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Abstract
Cancer is a major cause of death and lots of e�ort must be made to defeat the disease.

Microarray technology is a powerful tool very helpful in oncology in order to better under-
stand the molecular mechanisms involved in tumoral progression. We know that cancer is
due to a modi�cation of the gene regulation. Then, the study of gene expression in tumours
is a valuable information in order to understand the biology of the disease and to identify
new prognostic and predictive factors so that the clinician can tailor the therapy for each
patient. Besides the modi�cation of gene expression, tumours have chromosome alterations
and especially a change of their DNA copy number. There are microarrays which allow the
quanti�cation of DNA copy number. The raw data obtained from the microarray technol-
ogy need appropriate statistical processing so that they can be biologically and clinically
meaningful. This is precisely the goal of the present work. Thus, statistical methods have
been developed in order to normalise and extract the biological information from microarrays
devoted to the study of DNA copy number in tumours. The methods have been applied in
uveal melanoma in order to identify high-risk tumours. The integrative analysis of di�erent
types of molecular pro�les is a challenge in biostatistics. Therefore, a statistical method able
to combine both gene expression and DNA copy number data has been developed in the
framework of supervised classi�cation. The statistical properties of the method have been
studied and its performance has been evaluated on both simulated and real data.

Title: Biostatistical algorithms for omics data in oncology - Application to DNA copy number

microarray experiments.
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Résumé
Le cancer est une cause principale de décès et d'importants e�orts doivent être réalisés

pour vaincre la maladie. La technologie des microarrays est un puissant outil de recherche
en oncologie pour comprendre les mécanismes de la progression tumorale qui est due à une
perturbation de la régulation des gènes. Par conséquent, l'étude de leur niveau d'expression
dans les tumeurs o�re une perspective pour comprendre les mécanismes biologiques de la
maladie et identi�er de nouveaux facteurs pronostiques et prédictifs qui aideront le clinicien
à choisir la thérapie de chaque patients. Par ailleurs, les tumeurs présentent un change-
ment du nombre de copies d'ADN dont la quanti�cation est aussi possible par microarray.
L'utilisation des données de microarray nécessite un traitement statistique approprié per-
mettant de transformer les données brutes en données interprétables biologiquement et clin-
iquement. Ainsi, nous avons développé des méthodes statistiques qui visent à normaliser
et extraire l'information biologique issue des microarrays dédiés à l'étude du nombre de
copies d'ADN des tumeurs. Nos méthodes ont permis la caractérisation des tumeurs de
haut-risque métastatique dans le mélanome uvéal. Par ailleurs, un des enjeux de l'analyse
biostatistique des données de microarrays consiste en l'analyse intégrée de di�érents types
de pro�ls moléculaires. Ainsi, une méthode statistique qui combine les données d'expression
de gènes et du nombre de copie d'ADN obtenues par microarrays a été développée dans
un contexte de classi�cation supervisée. Les propriétés statistiques de la méthode ont été
étudiées et ses performances estimées sur des données simulées et réelles.

Titre: Algorithmes biostatistiques pour les données omiques en oncologie - Application à l'étude

du nombre de copies d'ADN à partir des expériences de microarray.
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Résumé substantiel

Le cancer est une cause principale de décès et d'importants e�orts doivent être réalisés
pour vaincre la maladie. La technologie des microarrays (appelés également puces) est un
puissant outil de recherche en oncologie pour comprendre les mécanismes de la progression tu-
morale. Cette technologie permet notamment de quanti�er les aberrations chromosomiques
qui sont une caractéristique commune à tous les cancers. Le travail de thèse présenté ici
a contribué aux développements d'algorithmes biostatistiques et d'outils bioinformatiques
dédiés à l'analyse des données de puces qui permettent la quanti�cation des aberrations
chromosomiques dues à un changement du nombre de copies d'ADN. Le manuscrit de thèse
se divise en trois chapitres.

Le Chapitre 1 introduit le contexte clinique, biologique et biotechnologique. Tout
d'abord, les enjeux de la recherche en oncologie sont présentés. Ceux-ci consistent en trois
principaux axes. Le premier est l'identi�cation de nouveaux facteurs pronostiques et prédic-
tifs pour aider le clinicien à personnaliser la prise en charge thérapeutique de chaque patient.
Le deuxième est la recherche de nouvelles cibles thérapeutiques pour traiter les cancers in-
curables. Le troisième est l'amélioration de la connaissance des mécanismes de la progression
tumorale. Le travail présenté ici s'intéresse au premier axe dont l'objectif est de dé�nir des
règles de prédiction qui guideront les choix du clinicien en utilisant les données moléculaires
obtenues par la technique des microarrays. Après avoir décrit les mécanismes biologiques qui
contrôlent le fonctionnement d'une cellule normale, nous expliquons comment ceux-ci sont
altérés dans la cellule cancéreuse. Le cancer est une maladie des gènes dont la régulation
a été perturbée suite à une séquence d'accumulation de mutations notamment au niveau
de gènes critiques appelés oncogènes et gènes suppresseur de tumeur. L'altération de la
régulation des gènes due à cette accumulation de mutations se traduit par une modi�cation
de la fonction des facteurs de transcription, des changements des propriétés épigénétiques,
des aberrations au niveau de l'épissage alternatif et une perturbation du rôle régulateur des
ARNs non-codants. Le réseau de régulation des gènes qui dé�nit le fonctionnement de la
cellule normal en réponse à son environnement est alors totalement incapable d'assurer un
comportement socialement responsable de la cellule cancéreuse à l'égard des autres cellules
de l'organisme. Au �nal, la cellule cancéreuse acquiert de nouvelles caractéristiques qui lui
confèrent entre autre la capacité de proliférer de manière anarchique et d'envahir les tis-
sus adjacents. Une des caractéristiques liée à ce chaos général qui règne au sein de chaque
cellule cancéreuse est la présence d'aberrations chromosomiques. En e�et, le génome des
tumeurs présente un caryotype anormal dans lequel des chromosomes entiers ou seulement
certaines portions ont été perdus, gagnés ou ampli�és (i.e. gain de plus de quatre copies).
Ainsi, ces modi�cations du nombre de copies d'ADN représentent une information précieuse
pour permettre la caractérisation moléculaire des tumeurs et dé�nir les règles de prédiction
indispensables pour répondre au premier axe des enjeux de la recherche en oncologie. La
quanti�cation du nombre de copies d'ADN dans le génome des tumeurs est possible grace à
la technique des microarrays. Initialement, cette technologie a été développée pour étudier le
niveau d'expression des gènes mais celle-ci a été adaptée pour assurer l'étude des aberrations
chromosomiques à grande échelle. Ainsi, il est désormais possible de mesurer, en un très
grand nombre de loci du génome, le nombre de copies d'ADN en utilisant des sondes qui
sont spéci�ques de chaque position génomique. Cette technique est dite à haut-débit car
elle permet en un temps rapide de générer un volume important de données à l'échelle d'un
génome complet. La technique des puces CGH (Comparative Genomic Hybridisation) avec
des sondes de type BAC (Bacterial Arti�cial Chromosome) a été la première à permettre
une approche à haut-débit de quanti�cation du nombre de copies d'ADN mais celle-ci tend



désormais à être remplacée par les puces CGH avec des sondes à oligonucléotides qui assurent
une couverture bien plus grande du génome permettant ainsi l'identi�cation d'aberrations
d'une taille de plus en plus petite. Dans ce chapitre, nous introduisons la nécessité des
traitements biostatistiques a�n de rendre exploitables, tant d'un point de vue biologique que
clinique, les données issues de microarray en reprenant les travaux pionniers de l'analyse de
l'expression des gènes puis nous justi�ons le besoin de nouvelles méthodes indispensables au
traitement des puces CGH.

Le Chapitre 2 décrit les algorithmes biostatistiques et les outils bioinformatiques qui
ont été développés a�n d'analyser les données obtenues par la technique des puces CGH.
Des étapes systématiques sont nécessaires pour rendre les données brutes interprétables
biologiquement et cliniquement. Les méthodes que nous avons développées traitent de ces
di�érentes étapes. Tout d'abord, il faut normaliser les données brutes, c'est-à-dire corriger
les sources de variabilité systématiques a�n d'améliorer la qualité du signal. Sur les données
de puces CGH avec des sondes de type BAC, des artefacts spatiaux ont été observés. En e�et,
on observe des zones sur ces puces dans lesquelles le signal mesuré est anormalement fort ou
faible. Par conséquent, nous avons développé une méthode statistique (package MANOR)
qui corrige et/ou élimine ces zones spatiales aberrantes. Pour cela, une étape de lissage des
données suivie d'une segmentation spatiale du signal permet une normalisation e�cace. Une
fois la puce normalisée, il faut identi�er de manière automatique les régions chromosomiques
qui présentent un changement du nombre de copies d'ADN. Sur le génome, ce changement du
nombre de copies d'ADN se produit en des loci particuliers appelés points de cassure. Nous
avons développé une méthode statistique (package GLAD) qui permet leur identi�cation
automatique. Pour cela, l'algorithme considère la proximité géographique le long du génome
des di�érents loci et estime une fonction en créneaux dont les sauts correspondent aux
points de cassure. Chaque créneau représente une région chromosomique au sein de laquelle
le nombre de copies d'ADN est constant. Ensuite, à chaque région est attribué un statut
perdu, normal, gagné ou ampli�é. Chaque technologie de puce CGH a des spéci�cités qui
lui sont propres. Dans, le cas des puces CGH avec des sondes à oligonucleotides, nous
avons développé une méthode (package ITALICS) qui normalise et détecte le nombre de
copies d'ADN de manière alternative et itérative en considérant des sources de variabilité
à corriger spéci�ques de ce type de puce. L'e�cacité de cette approche a été montrée sur
des données de cancer du sein. Les trois méthodes précédentes qui ont été développées
analysent un seul pro�l moléculaire à la fois. Cependant, il est indispensable d'utiliser
des analyses transversales a�n d'étudier les aberrations communes au sein de chaque type
de cancer. Des méthodes permettent d'extraire de manière transversale les aberrations du
nombre de copies d'ADN qui sont informatives. Sur des données de puces CGH du mélanome
uvéal, nous avons appliqué nos algorithmes de normalisation spatiale et d'identi�cation des
points de cassure. Les aberrations du nombre de copies d'ADN informatives ont ensuite été
extraites transversalement et ont permis de prédire e�cacement les tumeurs de haut-risque
métastatique. Les algorithmes que nous avons développés sont implémentés sous forme de
packages R et disponibles dans le projet Bioconductor. De plus, une plate-forme d'analyse
web (CAPweb) a été mise en place qui permet aux biologistes d'utiliser simplement nos
méthodes sans compétence informatique et de visualiser et analyser avec un logiciel (VAMP)
les pro�ls moléculaires du nombre de copies d'ADN. Par ailleurs, nous avons mis en place une
base de données (ACTuDB) qui intègre des données d'études des aberrations chromosomiques
de di�érents types de cancer qui ont été mises à disposition publiquement par les chercheurs.
Un traitement biostatistique et bioinformatique a été appliqué à chaque jeux de données de
sorte qu'ils soient tous comparables entre eux. Cette base de données permet aux nouvelles
études en cours de comparer leurs résultats par rapport à ceux qui ont déjà été obtenus par
d'autres chercheurs.



LeChapitre 3 décrit une méthode d'analyse intégrée de données d'expression de gènes et
du nombre de copies d'ADN dans un contexte de classi�cation supervisée. L'analyse intégrée
de pro�ls moléculaires de nature di�érente est un des enjeux de l'analyse biostatistique des
données à haut-débit. Désormais, de nombreuses études analysent conjointement les données
d'expression des gènes avec le nombre de copies d'ADN. La confrontation de ces deux niveaux
d'information permet d'avoir une meilleure compréhension des mécanismes impliqués dans la
progression tumorale. Par ailleurs, l'utilisation simultanée de ces deux niveaux d'information
représente un atout pour dé�nir de nouvelles règles de prédiction qui aideront le clinicien dans
le choix de la thérapie de chaque patient. La méthode que nous avons développée permet
d'utiliser des données mixtes, c'est-à-dire qu'elle combine à la fois des variables continues
(les données d'expression de gènes) et des données discrètes (les données des aberrations du
nombre de copies d'ADN informatives identi�ées transversalement) issues des deux types
de pro�ls moléculaires. Tout d'abord, les principes généraux de la classi�cation supervisée
ont été introduits. Ensuite, les di�érentes méthodes de classi�cation supervisée capables
de prendre en compte des données mixtes ont été décrites. Nous avons justi�é le choix
de la méthode de Location Model pour répondre à notre problématique de classi�cation
supervisée. Cette méthode est une généralisation de l'analyse discriminante linéaire qui
permet de prendre en compte une hétérogénéité des variables continues liée aux variables
discrètes. De plus, le Location Model permet de modéliser la probabilité d'appartenir à une
classe donnée compte-tenu des variables discrètes observées. Les données d'expression de
gènes présentent la particularité d'avoir un grand nombre de variables ce qui rend inapplicable
la technique choisie sans traitement préalable des données. Ainsi, nous avons proposé une
méthode de classi�cation supervisée capable d'utiliser des variables mixtes tout en prenant
en compte la haute dimensionnalité des données d'expression de gènes. Pour cela, notre
méthode intègre une réduction de la dimension des données d'expression de gènes par PLS
(Partial Least Squares) puis utilise les premières composantes PLS comme nouvelles variables
continues dans le Location Model. Les performances de prédiction ont été évaluées à la fois
sur des données simulées et réelles. Les résultats ont montré l'e�cacité de notre méthode
sur les données simulées. Toutefois, les résultats ne sont pas convaincants sur des données
réelles. En e�et, les performances de prédiction ne sont pas meilleures en combinant les
données d'expression des gènes et d'aberrations du nombre de copies d'ADN informatives
qu'en considérant seulement les données d'expression de gènes. Les raisons peuvent être
soit statistique soit biologique. Le choix du nombre de composantes PLS à considérer pour
la classi�cation supervisée est une problématique importante. Des techniques de choix de
modèles existent et les principaux critères utilisés classiquement ont été rappelés. Parmi ces
critères, les critères théoriques présentent l'avantage de limiter les temps de calcul par rapport
aux critères empiriques s'appuyant sur une validation croisée. Toutefois, l'application directe
des critères théoriques aux composantes PLS s'avère ine�cace. Un critère théorique dédié
aux choix du nombre de composantes PLS serait dans l'idéal nécessaire mais sa recherche
dépasse le cadre du présent travail. Nous avons néanmoins proposé un critère statistique qui
teste la signi�cativité du signal capturé par la première composante. Les résultats ont montré
l'e�cacité du critère statistique sur des données simulées avec toutefois une diminution de ses
performances lorsque l'on introduit un forte corrélation entre les variables continues. Ceci
explique les faibles performances obtenues sur des données réelles à cause de la présence
de corrélation entre les di�érents gènes. Des perspectives ont été proposées pour améliorer
la méthode de classi�cation supervisée et le critère statistique développés a�n qu'ils soient
applicables à des jeux de données réelles.





Remerciements

Tout d'abord, je tiens à remercier Emmanuel Barillot et François Radvanyi sans qui mon
aventure passionnante au sein de l'Institut Curie n'aurait jamais commencé. Merci de la
con�ance que vous avez pu me témoigner et de votre expérience précieuse que vous avez su
partager.

Je remercie Jean-Jacques Daudin et Emmanuel Barillot d'avoir accepté de m'encadrer
pendant tout mon travail de thèse. Merci, de votre disponibilité, de votre soutien et de tout
ce que vous avez pu m'apprendre.

Je remercie Max Cha�anet et Yves Moreau d'avoir accepté d'être les rapporteurs de ma
thèse. Je remercie également Philippe Besse et Xavier Gidrol d'avoir accepté d'évaluer mon
travail.

Je remercie tout particulièrement François Radvanyi, Emmanuel Barillot et Jean-Jacques
Daudin pour la relecture attentive de mon manuscrit et leurs remarques constructives. Un
grand merci également à toutes les personnes qui m'ont fourni une aide précieuse dans
la réalisation de ce manuscrit: Bernard Asselain, Marc Bollet, Laurence Calzone, Jérome
Couturier, Pierre Neuvial, Priscilla Signorini, Joan Sobota, Vassili Soulemis, Marc-Henri
Stern, Anne Vincent-Salomon et Yann de Ricke.

Je tiens à exprimer mes sincères remerciements à l'ensemble des mes collègues présents
et passés de l'Institut Curie pour leur compétence, leur disponibilité, leur dynamisme, leur
soutien et leur bonne humeur. Merci tout d'abord aux personnes du Service de Bioinfor-
matique qui ont contribué de près à la réalisation de ce travail: Anna Biedak, Isabel Brito,
Philippe La Rosa, Séverine Lair, Stéphane Liva, Pierre Neuvial, Guillem Rigaill, Nicolas
Servant, Julien Trolet et Eric Viara. Merci ensuite aux personnes membres des unités du
Centre de Recherche, de l'Hôpital et du Département de Transfert avec lesquelles ce travail
a été réalisé en étroite collaboration: Anna Almeida, Alain Aurias, Marc Bollet, Caroline
Brennetot, Jérome Couturier, Charles Decraene, Olivier Delattre, Isabelle Janoueix-Lerosey,
Elodie Manié, Jean-Philippe Meyniel, Gaëlle Pierron, Sophie Piperno-Neumann, Céline Rou-
veirol, Simon Saule, Nicolas Stransky, Xavier Sastre, Vassili Soumelis, Marc-Henri Stern,
Jean-Paul Thiery et Elisabetta Volpe. Sans vous, rien de ce qui est présenté ici n'aurait été
réalisé. Merci également à tous ceux avec qui de nombreux projets ont pu et seront réalisés:
Sabrina Carpentier, David Gentien, Pierre Gestraud, Eléonore Gravier, Georges Lucotte,
Eugène Novikok, Patrick Poullet et Andrei Zynoviev.

Un grand merci à tous les membres du Service de Bioinformatique pour l'ambiance
chaleureuse qui y règne. Merci également à tous les amateurs de blagues et de bilboquet
(je pense qu'ils se reconnaîtront eux-mêmes car mieux vaut ne pas citer de noms): sachez
d'ailleurs que mon record de 61 tient toujours, à bon entendeur . . .

Je remercie en�n mes parents, ma famille et mes amis de leur soutien.





To my Grandfather





Contents

Contents i

List of Figures iii

List of Tables v

List of Acronyms vii

Notations ix

Preamble 1

1 Cancer and high-throughput technologies in oncology 3
1.1 Challenges in oncology research . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Biology of the cell for beginners . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Central dogma of molecular biology . . . . . . . . . . . . . . . . . . . 7
1.2.2 Regulation mechanisms of the information �ow . . . . . . . . . . . . 11
1.2.3 Life of a normal cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Biology of cancer for beginners . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.1 Progressive accumulation of mutations . . . . . . . . . . . . . . . . . 17
1.3.2 Clonal origin of the tumour and stemness of cancer cells . . . . . . . 18
1.3.3 Oncogenes and tumour-suppressor genes . . . . . . . . . . . . . . . . 20
1.3.4 Alterations of the regulation mechanisms of the information �ow . . . 23
1.3.5 Hallmarks of cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.6 Chromosome aberrations in cancer . . . . . . . . . . . . . . . . . . . 28

1.4 Welcome to the world of omics ! . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.1 Microarray era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.4.2 Analysis of DNA copy number . . . . . . . . . . . . . . . . . . . . . . 34
1.4.3 Analysis of mRNA expression . . . . . . . . . . . . . . . . . . . . . . 38
1.4.4 Emerging sequencing technologies . . . . . . . . . . . . . . . . . . . . 38

1.5 From biology to bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.5.1 Molecular pro�ling of cancer: proof of concept . . . . . . . . . . . . . 39
1.5.2 Analysis of DNA copy number: a need for new methods . . . . . . . 41
1.5.3 Issue of Knowledge integration . . . . . . . . . . . . . . . . . . . . . . 43
1.5.4 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Extraction of the biological information from high-throughput experiments:
application to DNA copy number microarray experiments 45
2.1 Normalisation of array-CGH data . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2 Identi�cation of DNA copy number alterations . . . . . . . . . . . . . . . . . 69
2.3 Iterative approach for normalisation and identi�cation of DNA copy number

alterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.4 Extraction of informative DNA copy number alterations . . . . . . . . . . . 91
2.5 Example of aCGH study: identi�cation of high-risk tumours in uveal melanoma 93
2.6 Tools, software and database for DNA copy number microarray experiments 117

i



2.6.1 R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.2 VAMP software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.3 CAPweb platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
2.6.4 ACTuDB database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.5 Clinical applications of the tools and software . . . . . . . . . . . . . 118

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3 Prediction of the clinical phenotype based on both mRNA expression and
DNA copy number microarray experiments 121
3.1 Back to basics: supervised classi�cation . . . . . . . . . . . . . . . . . . . . . 123
3.2 Supervised classi�cation with mixed variables . . . . . . . . . . . . . . . . . 125

3.2.1 Classi�cation trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.2 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2.3 DISQUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.2.4 Location model (LM) . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3 Curse of dimensionality : a need for dimension reduction . . . . . . . . . . . 130
3.3.1 Techniques to reduce the complexity of the data . . . . . . . . . . . . 131
3.3.2 Partial Least Squares (PLS) . . . . . . . . . . . . . . . . . . . . . . . 135

3.4 Contribution 1: the Partial Least Squares Location Model (PLS-LM) . . . . 138
3.4.1 Prediction performance of the PLS-LM on simulated data . . . . . . 138
3.4.2 Prediction performance of the PLS-LM on real data . . . . . . . . . . 143
3.4.3 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . . . . 146
3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.5 How many components to choose in the PLS-LM? . . . . . . . . . . . . . . . 148
3.5.1 Model selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.5.2 Model selection criteria and LM . . . . . . . . . . . . . . . . . . . . . 150

3.6 Contribution 2: Statistical criterion to test the signi�cance of the �rst PLS
component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.6.1 Asymptotic distribution of the statistical criterion . . . . . . . . . . . 153
3.6.2 Assessment of the statistical criterion on simulated data . . . . . . . 156
3.6.3 Assessment of the statistical criterion on real data . . . . . . . . . . . 162
3.6.4 Discussion and perspectives . . . . . . . . . . . . . . . . . . . . . . . 162

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Conclusion 165

List of publications 167

Glossary 171

Bibliography 173

A Annexes 187
A.1 Publications supplied as supplementary materials . . . . . . . . . . . . . . . 187
A.2 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
A.3 Supplementary �gures of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 269
A.4 Supplementary tables of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 277

ii



List of Figures

1.1 Need for prognostic and predictive factors in breast cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Histological sections of breast cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Hierarchical representation of a multi-cellular living organism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Central dogma of molecular biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Expanding the central dogma: ncRNA and RNA interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Role of transcription factor in gene expression regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Characteristics of epigenome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Alternative splicing of the α-tropomyosin gene from rat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 Role of miRNA in a normal cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.10 Signal transduction cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 Emergent integrated circuit of the cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Hierarchical organisation of a malignant clone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13 Clonal selection of hierarchical organised clones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.14 Oncogene and tumour-suppressor gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.15 From proto-oncogene to oncogene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.16 Role of miRNA in a cancer cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.17 Epigenetic alterations in tumoral progression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.18 DNA methylation in cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.19 Histone modi�cation in cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.20 Acquired capabilities of cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.21 Karyotype of a colon cancer cell and normal cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.22 Chromosomal aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.23 DNA copy number aberrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.24 Omics technologies in oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.25 A�ymetrix GeneChipR© used to quantify mRNA expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.26 Array-CGH protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.27 Theoretical array-CGH quanti�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.28 IMR32 neuroblastoma cell line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.29 Molecular classi�cation of breast cancer from mRNA expression pro�les . . . . . . . . . . . . . . . . . . . . . . . 40
1.30 Molecular classi�cation from miRNA expression pro�les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1 Bioinformatics approach to analyse high-throughput experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Breakpoint detection in DNA copy number pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Example of informative DNA copy number alterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.4 Representation of DNA copy number data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.1 Representation of DNA copy number data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.2 Representation of mRNA expression data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3 Application of classi�cation trees to predict prognosis in breast cancer . . . . . . . . . . . . . . . . . . . . . . . . 126
3.4 Arti�cial example for the LM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.5 Redundancy in simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.6 PLS components for Chin et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.7 PLS components for Stransky et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.8 Bias-variance tradeo� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.9 Typical histograms for simulations under H0 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.10 Typical histograms for simulations under H0 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.11 Typical histograms for simulations under H1 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.12 Typical histograms for simulations under H1 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1 Histograms for simulations under H0 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
A.2 Histograms for simulations under H0 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
A.3 Simulations under H0 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
A.4 Histograms for simulations under H1 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
A.5 Histograms for simulations under H1 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
A.6 Simulations under H1 with correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

iii



iv



List of Tables

3.1 Redundancy in simulated data and prediction performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.2 PLS-LM prediction performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.3 Variable weights in the PLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3.4 Prediction performance of the PLS-LM on Chin et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.5 Prediction performance of the PLS-LM on Stransky et al. (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.6 Simulations under H0 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.7 Simulations under H1 without correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.1 Comparison of performance in the additive case with the same number of observations in each subclass . . . . . 278
A.2 Comparison of performance in the interaction case with the same number of observations in each subclass . . . . 279
A.3 Comparison of performance in the additive case with a di�erent number of observations in each subclass . . . . . 280
A.4 Comparison of performance in the interaction case with a di�erent number of observations in each subclass . . . 281

v



vi



List of Acronyms

aCGH array Comparative Genomic Hybridisation
ACTuDB Array CGH Tumour DataBase
AIC Akaike Information Criterion

BAC Bacterial Arti�cial Chromosome
BIC Bayesian Information Criterion

CAPweb CGH Array Pipeline on the web
CART Classi�cation and Regression Tree
CGH Comparative Genomic Hybridisation
CNV Copy Number Variant
CSC Cancer Stem Cell

DAIC Discriminant AIC
DISQUAL DIScriminante analysis with QUALitative

variables
DNA Deoxyribonucleic acid

FISH Fluorescence In Situ Hybridisation

GA Genetic Algorithm
GLAD Gain and Loss Analysis of DNA
GLM Generalised Linear Model
GSEA Gene Set Enrichment Analysis

HMM Hidden Markov Model

ICA Independent Component Analysis
ITALICS ITerative and Alternative normaLIsation and

Copy number calling for a�ymetrix Snp arrays

LDA Linear Discriminant Analysis
LM Location Model
LOH Loss of Heterozygosity
LOO Leave-One-Out

MANOR MicroArray NORmalisation
MANOVA Multivariate Analysis of Variance
MCA Multiple Correspondence Analysis
miRNA microRNA
mRNA messenger RNA

ncRNA non-coding RNA

vii



PCA Principal Component Analysis
PLS Partial Least Squares
PLS-LM Partial Least Squares Location Model
PRESS Prediction Residuals Sum of Squares

QDA Quadratic Discriminant Analysis

QDA Regularised Discriminant Analysis
RNA Ribonucleic acid

siRNA small interfering RNA
SVD Singular Value Decomposition

VAMP Visualisation and Analysis of Molecular Pro-
�les

viii



Notations

Typographical conventions:
X Σ bold letters denote matrix or vector

Mathematical notations:
X′ transpose of X

I identity matrix
〈X,Y〉 dot product
‖X‖2 = 〈X,X〉
rk(X) rank of the matrix X

log = Neperian logarithm
card(G) = cardinality of a set G

diag{a1, · · · , aK} = square matrix of size K with a1, · · · , aK on the diagonal and 0 elsewhere

Random distributions:
X ∼ L X follows the distribution L
N (µ, σ2) normal distribution with mean µ and variance σ2

U (a, b) uniform distribution between a and b
LN (µ, σ2) log-normal distribution with log(LN (µ, σ2)) ∼ N (µ, σ2)

T (k) centered student distribution with k degrees of freedom
E(X), V (X) expectation and variance of X
COV (X, Y ) covariance between X and Y
COVn(X, Y ) empirical covariance between X and Y for a sample size n

Xn
d−→ X Xn converges in distribution to X

Xn
p−→ X Xn converges in probability to X

P (X|Y ) conditional probability of X given Y

Notations used in chapter 3 for the supervised classi�cation:
n = number of individuals
p = number of continuous predictor variables (i.e. number of genes)
q = number of discrete predictor variables

X̃ = (X̃1, · · · , X̃p) = (X̃ij), (n, p) matrix of continuous predictor variables

X = (X1, · · · ,Xp) = (Xij) centered and scaled matrix X̃
Z = (Z1, · · · ,Zq), (n, q) matrix of discrete predictor variables
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Bathsheba at Her Bath
Rembrandt, 1654

A qui donc sommes-nous? Qui nous a? qui nous mène?
Vautour fatalité, tiens-tu la race humaine?

Oh ! parlez, cieux vermeils,
L'âme sans fond tient-elle aux étoiles sans nombre?
Chaque rayon d'en haut est-il un �l de l'ombre

Liant l'homme aux soleils?

Victor Hugo, Les Contemplations

Preamble

The oldest description of cancer in humans was found in an Egyptian papyrus written be-
tween 3000-1500 BC. Hippocrates (460-370 BC), the father of medicine, described cancer in
detail and used the Greek terms carcinos and carcinoma to refer to chronic ulcers or growths
which seemed to be malignant tumours and squirr(h)e to refer to a type of cancer with a
hard consistency. In Greek, carcinos means cray�sh, canker, cancer, tumour and skirros
means solid tumour as a noun and hard, hardened as an adjective. Celsus (28 BC - 50 AD),
a Roman doctor, translated the Greek word carcinos into the word cancer, a Latin word
meaning crab, cray�sh, dunce and cancer, canker. There was a theory which claimed that
the form of some cancerous lesions recalled the form of a crab. This explains the origin of
the words carcinos and cancer to refer to these diseases. Galien (131-201), used the Greek
term oncos, meaning mass, to refer to a growth or a tumour which looked malignant. In
art history, testimonies of this disease can also be found. Rubens and Rembrandt were
main baroque painters who practised realism, which means that they painted whatever their
eyes captured. This has allowed physicians to discover alterations which suggest tumour
in the breast of the models they painted. One of the most famous paintings which depicts
breast tumour is the oil-on-canvas piece by Rembrandt, Bathsheba at Her Bath: an Italian
surgeon �rst suggested that Rembrandt might have depicted breast tumour in his painting,
accurately showing the clinical signs (the dark shadow on her left breast) of the fatal dis-
ease from which his model and mistress, Hendrickje Sto�els, was su�ering (Vaidya, 2007).
Therefore, cancer is not a modern disease but has passed through the ages for a long time
and very likely from the origin of life. Although an old disease, cancer still remains complex
and undeciphered. Moreover, cancer is a major cause of death in developed countries. In
metropolitan France, a study has shown that, for the �rst time, cancer is the leading cause
of death (30%) preceding cardiovascular diseases (28.9%) (Aouba et al., 2007). Therefore,
lots of e�orts must be made to defeat the disease.

In the �eld of life sciences, the twentieth century has seen the discipline of genetics deliver
solutions to the most profound problem of biology: hows does the genetic constitution of a cell
and organism determines its appearance and function? In 1944, Erwin Schrödinger (Nobel
prize in physics, 1933) asked "What is life?" (Schrödinger, 1944) and wrote "We believe a
gene - or perhaps the whole chromosome �ber - to be an aperiodic solid". The nature of
this aperiodic crystal was discovered in 1953 by Watson and Crick (Nobel prize in medicine,
1962): the DNA double helix. The advent of biotechnologies and molecular biology has
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allowed researchers to sequence the human DNA. This project, called the Human Genome
Project, was initiated in 1990 and completed in 2003. Man can now faces his biological
destiny and the new knowledge arising from the �eld of molecular biology o�ers promising
insights into medical sciences and especially in ?oncology.

For centuries, the vocation of medicine was �rst curative. The improvement in both
technologies and scienti�c knowledge has made possible to go towards a predictive medicine:
an ounce of prevention is worth a pound of cure. Medicine is an art. Medicine is a science.
The term predictive medicine was �rst introduced by Jean Dausset (Nobel prize in medicine,
1980). It is a medical approach which assesses the risk for any individual to develop a
given disease based on factors of genetic predisposition. Predictive medicine is therefore
statistical medicine. This new era of medicine is evolving, but before predicting what will
happen to healthy individuals, this kind of medicine must help to predict the evolution of
di�erent pathologies. Let us take the example of breast cancer: to prevent the occurrence
of distant ?metastasis, the tumoral ablation is followed by adjuvant treatments (such as
chemotherapy) whose secondary e�ects can damage the quality of life of the patient or
even patient's health. In many cases, the adjuvant treatment could have been avoided
but we do not yet have e�cient factors for reliable prediction. This is the reason why we
need to identify new factors in order to have an individually tailored therapy. In statistics,
this issue of prediction is named supervised classi�cation. Therefore, new biological factors
which can help the clinician to choose the most suitable treatment are needed. The �eld of
biotechnologies o�ers new insights to provide these new biological factors.

High throughput technologies make it possible to quantify molecular pro�les at di�erent
levels inside the cancer cells. The most widely used and famous technique is the microarray
which allows the simultaneous monitoring of the expression of all the genes in a sample.
This technique has been adapted to investigate other molecular pro�les and more partic-
ularly the DNA copy number of cancer cells. Indeed, a common characteristic among the
di�erent types of cancer is the modi�cation in the number of their chromosomes. Therefore,
the characterisation of the modi�cation of DNA copy number in cancer gives valuable new
biological information to better understand the disease and to help the clinician in the choice
of therapy. The aim of the thesis was to develop statistical methods to analyse DNA copy
number microarray experiments for oncology purposes. The outline is the following:

• Chapter 1 introduces the clinical, biological and biotechnical contexts of the thesis.

• Chapter 2 presents the statistical methods which have been developed during the
thesis to analyse DNA copy number microarray experiments. A clinical application
using the statistical methods we had developed is also described.

• Chapter 3 describes the methodology we have developed to combine both gene ex-
pression and DNA copy number microarray experiments in order to perform supervised
classi�cation. As already mentioned, the goal of supervised classi�cation is to help the
clinician to choose an individually tailored therapy.

At the end of the manuscript the following information is provided:

• The list of publications is available.

• The de�nition of words �agged by ? is available in the glossary.

• In the Annexes are provided the publications which have not been included in Chap-
ter 2. Statistical and mathematical theorems which have been used to prove our
mathematical propositions are also supplied in this part. Supplementary materials of
Chapter 3 are also supplied.
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Galacidalacidesoxyribonucleicacid
Salvador Dalí, 1963

Toutes les idées des arts ont leurs modèles dans la production
de la nature: Dieu a créé et l'homme imite.

George-Louis Leclerc, Comte de Bu�on, Histoire naturelle,

Premier discours

1
Cancer and high-throughput technologies in

oncology

Contents
1.1 Challenges in oncology research . . . . . . . . . . . . . . . . . . . 4

1.2 Biology of the cell for beginners . . . . . . . . . . . . . . . . . . . 6

1.3 Biology of cancer for beginners . . . . . . . . . . . . . . . . . . . 17

1.4 Welcome to the world of omics! . . . . . . . . . . . . . . . . . . . 31

1.5 From biology to bioinformatics . . . . . . . . . . . . . . . . . . . 39

This chapter is an introduction to the clinical, biological and biotechnical contexts of the
thesis. Firstly the main challenges in ?oncology research are presented. Secondly, the basics
of biology for both the normal and cancer cell are described in order to show how molecular
biology can help to solve the challenges. Then, the high-throughput technologies currently
used in cancer studies are presented with a particular focus on the characterisation of the
alterations in DNA copy number and the quanti�cation of gene expression from microarray
experiments. Finally, the need for bioinformatics analysis for DNA copy number microarray
experiments is justi�ed.
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1.1 Challenges in oncology research

The current challenges in oncology research are dominated by three main aspects:

Identifying new prognostic and predictive factors When a cancer is detected, the
clinician has to choose the most suitable therapy for each patient. Let us take for example
breast cancer as described by Lønning (2007) and Cianfrocca and Goldstein (2004). This is
not restrictive as the principles can be extended to other types of cancer (Sawyers, 2008).
The questions the clinician must answer to tailor the therapy are Who needs treatment
(or how aggressively to treat)? and Which treatment is best? (see Figure 1.1). The
factors used by the clinician to answer these questions are termed prognostic and predictive
respectively. Prognostic factors assess patient's risk of relapse and are traditionally used to
identify patients who can be spared unnecessary therapy. Predictive factors, in contrast,
determine the responsiveness of a particular tumour to a speci�c treatment. The factors,
which can be used for both prognostication and prediction, are collected as follows. Typically,
a ?pathologist looks at histological sections1 of the tumour (see Figure 1.2) and assesses
parameters such as the appearance of the cells, the size and the shape of the cancer cell
nuclei, the number of mitoses, the invasiveness of adjacent tissues and then determines the
histological type. Tumour size and axillary lymph-node status are used to de�ne the stage
(which quanti�es the extension and the size of the tumour) and the grade (which re�ects the
size of the nuclei, the proliferative activity within the tumour evaluated on ten high power
�eld images and the di�erentiation of the tumour - Elston and Ellis, 1991). Besides these
histological parameters, the presence of speci�c markers is detected by immunohistochemical
methods: for example, in breast cancer, the presence of oestrogen (ER), progesterone (PR)
and HER2/neu2 receptors are evaluated. Other clinical parameters such as the age of the
patient can also be used. All these parameters are referred to as clinico-histopathological
criteria and currently determine the choice of the therapy made by the clinician. Yet, taking
into account all these criteria does not allow e�cient and individually tailored therapies due
to the following limitations:

• Some tumours which have similar clinico-histopathological criteria may not have the
same clinical outcome. This can be explained by both the existence of cancer subtypes
which need to be discovered and the lack of e�cient clinico-histopathological prognostic
factors. As a consequence, some patients might be given a treatment while they should
not or others might not be given a treatment while they should; the trend being rather
the �rst case. Thus, the most important bene�t of new prognostic factors may be
to help clinicians identify patients in whom therapy could be avoided, sparing these
patients treatment-related side e�ects. Indeed, Van't Veer and Bernards (2008) report
that recurrence is likely in 20-30% of young women with early-stage (lymph-node-
negative) breast cancer who only undergo surgery and localised radiation treatment.
Yet, in the United States, 85-95% of women with this type of cancer receive adjuvant
chemotherapy, mostly because conventional clinicopathological criteria fail to identify
reliably those patients who are likely to relapse. Therefore, 55-75% of women with
early-stage breast cancer in the United States undergo a toxic therapy from which
they will not bene�t but of which they will experience the side e�ects.

• While the identi�cation of reliable predictive factors has the potential to spare patients
ine�ective treatment and unnecessary side e�ects, the reverse (that a factor may guar-
antee therapeutic success) may be more di�cult to achieve. Thus, while ER negativity

1Tumoral tissue from the patient can be obtained using biopsy techniques or after surgical removal of the tumour.
2see Subsection 1.3.4 - Page 26
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Figure 1.1: Need for prognostic and predictive factors in breast cancer (image from Lønning, 2007).

Figure 1.2: Histological sections of breast cancer - The histological sections are used by the pathologist to classify the tumours
into histological types (Ellis et al., 1992) and to determine the stage and grade of the tumour. In situ tumours do not spread
to the surrounding tissues while invasive tumours have started to break through normal breast tissue barriers and invade
surrounding areas (images provided by Anne Vincent-Salomon, Institut Curie).
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is associated with lack of response to endocrine treatment (hormonotherapy), not all
patients with ER positive tumours may bene�t from such therapy. Similarly, while
the absence of HER2/neu overexpression has been established as a predictive factor
for non-responsiveness to herceptin therapy, not all HER2/neu-overexpressing tumours
are herceptin sensitive, re�ecting the complexity of breast cancer genetics.

• The expertise varies from one pathologist to another: Billerey and Boccon-Gibod
(1996) have shown on bladder cancer (and this is very likely to be true in any cancer)
that the concordance for the grade and stage assessment between di�erent pathologists
was about 67% and 69% respectively. Therefore, depending on the pathologist, the
patient might not be given the same therapy and thus the reproductibility for the grade
and stage assessment needs to be improved.

Finding new therapeutic targets There are some subtypes of cancer for which no
e�cient treatment is available and therefore it is important to identify new therapeutic
targets. This is the case for basal-like tumour in breast cancer.

Better understanding ?tumoral progression Cancer is a disease characterised by dif-
ferent key properties3 which have been well described in the literature. Nevertheless, the
underlying molecular mechanisms involved during the tumoral progression are far from being
understood and cancer still remains a complex and undeciphered disease.

This thesis is devoted to the �rst point of the three challenges: we are interested in the
identi�cation of new prognostic and predictive factors to help the clinician to provide patients
with better tailored therapies. Besides current clinico-histopathological criteria, these new
factors must allow researchers (i) to discover new subtypes of tumours, (ii) to accurately
assess the risk of relapse (iii) to predict the response to treatment, and (iv) to improve
the assessment of the grade and stage. We will particularly focus on points (ii), (iii) and
(iv) which are supervised classi�cation problems. They will be raised in Section 2.5 and
Chapter 3. The essential issue to answer is what are the new factors which can help the
clinician to take a decision? Clearly, molecular pro�ling provides promising insights into this
issue (Van't Veer and Bernards, 2008; Thiery et al., 2006, this latter article is supplied in the
Annexes). The problem is clearly to de�ne the most relevant molecular levels we need to
investigate in order to e�ciently identify the new factors also called biomarkers. Therefore,
an overview of the molecular biology of both the normal and cancer cell is necessary to
understand what are the key molecular levels to study. This is the scope of the following
two sections.

1.2 Biology of the cell for beginners

To understand the mechanism of tumoral progression, it is necessary to understand how
normal cells work and how they are integrated at the level of the whole organism. A cell
is the smallest unit of an organism which is classi�ed as living, and it is sometimes called
the building block of life (Alberts et al., 2002) (see Figure 1.3). A living organism can be
seen as an ecosystem whose members are cells, reproducing by cell division and organised
into collaborative assemblies or tissues. This ecosystem is very particular since in a healthy
organism there is no competition between the di�erent cell populations: each cellular type
completes its specialised function which ensures that the organism can live and reproduce.

3See Subsection 1.3.5.
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To coordinate their behaviour, the cells send, receive and interpret an elaborate set of signals
which serve as social controls, telling each of them how to act. As a result, each cell behaves
in a socially responsible manner, resting, dividing, di�erentiating4 or dying as needed for
the good of the organism and the maintenance of its integrity. In cancer cells, we will see
that this harmony is broken: the collaboration between cells disappears and a competition
and selection between cancer cells appear which can lead to the death of the organism. To
complete its specialised function, the cell follows a speci�c program which is described in
the next subsection.

   

Human being

Figure 1.3: Hierarchical representation of a multi-cellular living organism - A living organism consists of building blocks of
life called cells. In a cell, there are chromosomes packing the DNA into a solenoid conformation called ?chromatin (p and q
de�ne the short and long chromosome arms respectively). In the chromatin, DNA is wrapped around ?nucleosomes. The DNA
is the molecule which carries the genetic information. A gene is a DNA segment which encodes for a speci�c cellular function.
A gene is a sequence of bases A, T, C and G.

1.2.1 Central dogma of molecular biology

Each cell follows a speci�c program which involves di�erent molecular partners. The infor-
mation �ow which allows the program to be completed inside the cell has been formalised
by Crick (1970): "The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that such information cannot be trans-
ferred from protein to either protein or nucleic acid". The �ow of biological information is
presented in Figure 1.4 and the general principles can be summarised as follows:

4Cellular di�erentiation is the process by which a less specialised cell becomes a more specialised cell type.
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the molecular partners: DNA stores the information in a linear fashion5 and can be split
into segments or genes which encode for a speci�c function of the cell. RNA can be
viewed as the template which allows the synthesis of the protein. This last partner is
the e�ector within the cell of the function encoded by the gene. In cells, the DNA is
packed into entities called chromosomes (see Figure 1.3).

the �ows: the step which converts DNA into RNA is called transcription and the step
which converts RNA into protein is called translation. DNA can also be duplicated
during the replication. This process occurs during the cell cycle in which a parent
cell reproduces into two daughter cells. This process allows the conservation of the
program information in daughter cells.

Figure 1.4: Central dogma of molecular biology - The central dogma of molecular biology holds that information �ows
from DNA to RNA to protein. Solid arrows indicate information �ows which occur in all cells, through DNA replication,
transcription of DNA into RNA, and translation of RNA into protein. Dotted arrows indicate �ows which are seen occasionally,
through reverse transcription and replication of RNA. Crucially, information cannot �ow from protein back into nucleic acid
sequence (adapted from Crick, 1970).

Towards a new paradigm: expanding the central dogma The central dogma of
biology holds that genetic information normally �ows from DNA to RNA to protein. As
a consequence, it has usually been assumed that genes generally encode for proteins, and
that proteins are those which ful�l the functions, in all cells, from microbes to mammals.
However, the fact that genes encode for proteins may not be the case in complex organisms.
Indeed, recent evidence suggests that the majority of the genome of mammals and other
complex organisms is in fact transcribed into RNA which does not encode a protein: such
RNA is termed non-coding RNA (ncRNA) but this does not mean that it does not contain
information nor has a function (Mattick, 2003; Mattick and Makunin, 2006). To distinguish
RNA which does not encode protein from RNA which encodes protein, the latter is termed
messenger RNA (mRNA). ncRNAs can be divided into two classes: the infrastructural and
the small regulatory ncRNAs. Among the infrastructural ncRNAs, there are transfer RNAs,
ribosomal RNAs and small nuclear RNAs. They can be involved in regulatory processes.
Small regulatory ncRNAs interact with mRNA via RNA interference mechanisms6 (Mello
and Conte Jr, 2004) and inhibit gene expression at the stage of translation (see Figure 1.5).
Among the di�erent types of small regulatory ncRNAs, microRNAs (miRNA) are naturally
produced in human cells, and small interfering RNAs (siRNA) have also be recently identi�ed
to be produced endogeneously in mouse oocytes (Watanabe et al., 2008). The world of
ncRNAs gives new insights into the understanding of gene regulation and is a very active
�eld of research. In Subsection 1.2.2, we will give more details about the role of miRNAs
in gene expression regulation. ncRNAs can be viewed as non-coding genes.

