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Example of two-step proposal distribution for gene regulatory networks.

Top row: A network in iteration i of the ABC-Net algorithm may be characterized both by its adjacency matrix G i (left) and its parameter matrix Θ i (right). The former encodes only the presence (1) or absence (0) of an edge. The latter encodes additional information about the magnitude of a particular interaction, where zeros indicate that an edge is not present, positive values indicate an activation, and negative values indicate a repression (edges with values further away from zero correspond to stronger effects). Bottom row: An updated network is proposed by adding, deleting, or reversing an edge in G i to produce G (left). The parameter matrix Θ i is updated using a Gaussian proposal distribution for the nonzero edges of G to produce Θ (right). . . . . . . . . . . . . . . . . . . . . . . . 77

5.3

The currently accepted gold-standard Raf signalling pathway, which describes the interactions of eleven phosphorylated proteins in primary human immune system cells [START_REF] Sachs | Causal protein-signaling networks derived from multiparameter single-cell data[END_REF]. Nodes represent the proxy genes of each of the eleven proteins (i.e., the genes that are transcribed and translated into the corresponding proteins), and arrows indicate the direction of signal transduction. Similar figure given in [START_REF] Werhli | Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge[END_REF] 5.1). Black, red, and blue solid lines indicate the densities associated with thresholds chosen using the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Black, red, and blue dashed lines indicate the cutoff to retain samples inference for each of the three choices of (1%, 5%, and 10% quantiles, respectively). . . 87 5.5 Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for four choices of distance functions in the ABC-Net algorithm: Manhattan, Canberra, Euclidean, and MVT distances (see Table 5.1). Black dots represent the value of the AUC for each of five independent datasets per threshold and distance function (with the exception of the MVT distance, which was limited to two datasets due to its computational burden). The threshold was set at the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Blue lines represent loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF]. . . . . . . . . . . . . . .
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5.6 Approximate posterior distributions from the ABC-Net method for the simulated Raf signalling pathway, by distance function ρ. Each plot overlapping a given edge in the network corresponds to the marginal approximate posterior distribution for that edge, where the x-axis represents the values taken on by the edge over the interval (-2,2) (-2,2), (-3,3), (-5,5), and (-10,10). Black dots represent the value of the AUC for each of five independent datasets per bound. Blue lines represent loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF] .25, 0.5, 0.75, 1, 1.5, 2, 3, 5). Five datasets were generated for each value of noise standard deviation.

The blue line represents a loess curve [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF]. . . . . . . . .
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The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, for σ = 0.5 and 5. Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The x-axis of each plot represents the values of each parameter Θ Raf ij , and the y-axis represents the corresponding density. Red and blue lines correspond to results obtained with σ = 5 and σ = 0.5, respectively. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value. . . . . . . . . .

5.16

Scatterplots of the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for the ABC-Net algorithm, with differing values of known edges (0, 1, 2, 3, 4). Five datasets were generated for each number of known edges. The blue line represents loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, with four known edges. Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The xaxis of each plot represents the values of each parameter Θ Raf ij , and the y-axis represents the corresponding density. Densities shaded in green and blue correspond to edges considered to be "known" and "unknown" in the simulation, respectively. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value. . . . . . . . . . . . . . . . . . . . . .

6.1

Expression measurements after pre-processing for the first nine genes in the T-cell activation data [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF] [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Each line represents the singular values for one of the 44 biological replicates. As the "elbow" of the plot appears to fall at K = 4 for the majority of biological replicates, this value is chosen to be the hidden state dimension for the EBDBN method. . . . . . . . . . . . . . . . . . . . .

Four-way Venn

Diagram of edges identified by the EBDBN(x), EBDBN(-), VBSSM, and VAR in the T-cell activation data of [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF].

Although there is some overlap among the four methods, there are a large number of edges that are uniquely identified by a single method (e.g., 223 edges are identified only by the EBDBN(x), 210 edges are identified only by the EBDBN(-), and 185 edges are identified only by the VBSSM.) .

6.4 Edges inferred by both the EBDBN(K = 4) and VBSSM methods for the T-cell activation data [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Nodes represent genes, with numbers corresponding to those found in the R package GeneNet of [START_REF] Schäfer | Reverse engineering genetic networks using the GeneNet package[END_REF]. Blue solid lines represent inhibitory regulations, red solid lines activatory regulations, and black dotted lines edges with ambiguous regulation (i.e., disagreement between the EBDBN and VBSSM methods). Yellow nodes have five or more regulatory interactions with other genes, indicating important regulator genes in the network topology. . . . . .

6.5 Sub-network found representing the interaction between genes in the Jun protein family and genes involved in programmed cell death. (Left) Subnetwork proposed in Beal et al. (2005) 

INTRODUCTION

The discovery of the molecular structure of deoxyribonucleic acid (DNA) in 1953 by [START_REF] Watson | A structure for deoxyribose nucleic acid[END_REF] was a pivotal moment in the history of molecular biology and modern biotechnology. Since that time, an extraordinary amount of progress has been made in discovering the information encoded by these molecules and how this genetic code relates to phenotypic traits, such as physical characteristics and disease status. In particular, the development of "high-throughput" technologies over the past twenty years has led to an explosive growth of wide-scale studies done with an aim to examine the complete genetic information (the genome) of a variety of organisms.

For instance, the introduction of microarrays in the 1990's [START_REF] Schena | Quantitative monitoring of gene expression patterns with a complementary DNA microarray[END_REF][START_REF] Schena | A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization[END_REF][START_REF] Lipschutz | High density synthetic oligonucleotide arrays[END_REF] enabled scientists to simultaneously assay the expression level of thousands of genes. Sequence-based methods, including serial analysis of gene expression (SAGE) [START_REF] Velculescu | Serial analysis of gene expression[END_REF][START_REF] Velculescu | Characterization of the yeast transcriptome[END_REF] and next-generation sequencing (NGS) [START_REF] Mardis | Next-generation DNA sequencing methods[END_REF], have opened the door to sequencing entire genomes, complete sets of transcripts (the transcriptome), and the mineral nutrient composition of an organism (the ionome).

High-throughput platforms are often used to study the behavior of genes during specific biological processes, such as the cell cycle or a response to an external input.

However, in spite of the abundance of data output from these technologies, it can be very difficult to unravel the complexity of the chemical dynamics that occur within a cell. One reason for this is that cell development is regulated by well-orchestrated patterns of expression among groups of genes, often referred to as gene regulatory networks [START_REF] Friedman | Inferring cellular networks using probabilistic graphical models[END_REF][START_REF] Wilkinson | Stochastic modelling for quantitative description of heterogeneous biological systems[END_REF]. These networks are generally believed to govern the rate at which genes in the network are expressed, and often play a critical role in the control of complicated cellular functions. Identifying and understanding the components of gene regulatory networks is essential to improving our knowledge of how complex biological systems work.

In studies of gene expression, the number of samples (e.g., biological replicates or time points) collected is typically far outweighed by the number of genes observed.

For this reason, standard statistical techniques cannot be used to infer gene regulatory networks from transcriptomic data, and a specialized suite of appropriate statistical tools and methodologies is required. In this dissertation, two algorithmic approaches are proposed. They are based in approximate Bayesian methodology [START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF][START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF] to infer gene regulatory networks from longitudinal expression data. Because both methods incorporate the joint behavior of a set of genes over time, rather than examining each time point independently, the correlation structure of gene expression between two adjacent time points is maintained and elucidates important information about the network. The first approach develops a method to conduct larger, exploratory analyses of gene regulatory networks where no a priori biological information is known [START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF]. The second approach focuses on the analysis of small, well-characterized pathways. The methods, while not comparable, are complementary, and help illustrate the need for a variety of methods adapted for different contexts.

1.1 Basics of Genetics: DNA and RNA DNA is a nucleic acid that acts as the blueprint for the development and functioning of living organisms, and serves as the foundation from which other cellular components are constructed. DNA consists of two long polymers made up of smaller units called nucleotides, and are stored in bundles of varying lengths, known as chromosomes, which vary in number between different organisms. Each DNA molecule has a double-stranded structure in the form of a double helix [START_REF] Watson | A structure for deoxyribose nucleic acid[END_REF], where the polymers run anti-parallel to one another. Specifically, the "head" of one strand, known as the 3' end, binds to the "tail", or 5' end, of the other. The naturally occurring amino acids [START_REF] Griffiths | Targeting c-Jun and JunB proteins as potential anticancer cell therapy[END_REF] that are encoded by triplets of nucleotides, or codons, in a DNA strand. The transfer of biological information from DNA to proteins is described by the central dogma of molecular biology [START_REF] Crick | Central dogma of molecular biology[END_REF].

First, the information encoded in DNA is transcribed by a polymerase into ribonucleic acid (RNA), which in turn is translated into proteins by ribosomes (Figure 1.2).

The molecular structure of RNA is similar to that of DNA, with three exceptions: (1)

RNA strands are generally single-stranded, and much shorter than DNA, (2) RNA nucleotides contain ribose rather than deoxyribose, and (3) the thymine base present in DNA is replaced by the base uracil (U) in RNA. In total, RNA is comprised of a cap, a start codon to initiate translation, a coding sequence made up of nucleotides arranged into codons, a stop codon to terminate translation, and a trail sequence.

Several types of RNA molecules are active during the process of transcription.

After the double strand of DNA is split by the RNA polymerase in the transcription step, a complementary strand of RNA called messenger RNA (mRNA) is formed to copy information from the DNA and carry it out of the nucleus. The mRNA chain is read by ribosomes made up of proteins and ribosomal RNA (rRNA), which form the machine that can read the information carried in the mRNA and translate it into amino acids. As codons are read off, transfer RNA (tRNA) transfers the corresponding amino acids to a growing polypeptide chain. Once the stop codon is read and a protein has been fully assembled, the mRNA detaches from the ribosome and remains in the cell until it degrades.

Measuring Gene Expression

A gene is a region of the genome that contains both "coding" sequences that determine function, as well as "non-coding" regions that determine when the gene is active, or expressed. Gene expression refers to the transcription of genes to mRNA, and eventually translation into functional products. Overlooking factors such as RNA degradation and post-translational modifications, the mRNA content of a cell roughly corresponds to the amount of gene expression. As such, the abundance of mRNA is often used as a proxy for a measure of gene expression.

Microarrays

Microarrays are a multiplex technology based on the affinity of single-stranded DNA sequences to bind to complementary sequences of nucleotides. Thousands of "spots", known as features, made up of specific probe sequences are attached to a physical surface, such as a slide, which allows for a genome-wide assay of gene expression. For many organisms and technologies, these probes can be created artificially, based on known gene sequences. Depending on cost, number of genes being studied, and the specific research question, there are a variety of ways that microarrays can be fabricated. In addition to custom-made microarrays prepared and designed by the user, several companies also produce and sell microarrays commerically, including Affymetrix (2010), Illumina (2010), NimbleGen (2010), and Agilent Technologies (2010) (see Figure 1.3). Typically, the most substantial distinction among these microarrays lies in the process by which probes are created and affixed to the slide.

Although the fabrication of commercially-produced microarrays varies by company, the basic production steps are fairly standard. First, a glass or silicone slide is prepared, and genetic material, known as probes, is attached in an array of spots to the slide. Because one slide can potentially hold many thousands of spots, a single microarray has the potential to represent the coding regions of an entire genome. After obtaining a tissue sample under the experimental condition of interest, the mRNA in a sample of biological material is extracted and prepared. Complementary DNA (cDNA) is produced from the extracted mRNA through reverse-transcription, and the cDNA is subsequently amplified using a technique known as polymerase chain reaction (PCR) [START_REF] Mullis | The polymerase chain reaction[END_REF]. After cleaning the PCR products, the amplified cDNA, known as targets, is marked with fluorescent dye and allowed to bind to its partner on the array via complementation of the previously explained base pairing. for an example from an Affymetrix GeneChip).

Once the fluorescence levels of the spots on a microarray have been quantified, an image analysis is used to scan the microarray, recognize spots, remove poor-quality probes, and quantify spot intensities. The raw data must typically undergo several pre-processing steps prior to analysis, including background correction, normalization, and log-transformation. These steps are largely dependent on the type of microarray and the particular experimental design. For instance, each gene on an Affymetrix chip is typically represented by a unique combination of 11 target sequences made up of 25 base pairs, known as a probe set (Affymetrix, 2010). This means that the fluorescence level of probes in a probe set must be combined in a statistically sound way to obtain meaningful estimates of gene expression levels. There is a vast body of literature available on the subject of pre-processing and analyzing microarray data; see, for example, [START_REF] Kerr | Statistical design for gene expression microarray data[END_REF], [START_REF] Yang | Normalization for cDNA microarray data[END_REF], [START_REF] Shaw | Image analysis and quantitation of cDNA microarray images[END_REF], [START_REF] Kerr | Design considerations for efficient and effective microarray studies[END_REF], [START_REF] Bolstad | A comparison of normalization methods for high density oligonucleotide array data based on variance and bias[END_REF], and [START_REF] Smyth | Normalization of cDNA microarray data[END_REF].

Other statistical issues arise when biological or technical replication is included in an experiment. The former refers to the case when tissue samples from different individuals in the same treatment group are hybridized to identical arrays, and gives a measure of the biological variation present in gene expression. The latter refers to the case when identical samples (from the same individual) are hybridized to identical probes several times, whether on the same slide or on different identical slides. This helps measure the technical variation present in a particular experiment, which could arise from the physical preparation of the microarray or the samples.

Serial Analysis of Gene Expression

At roughly the same time that microarrays were introduced, a sequencing-based method for measuring gene expression, known as serial analysis of gene expression (SAGE), was developed [START_REF] Velculescu | Serial analysis of gene expression[END_REF][START_REF] Velculescu | Characterization of the yeast transcriptome[END_REF]. Although it also measures mRNA abundance, the SAGE protocols and resulting data are quite different from that used to produce microarrays (Serial Analysis of Gene Expression, 2010). The premise of SAGE is that a short transcript fragment (on the order of 10 to 14 base pairs), known as a sequence tag, contains sufficient information to uniquely identify the transcript, given that the tag is from a unique position in the genome. By linking several short sequence tags together to form long molecules, known as concatamers, sequencing machines that can read the nucleotides in DNA may be used to sequence the tags.

SAGE data consist of a list of observed short sequence tags and the number of times each is observed (see Figure 1 

QuanƟtate tags and determine paƩerns of gene expression

Figure 1.5. Schematic of Serial Analysis of Gene Expression (SAGE) method. After reverse-transcribing a population of mRNA molecules into cDNA, enzymes are used to cut off short segments, known as sequence tags. By isolating the tags and linking them together into long molecules, the tags may be sequenced by machines that can read the nucelotides in DNA. By counting the number of tags that come from a given gene, gene expression is quantified in terms of digital values (counts). Similar image found at the Serial Analysis of Gene Expression (2010) website. tag. In addition, because the method is sequence-based, mRNA does not need to be known a priori, so unknown genes may be studied. SAGE yields digital values (counts) for gene expression, which typically exhibit less background noise than microarray intensity values (which often occur due to the effects of PCR and non-optimal hybridization). Because the SAGE protocol measures gene expression as counts, and not continuous measurements as with microarray data, these data require an alternative set of statistical methods [START_REF] Man | POWER SAGE: comparing statistical tests for SAGE experiments[END_REF][START_REF] Romualdi | Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests[END_REF][START_REF] Ruijter | Statistical evaluation of SAGE libraries: consequences for experimental design[END_REF] based on discrete distributions. For example, [START_REF] Baggerly | Overdispersed logistic regression for SAGE: modelling multiple groups and covariates[END_REF] suggest an overdispersed logistic regression for SAGE data, and T ǐno (2009) suggests using an Audic-Claverie statistic based on an underlying Poisson distribution.

Next-Generation Sequencing

In the past two years, the rise of next-generation sequencing (NGS) [START_REF] Mardis | Next-generation DNA sequencing methods[END_REF] has revolutionized the fields of genetics, genomics, and epigenomics. One application of NGS, known as RNA sequencing (RNA-Seq) offers an unprecedented improvement in throughput and relative cost compared to the technologies of the previous decade [START_REF] Cloonan | Stem cell transcriptome profiling via massive-scaled mRNA sequencing[END_REF]. Like SAGE, the RNA-Seq methodology uses sequencing technology to quantify and map a population of transcripts from entire transcriptomes. However, RNA-Seq is capable of doing so with far greater coverage than SAGE [START_REF] Morozova | Applications of new sequencing technologies for transcriptome analysis[END_REF][START_REF] Mortazavi | Mapping and quantifying mammalian transcriptomes by RNA-Seq[END_REF].

The three leading commercially available NGS platforms for RNA-Seq are the Genome Analyzer of Illumina (2010), SOLiD of Applied Biosystems (2010), and the Genome Sequencer FLX of 454 Life Sciences (2010). Although there are differences in how each system works, the basic approach is the same. First, mRNA is isolated from a biological sample, fragmented at random positions, and reverse-transcribed into cDNA. Only fragments within a specified range (e.g., 200-500 bases long for the Genome Analyzer) are retained for PCR amplification. The amplified cDNA is then sequenced using NGS technology, and the reads are mapped back (aligned) to a reference genome. Like SAGE, the data obtained via RNA-Seq is made up of gene counts, or digital gene expression (DGE) measurements. However, RNA-Seq generates data several orders of magnitude larger than SAGE, typically with millions of short reads from a single library of sequences.

As the cost of sequencing continues to fall, the RNA-Seq methodology is expected to replace microarrays for many applications, including measuring gene expression.

Because they share similar sampling schemes, methods developed for SAGE data can be adapted for RNA-Seq data when analyzing differential expression [START_REF] Man | POWER SAGE: comparing statistical tests for SAGE experiments[END_REF][START_REF] Romualdi | Detecting differentially expressed genes in multiple tag sampling experiments: comparative evaluation of statistical tests[END_REF][START_REF] Ruijter | Statistical evaluation of SAGE libraries: consequences for experimental design[END_REF][START_REF]Basic properties and information theory of Audic-Claverie statistic for analyzing cDNA arrays[END_REF]. However, the experimental design and subsequent analysis of RNA-Seq data remains an active area of research [START_REF] Auer | Statistical design and analysis of RNA-Seq data[END_REF].

Time-Course Gene Expression

It has become increasingly feasible to study gene expression profiles by collecting tissue samples over several time points. In this work, the terms longitudinal, timecourse, and time series are used interchangeably to refer to data collected in this fashion. All three of the NGS technologies have potential to assay time-course expression data, even though microarrays are presently the most prominent (and least expensive) platform for such studies. The decreasing cost and refinement of NGS technology suggests that longitudinal expression profiles will likely be studied using RNA-Seq methodology in the near future.

For time-course gene expression data, researchers often study the log-transformed ratio of gene expression at a given time point to that measured at a zero-time point, known as a log-fold change. In typical studies of differential expression, each time point is tested individually, thus losing any information about correlation between time points. However, some analyses do attempt to model the longitudinal nature of such data by examining differentially expressed genes over time [START_REF] Park | Statistical tests for identifying differentially expressed genes in time-course microarray experiments[END_REF][START_REF] Bar-Joseph | Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes[END_REF], patterns of co-expression among genes [START_REF] Spellman | Comprehensive identification of cell-cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[END_REF], clusters of expression profiles [START_REF] Eisen | Cluster analysis and display of genome-wide expression patterns[END_REF], or the underlying networks of gene activity over time [START_REF] Friedman | Inferring cellular networks using probabilistic graphical models[END_REF]. Each gene is transcribed and translated into a transcription factor protein, which in turn regulates the expression of other genes in the network by binding to their respective promoter regions. The gene regulatory network may be represented using the graph in lower right corner, made up of four nodes (genes) and five edges (interactions among the genes). A similar figure is shown in [START_REF] Schlitt | Current approaches to gene regulatory network modelling[END_REF].

Gene Regulatory Networks

Just as gene expression affects the amount of protein in a cell, proteins can in turn regulate gene expression. The proteins that regulate gene expression are known as transcription factors (TF). By binding to the promoter regions of genes, TF control the transfer of information from DNA to mRNA by promoting (activating) or blocking (repressing) RNA polymerase during transcription, which in turn affects the level of gene expression (Figure 1.6). TF are key players in the complex relationships that occur among genes and other cellular products. However, because the abundance of TF in a cell can be difficult to measure experimentally, the expression levels of their corresponding genes are often used as a proxy measure. In this context, a gene regulatory network can thus be described as the interactions that occur (indirectly through mRNA and TF) among a collection of interconnected genes. Gene regulatory networks are known to be crucial components in cell development, cell maintenance, and cell response for a variety of organisms, including Saccharomyces cervisae (yeast) [START_REF] Spellman | Comprehensive identification of cell-cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[END_REF], humans [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF], and mice [START_REF] Yaragatti | A predictive model for identifying mini-regulatory modules in the mouse genome[END_REF].

Graphs are often used as an abstraction to visualize these networks, where nodes represent genes and edges represent interactions among the genes (Figure 1.6, bottom right). Edges may be directed (Figure 1.6) or undirected. In the former case, an edge from gene A to gene B indicates that A is a regulator of B (that is, that a protein encoded by gene A binds to a promoter region of gene B, thus regulating its expression level). In the latter case, an edge from gene A to gene B is the same as that from gene B to gene A, representing an interaction of a more ambiguous nature.

Structurally, gene regulatory networks tend to have several properties in common (Figure 1.7). First, most genes are regulated just one step away from their regulator in a spoke-and-hub type structure, and long regulatory cascades are rare [START_REF] Alon | Network motifs: theory and experimental approaches[END_REF].

In addition, gene networks tend to be sparse, where genes are regulated by a limited number of other genes [START_REF] Leclerc | Survival of the sparsest: robust gene networks are parsimonious[END_REF]. This characteristic is referred to as the fan-in or in-degree of a particular gene (i.e., the number of regulators for that gene). Finally, sophisticated regulatory circuits, such as positive and negative feedback loops (selfregulating processes) are common motifs in the structure of gene regulatory networks [START_REF] Brandman | Feedback loops shape cellular signals in space and time[END_REF].

Identifying the gene-to-gene interactions that are present during a particular biological process can lead to a better understanding of the topology of gene regulatory networks and, ultimately, of the molecular function of each gene. These improved descriptions of the regulatory mechanisms in a cellular system can in turn lead to targeted in silico experiments to investigate and predict the behavior of the system under different conditions. As such, understanding how genes interact with one another, and how these genetic interactions affect changes at the phenotypic level, is currently a major goal in the systems biology community. Two basic types of approaches are often used to this end [START_REF] Tegnér | Reverse engineering gene networks: Integrating genetic perturbations with dynamcal modeling[END_REF]. At one end of the spectrum is the forward engineering approach, which aims to quantify fundamental equations of gene regulation based on the underlying principles of biochemistry. At the other end of the spectrum is the reverse engineering approach, which attempts to discover the architecture (i.e., the connectivity) of a gene regulatory network from a massive set of gene expression data. For this purpose, gene expression is typically measured in one of two ways: after a specific perturbation (e.g., stress conditions, temperature shifts, and chemical treatments) or within the same organism across time.

Reverse engineering (also referred to as inferring or reconstructing) gene regulatory networks makes use of statistical methods to deduce the architecture of the network from expression data, whether in terms of an adjacency matrix or a parameter matrix (Figure 1.8). The former consists of a matrix where ones and zeroes indicate the presence or absence of a gene-to-gene interaction in the network (i.e., the presence or absence of an edge between two nodes in the graph). The latter contains additional detailed information about the degree and type (i.e., activation or repression) of each gene-to-gene interaction, based on the magnitude and sign of non-zero elements. That is, the larger the magnitude of a particular element of the parameter matrix, the larger the regulatory effect of a gene-to-gene interaction (and consequently, the thicker the edge in the graph).
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Generally, studies of gene expression using high-throughput technologies (microarrays, SAGE, and RNA-Seq) measure information on hundreds or thousands of genes simultaneously over a very limited number of time points and biological replicates.

As such, longitudinal studies of gene expression actually amplify the "large p small n" paradigm typical of genomic studies, which renders even more challenging the task of reverse engineering networks from such data. In addition, because genes are interacting with one another as well as reacting to the cellular environment in very sophisticated ways, the structure of a gene regulatory network can inherently be very complex itself. A direct consequence of this network structure is that the resulting expression data often exhibit high multicollinearity. To deal with these challenges, specialized statistical tools and methodologies have been developed to extract relevant information about the relationships among genes from longitudinal gene expression data.

