this transformation of flow regime. 

In the lower soil, heterogeneous matrix flow and fingering dominated, but 

water flowed along macropores containing both dead and living roots when these 

were encountered. This was especially the case on plots 1 and 2. The exchange of 

water and solute between macropores and soil matrix was greater on ‘moist’ plots 

(1, 2 and 3) than on ‘dry’ plots (4 and 5). The effect of pre-irrigation on plot 2 

supported this observation, since the stained spots on this plot were larger than on 

plot 1. 

Plots 1, 2 and 3 were stained down to the bottom of the profile, i.e. 1 m, 

whereas on plots 4 and 5 dye infiltration stopped at between 70 and 80 cm. On 

plot 3 less dye infiltrated in greater depths than on plots 2 and 3 as indicated by a 

smaller portion of blue stained surface. The surfaces of the stones in plot 3 served 

as preferential flow routes and were stained. 

Figure 2.1.5 shows an example of Brilliant Blue and iodine−starch patterns on 

plot 4. In the upper 10 cm of the soil, there was no significant difference between 

the two tracers, neither in the location of the tracers inside the profile nor in the 

covered surface (see Figure 2.1.5, 0 to 40 pixels depth). But lower in the soil the 

iodine−starch spots were larger and the infiltration depth of iodide was greater 

than that of Brilliant Blue. 

Two critical aspects remain when we compare the infiltration depths of 

Brilliant Blue and iodide. First, the redistribution time was different for Brilliant 

Blue and iodine−starch profiles, as the last were allowed to react over night. Lu & 

Wu (2003) stated in their work that 1 to 2 hours of reaction are sufficient for the 

development of the iodine−starch complex. At our site the first colour reaction 

was visible after approximately 2 hours. So there was indeed fixation of iodide 

after only a few hours of reaction. Once fixed, iodide becomes much less mobile 

as the molecules of the iodine−starch complex are large. But the contrast to 

Brilliant Blue, especially in areas stained by both tracers, was too low, and 

therefore, the iodine−starch complex was allowed to develop over night. Thus, 

even if there was a difference in redistribution times, it was less than 12 hours. 

 30 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 2 
 

 
Second, the minimum concentration still visible on a profile might be different for 

the two tracers, and so the actual infiltration depth could be greater. 
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Figure 2.1.4 Example images from dye tracer experiments on plots 1 (a) to 5 
(e). Six pixels correspond to 1 cm. Left column: binary images from Brilliant 
Blue stained profiles with blue parts in black and non-stained regions in white. 
Right column: the corresponding dye coverage functions. 

Figure 2.1.5 Example of 
Brilliant Blue (black) versus 
iodine−starch (grey) patterns 
on plot four. Six pixels 
correspond to 1 cm. 

 

Risk indices 

In order to balance small fluctuations in the dye coverage function, we superposed 

all Brilliant Blue stained profiles of the same plot. Figure 2.1.6 shows these 

superposed profiles and the fitted distribution 1 – H. Table 2.1.2 presents the risk 

indices ξr and the scale parameters s. To demonstrate the variations of the risk 

indices between profiles of one plot, minimum and maximum of estimates of ξr on 

single profiles are shown in the columns ‘Minimum of ξr’ and ‘Maximum of ξr’. 

We used only single profiles where 1 − H was successfully fitted (visual check) 

and where R2 exceeded 0.5 to calculate the minima and maxima. 

Except on plot 3, the calculated risk indices are negative. It means that the dye 

infiltration will stop before reaching a certain depth. Thus there is a low risk of 

solute moving to greater depth below the analysed part of the profile. The risk 
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index on plot 3 equals 0. Here, the dye coverage function decreases exponentially 

and does not reach 0, but the amount of dye carried to greater depth below the 

analysed profile might be negligible (Schlather & Huwe, 2005). 

Table 2.1.2 Calculated risk indices for superposed profiles. 

Plot ξr s R2 Minimum of ξr
 a Maximum of ξr

 a 

1 −0.9 377 −0.49b 0.4 1.3 

2 −1.1 334 0.62 −1.0 0 

3 0 94 0.99 0 0.1 

4 −0.3 118 0.97 −0.9 0.0 

5 −0.2 61 0.98 −0.1 0.5 

aMinimum and maximum of ξr for single (not superposed) profiles show the 
variation of the risk index within the plot. Results are presented for profiles where 
1 − H was successfully fitted (visual check) and where R2 exceeded 0.5. 
bA negative R2 indicates that the adjusted curve fits the data worse than a straight 
line through the mean value of the data. 

On plots 1 and 2, several Brilliant Blue profiles had a multimodal dye 

coverage function with two similar maxima in the lower soil (as in Figure 2.1.4a, 

depths 200 and 530 pixels respectively), so even superposing them did not result 

in a monotonically decreasing function. Especially on plot 1, the third maximum 

appeared in the last third of the profile and led to a poor fit. One possible reason 

for this is the automated procedure to determine the starting point of the fit. 

Another reason is that the generalized Pareto distribution does not reflect flow 

processes in soils completely as the model theory is based on idealized 

assumptions. The distribution 1 − H is a monotonically decreasing function, and 

the quality of the fit depends strongly on the monotonicity of the dye coverage 

function. Therefore, the model is not suitable for dye coverage functions with 

pronounced multimodal behaviour as on plot 1. 
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Figure 2.1.6 Dye coverage function of superposed profiles (dots) and fitted 
distribution 1 − H (line) on plot 1 (a) to plot 5 (e). Six pixels correspond to 1 
cm. 

We did not superpose iodine−starch stained profiles because there were too 

few. Risk indices based on these patterns were compared to those of Brilliant Blue 

of the same profile. The maximum difference in length between Brilliant Blue and 

iodine−starch profiles on the same plot was 26 pixels or 4 cm. Table 2.1.3 shows 

the results for profiles where 1 − H was successfully fitted (visual check) and 

where R2 exceeded 0.5 for Brilliant Blue as well as for iodine-starch patterns. 

Table 2.1.3 Risk indices for profiles with Brilliant Blue and iodide-starch patterns. 

 Brilliant Blue  Iodide-starch 

Plota ξr s R2  ξr s R2 

2 -0.9 46 0.85  -1.0 245 0.71 

3 0.1 74 0.89  3.5 5 0.54 

4 -0.5 159 0.87  -1.4 659 0.80 

5 0 58 0.96  -0.9 261 0.96 

aAdjustments on plot 1 did not give satisfying results. 

Except on plot 3, where R2 was small, risk indices ξr for iodine−starch are less 

than those for Brilliant Blue patterns, indicating a lower risk for propagation of 

iodide. This is in contradiction with the greater infiltration depth of this solute and 

is discussed below. 
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2.1.4 Discussion 

Risk index for stratified soils 
As mentioned by Schlather & Huwe (2005), especially in stratified soils with 

pronounced differences in physical properties between horizons, the application of 

the generalized Pareto distribution to several strata is problematic. At our study 

site, the stratification seems to be due to changes in root distribution between 20 

and 40 cm depth. Macropore flow that starts in the upper soil ends as matrix flow 

in lower horizons with a less dense root system. When the flow process changes 

as a result of varying physical properties the dye coverage function cannot be 

represented by one single distribution 1 − H. The evident solution is to use only 

the lowest part of the profile to fit the distribution as we did it in our study. This 

accords with the limit law of the extreme value theory stating that the behaviour 

of the process at great depths is independent of the behaviour near the origin 

(Schlather & Huwe, 2005). 

Furthermore, Schlather & Huwe (2005) stated in their paper that preferential 

flow is frequently linked to a positive risk index and matrix flow to a negative 

one. This is not longer true for stratified soils because only the lowest part of the 

profile is considered. At our study site, despite the occurrence of macropore flow 

in the upper soil, the calculated risk indices are negative, as the distribution 1 − H 

is fitted only to the lowest strata. And there the dominant flow regime is 

inhomogeneous matrix flow. So for correct assessment of risk of vertical solute 

propagation, the analysed profile depth should be taken into account. 

Combination of form and scale parameters 
Smaller risk indices for propagation of iodide are in contradiction with the 

greater infiltration depth of this solute. It is not surprising that the form parameter 

changes, as Brilliant Blue and iodide have different sorption characteristics. 

Especially in the lower soil where heterogeneous matrix flow and fingering 

dominated, Brilliant Blue was retarded with regard to iodide and their respective 

dye coverage functions differed in shape. We can resolve the contradiction by 

using both parameters, ξr and s, to estimate the risk of vertical solute propagation. 

As mentioned before, the scale parameter s ‘stretches’ the generalized Pareto 

distribution. So for the same risk index ξr the probability to find stained pixels at a 

certain depth increases with larger values of s. The combination of ξr and s 
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determines a complete probability distribution. Figure 2.1.7a shows the real 

difference between the risk of solute propagation based on Brilliant Blue (solid 

line) and iodine−starch patterns (dashed line) (see Figure 2.1.5 for patterns). The 

length of both profiles used for the adjustment of the generalised Pareto 

distribution differs by only 7 pixels (about 1 cm). The dashed line is situated right 

of the solid line indicating a higher risk for iodide propagation. 

 

Figure 2.1.7 (a): Probability distribution for Brilliant Blue (solid line) and 
iodine−starch patterns (dashed line) on plot 4. (b): Probability distributions of 
the superposed Brilliant Blue stained profiles. The depth of the profiles is about 
600 pixels, so in case of plots 1, 2 and 3 the dye reached the bottom of the 
profile. 

The same procedure should be applied to assess the risk of Brilliant Blue 

propagation. Plots 4 and 5 are good examples. Here, the estimated risk indices are 

similar, but the scale parameters vary as predicted by Schlather & Huwe (2005) 

because of changing experimental and initial conditions. So the estimated actual 

risk of solute propagation is different on these plots. In Figure 2.1.7b we show the 

probability distributions 1 − H for the five superposed Brilliant Blue profiles (see 

Table 2.1.2 for parameters). For correct interpretation the fitted distributions are 

plotted for the part of the profile they were calculated for, i.e. beyond the 

threshold depth D. Despite the negative risk indices, it is clear that preferential 

flow is responsible for deep infiltration of the tracer. Based on our data, the 

estimated risk for solute propagation tends to increase from ‘dry’ to ‘moist’ plots.  

Dependence of the risk index on boundary conditions 

In our experiment, changing the irrigation intensity from 64 mm hour-1 to 

32 mm hour-1 seems to not affect the risk index significantly. Indeed, ξr on plot 4 

was −0.3 and on plot 5 −0.2 (Table 2.1.2). But according to the theory, the scale 
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parameter s changes (halves) as experimental conditions are modified. The 

combination of the two parameters indicates a higher risk of solute propagation on 

plot 4, i.e. for the higher irrigation rate. 

It is more difficult to see the effect of pre-irrigation on plot 2 as the fit is 

unsatisfactory. Moreover, it cannot be compared to plot 1 that has similar initial 

moisture conditions because the distribution 1 − H could not be fitted properly on 

this plot either. But as indicated by the dye coverage function, the stained surface 

was larger on the pre-irrigated plot 2 than on plot 1. This would support the 

hypothesis that the initial soil moisture is an important factor. Compared to ‘dry’ 

plots 4 and 5, the risk index on plots 1 and 2 is lower, but s is much larger. The 

risk on plot 3 is the highest in accord with the highest initial moisture content. The 

tail of the distribution decreases exponentially (ξr = 0), and the dye penetrates 

deeper than on other plots. But as stated in Schlather & Huwe (2005), the 

transported mass might be negligible. Indeed, the dye-covered surface in the 

lower part of the profile is more important on plots 1 and 2 than on plot 3. So after 

combining ξr and s, the complete distribution 1 − H supports a higher risk of 

vertical solute propagation for moist initial conditions. 

Actually, initial soil moisture seems to be a crucial factor. Dye coverage 

functions on ‘moist’ plots fluctuated more than on ‘dry’ ones, so the quality of the 

fit was poorer, especially for single profiles. More rapid flow velocities and 

interactions between preferential flow paths and a moister matrix are one possible 

explanation. Hence, flow patterns are more complex, and the resulting dye 

coverage functions do not decrease monotonically. 

Finally, the risk index seems to depend on the tracer, but we need more data 

(iodine−starch stained profiles) to verify this. Although experimental and initial 

conditions for Brilliant Blue and iodide are the same, their risk indices and scale 

parameters tend to differ in the same profile. This phenomenon is probably due to 

different physical properties of the two tracers (especially their sorption 

behaviour) and is not a characteristic of the risk index. 

2.1.5 Conclusions 
We varied experimental and initial conditions for our tracer experiments and used 

two different tracers, Brilliant Blue and iodide, to study the behaviour of the risk 

index ξr. Our results support the hypothesis formulated by Schlather and Huwe 
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(2005) that the risk index is to some degree invariant to changing experimental 

conditions (such as irrigation rate) and that the scale parameter s strongly depends 

on them. The initial soil moisture, however, seems to have a large influence on the 

risk index. 

We propose to combine the two parameters of the generalized Pareto 

distribution to estimate the risk of vertical solute propagation in soils. The scale 

factor s reflects the maximum infiltration depth (for negative risk indices) or the 

amount of stained area at a certain depth (for positive risk indices). This 

information is important to assess correctly the risk and should be taken into 

account. Furthermore, a complete probability distribution 1 − H allows us to 

compare plots with different initial and experimental conditions or various tracers. 

For stratified soils, only the lowest part of the profile was used for the adjustment 

of the 1 − H distribution. Thus the depth should be explicitly included when one 

interprets the risk of vertical solute propagation.  

To deal with strongly fluctuating or not decreasing dye coverage functions, 

the theory should be improved to account for tortuosity of flow paths. Provided 

that the dye coverage function decreases monotonically, the estimated risk for 

solute propagation can serve to classify soils. In stratified soils, different flow 

regimes can occur in different regions of the profile. To asses the risk for vertical 

solute propagation the generalized Pareto distribution should be fitted to the 

lowest part of the soil profile. But it could possibly be applied to single horizons 

as well to characterize the various flow regimes within the profile. Further studies 

should help to identify homogenous zones of flow patterns corresponding to 

different flow regimes or reflecting different physical soil properties. Weiler & 

Flühler (2004), for instance, proposed an interesting classification approach using 

stereology. Applied to such homogenous zones, fitting results of the distribution 

1 − H could be improved. 

2.1.6 Acknowledgements 
We thank Andreas Kolb and Iris Schmiedinger for their assistance during field 

and laboratory work, Tobias Zuber for providing data of soil matric potential and 

Professor Foken for the precipitation data. We also thank the reviewers for their 

scrutiny of our script and suggestions for improving it; and MVTec for providing 

 38 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 2 
 

 
a research-license for the software HALCON. This project was financially 

supported by the Deutsche Forschungsgemeinschaft (DFG FOR 562). 

2.1.7 References 
Adobe 2005. Photoshop version CS2. http://www.adobe.com. Accessed on 

January 2007. 

Aeby, P., Forrer, J., Steinmeier, C. & Flühler, H. 1997. Image analysis for 
determination of dye tracer concentrations in sand columns. Soil Science 
Society of America Journal, 61, 33-35. 

Bowman, R.S. 1984. Evaluation of some new tracers for soil-water studies. Soil 
Science Society of America Journal, 48, 987-993. 

Coles, S. 2001. An Introduction to Statistical Modeling of Extreme Values. 
Springer-Verlag, London. 

Farenhorst, A., Topp, E., Bowman, B.T. & Tomlin, A.D. 2000. Earthworm 
burrowing and feeding activity and the potential for atrazine transport by 
preferential flow. Soil Biology and Biochemistry, 32, 479-488. 

Flury, M. & Flühler, H. 1994. Brilliant Blue FCF as a dye tracer for solute 
transport studies − a toxicological overview. Journal of Environmental 
Quality, 23, 1108-1112. 

Flury, M. & Wai, N.N. 2003. Dyes as tracers for vadose zone hydrology. Reviews 
of Geophysics, 41, 2-1-2-37. 

Flury, M., Flühler, H., Jury, W.A. & Leuenberger, J. 1994. Susceptibility of soils 
to preferential flow of water: a field study. Water Resources Research, 30, 
1945-1954. 

Forrer, I.E., Kasteel, R., Flury, M. & Flühler, H. 1999. Longitudinal and lateral 
dispersion in an unsaturated field soil. Water Resources Research, 35, 3049-
3060. 

Forrer, I.E., Papritz, A., Kasteel, R., Flühler, H. & Luca, D. 2000. Quantifying dye 
tracers in soil profiles by image processing. European Journal of Soil Science, 
51, 313-322. 

German-Heins, J. & Flury, M. 2000. Sorption of Brilliant Blue FCF in soils as 
affected by pH and ionic strength. Geoderma, 97, 87-101. 

Ghodrati, M., Ernst, F.F. & Jury, W.A. 1990. Automated spray system for 
application of solutes to small field plots. Soil Science Society of America 
Journal, 54, 287-290. 

Gish, T.J., Kung, K.-J.S., Perry, D.C., Posner, J., Bubenzer, G., Helling, C.S., 
Kladivko, E.J. & Steenhuis, T.S. 2004. Impact of preferential flow at varying 
irrigation rates by quantifying mass fluxes. Journal of Environmental Quality, 
33, 1033-1040. 

Hendrickx, J.M.H., Dekker, L.W. & Boersma, O.H. 1993. Unstable wetting fronts 
in water-repellent field soils. Journal of Environmental Quality, 22, 109-118. 

 39

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Analysing dye patterns by extreme value statistics 
 
 

Kasteel, R., Vogel, H.-J. & Roth, K. 2002. Effect of non-linear adsorption on the 
transport behaviour of Brilliant Blue in a field soil. European Journal of Soil 
Science, 53, 231-240. 

Ketelsen, H. & Meyer-Windel, S. 1999. Adsorption of Brilliant Blue FCF by 
soils. Geoderma, 90, 131-145. 

Kulli, B., Gysi, M. & Flühler, H. 2003. Visualizing soil compaction based on flow 
pattern analysis. Soil and Tillage Research, 70, 29-40. 

Kvalseth, T.O. 1985. Cautionary note about R2. American Statistician, 39, 279-
285. 

Lawes, J.B., Gilbert, J.H. & Warrington, R. 1882. On the amount and composition 
of the rain and drainage water collected at Rothamsted. Williams, Clowes & 
Sons, London. 

Lu, J. & Wu, L. 2003. Visualizing bromide and iodide water tracer in soil profiles 
by spray methods. Journal of Environmental Quality, 32, 363-367. 

MacQueen, J.B. 1967. Some methods for classification and analysis of 
multivariate observations. In: Proceedings of the 5th Berkeley Symposium on 
Mathematical Statistics and Probability, (eds. L.M. Le Cam & J. Neyman), 
Volume I, pp. 281-297. University of California Press, Berkeley, CA. 

Marshall, T.J., Holmes, J.W. & Rose, C.W. 1996. Soil Physics. Cambridge 
University Press, Cambridge. 

Mitchell, A.R., Ellsworth, T.R. & Meek, B.D. 1995. Effect of root systems on 
preferential flow in swelling soil. Communications in Soil Science and Plant 
Analysis, 26, 2655-2666. 

Mon, J., Flury, M. & Harsh, J.B. 2006. Sorption of four triarylmethane dyes in a 
sandy soil determined by batch and column experiments. Geoderma, 133, 
217-224. 

Morris, C. & Mooney, S.J. 2004. A high-resolution system for the quantification 
of preferential flow in undisturbed soil using observations of tracers. 
Geoderma, 118, 133-143. 

MVTec Software GmbH 2005. Halcon version 7.1. 
http://www.mvtec.com/halcon/. Accessed on January 2007. 

New House Internet Services B.V. 2005. PTGui version 5.5. 
http://www.ptgui.com/. Accessed on January 2007. 

Niemann, T. 2005. PTLens version 6.4. http://epaperpress.com/ptlens/. Accessed 
on January 2007. 

Öhrstöm, P., Persson, M., Albergel, J., Zante, P., Nasri, S., Berndtsson, R. & 
Olsson, J. 2002. Field-scale variation of preferential flow as indicated from 
dye coverage. Journal of Hydrology, 257, 164-173. 