5The sequence of bases A, T C and G.
6In 2006, Andrew Z. Fire and Craig C. Mello received the Nobel Prize in medicine for the discovery of the process RNA

interference.
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Figure 1.5: Expanding the central dogma: ncRNA and RNA interactions - RNA transcribed from a protein coding gene (1)
may be translated into a protein (2). siRNA and miRNA interact with RISC (3). RISC ncRNA complex may then interact
with the transcribed RNA (4). Perfectly complementary ncRNA and RNA binding will then subject the RNA to cleavage
and degradation (5). Imperfectly complementary ncRNA:RNA may allow the RNA to bind with ribosomes, but interferes
with translation (6). Either mechanism precludes protein expression (7). RISC is the RNA-induced silencing complex: it is
a multi-protein complex which binds to ncRNAs. A ribosome is the translation machinery. (image and legend from Perkins
et al., 2005)
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The genetic information carried by a gene is called the genotype and when the function
encoded by the gene is e�ective within the cell it is called the phenotype. The genotype
corresponds to the genetic description of the cell while the phenotype corresponds to the
expression of the function encoded by the gene. It is possible that this function is never
expressed if the cell does not need it. Then, how does the cell decide to express or not the
function encoded by the gene? This is determined by the interaction between the conditions
in which the cell lives and the genetic properties of the cell: the cell has many sensors
which are sensitive to environmental stimuli which are either external (temperature,
pH, nutrients, light, pathogen molecules, signals sent from other cells, etc.) or internal
(DNA damage, length of the telomere7, osmotic pressure, etc.). Thus, the expression of the
phenotype is determined by the simple equation genotype + environmental stimuli →
phenotype. Environmental stimuli depend not only on the stimuli at a given time but also
on the stimuli the cell has been submitted to during its life. As a consequence, the cell has
speci�c characteristics due to its life history8. Therefore, the environmental stimuli received
by the cell will trigger or not the expression of the phenotype: these stimuli play a key-role
in the regulation of the information �ow. Indeed, although the dogma appears to be a simple
sequential information �ow, the reality is much more complex as many interactions between
the cell and its environment impact the control of replication, transcription and translation.
We will see in what follows that in a cancer cell, the mechanisms which control the �ow of
the central dogma are altered in such a way that the cell can no longer complete its original
program. As a result, the cell cannot complete its specialised function. We will describe in
the next subsection the mechanisms involved in the regulation of the information �ow in a
normal cell.

Figure 1.6: Role of transcription factor in gene expression regulation - The transcription factor binds to speci�c
DNA sequences of the promoter located in the upstream region of the gene. This allows the formation of a tran-
scription initiation complex including the RNA polymerase which starts the transcription of the gene into RNA (from
http://�g.cox.miami.edu/ cmallery/150/gene/c7.19.6.activators.jpg).

7The telomere is the extremity of the chromosome. Its length is an indicator of the number of divisions a cell has undergone.
8For example, the di�erentiation signals have conferred the cell with a specialised function.
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1.2.2 Regulation mechanisms of the information �ow

The regulation of the �ow is mediated by a large set of molecular entities and mechanisms
which are detailed below:

Transcription factors Groups of genes must be coordinately expressed while other genes
must be repressed so that the cells display complex and tissue-speci�c phenotypes. Such
coordination of expression is the role of transcription factors. They are proteins which
regulate transcription: they bind to speci�c sequences of DNA using DNA binding domains
and contribute to the regulation of gene expression (see Figure 1.6). Transcription factors
perform this function alone, or by using other proteins in a complex, by increasing (as an
activator), or preventing (as a repressor) the presence of RNA polymerase, a protein which
transcribes genetic information into RNA. One transcription factor might have several target
genes. Active research is currently going on based on the sequence analysis of promoters in
order to discover new target genes for each transcription factor (Tompa et al., 2005). Among
transcription factors, let us mention p53, also known as the guardian of the genome: it plays
a key-role in preserving the integrity of the genome during the cell cycle in order to ensure
that the speci�c program of the cell is correctly transmitted into daughter cells.

Epigenetic regulations Classical genetics alone cannot explain the diversity of pheno-
types within a population. Nor does classical genetics explain how, despite their identical
DNA sequences, monozygotic twins or cloned animals can have di�erent phenotypes and
di�erent susceptibilities to a disease. The concept of epigenetics o�ers a partial explanation
of these phenomena. First introduced by Conrad Hal Waddington in the forties to name
"the branch of biology which studies the causal interactions between genes and their prod-
ucts, which bring the phenotype into being" (Jablonka and Lamb, 2002; Speybroeck, 2002),
epigenetics was later de�ned as heritable changes in gene expression which are not due to
any alteration in the DNA sequence (Esteller, 2008). Epigenetics refers to features such
as ?chromatin and DNA modi�cations which are stable over series of cell cycle but do not
involve changes in the underlying DNA sequence of the organism. These modi�cations play
an important role in gene silencing at the level of transcription. The main modi�cations are
the following (see Figure 1.7):

• DNA methylation is a common epigenetic mechanism of gene silencing. Methylation
is a chemical modi�cation of the DNA which can be either inherited, created or mod-
i�ed in response to environmental stimuli without changing the DNA sequence. DNA
methylation occurs in cytosines which precede guanines in dinucleotide called CpGs.
CpG sites are not randomly distributed in the genome but are located in CpG-rich re-
gions known as ?CpG islands which span the 5′ end9 of the regulatory region of many
genes. These islands are usually not methylated in normal cells. DNA hypermethyla-
tion is required in particular cases such as ?genomic imprinting and the X-chromosome
inactivation in females10. DNA hypermethylation inside repeated sequences could also
have a role in the protection of chromosomal integrity, by preventing chromosomal
instability and translocations11.

• ?histone modi�cations is another common epigenetic mechanism. Transcription of
DNA is dictated by the structure of the chromatin. In general, the density of its packing
is indicative of the frequency of transcription. Octameric protein complexes called

9A DNA sequence is oriented from 5′ end to 3′ end.
10In mammalian females, one X chromosome is inactivated.
11Translocation is de�ned in Subsection 1.3.6.
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Figure 1.7: Characteristics of epigenome - The interaction of DNA methylation, histone modi�cation, nucleosome positioning
and other factors such as small RNAs contribute to an overall epigenome that regulates gene expression and allows cells
to remember their identity. Chromosomes are divided into accessible regions of euchromatin and poorly accessible regions
of heterochromatin. Heterochromatic regions are marked with histone H3 lysine 9 di- and trimethylation (H3K9me2 and
H3K9me3), which serve as a platform for HP1 (heterochromatic protein 1) binding. Small RNAs have been implicated in the
maintenance of heterochromatin. DNA methylation is persistent throughout genomes, and is missing only in regions such as
CpG islands, promoters and possibly enhancers. The H3K27me3 modi�cation is present in broad domains that encompass
inactive genes. Histone modi�cations including H3K4me3, H3K4me2, H3K4me1 as well as histone acetylation and histone
variant H2A.Z mark the transcription start site regions of active genes. The monomethylations of H3K4, H3K9, H3K27, H4K20
and H2BK5 mark actively transcribed regions, peaking near the 5' end of genes. The trimethylation of H3K36 also marks
actively transcribed regions, but peaks near the 3' end of genes. (image and legend from Schones and Zhao, 2008).
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histones are responsible for chromatin packing, and these complexes can be temporarily
or more permanently modi�ed by processes such as methylation and acetylation. These
modi�cations lead to a high degree of packing which prevent genes from being accessible
by the transcriptional machinery. Therefore, the modi�cations act as a gene silencing
process. The emerging model is that speci�c combinations of histone modi�cations
confer the overall expression status of a region of chromatin, a theory known as the
histone code hypothesis (Turner, 2002).

Post-transcriptional regulations These regulations occur at the RNA level once the
DNA has been transcribed. They are the following:

• alternative splicing is the mechanism in which the exons of the primary gene tran-
script, the pre-RNA, are separated and reconnected to produce alternative RNA rear-
rangements. These linear combinations then undergo the process of translation, result-
ing in isoform proteins. Alternative splicing increases mRNA and protein diversity by
allowing generation of multiple RNA products from a single gene (see Figure 1.8). For
a given gene, only some splicing variants exist and not all exon combinations are pos-
sible. This is another plausible mechanism for the paradoxical inconsistency between
the number of genes transcribed and the diversity of phenotypes.

Figure 1.8: Alternative splicing of the α-tropomyosin gene from rat - α-Tropomyosin is a protein which regulates contraction
in muscle cells. The primary transcript can be spliced in di�erent ways, as indicated in the �gure, to produce distinct mRNAs,
which then give rise to variant proteins. Some of the splicing patterns are speci�c for certain types of cells. For example, the
α-tropomyosin made in striated muscle is di�erent from that made from the same gene in smooth muscle. The arrowheads in
the top part of the �gure mark the sites where cleavage and poly-A addition form the 3′ ends of the mature mRNAs (image
and legend from Alberts et al., 2002).

• miRNAs are about 21-nucleotide-long single-stranded RNA molecules which regulate
gene expression. They are encoded by genes which are transcribed from DNA but not
translated into protein. miRNAs are processed from precursor molecules which fold
into hairpin structures containing imperfectly base-paired stems. The precursor is pro-
cessed by enzymes into a mature miRNA which is a single-strand RNA molecule (see
Figure 1.9). Functional studies indicate that miRNAs participate in the regulation
of almost every cellular process: in human a thousand miRNAs are predicted which
would regulate about 30% of all protein-coding genes (Filipowicz et al., 2008). miR-
NAs control gene expression post-transcriptionally by regulating RNA translation or
stability in the cytoplasm: they act similarly to siRNAs operating in RNA interference
binding imperfectly to its RNA sequence target. The most stringent requirement is
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a contiguous and perfect base pairing of the miRNA nucleotides 2-8, representing the
seed region, which nucleates the interaction with the RNA. The mechanistic details
of the function of miRNAs in repressing protein synthesis are still poorly understood.
The paramount open question is whether miRNAs inhibit protein synthesis by a pri-
mary single mechanism or by di�erent mechanisms. In other words, is it possible that
miRNAs trigger an initial event which is then ampli�ed by di�erent mechanisms? A
simple, alternative mechanistic model posits that the earliest event in protein-synthesis
repression is the inhibition of the translation and that secondary e�ects of this inhibi-
tion could then be manifested at other steps, such as RNA degradation or proteolysis
of the nascent polypeptide chains (Filipowicz et al., 2008).

Figure 1.9: Role of miRNA in a normal cell - In normal tissues, proper miRNA transcription, processing and binding to comple-
mentary sequences on the target RNA results in the repression of target-gene expression through a block in protein translation
or altered RNA stability (not shown). The overall result is normal rates of cellular growth, proliferation, di�erentiation and
cell death. ORF, open reading frame (image and legend from Esquela-Kerscher and Slack, 2006).

Signal transduction We have seen in Subsection 1.2.1 that once the DNA is transcribed
into RNA, and the RNA is translated into protein, then the protein can play its biological
function in the cell. This is in fact not completely true. Indeed, some proteins which
are present within the cell are present in an inactive state. Modi�cations, called post-
translational, are needed so that the protein can express its biological function. Why is
this mechanism necessary? In the cell, some proteins are present just in case they are needed
to ensure a quick and e�cient response to environmental stimuli12. Indeed, the transcription
and translation machineries take time to complete (on the order of hours or much longer)

12We remind the reader that environmental stimuli are either external (temperature, pH, nutrients, light, pathogen molecules,
signals send from other cells, etc.) or internal (DNA damage, length of the telomere, osmotic pressure, etc.). These stimuli are
de�ned by the conditions in which the cell lives.
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and the cell cannot wait for the protein to be present if needed immediately. Therefore, post-
transcriptional events (mainly phosphorylations13) allow the protein to go from an inactive
state to an active state in a process lasting a few minutes. The goal of signal transduction
is to perform a cascade of phosphorylation in response to an environmental stimulus which
implies the protein is active within the cell. The cascade also allows an ampli�cation of the
signal so that a relatively small stimulus elicits a large response: once activated, a protein can
activate many other proteins involved in the next step so that the signal grows exponentially
(see Figure 1.10). In this process, kinase proteins play a major role since they are the
proteins which catalyse the phosphorylation reaction by opposition to phosphatases which
reverse the reaction.

To illustrate the signal transduction mechanism, let us take for example p53 which is a
transcription factor. p53 only plays a role when the cell has been exposed to a stress such as
a DNA damage. In unstressed cells, once p53 has been produced, it binds to another protein
called MDM2 which inactivates p53: when associated with MDM2, p53 cannot bind onto
DNA and therefore cannot bind to its target genes. The protein complexes p53-MDM2 are
exported into the cytoplasm where they are degraded in proteasomes. In some circumstances
(especially when cells are su�ering certain types of stress or damage), p53 protein molecules
must be protected from MDM2 so that they can accumulate to functionally signi�cant levels
in the cell. This protection is achieved by phosphorylation of p53 by protein-kinases ATM or
ATR: they give the signal to p53 to play its transcription factor activity. The ATM protein
is also activated by a phosphorylation reaction as a result of a phosphorylation cascade
initiated by stress or DNA damage (see Figure 1.10).
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Figure 1.10: Signal transduction cascade - In response to stress (such as DNA damage) a �rst phosphorylation reaction
activates the function of a �rst protein which can catalyse the phosphorylation of a second protein and so on. Finally, the
phosphorylated ATM protein activates p53 by a phosphorylation reaction too. Once phosphorylated, p53 binds to its target
genes and initiates the transcription. If not phosphorylated, p53 binds toMDM2 which prevents its transcription factor activity
(adapted from Weinberg, 2007, chap. 9 and Nakamura, 1998).

Di�erent signal transduction modules are involved in response to speci�c stimuli and
are related to speci�c functions of the cell. These di�erent modules are named signaling
pathways and complex interactions between them exist as illustrated in Figure 1.11 which
is already a simpli�ed view of the reality.

13Phosphorylation is the addition of a phosphate group to a protein molecule or a small molecule.
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Figure 1.11: Emergent integrated circuit of the cell - Progress in dissecting signaling pathways has begun to lay out a circuitry
that will likely mimic electronic integrated circuits in complexity and �nesse, where transistors are replaced by proteins (e.g.,
kinases and phosphatases) and the electrons by phosphates and lipids, among others. In addition to the prototypical growth
signaling circuit centered around Ras and coupled to a spectrum of extracellular cues, other component circuits transmit
antigrowth and di�erentiation signals or mediate commands to live or die by apoptosis. As for the genetic reprogramming of
this integrated circuit in cancer cells, some of the genes known to be functionally altered are highlighted in red (image and
legend from Hanahan and Weinberg, 2000).

1.2.3 Life of a normal cell

To conclude this section, let us sum up the di�erent stages of the life of a normal:

1. The cell performs its specialised function.

2. If needed, it reproduces during the cell cycle.

3. It dies after a limited number of cell cycles, a phenomenon called senescence.

These di�erent steps are de�ned inside a program in which the sequential information
�ow has been formalised in the central dogma of molecular biology. As we have seen,
the execution of the speci�c program of the cell involves complex regulation mechanisms in
response to environmental stimuli: the control of gene expression by the transcription factors
and alternative splicing, the epigenetic mechanisms, the regulatory function of ncRNAs and
the signal transduction are key processes in the normal behaviour of the cell. In a cell, its
speci�c program also includes permanent monitoring systems to check its ability to always
behave in a responsible manner. If this is not the case, the cell must disappear and die in
a process called apoptosis. Among the monitoring systems we can mention the cell cycle
checkpoints. Indeed, it is important that after cell division, the daughter cells will be the
exact copy of the parent cell in order to complete the same function otherwise the cell
must enter the apoptosis process. We will see in the next section that the cancer cells
which derive from normal cells are not able to perform the original speci�c program due
to a sequential accumulation of events which have disturbed the monitoring system and
regulatory mechanisms.
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1.3 Biology of cancer for beginners

This section describes the events occurring during tumoral progression which transforms a
normal cell into a cancer cell (see Weinberg (2007) and Alberts et al. (2002) for details).

1.3.1 Progressive accumulation of mutations

During a lifetime, cells die and have to be replaced to maintain the integrity of the organism.
We have seen that cells reproduce during the cell cycle in which DNA is duplicated. In a
normal human body, there are an estimated 1016 cell divisions which take place in the course
of a lifetime. During cell division, there are fundamental limitations on the accuracy of DNA
replication and repair so that mutations will occur spontaneously at an estimated rate of
about 10−6 mutations per gene per cell division. This rate can be increased due to exposure
to mutagenic agents such as chemical agents (e.g. tobacco smoke), physical agents (e.g. UV
light) or biological agents (e.g. viruses). Thus, in a lifetime, every single gene is likely to
have undergone mutation on about 1010 separate occasions in any individual human being.
Among the resulting mutant cells, one might expect that there would be many which have
disturbances in gene regulation. As a consequence, the harmonious behaviour of the cell with
respect to its neighbours will be a�ected. Here, mutation is referred to as genetic change
and corresponds to a modi�cation of the DNA sequence. Non-genetic changes which are
transmitted in the cell progeny can also occur during the cell cycle. They correspond to
epigenetic characteristic modi�cations (see Subsection 1.2.2) and are called epimutations.
Thus, the number of mutations (including genetic mutations and epimutations) is likely to
be greater than 1010. From this �gure of 1010, the problem of cancer does not seem to be
why it occurs but why it occurs so infrequently. Clearly, if a single mutation was enough to
convert a typical healthy cell into a cancer cell which proliferates without restraint, we would
not be viable organisms. Therefore, many mutations are needed to cause cancer. Why are so
many mutations needed? One reason is that cellular processes are controlled in complex and
interconnected ways: cells employ redundant regulatory mechanisms to help them maintain
tight and precise control over their behaviour. Thus, many di�erent regulatory systems
have to be disrupted before a cell can throw o� its normal restraints and behave de�antly
as a malignant cancer cell. In addition, tumour cells may meet new barriers to further
expansion at each stage of the evolutionary process and therefore need to acquire additional
mutations. Typically, the progressive accumulation of mutations allows the cell to acquire the
six capabilities of a tumour (see Subsection 1.3.5) partly due to deregulations of apoptosis
and senescence mechanisms. The accumulation of mutations which causes cancer explains
why its prevalence increases with the age of individuals. Nevertheless, there exists paediatric
cancers which involve less complex mechanisms.

Familial form of cancer In some cases, mutations which have been inherited from parents
can be already present in the cell and transmitted from one generation to another. In
breast cancer, we consider that about 15% of cancer cases can be attributed to inherited
predisposition due to the presence of gene mutations. The well-known examples in breast
cancer are the mutations of BRCA1 and BRCA2 genes which are involved in DNA repair
during the cell cycle. These two genes account for about 16% of the familial risk of breast
cancer. Since a mutation is constitutively present in the cells, the normal function of BRCA
genes relies only on the remaining wild-type allele. Therefore, a patient who carries BRCA1
or BRCA2 mutations has a 10- to 20-fold higher risk of developing breast cancer (Stratton
and Rahman, 2008). Whatever the cancer, the identi�cation of new susceptibility alleles has
direct application in the implementation of cancer prevention strategies.
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1.3.2 Clonal origin of the tumour and stemness of cancer cells

Clonal origin The clonal evolution of tumour cell populations was proposed by Nowell
in 1976 (cited in Vermeulen et al., 2008) and claims that tumour cells arise from a single
cell of origin which has acquired an accumulation of mutations as described in the previous
subsection. The model argues that tumour development proceeds via a process formally
analogous to Darwinian evolution, in which a succession of genetic changes, each conferring
one or another type of growth advantage, leads to the progressive conversion of normal
human cells into cancer cells (Hanahan and Weinberg, 2000). From an initial population of
slightly abnormal cells, descendants of a single mutant ancestor evolve from bad to worse
through successive cycles of mutation and natural selection. At each stage, one cell acquires
an additional mutation which gives it a selective advantage over its neighbours, making
it better able to thrive in its environment (an environment which, inside a tumour, may
be harsh, with low levels of oxygen, scarce nutrients, and the natural barriers to growth
presented by the surrounding normal tissues). The o�spring of this well-adapted cell will
continue to divide, eventually taking over the tumour and becoming the dominant clone in
the developing lesion. Thus, tumours grow in �ts and starts, as additional advantageous
mutations arise and the cells bearing them �ourish. Their evolution involves a large element
of chance and usually takes many years (Alberts et al., 2002).

Stemness of cancer cells In the Cancer Stem Cell (CSC) model, malignancies are viewed
as abnormal organs with a ?stem cell compartment which drives the growth. CSCs have been
de�ned in analogy to normal stem cells, as cells which have the capacity to self-renew, mean-
ing undergo divisions which allow the number of CSCs to remain constant and give rise to
the variety of di�erentiated cells found in the malignancy (see Figure 1.12). The CSC
model implies that, in a malignancy with a de�ned set of genetic alterations, cells with a
di�erent malignant potential are present. In a tumour both di�erentiated cells which have
lost the capacity to propagate a tumour, and cells which retain a clonogenic capacity exist.
The proposed hierarchical organisation of a malignancy could be easily integrated into the
classical clonal selection theory of Nowell. As explained before, this theory views a malig-
nancy as a clonally-derived cell population, which acquires new potentially advantageous
mutations and gives rise to new more rapidly proliferating clones (see Figure 1.13). When
one integrates the CSC theory into this model, the selection pressure is predicted to act at
the level of the CSC compartment, implying that certain new traits in CSCs result in an in-
crease in expansion of the CSCs due to self-renewal by symmetrical divisions. This does not
mean, however, that certain features present only in more di�erentiated cells in the tumour
could not be subject to selection, especially if this increases the expansion rate of the CSCs
from which they are derived (Vermeulen et al., 2008). This theory is still under debate and
the question is whether the cell of origin of the CSC has to be a stem cell or whether the
accumulation of mutation convert di�erentiated cells back into stem cells. In this theory,
the only cells capable of initiating and driving tumour growth are CSCs and it is logical to
assume that a ?metastasis arise from CSCs. This genetic framework for metastasis con�icts
somewhat with new insights gained by molecular pro�le studies which point towards the fact
that gene expression pro�les of the complete tumour can predict metastatic behaviour of the
malignancy.

18



Figure 1.12: Hierarchical organisation of a malignant clone - Depicted is the proposed organisation of a malignant clone as
predicted by the CSC model. The CSC on the top of the hierarchy (red) has the ability to self-renew, meaning generating more
CSCs, and to spin o� more di�erentiated cells (grey). It is to date not clear if the more di�erentiated cells can revert back and
regain a more stem cell phenotype (image and legend from Vermeulen et al., 2008).

Figure 1.13: Clonal selection of hierarchical organised clones - Cancer stem cells with tumour initiating and tumour growth
driving capacity give rise to more di�erentiated non-tumorigenic o�spring. In this model selection pressure is predicted to act
on the CSC level. CSCs acquire additional genetic alterations (here depicted by di�erent colours) that can be bene�cial for the
clone blue and yellow or dreaded red (image and legend from Vermeulen et al., 2008).
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1.3.3 Oncogenes and tumour-suppressor genes

As we have seen in Subsection 1.3.1, cancer is a disease of genes caused by the accumulation
of mutations. The most important genes whose alterations are causal in tumoral progression
are named cancer-critical genes (see Vogelstein and Kinzler, 2004). They are grouped into
two broad classes, according to whether the cancer risk arises from too much activity of the
gene product, or too little.

Oncogenes Genes of the �rst class, for which a gain-of-function mutation drives a cell
toward cancer, are called proto-oncogenes. Their mutant and overactive forms are called
oncogenes (see Figure 1.14a). Oncogenes encode proteins which control cell proliferation,
apoptosis, or both. They can be activated by structural alterations resulting from mutation
or gene fusion, by juxtaposition to enhancer elements and by ampli�cation or translocations14

(Croce, 2008; Alberts et al., 2002) (see Figure 1.15). Translocations and mutations can
occur as initiating events or during tumour progression, whereas ampli�cation usually occurs
during tumour progression. The products of oncogenes can be classi�ed into six broad
groups: transcription factors (e.g. ampli�cation of MYCN15 in ?neuroblastoma), chromatin
remodelers (e.g. gene fusion of MLL in ?leukemia), growth factors (e.g. gene fusion of
ABL1 in leukemia), growth factor receptors (e.g. mutation of FGFR316 in bladder cancer),
signal transducers (e.g. mutation of HRAS in colon cancer), and apoptosis regulators (e.g.
ampli�cation of MDM217 in ?sarcoma).

Tumour-suppressor genes Genes of the second class, for which a loss-of-function muta-
tion creates the danger, are called tumour-suppressor genes. They have cancer-preventive
e�ects which usually require the presence of only a single functional gene. To give rise to
cancer these genes have to undergo biallellic inactivation in tumours: this is known as the
Knudson two-hit model (Knudson, 1971) (see Figure 1.14b). Inheritance of a single mutant
allele accelerates tumour susceptibility, because only one additional mutation is required for
complete loss of gene function. This is why some tumour-suppressor genes have been iden-
ti�ed in familial forms of cancer such as RB1 in retinoblastoma (Knudson, 1971). As for
oncogenes, tumour-suppressor genes are involved in many functions (Sherr, 2004). Among
tumour-suppressor genes let us mention TP53 (the gene which encodes the p53 transcription
factor involved in genome integrity maintenance - see Page 11 and Figure 1.10), ATM
(the gene which encodes a protein kinase involved in DNA damage signal transduction - see
Figure 1.10), BRCA1 and BRCA2 (the genes which encode proteins involved in DNA re-
pair during the cell cycle - see Page 17) and RB1 (the gene which encodes the pRb protein
involved in the control of cell cycle).

Non-protein-coding critical cancer genes Besides protein-coding genes, ncRNA and
especially miRNAs can act as either an oncogene or a tumour-suppressor gene (Esquela-
Kerscher and Slack, 2006; Fabbri et al., 2008). A defect in miRNA gene regulation leading
to a loss or an ampli�cation of miRNAs has been reported in a variety of cancers (Calin and
Croce, 2006a). Typically, an under-expression of a miRNA which targets an oncogene (see
Figure 1.16a) or an over-expression of a miRNA which targets a tumour-suppressor gene
(see Figure 1.16b) will have an impact on cancer development.

14See Subsection 1.3.6 for details about chromosome aberrations.
15Special dedication to Isabelle Janoueix-Lerosey.
16Special dedication to François Radvanyi.
17Special dedication to Alain Aurias.
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Figure 1.14: Oncogene and tumour-suppressor gene - (A) Oncogenes act in a dominant manner: a gain-of-function in a
single copy of gene can drive a cell toward cancer. (B) Tumour-suppressor genes, on the other hand, generally act in a recessive
manner: the function of both the alleles of the gene must be lost to drive a cell toward cancer. In this diagram, activating
mutations are represented by solid red boxes, inactivating mutations by hollow red boxes (image and legend from Alberts et al.,
2002).

Figure 1.15: From proto-oncogene to oncogene - Three ways in which a proto-oncogene can be made overactive to convert it
into an oncogene (image and legend from Alberts et al., 2002).
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Figure 1.16: Role of miRNA in a cancer cell - (a) The reduction or deletion of a miRNA that functions as a tumour-suppressor
leads to tumour formation. A reduction in or elimination of mature miRNA levels can occur because of defects at any stage
of miRNA biogenesis (indicated by question marks) and ultimately leads to the inappropriate expression of the miRNA-target
oncoprotein (purple squares). The overall outcome might involve increased proliferation, invasiveness or angiogenesis, decreased
levels of apoptosis, or undi�erentiated or de-di�erentiated tissue, ultimately leading to tumour formation. (b) The ampli�cation
or overexpression of a miRNA that has an oncogenic role would also result in tumour formation. In this situation, increased
amounts of a miRNA, which might be produced at inappropriate times or in the wrong tissues, would eliminate the expression
of a miRNA-target tumour-suppressor gene (pink) and lead to cancer progression. Increased levels of mature miRNA might
occur because of ampli�cation of the miRNA gene, a constitutively active promoter, increased e�ciency in miRNA processing
or increased stability of the miRNA (indicated by question marks). ORF: open reading frame (image and legend from Esquela-
Kerscher and Slack, 2006).
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1.3.4 Alterations of the regulation mechanisms of the information
�ow

In Subsection 1.2.2, the di�erent mechanisms involved in the regulation of the information
�ow in normal cells have been described. Here we will give some examples of alterations
of the regulation mechanisms which have occurred in cancer cells due to the progressive
accumulation of mutations described in Subsection 1.3.1. The outline of this subsection
will be the same as in Subsection 1.2.2.

Modi�cation of transcription factor activity In cancer, many transcription factors
are involved in the tumoral progression mechanism. The most famous one is incontestably
the tumour-suppressor gene TP53, also known as the guardian of the genome: it plays a
key-role in preserving the integrity of the genome (see Subsection 1.3.5). p53 is directly
involved in many cancers due to the presence of mutations (30 to 50% of common human
cancers have a p53 mutation - �gures from Weinberg, 2007) in the gene which encodes this
protein. As a consequence, mutated p53 loses a part of its transcription factor functions
since it can no longer bind to all its target genes which can also no longer be transcribed
into mRNA (Vogelstein and Kinzler, 2004). Therefore, when mutated, p53 can no longer
play its guardian's role e�ciently.

Modi�cation of the epigenetic properties The low level of DNA methylation in tu-
mours as compared to the level of DNA methylation in their normal-tissue counterparts was
one of the �rst epigenetic alteration found in human cancers. The loss of methylation is
mainly due to hypomethylation of repetitive DNA sequences and extensive hypomethylated
genomic regions in gene-poor areas. During the development of the disease, the degree of
hypomethylation of genomic DNA increases as the lesion progresses from a benign prolif-
eration of cells to an invasive cancer (see Figure 1.17). This hypomethylation increases
chromosome instability leading to deletion, translocations and chromosome rearrangements
(see Subsection 1.3.6). This was observed by Shann et al. (2008) in breast cancer cell lines.
They have also shown that genes with intragenic hypomethylation had low level of expres-
sion. The loss of methyl group from DNA can also cause loss of ?genomic imprinting and
leads to gene activation in some types of cancers (see Figure 1.18): this is the case for IGF2
which increases the risk factor for colorectal cancer (Esteller, 2008). Besides hypomethyla-
tion, CpG-island-promoter hypermethylation is a key process in tumoral progression and
leads to the transcriptional silencing of tumour-suppressor genes (see Figure 1.17 and Fig-
ure 1.18). The pro�les of hypermethylation of the CpG islands in tumour-suppressor genes
are speci�c to the type of cancer. Hypermethylation can be the second lesion in Knudson's
two hit model. Global alterations of histone modi�cation patterns (see Figure 1.17 and
Figure 1.19 ) have the potential to a�ect the structure and the integrity of the genome,
and to disrupt normal patterns of gene expression, which, like alterations in DNA methyla-
tion, may be causal factors in cancer (see Figure 1.19). In bladder cancer, Stransky et al.
(2006) have shown that histone methylation can occur in a large scale genomic region and
lead to the loss of expression of neighbouring genes inside this region: this phenomenon is
known as long-range epigenetic silencing. In colorectal cancer, Frigola et al. (2006) have
found that this long-range epigenetic silencing at the level of histone methylation could also
be associated with DNA methylation.

Modi�cation of the post-transcriptional regulations We have seen that after tran-
scription, the RNA can be processed into di�erent mRNAs to increase the diversity of pro-
teins in a process called alternative splicing (see Page 13 and Figure 1.8). In cancer cells,
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Figure 1.17: Epigenetic alterations in tumoral progression - A multistage model of ?carcinogenesis in skin is shown. In
conjunction with phenotypic cellular changes and the accumulation of genetic defects, there is a progressive loss of total DNA
methylation content, an increased frequency of hypermethylated CpG islands, and an increased histone-modi�cation imbalance
in the development of the disease. H-ras denotes Harvey-ras oncogene, and 5mC 5-methylcytosine which is the result of the
DNA methylation. (image and legend from Esteller, 2008)
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Figure 1.18: DNA methylation in cancer - The hypermethylation of CpG islands of tumour-suppressor genes is a common
alteration in cancer cells, and leads to the transcriptional inactivation of these genes and the loss of their normal cellular
functions. This contributes to many of the hallmarks of cancer cells. At the same time, the genome of the cancer cell undergoes
global hypomethylation at repetitive sequences, and tissue-speci�c and imprinted genes can also show loss of DNA methylation.
In some cases, this hypomethylation is known to contribute to cancer cell phenotypes, causing changes such as loss of imprinting,
and might also contribute to the genomic instability that characterises tumours (image and legend from Esteller, 2007).

Figure 1.19: Histone modi�cation in cancer - Nucleosomal arrays are shown in the context of chromosomal location and
transcriptional activity. Octamers consisting of histones H2A, H2B, H3 and H4 are represented as grey cylinders. Histone
acetylation and methylation (di- and tri-) are shown. In normal cells, genomic regions that include the promoters of tumour-
suppressor genes are enriched in histone-modi�cation marks associated with active transcription, such as acetylation of H3 and
H4 lysine residues (for instance K5, K8, K9, K12 and K16) and trimethylation of K4 of H3. In the same cells, DNA repeats and
other heterochromatic regions are characterised by trimethylation of K27 and dimethylation of K9 of H3, and trimethylation
of K20 of H4, which function as repressive marks. In transformed cells, this scenario is disrupted by the loss of the active

histone-marks on tumour-suppressor gene promoters, and by the loss of repressive marks such as the trimethylation of K20
of H4 or trimethylation of K27 of histone H3 at subtelomeric DNA and other DNA repeats. This leads to a more relaxed

chromatin conformation in these regions (image and legend from Esteller, 2007).
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there are aberrant splicing variants which are not found in normal cells (Venables, 2004;
Srebrow and Kornblihtt, 2006; Kim et al., 2008). They provide the cell with new functions.
Moreover, as we mentioned in Subsection 1.3.3, miRNAs can act either as oncogenes or
tumour-suppressor genes losing the role they had in protein-coding gene regulation (Calin
and Croce, 2006a).

Disruption of signal transduction Many signaling pathways are involved in cancer
development. Here we will give two illustrations of such disruptions. In Figure 1.10 we
have seen that the activation of p53 relies on the e�ciency of the signal transduction cascade.
Any alteration which damages this signal transmission will impact the integrity of the cell
in case of DNA damage. For example, an inactivation of the tumour-suppressor kinase gene
ATM will prevent p53 from being activated. The second example is the HER2/neu oncogene
(also known as ErbB-2, ERBB2) which is a cell membrane surface-bound receptor tyrosine
kinase and is normally involved in the signal transduction pathways leading to cell growth
and di�erentiation. In some breast cancer, the HER2/neu kinase is overexpressed18 due to an
ampli�cation and induces a huge activation of the signal transduction cascade which makes
the cancer very aggressive with high metastatic risk. In the general case, the alteration of
the signal transduction can be either an absence of the signal ampli�cation while the signal
should be ampli�ed or an over-ampli�cation of the signal while it should not. Protein kinases
control the signal transduction within the cell and therefore represent therapeutic targets
for drugs: for example, drugs such as Gleevec, Iressa and Herceptin19 are kinase inhibitors.

1.3.5 Hallmarks of cancer

In the previous subsections, we have seen that a progressive accumulation of mutations in
cancer-critical genes modi�es the regulation mechanisms of the information �ow described
in the central dogma. Although a large variety of mutations can occur, we will see in this
subsection that all cancers have traits in common. Indeed, to lead successfully to a tumour,
a cell must acquire a whole range of aberrant properties (a collection of subversive new skills)
as it evolves. Di�erent cancers require di�erent combinations of properties. Nevertheless,
we can draw up a short list of the key behaviours of cancer cells in general. Hanahan and
Weinberg (2000) suggest that the vast catalog of cancer cell genotypes is a manifestation of six
essential alterations in cell physiology which collectively dictate malignant growth. These six
capabilities are shared by most and perhaps all types of human tumours (see Figure 1.20).
To simplify, these six capabilities can be merged into the three main following properties
(the number in brackets corresponds to the capability detailed in Figure 1.20):

Defective control of the cell cycle (1, 2) The cell cycle normally ensures that the
number of cells within the organism remains constant so that when a cell dies a new one
is born. Therefore, the cell cycle must be precisely controlled. In cancer, this control is
ine�cient and the cells keep on reproducing. Many mechanisms are involved in the cell
cycle. We will only mention here the key-role of pRb which controls the initiation of the cell
cycle. When in a hypophosphorylated state, pRb blocks proliferation by sequestering and
altering the function of E2F transcription factor which controls the expression of banks of
genes essential for progression from G1 into S phase20 (for a detailed description see Calzone

18A normal cell has 20000 HER2 receptors while there are about 1.5 million in a HER2/neu positive cancer cell.
19Herceptin is an antibody which interferes with the kinase activity of HER2/neu and recruits immune e�ector cells which

are responsible for antibody-dependent cytotoxicity. Herceptin can also induce complement-dependent cytolysis and enhance
phagocytosis by Fc-receptors bearing antigen-presenting cells (Hudis, 2007).
20G1 phase corresponds to the deployment of a cell cycle program and S phase corresponds to the step of DNA replication.
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et al., 2008). It has been shown that mutation, promoter hypermethylation or LOH21 of
pRb occur in cancer.

Defective control of cell death (4, 6) The cell death process is the process of cell
destruction. This mechanism occurs when cells have reached a limited number of cell cycles
(this process is called senescence) or when the genome integrity is compromised during the
cell cycle (this process is called apoptosis). In the apoptosis process, the machinery can
be broadly divided into two classes of components: sensors and e�ectors. The sensors are
responsible for monitoring the extracellular and intracellular environment for conditions of
normality or abnormality leading to life or death of a cell. These signals regulate the second
class of components, which function as e�ectors of apoptotic death. One of the major
players among e�ectors is p53, the guardian of the genome as already mentioned: in case
of DNA damage during replication, p53 triggers apoptosis. Defective apoptosis can be due
to a mutation of both p53 and the sensors (the proteins which are involved in the signal
transduction like ATM) (see Subsection 1.3.4).

Invasiveness and metastatic potentials (3, 5) The uncontrolled proliferation of cells
leads the cell population to damage the function of an organ in which the cancer cell orig-
inates, to colonise adjacent tissues, and may also damage the function of the neighbouring
organs. Moreover, the tumour has the ability to form new blood vessels (this process is
called angiogenesis) and therefore the tumour has the possibility to spawn cancer cells in
the blood. These cells are called metastases and are able to colonise distant tissues. By
spreading throughout the body, a cancer becomes almost impossible to eradicate surgically
or by localised irradiation, and thus can become deadly. These distant settlements of tu-
mour cells, called metastases, are the cause of 90% of human cancer deaths (Hanahan and
Weinberg, 2000).

1. cancer cells can free themselves from dependence
on exogenous growth signals

2. cancer cells are insensitive to signals that block
cell proliferation

3. the tumour can invade adjacent tissues (they are
invasive) and spawn pioneer cells that move out
(they metastasise)

4. cancer cells become immortal

5. the tumour can produce new blood vessels

6. the cell death machinery is ine�cient

Figure 1.20: Acquired capabilities of cancer - Most if not all cancers have acquired the same set of functional capabilities
during their development, albeit through various mechanistic strategies (image and legend from Hanahan and Weinberg, 2000).

Besides the six capabilities described in Figure 1.20, cancers have another common
characteristic which is the presence of chromosome aberrations. This is described in the
next subsection.

21See Subsection 1.3.6 - Page 29.
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1.3.6 Chromosome aberrations in cancer

The normal con�guration of chromosomes is often termed the euploid karyotype state.
Euploidy implies that each of the chromosomes is present in normally structured pairs (see
Figure 1.21b). Deviation from the euploid karyotype (aneuploidy) is observed in many
cancers (see Figure 1.21a). Often, this aneuploidy is merely a consequence of the general
chaos which reigns within a cancer cell (Weinberg, 2007) due to the progressive accumulation
of mutations. Indeed, once a su�cient number of mutations is reached, the cell cannot
correctly process the duplication and the segregation of the chromosomes because of defects
in DNA repair and cell cycle checkpoints leading to a genome instability (Aguilera and
Gómez-González, 2008). This instability occurs at both nucleotidic (imperfect copy of the
DNA sequence) and chromosomal levels (improper number of chromosomes). As a result,
the daughter cells will not be able to perform the speci�c function they were supposed to
do. In 1914, Theodor Boveri proposed the hypothesis that cancer cells derive from cells
with an irreparable defect within the chromosomes. This hypothesis of a chromosomal or
genetic cause of cancer was only reconsidered in recent decades in the light of new �ndings
on genomic rearrangements and cancer genetics (Satzinger, 2008). Rearrangements occur
due to mechanisms such as DNA breaks and fusions and lead the daughter cells to have an
abnormal karyotype. In neuroblastoma, such breaks have been shown to occur preferentially
within early replicating regions during S phase (Janoueix-Lerosey et al., 2005, this article is
supplied in the Annexes). Typical chromosomal aberrations which produce an abnormal
karyotype are illustrated in Figure 1.22a and explained below:

polyploidy: instead of being present in two copies, each chromosome is present in p copies
where p > 2 represents the ploidy.

aneuploidy: there are extra abnormal copy numbers of some chromosomes.

translocation: a chromosome translocation is a chromosome abnormality caused by rear-
rangement of parts between homologous or nonhomologous chromosomes. The translo-
cation can be reciprocal (or balanced, meaning that there is an exchange of two extrem-
ities of chromosomes) or non-reciprocal (or imbalanced, meaning that one extremity is
gained and/or lost during the rearrangement).

ampli�cation: the same small part of a chromosome (such as a gene or a group of a few
contiguous genes) is present in a high number of copies (from 4 to more than 50 copies)
either as acentric fragments (double minute), incorporated into chromosomes in nearly
contiguous homogeneously stained regions (HSRs) or interspersed in the genome.

Figure 1.21: Karyotype of a colon cancer cell and normal cell - (a) The karyotype of a typical cancer shows many abnormalities
in chromosome number and structure. (b) Karyotype of a normal cell where each autosomal chromosome is present in two
copies (adapted from Alberts et al., 2002).
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Figure 1.22: Chromosomal aberrations - Schematic illustration of mechanisms by which chromosomal aberrations arise plus
a summary of the ability of commonly applied technologies to detect the aberrations. (a) Aberrations that lead to aneuploidy.
(b) Aberrations which leave the chromosome apparently intact (image and legend from Albertson et al., 2003).

The following terms can also de�ne the copy number for a given region of the chromosome:
deletion (no copy is present anymore), monosomy (one copy is present), trisomy (three copies
are present), tetrasomy (four copies are present), etc.. These rearrangements can be either
complete or partial.

Interestingly, some chromosome aberrations do not produce an abnormal karyotype.
They are summarised in Figure 1.22b. In this case, the chromosomes appear to be present
with the expected number of two copies. In a normal genome, there is one copy from the
father (dark blue chromosome) and one copy from the mother (light blue chromosome).
Therefore, in a normal cell, chromosomes are heterozygote: they come from two distinct
parental origins. In cancer, it has been noticed that some chromosomes come from the same
parental origin as illustrated in Figure 1.22b. In this case, the two copies of the chro-
mosome are the same and therefore the chromosome is homozygote. This phenomenon is
termed Loss of Heterozygosity (LOH) without DNA copy number change since one parental
chromosome (or only a portion) has been lost in a �rst event and the missing chromosome
(or only the missing portion) has been duplicated from the remaining parental chromosome.
When the LOH rearrangement concerns the whole chromosome we speak about duplication
also call isodisomy and when it concerns only portion we speak about somatic recombination
or partial isodisomy.

Why are these chromosomal aberrations so important in cancer? In fact, in many cases
they cause tumoral progression. To illustrate this purpose, we can take as examples the
critical genes involved in cancer:

• example of a tumour-suppressor gene: let us take for example pRb. We have seen
that this protein plays an important role in the control of cell cycle. Let us imagine
the following situation: a mutation occurs in pRb which inactivates the function of
the protein (the mutation can have been inherited from parents or arise spontaneously
during replication). Then, a second event occurs (this is the Knudson two-hit model
presented in Subsection 1.3.3) so that the duplication of the chromosome which
carries the mutation combined with the loss of the chromosome which carries the func-
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tional gene (i.e. the LOH event depicted on the bottom-right part of Figure 1.22b).
The result is that pRb is now present in two copies of inactive forms and will no longer
be able to control the cell cycle. From the di�erent aberration con�gurations depicted
in Figure 1.22 we can imagine other combinations of alterations which also lead to
the same e�ect.

• examples of oncogenes: now, let us take di�erent examples among oncogenes. In
Subsection 1.3.3, we have already mentioned the di�erent ways a proto-oncogene
can be transformed into an oncogene. We will here give more details. Except in the
mutation case which appears spontaneously, the activation of the proto-oncogene into
an oncogene described in Figure 1.15 can be simply explained by chromosome aberra-
tions. For example, in neuroblastoma an ampli�cation of MYCN which overproduces
this protein is frequently observed. Other mechanisms involving translocation and gene
fusion also play an important role (Mitelman et al., 2007). For example, if a proto-
oncogene appears to be translocated near a DNA domain which normally regulates
the constitutional expression of a gene at a high level, then the proto-oncogene will
be highly transcribed and become an oncogene. This occurs in Burkitt's ?lymphoma
whereMYC is juxtaposed with regulatory elements of the immunoglobulin heavy chain
IGH gene: theMYC gene is constitutively activated because its expression is driven by
immunoglobulin regulatory elements (Mitelman et al., 2007). In this case the transloca-
tion leads to an upregulation of the proto-oncogene. The last mechanism is also based
on a translocation which creates a new gene by fusion of two existing genes called a
chimeric gene. This phenomenon occurs in Ewing's sarcoma22 where a translocation
between chromosomes 11 and 22 merges a portion of the EWS gene and the FLI1 gene
into the chimeric gene EWS-FLI123. In this tumour, gene fusion always involves EWS
mainly with FLI1 and less frequently with other genes. In the case of a chimeric gene
the protein is either overproduced or hyperactive.