METHODS FOR INFERRING GENE REGULATORY

NETWORKS

As high-throughput technologies have become increasingly accessible and affordable, the goal of understanding gene regulatory networks has received growing interest in the systems biology community. Forward engineering approaches have made wide use of ordinary differential equations [START_REF] Zak | Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network[END_REF][START_REF] Quach | Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference[END_REF][START_REF] Cao | Estimating dynamic models for gene regulation networks[END_REF] to estimate the parameters of dynamic models from gene expression data for very small, known networks. Much attention has also been directed to developing methods to reverse engineer network structure from transcriptome data. These methods can be broadly grouped into four classes [START_REF] Basso | Reverse engineering of regulatory networks in human B cells[END_REF]: regression techniques, integrative bioinformatics approaches, statistical methods, and optimization methods.

Current State of Network Inference Methods

Regression Techniques

Several authors [START_REF] Yeung | Reverse engineering gene networks using singular value decomposition and robust regression[END_REF][START_REF] Gardner | Inferring genetic networks and identifying compound mode of action via expression profiling[END_REF][START_REF] Rogers | A Bayesian regression approach to the inference of regulatory networks from gene expression data[END_REF] have adapted regression techniques, which have the benefit of allowing rapid, easily scalable calculations, to the task of inferring gene regulatory networks. These methods often make use of data arising from steady-state transcriptional perturbations, such as gene knock-out experiments, rather than time-course expression data [START_REF] Gardner | Inferring genetic networks and identifying compound mode of action via expression profiling[END_REF]. Due to both the high dimensionality and multicollinearity of the data, specialized algorithms have been developed to enable parameter estimation and to take advantage of the fact that biological networks are known to be sparse.

One such approach [START_REF] Yeung | Reverse engineering gene networks using singular value decomposition and robust regression[END_REF] applied the singular value decomposition (SVD) [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] to approximate the matrix of gene expression measurements by another matrix of lower rank. After producing a condensed description of the data in this way, [START_REF] Yeung | Reverse engineering gene networks using singular value decomposition and robust regression[END_REF] applied a robust regression to identify the sparsest network structure. [START_REF] Rogers | A Bayesian regression approach to the inference of regulatory networks from gene expression data[END_REF] proposed a Bayesian regression approach that is naturally sparse, which circumvents the need to pre-define thresholds to determine inclusion of an edge in the graph (i.e., a gene-to-gene interaction in the network). In contrast to these methods, which use a linear model to define the dynamics of particular network [START_REF] Imoto | Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression[END_REF] made use of nonparametric regression to capture nonlinear relationships among genes. Although this approach can more realistically approximate the dynamics of biological systems, it relies on a restrictive assumption of Gaussian distributions, and can be very sensitive to outliers in the data.

Most regression-based methods have been developed for perturbation data, although a few do exist to analyze time-series expression measurements. Opgen-Rhein and Strimmer ( 2007) estimated the coefficients of a vector autoregressive (VAR) model using an analytic shrinkage approach, and model selection was performed by testing the partial correlations of each gene-to-gene interaction. This approach is very computationally efficient and well-suited to the small sample sizes typical of genomic data, but in practice, it tends to be overly strict in terms of edge selection. More recently [START_REF] Ahmed | Recovering time-varying networks of dependencies in social and biological studies[END_REF] proposed a method to infer time-varying networks based on decoupled regularized regressions for each node in the graph, using a lasso penalty to ensure sparsity and a fused lasso penalty to enforce smoothly changing graphs over time. Both of these proposed approaches lack a characterization of uncertainty in selected edges and overall network structure.

Integrative Bioinformatics Approaches

To gain additional insight into regulatory mechanisms, computational integrated approaches have been suggested to simultaneously assimilate diverse data types into a single biological model. For example, [START_REF] Niida | Integrative bioinformatics analysis of transcriptional regulatory programs in breast cancer cells[END_REF] proposed an analysis which integrated regulatory sequences, known transcription factor binding motifs, and expression profiles in a study of breast tumor progression. Although such integrative approaches are able to simultaneously make use of a wide range of data types, they are typically implemented using a multi-step process, rather than as a single, statistical model. In addition, this type of approach often relies on mining known information about well-characterized pathways from biological literature or curated databases, both of which may suffer from publishing biases. The result of this is that uncertainty surrounding published gene interactions is not quantified as a measure of confidence in a particular network. Finally, such approaches are limited to biological systems in organisms for which large amounts of data are available.

Statistical Methods

Early statistical approaches for inferring gene regulatory networks from transcriptome data typically relied on exploratory analyses to group together similar genes based on measures of pairwise gene co-expression or correlation (D'haeseleer et al., 2000). Clustering algorithms, which assume the existence of pre-defined groups of genes, were among the first techniques applied to gene expression data. Clustering methods assume that genes sharing similar expression patterns are likely to be involved in the same regulatory network [START_REF] Fuhrman | The application of Shannon entropy in the identification of putative drug targets[END_REF][START_REF] Spellman | Comprehensive identification of cell-cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[END_REF].

A further supposition often made is that genes with similar expression profiles share a common biological function. Most clustering algorithms use a matrix of pairwise distance measures as inputs based on correlation [START_REF] Pan | Incorporating gene functions as priors in model-based clustering of microarray gene expression data[END_REF][START_REF] Huang | Incorporating biological knowledge into distancebased clustering analysis of microarray gene expression data[END_REF][START_REF] Tseng | Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data[END_REF], mutual information (also referred to as relevance networks) [START_REF] Butte | Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements[END_REF][START_REF] Luo | Learning transcriptional regulatory networks from high throughput gene expression data using continous three-way mutual information[END_REF] or entropy [START_REF] Basso | Reverse engineering of regulatory networks in human B cells[END_REF][START_REF] Meyer | minet: a R/Bioconductor package for inferring large transcriptional networks using mutual information[END_REF].

Based on these distance measures, genes are categorized into groups such that the distances between observations within a group are small compared to those between observations in different groups.

Clustering methods suffer from several shortcomings. First, distance measures for high-dimensional, highly correlated longitudinal datasets can be difficult to define and are sensitive to pre-processing procedures like normalization and background correction. In addition, random noise in the gene expression measurements is ignored in clustering procedures. Perhaps most importantly, genes that share similar expression profiles over time cannot always be assumed to share biological function, and conversely, genes that share biological function cannot be assumed to share similar expression profiles [START_REF] Lockhart | Genomics, gene expression, and DNA arrays[END_REF]. Because such co-expression methods identify pairs of genes with similar profiles rather than those involved in physical interactions, they often exhibit high rates of false positives.

More recently, a simple class of undirected graphical models known as Graphical Gaussian models (GGM) [START_REF] Schäfer | An empirical Bayes approach to inferring largescale gene association networks[END_REF][START_REF] Keller | A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility[END_REF][START_REF] Chiquet | SIMoNe: Statistical Inference for MOdular NEtworks[END_REF], also referred to as gene association networks, have been used to detect conditionally dependent genes. A GGM is defined as follows: the observed data matrix Y with P rows (genes) and N columns (samples) is assumed to be drawn from a multivariate Normal distribution, N G (µ, Σ) with mean vector µ = (µ 1 , . . . , µ P ) T and positive definite covariance matrix Σ = (σ ij ), where 1 ≤ i, j ≤ P . As σ ij = ρ ij σ i σ j , the covariance matrix can be decomposed into the variance components and Bravais-Pearson correlation matrix P = (ρ ij ). Under the GGM framework, the inverse of P yields the partial correlation matrix, which characterizes the direct pairwise correlations between genes.

To reconstruct a GGM network the partial correlation matrix is computed by inverting the correlation matrix P , which is typically estimated using the unbiased sample covariance matrix. However, when the sample covariance matrix is not positive definite (which occurs when the number of samples is smaller than the number of variables, as is the case with gene expression data), the standard GGM algorithm is not applicable. In this case, GGM approaches must implement regularized, small-sample estimates of partial correlation and specialized edge inclusion tests, as proposed by [START_REF] Schäfer | An empirical Bayes approach to inferring largescale gene association networks[END_REF]. Although GGM are conceptually simple, their applicability in the inference of gene regulatory networks is limited by the fact that the edges in the graph are assumed to follow a Gaussian distribution and are undirected. In addition, GGM assume samples to be independent over time, rather than as a series of correlated data.

Optimization Methods

Over the past ten years, Bayesian networks (BN) [START_REF] Pearl | Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference[END_REF] More formally, BN are defined by a graphical structure G = {V, E} made up of a set of random variables (referred to as nodes or vertices) and edges, and a family of conditional probability distributions F parameterized by Θ (Husmeier et al., 2005).

If an edge exists pointing from node V 1 to node V 2 in G, then V 1 is referred to as a parent (or ancestor) of V 2 , and V 2 is referred to as a child (or descendent) of V 1 (see Figure 2.1). In a graph with n vertices, let Pa G (V i ) denote the set of parents of node

V i in G, for i = 1, . . . , n.
The graph G encodes the Markov assumption, i.e., each node is independent of its non-descendents, given its parents in G. The joint distribution of the graph G can be written as the product of the conditional distributions as follows:

P (V 1 , . . . , V n ) = n i=1 P (V i |Pa G (V i )). (2.1)
In a BN, each of the conditional distributions Edges represent conditional relationships among the vertices. For example, the edge from A to B indicates that B is conditionally independent of its non-descendents, given the value of A. The full joint distribution of the graph G can be written as the product of the independent conditional distributions. Similar image shown in (Husmeier et al., 2005).

P (V i |Pa G (V i )),
variable is calculated, given the state of its parents [START_REF] Friedman | Using Bayesian networks to analyze expression data[END_REF]. Although this model can be quite flexible and can effectively capture non-linear dependencies, the discretization procedure often incurs a substantial loss of information. In the latter model, continuous measurements are used, and linear regression models are learned for each child, given its parents. However, in some cases, the assumption of Gaussian distributions can be overly restrictive for gene expression measurements.

Regardless of the pre-defined local probability model, reverse engineering a BN from data Y generally consists of finding a network B = G, Θ that best corresponds to the data. One common approach is to use a score function to search for an optimal network. [START_REF] Friedman | Using Bayesian networks to analyze expression data[END_REF] proposed a local heuristic search based on a greedy, hillclimbing algorithm and [START_REF] Hartemink | Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks[END_REF] used a Bayesian scoring metric to compare proposed structures. As the number of genes (and in turn, the number of possible interactions) in a particular network increases, these search algorithms are encumbered by the exponential increase in the search space of the model. In addition, artificially choosing a single "optimal" network structure may not be straightforward if several network structures yield similarly high scores.

Dynamic Bayesian Networks

Although BN are a powerful and flexible tool for inferring network structure, there are three major issues that limit their applicability to inferring networks from timecourse data. First, continuous gene expression data must typically be discretized, which incurs a substantial loss of information. In addition, defining threshold levels to use for discretizing data is not straightforward and may penalize genes with naturally small ranges of variation [START_REF] Friedman | Using Bayesian networks to analyze expression data[END_REF]. Second, because a BN must be a directed acyclic graph (DAG), the graphical structure cannot contain any directed cycles (Husmeier et al., 2005). In other words, the network cannot include cycles where all edges point in the same direction (as in the loop on node 3 in Figure 2.3). This is problematic, as sophisticated regulatory circuits, such as feedback loops, are common motifs in biological networks [START_REF] Brandman | Feedback loops shape cellular signals in space and time[END_REF]. Third, it is possible that expanding the joint probability of two different BN can yield the same factorization if they show alternative ways of describing the same set of independence relationships (Husmeier et al., 2005). This is referred to as equivalence classes (Husmeier et al., 2005), and occurs only if two graphs share the same skeleton (i.e., two different networks differ only in the the direction of an edge) as shown in Figure 2.2.

To deal with these issues, we focus on an extension of BN known as Dynamic Bayesian Networks (DBN) that have been widely applied in the context of gene regulatory networks, e.g., Beal et al. (2005[START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF], [START_REF] Ong | Modelling regulatory pathways in E. coli from time series expression profiles[END_REF][START_REF] Perrin | Gene networks inference using dynamic Bayesian networks[END_REF], [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF][START_REF] Zou | A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data[END_REF][START_REF] Zou | A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data[END_REF] (Right) The same network, unrolled over time as a dynamic Bayesian network. By directing arrows with respect to the flow of time, the network shown on the left can be fully represented without violating the acyclicity constraint, despite the presence of a feedback loop (Husmeier et al., 2005).

time delay. To avoid an explosion in model complexity in this setting, the parameters are typically set such that the transition probabilities between time points t -1 and t are the same for all t (i.e., a homogeneous Markov model) (Husmeier et al., 2005). As such, gene-to-gene interactions are assumed to be constant across time. In addition,

this assumption either implies that biological samples are taken at equidistant time points, or that the dynamics of a biological system are equal across differing time intervals (e.g., the intensity of a biological reaction may decrease over time and be measured over increasing intervals of time). Because edges are directed with respect to the flow of time, the acyclicity graph constraint can be met without eliminating feedback loops, and any ambiguity in the direction of the arrows (i.e., equivalence classes) is resolved (Figure 2.3). In addition, continuous observations may be used in a DBN without the need for discretization. In this work, we focus on the application of two subclasses of DBN for the inference of gene regulatory networks: state space models and autoregressive models.

State Space Models

One special case of DBN is the linear Gaussian state space model (SSM), also referred to as a linear dynamical system (LDS). In some cases, SSM have proven to be well-suited for dealing with time-course gene expression data, as they are able to handle continuous, noisy data and can model the effect of hidden variables (e.g., unmeasured epigenetic factors or genes) on the network dynamics [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]Beal et al., 2005;[START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF]. Under the SSM framework, a pair of linear equations, known as the state and dynamic equations, is used to relate the expression of genes and a set of hidden states from one time point to the next. In general, these equations can be time-variant [START_REF] Liang | Bayesian state space models for inferring and predicting temporal gene expression profiles[END_REF] or nonlinear [START_REF] Quach | Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference[END_REF], but we restrict our attention to the linear, time-invariant model.

For time-course gene expression data with P genes, K hidden states, M potential inputs (e.g., known transcription factors), T time points, and R biological replicates, let y tr , x tr , and u tr represent the expression of the sets of genes, hidden states, and inputs, respectively, in replicate r at time t. The state and dynamic equations for the classic input SSM are

x tr = Ax t-1,r + Bu tr + w tr (2.2)

y tr = Cx tr + Θu tr + z tr
where w tr ∼ N(0, I) and z tr ∼ N(0, V -1 = diag(v -1 )), with v being a P -dimensional vector of gene precisions, for t = 1, ..., T and r = 1, ..., R. Alternatively, to investigate the role of feedback loops in a gene regulatory network, the expression level of genes from a previous time point (i.e., feedback) can be explicitly incorporated as inputs by setting u 1r = 0 and u tr = y t-1,r for t = 2, . . . , T (Figure 2.4). In this case, the state and dynamic equations for the feedback SSM are

x tr = Ax t-1,r + By t-1,r + w tr (2.
3)

y tr = Cx tr + Θy t-1,r + z tr .
For both the input SSM (Equation (2.2)) and the feedback SSM (Equation (2.3)), the primary parameter set of interest in the context of gene regulatory networks is typically contained in the matrix Θ, which encodes the direct TF-to-gene interactions at a given time point (Equation 2.2) or the gene-to-gene interactions from one time to the next (Equation 2.3). Note that in general, state space models are unidentifiable, as the hidden state can be re-scaled and the matrices of the state and dynamic equations adapted accordingly. This implies that two different representations can have equivalent matrices Θ, but different values for the hidden states and matrices A, B, and C. However, since the matrices Θ and CB + Θ are sub-identifiable [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF], inference on the structure of the network based on these matrices is possible. When the matrices of the state and dynamic equations and hidden state dimension K are known, the Kalman filter and smoother [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]) may be used to estimate the values of the hidden states [START_REF] Bremer | The KM-algorithm identifies regulated genes in time series expression data[END_REF]. The Kalman filter and smoother are essentially a set of recursive calculations, where the former consists of a prediction and update step, and the latter smooths the filtered estimations using the full dataset. See [START_REF] Bremer | Identifying Regulated Genes Through the Correlation Structure of Time Dependent Microarray Data[END_REF] for additional details about the use of the Kalman filter and smoother in the context of gene expression data.

Because the number of time points and biological replicates in gene expression data are typically much smaller than the number of genes, estimation of model parameters in the SSM requires some care. In addition, choosing the dimension of the state space remains a difficult statistical problem with ramifications to the applicability of state space models in gene regulatory networks. In recent years, several authors have proposed approaches using state space models to reverse-engineer gene regulatory networks. [START_REF] Perrin | Gene networks inference using dynamic Bayesian networks[END_REF] applied a generalized Expectation-Maximization (EM) algorithm with a parsimony constraint on network connections to penalize the model likelihood, but limited the choice of the hidden state dimension to 0, 1, or 2. 

Auto-Regressive Models

Linear autoregressive (AR) models are another special case of DBN that have proved to be a useful approximation to the complicated network dynamics underlying time-series expression data (Beal et al., 2005;[START_REF] Opgen-Rhein | Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process[END_REF][START_REF] Wilkinson | Stochastic modelling for quantitative description of heterogeneous biological systems[END_REF]. AR models are finite-order parametric models commonly used in time series analysis. Let y t denote a set of observations measured on a single variable at time t, t = 1, . . . , T . For notational simplicity we consider only the case with R = 1

replicate, but the extension to multiple replicates is straightforward. The notation AR(p) refers to an autoregressive model of order p, which is defined by

y t = θ 1 y t-1 + θ 2 y t-2 + . . . + θ p y t-p + z t (2.4)
where z t is white noise such that E(z t ) = 0, E(z 2 t ) = σ 2 , and E(z t z s ) = 0 for t = s. The model parameters are thus θ 1 , . . . , θ p , and σ 2 . See [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF] for a more detailed description of AR models.

In the context of biological networks, expression data represents a multivariate time series y t = [y 1t , . . . , y P t ] T for P genes rather than a univariate time series y t as in Equation (2.4). A natural extension to the univariate autoregressive model is known as a vector autoregressive (VAR) model, which has received a great deal of attention in the econometrics community [START_REF] Enders | Applied Econometric Time Series Analysis[END_REF] to describe the dynamic behavior of economic and financial time series. The notation VAR(p) refers to a VAR model of order p, defined by

y t = Θ 1 y t-1 + Θ 2 y t-2 + . . . + Θ p y t-p + z t (2.5)
where z t is a vector of white noise as before, and each Θ i is a P × P coefficient matrix. In this work, we focus on the inference of gene regulatory networks using VAR(1) models:

y t = Θy t-1 + z t .
(2.6)

Let θ ij represent the element of Θ in the ith row and the jth column (that is, the element encoding the relationship between gene j at time t -1 and gene i at time t). In order to infer a network from multivariate time series data, the objective is to determine the i and j for which θ ij = 0 (the null, or non-existent, edges) and for which θ ij = 0 (the true edges), as well as estimates, θij , for true edges. This combined information yields both the structure of the underlying network, as well as the type of effect (activation versus repression) and magnitude of each gene-to-gene interaction.

Note that the VAR(1) model is a simplification of the SSM in Equations 2.2 and 2.3, where A = B = C = 0 and the distributional assumption on z t is removed.

Although VAR models are popular in econometric analyses, they have seen limited application in the systems biology community for modeling genetic networks, which is likely due, in part, to the difficulty in estimating the model parameters for sparse, high-dimensional data. To deal with this issue, Opgen-Rhein and Strimmer (2007) made use of a VAR model to learn causal networks by implementing a regularized estimation procedure for the coefficients using an analytic shrinkage approach. In this context, the Bayesian paradigm is particularly well-suited to the inference of gene regulatory networks. First, the number of possible network structures G increases super-exponentially as the number of genes increases (Husmeier et al., 2005). Because a large number of network structures may yield similarly high likelihoods (due in part to the sparsity of expression data), attempting to infer a single globally optimal structure may be meaningless. Instead, examining the posterior distribution of network structures may be more informative about whether edges in the network can be inferred to have significantly positive or negative values. In addition, a Bayesian framework allows a priori knowledge to be encoded in the prior distribution structure. This knowledge can refer to certain features of the network topology (e.g., sparsity in biological networks or the maximum number of regulators per gene)

and to prior biological information about well-characterized pathways gleaned from bioinformatics databases.

The two proposed approaches infer the edges of gene regulatory networks from time-course gene expression data, based on approximate Bayesian methodology [START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF][START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF]. Both methods incorporate the joint behavior of a set of genes over time, rather than examining each time point independently. This ensures that the correlation structure of gene expression between adjacent time points is maintained and elucidates important information about the network. In the first approach, we develop an empirical Bayes estimation procedure to perform inference [START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF]. This method was motivated by that of 

APPROXIMATE BAYESIAN METHODOLOGY

Bayesian inference refers to fitting a probability model f (Y |Θ) to observed data Y and quantifying uncertainty in the result using probability distributions on the model parameters Θ [START_REF] Gelman | Bayesian Data Analysis[END_REF]. In this framework, the model parameters are themselves considered to be random variables, following a prior distribution π(Θ).

Typically, the model likelihood and prior distributions on the parameters are used to compute the conditional distribution of the parameters given the observed data, known as the posterior distribution. This is done using Bayes' Theorem, proposed by the Reverend Thomas Bayes in the mid-18 th century [START_REF] Bayes | An essay towards solving a problem in the doctrine of chances[END_REF]:

π(Θ|Y ) = f (Y |Θ)π(Θ) f (Y ) ∝ f (Y |Θ)π(Θ). (3.1)
Two types of approximate Bayesian inference will be discussed, empirical Bayes methods [START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF] and approximate Bayesian computation (ABC) methods [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF].

Empirical Bayes Methods

In applications where multiple parameters are related due to the nature of the problem, the model structure can often be better represented by a hierarchical Bayes model via sampling parameters from a common population distribution. In such cases, if the prior distribution of Θ itself depends on other parameters ψ, known as hyperparameters, the prior can be written as π(Θ|ψ). The resulting posterior probability given observed data Y is

π(Θ|Y, ψ) = f (Y |Θ)π(Θ|ψ)π(ψ) f (Y |ψ) ∝ f (Y |Θ)π(Θ|ψ)π(ψ) (3.2)
where π(ψ) is the hyperprior on the hyperparameters ψ. This process may be repeated for additional levels of prior distributions and hyperparameters, if required.

Empirical Bayes (EB) methods refer to analyses that use the observed data Y to estimate the hyperparameters ψ of the prior distributions. These approaches can be viewed as an approximation to a complete hierarchical Bayesian analysis [START_REF] Gelman | Bayesian Data Analysis[END_REF], since point estimates are used for ψ rather than the whole distribution.

EB methods have been in use for nearly 60 years, with the first major work in the area attributed to [START_REF] Robbins | An empirical Bayes approach to statistics[END_REF]. Although this early work defined nonparametric EB methods, we focus this discussion on parametric EB analysis [START_REF] Efron | Limiting the risk of Bayes and empirical Bayes estimators -Part II: The empirical Bayes case[END_REF][START_REF] Efron | Stein's estimation rule and its competitors -an empirical Bayes approach[END_REF][START_REF] Efron | Data analysis using Stein's estimator and its generalizations[END_REF]. The major difference between the two is that the former approach leaves the prior unspecified, while the latter specifies a parametric family of prior distributions.

Some of the most common parametric EB methods include the Poisson-Gamma model, the Beta-Binomial model, the multinomial-Dirichlet model, and the Gaussian-Gaussian model [START_REF] Gelman | Bayesian Data Analysis[END_REF][START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF]. To illustrate the application of parametric EB methods, we briefly present the Gaussian-Gaussian model as an example [START_REF] Casella | An introduction to empirical Bayes data analysis[END_REF][START_REF] Carlin | Bayes and Empirical Bayes Methods for Data Analysis[END_REF]. Suppose we observe P random variables X = {X 1 , . . . , X P } such that each comes from a Gaussian distribution with different means but a common known variance, i.e., X i ∼ N(θ i , σ 2 ) for i = 1, . . . , P . Assuming the means θ i follow a common Gaussian distribution, such that θ i ∼ N(µ, τ 2 ) for i = 1, . . . , P , it can be shown that the Bayes estimate δ B (X i ) for θ i is a weighted average of the prior estimate µ and the sample estimate X i :

δ B (X i ) = σ 2 /(σ 2 + τ 2 ) µ + τ 2 /(τ 2 + σ 2 ) X i . (3.3)
Rather than pre-specifying values for µ and τ 2 , an EB approach estimates these parameters from the data. To do so, first consider the marginal distribution of the data, f (X i ), which is given by

f (X i ) ∼ N(µ, σ 2 + τ 2 ). (3.4)
Following from this marginal distribution, it is straightforward to show

E( X) = µ and E (P -3)σ 2 (X i -X) 2 = σ 2 σ 2 + τ 2 .
(3.5)

These unbiased estimators can be substituted into Equation 3.3 to find δ E i (X), the EB estimator of θ i :

δ E i (X) = (P -3)σ 2 (X i -X) 2 X + 1 - (P -3)σ 2 (X i -X) 2 X i . (3.6)
Because each δ E i (X) uses information from the full set of observed data, the EB approach takes advantage of the so-called Stein effect [START_REF] Stein | Estimation of the mean of a multivariate Normal distribution[END_REF], which asserts that using combined information can improve estimates for each individual parameter.