R Development Core Team 2007. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing, Vienna. http://www.R-
project.org. Accessed on January 2007. 

Resnick, S.I. 1987. Extreme Values, Regular Variation, and Point Processes. 
Springer, New York. 

 40 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 2 
 

 

 41

Ritsema, C.J. & Dekker, L.W. 2000. Preferential flow in water repellent sandy 
soils: principles and modeling implications. Journal of Hydrology, 231, 308-
319. 

Schlather, M. & Huwe, B. 2005. A risk index for characterising flow pattern in 
soils using dye tracer distributions. Journal of Contaminant Hydrology, 79, 
25-44. 

Schlather, M. 2005. SoPhy: some soil physics tools for R. http://www.r-
project.org/, contributed extension package 

Schumacher, W. 1864. Die Physik des Bodens in ihren theoretischen und 
praktischen Beziehungen zur Landwirtschaft. Wiegandt und Hempel, Berlin. 

Shuster, W.D., Subler, S. & McCoy, E.L. 2002. The influence of earthworm 
community structure on the distribution and movement of solutes in a chisel-
tilled soil. Applied Soil Ecology, 21, 159-167. 

The MathWorks, Inc. 2005a. Image Processing Toolbox version. 5.1. 
http://www.mathworks.com/products/image/. Accessed on January 2007. 

The MathWorks, Inc. 2005b. Matlab version. 7.1. http://www.mathworks.com 

Vogel, H.-J., Cousin, I., Ippisch, O. & Bastian, P. 2006. The dominant role of 
structure for solute transport in soil: experimental evidence and modelling of 
structure and transport in a field experiment. Hydrology and Earth System 
Sciences, 10, 495-506. 

Wang, Z., Wu, Q.J., Wu, L., Ritsema, C.J., Dekker, L.W. & Feyen, J. 2000. 
Effects of soil water repellency on infiltration rate and flow instability. 
Journal of Hydrology, 231, 265-276. 

Weiler, M. & Flühler, H. 2004. Inferring flow types from dye patterns in 
macroporous soils. Geoderma, 120, 137-153. 

Weiler, M. & Naef, F. 2003. An experimental tracer study of the role of 
macropores in infiltration in grassland soils. Hydrological Processes, 17, 477-
493. te

l-0
04

51
28

8,
 v

er
si

on
 1

 - 
28

 J
an

 2
01

0



 
 

 42 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 2 
 

 

2.2 Visualization and analysis of flow patterns and water 
flow simulations in disturbed and undisturbed tropical 
soils 

C. BOGNER
a, S. ENGELHARDT

a, J. ZEILINGER
a,b

 AND B. HUWE
a 

aSoil Physics Group, University of Bayreuth, 95440 Bayreuth and bInstitute of 

Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany 

Correspondence: C. Bogner. E-mail: christina.bogner@uni-bayreuth.de 

 

Flow patterns in tropical soils 

Published in Gradients in a Tropical Mountain Ecosystem of Ecuador (eds. Beck, 

E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R.), pp. 387-396. Springer 

Verlag, Berlin Heidelberg. 2008. 

doi: 10.1007/978-3-540-73526-7 

The original publication is available at www.springerlink.com 

 

 43

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Flow patterns in tropical soils 
 
 

Abstract 
We studied water flow in disturbed and undisturbed tropical soils with Brilliant 

Blue dye tracer experiments. Combining the advantages of computer based image 

analysis with extreme value statistics we estimated a risk index for vertical solute 

propagation in these soils. The complexity of stained patterns and infiltration 

depths were different on disturbed and undisturbed study sites. And our data 

indicate that soil structure, stone content, plant roots system and possibly land use 

are controlling factors for water flow in soils. Additionally, we conducted a 

simulation study using Hydrus 2D to analyse the influence of soil texture 

heterogeneity and stone content on water flow. We show that stones are one of the 

reasons for heterogeneities in soil moisture distribution, as they create preferential 

flow paths and increase water flow velocities. 

2.2.1 Introduction 
The complexity of flow patterns and occurrence of preferential flow in soils 

depend upon spatial heterogeneity of the upper boundary condition, 

heterogeneous distribution of soil hydraulic parameters and soil structure (Flury et 

al., 1994; Kulli et al., 2003). In a tropical rainforest, the canopy transforms the 

spatially almost uniform rainfall to heterogeneous patterns of throughfall on soil 

surface. These patterns continue in the soil amplified by its own heterogeneity. 

More details on canopy interactions and water relations are given by Wilcke et al. 

(2008). 

One of the most powerful methods to study water flow and solute transport in 

soils is to perform dye tracer experiments (Ghodrati & Jury, 1990; Flury et al., 

1994; Flury & Wai, 2003). For this purpose the dye Brilliant Blue is frequently 

used for its low toxicity and good visibility against the background colour of most 

soils (Flury & Flühler, 1995; German-Heins & Flury, 2000). Usually, pictures of 

stained patterns serve for a qualitative illustration of preferential flow. Recent 

works, however, propose a more quantitative approach based on modern image 

processing techniques (Schwartz et al., 1999; Forrer et al., 2000; Weiler & 

Flühler, 2004). 

Most tracer experiments documented in literature were carried out on 

agricultural soil. To the authors’ knowledge, there are only a few studies in stony 

forest soils (Schulin et al., 1987; Buchter et al., 1997) or in tropical soils 
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(Reichenberger et al., 2002; Renck & Lehmann, 2004). The aim of the present 

research was to study water flow in disturbed and undisturbed tropical soils, with 

special emphasis on stony forest soils. We focused on undisturbed primary forest 

and two types of typical disturbances in the study area: natural landslides and 

pastures as a form of human land use. Thus we investigated a new and an old 

landslide, two sites in the primary forest and one on pastures. Combining the 

advantages of computer-based image analysis with extreme value statistics we 

estimated a risk index for vertical solute propagation in soil, as proposed by 

Schlather & Huwe (2005). Furthermore, we chose one of the primary forest sites 

for more detailed studies. We performed two-dimensional small-scale simulations 

using the model Hydrus-2D (Simunek et al., 1999) and analyzed the influence of 

soil texture heterogeneity and stone content on water flow. 

2.2.2 Methods 

Definition of the Risk Index 
Schlather & Huwe (2005) propose a model based on extreme value statistics. It 

describes the dye coverage function p(d), the number of stained pixels (p) in depth 

d, as being an estimate of the probability to find stained pixels in at least this 

depth, up to a multiplicative constant m. The authors fit the tail distribution 1−H 

to the function p(d)/m, H being the generalized Pareto distribution: 

1/ξ
ξ

( , ξ , )  1  1  
r

r
r

 d
H d s

s


    
 

, (2.2.1)

where s is the scale parameter and s > 0, ξr is the form parameter and ξr   ℝ and 

d is the depth in the profile (measured in the image in pixels) such that (1 + ξrd/s) 

> 0. They propose ξr, called the form parameter of the generalized Pareto 

distribution, as a risk index for the vulnerability of groundwater to pollutants. 

Given the experimental and pedological conditions, three classes of values for ξr 

can be distinguished: 

1. If ξr < 0, H has an upper end-point and the dye tracer does not exceed a certain 

depth. 

2. If ξr > 0, H has an infinite upper end point and the water table is surely reached. 
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3. If ξr = 0, H decreases exponentially and the water table is reached, but the 

transported mass might be negligible. 

We suppose that the parameters of the Pareto distribution vary with depth if 

the flow regime changes (i.e. from preferential to matrix flow). Therefore, ξr 

should only be interpreted as a risk index for groundwater vulnerability for 

regions where the flow regime stays the same between the soil surface and the 

water table. This might be the case in sedimentary basins with rather 

homogeneous geological material and a shallow water table. In our mountainous 

and heterogeneous study area, the situation is different. Thus we propose to take 

the form parameter of the Pareto distribution as a risk index for vertical solute 

propagation in soil and a characteristic of the flow regime for given experimental 

conditions. 

Dye Tracer Experiments and Image Processing 

We investigated five different sites: a new landslide (west of Q2), a cambisol on 

an old landslide (behind the ECSF building), a dystric skeletic cambisol (site we 

named “primary forest I” in Q2), a dystric leptosol (“primary forest II” on T2 at 

2000 m) both in the primary forest, and a regosol on the pastures (100 m above 

road level, opposite the ECSF). See Chapter 1 for more details on the research 

area and Chapter 9 for further information on soils. 

At each study site, a plot of approximately 2 m2 was chosen. We eliminated 

litter and grass from the soil surface and applied 40 mm of a 10 g/l concentrated 

Brilliant Blue solution, using a spray system similar to the one described by 

Ghodrati et al. (1990). The irrigation intensity was 55 mm/h. The day after 

irrigation several vertical soil profiles were excavated and photographed within a 

metallic frame of 1 m2. After geometrical correction the image size was reduced 

in a way that 1 cm corresponded approximately to six pixels and some parts like 

plot surface or a shadow of the frame were cut away. Using Matlab ver. 7.1 

software (The MathWorks, 2005b) and Image Processing Toolbox ver. 5.1 (The 

MathWorks, 2005a), we extracted the blue patterns by a color-based segmentation 

and generated binary images with stained parts in black and non-stained in white. 

From these images, the dye coverage function p(d) was calculated. Finally, the 

risk index for vertical solute propagation (for a definition, see Section 30.2.1) was 
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estimated by the software package SoPhy ver. 1.0.25 (Schlather, 2005) written in 

R (R Development Core Team, 2005). 

Water Flow Simulations 

Next to the dye tracer experiment site primary forest I, a 4.0×1.5 m soil profile 

(Figure 2.2.1) was prepared. Soil texture was estimated based on a 10 cm grid. 

Additionally, bulk density, water retention curves and hydraulic conductivity were 

measured in the laboratory. 

The matric potential-water content function and the hydraulic conductivity 

function were calculated with Rosetta (Schaap et al., 2001), a computer program 

for estimating soil hydraulic parameters. Two-dimensional simulations were 

performed with Hydrus-2D (Simunek et al., 1999), a model for water flow, heat 

and solute transport in two-dimensional variably saturated media that uses the 

finite element method to solve the Richards’ equation. 

 

Figure 2.2.1 Photograph of a 4.0×1.5 m soil profile. The red squares show two 
digitized sections used for water flow simulations. Photograph by J. Zeilinger 

Simulation Run 1 

In Hydrus-2D, we excluded the upper part of the profile in Fig. 30.1 (grass and 

litter) and generated a 4.0×1.0 m soil profile with texture distribution determined 

in the field. For this profile, stones were not taken into account and we focussed 

on soil texture heterogeneity and its influence on flow patterns. A constant 

infiltration rate of 2 cm/day (d) was applied on the upper boundary of the profile; 

the lower boundary condition was free drainage. 

Simulation Run 2 

Two 40×40 cm large sections of the profile were chosen (Figure 2.2.1, red 

squares) and the stones were digitized and simulated as internal zero flux 

 47

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Flow patterns in tropical soils 
 
 

boundaries to investigate their influence on the flow regime. We applied the same 

constant infiltration rate of 2 cm/d on the upper boundary of each section. 

2.2.3 Results and Discussion 

Dye Tracer Experiments 

We chose one characteristic profile from each dye tracer experiment to calculate 

the risk index ξr. Figure 2.2.2 shows the rectified original photographs and Figure 

2.2.3 the binary images. Except for the new landslide, we had difficulties to fit 

one single distribution 1−H to the whole dye coverage function p(d), i.e. from the 

top to the bottom of the soil profile, as different flow regimes occurred in different 

parts of the profile. So we limited the fit to the lowest part of the profile. The 

estimated risk indices and the depths from which on we fitted the distribution 1−H 

are given in Table1. In order to plot the estimated distribution 1−H, we had to 

optimize the parameter s of the Pareto distribution. This is not yet implemented in 

the software package SoPhy (Schlather, 2005) and was done directly in R (R 

Development Core Team, 2005). Figure 2.2.3 shows the function p(d) and the 

fitted distribution 1−H for each profile. 

On the new landslide, the stained patterns were rather simple. Only a small 

amount of dye infiltrated below 50 cm and just a few preferential pathways were 

visible. The estimated risk index is negative indicating a low risk of vertical solute 

propagation. The pattern complexity increased on the old landslide. Here, the dye 

infiltration was limited to few points and the first 20 cm of the topsoil were 

bypassed showing highly preferential flow. We found blue-stained plant roots 

indicating that water flowed along root channels. Deeper in the soil, larger blue 

stains occurred and the profile was stained down to a depth of 1 m. Accordingly, 

the risk index is positive which means that there is a high risk of vertical solute 

propagation. 

This pronounced difference between the stained patterns on the new landslide 

and on the old one is probably due to soil regeneration. Indeed, on the new 

landslide soil structure was destroyed by mass movement, producing a more or 

less heterogeneous mixture of soil material and stones. Pedogenetic processes and 

plant activities recreated soil structure on the old landslide, thus increasing the 

occurrence of preferential flow especially along bio-macropores such as root 
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channels or earthworm burrows. More details on soil properties of landslides and 

plant succession can be found in Bussmann et al. (Bussmann et al., 2008). 

Figure 2.2.2 Vertical soil profiles 
(1×1 m) of the Brilliant Blue dye 
tracer experiments. a New landslide, 
b old landslide, c primary forest I, d 
primary forest II, e pastures. 
Photographs by C. Bogner 
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Figure 2.2.3 Left column Binary images (segmented images where blue-stained 
parts are colored black and non-stained parts are white) of the stained patterns 
from dye tracer experiments on the sites. a New landslide, b old landslide, c 
primary forest I, d primary forest II, e pastures. Right column The function p(d), 
i.e. number of stained pixels with depth (dotted lines), and the fitted Pareto 
distribution (solid lines) 
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Figure 2.2.3 (continued)  
 

Table 2.2.1 Estimated risk indices for the dye tracer experiments 

 
New 

landslide 

Old 

landslide 

Primary 

forest I 

Primary 

forest II 
Pasture 

Risk index (ξr) −0.62 0.79 −0.91 −0.69 −1.66 

Depth (cm)a 4 32 50 9 7 

aApproximate depths from which the distribution 1−H was fitted to the dye 
coverage function p(d). 

At the primary forest I site, we found similarly complicated patterns with 

localized infiltration as on the old landslide. Moreover, the soil at the primary 

forest I site contained a lot of stones which amplified the development of 

preferential flow, as will be discussed in Section 0. The interpretation of the risk 
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index for this site is difficult. It seems contradictory that the risk index is negative 

although the tracer reached the bottom of the profile (Figure 2.2.3 c). But one 

should keep in mind that the risk index only describes whether there is an end 

point for tracer infiltration or not and tells nothing about the infiltration depth. The 

function p(d) decreases rapidly in the lower part of the profile and goes towards 

zero. So, there was an end point for tracer infiltration, but it exceeded the visible 

depth of the profile. Therefore, the risk of vertical solute propagation is greater 

than for the new landslide or the primary forest II site despite a more negative risk 

index. But it is still lower than for the old landslide, as there the dye coverage 

function did not tend towards zero at the bottom of the profile. For profiles as 

complicated as the primary forest I site, the second parameter of the Pareto 

distribution s plays an important role. Schlather & Huwe (2005) mention that, for 

a given risk index, the parameter s depends monotonically on the maximum depth 

of the dye tracer front. So for complex patterns we suggest to take s into account, 

in order to correctly estimate the risk index for vertical solute propagation. This is 

not yet possible within the software package SoPhy (Schlather, 2005) and should 

be implemented in upcoming versions. 

At the primary forest II site and on pastures, we found a compact top soil of 

about 30 cm. The dye stained surface on the first mentioned was greater partially 

because of a higher stone content in the top soil. Indeed, stones constituted 

preferential flow surfaces and were colored. But we can not exclude that 

infiltrability on pastures was reduced by compaction of the soil surface due to 

changes in land use. This could explain the smaller amount of dye penetrated into 

the soil. Several studies reported a decrease in saturated conductivity or an 

increase in bulk density after the primary rainforest was slashed and burnt and 

used as pastures (Elsenbeer et al., 1999; Martinez & Zinck, 2004; Ziegler et al., 

2004). This form of anthropogenic disturbance is typical for our study area and 

further work is required to understand its influence on soil hydrologic properties. 

The calculated risk index indicates a low propagation risk at the primary forest II 

site and on pastures. 

Simulation Study 

The small-scale heterogeneities of soil texture led to a non-homogeneous 

distribution of soil moisture. We observed the development of relatively dry areas 
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in the lower left corner of the profile and areas of stagnation in the right part. This 

produces different environments for chemical reactions. 

 

 

Figure 2.2.4 Results of water simulation run 2: distribution of flow velocities 
(a) and matric potential (b) in the two digitized sections (Fig. 30.1) at steady 
state. Boundary conditions: upper = constant infiltration rate of 2 cm/d; lower = 
free drainage; stones = internal boundaries of zero flux 

Stones have a high influence on the flow regime. This is an important aspect 

as in our mountainous study area soils have a high stone content. Figure 2.2.4 

shows flow velocities and pressure heads of simulation run 2 at steady state. We 

observed complex patterns in their distributions, with pronounced differences 

between the two sections. A high stone content leads to high velocities near the 

stones and especially in the gaps between them, creating preferential flow paths. 
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Stones cause a higher grade of differentiation in the soil with relatively wet areas 

on their tops and dryer areas below them. As a consequence, they modify water 

flow and transport of solutes like nutrients and pollutants and have therefore an 

influence on chemical processes in soils. 

2.2.4 Conclusions 
We studied water flow in disturbed and undisturbed tropical soils with dye tracer 

experiments. Soil structure, stone content, plant root systems and possibly land 

use are controlling factors for water flow in soils. Accordingly, the complexity of 

stained patterns and infiltration depths of the dye varied between the different 

study sites: rather simple patterns with a few preferential flow paths on the new 

landslide and on pastures, complex patterns at the primary forest II site and deep 

infiltration at the primary forest I site and on the old landslide.  

The index proposed by Schlather & Huwe (2005) can serve as a useful 

characteristic of flow regime and as a risk index for vertical solute propagation in 

a variety of soils. The estimated indices for the new landslide, the primary forest 

II site and the pastures were negative. Despite the high irrigation intensity and the 

important amount of solution applied, the tracer did not exceed a certain depth and 

there is a low risk of vertical solute propagation to deeper soil regions or 

contamination of groundwater on these sites. In contrast, the index on the old 

landslide was positive, indicating a high propagation risk. Future studies should 

investigate the robustness of the risk index concerning the experimental 

conditions and analyze the role of litter for the development of preferential flow 

paths. 

The detailed simulation study conducted on primary forest I site showed that 

stones were one of the reasons for heterogeneities in soil moisture distribution, 

creating preferential flow paths and increasing flow velocities. 

Preferential water flow results in heterogeneous soil moisture distribution and 

has therefore several ecological implications. In general, preferential flow means a 

heterogeneous water supply and the coexistence of zones with high and low 

oxidation potential. Thus preferential flow influences multiple factors such as root 

growth, C- and N-mineralization, denitrification or humus accumulation and leads 

to rapid leaching of nutrients. In a non-homogeneously moist soil, the soil air 

phase is discontinuous and therefore the oxygen supply of plant roots and 
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microorganisms could be interrupted. Chemical and physico-chemical reactions, 

for example cation exchange, kinetic sorption processes or nutrient exchange 

between mobile and immobile water, precipitations and oxidations are also 

concerned by the occurrence of preferential flow. 
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Summary 
Tillage influences processes on soil surface and affects infiltration of water into 

subsoil. While many analyses of soil surface processes or flow patterns in soils 

exist, studies relating both are rare in literature. We did two tracer experiments 

with Brilliant Blue FCF on a tilled and compacted plot and a non-tilled one with a 

well developed system of open cracks to (i) investigate processes on soil surface 

during simulated rainfall; (ii) analyse the resulting flow patterns and (iii) relate 

both to tillage treatment. On the non-tilled plot soil surface roughness increased 

after tracer application probably due to surface consolidation. However, on the 

tilled plot it did not change because the applied simulated rainfall had not enough 

energy to induce significant erosion. Despite tillage preferential flow along cracks 

occurred on both plots and macropores buried below tillage pan functioned as 

preferential flow paths. Our results show that the studied soil is susceptible to 

deep vertical solute propagation at dry no till conditions when cracks are open, 

connected down to the subsoil and infiltration rates through macropores are 

important. Although tillage destroys macroporosity in the topsoil it does not 

prevent macropore flow. Keeping in mind the shallow water table at this site, the 

risk for potential groundwater contamination is high.  