DNA copy number alteration We have seen that di�erent types of chromosome aber-
rations occur in cancer. Some of them modify the copy number of entire or small portions of
chromosomes while other aberrations do not modify the number of chromosomes. For situ-
ations in which the number of chromosomes is modi�ed we speak about DNA copy number
alterations. It is precisely this type of alteration which will serve as a basis for the analyses
presented in Chapter 2 and Chapter 3. Microarray technologies have been developed to
investigate DNA copy number alterations such as array Comparative Genomic Hybridisa-
tion (aCGH) and will be presented in detail in Subsection 1.4.2. Brie�y, this technique
allows the quanti�cation of the DNA copy number of many loci along each chromosome as
shown in Figure 1.23: basically, the plot on the right side of Figure 1.23 represents the
DNA copy number of the di�erent loci ordered along the genome for three di�erent chromo-
somes. Typically, two DNA copy levels will have a value around 0, gains will have values
shifted positively and losses will have a value shifted negatively24. This technology is able
to detect ampli�cations, non-reciprocal translocations, losses and gains. Once again, we can
link the importance of ampli�cation, gain and loss of DNA copy number with the search for
cancer-critical genes. Typically, we expect oncogenes to be present in gain or ampli�cation
regions while tumour-suppressor genes are supposed to be found in loss regions. Therefore,
a characterisation of DNA copy number alterations should help to �nd new candidates for
cancer-critical genes.

22Ewing's sarcoma is a paediatric cancer in which cells are found in the bone or in soft tissue.
23Special dedication to Olivier Delattre.
24See Subsection 1.4.2 Page 35 for explanation how the signal is derived.
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Figure 1.23: DNA copy number aberrations - Detection of copy number aberrations in tumour genomes by aCGH. Chromo-
somal aberrations in cancer are likely to arise following inappropriate management of DNA damage or telomere dysfunction.
Common aberrations include gene ampli�cations, non-reciprocal translocations and interstitial deletions. Ampli�cations may
be visible cytogenetically as double minutes, chromosomes with homogeneously staining regions (HSR) or the ampli�ed DNA
may be distributed at multiple sites. The aCGH copy number pro�le of the ampli�ed MYC in COLO320 is shown. The
ampli�cation level is about 70 fold (log2-ratio > 6). Breakage of a chromosome or a non-reciprocal translocation event may lead
to low level copy number changes, as shown in the copy number pro�le of chromosome 1 from 600MPE. Homozygous deletions
are indicated by log2-ratio < −2 and heterozygous deletions by log2-ratio ∼ −1 (image and legend from Albertson and Pinkel,
2003).

In this section, we have seen that a sequential accumulation of events has transformed the
normal cell into a cancer cell which has defects in the regulation mechanisms controlling the
cellular program. Those defects involve di�erent molecular entities which play a key-role in
tumoral progression. Therefore, these entities give the molecular basis both to improve the
characterisation of cancer and to provide the clinician with new prognostic and predictive
factors. We will see in the next section how to perform molecular pro�ling of tumours for
these di�erent entities using high-throughput technologies also named omics approaches.

1.4 Welcome to the world of omics!

We have seen in Section 1.3 that when a normal cell becomes a cancer cell, a series of
disregulations occurs at di�erent molecular levels. Basically, the sequential accumulation of
mutations and events occurring during tumoral progression disrupts the normal behaviour
of the cell at the level of (see Figure 1.24):

1. DNA

a. including mutations of the DNA sequence,

b. changes in DNA copy number,

c. LOH and

d. translocations.
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2. miRNA expression

3. mRNA expression

a. including modi�cations in alternative splicing.

4. protein expression

a. and particularly protein kinases which play a key-role in signal transduction.

5. epigenetic characteristics

a. including modi�cations of DNA or histone methylation

b. or modi�cations in histone acetylation.

6. interactions between the di�erent molecules

a. such as the interactions between transcription factors and DNA,

b. or interactions between proteins.

7. phenotype characteristics of the cell

   

6 ­ Interactomics

     a ­ Protein­DNA

     b ­ protein­protein

5 ­ Epigenomics

     a ­ Methylomics

     b ­ Acetylomics

1 ­ Genomics
     a ­ mutations
     b ­ DNA copy number
     c ­ LOH
     c ­ translocations

2­ MicroRNAomics

3 ­ Transcriptomics
     a ­ Spliceosomics

4 ­ Proteomics
     a ­ Kinomics

protein complexprotein kinase

Chromosome

histone

DNA double 
helix

coding DNA

Transcription 
factor

mRNA

microRNA

mRNA

protein protein

7 ­ Phenomics

Figure 1.24: Omics technologies in oncology.
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The biological knowledge regarding the biology of cancer presented in Section 1.3 is
clearly a help to know where to look in order to better characterise tumour progression
and improve the classi�cation of tumours on the basis of molecular pro�les. However, the
question is obviously how to carry out an investigation at the molecular level? Indeed,
biological technologies are needed to accurately retrieve the molecular pro�les of each tu-
mour sample and the information retrieval must be as exhaustive as possible. For example,
we would like to determine the DNA copy number of as many loci as possible over each
chromosome or quantify the mRNA expression of all known genes. This exhaustive search
might be reachable for some molecular pro�les but in some cases, especially for proteins,
it is untractable for technological reasons25. In the protein case, the search is restricted to
interesting functional classes of proteins, such as kinases which play an important role in
cancer. Since the quanti�cation of the molecular pro�les is supposed to be as exhaustive as
possible, the techniques which allow the measurement are often referred to as genome-wide
techniques whatever the type of molecular pro�le investigated. More generally, the name of
the technology which allows us to study a particular type of molecular pro�le is the con-
catenation of the molecular entities or the biological functions under study with the -omics
su�x. For example, as illustrated in Figure 1.24, genomics investigates the DNA, microR-
NAomics the miRNA expression, transcriptomics the mRNA expression, spliceosomics the
alternative splicing, proteomics the protein expression, kinomics the phosphorylated state
of protein kinases, epigenomics the epigenetic modi�cations, interactomics the interactions
between di�erent molecular entities and phenomics the observable traits of the cells. The
-omics su�x comes from the Greek stem omes which stands for all, every, whole or complete
reminding us of the fact that these techniques aim at achieving an exhaustive search. These
techniques are also called high-throughput technologies since they produce a huge amount
of information within a short time. Thus, we know where to look and now we know how to
investigate. In the next section, technical details will be given regarding omics technologies
with a particular focus on DNA copy number and mRNA expression. These two types of
molecular pro�les will be used in Chapter 2 and Chapter 3.

1.4.1 Microarray era

The better understanding of biological molecular processes combined with the improvement
in DNA technologies have allowed researchers to use in vitro some chemical reactions which
happen in vivo. Among the main revolutions in biotechnology, let us mention the discovery of
restriction enzymes and reverse transcriptase in 1970, DNA sequencing in 1977, Polymerase
Chain Reaction26 (PCR) in 1985 (see Nature Publishing Group (2007) for a history of DNA
technologies). The combined improvements in chemistry, physics and molecular biology
have allowed the development of new tools for genome-wide quanti�cation: the microarray
technology also called biochip has provided miniaturised sensor tools such that it is now
possible to query the mRNA expression of the whole genome on a slide glass smaller than
four square-centimetres (see Figure 1.25). Microarrays can be considered as one of the
major biotechnological revolutions of the last 15 years. Originally, microarrays emerged in
the �eld of transcriptomics. Since di�erent molecular pro�les are important in the physiology
of the cell and especially in cancer study, the original microarray technology which queried
mRNA has widely been transposed for all the omics approaches mentioned in Figure 1.24.
A large variety of microarray techniques have been developed (see Hoheisel, 2006). Here, we
will just give the basic principle of microarray technologies with a particular focus on the

25The study of proteins implies the preparation of antibodies as reporters which is a huge work to ensure their speci�city.
Due to the large amount of di�erent entities (more than one million protein entities within a cell), only a few reporters have
been prepared so far.
26Polymerase Chain Reaction is the process which allows the copying of DNA or RNA molecules.
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analysis of DNA copy number and mRNA expression.
The basic principle is the following (see Southern et al., 1999): probes which can be

DNA, RNA or protein, are tethered to a solid support (i.e. the chip), such as glass, plastic
or silicon. They act as a speci�c reporter either to quantify the DNA copy number at a known
locus on the genome, or the expression of a known gene or the amount of a protein. Probes
are supposed to be chosen speci�cally in order to report the quanti�cation of their expected
target. In the case of DNA or RNA probes, the speci�city is guaranteed by the choice of a
unique base-paired complementarity between the probe sequence and the target sequence,
and by the choice of an appropriate antibody in case of protein. Probes are ampli�ed and
deposited on a microscopic area of the chip called spot. Then, either DNA, RNA or proteins
are extracted from a tumour sample and then hybridised on the chip. If present within
the sample, a given DNA sequence, RNA or protein will be �xed on its matching probes.
In a microarray, thousands or even millions of such spots are present which make it a very
powerful tool for genome-wide screening. All these microarray technologies have been widely
applied in oncology as reported by Cowell and Hawthorn (2007). The �eld of microarrays
is evolving very quickly and new techniques are regularly described. For readers interested
in epigenomics or kinomics microarray technologies we refer to the papers of Schumacher
et al. (2006), Reinders et al. (2008), Schones and Zhao (2008) and Johnson and Hunter
(2005). The next two subsections present in detail the microarray technologies devoted to
the analysis of DNA copy number and mRNA expression.

Figure 1.25: A�ymetrix GeneChipR© used to quantify mRNA expression.

1.4.2 Analysis of DNA copy number

Comparative Genomic Hybridisation Originally, the study of genome-wide charac-
terisation of DNA copy number changes was performed using Comparative Genomic Hy-
bridisation (CGH) technique which was developed in the early 1990s. In this technique,
total genomic DNA is isolated from tumour and normal control cells, labelled with di�er-
ent �uorochromes and hybridised to normal metaphase27 chromosomes (Kallioniemi et al.,
1992). This technique is therefore termed chromosomal CGH. Di�erences in the tumour
�uorescence with respect to the normal �uorescence along the metaphase chromosomes are
then quanti�ed and re�ect changes in the DNA copy number in the tumour genome. Subse-
quently, aCGH, where arrays of genomic sequences replaced the metaphase chromosomes as
hybridisation reporters, was established (Solinas-Toldo et al., 1997; Pinkel et al., 1998) and
solved many of the technical di�culties and problems caused by working with cytogenetic
chromosome preparations. The main advantage of aCGH is the ability to perform copy num-
ber analyses with much higher resolution than was ever possible using chromosomal CGH.
aCGH has already been widely used in oncology for many purposes such as global analysis

27Metaphase is a step in the cell cycle.
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of copy number aberrations, identi�cation of putative target genes, tumour classi�cation or
assessment of clinical signi�cance of copy number changes (Kallioniemi, 2007). Pinkel and
Albertson (2005) give details in their review about the technology and its application in
oncology. We will present here only the basics (see Figure 1.26):

1. total genomic DNA is isolated from a tumour sample (i.e. the test DNA) and from
a normal sample (i.e. the reference DNA). Genomic DNA is then digested with a
restriction enzyme and the DNA fragments are di�erentially labelled: the tumoral DNA
is labelled with a red �uorochrome and the normal DNA with a green �uorochrome.

2. equal amounts of tumoral and normal DNA are combined.

3. the mixture of both the tumoral and normal DNA is hybridised on the chip. Within
each spot, there is a competitive hybridisation between the tumoral DNA target se-
quences and the normal DNA target sequences.

4. once hybridised, a scanning step quanti�es the signal intensity for the red and green
channels and outputs image �les in which each pixel is given a red and green intensity.

5. an image analysis software accurately reconstructs the signal intensity at the level of
each spot.
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Figure 1.26: aCGH protocol - The protocol includes the extraction and labelling of the DNA, the hybridisation on the chip,
the scanning and image analysis to quantify the signal.

Quanti�cation of DNA copy number How do we expect the signal to vary with respect
to the DNA copy number of each sample? Let us take the simplest example in which a normal
DNA is red-labelled and another normal DNA is green-labelled. Then, for each locus of each
chromosome we expect two DNA copies for the two samples. For each spot competitive
hybridisation takes place and we obtain half red normal DNA and half green normal DNA.
The relative hybridisation intensity of the test DNA signal over the reference DNA signal
equals one and the spot will be yellow following the additive colour mixing theory. And then,
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what happens if the test DNA is a tumoral DNA? In this case, the relative hybridisation
intensity of the test signal over the reference signal at a given location is (ideally) proportional
to the relative DNA copy number of those sequences in the test and reference genomes. If the
tumoral DNA copy number is greater than the normal DNA copy number, then the signal
will be shifted towards red. On the contrary, if the tumoral DNA copy number is lower than
the normal DNA copy number, then the signal will be shifted towards green. Therefore,
the DNA copy number of the tumoral DNA is directly proportional to the red/green ratio
and its theoretical value is given in Figure 1.27. For statistical reasons, we do not use
the ratio of red/green but the log2 of this ratio therefore named log2-ratio

28. In practice,
due to technical variability there is a �uctuation of the signal around its expected value
and statistical methods are necessary to retrieve the true signal. This will be the scope
of Chapter 2. Moreover, the quanti�ed signal is generally less than expected for three
reasons. First, the quanti�cation made with the technology is not perfect and the signal is
generally less than proportional with respect to the true DNA copy number (Pinkel et al.,
1998; Pollack et al., 1999). Then, the tumoral DNA generally contains contamination from
normal tissue which reduces the signal. Finally, the tumour might be heterogeneous since it
can derive from di�erent clonal populations (see Figure 1.13) which share di�erent patterns
of DNA copy number alterations. The aCGH technology relies on the fact that the reference
DNA is diploid whatever the locus. In practice, this is not the case since, even in normal
individuals, DNA copy number variations exist: some parts of the DNA sequence can be
present in many copies inside the genome. Such a part of the genome is called Copy Number
Variant (CNV) (Iafrate et al., 2004; Freeman et al., 2006). Ideally, to avoid the identi�cation
of DNA copy number changes due to CNVs between the test DNA and the reference DNA,
the two DNAs used in the aCGH protocol should come from the same patient (in this
case the DNAs are termed paired). However, normal DNA from the patient is not always
available and a normal reference DNA from a normal standard individual is used. Therefore,
in the case of non-paired DNAs, relevant DNA copy alterations for the disease should not
correspond to a CNV: the Database of Genomic Variants (Iafrate et al., 2004) available at
http://projects.tcag.ca/variation/ integrates known CNVs and allows validation of relevant
alterations due to the pathology.
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Figure 1.27: Theoretical aCGH quanti�cation - The theoretical ratios and log2-ratios are given for di�erent DNA copy number
alterations occurring in the tumoral DNA.

28The log transformation allows the distribution of the values to be closer to normality, which is a nice property in statistics.
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Graphical representation of a DNA copy number molecular pro�le The typical
representation of an aCGH molecular pro�le is depicted in Figure 1.28a: the x-axis rep-
resents the probe location ordered along the genome from chromosome 1 to 22, X and Y;
the y-axis represents the log2-ratio value of the DNA copy number. In this pro�le of the
IMR32 neuroblastoma cell line we can clearly see a loss of chromosome 1p29, a gain of chro-
mosome 1q and 17q due to an imbalanced translocation which is seen on the karyotype in
Figure 1.28b. Note that the aCGH resolution allows the detection of MYCN ampli�cation
which cannot be seen in the karyotype.
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a - IMR32 aCGH pro�le b - IMR32 karyotype

Figure 1.28: IMR32 neuroblastoma cell line - (a) Array CGH pro�le. The imbalanced translocation 1p-17q and the 1q
gain are identi�ed by aCGH. A small alteration like MYCN ampli�cation can been seen due to the increasing resolution of
the aCGH technology (data from Janoueix-Lerosey et al., 2005). (b) 24-colour painting of chromosomes by Fluorescence In
Situ Hybridisation (FISH). The unbalanced translocation 1p-17q and the 1q gain are highlighted (image provided by Isabelle
Janoueix-Lerosey, Institut Curie).

Always more probes on the chip Di�erent aCGH platforms are available and with the
recent advances in microarray technologies we have moved from ?BAC aCGH to ?oligonucleotide
aCGH allowing an increase in the number of loci per chip (Davies et al., 2005; Ylstra et al.,
2006). BAC arrays are mainly in-house microarrays while oligonucleotide microarrays mainly
come from commercial companies. Among the widely used commercial technologies, let us
mention Agilent Human Genome CGH Microarray30, Nimblegen Human Whole Genome Tiling
arrays31, Illumina BeadChip32 and A�ymetrix GeneChip R©33 (note that for A�ymetrix and Illu-
mina technologies, no normal DNA is needed in the protocol and they are named 1-colour
arrays in contrast to the other technologies which use both normal and tumoral DNA and
are named 2-colour arrays). At the very beginning of BAC array, the number of loci investi-
gated was around 1000-2000 and never exceeded 32000 loci (Ishkanian et al., 2004). The use
of oligonucleotide array has allowed a huge increase in the number of loci investigated on a
single chip. At the time of writing the present manuscript, the highest number of loci quan-
ti�ed in the human genome with a single oligonucleotide array is provided by A�ymetrix R©

29p and q de�ne the short and long chromosome arm respectively.
30http://www.home.agilent.com/
31http://www.nimblegen.com/
32http://www.illumina.com/
33http://www.a�ymetrix.com/
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Genome-Wide Human SNP Array 6.0 and covers more than 1.8 million loci for the whole
human genome. The Nimblegen company o�ers the possibility to use one chip of 385000
loci for each human chromosome corresponding to a total coverage of 9.24 million loci. Al-
though the most recent chips cover more exhaustively the genome, their exact resolution
does not only depend on the number of loci but also on their sensitivity. Coe et al. (2007)
has proposed a de�nition of resolution for aCGH technology, termed functional resolution,
which incorporates the uniformity of loci spacing on the genome, as well as the sensitivity
of each platform to single-copy alteration detection. From their study, the current commer-
cial platforms allow a single-copy detection of the order of 35-55Kb while it was 10Mb for
chromosomal CGH and 1Mb for BAC aCGH (At the time of the study by Coe et al. (2007)
the highest number of loci in a single chip was o�ered by Nimblegen Human Whole Genome
Tiling arrays which allowed the quanti�cation of 385000 loci over the whole human genome).
The oligonucleotide chips making it possible to scan the genome for more than 50000 loci
are often termed high-density chips.

1.4.3 Analysis of mRNA expression

The development of microarray technology was �rst initiated in the �eld of transcriptomics
study using experimental protocol quite similar to the aCGH protocol described in Fig-
ure 1.26 except that mRNA is used instead of genomic DNA. New technologies have ap-
peared developed by the A�ymetrix33 company which changed the chip building and the
protocol in such a way that no reference sample is necessary anymore. The A�ymetrix
GeneChip R© (see Figure 1.25) thus provides an approach to have a semi-quantitative level
of mRNA instead of a relative value with respect to a reference. As we will see for DNA
copy number microarray experiments, a normalisation step which corrects systematic exper-
imental e�ects is necessary to improve the quality of the data. Several methodologies have
been developed for A�ymetrix GeneChip R© and the most widely used so far are RMA (Irizarry
et al., 2003) and GC-RMA (Wu et al., 2003).

1.4.4 Emerging sequencing technologies

In 1977, a revolution in the era of genetic engineering was the development of technologies
allowing the sequencing of DNA. The same year, Maxam and Gilbert, and Sanger and Coul-
son proposed methods to sequence genomes. Sanger's method was widely used especially
for the Human Genome Project. Although the Sanger method has been improved, it does
not allow sequencing of genomes either in a reasonable time or at a reasonable price34. To
overcome these limitations, a second generation sequencing (also called next-generation se-
quencing) appeared in 2005 with an increase in the throughput capacity for a lower cost35.
The main next-generation sequencers are Roche Applied Science 45436 Genome Sequencer
FLXTM, Illumina's Solexa37 and Applied Biosystems38 SOLiDTM(Rusk and Kiermer, 2008; Chi,
2008). Next-generation sequencing has many applications and especially in the �eld of med-
ical science as we will see below (Schuster, 2007; Mardis, 2008). Note that high-throughput
sequencing is a very competitive domain and we have already spoken about third generation
sequencing (also called next-next generation sequencing). This new generation sequencing
will appear in 2008 and will be based on single-molecule analysis. It should make it possible

34The most recent sequencers based on Sanger's method are able to sequence 2-5 million bases per day at $1 per 1000 bases.
35The Solexa Genome Analyzer is able to sequence 600 million bases per day at $1 per 100000 bases.
36http://www.454.com/
37http://www.illumina.com/
38http://www.appliedbiosystems.com/
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to sequence a human genome in 24 hours with a $1000 cost. The main competitors are
Helicos BioSciences39, VisiGen Biotechnologies40 (Blow, 2008) and Paci�c Biosciences41 .

Why is it important to mention these new generation sequencings here? We have seen
in Figure 1.24 that, among the di�erent molecular levels investigated, many include ei-
ther DNA or RNA. Thus, for molecular pro�ling involving nucleotide sequences, the new
generation sequencing technology represents a new way of investigation in order to:

• search for mutations

• discover polymorphism

• quantify DNA copy number

• quantify LOH

• map chromosomal rearrangements at a resolution of one base (Chen et al., 2008; Camp-
bell et al., 2008)

• quantify mRNA expression

• quantify miRNA expression

• discover ncRNAs

• identify alternative splicing

• identify protein-DNA interactions using chromatin immunoprecipitation followed by
sequencing

• map nucleosome position with respect to the DNA sequence

• study epigenomic modi�cations

• study the spatial organisation of the chromatin

Therefore, it is very likely that these new generation sequencings will progressively replace
microarray experiments in the future.

By de�nition, high-throughput technologies produce a huge amount of data which need
to be analysed. Powerful tools and statistical methods are needed to handle such an amount
of data. These tools constitute the �eld of bioinformatics which is brie�y introduced in the
following section.

1.5 From biology to bioinformatics

1.5.1 Molecular pro�ling of cancer: proof of concept

This subsection provides a brief overview of pioneering articles which have demonstrated
molecular pro�ling to be a valuable tool in the �eld of cancer study using di�erent statistical
approaches from the �eld of bioinformatics.

39http://www.helicosbio.com/
40http://visigenbio.com/
41http://www.paci�cbiosciences.com/
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Figure 1.29: Molecular classi�cation of breast cancer from mRNA expression pro�les - Gene expression patterns of 85
experimental samples representing 78 ?carcinomas, three benign tumours, and four normal tissues, analysed by hierarchical
clustering using the 476 cDNA intrinsic clone set. (A) The tumour specimens were divided into �ve (or six) subtypes based
on di�erences in gene expression. The cluster dendrogram showing the �ve (six) subtypes of tumours are coloured as: luminal
subtype A, dark blue; luminal subtype B, yellow; luminal subtype C, light blue; normal breast-like, green; basal-like, red; and
ERBB2+, pink. (B) The full cluster diagram scaled down. The coloured bars on the right represent the inserts presented
in C-G. (C) ERBB2 amplicon cluster. (D) Novel unknown cluster. (E) Basal epithelial cell-enriched cluster. (F) Normal
breast-like cluster. (G) Luminal epithelial gene cluster containing ER. (image and legend from Sørlie et al., 2001).
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Identi�cation of new tumour subtypes Microarrays and especially mRNA pro�ling
have been widely applied to tumours: gene expression patterns have been shown to e�-
ciently retrieve biological and clinical properties of tumours as reviewed by Miller and Liu
(2007) for breast cancer. For example, Perou et al. (1999) showed that the vast and com-
plex transcriptional data generated by microarrays contained discernible subtypes of gene
expression patterns which related to tumour biology and behaviour. These subtypes, termed
luminal A, luminal B, normal breast-like, ERBB2+, and basal-like (see Figure 1.29) were
shown to be stable and reproducible classes observable in di�erent patient populations, and
signi�cantly associated with tumour recurrence and patient survival (Sørlie et al., 2001,
2003). Among these subtypes, a lot of attention is paid to basal-like group which has poor
prognosis and for which there is no e�cient therapy: understanding the mechanisms involved
in the tumoral progression within this subtype should give insights in order to �nd new ther-
apeutic targets. As we have already seen, protein kinases play a key-role in the biology
of cancer. Recently, Finetti et al. (2008) have shown that statistical analyses restricted to
the set of protein kinase coding genes were able to distinguish poor from good prognosis
in luminal A subtypes. In addition to mRNA expression, miRNA expression pro�ling has
also been shown to provide informative classi�cation of cancers (Lu et al., 2005). Indeed,
in a clustering analysis of miRNA pro�les, they have been able to identify distinct patterns
with respect to the di�erent cancer types or the developmental origins of the tissues (see
Figure 1.30a), to partition samples with respect to the mechanisms of transformation of
the tumour (see Figure 1.30b), and to identify patterns which could not be seen based on
mRNA pro�ling (see Figure 1.30c).

Identi�cation of predictive signatures Other studies have focused on the identi�cation
of gene expression signatures in order to predict the patient outcome. One of the most famous
signatures is the Amsterdam signature for breast cancer which consists of 70 genes (Van't
Veer et al., 2002). It was subsequently validated on a second series of patients (Van de
Vijver et al., 2002). This signature is also used in a prospective European clinical trial called
MINDACT (Microarray In Node negative Disease may Avoid ChemoTherapy) (Buyse et al.,
2006). miRNA expression pro�ling of human tumours also allows identi�cation of signatures
associated with diagnosis, staging, progression, prognosis and response to treatment (Calin
and Croce, 2006b). Therefore, miRNAs represent interesting prognostic factors and even
therapeutic targets (Lowery et al., 2008).

As we will see inChapter 2 in an application to uveal ?melanoma, the DNA copy number
pro�ling of tumours can be used for both subtype discovery and supervised classi�cation
(Trolet et al., 2008, this article is supplied as material part of the thesis in Section 2.5).

1.5.2 Analysis of DNA copy number: a need for new methods

Molecular pro�ling represents a valuable prospect to better characterise tumours and to
help in diagnosis and prognosis. For mRNA expression microarray experiments, a long
experience has existed for more than ten years and many methodologies have been proposed
to analyse such data (Grant et al., 2007). The �eld of DNA copy number pro�ling is more
recent and still evolving with new microarrays increasing the ability to detect smaller and
smaller alterations. Bioinformatics tools and methods are de�nitely needed to analyse such
data since a direct application of existing methodologies devoted to the analysis of mRNA
expression microarray experiments cannot be straightforwardly applied. Chapter 2 will
present the statistical approaches which have been developed during the thesis to take into
account the speci�city of the DNA copy number microarray experiments so that we are able
to correctly retrieve the relevant biological information from experiments.
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Figure 1.30: Molecular classi�cation from miRNA expression pro�les - a, miRNA pro�les of 218 samples from several di�erent
tissues were clustered (average linkage, correlation similarity). Samples are in columns, miRNAs in rows. Samples of epithelial
(EP) origin or derived from the gastrointestinal tract (GI) are indicated. b, Clustering of 73 bone marrow samples from
patients with acute lymphoblastic leukaemia (ALL). Coloured bars indicate the di�erent ALL subtypes. c, Comparison of
miRNA data and RNA data. For 89 epithelial samples from a that had RNA expression data, hierarchical clustering was
performed. Samples of GI origin are shown in blue. GI-derived samples largely cluster together in miRNA expression space,
but not in RNA expression space. Abbreviations used: Bldr, bladder; Brst, breast; Fcc, follicular lymphoma; Kid, kidney;
Lvr, liver; Mela, melanoma; Meso, mesothelioma; Pan, pancreas; Prost, prostate; Stom, stomach; Ut, uterus; AML, acute
myelogenous leukaemia; BALL, B-cell ALL; LBL, di�use large-B cell lymphoma; MF, mycosis fungoides; MLL, mixed lineage
leukaemia; TALL, T-cell ALL; Hyper 47-50, hyperdiploid with 47-50 chromosomes; Hyper > 50, hyperdiploid with over 50
chromosomes; Normp, normal ploidy (image and legend from Lu et al., 2005).
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1.5.3 Issue of Knowledge integration

Up to date, most publications have used one single molecular pro�le at a time to characterise
tumours with remarkable resolution and accuracy. As we have seen, di�erent molecular
pro�les are now available and it is natural to combine them to improve the knowledge we have
on cancer and also to identify new reliable and e�cient biomarkers useful for clinical purposes.
Indeed, the nature and strength of each biomarker, the certainty of its contribution to cancer,
and therefore its translational importance, vary substantially. Some biomarkers will be
strong, causal drivers of important cancer hallmarks. Others will be weaker but important
contributors to the development of cancer pathophysiology. And many will be genomic noise
(or passengers): that is, elements which are biologically neutral and have been accumulated
by chance during the cancer's lifespan. Distinguishing the drivers and contributors from the
passengers is a central challenge in genomic research. This is made more di�cult by the
diversity of biomarker function and the likelihood that biomarker function may depend on
the tumour type (or subtype), as well as on the tumour microenvironment (Chin and Gray,
2008). Technological advances which allow the cancer genome to be examined in multiple
omic dimensions are helping to focus the search for drivers and contributors, by uncovering
biomarkers which tend to be dysregulated by several mechanisms. Thus, data showing
that a biomarker can be dysregulated in several complementary ways in cancer, through the
integration of more than one dimension of genomic information, provide strong evidence that
a biomarker is likely to be pathogenetic. The current large-scale cancer genome projects
that are carrying out genome-wide characterisation in a coordinated and comprehensive
manner will be the most powerful at leveraging such multidimensional data for integrative
analyses. Software and databases are needed to provide biologists with e�cient tools to
explore the huge quantity of information inside these data: such tools will be presented in
Section 2.6. More and more studies focus on the combination of chromosome alterations
and gene expression data to explain direct or indirect relation between DNA copy number and
the mRNA expression level using correlation approaches (Lee et al., 2008). InChapter 3, we
will present a statistical approach to combine both mRNA expression and DNA copy number
microarray experiments in the framework of prediction (also called supervised classi�cation).
The goal is to provide signatures using both molecular pro�le levels so that it can help in
the choice of a tailored therapy for the patient.

1.5.4 Contributions of the thesis

As we have seen in this introductory chapter, DNA copy number alterations are a hallmark of
cancer. This molecular level provides a valuable information to pinpoint new cancer-critical
genes and to identify new prognostic and predictive biomarkers. High-throughput technolo-
gies have made it possible to quantify DNA copy number alterations and the contribution
of the thesis is to provide statistical methods to analyse DNA copy number microarray
experiments. In the next two chapters, the following contributions are presented:

• In Chapter 2, biostatistical methods have been developed to extract the relevant bio-
logical information from DNA copy number microarray experiments. The biostatistical
methods have been applied to uveal ?melanoma to identify new prognostic factors.

• In Chapter 3, a statistical method able to combine biological information from both
DNA copy number and mRNA expression microarray experiments has been developed
in order to identify new prognostic and predictive factors.
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Colour study: squares with concentric circles
Wassily Kandinsky, 1913

Necessaria est methodus ad rerum veritatem investigandam.

René Descartes, Regulae ad directionem ingenii
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This chapter presents the biostatistical algorithms and bioinformatics tools which have
been developed during the thesis to analyse DNA copy number microarray experiments.
Before introducing the outline of the chapter, let us make a brief overview of the di�erent
steps to perform in a study dealing with high-throughput experiments (see Figure 2.1).
Once the biological and/or clinical question is asked (Ê), an experimental design is de�ned
in order to e�ciently answer the problem raised (Ë). This step is still too often neglected
while a lot of attention should be paid to it: "To consult the statistician after an experiment
is �nished is often merely to ask him to conduct a post mortem examination. He can perhaps
say what the experiment died of" (Sir Ronald Aylmer Fisher). Then, the high-throughput
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experiments are performed and the bioinformatics really starts from this point (Ì). In almost
all high-throughput experiments, there is a scanner which analyses the microarray slides
and produces images. These images need to be analysed using image analysis software to
quantify the raw signal (Í). This step is followed by normalisation which aims at correcting
the systematic sources of variability in order to improve the signal (Î). The quality of data
is checked at the level of both image analysis and normalisation steps (Ï). At this stage,
the information provided after normalisation is still rough and the meaningful biological
information relevant for biologists must be extracted from the data (Ð). Once the relevant
information is extracted, the data can be used in a transversal analysis to perform clinical
biostatistics, classi�cation or systems biology modeling (Ñ). Finally, the results need to be
validated, interpreted and can lead to new experiments (Ó).

With respect to this bioinformatics framework, the outline of the chapter is the following:
we �rst describe a normalisation method which has been developed to improve the signal
from BAC aCGH experiments (steps Î and Ï). Then, an algorithm able to identify the
DNA copy number alterations is detailed (step Ð). In the next section, we show that, for
some microarray technologies, it is more powerful to combine at the same time both the
normalisation and the extraction of the biological information (steps Î, Ï and Ð). The �rst
three sections work at the level of single DNA copy number pro�le analysis. Therefore, we
then illustrate how the biological information can be retrieved in a multi-pro�le analysis using
a transversal analysis strategy (step Ð). In the �fth section, we show how the combination
of the algorithms previously described can help to predict high-risk patients from DNA copy
number experiments in uveal melanoma (step Ñ). Finally, the tools, software and database
devoted to the analysis of DNA copy number pro�les which have been developed either
entirely or partially are listed.

   

Biological/clinical question

Experimental design

High­throughput experiments
DNA copy number, mRNA expression

Extraction of the
biological information

Clinical biostatistics
Classification

Systems biology

Biological/clinical validation
and interpretation

Normalisation

Quality
control

Image analysis

➊

➋

➌

➍

➎

➏ ➐

➑
➒

Figure 2.1: Bioinformatics approach to analyse high-throughput experiments.
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2.1 Normalisation of array-CGH data

Normalisation aims at correcting the systematic sources of variability in order to improve the
signal. In all microarray technologies, there are inherent sources of variability which have a
direct impact on the signal quanti�ed with image analysis software (see Figure 2.1). In the
�eld of mRNA expression microarrays, many methods have been proposed (see Quackenbush,
2002; Do and Choi, 2006; Irizarry et al., 2006, for a review). They cannot be directly
transposed to the analysis of BAC aCGH pro�les since there are speci�cities which need to
be taken into account. Indeed, spatial artifacts have been noticed on aCGH data but no
method was appropriate for the removal of such artifacts. Therefore, we have developed a
normalisation method devoted to the spatial normalisation of aCGH data. This method is
called MicroArray NORmalisation (MANOR) (Neuvial et al., 2006) and the paper describing
the algorithm is supplied as a material part of the thesis. Brie�y, the method consists of a
spatial smoothing of the data followed by a segmentation which identi�es aberrant spatial
areas on the chip. Koren et al. (2007) suggested that normalisation methods which correct
for spatial biases, such as MANOR, should be routinely applied when analysing microarray
data.
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Abstract
Background: Array-based comparative genomic hybridization (array-CGH) is a recently
developed technique for analyzing changes in DNA copy number. As in all microarray analyses,
normalization is required to correct for experimental artifacts while preserving the true biological
signal. We investigated various sources of systematic variation in array-CGH data and identified
two distinct types of spatial effect of no biological relevance as the predominant experimental
artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large
proportion of arrays, and has not previously been considered in array-CGH experiments.

Results: We show that existing normalization techniques do not correct these spatial effects
properly. We therefore developed an automatic method for the spatial normalization of array-
CGH data. This method makes it possible to delineate and to eliminate and/or correct areas
affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called
NEM (Neighborhood Expectation Maximization) and spatial trend estimation. We defined quality
criteria for array-CGH data, demonstrating significant improvements in data quality with our
method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays).

Conclusion: We have designed an automatic algorithm for the spatial normalization of BAC CGH-
array data, preventing the misinterpretation of experimental artifacts as biologically relevant
outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-
Array NORmalization), which is described at http://bioinfo.curie.fr/projects/manor and available
from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb
bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

Background
Array-based comparative genomic hybridization (array-
CGH) provides a quantitative measure of differences in
copy number between two DNA samples [1]. The tech-

nique is typically applied to cancer studies because chro-
mosome aberrations frequently occur during tumor
progression [2]. Array-CGH facilitates the localization and
identification of oncogenes and tumor suppressor genes,
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which are likely to be present in chromosomal regions
gained and lost, respectively, in cancer cells.

Recent developments in the statistical analysis of array-
CGH data have focused on high-level analysis, typically
the identification of breakpoints from the genomic profile
[3-7], rather than normalization. Most of the normaliza-
tion techniques used to date for array-CGH data analysis
have therefore involved the simple transposition of meth-
ods originally designed for expression data [8,9], correct-
ing for differences in the labeling efficiency of the two
dyes, spotting effects (block, row, column, or print-tip
effects), and local or global intensity dependence of the
ratios [10]. As far as we are aware, Khojasteh et al. [11]
have reported the only method specific to CGH arrays.

Investigation of the systematic sources of variation in the
array-CGH data studied showed that the effects affecting
expression arrays were negligible with respect to spatial
effects of two types. We describe here an algorithm for
spatial normalization, which can also be combined with
existing normalization methods for handling non-spatial
artifacts. We will define and illustrate these two types of
spatial effect, and show that such effects are not properly
taken into account by traditional normalization tech-
niques.

Two distinct types of spatial artifact
The methods proposed here were originally developed for
the analysis of bladder cancer data from tumors collected

at Henri Mondor Hospital (Créteil, France) [12], analyzed
by hybridization on CGH arrays (F. Radvanyi, D. Pinkel et
al., unpublished results), including 2464 clones spotted at
the University of California San Francisco (UCSF) [13].
They were then adapted to several data sets for CGH arrays
produced and hybridized at the Institut Curie, including
the breast cancer data (O. Delattre, A. Aurias et al., unpub-
lished results) and the neuroblastoma data [14] (which is
publicly available [15]) used to illustrate the technique.

We identified two types of spatial effect with fundamen-
tally different natures: local spatial bias (Fig. 1(a)) and con-
tinuous spatial gradients (Fig. 2-1(a)):

Local spatial bias
The array image shows clusters of spots with a discrete sig-
nal shift, with the other spots of the array remaining
unchanged. These clustered shifted spots on the array
image (Fig. 1(a)) have no biological explanation, and cor-
respond to outliers on genomic profiles (Fig. 3(e) and
6(e)). In the data sets studied here, this artifact was found
to affect about half of all arrays. We describe it as local
because it affects only limited areas of the array.

Continuous spatial gradient
The array image shows a smooth gradient in signal from
one side of the slide to the other (Fig. 2-1(a)). This artifact
leads to genomic profiles with high variability, even
between regions with the same DNA copy number. When

The need for an image segmentation methodFigure 1
The need for an image segmentation method. An array with areas of local spatial bias (bladder cancer data): a straight-
forward trend correction method does not address the spatial effect appropriately. (a) Median-centered log-ratios; (b) spatial 
trend; (c) log-ratios after trend subtraction; (d) remaining spatial trend after subtraction (the color scale is not the same as in 
(b)). Colors are proportional to signal log-ratios; white dots correspond to missing values.
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Results of the gradient subtraction step (2dLoess) on a breast cancer arrayFigure 2
Results of the gradient subtraction step (2dLoess) on a breast cancer array. Correction of the spatial gradient of a 
breast cancer array: continuous spatial gradients are correctly taken into account by the proposed normalization method. 1(a) 
Median-centered log-ratios; 1(b) spatial trend; 1(c) genomic profile without spatial normalization; 2(a) corrected log-ratios; 
2(b) spatial trend after correction (the color scale is not the same as in 1(b)); 2(c) genomic profile after spatial normalization. 
The vertical gray dashed lines indicate the separation between chromosomes.
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1(c) Genomic profile (no trend subtraction)
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Results of the proposed spatial segmentation method (seg) on a bladder cancer arrayFigure 3
Results of the proposed spatial segmentation method (seg) on a bladder cancer array. Bladder cancer array with 
local spatial bias accurately detected by the proposed normalization method. (a) Median-centered log-ratios; (b) spatial trend; 
(c) spatial segmentation; (d) local spatial bias. The border of areas affected by local spatial bias that have been detected in panel 
(d) are reported on panels (a), (b) and (c) as a black step-function for easy interpretation; (e) genomic profile without spatial 
normalization (spots detected as local spatial artifacts are marked in red, and the vertical gray dashed lines indicate the separa-
tion between chromosomes).
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – bladder cancer data setFigure 4
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – bladder cancer 
data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each color 
corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference (red 
point 1 at (0, 0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data set 
for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma (dyn, 
respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed black 
line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for dyn 
and sigma, except seg, which performs slightly better for sigma. Methods 2, 3, and 4, which contain a gradient subtraction step 
using 2dLoess, perform the best against seg+2dLoess, as they cluster near the top-right corner of the image. However, 
seg+2dLoess still significantly outperformed these methods for both sigma and dyn.
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this effect is observed, it affects all spots to various
degrees.

These two types of effect are experimental artifacts of non-
biological origin:

- They occur on arrays designed such that neighboring
spots on the array correspond to non-neighboring clones
in the genome, so there is no obvious biological reason
for the clustering of high (or low) signals on the array;

- They are frequently observed on control (normal tissue
vs normal tissue) hybridizations, and even on background

signals (see Figure 5 for illustration with the breast cancer
data set).

The methods proposed are designed to remove or reduce
these two types of spatial effect, while preserving the true
biological signal.

The need for a spatial segmentation method
The spatial effects described above cannot be attributed to
spotting, for two reasons: firstly, they are not limited to
array rows, columns or blocks; secondly, they are not
reproducible from one array to another, even for arrays
taken from batches of slides printed at the same time.

Evidence of local spatial bias on foreground and background raw signals on a breast cancer arrayFigure 5
Evidence of local spatial bias on foreground and background raw signals on a breast cancer array. Log-ratios of 
the four raw signals of a breast cancer array: local spatial biases are easier to detect on a Cy3 background. (a) Test foreground; 
(b) test background; (c) reference foreground; (d) reference background. Gray-scale level is proportional to signal value.
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Results of the local spatial normalization step (seg) on a breast cancer arrayFigure 6
Results of the local spatial normalization step (seg) on a breast cancer array. Breast cancer array with local spatial 
bias accurately detected by the proposed normalization method. (a) Background signal log-ratios (Cy 3); (b) spatial trend; (c) 
spatial segmentation; (d) local spatial bias. The border of areas affected by local spatial bias that have been detected in panel (d) 
are reported on panels (a), (b) and (c) as a black step function for easy interpretation; (e) genomic profile without spatial nor-
malization (spots detected as local spatial artifacts are marked in red, and the vertical gray dashed lines indicate the separation 
between chromosomes).
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Therefore, it is not possible to correct for them properly
with the normalization methods generally used for
expression arrays, in which "spatial" effects are captured
only by row, column, or print-tip group effects. For a
method to be appropriate, it must take into account the
spatial structure of the array as a whole, and the arbitrary
shape of these biased areas.

Several different studies have taken into account spatial
effects in expression microarray data and have provided
signal correction methods. For example, Workman et al.
[16] defined a spatial gradient normalization method
using a two-dimensional Gaussian function to estimate
local background bias in a probe neighborhood. Baird et
al. [17] proposed a mixed model for cDNA array data,
using splines with spatial autocorrelation, assuming the
existence of a one-step correlation between adjacent spots
in a row or column. Colantuoni et al. [18] proposed a
method for normalizing the element signal intensities to
a mean intensity calculated locally across the surface of a
DNA microarray. Others studies have combined intensity-
dependent and spatially-dependent effects. Wilson et al.
[19] have proposed fitting a single LOESS curve on the MA
plot and then spatially smoothing the residuals using a
median filter to estimate the spatial trend. Tarca et al. [20]
proposed correcting intensity-dependent and spatially-
dependent effects using a feed-forward neural network.
Khojasteh et al. [11] have compared different CGH array
data normalization methods and suggested that a three-
step normalization that combines print-tip LOESS with
spatial correction using moving median and microplate
effect correction gave the best results.

These methods may be suitable for correcting continuous
spatial gradients, but they were not designed to detect
abrupt changes in signal value across the array, and there-
fore may not adequately handle local spatial bias: Figure
1 illustrates the need for a spatial segmentation method to
handle such local spatial effects. From the median-cen-
tered log-ratios (a) we estimate a spatial trend (b) by two-
dimensional LOESS regression [21,22]; subtracting this
spatial trend from the raw values partially corrects the spa-
tial effect (c), but the array trend after correction (d) dem-
onstrates that the spatial effect is undercorrected at the
inner border of the biased area, and overcorrected at the
outer border, consistent with the observation that signal
disturbances vary steeply at the border of the biased area.
This systematic overcorrection or undercorrection may
lead to misinterpretation in the corresponding genomic
profile.

A similar type of spatial effect was reported for expression
microarrays by Reimers et al [23]. For CGH arrays, this
type of effect should be easier to detect and correct, as they
have a much smaller range of signal ratio variation than

expression microarrays. However, this smaller range
necessitates a much greater measurement precision for
array-CGH data.

We describe here a spatial segmentation algorithm for the
automatic delineation and elimination of unreliable areas,
facilitating the exclusion of local spatial bias from array-
CGH data. This algorithm consists of three steps, which
are explained in detail in the Methods section:

[step 1]: Estimation of a spatial trend on the array using
two-dimensional LOESS regression [21,22]

[step 2]: Segmentation of the array into spatial areas with
similar trend values using NEM, an unsupervised classifi-
cation algorithm including spatial constraints [24,25]

[step 3]: Identification of the areas affected by spatial bias.

A wide variety of microarray techniques based on BACs,
cDNAs or oligonucleotides (see [26] for a review) may be
used to quantify changes in DNA copy number. From a
technical aspect, our method could be applied to any of
these microarray types, although we detected local spatial
bias only on BAC arrays.

Therefore, we focused on this technology, which has also
been the most widely used so far. We provide examples of
the implementation of this method and illustrate its per-
formance with three data sets collected on two CGH-array
platforms:

- The first data set (bladder cancer data) was produced at
the UCSF. In this data set, local spatial effects were
observed on 57% of 198 arrays, with a median of 229
affected spots, and no visual evidence of spatial gradients;

- The two other data sets were produced at the Institut
Curie, INSERM U509. They consist of a breast cancer data
set, in which local spatial effects were observed on 45% of
175 arrays, with a median of 592 affected spots, and a
neuroblastoma data set [14,15], with local spatial effects
on 23% of 26 arrays, and a median of 551 affected spots.

MANOR: an algorithm combining segmentation and signal 
correction
In addition to local spatial bias, we also frequently identi-
fied continuous spatial gradients, especially in breast can-
cer data set (Fig. 2-1(a)) and neuroblastoma data set. A
straightforward way to correct for spatial gradients (Fig. 2-
1(b)) is to subtract from the log-ratios an estimate of the
spatial trend on the array (Fig. 2-2(a, b)). The first step of
the spatial segmentation algorithm for detecting local spa-
tial bias (step 1) provides such an estimate. This estimate
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is calculated using two-dimensional LOESS regression as
explained in detail in the Methods section.