EB methods have become a popular choice for the analysis of genomic data, particularly for microarray data [START_REF] Efron | Robbins, empirical Bayes and microarrays[END_REF]. EB methods can improve power by borrowing information from the ensemble of genes to assist inference for individual genes [START_REF] Stein | Estimation of the mean of a multivariate Normal distribution[END_REF]. [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] proposed a simple nonparametric EB model to make simultaneous inferences on the differential expression between treatment groups of seven thousand human genes. [START_REF] Lönnstedt | Replicated microarray data[END_REF] instead considered a parametric EB approach for the differential analysis of replicated two-color microarrays, based on a mixture of normal models with a conjugate prior. [START_REF] Smyth | Linear models and empirical Bayes methods for assessing differential expression in microarray experiments[END_REF] further generalized this model to experiments with arbitrary numbers of treatments and RNA samples. In the context of inferring gene regulatory networks, [START_REF] Schäfer | An empirical Bayes approach to inferring largescale gene association networks[END_REF] developed an EB estimation procedure for the network topology of a GGM, similar in spirit to that of [START_REF] Efron | Empirical Bayes analysis of a microarray experiment[END_REF] for differential expression. [START_REF] Rogers | A Bayesian regression approach to the inference of regulatory networks from gene expression data[END_REF] used a sparse Bayesian regression based on a Gaussian linear model for each gene in the network, where point estimates of model hyperparameters based on observed data were obtained and substituted into the model.

Approximate Bayesian Computation

In cases where the likelihood L(Θ|Y ) = f (Y |Θ) (Equation 3.1) cannot be calculated, sampling-based approximate Bayesian computation (ABC) methods, also referred to as likelihood-free (LF) methods, can enable Bayesian inference. ABC methods have become increasingly popular in recent years to infer approximate posterior distributions in situations where the likelihood of the model is computationally intractable or difficult to evaluate [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF][START_REF] Marjoram | Markov chain Monte Carlo without likelihoods[END_REF][START_REF] Ratmann | Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum[END_REF]. The power and simplicity of these approaches arise from the exploitation of a simulation-based procedure which takes advantage of the capabilities of modern computing. Although rejection-type techniques, which are explained next, can sometimes enable direct sampling from the posterior distribution, as noted by [START_REF] Rubin | Bayesienly justifiable and relevant frequency calculations for the applied statistician[END_REF], a naive application of these methods can be time-consuming and inefficient. Toward this end, some of the recent adaptations to ABC methods are also discussed. A more detailed summary of these adaptations may be found in Chapter 2 of [START_REF] Grelaud | Méthodes sans vraisemblance appliquées à l'étude de la sélection naturelle et à la prédiction de structure tridimensionnelle des protéines[END_REF].

Approximate Sampling from the Posterior

At their core, all ABC methods follow the same general form, known as the rejection sampler [START_REF] Pritchard | Population growth of human Y chromosomes: a study of Y chromosome microsatellites[END_REF], shown in Algorithm 3.1. This simple algorithm is based on the idea that rejection techniques can be used to sample exactly from the posterior distribution [START_REF] Rubin | Bayesienly justifiable and relevant frequency calculations for the applied statistician[END_REF]. The end result of Algorithm 3.1 is not approximate, as it is simulated from the true posterior, π(Θ|Y ) ∝ f (Y |Θ)π(Θ). However, particularly in cases where data are continuous rather than discrete, it may be inefficient or impossible to generate simulated data such that Y = Y . In these cases, Algorithm 3.1 can be modified to include a distance function ρ and tolerance to determine whether simulated and observed data are "close" to one another, as shown in Algorithm 3.2 [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF]. This -tolerance rejection algorithm is approximate when > 0, and its output amounts to simulating from the prior when → ∞. For 0 < < ∞, the algorithm results in a sample of parameters from the distribution π(Θ|ρ(Y , Y ) ≤ ). If is sufficiently small, then this distribution will be a good approximation to the posterior distribution π(θ|Y ). However, a balance must be achieved between a small enough tolerance to obtain a good approximation to the posterior and a large enough tolerance to allow for feasible computation time.

Typically, the algorithm must be repeated a large number of times (on the order of N = 1 × 10 6 or more), and only parameter values corresponding to the smallest α% (e.g., 1%) of are used for inference [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF].

A further improvement [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF] S are chosen judiciously (e.g., sufficient or nearly sufficient statistics), reduction of the data can be achieved without negatively impacting the approximation.

Post-Adjustment Techniques

Data simulated using samples (Θ 1 , . . . , Θ N ) from the approximate posterior distribution correspond to varying distances from the observed data. To account for this fact, several post-adjustment techniques have been developed to give higher weights to parameters associated with lower discrepancies from the observed data. One approach is to obtain a pointwise estimation of the posterior distribution using kernel density estimation [START_REF] Parzen | On estimation of a probability density function and mode[END_REF]:

π(Θ|Y ) = N i=1 K δ (Θ i -Θ)K (||S(Y ) -S(Y )||) N i=1 K (||S(Y ) -S(Y )||) (3.7)
where K δ (•) and K (•) are kernel functions with bandwidths δ and , and || • || denotes the 2 -norm. If a uniform kernel is used, all samples are given the same weight and the results are equal to those of the -tolerance rejection sampler (Algorithm 3.2).

Another post-hoc method to adjust the output from an ABC algorithm is through regression techniques. [START_REF] Beaumont | Approximate Bayesian computation in population genetics[END_REF] suggested the use of a local linear regression, which applies the following model:

Θ i = α + (S(Y i ) -S(Y )) β + ξ i (3.8)
where Θ i is the ith sample, S(Y i ) is a set of summary statistics calculated on simulated data Y i , ξ i ∼ N(0, σ 2 ), and i = 1, . . . , N. The regression parameters (α, β)

are estimated by minimizing the least squares weighted by an Epanechnikov kernel, and kernel density estimation of the posterior is based on the corrected sample ( Θ1 , . . . , ΘN ):

Θi = Θ i -(S(Y i ) -S(Y )) β (3.9)
for i = 1, . . . , N. One issue with kernel density estimation is that the support of the posterior distribution in Equation 3.7 can be larger than that of the prior, since the adjustment potentially allows parameters to be shifted outside of the prior support.

To account for this, as well as the strong correlation that may be present among components of summary statistics, [START_REF] Leuenberger | Bayesian computation and model selection without likelihoods[END_REF] instead approached the issue of post-adjustment using a general linear model (GLM) based on a Gaussian multivariate kernel and ordinary least squares estimates. A more general approach was proposed by Blum and François (2010) using a nonlinear conditional heteroscedastic model and feed-forward neural networks regression models.

Monte Carlo Techniques

In practice, the rejection sampler (Algorithm 3.1) is often very inefficient, as the acceptance rate can be very low when the prior distribution is very different from the posterior distribution. To avoid this issue, several adaptations have been proposed

based on Monte Carlo techniques. One class of ABC algorithms based on Monte Carlo methods makes use of importance sampling [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] to produce weighted samples from the approximate posterior distribution. [START_REF] Beaumont | Adaptivity for ABC algorithms: the ABC-PMC[END_REF] Algorithm 3.4 The Metropolis-Hastings Algorithm.

0. Initialize Θ i , i = 0.

1. Propose Θ according to a proposal distribution q(Θ|Θ i ).

2. Set Θ i+1 = Θ with probability α = min{1, π(Θ |Y )q(Θ i |Θ ) π(Θ i |Y )q(Θ |Θ i ) } and Θ i+1 = Θ i with probability 1α.

Set

i = i + 1. If i < N (a pre-set number of iterations), return to 1.
applied an adaptive sequential technique known as Population Monte Carlo (PMC) [START_REF] Cappé | Population Monte Carlo[END_REF] to the general ABC method in Algorithm 3.1 to improve its efficiency. This approach, known as the ABC-PMC algorithm, uses iterated importance sampling to obtain weighted draws from progressively better proposal distributions.

In related work, [START_REF] Sisson | Sequential Monte Carlo without likelihoods[END_REF] used a Sequential Monte Carlo [START_REF] Robert | Monte Carlo Statistical Methods[END_REF] technique to improve the efficiency of ABC algorithms (ABC-SMC).

This approach simulates a sample of weighted particles from a sequence of target distributions {π t } t=1,...,T using a sequence of decreasing tolerances 0 > . . . > T = .

In this way, a population of parameters is propagated through a sequence of intermediary distributions, until it ultimately represents a sample from the approximate posterior distribution.

Another adaptation to the basic framework of Algorithm 3.1 combines the principles of ABC techniques with Markov chain Monte Carlo (MCMC) methods (Gilks et al., 1996). In this context, the goal is to construct a Markov chain that has as its target (stationary) distribution the approximate posterior distribution, π(Θ|ρ(Y , Y ) ≤

). One of the most widely used algorithms for this purpose is known as the Metropolis-Hastings algorithm [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF][START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF], shown in Algorithm 3.4. The Metropolis-Hastings algorithm is typically used to sample directly from the posterior distribution π(Θ|Y ). However, even in cases where the posterior is not known, the acceptance ratio α in step 2 of Algorithm 3.4 can still be calculated, since 0. Initialize Θ i , i = 0.

π(Θ |Y ) π(Θ|Y ) = f (Y |Θ )π(Θ ) f (Y |Θ)π(Θ) . ( 3 
1. Propose Θ according to a proposal distribution q(Θ|Θ i ).

2. Simulate data Y from f (•|Θ ).

3. If ρ(Y , Y ) ≤ , go to 4, otherwise set Θ i+1 = Θ i and go to 5.

4. Set Θ i+1 = Θ with probability α = min{1, π(Θ )q(Θ i |Θ ) π(Θ i )q(Θ |Θ i ) } and Θ i+1 = Θ i with probability 1α.

Set

i = i + 1. If i < N (a pre-set number of iterations), return to 1.
Under certain regularity conditions, the output of MCMC algorithms such as the Metropolis-Hastings algorithm consists of a Markov chain (Θ 1 , . . . , Θ N ) that is approximately sampled from the posterior distribution, π(Θ|Y ). For additional details about MCMC methods, see Gilks et al. (1996) and [START_REF] Robert | Monte Carlo Statistical Methods[END_REF].

In some cases, the calculation of the likelihood f (Y |Θ) in Equation (3.10) is not feasible. To deal with this, [START_REF] Marjoram | Markov chain Monte Carlo without likelihoods[END_REF] proposed a method applying the standard Metropolis-Hastings scheme (Algorithm 3.4) in the context of approximate Bayesian computation, known as ABC-MCMC (Algorithm 3.5). Note that the ABC-MCMC algorithm does not require the calculation of the likelihood for the Metropolis-Hastings ratio (step 4 of Algorithm 3.5). Under suitable regularity conditions [START_REF] Marjoram | Markov chain Monte Carlo without likelihoods[END_REF], it can be shown that the stationary distribution of the chain is indeed the approximate posterior distribution, π(Θ|ρ(Y , Y ) ≤ ): Proof Let r(Θ → Θ ) be the transition mechanism of the chain. We must check 

whether f (Θ|ρ(Y , Y ) ≤ )r(Θ → Θ ) = f (Θ |ρ(Y , Y ) ≤ )r(Θ → Θ),
π(Θ )q(Θ|Θ ) π(Θ)q(Θ |Θ) ≤ 1. (3.11)
Then, using the detailed balance equation,

f (Θ|ρ(Y , Y ) ≤ )r(Θ → Θ ) = = f (Θ|ρ(Y , Y ) ≤ )q(Θ |Θ)P [ρ(Y , Y ) ≤ |Θ ] α(Θ, Θ ) = P [ρ(Y , Y ) ≤ |Θ] π(Θ) P [ρ(Y , Y ) ≤ ] q(Θ |Θ)P [ρ(Y , Y ) ≤ |Θ ] × π(Θ )q(Θ|Θ ) π(Θ)q(Θ |Θ) = P [ρ(Y , Y ) ≤ |Θ ] π(Θ ) P [ρ(Y , Y ) ≤ ] {q(Θ|Θ )P [ρ(Y , Y ) ≤ |Θ]} = f (Θ |ρ(Y , Y ) ≤ )q(Θ|Θ )P [ρ(Y , Y ) ≤ |Θ] α(Θ , Θ) = f (Θ |ρ(Y , Y ) ≤ )r(Θ → Θ) (3.12)
Bortot et al. ( 2007) proposed a further adaptation of ABC-MCMC (Algorithm 3.5)

to improve its mixing properties using data augmentation techniques, known as the ABC-MCMC augmented algorithm. Specifically, the parameter space is augmented with the tolerance , which is treated as a model parameter with its own pseudo-prior distribution. Although this algorithm alleviates the problem of insufficient mixing, since larger values of may be accepted, it typically requires a much larger number of iterations than the ABC-MCMC algorithm.

Summary

Approximate Bayesian methods, such as empirical Bayes and approximate Bayesian computation methods, have potential to enable inference even in problems where a full Bayesian analysis is not possible. As previously described, the parametric empirical Bayes method fits a hierarchical Bayes model to the data, and allows parameters of the prior distributions to be estimated directly from the observations. For cases where the likelihood cannot easily be computed, the approximate Bayesian computation methods that were introduced enable sampling from an approximate posterior distribution by exploiting the advantages of modern computing. Both of these approximate Bayesian methods are implemented for the purpose of reverse engineering gene regulatory networks in two different contexts. First, an empirical Bayes estimation procedure for Gaussian state space models (Section 2.2.1) is presented. Second, we develop an alternative approach to inferring networks, based on vector autoregressive models (Section 2.2.2) using the ABC-MCMC algorithm. of Equation (2.2), but similar results may be obtained for the feedback state space model of Equation (2.3) by setting M = P , u 1r = 0, and u tr = y t-1,r for t = 2, . . . , T .

Model Selection

The first step of the EBDBN algorithm involves the choice of the optimal dimension K of the hidden states. Although this is a difficult problem, it is crucial to the application of state space models for network structure recovery. Commonly used criteria for model selection include Akaike's Information Criterion (AIC) [START_REF] Akaike | Fitting autoregressive models for prediction[END_REF] and the Bayesian Information Criterion (BIC) [START_REF] Schwarz | Estimating the dimension of a model[END_REF]. Unfortunately, both of these criteria tend to perform poorly for expression data due to the large number of observations and model parameters. Following [START_REF] Bremer | Identifying Regulated Genes Through the Correlation Structure of Time Dependent Microarray Data[END_REF] and [START_REF] Aoki | State space modeling of multiple time series[END_REF], we apply a time series method for model selection, based on the autocovariances between observations. This technique shortens computation time considerably, as the algorithm does not run over a wide range of values for K.

Specifically, for each replicate we construct a block-Hankel matrix of autocovariances of the time series gene expression observations

H r =         Γ1r Γ2r • • • Γmr Γ2r Γ3r • • • Γm+1,r . . . . . . . . . . . . Γmr Γm+1,r • • • Γ2m-1,r         (4.1)
where Γir = 1 T T -i t=1 y tr y t+i,r is the autocovariance matrix of the observations y tr at time t in replicate r for lag i, and m represents the maximum relevant biological time lag between a gene and its regulators. In other words, m is the number of forward time units that a gene is able to influence the expression of other genes. This value must be pre-specified depending on the data under consideration, but in microarray experiments this value is typically small (m = 1, 2, or 3), and depends on both the biological process being studied and the time lag between consecutive measurements.

In the absence of error, the rank of H r equals the number of hidden states K needed to characterize the time series [START_REF] Aoki | State space modeling of multiple time series[END_REF]. However, gene expression data (e.g., from microarrays) contain both biological and technical errors, meaning the rank of H r is not exactly equal to K. As such, after finding the singular value decomposition [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF]) of H r , there will be K singular values of "large" amplitude (as discussed below), provided the signal-to-noise ratio (SNR) is also large (SNR 1). The SVD for H r is H r = USV , where S is a diagonal matrix with diagonal entries λ 1 , ..., λ mP ordered by size, such that λ 1 > ... > λ mP .

We scale these singular values by the value of the largest singular value, such that 1 > λ 2 λ 1 > ... > λ mP λ 1 . Note that if there are T time points in a particular microarray experiment, only the first T -1 singular values will be non-zero.

When plotting the scaled singular values of the block-Hankel matrix, we typically note a rapidly decreasing value for the first singular values, followed by a more moderate decrease. As an illustration, we simulate a small dataset based on the feedback SSM in Equation (2.3) for P = 10 genes, K = 2 hidden states, T = 10 time points, and a single replicate. We set x 0 = y 0 = 0, take x 1 ∼ N(0, 1), and sample all elements of the matrices A, B, C, and Θ uniformly from (-1,1). Based on these values, we use Equation (2.3) to simulate data forward in a recursive manner for Y and X.

Using these data, we construct the block-Hankel matrix H and apply the SVD as previously described. In examining the plot of singular values (Figure 4.1), it can be seen that the "elbow" of the plot falls at the true value of the hidden state dimension, K = 2. Intuitively, the SVD reduces H to a small set of singular values which still contain a large fraction of the original variability.

Choosing the number of large singular values results in finding the point at which the inclusion of an additional singular value does not increase the amount of explained variation enough to justify its inclusion (this is similar to choosing the number of components in a Principal Components Analysis). Several "rule of thumb" criteria have been proposed to choose the optimal value of K [START_REF] Mardia | Multivariate Analysis[END_REF]. Some of the best-known criteria to choose K include finding the "elbow" of a plot of the singular values as in Figure 4.1, using the Eigenvalue-One criterion of [START_REF] Kaiser | The application of electronic computers to factor analysis[END_REF], or fixing a cutoff based on percent of total variance explained by the singular values. In this work, we choose the latter criterion, with the cutoff for K chosen to be the smallest number of singular values needed to explain 90% of the total variance. Although some attempts have been made in the literature to formally justify this rather ad-hoc criterion, the justification for such a cutoff rests in its intuitive interpretation and its applicability in practice [START_REF] Jolliffe | Principal Component Analysis[END_REF].

Estimation of Hidden States

The second major component of the EBDBN algorithm is the estimation of the hidden states X. When the matrices A, B, C, Θ, and V in Equations (2.2) and (2.3) are known, a set of recursive calculations known as the Kalman filter and smoother [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]) may be used to estimate the hidden states [START_REF] Bremer | The KM-algorithm identifies regulated genes in time series expression data[END_REF]. The Kalman filter consists of a prediction and update step, and the smoother stabilizes filtered estimates using the full dataset. Specifically, for the input state space model in Equation (2.2), the filter step is

x-

tr = Ax t-1,r + Bu tr (4.2) xtr = x- tr + K(y tr -C x- tr -Θu tr )
where y tr , x tr , u tr , A, B, C, and Θ are as before, xtr represents the filtered estimate of x tr , xtr represents the a priori estimate of x tr based on the previous time step, and K is the Kalman gain matrix defined in [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]. Then, in the smoothing step,

xT tr = xtr + J(x T t+1,r -Ax tr -Bu tr ) (4.3)
where xT tr represents the smoothed estimate of x tr , J is the Kalman smoothing matrix defined in [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF], and all other variables are as before. Both the Kalman gain matrix K and smoothing matrix J are calculated using the standard formulas [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF].

Calculation of Posterior Distributions

The final major component of the EBDBN is the estimation of posterior distributions for the model parameters A, B, C, and Θ. To this end, we implement the same hierarchical Bayesian structure as Beal et al. (2005). Let a (j) , b (j) , c (j) , and θ (j) denote vectors made up of the jth rows of matrices A, B, C, and Θ, respectively.

Then

a (j) |α ∼ N(0, diag(α) -1 ) (4.4) b (j) |β ∼ N(0, diag(β) -1 ) c (i) |γ, v i ∼ N(0, v -1 i diag(γ) -1 ) θ (i) |δ, v i ∼ N(0, v -1 i diag(δ) -1 ) where α = [α 1 , . . . , α K ] T , β = [β 1 , . . . , β M ] T , γ = [γ 1 , . . . , γ K ] T , δ = [δ 1 , . . . , δ M ] T , v i
is the ith component of vector v, j = 1, . . . , K and i = 1, . . . , M. Thus, we have a set of parameters {A, B, C, Θ, v} and a set of hyperparameters ψ = {α, β, γ, δ} describing the a priori precisions of the parameter set.

As Gaussian distributions are assumed throughout in the SSM in Equations (2.2) and (2.3) and its corresponding prior structure in Equation (4.4), the joint likelihood may be explicitly written as 

p(A, B, C, Θ, v, Y,
f (Z; ψ) = h(Z)exp 2M +2K i=1 η i (ψ)t i (Z) -A(ψ) (4.6)
where h(•), η(•), and A(•) are known functions, and t(•) denotes the sufficient statistics from the complete-data likelihood. In this case, the Expectation-Maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Bilmes | A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[END_REF] can be applied in a straightforward manner to find point estimates ψ of the hyperparameters, conditioned on the current estimates X and v of the hidden states and gene precisions, respectively.

Specifically, to implement the EM algorithm, we first define the following notation:

M = diag(α) + T t=2 R r=1 x t-1,r x t-1,r N = T t=2 R r=1 u tr x t-1,r L = diag(β) + T t=2 R r=1 u tr u tr H j = T t=2 R r=1 x t-1,r x jtr S j = T t=2 R r=1 u tr x jtr J i = diag(v i γ) + T t=1 R r=1 x tr v i x tr G i = T t=2 R r=1 x tr v i u tr F i = diag(v i δ) + T t=2 R r=1 u tr v i u tr E i = T t=1 R r=1 x tr v i y itr Q i = T t=2 R r=1 u tr v i y itr ẏi = R r=1 T t=1 y 2 itr Ω i = Q i F -1 Q i + (E i -GF -1 Q i ) (J -G F -1 G) -1 (E i -GF -1 Q i )
where j = 1, . . . , K and i = 1, . . . , P . Using this notation, the posterior distributions of A, B, C, and Θ, given observed gene expression values Y , hyperparameters ψ, hidden states X, inputs U, and gene precisions v, are as follows:

a (j) |Y, X, U, v, ψ ∼ N(µ a j , Σ a ) (4.7) b (j) |Y, X, U, v, ψ ∼ N(µ b j , Σ b ) c (i) |Y, X, U, v, ψ ∼ N(µ c i , Σ c i ) θ (i) |Y, X, U, v, ψ ∼ N(µ θ i , Σ θ i )
where

µ a j = Σ a (H j -N L -1 S j ) Σ a = (M -N L -1 N) -1 µ b j = Σ b (S j -NM -1 H j ) Σ b = (L -NM -1 N ) -1 µ c i = Σ c i (E i -G i F -1 i Q i ) Σ c i = (J i -G i F -1 i G i ) -1 µ θ i = Σ θ i (Q i -G i J -1 i E i ) Σ θ i = (F i -G i J -1 i G i ) -1 .
The E-step of the EM algorithm corresponds to finding t

(k) = E ψ (k) {t|Y, X, U, v},
as follows:

E α (t) j {A •j A •j |Y, X, U, v} = K( M -N L-1 N) -1 j,j + (4.8) + K l=1 (( M -N L-1 N) -1 j• (H l -N L-1 S l )) 2 E β (t) m {B •m B •m |Y, X, U, v} = K( L -N M-1 N ) -1 m,m + (4.9) + K l=1 (( L -N M-1 N ) -1 m• (S l -N M-1 H l )) 2 E γ (t) j {C •j diag(v)C •j |Y, X, U, v} = P ( Ĵ -G F -1 G ) -1 j,j + (4.10) + P m=1 (( Ĵ -G F -1 G ) -1 j• (E m -G F -1 Q m )) 2 × × (a - P + K 2 ) × (b + 1 2 ẏm -Ωm ) E δ (t) m {Θ •m diag(v)Θ •m |Y, X, U, v} = P ( F -G Ĵ-1 G) -1 m,m + (4.11) + P i=1 (( F -G F -1 G) -1 m• (Q i -G Ĵ-1 E i )) 2 × × (a - P + K 2 ) × (b + 1 2 ẏi -Ωi )
where we use the convention for an arbitrary matrix U that U j,j indicates the (j, j)th entry of U, U j• the jth row of matrix U, U •j the jth column of matrix U, and Û

indicates matrix U calculated using values ψ(t) and v(t) i in the place of ψ and v i . For the M-step of the EM algorithm, we must find ψ (k+1) = argmax ψ {c (ψ)t (k)log(a(ψ))}. We maximize each term in the summand individually to find the following:

α(t+1) j = K 2 K( M -N L-1 N) -1 j,j + (4.12) + K l=1 (( M -N L-1 N) -1 j• (H l -N L-1 S l )) 2 -1 β(t+1) m = K 2 K( L -N M-1 N ) -1 m,m + (4.13) + K l=1 (( L -N M-1 N ) -1 m• (S l -N M-1 H l )) 2 -1 γ(t+1) j = P 2 P ( Ĵ -G F -1 G ) -1 j,j + (4.14) + P i=1 (( Ĵ -G F -1 G ) -1 j• (E i -G F -1 Q i )) 2 × ×(a - P + K 2 ) × (b + 1 2 ẏi -Ωi ) -1
Algorithm 4.1 Two-Step EM-Like Estimation of Hyperparameters ψ.