2.3.1 Introduction 
Tillage is known to influence processes on soil surface, is important for 

generation of surface runoff and affects soil erodibility and depression storage. 

Rough soil surfaces tend to store more water thus reducing runoff and increasing 

infiltration. Different tillage treatments induce different surface roughness 

conditions. However, soil roughness usually decreases with increasing rainfall 

regardless tillage treatment and canopy cover (Eltz & Norton, 1997). Many 

techniques have been used to measure soil surface roughness, ranging from a 

simple roller chain to a laser scanner. Sterephotogrammetry is a relatively recent 

method that allows rapid data acquisition under field conditions. An overview of 

various techniques and their applicability is given in Jester & Klik (2005). To 

describe surface roughness statistical, geostatistical and fractal indices can be used 

(Paz-Ferreiro et al., 2008). Huang & Bradford (1992) demonstrated that two 
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fractal indices – crossover length l and fractal dimension D – are necessary to 

describe soil surface roughness. 

Tillage does not only influence processes on soil surface, but also flow 

processes in subsoil, especially because it is often associated with mechanical 

compaction by employment of heavy machinery. In order to visualise flow 

processes in soil the food dye Brilliant Blue FCF is frequently used (Pickering et 

al., 1988; Flury et al., 1994). It has the advantage of good visibility against most 

soil colours and acceptable toxicological properties for environmental use (Flury 

& Flühler, 1994). With this staining technique Kulli et al. (2003) studied the 

effect of soil compaction on soil porosity, bulk density and on the water 

infiltration regime under field conditions. Their results demonstrated that soil 

compaction modified the pore system by degrading or destroying the soil 

structure. As a consequence, soil mechanical parameters like bulk density were 

changed and the transport properties of the pore system were modified. 

While many analyses of soil surface processes (Vidal Vázquez et al., 2006; 

Moreno et al., 2008; Vidal Vàzquez et al., 2008) or flow patterns in soils exist 

(Forrer et al., 2000; Weiler & Flühler, 2004), studies relating both are rare in 

literature. We thus propose to combine stereophotogrammetry and dye staining 

techniques to (i) investigate processes at soil surface during simulated rainfall; (ii) 

analyse the resulting flow patterns and (iii) relate both to tillage treatment. A 

special emphasise will be given to connectivity of processes above and below the 

plough pan and impacts on groundwater vulnerability. 

2.3.2 Materials and methods 

Dye tracer experiments 

The research area is located on an alluvial plane at about 30 m above sea level at 

the confluence of Rhone and Durance rivers whose deposits constitute an 

important aquifer with a shallow water table rising up to 3 m below the surface. 

The mean annual precipitation is 722.4 mm (Meteo France, 2009). The study site 

is an agricultural field planted with wheat situated at the experimental domain of 

INRA Avignon, France. The soil is a highly structured Calcisol (IUSS Working 

Group WRB, 2007) with a pH (in H2O) of 8.5. Due to the important content of 

clay (>35%) it develops deep cracks during desiccation. Table 2.3.1 summarizes 

the distribution of the soil fine fraction. 
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Table 2.3.1: Soil characteristics. 

Plot Depth /cm Sand /% Silt /% Clay /% 

10-26 6.37 47.70 45.94 

26-56 5.00 47.59 47.41 I 

56-100 15.98 46.36 37.66 

0-30 5.18 48.35 46.47 

30-60 II 4.94 48.14 46.93 

60-100 15.53 47.63 36.85 

 

We did two rainfall simulation experiments with a tracer solution consisting 

of 5 g l-1 Brilliant Blue FCF and 5 g l-1 potassium iodide. It was applied at 64 mm 

hour-1 on a surface of about 1 m2 during one hour with an automated sprinkler 

similar to that described by Ghodrati et al. (1990). Potassium iodide was used as a 

reference tracer because Brilliant Blue is sorbed by soil particles and thus might 

be considerably retarded with regard to infiltrating water (Ketelsen & Meyer-

Windel, 1999; German-Heins & Flury, 2000; Kasteel et al., 2002). In order to 

keep the infiltrated volume of tracer solution comparable between plots, a metallic 

frame was installed around the plot to avoid large run-off. During tracer 

application processes on soil surface and soil moisture were monitored. 

To observe processes on soil surface a stereo system consisting of two Nikon 

D100 cameras was installed in approximately 3 m height (Mirzaei, 2008). For the 

first experiment the wheat was harvested and the soil surface was tilled with a 

plough share followed by a circular spike harrow combined with a cultipacker. 

The middle part of the plot was compacted by repeated passage of a tractor wheel. 

The day before tracer application we did a preliminary study on this plot with 56 

mm of water without tracer to test the stereo system. The surface of plot two was 

not tilled, but the wheat was cut before tracer application. We have chosen plot 

two for its well developed open cracks. 

The day after tracer application vertical soil profiles of 1 m × 1 m (10 on plot 

one and 11 on plot two) were prepared and photographed with a digital CCD 

camera in RAW format. A frame of 1 m2 and two Kodak reference gray scales for 

geometric and colour corrections were photographed with the profiles. To control 

whether Brilliant Blue was retarded with regard to infiltrating water two profiles 
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per plot were treated with an indicator solution of iron(III) nitrate and starch (Lu 

& Wu, 2003) to visualize iodide infiltration patterns. However, we did not obtain 

any colour reaction indicating the creation of the iodine-starch complex possibly 

due to large pH values in the soil that hindered the reduction of iodide. 

Image analysis 

Soil surface 

Stereoimages of the soil surface were used to calculate a digital elevation model 

(DEM) by point matching between photographs obtained from the left camera and 

those from the right one (e.g. Jeschke, 1990; Warner, 1995). This method is based 

on the so called disparity, the difference between locations of the same image 

point in photographs of the left camera and of the right one. In a calibration 

procedure, camera parameters defining a model for mapping of 3D points of the 

real world to 2D images generated by the camera were derived. Then, disparities 

were transformed to real world 3D coordinates using the focal length of the 

calibrated camera system and the distance between the cameras (MVTec Software 

GmbH, 2007c). Calculations were performed using the software HALCON 

(MVTec Software GmbH, 2007a). The matching algorithm is described in details 

by Mirzaei (2008). 

Thereafter, on plot one the area occupied by puddles larger than 22 cm2 

(thereafter called ‘large puddles’) and the volume of water stored there were 

calculated. Puddles were identified by texture differences between smooth water 

filled regions and rough soil surface. Considering the water surface as flat, the 

stored volume was calculated by summing up the differences between the bottom 

of puddles and the mean elevation of puddles’ borderline in the initial DEM 

(Mirzaei, 2008). On plot two the stored volume was negligible and was not 

calculated. 

Soil profiles 

We photographed the soil profiles in the lossless RAW-format (unprocessed data 

of the CCD camera sensor) and converted the images to JPEG after white balance 

adjustment using Photoshop CS2 (Adobe, 2005). Perspective and radial distortion 

was corrected in HALCON (MVTec Software GmbH, 2007a), i.e. the 

photographs were transformed such that they corresponded to images captured by 

 61

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Flow patterns in an agricultural soil 
 
 

an ideal camera that produces no radial distortion and looks perpendicularly to the 

soil profile. Perspective transformation of the images was obtained via a 

homogenous transformation matrix (a matrix that combines information about 

both rotation and translation in one matrix) and radial distortion was modelled by: 

  
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22

, (2.3.1)

where the parameter κ is the magnitude of the radial distortion, (u, v)T are 

coordinates of a point in the original image and (u, v)T are coordinates in the 

corrected one. If κ is negative, the distortion is barrel-shaped, while for positive κ 

it is pincushion-shaped. (MVTec Software GmbH, 2007c). 

Then the corrected images were transformed from RGB to HIS (hue 

saturation intensity) colour space and classified in Brilliant Blue stained and non-

stained areas. The HIS colour space is more suitable for robust separation of 

colours independently of their intensities under varying illumination (MVTec 

Software GmbH, 2007b). All gray values in an interval [low threshold, upper 

threshold] were classified as stained pixels and misclassifications due to the 

shadow of the metallic frame or large stones were corrected manually. The 

classified photographs were converted to binary images (stained parts were coded 

black and non-stained areas white) and were used to calculate the dye coverage 

function (number of stained pixels per depth) using MATLAB (The MathWorks, 

2005). 

Soil surface roughness 
To describe possible changes in soil surface roughness due to the simulated 

rainfall, we calculated the fractal dimension D and the crossover length l before 

and after the tracer application by analysing the semivariogram γ(c) (e.g. Huang & 

Bradford, 1992). The empirical semivariance can be calculated from the DEM as: 

    



n

i
ii xZcxZ

n
c

1

2

2

1
)( , (2.3.2)

where n is the number of point pairs, Z are elevations at positions xi separated by 

a horizontal distance c. We used the add-on package RandomFields (Schlather, 

2008) in R (R Development Core Team, 2008) to calculate the empirical 

variogram. If the variation of elevations follows the fractional Brownian motion 

model (fBm) (Mandelbrot & Van Ness, 1968), then: 
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(2.3.3)hcc 2)(  , 

where the parameter h is related to fractal dimension D by: 

D = 3 – h, (2.3.4)

Plotting the log of semivariance versus the log of c the parameter h can be 

calculated by determining the slope of the straight part of the variogram. Huang & 

Bradford (Huang & Bradford, 1992) proposed to use the fractal dimension D 

together with the crossover length l to describe soil roughness: 












h

a
l

22
exp , (2.3.5)

where a is the intercept of the straight part of the semivaraince on the log-log plot. 

As stated by Huang & Bradford (1992) and Eltz & Norton (1997) higher values of 

D are associated with a higher soil surface roughness. For the same value of 

fractal dimension D soil roughness increases with increasing crossover length l. 

While D is a relative measure of spatial distribution of different structural 

elements on soil surface, l is related to the vertical component of soil surface 

roughness (Huang, 1998; Vidal Vázquez et al., 2006).   

Flow patterns 

Schlather & Huwe (2005) proposed the form parameter of the generalized Pareto 

distribution as a risk index for vulnerability of groundwater to pollutants. They 

fitted the distribution 1 − H to the dye coverage function p(d) (number of stained 

pixels per depth), H being the generalized Pareto distribution: 

  r
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 
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s

dd
sdH ,  (2.3.6)

where d* is the threshold depth beyond which the data are assumed to follow 

closely the Pareto distribution, d is the profile depth (d and d* are measured in 

pixels on a photograph, d > d*), ξr is the form parameter (ξr ℝ) and s is the scale 

parameter (s > 0), such that (1 + ξr (d − d*) / s) > 0. The distribution 1 − H 

describes the conditional probability that a path is still stained to a depth d, given 

that it is stained to the depth d* (for d > d*).  Bogner et al. (2008) analyzed the 

behaviour of the risk index under changing experimental (different irrigation 

rates) and initial conditions (variable initial soil moisture). They proposed to 
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combine the form and the shape parameters of the generalized Pareto distribution 

and interpret the form parameter as a risk index for vertical solute propagation. 

The form parameter determines the behaviour of the tail of the generalized 

Pareto distribution. A negative form parameter indicates that the distribution has 

an upper end point, i.e. in a certain depth the probability to find the tracer is zero. 

The distribution has no upper end point for positive form parameters, it decreases 

slowly and does not reach zero. A form parameter of zero describes an 

exponential decrease of the generalized Pareto distribution. The shape parameter s 

‘stretches’ the distribution (Figure 2.3.1). For negative form parameters s depends 

monotonically on the maximum infiltration depth, and for positive form factors it 

reflects the amount of stained area in a certain depth. 

 

Figure 2.3.1: Distribution 1 − H for different parameters. (a) variation of the 
form parameter ξr for s = 300 and d* = 0; (b) variation of the scale parameter s 
for ξr = −0.5 and d* = 0. 

We fitted the distribution 1 − H to the dye coverage function of superposed 

profiles. The latter were calculated by summing all dye coverage functions of the 

respective experimental plot and normalizing them by the width of the profiles. 

The distribution 1 – H indicates the probability to find the dye tracer in a certain 

depth and thus the susceptibility of the soil to vertical solute propagation. 

2.3.3 Results and discussion 

Initial conditions 

Initial gravimetric soil moisture varied between 19 and 41% on plot one before 

the preliminary application of 54 mm of water and between 16 and 19% on plot 

two before tracer application (Figure 2.3.2a). The multiple passage of the tractor 
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wheel on plot one caused an increase in soil bulk density in the top 10 cm (Figure 

2.3.2b) compared to the tilled part. The soil bulk density profile reflects well the 

tillage of the surface. It varies little in the top 20 cm that correspond to the tilled 

part, increases rapidly in the tillage pan situated in about 25 cm depth and remains 

stable underneath. These results accords well with findings by Kulli et al. (2003) 

who reported a significant increase in bulk density in the top 15 cm of the soil and 

in 55 cm depth after single and multiple passages of a sugar beet harvester. 

However, between 15 and 55 cm depth no significant differences were found. 

 

Figure 2.3.2: (a) Initial gravimetric soil moisture on plot one (P1) and plot two 
(P2); (b) soil bulk density of compacted and tilled parts of plot one (P1) 
measured by gamma ray attenuation. 

Processes on soil surface 

Digital elevation models 

The resolution of the digital elevation models was 2 mm. The point matching 

process produced noisy data close to the metallic frame and in areas shaded by 

soil clods due to poor contrast. Furthermore, wheat residues on the surface of plot 

two resulted in particularly large elevations that were not due to the structure of 

the soil surface. In contrast, cracks produced missing values or particularly small 

elevations. These erroneous values were eliminated and the remaining values were 

corrected for linear slope prior to calculations of the empirical variogram. To 

identify erroneous values we used the add-on package robfilter (Fried & 

Schettlinger, 2008) in R (R Development Core Team, 2008) that extracts the 

relevant signal separating it from noise by robust filtering using moving windows. 

Points with the 5% largest and 5% smallest differences between the original 

elevations and the robust estimates were eliminated. Additionally, to discard high 
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elevation due to wheat residues and small values due to cracks on plot two, the 

5% of the largest and the smallest values were deleted. Linear trend was removed 

by calculating a plane in R (Team, 2008) by least-squares and missing values 

were not interpolated. After the clean up 188168 and 173064 points were 

available on plot one in the DEM before and after the tracer application 

respectively; on plot two 179575 and 125716 points were left. 

Soil surface roughness 

The empirical variogram on both plots did fit the fBm model, but the slope on the 

log-log graph changed slightly at 10 and at 100 mm. Therefore, we only used 

distances between 10 and 100 mm to estimate the fractal dimension D and the 

crossover length l. We calculated the fractal dimension and the crossover length 

for the tilled and the compacted parts on plot one separately. As expected D and l 

were smaller on the compacted part than on the tilled one: 2.43 and 0.20 mm 

versus 2.60 and 1.12 mm. Both parameters remained nearly unchanged after tracer 

application: D = 2.45, l = 0.17 mm on the compacted part and D = 2.60, l = 1.13 

mm on the tilled one. This was not the case on plot two where D increased 

slightly from 2.73 to 2.81 and l from 1.28 mm to 2.64 mm. 

Rainfall generally decreases soil roughness, but it also may increase it. Eltz & 

Norton (1997) mentioned in their study that fractal dimension increased after light 

rainfalls with low energy. They attributed this increase in soil roughness to 

consolidation of the surface and rearrangement of soil clods and aggregates after 

the soil had been moistened. Light rainfall did not significantly affect large clods, 

but the redistribution of fine particles created a denser surface with greater 

roughness. In our study, this consolidation might have happen on plot two where 

the dye tracer was applied on a dry surface after a long period without 

precipitations. Indeed, raindrops produced by the sprinkler are very small and 

have not enough energy to induce significant erosion. This effect of soil 

roughness increase was not observed on plot one probably because of the 

preliminary application of 56 mm of water before the tracer experiment. 

Water storage 

Due to poor quality of the DEM along frame walls, the stored volume and the area 

covered by large puddles were calculated on a reduced total surface of 0.98 m2 
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and puddles along frame walls were not considered. Missing values in the DEM 

were filled by gray-level opening (MVTec Software GmbH, 2007b) to avoid 

under prediction of the stored volume (Figure 2.3.3). 

a 

 

b 

Figure 2.3.3: DEM and soil surface before dye tracer application on plot one 
with a compacted middle part (a); and on plot two with a well developed 
system of open cracks (b). 

During simulated rainfall the large puddles occurred mainly in the compacted 

part of plot one. This indicates a decrease in infiltrability compared to the tilled 

part and accords well with results by Kulli et al. (2003).  The volume stored 

increased from 0.7 mm after 6 min of tracer application to 6.4 mm after 46 min 

(Figure 2.3.4). The maximum area covered by large puddles was 26% after 46 

min of rainfall. After rainfall stop the stored volume decreased rapidly. The large 

volume stored at the soil surface (especially on the compacted middle part) is 

mainly due to the metallic frame that surrounded the plot. Therefore, it does not 

correspond to a natural storage, but would have probably contributed to the 

surface runoff. On plot two we observed a visible closing of cracks on the surface 

during tracer application, but the storage of water was negligible. 
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Figure 2.3.4: Volume stored on the soil surface during tracer application and 
area covered by puddles larger than 22 cm2 on plot one. 

Infiltration and flow patterns 

In the tilled zone of plot one, volumetric water content raised from 33 to 37% in 8 

and 18 cm depth after about 10 min of rainfall (Figure 2.3.5a). After the end of 

irrigation rapid drainage was observed, especially in 8 cm depth. This fast 

increase in soil moisture as well as its quick decrease indicates the occurrence of 

preferential flow probably through inter-aggregate voids created by tillage. TDR 

probes situated in the compacted zone responded only slowly and the relative 

increase in water content was smaller. However, this shows that the compacted 

zone was not completely bypassed by the flow. The offset recorded at the 

beginning of irrigation is probably an artefact. Soil moisture continued to increase 

after the end of tracer application, probably due to the infiltration of water stored 

in large puddles. 

On plot two, TDR probes situated in cracks and in the soil matrix in 8 cm 

depths responded at about the same time (Figure 2.3.5b). Deeper in the soil, 

however, no changes in soil water content were recorded in the soil matrix. In 

contrast, water content raised quickly after the onset of irrigation in cracks. After 

the end of irrigation, the TDR probe situated in 30 cm depth in a crack showed a 

very rapid decrease in soil moisture probably indicating a fast drainage of the 

macropore. 

These TDR measurements accord very well with the heterogeneous dye 

patterns. On plot one two distinct zones could be identified: large stained areas 

above the plough pan and narrow stained objects below it. In the tilled part water 

flowed preferentially through inter-aggregate spaces created by tillage. The 

compacted zone is clearly visible and characterised by shallower infiltration, but it 
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was not completely bypassed by the flow (Figure 2.3.6a). Above the plough pan, 

the amount of stained area varied considerably more than below. The plough pan 

situated in about 25 cm depth constituted a discontinuity for the water flow and 

we observed lateral funnelling of the tracer solution. However, macropores below 

the plough pan conducted water flow. This is in accordance with Logsdon (1995) 

who found in column studies that buried macropores below the tilled layer were 

not harmed and could function as preferential flow pathways. 

  

Figure 2.3.5: Volumetric water content in different depths during infiltration 
measured by TDR on plot one (a) and plot two (b). 

In contrast, on plot two no visible plough pan was detected and cracks 

continued from soil surface down to the subsoil. The top 5 cm of the soil were 

homogenously stained indicating the dominance of the matrix flow. Below, the 

flow was funnelled to the cracks where the tracer was transported predominantly. 
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Indeed, due to low permeability of the soil matrix lateral spreading of the tracer 

from preferential pathways into the matrix was low. This resulted in narrow 

stained objects ranging from the top to the bottom of the soil profiles (Figure 

2.3.6b). As described by Jarvis (2007) and the references given therein, for large 

macropores to conduct water flow water pressures must reach close to saturation 

(> –10 cm). It does not mean that the entire soil profile must wet up. Near-

saturation conditions need only occur locally (e.g. in millimetre thick layers 

around cracks or above compacted soil zones at plough pan). 