In many cases, the CGH arrays were affected by both types
of spatial effect: local spatial effects and continuous spa-
tial gradients. In practice, we do not know in advance
what type of spatial effect affects a given array. Thus, we
propose the following two-step approach:

1. run the spatial segmentation algorithm (seg) to identify
potential areas of local spatial bias

2. correct spots not excluded during the first step for con-
tinuous spatial gradients (2dLoess).

This algorithm, implemented in the MANOR package,
will be referred to as seg+2dLoess in the remainder of this
article. The rationale underlying this two-step approach is
that arrays affected by continuous spatial gradients only
will not be detected as containing local spatial bias by the
step seg, and will therefore be properly corrected by the
step 2dLoess. This two-step approach is suitable for the
spatial normalization of data sets containing both types of
spatial effect.

Results and discussion
We have used our method for the spatial normalization of
array-CGH data from two different platforms. In this sec-
tion, we provide information about the practical imple-
mentation of the method on these two platforms, and
quantitative results comparing our method to ten other
normalization techniques. These compare the values of
three quality criteria calculated after normalization of
each array: the first, sigma, estimates the experimental var-
iability between replicates, whereas the others, smt and
dyn, evaluate quality in the context of the estimation of
differences in DNA copy number between test and refer-
ence samples: smt quantifies the smoothness of the signal
over the genome, and dyn assesses the dynamics of the sig-
nal, defined by the signal-to-noise ratio between gained
and normal regions; these criteria are defined more for-
mally and explained in detail in the Methods section.

To our knowledge, the ten normalization procedures used
for the comparisons cover all the different types of
approaches proposed so far and include the methods pro-
posed by Tarca et al. [20], Yang et al. [10] and Khojasteh et
al. [11]. These methods are detailed in the Methods sec-
tion. For each normalization method, we calculated the
three quality criteria for each array. When comparing two
methods, we calculated a relative performance for each
quality criterion, and assessed the significance of this per-
formance using a Student's t-test, as explained in the
Methods section. We show that our proposed method

outperforms all previously published approaches for the
three data sets.

Application to data produced at UCSF
The bladder cancer data set to which our algorithm was
applied concerns 198 arrays that were spotted and hybrid-
ized at UCSF. These arrays consist of 7392 spots, corre-
sponding to 2464 clones – all of which are BACs (Bacterial
Artificial Chromosomes) – with the following design:

- Neighboring clones in the genome are dispersed on the
array – a necessary condition for distinguishing between
spatial artifacts and real biological information;

- Each clone is replicated three times on the array, and the
three replicated spots are adjacent, so a high level of con-
sistency for the three corresponding ratios does not prove
that there are no spatial effects.

For this data set, spatial normalization is the last step in
the following comprehensive normalization process.
After image analysis of the arrays with SPOT 2.0 software
[27], we screened for low-quality spots: spots with a fore-
ground reference signal (and foreground DAPI signal) less
than 125% of the background reference signal (reference
DAPI signal) were discarded, as were clones with a log-
ratio standard deviation exceeding 0.1. Clones for which
only one of the three replicates was retained after these
steps were then also discarded.

Finally, we applied the proposed spatial normalization
method seg+2dLoess as follows: the spatial segmentation
seg was applied to the log-ratios of this filtered array, with
K = 5 and β = 1 (see Methods for a definition of these
parameters and a discussion of how to choose them), fol-
lowed by the correction for continuous spatial gradients
2dLoess.

Spatial normalization step
Our segmentation algorithm detected local spatial effects
on 113 of 198 bladder cancer arrays (57%); the median
proportion of biased areas on these arrays was 3.1%. Fig-
ure 3 (top) illustrates the successive steps of the algorithm,
from centered log-ratios to array trend, spatial segmenta-
tion of the array, and finally the delineation of biased
areas. Red dots on the corresponding genomic profile
(Figure 3, bottom) correspond to the spots discarded dur-
ing spatial normalization (on this figure, signal log-ratios
have not yet been averaged by clone: spot-level information
is displayed).

Figure 3 (bottom) illustrates the improvement in data
quality achieved with our spatial normalization method:
among the apparent outliers (i.e. clones with log-ratio val-
ues significantly different from the mean log-ratio value
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for the genomic region), it distinguished between experi-
mental artifacts (red dots) and potentially biologically rel-
evant outliers accounting for localized genomic
amplifications.

Evaluation of the performance of the seg+2dLoess method
For each normalization method (11 methods including
ours), we calculated the three quality criteria for each array
and performed pairwise comparison of methods using the
estimate and significance of their relative performance for
each criterion, as explained in detail in the Methods sec-
tion.

Figure 4 shows the results of comparison of the ten meth-
ods with seg+2dLoess. For the dyn criterion, seg+2dLoess sig-
nificantly outperformed all methods (with all p-values ≤
0.039), and most significantly methods 5 to 11, that do
not include the 2dLoess step (with all p-values below 8.5 ×
10-18). The dyn criterion is particularly important as it
assesses the quality of copy number change detection.
seg+2dLoess also gives significantly better results for the
sigma criterion than all other methods (with all p-values
below 1.1 × 10-8) except one: seg performs significantly
better (p = 7.9 × 10-4) but the relative improvement has a
limited amplitude (only 0.36%).

For the smt criterion, seg+2dLoess also significantly outper-
forms all methods (with all p-values below 8.1 × 10-6,
except block+2dLoess for which p = 0.048).

Section 1 of the Additional file 1 shows similar plots to
Figure 4, but for the smt and dyn criteria, and for the smt
and sigma criteria. Tables 1 to 3 of the Additional files 2
and 3 summarize the results of all the pairwise compari-
sons of methods for the three quality criteria.

Taken together, these results show that the seg+2dLoess
method outperforms its competitors for the bladder can-
cer data set.

Application to data produced at Institut Curie, INSERM U 
509
The Institut Curie, INSERM U509 has developed its own
high-density CGH array; all steps in the production of
these chips are performed in Institut Curie laboratories,
including array spotting, DNA preparation, hybridization,
scanning and image processing. The current version of the
array contains 3342 clones, each of which is spotted at
least three times on the array, giving a total of 10800 to
11520 spots (including controls).

This array was designed to facilitate distinction between
relevant biological effects and experimental artifacts:
"empty" spots and spots of water were included as con-
trols, clone replicates were scattered over the array, and

the positions of clones on the array are not correlated with
their actual positions in the genome. A reliable ratio value
can therefore be calculated even if one of the three repli-
cates is flagged. The arrays were scanned using an Axon
Genepix 4000b scanner, and images were processed with
Genepix Pro 5.1.

We analyzed a breast cancer data set and a neuroblastoma
data set from this platform.

For this platform, we applied the proposed spatial nor-
malization method seg+2dLoess as follows: the spatial seg-
mentation seg was applied to the Background signal as
explained in the paragraph below, and the spatial gradi-
ents were corrected by 2dLoess calculated over the log-
ratios. A post-processing step that includes spot and clone
screening was then applied (allowing us, for example, to
discard spots having too low a signal-to-noise ratio, or
with poor replicate consistency).

Detail of the spatial segmentation step
Although we can correct the foreground signal for back-
ground intensity, a significant proportion of arrays still
show localized spatial patterns that cannot be attributed
to biological causes. Visual examination of spatial repre-
sentations of the four signals (foreground and back-
ground intensities for test and reference signals) revealed
that the bias was much clearer for the background signal
of Cy3-labeled samples (Figure 5), which was not the case
for bladder cancer data. We therefore applied the spatial
segmentation method described above to the background
signal of the Cy3 channel, with K = 7 and β = 1 (see Meth-
ods for a definition of these parameters and a discussion
of how to choose them).

Biased areas of the CGH array are flagged and excluded
from subsequent analysis. As clone replicates are not adja-
cent on the array, at least two of the three replicates gener-
ally remain after spatial bias correction, and a reliable
ratio value can still be calculated. Figure 6 shows the
results of this spatial segmentation step in the case of an
array with local spatial bias but no spatial gradients.

Evaluation of the performance of the method seg+2dLoess 
As for bladder cancer data, we calculated the three quality
criteria for each normalization method and for each array
for the breast cancer data set and the neuroblastoma data
set. We then compared the methods paiwise using the
estimate and significance of their relative performance for
each criterion, as explained in detail in the Methods sec-
tion.

Figures 7 and 8 show the results of comparing the ten
methods with seg+2dLoess for the dyn and sigma criteria.
seg+2dLoess significantly outperforms all other methods
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – breast cancer data setFigure 7
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – breast cancer 
data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each color 
corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference (red 
point 1 at (0, 0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data set 
for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma (dyn, 
respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed black 
line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for dyn 
and sigma.
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The proposed method (seg+2dLoess) compares favorably to all other normalization methods – neuroblastoma data setFigure 8
The proposed method (seg+2dLoess) compares favorably to all other normalization methods – neuroblast-
oma data set. We compared the proposed method (seg+2dLoess) to ten methods for two quality criteria: sigma and dyn. Each 
color corresponds to the comparison of seg+2dLoess with a different method. The proposed method is taken as a reference 
(red point 1 at (0,0)). For each method i, the cross indicates the mean relative performance (see methods section) of the data 
set for dyn (x axis) and in sigma (y axis), and the lines give the corresponding 95% quantile of relative performance. For sigma 
(dyn, respectively), the methods with a 95% quantile below (left to, respectively) the horizontal (vertical, respectively) dashed 
black line are significantly outperformed by our proposed method. Here seg+2dLoess significantly outperforms all methods for 
dyn and sigma, except those containing a gradient subtraction step with 2dLoess.
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for the three criteria on the breast cancer data set (with all
p-values below 2.3 × 10-4).

The neuroblastoma data set gives similar results:
seg+2dLoess quality criteria are always better than those of
the other methods, except for dyn, in which adjSeg+2dLoess
is slightly better (0.22%) but not significantly so (p = 0.1).
For smt, seg+2dLoess is only slightly better than ptl+movMed
and the methods including the 2dLoess step, but not sig-
nificantly so for adjSeg+2dLoess and ptl+movMed. In these
cases, the small size of the data set (26 arrays, 6 with local
spatial bias) affects the statistical power.

Section 2 and 3 of the Additional file 1 and Tables 4 to 9
of the Additional files 2 and 3 detail and complement
these results.

These results show that the seg+2dLoess method outper-
forms the other methods on the two data sets produced
on the Institut Curie, INSERM U509 platform. The results
also allow the methods to be ranked in terms of perform-
ance. Those methods that include a two-dimensional
LOESS step are the highest ranked, with the methods pro-
posed by [11,10] and [20], which all include some spatial
processing, being next, and the other methods being the
lowest ranked (see Figure 7 for example).

Conclusion
We have designed an efficient and automated algorithm
for the spatial normalization of BAC array-CGH data, and
defined a set of parameters for CGH array data quality
assessment. We have shown that our method significantly
improves the quality of data from two different BAC-array
platforms and outperforms other normalization tech-
niques on three data sets.

The proposed algorithm is particularly suitable for cor-
recting spatial effects not related to array design (row, col-
umn, or print-tip group effects): indeed, the arrays studied
show two distinct types of such spatial effect (local spatial
bias and continuous spatial gradients), which can simul-
taneously affect any given array. In such cases, using spa-
tial trend correction after spatial segmentation helps to
remove or reduce these two types of spatial effect, while
preserving the true biological signal.

This method is original in the application of a segmenta-
tion algorithm for detecting and removing local spatial
bias, preventing the misinterpretation of experimental
artifacts as biologically relevant outliers in the genomic
profile.

This method was developed for array-CGH experiments,
and gave very good results. However, it can be applied to

any microarray experiment having the same types of spa-
tial effect.

Availability and requirements
Our method is implemented in the R package MANOR
(Micro-Array NORmalization) [28], which is available
from the Bioconductor site [29]. It can also be tested on
the CAPweb bioinformatics platform [30,31].

Methods
In this section, we provide details of the segmentation
method and the other normalization techniques used for
comparison, and of the quality criteria proposed. We also
discuss the choice of the two parameters of the segmenta-
tion algorithm: K and β.

Description of the segmentation algorithm (seg)
The segmentation method consists of three steps:

[step 1]: Estimation of a spatial trend on the array using
two-dimensional LOESS regression [21,22]

[step 2]: Segmentation of the array into spatial areas with
similar trend values, using NEM, an unsupervised classifi-
cation algorithm including spatial constraints [24,25]

[step 3]: Identification of the areas affected by spatial bias.

[step 1]: spatial trend estimation
We decided to carry out spatial segmentation based on an
estimate of the spatial trend on the array, to optimize the
robustness of segmentation. Furthermore, estimation of
this trend makes it possible to replace missing values by
interpolating the spatial trend.

The trend is estimated by means of a two-dimensional
LOESS procedure with three iterative reweighting steps
[21,22]. The local estimation is linear and the neighbor-
hood taken into account to fit the local model corre-
sponds to 3% of the total number of points. We use an
iterative reweighting procedure to avoid outlier effects.
Indeed, in the context of cancer studies, we are investigat-
ing changes in DNA copy number, and some clones dis-
playing an amplification or a homozygous deletion may
generate extreme but biologically meaningful values,
which should not be interpreted as a local spatial bias.

When the spatial trend is estimated from the log-ratios, we
first apply a basic correction to these log-ratios to prevent
confusion between spatial artifacts and biologically rele-
vant effects. For each chromosome arm, centered log-ratios
are calculated as follows: the median of the corresponding
log-ratio values is calculated and then subtracted from the
initial values. The spatial trend is estimated from these
centered log-ratios. This method helps to decrease the
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impact of true genomic aberrations on the detection of
spatial trends in the data, particularly for samples with
many, or large genomic alterations, as most of these alter-
ations correspond to the gain or loss of whole chromo-
some arms.

[step 2]: spatial segmentation

This step aims to identify K clusters corresponding to
spots with similar signal levels located close together geo-
graphically. This is achieved by Neighborhood Expecta-
tion Maximization (NEM) [24,25]. We assume that the
data are drawn from a mixed Gaussian density function

 where pk are the propor-

tions of the mixture model, fk (xi|θk) denotes the density

function of a Gaussian distribution with parameter θk =

(μk, Σk) and Φ = {p1,..., pk , θ1,..., θK} is the set of parame-

ters to be estimated. The classical EM algorithm considers
the following decomposition of the likelihood:

where

In the mixture model context, [32] pointed out that the
EM algorithm is formally equivalent to the alternative
maximization of L (c, Φ) with respect to c ("E" step) and
with respect to Φ ("M" step). The NEM algorithm is origi-
nal in that it regularizes the likelihood by means of a term
that takes into account the spatial dimension of the prob-
lem through the following adjacency matrix:

Here, the neighbors of a point located at coordinates (l, m
) are the four points with the following coordinates: (l +1,
m), (l - 1, m), (l, m - 1). We define the following quantity:

Thus, instead of maximizing L (c, Φ ) in the E step, we
maximize L (c, Φ) + βG (c). The value of β controls the
weighting of the geographical context in the maximiza-
tion. The M step remains unchanged.

[step 3]: elimination of local spatial bias
The basic idea is to remove from the array those spatial
clusters with signal values significantly higher (or lower)
than the unbiased areas of the array. We describe here the
situation for positive spatial bias, but the idea can be
adapted to negative bias. As local spatial biases cover a
limited proportion of the array, we introduced a tuning
parameter pmax, which corresponds to the maximum pro-
portion of the array image corresponding to local spatial
bias. In our experiment, local spatial bias typically applies
to less than one quarter of the array, so we used pmax =
0.25.

After sorting the clusters identified by NEM by decreasing
mean signal, we consider only those clusters with cumu-
lative frequencies lower than pmax to be potentially biased,
making it possible to define a set of candidate clusters.
The mean signal value of the remaining clusters is used as
a reference value for the unbiased signal. Each candidate
cluster with a mean signal differing from this reference
value by more than a given threshold value is considered
biased. The other candidates are considered unbiased,
unless their mean signal is closer to that of the biased clus-
ter than to that of the reference: such clusters are also con-
sidered biased. This threshold was chosen based on the
cross-validation of arrays analyzed by experts.

Comparison to other normalization methods
We compared the described methodology with other clas-
sical normalization methods. All these methods are listed
below:

- A print-tip group method:

block (block normalization): we subtract off the row and
column block median log-ratio values for each spot, and
adds back the overall block median log-ratio value.

- A print-tip group with intensity dependent effect method:

ptl (print-tip loess): we apply the print-tip LOESS nor-
malization [10] method using the marray R package
(1.8.0 release, with default parameters) available from
Bioconductor.

- A spatial smoothing method:

2dLoess (correction of continuous spatial gradients): a
spatial trend is estimated by two-dimensional LOESS
[21,22], which is then substrated from the log-ratio val-
ues.

- Two spatial segmentation methods:
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seg (segmentation of local spatial bias): we apply the
spatial segmentation algorithm described above to auto-
matically eliminate the biased area.

adjSeg (correction of local spatial bias): we apply the
spatial segmentation algorithm to automatically delineate
the biased area. The median log-ratio value of such an area
is then adjusted to the median log-ratio value of the unbi-
ased area.

- A method combining print-tip group and spatial smoothing:

block+2dLoess (block normalization and global correc-
tion): we apply the 2dLoess method on the normalized
log-ratio values obtained with block.

- Two methods combining intensity dependent effect and spatial
smoothing:

nnNorm (neural network normalization): we apply the
normalization method described by Tarca et al. [20] using
the nnNorm R package (1.5.1 release, with default param-
eters) available from Bioconductor. Briefly, this technique
uses a neural network approach to correct the intensity-
dependent and spatially-dependent effects.

ptl+movMed (print-tip loess and moving median fil-
ter): Khojasteh et al. [11] compared different normaliza-
tion methods and suggested that combining the print-tip
LOESS method with spatial correction (using a moving
median calculated over a neighborhood of 11 rows by 11
columns) and microplate correction gave the best results.
As the microplate information was not available in our
data, we discarded the third step and only considered the
print-tip LOESS and spatial correction.

- Two methods combining spatial segmentation and spatial
smoothing:

adjSeg+2dLoess (correction of local spatial bias and
continuous spatial gradients): we apply the 2dLoess
method on the normalized log-ratio values obtained with
the adjSeg method.

seg+2dLoess (local segmentation and correction of con-
tinuous spatial gradients): we apply the 2dLoess method
on the log-ratio obtained with the seg method.

- Raw log-ratio values with no normalization (none).

Array-CGH data quality assessment
Definition of quality criteria
Evaluation of the quality of the signal ratios of an array
facilitates the comparison of different image analyses or
normalization algorithms, and makes it possible to quan-

tify the improvement achieved by each step of a given nor-
malization algorithm. We define three criteria for
assessing the quality of the analyzed array: the first
addresses the issue of overall quality whereas the other
two provide quality evaluations for the estimation of dif-
ferences in DNA copy number between test and reference
samples.

sigma The first item provides an estimate of experimental
noise. We isolate each clone and calculate the standard
deviation of the log-ratio of the corresponding replicates.
sigma is defined as the median of these standard devia-
tions: the smaller the value of sigma, the higher the quality
of the array.

The other two criteria are calculated after detection of the
altered (gained or lost) regions in the test sample. We used
the GLAD algorithm, developed by Hupé et al. [4] for this
purpose:

smt Within a given DNA copy number region, the ratios of
contiguous clones should not differ considerably. The sec-
ond quality criterion concerns the smoothness of the signal
log-ratios within such a chromosomal region: signal
smoothness is defined as the median absolute difference
between log-ratios for contiguous normal clones. If N
denotes the set of clones considered normal after DNA
copy number estimation, we can calculate

smt = mediann∈N|x(n) - x(n -1)|,

where x(n) is the value of the log-ratio at the nth clone in
genome order.

dyn The last criterion estimates the dynamics of DNA copy
number variation between test and reference samples. We
calculate the discrepancy between the median ratios of the
regions considered "gained"(G) and "normal"(N) after
DNA copy number estimation, and compare it with signal
smoothness, as measured by smt:

If no gained region is detected, we compare "normal"
regions with "lost"(L) regions.

smt and dyn are not independent parameters and are anti-
correlated. However, they quantify related but different
ideas, as smt estimates the noise level after data normali-
zation whereas dyn measures the ability to detect genome
alterations after data normalization.

dyn
x x

smt
g G g n N n=

−∈ ∈median median
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Paiwise comparison of quality criteria
These three criteria help us to decide which of two nor-
malization methods gives the best results for a given array.
In this pairwise comparison context, smt and dyn must be
calculated with the same definition of G, N, and L regions
for the two normalized arrays. We therefore define con-
sensus G, N, and L regions associated with an array proc-
essed with two different normalization methods as the
intersection of the two corresponding G, N, and L regions
obtained using the two different normalization methods.

In order to test whether method j is better than method i,
we defined a relative performance for each quality crite-
rion as follows:

We calculated this relative performance for each array,
and assessed its significance by testing the hypotheses

: {RPqc(i,j) < 0} for each quality criterion qc, using a

Student's unilateral t-test.

In figures 4, 7, and 8, we calculated relative performances
RP(seg+2dLoess, test) where test corresponds to one of the
ten other methods. Hence a negative value for RP
(seg+2dLoess, test) indicates that our proposed method
outperforms the test method.

Parameter choice for the segmentation algorithm
The segmentation algorithm includes two parameters: the
number K of clusters, and the regularization parameter β,
which controls the weighting of geographic context in sig-
nal segmentation. Our experience suggests that the opti-
mal choice of K and β may depend on the array-CGH
technology used. We therefore provide guidelines for the
choice of suitable parameters of the algorithm. We have
investigated two different approaches to the choice of (K,
β): incorporating a model selection criterion into the algo-
rithm so that an optimal (K, β) can be chosen for each
array, or developing a calibration method to help the user
to find relevant sets of parameters for analyzing a whole
data set. In this section, we discuss these two approaches
and justify our choice of the second solution.

The difficulty finding optimal parameters on a per array basis
Choice of the number K of components in a mixture
model can be addressed using model selection criteria.

The basic idea is as follows: as the maximum likelihood
estimator of the model increases mechanically with K (as
model complexity increases with K), this method sub-
tracts an increasing function of K from the likelihood of
the model with K components, to prevent model overfit-
ting. Many applications use the Akaike Information Crite-
rion (AIC) or the Bayesian Information Criterion (BIC)
for this purpose. However, in our framework, K and β
must be chosen simultaneously, because β also affects the
maximum likelihood estimator. As we have no informa-
tion concerning the quantitative behavior of the maxi-
mum likelihood estimator with respect to K and β (this
complex question is beyond the scope of this paper), the
choice of an appropriate penalization remains arbitrary.

We also considered an approach involving the fitting of K
using model selection criteria and cross-validating the
choice of β, but this approach has major drawbacks: first,
it strongly increases the complexity of the estimation
process, making this method too time-consuming for use
as a routine normalization method; second, it makes the
normalization method difficult to interpret, because two
arrays from the same platform will not be treated with the
same parameters.

Guidelines for choosing relevant parameters for analyzing a new 
data set
Rather than searching for optimal (K, β) values for each
array, we provide a calibration method making it possible
to choose appropriate (K, β) values for each data set. The
basic principle of the calibration method is comparison of
the output of our algorithm run on different (K, β) pairs,
taken from a pre-defined grid (e. g. K ∈ {2,... 10} and β ∈
{0.1,0.2,...2.0}).

We considered two different approaches to compare the
results of the segmentations and to choose appropriate (K,
β) values. The first approach involved choosing a (K, β)
combination that optimizes quality criteria. The second
involves expert assessment. An expert examines each array
from a representative set and determines whether there is
local spatial bias: he or she checks both the array image
and the genomic profile to guarantee that the spatial effect
is due to an experimental artifact rather than a biological
effect. We then select the (K, β) combination that gives the
best agreement between the expert decision and the algo-
rithm decision. We call this second approach expert assess-
ment. We found this second method simpler and more
efficient than the first, for a number of reasons, outlined
below.

In the first approach, quality criteria are calculated after
normalization and DNA copy number assessment, so
these three steps have to be carried out for each (K, β)
combination. Therefore, although this method has the
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obvious advantage of not relying on expert assessment, it
is time-consuming, and provides only indirect evalua-
tions of the differences between pairs of parameters,
which may make the results hard to interpret. Moreover, a
much lower level of variation was observed in the values
of quality criteria for different (K, β) combinations for a
given array than between arrays, so we were unable to
identify optimal (K, β) values with this method (data not
shown).

In the second approach, we considered two different ways
of performing the expert assessment: either identifying
arrays displaying local spatial bias (qualitative assess-
ment), or estimating the number of spots that should be
discarded (quantitative assessment). We found quantita-
tive assessment to be very poorly reproducible, with large
differences between experts, and much more time-con-
suming than the qualitative method. Therefore, we
adopted the qualitative method, which made possible the

rapid expert assessment of a larger number of arrays, thus
increasing the accuracy of parameter choice.

Based on the qualitative expert assessment of an entire
data set or a subset of data, we compare, for each array, the
decision of our algorithm (has the algorithm detected a
local spatial bias?) with that of the expert. We then calcu-
late the proportion of false positives and false negatives
for each combination of the parameters K ∈ {2,...10} and
β ∈ {0.1, 0.2,... 2.0}. Qualitative expert assessment
remains highly variable (significant differences between
experts), as a substantial proportion of arrays are difficult
to classify. Nevertheless, all assessments show the same
form of dependence in the error rate in (K, β), and lead to
selection of the same parameters (data not shown).

For illustration, we use a subset of arrays on which two
different expert assessments agree. The analysis is shown
in Figure 9 for breast cancer data (134/179 arrays), and

Comparison between qualitative assessment and segmentation results with various (K, β) –breast cancer data setFigure 9
Comparison between qualitative assessment and segmentation results with various (K, β) –breast cancer data 
set. Thesegmentation algorithm is run with K ∈ {2,...10} (x axis) and β ∈ {0.1, 0.2,...2.0} (y axis) and compared with the expert 
assessment of the breast cancer data set. (a) False positive rate; (b) False negative rate; (c) Total error rate.
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Figure 10 for bladder cancer data (169/198 arrays). False
positives are arrays that experts identified as having no
local spatial bias, but which were identified by the algo-
rithm as having local spatial bias. False negatives are
arrays that the expert considered to contain local spatial
bias, and for which no such areas were reported by the
algorithm. Roughly speaking, K controls cluster size, and
β influences both the size and spatial coherence of the
clusters. As K increases (with fixed β), clusters tend to
shrink, leading to an increase in the mean signal value of
the highest cluster, making it more likely that this cluster
will be identified as a local spatial bias. For fixed K, the
highest cluster is slightly more likely to be detected as
local spatial bias for intermediate β, corresponding to an
extreme cluster with high, homogenous values: for low β
this cluster is often quite large and incorporates too small
signal values, whereas for very high β, the geographic con-

text is too strong, leading to a highest cluster with hetero-
geneous signal values.

Drawing figures such as Figure 9 or 10 for any new data set
can facilitate the identification of relevant sets of parame-
ters for the segmentation algorithm. In our case, they sug-
gest values of K = 5 and β between 0.9 and 1.3 for bladder
cancer data set, and K = 7 or 8 and β between 0.9 and 1.3
for breast cancer data set. We used K = 5, β = 1 for the blad-
der cancer data set, and K = 7, β = 1 for the breast cancer
data set.
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Comparison between qualitative assessment and segmentation results with various (K, β) – bladder cancer data setFigure 10
Comparison between qualitative assessment and segmentation results with various (K, β) – bladder cancer 
data set. The segmentation algorithm is run with K ∈ {2,...10} (x axis) and β ∈ {0.1, 0.2,...2.0} (y axis) and compared with the 
expert assessment of the breast cancer data set. (a) False positive rate; (b) False negative rate; (c) Total error rate.
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2.2 Identi�cation of DNA copy number alterations

A need for an automatic algorithm We have seen in Subsection 1.3.6 that some chro-
mosome aberrations are related to DNA copy number changes. In Subsection 1.4.2, the
aCGH technology used for the DNA copy number pro�ling of tumours has been described in
detail. For each locus, this technology outputs a quantitative value which is ideally propor-
tional to the DNA copy number. However, due to technical variability there is a �uctuation
of the signal around its expected value and statistical methods are necessary to retrieve the
true signal. Moreover, the DNA copy number of contiguous loci on the genome are very likely
to have the same DNA copy number except at very particular loci, called breakpoints, which
correspond to an abrupt change in DNA copy number. Therefore, a statistical method which
takes into account the geographical proximity of the loci on the genome and has the ability
to detect abrupt changes has been developed. This method is called Gain and Loss Analysis
of DNA (GLAD) (Hupé et al., 2004) and the paper describing the algorithm is supplied as a
material part of the thesis. Brie�y, as shown in Figure 2.2, the GLAD algorithm allows the
detection of breakpoints in the molecular pro�le (this step is called segmentation) and the
assignment of a status (either loss, normal, gain or ampli�cation) to each region identi�ed
(this step is called calling). The calling step provides valuable information for downstream
analyses as suggested by Van Wieringen et al. (2007). The development of such an algorithm
also avoid the tedious task of a manual expertise which is subject to error, non-reproducible
and time-consuming (and even untractable for high-density chips).

Other methods for the DNA copy number analysis Di�erent algorithms have been
developed and their e�ciency on BAC aCGH has been compared by Willenbrock and
Fridlyand (2005) and Lai et al. (2005, 2008). Among the available methods, the main com-
petitors were CBS (Olshen et al., 2004), CGHseg (Picard et al., 2005), GA (Jong et al., 2003),
HMM (Fridlyand et al., 2004) and GLAD (Hupé et al., 2004). On A�ymetrix GeneChip R©

Genome-Wide Human SNP Array chip, GLAD was also shown to be e�cient (Baross et al.,
2007). We give here the basic principles of the most e�cient algorithms. In Olshen et al.
(2004), the binary segmentation method (Sen and Srivastava, 1975) is modi�ed to allow splits
into either two or three segments. In this algorithm, termed Circular Binary Segmentation
(CBS), the maximum of a likelihood ratio statistic is used recursively to detect narrower
segments of aberration. Jong et al. (2003) used a Genetic Algorithm (GA) to maximise
a likelihood with a penalty term containing the number of breakpoints. Fridlyand et al.
(2004) used Hidden Markov Model (HMM) in which the underlying DNA copy numbers are
the hidden states with certain transition probabilities. Picard et al. (2005) used a dynamic
programming approach using a penalised likelihood in order to choose the most appropriate
number of breakpoints.
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breakpoint
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Figure 2.2: Breakpoint detection in DNA copy number pro�le - At the top is represented the DNA copy number value for
chromosome 8 of a breast cancer tumour (data from Bollet et al., 2008). At the bottom is represented the underlying karyotype
for this pro�le. The breakpoints correspond to a change of DNA copy number and allow the de�nition of a gain region and a
loss region. The pro�le has been analysed with the GLAD algorithm (Hupé et al., 2004).
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ABSTRACT
Motivation: Genomic DNA regions are frequently lost or
gained during tumor progression. Array Comparative Geno-
mic Hybridization (array CGH) technology makes it possible
to assess these changes in DNA in cancers, by comparison
with a normal reference. The identification of systematically
deleted or amplified genomic regions in a set of tumors enables
biologists to identify genes involved in cancer progression
because tumor suppressor genes are thought to be located
in lost genomic regions and oncogenes, in gained regions.
Array CGH profiles should also improve the classification of
tumors. The achievement of these goals requires a methodo-
logy for detecting the breakpoints delimiting altered regions in
genomic patterns and assigning a status (normal, gained or
lost) to each chromosomal region.
Results: We have developed a methodology for the auto-
matic detection of breakpoints from array CGH profile, and
the assignment of a status to each chromosomal region. The
breakpoint detection step is based on the Adaptive Weights
Smoothing (AWS) procedure and provides highly convincing
results: our algorithm detects 97, 100 and 94% of breakpoints
in simulated data, karyotyping results and manually analyzed
profiles, respectively. The percentage of correctly assigned
statuses ranges from 98.9 to 99.8% for simulated data and is
100% for karyotyping results. Our algorithm also outperforms
other solutions on a public reference dataset.
Availability: The R package GLAD (Gain and Loss Analysis
of DNA) is available upon request
Contact: glad@curie.fr

INTRODUCTION
Array Comparative Genome Hybridization (array CGH) is a
recently developed technology based on DNA microarrays
(Pinkel et al., 1998; Snijders et al., 2001; Solinas-Toldo
et al., 1997; Ishkanian et al., 2004) and dedicated to the
investigation and mapping of changes in DNA copy number.
The array generally consists of spotted genomic sequences

∗To whom correspondence should be addressed.

inserted into bacterial artificial chromosomes (BACs), e.g.
(for ease of notation, we will refer to genomic sequences as
BACs): each sample DNA is labeled with a fluorescent dye
and the reference DNA is labeled with another fluorescent
dye. This mixture is then hybridized to the array CGH. Typical
applications of arrays CGH are cancer studies since chromo-
some aberrations frequently occur during tumor progression
(Albertson et al., 2003) and human genetic disease research
(Albertson and Pinkel, 2003; Shaw-Smith et al., 2004). In
cancer studies, tumor DNA samples are compared with a nor-
mal reference DNA sample. The normal sample should have
two copies of each genomic region (with the exception of the
non-pseudo-autosomal regions of sexual chromosomes, for
which a single copy is expected in males), whereas tumor
DNA may present a loss or gain of DNA regions. In the
simplest case, for a diploid tumor, the loss of a region will
result in there being 0 or 1 copy whereas the gain of a region
will result in there being three or more copies (the reality is
more complex because a tumor is often not diploid). Meas-
urement of the signal intensities of the reference and tumor
samples for each BAC should make it possible to determ-
ine which regions have been gained or lost in the tumor
sample.

Once a microarray has been constructed and hybridization
carried out, several steps must be completed to determine
which regions have been gained or lost: image acquisition,
image analysis (including gridding, spot addressing, spot
segmentation, spot quantification and outlier detection), sig-
nal normalization (e.g. to correct for systematic spatial or
intensity biases) and duplicate treatment (each BAC is gen-
erally spotted in several copies to make possible statistical
assessment of confidence). Once these steps have been com-
pleted, a synthetic value for the signal ratio is obtained,
corresponding to the amount of DNA in the BAC concerned
in the tumor with respect to that in the reference sample. The
regions gained and lost can then be inferred from the ratio
profile. Finally, correlation of the loss and gain profiles for
a sufficiently high number of tumor samples should provide
insight into the regions involved in tumorigenesis or tumor
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progression: oncogenes are likely to be present in the regions
gained and tumor suppressor genes in the regions lost.

In this study, we assume that signal ratios for each BAC,
such as those provided by SPOT 2.0 (Jain et al., 2002) or
GenePix (Axon Instruments, 2003) software, are available and
we focus on the problem of identifying the regions gained
and lost from the ratio profile. Let us define the status of a
homogeneous genomic region as the number of copies of the
DNA of this region (here homogeneous means that all points
in the region have the same DNA copy number) and Max-
imum Spanning Homogeneous Region (MSHR) as a region of
homogeneous DNA status bordered either by a chromosome
end or by another region of different status. Plots of BAC
ratios (in fact, we use the ratio base 2 logarithm log2-ratio)
versus BAC position (or rank) along the genome typically
generate patterns in which MSHRs should be composed of
spots distributed around a mean value that characterizes the
status (cf. Fig. 1). Two adjacent MSHRs are separated by
a breakpoint. Our approach can be broken down into two
main steps: the detection of breakpoints and the assignment
of a status to each MSHR. In some cases, a point deletion
or amplification may affect the DNA, appearing on the ratio
profile as an outlier among BACs with the same DNA status.
This special case needs a particular treatment, called outlier
detection.

In the absence of experimental biases, ratios should be
0 for double loss, 1

2 for a single loss, 1 for the normal
situation, 3

2 for a single gain and more generally n
2 for a

sample with n copies of DNA. In practice, microarray exper-
iments are subject to various sources of variation, including
differences in incorporation efficiency between the two fluor-
escent dyes, an intensity-dependent effect and a print-tip
effect, as reported by Yang et al. (2001) for expression data.
These variations create noise and bias the theoretical val-
ues. In addition, tumor biopsy samples generally contain a
mixture of normal and tumor cells, and tumor cells may
even present heterogeneity in terms of genome losses and
gains, corresponding to different stages of tumor progression;
these heterogeneities result in smaller signal gaps between
regions.

To our knowledge, only two articles have dealt with
the problem of breakpoint detection and none have con-
sidered the question of region assignment. Jong et al.
(2003) used a genetic algorithm and local optimization to
detect breakpoints. The algorithm developed by Olshen and
Vankatraman (2002) is based on circular binary segmenta-
tion, as described by Sen and Srivastava (1975). This paper
is organized as follows: we will begin by describing our
breakpoint detection algorithm; we will then present the
region assignment method, followed by a validation of our
approach based on simulations, karyotyping results, loss of
heterozygosity (LOH) (Vogelstein et al., 1989) and manually
analyzed data. Finally, we discuss the result obtained and
perspectives.

BREAKPOINT DETECTION
The problem of chromosomal breakpoint detection can be
approached by estimating a piecewise constant function defin-
ing each MSHR of the chromosome. A solution to this
problem of estimation has been proposed by Polzehl and
Spokoiny (2002), with application in two dimensions to
image segmentation. We present here the main principles of
their algorithm—adaptive weights smoothing (AWS)—and
describe how this algorithm should be applied to chromosomal
breakpoint detection with array CGH data. The AWS pro-
cedure is an iterative, data-adaptive smoothing technique that
was designed for smoothing in regression problems involving
discontinuous regression function. It is assumed that the
regression function can be approximated, e.g. by a simple
local constant model. The regression function is estimated as a
weighted maximum-likelihood estimate (MLE), with weights
chosen in a completely data-adaptive way. The algorithm
finds, around each point, the maximal neighborhood in which
the local constant assumption holds. In our case, the max-
imal neighborhood of every BAC should allow us to delineate
in a straightforward manner the MSHRs and the parametric
estimation should provide its copy number. The procedure
has a number of features of potential value for our problem:
it has been shown to preserve contrasts and edges between
regions (and should therefore detect breakpoints accurately),
it requires very little prior information about the data to model
and has a numerical complexity of nM with n the number of
points (BACs) and M the size of the maximum neighborhood.
The AWS is more general than simple piecewise constant
function estimation, but it is straightforward to restrict it to
our case.

Statistical model
Let us consider a series of N independent observations S =
{(X1, Y1), . . . , (XN , YN)} in which each Xi is valued in a met-
ric space X and determines the location (the BAC rank on
the chromosome) and each Yi is valued in another metric
space Y and is the observation at Xi (the measured log2-ratio);
the locations Xi are ordered such that X1 < · · · < Xi <

· · · < XN . We also assume that the observation Yi depends
on the location Xi via a parameter θ ∈ �, where � is a
subset of a finite-dimensional space Rd . Conditionally on
Xi = x, the random variable Yi is distributed with the dens-
ity probability function p[y, θ(x)] for some unknown θ(x) on
X valued in �. Here, we consider the local constant gaus-
sian regression model Yi = θ(Xi) + εi , where the εi are
i.i.d. N (0, σ 2). We wish to infer the function θ such that
θ is of the form θ(x) = ∑M

m=1 am1(x ∈ Xm) with dis-
joint regions X1, . . . , XM and X = ⋃M

m=1 Xm. The regions
Xm, the values am and even the total number of regions
M are unknown. Estimation of the parameter θ is a local
estimation problem in that this parameter depends on the
location.
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The AWS procedure
The approach used for the local estimation of θ is based
on local-likelihood modeling (Polzehl and Spokoiny, 2002)
and extends the AWS procedure proposed by Polzehl and
Spokoiny (2000). An iterative algorithm finds, around every
location Xi , the maximal possible neighborhood in which
the parameter θ is constant: a weight wij (0 ≤ wij ≤ 1) is
assigned to every observation Yj at Xj , which depends on the
previous step of the algorithm. The weighted MLE θ̂ (Xi) = θ̂i

is of the form:

θ̂i = argsup
θ∈�

L(Wi , θ , θ ′)

with

L(Wi , θ , θ ′) =
N∑

j=1

wij log
p(Yj , θ)

p(Yj , θ ′)
,

where θ ′ is an arbitrary point in � and Wi =
diag{wi1, . . . , wiN }.

At each iteration k, the geometric increase in h(k−1) by a
growth rate a > 1 defines a new larger neighborhood around
each Xi , which is used to calculate the MLE of θi . New
weights are calculated by means of a location penalty kernel
function Kl , which takes into account the proximity of the
Xj ’s in the neighborhood, and a statistical penalty kernel func-
tion Ks , which takes into account the comparison of two local
models. The kernels Ks and Kl are non-increasing functions
and must fulfill Ks(0) = Kl(0) = 1. Moreover, a parameter
λ controls the statistical penalty and a memory parameter
η(0 ≤ η ≤ 1) is used to stabilize the procedure. The detail
of the procedure is given below (see Polzehl and Spokoiny,
2002):

(1) Initialization: Calculate the global MLE θ̂ (0) of θ :

θ̂ (0) = argsup
θ∈�

N∑
i=1

log p(Yi , θ) = 1

N

N∑
j=1

Yj .

For every i = 1, . . . , N , set θ̂ (0)
i = θ̂ (0) and define W

(0)
i

as the unit matrix. Set k = 1.

(2) Iteration: for every i = 1, . . . , N
(a) Calculate the adaptive weights: For every point Xj ,

calculate the penalties

l
(k)
ij = |ρ(Xi , Xj)/h

(k)|2,

s
(k)
ij = λ−1

[
L

(
W

(k−1)
i , θ̂ (k−1)

i , θ̂ (k−1)
j

)

+ L
(
W

(k−1)
j , θ̂ (k−1)

j , θ̂ (k−1)
I

)] /
2,

where ρ(x, x′) is a metric in X and h(k) controls
the size of the neighborhood of each Xi .

calculate

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s
(k)
ij

)

and define the weight w
(k)
ij as

w
(k)
ij = ηw

(k−1)
ij + (1 − η)w̃

(k)
ij .

Denote by Wk
i the diagonal matrix Wk

i =
diag

{
w

(k)
i1 , . . . , w(k)

iN

}
.

(b) Estimation: Calculate the new local MLE θ̂i
(k)

of θi

θ̂i
(k) = argsup

θ∈�

L
(
W

(k)
i , θ , θ ′) .

(3) Stopping: Stop if ah(k) > h∗, otherwise increase k by 1,
set h(k) = ah(k−1) and continue with step 2.

According to the assumption of our local constant gaussian
model we have:

θ̂i = min
θ∈�

1

2σ 2

N∑
j=1

wij (Yj − θ)2.

L(Wi , θ̂i , θ
′) =

∑N
j=1 wij

2σ 2
(θ̂i − θ ′)2.

For the local constant gaussian regression model, the AWS
procedure requires the parameter σ to be known. An estimate
of σ is given by:

IQR(Z1, . . . , ZN−1)

IQR(N (0, 1)) × √
2

, (1)

where Zi = Yi+1 − Yi and IQR defines the interquartile
range.

The results of the AWS procedure provide one estimate of θ̂i

for every i = 1, . . . , N . Based on these estimates, we define a
breakpoint as a location Xi such that θ̂i /∈ [θ̂i+1 − ε; θ̂i+1 + ε]
(in our case, ε = 10−2). Thus, a breakpoint corresponds
to the last position of an MSHR. The chromosome can be
split into N ′ + 1 MSHRs for a total number N ′ of break-
points: (X1, . . . , XB1), (XB1+1, . . . , XB2), . . . , (XBN ′+1, . . . ,
XN). Note that we apply a particular process for singularity
or outlier detection (detailed below). The procedure is run for
each chromosome separately.

AWS parameters
The procedure requires the tuning of various parameters. We
apply the exponential kernel Kl(u) = Ks(u) = exp(−u).
For the neighborhood, we have chosen h(0) = 1, a = 1.2
and h∗ = 10XN . The parameter λ has been set to the 0.999-
quantile of the χ2(1) distribution, to prevent there being too
many breakpoints. The value of η has been set to 0.5 and cor-
responds to the memory parameter of the algorithm. Polzehl
and Spokoiny (2002) suggested using the symmetric statistical

3415



P.Hupé et al.

penalty s
(k)
ij to detect fine structures, as might occur in cancer

data. Nevertheless, very fine structures, such as single ampli-
cons or deletions, may be missed and a special procedure is
proposed in the next paragraph.

Outlier detection
The AWS procedure is based on the assumption that the
maximal neighborhood on which parametric estimation can
be carried out is large compared with the distance between
two neighboring points. This procedure may therefore fail
to detect very fine structures such as a BAC located in a
MSHR for which the signal Yi differs significantly from the
expected values of this MSHR. Such a BAC is called an out-
lier (we point out that our definition of an outlier is purely
statistical, and therefore an outlier corresponds either to a
biological effect—local amplicon or deletion—or to an exper-
imental artefact). To overcome this limitation in the detection
of outliers, we have designed a special procedure based on
median-absolute-deviation (MAD) for detecting the remain-
ing outliers. It should be noted that when an outlier presents
a large deviation, it is detected at the breakpoint detection
step. This first type is called AWS outlier and is character-
ized by a location Xi such that θ̂i−1 ∈ [θ̂i+1 −ε; θ̂i+1 +ε] and
θ̂i /∈ [θ̂i−1−ε; θ̂i−1+ε] (N.B. a special treatment is applied for
starting location and ending location: if θ̂1 /∈ [θ̂2 − ε; θ̂2 + ε]
(respectively θ̂N−1 /∈ [θ̂N − ε; θ̂N + ε]) then X1 (respectively
XN ) is considered as well as an outlier). The second type of
outlier is called MAD outlier and such outliers are identified
as follows: for each MSHR, we remove all the AWS outliers;
based on the assumption that the observations Yi in an MSHR
are drawn from the normal distribution N (

µk , σ 2
k

)
, a location

Xi for which the observation Yi lies in the α/2-quantile upper
or lower tail of the normal distribution N (

µ̂k , σ̂ 2
k

)
is con-

sidered to be a MAD outlier (α has been set to 0.001). As we
are looking for outliers, µ̂k is estimated by the median and σ̂ 2

k

by the square of the median-absolute-deviation for robustness
considerations.