0. At iteration i + 1, start with X (i) and v (i) , the hidden state and precision estimates from the previous iteration, respectively.

1. Run the EM algorithm with X (i) , holding v (i) constant, until convergence is reached (using a stopping criterion ∆ 1 ). Set the initial hyperparameter estimates to be ψ(i+1) .

2. Update v by calculating the innovation precisions:

v(i+1) = R r=1 T t=1 (y tr -Ĉx (i) tr -Θu tr ) 2 /(RT -1) -1
, where Ĉ and Θ are the posterior means of C and Θ, given ψ(i+1) , X (i) , and v (i) .

3. Re-run the EM algorithm with X (i) , holding the updated precisions v(i+1) constant, until convergence is reached (using a stopping criterion ∆ 2 ). Set the final hyperparameter estimates to be ψ(i+1) .

δ(t+1)

m = P 2 P ( F -G Ĵ-1 G) -1 m,m + (4.15) + P i=1 (( F -G Ĵ-1 G) -1 m• (Q i -G Ĵ-1 E i )) 2 × ×(a - P + K 2 ) × (b + 1 2 ẏi -Ωi ) -1
.

Implementation of the EM Algorithm

In practice, we apply the EM Algorithm detailed in Section 4.3 in two steps within the EBDBN approach, as shown in Algorithm 4.1. First, hyperparameter estimates ψ are stabilized in an initial run of the EM algorithm, based on the current values of the hyperparameters, gene precisions, and hidden states at the end of iteration i.

This step is followed by an estimation of the gene precisions v and a subsequent finetuning run of the EM algorithm to obtain final estimates ψ. We discuss the choice of the stopping criteria ∆ 1 and ∆ 2 in greater detail later. Because of our unique use somewhat stricter, as it determines the cutoff of the fine-tuning run of the EM-like algorithm, and thus determines the final estimates of the hyperparameters ψ(i) at each iteration i. The smallest value is given to ∆ 3 , as this criterion ultimately determines whether the algorithm has stabilized enough for convergence to be declared. However, the complexity of the state space equation and of the EBDBN algorithm itself make it difficult to ascertain whether convergence can always be attained using these values.

Once the algorithm has converged as determined by the criterion ∆ 3 , the posterior distributions of the elements of Θ may be calculated. Because the posterior distribu- sequently, to decide which edges are present in the network, we use the standard thresholds (1.96, 2.58, 3.30) for (95, 99, 99.9)% confidences, respectively.

R package: ebdbNet

The EBDBN algorithm [START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF] described in Sections 4.1-4.4 is implemented in the R package ebdbNet. The package is built around a core of necessary functions, and interfaces R with C sub-routines. To run the EBDBN algorithm, ebdbNet contains three principal functions: 1) The hidden state dimension described in Section 4.1 is chosen using the hankel function. 2) Estimates of the hidden states and posterior means are obtained via the ebdbn function.

3) The significance of edges is determined using the zcutoff function, and the subsequent graph may be displayed using the visualize function.

In practice, for observed longitudinal gene expression data y with known inputs u, the user infers a networks with inputs and hidden states using R code similar to that shown in Example 4.1, where ellipses designate additional user-supplied parameters.

Alternatively, the call of the function ebdbn may be modified to net <-ebdbn(input = "feedback", y, ...)

for networks with feedback loops rather than inputs. If no hidden states are to estimated, the user may specify K <-0, rather than using the hankel function to [START_REF] Shannon | Cytoscape: A software environment for integrated model of biomolecular interaction networks[END_REF] or the Bioconductor package Rgraphviz [START_REF] Carey | Network structures and algorithms in Bioconductor[END_REF]. For both options, ebdbNet formats the results accordingly using the function visualize, and in the latter case, calls

Rgraphviz directly to produce a graph in R.

Unequally Spaced Observations and Missing Data

The EBDBN algorithm makes use of the first-order linear SSM in Equations (2.2) and (2.3), which operate under the assumption that time points are equidistant.

However, it is often the case in real data that observations are spaced unequally in time. For some experiments, the dynamics of a biological system can be assumed to be equal across different time intervals (e.g., the intensity of a biological reaction may decrease over time and be measured over increasing intervals of time). In such cases, it may be justifiable to use models with equally spaced intervals that are interpreted as equal relative reaction rates.

In cases where longitudinal data are not uniformly sampled across time and reaction rates between time points are not constant, it is possible to adapt Equations (2.2) and (2.3) accordingly. Specifically, define ∆t to be the largest common time unit among the observed intervals (Figure 4.3). Equation (2.2) may be modified to account for differing interval lengths [START_REF] Wu | Modeling gene expression from microarray expression data with state-space equations[END_REF][START_REF] Bremer | Identifying Regulated Genes Through the Correlation Structure of Time Dependent Microarray Data[END_REF] as follows:

x t k r = A j k x t k-1 ,r + Bu t k r + w t k r (4.17)

y t k r = Cx t k r + Θu t k r + z t k r where j k = t k -t k-1 ∆t
is an integer for k = 1, . . . , T . Similarly, Equation (2.3) may be modified as follows:

x t k r = A j k x t k-1 ,r + B j k y t k-1 r + w t k r (4.18) y t k r = Cx t k r + Θ j k y t k-1 r + z t k r
where j k is as before. Subsequently, the EBDBN algorithm would proceed as before,

where the estimation of the hidden states (Section 4.2) would replace matrices A, B, and Θ with A j k , B j k , and Θ j k as appropriate.

Another issue that often arises with real data is the presence of missing data for some gene expression measurements. One potential solution would be to replace missing log 2 signal ratios with the mean gene expression value across time points, although this ignores any correlation structure in the data across time points. [START_REF] Troyanskaya | Missing value estimation for DNA microarrays[END_REF] suggested two alternatives for missing value estimation in longitudinal microarray data based on singular value decomposition and k -nearest neighbor averages. The former approach has proven to yield satisfactory results for time-course expression data, particularly when moderate to low noise is present and genes exhibit strong patterns over time. Shumway andStoffer (1982, 2000) developed a modified SSM that can account for missing values in the observed data by splitting y tr into an observed part y

(1)

tr and a missing part y

(2) tr , and partitioning the hidden state covariance matrix accordingly. Once missing data have been appropriately acknowledged, whether through imputation [START_REF] Troyanskaya | Missing value estimation for DNA microarrays[END_REF] or model modifications (Shumway andStoffer, 1982, 2000), the EBDBN algorithm may be implemented as previously described.

Simulations

Many authors of inference approaches for gene regulatory networks [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]Beal et al., 2005;[START_REF] Opgen-Rhein | Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process[END_REF] assess the performance of their methods by comparing results based on real expression data to known genetic regulatory interactions from bioinformatics databases. This type of validation can be problematic for two reasons [START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF]. First, at present no real gold standard gene regulatory network exists, and spurious gene-to-gene interactions may be included in the biological literature. Second, the absence of a particular gene-togene interaction in the literature does not necessarily indicate that such a relationship is known to be absent. The consequence of this is that it can be very difficult to determine whether a detected edge by a given method is truly a false positive, or whether the absence of a given edge is a true negative.

For these reasons, the importance of using simulation studies for network inference methods has been stressed by several authors [START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF][START_REF] Rogers | A Bayesian regression approach to the inference of regulatory networks from gene expression data[END_REF][START_REF] Rice | Reconstructing biological networks using conditional correlation analysis[END_REF]. However, simulating expression data arising from a given gene regulatory network is far from straightforward. Two standard approaches are typically adopted to simulate such data. The first approach is to use the model underlying a particular inference method to simulate data (i.e., in our case, a state space or VAR(1) model). Although in some cases these "model-based simulations" can lead to a good approximation of the general nature of complicated biological systems, they often represent an over-simplified version of reality and lead to overly optimistic results. The second approach uses ordinary differential equations based on biochemical equations to simulate more realistic data. The drawback of such "data-based simulations" is that they can only model well-known networks, and they produce much smaller datasets than would typically be used for network inference.

In these simulations, we consider both model-based and data-based simulations.

For each, there are several characteristics of reverse engineering approaches that relate to their success in modelling gene regulatory networks. It is important to consider a wide range of comparison criteria in such studies, as network inference methods that perform well based on one often underperform in others [START_REF] Wessels | A comparison of genetic network models[END_REF].

As such, the consequence of using a single criterion can lead to a biased view of the performance of a given method. In order to thoroughly understand the advantages and limitations of different inferences methods, a more global perspective on performance is required. To this end, we consider a variety of comparison criteria, including the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve, the sensitivity, specificity, and positive predictive value at a given threshold, and the computational time. For these simulations, let TP denote the number of true positives, FP represent the number of false positives, and FN and TN denote the number of false and true negatives, respectively. We define the following three criteria as follows: a) Sensitivity = TP/(TP + FN), b) Specificity = TN/(TN + FP), and c) Positive Predictive Value (Precision) = TP/(TP + FP).

Methods for Comparison

In these simulations, the EBDBN method is compared to two other pre-established methods developed to infer gene feedback networks from longitudinal gene expression data: the Variational Bayes State Space Model (VBSSM) of Beal et al. (2005) and the shrinkage model of [START_REF] Opgen-Rhein | Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process[END_REF]. Like the EBDBN, the VBSSM method of (Beal et al., 2005) describes the interactions among a set of genes and hidden states using the linear feedback SSM of Equation (2.3) and the conjugate hierarchical prior structure of Equation (4.4). However, they use a variational Bayes algorithm to estimate the posterior distribution of the network. This approach exploits Jensen's inequality to determine a lower bound for the marginal likelihood of the observed data Y for a model m with parameters Ψ, by introducing a free distribution q(X, Ψ) as follows:

ln p(Y |m) = ln p(Y, X, Ψ|m)dXdΨ = ln q(X, Ψ) p(Y, X, Ψ|m) q(X, Ψ) dXdΨ ≤ q(X, Ψ) ln p(Y, X, Ψ|m) q(X, Ψ) dXdΨ. (4.19)
Because maximizing the lower bound with respect to q(X, Ψ) is computationally intractable, Beal et al. (2005) instead maximize a simpler, factorized approximation q(X, Ψ) = q X (X)q Ψ (Ψ):

ln p(Y |m) ≤ q X (X)q Ψ (Ψ) ln p(Y, X, Ψ|m) q X (X)q Ψ (Ψ) dXdΨ = F m (q X (X), q Ψ (Ψ), Y ). (4.20)
Then F is iteratively maximized with respect to q X (X) and q Ψ (Ψ) using a Variational Bayesian EM algorithm, and edges are chosen based on their standard z-statistics as in Section 4.4.

The shrinkage model of Opgen-Rhein and Strimmer (2007) uses a simple first-order vector autoregressive (VAR) model as in Equation (2.6) to characterize gene-gene interactions over time. As such, no hidden states or driving inputs are incorporated.

Due to the high dimensionality of the data, the authors proposed a method to obtain a regularized estimator of the covariance matrix z t z t by shrinking the empirical correlations towards zero and the empirical variances against their median. Edge selection is subsequently performed by identifying significant partial correlations using a local False Discovery Rate (FDR) approach [START_REF] Efron | Local false discovery rates[END_REF].

Finally, in addition to the EBDBN, VBSSM, and VAR, we also consider the EBDBN method where no hidden states are estimated, denoted EBDBN(-); this amounts to a SSM model where A = B = C = 0, Θ is estimated using the EM-like algorithm of Section 4.3, and no Kalman filter/smoother step is applied. This model closely resembles the VAR model of Equation (2.6), with the added assumption of normally distributed error terms z t . We refer to the EBDBN method with hidden states incorporated as EBDBN(x) in general, and EBDBN(K = k) for a particular hidden state dimension k.

Model-Based Simulations

We first simulate gene expression data based on a first-order autoregressive model (which is the same model for all of the methods under consideration). While this model undoubtedly oversimplifies the dynamics of real microarray data, it is a useful starting point that allows for straightforward simulation with a known network structure. To simulate data, we choose P = 53 genes, and vary both the number of replicates R and the number of time points T to be {5, 10, 15}. The P × P matrix Θ, representing the direct gene-gene interaction matrix in the feedback network, is simulated such that 10% of its elements follow either a U(-1, -0.2) or U(0.2, 1) distribution and 90% of its elements equal 0. We initialize the gene expression values at time t = 1 to be y t ∼ N(0, 0.1) and simulate subsequent times t = 2, ..., T following a VAR(1) model, such that y t ∼ N(Θy t-1 , 0.1). We then remove the 3 genes with the most outward connections, denoted {ỹ 1 , ỹ2 , ỹ3 }, from the dataset. This set of genes play the role of the K = 3 hidden states. The goal in these simulations is to infer the remaining structure of the gene network, Θ = Θ \ {ỹ 1 , ỹ2 , ỹ3 } using only the 50 genes in the "observed" data y = y \ {ỹ 1 , ỹ2 , ỹ3 }.

First, consider the results for the AUC of the ROC curve, which can be interpreted as the average probability that a randomly chosen edge is correctly characterized as present or not, assuming any given edge is equally likely to be present or not (Beal et al., 2005). The simulation results are presented in Figure 4.4. Several trends are apparent: first, for small datasets (that is, few replicates and time points), all methods perform poorly. For the EBDBN(x), EBDBN(-), and VBSSM, increasing either R, T , or both improves performance; interestingly, for the VAR method this is true when R is increased while the inverse holds for increasing T . Furthermore, the VBSSM at each time point to the log-ratios of the observed gene expression data. The VAR method is not included in the results below, as the small number of genes (10) in the dataset did not permit accurate edge selection.

E(x) E(-) VB VA E(x) E(-) VB VA

AUC of ROC Curves

The results of the median AUC for the EBDBN(x), EBDBN(-), and VBSSM are shown in Figure 4.7. It can be seen that data simulated with only 5 time points yield poor performance for all methods under consideration; this is alleviated by increasing the number of time points, although the improvement seems to plateau at around 50 or 75 time points. This is likely due to the artificial nature of the time point subsampling; that is, the same interval of time is covered by data sampled with 75 and 120 time points, albeit in greater detail in the latter case. The benefits of ever- larger number of time points. Finally, note that the AUCROC values observed in Figure 4.7, on the order of 45% to 70%, are much lower than those observed in Figure 4.4, which were on the order of 60% to 98%. This is undoubtedly due to the more realistic, and thus more complicated, biological relationships simulated here.

We also consider the performance of the EBDBN and VBSSM on additional comparison criteria (Figure 4.8). Here, the EBDBN(x), EBDBN(-), and VBSSM perform comparably in terms of sensitivity and positive predictive value, while the EBDBN(x)

and EBDBN(-) outperform the VBSSM in terms of specificity and AUC of the ROC curve. There is also a considerable difference in computational time, as the VB-SSM required about 26 minutes on average to converge, while the EBDBN(x) and EBDBN(-) required only a little over 1 minute and 1 second, respectively.

Summary

The EBDBN algorithm is based on a novel empirical Bayes estimation procedure to reverse engineer the structure of gene regulatory networks from longitudinal gene expression data. This approach serves as a complement to the VBSSM of Beal et al. (2005), with the advantage of a straightforward, computationally efficient EMlike estimation procedure. The proposed method performs comparably to previously published methods on model-based data when a minimum number of replicates (≈ 10)

and time points (≈ 10) are measured.

In order to incorporate hidden variables and driving inputs into the dynamics of complicated biological systems, the EBDBN relies on a hierarchical Bayes framework with conjugate Gaussian distributions to enable straightforward computation.

Such distributional assumptions enable computationally efficient parameter estimation, as posterior distributions can be determined explicitly. However, the Gaussian distributions used in the EBDBN represent a simplification of the complicated dynamics inherent in biological systems. For this reason, the EBDBN is best suited for exploratory analyses of moderately-sized networks, where little prior biological information is known. However, for simple organisms that have small, well-known networks, an alternative and less restrictive approach is necessary. To address the need for diverse methods that are required in systems biology, in the next chapter we present a sampling-based Bayesian approach that is adapted to small-scale, detailed analyses of gene regulatory networks.

ABC-MCMC NETWORK ALGORITHM

Although the EBDBN algorithm presented in Chapter 4 has the potential to identify testable novel regulatory interactions from time-course microarray data, its estimation procedure relies on the assumption of conjugate (Gaussian) distributions for network edges. In many cases, this assumption may be unrealistic or unnecessarily restrictive. However, without such distributional assumptions on edges, it may be impossible or computationally prohibitive to compute the likelihood of a given network. To address this issue, here we present a novel adaptation of a sampling-based approximate Bayesian approach that avoids the need to use or calculate likelihoods.

This method, known as the ABC-MCMC Network (ABC-Net) algorithm, aims to gain further insight into small, well-characterized biological processes. As before, let y t = [y 1t , . . . , y P t ] T represent the expression of a set of P genes at time t, where t = 1, . . . , T . For clarity, we limit this discussion to data with a single biological replicate, but the extension to multiple replicates is straightforward.

The ABC-Net algorithm is based on the ABC-MCMC algorithm (Algorithm 3.5)

of [START_REF] Marjoram | Markov chain Monte Carlo without likelihoods[END_REF], where draws from the posterior distribution are generated using a Metropolis-Hastings scheme [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF] without the use of likelihoods.

However, adapting such an algorithm to the context of gene regulatory networks requires several considerations to be taken into account. First, we must identify computationally efficient methods for simulating data Y from a known gene regulatory network Θ . In addition, we must define a distance function ρ and threshold to compare two multivariate time series (observed and simulated data). Finally, appropriate prior and proposal distributions, π(•) and q(•|•), must be specified.

Simulating Data for Gene Regulatory Networks

One of the most important considerations in adapting the ABC-MCMC algorithm (Algorithm 3.5) to the inference of gene regulatory networks is identifying an efficient simulator for a proposed network structure Θ . Several authors (Beal et al., 2005;[START_REF] Opgen-Rhein | Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process[END_REF][START_REF] Wilkinson | Stochastic modelling for quantitative description of heterogeneous biological systems[END_REF] have found that simple, linear models can in some cases yield good approximations of the dynamics occurring within complicated biological systems. To this end, we use a first-order vector autoregressive model, shown in Equation (2.6), to simulate longitudinal expression data for genes involved in a given network. Specifically, after setting y 1 = y 1 , we exploit the Markov property of the VAR(1) model to obtain one-step-ahead predictions (i.e., fitted values)

of gene expression at time points t = 2, . . . , T as follows:

y t = Θ y t-1 (5.1)
for t = 2, . . . , T . Note that the one-step-ahead predictions for y t are made using the observed data y t-1 , and not the simulated data y t-1 . That is, we simulate data by calculating the expected value of gene expression at each time point given the network structure and observed expression values at the previous time point, rather than attempting to estimate and simulate the noise present in a particular set of observed data.

The appropriateness of using a VAR(1) simulator as in Equation (5.1) is largely dependent on the amount and the noise structure present in observed data, as well as the adequacy of the assumption of time-invariant, first-order autoregressive dynamics for complicated gene regulatory networks. In the absence of more detailed information about the underlying network, it may be reasonable to use a simple model such as the VAR(1) to generate simulated data, as shown here. However, the ABC-Net algorithm has the flexibility to incorporate arbitrary models as data simulators, provided they are computationally efficient. For instance, in some cases second-order models, nonlinear models, linear differential equations, draws from a Dirichlet process, or Michaelis-Menten kinetics may more aptly describe the dynamics of a particular gene regulatory network; in these cases, the appropriate simulator model would be used in place of Equation (5.1). In this way, it is straightforward to tailor the ABC-Net algorithm to situations where an alternative model is known to better represent a given dataset.

Distance Function

The choice of the distance function (ρ) and cutoff threshold ( ) both play an important role in the applicability of ABC methods for inferring gene regulatory networks. Rather than defining a set of summary statistics, we directly compare the observed and simulated data over time using ρ. Several standard choices for this function include the Canberra, Euclidean, and Manhattan distance functions (see Table 5.1). In addition, we also apply a distance measure proposed by [START_REF] Lund | Revisiting climate region definitions via clustering[END_REF] tailored to multivariate longitudinal data that we refer to as the Multivariate Time-Series (MVT) distance. For the MVT distance, we make the assumption that two sets of gene expression data arising from the same underlying network would have a smaller distance than two with differing networks. That is, under the null hypothesis that simulated (Y ) and observed (Y ) data have the same network dynamics, we define

ΘY = 1 T T -1 t=1 y t+1 y t ΘY = 1 T T -1 t=1 y t+1 y t Θ = ΘY + ΘY 2 ŷ t = Θy t-1 ŷt = Θy t-1 Σ = 1 2T T t=1 {(y t -ŷ t )(y t -ŷ t ) + (y t -ŷt )(y t -ŷt ) }
where y t and y t are the observed and simulated time-course data, ŷt and ŷ t are the best one-step ahead linear predictors of y t and y t , respectively, and Σ is an estimate of the common covariance matrix of the errors Σ. With these terms defined, the MVT Table 5.1 Distance functions to compare observed (Y ) and simulated (Y ) data in the ABC-Net algorithm, where T denotes the number of time points collected and P represents the total number of genes.

Canberra:

ρ(Y , Y ) =

T t=1 P i=1 |y it -y it | |y it + y it | Euclidean: ρ(Y , Y ) = T t=1 P i=1 (y it -y it ) 2 Manhattan: ρ(Y , Y ) = T t=1 P i=1 |y it -y it | MVT: ρ(Y , Y ) = 1 T T t=1 [(y t -y t ) -(ŷ t -ŷ t )] Σ-1 [(y t -y t ) -(ŷ t -ŷ t )]
distance may be calculated using the equation shown in Table 5.1. In practice, to avoid the computationally expensive task of inverting the estimated covariance matrix Σ, we standardize the two time series Y and Y and set Σ equal to the identity matrix.

Regardless of the choice of distance function ρ, a threshold value is also required to determine when simulated and observed data are "close enough." The appropriate value for is highly dependent on the choice of function ρ, the amount of noise in the data, and the size of the data (i.e., number of genes in the network, number of time points measured). To choose this threshold, we propose a heuristic method where 5000 randomly generated networks are used to simulate data as in Section 5.1, and the corresponding distance (chosen from Table 5.1) between simulated and observed data are calculated for each. We then set to the value of a given quantile (typically 1% or 5%) of these randomly generated distances. We examine the choice of both ρ and in great detail later.