 

Figure 2.3.6: Example images of stained patterns on plot one with the 
compacted part between 300 and 700 mm (a) and on plot two (b). 

On plot one, the amount of tracer infiltrated into the subsoil was smaller than 

on plot two. This was clearly reflected by the dye coverage function and the fitted 

distribution 1 – H (Figure 2.3.7). The plough pan is well visible in the dye 

coverage function of plot one and highlights the slope change in about 25 cm 
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depth. In contrast, the change of the slope on plot one is due to transition form 

matrix to macropore flow. The adjusted parameters of the distribution 1 – H are 

given in Table 2.3.2. Although on plot two the risk index is negative, combined 

with the scale parameter s the risk of vertical solute propagation is higher. 

However, on both plots the probability to find the tracer at the bottom of the soil 

profiles (in 1 m depth) is not zero. 

 

Figure 2.3.7: Dye coverage functions of superposed profiles (dots) and fitted 
distribution 1 − H (line) on plot one (a) and plot two (b). 

Table 2.3.2 Calculated parameters of the distribution 1 − H 

ξr s R2 Plot 

1 1.0 18 0.97

2 −0.9 827 0.93

Relationship between surface processes, flow patterns and tillage 

Agricultural cropping systems are highly dynamic and characterised by frequent 

disturbances of the soil surface (tillage). Our results showed that after tillage 

transport processes underneath the plough pan are partly disconnected from 

processes at soil surface and in the tilled horizon due to burying of macropores 

and funnelling of water along the plough pan. However, cracks under plough pan 

remained stable and still functioned as preferential flow paths. After draught 

periods and at no till conditions infiltration at our study site is dominated by 

macropore flow through open cracks, and transport systems (soil surface, topsoil 

and subsoil) are interrelated. Indeed, an existing old plough pan did not disturb the 

flow. Previous studies conducted at this site showed that during moist periods 

cracks were closed and macroporosity reduced. In this case matrix flow dominates 
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and Brilliant Blue does not penetrate below the plough pan (Bogner, unpublished 

data). 

As a conclusion, our results show that the studied soil is susceptible to deep 

vertical solute propagation at dry no till conditions when cracks are open, 

connected down to the subsoil and infiltration rates through macropores are 

important. Keeping in mind the shallow water table at this site, the risk for 

potential groundwater contamination is high. Tillage destroys macroporosity in 

the topsoil and disconnects it from the subsoil, thus reducing the amount of 

solutes infiltrating into greater depths. However, it does not prevent macropore 

flow so that buried macropores could still function as preferred transport paths 

and allow solute and pesticide leaching down to the groundwater.  

2.3.4 Conclusions 
The interplay between drying/rewetting periods and switching between 

homogenous and preferential flow and transport regimes might induce large 

gradients and high dynamics (e.g. aerobic/anaerobic conditions, heterogeneous 

distribution of soil moisture) in contact regions between mobile and immobile 

domains. This affects chemical reactions, distribution of nutrients and solutes and 

thus their availability to plants. Further studies could consider analysis of soil 

chemical properties of cracks and soil matrix separately to detect eventual 

differences between these compartments. Buried cracks conducting water flow 

suggest their stability over a certain period of time. Isotope signatures of cracks 

and soil matrix might help to determine whether desiccation cracks develop at the 

same location. 

Stereophotogrammetry allows monitoring processes on soil surface with high 

spatial and temporal resolution. In contrast, subsurface processes are usually 

considered by means of flow patterns, i.e. only with a high spatial resolution, 

because the dynamic of infiltration can be captured by point measurements with 

TDR probes or tensiometers only partially. Recent developments in geoelectrical 

methods like 3D Electrical Resistivity Tomography (ERT) are promising 

techniques that could be adapted to monitor heterogeneous infiltration of water 

into soils. 
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Summary 
Uniform and preferential flow produce typical infiltration patterns. We did three 

tracer experiments in a Norway spruce forest soil and qualitatively identified the 

dominant flow regime based on stained patterns. We analysed soil texture, fine 

root density and soil bulk density from preferential flow paths and the soil matrix 

by means of linear mixed-effects models. They can account for dependencies in 

the data structure due to hierarchical sampling and can deal with missing values. 

There were between 44% (topsoil) and 76% (subsoil) higher root densities in 

preferential flow paths than in the soil matrix. The content of sand decreased and 

silt increased with depth, but there were no significant differences between flow 

domains. The bulk density was higher in the soil matrix by 0.12 g cm-3, which is 

probably due to a higher soil organic matter content of preferential flow paths. 

Based on flow patterns and model results we identified the dominant flow 

mechanisms. Roots constituted main preferential flow paths and induced 

macropore flow, especially in the topsoil. In the subsoil root density decreased 

and inhomogeneous infiltration from preferential flow paths into the soil matrix 

caused unstable flow. Decreasing sand content might facilitate the lateral 

dispersion of the flow. 

3.1.1 Introduction 
Water flow in soils can be classified in two categories – uniform flow (Green & 

Ampt, 1911) and non-uniform i.e. preferential flow (Lawes et al., 1882). The 

latter one comprises all phenomena where water flows through localised pathways 

bypassing a portion of the soil matrix (Hendrickx & Flury, 2001). Thus non-

uniform flow results in rapid water movement and solute transport to greater 

depths than predicted by the classical concept of flow through unsaturated soils 

(Richards’ equation).  

Preferential flow can further be classified in macropore flow, unstable flow 

and funnel flow. Macropore flow describes water movement along root channels, 

earthworm burrows, soil fissures, cracks or large inter-aggregate voids in 

cultivated soils. The reader is referred to the review by Jarvis (2007) for more 

details on preferential flow through macropores. Unstable flow is common in 

coarse-textured soils and can be induced by variations in texture, water repellency, 

air entrapment or continuous non-ponding infiltration. Lateral redirection of water 
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caused by textural boundaries is referred to as funnel flow (Hendrickx & Flury, 

2001). The impact on groundwater quality might be considerable if preferential 

flow – especially through continuous macropores – becomes a dominant 

mechanism of transport of agrochemicals to greater depths (Jarvis, 2007). 

The three types of non-uniform flow lead to different flow patterns that can be 

visualised by tracer experiments (e.g. Flury et al., 1994; Forrer et al., 2000). 

Weiler & Flühler (2004) for instance showed typical dye patterns resulting from 

different flow regimes and classified them based on the width of the stained 

objects. They used the classification to infer flow types from dye patterns. Kulli et 

al. (2003) performed a hierarchical clustering of dye patterns to distinguish 

between zones of homogeneous infiltration and zones of preferential flow. 

In our study we used Brilliant Blue to trace water flow and define preferential 

flow paths as stained areas. The goal of our research is (i) to qualitatively identify 

the dominant flow regime based on dye patterns and (ii) to test whether soil 

texture, root density and soil bulk density differed significantly between regions 

of preferential flow and soil matrix and could give insight into mechanisms of 

water flow. 

3.1.2 Materials and methods 

Tracer experiments 

The study site – a Norway spruce forest – is situated in the Fichtelgebirge (770 m 

above sea level) in southeast Germany. The mean annual precipitation at the study 

site is about 1160 mm, and the mean annual air temperature about 5.3°C (Foken, 

2003). The soil is classified as Haplic Podzol (IUSS Working Group WRB, 2007) 

and has a sandy to loamy texture with a mor-like organic layers of up to 10 cm 

thickness. Five mineral horizons – Ea, Bsh, Bs, Bw and Bw/C – can be identified. 

Hentschel et al. (2008) give a detailed overview about the soil chemistry. 

We did three tracer experiments with Brilliant Blue FCF and potassium 

iodide. Brilliant Blue is a popular tracer in vadose zone hydrology because its 

colour is readily seen against most soil colours, and it is toxicologically 

acceptable for environmental use (Flury & Flühler, 1994; Mon et al., 2006). 

Iodide was used as reference tracer because Brilliant Blue might be strongly 

sorbed by soil particles and thus considerably retarded with regard to water flow 

(Ketelsen & Meyer-Windel, 1999; German-Heins & Flury, 2000; Kasteel et al., 
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2002). The tracer solution was applied on plots of about 2 m2 with a sprinkler 

similar to that described by Ghodrati et al. (1990). The matric potential before 

irrigation on plot one was −254 hPa in 0.2 m, −216 hPa in 0.4 m and −157 hPa in 

0.9 m. On plot two we measured −75 hPa in 0.2 m, −37 hPa in 0.4 m and −20 hPa 

in 0.9 m and on plot three −35 hPa in 0.2 m, −30 hPa in 0.4 m and −9 hPa in 0.9 

m. We did not remove the litter, but took away spruce cones as they covered a 

large portion of the soil surface. The irrigation rate was 64 mm hour-1 and the 

concentration of the tracers 5 g l-1 respectively. Our study is part of a project 

dealing with impacts of extreme meteorological events on soil processes, thus the 

high irrigation rate. For comparison, the maximum 10-minutes intensity measured 

at the study site between 1999 and 2006 was 22 mm and the maximum one-hour 

intensity was 54 mm. So the irrigation rate was fairly high but not unrealistic. 

The day after irrigation, 11 vertical soil profiles of 1 m × 1 m were prepared 

and photographed with a digital CCD camera in RAW format. We used a frame of 

1 m2 and two Kodak reference gray scales for geometric correction and white 

balance adjustment of the photographs. Two profiles per plot were treated with an 

indicator solution of iron(III) nitrate and starch (Lu & Wu, 2003) to visualize 

iodide infiltration patterns. 

Soil sampling and laboratory analyses 
Profiles not treated with iron(III) nitrate and starch were sampled for 

laboratory analysis. In three profiles per plot we took bulk samples from Brilliant 

Blue stained and non-stained parts per soil horizon for analysis of soil texture, 

exchangeable cations and total C and N contents. Some thin horizons were largely 

bypassed by the flow and could not be sampled. Thus the number of samples 

differed from plot to plot resulting in 58 samples altogether. Three other profiles 

per plot were sampled for root density with a soil corer (diameter = 34 mm and 

height = 50 mm) in –10-0 cm (organic horizons), 0-20 cm, 20-40 cm and 40-60 

cm depth. We could not sample every soil horizon because some of them were 

thinner than the diameter of the corer. We took three samples from stained areas 

and three from non-stained ones per profile. In some depths, there was no staining 

so that the total number of samples was 210. A mean value of root density was 

calculated per depth and sampled profile resulting in 71 values. In three other 
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profiles we took 96 samples for soil bulk density with a soil corer (diameter = 23 

mm and height = 10 mm) in stained and non-stained areas in different depths. 

Soil samples for analysis of root density were stored for 14 days at 4 °C. After 

washing them in a sieve (mesh size = 0.63 mm), fine roots (diameter < 2 mm, 

length > 10 mm) were dried at 70 °C for 48 h and weighed. Soil texture was 

analyzed by laser diffraction using a Mastersizer S (Malvern). To determine the 

soil bulk density, soil samples were dried at 105 °C for 24 h and weighed. 

Additionally, soil texture was analysed as described above. Analysis of 

exchangeable cations and total C and N content are described in Bogner et al. 

(2009). Table 3.1.1 summarizes the analyzed data. 

Table 3.1.1: Summary of the sampled data 

Analyzed 

parameters 

Sampling Method Meta information Number of 

samples 

Soil texture Bulk samples Plot, profile, horizon, 

flow region 

58 

Bulk density Metallic cylinders 

(diameter = 23 mm and 

height = 10 mm) 

Plot, profile, depth, 

soil texture, flow 

region 

96 

Root density Metallic cylinder 

(diameter = 34 mm and 

length = 50 mm) 

Plot, profile, depth, 

flow region 

71 

Image Analysis 

Photographs of soil profiles were taken in the lossless RAW-format (unprocessed 

data of the CCD camera sensor), adjusted for white balance and converted to 

JPEG in Photoshop CS2 (Adobe, 2005). Then the images were corrected in 

HALCON (MVTec Software GmbH, 2007a) for perspective and radial distortion. 

Perspective transformation of the images was obtained via a homogenous 

transformation matrix (a matrix that combines information about both rotation and 

translation in one matrix) and radial distortion was modelled by: 

  
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
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
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, (3.1.1)
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where the parameter κ is the magnitude of the radial distortion, (u, v )T are 

coordinates of a point in the original image and (u, v)T are coordinates in the 

corrected one. If κ is negative, the distortion is barrel-shaped, while for positive κ 

it is pincushion-shaped (MVTec Software 2007c).  

To classify the images in Brilliant Blue stained and non-stained areas we 

transformed them from RGB to HSI (hue saturation intensity) colour space where 

colour segmentations are robust under varying illumination (MVTec Software 

GmbH, 2007b). Misclassifications due to the shadow of the metallic frame or 

large stones were corrected manually. The classified binary images (stained parts 

were coded black and non stained areas white) were used to calculate the dye 

coverage function (number of stained pixels per depth) using MATLAB (The 

MathWorks, 2005). The binary images were used to describe the dominant flow 

regime qualitatively. 

Data Analysis 

Mixed-effects models 

Our data were not sampled randomly but are grouped on three levels: on the plot, 

the profile and the depth/horizon levels. Such grouped structure might induce 

dependencies between data, so for instance data sampled on one plot might have 

higher root densities than data from another plot. If we were interested in 

differences between exactly those three chosen experimental plots or exactly those 

profiles that were sampled, we could add a plot effect and a profile effect to our 

model. But in our study the plots were chosen at random. Although the profiles 

have a fixed spacing and are parallel to each other the exact position of the plot 

and thus the orientation of the profiles in space was chosen at random as well. The 

depth/horizon level is quite different. We are indeed interested in systematic 

variations of soil physical parameters and root densities between exactly those 

depths/horizons that were sampled. But there might be a random fluctuation 

between the same horizons on different plots, i.e. horizon Ea on plot one might 

have a higher sand content than on plot two. Therefore, we should consider a 

possible dependence induced on the depth/horizon level as well. 

Additionally to probable dependences within the data, we have to deal with 

missing values because some horizons were largely bypassed by the flow and 
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could not be sampled. A good solution for the problem of grouped data and 

missing values is to use a mixed-effects model. It can account for fixed-effects 

representing parameters of the entire population or certain repeatable levels of 

experimental factors (like horizon) and for random-effects associated with 

individual experimental units drew at random from a population (like plots or 

profiles). Furthermore, it is robust against missing values (Pinheiro & Bates, 

2000). According to the formulation proposed by Laird and Ware (1982) we can 

write a linear mixed-effects model for a single level of grouping as: 

yi = Xiβ + Zibi + εi, 
(3.1.2)

bi ~ N(0, Ψ),  εi ~ N(0, σ2Λi), i = 1, … , M,   

where yi is the ni-dimensional response vector for the ith group, β is the p-

dimensional vector of fixed-effects, bi is the q-dimensional vector of random-

effects, Xi and Zi are the known fixed-effects and random-effects regressor 

matrices (also called design matrices) of size ni × p and ni × q respectively and Λi 

are positive-definite matrices. The single-level mixed-effects model can be 

extended to multiple, nested or crossed levels of random-effects (Pinheiro & 

Bates, 2000). The calculations were done in R (R Development Core Team, 2008) 

using the package nlme (Pinheiro et al., 2008) that estimates parameters of the 

mixed-effects model by the restricted (or residual) likelihood (REML). 

Model building strategy 

We modelled soil fine texture (bulk samples), root density and soil bulk density. 

In all models we used flow region as a fixed-effect because our primary goal was 

to know whether there are significant differences between preferential flow paths 

and soil matrix. Flow region is a factor with levels ‘soil matrix’ and ‘preferential 

flow path’ indicating the origin of samples. Additionally, we included the depth 

for root density and soil bulk density and the horizon for texture as fixed-effect. 

The depth in the root density model is a factor with levels ‘5’, ‘20’, ‘40’ and ‘60’ 

indicating the middle of the sampled section in cm (taking the soil surface as 

zero). In the bulk density model the depth is a continuous variable. The horizon is 

a factor with levels ‘Ea’, ‘Bsh’, ‘Bs’, ‘Bw’ and ‘Bw/C’. The model for the bulk 

density was improved by taking the content of sand – a continuous covariate – 

into account. Shieh & Fouladi (2003) stated in their paper that collinearity in a 
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single-level mixed-effects model may inflate the estimates of variance and 

covariance components. Therefore we used horizon Bw as reference level because 

it had the largest number of observations. Using any other horizon with fewer 

observations as reference level increased the standard errors of the estimated 

fixed-effects due to collinearities with the intercept term (Wissmann & 

Toutenburg, 2007). We checked for further collinearities using the diagnostics 

proposed by Belsley et al. (1980). It calculates variance decomposition 

proportions based on a singular-value decomposition of the design matrix of the 

fixed-effects. A good tutorial on the implementation of the method can be found 

in Belsley (1991). 

To find adequate models for our data we first built a full mixed-effects model 

incorporating all fixed-effects described above and random-effects for the plot, the 

profile within plot and the depth/horizon within plot. Then, the significance of 

random-effects was tested against a nested restricted model i.e. a model with a 

smaller number of random-effects but the same fixed-effects and the same 

variance-covariance structure of the within-group errors using a likelihood ratio 

test (LRT). The LRT statistic is defined as: 

2log(L2/ L 1) = 2[log(L 2) – log(L 1)] , (3.1.3)

where L 2 is the likelihood of the full model and L 1 the likelihood of the restricted 

model (with L2 > L1). If k2 is the number of parameters estimated in the full model 

and k1 the number of parameters of the restricted model, then the “large sample” 

or asymptotic distribution of the LRT statistic is a χ2 distribution with k2 – k1 

degrees of freedom. And the null hypothesis tested is that the restricted model fits 

the data as well as the full model. This test can also be performed for models fit 

by REML if both models were fit by REML and if the structure of the fixed-

effects remains the same (Pinheiro & Bates, 2000). Finally, if appropriate, the 

significance of parameters describing the variance-covariance structure of the 

within-group errors was assessed by the likelihood ratio test against a 

homoscedastic model.  

Before making inference about the fixed-effects we examined whether the 

assumptions underlying our models were met. The first assumption is that the 

within-group errors that are allowed to be heteroscedastic and correlated are 

independent for different groups and independent of the random-effects. The 
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within-group residuals provide good surrogates of the within-group errors and can 

be used in diagnostics plots to check this assumption qualitatively (Pinheiro & 

Bates, 2000). We utilized QQ-plots of residuals to verify the normality, scatter 

plots of residuals versus fitted values or other covariates by group to check 

whether the residuals are centred at 0 and have equal variances across groups and 

are independent of the group levels. The second assumption is that the random 

effects are normally distributed, with mean 0 and covariance matrix Ψ (not 

depending on the group) and are independent for different groups. As in our 

models only simple random intercepts were used QQ-plots of random-effects 

were sufficient to assess this assumption. 

Variable transformation 

The distribution of the root density data was non-normal and we could not model 

the heteroscedasticity of the within-group errors because of its complex structure. 

Thus, root density data were transformed using the scaled Box-Cox 

transformation (Box & Cox, 1964) to achieve (an approximate) normality and 

stabilise the variance: 

 










0             )log(~
0   ~/1 1

)(


 



yy

yy
y , (3.1.4)

where y(λ) is the transformed value, y~ is the geometric mean of the data and λ the 

transformation constant. This transformation requires the data being positive. 

Hence, we added a constant c to the data because their range included 0. We tried 

0.01, 0.1 and 1 as constants and the best fit was achieved with 0.1. 

An appropriate value for λ was determined in a grid search, i.e. we calculated 

the mixed-effects model for a range of possible values for λ. Gurka et al. (2006) 

stated in their paper that using the scaled Box-Cox transformation instead of the 

simple Box-Cox transformation allowed employing the existing mixed-effects 

model estimation procedures in the grid search. Indeed, the residual likelihood of 

the scaled Box-Cox transformed model is that of a standard mixed-effects model. 