Optimization of the number of breakpoints
Our data show that despite the use of a strong statistical penalty
λ, the AWS procedure may in some cases identify break-
points which correspond to small shifts and define regions of
∼10–20 BACs. This is probably due to specific local effects
on the chromosome, unrelated to the biological variation we
want to investigate but nevertheless real. Thus, a filtering step
was added to remove these undesirable breakpoints. Before
this step, all the outliers are excluded from the analysis. The
likelihood of our data can be written as:

L =
B1∏
i=1

1

σ1
√

2π
e
− 1

2

(
Yi−µ1

σ1

)2

· · ·

N∏
i=BN ′+1

1

σN ′+1
√

2π
e
− 1

2

(
Yi−µ

N ′+1
σ
N ′+1

)2

.

We calculate the following function:

f =
N ′+1∑
k=1

(Bk − Bk−1) log
(
σ̂ 2

k

)

+ λ′
N ′∑

k=1

K(σ̂−1|µ̂k − µ̂k+1|) log(N)

with B0 = 0, BN ′+1 = N , σ̂ 2
k and µ̂k are the usual MLE of σ 2

k

and µk , and σ̂ is calculated from Equation (1). The function
f corresponds, up to an additive constant, to a penalized form
of − log L. The function K(x) is the tricubic kernel function
and takes the value [1 − (x/6)3]3 for x ∈ [0; 6] and zero else-
where. A kernel function in the penalty term is chosen mainly
to prevent the removal of true breakpoints defining a MSHR
of very small cardinality. The algorithm is then very similar
to the JOIN procedure of the GLSo algorithm proposed by
Jong et al. (2003): the breakpoint for which removal leads to
the largest decrease in the function f is eliminated and the
procedure is iterated until the function f ceases to decrease.
When a breakpoint is removed, a new larger MSHR appears
and its MAD outliers are re-evaluated.

REGION ASSIGNMENT
The purpose of the region assignment is to assign a gain, loss
or normal status to each MSHR. Our algorithm involves three
steps:

• First, for each chromosome, MSHR are grouped in
classes, each class containing MSHRs of the same
expected (but unknown) DNA copy number.

• Second, the resulting classes for all chromosomes are
clustered to produce superclasses, of same expected DNA
copy number; these superclasses are called homogeneous
chromosomal status regions (HCSR).

• Finally, each HCSR is given a label: gain, normal or loss.
An evaluation of the ratios is computed and corresponds
to different levels of gain or loss.

This two-step clustering (chromosome, then genome level)
ensures that label assignments are consistent for all clusters
within a chromosome. This refinement is necessary since the
signal measured on the array may be chromosome-dependent.

MSHR clustering by chromosome
The aim of this step is to cluster the MSHR identified on a chro-
mosome such that each cluster corresponds to a set of MSHR
with identical statuses. In practice, we do not know a priori the
number of clusters for a given chromosome, and we therefore
propose criteria for determining the most appropriate num-
ber of clusters. We do this as follows: first, we eliminate all
the outliers detected previously; then, we calculate the mean
and cardinality of each MSHR; finally, we perform hierarch-
ical clustering of the means of MSHRs with centroid criteria,
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taking into account the cardinality of each MSHR. From the
dendrogram produced, we then try to find the optimal number
of clusters for chromosomes with more than one breakpoint
(if there is only one breakpoint then the chromosome has two
clusters). We successively cut the dendrogram to obtain sets
Si of clusters Ci

1, . . . , Ci
i with i = 2, 3, . . . , N∗

max (N∗
max is less

than or equal to the number of MSHR). We now use all the
points belonging to each cluster (except outliers) to calculate
the likelihood as follows:

Li =
∏

j∈Ci
1

1

σ1
√

2π
e
− 1

2

(
Yj −µ1

σ1

)2

· · ·

∏

j∈Ci
i

1

σi

√
2π

e
− 1

2

(
Yj −µi

σi

)2

.

We calculate the following function:

f ∗
i =

i∑
k=1

#Ci
k log

(
σ̂ 2

k

)

+ λ∗
i−1∑
k=1

K
(
σ̂−1|µ̂k − µ̂k+1|

)
log(N),

where σ̂ 2
k and µ̂k are the usual MLE of σ 2

k and µk , σ̂ is cal-
culated from Equation (1) and #Ci

k is the cardinality of the
cluster (N.B. the clusters are sorted in increasing order of
means). This function corresponds, up to an additive con-
stant, to a penalized form of − log Li . The optimal number of
clusters is i∗ = arginfif

∗
i . The clusters identified correspond

to HCSRs. The value of λ∗ has been set to 8.

HCSR clustering throughout the genome
The preceding step provides us with a set of HCSRs for each
chromosome. At this stage of the analysis, we now consider
globally the HCSRs of the whole genome. Based on the same
principle, we cluster HCSRs according to their means, using
the centroid agglomeration method and taking into account the
cardinality of each HCSR. We retain the number of clusters
for which the new function f ∗

i is minimal. In this case, the
minimal value of i is 1 (and for this value of i, the f ∗

i function
is calculated without the penalty term). The estimate σ̂ is cal-
culated from the data for the whole genome. For our analysis,
λ∗ has been set to 40.

Label assignment
We now have to decide which regions are normal, and which
have been lost or gained. In array CGH experiments, as in
standard microarray experiments, a bias results from dif-
ferences in dye incorporation efficiency such that, even for
normal/normal hybridization, the expected log2-ratios are not
centered around zero. Thus, log2-ratiosare median-centered
before identification of the normal DNA regions. Once cluster-
ing has been achieved for the whole genome, the cluster with

the median closest to zero is considered to be normal DNA.
Clusters with higher medians are considered to reflect gains
and those with lower values are considered to reflect losses.

VALIDATION
Validation on simulated data
We simulated 210 genomic profiles of three types: normal pro-
files, profiles displaying moderate rearrangement and profiles
displaying high levels of rearrangement. For each profile, we
generated a series of 2457 points drawn from a normal dis-
tribution with a mean of zero and an SD of 0.079, evaluated
from 12 normal/normal hybridization arrays. For moderate-
and high-rearrangement profiles, a status (loss, normal or
gain) was defined according to a three-state first-order Markov
process with a probability transition matrix:




0.99 0.008 0.002
0.0005 0.999 0.0005
0.002 0.008 0.99




and 


0.995 0.004 0.001
0.0025 0.995 0.0025
0.001 0.004 0.995




respectively. We added realistic values of 0.3 for gain status
and −0.3 for loss status to the profile generated. We also used
a Poisson process to add outliers such that the expected num-
ber of outliers in the series was 20. A value of 0.3 was either
added to the value or subtracted, with a probability of 0.5. The
global performance of our methodology was assessed accord-
ing to the following criteria: (#correctly labeled BACs+#true
positive outliers)/total number of BACs.

For both values of λ′, this criterion ranges from 98.94 to
99.84%. For a total of 1195 breakpoints, 81.9% were cor-
rectly located and 15.1% were incorrectly located, with a
maximum localization error of 3 BACs (cf. Table 1) for λ′ = 8.
For λ′ = 10, no improvement was observed because the
decrease in false positive rate did not counteract the increase
in false negative rate. A total of 278 and 283 breakpoints were
removed for λ′ values of 8 and 10, respectively. We found that
66.2% of the outliers were correctly identified (cf. Table 1).
The large number of false negatives may be accounted for by
these points being picked up in a distribution with only a small
shift (±0.3) with respect to their neighborhood.

We have estimated the resolution of our method by sim-
ulating a chromosomal profile of 200 BACs. In the middle
position, an alteration of length 1, 2, 4 or 8 has been added
with a signal mean amplitude of 0.15, 0.20, 0.25 or 0.30 and
a gaussian distribution. The SD is 0.079, as measured on our
real data. For each combination of length and signal, 1000
simulations have been done (nb the HCSRclustering step has
been ignored since we are working on only one chromosome).
The resolution is estimated both by the percentage of correctly
assigned BACs in the altered region and the number of times
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Table 1. The results for the detection of breakpoints and outliers on
210 simulated genomic profiles for two values of λ′

λ′ = 8 λ′ = 10

Total number of breakpoints 1195 1195
Number of breakpoints correctly identified 979 978
Number of breakpoints mislocated 181 178
Number of missed breakpoints 35 39
Number of additional breakpoints 26 25
Difference in position for mislocated breakpoints

1 167 164
2 13 13
3 1 1

Outlier detection
True positives 2679 2678
False negatives 1364 1365
False positives 1243 1249

We obtained 98.9–99.8% correct assignations, see text for details.

Table 2. Resolution of the method estimated on a chromosomal profile of
200 BACs depending on the length of the altered region and the signal
amplitude

Signal Length of altered region
1 2 4 8

Percentage of correctly labelled BACs
0.15 10 ± .95 9 ± .66 9 ± .47 14 ± .85
0.20 23 ± 1.33 21 ± .92 26 ± .92 56 ± 1.33
0.25 48 ± 1.58 45 ± 1.14 56 ± 1.11 90 ± .66
0.30 67 ± 1.49 69 ± 1.04 81 ± .85 97 ± .19

Percentage of altered regions
0.15 10 ± .95 17 ± 1.17 28 ± 1.42 43 ± 1.55
0.20 23 ± 1.33 38 ± 1.52 60 ± 1.55 81 ± 1.23
0.25 48 ± 1.58 70 ± 1.45 88 ± 1.04 98 ± .41
0.30 67 ± 1.49 90 ± .95 98 ± .47 100 ± 0

The performance (mean ± SD) are estimated by the percentage of correctly assigned
BACs in the altered region and the number of times that at least an alteration has been
found in this region. SD on signal ratios was estimated on real data and set to 0.079.

that at least an alteration has been found in this region. The
results are presented in Table 2 and show that a signal less
or equal to 0.2 give low performance unless the length of the
region is greater than 8 BACs and a signal greater or equal
to 0.25 give good performance. Note that the results of our
simulations depends only on the signal-to-noise ratio of the
data, that should be kept higher than approximately 2.5 to
avoid deterioration of performances.

Validation on the dataset from
Snijders et al. (2001)
We present here the results obtained with our methodology
applied to a public dataset (Snijders et al., 2001). The data
correspond to 15 human cell strains with known karyotypes
(12 fibroblast cell strains, 2 chorionic villus cell strains and 1
lymploblast cell strain) from the NIGMS Human Genetics

Table 3. The results for breakpoint detection and label assignment on 15
human cell strains (Snijders’ dataset)

Cell strain/chromosome λ′ = 8 λ′ = 10

GM00143/False 8 0
GM01524/6 Yes Yes
GM01524/False 0 0
GM01535/5 Yes Yes
GM01535/12 Yes Yes
GM01535/False 0 0
GM01750/9 Yes Yes
GM01750/14 Yes Yes
GM01750/False 0 0
GM02948/False 1 0
GM03134/8 Yes Yes
GM03134/False 4 4
GM03563/3 Yes Yes
GM03563/9 Yes Yes
GM03563/False 8 4
GM03576/False 0 0
GM04435/False 2 2
GM05296/10 Yes Yes
GM05296/11 Yes Yes
GM05296/False 8 6
GM07081/7 Yes Yes
GM07081/15 No No
GM07081/False 6 6
GM07408/False 2 2
GM10315/False 3 0
GM13031/17 Yes Yes
GM13031/False 4 4
GM13330/1 Yes Yes
GM13330/4 Yes Yes
GM13330/False 0 0

Following the / after the cell strain name is the number of the chromosome on which
a breakpoint is present or ‘False’, indicating the number of false-positive breakpoints
identified by the procedure in each cell strain. Yes means that breakpoints have been
correctly located for the chromosome under consideration. All breakpoints were detected
and all label assignments are correct except for GM07081/15 (not detected by the array
CGH technology) and BAC RP11-237j07 of GM05296. In this last case, the breakpoint
was located on the neighboring BAC.

Cell Repository (http://locus.umdnj.edu/nigms). Each cell
strain has been hybridized with an array CGH of 2276 BACs,
spotted in triplicate. The variable used for the analysis is the
test over reference log2-ratio, as described by the authors. This
dataset had already been analyzed with another algorithm;
the results obtained are presented in Olshen and Vankatraman
(2002).

Our results for breakpoint detection and label assignment
are shown in Table 3 for two values of λ′. Our algorithm
gave perfect detection of breakpoints: none was missed in the
nine cell strains that had breakpoints. For strain GM05296,
the first breakpoint of chromosome 10 was detected on BAC
RP11-14i14 instead of RP11-237j07, which immediately
follows it: visual checking showed that the conclusion in
favor of BAC RP11-237j07 was far from clear. The number
of false-positive breakpoints decreases dramatically if the
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value of λ′ is increased from 8 to 10. However, for some
cell strains, false-positive breakpoints remain (especially for
GM00143 and GM03563): such false-positive breakpoints
may result from local trends on the chromosome (a BAC
effect or a drift along the genome can be observed, even for
normal/normal hybridizations). Similar false-positive break-
points were reported by Olshen and Vankatraman (2002) for
the cell strain GM03563, on chromosome 11. All label assign-
ments were correct, except for the monosomic region on
chromosome 15 of GM07081, which was not detected by
array CGH technology (Snijders et al., 2001). For cell strains
GM04435, GM07081 and GM07408, our algorithm identi-
fied a small monosomic region (although karyotyping did not
show this region to be monosomic) of two BACs on chro-
mosome 8 (RP11-122N11 and RP11-287P18), corresponding
to the region identified in strain GM03134. If we compare
our results with those obtained by Olshen and Vankatraman
(2002), our algorithm gave fewer false-positive breakpoints.
For cell strain GM03134, our algorithm identified the small
monosomic region on chromosome 8 whereas Olshen and
Vankatraman (2002) did not identify this region. For cell strain
GM01535, Olshen and Vankatraman (2002) did not find the
monosomic region consisting of a single BAC located at the
end of chromosome 12, whereas this BAC was detected as an
AWS Outlier by our algorithm.

Validation on bladder cancer data
We have applied our algorithm to bladder cancer data from
tumors collected at Henri Mondor Hospital (Créteil, France)
(Billerey et al., 2001) and hybridized on arrays CGH com-
posed of 2464 BACs (F. Radvanyi, D. Pinkel et al., unpub-
lished data). The data consist of 13 arrays CGH experiments
(using DNA from 13 different bladder tumors with the follow-
ing stages-grades: 1 T1G2, 1 T1aG3, 1 T2G2, 2 T3G3 and
8 T4G3) hybridized according to Pinkel’s protocol (Pinkel
et al., 1998) (Table 4). Images were analyzed with SPOT
2.0 software (Jain et al., 2002). A pre-processing step was
used to remove poor-quality spots. Spots with a reference sig-
nal intensity (and DAPI signal intensity) below 125% of the
background reference signal (DAPI signal) were discarded.
Triplicates with an SD of log2-ratio >0.1 were removed
from the analysis and spots located in areas of spatial bias
(unpublished data) were also eliminated. The value used is
the mean for each BAC of the Log2Rat variable calculated
by SPOT 2.0, which corresponds to the test over refer-
ence log2-ratio (as each BAC was spotted three times on
the array CGH). For our data, the karyotype is unknown.
Thus, we mainly focused on breakpoint detection validation
on the basis of visual expertize. Nevertheless, supporting evid-
ence for the location of breakpoints was provided by LOH
analysis.

Based on visual expertize, AWS smoothing gave an excel-
lent fit to the CGH profile (cf. Figs 1 and 2) and this algorithm
seems highly appropriate for array CGH analysis. Despite the

Table 4. The results for the detection of breakpoints and outliers on
13 bladder tumor genomic profiles for two values of λ′

λ′ = 8 λ′ = 10

Total number of breakpoints 267 267
Number of breakpoints correctly identified 251 245
Number of breakpoints mislocated 7 7
Number of missed breakpoints 9 15
Number of additional breakpoints 9 8
Difference in position for mislocated breakpoints:

1 6 6
2 1 1

Performances are similar to those of a human expert.

small number of errors observed, the optimization proced-
ure for incorrect breakpoint removal is necessary to remove
false positives. A total of 108 and 116 breakpoints were
removed (for λ′ = 8 and 10, respectively), even though
some were of biological interest. For four tumors, label
assignment was highly problematic, even from visual expert-
ize. These tumors corresponded to high-stage and high-grade
tumors (1 T2G2 and 3 T4G3) with many genome rearrange-
ments. Indeed, signal variation at breakpoint may be blurred
by several biological limitations of the technology: tumor
biopsy samples generally contain a mixture of normal and
tumor cells, and cells within a tumor may display differ-
ences in genomic losses and gains, a phenomenon known
as tumor heterogeneity. Moreover, aneuploidy may affect
several chromosomes differently. These limitations make
breakpoint detection and label assignment difficult. For the
other nine tumors, label assignment was consistent with visual
expertize.

These 13 bladder tumors had been assessed for LOH
on chromosome 10, using polymorphic markers (Cappellen
et al., 1997). Although CGH and LOH studies do not provide
the same information (Albertson et al., 2003), the results
of the two studies were consistent: the regions of gains
and losses detected by array CGH correspond to regions of
allelic imbalance detected with polymorphic markers. For
example, Cappellen et al. (1997) found an allelic imbalance
for polymorphic markers between D10S185 and D10S168 on
chromosome 10 of tumor 1533e: these markers are located
between BACs RP11-9M11 (Position 1402) and RP11-32I9
(Position 1431), which delineate the lost region detected by
array CGH for the same tumor (cf. Fig. 2).

A region of amplification including the CCND1 (cyclin D1)
gene was detected on the long arm of chromosome 11 for
tumor 1533e (cf. Fig. 2). Interestingly, the breakpoints defin-
ing this previously identified region on chromosome 11 of
tumor 1533e were also detected in the peritumoral urothe-
lium of the patient concerned, although the mean log2-ratio
of this region was only 0.25 (data not shown), demonstrating
the sensitivity of our method.

3419



P.Hupé et al.

Fig. 1. Genomic profile of bladder tumor 824 (T1G2) according to our methodology: the breakpoint detection step makes it possible to
calculate the piecewise constant function, in black, and to detect outliers; during the region assignment step, a two-step clustering process
groups together regions of same status and then assigns a label (gain, normal or loss) to each region. The vertical gray dashed lines indicate
the separation between chromosomes. The horizontal axis shows the rank position of each BAC along the genome and the vertical axis shows
the tumor/normal log2-ratios after median centering.

DISCUSSION
We present here a new methodology for breakpoint detection
and status assignment to each BAC in a array CGH exper-
iment. Our algorithm is highly efficient with both simulated
and manually analyzed data. For real data, our results are sim-
ilar to those obtained by a human expert. On a public dataset,
our algorithm outperformed the method described by Olshen
and Vankatraman (2002). Simulated data are also correctly
analyzed by our method: in most cases, missed breakpoints
or outliers were not detected properly simply because the
randomization procedure gave them signal ratios far from
the expected ratios of their class of origin. In such cases,
the available information is insufficient for the correct detec-
tion of breakpoints or outliers from the data, whatever the
algorithm used.

The AWS procedure correctly detects large regions but also
accurately fits data for both fine structures and small local
effects. Local effects have been already reported by Olshen
and Vankatraman (2002), consisting of regions of the genome
showing a recurrent bias in the signal ratios confirmed on

normal/normal hybridization (N/N) (data not shown): in our
data, the strongest local effects were observed on chromosome
6 and chromosome 13. Both involved a shifting down of the
tumor signal with respect to the normal signal. With homo-
geneous biological samples (e.g. cell lines), a local effect
generally induces a much smaller shift than a gain or a loss of
DNA. However, tumor biopsy samples are generally a mix-
ture of normal and tumor cells and thus, heterogeneity reduces
shifts, making it difficult to distinguish a biological effect from
a local effect, leading to the identification of false-positive
breakpoints. This suggests that an ad hoc procedure should
be developed to eliminate such biases.

From our experience with normal/normal hybridizations,
this local effect and other sources of variation, such as a
BAC effect, appear to be array-dependent, rather than sys-
tematic. One solution is to flag the regions or BACs subject
to such biases and to consider them with caution. More gen-
erally, this problem raises the question of array CGH data
normalization and shows that breakpoint detection and label
assignment are closely linked to the normalization step. Our
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Fig. 2. Profiles for chromosomes 10 and 11 for the bladder tumor 1533e (T4G3). The vertical red dashed lines indicate the breakpoints and
the vertical black double arrow indicates the centromere. The horizontal axis indicates the rank position of each BAC along the genome and
the vertical axis indicates the log2-ratios after median centering.

findings also show that normalization should be carried out
with an adaptive (array-dependent) algorithm. In this study,
we simply applied a filter based on spot quality control criteria
and removed abnormally high log2-ratios measured in some
areas of the array, referred to as spatial biases (generally an
edge or corner effect). Further improvements to normalization
are envisaged and will form the subject of another publication.
The biological significance of the outliers detected must be
considered carefully for several reasons: first, natural poly-
morphisms may result in outliers, as shown in some cases on
normal/normal hybridizations. These particular clones must

therefore be flagged (such polymorphisms have been observed
in our data). Second, some BACs may systematically display
aberrant behavior. Finally, some BACs may have been mis-
located on the genome: between two consecutive versions of
the draft sequence, some BACs may be transferred from one
position on a chromosome to another.

When using our algorithm, several parameters must be set:
the main parameters are the statistical penalty λ for the AWS
procedure, the λ′ value for optimization of the number of
breakpoints and λ∗ in the two-step clustering step. We have
set these values empirically based on our own data, but when
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applying our method to arrays CGH obtained on another
platform, it may be necessary to modify these parameters and
a model selection step may be required (array replicates and
normal/normal arrays are particularly useful at this stage).

Although breakpoint and outlier detection are entirely
satisfactory with our method, label assignment is much more
difficult. Several phenomena make it difficult to classify
regions correctly into three classes (loss, normal and gain),
not to mention to assign a number of DNA copies to a
region. We have already raised the problem of sample het-
erogeneity. In cases of polyploidy, a single loss results in
mathematically smaller shifts. In situations in which label
assignment is problematic, the use of other sources of bio-
logical knowledge, such as genotyping, is likely to improve
performance.

Although our methodology requires further improvement,
it already provides new materials for the large-scale analysis
of array CGH profiles and makes it possible to envisage fur-
ther analysis. Indeed, the segmentation of CGH profiles and
the assignment of statuses to BACs are required for more
advanced transverse analysis in sets of patients: detection of
regions recurrently lost or gained, unsupervised and super-
vised classification based on the CGH profile, integration of
the genome and transcriptome profiles for the identification of
new genes involved in tumorigenesis and/or tumor progres-
sion. This work should lead to new insight valuable for clinical
research and cancer treatment. Our work was driven by and
applied to cancer array CGH analysis but can also be applied
to any genetic disease involving deletion or amplification in
genomic DNA.

ACKNOWLEDGEMENTS
This work was supported by the Centre National de la Recher-
che Scientifique, the Institut Curie, the Comité de Paris Ligue
Nationale contre le Cancer (Laboratoire Associé) and the
IST program from the European Commission through the
HKIS project (IST-2001-38153). Data processing was man-
aged by the ™ Amadea software from ISoft (Gif sur Yvette,
France).

REFERENCES
Albertson,D.G., Collins,C., McCormick,F. and Gray,J.W. (2003)

Chromosome aberrations in solid tumors. Nat. Genet., 34,
369–376.

Albertson,D.G. and Pinkel,D. (2003) Genomic microarrays in human
genetic disease and cancer. Hum. Mol. Genet., 12, R145–R152.

Axon Instruments (2003) GenePix Pro 5.0 User’s Guide. ©Axon
Instruments, Inc.

Billerey,C., Chopin,D., Aubriot-Lorton,M.H., Ricol,D., de
Medina,S.G.D., Rhijn,B.V., Bralet,M.P., Lefrere-Belda,M.A.,
Lahaye,J.B., Abbou,C.C., et al. (2001) Frequent FGFR3
mutations in papillary non-invasive bladder (pTa) tumors.
Am. J. Pathol., 158, 955–1959.

Cappellen,D., Gil Diez de Medina,S., Chopin,D., Thiery,J.P. and
Radvanyi,F. (1997) Frequent loss of heterozygosity on chromo-
some 10q in muscle-invasive transitional cell carcinomas of the
bladder. Oncogene, 14, 3059–3066.

Ishkanian,A.S., Malloff,C.A., Watson,S.K., DeLeeuw,R.J., Chi,B.,
Coe,B.P., Snijders,A., Albertson,D.G., Pinkel,D., Marra,M.A.
(2004) A tiling resolution DNA microarray with com-
plete coverage of the human genome. Nat. Genet., 36,
299–303.

Jain,A.N., Tokuyasu,T.A., Snijders,A.M., Segraves,R.,
Albertson,D.G., and Pinkel,D. (2002) Fully automatic quantifica-
tion of microarray image data. Genome Res., 12, 325–332.

Jong,K., Marchiori,E., van der Vaart,A., Ylstra,B., Weiss,M. and
Meijer,G. (2003). Chromosomal breakpoint detection in human
cancer. In Raidl,G.R., Cagnoni,S., Cardalda,J.J.R., Corne,D.W.,
Gottlieb,J., Guillot,A., Hart,E., Johnson,C.G., Marchiori,E.,
Meyer,J.-A. and Middendorf,M. (eds), Applications of Evol-
utionary Computing, EvoWorkshops2003: EvoBIO, EvoCOP,
EvoIASP, EvoMUSART, EvoROB, EvoSTIM, Volume 2611 of
LNCS, University of Essex, England, UK. Springer-Verlag,
Berlin, pp. 54–65.

Olshen,A.B. and Vankatraman,E.S. (2002) Change-point analysis
or array-based comparative genomic hybridization data. Pro-
ceedings of the Joint Statistical Meetings, New York, August
11–15, 2530–2535.

Pinkel,D., Segraves,R., Sudar,D., Clark,S., Poole,I., Kowbel,D.,
Collins,C., Kuo,W.L., Chen,C., Zhai,Y. (1998) High resolution
analysis of DNA copy number variation using comparative
genomic hybridization to microarrays. Nat. Genet., 20, 207–211.

Polzehl,J. and Spokoiny,S. (2000) Adaptive weights smoothing with
applications to image restoration. J. R. Stat. Soc., Ser. B, 62(2),
335–354.

Polzehl,J. and Spokoiny,S. (2002) Local likelihood modelling by
adaptive weights smoothing. WIAS-Preprint 787.

Sen,A. and Srivastava,M.S. (1975) On tests for detecting a change
in mean. Ann. Stat., 3, 98–108.

Shaw-Smith,C., Redon,R., Rickman,L., Rio,M., Willatt,L.,
Fiegler,H., Firth,H., Sanlaville,D., Winter,R., Colleaux,L.,
Bobrow,M. and Carter,N.P. (2004) Microarray based comparative
genomic hybridisation (array-CGH) detects submicroscopic
chromosomal deletions and duplications in patients with learning
disability/mental retardation and dysmorphic features. J. Med.
Genet., 41, 241–248.

Snijders,A.M., Nowak,N., Segraves,R., Blackwood,S., Brown,N.,
Conroy,J., Hamilton,G., Hindle,A.K., Huey,B., Kimura,K.
(2001) Assembly of microarrays for genome-wide measurement
of DNA copy number. Nat. Genet., 29, 263–264.

Solinas-Toldo,S., Lampel,S., Stilgenbauer,S., Nickolenko,J.,
Benner,A., Dohner,H., Cremer,T., and Lichter,P. (1997) Matrix-
based comparative genomic hybridization: biochips to screen
for genomic imbalances. Genes Chromosomes Cancer, 20,
399–407.

Vogelstein,B., Fearon,E.R., Kern,S.E., Hamilton,S.R.,
Preisinger,A.C., Nakamura,Y. and White,R. (1989) Allelotype of
colorectal carcinomas. Science, 244, 207–211.

Yang,Y., Dudoit,S. and Speed,T. (2001) Normalization for cDNA
microarray data. SPIE BiOS 2001, San Jose, CA, January 2001.

3422



2.3 Iterative approach for normalisation and identi�ca-

tion of DNA copy number alterations

We have seen in Subsection 1.4.2 that besides BAC aCGH new platforms using oligonu-
cleotide aCGH were also available. They provide a better resolution to detect smaller al-
terations. Among the di�erent platforms available, A�ymetrix R© Genome-Wide Human SNP
Array is widely used. This kind of microarray has its speci�c source of variability and the
MANOR method (Neuvial et al., 2006) which has been developed for BAC aCGH was not
suitable for this technology. Therefore, we have developed a normalisation method devoted
to the analysis of A�ymetrix R© Genome-Wide Human SNP Array. Besides normalisation, the
proposed method has the originality to perform the identi�cation of the DNA copy num-
ber alterations using the GLAD algorithm (Hupé et al., 2004). The algorithm alternatively
identi�es the DNA copy number alterations and normalises the data. Those two alternative
steps are iterated to improve the signal-to-noise ratio of the data at each iteration. The
normalisation step takes into account the information of the genome alterations to better
estimate the sources of variability to correct during the normalisation step; this strategy was
also indicated by Staaf et al. (2007). The method we have developed is named ITerative and
Alternative normaLIsation and Copy number calling for a�ymetrix Snp arrays (ITALICS)
(Rigaill et al., 2008) and the paper describing the algorithm is supplied as a material part
of the thesis.
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ABSTRACT

Motivation: Affymetrix SNP arrays can be used to determine the

DNA copy number measurement of 11 000–500000 SNPs along the

genome. Their high density facilitates the precise localization of

genomic alterations and makes them a powerful tool for studies

of cancers and copy number polymorphism. Like other microarray

technologies it is influenced by non-relevant sources of variation,

requiring correction. Moreover, the amplitude of variation induced by

non-relevant effects is similar or greater than the biologically

relevant effect (i.e. true copy number), making it difficult to estimate

non-relevant effects accurately without including the biologically

relevant effect.

Results: We addressed this problem by developing ITALICS,

a normalization method that estimates both biological and non-

relevant effects in an alternate, iterative manner, accurately eliminat-

ing irrelevant effects. We compared our normalization method

with other existing and available methods, and found that ITALICS

outperformed these methods for several in-house datasets and

one public dataset. These results were validated biologically by

quantitative PCR.

Availability: The R package ITALICS (ITerative and Alternative

normaLIzation and Copy number calling for affymetrix Snp arrays)

has been submitted to Bioconductor.

Contact: italics@curie.fr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The development of high-throughput technologies, and of

microarrays in particular, has made it possible to analyze

DNA copy number throughout the entire genome, with ever-

increasing resolution. Various techniques for detecting DNA

copy number alterations are available (for a review, see Ylstra

et al., 2006). Affymetrix SNP arrays, such as the Affymetrix

GeneChip Human Mapping 100K Set (Kennedy et al., 2003),

seem to be one of the most widely used tools. These chips

can be used for simultaneous genotyping and copy number

determination for single nucleotide polymorphism (SNP),

at high resolution. This technology has various uses, including

studies of copy number variations in populations and the

identification of genomic alterations in developmental genetics

or cancer (for a review, see Pinkel and Albertson, 2005).

In cancer studies, Affymetrix SNP arrays provide new insight

into the mechanisms of tumor progression; they can be used

to pinpoint new candidate genes for tumor-suppressor genes

(Liu et al., 2007) and oncogenes (thought to be present in loss

and gain regions, respectively), and to classify tumors,

improving diagnosis for new patients and the evaluation of

prognosis.
Like all microarrays, Affymetrix SNP arrays are affected

by systematic non-relevant sources of experimental variation.

For accurate extraction of the biologically relevant effect

(i.e. the true DNA copy number of each SNP in the genome,

corresponding to the biological signal), the raw data must

be corrected, taking these different effects into account. We

present here a normalization algorithm for this purpose, which

can be used for the simultaneous correction of different sources

of experimental variation and biological signal estimation when

trying to infer DNA copy number.
Several methods have already been developed for correcting

non-relevant sources of variation. These methods include

CNAG (Nannya et al., 2005), GIM (Komura et al., 2006)

and CARAT (Huang et al., 2006). However, none of these

methods take into account that the range of variation due to

the non-relevant effects is similar or higher than the biologically

relevant effect. Therefore, the impacts of the biologically rele-

vant effect and non-relevant effects may easily be confused.

Correct estimation of the non-relevant effects also depends on

the correct estimation of copy number. We therefore propose

an alternative, iterative method for estimating the biologically

relevant effect and non-relevant effects, to improve biological

signal estimation. We will begin by briefly presenting

Affymetrix SNP arrays. We will then describe our algorithm

(ITerative and Alternative normaLIzation and Copy number

calling for affymetrix Snp arrays: ITALICS) for data normal-

ization in detail. We then discuss the results obtained with this

algorithm, comparing them with those obtained with other

algorithms. Finally, we discuss the advantages of ITALICS and

possible improvements to this method.

†The authors wish to be known that, in their opinion, the first two
authors should be regarded as joint First Authors.
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2 MATERIALS AND METHODS

2.1 Affymetrix SNP arrays

Technology: Affymetrix SNP arrays can be used to detect DNA

copy number alterations at a resolution of 6–210 kb, using around

11 000–500 000 human SNPs. The Affymetrix GeneChip Human Map-

ping 100K and 500K Sets are comprised of two arrays. Each array

is based on specific restriction enzymes: XbaI and HindIII for the 100K

set and StyI and NspI for the 500K set. The Affymetrix 50K XbaI and

HindIII arrays contain no common SNPs and their combination

provides the DNA copy numbers of more than 115 000 SNPs.

Each allele of each SNP is represented by ni perfect match (PM)

probes and ni mismatch (MM) probes. Reverse or forward probes may

be used and these probes may be centered on the SNP position or offset

by �4 to þ4 base pairs. Thus, all the PM probes of an SNP allele have

different DNA sequences. Probes are grouped into probe quartets of

four probes: one PM and one MM probe for each of alleles A and B.

All four probes have the same orientation and offset.

The Affymetrix SNP arrays assay is carried out as follows. Genomic

DNA is digested with a restriction endonuclease. Adaptors are ligated

to all fragments. These fragments are amplified by PCR and then

fragmented, labeled with biotin and hybridized with the chip. The chip

is then washed and scanned to generate the cell intensity file (.CEL)

which is used as input to the proposed algorithm.

Hereafter, the raw signal Yi. of a given SNP i is given by:

Yi: ¼

Pni
j¼1 Yij

ni
with Yij ¼ YA

ij þ YB
ij

where YA
ij and YB

ij are the log-intensity of the PM probe A and B of the

j-th probe quartet for the SNP i, and Yij is the sum of PM log-intensities

for the j-th quartet. Yi. is the mean PM log-intensity of the ni quartets

for the SNP i. MM probes are not taken into account in our algorithm.

The two PM probes defining the entity Yij are referred subsequently as

QuartetPM, the subscript i is referred to as SNP i, and the subscript j

as one of the ni quartets.

Non-relevant sources of variation: ITALICS deals with known

systematic sources of variation, such as the GC-content of the

QuartetsPM (QGCij), the length of the PCR-amplified fragment (FLi)

and the GC-content of the fragment amplified by PCR (FGCi) (Nannya

et al., 2005; Komura et al., 2006). It also takes into account the

QuartetPM effect (Qij), resulting from the systematically low intensity of

some QuartetsPM and the systematically high intensity of others.

We also found that some Affymetrix SNP arrays suffer from spatial

artifacts, as reported by Neuvial et al. (2006) for CGH array data.

A spatial artifact is illustrated in Figure 1A: neighboring QuartetsPM on

the chip present abnormal intensities. The corresponding SNPs which

appear as outliers in the genomic profile, as shown in Figure 1C, D and

E, and should be removed. We have addressed this issue using a filtering

criterion, making it possible to discard bad probes, as described

subsequently.

2.2 The ITALICS algorithm

Overview: In Affymetrix SNP arrays, non-relevant sources of variation

(NonRelij) have comparable or greater influence on the raw signal

variability than the biological signal (CopyNbi) (see Section 3.2 to

compare the type III sum of squares of the different effects in a multiple

linear model). We therefore propose an iterative, alternative normal-

ization method, making it possible to estimate the biological signal and

non-relevant effects and, therefore, to eliminate most of the non-

relevant effects while preserving most of the biological information.

During each iteration, ITALICS:

(1) Estimates the biological signal CopyNbi using the GLAD algo-

rithm (Hupé et al., 2004),

(2) Assuming the biological signal to be known, it estimates the

non-relevant effects NonRelij on raw data, by multiple linear

regression.

After the last iteration, the QuartetsPM for which multiple linear

regression predicts the signal poorly are flagged. They correspond to

QuartetsPM with abnormal values and are excluded from the final step,

in which ITALICS uses GLAD to estimate the biological effect

CopyNbi on the remaining normalized QuartetsPM. The algorithm is

presented in more detail below.

Biological signal estimation (CopyNb_step): ITALICS applies the

GLAD algorithm to Yi. values to estimate the biological signal. The

GLAD algorithm segments the genomic profile, defining regions of

homogeneous DNA copy number. For each of these regions, it provides

a smoothing value and a status (gain, normal or loss). The smoothing

(A) Before ITALICS (B) After ITALICS

(C) CNAT3.0 (D) CNAG

(E) GIM (F) ITALICS

Fig. 1. Impact of spatial artifacts on genomic profiles. Image of an

XbaI 100K Set chip (HF0844_Xba, Kotliarov et al. (2006)) before

(A) and after normalization with ITALICS (B) (flagged QuartetsPM
in white). The Yij value of each QuartetPM is represented, using

a gradient from green to red. (C), (D), (E) and (F) are the genomic

profiles normalized with CNAT 3.0, CNAG, GIM and ITALICS.

Vertical dashed red lines represent the breakpoints detected with

GLAD and the assigned statuses are indicated by a color code: green

for loss, yellow for normal and red for gain. Two stains of abnormally

high QuartetsPM values (in red) are visible in (A) and their corre-

sponding SNP values correspond to outliers (colored in red) in the

genomic profiles (C), (D) and (E), for which 1661, 1818 and 2331

outliers respectively, were detected. ITALICS flagged most of these

QuartetsPM (B) but evaluated the signals for their SNPs using

the QuartetsPM from the rest of the chip, resulting in the removal of

only 13 of the 57 500 SNPs. ITALICS eventually identified only 88

outliers (F).
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value is the median of the Yi. values within the region concerned, and

corresponds to the inferred copy number CopyNbi.

Non-relevant effect estimation (NonRel_step): After estimating the

biological effect CopyNbi, ITALICS infers the non-relevant effects by

multiple linear regression. The model used is as follows:

Yij ¼ �þ �CopyNbi þ fðNonRelijÞ þ "ij

fðNonRelijÞ ¼ P1ðFLiÞ þ P2ðFGCiÞ þ P3ðQGCijÞ þ �Qij

with:

i ¼ 1, . . . ,N (the number of SNPs)

j ¼ 1, . . . , ni (the number of QuartetsPM per SNP)

PkðxÞ ¼
Xl¼3

l¼1

�klx
l; k ¼ 1, . . . , 3

"ij �Nð0; �2Þ

The multiple linear regression can also be expressed in classical

matrix notation:

Y ¼ X� þ "

with:

� ¼ ð�; �; �11; �12; �13; �21; �22; �23; �31; �32; �33; �Þ

The parameter � is estimated using the ordinary least-squares

method. The degrees of the polynomial functions Pk were chosen

using the BIC criterion (Schwarz, 1978) on a training data set of 128

reference diploid chips (Matsuzaki et al., 2004).

The QuartetPM effect is dealt with by calculating Qij as the mean of

each QuartetPM on the 64 female chips of the same Affymetrix reference

data set (Matsuzaki et al., 2004).

Once the non-relevant effects have been estimated, the Yij values are

corrected as follows:

Ycor
ij ¼ Yij � f̂ðNonRelijÞ;

where f̂ðNonRelijÞ corresponds to the estimate of non-relevant

effects based on multiple linear regression. The corrected

Y cor
i: ¼ ð

Pj¼ni
j¼1 Y cor

ij =niÞ is used in the next step of the GLAD procedure,

to re-estimate the biological effect. This algorithm is repeated until the

number of iterations reaches the predetermined fixed number of

iterations itermax.

ITALICS uses GLAD and therefore we investigate if the normal-

ization was influenced by the choice of GLAD parameters. In Supple-

mentary information, we give guidelines for choosing parameters and

expose the result of sensitivity analysis that shows a large robustness of

ITALICS to parameter settings.

Elimination of poorly predicted QuartetsPM: After the last iteration,

QuartetsPM Yij poorly predicted by multiple linear regression are

flagged out. This is achieved by calculating the 95% prediction interval.

All Yij outside this interval are flagged. SNPs with less than three non-

flagged QuartetsPM in a total of ni are then discarded. If more than

three Yij are not flagged, Ycor
i: is recalculated as:

Ycor
i: ¼

P
j =2Fi

Ycor
ij

ni �NbFi
;

with Fi the set of flagged QuartetsPM for the SNPi and NbFi the number

of flagged QuartetsPM for the SNPi.

Data scaling: The data are scaled to allow between-chip comparison.

After the first GLAD step, the biological signal is subtracted and the

standard deviation s of (Yi.�CopyNbi) is calculated for each chip using

all SNPs i of the chip. The data are then scaled as follows:

Yscaled
ij ¼

Yij

s

The ITALICS procedure is summarized in Table 1.

2.3 Comparison with other methods

Other methods: Several other methods have already been developed.

Most use linear regression to estimate and correct for non-relevant

effects. They differ in the effects taken into account and in their pre-

and post-processing steps.

CNAG: Copy Number Analysis for GeneChip (Nannya et al., 2005).

CNAG corrects the raw signal intensity of a sample, by introducing the

notion of averaged best fit, corresponding to a pseudochip constructed

from the five samples most similar to the reference samples. CNAG

subtracts this averaged best fit from the raw signal and then corrects for

the length of the PCR-amplified fragment and GC-content effects by

linear regression. This method is available within CNAG 2.0 and is also

used in CNAT 4.0 (Copy Number Analysis Tool, see below).

CNAT 3.0: Chromosome Copy Number Analysis Tool 3.0. Affymetrix

developed this method for the extraction of DNA copy number. No

specific step for the correction of non-relevant effects is included. This

method uses samples with varying chromosome X copy number for

intensity calibration and transforms SNP intensity into copy number

values.

CNAT 4.0: Chromosome Copy Number Analysis Tool 4.0. This tool

uses CNAG to normalize the data and then smoothes the data with a

user-defined window. This step artificially reduces the variance of the

data and visibly improves the quality of the profile.

CARAT: Copy Number Analysis with Regression And Tree (Huang

et al., 2006). CARAT uses a reference data set to select probes showing

a high-allelic response and to remove those with no such response. For

each new sample, it first standardizes the probe signal, based on

mismatch probe information. It then corrects for probe GC-content

and PCR fragment length effects, by linear regression. Finally, each

SNP intensity is regressed against the average intensity of the reference

samples with the same genotype.

GIM: Genomic Imbalance Map (Komura et al., 2006). GIM roughly

estimates the biological effect and subtracts it from the raw signal, using

a simpler version of ChARM (Myers et al., 2004). It removes defective

probes with a high local GC-content and then re-estimates the bio-

logical effect without using the defective probes and subtracts this effect

from the raw signal. It takes into account probe GC-content, the length

of the PCR-amplified fragment and its GC-content, and mean SNP

intensity for the reference dataset, by linear regression. GIM is imple-

mented in Matlab and is freely available.

We compared ITALICS with CNAG, CNAT 3.0 and GIM. We did

not compare ITALICS with CARAT, because no software was

Table 1. ITALICS algorithm overview

iter: ¼ 0

while iter5itermax do

CopyNb_step()

if iter¼ 0 then

Data_Scaling()

end if

NonRel_step()

iter: ¼ iterþ 1

end while

elimination_of_poorly_predicted_quartetPM( )

CopyNb_step()
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available for CARAT at the time of the study, or with CNAT 4.0,

which presents no improvement over CNAG. For the CNAG,

CNAT 3.0 and GIM genomic profiles, copy number and the status of

the genomic regions were inferred with the GLAD algorithm, using the

same parameters as for the ITALICS algorithm.

Quality criteria: As described by Neuvial et al. (2006), we used several

quality criteria to compare the various normalization algorithms.

As defined by Neuvial et al. (2006), the dyn criterion estimates the

dynamics of the DNA copy number signal. Its value is:

dynðaÞ ¼
ðmedianðYcor;a

i: Þi2G �medianðYcor;a
i: Þi2NÞ

smt

with G and N the regions considered to correspond to Gain and

Normal and Ycor;a
i: the corrected signal of SNP i using the normalization

method a. smt ¼ medianðjYcor;a
i: � Ycor;a

ði�1Þ:jÞ for ordered Ycor;a
i: throughout

the genome. smt quantifies the smoothness of the signal over the

genome, and dyn assesses the dynamics of the signal, as defined by the

signal-to-noise ratio (SNR). If no gain region have been identified,

the dyn criteria is computed over loss regions. A high dyn should be

obtained with good normalization methods.

The criterion out is the number of outliers detected by GLAD.

GLAD defines regions of homogeneous DNA copy number and

outliers are SNPs with values different from those of other SNPs in the

same region. These abnormal values may be accounted for by point

mutations in the genome. However, a large number of such changes is

unlikely, so the total number of outliers should be relatively low and the

out parameter close to zero.

The criterion flag is the number of flagged SNPs. We introduced this

criterion for the comparison of methods that remove SNPs, such as

GIM and ITALICS. These methods may artificially improve the quality

of the signal (as measured by dyn and out), by removing SNPs with

abnormal behavior. The number of flagged SNPs should, therefore, not

be too high. When faced with a choice between two methods with equal

SNR, the method with the lowest flag should be preferred.

Comparison of two normalization methods: These three criteria can

be used to determine which of the two normalization methods gives the

best results for a given array. In this pairwise comparison context,

dyn must be calculated with the same definition of gain, normal and

loss regions for both normalized arrays. We therefore define consensus

gain, normal and loss regions associated with an array processed with

two different normalization methods, as the intersection of the two

corresponding gain, normal and loss regions obtained with the two

different normalization methods [see also Neuvial et al. (2006) for

details].