Network Proposal Distributions

Another important aspect of the ABC-Net algorithm is the proposal distribution q(•|•), which defines how to transition from the current state of a network to an updated proposal. In the context of gene regulatory networks, we rely on two different characterizations of the graph to propose updates, as previously described: the topology of the network (i.e., the edges that are present in the graph) and the magnitude of existing interactions (i.e., the strength of a particular activation or repression). The former can be represented using a matrix G, where G ij = 1 if gene j regulates gene i, and G ij = 0 otherwise. G is referred to as the adjacency matrix of the underlying gene regulatory network. The latter is represented by a matrix Θ of parameter values (see Equation (2.6)). Note that G ij = 0 implies Θ ij = 0, and

G ij = 1 implies Θ ij = 0.
In the ABC-Net algorithm, a two-step proposal distribution (Figure 5.2) is used to produce new samples G and Θ for the adjacency and parameter matrices, respectively. In the first step, we apply one of three basic moves (Figure 5.1) to the current adjacency matrix G i : adding an edge, deleting an edge, or reversing the direction of an edge (Husmeier et al., 2005). Let N (G) represent the neighborhood size of a graph G, i.e., the number of other network structures that can be obtained by applying one of the three basic moves. The transition probability is given by q(G |G i ) = 1/N (G i ).

In the second step, the proposal distribution of Θ, given the current value Θ i and the updated adjacency matrix G , is defined to be

q(Θ ij |Θ i ij , G ij ) ∼    0 if G ij = 0 N(Θ i ij , σ Θ ) if G ij = 0 (5.2)
where σ Θ may be tuned to obtain an empirical acceptance rate between 15% and 50%, as recommended in Gilks et al. (1996). A simple example of the two-step proposal distribution for gene regulatory networks is shown in Figure 5.2. 

Network Prior Distributions

One final consideration for the ABC-Net algorithm is the choice of prior distributions for the adjacency matrix G and parameter matrix Θ. In gene regulatory networks, as the number of genes (P ) in a network increases, the number of possible edges within the network quickly increases as well (P × P ). A large number of genes may be interacting simultaneously with one another in very sophisticated regulatory circuits, and the network topology itself may be quite complicated. Even so, certain properties of biological networks can be useful in limiting the support of the prior distribution to realistic network topologies. In particular, recall that most genes are

A B C 0 0 3 0 0 0 0 2 0         -   C Θ i = A A B B C Parameter matrix A B C Θ * = A A B B C 0 0.4 2.7 0 0 0 0 0.3 0 -           C
Add, delete, reverse edge [START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF] A regulated just one step away from their regulator [START_REF] Alon | Network motifs: theory and experimental approaches[END_REF], and gene networks tend to be sparse with a limited number of regulator genes [START_REF] Leclerc | Survival of the sparsest: robust gene networks are parsimonious[END_REF].

B C 0 0 1 0 0 0 0 1 0           A A B B C C G i = A B C Adjacency matrix A B C A A B B C G * = A B C 0 1 1 0 0 0 0 1 0           C Gaussian proposal
In keeping with these biological hypotheses, we elect to use uninformative prior distributions with some restrictions for both π(G) and π(Θ|G). One such restriction is on a graph attribute known as the fan-in for each node in the network, which refers to the in-degree of each node. Because gene regulatory networks are known to be sparse, we choose the prior on the adjacency matrix, π(G), to be uniform over all possible structures, subject to a constraint on the maximum fan-in for each node in the network (i.e., the number of regulators per gene), as has been suggested

Algorithm 5.1 The ABC-MCMC Network (ABC-Net) Algorithm.

0. Initialize Θ i , G i , i = 0.

1. (a) Propose G according to a proposal distribution q(G|G i ) by adding, deleting, or reversing an edge as in Figure 5.1.

(b) Propose Θ according to a proposal distribution q(Θ|Θ i , G ).

Simulate data

Y from f (•|Θ , G ). 3. If ρ(Y , Y ) ≤ , go to 4, otherwise set Θ i+1 = Θ i , G i+1 = G i and go to 5. 4. Set {G i+1 , Θ i+1 } = {G , Θ } with probability α = min{1, π(G )π(Θ |G )q(G i |G )q(Θ i |Θ ,G i ) π(G i )π(Θ i |G i )q(G |G i )q(Θ |Θ i ,G ) } and {G i+1 , Θ i+1 } = {G i , Θ i } with probability 1 -α. 5. Set i = i + 1. If i < n (a pre-set number of iterations), return to 1.
by several authors [START_REF] Friedman | Using Bayesian networks to analyze expression data[END_REF][START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF][START_REF] Werhli | Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge[END_REF]. This restriction is supported by the biological literature, as genes do not tend to be synchronously regulated by a large number of genes [START_REF] Leclerc | Survival of the sparsest: robust gene networks are parsimonious[END_REF]. For the parameter prior π(Θ|G), we use a uniform distribution on the interval (-2, 2), where the bounds are chosen to represent a realistic range of edge magnitudes in gene regulatory networks. In addition, both priors can easily be adapted to incorporate prior biological information (i.e., in the case of π(G) the presence/absence of an edge, and in the case of π(Θ|G) the type and magnitude of a particular gene-to-gene interaction).

ABC-Net Implementation

The proposed ABC-Net algorithm adapts the ABC-MCMC algorithm (Algorithm 3.5) to the context of gene regulatory networks by incorporating a specialized data simulator, distance function, network proposal distribution, and prior distribution, as detailed in Sections 5.1-5.4. The full ABC-Net algorithm is shown in Algorithm total of 200 iterations are run for each of ten cooled threshold values, and the burn-in period is repeated if the empirical acceptance rate is less than 1%. This ensures a minimum burn-in period of 2000 iterations, with additional iterations included for chains affected by poor mixing.

Chain Convergence

Because the ABC-Net algorithm relies on a comparison between simulated and observed data to avoid a likelihood calculation, long chains are required to ensure the adequacy of the approximation. Although a single long chain could be run, it is also possible to run multiple overdispersed chains. There is still much debate in the statistical community concerning whether it is better to run a single, very long chain or several long chains. The former approach maintains that a single chain has the best chance of more fully exploring the target distribution and that comparisons among chains cannot absolutely prove convergence. The latter approach holds that comparing chains can reveal genuine differences if the individual chains have not yet approached stationarity (Gilks et al., 1996). For this reason, we run 10 independent chains of length 1 × 10 6 simultaneously (rather than a single chain of length 1 × 10 7 ). This approach contributes a two-fold benefit, as calculations can be performed in parallel to improve computational speed and a convergence assessment can be conducted using the Gelman-Rubin statistic [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF]. Specifically, to assess convergence among chains, consider the case where m parallel sequences of length n (after the burn-in period) have been run. For a single parameter η, let (η ij ) be the sample of η at the j th iteration of the i th chain for j = 1, . . . , n and i = 1, . . . , m, and calculate the between-sequence variance B and the within-sequence variance W as follows:

B = n m -1 m i=1 (η i• -η•• ) 2 W = 1 m m i=1 s 2 i (5.3) where ηi• = 1 n n j=1 η ij , η•• = 1 m m i=1 ηi• , and 
s 2 i = 1 n -1 n j=1 (η ij -ηi• ) 2 .
The within-sequence variance W in Equation ( 5.3) is an underestimate of the variance of η since individual sequences do not cover the entirety of the target distribution.

We also define an overestimate of the variance of η in the target distribution, based on an assumption of overdispersed starting points:

Var(η) = n -1 n W + 1 n B.
(5.4)

The Gelman-Rubin statistic [START_REF] Gelman | Inference from iterative simulation using multiple sequences[END_REF] (5.5)

As the chains converge, the Gelman-Rubin statistic R decreases towards 1 (which indicates that the parallel Markov chains essentially overlap). Following the recommendation in Gilks et al. (1996) we declare chain convergence if R < 1.2 for all parameters in Θ. After the chains have converged, draws corresponding to the smallest 1% of the distance criterion are retained for inference.

Extension to RNA Sequencing Data

As the cost of NGS technology continues to drop, sequence-based longitudinal studies of gene expression (e.g., RNA-Seq) will become increasingly popular. However, data from NGS platforms differ substantially from microarray data, particularly as they are made up of digital counts of transcripts rather than continuous intensity measures. Because the VAR(1) model described in Section 5.1 generates continuous expression measurements over time, an alternative simulator must be proposed to deal with time series of integer counts.

Specifically, let y t = [y 1t , . . . , y P t ] be the digital gene expression (DGE), or count, of genes at time t, where t = 1, . . . , T . It has become standard practice [START_REF] Mortazavi | Mapping and quantifying mammalian transcriptomes by RNA-Seq[END_REF][START_REF] Marioni | RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays[END_REF][START_REF] Auer | Statistical design and analysis of RNA-Seq data[END_REF] to model the level of gene transcription with a Poisson distribution:

y it ∼ Poisson(λ it ) (5.6)
where λ it = π it P i=1 y it and P i=1 π it = 1. In this way, the inclusion of the total number of reads per time point, y •t = P i=1 y it , amounts to normalizing digital gene counts by the total number of reads per time point. To define gene-to-gene interactions across time, we incorporate the parameter matrix Θ (which defines the network structure, as before) into an autoregressive model for the gene transcription rate π it of the i th gene as follows:

π it = λ it y •t = exp θ i1 λ 1,t-1 y •,t-1 + . . . + θ iP λ P,t-1 y •,t-1 (5.7)
where θ ij represents the element of Θ in the i th row and j th column, as before. In matrix form, this would be represented as

π t = exp 1 y •,t-1 Θλ t-1 (5.8)
where π t = {π it } i=1,...,P and λ t-1 = {λ i,t-1 } i=1,...,P for t = 1, . . . , T .

As in Section 5.1, to generate simulated data Y based on a given network Θ , we rely on one-step-ahead predictions. The difference in this case is that one-step-ahead predictions are on the level of expression π it of each gene, and not on the observed values y it themselves. Specifically, let y 1 = y 1 and

π t = exp 1 y •,t-1 Θ y t-1
(5.9)

π t = 1 P i=1 π it π t y t ∼ Poisson(π t y •t )
for t = 2, . . . , T . In this way π represents the level (or rate) of expression of gene i at time t, which in turn is influenced by the observed digital gene expression measures at the previous time point, y t-1 , as determined by the matrix of gene-to-gene interactions, Θ . In contrast to the simulation procedure described in Section 5.1, the Poisson simulator in Equation 5.9 incorporates an additional level of randomness since DGE measures are sampled from a Poisson distribution. To account for this, we suggest repeating the sampling procedure several (say, 10) times such that

y (j) t ∼ Poisson(π t y •t )
where y (j) 1

= y 1 and j = 1, . . . , 10. Subsequently, the distance ρ(Y , Y ) for a given network Θ would be set to equal to the mean distance across all simulated data 2, then the expression of gene i at time point t is strictly increased by twice the value of expression of gene j at time point t -1. However, in the Poisson representation, θ ij = 2 implies that the rate of expression of gene i at time t is increased by twice the digital gene expression of gene j at time point t -1. Although the difference is subtle, it is important to distinguish between these two interpretations.

Y (j) , that is ρ(Y , Y ) = mean ρ(Y (j) , Y ) : j = 1, . . . ,
One final consideration for the extension of the ABC-Net algorithm to longitudinal RNA-Seq data is the possibility of over-dispersion. The Poisson model in Equation 5.6 relies on the assumption that Poisson sampling accounts for the variation that occurs among observations in the same treatment group. That is, if R biological replicates are included in the data, we assume E(y itr ) = Var(y itr ) for r = 1, . . . , R.

However, RNA-Seq data often exhibit extra-Poisson variation (also referred to as overdispersion) between biological replicates, and in such cases the approach must be modified appropriately [START_REF] Auer | Statistical Design and Analysis of Next-Generation Sequencing Data[END_REF]. For example, Auer and Doerge (2010) proposed a random effects formulation with quasi-likelihood estimation to account for extra-Poisson variability. However, in our current formulation no estimate of overdispersion may be estimated, as only one biological replicate is included.

Simulations

The success of the ABC-Net method in inferring gene regulatory networks from expression data depends on several critical factors. In particular, some important considerations include the choice of distance function ρ and tolerance , the sensitivity of the method to the bounds of the prior distribution, and the suitability of the model used to generate simulated data (i.e., the VAR(1) simulator) when more complicated dynamics are at play. In addition, we also examine the effect of increasing the amount of noise present in the observed data and incorporating biological knowledge into the prior distribution structure. In this context, we focus on the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve as an indicator of performance, as well as qualitative examinations of the approximate posterior distributions of edges in the network.

To calculate the AUC for the ABC-Net method (Algorithm 5.1), we retain only the samples corresponding to the smallest 1% of distances ρ(Y , Y ) for inference.

Based on these samples, we calculate the bounds of the α% credible intervals for each edge, where α = {1, . . . , 100}. If the α% credible interval for a particular edge does not contain 0, the edge is declared to be present; otherwise, the edge is declared to be absent. In this way, because the simulation setting determines which edges are truly present and absent, true positives, false positives, true negatives, and false negatives may be calculated for each α, and the AUC may subsequently be calculated. We also Figure 5.3. The currently accepted gold-standard Raf signalling pathway, which describes the interactions of eleven phosphorylated proteins in primary human immune system cells [START_REF] Sachs | Causal protein-signaling networks derived from multiparameter single-cell data[END_REF]. Nodes represent the proxy genes of each of the eleven proteins (i.e., the genes that are transcribed and translated into the corresponding proteins), and arrows indicate the direction of signal transduction. Similar figure given in [START_REF] Werhli | Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge[END_REF].

include as a reference the average acceptance rates and computation time required for each simulation.

For these simulations, rather than defining an arbitrary network Θ, we instead use the structure of a real, well-characterized pathway in human immune system cells involving the Raf signalling protein [START_REF] Sachs | Causal protein-signaling networks derived from multiparameter single-cell data[END_REF]. We generate "observed" data based on 11 genes, where the adjacency matrix Θ Raf is defined using the structure of the currently accepted Raf signalling network, shown in Figure 5.3. If an edge exists from gene j to gene i, we sample Θ Raf ij uniformly from the interval (-2, -0.25) ∪ (0.25, 2), and otherwise Θ Raf ij = 0. The bounds for nonzero gene-to-gene interactions were chosen to represent a range of moderate to strong interactions among genes. We generate one replicate of expression data for each of the 11 genes over 20 time points, using the first-order autoregressive model

y t = Θ Raf y t-1 + z t
(5.10) for t = 2, ..., T , where y 1 ∼ N(0, I), z t ∼ N(0, σ). For each simulation, unless otherwise noted, the noise standard deviation is set to σ = 1, the Gaussian proposal standard deviation in Equation (5.2) is set to σ Θ = 0.5, and the maximum fan-in is constrained to 5 or less (i.e., each gene has a maximum of five regulators). In all cases, we ran the ABC-Net algorithm for ten independent chains of length 1 × 10 6 , with a thinning interval of 50.

Choice of ρ and

The distance function ρ and threshold (Section 5.2) are essential components to the ABC-Net algorithm, as they directly affect the probability that simulated data Y generated by a network Θ are accepted as being "close enough" to the observed data.

Although there are many potential options for this distance function, in this work we focus on a comparison among the four options previously discussed: the Manhattan, Euclidean, Canberra, and MVT distances (see Table 5.1). For each choice of ρ, we set a threshold using the heuristic method described in Section 5.2, where is set to be either the 1%, 5%, or 10% quantile of distances associated with 5000 randomly generated networks. Data were generated using the structure of the Raf signalling network as in Equation (5.10), and each combination of ρ and was repeated over five independent datasets in order to include an assessment of their variability (Note: only two datasets were simulated for the MVT distance due to its computational burden). For all of these simulations, it is assumed that smaller distances correspond to data generated from networks Θ similar to the real network Θ Raf . In this section, all simulations were associated with Gelman-Rubin statistics less than 1.2 for all parameters, so it is assumed that samples from the ABC-Net algorithm were indeed from the stationary distribution of the chain (see Theorem 3.2.1).

Each distance function under consideration calculates and penalizes differences between simulated and observed data in a different way. As such, it is not surprising that the scales and distributions of distances for each choice of ρ differ as well (Figure 5.1). Black, red, and blue solid lines indicate the densities associated with thresholds chosen using the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Black, red, and blue dashed lines indicate the cutoff to retain samples inference for each of the three choices of (1%, 5%, and 10% quantiles, respectively).

5.4). The Manhattan, Canberra, and Euclidean functions all result in bi-modal densities for the distances, while the MVT function appears to be strictly increasing as the distance approaches the cutoff . In addition, because the Manhattan distance deals directly with the absolute differences between simulated and observed data, it is on a larger scale than the other distance functions. Figure 5.4 also includes dotted lines corresponding to the cutoff for samples retained for final inference (i.e., the smallest 1% of distances calculated for each function). For the Canberra distance, these lines 5.1). Black dots represent the value of the AUC for each of five independent datasets per threshold and distance function (with the exception of the MVT distance, which was limited to two datasets due to its computational burden). The threshold was set at the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Blue lines represent loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].

essentially overlap, indicating that the distances associated with samples retained for inference are the same whether the ABC-Net algorithm was run based on the 1%, 5%, or 10% quantiles for . For the other three distance functions, it appears that these cutoffs are more spread out.

As it is difficult to determine the ramifications of each choice of ρ from Figure 5.4, we also consider a plot of the AUC for each combination of ρ and (Figure 5.5). This plot clearly shows a disconnect between the performance of the Canberra, Euclidean, and Manhattan distances as compared to the MVT distance. The first three distance functions all appear to be on par with one another, particularly when is set at the 1% quantile of distances. For larger threshold values ( = 5% and 10%), the Euclidean distance seems to suffer slightly when compared to the Canberra and Manhattan distances, which display relatively constant performance regardless of the choice of .

The MVT distance clearly yields much lower values of AUC regardless of the choice of . However, based on this criterion alone, there does not seem to be strong evidence that favors one choice among the Canberra, Euclidean, and Manhattan distances, particularly for a cutoff of = 1%.

We also conduct a qualitative examination of the approximate posterior distributions for the edges in the Raf signalling pathway (Figure 5. We first note (Figure 5.6) that some edges have very similar posterior distributions regardless of the distance function used (e.g., Pip3→Akt and Pka→P38), while others seem to have very different densities for different choices of ρ (e.g., Pkc→Jnk and Pka→Erk). It also seems that the Manhattan and Euclidean distance often yield approximate posterior distributions that are very close to one another, while those of the Canberra and MVT distances often deviate. Another notable feature of Figure 5.6 is that some edges have relatively flat (diffuse) approximate posterior distributions (e.g., Pip3→Akt), while others are much more peaked (e.g., Erk→Akt). We refer to edges with these two characteristics as "flexible" and "rigid" edges, respectively, and we will return to this idea in greater detail in later simulations. Based on these simulation results, we conclude that the MVT distance is a poor choice of distance function within the ABC-Net algorithm. Regardless of the threshold used, it displays considerably different behavior than the other functions (Figure 5.5) and largely worse performance in terms of AUC (Figure 5.5). In addition, the computational burden for the MVT distance is much larger than the other methods (see Table 5.2), requiring almost three times the number of hours for calculation as compared to the other methods. However, choosing among the Canberra, Euclidean, and Manhattan distance is not as straightforward. All have approximately the same computational burden (Table 5.2), and seem to display similar performance in terms of AUC. Based on a qualitative examination of the approximate posterior distributions (Figure 5.6), the results of the Canberra distance often break away from those of the Manhattan and Euclidean distances. However, no strong evidence exists in favor of the Canberra distance. Between the remaining two distance functions, the Euclidean distance enjoys a slight advantage over the Manhattan distance in terms of computation time. For this reason, we elect to use the Euclidean distance with set to the 1% threshold for the remainder of the simulations.

Sensitivity to prior distribution bounds

In the work presented here, we focus on uniform prior distributions for both π(G)

and π(Θ|G) (Section 5.4), subject to a constraint on the maximum fan-in (i.e., number of regulators per gene) for the former. For the latter, we must decide on reasonable bounds for the prior distribution, which affect, in turn, the bounds of the approximate posterior distributions obtained from the ABC-Net method. When prior biological information on specific gene-to-gene interactions is to be incorporated into the ABC-Net method, it may be straightforward to fix the bounds of this prior distribution (e.g., known activations would be limited to positive values and known repressions would be limited to negative values). However, in most cases fixing an upper and lower bound for π(Θ|G) requires some careful thought.

In the case of continuous time-course data using a VAR(1) simulator as shown in Section 5.1, Θ encodes how gene expression at one time point directly affects gene expression at the next. That is, if θ ij = 2, then the expression of gene i at time point t is strictly increased by twice the value of expression of gene j at time point t -1. In addition, this relationship is assumed to be constant across time (i.e., gene j regulates gene i in the same manner from times t = 1 to t = 2, as well from times t = 9 to t = 10). Because values of -2 and 2 for a given θ ij correspond to strong inhibitory and activatory effects, respectively, they represent one set of reasonable bounds for the uniform prior distribution on Θ. As a comparison, we also consider (-3,3), (-5,5), and Table 5.3 Average time and acceptance rates (5 datasets each) for different prior distribution bounds. Prior distributions were all uniform, with bounds ranging from (-2,2) to (-10,10) (-10,10) as bounds for π(Θ|G); these intervals include somewhat "unrealistic" values for Θ, but are more diffuse (and hence less informative).

As in the previous simulation, we run the ABC-Net method over five independent datasets for each choice of prior bounds to obtain an assessment of the variability in performance. We compare the results from the ABC-Net method based on the four different prior bounds using the AUC (Figure 5.7). Although wider prior bounds seem to be associated with slightly larger variability in terms of this criterion, the differences in average AUC among the four bounds is negligible. However, when comparing the distributions of the Gelman-Rubin statistics ( R) over all potential edges in the network for each setting (Figure 5.8), a noticeable difference can be seen.

Specifically, as the bounds of the prior are defined over wider intervals, a greater number of edges in the network exhibit evidence of non-convergence (i.e., R > 1.2) across the ten independent chains of the ABC-Net method. This is most evident for prior bounds of (-10,10), where a large number of edges exceed the cutoff of 1.2 by a large amount. In addition, the computation time for the prior bounds of (-10,10) is on the average about an hour and a half longer than other choices for these bounds (Table 5.3), since the burn-in period was often extended significantly as a remedy to poor chain mixing. Consequently, although the ABC-Net algorithm does not appear to be sensitive to most bounds of the prior distribution studied here, the widest interval of (-10,10) leads to problems in chain mixing and convergence.

We also consider the effect of the choice of prior bounds on the approximate posterior distributions in the network. In Figures 5.9 and 5.10, we present a graphical matrix of the marginal approximate posterior distributions of each edge in the network, for prior bounds (-2,2) and (-5,5). As may be expected, the posteriors in Figure 5.10 are generally more diffuse than those of Figure 5.9 due to the wider prior bounds. However, it seems that regardless of the choice of prior bound, some edges consistently have very flat posterior distributions (e.g., the edges in the Pip3 column), while others tend to be consistently peaked (e.g., the edges in the Erk column). This brings us back once again to the idea of flexible and rigid edges, first mentioned in the previous section.

Interestingly, in this network the most rigid edges appear to correspond to regulators that are furthest downstream in the pathway (Mek, Erk, and Akt), while those furthest upstream appear to be the most flexible. In the context of the ABC-Net method, this suggests that rigid edges (e.g., Mek→Erk) in Θ must take on values within a tight interval in order to generate simulated data Y that are close (in terms of ρ and ) to the observed data Y . Conversely, flexible edges (e.g., Pip3→Pip3) can take on values within a much wider interval without negatively affecting the proximity of simulated and observed data. It is thus likely that the model is most sensitive to parameters with narrow credible intervals (rigid edges) and least sensitive to those that cannot accurately be localized (flexible edges) by the approximate posterior distribution [START_REF] Toni | Approximate Bayesian Computation scheme for parameter inference and model selection in dynamic systems[END_REF]. That is, some edges may intrinsically be easy to infer even with relatively wide prior bounds (e.g., (-5,5)), while others cannot be accurately determined even with fairly narrow prior distribution bounds (e.g., (-2,2)). (-2,2), (-3,3), (-5,5), and (-10,10). Black dots represent the value of the AUC for each of five independent datasets per bound. Blue lines represent loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF]. .9. The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, with prior bounds (-2,2). Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The x-axis of each plot represents the values of each parameter Θ Raf ij , and the yaxis represents the corresponding density. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value.

Suitability of VAR(1) simulator

The applicability of the ABC-Net method to real gene regulatory networks depends heavily on its ability to accurately simulate data for a given network structure.