The estimate of the transformation constant  is located by plotting the residual 

likelihood values against λ as the value that corresponds to the highest residual 

likelihood (Gurka et al., 2006). A jackknife estimate of the variance of  was 

calculated as proposed by Lipsitz et al. (2000): 

̂

̂
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  Tii
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i N

N  ˆˆ ˆˆ1
)ˆvar(

1




 

 , (3.1.5)

where  is the estimate of λ using the whole data set,  is the estimated value 

obtained deleting the ith observation, N is the number of observations. The 

variance of  indicates whether  can be rounded to a convenient value to obtain 

a model that is easier to interpret like for instance the log-model. Interpretability is 

a problem for transformed data and it is even a bigger problem when using the 

scaled Box-Cox transformation. Therefore, for the final model we used the simple 

Box-Cox transformation as  estimated under the scaled transformation holds for 

the simple Box-Cox transformed model as well. Dropping the scaling factor ỹ 

from the model introduce a slight bias in the estimation of fixed-effects (Gurka et 

al., 2006). To assess the sensitivity of the estimated fixed-effects to the 

transformation constant λ we followed the advice of Gurka et al. (2006) and 

Lipsitz et al. (2000) and compared the inference about the fixed-effects between 

the optimal model with  that was found by the grid search, the model with λmin 

equal to 

̂ i̂

̂ ̂

̂

̂

  ˆvarˆ  , with λmax equal to   ˆvarˆ   and the convenient model 

with λ rounded appropriately with and without the scaling parameter y~ . Our 

concern is about interpretability and we prefer using a convenient value for λ that 

might introduce a slight bias to more exact estimates of fixed-effects that are 

physically meaningless. In a last transformation step we optimised the constant c 

in a grid search. 

Goodness-of-fit and multiple comparisons 

The parameters of the mixed-effects models are estimated by REML. Thus, the 

measure of goodness of fit R2 used for least squares estimates is not defined. To 

assess the overall goodness of fit of a mixed-effects model we can use the 

correlation between the fitted and the observed values (J. Pinheiro, personal 

communication). Furthermore, we can calculate the percentage of variance 

explained by fixed-effects by comparing the full model with an empty model 

(with the intercept as the only fixed-effect) (Edwards et al., 2008): 

   
    %100

ˆ,ˆ11

ˆ,ˆ1
1

1
2 









Ψβ

Ψβ

Fvq

Fvq
R , (3.1.6)
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where q is the number of estimated parameters in the full model, v are the residual 

degrees of freedom (v = n – rank(X), where n is the number of observations and X 

the regressor matrix of fixed-effects),  Ψβ ˆ,ˆF  is the F statistics for a Wald test of 

the null hypothesis H0: β1 = β2 =···= βq−1=0 i.e. that all parameters except the 

intercept are zero. This definition allows calculating the explained variance using 

a single model fit and thus identical structure of ransom-effects. 

After fitting the models, we compared different depths/horizons where it was 

appropriate. Hothorn et al. (2008) extended the theory of multiple comparisons to 

mixed-effects models. Different adjustments of p-values are possible and we used 

a multiple testing procedures under free combinations (Westfall, 1999). The 

calculations were done using the add-in package multcomp in R (R Development 

Core Team, 2008). 

3.1.3 Results 

Flow regime 

Following the definition by Flühler et al. (1996) the expression regime is used to 

qualify the phenomenology of the flow (preferential or uniform) that can be 

dominated by one or more physical mechanisms. Iodide patterns (not shown here) 

did not indicate any serious retardation of Brilliant Blue with regard to water. 

While the first few centimetres of the litter layer were homogenously stained, in 

the organic soil horizons the flow rapidly condensed into distinct flow paths 

(Figure 3.1.1). In the upper 20 cm of the profile the flow was dominantly 

preferential and a large portion of the matrix was bypassed. This region was 

densely rooted and we observed many blue stained roots. Deeper, the dye patterns 

differed considerably among the three experimental plots. On plot one the dye 

built distinct spots along the whole profile while on plot two large areas were 

stained. On plot three, we found a dense stone layer in about 40 cm depth that 

formed an obstacle for the flow. As indicated by the grey painted area in Figure 

3.1.1, the amount of staining varied little on this plot and had its maximum in the 

stone layer. The highest variation of staining was observed on plot two. Despite 

the differences in patterns the main common feature of the flow regime in the 

subsoil is the dispersion of the flow from the preferential flow paths into the 

matrix. 
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Figure 3.1.1: Example images of stained patterns (left) and dye coverage 
functions (right). From (a) to (c): plot one to three. The grey painted area 
indicates the variation between the minimum and the maximum staining 
calculated from all 11 profiles of a plot and the black line represents the dye 
coverage function of the picture on the left. 
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The dye patterns suggest that at our study site roots constitute main 

preferential flow paths and induce macropore flow, especially in the topsoil. In the 

subsoil root density decreases and inhomogeneous infiltration from preferential 

flow paths into soil matrix causes unstable flow. There is no sharp boundary 

between the region where the flow is dominantly preferential and the zone of 

dispersion into the soil matrix. Therefore texture differences between soil 

horizons do probably not influence the flow regime. 

Modelling results 

Content of sand, silt and clay 

Globally the content of sand decreased, the content of silt increased and the 

amount of clay varied considerably with depth suggesting a horizon within plot 

random effect (Figure 3.1.2): 

yijk = β0 + β1·soil horizon + β2·flow region + bij + εijk, 

i=1, 2, 3,  j=1,…, 4,  k=1,… nij, 

bij ~ N(0, σ1
2),  εijk ~ N(0, σ2),  

(3.1.7)

where yijk is sand or silt in percent on plot i in horizon j, βi are the fixed-effects, bij 

is the horizon within plot random-effect, εijk is the error term and nij the number of 

observations on plot i in horizon j. 

Figure 3.1.3a indicates a good agreement between fitted and observed values. 

As an example, we show diagnostic plots for the sand model. The same procedure 

was applied to all other models to ensure that the model assumptions were met 

and that points with high residuals did not influence the inference. There is no 

evidence of heteroscedasticity (Figure 3.1.3b) or departure from the normality 

assumption (Figure 3.1.3c and Figure 3.1.3d). Boxplots of standardized residuals 

versus horizon or flow region by plot (not shown here), did not suggest any 

violation, either. Observation 20 has the highest residual, but excluding it from the 

model did not change the inference about the fixed effects. 
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Figure 3.1.2: Particle size distribution of the soil fine fraction with depth (from 
left to right: plot one to three). Sand fraction is defined as 2000 - 63 μm, silt 63 
- 2 μm and clay < 2 μm. Note different scaling of the y-axis. The solid line is a 
smooth curve computed by loess (with smoothness parameter 1.01) and the 
dotted line shows a linear regression. 

The approximate 95% confidence intervals for the random-effects and the 

within-group errors are displayed in Table 3.1.2. The correlation between the 

observed and the fitted values was 0.78 (Figure 3.1.3a) and 0.81 (Figure 3.1.4a) 

and the variance explained by fixed-effects equalled 39% and 41% for the sand 

and the silt model respectively. There are no significant differences between the 

preferential flow paths and the soil matrix neither in the content of sand nor of silt 

(Figure 3.1.3e and Figure 3.1.4b). 
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Table 3.1.2: Estimated standard deviations and their approximate 95% confidence intervals for random-effects and within-group 
errors. 

 95% lower Estimate 95% upper   95% lower Estimate 95% upper

Sand /%  Silt /% 

Random-effect (horizon) 1.6 3.1 6.1  Random-effect (horizon) 1.0 1.9 3.7 

Within-group error 3.0 3.8 4.7  Within-group error 1.8 2.3 2.8 

Clay /%  Root abundance /log(g l-1) 

Random-effect (horizon) 1.1 2.0 3.4  Random-effect (horizon) 0.1 0.3 0.5 

Random-effect (profile) 0.4 0.9 2.0  Within-group error 0.3 0.4 0.5 

Within-group error 1.1 1.4 1.8      
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Figure 3.1.3: Diagnostic plots for the sand model. (a) fitted versus observed 
values (a 1:1 line was added for better visibility); (b) standardized residuals 
versus fitted values per horizon; (c) QQ-plot of the standardized residuals; (d) 
QQ-plot of the estimates of the horizons within plot random-effect; (e) 
estimated fixed-effects with their standard errors (Inter. = intercept, PF = 
preferential flow). 

The content of clay was modelled as: 

yijkl = β0 + β1·soil horizon + β2·flow region + bij + bik + εijkl, 

i=1, 2, 3, j=1,…, 4, k=1,…, 4, l=1,… nijk, 

bij ~ N(0, σ1
2),  bik ~ N(0, σ2

2),  εijkl ~ N(0, σ2),  

(3.1.8)

where yijkl is the clay content in percent on plot i in profile j in horizon k,  βi are 

the fixed-effects, bij is the profile within plot random-effect, bik is the horizon 

within plot random-effect, εijk is the error term and nijk the number of observations 

on plot i in profile j in horizon k. We excluded three influential points from the fit 

which increased the correlation between the observed and the fitted values from 

0.63 to 0.86 without changing the inference about the fixed-effects (Figure 

3.1.4c). The percentage of variance explained by fixed-effects equalled 28%. The 

content of clay did not differ significantly between preferential flow paths and soil 

matrix (Figure 3.1.4d). 
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Figure 3.1.4: Results of the silt and clay models. (a), (c): fitted versus observed 
values a 1:1 line was added for better visibility); (b), (d): estimated fixed-
effects effects with their standard errors (Inter. = intercept, PF = preferential 
flow paths). 

Figure 3.1.2 suggests comparing the texture of successive horizons. We tested 

whether the content of sand decreased from the Ea to the Bw and increased from 

the Bw to the Bw/C and the contrary for the content of silt. As there was no clear 

trend for the content of clay, we only tested whether successive horizons were 

different. We could reject the hypotheses of decreasing sand content and 

increasing silt content between the Bsh and the Bs and of different clay content 

between the Bsh and the Bs and the Bs and the Bw (Table 3.1.3). 

Root density 

Root density decreased sharply with depth, but varied little between plots (Figure 

3.1.5a). The grid search for the Box-Cox transformation resulted in a 

transformation constant  of 0.16 with a jackknife variance of 0.009. The grid 

search for the constant c gave 0.156. The comparison between models with λ 

equal to 0.066 (λmin), 0.254 (λmax), and 0 (convenient value) led to similar 

estimates of the fixed-effects and we kept the convenient model: 

̂
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log(yijk + 0.156) = β0 + β1·depth + β2·flow region + bij + εijk, 

i=1, 2, 3, j=1,…, 4, k=1,… nijk, 

bij ~ N(0, σ1
2),  εijk ~ N(0, σ2), 

(3.1.9)

where yijk is the root abundance in g l-1on plot i in depth j, βi are the fixed-effects, 

bij is the depth within plot random-effect, εijk is the error term and nijk the number 

of observation on plot i in depth j. The correlation between the observed and the 

fitted values was 0.83 and the variance explained by the fixed-effects equalled 

57% (Figure 3.1.5b). The factor flow region was significant indicating that the 

root density in preferential flow paths is higher than in the soil matrix (Figure 

3.1.5c). 

Table 3.1.3: Summary of multiple comparisons of the soil texture. 

 Linear hypothesis Estimate Standard error p value 

Ea − Bsh  0 8.366 3.128 0.010 

Bsh − Bs  0 −0.855 3.128 0.607 

Bs − Bw  0 8.334 2.944 0.010 
Sand 

Bw/C − Bw  0 10.507 3.273 0.005 

Ea − Bsh  0 −4.391 1.920 0.048 

Bsh − Bs  0 0.967 1.920 0.617 

Bs − Bw  0 −7.070 1.812 0.001 
Silt 

Bw/C − Bw  0 −6.631 2.013 0.005 

Ea − Bsh = 0 −4.566 1.765 0.045 

Bsh − Bs = 0 −0.238 1.782 0.894 

Bs − Bw = 0 
Clay 

−1.740 1.710 0.495 

Bw/C − Bw = 0 −4.727 1.909 0.046 

 

Using the convenient log-model has the advantage that we can retransform 

our results to the original scale quite easily. The mean of a log-normal variable is 

the exponential of the log mean plus one half of the log variance (Johnson et al., 

1994; Manning, 1998; Mullahy, 1998). As the residuals are normally distributed 

and homoscedastic, the retransformation on the plot level is straightforward: 

yijk = exp(β0 + β1·depth + β2·flow region +  + 0.5· )-0.156, ijb̂ 2̂ (3.1.10)
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where yijk is the root density on the original scale in g l-1,  is the estimate of the 

depth within plot random-effect, is the estimated within-group error variance 

and the other elements are the same as in equation (3.1.9). To obtain 

retransformed values on the population level, we replace the estimate of the 

random-effect by 0.5· , the estimate of the random-effect variance. The latter 

show a difference of about 44% in the organic horizons (5 cm depth) and even 

about 76% in the Bw/C horizon (60 cm depth), but there the absolute values are 

small (

ijb̂

2̂

2
1̂

Figure 3.1.5d). Multiple comparisons between depths showed that the root 

density decreases significantly between 5 cm and 20cm and 40 cm and 60 cm 

(Table 3.1.4). 

Table 3.1.4: Summary of multiple comparisons of the root density. 

Linear hypothesis Estimate Standard error p value 

1.046 0.246 <0.000 D5 − D20  0 

0.379 0.246 0.064 D20 − D40  0 

0.651 0.247 0.011 D40 − D60  0 

 

 

Figure 3.1.5: Variation of the root density with depth (a) and the results of the 
root abundance model: (b) fitted versus observed values (a 1:1 line was added 
for better visibility); (c) estimated fixed-effects effects with their standard 
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errors (Inter. = intercept, D = depth, PF = preferential flow paths); (d) model 
coefficients retransformed to original scale. 

Bulk density 

As expected, bulk densities increased with depth. The highest variability was 

encountered on plot two (Figure 3.1.6a). On plot three the soil was hardly stained 

below the stone layer and we sampled less and mostly in the topsoil where the 

bulk densities were smaller. We tested several models and the best results were 

achieved with the following linear model: 

yi = β0 + β1·content of sand + β 2·depth + β 3·flow region + εi,  
(3.1.11)

εi ~ N(0, σ2), 

where yi is the bulk density, βi are the regression parameters and εi is the error 

term. We scaled the content of sand by 0.1 to decrease the condition number of 

the model matrix and thus increase numerical stability. We found collinearities 

between the intercept term, the depth and the sand content. Mean centring the 

latter two variables (i.e. subtracting the mean) resolved the problem. 

The fitted values scatter considerably indicating that there might be some other 

explanatory variables not included in the model (Figure 3.1.6b). As there are no 

random-effects in the model, the only assumption to be verified is that the errors 

are normally distributed with mean 0 and a constant variance and the diagnostic 

plots (not shown) did not indicate any violation. The adjusted R2 of model (3.1.11) 

equalled 0.53 and the residual standard error 0.25. All the estimated coefficients 

are significant and the bulk densities in the preferential flow paths are 0.12 g cm-3 

smaller than in the matrix (Figure 3.1.6c). 

3.1.4 Discussion 

Goodness-of-fit and model parameters 
The correlations between fitted and observed values for all mixed-effects models 

are larger than 0.7 and the percentage of variance explained by fixed-effects 

ranges between 28% and 57%. The estimated random-effects and the within group 

errors vary by factor 5 and by factor 2 respectively (Table 3.1.2). The plots of 

fitted versus observed values indicate some scatter (i.e. for the root density), but 

globally the models represent the data well. The bulk density model can be 

improved considerably by incorporating the content of organic matter as 

predictor. But preliminary results (not included here) showed that there was a 
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significantly higher content of organic matter in preferential flow paths than in the 

soil matrix. Therefore this predictor already incorporates differences between the 

flow domains and including it in the model changes the inference about the factor 

flow region and makes it not significant. 

 

Figure 3.1.6: Variation of the soil bulk density with depth (a) and the results of 
the bulk density model: (b) fitted versus observed values (a 1:1 line was added 
for better visibility); (c) estimated coefficients (Inter. = intercept, PF = 
preferential flow paths). 

The parameter intercept in the sand, silt and clay models indicates the content 

of the respective soil fine fraction in the horizon Bw in the soil matrix (reference 

level). The parameters Ea, Bsh, Bs and Bw/C are differences with regard to this 

reference level and the parameter preferential flow shows the difference between 

soil matrix and preferential flow paths. As an example consider the content of 

sand in the preferential flow paths of the horizon Ea (Figure 3.1.3e). As the flow 

region is not significant we only have to sum up the intercept (31.90%) and the 

parameter Ea (15.85%) and obtain 47.75% on the population level. If we need 

estimates on the plot level, we have to add the random-effects. The reference level 

for root abundance model is the depth 5 cm. As for the sand, silt and clay models 

the other parameters are differences to this reference level. The reference level for 

the bulk density is more complicated as the predictors have been centred. So the 
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intercept represents the bulk density in the soil matrix in the mean depth for the 

mean content of sand. The regression parameters for the sand and the depth are 

slopes and for the flow region differences to the preferential flow paths. 

Flow mechanisms 

According to the description by Flühler et al. (1996) the homogenously stained 

top of the soil profile corresponds to the distribution flow in the attractor zone 

where water is funnelled towards “isolated entry ports”. The results of the 

statistical analysis support our assumption on the dominant role of the root system 

for the occurrence of preferential flow. The Norway spruce has a shallow root 

system. A study at the same site by Gaul et al. (2008) mentioned that the first 30 

cm of the soil profile contained 80% of the cumulative fine root biomass. The root 

density decreases significantly with depth and differs between the soil matrix and 

preferential flow paths. In the transmission zone (the horizons Ea, Bsh and partly 

Bs) water moves preferentially along root channels. These horizons have a high 

content of sand and thus a high conductivity which explains the lateral spreading 

of the dye from preferential flow paths into the soil matrix. This interaction 

between macropores and the matrix results in relatively large stained objects. The 

region of small root density coincides with the dispersion zone where water is 

forced to infiltrate into the soil matrix. The decreasing sand content might 

facilitate the lateral dispersion of the flow. As the root system is heterogeneous 

the upper limit of this zone varies in space.  

The main differences between the plots are the mean root density and the 

stone content. Plot one has the highest root density (Figure 3.1.5d) and is 

characterized by isolated stained spots along the whole profile. Here preferential 

flow is still important in the subsoil horizons and we observed larger roots 

growing down to the horizon Bw/C. On plot three large stones induce funnel flow 

along stone walls and infiltration beyond the stone layer is hindered. So the 

dispersion here is mainly due to the presence of stones and not to the decrease of 

the root density. Stones are known to increase flow velocities by decreasing the 

cross section available for water flow (Schulin et al., 1987; Hendrickx et al., 

1991; Sauer & Logsdon, 2002; Bogner et al., 2008). At our study sites stones play 

an important role. According to Gerstberger et al. (2004) the content of rock 

fragments ranges between few percent in the topsoil and up to 75 vol% in the 
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subsoil. Additionally to the impact on water movement, stones might influence 

the soil chemistry as sources of cation exchange capacity (Ugolini et al., 1996; 

Corti et al., 2002) and constitute an additional reservoir of nutrients (Heisner et 

al., 2004). 

Ecological implications 

A significant difference between flow regions does not imply ecological 

relevance. The higher root densities in the stained areas in the topsoil are 

ecologically relevant, but the differences in the less rooted lower horizons are 

probably not. Roots constitute preferential paths for water flow which leads to a 

better water and nutrients supply than in the soil matrix and might amplify root 

production – a positive feedback. Further studies should consider both root 

density and root turnover to elucidate whether root production is higher in 

preferential flow paths. The difference in bulk density of 0.12 g cm-3 is small. It is 

difficult to say whether it is important, but it might cause a higher porosity in 

preferential flow areas. Smaller bulk density is probably not the cause for but an 

effect of preferential flow. Root turnover is an important source of soil carbon and 

decomposition of dead roots is a major input to soil organic matter (Tate et al., 

1993; Guo et al., 2005). Soil bulk density is known to decrease with increasing 

content of organic matter (e.g. Balland et al., 2008). Furthermore, there might be a 

preferential transport of organic matter from the soil surface along macropores. 