For the comparison of two different methods, a and b, in terms of

a certain criterion, we calculate relative performances as follows:

RPdynða; bÞ ¼ ðdynðaÞ � dynðbÞÞ=dynðaÞ

RPoutða; bÞ ¼ �ðoutðaÞ � outðbÞÞ=outðaÞ

RPflagða; bÞ ¼ �ðflagðaÞ � flagðbÞÞ=flagðaÞ

RP measures the percentage improvement observed with method a,

with respect to method b. The minus signs for the out and flag criteria

ensure that a positive RPcri(a,b) always means that method a is better

than method b for criterion cri.

2.4 Datasets

We carried out our study on two public datasets: a dataset for 128

reference diploid chips (Matsuzaki et al., 2004) and a glioma dataset

corresponding to 356 chips (Kotliarov et al., 2006). We also used

datasets produced by the Affymetrix platform of the Institut Curie

obtained with 22 uveal melanoma samples, 40 ovarian cancer samples

and 26 breast cancer samples.

3 RESULTS

3.1 Choosing the number of iterations

We assessed the extent to which each iteration within the

ITALICS algorithm improved the SNR, by calculating the dyn
criteria for different values of itermax (0, 1, 2, 3 and 5) for each

chip of the 356-glioma chips dataset. The percentage improve-
ment RPdyn for different values of itermax (1, 2, 3 and 5) with

respect to no iteration was then calculated (Fig. 2). One
iteration gave 53.8% improvement, two gave 56.1% improve-

ment and three and five gave 56.3% improvement. As the third
and subsequent iterations gave only a very slight improvement,

we set itermax to two in the ITALICS algorithm.

3.2 Importance of each effect on the signal

For each chip of the glioma dataset, we calculated the type III
sum of squares for each effect in our multiple linear regression

model. A low type III sum of squares indicates that the

difference between the full model and the model excluding
the studied effect is very small. The QuartetsPM effect gave the

highest type III sum of squares, with a mean of 550� 103 versus
10.4� 103, 16� 103 and 14� 103 for QuartetsPM GC-content,

fragment length and fragment GC-content. The biological
effect was the second most important effect, with a mean of

24� 103.

3.3 ITALICS outperformed the other methods

We calculated dyn and out with ITALICS, GIM, CNAT 3.0
and CNAG, using three different cancer datasets: two in-house

datasets corresponding to 22 choroidal melanoma chips and

Fig. 2. Improvement in SNR with the number of ITALICS iterations

The improvement in SNR obtained with each iteration was assessed

by calculating the percentage improvement RPdyn for 1, 2, 3, and 5

iterations with respect to no iterations. The results are summarized in

this graph, showing RPdyn as a function of the number of iterations.

The SNR improved with the first two iterations, with no major

improvement observed for subsequent iterations.
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40 ovarian cancer chips and one public data set of 356 glioma

chips. All methods were used with their default parameters.
We calculated the percentage improvement (RP) for

CNAT 3.0, CNAG and GIM, in terms of dyn and out, with

respect to ITALICS (Fig. 3). For the three competitors

RPcri(competitor,ITALICS) is calculated and we performed

t-tests to assess the significance of the improvement. We found

that ITALICS outperformed CNAT 3.0, CNAG and GIM, in

terms of dyn and out, with t-test P-values below 10�5 for all

three data sets. For GIM, RPdyn ranged from �10.9% to

�6.5%, for CNAG, it ranged from �23.9% to �16.0% and for

CNAT 3.0 it ranged from �33.4% to �26.0%. RPout ranged

from �98.1% to �89.0% for all three methods. Chip data

normalized with ITALICS therefore had a significantly better

SNR than those normalized with CNAT, CNAG and GIM,

with fewer outliers.

Both ITALICS and GIM flag certain SNPs for elimination.

The improvement in SNR obtained with these methods may

therefore be partially due to the mechanical effect of this

removal. We compared the number of SNPs flagged between

GIM and ITALICS and found that ITALICS flagged

significantly fewer SNPs than GIM, with a mean of 300

SNPs per chip for ITALICS versus 3000 for GIM. The

RPflag(GIM,ITALICS) is �90%.

3.4 Spatial artifact correction

Some Affymetrix SNP arrays suffer from spatial artifacts. The

step flagging poorly predicted QuartetsPM removes most

QuartetsPM with abnormal intensity detected by visual

inspection, as shown in Figures 1A and B. To our knowledge,

ITALICS is the only method capable of doing this. Moreover,

the removal of these abnormal QuartetsPM increases the quality

of the signal, by removing many outliers from the genomic

profile: 1661, 1818 and 2331 outliers were detected for

CNAT 3.0, CNAG and GIM (Figure 1C, D and E). With

ITALICS, there were only 88 outliers (Figure 1F), but only

13 of the 56 000 SNPs were removed because they had less than

three non-flagged QuartetsPM.

3.5 Biological validation

Quantitative PCR validation: We used QPCR (see Supplemen-

tary Material for more detail) to validate our method with

a different technology. As a test case, we used a set of paired

breast cancer samples (primary tumor and relapse, Bollet et al.

2008) and tried to identify a breakpoint in chromosome 20.

We compared the results obtained with QPCR with those

obtained with ITALICS, CNAG, GIM and CNAT, for the

XbaI and HindIII arrays. We also carried out QPCR on two

breast cancer tumors, each with a normal chromosome 20

(white and striped bars in Fig. 4) to assess noise for QPCR and

to validate the significance of copy number change. As shown

in Figure 4, ITALICS was more accurate than CNAG, GIM

and CNAT 3.0 for comparisons of copy numbers, based on the

estimates obtained with PCR. ITALICS, CNAG, GIM and

CNAT 3.0 detected changes in copy number in this region of

chromosome 20. However, ITALICS breakpoints were closer

to QPCR breakpoints than CNAT breakpoints (see Fig. 4A, C

and D) and CNAG and GIM breakpoints (see Figure 4A).

In Figure 4A, QPCR and ITALICS breakpoints are found at

identical positions (between P14 and P15). In Figure 4C and D,

CNAG, GIM and ITALICS detect a copy number change

between P12 and P13, close to that detected by QPCR between

P14 and P15, whereas CNAT detects this breakpoint further

away, between P06 and P07 in Figure 4C and between P08 and

P09 in Figure 4D. In Figure 4B, QPCR, CNAT, GIM, CNAG

and ITALICS found the same breakpoint.
Patients with breast cancer relapses: The problem tackled was

determining whether the second cancer was a true recurrence of

the first cancer or a new primary tumor, based on the two

Affymetrix SNP array profiles (Bollet et al., 2008). We tried to

identify common breakpoints between the cancer chips for

the two tumors. The breakpoints detected with CNAT 3.0 or

ITALICS normalization are represented in Figure 5A and B for

chromosome 6 and 9, respectively, for one patient. GIM and

CNAG results are similar to ITALICS for chromosome 6

and similar to CNAT for chromosome 9 (data not shown).

ITALICS identified breakpoints at identical locations for both

cancers and this is true for the two chromosomes presented in

Figure 5A and B. It is important to notice that this was not

possible with CNAT 3.0, CNAG and GIM. The precise match

between the breakpoints mapped in the two cancers with

ITALICS suggests that the second cancer is a true recurrence,

whereas the opposite conclusion would have been drawn with

CNAT 3.0. As CNAG and GIM detect less precise matches,

they lead to the same conclusion as ITALICS, but the evidences

for this conclusion are weaker. Expert assessment based on

clinical data also indicated that this was a true recurrence, and
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Fig. 3. Comparison of ITALICS with other normalization methods.

We compared ITALICS with CNAT 3.0, CNAG and GIM for two

quality criteria—dyn and out—using three different cancer datasets: two

in-house data sets corresponding to 22 choroidal melanoma chips and

40 ovarian cancer chips and one public dataset corresponding to 356

glioma chips (Kotliarov et al., 2006). Each color corresponds to the

comparison of ITALICS with a different method or data set. ITALICS

is taken as the reference [red point 0 at (0, 0)]. For each method, the

cross indicates the mean relative performance on the data set con-

cerned, for the dyn and out criteria, and the lines give the corresponding

95% quantile for relative performance. ITALICS significantly outper-

forms all methods for both quality criteria, dyn and out.
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was therefore consistent with the results obtained with

ITALICS. Similar conclusions were drawn for the rest of the

data set (13 first and second cancer pairs). Thus, ITALICS

improves the classification of true recurrences and new primary

tumors.

4 DISCUSSION AND PERSPECTIVES

We present here a new method for normalizing Affymetrix

SNP arrays: ITALICS. This method is highly efficient and

Fig. 4. Affymetrix SNP arrays and QPCR DNA copy number profiles

for a patient with breast cancer relapse. CNAT 3.0 (dashed line) and

ITALICS (solid line) DNA copy number determination along chromo-

some 20, from position 17453432 (P01) to position 49386812 (P22), for

the primary tumor (A, C) and the relapse (B,D) using theHindIII (C,D)

and XbaI (A, B) Affymetrix SNP arrays. CNAG and GIM results are

identical to CNAT for (A) and identical to ITALICS for (B, C and D).

We performed QPCR on two breast cancer tumors with a normal

chromosome 20, to estimate the noise associated with QPCR and to

validate the significance of copy number change. The bar charts

generated show the QPCR estimation of DNA copy number in two

breast cancer tissues with a normal chromosome 20 (white and striped

bars, A, B, C andD), the primary breast tumor (black bars, A andC) and

the corresponding relapse (black bars, B and D). In (A), both ITALICS

and QPCR detect a copy number change between P14 and P15, whereas

GIM, CNAG and CNAT detects a change between P21 and P22. In (C)

and (D), ITALICS detects a copy number change between P12 and P13,

close to that detected by QPCR between P14 and P15, whereas CNAT

detects a breakpoint further away, between P06 and P07 in (C), and

between P08 and P09 in (D). In (B) QPCR, CNAT and ITALICS found

the same breakpoints.

Fig. 5. Detection of breakpoints common to first and second cancers,

using ITALICS. We present part of the chromosome 6 (A) and 9 (B)

profiles obtained with VAMP (La Rosa et al., 2006) for a patient with

two breast tumors. For both (A) and (B), the first two profiles are

CNAT 3.0 profiles of the first and second cancers and the last two

profiles are ITALICS profiles of the first and second cancers. GIM and

CNAG results are similar to ITALICS for chromosome 6 and similar to

CNAT for chromosome 9 (data not shown). CNAT 3.0 identified no

breakpoints (red dashed lines) common to the two cancers, whereas

ITALICS did (red arrows), strongly suggesting that the second cancer

was a true recurrence. Moreover, the results obtained with ITALICS

are supported by an expert classification based on clinical data.
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outperforms other normalization methods, such as CNAT 3.0,
CNAG and GIM, in terms of SNR, giving a more accurate
localization of breakpoints validated by QPCR. This improve-
ment may be due to various features of the ITALICS algorithm.

This algorithm estimates alternatively and iteratively both
non-relevant and biologically relevant effects. The correct
estimation of relevant effects depends on correct estimation of

the biological signal and vice versa, as the relevant effects induce
similar or higher ranges of variation than the biologically
relevant effect. By estimating both the non-relevant and

biologically relevant effects in an iterative manner, we avoid
overestimation of the non-relevant effects and a loss of
biological signal. The first estimation on raw data is necessarily

rough, but improves the subsequent estimation of non-relevant
effects. Each new estimation of the biological or non-relevant
effects leads to a better estimation of the other effects. In
practice we iterate our algorithm twice, as additional iterations

were found to lead to no significant improvement in the SNR.
This algorithm also includes a flagging step, making it possible
to remove aberrant SNPs. Indeed, some PM intensity values are

subject to spatial artifacts. The PM intensity of theirQuartetsPM
is therefore abnormal, poorly predicted by the regression model
and flagged. The discarding of poorly predicted QuartetsPM
does not necessarily lead to the discarding of the corresponding
SNP, provided that enoughQuartetsPM remain elsewhere on the
chip. As a result, very few SNPs are removed from the final
genomic profile. This filtering step detects spatial artifacts only

indirectly, but nevertheless gives good results in practice.
Methods for the precise detection of spatial artifacts and
the removal of all probes within spatial artifacts have already

been developed (Neuvial et al., 2006). However, their direct
application to SNP chips is impossible due to the very high
density of these chips (more than 2 million probes per chip).

Computing QuartetsPM effect on an in-house reference dataset
would certainly improve the quality of the normalization.
Nevertheless, the QuartetsPM effect is the most important effect

and ignoring it would decrease the efficiency of the
normalization.
We normalized XbaI and HindIII chips separately. The same

major changes were detected with both chips. However, it is

difficult to merge XbaI andHindIII data due to the difference in
signal amplitude for consecutive alterations between the two
chips. The merging of the XbaI and HindIII genomic profiles

would result in a higher resolution profile, but also in a lower
SNR. The ITALICS algorithm could be improved by taking
into account the enzyme effect (XbaI and HindIII) to overcome

this problem.
Technically, the ITALICS algorithm could be applied to

higher density chips, such as the Affymetrix GeneChip Human
Mapping 500K Set and even the Genome Wide SNP array 5.0

and 6.0, which do not have MM probes, as ITALICS is based
solely on PM probes. Of course, we would have to check
whether the non-relevant effects in our model are also observed

with these higher density chips. We would also need to obtain a
reference dataset for calculating the quartet effect.

5 CONCLUSION

We developed ITALICS, a new normalization algorithm for

Affymetrix SNP arrays. This method was designed for the
normalization and analysis of DNA copy number and signif-

icantly outperformed other methods, such as CNAT 3.0, CNAT

4.0, CNAG and GIM, in terms of SNR and can also be used to

correct for experimental artifacts due to spatial effects. This
method was validated by QPCR and accurately detected the

breakpoints in genomic profiles. It could therefore be used to

improve the characterization of samples in genomic studies.
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2.4 Extraction of informative DNA copy number alter-

ations

The three statistical methods, MANOR, GLAD and ITALICS deal with one genomic pro�le
at a time. However, methods which are able to analyse many pro�les simultaneously are
needed in order to identify the relevant alterations for a given pathology. Indeed, alterations
frequently observed in a set of tumours or at least in a subset are likely to be involved in
tumoral progression. A method has been developed to extract such informative alterations
from a set of DNA copy number microarray experiments (Rouveirol et al., 2006, this article
is supplied in the Annexes). The method uses as input the calling done by GLAD or
ITALICS or any algorithms able to provide a call for each probe (i.e. either loss, normal,
gain or ampli�cation). Two types of alterations can be detected by the algorithm:

• minimal alteration: this type of alteration corresponds to the smallest one inter-
secting a su�cient number of tumours (this parameter needs to be chosen by the
user) as shown in Figure 2.3a. The identi�cation of such alterations should pin-
point new cancer-critical genes (see Subsection 1.3.3): the tumour-suppressor genes
are supposed to be present in minimal alterations of losses and oncogenes in minimal
alterations of gains.

• recurrent alteration: this type of alteration is more restrictive than the previous
de�nition. Indeed, in this case, a su�cient number of tumours (this parameter needs
to chosen by the user) have a common alteration whose extremities are at the same
location (± tolerance) as shown in Figure 2.3b. This type of alteration is relevant
when a precise alteration is needed for tumoral progression such as gains/losses of
complete chromosomes or gains/losses of chromosome arms.

The algorithm outputs an indicator matrix as shown in Figure 2.4: for each tumour it is
indicated whether the sample has a given alteration or not. Finding informative DNA copy
number alterations presents many advantages. First, it allows the information to be reduced
taking into account the redundancy of the data since contiguous probes on the genome
are very likely to have the same DNA copy number. This way, the aCGH pro�les are
converted into a set of relevant features which leads to more powerful downstream analyses
(Van de Wiel and Van Wieringen, 2007). Secondly, in downstream analyses, it allows the
same weight to be given for each alteration whatever its size. Indeed, possibly very small
alterations, such as ampli�cations, may be relevant as predictive or prognostic factors. Since
there are few probes in such small alterations it is better to use the alteration as a single
entity so that all the regions are weighted the same. Thirdly, it allows an easier interpretation
of the data since biologists can just study a limited number of alterations rather than all
the probes. Besides the proposed algorithm, other methods exist such as GISTIC (Genomic
Identi�cation of Signi�cant Targets in Cancer) (Beroukhima et al., 2007), STAC (Signi�cance
Testing for Aberrant Copy number) (Diskin et al., 2006) and CGHregions (Van de Wiel and
Van Wieringen, 2007).

These DNA copy number informative alterations are used in Section 2.5 to identify high-
risk tumours and in Chapter 3 to combine both DNA copy number and mRNA expression
microarray experiments.
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a - Minimal alteration b - Recurrent alteration

Figure 2.3: Example of informative DNA copy number alterations - The same six tumours are represented in the left and right
graphics (The aCGH pro�les have been retrieved from ACTuDB and correspond to colon cancer from the dataset of Douglas
et al., 2004).(a) Six tumours have lost the green minimal alteration. (b) Two tumours have lost the green recurrent alteration
which has the same extremities in the two samples.

  

Gain Chr1 Loss Chr2 Gain Chr8 Amplification Chr8
Tumour1 0 0 1 0
Tumour2 1 0 0 1
Tumour3 1 0 1 1
Tumour4 0 1 0 0
Tumour5 0 0 0 1

Figure 2.4: Representation of DNA copy number data - Each column represents an informative DNA copy number alteration
(either a minimal or recurrent alteration). A row represents a tumour sample in which it is indicated whether the sample has
the corresponding alteration (1) or not (0).
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2.5 Example of aCGH study: identi�cation of high-risk

tumours in uveal melanoma

In this section is presented a study to identify high-risk tumours in uveal melanoma which
is the most common intra-ocular tumour (Trolet et al., 2008, under revision in Investigative
Ophthalmology and Visual Science). The paper describing the analysis is supplied as a ma-
terial part of the thesis. The particularity of this cancer is its high propensity to metastasise
almost exclusively in the liver: in this case the prognosis of the patient is very poor, and
therefore, patients with high-risk of metastasis need to be accurately identi�ed. Moreover
no treatment other than eye removal exists. In the study, BAC aCGH pro�les were available
for primary tumours from the eye and from liver metastases. The statistical methods which
have been developed during the thesis to analyse DNA copy number experiments have been
used in this study. Brie�y, the following analyses have been performed:

• normalisation of the BAC aCGH pro�les with the MANOR algorithm (Neuvial et al.,
2006).

• segmentation and calling with the GLAD algorithm (Hupé et al., 2004).

• identi�cation of informative DNA copy number alterations with the algorithm by Rou-
veirol et al. (2006).

• unsupervised classi�cation (hierarchical clustering) based on the informative DNA copy
number alterations (Brito et al., 2008, this article has been submitted to Bioinformatics
and is supplied in the Annexes) in order to identify new subgroups of tumours.

• supervised classi�cation (log-linear model - see Subsection 3.2.4) based on the infor-
mative DNA copy number alterations in order to predict high-risk tumours.
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(UM) and liver metastases, in order to design a genome profile-
based prognostic classifier. 
Methods. A series of 86 UM tumors and 66 liver metastases was 
analysed using BAC CGH-microarrays. A clustering was performed, 
and correlation with the metastatic status was sought in a subset of 
78 patients (median follow-up: 54 months).   A prognostic classifier 
was built using a log-linear model on minimal regions and leave-
one-out cross-validation. 
Results. The clustering refines the classical classification of UM 
dividing the disomic 3 and the monosomic 3 groups into, 
respectively, two and three subgroups. Same subgroups were found 
in primary tumors and in metastases, but with different 
frequencies. Monosomy 3 was present in 70% of ocular tumors, and 
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81% of metastases. Isolated monosomy 3 was present in 0% of 
metastatic ocular tumors and in 3% of metastases only. Highest 
metastatic rate in ocular tumors was in a subgroup defined by gain 
of 8q and losses of 3, 8p and 16q, also most represented in 
metastases. Position of breakpoint in 8q gains was proximal in 77% 
of metastatic tumors and 79% of metastases. A prognostic 
classifier including losses of 3, 8p, 16q, gain of 6p, and breakpoint 
position on 8q, lead to 82.1% of good classification. 
Conclusion. Genome profiling should be a reliable help for the 
identification of high-risk patients for future adjuvant therapy 
protocols. 
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ABSTRACT 

 

Purpose. About 50% of patients carrier of a uveal melanoma develop incurable metastases. The purpose of 

the study was to determine genomic profiles in a large series of uveal melanomas (UM) and liver 

metastases, in order to design a genome profile-based prognostic classifier. 

Methods. A series of 86 UM tumors and 66 liver metastases was analysed using BAC CGH-microarrays. A 

clustering was performed, and correlation with the metastatic status was sought in a subset of 78 patients 

(median follow-up: 54 months).   A prognostic classifier was built using a log-linear model on minimal regions 

and leave-one-out cross-validation. 

Results. The clustering refines the classical classification of UM dividing the disomic 3 and the monosomic 3 

groups into, respectively, two and three subgroups. Same subgroups were found in primary tumors and in 

metastases, but with different frequencies. Monosomy 3 was present in 70% of ocular tumors, and 81% of 

metastases. Isolated monosomy 3 was present in 0% of metastatic ocular tumors and in 3% of metastases 

only. Highest metastatic rate in ocular tumors was in a subgroup defined by gain of 8q and losses of 3, 8p 

and 16q, also most represented in metastases. Position of breakpoint in 8q gains was proximal in 77% of 

metastatic tumors and 79% of metastases. A prognostic classifier including losses of 3, 8p, 16q, gain of 6p, 

and breakpoint position on 8q, lead to 82.1% of good classification. 

Conclusion. Genome profiling should be a reliable help for the identification of high-risk patients for future 

adjuvant therapy protocols.  

�

�

Page 3 of 19

http://www.iovs.org/

IOVS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

���������������� � ����

INTRODUCTION 

Uveal melanoma is the most common intraocular malignant tumor, with an incidence of about 6 cases per 

million per year in the Caucasian population. It shows a high propensity to metastasize, in 90% of cases to 

the liver. Its prognosis is poor, with a survival of about 50% at 10-15 years, despite successful treatment of 

the primary tumor (1). Ophtalmologists and oncologists have recently considered the possibility of 

developing adjuvant systemic treatments for high-risk patients (2). This involves an accurate detection of 

tumors associated with a high metastatic risk at time of diagnosis to identify eligible patients. Beside clinico-

pathological features (tumor size, location, histology, extrascleral invasion), certain genomic alterations of 

the tumor, affecting mainly chromosomes 3, 6, and 8, have been identified by karyotype analyses, then by 

Fluorescence In Situ Hybridization (FISH) and Comparative Genomic Hybridization (CGH) (for review, 3). 

Status of chromosome 3 has been shown to be strongly associated with the outcome of patients. Monosomy 

3 is an early event present in 50-60% of tumors, often associated with an isochromosome 8q, and about 

60% of patients having a monosomic 3 tumor experience a metastatic evolution, while disomic 3 tumors are 

considered as rarely leading to metastatic disease (4-7). Additionally, other recurrent chromosome 

alterations, such as imbalance of chromosome 6 and losses of 1p and 16q, have been described (8-12). 

Genome-wide techniques of genomic and expression profiling, make it now possible to analyze these tumors 

with combined imbalances with a much higher resolution and without the limitations of cytogenetic analyses. 

These approaches may improve the characterization of high-risk uveal melanoma. Recently, using gene 

expression profiling, two distinct molecular classes strongly associated with metastatic risk could be 

identified (13-15). However, DNA-based techniques are known to be more robust than expression-based 

methods and should be useful in reliably identifying regions of imbalance that might be of interest for a 

prognostic purpose, and for the search of genes involved in the development of this tumor. To date, only two 

pangenomic study using array-CGH, performed on 18 and 49 primary tumors, have been reported (16, 17), 

and little is known about the genomic profiles of uveal melanoma metastases (10). We report here the array-

CGH analysis of 86 primary tumors and, for the first time, of 66 liver metastases, to attempt to identify a 

genomic profile associated with high-risk uveal melanoma. 

�

MATERIALS AND METHODS 

Patient and Tumor Samples 

Ocular tumor samples were obtained from a series of 86 unselected patients who were treated by 
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enucleation. Informed consent was obtained. The study followed the tenets of the Declaration of Helsinki and 

was approved by of the Department of Translational Research and the Institutional Ethical Review Board. At 

first, unsupervised analysis and genomic characterization were carried out on all 86 tumors. Then, for the 

supervised analysis regarding the metastatic status, 8 tumors of patients with less than 24 months follow-up 

were removed, and a subset of 78 samples was used (median follow-up: 54 months, range: 24-96 months). 

Samples of 66 liver metastases were obtained from patients having undergone a carcinologic resection. 

Among these samples, 8 pairs of ocular tumor and the corresponding metastasis were available. All 

specimens included in the study were histologically confirmed, and were checked on a frozen section for 

showing more than 60% tumor cells, before DNA extraction. 

 

Array-CGH 

 DNA extraction, labelling and hybridization were performed as previously described (18). A genome-wide 

DNA microarray made of about 4K BAC clones, FISH mapped, sequenced, verified for marker content, and 

spotted in triplicate, with a 1 Mb average resolution (CIT / INSERM U830, Institut Curie, Paris), was used. 

Hybridized slides were scanned using an Axon GenePix 4000B scanner (Molecular Devices, Sunnyvale, 

CA). Image analysis was performed with the Axon GenePix 5.1 software (Molecular Devices). In addition, 

one ocular tumor showing the minimal 3p loss in the series was analyzed on 250K GeneChip Array 

(Affymetrix , Santa Clara, CA). 

 

Array Data Processing 

Normalization 

We applied the MANOR algorithm, as described in Neuvial et al. (19), to correct for local spatial bias and 

continuous spatial gradient. Spots showing a too low signal-to-noise ratio or poor replicate consistency were 

discarded.  

Alteration detection and minimal regions 

Each array-CGH profile is centered on the median log-ratio and then analyzed using the GLAD algorithm 

(20). GLAD performs a segmentation of the genomic profile, defines regions of homogeneous DNA copy 

number, and returns for each of these regions a smoothing value and a status (Gain, Normal or Loss). For 

status assignment, the following thresholds were used: smoothing values lower than -0.15 and greater than 

0.15 are set to loss and gain, respectively.  
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  Minimal common alterations were identified using the formalization proposed by Rouveirol et al. 

(21). Minimal regions supported by at least 20% of the total number of tumors of the whole dataset have 

been considered in this analysis.  

Tumors were represented under three different kinds of genomic profiles: (i) the sequence of the log-

ratio values of each clone ordered along the genome (LR profile), (ii) the sequence of the status of each 

clone (SC profile), or (iii) the sequence of minimal regions (MR profile).  

Clustering on Minimal Regions 

 Hierarchical clustering was performed on MR profiles using Euclidian distance as the similarity measure, 

and the Ward method in order to minimize the intra-class inertia during cluster building. Separation into 

groups was then proposed on the basis of the structure of the dendrogram.   

Differential analysis of Log-Ratio profiles 

 A differential analysis was performed on the LR profiles to highlight clones which have significantly different 

log-ratios between two user-defined groups of tumors. For each clone, a Student test was performed and the 

obtained P-values were then adjusted using the Benjamini-Hochberg algorithm (22) for multiple testing 

correction. Clones with an adjusted P-value lower than 10% were considered to be significantly different 

between the two groups. 

Data visualization and analysis 

 The visualization of the data, the computation of the minimal regions and clustering were done using the 

VAMP software (23). 

Building of a prognosis classifier 

Supervised classification was based on the MR profiles. Data were represented within a multiple contingency 

table in which each cell contains the number of tumors for the genomic category. A log-linear model was 

then used to analyze the contingency table and to build the classifier. The leave-one-out procedure has been 

used to assess the global performance, sensitivity and specificity of the classifier. Positive and negative 

predictive values correspond respectively to the proportion of metastatic tumors which are predicted 

metastatic, and the proportion of non-metastatic tumors predicted non-metastatic. The final classifiers were 

computed on the whole dataset. Variable selection on the minimal regions to include in the model was 

performed using Akaike's information criterion (24). To build a classifier on continuous variables, we used a 

MANOVA model, and the location model was used to combine both categorical and continuous variables 

(25). 
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RESULTS 

Genomic Profiles of Primary Ocular Tumors 

 Minimal regions were detected using the whole primary ocular tumors dataset. Partial or complete loss of 

chromosome 3 was found in the majority of the tumors (60/86, 70%). Among the 6 tumors showing a partial 

loss of the chromosome, the deletion involved the 3p only in 3 cases, the long arm only in 2 cases, and both 

arms in one case. These cases with partial deletions were considered as monosomic 3 tumors in the study. 

The smallest region of deletion was observed in a case showing a terminal 3p loss, beyond clone RP11-

34L16. Result of CGH on Affymetrix 250K GeneChip showed a breakpoint in 3p25.3, between positions 8 

883 800 and 8 897 506. The two deletions involving the 3q only, were large, distal to 3q11.2. A gain involving 

at least the distal part of the long arm of chromosome 8, band q24, was the most frequent imbalance (77/86, 

90%). The frequency of gain of the individual clones has been computed for chromosome arm 8q on the On 

the basis of the SC profiles, the frequency of gain of individual clones of the 8q arm decreases regularly 

when approaching the centromere (8q11–q21.1, 52/86, 60%). Indeed, two types of 8q status can be defined, 

whether the tumor shows a 8q gain with a proximal breakpoint (denoted below as type A), located from 

centromere to 8q21.1, or not (type B). So, type A corresponds to gain of the whole or almost the whole 8q, 

whereas type B is related to gain of distal 8q, of a whole chromosome 8, or to no alteration of chromosome 

8. Other highly recurrent regions were also found, namely 6p gain (6p25–p22, 49/86, 58%), 1p loss (1p36–

p12, 39/86, 45%) and 16q loss (16q23–q24, 27/86, 31%). 

 The hierarchical clustering (Fig. 1a) performed using the MR profiles clearly shows, after manual 

verification, that chromosome 3 status defines two groups of tumors, one with disomy 3 (group 1) and the 

other with monosomy 3 (group 2), respectively composed of 26 and 60 cases (Table 1). Mean LR profiles 

were generated by computing for each clone the mean value of the log-ratio in the tumors of a given group. 

Group 1 mean LR profile (Fig. 2A) shows gains of 6p and of distal 8q. Mean LR profile of group 2 (Fig. 2B) is 

well characterized by the loss of the whole chromosome 3 associated with the gain of the entire 8q.  

 The observation of the clustering dendrogram (Fig. 1A) and the minimal regions shared, lead to 

define two disomic 3 subgroups (1a and 1b), and three monosomic 3 subgroups (2a, 2b, and 2c) (Table 1). 

Subgroup 1a (12 tumors) shows a 6p gain only, and subgroup 1b (14 tumors) is mainly defined by 6p gain 

associated with a loss of 6q (9/14, 64%), and by a gain of distal 8q (13/14, 93%; mean log-ratio of 1.5). Loss 

of 16q appears less often (5/14, 36%). Among the three monosomic 3 subgroups, subgroup 2a is composed 
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of 8 tumors without any other minimal region than monosomy 3. In subgroup 2b (27 tumors), monosomy 3 is 

associated with a relatively high level gain of the 8q (26/27, 96%; mean log-ratio of 2.0), mainly of the whole 

arm, a loss of 8p (16/27, 59%), and a loss of 16q (11/27, 42%). Subgroup 2c (25 tumors) is characterized by 

a set of minimal regions composed of monosomy 3, a moderate gain of 8q (21/25, 84%; mean log-ratio of 

1.6), a loss of 1p (17/25, 68%), a loss of 16q (11/25, 44%), and a rare loss of 8p (6/25, 24%). Concerning the 

breakpoints in 8q (Table 2), most tumors of subgroup 1b belong to type B (10/14, 71%), whereas tumors of 

group 2b and 2c are of type A (39/52, 75%) (chi-square test, P = 3.49e-3). 

 

Genomic Profiles of Liver Metastases 

The liver metastases dataset was processed using the same procedure of clustering analysis (Fig. 1B). 

Minimal regions reported previously in ocular tumors were also found in liver metastases: monosomy 3 

(51/66, 77%), gains of 8q (59/66, 89%), and 6p (21/66, 32%), losses of 1p (31/66, 47%), 8p (30/66, 45%) 

and 16q (21/66, 32%). Two new frequent imbalances, gain of 1q (23/66, 35%) and loss of 6q (42/66, 64%), 

were observed. The mean log-ratio of 8q gain was high (log-ratio of 1.9). Among monosomic 3 metastases, 

6 cases showed a partial deletion of chromosome 3, 4 in the short arm only, and two in both arms. These 3p 

deletions were large, with a minimal region in 3p26-22. 

   Except three samples showing numerous imbalances that could not be classified, liver metastases 

could be separated into the same groups and subgroups as defined in ocular tumors (Table 1). The 12 

disomic 3 samples are composed of subgroups 1a (2/12, 17%) and, predominantly, 1b (10/12, 83%). The 51 

monosomic 3 metastases are distributed in subgroups 2a (2/51, 4%), 2b (28/51, 55%), and 2c (21/51, 41%). 

Thus, most of monosomic 3 metastases belong to subgroups 2b and 2c (49/51, 96%).  

 Regarding breakpoints on 8q, most of the liver metastases belong to type A (50/63, 79%) (Table 2). 

  

Genomic profiles of Paired Primary Tumors and Metastases 

All these cases corresponded to group 2 tumors. Some imbalances were recurrently found as additional 

alterations in metastases by comparison with the corresponding ocular tumors, such as gain of 1q (3/8) and 

loss of 6q (3/8). One metastasis shows 11 additional copy number changes, mainly gain of whole 

chromosomes, in comparison with the primary tumor.  

 

Comparison of Genomic Profiles of Ocular Tumors with Respect to Metastatic Status 
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On the whole, group 2 tumors show a higher metastatic potential (38/55, 69%) than group 1 tumors (5/23, 

22%; chi-square test P = 3.37e-4) (Table 1). Among tumors with partial loss of chromosome 3, two of the 3 

tumors with 3p loss, and one of the two with 3q loss, were associated with metastasis. Metastastic tumors 

significantly show in addition to a chromosome 3 loss a gain of the whole 8q (Table 2), with a type A 

breakpoint (33/43, 77%), whereas non-metastatic tumors present type B breakpoints (30/35, 86%; P = 1.4e-

7). We have examined separately in monosomic and disomic 3 tumors, the eventual differences in 

chromosome imbalances according to the metastatic status. 

Monosomic 3 tumors 

We compared profiles of the 38 monosomic 3 primary tumors having lead to the development of liver 

metastases to those of the 17 non-metastatic ones. Metastastic tumors predominantly show a gain of the 

whole 8q (Table 2), with a type A breakpoint (32/38, 84%), frequently associated with a loss of 8p (18/38, 

47%). Conversely, non-metastatic tumors show a balanced distribution of 8q breakpoints (7 type A and 10 

type B), and the loss of 8p is rare (2/17, 12%). Thus, metastatic tumors specifically exhibit type A 

breakpoints (chi-square P = 3.4e-3). A second change concerns chromosome 16, metastatic tumors showing 

frequent losses of 16q (22/38, 58%), which are not frequently observed in the non-metastatic ones (3/17, 

18%). Finally, gain of 6p is more frequently associated with non-metastatic (7/17, 41%) than with metastatic 

tumors (8/38, 21%). Except gain of 6p (P = 2.2e-1), all other chromosome alterations, 8q gain, 8p loss, and 

16q loss, are significantly associated with metastatic tumors in comparison with non metastatic ones (P = 

3.3e-2, 2.5e-2, and 1.3e-2, respectively). 

 Using a differential analysis based on the LR profiles, chromosome arms 8p and 8q are detected as 

showing respectively lower and higher ratios in the metastatic tumors.  

Disomic 3 tumors 

 There were only 5 metastatic disomic 3 tumors in our dataset (Table 1), and they showed no specific 

alterations which could separate them from the 18 disomic non-metastatic tumors. 

Metastatic monosomic 3 tumors vs. monosomic 3 metastases 

Using SC profiles, frequencies of alterations were compared in the 51 monosomic 3 liver metastases and in 

the 38 monosomic 3 metastatic ocular tumors. They shared the same imbalances, such as losses of 1p 

(40%) and 8p (90%), and gain of 8q (50%), with close frequency rates as shown on their respective mean 

LR profiles (Fig. 2C and Fig. 2D). Few differences exist for regions 1q and 6q which are respectively gained 

(44% vs. 18% in ocular tumors, P = 1.2e-3) and lost (60% vs 28% in ocular tumors, P = 1.0e-2) in 
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metastases. Differential analysis showed no chromosomal regions significantly highlighted, proving that the 

levels of gains and losses are close in these two groups. 

  

Determination of a High-risk Profile in Ocular Tumors 

In univariate analysis, each minimal regions reported in Table 3 was assessed individually and ranked 

according to its prediction performance. Gain of 8q and monosomy 3 are the most significant variables, with 

respectively 74.4% and 73.1% of good classification, with balanced sensitivity and specificity. Multivariate 

analysis performed by adding the best remaining variables one at a time, led to better prediction 

performances. The best performance, 79.5% with 81.4% of sensitivity and 77.1% of specificity, is obtained 

with the set of the following 5 minimal regions: monosomy 3, gains of 6p and of 8q, and losses of 8p and 

16q.  

 We also included the breakpoints position on 8q (types A and B) as a new categorical variable in the 

model, as it appeared as a characteristic feature between metastatic and non-metastatic tumors. In 

univariate analysis, prediction performance of this new variable is better (78.2%) than any previous regions 

taken individually. Then, we replaced the variable gain of 8q in our previous set of 5 minimal regions by this 

new variable and improved the performances to 82.1% of good classification, with very balanced specificity 

(83.3%) and sensitivity (80.6%), and very close positive and negative predictive values (83.7% and 80.6%). 

We then applied variable selection on the full model, considering all minimal regions of interest and the 

breakpoint position type, in order to remove non-significant variables. All variables were selected. The model 

was tested on the metastases dataset, and a performance of 75.8% (50/66) of good classification was 

obtained. We found, as expected, the two cases belonging to subgroups 1a and 1b, and the 3 cases 

unclassified because of their numerous alterations, falsely predicted as non-metastatic. 

 Finally, we introduced the mean LR after breakpoint on chromosome 8q. It took the mean LR from 

the breakpoint on the 8q arm to the telomere, or the mean LR value of the whole chromosome 8 if there was 

no breakpoint on the 8q. In a univariate analysis, performance of good classification is as good as our 

predictive model of 5 minimal regions (79.5%), with close sensitivity and specificity. This variable was added 

to our best model, but performance of classification did not improved, remaining at 82.1%. 

 

Discussion 

 We present a pangenomic array-CGH analysis performed on the largest series of uveal melanoma 
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tumors ever reported, and also, for the first time, on a series of liver metastases. A set of 8 paired ocular 

tumors and the corresponding metastases could be studied. 

 In ocular tumors, as known for more than a decade, the most frequent imbalances are monosomy 3 

and 8q gain. Among the 86 cases analyzed, a partial chromosome 3 deletion was found in 6 cases, with a 

smallest region of deletion of 8.9 Mb, spanning 3p25.3-pter. This breakpoint, more distal than the one found 

by Parrella et al. (26), matches with the proximal one of case M16397 of Tschentscher et al. (27), which had 

the minimal 3p deletion in their series. Among the 6 patients carrier of a tumor with partial monosomy 3, 

three were metastatic, two with a loss in 3p, and one in 3q. This leads to think that genes important for the 

prognosis are located in both arms of chromosome 3. 

 Unsupervised clustering shows that chromosome 3 status is a stable variable that allows to identify 

two groups: disomic (group 1) and monosomic 3 (group 2) tumors. Group 1 is characterized by gain of 6p as 

most frequent initial imbalance. The same clustering into two main genomic groups is reported by Hughes et 

al. (16) and Ehlers et al. (17), from array-CGH analyses performed on 18 and 49 primary uveal melanoma, 

respectively. This classification is in agreement with the almost mutually exclusive relationship between 

monosomy 3 and gain of 6p noticed by Parella et al. (28) and Ehlers et al. (17), and their model of tumor 

progression. Hierarchical clustering leads to define, within these two groups, subgroups based on gain of 8q, 

mainly, and on other highly recurrent alterations involving 1p, 8p, and 16q losses. Ehlers et al. (17) describe 

a third group with a normal status for chromosomes 3 and 6p, and associated with the best prognosis. 

 The examination of 8q gains showed a discrete variation of breakpoints leading either to a gain of 

the whole arm, or to a distal gain. Type A breakpoints, located close to the centromere, leading to a gain of 

the whole 8q, is mostly found in monosomic 3 tumors, as observed also by Hughes et al. (16) and Ehlers et 

al. (17). These whole 8q gains, often associated with 8p loss, are related to the presence and the frequent 

duplication of isochromosomes 8q, an additional abnormality well-known in karyotypic studies (5, 12, 29). On 

the opposite, type B refers to a breakpoint distal to 8q21.1, or to an absence of breakpoint (gain of an entire 

chromosome 8). Most breakpoints of disomic 3 tumors belong to this type. This suggests that gains of 8q 

would mainly result from unbalanced translocations in group 1, and from isochromosome formation in group 

2 tumors. 

 When genomic profiles of ocular tumors are compared with the status of the patients, group 2 tumors 

show a higher metastatic potential than group 1 tumors. However, interestingly, none of the 8 tumors with 

isolated monosomy 3 only, (subgroup 2a) lead to metastasis (Table 1). So, metastastatic propensity appears 
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only partially explained by chromosome 3 status. Indeed, subgroups with higher metastatic potential (2b, 2c, 

and to a lesser extent, 1b) can be identified. Metastatic evolution appears as associated with 8q gain, both in 

monosomic and disomic 3 tumors. Breakpoints in 8q preferentially belong to type A in most metastatic 

tumors, and to type B in non-metastatic ones (Table 2). This is probably related to the fact that 

isochromosome 8q is a frequent additional imbalance both in monosomic and in isodisomic 3 tumors, an 

anomaly that has been demonstrated in about 16 % of group 2 tumors (30, 31). Differential analysis and 

frequency comparison confirmed that, beside the status of chromosome 3, the main differences between 

metastatic and non-metastatic tumors are 8q gain and 8p loss, making them high-risk indicators. The low 

number of metastatic disomic 3 tumors prevented us to valuably compare their profiles to those of the non-

metastatic disomic 3 tumors.  

In the liver metastasis dataset, except for 3 samples showing highly altered profiles that could not be 

classified, all subgroups recognized in primary ocular tumors were found. Although mostly monosomic 3 

profiles (group 2) are observed, and with a higher frequency than in ocular tumors, disomic 3 (group 1) 

profiles are also found (21% of the cases) (Table 1). Six metastases showed a partial loss of chromosome 3, 

4 of them in the 3p, and two involving both arms. Most metastases belong to the two monosomy 3 

subgroups with a gain of 8q (2b, 2c). These gains correspond mainly to type A breakpoints (Table 2). Two 

samples only show a monosomy 3 (subgroup 2a) and two a 6p gain (subgroup 1a) as isolated imbalances, 

confirming that these two groups are rarely metastatic. Ten metastases (15%) belong to subgroup 1b, which 

shows an intermediate metastatic rate. By comparison to ocular tumors, liver metastases specifically show 

additional gain of 1q and loss of 6q in 44% and 60% of the samples, respectively. The study of the 8 pairs of 

ocular tumors and their liver metastases shows very similar results, with a recurrent gain of 1q and a loss of 

6q in metastases, in comparison with their respective primary tumor.  

The classifier built in this work aims to predict the prognosis of any individual tumor, by examining a 

set of a few minimal regions of interest (Table 3). In univariate analysis, gain of 8q and monosomy 3 show 

better predictions for metastatic tumors, as they present higher positive predictive values than negative 

predictive values. In multivariate analysis, best rate of classification (79.5%) is obtained when combining a 

set of 5 regions (losses of chromosome 3, 8p, and 16q, and gain of 6p and 8q). In contrast with the 

observation of Kilic et al. (32), loss of 1p was not retained in the classifier. Using the 8q breakpoint position 

alone, we obtained 78.2% of good prediction, which is better than in univariate analysis of any of the regions. 

Moreover, when replacing gain of 8q by the breakpoint position in our set of 5 regions, we improved the 
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classification rate to 82.1% of good classification, with balanced specificity and sensitivity, and very close 

positive and predictive values.  

 Several features of our analysis suggested that the log-ratio of 8q gain could be a pertinent 

prognostic indicator. First, it was apparent that high level 8q gain was present in the subgroups of ocular 

tumors with the highest metastatic rates. Secondly, differential analysis result showed that monosomic 

metastatic tumors presented a higher 8q gain than monosomic non-metastatic tumors. Finally, in our liver 

metastases analysis, gain of 8q with a high log-ratio was reported as the major alteration. However, although 

good results were obtained in univariate analysis (79.5%), introducing the mean LR after breakpoint on 

chromosome 8q did not improved the performance of classification (82.1%). 

 The present study should provide useful information, in addition to clinico-pathological features, for 

designing an optimal strategy for identifying high-risk ocular tumors in a clinical setting. Given the relatively 

high frequency of partial deletions of chromosome 3 disclosed by pangenomic and microsatellite analyses, 

FISH tests should be performed with a probe located in the most recurrent minimum region of loss in 

chromosome 3, 3p25.1-p25.2 (24, 25, and present work), and at least, a 8q probe of region q11-q21.1, in 

order to differentiate types A and B breakpoints. However, with the advent of fine-needle biopsies, it is likely 

that DNA or RNA-based techniques will be more reliable and more adaptable to the analysis of a large 

number of small samples. It has been shown that expression profiling is more sensitive and specific than 

genomic profiling for the prognostic evaluation of tumors (15, 33), but it is foreseeable that some samples will 

yield RNA of insufficient quality for the analysis, and its applicability on individual tumors in the clinical setting 

remains to be determined. The reason of the superiority of expression profiling is probably in part its ability to 

better classify tumors with isodisomy 3. This leads to recommend genome profiling and assessment of 

chromosome 3 allelic status as diagnostic strategy for an optimal prognostic evaluation of uveal melanoma 

tumors for future clinical trials. 
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Table 1. Tumor subgroups in ocular tumors and liver metastases defined from the clustering on 7   
minimal regions, and rate of metastatic patients in the different subgroups of primary tumors. 
     