In the absence of more detailed information about the dynamics of a particular system, we suggest using a VAR(1) simulator as described in Section 5.1. However, it is likely that real biological systems do not follow a VAR(1) model, and in fact, that they arise from very complicated, nonlinear relationships. In this set of simulations, we attempt to assess how the ABC-Net method reacts when observed data Y are actually generated from models other than the VAR(1) model. In particular, we focus on four models (see were each defined using the Raf signalling network (Figure 5.3), where existing edges were sampled uniformly from the interval (-2, -0.25) ∪ (0.25, 2) and otherwise set to 0. For the ODE model, coefficients were randomly drawn from a U(-1, 1) distribution and initial values for all genes were set to 1. After solving the ordinary differential equations for time points t = 1, . . . , 20, random noise sampled from N(0, 1) was added to each measurement at each time point.

We apply the ABC-Net algorithm to data Y generated from the four alternative models described in Table 5.4 and examine the AUC results for each (Figure 5.11).

In this comparison, we also include the VAR(1) model from Equation (5.10) as a ref- the highest performance in terms of AUC. Although one of the datasets simulated with the VAR-NL(1) displayed some evidence of non-convergence (Figure 5.12), all other models displayed sufficiently small values for this statistic.

We also consider the approximate posterior distributions in the network for model used to generate Y . In Figure 5.13, we present a graphical matrix of the marginal ap- As a final note concerning the performance of the ABC-Net algorithm when alternative models are used to generate Y , recall that the simulator described in Section 5.1 has the flexibility to incorporate alternative models, provided they are computationally efficient. We recommend the use of a VAR(1) model as a simple and efficient simulator in situations where such a simplification of the network dynamics would be appropriate. However, in cases where other models are known to better fit a given set of data (e.g., a second order or non-linear model), the ABC-Net method can be adapted accordingly. 1, 1.5, 2, 3, 5). Five datasets were generated for each value of noise standard deviation. The blue line represents a loess curve [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].

Effect of noise in observed data

We also examine the effect of increased variability in the random noise z t added to each time point of the observed data (see Equation (5.10)), where z t ∼ N(0, σ).

We would expect that increasing amounts of noise lead to reduced performance for the ABC-Net algorithm, particularly since the VAR(1) simulator described in Section 5.1 uses one-step ahead predictors to simulate data based on a given network Θ . For this purpose, we consider σ = {0, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5}. For each value of σ, we generate five independent datasets to assess the variability of results, and run the ABC-Net algorithm as detailed in Algorithm 5.1. The Gelman-Rubin statistics for all parameters were less than 1.2 in all simulation settings, and as such we may assume that the output from the ABC-Net method is truly made up of samples drawn from the stationary distribution of the chain.

The results for the AUC (Figure 5.14) indicate that the presence of increasing noise over the investigated range does seem to negatively affect the performance of the ABC-Net algorithm, although only for relatively large values of σ (e.g., σ = 5). The mean AUC (averaged over 5 datsets per noise setting) ranges from 0.70 (at σ = 0) to 0.79 (at σ = 0.5). Interestingly, the worst performance appears to fall at the two extremes for σ (i.e, 0 and 5). As the noise standard deviation is increased, it is not surprising that the performance of the algorithm deteriorates, since the onestep-ahead predictors described in Section 5.1 would fall increasingly further from the observed data (even when the true network is used). However, the result observed for σ = 0 is somewhat less intuitive. To explain these findings, consider the toy problem Following suit, the expression values at the third time point would be y 3 = Θy 2 = (0, 2y 11 , 0) and those at the fourth time point (and all following time points) would be y 4 = Θy 3 = (0, 0, 0). some edges are intrinsically easier to infer (even in the presence of increased noise), while other cannot be accurately determined regardless of the amount of noise in the data. As such, the flexibility and rigidity of edges in a given system likely plays an important role in the global inferability of the network structure.

Including Prior Biological Information

One advantage of Bayesian approaches such as the ABC-Net method is that biological knowledge can easily be incorporated into the prior structure. To illustrate this, we incorporate prior knowledge for an increasing number of edges (n = 0, 1, 2, 3, with differing values of known edges (0, 1, 2, 3, 4). Five datasets were generated for each number of known edges. The blue line represents loess curves [START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].

and 4) in the simulated Raf signalling pathway in the following way. If an edge in the Raf network from gene j to gene i is randomly selected to be "known", its prior distribution is bounded to be π(θ Raf ij |G) ∼ U(0, 2) for activations and π(θ Raf ij |G) ∼ U(-2, 0) for repressions. Not surprisingly, the performance of the ABC-Net algorithm improves markedly when prior information is included in this manner (Figure 5.16). The average AUC increases from about 75% when no known edges are included in the model to almost 82% when 4 known edges are included. These improvements are directly linked to the fact that using accurate informative prior distributions is certain to improve algorithm performance.

We also examine the effect of prior biological knowledge on the approximate posterior distributions over the entire network (Figure 5.17). It turns out that including prior biological information about a subset of four edges did not seem to tighten credible intervals for the flexible edges in the network. This observation held whether known edges were defined at random or chosen among the edges supported by the strongest evidence in the previous simulations (e.g., Pkc→Raf, Raf→Mek, and Mek→Erk). The fact that these flexible edges cannot be inferred even in the presence of partial network information highlights the difficulties in achieving accurate, complete inference in the context of gene regulatory networks. Finally, we also stress that incorporating prior biological information as shown here relies on the assumption that such information is entirely accurate. If this is not the case, alternative modifications to the prior structure must be made to account for uncertainty in known gene-to-gene interactions.

Summary

Methods based in approximate Bayesian computation (ABC) are a valuable tool that enable Bayesian inference in complex, high-dimensional problems for which the likelihood is difficult to calculate. The ABC-Net algorithm presented here is a novel framework for sampling from the approximate posterior distributions of gene-to-gene interactions involved in gene regulatory networks. These approximate posterior distributions provide a wealth of information about the structure and inferability of complicated biological systems, particularly with respect to the flexibility and rigidity of network edges. For the time being, the computing time required for the ABC-Net approach limits its application to small networks. For example, for the 11-gene Raf signalling network used in the simulations, average computing time for 1 × 10 7 iterations was on the order of 7 hours (simulations were run on a dual-socket Dell PowerEdge 1950 (quad-core (8 effective CPUs) Intel Xeon E5410) with 32GB RAM, running RedHat Enterprise Linux 5.4 Server x86-64). However, as computing power continues to improve in terms of speed and memory, it is anticipated that the method will progressively be able to handle somewhat larger networks. .17. The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, with four known edges. Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The x-axis of each plot represents the values of each parameter Θ Raf ij , and the y-axis represents the corresponding density. Densities shaded in green and blue correspond to edges considered to be "known" and "unknown" in the simulation, respectively. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value. method (Chapter 5), we apply each to real longitudinal expression data.

Pip3 Plcγ

T-Cell Activation Network in Humans

Although several time-series microarray datasets are publicly available in simple organisms such as Saccharomyces cerevisiae [START_REF] Spellman | Comprehensive identification of cell-cycle regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization[END_REF][START_REF] Lee | A probabilistic functional network of yeast genes[END_REF],

Escherichia coli [START_REF] Ronen | Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics[END_REF], and Drosophila melanogaster [START_REF] Arbeitman | Gene expression during the life cycle of Drosophila melanogaster[END_REF], few microarray experiments include the necessary level of replication and time points to effectively infer network structure. One exception arises from a set of experiments conducted by [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF] to investigate the effect of two treatments (a phorbal ester called PMA and a calcium ionophore called ionomicin) on human T-cell response in a lymphoblast cell line. The data are made up of temporal gene expression measurements using cDNA microarrays on 58 genes over 10 unequally spaced time points (0,2,4,6,8,18,24,32,48, and 72 hours after treatment) on 34 biological repli-cates. A second related experiment under identical conditions added ten additional biological replicates for the same set of genes and time points, yielding a total of 44 biological replicates between the two related experiments. Genes were pre-selected for modulation following the T-cell activation, meaning that genes with weak expression or low reproducibility across replicates were removed from the dataset. In addition, the data were log-transformed and quantile normalized by [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. The pre-processed expression measurements and gene descriptions may be found in the R package GeneNet [START_REF] Schäfer | Reverse engineering genetic networks using the GeneNet package[END_REF] on CRAN (R Development Core Team, 2009) as well as on the authors' website (http://public.kgi.edu/ ~wild/LDS/index.htm).

The longitudinal expression measurements for the first nine genes in the T-cell activation dataset are displayed in Figure 6.1.

Because the [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF] data are longitudinal and highly replicated, they have been used by several authors to assess the performance of inference methods for gene regulatory networks [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]Beal et al., 2005;[START_REF] Opgen-Rhein | Inferring gene dependency networks from genomic longitudinal data: a functional data approach[END_REF]. We follow suit, and use these data to compare the results of 

T-Cell Expression Data (1-9)

Figure 6.1. Expression measurements after pre-processing for the first nine genes in the T-cell activation data [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]): RB1, CCNG1, TRAF5, CLU, MAPK9, SIVA, CD69, ZNFN1A1, and IL4R. Grey dots represent the expression values at each time point for each of the 44 biological replicates, and blue lines are drawn at the median expression value across replicates for each time point. tion about specific network edges, these data would incur a substantial computational burden in the context of the ABC-Net method, both in terms of time and memory.

Before the EBDBN method can be applied to the [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF] data, we must determine an appropriate value for the hidden state dimension K. In previous work, this value was chosen to be K = 9 [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF] and K = 14 (Beal et al., 2005). Recall that the maximum number of nonzero singular values taken from the decomposition of the block-Hankel matrix H is T -1, or in this case, 9 (see Section 4.1). For each of the 44 replicates, we construct H r , apply the singular value [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Each line represents the singular values for one of the 44 biological replicates. As the "elbow" of the plot appears to fall at K = 4 for the majority of biological replicates, this value is chosen to be the hidden state dimension for the EBDBN method. et al. (2004). Although there is some overlap among the four methods, there are a large number of edges that are uniquely identified by a single method (e.g., 223 edges are identified only by the EBDBN(x), 210 edges are identified only by the EBDBN(-), and 185 edges are identified only by the VBSSM.) Table 6.1 Positive, negative, and total edges (and percent of all possible edges) found for T-cell activation data, by method: the Empirical Bayes Dynamic Bayesian Network with hidden states (EBDBN(x)), the Empirical Bayes Dynamic Bayesian Network method without hidden states (EBDBN(-)), the Variational Bayes State Space Model (VBSSM) of Beal et al. (2005) [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Nodes represent genes, with numbers corresponding to those found in the R package GeneNet of [START_REF] Schäfer | Reverse engineering genetic networks using the GeneNet package[END_REF]. Blue solid lines represent inhibitory regulations, red solid lines activatory regulations, and black dotted lines edges with ambiguous regulation (i.e., disagreement between the EBDBN and VBSSM methods). Yellow nodes have five or more regulatory interactions with other genes, indicating important regulator genes in the network topology.

the T-cell activation network, since it is involved in the highest number of outward connections. In the consensus network between the EBDBN and VBSSM methods (Figure 6.4), although it does not figure as prominently, FYB is present and directly connected to three other genes (genes 17, 33, and 38). In addition, an interleukin receptor gene, IL-2Rγ (gene 7), is one of the most connected genes, with nine outward connections and one feedback loop with itself.

A portion of the sub-network found by Beal et al. (2005) representing the interaction between two proto-oncogenes of the Jun protein family, Jun-B (gene 54) and Jun-D (gene 11), is also found in this consensus network (see Figure 6.5). This pathway is of particular interest, as Jun-B and Jun-D are thought to negatively regulate cell growth and inhibit programmed cell death, and thus are at the center of mechanisms controlling apoptosis and proliferation. Both sub-networks seem to support this hypothesis, as Jun-B appears to regulate the apopototic gene Caspase-4 (gene 38), and at least indirectly, Caspase-8 (gene 18). Despite their differences, both subnetworks support a central pathway in which Jun-B activates Caspase-4, which in turn activates Jun-D. These results agree with the current literature, and suggest an important role for Jun-B in T-cell activation and tumor promotion (Gurzov et al., 2008).

S.O.S. DNA Repair System in Escherichia coli

The S.O.S. DNA repair system in the Escherichia coli bacterium is a well-known gene network that is responsible for repairing DNA after damage. The full network is made up of about thirty genes working at the transcriptional level, and the behavior of genes in the network in the presence of DNA damage has been well characterized [START_REF] Ronen | Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics[END_REF]. Specifically, under normal conditions a master repressor called lexA represses the expression of the genes responsible for DNA repair (Figure 6.7).

However, when one of the S.O.S proteins (recA) senses DNA damage by binding to single-stranded DNA, it becomes activated and provokes the autocleavage of lexA. The subsequent drop in the levels of lexA suspends the repression of the S.O.S. genes, and these genes become activated. Once DNA damage has been repaired, the level of recA drops, which allows lexA to reaccumulate in the cell and subsequently repress the S.O.S. genes. At this point, the cells return to their original state. Although the network itself is quite small, its simple structure allows the cell to react in very sophisticated ways to conditions within the cell.

The S.O.S. DNA repair system is a good example to illustrate the utility of the ABC-Net algorithm, as it is a benchmark dataset in which specific regulatory interactions are well-characterized. The EBDBN method would not typically be applied to data from small, well-characterized networks such as the S.O.S. DNA repair system, as the gene-to-gene interactions are well understood and finding novel testable proportional to the corresponding mRNA production rates [START_REF] Perrin | Gene networks inference using dynamic Bayesian networks[END_REF]. As such, it is reasonable to assume that the data of [START_REF] Ronen | Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics[END_REF] Because the gene-to-gene interactions in the S.O.S. DNA repair system are welldefined and no hidden states are believed to be involved in the network, we apply the EBDBN method with a hidden state dimension of K = 0, where a 99.9% cutoff is used as a threshold for the z-scores of the edges. We also apply the ABC-Net method to these data. As before, we set the Gaussian proposal standard deviation in Equation (5.2) to σ Θ = 0.5, and we ran the algorithm for ten independent chains of length 1 × 10 6 , with a thinning interval of 50. The VAR(1) simulator (Section 5.1) is used to generate simulated data Y , and the prior bounds of π(Θ|G) are set to (-2,2). We use the Euclidean distance function, where the threshold is selected using the previously described heuristic method (Section 5.2), based on the 1% quantile of distances based on 5000 random networks. Due to the small size of the network, the maximum fan-in is constrained to 2 or less (i.e., each gene has a maximum of two regulators).

The gene-to-gene interactions identified by the EBDBN(-) method are shown in Figure 6.8, where blue and red solid edges represent "true positives" and "false postives", according to the previously described behavior of the S.O.S. network. We use these terms somewhat loosely, because even for well-understood networks such as the S.O.S. DNA repair system, the absence of a particular gene-to-gene interaction in the literature cannot indicate with absolute certainty that such a relationship is absent. Gray dotted lines represent gene-to-gene interactions supported by the literature that are not identified by the EBDBN(-) method. We also include the marginal approximate posterior distributions for each of these edges, as obtained by the ABC-Net method. As previously seen in the simulations of Section 5.7, these posterior distributions seem to fall into two categories: flexible edges (the feedback loops on uvrD, uvrY, ruvA, and polB) and rigid edges (the remaining edges). Edges identified by the In addition to comparing the results of the EBDBN(-) and ABC-Net methods, we also examine the most rigid approximate posterior distributions, as identified by the latter method (Figure 6.9). Interestingly, all of the most rigid edges in the S.O.S. DNA repair system are those directly connecting the recA protein to the other genes in the network, bypassing the lexA master regulator. This result can be explained by the one-step time delay inherent in the VAR(1) simulator of the ABC-Net method. More specifically, when DNA damage in the cell is detected by recA, the abundance of lexA decreases very rapidly and the remaining S.O.S. genes turn on almost immediately.

However, time-delay models (like the VAR(1) simulator) are only able to identify gene-to-gene interactions that occur with a one-step time lag. The result of this is that in the results of the ABC-Net method, a strong link appears to occur directly between recA and the remaining genes in the network.

Finally, because the dynamics of the S.O.S. DNA repair system are constantly reacting to conditions within the cell (and thus changing over time), we also use the ABC-Net method to compare the approximate posterior distributions of geneto-gene interactions during the first ten time points and during the last half of the experiment (Figure 6.10). The former subset makes up the portion of the data where DNA damage is at its peak, while most of the damage within the cell is repaired in the latter time interval. In examining the approximate posterior distributions, we note that for both subsets of data, flexible edges tend to stay flexible, and rigid edges tend to stay rigid. That is, in general the shape of the approximate posterior distributions is roughly the same for all edges between the two subsets of time points.

There do appear to be slight differences in the approximate posterior distributions of edges emanating from the recA protein (column 4 in Figure 6.10). For these edges, densities associated with later time points appear to be slightly more peaked than for the earlier time points. In other words, at later time points the edges emanating from recA become increasingly rigid; biologically, this makes sense, since when DNA damage is repaired, the level of the recA protein must drop (and stay low) in order for lexA to reaccumulate and normal cell conditions to resume. After DNA damage has been repaired within the cell, recA has very little flexibility to interact with the other genes in the S.O.S. network. (uvrD→lexA). The x-axis of each plot represents the values of each parameter Θ SOS ij , and the y-axis represents the corresponding density. For the most part, different portions of the network share similar approximate posterior distributions, although those for recA are slightly more peaked at later time points.

Neurotrophin Signaling Pathway in Mouse

Although longitudinal studies of gene expression are not yet commonly performed using sequencing-based technologies, the decreasing cost of next generation sequencing technology suggests that such studies will likely be undertaken using next generation sequencing technologies in the near future. To date, no true longitudinal studies of gene expression based on sequencing technologies (e.g., SAGE and RNA-Seq) are widely available. However, to illustrate the flexibility and utility of the ABC-Net algorithm for longitudinal digital gene expression measures, we provide an example analysis using a series of datasets from the Mouse Atlas of Gene Expression Project The eight SAGE libraries under consideration all used wild-type, male mice of the same strain (C57BL/6J), based on the same SAGE protocol. Each SAGE library contained between 30,967 and 42,220 unique sequence tags. Data for the eight SAGE libraries were downloaded from the BC Cancer Agency (2010) website, and the tag counts at quality 0.95 cut-off were aligned to the annotated transcripts from the NCBI Reference Sequence Project (RefSeq) database (National Library of Medicine and National Center for Biotechnology Information, 2010), found at ftp://ftp.ncbi. nih.gov/genomes/M_musculus/RNA. Alignment for each of the eight SAGE libraries was done using the SOAPaligner/soap2 algorithm with default settings in the Short Oligonucleotide Analysis Project (SOAP) of [START_REF] Li | SOAP: short oligonucleotide alignment program[END_REF]. Counts for each of the sequence tags were subsequently summed to form a digital expression measure for each gene. The number of unique genes in each library ranged from 12,021 (Theiler stage 21) to 14,449 (post-natal day 35) genes.

After summarizing counts at the gene level for each of the eight SAGE libraries, the data were further filtered in the following manner. Using the Kyoto Encylopedia of Genes and Genomes (KEGG) database (KEGG PATHWAY Database, 2010), which consists of a set of manually-drawn pathway graphs representing organism-specific networks of molecular interactions [START_REF] Kanehisa | KEGG for representation and analysis of molecular networks involving diseases and drugs[END_REF][START_REF] Kanehisa | From genomics to chemical genomics: new developments in KEGG[END_REF][START_REF] Kanehisa | KEGG: Kyoto Encyclopedia of Genes and Genomes[END_REF], we identified a smaller subset of genes for the task of network inference. In particular, we focused our attention on a gene network in the nervous system of the mouse involving the differentiation, development, and survival of neural cells, known as the neurotrophin signalling pathway (network identifier: mmu04722, see Figure 6.11). According to the KEGG PATHWAY Database (2010), the 144 genes within the neurotrophin pathway play an important role in neural development and higher-order activities like learning and memory. Because the eight SAGE libraries under consideration were extracted from the whole brain, this particular network is of interest as it plays an important role in the nervous system. Only 16 of the 144 genes involved in the neurotrophin signalling pathway were mapped to by at least one sequence tag in all eight of the SAGE libraries. For this reason, we further focused on a sub-network of these 16 genes within the neurotrophin signalling pathway (see Table 6.3). We subsequently applied the ABC-Net method to these "longitudinal" counts using the extension described in Section 5.6. As before, we set the Gaussian proposal standard deviation in Equation (5.2) to σ Θ = 0.5 and the prior bounds of π(Θ|G) to (-2,2). We ran the ABC-Net algorithm for ten independent chains of length 1 × 10 6 , using a thinning interval of 50, a maximum fan-in of 5 (i.e., each gene has a maximum of 5 regulators), and the Euclidean distance function. At each iteration five independent datasets Y (1) , . . . , Y (5) were simulated for a proposed network, and the distances were averaged to yield a single distance for each Θ . The threshold was selected using the heuristic method of Section 5.2, based on the 1% Table 6.3 Names and descriptions of a sub-network of sixteen genes in the neurotrophin signalling pathway (KEGG PATHWAY Database, 2010). The results of the ABC-Net algorithm can be seen by examining the marginal approximate posterior distributions shown in Figure 6.12. It can be seen that the majority of the edges in the network display flexible (diffuse) posterior distributions.

Gene

which Calm1 participates (Calm1→Calm1). This feedback loop displays a very rigid edge that is concentrated at the upper bound of the prior distribution support.

The discrepancies between these results and the known structure of the neurotrophin signalling pathway (Figure 6.11) may be explained by several factors. First, although the data in this example were chosen to be as similar as possible (e.g., mouse strain and SAGE protocol), they are in fact heterogeneous. Because the eight experiments were conducted individually on different mice at different developmental stages, the data are not truly longitudinal. In addition, the time points used in the analysis are unevenly spaced, and represent a wide spectrum of developmental stages, where some are collected at pre-natal stages (in embryos) and others after birth. This also affects the assumption of time-invariant gene-to-gene interactions, since it is unlikely that the behavior of the neurotrophin network remains constant through such a wide spectrum of unevenly spaced developmental stages. Finally, one additional consideration concerns the differences in magnitudes among the sixteen genes considered (Table 6.3). Calm1 displays both the largest magnitude and range of digital expression measures over the eight time points (varying between a count of 131 to 633 over the eight time points). For the most part, the other genes have counts of less than 100 over all time points, with 13 of the 16 genes displaying counts of 20 or less across all time points. This large heterogeneity may explain in part the strong influence of Calm1 on the remaining genes in the network (Figure 6.11), and may suggest that some sort of normalization is required.

SUMMARY AND FUTURE WORK

Reverse engineering the structure of gene regulatory networks from longitudinal expression data is an intrinsically difficult task, given the complexity of network architecture, the large number of potential gene-to-gene interactions in typical networks, and the small number of replicates and time points available in real data. In this dissertation, two different approaches are proposed that are based in approximate Bayesian methodology. Both make use of directed, graphical models of stochastic processes, known as dynamic Bayesian networks, to infer information about underlying gene regulatory networks from time-series gene expression data. In addition, both approaches explicitly model the joint behavior of a set of genes over time, thus maintaining the correlation structure of gene expression between adjacent time points, rather than examining time points independently. Although the two approaches are not directly comparable, they are complementary to one another and illustrate the need for a variety of network inference methods adapted for different contexts.

The first proposed approach, known as the Empirical Bayes Dynamic Bayesian Network (EBDBN) method [START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF], is based on an empirical Bayes estimation procedure using a linear Gaussian state space model. This approach was motivated by that of Beal et al. (2005), where variational Bayesian learning was used to estimate model parameters. The novelty of the EBDBN method lies in its efficient empirical Bayes estimation of hyperparameters within a hierarchial Bayesian framework and the resulting improvement in computational time. Model selection is performed using the singular value decomposition of the block-Hankel matrix, and hidden states and hyperparameters are iteratively estimated until convergence is attained. Z-scores based on the posterior distributions of network parameters are used to identify the presence or absence of edges in moderately sized networks. Due to its restrictive dis-tributional assumptions, the EBDBN method is best suited to exploratory analyses of gene regulatory networks where little a priori biological information is known.