Both higher root production and transport of organic matter might decrease the 

bulk density by increasing the soil organic matter content in the preferential flow 

paths. 

3.1.5 Conclusions 
The dye patterns suggest that the organic horizons play an important role in 

initiating preferential flow in the topsoil. This might be due to the structure of the 

litter layer or to chemical properties of the organic horizons such as water 

repellency. A detailed study of this part of the soil could help to understand which 

mechanisms force the flow to converge to certain localized flow paths. Roots 

constituted main preferential flow paths and induced macropore flow, especially 

in the topsoil. In the subsoil root density decreased and inhomogeneous 

infiltration from preferential flow paths into the soil matrix caused unstable flow. 
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Root macropores promote preferential transport of solutes from the organic 

horizons to the subsoil. Furthermore, roots are known to strongly influence their 

immediate environment, the rhizosphere, by exudation of organic compounds. As 

a consequence distinct chemical compartments might develop with gradients in 

the transition zone between the soil matrix and preferential flow paths. Further 

studies should consider possible impacts of preferential flow on soil chemistry. 

3.1.6 Acknowledgements 
The authors are grateful to the R and S-plus community, especially to Prof. John 

Fox, Prof. Douglas Bates, Dr. José Pinheiro and Dr. Kyle Roberts for their help 

with statistical issues and for providing various R-scripts. MVTec Software 

GmbH has granted a research license for the software HALCON during the first 

author’s PhD. This project was funded by the Deutsche Forschungsgemeinschaft 

(DFG FOR 562). 

3.1.7 References 
Adobe. 2005. Photoshop ver. CS2. (At: http://www.adobe.com. Accessed: 

04/03/2009) 

Balland, V., Pollacco, J.A.P. & Arp, P.A. 2008. Modeling soil hydraulic 
properties for a wide range of soil conditions. Ecological Modelling, 219, 
300-316. 

Belsley, D.A. 1991. A guide to using the collinearity diagnostics. Computer 
Science in Economics and Management, 4, 33-50. 

Belsley, D.A., Kuh, E. & Welsch, R.E. 1980. Regression diagnostics: Identifying 
influential data and sources of collinearity. Wiley Series in Probability and 
Mathematical Statistics. Wiley, New York. 

Bogner, C., Borken, W. & Huwe, B. 2009. Impact of preferential flow on soil 
chemistry in a forest soil. submitted to the European Journal of Soil Science. 

Bogner, C., Engelhardt, S., Zeilinger, J. & Huwe, B. 2008. Visualization and 
analysis of flow patterns and water flow simulations in disturbed and 
undisturbed tropical soils. In: Gradients in a Tropical Mountain Ecosystem of 
Ecuador (eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F. & Mosandl, R.), 
pp. 387-396. Springer Verlag, Berlin Heidelberg. 

Box, G.E.P. & Cox, D.R. 1964. An analysis of transformations (with discussion). 
Journal of the Royal Statistical Society, Series B, 26, 211-252. 

Corti, G., Ugolini, F.C., Agnelli, A., Certini, G., Cuniglio, R., Berna, F. & 
Sanjurjo, M.J.F. 2002. The soil skeleton, a forgotten pool of carbon and 
nitrogen in soil. European Journal of Soil Science, 53, 283-298. 

 100 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 3 
 

 
Edwards, L.J., Muller, K.E., Wolfinger, R.D., Qaqish, B.F. & Schabenberger, O. 

2008. An R-2 statistic for fixed effects in the linear mixed model. Statistics in 
Medicine, 27, 6137-6157. 

Flühler, H., Durner, W. & Flury, M. 1996. Lateral solute mixing processes - A 
key for understanding field-scale transport of water and solutes. Geoderma, 
70, 165-183. 

Flury, M. & Flühler, H. 1994. Brilliant Blue FCF as a dye tracer for solute 
transport studies - a toxicological overview. Journal of Environmental 
Quality, 23, 1108-1112. 

Flury, M., Flühler, H., Jury, W.A. & Leuenberger, J. 1994. Susceptibility of soils 
to preferential flow of water: a field study. Water Resources Research, 30, 
1945-1954. 

Foken, T. 2003. Lufthygienisch-Bioklimatische Kennzeichnung des oberen 
Egertales. Bayreuther Forum Ökologie. Vol. 100, 69+XLVIII. 

Forrer, I.E., Papritz, A., Kasteel, R., Flühler, H. & Luca, D. 2000. Quantifying dye 
tracers in soil profiles by image processing. European Journal of Soil Science, 
51, 313-322. 

Gaul, D., Hertel, D. & Leuschner, C. 2008. Effects of experimental soil frost on 
the fine-root system of mature Norway spruce. Journal of Plant Nutrition and 
Soil Science, 171, 690-698. 

German-Heins, J. & Flury, M. 2000. Sorption of Brilliant Blue FCF in soils as 
affected by pH and ionic strength. Geoderma, 97, 87-101. 

Gerstberger, P., Foken, T. & Kalbitz, K. 2004. The Lehstenbach and Steinkreuz 
catchments in NE Bavaria, Germany. In: Biogeochemistry of Forested 
Catchments in a Changing Environment (ed. Matzner, E.), pp. 15-44. 
Springer Verlag, Berlin Heidelberg. 

MVTec Software GmbH. 2007a. Halcon ver. 8.0. (At: 
http://www.mvtec.com/halcon/. Accessed: 04/03/2009) 

MVTec Software GmbH. 2007b. Solution Guide I. Basics. Halcon Technical 
Manual. 

MVTec Software GmbH. 2007c. Solution Guide II-F. 3D Machine Vision. Halcon 
Technical Manual. 

Green, W.H. & Ampt, G.A. 1911. Studies on soil physics, 1. The flow of air and 
water through soils. The Journal of Agricultural Science, 4, 1-24. 

Guo, L.B., Halliday, M.J., Siakimotu, S.J.M. & Gifford, R.M. 2005. Fine root 
production and litter input: Its effects on soil carbon. Plant and Soil, 272, 1-
10. 

Gurka, M.J., Edwards, L.J., Muller, K.E. & Kupper, L.L. 2006. Extending the 
Box-Cox transformation to the linear mixed model. Journal of the Royal 
Statistical Society Series A-Statistics in Society, 169, 273-288. 

Heisner, U., Raber, B. & Hildebrand, E.E. 2004. The importance of the soil 
skeleton for plant-available nutrients in sites of the Southern Black Forest, 
Germany. European Journal of Forest Research, 123, 249-257. 

 101

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Flow mechanisms in a forest soil 
 
 

Hendrickx, J.M.H. & Flury, M. 2001. Uniform and Preferential Flow Mechanisms 
in the Vadose Zone. In: Conceptual Models of Flow and Transport in the 
Fractured Vadose Zone (ed. Council, N.R.), pp. 149-187. National Academy 
Press, Washington, DC. 

Hendrickx, J.M.H., Khan, A.S., Bannink, M.H., Birch, D. & Kidd, C. 1991. 
Numerical analysis of groundwater recharge through stony soils using limited 
data. Journal of Hydrology, 127, 173-192. 

Hentschel, K., Borken, W. & Matzner, E. 2008. Repeated freeze-thaw events 
affect leaching losses of nitrogen and dissolved organic matter in a forest soil. 
Journal of Plant Nutrition and Soil Science, 171, 699-706. 

Hothorn, T., Bretz, F. & Westfall, P. 2008. Simultaneous inference in general 
parametric models. Biometrical Journal, 50, 346-363. 

Jarvis, N.J. 2007. A review of non-equilibrium water flow and solute transport in 
soil macropores: principles, controlling factors and consequences for water 
quality. European Journal of Soil Science, 58, 523-546. 

Johnson, N.L., Kotz, S. & Balakrishnan, N. 1994. Continuous univariate 
distributions. Vol. 1, 2nd edn., Wiley, New York. 

Kasteel, R., Vogel, H.J. & Roth, K. 2002. Effect of non-linear adsorption on the 
transport behaviour of Brilliant Blue in a field soil. European Journal of Soil 
Science, 53, 231-240. 

Ketelsen, H. & Meyer-Windel, S. 1999. Adsorption of Brilliant Blue FCF by 
soils. Geoderma, 90, 131-145. 

Kulli, B., Stamm, C., Papritz, A. & Fluhler, H. 2003. Discrimination of flow 
regions on the basis of stained infiltration patterns in soil profiles. Vadose 
Zone Journal, 2, 338-348. 

Laird, N.M. & Ware, J.H. 1982. Random-effects models for longitudinal data. 
Biometrics, 38, 963-974. 

Lawes, J.B., Gilbert, J.H. & Warrington, R. 1882. On the amount and composition 
of the rain and drainage water collected at Rothamsted. Williams, Clowes & 
Sons, London. 

Lipsitz, S.R., Ibrahim, J. & Molenberghs, G. 2000. Using a Box-Cox 
transformation in the analysis of longitudinal data with incomplete responses. 
Journal of the Royal Statistical Society Series C-Applied Statistics, 49, 287-
296. 

Lu, J. & Wu, L. 2003. Visualizing bromide and iodide water tracer in soil profiles 
by spray methods. Journal of Environmental Quality, 32, 363-367. 

Manning, W.G. 1998. The logged dependent variable, heteroscedasticity, and the 
retransformation problem. Journal of Health Economics, 17, 283-295. 

Mon, J., Flury, M. & Harsh, J.B. 2006. Sorption of four triarylmethane dyes in a 
sandy soil determined by batch and column experiments. Geoderma, 133, 
217-224. 

Mullahy, J. 1998. Much ado about two: reconsidering retransformation and the 
two-part model in health econometrics. Journal of Health Economics, 17, 
247-281. 

 102 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 3 
 

 

 103

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & The R Core team. 2008. nlme: 
Linear and Nonlinear Mixed Effects Models. R package version 3.1-89.  

Pinheiro, J.C. & Bates, D.M. 2000. Mixed-Effects Models in S and S-Plus. 
Springer, New York. 

Sauer, T.J. & Logsdon, S.D. 2002. Hydraulic and physical properties of stony 
soils in a small watershed. Soil Science Society of America Journal, 66, 1947-
1956. 

Schulin, R., Wierenga, P.J., Flühler, H. & Leuenberger, J. 1987. Solute Transport 
through a Stony Soil. Soil Science Society of America Journal, 51, 36-42. 

Shieh, Y.-Y. & Fouladi, R.T. 2003. The Effect of Multicollinearity on Multilevel 
Modeling Parameter Estimates and Standard Errors. Educational and 
Psychological Measurement, 63, 951-985. 

Tate, K.R., Ross, D.J., Obrien, B.J. & Kelliher, F.M. 1993. Carbon storage and 
turnover, and respiratory activity, in the litter and soil of an old-growth 
southern beech (Nothofagus) forest. Soil Biology & Biochemistry, 25, 1601-
1612. 

R Development Core Team. 2008. R: A Language and Environment for Statistical 
Computing. http://www.R-project.org [accessed on February 2009] 

The MathWorks, Inc. 2005. Matlab ver. 7.1. (At: http://www.mathworks.com. 
Accessed: 04/03/2009) 

Ugolini, F.C., Corti, G., Agnelli, A. & Piccardi, F. 1996. Mineralogical, physical, 
and chemical properties of rock fragments in soil. Soil Science, 161, 521-542. 

Weiler, M. & Flühler, H. 2004. Inferring flow types from dye patterns in 
macroporous soils. Geoderma, 120, 137-153. 

Westfall, P.H. 1999. Multiple comparisons and multiple tests. Cary, NC: SAS 
Institute Inc. 

Wissmann, M. & Toutenburg, H. 2007. Role of Categorical Variables in 
Multicollinearity in the Linear Regression Model. University of Munich. 
Department of Statistics: Technical Reports, No.8. 

IUSS Working Group WRB. 2007. World reference base for soil resources 2006, 
first update 2007. World Soil Resources Reports No. 103.  

 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



 
 

 104 

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Chapter 3 
 

 

3.2 Impact of preferential flow on soil chemistry in a forest 
soil 

BOGNER Ca,b, BORKEN Wc, HUWE Ba 

aSoil Physics Group, University of Bayreuth, 95440 Bayreuth, Germany, 

bEcological Modelling, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 

95448 Bayreuth, Germany  and cSoil Ecology, University of Bayreuth, 95440 

Bayreuth, Germany 

Correspondence: C. Bogner. E-mail: christina.bogner@uni-bayreuth.de. 

 

Short title: 

Soil chemistry in preferential flow paths 

 

Submitted to the European Journal of Soil Science 

 105

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Soil chemistry in preferential flow paths 
 
 

Summary 
Main flow paths in forest soils can be stable for decades favouring the 

development of distinct chemical properties. At our study site, roots constituted 

preferential flow paths and induced macropore flow, especially in the topsoil. We 

did three tracer experiments in a Norway spruce forest soil and analysed soil 

chemical parameters (exchangeable cations, pH, total C and total N) of 

preferential flow paths and soil matrix by means of mixed-effects models that take 

the hierarchical nature of sampled data into account. We found smaller pH values 

(0.11-0.34 pH units), 32% more Ca, 51% more Mg, 11-30% more C and 13-24% 

more N in preferential flow paths. We attribute the increase of Ca and Mg to their 

transport via preferential flow paths after the application of lime some years ago. 

Compared to the adjacent soil matrix, 27% more aluminium and 192% more iron 

(but small absolute amounts) were found in the horizon Bw/C (subsoil) where 

macropore flow along root channels decreases and heterogeneous matrix flow 

dominates. These distinct chemical properties are probably due to root exudates 

and translocation of solutes and DOM along preferential paths. Our results show 

that preferential flow has considerable effects on chemical processes in the subsoil 

and could promote C sequestration in subsoil horizons. 

3.2.1 Introduction 
Preferential flow describes all phenomena where water flows through localised 

pathways bypassing a portion of the soil matrix (Hendrickx & Flury, 2001). Main 

transport mechanisms along preferential flow paths are inhomogeneous matrix 

flow and macropore flow. The first mentioned usually occurs in coarse-textured 

soils induced by, for instance, textural differences or water repellency. Macorpore 

flow is typical for highly structured soil or soils containing biopores like root 

channels or earthworm burrows. 

Several studies showed that predominant flow paths could be stable for 

decades. Ritsema & Dekker (2000) observed that preferential flow paths recurred 

at the same locations during successive rain events in a water repellent sandy soil. 

They stated that these preferential flow paths might remain stable for an unlimited 

period of time, except that human influence (e.g. tillage) might change the pattern. 

Although tillage destroys stable continuous macropores, macropores burrier 
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below the tilled layer could still function as preferential flow paths (Logsdon, 

1995). Hagedorn & Bundt (2002) estimated an age of about 40 years for 

preferential flow paths in a forest soil by measuring the distribution of 

radionuclides. 

Due to temporal stability and reoccurrence of preferential flow at the same 

location, distinct biological and chemical environments in preferential flow paths 

and soil matrix are likely to develop. Bundt et al. (2001b) found higher cation 

exchange capacity, base saturation, organic C and organic N concentrations in 

preferential flow paths of a forest soil. There are indications that soil organic 

matter in preferential flow paths is younger and N cycling faster than in the soil 

matrix (Bundt et al., 2001a). This is in accordance with Hagedorn et al. (1999) 

who reported an increased N transformation in preferential flow paths compared 

with the soil matrix. Along flow paths nitrate concentrations were higher; 

denitrification activity after rainfalls increased and net nitrification started earlier 

after drying and was enhanced. 

In our study we first identified main flow mechanisms in a spruce forest by 

mixed-effects modelling (Bogner et al., 2009a). We found that roots constituted 

main preferential flow paths and induced macropore flow, especially in the 

topsoil. In the subsoil, root density decreased and inhomogeneous infiltration from 

preferential flow paths into the soil matrix caused unstable matrix flow. Based on 

these results, the aim of this study is to determine how soil chemical properties 

(concentration of exchangeable cations, pH, total C and N) differ between 

preferential flow paths and soil matrix. Special emphasis will be given to the 

hierarchical nature of sampled data. Most studies that investigate differences 

between preferential flow paths and soil matrix use the paired t-test of mean 

values or its non-parametric equivalent and test different depths separately. We 

propose to employ mixed-effects models and to consider all plots and all depths in 

one single analysis. 

3.2.2 Materials and methods 

Field and laboratory work 

We did three tracer experiments with Brilliant Blue FCF in a Norway spruce 

forest situated in the Fichtelgebirge (770 m above see level) in southeast 

Germany. The soil is classified as Haplic Podzol (IUSS Working Group WRB, 
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2006) with five mineral soil horizons (Ea, Bsh, Bs, Bw and Bw/C) with a sandy to 

loamy texture and a 6-10 cm thick mor-type organic horizons (Oi, Oe and Oa). 

The pH (H2O) ranges between 4.0 (Oa) and 4.5 (Bw). The C and N content of the 

Oa horizon is 18% and 1% respectively and decreases with depth to 0.4% C and < 

0.05% N in Bw. The soil was limed in the past as indicated by the high base 

saturation especially in the organic horizons (Hentschel et al., 2008). 

Three profiles per plot were sampled for analysis of exchangeable cations (H, 

K, Na, Ca, Mg, Mn, Al, and Fe), content of total C and N, pH (H2O) and soil 

texture. We took bulk samples from Brilliant Blue stained and non-stained parts 

per soil horizon. Some thin horizons were hardly stained and could not be 

sampled. Therefore, the number of samples differed from plot to plot resulting in 

58 samples altogether. A detailed description of the tracer experiment and soil 

sampling is given in Bogner et al. (2009a). 

Exchangeable cations were extracted with a 1M NH4Cl solution and analyzed 

by ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry) 

(Jobin-Yvon Horiba Group, JY2000, U.S.A.). Total C and N in soil samples were 

determined using a CNS-Analyser (Vario EL, Elementar). As pH (H2O) values of 

the soil ranged between 5.0 and 3.3, total carbon is equivalent to organic carbon. 

Brilliant Blue FCF (C37H34N2Na2O9S3, molar mass 792.9 g mol-1) is an organic 

molecule consisting of 56% C and 4% N and its sorption on soil particles affects 

C and N contents of soil. We determined the content of Brilliant Blue in soil by 

visible diffuse reflectance spectroscopy (Bogner et al., 2009b). The predicted 

concentrations ranged from -1.0 mg g-1 to 5.1 mg g-1. After transformation to C 

and N contents the positive predicted values were subtracted from the total C 

content and total N content, respectively. Samples with negative predicted values 

were not corrected. The maximum predicted value for additional carbon and 

nitrogen due to Brilliant Blue was 0.29% and 0.022%, respectively.  Analysis of 

soil texture, root abundance and bulk density are presented by Bogner et al. 

(2009a). 

Initial data analysis 

The tracer solution contained K and Na so that at least these compounds are 

influenced by the experiment and their measured concentrations do not reflect the 

natural background in soil. To find further possible disturbances due to tracer 
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application we performed a principal component analysis (PCA) on the log-

transformed data set of exchangeable cations and pH. The latter was transformed 

to concentration of hydronium per g soil. The log-transformation was necessary as 

the PCA is sensitive to non-normality (especially in small data sets). In two 

samples Mg concentrations were below the detection limit of the ICP-OES and 

were set to 0.5·detection limit to avoid zeros. The same procedure was applied to 

eight other samples for Fe concentrations. C and N were not included in the PCA 

as they were corrected for the content of Brilliant Blue.  

Mixed-effects models 

In the present study we have to deal with missing values due to bypassing of some 

horizons and with hierarchically sampled data that are grouped at three levels: 

plot, profile and horizon. Hierarchical sampling might induce dependencies in the 

data and therefore classical statistical techniques like the analysis of variance are 

not applicable. We used mixed-effects models that explicitly accounts for possible 

dependencies in data. They contain fixed-effects representing parameters of the 

entire population or certain repeatable levels of experimental factors and random-

effects associated with individual experimental units drawn at random from a 

population. Furthermore, they are robust against missing values (Pinheiro & 

Bates, 2000). 