  Ocular tumors Liver metastases 

Frequency Metastases rate Frequency Subgroups Imbalances 
n = 86 n = 78* n = 63 

1a G6p 14% (12) 0% (0/10) 3% (2) 
1b G6p, L6q, G8q, 

L16q 
16% (14) 38% (5/13) 16% (10) 

2a L3 9% (8) 0% (0/7) 3% (2) 
2b L3, L8p, G8q, L16q 31% (27) 84% (21/25) 44% (28) 
2c L1p, L3, L8p, G8q, 

L16q 
29% (25) 74% (17/23) 33% (21) 

     
*sample of patients with a minimum follow-up of 24 months. 
G: gain, L: loss.     
 

 

Table 2. Frequency of 8q gains with a proximal breakpoint (type A, q11.1-q21.1)  

in each subgroup of ocular tumors and liver metastases.  
  

Ocular tumors (n = 78) 

Metastatic tumors 77% (33/43) 

Non metastatic tumors 14% (5/35) 

Metastatic monosomic 3 tumors 84% (32/38) 

Non metastatic monosomic 3 tumors 41% (7/17) 

  

1a  0% (0/12) 

1b  29% (4/14) 

2a  0% (0/8) 

2b  81% (22/27) 

2c  68% (17/25) 

    

Metastases (n = 63) 

1a  0% (0/2) 

1b  70% (7/10) 

2a  0% (0/2) 

2b  93% (26/28) 

2c  81% (17/21) 
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Table 3. Supervised prognostic classification of ocular tumors.    
Classifiers built using a log-linear model and prediction performances assessed using leave-one-out cross-validation.  
Variables used in the models are the minimal regions, 8q breakpoint position type, and 8q log-ratio after breakpoint. 
      

Variables Performance of 
classification 

Specificity Sensitivity Positive 
predictive value 

Negative 
predictive value 

Minimal regions 

Univariate analysis 

          

L1p (p36-p12) 55.1% 55.1% 0% 100% 0% 

L6q 55.1% 55.1% 0% 100% 0% 

L16q (q23-q24) 64.1% 80.0% 56.6% 46.5% 85.7% 

G6p (p25-p22) 67.9% 70.5% 64.7% 72.1% 62.9% 

L8p (p23-p11) 66.7% 90.5% 57.9% 44.2% 94.3% 

L3 73.1% 69.6% 81.8% 90.7% 51.4% 

G8q (8q11.1-q21.1)  74.4% 73.5% 75.9% 83.7% 62.9% 

      

Minimal regions 

Multivariate analysis 

          

G8q, L3 76.9% 79.1% 74.3% 79.1% 74.3% 

G8q, L3, G6p 75.6 % 73.1% 80.8% 88.4% 60.0% 

G8q, L3, G6p, L8p 78.2% 79.5% 76.5% 81.4% 74.3% 

G8q, L3, G6p, L8p, L16q 79.5% 81.4% 77.1% 81.4% 77.1% 

      

8q breakpoint 

and minimal regions 

          

8q breakpoint type A 78.2% 79.5% 76.5% 81.4% 74.3% 

L3, L8p, L16q, G6p,  

8q breakpoint type A 

82.1% 83.3% 80.6% 83.3% 80.6% 

8q log-ratio 

after breakpoint 

79.5% 84.6% 74.4% 76.7% 82.9% 

L3, L8p, L16q, G6p, 

8q breakpoint type A,  

8q log-ratio after breakpoint 

82.1% 83.3% 80.6% 83.3% 80.6% 

      

G: gain, L: loss.      
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FIGURES 

Figure 1. Hierarchical clustering (Ward method with Euclidean distance) of 86 ocular primary tumors (A) and 

66 liver metastases (B).   

A- Two groups (1 and 2) of tumors, characterized by the status of chromosome 3, and 5 subgroups (1a, 1b, 

2a, 2b and 2c) can be defined, on the basis of imbalances of minimal regions, mainly gains of 6p and 8q, 

and losses of 1p, 8p, and 16q. Each tumor corresponds to a row and abscissa corresponds to the 

chromosomes lined up from 1 to Y. Regions gained, highly represented (log-ratios >3), lost, or normal, are in 

red, blue, green, and yellow, respectively. The dendrogram resulting from the clustering is shown on the 

right. 

B- The same groups and subgroups are recognized, but with different frequencies and, on average, more 

altered profiles (see text and Table 1).  

 

Figure 2. Mean Log-Ratio profiles of the 26 ocular disomic 3 tumors (A), the 60 monosomic 3 tumors (B), the 

38 monosomic 3 metastatic ocular tumors (C) and the 53 monosomic 3 liver metastases (D). Abscissa 

corresponds to the chromosomes lined up from 1 to Y, and ordinate is the log-ratio between tumor and 

control DNAs. Major chromosomal alterations are pointed by arrows (G: gain, L: loss). 
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Figure 1 
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2.6 Tools, software and database for DNA copy number

microarray experiments

This section presents the work which has be done to provide the statistical methods which
have been developed during the thesis with an enhanced value.

2.6.1 R packages

R1 (R Development Core Team, 2008) is an open source statistical language which has
been used to implement the statistical methods previously described. Packages have been
built and are available from Bioconductor2 (Gentleman et al., 2004). Bioconductor is an
open source and open development software project for the analysis and comprehension of
genomic data; it is based on R. The three R packages are the following:

MANOR (Neuvial et al., 2006) The normalisation method described in Section 2.1 is
available in the MicroArray NORmalisation (MANOR) R package. MANOR is integrated into
CAPweb which is an analysis platform developed at Institut Curie (see Subsection 2.6.3).
MANOR has also been integrated by a bioinformatics team into their toolkit PerlMAT de-
voted to the management and analysis of microarray data (Morris et al., 2008).

GLAD (Hupé et al., 2004) The method devoted to the analysis of aCGH pro�le de-
scribed in Section 2.2 is available in the Gain and Loss Analysis of DNA (GLAD) R package.
GLAD is also integrated into CAPweb. GLAD has also been integrated by other bioinformat-
ics teams into their web interfaces such as ADaCGH (Díaz-Uriarte and Rueda, 2007) and
ISACGH (Conde et al., 2007).

ITALICS (Rigaill et al., 2008) The method devoted to the analysis of A�ymetrix array
described in Section 2.3 is available in the ITerative and Alternative normaLIsation and Copy
number calling for a�ymetrix Snp arrays (ITALICS) R package. ITALICS is integrated into
CAPweb.

2.6.2 VAMP software

A graphical user interface named Visualisation and Analysis of Molecular Pro�les (VAMP) has
been developed for the visualisation and �rst level analysis of molecular pro�les (DNA copy
number, mRNA, LOH, etc.) (La Rosa et al., 2006, this article is supplied in the Annexes).
VAMP is integrated into CAPweb and has been distributed in several academic institutions.

2.6.3 CAPweb platform

CGH Array Pipeline on the web (CAPweb) is a user-friendly tool enabling biologists to analyse
aCGH from raw data to visualisation and biological interpretation (Liva et al., 2006, this
article is supplied in the Annexes). With CAPweb it is possible to manage the data,
to normalise the aCGH data with MANOR, to detect breakpoints with GLAD, to analyse
A�ymetrix data with ITALICS, to visualise and analyse the genomic pro�les with VAMP.
CAPweb is used at Institut Curie via the intranet server (more than 10000 DNA copy number
experiments have been analysed) and is used by the scienti�c community via the internet

1http://www.r-project.org
2http://www.bioconductor.org
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server (more than 3000 DNA copy number experiments have been analysed). CAPweb has
been distributed in several academic research labs (about 15) and sold to a private company.

CAPweb has been used in di�erent clinical publications: Vermeer et al. (2008), Unger
et al. (2008), Fuhrmann et al. (2008), Idbaih et al. (2008) and Idbaih et al. (2007).

2.6.4 ACTuDB database

Array-CGH Tumour DataBase (ACTuDB) (Hupé et al., 2007, this article is supplied in the An-
nexes) compiles DNA copy number microarray experiments from articles which have made
their data publicly available. The data have been integrated into a uni�ed bioinformatics
environment using GLAD and VAMP. ACTuDB provides biologists with the possibility to
compare their �ndings to the existing sets of DNA copy number data for validation.

2.6.5 Clinical applications of the tools and software

The tools and software which have been developed during the thesis have �rst been used for
research purposes. Now, they are routinely used in clinical practise at Institut Curie by the
Département de Biologie des Tumeurs (for sarcomas, neuroblastoma and uveal melanoma)
and at Hôpital de la Pitié Salpétrière (for gliomas).
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2.7 Conclusion

In this chapter, the set of biostatistical algorithms and bioinformatics tools developed during
the thesis have been described. They are devoted to the analysis of DNA copy number
microarray experiments. The work has been carried out as a close collaboration between
biologists, clinicians and bioinformaticians within Institut Curie, and as a close collaboration
of the bioinformaticians within the Service de Bioinformatique as well. A lot of attention has
been paid to packaging each method so that it can be used by the bioinformatics community.
Our methods are available as R packages from the Bioconductor project website. However,
some packages still require computer skills which are not suitable for biologist end-users. This
is the reason why our methods have been integrated into a user-friendly uni�ed bioinformatics
environment named CAPweb so that every biologist can use it without particular skills. As a
result, many biological or clinical publications from teams belonging or not to Institut Curie
refer to our environment for data preprocessing and analysis. We have also successfully
applied our statistical methods to predict high-risk tumours in uveal melanoma (Trolet
et al., 2008, under revision in Investigative Ophthalmology and Visual Science).

The �eld of microarray technology is evolving quickly. In the �rst chapter we have
seen that new chips are available allowing a better resolution to identify more precise DNA
copy number alterations. Then, the biostatistical algorithms and bioinformatics tools we
have developed potentially need to be improved to take into account new issues due to this
increasing resolution. Moreover, new biostatistical methods will be needed to cope with
emerging biotechnologies. This will be the case for the ultra-high throughput sequencing
which is very likely to replace microarray technologies within the next �ve years. Typ-
ically, DNA copy number will be quanti�ed using high-throughput sequencing. This new
sequencing technology generates unprecedented amounts of data which de�nitely imply huge
computer and bioinformatics skills to provide the biologists with a comprehensible informa-
tion. Huge amount of works will be needed and new biostatistical algorithms will have to
be developed to take into account the speci�cities of this technology. At the time of writing
the manuscript, Institut Curie has just received an ultra-high throughput sequencer which
will make it possible to query still unexplored biological territories. This de�nitely starts
a new era in biology and bioinformatics and will give new insights to further improve the
knowledge in oncology.
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The guitar player
Pablo Picasso, 1910

For every complex question there is a simple and wrong solution.

Albert Einstein

3
Prediction of the clinical phenotype based on

both mRNA expression and DNA copy number

microarray experiments
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We have seen in Chapter 1 that a large variety of molecular pro�les can be available
for each patient. They represent valuable information to identify new reliable and e�cient
biomarkers useful for clinical purposes. Among the molecular pro�les, mRNA expression
and DNA copy number have widely been used so far. When available for the same patient,
it is natural to combine both pro�les to improve the identi�cation of new predictive and
prognostic factors. The biological rational behind the combination is very simple: there
are direct or indirect relations between DNA copy number and mRNA expression. Indeed,
the more copies of a gene there are, the more likely the gene is expressed at a high level.
Methods based on correlation analysis have been developed to identify such relations (Lee
et al., 2008). Chin et al. (2006) have combined both levels of information in survival analysis
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but, to our knowledge, no statistical method has been proposed in the context of supervised
classi�cation. We therefore propose the following approach:

• The informative DNA copy number alterations are extracted using the methodology
described in Section 2.4 (Rouveirol et al., 2006). This way, each DNA copy number
molecular pro�le is summarised as shown in Figure 3.1: the set of pro�les is repre-
sented within an indicator matrix which gives whether or not a tumour sample has a
given informative alteration.

• Regarding the mRNA data, the expression values of each gene are used after normal-
isation by a classical method such as RMA (Irizarry et al., 2003) or CG-RMA (Wu
et al., 2003) (see Figure 3.2).

The two issues of using both mRNA expression and DNA copy number microarray exper-
iments in supervised classi�cation are the following. Firstly, the DNA copy number data in
Figure 3.1 are discrete predictor variables while the mRNA expression data in Figure 3.2
are continuous predictor variables. Therefore, the predictor variables are called mixed since
they consist of two di�erent variable types. A supervised classi�cation method able to handle
such mixed predictor variables is needed. Secondly, the mRNA data are high-dimensional
data and therefore, the supervised classi�cation method must also be able to handle high-
dimensionality. These two issues are raised in this chapter. The outline is the following.
In the �rst sections, the principles of supervised classi�cation, the methods able to handle
mixed variables and the issue of high-dimensionality are introduced. Then, a �rst contribu-
tion of the thesis describes a method able to handle mixed variables in high-dimensionality
contexts. The problem of model selection is then introduced. A second contribution of the
thesis describes a statistical criterion able to test the e�ciency of the proposed supervised
method.

  

Gain Chr1 Loss Chr2 Gain Chr8 Amplification Chr8
Tumour1 0 0 1 0
Tumour2 1 0 0 1
Tumour3 1 0 1 1
Tumour4 0 1 0 0
Tumour5 0 0 0 1

Figure 3.1: Representation of DNA copy number data - Each column represents an informative DNA copy number alteration
(either a minimal or recurrent alteration). A row represents a tumour sample in which it is indicated whether the sample has
the corresponding alteration (1) or not (0).

   

Gene1 Gene2 Gene3 Gene4
Tumour1 2.5 12.1 8.9 4.6
Tumour2 4.6 13.6 9.8 6.5
Tumour3 7.7 10.7 6.3 3.8
Tumour4 8.1 9.8 7.2 6.0
Tumour5 5.3 14.7 5.4 5.1

Figure 3.2: Representation of mRNA expression data - Each column represents a gene and the corresponding mRNA expression
value is given for each tumour sample represented in rows.
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3.1 Back to basics: supervised classi�cation

Supervised classi�cation also named discriminant analysis was �rst described in 1936 in the
famous Fisher's iris example. It is a statistical technique which allows the study of the
di�erences between two or more classes (for example, a clinical phenotype to predict can be
the low- and high-risk metastasis classes of patients) based on the observation of di�erent
variables (such as the mRNA expression and DNA copy number data). The goal is therefore
to predict the class label of a new sample for which the di�erent variables have been observed.
The di�erent variables are often referred to as the predictors and the class label (also termed
dependent variable or class variable) as the outcome. Predictor variables can be either
discrete or continuous data. Supervised classi�cation builds a prediction rule or classi�er
which is used for future predictions. It can be compared to multiple regression except that the
outcome to predict is discrete. In practice, supervised classi�cation methodology proceeds
in two steps: �rstly, the classi�er is built over a training set and its prediction performance
is computed over a test set. It is therefore a learning procedure.

In statistical decision theory, the supervised classi�cation problem has been formalised as
follows. We assume that for each observation i a set of predictor variables Si in some space S
has been observed. Moreover, the class label Yi ∈ G is known where G = {G1, · · · ,GK} is the
set of possible K classes. The classi�er is de�ned as a function C : S → G. The prediction
will be wrong if C(Si) 6= Yi. The function C is built so that it ensures the highest prediction
performance or equivalently so that it minimises the error rate. The performance of the
classi�er is quanti�ed with a loss function L(Yi, C(Si)) for penalising errors in prediction. In
supervised classi�cation, the loss function can be represented by a K ×K matrix L where
K = card(G). L will be zero on the diagonal and nonnegative elsewhere, where L(k, l) is the
price paid for classifying an observation belonging to class Gk as Gl. Most often the zero-one
loss function is used where all misclassi�cations are charged a single unit. Each observation
i can be viewed as random variable (Si, Yi) from the joint distribution P (S, Y ). The risk
function R for a classi�er C is the expected loss under P (S, Y ):

R(C, L) = E[L(Y, C(S))]

When the zero-one loss function L0−1 is used then the risk of the classi�er R(C, L0−1) is
simply the misclassi�cation rate P (C(S) 6= Y ). The supervised classi�cation aims at �nding
the C function so that R(C, L0−1) is minimal. Such a function C? always exists. It is named
the Bayes classi�er :

C?(Si) = arg min
g∈G

[1− P (g|S = Si)]

The function C? can be derived from the Bayes theorem:

P (Yi = Gk|Si) =
pkfk(Si)∑K
l=1 plfl(Si)

(3.1)

where fk is the probability density function of S given the class label Gk and pk is the
prior probability of class Gk.

In practice, the probability density functions fk and the prior probabilities pk are un-
known. Therefore, they need to be estimated. The data within the training set which are
used for this task are required to be independent and identically distributed. The goal of
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the supervised classi�cation is to build a classi�er C which is as close as possible to the
optimal Bayes classi�er. Many supervised classi�cation techniques are available and they
all aim at approximating the Bayes classi�er. Among the most widely used techniques let
us mention linear and quadratic discriminant analysis, nearest neighbours, support vector
machine, classi�cation trees, etc. (for a review see Dudoit and Fridlyand, 2003; Hastie et al.,
2003; Larrañaga et al., 2006).

An important issue in supervised classi�cation is the prediction performance assessment.
Indeed, the misclassi�cation rate of the classi�er is unknown and an estimation must be
provided. An e�cient prediction performance is de�ned as a low misclassi�cation rate or a
correct classi�cation rate. In the manuscript, the prediction performance will be de�ned as
the correct classi�cation rate. Di�erent methods have been proposed to assess the predic-
tion performance. The main ones are v-fold cross-validation, Monte-Carlo cross-validation
and ?bootstrap (see MacLachlan, 1992; Boulesteix et al., 2008b). A commonly used form
of cross-validation is Leave-One-Out (LOO) cross-validation where v is set at the number
of observations. LOO often results in low bias but high variance estimators of the misclas-
si�cation rate. In genomic studies where sample size is often small, Molinaro et al. (2005)
have shown that, in this case, LOO, 10-fold cross-validation and bootstrap gave e�cient
estimations.

Probabilistic discrimination with a Gaussian model This paragraph describes a
probabilistic method which is a standard in supervised classi�cation. When the predictor
variables are continuous data it is often assumed that they are normally distributed with
mean row-vector µk and variance-covariance matrix Σk, conditionally on the class k. The
probability density function fk is:

fk(Si) =
1

(2π)p/2|Σk|1/2 exp

[
−1

2
(Si − µk)Σ

−1
k (Si − µk)

′
]

where p is the number of continuous predictor variables.

As already mentioned, the classi�er is derived from the Bayes theorem (see Equa-
tion 3.1) in which the denominator value is the same whatever the class k. Therefore,
in the case of binary classi�cation which is the most frequent situation, the prediction rule
can be expressed from the logarithm of the numerator of Equation 3.1. A new observation
i will be predicted to belong to class 1 if:

2 log p1−log |Σ1|−(Si−µ1)Σ−1
1 (Si−µ1)′ > 2 log p2−log |Σ2|−(Si−µ2)Σ−1

2 (Si−µ2)′ (3.2)

In the case where the variance-covariance matrices are supposed to be identical for the
two classes (Σ1 = Σ2 = Σ), the prediction rule can be simpli�ed and a new observation i
will be predicted to belong to class 1 if:

SiΣ
−1(µ1 − µ2)′ − 1

2
(µ1 + µ2)Σ−1(µ1 − µ2)′ − log

p2

p1

> 0 (3.3)
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In the general case, the prediction rule is quadratic with respect to Si (see Equation 3.2)
whereas in the case where the variance-covariance matrices are identical, the prediction rule
is linear with respect to Si (see Equation 3.3). We speak about Quadratic Discriminant
Analysis (QDA) and Linear Discriminant Analysis (LDA) respectively. In practice, the
mean vectors and variance-covariance matrices are unknown and need to be estimated. As
it can be seen in the prediction rule, the variance-covariance matrices need to be inverted,
which is problematic when the matrices are singular. This happens when the number of
predictors is greater than the number of observations which is always the case with genomic
data. In such cases, Regularised Discriminant Analysis (RDA) can be used as an alternative
(see Hastie et al., 2003) which makes it possible to modulate the heterogeneity of the class
variance-covariance matrices and to modulate the dependency between variables adding a
constant to the diagonal of the matrices.

While the standard probabilistic discrimination with a Gaussian model is only able to
handle continuous predictor variables, other methods have been developed to take into ac-
count both continuous and discrete predictor variables. They are described in the next
section.

3.2 Supervised classi�cation with mixed variables

This section describes supervised classi�cation methods which are able to handle both con-
tinuous and discrete predictor variables.

3.2.1 Classi�cation trees

A classi�cation tree is a non ?parametric method in which the classi�er is based on a series of
successive binary questions. In oncology, this approach is widely used by clinicians to de�ne
the most appropriate treatment for each patient or to predict the prognosis (Nadal et al.,
1988): the decision is chosen based on the answers to several questions. Each question, or
node, splits the space of predictors S into two descendant subsets, starting with S itself.
Each terminal subset is assigned a class label and the resulting partition of S corresponds to
the classi�er. Di�erent classi�cation approaches exist and here we will describe Classi�cation
and Regression Tree (CART) (Breiman et al., 1984). The tree construction consists of two
main steps:

1 - node splitting rule: for each node, a question needs to be de�ned. Therefore, a
predictor variable and a threshold have to be chosen if the variable is continuous, or if the
variable is discrete, a set of modalities has to be chosen. For example, Nadal et al. (1988)
proposed a classi�cation tree to predict the prognosis of women with breast cancer: the �rst
question is based on a discrete variable which asks Is there a metastasis in the liver? and
subsequent questions are based on thresholds over continuous variables such as Is the albumin
value greater than 30? (see Figure 3.3). The splitting rule is de�ned so that the data in the
descendant subsets are purer than the data in the parent subset. This is quanti�ed with an
impurity function I which depends on the proportion of each class (p1, · · · , pK) within each
subset. The function I must be maximal when the pk are equal and zero when there is only
one class within the subset. The most widely used measure of impurity is the Gini index : for
a node N , I(N) = 1−∑k p

2
k. In each node N , the pk are estimated by the relative proportion

of class k. For a given splitting rule, a proportion pR of the observations are sent to the right
daughter node NR and a proportion pL to the left daughter node NL. The optimal split will
be chosen so that the decrease in impurity ∆(N) = I(N)− pRI(NR)− pLI(NL) is optimal.
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Figure 3.3: Application of classi�cation trees to predict prognosis in breast cancer - Three prognosis classes are de�ned: good
prognosis, bad prognosis and very bad prognosis. The prediction rule is de�ned from series of questions based on the presence
or absence of metastasis in the liver (discrete variable) and some thresholds on biological parameters (album, ldh, phalc) or
clinical parameters (dma, kar) (continuous variables). liver : presence of liver metastasis - dma: delay of metastasis appearance
- kar : Karnofsky index - album: albumin level - ldh: lactate deshygrogenase level - phalc: alkaline phosphatase level (from
Nadal et al., 1988) (Image provided by Yann De Rycke and Bernard Asselain, Institut Curie).

2 - tree pruning: an optimal subtree is then selected from the complete tree Tmax to
ensure e�cient prediction performance. Indeed, the complete tree is able to correctly predict
all the observations within the training set but these correct classi�cations correspond to
?over�tting. The tree needs to be pruned to increase its generalisation performance on an
independent dataset. The tree is therefore pruned using a penalty criterion which takes into
account the complexity of the tree (i.e. the number of nodes) and the misclassi�cation rate.
The penalty criterion is:

L0−1(Ti) + αCard(Ti), with Card(Ti) the number of nodes in Ti

During this procedure the series of nested subtrees is considered T1 ⊃ T2 ⊃ · · · ⊃ Tmax.
The subtree which optimises the penalty criterion is selected as the best classi�er. In practice,
the α value needs to be tuned by cross-validation. If α = 0 the maximal tree Tmax will be
selected and if α is very large the subtree T1 with only one node will be selected.

Random forest Breiman (2001) proposed to combine di�erent classi�cation trees to im-
prove the prediction performance. The way the set of trees is built is based on a random
selection of both the training samples and the predictor variables. One classi�cation tree is
built from a subsample bootstrap from the whole training set similarly to ?bagging technique.
Then, the tree is built using the CART methodology with slight modi�cations. Instead of
choosing the best node splitting rule from the whole set of predictor variables, only a random
subset of predictor variables is used. For each tree, no pruning is performed. The number of
trees to build and the size of the random subset of predictor variables need to be chosen by
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the user. A new observation is assigned to the class which is the most frequently designed
over all the classi�cation trees. In this approach Breiman (2001) has shown that the gener-
alisation error for forests converges to a limit as the number of trees in the forest becomes
large. In the case of high-dimensional data, this algorithm is well adapted since the search
of the node splitting rule is reduced over a small subset of variables.

3.2.2 Logistic regression

Logistic regression belongs to the category of Generalised Linear Model (GLM) which is a
generalisation of least-squares regression. In a GLM, each outcome of the dependent variables
Y is assumed to be generated from a particular distribution function in the exponential
family. The mean µ of the distribution depends on the predictor variables X, through the
relation E(Y) = g−1(Xβ) where g is called the link function. In this section, X denotes
the design matrix in which a continuous predictor variable is represented by its values and
a discrete predictor variable by a dummy submatrix of zero or one. Therefore, the design
matrix X can combine continuous and discrete predictor variables as in usual linear models.
The vector β corresponds to the parameters of the model. In binary classi�cation, the vector
Y is simply the vector of class label for each observation and each outcome is assumed to
follow a Bernoulli distribution. In this case the natural link function is the logit function:

g(p) =
p

1− p
For the observation i its probability pi of belonging to the class 1 is expressed as:

pi =
eX

iβ

1 + eXiβ

where Xi is the i-th row of the design matrix X and represents the predictor variables
for the observation i.

The value of the parameters inside the vector β have a direct interpretation in terms of
odds-ratio which is widely used in medical science. An odds-ratio close to one means that
there is no association between the outcome and the predictor variable while a smaller or
larger value than one indicates a relation between the outcome and the predictor variable.

3.2.3 DISQUAL

The DISQUAL method (DIScriminant analysis with QUAlitative variables) has been pro-
posed by Saporta (1990) to build classi�ers from discrete predictor variables. As we will see,
this method can be used as a preliminary step to combine both discrete and continuous pre-
dictor variables. The procedure consists of two steps: a Multiple Correspondence Analysis
(MCA) is followed by a Linear Discriminant Analysis (LDA).

MCA is an extension of correspondence analysis which allows the analysis of relationships
between discrete variables. As such, it can also be seen as a generalisation of Principal
Component Analysis (PCA). The output of the MCA are factorial axes which are continuous
descriptors and therefore these axes can be used as inputs for the LDA. In the case where
both continuous and discrete predictor variables are available it is possible to compute the
factorial axes from the discrete variables and combine these axes as well as the continuous
variables within a LDA.
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3.2.4 Location model (LM)

The Location Model (LM) is a statistical method which has been designed to handle data
with mixed variables. Daudin (1986) proposed a general Multivariate Analysis of Variance
(MANOVA) log-linear formulation of the LM. This model makes it possible to take into
account the additivity which is due to the discrete predictor variables: for a given class, the
discrete predictor variables de�ne subclasses in which the continuous predictor variables have
a speci�c mean value. For example, in the context of a breast cancer study let us assume
that there is a HER2/neu ampli�cation in some tumours (see Chapter 1 - Page 26). Then,
the ampli�cation modi�es the expression of some genes (and especially HER2/neu which is
overexpressed) whatever the class label is. According to our notations, the ampli�cation is
the discrete predictor variable (and has two modalities: ampli�cation or no ampli�cation)
and the genes are the continuous predictor variables. Moreover, some interactions might
exist between one class and some discrete predictor variables. The LM is able to capture
both additivity and interactions. This is illustrated in Figure 3.4 in which the expression
values of gene1 versus gene2 are plotted for class 1 tumours (•) and class 2 tumours (×)
having either an ampli�cation (blue) or no ampli�cation (red). The following parameters
have been used to simulate the data in Figure 3.4:

• Inside each subclass the variance-covariance matrix has the following value:[
1 −0.8
−0.8 1

]

• In the additive case, the means of each subclass are (1,1), (2,2), (3,3) and (4,4)
for •, •, × and × respectively. The gene expression values are shifted by the same
translation a whatever the class label due to the ampli�cation e�ect (Figure 3.4, left
graphic).

• In the interaction case, the means of each subclass are (1,1), (2,2), (3,3) and (7,5)
for •, •, × and × respectively. The gene expression values are shifted both in class 1
and class 2 due to the ampli�cation e�ect but the translation is not the same for the
two classes: it is a in class 1 and a + i in class 2 (Figure 3.4, right graphic). This
interaction between subclasses is also named reversal.

Besides additivity and interaction, the LM is able to take into account the frequency of
each subclass. Typically, if the frequency of ampli�cation is higher in class 1 than in class
2, then it represents valuable information for the prediction.

Mathematical formulation of the LM

Let G1, · · · ,GK be K classes, Y the vector of class labels, Z = (Z1, · · · ,Zq) be q discrete
predictor variables and X = (X1, · · · ,Xp) be p continuous predictor variables. The LM
consists of two distinct parts:

Part 1: the MANOVA model The conditional distribution of X in class k and for Z = z
is assumed to be normal with the following mean vector and variance-covariance matrix:

E(X|Gk,Z = z) = µzk (3.4)

V (X|Gk,Z = z) = Σ (3.5)
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Figure 3.4: Arti�cial example for the LM - • represent class 1 and × represent class 2. There are 100 observations in each
subclass. In red are represented the tumours without the ampli�cation and in blue the tumours with the ampli�cation. The
expression values of gene1 versus gene2 are plotted for each tumours. In the left graphic is illustrated an example of additivity:
the gene expression values are shifted by the same translation a whatever the class label is due to the ampli�cation e�ect. In
the right graphic is illustrated an example of interaction: the gene expression values are shifted both in class 1 and class 2 due
to the ampli�cation e�ect but the translation is not the same for the two classes (it is a in class 1 and a + i in class 2).

On the random continuous predictor variables X, a MANOVA model is assumed which
takes into account the class e�ect and the e�ects associated with the discrete predictor
variables Z. Moreover, the model can take into account interactions between the class
e�ect and the discrete predictor variables as already mentioned. The class variable and
the discrete predictor variables are transformed into an indicator design matrix D (as it is
classically done in analysis of variance) which includes at least the main e�ects (i.e. the class
and the discrete predictor variables) and their interactions if necessary. The parameters of
the MANOVA model are obtained by usual maximum likelihood estimates.

Part 2: the log-linear model The discrete predictor variables and the class variable
can be represented within a contingency table. The probability P (Z = z|Gk) = p(z|k) is
estimated using a log-linear model. The parameters of the log-linear model are obtained by
usual maximum likelihood estimates.

Complete formulation of the LM Combining the MANOVA and the log-linear model
gives the complete formulation of the LM. In this complete formulation, the probability
density function fk in class k is:

fk(x, z) = P (Z = z|Gk) 1

(2π)
p
2 |Σ| 12 exp

[
−1

2
(x− µzk)Σ

−1(x− µzk)
′
]
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where x and z are the observed continuous and discrete predictor variables respectively.

The prediction rule is the following:

C(x, z) = arg max
Gk∈G

(x− µzk)
′Σ−1µzk + log p(z|k) (3.6)

= LM(X,Y,Z) (3.7)

The LM can be viewed as a generalisation of the LDA in the sense that the information
of the discrete predictor variables are taken into account to improve the prediction.

LM versus the other methods

The present manuscript focuses on the LM to build classi�ers from mixed variables. Although
it is somewhat arbitrary, we can nevertheless motivate our choice with the following reasons:

• the LM is a generalisation of the linear discriminant analysis which has been widely
used in a large variety of classi�cation tasks with high e�ciency.

• the normality of the continuous variables which is a reasonable assumption for mRNA
expression data after log-transformation makes the LM optimal with respect to other
methods which are non-parametric.

• in the favourable case in which the data can be perfectly separated the logistic regres-
sion fails to converge.

Application of the LM on mRNA expression and DNA copy number data

We propose to apply the LM combining the data from mRNA expression and DNA copy
number molecular pro�les. Following the previous notations, Z is given by the data in
Figure 3.1 and X by the data in Figure 3.2.

As already mentioned for LDA and QDA (see Equation 3.3 and Equation 3.2), the
prediction rule de�ned by the LM requires a variance-covariance matrix to be inverted (see
Equation 3.6). Due to the high-dimensionality of the data, the variance-covariance matrix
Σ is singular since the number of continuous predictor variables is greater than the number
of observations. Therefore, the methodology cannot be applied straight forward. The data
need to be preprocessed in order to reduce their dimensionality. This issue is raised in the
following section.

3.3 Curse of dimensionality : a need for dimension re-

duction

The curse of dimensionality is a term coined by Richard Bellman to describe the problem
caused by the exponential increase in volume associated with adding extra dimensions to
a mathematical space (Donoho, 2000). In classical statistical methodology, a convenient
situation appears when there are many observations (n) and few variables (p). The trend
today is towards more observations and especially to radically larger numbers of variables.
This is especially the case in the �eld of genomic studies in which a classical situation is
a hundred of observations and several thousands or even tens or hundreds of thousands of
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predictor variables. This situation is often referred to as the small n, large p issue in the �eld
of statistical learning. Why is this situation an issue? Firstly, the classical methods such
as LDA have not been designed to cope with this high-dimensionality problem. Secondly,
although we might think that the increase in variable number may help in the discriminating
task, this is in practice not the case for the following reasons:

• among the available predictor variables, many of them are irrelevant to distinguish
between the di�erent classes and introduce noise in the classi�er building procedure.
Hence the prediction performance of the model is decreased.

• the risk of over�tting the data is high and especially in the case where the sample size
is small. This is the rule so far in cancer study and this aspect needs to be taken into
account seriously as pointed out by Ransoho� (2004) in its Rules of evidence.

In microarray data analysis, the high-dimensional data spaces we work on is a real issue
and di�erent approaches have been proposed to handle this problem as reviewed by Wang
et al. (2008). Indeed, in statistical learning tasks, a rule of thumb is to have at least 10
training samples per feature dimension whereas in microarrays this ratio is often closer to
0.01 samples per dimension (Wang et al., 2008). To overcome this issue of high dimensionality
of the data, di�erent techniques can be applied to reduce their complexity. The di�erent
approaches can be split into three categories which are described in the following subsection.

3.3.1 Techniques to reduce the complexity of the data

1 - variable selection identi�es a small subset from the original predictor variables which
is used to build the classi�er. This technique has widely been used in the machine learning
community and Guyon and Elissee� (2003) give an overview of this issue. Brie�y, the
variable selection techniques can be split into three categories: (i) �lters select subsets
of variables as a pre-processing step, independently of the supervised classi�cation method
chosen, (ii) wrappers utilise the supervised classi�cation method of interest as a black box to
score subsets of variable according to their predictive power, (iii) embedded methods perform
variable selection in the process of training and are usually speci�c to a given supervised
classi�cation method. Saeys et al. (2007) give a review of the application of variable selection
in the �eld of bioinformatics such as sequence analysis, microarray analysis, mass spectra
analysis. Due to the large number of predictor variables, an exhaustive search of the best
subset of predictor variables is impossible for computational reasons. Therefore, simple
ranking of the variables or heuristics like forward, backward or stepwise selection are often
applied.

Another important point to raise in predictor variable selection is the confrontation be-
tween the univariate paradigm and the multivariate paradigm. In univariate approach, each
variable is scored individually without taking into account the other variables while in multi-
variate selection all the variables are considered together and therefore the relation between
variables is used. It is often believed that if a variable alone has no discriminating power
then it should be removed. This is totally false and Guyon and Elissee� (2003) give a nice
example (the xor example) in which two variables taken alone have no discriminating power
while taken together they separate the classes of interest perfectly. This is due to the exis-
tence of interactions or correlations between variables which is the rule in mRNA expression
data. Therefore, we think that methods which fully bene�t the correlation structure of the
data should be adopted to select the most relevant predictor variables.

Among the motivations for using variable selection as a way to reduce the complexity
of the data, some authors mention the fact that high-dimensional data often contain many
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redundant variables which also a�ect the prediction performance of supervised classi�cation
methods. They claim that these redundant variables should be eliminated. This is illustrated
in the paper by Yu and Liu (2004) who have developed a variable selection strategy based on
both relevance and redundancy concepts showing that discarding irrelevant and redundant
variables can improve prediction performance. At this stage, two schools of thought can be
opposed regarding redundancy: one school which considers redundancy as a drawback and
one school which considers redundancy as an advantage. In this manuscript, we think that
methods which fully exploit redundancy lead to e�cient prediction performance. We can
illustrate our point of view with a simple simulated dataset. Two classes have been simulated
according to the following model: in class 1, four independent continuous predictor variables
have been randomly generated from a normal distribution N (0,−1) in class 1 and N (0, 1) in
class 2. The four continuous predictor variables can be seen as a realisation of the same event
and therefore share the same information. The number of observations is 1000 in each class.
The classi�er has been computed with a probabilistic discrimination with a Gaussian model
using the four variables (allvar), only one of the four variables (onevar), the mean vector of
the four variables (meanvar) and the �rst component of the PLS algorithm (plscomp) (see
Subsection 3.3.2 for details). The prediction performance assessed by LOO is reported in
Table 3.1 for the four methods. The results show that taking only one variable leads to
a lower prediction performance (onevar - 85.0%) than taking the mean vector (meanvar -
97.9%) or a linear combination of the four variables (plscomp - 97.9%). This can be easily
explained since averaging the four variables or building a linear combination of the four
variables reduces the noise and improves the separation between the two classes as it can be
seen on Figure 3.5. Therefore, methods which are able to handle redundancy in a clever
way should lead to improve prediction performance.

2 - variable grouping aims at de�ning groups of predictor variables which behave sim-
ilarly. Traditionally, unsupervised classi�cation methods such as hierarchical clustering or
k-means are widely used to perform this task. In the cluster building procedure, the stan-
dard clustering techniques do not incorporate the class variable to predict. Therefore, this
might not be suitable for prediction purposes. Hence, Dettling (2003) has proposed super-
vised classi�cation methods which group predictor variables by incorporating class variable.
Convincing results have been obtained on gene expression microarray data. A �rst algorithm
Wilma (Dettling and Bühlmann, 2002) has been developed which partitions the predictor
variables into non-overlapping groups. A second algorithm Pelora (Dettling and Bühlmann,
2004) improves the previous one allowing overlapping groups of variables. In the frame-
work of gene expression studies, this improvement is biologically motivated since some genes
operate in multiple pathways (see Figure 1.11). Although both algorithms rely on two
di�erent statistical models, the idea behind them remains the same. Brie�y, the supervised
classi�cation method is a one-step procedure for variable selection, variable grouping and
formation of new features by averaging the variable values within the same group of predictor
variables. The identi�cation of the groups of variables followed by the averaging of these
variables renders the discrimination between the di�erent classes easier as already illustrated
in Figure 3.5.

Zou and Hastie (2005) proposed a regression method which can be straightforwardly
applied to the context of supervised classi�cation. Their method has the intrinsic ability
to perform variable grouping. It is a combination of lasso and ridge regression (for details
about these two techniques see Hastie et al., 2003) since the regression coe�cients are shrunk
using both L1 and L2 penalties. In cases where there is a group of variables among which
the pairwise correlations are very high, the two penalties force all the variables from one
group to be selected as soon as a variable of the group is selected. Otherwise, without these
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method performance
allvar 98.0%
meanvar 97.9%
plscomp 97.9%
onevar 85.0%

Table 3.1: Redundancy in simulated data and prediction performance - Prediction performance assessed by LOO on simulated
data for four di�erent classi�ers. The classi�er has been computed with a probabilistic discrimination with a Gaussian model
using the four variables (allvar), only one of the four variables (onevar), the mean vector of the four variables (meanvar) and
the �rst component of the Partial Least Squares (PLS) algorithm (plscomp).
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Figure 3.5: Redundancy in simulated data - Distribution of the simulated data for one of the four continuous predictor
variables (top) or the mean vector of the four continuous predictor variables (bottom). The four independent continuous
predictor variables have been randomly generated from a normal distribution N (0,−1) and N (0, 1) in class 2.
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two penalties, only one variable from the group would be selected by chance and the others
discarded. Indeed, as mentioned by Zou and Hastie (2005), the ideal gene selection method
should be able to do two things: eliminate the trivial genes and automatically include all
the genes from a given group in the model once one gene among the group is selected. The
proposed regularisation method named elastic net simultaneously does automatic variable
selection and continuous shrinkage, and it can select groups of correlated variables which
share identical regression coe�cients.

3 - projection of the data onto a subspace is a technique which aims at building new
variables named components (or supergenes or metagenes in the framework of microarray
studies) from a combination of the original variables. The most popular method is PCA
which has widely been used in microarray studies. Díaz-Uriarte (2003) used this technique
combined with a variable grouping approach. Another famous method is Independent Com-
ponent Analysis (ICA) (Comon, 1994): it �nds components which are independent and not
necessarily orthogonal contrary to the PCA. In the context of supervised classi�cation, these
methods may not be suitable since they do not take into account the class variable to predict
when building the components. Recently Bair et al. (2006) proposed a supervised version
of PCA which can be used for supervised classi�cation purposes. Another popular method
which takes into account the outcome variable is Partial Least Squares (PLS) which will be
detailed in Subsection 3.3.2 since this method has been retained to reduce the dimension
of the data in the model we propose. These methods are by de�nition multivariate as they
take all the variables at the same time to build the components. Therefore, they are perfectly
adapted in the context of high-dimensionality and multicolinearity problems.

Which dimension reduction technique to choose? The di�erent strategies have all
shown improving prediction performance. Therefore, there is no clear evidence that one
strategy is better than another. Nevertheless, we can motivate our choice with biological
arguments rather than statistical ones. Indeed, in biological processes, genes cooperate in
modules or pathways (see Figure 1.11) and taking into account the genes of the same
pathways should improve the ability to separate the di�erent classes and improve robustness
of the signatures (i.e. the classi�er): in di�erent publications in which lists of genes were
identi�ed from the same basic scienti�c question and using similar patient cohorts, very few
genes (and possibly none) were found in common between the di�erent signatures (Miller and
Liu, 2007). Ein-Dor et al. (2005) and Michiels et al. (2005) have shown that the signatures
strongly depended on the selection of patients in the training sets. The main reason for this
discrepancy and instability is the correlation between genes and the fact that the selection
procedure randomly selects few genes among all the possible relevant genes. Nevertheless,
if one looks beyond the genes to the pathways they represent, multiple pathways can be
found in common between the signatures, indicating that the signatures and their predictive
powers may come from the same underlying biological mechanism. Therefore, in order to
fully exploit the fact that there is redundancy in the data we can choose either variable
grouping or projection strategies. These strategies should be able to use all the genes which
are relevant for class prediction and involved in the same underlying biological mechanism.
Moreover, we also believe that these strategies should ensure e�cient prediction performance
on independent dataset that will demonstrate their generalisation ability. Once again, the
choice is arbitrary and our choice has also been motivated by simplicity. Projection methods
are simple algorithms which do not require extensive computation as compared with variable
grouping which is more time-consuming. This is why we have decided to focus on the PLS
algorithm. The �rst PLS components will be used as new continuous predictor variables in
the LM. The PLS algorithm is described is the next subsection.
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3.3.2 Partial Least Squares (PLS)

Multivariate projection methods represent powerful tools to reduce the complexity of the
data especially when the dimensionality is extremely high. Among these methods, PCA has
been widely used as an exploratory analysis tool to assess the data structure of a matrix
X. This technique is not well adapted when the goal is to assess the data structure of
the matrix X (denoted as the predictor variables) with respect to a matrix Y (denoted
as the outcome variable) and particularly in the context of class prediction (Nguyen and
Rocke, 2002; Barker and Rayens, 2003). The PLS algorithm has been designed especially
to retrieve the relation between X and Y using regression by means of projections to latent
structures. It was originally developed in the �eld of econometrics by Hermann Wold (Wold,
1966) and his son Svante made this tool very popular in the �eld of chemometrics (Wold
et al., 1982). PLS derives its usefulness from its ability to analyse data with many, noisy
and multicolinear variables and therefore is particularly suitable in the framework of gene
expression microarray data analysis. The PLS algorithm was originally designed to analyse
data where both X and Y are continuous variables. However, it can be directly applied
in the context of binary class prediction provided that Y is encoded by zeros and ones
indicating the class label. In supervised classi�cation, the PLS performs e�ciently (Barker
and Rayens, 2003) and especially in the �eld of gene expression microarray data analysis
(Boulesteix, 2004b, 2006; Boulesteix and Strimmer, 2007; Bøvelstad et al., 2007; Nguyen and
Rocke, 2002). Di�erent PLS implementations exist but we will describe the PLS1 algorithm
(Wold, 1966; Wold et al., 1982) (details about this algorithm and other implementations can
be found in Tenenhaus (1998)).

Description of the algorithm

The goal of the PLS algorithm is to compute K new components T1, . . . ,TK so that
COVn(Tk,Y)k=1,...,K are maximal. The algorithm is iterative and is summarised in Al-
gorithm 1. Since the PLS algorithm maximises a covariance, it is sensitive to the scaling
of the variables. Therefore, in order to give the same weight to each variable, we use the
matrices X and Y which have been centered and scaled.

Algorithm 1 Partial Least Squares algorithm
K, the number of components
k = 0
kX = X
kY = Y
while k < K do

Wk+1 = arg maxW∈Rp,‖W‖2=1COVn(kXW, kY)

Tk+1 = kXWk+1

perform the two following regression models:
kX = Tk+1P

′
k+1 + k+1X

kY = Tk+1R
′
k+1 + k+1Y

k := k + 1
end while
T = (T1 · · ·TK)
W = (W1 · · ·WK)
P = (P1 · · ·PK)
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At each step k of the procedure, the algorithm �nds the component Tk+1 which is ex-
pressed as a linear combination from the columns of the matrix X. Tk+1 can be expressed
as Tk+1 = kXWk+1. The goal is to �nd the vector Wk+1 so that COVn(kXWk+1,

kY) is
maximal subject to ‖Wk+1‖2 = 1. The maximisation of COVn(kXWk+1,

kY) is equivalent
to the maximisation of COV 2

n (kXWk+1,
kY). The data kX and kY being centered, we have

n2COV 2
n (kXWk+1,

kY) = W′
k+1

kX′kYkY′kXWk+1. To solve this optimisation problem the
Lagrange multiplier method is used:

Let s = W′
k+1

kX′kYkY′kXWk+1 − λ(W′
k+1Wk+1 − 1)

Let it be required that the partial derivatives of s with respect to Wk+1 and λ vanish:

∂s

∂λ
= (W′

k+1Wk+1 − 1) = 0

∂s

∂Wk+1

= kX′kYkY′kXWk+1 − λWk+1 = 0

At the vanishing condition the following relation holds:

kX′kYkY′kXWk+1 = λWk+1

Therefore, Wk+1 is the eigenvector associated to the highest eigenvalue λ of
kX′kYkY′kX.