In the second approach, known as the ABC-MCMC for Networks (ABC-Net) approach, we apply a simulation-based Bayesian method to conduct a detailed analysis of small, well-characterized pathways under fewer model assumptions. Using approximate Bayesian computation and a first-order vector autoregressive model, the ABC-Net approach enables Bayesian inference for complex, high-dimensional networks for which the likelihood is difficult to calculate. By sampling from the approximate posterior distributions of parameters involved in gene regulatory networks, this method yields a wealth of information about the structure and inferability of complicated biological systems, particularly with respect to the flexibility and rigidity of network edges. In addition, the ABC-Net method has the flexibility to incorporate a priori biological knowledge into the prior distribution structure, as well as to incorporate longitudinal counts of gene expression (e.g., SAGE or RNA-Seq data). For the time being, the computing time required for the ABC-Net limits its application to small networks. However, as computing power continues to improve in terms of speed and memory, it is anticipated that the method will progressively be able to handle larger networks.

Throughout this work, we made use of extensive simulation studies to evaluate the performance of our two proposed approaches under different settings and in comparison to other published network inference methods. However, designing and implementing simulated data in this context is not always straightforward. We suggest the use of both "model-based" and "data-based' simulations when comparing the results of several methods. Model-based simulations, though an over-simplified version of the complexities of gene regulatory networks, offer greater flexibility in the choice of network parameters (e.g., number of genes, number of hidden states, percentage of edges present, amount of noise, etc.). More realistic data-based simulations using ordinary differential equations may better represent the complicated dynamics of gene regulatory networks. However, in general they are made up of much smaller datasets than would typically be used for network inference. The development of a set of realistic, time-course benchmark datasets for comparisons among methods is a necessary addition to the growing collection of network inference techniques.

Both approaches proposed in this work do share some limitations. In particular, both techniques make the assumption of linear, time-invariant relationships among genes in a network. In addition, to avoid an explosion in model complexity, both also deal solely with first-order dynamics (i.e., the expression of genes at time t depends only on those at time t-1). Although these simplifications can be a good approximation to the general nature of complicated biological systems, more realistic models of gene regulatory interactions would undoubtedly capture complex relationships, such as nonlinear, time-variant, or higher-order interactions, more effectively.

Future Work

One of the major stumbling blocks for reverse engineering gene regulatory networks is highlighted by the fact that different methods, even those that are very similar to one another, often yield very different results for the same data. As one example, in the analysis of the T-cell activation data in Section 6.1, in the results of the EBDBN and VBSSM methods (which resemble each other quite closely), over 60% of the edges identified by each one are not identified by the other. In this work, we introduced the concept of a "consensus network", that is, one in which several different network inference methods are in agreement on the significance of a particular edge. Although somewhat unorthodox from a frequentist statistical point of view, this type of compromise (also referred to as "model averaging") may be more meaningful than applying a single method for network inference. However, more sophisticated statistical methods for combining results from different methods are needed.

Further work is also required to fully examine the components of the ABC-Net algorithm. In this work, we propose new network structures based on the application of one of three basic moves (add, delete, or reverse an edge). However, more elaborate proposal schemes are possible, and may more effectively explore the approximate posterior distributions. Alternative data simulators must be proposed and explored, in addition to appropriate techniques to identify the optimal data simulator to be used for real data. Further work is also required on the interpretation of the marginal approximate posterior distributions. For instance, rather than relying solely on qualitative examinations of these posterior distributions, a hierarchical prior could be defined on the network adjacency G, and a local Bayes factor could be used to obtain a numerical assessment of the evidence for a particular gene-to-gene interaction.

Finally, due to its computational burden, the ABC-Net algorithm would benefit from optimized and parallelized programs to best exploit computational resources.

The ability of the ABC-Net method to analyze time-series digital gene expression measures (e.g., RNA-Seq data) is particularly promising, as illustrated by the analysis in Section 6.3. In that example, we used an autoregressive simulator for Poisson distribution rates, and a Euclidean distance function to compare observed and simulated data. Additional work is required to determine whether other techniques for simulating time-series count data are better suited to gene expression data. In addition, because the data are non-continuous, it is likely that other distance functions are better adapted to compare simulated and observed data. Keeping these considerations in mind, simulation studies are required to evaluate the performance of this extension of the ABC-Net algorithm under a variety of simulation settings. By adapting the ABC-Net approach to forthcoming longitudinal sequence-based measures of gene expression, it will be well-poised at the forefront of methods to reverse engineer gene regulatory networks in the coming years.

Conclusions

This research demonstrates the applicability of an approximate Bayesian framework to the task of reverse engineering gene regulatory networks. Specifically, there are three major statistical and bioinformatic contributions from this work. First, a novel empirical Bayes estimation procedure for linear state space models, which enables efficient identification of gene-to-gene interactions in moderately sized gene regulatory networks, was proposed. Second, an R package to implement this approach was made publicly available. Third, a novel application of approximate Bayesian computation methods to the inference of gene regulatory networks was proposed. These varied contributions highlight the advantage of developing a variety of network inference methods to provide greater insight into the complicated interactions occurring among genes in real biological systems.
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 13 Figure 1.3. Examples of commercially-produced microarrays. Clockwise, starting from top left: Affymetrix GeneChip, NimbleGen array, Agilent array, Illumina Microarray Core. In order, images courtesy of the JIC Genome Laboratory (2010), the Leiden Genome Technology Center (2010), the Agilent Technologies Newsroom (2010), and the Microarray Core Facility (2010).
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 1 Figure 1.4. An Affymetrix GeneChip probe array. Image courtesy of Giessen Research Center in Infectious Diseases (2010).
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 1 Figure 1.6. A simple gene regulatory network made up of four genes.Each gene is transcribed and translated into a transcription factor protein, which in turn regulates the expression of other genes in the network by binding to their respective promoter regions. The gene regulatory network may be represented using the graph in lower right corner, made up of four nodes (genes) and five edges (interactions among the genes). A similar figure is shown in[START_REF] Schlitt | Current approaches to gene regulatory network modelling[END_REF].

  Figure 1.7. Illustration of characteristics of gene regulatory networks. (Top) A spoke-and-hub type structure is displayed on the left, with gene A acting as a central regulator gene. On the right, the fan-in (number of regulators) for gene A is 3. (Bottom) Feedback loops among genes are common motifs in real biological networks. On the left is a positive feedback loop, where gene A activates gene B (represented by an edge with an arrowhead), and gene B in turn activates gene A. On the right, a negative feedback loop exists, as gene A activates gene B while gene B represses gene A (represented by an edge ending in a bar).
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 1 Figure 1.8. An illustration of the process of reverse engineering a gene regulatory network from longitudinal data. High throughput technologies (e.g., microarrays) are used to measure the gene expression in biological samples taken across several time points. Statistical methods may attempt to infer a network adjacency matrix (bottom left), where ones and zeroes indicate the presence or absence of an edge in the graph (i.e., gene-to-gene interaction in the network), respectively. Alternatively, other approaches also include more detailed descriptions of network structure through a parameter matrix (bottom right), where non-zeroes indicate the magnitude and type (activation or repression) of interactions present in the network, and zeroes represent the absence of an interaction. In this representation, thick edges in the graph represent stronger effects, arrowheads activations, and barred lines repressions.

  have become a popular statistical tool used for the inference of gene regulatory networks, due in part to their flexibility and intuitive interpretation. The seminal works of Murphy and Mian (1999) and Friedman (2000) motivated a large body of work dedicated to using Bayesian networks for biological network inference. BN fall in the intersection of graph theory and probability theory, as they use directed graphical models to represent the conditional probabilistic relationships among a set of random variables.

  Figure 2.1. Example of a Bayesian network G with five vertices (A, B, C, D,and E) and five edges. The parents of a given vertex V are the set of vertices pointing directly to V via a single edge (e.g., A is a parent of vertices B and C). The descendents of a given vertex V are the set of vertices pointed to by a single edge emanating from V (e.g., B and C are descendents of A). Edges represent conditional relationships among the vertices. For example, the edge from A to B indicates that B is conditionally independent of its non-descendents, given the value of A. The full joint distribution of the graph G can be written as the product of the independent conditional distributions. Similar image shown in(Husmeier et al., 2005).
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 22 Figure 2.2. The top row shows three distinct Bayesian networks that belong to the same equivalence class, as the expanded probabilities all lead to the same factorization. All three graphs share the same skeleton (represented by the undirected graph in the bottom row) as they differ only in the directions of edges in the network. As before, directed edges represent the conditional relationships among vertices. Similar image shown in Husmeier et al. (2005).

Figure 2

 2 Figure 2.4. A visual representation of the linear feedback state space model, with the observed expression of a set of genes (light blue nodes) and the unobserved expression of a set of hidden states (dark blue nodes) at two time points, T = 1 and T = 2, where A, B, C, and Θ correspond to the matrices in Equation (2.3). The solid arrows, representing the nonzero elements of Θ, correspond to the direct gene-gene interactions that make up the gene regulatory network.

  Algorithm 3.1 The Rejection Sampler. 0. Set i = 0. 1. Sample a candidate parameter vector Θ from some proposal distribution π(Θ), e.g., a prior distribution. 2. Simulate data Y from the model described by conditional probability distribution f (•|Θ ). 3. If Y = Y , accept Θ and set i = i + 1. Otherwise, reject Θ . 4. If i < N (a pre-set number of acceptances), return to 1.

  Algorithm 3.2 The -Tolerance Rejection Sampler. 0. Set i = 0. 1. Sample a candidate parameter vector Θ from some proposal distribution π(Θ), e.g., a prior distribution. 2. Simulate data Y from the model described by conditional probability distribution f (•|Θ ). 3. Compare simulated data Y to the observed data Y using a distance function ρ and tolerance . If ρ(Y , Y ) ≤ , accept Θ , otherwise reject. 4. If i < N (a pre-set number of acceptances), return to 1.

  to the -tolerance rejection sampler (Algorithm 3.2) for high-dimensional data involves replacing the data Y with lower-dimensional quantities (e.g., summary statistics) calculated on the data, denoted S(Y ). The distance ρ(Y , Y ) in step 3 of Algorithm 3.2 is replaced with a corresponding distance ρ(S(Y ), S(Y )) between summary statistics computed on the simulated and observed data, respectively, as shown in Algorithm 3.3. The resulting output is a sample of parameters from π(Θ|ρ(S(Y ), S(Y )) ≤ . If summary statistics Algorithm 3.3 The -Tolerance Rejection Sampler with Summary Statistics. 0. Set i = 0. 1. Sample a candidate parameter vector Θ from some proposal distribution π(Θ), e.g., a prior distribution. 2. Simulate data Y from the model described by conditional probability distribution f (•|Θ ). 3. Calculate summary statistics S(Y ) and S(Y ) on the simulated and observed data, respectively. Using distance function ρ and tolerance , if ρ(S(Y ), S(Y )) ≤ , accept Θ , otherwise reject. 4. If i < N (a pre-set number of acceptances), return to 1.

  .10) Algorithm 3.5 ABC-Markov Chain Monte Carlo (ABC-MCMC).

  Theorem 3.2.1 The stationary distribution of the chain produced by the ABC-MCMC algorithm (Algorithm 3.5) is π(Θ|ρ(Y , Y ) ≤ ).

  known as the detailed balance equation. Without loss of generality, choose Θ = Θ such that

  4. THE EMPIRICAL BAYES DYNAMIC BAYESIAN NETWORK ALGORITHMThe Empirical Bayes Dynamic Bayesian Network (EBDBN) algorithm is an exploratory approach to reverse engineer the structure of gene regulatory networks from longitudinal gene expression data. The method is motivated by the related work ofBeal et al. (2005), in which a variational Bayes procedure was implemented to obtain estimates of the hyperparameters in a feedback state space model under a hierarchical Bayes framework. The novelty of the EBDBN algorithm lies in a computationally efficient estimation procedure for the model hyperparameters, based in empirical Bayes methodology. This approach is best adapted to inferring the structure of moderately sized (e.g., 50-100 genes) networks in the absence of prior biological information about specific edges in the pathway. The method presented here is described in[START_REF] Rau | An empirical Bayesian method for estimating biological networks from temporal microarray data[END_REF] and has been implemented in the R package ebdbNet, publicly available on CRAN (R Development Core Team, 2009).The EBDBN algorithm makes use of a linear state space model (Equations (2.2) and (2.3)) to describe the interactions among a set of genes, a set of hidden states (e.g., unmeasured epigenetic factors or genes), and a set of inputs (e.g., known transcription factors) from one time point to the next. First, we define Y = {y tr }, X = {x tr }, and U = {u tr }, where 1 ≤ r ≤ R and 1 ≤ t ≤ T . Let the vectors y tr = [y 1tr , . . . , y P tr ] T , x tr = [x 1tr , . . . , x Ktr ] T , and u tr = [u 1tr , . . . , u M tr ] T represent the expression data of P genes, K hidden states, and M inputs, respectively, in replicate r at time t. The EBDBN algorithm is composed of three principal parts: model selection (choice of the hidden state dimension K), estimation of the hidden states X, and calculation of network posterior distributions. The focus here is on the input state space model

Figure 4

 4 Figure 4.1.The scaled singular values of the block-Hankel matrix H, based on simulated data for P = 10 genes with a single replicate, T = 10 time points, and a true hidden state dimension of K = 2. A dramatic decrease is seen between the first and second singular values of H, followed by a more moderate decrease thereafter. The "elbow" of the graph thus occurs at the true value of K = 2.

P

  X, U) = P (A|α)P (B|β)P (v)P (C|v, γ)P (Θ|v, (x tr |x t-1,r , u tr , A, B)P (y tr |x tr , u tr , C, Θ, v).Let Z = (Y, X, U, A, B, C, Θ, v) represent the "complete data" and W = (A, B, C, Θ) represent the "missing data." Because the SSM is in the exponential family, we can write the complete data Z in the form

Figure 4

 4 Figure 4.2. Visual representation of the typical workflow of the EBDBN algorithm (Algorithm 4.2). After selecting the hidden state dimension K as in 4.1, two sub-loops of the EM algorithm are used to update model hyperparameters ψ (using convergence criteria ∆ 1 and ∆ 2 ). Posterior means of the model parameters and Kalman filter estimates of the hidden states are subsequently calculated as in Sections 4.2 and 4.3. When global convergence is attained (based on convergence criterion ∆ 3 ), the posterior distribution of matrix Θ may be obtained.

  tions are Gaussian, we can compute the standard z-statistic for normally distributed variables for each edge. Edges whose distributions lie far above the zero point are interpreted as activations, while those far below the zero point as repressions. Con-Example 4.1 Sample code for R package ebdbNet. zcutoff(net$DPost, net$DvarPost, ...)

Figure 4

 4 Figure 4.4. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of model-based simulations, by number of replicates and number of time points simulated in the data. Each row of the graphical matrix corresponds to the number of replicates (R = 5, 10, 15) and each column to the number of time points (T = 5, 10, 15), with 25 datasets simulated per evaluation. Within each individual plot, the methods represented (from left to right) are as follows: E(x) = Empirical Bayes Dynamic Bayesian Network (EBDBN) method with hidden states (dark blue), E(-) = EBDBN method without hidden states (light blue), VB = Variational Bayes method (green), and VA = VAR method (yellow).

Figure 4

 4 Figure 4.6. Simulated data from Zak et al. (2001, 2003) on 10 genes over 500 time points, based on the integration of a set of ordinary differential equations describing the network dynamics. Data are shown as the logfold change of expression at each time point relative to the initial value.
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 44 Figure 4.7. Median Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for the EBDBN(x), EBDBN(-), and VBSSM, by number of replicates R and time points T . The horizontal dotted line in each graph represents an AUC of 0.5, corresponding to a random-guess classifier.

Figure 5

 5 Figure 5.1. Proposal distribution for network adjacency matrix G through application of three basic moves: adding, deleting, and reversing an edge. Neighborhood A is made up of 11 graphs. The proposal probability for moving from this graph to that shown on the top right is thus 1/11. As Neighborhood B is made up of 10 graphs, the proposal probability of moving back to the first graph is 1/10. Similar image shown in Husmeier et al. (2005).

Figure 5

 5 Figure 5.2. Example of two-step proposal distribution for gene regulatory networks. Top row: A network in iteration i of the ABC-Net algorithm may be characterized both by its adjacency matrix G i (left) and its parameter matrix Θ i (right). The former encodes only the presence (1) or absence (0) of an edge. The latter encodes additional information about the magnitude of a particular interaction, where zeros indicate that an edge is not present, positive values indicate an activation, and negative values indicate a repression (edges with values further away from zero correspond to stronger effects). Bottom row: An updated network is proposed by adding, deleting, or reversing an edge in G i to produce G (left). The parameter matrix Θ i is updated using a Gaussian proposal distribution for the nonzero edges of G to produce Θ (right).

  monitors chain convergence by estimating the ratio of Var(η) and W (the upper and lower bounds, respectively) of the standard deviation in η:

  10 . The proposed extension of the ABC-Net algorithm to RNA-Seq data has the added benefit of a more realistic interpretation for the network parameters Θ as compared to the VAR(1) model in Section 5.1 or the EBDBN algorithm of Chapter 4. In the VAR(1) representation based on continuous expression measurements (i.e., from microarray data), Θ encodes how gene expression at one time point directly affects gene expression at the next. In the Poisson model representation based on digital gene expression measurements (i.e., from SAGE or RNA-Seq data), the elements of Θ encode how digital gene expression measures from one time point affect the level (or rate) of gene expression at the next. That is, in the continuous representation, if θ ij =

Figure 5

 5 Figure 5.4. Densities of distances ρ(Y , Y ) for four choices of distance functions in the ABC-Net algorithm: Manhattan, Canberra, Euclidean, and MVT distances (see Table5.1). Black, red, and blue solid lines indicate the densities associated with thresholds chosen using the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Black, red, and blue dashed lines indicate the cutoff to retain samples inference for each of the three choices of (1%, 5%, and 10% quantiles, respectively).

Figure 5

 5 Figure 5.5. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for four choices of distance functions in the ABC-Net algorithm: Manhattan, Canberra, Euclidean, and MVT distances (see Table5.1). Black dots represent the value of the AUC for each of five independent datasets per threshold and distance function (with the exception of the MVT distance, which was limited to two datasets due to its computational burden). The threshold was set at the 1%, 5%, and 10% quantiles from 5000 randomly generated networks (see Section 5.2). Blue lines represent loess curves[START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].

  6) in one simulated dataset. The marginal approximate posterior distributions for each distance function are superimposed over each edge in the diagram, with different colors corresponding to different distance functions, as indicated in the figure legend. True values taken on by each edge are indicated with dotted black lines in each plot. Note that each plot has the same lower and upper bounds for the x-axis (-2 and 2, respectively) and y-axis (0 and 1.2, respectively) to facilitate comparisons among plots.

Figure 5

 5 Figure5.7. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for four choices of bounds on the prior distribution π(Θ|G): (-2,2), (-3,3), (-5,5), and (-10,10). Black dots represent the value of the AUC for each of five independent datasets per bound. Blue lines represent loess curves[START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].
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 5 Figure5.8. Gelman-Rubin statistics ( R) for each replicate of four choices of bounds on the prior distribution π(Θ|G). The black dotted line indicates a value of R = 1.2, the cutoff at which convergence is declared among ten independent chains in the ABC-Net algorithm.
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 55 Figure 5.11. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for five different model choices to generate Y : VAR(1), VAR-NL(1), VAR(2), VAR-NL(2), and ODE. Black dots represent the value of the AUC for each of five independent datasets per bound.

  proximate posterior distributions of each edge in the simulated Raf signalling pathway, for each choice of model. The shape of the densities for each model varies widely.For instance, the VAR-NL(1) model tends to yield more peaked distributions (not necessarily centered about the true value), while the ODE displays relatively flat distributions for edges throughout the network. The two nonlinear models tend to have similar posterior distributions, as do the VAR(2) model and ODE. Throughout the network, it appears that different models are able to more easily identify different edges. For example, the VAR-NL(1), VAR(2), VAR-NL(2), and ODE models each seem to uniquely identify the Pka→Mek, Mek→Erk, Pip→Akt, and Pka→Jnk edges, respectively. However, the presence or absence of flexible and rigid edges in the inferred network clearly depends on the type of model used to generate the data Y .

Figure 5

 5 Figure 5.13. Approximate posterior distributions from the ABC-Net method for the simulated Raf signalling pathway, by model. Each plot overlapping a given edge in the network corresponds to the marginal approximate posterior distribution for that edge, where the x-axis represents the values taken on by the edge over the interval (-2,2) and the y-axis is the density. Each color represents a different model, as shown in the legend. Black dotted lines indicate the true value taken on by the edge in the true network Θ Raf .

.

  described in Example 5.1. For this example, because of the sparsity of the network structure, the only time points that yield any information about the true "closeness" of simulated and actual data are t = 1, 2, and 3, even when more time points are simulated. That is, regardless of the proposed network Θ in the ABC-Net method, the one-step ahead predictors for times t ≥ 5 are always exactly equal to the observed values, as all are exactly equal to 0. Because the Raf signalling network Θ Raf used in the simulations is also very sparse (only 20 out of 121 possible edges are actually present in the network), this helps justify the results observed for σ = 0 in Figure5.14.As a comparison, we also examine the approximate posterior distributions of the network for two different values of noise standard deviation, σ = 0.5 and σ = 5 (Figure5.15). For the most part, posterior distributions for both σ = 0.5 and σ = 5 seem to have the same general shape, with some occasional discrepancies (e.g., Akt→Akt and Akt→Erk). In addition, as in previous simulations, we note once again the marked difference in posterior distributions between rigid edges (peaked distributions) and flexible edges (diffuse distributions). Regardless of the amount of noise incorporated into the simulated data for the Raf signalling pathway, the approximate posterior distributions for the upstream and downstream portions of the network are consistently flexible and rigid, respectively. This seems to indicate that Example 5.1 Sparse network of 3 genes, with no noise added (σ = 0). Consider a simple network made up of 3 genes and 3 edges, where the parameter matrix Assume the expression values for the three genes at the first time point are y 1 = (y 11 , y 21 , y 31 ). Using the VAR(1) model of Equation2.6, if no noise is present in the data, the expression values at the second time point will be equal to y 2 = Θy 1 = (0, -1y 11 + y 31 , 2y 11 ).

Figure 5

 5 Figure5.15. The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, for σ = 0.5 and 5. Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The x-axis of each plot represents the values of each parameter Θ Raf ij , and the y-axis represents the corresponding density. Red and blue lines correspond to results obtained with σ = 5 and σ = 0.5, respectively. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value.
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 5 Figure5.16. Scatterplots of the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for the ABC-Net algorithm, with differing values of known edges (0, 1, 2, 3, 4). Five datasets were generated for each number of known edges. The blue line represents loess curves[START_REF] Cleveland | Robust locally weighted regression and smoothing scatterplots[END_REF].

  Figure5.17. The structure of the true Raf signalling pathway, Θ Raf , and a graphical matrix of the marginal approximate posterior distributions for every edge in the network, with four known edges. Each element of the graphical matrix corresponds to the same element of Θ Raf , i.e., the density in the second row and first column corresponds to Θ Raf 21 (Pip3→Plcγ). The x-axis of each plot represents the values of each parameter Θ Raf ij , and the y-axis represents the corresponding density. Densities shaded in green and blue correspond to edges considered to be "known" and "unknown" in the simulation, respectively. Black dotted lines are included on plots where Θ Raf ij = 0 at the true value.

  6. APPLICATION TO REAL DATAWide-scale experiments designed to study gene expression in a variety of contexts have become routine in the past decade due to the development of high-throughput technologies such as microarrays, serial analysis of gene expression, and RNA Sequencing. As an example, one of the most well-known studies of time-course gene expression, a study of the cell cycle in Saccharomyces cerevisiae based on microarray technology (Spellman et al., 1998), is now over ten years old. To date, most longitudinal studies of gene expression have been conducted on microarrays, although the decreasing cost of next generation sequencing technologies will likely lead to an upsurge of longitudinal RNA-Seq experiments in the next few years. To illustrate the utility of the two proposed approaches, the Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Chapter 4) and the ABC-MCMC for Networks (ABC-Net)

  our proposed Empirical Bayes Dynamic Bayesian Network (EBDBN) method from Chapter 4 to those of previous established methods. Specifically, we compare the EBDBN method with and without hidden states (denoted EBDBN(x) and EBDBN(-), respectively), the Variational Bayes State Space Model (VBSSM) algorithm ofBeal et al. (2005), and the shrinkage-based Vector Autoregressive (VAR) method of Opgen-Rhein and Strimmer (2007), all described in greater detail in Section 4.7.1. This set of methods provides an interesting comparison, as the EBDBN(x) and VBSSM are based on the same model (Equation (2.2)) with different estimation procedures, as are the EBDBN(-) and VAR models. In this particular example, the ABC-Net method of Chapter 5 is not included in the comparison. The reason for this is twofold. First, a network of this size (58 genes, with a total of 58 2 = 3364 possible gene-to-gene interactions) is best studied in an exploratory manner, rather than the more detailed analysis provided by the ABC-Net method. Second, without detailed prior informa-
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 6 Figure 6.2. Singular values after decomposition of the block-Hankel matrices H r for each replicate (r = 1, . . . , 44) in the T-cell activation data[START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Each line represents the singular values for one of the 44 biological replicates. As the "elbow" of the plot appears to fall at K = 4 for the majority of biological replicates, this value is chosen to be the hidden state dimension for the EBDBN method.