We analysed exchangeable cations (H, Ca, Mg, Al and Fe), pH and corrected 

total C and N contents. As predictors we used the flow region because we were 

interested in differences between preferential flow paths and the soil matrix. This 

factor has two levels – ‘soil matrix’ and ‘preferential flow paths’– indicating the 

origin of samples. Furthermore, we included soil horizon combining Bw and 

Bw/C into one level because they were not significantly different. So soil horizon 

is a factor with four levels: ‘Ea’, ‘Bsh’, ‘Bs’ and ‘Bw/C’. For Ca, Mg, Al, C and 

N we added the content of silt – a continuous covariate – as predictor. As the 

concentration of H, Ca, Mg, Fe and pH were not normally distributed, the data 

were log-transformed. For details on model building strategy, variable 

transformation, diagnostic plots and goodness-of-fit statistics the reader is referred 

to Bogner et al. (2009a). 
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3.2.3 Results 

Principal component analysis 

We retained the first three principal axis based on the broken stick model 

(Frontier, 1976). It states that if the total variance in a multivariate data set was 

distributed at random across principal components, then the proportion of 

explained variance bk associated with the eigenvalue of the kth component would 

be: 







pi

ki
k ip

b
11

, (3.2.1)

where p is the number of principal components. If the eigenvalue of the kth 

principal component is larger than bk, then it is non-trivial and should be retained. 

The percentage of variance explained by the first three principal components was 

40.2 %, 25.7% and 15.1 % respectively. The first principal axis has negative 

scores for the topsoil (Ea, Bsh and Bs) and positive ones for the subsoil (Bw and 

Bw/C). Especially matrix samples from the subsoil form a distinct cluster in the 

left lower corner of the biplot (Figure 3.2.1 left). 

 

Figure 3.2.1: Biplots of the PCA with a scatter plot of component scores and 
eigenvector loadings as arrows. The variable H* denotes pH values 
transformed to hydronium concentrations per g soil. 

The second principal component separates samples from preferential flow paths 

from matrix samples. K and Na were applied with the tracer and show high 

loadings on the second axis. Mn concentration was increased by the tracer, 

probably because it was reduced by iodide also present in the tracer solution. 

Therefore, we excluded K, Na and Mn from further analysis as they have been 
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influenced by the tracer application. The third principal component separates the 

three experimental plots (Figure 3.2.1l right). So the highest variation in the data 

is due to the depth gradient, followed by tracer influence and differences between 

plots. 

Modelling results 

Hydronium 

Hydronium concentrations decreased with increasing depths and varied between 

the same horizons at different plots and between profiles within plots (Figure 

3.2.2) suggesting a profile within plot and depth within plot random-effects: 

log(yijkl) = β0 + β1· horizon + β2· flow region + bij + bik + εijkl,  

i=1,… ,3, j=1,… ,3, k=1,… ,4, l=1,… , nijk (3.2.2)

bij ~ N(0,σ1
2),  bik ~ N(0,σ2

2),  εijkl ~ N(0, σ2δ2
k), 

where yijkl is the concentration of hydronium in mmol kg-1, βi are the fixed-effects, 

bij is the profile within plot random-effect, bik is the depth within plot random-

effect and εijkl the error term and nijk the number of observation on plot i in horizon 

j and depth k. Despite the log-transformation the error variance was not constant 

and was allowed to differ between horizons. 

Model (2.2.2) fits the data well (Figure 3.2.3a); the within-group errors and 

the random-effect are well estimated (Table 3.2.1). The variance explained by 

fixed-effects equals 79% and the correlation between the transformed observed 

values and the fitted ones is 0.95. There is no significant difference in hydronium 

concentrations between the soil matrix and preferential flow paths (Figure 3.2.4a). 
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Figure 3.2.2: Variation of exchangeable cations, total C, total N and pH with 
depth. The solid line is a smooth curve computed by loess (with smoothness 
parameter 1.01) and the dotted line shows a linear regression. 
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Figure 3.2.3: Fitted versus observed values of the (a) hydronium, (b) calcium, 
(c) magnesium, (d) aluminium, (e) iron, (f) pH, (g) carbon and (h) nitrogen 
models; (a straight line with slope 1 was added for better visibility). 

 

 

 

Figure 3.2.4: Estimated fixed-effects effects with standard errors (Inter. = 
intercept, PF = preferential flow paths) of the (a) hydronium, (b) calcium, (c) 
magnesium, (d) aluminium, (e) iron, (f) pH, (g) carbon and (h) nitrogen 
models. 
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Table 3.2.1: Parameter estimates and approximate 95% confidence intervals for random-effects and within-group errors. 

 95% 

lower 

Estimate 95% 

upper 

  95% 

lower 

Estimate 95% 

upper 

Hydronium /mmol kg-1  Calcium /mmol kg-1 

Random-effect (profile) 0.1 0.2 0.5  Random-effect (plot) 0.3 0.9 2.6 

Random-effect (horizon) 0.1 0.2 0.5  Within-group error 0.3 0.4 0.5 

Within-group error (Ea and Bsh) 0.1 0.2 0.3      

Within-group error (Bs) 0.2 0.4 0.9      

Within-group error (Bw/C) 0.2 0.3 0.5      

Magnesium /mmol kg-1  Aluminium /mmol kg-1 

Random-effect (plot) 0.3 0.9 2.4  Random-effect (horizon) 3.3 5.9 10.4 

Random-effect (horizon) 0.2 0.34 0.7  Within-group error 3.1 3.9 4.8 

Within-group error 0.3 0.3 0.4      
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Iron /mmol kg-1  H*a /mmol kg-1 

Random-effect (horizon) 0.3 0.6 1.0  Random-effect (plot) 0.2 0.5 1.5 

Within-group error 0.3 0.4 0.5  Random-effect (horizon) 0.2 0.3 0.6 

     Within-group error 0.3 0.3 0.4 

Carbon /%  Nitrogen /% 

Random-effect (horizon) 0.5 1.0 1.9  Random-effect (horizon) 0.03 0.05 0.09 

Within-group error (D 5, D 20, D 60) 0.5 0.6 0.8  Within-group error (D 5, D 40, D 60) 0.03 0.04 0.05 

Within-group error (D 40) 0.9 1.1 1.4  Within-group error (D 20) 0.01 0.02 0.03 
aConcentration of hydronium per g soil calculated from pHH2O 
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Calcium 

Figure 3.2.2 shows decreasing calcium concentrations with depth and a high 

variability in mean values between the tree plots which suggests a plot random-

effect: 

log(yij) = β0 + β1·silt + β2·horizon + β3·flow region + bi + εij,  

i=1, 2, 3,  j=1,…,ni, 

bi ~ N(0,σ1
2),  εij ~ N(0, σ2), 

(3.2.3)

where yij is the concentration of calcium in mmol kg-1 soil, βi are the fixed-effects, 

bi is the plot random-effect, εij the error term and ni the number of observations on 

plot i. Figure 3.2.3b indicates that the model fits the data well and Figure 3.2.4b 

shows the estimated fixed-effects and their standard errors. The explained 

variance equals 87% and the correlation between fitted and transformed values is 

0.92. 

Using the convenient log-model has the advantage that we can calculate the 

ratio of concentrations in the soil matrix and those in preferential flow paths 

directly (Johnson et al., 1994; Manning, 1998; Mullahy, 1998). As the residuals 

are normally distributed and homoscedastic, the ratio equals exp(PF), where PF is 

the effect of flow region in preferential flow paths (Figure 3.2.4). We found 32% 

more calcium in preferential flow paths than in soil matrix. 

Magnesium 

Similar to calcium concentrations of magnesium decreased with increasing depth 

and the variability of the data suggests a plot and a depth within plot random-

effects (Figure 3.2.2): 

log(yijk) = β0 + β1·silt + β2·horizon + β3·flow region + bi + bij + εijk,  

i=1,2,3,  j=1,…4,  k=1,…,nij, 

bi ~ N(0,σ1
2),  bij ~ N(0, σ2

2),  εijk ~ N(0, σ2), 

(3.2.4)

where yijk is the concentration of magnesium in mmol kg-1 soil, βi are the fixed-

effects, bi is the plot random-effect, bij the horizon within plot random-effect, εijk 

the error term and nij the number of observation on plot i in horizon j. The 

correlation between the fitted and the observed values is 0.92 (Figure 3.2.3c) and 

the explained variance 57%. Fixed-effects estimates and their standard errors are 
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shown in Figure 3.2.4c. We found 51% more magnesium in preferential flow 

paths than in soil matrix. 

Aluminium 

There is a high variability between the same horizons on different plots so we 

incorporated a horizon within plot random-effect (Figure 3.2.2). Concentrations of 

aluminium were not transformed, but modelled directly by: 

yijk = β0 + β1·silt + β2·horizon + β3·flow region + β4·horizon ·flow region + bij + εijk,

i=1,2,3, j=1,2,3, k=1,..,4, l=1,…,nij, 

bij ~ N(0, σ1
2),   εijk ~ N(0, σ2), 

(3.2.5)

where yijk is the concentration of aluminium in mmol kg-1 soil, βi are the fixed-

effects, bij is the horizon within plot random-effect, εijk the error term and nij the 

number of observation on plot i in horizon j. Model (3.2.5) explains 37% of the 

variance and the correlation between observed and fitted values is 0.84 (Figure 

3.2.3d). There are 4.4 mmol more aluminium per kg soil (27%) in preferential 

flow paths of the horizon Bw/C.  Figure 3.2.4d indicates that the interaction term 

‘PF×Ea’ is not significant (p = 0.099) so there might be more aluminium in 

preferential flow paths than in soil matrix in the horizon Ea as well. But refitting 

the model with Ea as origin level clearly indicates no significant differences 

between preferential flow paths and soil matrix in this horizon. This problem is 

possibly due to a small number of observations and a high variability in horizon 

Ea. 

Iron 

Figure 3.2.2 illustrates the high variability of iron concentrations between 

horizons within plots so a horizon within plot random-effect might be appropriate: 

log(yijk)  = β0 + β1·horizon + β2·flow region + β3·horizon ·flow region + bij + εijk, 

i=1,2,3, j=1,2,3, k=1,…,nij, 

bij ~ N(0,σ1
2),   εijk ~ N(0, σ2),  

(3.2.6)

where yijk is the concentration of iron in mmol kg-1 soil, βi are the fixed-effects, bij 

is the horizon within plot random-effect, εijk the error term and nij the number of 

observation on plot i in horizon j. Model (3.2.6) explains 69% of the variance in 

the data and gives a correlation of 0.96 between fitted and transformed values 
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(Figure 3.2.3e). The estimated fixed-effects are shown in Figure 3.2.4e. There is 

192% more iron in the preferential flow paths in the lower soil horizon Bw/C. 

pH 

pH values increased with decreasing depth and the highest variability in the data 

was between plots and horizons within plots. Prior to modelling pH values were 

converted into hydronium concentrations: 

log(yijk) = β0 + β1·horizon + β2·flow region + β3·horizon ·flow region + bi + bij + 

εijk,  

i=1,2,3,  j=1,…4,  k=1,…,nij, 

bi ~ N(0,σ1
2),  bij ~ N(0, σ2

2),  εijk ~ N(0, σ2), 

(3.2.7)

 

 where yijk is the concentration of hydronium in mmol kg-1 soil (denoted H*), βi 

are the fixed-effects, bi is the plot random-effect, bij the horizon within plot 

random-effect, εijk the error term and nij the number of observation on plot i in 

horizon j. The model explains 49% of variance and the correlation between fitted 

and transformed values is 0.86 (Figure 3.2.3f). The pH values are between 0.11 

(Bsh, Bs and Bw/C) and 0.34 units (Ea) lower in preferential flow paths than in 

soil matrix. 

Carbon and nitrogen 

The content of total carbon and total nitrogen was globally decreasing with depth 

with the highest variation between horizons within plots. Transformation was not 

necessary and we used the model: 

yijk = β0 + β1·silt + β2·depth + β3·flow region + bij + εijk,  

i=1,2,3,  j=1,…4,  k=1,…,nij, (3.2.8)

bij ~ N(0, σ1
2),   εijk ~ N(0, σ2δ2

j), 

where yijk is the content of carbon or nitrogen in percent, βi are the fixed-effects, 

bij random-effect for the horizon within plot, εijk the error term and nij the number 

of observation on plot i in horizon j. The error variance was not constant and was 

allowed to vary between horizons. Model (3.2.8) explains 49% and 48% of 

variance of total carbon and total nitrogen, respectively. The correlation between 

fitted and observed values is 0.87 (Figure 3.2.3g) and 0.84 (Figure 3.2.3h), 

respectively. The estimated fixed-effects indicate 11% (Ea and Bsh), 13% (Bs) 

and 30% (horizon Bw/C) more carbon and 13% (Ea and Bs), 12% (Bsh) and 24% 
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(horizon Bw/C) more nitrogen in preferential flow paths (Figure 3.2.4g and Figure 

3.2.4h) for a mean content of silt. Correcting the content of C and N for presence 

of Brilliant Blue diminished the differences between preferential flow and soil 

matrix by about 3% for C and 5% for N. 

3.2.4 Discussion 

Proportion of preferential flow domain 

In our study, we defined preferential flow paths as dye stained areas. Predominant 

flow mechanisms were identified by Bogner et al. (2009a) based on stained 

patterns and statistical analysis. Accordingly, roots constituted main preferential 

flow paths and induced macropore flow, especially in the topsoil. In the subsoil, 

root density decreased and inhomogeneous infiltration from preferential flow 

paths into the soil matrix caused unstable flow. Due to the large sand content (i.e. 

high permeability) there were strong interactions between preferential flow paths 

and soil matrix resulting in large stained objects. The amount of stained area per 

depth (dye coverage) varied among the plots. Based on the mean dye coverage, 

the vol% of preferential flow were 8-25% in the Ea, 14-30% in the Bsh, 31-41% 

in the Bs, 31-76% in the Bw and 9-14% in the Bw/C horizons. These high 

proportions of stained area show the importance of preferential flow at this study 

site. Based on experimental evidence from other studies (Ritsema & Dekker, 

2000; Hagedorn & Bundt, 2002) we postulate that preferential flow paths remain 

stable down to the subsoil at our study site. Indeed, as roots dominate the flow 

system in the topsoil, the upper boundary condition for underlying horizons 

remains unchanged for a long time (Hagedorn & Bundt, 2002). Therefore, the 

infiltration into the soil matrix in subsoil horizons is likely to occur at the same 

location. 

Chemical properties of preferential flow paths 

Preferential flow paths have lower pH values and a higher content of calcium and 

magnesium through the whole soil profile. Additionally, higher contents of 

aluminium and iron are found in the subsoil where macropore flow along root 

channels decreases and heterogeneous matrix flow dominates. Though in this part 

of the soil absolute concentration of iron are low. There are hints that aluminium 
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content in preferential flow paths in the horizons Bsh and Bs is lower, but we need 

more data to verify. 

These distinct chemical properties can be explained by root activity and 

translocation of solutes via preferential flow paths. Higher calcium and 

magnesium concentration in preferential flow paths are probably due to transport 

from the soil surface after liming. This is in agreement with Jardine et al. (1989) 

who investigated the transport of organic and inorganic natural tracers 

(magnesium, ammonium, bromide, nitrate and dissolved organic carbon (DOC)) 

in a forest soil, but at saturated flow conditions. They observed skewed break 

through curves indicating preferential flow and concluded that a significant 

quantity of magnesium, ammonium, and DOC moved through soil via preferential 

flow paths. The fact that at our study site increased concentrations of basic cations 

are found in preferential flow paths down to greater depth shows that soil 

amelioration measures like liming affect not only the topsoil, but could have 

effects on subsoil horizons. 

Higher aluminium and iron concentration in the subsoil could be explained by 

release and translocation of these solutes during podzolisation. Thereby 

aluminium and iron are mobilised in the Ea horizon, eluviated downwards and 

sorbed mainly in the Bsh and Bs horizons. Along preferential flow paths these 

cations can be transported deeper to the horizon Bw/C. A study at the same site by 

Hentschel et al. (2008) mentioned the lowest pH values in organic horizons. 

Preferential transport of acid soil solution along root channels from the organic 

horizons could be responsible for lower pH values and possibly enhance 

podzolisation along preferential flow paths. 

Rhizodeposition of organic compounds, decomposition of dead roots and 

transport of DOC from organic to mineral horizons are major sources of organic C 

input to the soil (e.g. Kuzyakov & Komansky (2000)). Higher root densities in 

preferential flow paths (see Bogner et al. (2009a) for details) lead to a higher C 

input through roots but also facilitate preferential transport of DOC. Indeed, there 

is strong experimental indication of transport of DOC via preferential flow paths 

at our study site. Schulze et al. (2009) investigated the dynamics of the 

radiocarbon signature of DOC in throughfall and soil solution beneath the Oa 

horizon and at 90 cm depth (horizon Bw/C). They found that DOC below organic 

horizons originated mainly from the Oa horizon. In contrast, DOC signature in 90 
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cm depth could not be explained by the Bs and Bw horizons as the only sources. 

Thus, preferential transport of DOC from Bsh and maybe from the Ea and Oa 

horizons is likely. DOC is strongly adsorbed in soils by Al and Fe 

oxides/hydroxides and clay minerals, particularly if the surface of the adsorbants 

has low pre-existing levels of adsorbed C like in subsoil horizons (Kalbitz et al., 

2000). During transport along preferential flow paths contact time between DOC 

and soil is reduced so that DOC is transported to greater depth where it potentially 

form organo-mineral associations. If this holds true, preferential flow is a 

mechanism that promotes C sequestration in subsoil. 

3.2.5 Conclusions 
At our study site, preferential flow paths constitute a chemical environment with 

properties that are distinct form those encountered in the soil matrix. Preferential 

flow does not only influence its immediate environment around paths, but also 

underlying horizons. Especially the impact on subsoil by preferential transport of 

basic cations and probably DOC has to be emphasized. Further studies should 

consider isotopic signatures of soil matrix and preferential flow paths separately 

to elucidate the relative contribution of root exudates and transported DOC to soil 

organic matter in preferential flow paths. Furthermore, as preferential flow 

transport oxygen rich soil solution from the topsoil to the subsoil the role of 

preferential flow in gas exchange process should be considered. 

The measured chemical properties showed a high heterogeneity between plots 

and within horizons. A higher spatial resolution of measurements could reveal 

more details. A promising technique to acquire data in a higher spatial resolution 

is portable VIS-NIR diffuse reflectance spectroscopy. Its use for further tracer 

studies could address the question whether differences between preferential flow 

paths and soil matrix detected on bulk samples are the same on the scale of some 

cm2. 
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Chapter 4  
 
 
 
General conclusions 
 
 
 

4.1 Flow pattern analysis by extreme value statistics  
This thesis began with the idea to summarize the main information from dye 

tracer experiments in one real-valued index, the risk index for vulnerability of 

groundwater to pollutants developed by Schlather & Huwe (2005). Based on our 

experimental data we modified the interpretation of the risk index and used it as a 

risk index for vertical solute propagation rather than for groundwater 

vulnerability. We could partly confirm the hypothesis that the risk index was to 

some degree invariant against small changes in boundary conditions. But this 

parameter alone is not sufficient to determine the risk of vertical solute 

propagation and we combined it with the second parameter of the generalised 

Pareto distribution to obtain a probability function of vertical solute propagation. 

We could successfully apply the risk index to different soils under varying 

boundary conditions and characterise the risk of vertical displacement of solutes. 

The main difficulty in adjusting the parameters of the generalised Pareto 

distribution arises when the dye coverage function fluctuates or does not decrease 

monotonically. This might be due to tortuosity of paths, varying flow mechanism 

or changing physical properties (stratification). The opposite might also be true: 

simple shaped monotonically decreasing dye coverage functions are usually the 

result of homogenous flow processes (not necessarily uniform matrix flow) and 

low tortuosity of flow paths. Thus, in stratified soil, we restricted the analysis to 

the lowest part of the profile. Since the theory of the risk index is based on 

extreme values of vertical solute propagation it is the lowest part of the profile 

that is the most interesting. 