Figure 6

 6 Figure 6.3. Four-way Venn Diagram of edges identified by the EBDBN(x), EBDBN(-), VBSSM, and VAR in the T-cell activation data of Rangelet al. (2004). Although there is some overlap among the four methods, there are a large number of edges that are uniquely identified by a single method (e.g., 223 edges are identified only by the EBDBN(x), 210 edges are identified only by the EBDBN(-), and 185 edges are identified only by the VBSSM.)

  Figure 6.4. Edges inferred by both the EBDBN(K = 4) and VBSSM methods for the T-cell activation data[START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF]. Nodes represent genes, with numbers corresponding to those found in the R package GeneNet of[START_REF] Schäfer | Reverse engineering genetic networks using the GeneNet package[END_REF]. Blue solid lines represent inhibitory regulations, red solid lines activatory regulations, and black dotted lines edges with ambiguous regulation (i.e., disagreement between the EBDBN and VBSSM methods). Yellow nodes have five or more regulatory interactions with other genes, indicating important regulator genes in the network topology.

  Figure 6.6. The S.O.S. DNA repair system of E. coli. Under normal conditions, the master repressor lexA represses the expression of the S.O.S. genes (uvrD, umuD, uvrA, uvrY, ruvA, and polB) responsible for DNA repair. When DNA damage is detected by the protein recA, it becomes activated and provokes the autocleavage of lexA. This in turn provokes the activation of the S.O.S. genes. After DNA damage is repaired, the level of recA drops, lexA reaccumulates in the cell, and the S.O.S genes return to their original state.

Figure 6

 6 Figure 6.7. Data collected by[START_REF] Ronen | Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics[END_REF] on eight genes in the S.O.S. DNA repair system in Escherichia coli : uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB. The expression of these eight genes is measured at fifty equally spaced time points (every six minutes following ultraviolet irradiation of the cells to provoke DNA damage).

Figure 6

 6 Figure 6.8. Results for the S.O.S DNA repair system for the EBDBN(-)and ABC-Net methods. Blue and red solid edges in the network represent gene-to-gene interactions identified by the EBDBN(-) method that are "true positives" and "false positives", according to the known behavior of genes in the S.O.S. network. Dotted gray lines represent gene-to-gene interactions supported by the literature that are not identified by the EBDBN(-) method. Blue-filled densities represent the marginal approximate posterior distributions found through the ABC-Net method. The feedback loops on the S.O.S. genes (uvrD, uvrY, ruvA, and polB) appear to flexible edges, while other identified edges exhibit greater rigidity.

Figure 6

 6 Figure 6.9. Edges exhibiting the highest rigidity in the S.O.S DNA repair system for the ABC-Net method. Dotted gray lines represent gene-to-gene interactions supported by the literature. Blue-filled densities represent the marginal approximate posterior distributions found through the ABC-Net method. The most rigid edges in the network connect the recA protein directly to the S.O.S. genes, bypassing the lexA master regulator.
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 6 Figure 6.10. Graphical matrix of the marginal approximate posterior distributions from the ABC-Net algorithm for every edge in the S.O.S. DNA repair network, with data split into the first ten time points (light blue densities) and the last 25 time points (dark blue densities). Each element of the graphical matrix corresponds to the same element of Θ SOS , i.e., the density in the second row and first column corresponds to Θ SOS 21

(

  BC Cancer Agency, 2010).The Mouse Atlas Project(BC Cancer Agency, 2010) is made up of 202 SAGE libraries from 198 tissues and various developmental stages in the common house mouse, mus musculus. We focus on a subset of eight SAGE libraries extracted from the whole brain, each at a different developmental stage: Theiler stage 20, Theiler stage 21, Theiler stage 23, Theiler stage 25, post-natal day 7, post-natal day 27, postnatal day 35, and 12 weeks post-birth. This particular collection of SAGE libraries was chosen as it represented the largest number of time points for a given tissue within the Mouse Atlas Project. Note that these data do not represent a true time series, as different mice were used at each time point, and the eight libraries are from eight different experiments. Nonetheless, this series of experiments provides a useful illustration of the extension of the ABC-Net algorithm to count data, and similar techniques could be employed for true longitudinal sequence-based studies when they become available.
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 6 Figure 6.11. The neurotrophin signalling pathway, as described in the KEGG PATHWAY Database (2010). Boxes indicate gene products (e.g., proteins and RNA), small circles represent other molecules, arrows represent molecular interactions or relations, dotted lines indicate indirect effects, and solid lines represent bindings or associations. Phosphorylation is represented by +p, and ubiquitination by u+. For additional information, see the KEGG PATHWAY Database (2010).

  distances of five simulated datasets for each of 5000 random networks. Note that the EBDBN algorithm could not be applied to this set of data, as gene expression is measured by counts and not continuous values.

  

  

  . . . . . . . . . . . . . . . . . . . . Illustration of characteristics of gene regulatory networks. (Top) A spokeand-hub type structure is displayed on the left, with gene A acting as a central regulator gene. On the right, the fan-in (number of regulators) for gene A is 3. (Bottom) Feedback loops among genes are common motifs in real biological networks. On the left is a positive feedback loop, where gene A activates gene B (represented by an edge with an arrowhead), and gene B in turn activates gene A. On the right, a negative feedback loop exists, as gene A activates gene B while gene B represses gene A (represented by an edge ending in a bar). . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.8 An illustration of the process of reverse engineering a gene regulatory network from longitudinal data. High throughput technologies (e.g., microarrays) are used to measure the gene expression in biological samples taken across several time points. Statistical methods may attempt to infer a network adjacency matrix (bottom left), where ones and zeroes indicate the presence or absence of an edge in the graph (i.
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27 4.1 The scaled singular values of the block-Hankel matrix H, based on simulated data for P = 10 genes with a single replicate, T = 10 time points, and a true hidden state dimension of K = 2. A dramatic decrease is seen between the first and second singular values of H, followed by a more moderate decrease thereafter. The "elbow" of the graph thus occurs at the true value of K = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Visual representation of the typical workflow of the EBDBN algorithm (Algorithm 4.2). After selecting the hidden state dimension K as in 4.1, two sub-loops of the EM algorithm are used to update model hyperparameters ψ (using convergence criteria ∆ 1 and ∆ 2 ). Posterior means of the model parameters and Kalman filter estimates of the hidden states are subsequently calculated as in Sections 4.2 and 4.3. When global convergence is attained (based on convergence criterion ∆ 3 ), the posterior distribution of matrix Θ may be obtained. . . . . . . . . . . . . . . . . 56 4.3

  . (Right) Subnetwork proposed by consensus of VBSSM and EBDBN(K = 4). . . . . . . . . . . . . . . . . 6.6 The S.O.S. DNA repair system of E. coli. Under normal conditions, the master repressor lexA represses the expression of the S.O.S. genes (uvrD, umuD, uvrA, uvrY, ruvA, and polB) responsible for DNA repair. When DNA damage is detected by the protein recA, it becomes activated and provokes the autocleavage of lexA. This in turn provokes the activation of the S.O.S. genes. After DNA damage is repaired, the level of recA drops, lexA reaccumulates in the cell, and the S.O.S genes return to their original state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical matrix of the marginal approximate posterior distributions from the ABC-Net algorithm for every edge in the S.O.S. DNA repair network, with data split into the first ten time points (light blue densities) and the last 25 time points (dark blue densities). Each element of the graphical matrix corresponds to the same element of Θ SOS , i.e., the density in the second row and first column corresponds to Θ SOS 21 (uvrD→lexA). The xaxis of each plot represents the values of each parameter Θ SOS ij , and the y-axis represents the corresponding density. For the most part, different portions of the network share similar approximate posterior distributions, although those for recA are slightly more peaked at later time points. . 6.11 The neurotrophin signalling pathway, as described in the KEGG PATH-WAY Database (2010). Boxes indicate gene products (e.g., proteins and The performance of the proposed approaches is investigated via simulations, and both methods are applied to real longitudinal expression data. The two methods, while not comparable, are complementary, and help illustrate the need for a variety of network inference methods adapted for different contexts.
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6.8

Results for the S.O.S DNA repair system for the EBDBN(-) and ABC-Net methods. Blue and red solid edges in the network represent gene-to-gene interactions identified by the EBDBN(-) method that are "true positives" and "false positives", according to the known behavior of genes in the S.O.S. network. Dotted gray lines represent gene-to-gene interactions supported by the literature that are not identified by the EBDBN(-) method. Blue-filled densities represent the marginal approximate posterior distributions found through the ABC-Net method. The feedback loops on the S.O.S. genes (uvrD, uvrY, ruvA, and polB) appear to flexible edges, while other identified edges exhibit greater rigidity. . . . . . . . . . . . . . . . 6.9 Edges exhibiting the highest rigidity in the S.O.S DNA repair system for the ABC-Net method. Dotted gray lines represent gene-to-gene interactions supported by the literature. Blue-filled densities represent the marginal approximate posterior distributions found through the ABC-Net method. The most rigid edges in the network connect the recA protein directly to the S.O.S. genes, bypassing the lexA master regulator. . . . RNA), small circles represent other molecules, arrows represent molecular interactions or relations, dotted lines indicate indirect effects, and solid lines represent bindings or associations. Phosphorylation is represented by +p, and ubiquitination by u+. For additional information, see the KEGG PATHWAY Database (2010). . . . . . . . . . . . . . . . . . . . 6.12 Graphical matrix of the marginal approximate posterior distributions for every potential edge in the neurotrophin signalling pathway. Each element of the graphical matrix corresponds to the same element of the adjacency matrix for the neurotrophin pathway, i.e., the density in the second row and first column corresponds to Sos1→Nras. The x-axis of each plot represents the values of each parameter, and the y-axis represents the corresponding density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . regulate the rate and degree to which genes are transcribed and proteins are created. By measuring gene expression over time, it may be possible to reverse engineer, or infer, the structure of the gene network involved in a particular cellular process. With the development of microarray and next-generation sequencing technologies, it has become possible to conduct longitudinal experiments to measure the expression of thousands of genes simultaneously over time. However, due to the high dimensionality of gene expression data, the limited number of biological replicates and time points typically measured, and the complexity of biological systems themselves, the problem of reverse engineering networks from transcriptomic data demands a specialized suite of appropriate statistical tools and methodologies. Two methods are proposed that use directed graphical models of stochastic processes, known as dynamic Bayesian networks, and first-order linear models to represent gene regulatory networks. In the first method, an algorithm is developed based on a hierarchical Bayesian framework for a Gaussian state space model. Hyperparameters are estimated using an empirical Bayes procedure, and parameter posterior distributions determine the presence or absence of gene-to-gene interactions. In the second method, a simulation-based approach known as Approximate Bayesian Computing based on Markov Chain Monte Carlo sampling is modified to the context of gene regulatory networks. Because no likelihood calculation is required, this method xix permits inference even for networks where no distributional assumptions are made.
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	.5). Typically, sequence databases (e.g., EMBL
	Nucleotide Sequence Database (2010); Saccharomyces Genome Database (2010); Na-
	tional Center for Biotechnology Information Entrez Genome (2010)), are then used
	to align the tag to a reference genome, i.e., determine the genomic location for each

  More recently,[START_REF] Bremer | The KM-algorithm identifies regulated genes in time series expression data[END_REF] used a SSM model with Kalman smoothing and maximum likelihood estimation techniques to identify regulated genes in time-course gene expression data.Beal et al. (2005) considered a SSM with feedback in a hierarchical Bayesian framework, using a variational Bayes procedure to calculate a bound on the marginal likelihood in order to learn the network structure and the dimensionality of the hidden state. The hierarchical nature of this prior structure is particularly appealing, as its structure allows a shrinkage of the network parameters towards zero, corresponding to the biological assumption of network sparsity.

[START_REF] Wu | Modeling gene expression from microarray expression data with state-space equations[END_REF] 

used a factor analysis and Bayesian Information Criterion (BIC) penalization for model selection.

  -regularization approach to infer VAR parameters while incorporating prior knowledge about network topology. However, all of these approaches infer a single network structure from gene expression data, without any measure or characteriza-

	tion of inherent variability in estimates of gene-to-gene interactions or overall network
	architecture.
	2.3 Approximate Bayesian Methods for Reverse Engineering Gene Reg-
	ulatory Networks
	Due to the high dimensionality of gene expression data, the limited number of bio-
	Fujita et al. (2007) proposed a sparse VAR model which implemented a penalized
	regression for variable selection. More recently, Shimamura et al. (2009) incorpo-
	rated the relative importance of VAR coefficients into a regularization method that

minimized a penalized loss function with 1 -and 2 -penalties of the coefficients. In a similar approach,

[START_REF] Charbonnier | Weighted-LASSO for structured network inference from time course data[END_REF] 

proposed a weighted method based on an 1 logical replicates and time points typically measured, and the complexity of biological systems themselves, the problem of reverse-engineering networks from transcriptome data demands a specialized suite of appropriate statistical tools and methodologies.

We focus on two models that are able to handle continuous, noisy time-course expression data: state space models (Equations 2.2 and 2.3) and vector autoregressive models (Equation 2.6). Both are simple, yet powerful models that make use of linear relationships and first-order Markovian dynamics to describe the patterns of gene expression measurements over time.

Table 5 .

 5 2 Average time in hours and acceptance rates (5 datasets each, except for MVT which has two) for different distance functions ρ and thresholds . Numbers in parentheses indicate standard deviations. Simulations were run on a dual-socket Dell PowerEdge 1950 (quad-core (8 effective CPUs)

	Intel Xeon E5410) with 32GB RAM, running RedHat Enterprise Linux
	5.4 Server x86-64.			
	Distance (ρ) Threshold ( ) Time (hours) Acceptance rates
		1	8.1 (0.6)	45.4 (2.7)
	Canberra	5	9.6 (0.4)	41.2 (2.2)
		10	9.9 (0.6)	44.6 (1.5)
		1	7.3 (0.4)	38.0 (7.1)
	Euclidean	5	7.8 (0.4)	56.5 (3.4)

  . Numbers in parentheses indicate standard deviations. Simulations were run on a dual-socket Dell PowerEdge 1950 (quad-core (8 effective CPUs) Intel Xeon E5410) with 32GB RAM, running RedHat Enterprise Linux 5.4 Server x86-64.

	Prior bounds Time (in hours) Acceptance rates
	(-2,2)	7.7 (0.3)	38.8 (9.2)
	(-3,3)	7.7 (0.2)	35.2 (10.5)
	(-5,5)	7.8 (0.4)	26.5 (9.0)
	(-10,10)	9.5 (2.7)	23.6 (14.1)

Table 5

 5 

	.4): a first-order nonlinear VAR model (VAR-

  directly indicate the expression levels of each of the S.O.S. genes. The data are directly available at the authors' website (http://www.weizmann.ac.il/mcb/UriAlon).

	In addition, the study performed by Ronen et al. (2002) consisted of two different
	experiments for each of two different intensities of ultraviolet light (Experiments 1
	and 2 at 5 Jm -2 , and Experiments 3 and 4 at 20 Jm -2 ). One recent study by
	Charbonnier et al. (2010) found that Experiments 1 and 4 systematically led to poor
	results for network inference methods, although nothing should distinguish them from
	the other two experiments. As such, we focus the rest of our discussion on the data
	collected in Experiment 3, which was measured with the higher level of ultraviolet
	light.

of the EM algorithm in this two-step fashion, we refer to this portion of the EBDBN algorithm as an "EM-like algorithm."

Initial Values

Once the dimension K of the hidden states has been pre-specified or determined (Section 4.1) in the EBDBN algorithm, the hidden states X and hyperparameters ψ must be initialized. For the hidden states, note that a coordinate transformation of X with a nonsingular matrix can give rise to the same joint distribution over a sequence of observed variables Y [START_REF] Rangel | Probabilistic Modeling in Bioinformatics and Medical Informatics, Chapter "Modeling Genetic Networks with State-Space Models[END_REF]. This identifiability problem can be resolved by constraining the matrices A and C in Equations (2.2) and (2.3) or by restricting interest to either Θ or CB + Θ (as is the case in our work). For this reason, it is reasonable to initialize the hidden states by setting x (0) tr ∼ N(0, 1) for t = 1, . . . , T and r = 1, . . . , R. For the hyperparameters, we sample each element of ψ (0) = {α (0) , β (0) , γ (0) , δ (0) } from U(0, 1). As the hyperparameters represent the precisions of the matrices A, B, C, and Θ in Equations (2.2) and (2.3), these initial values correspond to initial gene variances of 1 or greater.

EBDBN Algorithm Iterations

Given that the EBDBN method is composed of three principal parts, model selection (Section 4.1), estimation of the hidden states X (Section 4.2), and calculation of network posterior distributions (Section 4.3), it proceeds as shown in Algorithm 4. 3. Obtain estimates of the hidden states using the Kalman filter and smoother (Section 4.2).

4. If global convergence has been attained (∆ 3 ), go to 5. Otherwise, return to 1. 5. Calculate final estimates of the posterior means of state space matrices, conditioned on hyperparameters and hidden states.

(Algorithm 4.2). In general, for parameter values at the i th and (i + 1) th iteration, these convergence criteria are a distance metric of the form

corresponding to the maximum of these distances for ψ = {α, β, γ, δ}. outperforms all methods considered here, although the margin of difference decreases considerably for larger datasets. When comparing the EBDBN(x) and EBDBN(-) methods, the results indicate that the latter outperforms the former only for data with few time points (T = 5).

To obtain a more complete perspective on the performance of the models, we also consider the sensitivity, specificity, and positive predictive value for given threshold values for the z-score, as well as the computational time required (Figure 4.5). While the EBDBN(x), EBDBN(-), and VBSSM all seem to be comparable in terms of sensitivity and AUC, the VBSSM and VAR methods perform best in terms of specificity and positive predictive value. For the model-based simulations, the VBSSM and VAR are more stringent in edge selection, resulting in a lower rate of false positives (although in the case of the VAR, this also results in a much lower rate of true positives).

The calculation time for each method is also worth considering. The VBSSM required about 12 minutes for algorithm convergence, while for the EBDBN(x), EBDBN(-), and VAR this time was about 5 1/2 minutes, 2 seconds, and 1 second, respectively.

All simulations were run on a dual-processor Dell PowerEdge 1850 (quad-core 2.8

GHz Intel (R) Xeon (TM)) with 12GB RAM, running Red Hat Enterprise Linux 5.3

Server x86-64.

Data-Based Simulations

One of the challenges of relying on simulations to compare different methods for network inference is that results based on data simulated under the same model as used by a particular method (as is the case for all the methods under consideration) are undoubtedly over-optimistic. For this reason, it is also important to consider "realistic" simulations of well-known systems based on ordinary differential equations, which more closely approximate real microarray datasets. One such set of simulations by [START_REF] Zak | Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data[END_REF][START_REF] Zak | Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network[END_REF] appears to be particularly promising, as it has already been used for this purpose by several other authors [START_REF] Husmeier | Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks[END_REF]Beal et al., 2005).

The data in [START_REF] Zak | Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data[END_REF][START_REF] Zak | Importance of input perturbations and stochastic gene expression in the reverse engineering of genetic regulatory networks: Insights from an identifiability analysis of an in silico network[END_REF] include 10 genes that interact with one another via a set of transcription factor proteins, bound promoters, and a ligand input, organized into regulatory motifs taken from the biological literature ( iterations from the MCMC run can take up a large amount of storage (particularly as the size of the network increases) and consecutive draws tend to be highly correlated, we typically save only every 50 th iteration, which is referred to as thinning the chain (Gilks et al., 1996). In practice, two additional considerations must be taken into account when implementing the ABC-Net algorithm: a burn-in period and a measure of chain convergence.

Burn-In Period

As with many MCMC methods, a burn-in period is implemented to reduce the should be set to between 1% and 2% of the run length n, if extreme starting values are avoided. In addition, several formal tools to determine b, known as convergence diagnostics, have also been proposed; see [START_REF] Cowles | Markov chain Monte Carlo convergence diagnostics: a comparative review[END_REF] for a review.

We also implement a "cooling" procedure during the burn-in period similar to that used in [START_REF] Ratmann | Using likelihood-free inference to compare evolutionary dynamics of the protein networks of H. pylori and P. falciparum[END_REF], where acceptance of (G , Θ ) is controlled by a decreasing sequence of thresholds, until the minimum pre-set value is reached. Note that tempering the acceptance threshold in this way reduces the number of accepted parameters as the number of iterations increases. This cooling scheme also addresses the poor mixing often observed in the ABC-Net algorithm, as larger tolerances in the early iterations of the burn-in are associated with higher acceptance rates. A Table 5.4 Alternative models used to generate observed data Y : an ordinary differential equation (ODE), a second-order VAR model (VAR( 2)), a first-order nonlinear VAR model (VAR-NL(1)), and a second-order nonlinear VAR model (VAR-NL(2)).

Model

Network Equations to Generate y VAR-NL( 1) 2) decomposition, and plot the singular values (see Figure 6.2). In doing so, we determine the optimal value for the hidden state dimension to be K = 4. We subsequently apply the EBDBN(K = 4) and EBDBN(-) methods for 10 different sets of initial values for hyperparameters ψ, hidden states x 1 , and gene precisons v. A 99.9% cutoff is used as a threshold for the z-scores of the edges, and only edges identified in 80% of the runs are retained for the final network structure. For the VBSSM and VAR methods, cutoff values of 99.9% for the z-scores and 80% for the local fdr correction are used, respectively.

For all methods compared here, the effect of each gene-to-gene interaction is determined by the sign of the significant elements of the Θ matrix (see Equations (2.2, (2.3), and (2.6)). That is, activations are represented by positive elements of Θ, and repressions by negative elements. The number of edges (positive, negative, and total) found by each method in the T-cell activation data is displayed in Table 6.1. The EBDBN method (both with and without hidden states) appears to identify more edges than the VAR and VBSSM method, although all methods identify a greater number of activations than repressions. Because the results of the methods under comparison seem to vary, we also consider their overlap in the four-way Venn diagram in Figure 6.3. We note that only 13 edges are selected by all four methods under consideration, largely due to the small number (15) of edges identified by the VAR method. There are 93 edges identified by at least three of the methods, and 371 by at least two of the methods. Several edges are identified by only a single method; there are 223, 210 and 185 such uniquely identified edges for the EBDBN(x), EBDBN(-), and VBSSM, respectively.

It is somewhat surprising that the results of the four methods under comparison differ so widely, particularly given that the approaches are all based on similar models.

For instance, although the EBDBN(x) and VBSSM methods resemble each other quite closely with the exception of their respective estimation procedures, over 60% of the interactions identified by one (64% for the former, 68% for the latter) are not identified by the other in the T-cell activation data. Because these results differ by such a large extent, we focus on the common sub-network identified by both the EBDBN(x) and VBSSM methods, composed of a total of 120 edges among 51 genes (Figure 6.4).

Of these edges, 26 represent repressions, 84 represent activations, and 10 have an ambiguous regulatory effect (i.e., the two methods do not agree with respect to the type of interaction). The structure of this so-called "consensus network" is visualized using the software application Cytoscape [START_REF] Shannon | Cytoscape: A software environment for integrated model of biomolecular interaction networks[END_REF], shown in Figure 6.4.

Further focusing on portions of the consensus network shown in Figure 6.4 can yield additional pertinent information. For example, eight genes (numbered 7, 17, 21, 28, 38, 41, 46, and 48, and colored in yellow in the figure) have a high degree of connectivity with other genes, with 5 or more outward-directed edges (see Table 6.2 for descriptions). In other words, the VBSSM and EBDBN provide concurring evidence that this set of eight genes are important regulator genes in the T-cell activation network, and could potentially be avenues of interest for future research. In work by [START_REF] Rangel | Modeling T-cell activation using gene expression profiling and state-space model[END_REF], the gene FYB (gene 1) is found to occupy a crucial position in