Despite a certain resistance to changes of experimental conditions, the risk 

index is not an intrinsic soil parameter. Since the flow regime in the same soil can 

be dominated either by preferential flow or by uniform matrix flow (as at the 
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French site, for instance), the risk of vertical solute propagation will change. It is a 

physical reality and not a default in the risk index theory. The adjusted parameters 

of the Pareto distribution will capture the relevant flow regime as reflected by the 

employed tracer, i.e. they are sensitive enough to reflect differences in sorption 

behaviour of Brilliant Blue and iodide. Bearing in mind the boundary conditions 

of the tracer experiment like irrigation rate, the tracer employed, soil initial 

moisture or type of plantation (permanent or seasonal, deep rooted or shallow 

rooted) it is possible to compare different study sites or the same site at different 

boundary conditions and to access the risk of vertical solute propagation. 

For practical application tracer experiments could be standardised and applied 

on different soils to determine their susceptibility to vertical solute propagation. 

Brilliant Blue could serve as a reference solute as it is easy to use and has 

acceptable toxicological properties. As long as preferential flow occurs, Brilliant 

Blue reflects well the water flow. For matrix flow dominated soils, laboratory 

studies on soil columns could compare the sorption behaviour of Brilliant Blue 

with other solutes of interest. The statistical analysis based on the risk index 

produces compact results that are easy to understand and could be used to 

establish water protection areas. 

4.2 Flow processes and their impacts on soil chemistry 
Pattern analysis allows identification of the dominant flow regime and the 

distribution 1 – H indicates the risk of vertical solute propagation for given 

boundary conditions. The mechanisms and consequences of water flow can be 

investigated by comparing soil physical and chemical parameters in preferential 

flow paths and soil matrix. Inferential statistics often imposes a certain number of 

constraints to analysed data, like independence or homogeneity of variance in the 

classical analysis of variance, for instance. These hypotheses are often violated by 

the sampling method since data is hardly ever acquired randomly. Especially 

when soil samples are taken during tracer studies grouping of data at several 

hierarchical levels (plot, profile and depth) is evident and dependencies in data 

might occur. Additional difficulties are missing data and complicated 

experimental designs with a mixture of crossed and nested fixed and random 

factors. 
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Chapter 4 
 

 
Often such data is analysed by classical statistical tests after separation in 

homogeneous groups, i.e. different plots or different depths are analysed 

separately. In this thesis we have successfully applied a particular type of 

statistical analysis, the mixed-effects model. It does not only reflect possible 

dependencies in data, but also improve the robustness of statistical analysis 

because all data can be included in the model without the need to investigate 

different depths or different plots separately. Conclusions about differences 

between preferential flow paths and soil matrix are not affected by between-plot 

or between-sample variability since it is taken into account by random-effects. 

4.3 Fu rther investigations 

4.3.1 Experimental techniques 
Successful application of VIS-NIR spectroscopy to determine the concentration of 

Brilliant Blue in laboratory should be extended to in situ measurements on soil 

profiles. Provided that robust calibration by combination of spectral and designed 

variables is possible, concentration maps of Brilliant Blue could be determined for 

study sites with varying soil colours. In situ measurements of Brilliant Blue would 

easily increase the number of samples for calibration against photographs of soil 

profiles. 

Rainfall simulations on soil columns showed that Brilliant Blue might be 

substantially retarded with respect to reference tracers. Since the retardation is 

largest when matrix flow dominates a retardation index based on the classical 

CDE (convection dispersion equation) model could be developed. However, we 

need a better description of boundary conditions of the experimental design. 

Indeed, a suction applied directly to the bottom of the soil column without a 

ceramic plate could affect the gas phase and complicate modelling. 

4.3.2 Dynamics of water flow at plot scale 
We now can monitor processes on soil surface with high spatial and temporal 

resolution using stereophotography. But subsurface processes are considered by 

means of patterns, i.e. only with a high spatial resolution. The dynamic of 

infiltration can not be captured by point measurements with TDRs or 

tensiometers, as demonstrated during tracer experiments at the French site. 

Geoelectrical methods like 3D Electrical Resistivity Tomography (ERT) allow a 
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non-destructive monitoring of soil moisture (Samouëlian et al., 2003; Samouëlian 

et al., 2005; al Hagrey, 2007). However, this technique must be adapted to allow 

visualisation of distinct flow patterns at a spatial resolution of some centimetres.  

4.3.3 Gradients of soil chemical properties 
Analysis of soil bulk samples revealed distinct chemical properties in preferential 

flow paths and soil matrix. However, this sampling technique does not permit 

investigation of possible gradients in the transition zone. Spatial resolution of 

measurements could be increased using soil visible and near infrared diffuse 

spectroscopy (VIS-NIR spectroscopy). Small scale measurements (areas of some 

cm2) of soil physical and chemical parameters could help to evaluate the extent of 

zones influenced by preferential flow. 

4.3.4 Data analysis 
In this thesis we acquired a large number of images of flow patterns from 

different soils. Images, even binary ones, are high dimensional objects. Recent 

developments in machine learning and artificial intelligence demonstrated how 

dimensionality reduction techniques could reveal low dimensional structure in 

high dimensional data (Weinberg & Saul, 2006). Applied to stained patterns this 

method could uncover zones of homogeneous flow within soil profiles. 

4.4 References 
al Hagrey, S.A. 2007. Geophysical imaging of root-zone, trunk, and moisture 

heterogeneity. Journal of Experimental Botany, 58, 839-854. 

Samouëlian, A., Cousin, I., Richard, G., Tabbagh, A. & Bruand, A. 2003. 
Electrical resistivity imaging for detecting soil cracking at the centimetric 
scale. Soil Science Society of America Journal, 67, 1319-1326. 

Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. & Richard, G. 2005. 
Electrical resistivity survey in soil science: a review. Soil & Tillage Research, 
83, 173-193. 

Schlather, M. & Huwe, B. 2005. A risk index for characterising flow pattern in 
soils using dye tracer distributions. Journal of Contaminant Hydrology, 79, 
25-44. 

Weinberger, K.Q. & Saul, L.K. 2006. Unsupervised learning of image manifolds 
by semidefinite programming. International Journal of Computer Vision, 70, 
77-90. 
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Summary 
Brilliant Blue is often used to trace water movement in soils. Its concentration in 

soil samples is usually determined by extraction – a laborious procedure with 

varying accuracy. We show that Brilliant Blue can be measured directly by visible 

diffuse reflectance spectroscopy. We build a PLSR model for the concentration 

range of 0.1 to 15 mg Brilliant Blue per g soil with an RMSE of 1 mg g-1 and an 

R2
adj of 0.9. As the method is based on visible spectra, prediction accuracy can be 

seriously affected by variation in soil colour between calibration and prediction 

data sets. 

Introduction 
Brilliant Blue FCF is frequently used in vadose zone hydrology to trace water 

movement in soil and to study preferential flow (Flury et al., 1994). Stained 

patterns are photographed and used to determine concentration maps of the dye, 

for example (Forrer et al., 1999). Other studies deal with the impact of 

preferential flow on soil chemistry and biology (Hagedorn et al., 1999; Bundt et 

al., 2001a; Bundt et al., 2001b). Thereby, the content of total and organic C and N 

in soil is analysed. Brilliant Blue (C37H34N2Na2O9S3, molar mass 792.9 g mol-1) is 

an organic molecule consisting of 56% C and 4% N. Sorption of the dye on soil 

particles affects the C and N contents of soil and should be corrected. 

Usually, Brilliant Blue concentrations are determined by extracting the dye 

with a water acetone solution or a 0.5 M K2SO4 (e.g. Bundt et al., 2001a). This is 

a laborious procedure with changing accuracy due to varying mass recovery 

(Forrer et al., 2000). We propose to determine the content of Brilliant Blue by 

visible diffuse reflectance spectroscopy (VIS-DRS) directly on soil samples 

without extraction. 

Materials and methods 

Soils 

We sampled soils from two different sites: a Calcisol (IUSS Working Group 

WRB, WRB, 2007) on an agricultural field at the experimental site of INRA 

Avignon, France, and a Podzol (IUSS Working Group WRB, WRB, 2007) in a 

Norway spruce forest in the Fichtelgebirge in south-eastern Germany. While on 

the first site soil colour remained homogenously greyish yellow (Oyama & 
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Takehara, 1999) throughout the profile, it varied considerably from greyish 

yellow brown to light yellow in the forest soil (Table A.1). 

Table A.1: Soil characteristics. 

Site Horizon or 

depth /cm 

Sand 

/% 

Silt 

/% 

Coloura Clay 

/% 

Colour namea 

0-30 5.18 48.35 46.47 2.5Y 6/2 greyish yellow 

30-60 4.94 48.14 46.93 2.5Y 6/2 greyish yellow I 

60-100 15.53 47.63 36.85 2.5Y 6/2 greyish yellow 

Ea 43.16 48.47 8.37 10YR 5/2 greyish yellow 

brown 

Bsh 38.63 51.48 9.90 10YR 4/2 greyish yellow 

brown 

Bs 33.94 50.38 

II 

15.69 10YR 4/4 brown 

Bw 31.61 54.53 13.87 2.5Y 7/4 light yellow 

Bw/C 36.62 49.71 13.67 2.5Y 7/4 light yellow 

adetermined on dry samples according to Oyama & Tekahara (1999) 

Sample preparation and measurement 
We prepared 40 calibration samples from site one (calibration set one) and 65 

from site two (calibration set two). Five g of sieved soil (< 2mm) were mixed with 

5 ml of Brilliant Blue solution. The final concentration of the dye for every depth 

or horizon ranged from about 0.1 to about 15 mg g-1 soil for calibration set one 

and from 0.1 to about 10 mg g-1 soil for calibration set two. After mixing the soil 

with Brilliant Blue solution the samples were dried at 40°C and ground. Two 

independent data sets of 20 samples each from site one (validation set one) and 

from site two (validation set two) were prepared in the same way. 

Visible diffuse reflectance spectra were collected using a Cricket accessory 

(Harrick Scientific Products) installed in a Cary 100 Conc UV-VIS spectrometer 

(Varian). An aliquot of a ground sample was scanned between 400 to 700 nm in 1 

nm steps averaging 10 measurements per step. Then, a baseline correction 

procedure was applied: 

sion0%Transmisission100%Transm

sion0%Transmisspectrum Raw
spectrum Corrected




  (A.1)

 131

te
l-0

04
51

28
8,

 v
er

si
on

 1
 - 

28
 J

an
 2

01
0



Prediction of Brilliant Blue by VIS-DRS 
 

where 0%Transmission is the zero reference baseline collected with the sample 

beam covered and the 100%Transmission is the spectrum collected on spectralon 

(100% reflectance reference). Spectra were recorded in reflectance units (R) and 

transformed to absorbance units, i.e. log (1/R). 

Partial least squares regression 

We used the software ParLes (Viscarra Rossel, 2008) that allows multivariate 

calibration and prediction based on partial least squares regression combined with 

bootstrap aggregation (bagging-PLSR). PLSR is a multivariate linear regression 

technique that is particularly useful when predicting a dependent variable from a 

large number of independent variables. For an introduction to PLSR see for 

instance Geladi & Kowalski (1986), a tutorial on bootstrapping for chemical 

application can be found in Wehrens et al. (2000). During bagging, the calibration 

data set is repeatedly sampled with replacement and a PLSR model is calculated 

for each of these subsamples. Then, a mean predictor with confidence intervals 

can be derived. Viscarra Rossel (2007) showed that bagging improved the 

robustness of PLSR, was less susceptible to overfitting, improved the prediction 

accuracy and provided a measure for model uncertainty. 

Prior to calibration, spectra were mean centred and smoothed with a wavelet 

filter at scale three. To choose the number of factors to use in the PLSR model, a 

leave-one-out cross validation was performed. The accuracy of the cross 

validation is measured by the root mean squared error of prediction (RMSE): 

 



N

i
ii yy

N
RMSE

1

2ˆ
1

, (A.2)

where N is the number of samples yi the observed value,  the predicted one. The 

optimal number of factors, i.e. the parsimonious model is chosen based on the 

corrected Akaike’s Information Criterion (AICc) (Sugiura, 1978): 

iŷ

1

)1(2
2)ln( 2





KN

KK
KRMSENAICc , (A.3)

 

where N is the number of samples and K the number of factors. The model that 

represents an ‘elbow’ in the scree plot (AICc vs number of factors curve) is 
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chosen. Some further measures to assess the goodness of the model are the bias 

(BIAS): 

 



N

i
ii yy

N
BIAS

1

ˆ
1

, (A.4)

 

the standard deviation of the error distribution (SDE): 

  

1

ˆ
1

2








N

BIASyy
SDE

N

i
ii

, (A.5)

 

and RPD –  the ratio of the standard deviation of the data to the RMSE. 

Results and discussion 

Calibration and validation 

The diffuse spectra show a maximum of absorption at about 630 nm which 

corresponds to the Brilliant Blue absorption maximum (e.g. Forrer (1997)). The 

second smaller peak at about 430 nm is hardly developed (Figure A.1). 

 

Figure A.1: Soil visible diffuse spectra with about 5 mg Brilliant Blue per g 
soil. 
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The leave-one-out cross validation indicated a model with 4 factors for 

calibration set one and a model with 6 factors for calibration set two (Figure A.2). 

The first 4 factors account for 95.61% of variation in the Brilliant Blue 

concentrations and 99.99% of variation in the spectra of calibration set one. In the 

calibration set two, the model explained 95.17% of variation in the Brilliant Blue 

concentrations and 99.99% of variation in the spectra. The leave-one-out 

validation statistics are comparable between the two calibration sets. The RMSE 

of about 1 mg g-1 and an R2
adj of 0.94 indicate good models (Table A.2). The fitted 

versus observed values plots did not show any non linearity (Figure A.3). In the 

calibration set one, one point with a high residual was detected, but it did not 

deteriorate the RMSE of the validation. 

 

Figure A.2: Evolution of the corrected Akaike’s Information Criterion (AICc) 
with increasing number of factors; (a) calibration set one and (b) calibration set 
two. 

Table A.2: Statistics of the calibration procedure based on leave-one-out cross 
validation. 

Calibration set RMSE /mg g-1 R2
adj BIAS /mg g-1 SDE /mg g-1 RPD 

One 1.29 0.94 −0.01 1.31 4.04 

Two 0.82 0.94 −0.01 0.82 4.10 

 

The statistics of the leave-one-out cross validation and the independent 

validation are comparable (Table A.3). Validation set one gave an RMSE of 1.09 

mg g-1 and an R2
adj of 0.95. For validation of set two we obtained an RMSE of 

0.98 mg g-1 and an R2
adj of 0.87. All depths in validation set one and horizons in 

validation set two were equally well predicted (Figure A.4). 
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Table A.3: Statistics of the validation procedure. 

Calibration set RMSE /mg g-1 R2
adj BIAS /mg g-1 SDE /mg g-1 RPD 

One 1.09 (0.83, 1.59)a 0.95 −0.15 1.11 4.57 

0.98 (0.74, 1.43)a Two 0.87 −0.14 1.00 2.87 
a95% confidence interval 

 

Figure A.3: Results of the leave-one-out cross validation; (a) calibration set one 
and (b) calibration set two. 

 

Figure A.4: Results of the independent validation; (a) calibration set one and 
(b) calibration set two. 

Robustness 

To infer the robustness of the models, we calculated the concentrations of 

Brilliant Blue in validation set one using the calibration set two and vice versa. 

Using the same PLSR models as described above yielded an R2
adj of 0.22, an 

RMSE of 13.51 mg g-1 and a BIAS of -10.66 mg g-1 for validation set two. 

Prediction was better for calibration set one, leading an R2
adj of 0.87, an RMSE of 
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2.94 mg g-1 and a BIAS of 1.65 mg g-1. This deterioration of prediction ability is 

probably due to variations in soil colour, as the concentration range of Brilliant 

Blue is similar in both calibration sets. Soil colour must be considered as a 

nuisance parameter that changes the hue of samples with the same concentration 

of Brilliant Blue, thus affecting their VIS diffuse spectra. 

To improve prediction we combined both calibration sets. The pre-processing 

of the spectra had to be adjusted to account for a more heterogeneous data set. In 

addition to wavelet smoothing and mean-centring we applied a wavelet detrending 

and calculated the first derivative. Wavelet detrending is often used to correct 

baseline shifts or to remove curvilinearity in the spectra (Viscarra Rossel et al., 

2007). The prediction of both validation sets together was satisfactory and gave an 

R2
adj of 0.88, an RMSE of 1.34 mg g-1 and a BIAS of 0.11 mg g-1. 

Conclusions 
Rapid and accurate prediction of Brilliant Blue by diffuse reflectance 

spectroscopy is possible. But the accuracy of prediction can decrease when soil 

colour changes between calibration and prediction data sets. To deal with this 

problem a regression model with both spectral and designed variables including 

additional information like horizon or soil colour could be applied (Jørgensen et 

al., 2004). 
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Introduction 
In future extreme events like drying/rewetting and freezing/thawing of soils will 

probably occur more often due to climate changes. As part of the DFG research 

group 562 “Dynamics of soil processes under extreme meteorological boundary 

conditions” we studied possible impacts of these phenomena on water flow, flow 

patterns and transport of nutrients and contaminants towards groundwater. 

Materials and methods 
We did freezing/thawing and drying/rewetting experiments in a Norway spruce 

forest in Waldstein (southeast Germany). Thereafter, undisturbed soil columns 

(diameter 15 cm and height 30 cm) and soil material for disturbed soil columns 

were sampled on treatment and control plots. In this study we focus on dynamics 

of water flow and behaviour of Brilliant Blue in disturbed and undisturbed soil 

columns from control plots. 

Soil columns were irrigated with a bromide solution at different rates (10, 32 

und 64 mm h-1). Figure B.1 shows the experimental setup. Brilliant Blue is a well 

known tracer for applications in vadose zone hydrology because of its low toxicity 

and good visibility against most soil colours (Flury and Flühler 1994). The 

sorption behaviour of Brilliant Blue, however, is non-linear and depends on soil 

properties (German-Heins and Flury 2000). In order to see a possible retardation 

of Brilliant Blue with regard to infiltrating water, we used KBr and 18O-enriched 

water as ideal tracers (analyses of 18O samples have not been finished yet). 

First results 
During rainfall simulations with a bromide solution at different irrigation rates 

(10, 32 und 64 mm h-1) disturbed and undisturbed soil columns began to drain 

after a similar time of irrigation (not shown here). Bromide concentration in 

breakthrough curves (BTCs) started to rise earlier in undisturbed columns, but 

increased slowly. The time between breakthrough and a quasi steady state 

concentration was similar in disturbed and undisturbed soil columns at the same 

irrigation rate. The difference in breakthrough times between disturbed and 

undisturbed soil columns increased with increasing irrigation rate. 
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Figure B.1 Experimental setup for irrigation studies on soil columns 

Figure B.2 illustrates results of the rainfall simulation with a solution 

containing Brilliant Blue, KBr, KI and 18O-enriched water (atmosphere pressure at 

lower end of the soil column). In disturbed soil columns BTCs of bromide and 

iodide began to rise earlier than that of Brilliant Blue. After about three hours of 

irrigation the concentrations of bromide and iodide in the drainage water was half 

their respective concentrations in the irrigation solution. Assuming that matrix 

flow dominated this is approximately the time the tracers needed to percolate 

through the columns. In undisturbed columns all three tracers broke through at 

about the same time and earlier than in disturbed columns. This is probably due to 

rapid flow paths. 

Conclusions 
Although disturbed and undisturbed columns began to drain after a similar time of 

irrigation, bromide breakthrough times were longer for disturbed columns. This 

means that at the beginning old water left the columns, but that rapid flow paths 

were active in undisturbed soil columns. When matrix flow dominates Brilliant 

Blue is heavily retarded with regard to bromide and iodide as indicated by its late 
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breakthrough in disturbed soil columns. In such cases its transport behaviour 

differs from flow behaviour of infiltrating water. 

 

Figure B.2 Break through curves of bromide, iodide and Brilliant Blue in 
disturbed (a and c) and undisturbed (b and d) soil columns.  
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