It follows that:

COV 2
n (Tk+1,

kY) =
λ

n2
(3.8)

From Algorithm 1, the output of the PLS can be expressed as follows:

(T,W,P) = PLS(X,Y, K) (3.9)

Mathematical properties of the PLS algorithm

We have seen before that Wk+1 is the eigenvector associated to the largest eigenvalue of the
matrix kX′kYkY′kX. The eigenvalue Wk+1 can also be computed from the Singular Value
Decomposition (SVD) of the matrix kX′kY. Let M = kX′kY in Theorem 1 (singular
value decomposition). Since kX′kY is a column-vector its SVD is:

U =
kX′kY

‖kX′kY‖
S =

wwkX′kY
ww

V = 1

and therefore we have the following properties:
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λ =
wwkX′kY

ww2
(3.10)

Wk =
kX′kY

‖kX′kY‖ (3.11)

T′kTl = 0, l > k (3.12)

W′
kPk = 1 (3.13)

W′
kX
′
l = 0, l ≥ k (3.14)

W′
kPl = 0, l > k (3.15)

W′
kWl = 0, l > k (3.16)

T′kXl = 0, l ≥ k (3.17)

Xk =
k∏
i=1

(I−WiP
′
i ), k ≥ 1 (3.18)

T = XW(P′W)−1 (3.19)

The proofs of equations 3.12 to 3.19 can be found in Tenenhaus (1998). In Algorithm 1,
the regression model kY = Tk+1R

′
k+1 + k+1Y can be ignored and kY can be left unchanged

during the procedure without changing the results (Tenenhaus, 1998).

Connections between PLS and other methods

There are many connections between PLS and other methods. They are the following:

• Connection between PLS and between-class PCA: between-class PCA can be
viewed as a supervised version of PCA to identify principal components which are able
to explain the class separation. Instead of �nding the eigenvectors of the total variance-
covariance matrix Σ, the between-class PCA �nds the eigenvectors of the between-
class variance-covariance matrix ΣB (see Theorem 3 (variance decomposition)).
Boulesteix (2004a) has shown that the �rst PLS component equals the �rst between-
class principal component.

• Connection between PLS and LDA: Boulesteix (2004a) has shown that if Σ is
assumed to be of the form Σ = σ2I, then the Equation 3.3 can be expressed as a
function of the �rst between-class principal component. Therefore, PLS being linked
to between-class PCA, PLS is also linked to LDA. Barker and Rayens (2003) have
shown that in the general case a relation exists between PLS and LDA.

All these connections between PLS and supervised methods support the use of PLS
in the context of supervised classi�cation. In the next section, we present a supervised
classi�cation method based on PLS and able to handle mixed variables in the context of
high-dimensionality. This is the �rst contribution of this chapter.
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3.4 Contribution 1: the Partial Least Squares Location

Model (PLS-LM)

We have seen in Subsection 3.2.4 that the LM provides a framework to handle both
continuous and discrete predictor variables. The limitation to using this model in the context
of microarray data is its ine�ciency to handle high-dimensionality. In Subsection 3.3.2, the
PLS method has been shown to be a powerful tool to reduce the dimensionality of the data
since it fully exploits the redundancy inside the continuous predictor variables. Therefore,
in the case where there are only two classes, we propose the following model to apply the
LM in high-dimensionality situations:

1. compute (W,T,P) = PLS(X,Y, K) for a �xed K (see Equation 3.9)

2. as a supervised classi�cation method apply LM(T,Y,Z) (see Equation 3.7)

where:

X is the centered and scaled matrix of the continuous predictor variables

Z is the matrix of discrete predictor variables

Y is the centered and scaled vector of class labels

This algorithm is termed the Partial Least Squares Location Model (PLS-LM) and its
e�ciency has been evaluated in both simulated and real data. This is the scope of the two
following subsections.

3.4.1 Prediction performance of the PLS-LM on simulated data

In this subsection, prediction performance of the PLS-LM on di�erent simulated datasets are
provided. The data have been simulated as described in Section 3.2.4 and Figure 3.4. The
data can be viewed as a toy example in which the expression values of gene1 and gene2 (the
continuous predictor variables) allow the separation of class 1 tumours (•) with respect to
class 2 tumours (×). A discrete predictor variable is introduced into the simulation model:
tumours have either an ampli�cation (blue) or no ampli�cation (red). The ampli�cation
e�ect on the continuous predictor variables has been simulated to produce either the additive
case or the interaction case. In what follows, C denotes the e�ect due to the class of the
tumour and A denotes the e�ect due to the ampli�cation. The prediction performance has
been estimated using LOO. To compare prediction performance of the di�erent classi�ers we
used the McNemar test (Dietterich, 1998) (See Theorem 2 (McNemar's test)).

Same number of observations in each subclass

In this simulation study, there is the same number of observations in each subclass so that
only the MANOVA part of the LM is relevant for the prediction. The parameters of the
simulation model are the following:

• Inside each of the four subclasses, gene1 and gene2 are normally distributed with the
following variance-covariance matrix:[

1 −0.2
−0.2 1

]
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• The number of observations is 5000 in each subclass.

• In the additive case, the means of each subclass are (0.5,0.5), (2,2), (2,2) and
(3.5,3.5) for •, •, × and × respectively.

• In the interaction case, the means of each subclass are (0.5,0.5), (2,2), (2,2) and
(5,2) for •, •, × and × respectively.

• A number of 100 independent and identically distributed random variables N (0, 1)
have been added as continuous predictor variables.

Di�erent models have been used in the MANOVA part of the LM. They are the following:

C only the main e�ect C is considered
C + A C and A are considered as main e�ects
C×A C and A are considered as main e�ects and their interaction is added

Results The prediction performance for the LM and the PLS-LM is provided in Ta-
ble 3.2(a) for the additive case and Table 3.2(b) for the interaction case. The pairwise
comparisons of the prediction performance between the di�erent classi�ers are available in
Annexes - Table A.1 and Annexes - Table A.2. The contribution of gene1 and gene2
in the PLS components are given in Table 3.3(a) and Table 3.3(b). The results are the
following:

• In the additive case, LM and PLS-LM give the same prediction performance when only
the two discriminative genes are used. When all the continuous predictor variables are
considered, the prediction performance tends to be lower than when only the two
discriminative genes are considered. In all cases, taking into account the main e�ect
A signi�cantly improves the prediction performance (at least 13.1% improvement).
For the PLS-LM classi�er, the models based on two components do not improve the
prediction performance. This is explained by the fact that the contribution of gene1
and gene2 in the second component is of the same order as the random variables (see
Table 3.3(a)): all the signal is already captured in the �rst component.

• In the interaction case, LM and PLS-LM give the same prediction performance when
only the two discriminative genes are used and when two components are used in the
PLS-LM. This is explained by the fact that the second component still captures signal:
the contribution of gene1 and gene2 are greater than the contribution of the random
variables for the second component (see Table 3.3(b)). The prediction performance
is signi�cantly higher in the PLS-LM model with two components than in the PLS-
LM model with one component for the reasons we have just mentioned. As in the
additive case, taking into account all the continuous predictor variables tends to lower
the prediction performance, which is a bit higher in the case of PLS-LM. In all cases,
taking into account the main e�ect A signi�cantly improves the prediction performance
(at least 13.9% improvement). Besides the main e�ect A, adding the interaction C×A
still signi�cantly improves the prediction performance (at least 1.2%).
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(a) Additive case with the same number of observations in each subclass

predictors MANOVA log-linear LM PLS-LM (1) PLS-LM (2)
g C - 74.7 74.7 74.7
g C + A - 88.1 88.1 88.1
a C - 74.6 74.7 74.5
a C + A - 88.0 87.8 87.9

(b) Interaction case with the same number of observations in each subclass

predictors MANOVA log-linear LM PLS-LM (1) PLS-LM (2)
g C - 74.7 74.8 74.7
g C + A - 89.7 88.9 89.7
g C×A - 91.0 88.9 91.0
a C - 74.6 74.6 74.5
a C + A - 89.5 88.5 89.2
a C×A - 91.0 88.5 90.4

(c) Additive case with a di�erent number of observations in each subclass

predictors MANOVA log-linear LM PLS-LM (1) PLS-LM (2)
g C - 84.8 84.8 84.8
g C + A - 88.5 88.5 88.5
g - C×A 70.0 70.0 70.0
g C×A C×A 89.6 89.6 89.6
a C - 84.7 84.8 84.8
a C + A - 88.3 88.1 88.2
a - C×A 70.0 70.0 70.0
a C + A C×A 89.5 89.4 89.3

(d) Interaction case with a di�erent number of observations in each subclass

predictors MANOVA log-linear LM PLS-LM (1) PLS-LM (2)
g C - 85.0 84.8 85.0
g C + A - 89.9 88.2 89.9
g C×A - 91.1 88.2 91.1
g - C×A 70.0 70.0 70.0
g C + A C×A 91.0 89.4 91.0
g C×A C×A 92.0 89.4 92.0
a C - 85.0 84.7 85.0
a C + A - 89.8 87.9 89.6
a C×A - 91.0 87.8 90.6
a - C×A 70.0 70.0 70.0
a C + A C×A 90.8 89.1 90.7
a C×A C×A 91.8 89.1 91.5

Table 3.2: PLS-LM prediction performance - The prediction performance (%) is given for the di�erent models for LM and
PLS-LM. Either the two genes (g) or the two genes with the 100 random variables (a) have been used as continuous predictor
variables. The number in brackets indicates the number of components used in the PLS-LM. The prediction performance is
given for the additive case (a,c) and interaction case (b,d) with the same (a,b) or a di�erent (c,d) number of observations in
each subclass.
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(a) Additive case with the same number of observa-
tions in each subclass

predictor variable PLS (1) PLS (2)
g gene1 7.1 10−1 7.1 10−1

g gene2 7.1 10−1 7.1 10−1

a gene1 7.0 10−1 2.1 10−2

a gene2 7.1 10−1 6.3 10−2

a min.rand 3.6 10−4 1.0 10−3

a max.rand 2.4 10−2 3.1 10−1

a mean.rand 7.4 10−3 7.9 10−2

(b) Interaction case with the same number of obser-
vations in each subclass

predictor variable PLS (1) PLS (2)
g gene1 8.8 10−1 5.7 10−1

g gene2 4.8 10−1 8.3 10−1

a gene1 8.8 10−1 5.3 10−1

a gene2 4.7 10−1 7.0 10−1

a min.rand 3.9 10−4 1.0 10−3

a max.rand 2.6 10−2 1.3 10−1

a mean.rand 8.1 10−3 3.8 10−2

(c) Additive case with a di�erent number of obser-
vations in each subclass

predictor variable PLS (1) PLS (2)
g gene1 7.0 10−1 7.1 10−1

g gene2 7.1 10−1 7.1 10−1

a gene1 7.0 10−1 1.1 10−2

a gene2 7.1 10−1 1.1 10−1

a min.rand 2.4 10−4 2.9 10−4

a max.rand 2.5 10−2 2.4 10−1

a mean.rand 6.1 10−3 8.3 10−2

(d) Interaction case with a di�erent number of ob-
servations in each subclass

predictor variable PLS (1) PLS (2)
g gene1 8.6 10−1 6.1 10−1

g gene2 5.1 10−1 8.0 10−1

a gene1 8.6 10−1 6.0 10−1

a gene2 5.1 10−1 7.1 10−1

a min.rand 2.6 10−4 6.8 10−4

a max.rand 2.8 10−2 9.8 10−2

a mean.rand 6.7 10−3 3.3 10−2

Table 3.3: Variable weights in the PLS - The contribution in absolute value of the di�erent variables is given for either
the PLS model computed over two genes (predictor=g) or the PLS model computed over the two genes with the 100 random
variables (predictor=a). The minimum (min.rand), maximum (max.rand) and mean (mean.rand) absolute value contribution
is given for the random variables. The number in brackets indicates the component number of the PLS. The weights are given
for the additive case (a,c) and interaction case (b,d) with the same (a,b) or a di�erent (c,d) number of observations in each
subclass.
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To sum up the results we can say that:

• Taking into account the main e�ect A and the interaction between C and A signi�cantly
improves the prediction performance.

• The addition of noise within the data tends to lower the prediction performance. This
e�ect is a bit higher in PLS-LM than in LM.

• In the case of interaction, taking into account two components in PLS-LM improves
the prediction performance.

• The PLS-LM allows e�cient prediction performance.

Di�erent number of observations in each subclass

In this simulation study, there is a di�erent number of observations in each subclass so that
both the MANOVA and log-linear parts of the LM are relevant for the prediction. The
parameters of the simulation model are the following:

• Inside each of the four subclasses, gene1 and gene2 are normally distributed with the
following variance-covariance matrix:[

1 −0.2
−0.2 1

]

• The number of observations in each subclass is 7000, 3000, 3000 and 7000 in •, •, ×
and × respectively. Therefore, there is 30% ampli�cation in class 1 tumours and 70%
in class 2 tumours.

• In the additive case, the mean of each subclass is (0.5,0.5), (2,2), (2,2) and (3.5,3.5)
for •, •, × and × respectively.

• In the interaction case, the mean of each subclass is (0.5,0.5), (2,2), (2,2) and (5,2)
for •, •, × and × respectively.

• A number of 100 independent and identically distributed random variables N (0, 1)
have been added as continuous predictor variables.

Di�erent models have been used in the MANOVA part of the LM. They are the following:

C only the main e�ect C is considered
C + A C and A are considered as main e�ects
C×A C and A are considered as main e�ects and their interaction is added

The log-linear model used to estimate the probability of belonging to each subclass is
denoted C×A: it takes into account the main e�ects C and A and their interaction. The
log-linear model has been used or not in combination with the MANOVA part of the LM.
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Results The prediction performance for the LM and the PLS-LM is provided in Ta-
ble 3.2(c) for the additive case and Table 3.2(d) for the interaction case. The pairwise
comparisons of the prediction performance between the di�erent classi�er are available in
Annexes - Table A.3 and Annexes - Table A.4. The contributions of gene1 and gene2
in the PLS components are given in Table 3.3(c) and Table 3.3(d). For both the additive
and interaction cases, and in classi�ers in which no log-linear model is involved, the con-
clusions are exactly the same as previously. The log-linear model alone gives 70% which is
the worst prediction performance (note that the log-linear classi�er is necessarily the same
whatever the MANOVA model considered). In all cases, adding the log-linear model in
the classi�er gives signi�cantly higher prediction performance although the improvement is
moderate (from 0.8% up to 1.8%).

3.4.2 Prediction performance of the PLS-LM on real data

Breast cancer data from Chin et al. (2006)

The data have been retrieved from the ACTuDB. For 89 patients we have the following
data: the outcome (recurrence / no recurrence), the aCGH (BAC array with 2000 probes)
and mRNA (A�ymetrix HG-U133A chip) pro�les. A total of 31 patients out of 89 had a
recurrence. The probes whose genes expression value is lower than 5.5 are considered as non-
expressed: those probes which are non-expressed for all the patients have been discarded from
the analysis (a total of 20244 probes have been kept in the analysis). The minimal alterations
of ampli�cation have been computed as described in Section 2.4: ampli�cations have been
found on chromosomes 8p11-12, 8q21-24, 11q13, 17q21-22 and 20q13 as reported by Chin
et al. (2006). The 8p11-12 ampli�cation was shown by Chin et al. (2006) to be associated
with recurrence and therefore for simpli�cation we use only this alteration in what follows.
The molecular subtypes de�ned from the classi�cation by Sørlie et al. (2001) have also been
provided by the authors (normal-like, basal-like, erbb2, luminal A and luminal B) and this
information has been included in our model. In what follows, C denotes the class e�ects
(recurrence / no recurrence), A denotes the e�ect due to the ampli�cation on chromosome
8p11-1 and S denotes the e�ect due to the molecular subtypes.

Results The prediction performance of di�erent PLS-LMs is provided in Table 3.4. The
representation of the data in the �rst two PLS components is provided in Figure 3.6.
Whatever the model, including the A e�ect does not improve the prediction performance.
This can be visually explained from Figure 3.6(a) where no obvious additive e�ect due
to the A e�ect is observed. Moreover, very few observations are available to estimate the
A e�ect accurately. Taking into account the S e�ect improves the prediction performance
when only the �rst PLS component is considered: the prediction performance increases from
57.3% to 61.8%. This can be visually explained from Figure 3.6(b) where an additive
e�ect can be observed especially for the basal-like subtype. Combining the MANOVA and
log-linear models does not allow improvement of the prediction performance. Note that due
to the small amount of data no interaction was taken into account in the MANOVA model.

Bladder cancer data from Stransky et al. (2006)

The data have been retrieved from ACTuDB. For 48 patients we have the following data:
the stage of the tumour (Ta / T2-T4), the aCGH (BAC array with 2464 probes) and mRNA
(A�ymetrix HG-U95A/Av2) pro�les. A total of 16 patients out of 48 are Ta tumours. All the
8111 probes have been used in the analysis since the non-expressed probes had already been
�ltered out by the authors. The minimal alterations of ampli�cation have been computed
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MANOVA log-linear PLS-LM (1) PLS-LM (2)
C - 57.3 14 61.8 16

C + A - 57.3 14 61.8 17

C + S - 61.8 14 62.9 16

C + A + S - 61.8 14 62.9 16

- C 65.2 0 65.2 0

- C×A 65.2 0 65.2 0

- C×S 69.7 9 69.7 9

- C×A×S 69.7 13 69.7 13

C + A C×A 55.1 8 61.8 14

C + S C×S 61.8 12 65.2 14

C + A + S C×A×S 62.9 9 61.8 14

Table 3.4: Prediction performance of the PLS-LM on Chin et al. (2006) - The prediction performance (%) is given for the
di�erent models. For each model, the number of correctly predicted recurrences is provided in italic. The number in brackets
indicates the component number of the PLS.
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(a) Ampli�cation of 8p11-12
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(b) Molecular subtypes

Figure 3.6: PLS components for Chin et al. (2006) - • represents patients without recurrence (58) and × represents patients
with recurrence (31). The patients are represented in the �rst two components of the PLS. (a) Patients with an ampli�cation
of 8p11-12 are shown in red. (b) Molecular subtypes de�ned with the classi�cation by Sørlie et al. (2001) are represented:
normal-like (black), erbb2 (red), basal-like (blue), luminal A (green) and luminal B (yellow).
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MANOVA log-linear PLS-LM (1) PLS-LM (2)
C - 85.4 12 89.6 14

C + A - 89.6 13 89.6 14

- C 66.7 0 66.7 0

- C×A 66.7 0 66.7 0

C + A C×A 89.6 13 89.6 14

Table 3.5: Prediction performance of the PLS-LM on Stransky et al. (2006) - The prediction performance (%) is given for the
di�erent models. For each model, the number of correctly predicted Ta tumour is provided in italic. The number in brackets
indicates the component number of the PLS.
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Figure 3.7: PLS components for Stransky et al. (2006) - • represents patients with T2-T4 tumour (32) and× represents patients
with Ta tumour (16). The patients are represented in the �rst two components of the PLS. Patients with an ampli�cation of
8q22-23 are shown in red.
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as described in Section 2.4: ampli�cations have been found on chromosomes 6p22, 8q22-23
and 11q13. For simpli�cation, only the ampli�cation on chromosome 8q22-23 was considered.
In what follows, C denotes the class e�ect (Ta / T2-T4), A denotes the e�ect due to the
ampli�cation on chromosome 8q22-23.

Results The prediction performance of di�erent PLS-LMs is provided in Table 3.5. The
representation of the data in the �rst two PLS components is provided in Figure 3.7. Tak-
ing into account the A e�ect improves the prediction performance when only the �rst PLS
component is considered: the prediction performance increases from 85.4% to 89.6%. The
log-linear model alone classi�es all the patients in the same class T2-T4 tumour. Combining
the MANOVA and log-linear models does not allow improvement of the prediction perfor-
mance. Note that it was not possible to take interaction into account in the MANOVA
model due to lack of degrees of freedom.

3.4.3 Discussion and perspectives

We have developed a supervised classi�cation method named PLS-LM to combine data from
both mRNA expression and DNA copy number experiments. By using PLS, the method
handle the high-dimensionality of the data. The aim of the study was also to check the
ability of the method to improve the prediction performance using both levels of information
rather than only the mRNA expression data. The results on simulated data have clearly
demonstrated that the PLS-LM allows e�cient prediction performance. However, no strik-
ing improvement has been noticed on real data. Indeed, the prediction performance for
a classi�er with both mRNA expression and DNA copy number data is not clearly better
than a classi�er with only the mRNA expression data. This issue can be explained by two
reasons. The �rst one is a statistical reason. When we consider both mRNA expression and
DNA copy number data, the PLS-LM requires many parameters to be estimated but the
number of observations available in real datasets still remains very low. Therefore, the model
does not e�ciently estimate the e�ects even if they are biologically relevant. The fact that
we have few observations with many model parameters can also leads to a situation near
over�tting although we have observed no degradation of the prediction performance with
respect to classi�ers based on mRNA expression alone. The second reason is biological. The
information carried by the mRNA expression data might be su�cient to render the di�er-
ences between the class to predict. Nevertheless, heterogeneity exists in mRNA expression
since DNA copy number alterations directly or indirectly impacts gene expression (Lee et al.,
2008). In addition to DNA copy number alterations, other sources of heterogeneity exist such
as molecular subtypes (as de�ned by Sørlie et al. (2001) in breast cancer), mutation status
of critical-cancer genes or any clinico-histopathological variables. Then, besides DNA copy
number data, these other sources of variability could be included in the PLS-LM. However,
the ability of the PLS-LM to improve the prediction performance could certainly be demon-
strated on real datasets provided that many observations (more than several hundreds) are
available in order to e�ciently estimate the model parameters. Such datasets with su�cient
observations are not available yet. At the time of the manuscript writing, Boulesteix et al.
(2008a) has proposed a method to handle mixed data. It is based on combining PLS with
random forests. Their conclusions are similar to ours. In simulated, data they have shown
that the method signi�cantly improves the prediction performance but on real cancer data,
no improvement was observed. Di�erent improvements of the PLS-LM can be suggested:

• We have illustrated the supervised classi�cation using binary classi�cation problems.
Although binary classi�cation is the most frequent problem there are situations with
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more than two classes. Therefore, our method could be extended to mutli-class prob-
lems.

• Besides classical PLS, there is a non-linear algorithm which uses the kernel trick to
capture non-linearity within the data (Rosipal and Trejo, 2001). Such an algorithm
named kernel PLS could also be applied. However, adding non-linearity into the model
increases its complexity that might not be suitable in situation with few observations.

• The model could take into account a prior biological knowledge to build the PLS
components. Taking into account a prior biological knowledge to build a prediction
rule has been proposed by Rapaport et al. (2007). They considered the topology of the
gene network in their classi�er. In our algorithm, one might suggest building one PLS
component for each pathway which plays a key-role in cancer. However, the knowledge
we have about the pathways involved in cancer is far from being exhaustive. Using
pathways presents the advantage of having a direct biological interpretation while it is
not direct when the components are built over all the genes. Nevertheless, in such a
case a functional interpretation can be performed. For example, one can apply Gene
Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) procedure on the absolute
value of gene weight to each PLS component.

3.4.4 Implementation

A program which implements the LM with variable selection and the dimension reduc-
tion using the PLS-LM has been written in C/C++. The program o�ers the possibility
to assess the prediction performance using LOO procedure. The GNU Scienti�c Library
(http://www.gnu.org/software/gsl/) was used for matrix and vector manipulation. The val-
grind suite (http://www.valgrind.org/) was used for debugging and pro�ling the code. The
development has been performed on PPC32/Linux architecture. The program can be used
either as a command line or within a R package (R Development Core Team, 2008). On
a simulated dataset with 300 observations, 20000 continuous predictor variables, the LOO
procedure using the PLS-LM with 3 components takes 6 minutes. The architecture used was
a SunFire X4600 with 8 dual-core AMD Opteron 885 processors (2.6 GHz) and 32 Go RAM
memory running Solaris 5.10. The details of the implementation are the following:

• The MANOVA and PLS algorithms are our own implementations.

• The implementation provided by the R software has been used for the log-linear model.

• The variable selection and LOO procedures are our own implementations.
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3.5 How many components to choose in the PLS-LM?

In the PLS algorithm, a number of min(n, p) components can be computed where n is
the number of observations and p is the number of variables. Intuitively, the low order
components will capture less and less relevant signal and will even capture the noise of the
data and should be excluded from the model. Therefore, to remove the noise, a criterion is
required for selecting the number of components to include in the model. Model selection
is an even more general issue in statistical modelling and still remains an open question.
It aims at choosing the best model among a collection of possible models. An e�cient
model selection technique must balance goodness of �t and complexity since more complex
models will be better able to �t the data but the additional parameters may not represent
a relevant e�ect. This is the principle of parsimony introduced by William Ockham in the
14th-century: "entia non sunt multiplicanda praeter necessitatem" (entities should not be
multiplied beyond necessity). This principle leads to a model with the smallest number
of parameters for an adequate representation of the data. In statistics, the principle of
parsimony is often referred to as the bias-variance tradeo� : in general, bias decreases and
variance increases as the dimension of the model increases (see Figure 3.8). Simple models
may be biased but will have low variance. More complex models have greater representation
power (low bias) but over�t to the particular training set (high variance). Thus, the large
variance associated with using many features (including those with modest discrimination
power) defeats any possible classi�cation bene�t derived from these features (Wang et al.,
2008). The complexity is generally measured by counting the number of degrees of freedom
in the model. Finding the best model is always the grail quest but "all models are wrong
but some are useful" (George E.P. Box) and "for every complex question there is a simple
and wrong solution" (A. Einstein). All model selection methods are based to some extent
on the principle of parsimony. In the context of class prediction, the model selection method
should give the right compromise between bias and variance in order to ensure e�cient
generalisation. In the following section are presented criteria for model selection.

Figure 3.8: Bias-variance tradeo� - A demonstration of the bias-variance dilemma in predictive classi�cation. Speci�cally,
the error of model �tting can be decomposed into two components, bias (approximation error) and variance (estimation error).
Added dimensions can degrade the prediction performance if the sample size is small relative to the dimensionality. For a �xed
sample size in the high-dimensional data space, there is a tradeo� between the decreased approximation error and the increased
estimation error (image and legend from Wang et al., 2008).
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3.5.1 Model selection criteria

Theoretical criteria

An abundant literature has been published on the theoretical aspects of model selection and
many criteria are available. Burnham and Anderson (2002) give elements of model selection
in the framework of statistical inference. We will not give an exhaustive list of the di�erent
criteria but we will only mention the two most widely used which are based on the likelihood
theory. They are the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC). Both of them are based on a penalised version of the likelihood function
L(Mθ|data) which represents the probability to have observed the data under the model Mθ

where θ is the set of parameters of the model. The penalisation function pen of the likelihood
is an increasing function of the number of degrees of freedom K of the model. Indeed, the
likelihood will mechanically increase as the number of parameters of the model increases
and the penalisation counteracts this phenomenon. The general form of the model selection
criteria can be expressed as 2L(Mθ|data) − pen(K). For AIC and BIC, pen(K) is 2K and
log(n)K respectively where n is the number of observations. In practice, for a number of
observations greater than 7, the BIC penalty is higher than the AIC penalty and therefore
the model selected will tend to have fewer parameters. Depending on the goal of the study,
AIC or BIC should be preferred. In the case of explicative model BIC should be preferred
to ensure that only the relevant e�ects have been kept whereas for predictive purposes AIC
should be preferred in order not to discard an important discriminative predictor variable.
However, no clear consensus exists on that issue.

Empirical criteria

Other criteria which are based on empirical considerations have also been proposed. The
criteria are based on cross-validation procedures in which the data are split into a training
and a test set. The test set is used to compute the ability of the model to predict the
outcome. In the context of regression Prediction Residuals Sum of Squares (PRESS) can be
used. In the supervised classi�cation context the prediction performance is used.

Application of model selection criteria in PLS regression model

In the context of PLS regression, Li et al. (2002) compared di�erent criteria to select the
number of components of the model. A widely used criterion for selecting the most ap-
propriate number of components is named the Wold's R criterion which is based on the
PRESS. It is de�ned as the ratio of the PRESS for the �rst k+ 1 components and the �rst k
components. The inclusion of a new component in the model terminates at k when the ratio
exceeds unity. Adjusted Wold's R criteria have been proposed using either 0.90 or 0.95 as a
threshold instead of unity. On simulated data, these two adjusted criteria have been shown
to ensure satisfactory performance in terms of the number of times, the known true model is
selected while neither Wold's R criterion nor AIC gave satisfactory performance. An F -test
based criterion using the PRESS for the �rst k + 1 components and the �rst k components
has also been proposed (Osten, 1988).

To assess the prediction performance of the method, it would be a methodological error
to select the appropriate number of components using cross-validation and then to compute
the prediction performance over the complete training set. Indeed, the cross-validation for
model selection is part of the supervised classi�cation method itself. Therefore, a rigorous
prediction performance assessment must include a double cross-validation otherwise the pre-
diction performance could be over-optimistic. This pitfall has already been pointed out by
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Simon et al. (2003) when gene selection procedure is used as a preprocessing step in the
supervised classi�cation method. The main drawback of double cross-validation is that it
can greatly increase the computation time. Therefore, it is more suitable to use a theoretical
criterion which can be derived directly from the data rather than a criterion based on cross-
validation although this second strategy gives in practice excellent results and even often
outperforms theoretical criteria.

3.5.2 Model selection criteria and LM

In this subsection, we present the application of model selection criteria to choose the best
model regarding the two parts of the LM.

Selection of the parameters in the MANOVA model

The MANOVA model can be written as X = DΘ + E where D is the design matrix of the
model, Θ is the set of parameters to be estimated and E is the matrix of residuals. The design
matrix can be split into two sub-matrices D = (Dc,Dc̄) so that Dc corresponds to the e�ects
related to the class (i.e. the class e�ect itself and the interactions between the class e�ect and
the discrete predictor variables) and Dc̄ corresponds to the other e�ects. Therefore, there
are three questions regarding the selection of parameters in the MANOVA model: (i) what
are the continuous predictor variables to select in X, (ii) what are the parameters to keep
in Dc and (iii) what are the parameters to keep in Dc̄. Questions (i) and (ii) are related to
the discrimination power of the model: the selection of the parameters will be raised in the
next paragraph. Question (iii) is related to the improvement of the model due to the main
e�ect of the discrete predictor variables and their possible interactions: the selection of the
parameters will also be detailed.

Selection of the continuous predictor variables and the discriminant MANOVA
terms This paragraph raises questions (i) and (ii). Daudin (1986) proposed a modi�ed
AIC in order to answer these questions which are treated within a single procedure. First,
the discriminative power of a model needs to be de�ned: it is quanti�ed as the di�erence
between the AIC of the full model (i.e. the model with the design matrix D = (Dc,Dc̄))
and the AIC of the sub-model without the e�ects related to the class e�ect (i.e. the model
with the design matrix D = (0,Dc̄)). This di�erence is named Discriminant AIC (DAIC)
and is expressed as follows:

DAIC(X,Dc,Dc̄) = 2[AIC(X,Dc,Dc̄)− AIC(X,0,Dc̄)]

The goal of the selection procedure is to select both the optimal subset of continuous
predictor variables Xopt and to keep the most relevant discriminant terms Dc.opt based on
the DAIC:

DAIC(Xopt,Dc.opt,Dc̄) = sup
X,Dc

DAIC(X,Dc,Dc̄)

The exhaustive search over X and Dc can be computationally very expensive and in
practice backward selection procedure is used to reduce the complexity of the selection
procedure. At each step of the procedure, the DAIC indicates whether a continuous predictor
variable must be removed from X or a term from the Dc. The procedure stops when no
removal is required.
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Selection of the non-discriminant MANOVA terms This paragraph raises the ques-
tion (iii). In the MANOVA model, the terms in Dc̄ are selected using AIC.

Computation of the log-likelihood The parameters of the MANOVA model are esti-
mated using the usual maximum likelihood estimators and the log-likelihood of the data is
expressed as follows:

log(L) = −1

2

[
n log |Σ̂|+ np log(2π) + np

]
(3.20)

where Σ̂ is the standard maximum likelihood estimator of Σ, p is the number of contin-
uous predictor variables and n is the number of observations.

The number of degrees of freedom of the model is K = rk(D)p + 0.5p(p + 1) (i.e. the
number associated with the mean parameters plus the number of parameters associated with
the variance-covariance matrix).

Selection of the log-linear model

In the log-linear model, the terms are selected using AIC as described by Sakamoto (1982).
The log-likelihood of the model is computed as follows:

log(L) =
∑
t

m̂t log m̂t

where m̂t is the maximum likelihood estimator of the mean count of cell t of the con-
tingency table. If we denote Cj the number of modality of the j e�ect then the number of
degrees of freedom K of the model is the sum over the number of e�ect of Cj − 1 plus the
sum over all the interactions i, j (Cj − 1)(Ci − 1). There is also the constant term of the
model but since the parameters are estimated under the constraint

∑
t m̂t = n where n is the

total number of observations there is nothing to add anymore. The terms of the log-linear
model are selected according to a backward selection procedure.

Application to the PLS-LM

The application of the DAIC to select the PLS components fails due to the introduction of
covariance between the continuous predictor variables. Indeed, even on simulated data in
which there is no class e�ect, the trend is to keep all the components included as continuous
predictor variables. To illustrate this phenomenon, let us take for example the following
simple model: in the MANOVA model, only the class e�ect is considered in the design
matrix D. There are only two classes with n1 and n2 observations respectively. The design
matrix can be expressed as follows:

D = (Dc,Dc̄) with Dc = (1 . . . 1︸ ︷︷ ︸
n1

0 . . . 0︸ ︷︷ ︸
n2

)′ and Dc̄ = (1 . . . 1)′

The MANOVA model can be written as T = DΘ + E where T represents the PLS
components. From Equation 3.12, the variance-covariance matrix of T is diagonal since
the covariance is zero between two components by construction. Let us call this variance-
covariance matrix Σ = diag{v1, · · · , vK}. From Theorem 3 (variance decomposition)
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we have Σ = ΣW + ΣB where the two classes are used to perform the decomposition. In
the MANOVA model, the variance-covariance matrix used to compute the log-likelihood
in Equation 3.20 is the estimation of ΣW . This matrix has necessarily non-zero entries
due to the variance decomposition and a covariance is mechanically introduced between the
components. This leads to the increase in the log-likelihood of the data.

Another explanation to the fact that DAIC fails to select the PLS components can be
explained as follows. Each PLS component accounts only for one free parameter in the
likelihood penalty. However, one component is the aggregation of information from all the
original continuous predictor variables. Thus, the number of degrees of freedom associated
with each PLS component is very likely to be higher as pointed out by Frank and Friedman
(1993). Moreover, by using the class variable to compute the components, PLS uses even
more degrees of freedom per component and can �t the data to a high degree of accuracy.
The estimation of the number of degrees of freedom of a model is an important issue to have
e�cient model selection criteria. This issue has been raised by Zou et al. (2007) in the case of
the lasso method. We think that the DAIC could be applied with PLS components provided
that the true (but unknown) degrees of freedom of each component is used in the likelihood
penalty. The estimation of the number of degrees of freedom in the PLS will not be raised
in the present manuscript. We will only present a statistical criterion to test whether there
is a signi�cant signal on the �rst PLS component. This is the second contribution of this
chapter which is detailed in the next section.
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3.6 Contribution 2: Statistical criterion to test the sig-

ni�cance of the �rst PLS component

This section presents the statistical criterion we propose to test the signi�cance of the �rst
PLS component. The criterion is based on asymptotic statistics on random matrices. Geman
(1980) proposed a general framework to establish the expected value of the maximum eigen-
value of symmetric random matrices. However, the application conditions of his theorem did
not hold to obtain the expected value of the maximum eigenvalue in the PLS. This is the
reason why we established a suitable criterion for the PLS using normality assumption of the
data. In this section, we assume that there is absolutely no relation between the matrix X̃
which contains the original continuous predictor variables and the matrix Ỹ which contains
the class variable. Therefore, the X̃ matrix only contains random entries. We �rst present
the properties of the statistical criterion whose e�ciency is then assessed on both simulated
and real data.

3.6.1 Asymptotic distribution of the statistical criterion

In this subsection, the statistical criterion and its properties are presented. First, we describe
how the original data are pre-processed before computing the PLS. As we already mentioned,
since the PLS algorithm maximises a covariance, it is sensitive to the scaling of the variables.
Therefore, in order to give the same weight to each variable we use the matrices which have
been centered and scaled as follows:

• matrix X̃:

Xij =
X̃ij − 1

n

∑
i≤n X̃ij

σ̂j

with σ̂2
j =

∑
i≤n(X̃ij − 1

n

∑
i≤n X̃ij)

2

n− 1

• matrix Ỹ:

Let Ỹ′ = (1 · · · 1︸ ︷︷ ︸
n1

0 · · · 0︸ ︷︷ ︸
n2

) with n = n1 + n2.

Therefore, the centered and scaled (with the biased version of the standard-deviation
estimator) vector Ỹ is:

Y = (Yi) = (c1 · · · c1︸ ︷︷ ︸
n1

c2 · · · c2︸ ︷︷ ︸
n2

) with c1 =
√

n2

n1
and c2 = −

√
n1

n2
.

Note that for Ỹ, the scaling is done with the biased version of the standard-deviation
estimator to simplify the calculation.

We will demonstrate in what follows how we can derive the law of the eigenvalue asso-
ciated with the �rst PLS component computed over the centered and scaled matrix X̃. We
assume that the X̃ij's are independently distributed with X̃ij ∼ N (0, σ2

j ).
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Proposition 1 Let X̃1, X̃2, ...X̃n be n independent and identically distributed random vari-
ables with X1 ∼ N (µ, σ2). Let Y1, Y2, ...Yn be n �xed binary (non random) variables with n1

values c1 =
√

n2

n1
and n2 = n − n1 values c2 = −

√
n1

n2
such that

∑
i Y

2
i = n. Let α = n1/n

which is held �xed as n→∞. Let us de�ne the following quantities:

σ̂2 =
1

n− 1

∑
(X̃i − 1

n

∑
i≤n

X̃i)
2

Xi =
X̃i − 1

n

∑
i≤n X̃i

σ̂

A =
n∑
i=1

XiYi

Then, n−1/2A
d−→ N (0, 1).

Proof. Let us assume that Yi = c1 for i ≤ n1 and Yi = c2 for n1 < i ≤ n. A = B1 + B2

where B1 = c1

∑
i≤n1

Xi and B2 = c2

∑
n1<i≤nXi.

B1 =
c1

σ̂

(∑
i≤n1

X̃i − n1

n

∑
i≤n

X̃i

)

=
c1

σ̂

[
(1− α)

∑
i≤n1

X̃i − α
∑

n1<i≤n

X̃i

]

=
c1

σ̂

[
(1− α)

∑
i≤n1

(X̃i − µ)− α
∑

n1<i≤n

(X̃i − µ)

]

=
c1(1− α)σ

σ̂

(∑
i≤n1

X̃i − µ
σ

)
− c1ασ

σ̂

( ∑
n1<i≤n

X̃i − µ
σ

)

n−1/2B1 =
c1(1− α)σ

σ̂
α1/2n

−1/2
1

(∑
i≤n1

X̃i − µ
σ

)
− c1ασ

σ̂
(1− α)1/2n

−1/2
2

( ∑
n1<i≤n

X̃i − µ
σ

)

The same computation for B2 leads to:

B2 =
c2

σ̂

( ∑
n1<i≤n

X̃i − n2

n

∑
i≤n

X̃i

)

=
c2

σ̂

[
α
∑

n1<i≤n

X̃i − (1− α)
∑
i≤n1

X̃i

]

=
c2

σ̂

[
α
∑

n1<i≤n

(X̃i − µ)− (1− α)
∑
i≤n1

(X̃i − µ)

]

=
c2ασ

σ̂

( ∑
n1<i≤n

X̃i − µ
σ

)
− c2(1− α)σ

σ̂

(∑
i≤n1

X̃i − µ
σ

)

n−1/2B2 =
c2ασ

σ̂
(1− α)1/2n

−1/2
2

( ∑
n1<i≤n

X̃i − µ
σ

)
− c2(1− α)σ

σ̂
α1/2n

−1/2
1

(∑
i≤n1

X̃i − µ
σ

)
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Finally we have:

n−1/2A =

[
c1(1− α)σ

σ̂
α1/2 − c2(1− α)σ

σ̂
α1/2

](
n
−1/2
1

∑
i≤n1

X̃i − µ
σ

)
+

[c2ασ

σ̂
(1− α)1/2 − c1ασ

σ̂
(1− α)1/2

](
n
−1/2
2

∑
n1<i≤n

X̃i − µ
σ

)

=
σ

σ̂

[
(1− α)1/2

(
n
−1/2
1

∑
i≤n1

X̃i − µ
σ

)
− α1/2

(
n
−1/2
2

∑
n1<i≤n

X̃i − µ
σ

)]

Let n−1/2A = Sn
[
(1− α)1/2Un1 − α1/2Un2

]
where:

Sn =
σ

σ̂

Un1 = n
−1/2
1

∑
i≤n1

X̃i − µ
σ

Un2 = n
−1/2
2

∑
n1<i≤n

X̃i − µ
σ

Let us assume that (i) Sn
p−→ 1 and (ii) (1−α)1/2Un1 −α1/2Un2

d−→ N (0, 1). Then, from

Theorem 7.ii (Slutsky's theorem), n−1/2A
d−→ N (0, 1). Let us prove that (i) and (ii)

hold:

(i) : From Theorem 4.ii (Cochran's theorem) we have E(1/S2
n) = 1 and V (1/S2

n) =

2/(n− 1). The Theorem 5 (Bienaymé-Chebyshev inequality) implies that 1/S2
n

p−→ 1.

Applying Theorem 8i (continuous mapping) with g(x) =
√

1/x implies that Sn
p−→ 1.

(ii) : From Theorem 9 (central limit theorem), Un1

d−→ N (0, 1) and Un2

d−→ N (0, 1).
Un1 and Un2 are independent and therefore it follows from Theorem 6 (gaussian vector)
that (1− α)1/2N (0, 1)− α1/2N (0, 1) ∼ N (0, 1).

Proposition 2 Let X̃ be a (n, p) matrix of continuous predictor variables whose entries X̃ij

are independent and identically distributed with X̃ij ∼ N (µj, σ
2
j ). Note X the centered and

scaled X̃ matrix in which each column X̃j has been scaled by the classical unbiased estimator
of the standard-deviation. Let Y = (Y1, Y2, ...Yn)′ be n �xed binary (non random) variables

with n1 values c1 =
√

n2

n1
and n2 = n − n1 values c2 = −

√
n1

n2
such that

∑
i Y

2
i = n. Let

α = n1/n which is held �xed as n→∞. Then:

nCOV 2
n (T1,Y)

d−→ χ2(p)

where T1 is the �rst PLS component computed with X and Y.
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Proof. Let X′Y = A = (Aj)j=1...p with Aj = Y′Xj. From Proposition 1 we have:

n−1/2Aj
d−→ N (0, 1)

Let derive the distribution of
∑p

j=1(n−1/2Aj)
2. From the notation of Theorem 8.ii

(continuous mapping) let:

g : Rp → R

g : (x1, · · · , xp)→
p∑
j=1

x2
j

Xn = (B1, · · · , Bp)

Since the random vectors Xj are independent the n
−1/2Aj are independent too and we

have:

p∑
j=1

(n−1/2Aj)
2 d−→ χ2(p)

‖X′Y‖2

n
=

p∑
j=1

(n−1/2Aj)
2

‖X′Y‖2

n

d−→ χ2(p)

Equation 3.8 and Equation 3.10 imply that:

nCOV 2
n (T1,Y) =

‖X′Y‖2

n

Note that if the X̃ij are independently distributed with X̃ij ∼ N (0, 1) and if no scaling is
performed on X̃ (i.e. X̃ = X) then nCOV 2

n (T1,Y) ∼ χ2(p) (the proof is straightforward).

3.6.2 Assessment of the statistical criterion on simulated data

This section presents simulation studies to investigate the ability of the statistical criterion
proposed in Proposition 2 to identify signal within the data. In the following subsections,
we will use the following notations:

H0 This notation will refer to the situation in which there is no class e�ect.

H1 This notation will refer to the situation in which there is a di�erence between the two
classes.

without correlation This notation will refer to the situation in which there is no correla-
tion between the continuous predictor variables.

with correlation This notation will refer to the situation in which correlation has been
introduced between a subset of the continuous predictor variables.
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For each situation, the matrix X̃ has been simulated and the details of the simulation
model are provided within each subsection. The number of observations n has been set
at di�erent values (10, 20, 50 and 100) and half observations belong to class 1 and class
2. The total number of continuous predictor variables p has always been set at 100. Once
simulated, each column X̃j of the matrix X̃ is centered and scaled by the classical unbiased
estimator of the standard-deviation. For each simulation, the values nCOV 2

n (T1,Y) of the
statistical criterion proposed in Proposition 2 have been computed. The mean, variance
and the percentage of rejected hypotheses at the level of 5% under H0 will be presented.
For simulation conditions which statisfy the hypotheses of Proposition 2, the statistical
criterion follows a χ2(100) distribution.

H0 without correlation

The X̃ij are independently distributed and have been simulated according to four distribu-
tions:

1. normal distribution N (0, 1)

2. uniform distribution U(0, 1)

3. log-normal distribution LN (0, 1)

4. student distribution T (1)

Once simulated, the matrix X̃ is then scaled and centered as already described at the
beginning of Subsection 3.6.1. In the normal distribution case, the hypotheses of Propo-
sition 2 hold and the proposition can be applied. The uniform, log-normal and student
have also been used for simulation to test the robustness of Proposition 2 with respect to
the normality hypothesis.

Results The complete set of histograms of the statistical criterion is presented in An-
nexes - Figure A.1 but only two typical histograms are available in Figure 3.9. The
mean (E), variance (V ) and the percentage of rejected hypotheses (R) at the level of 5%
under H0 over the 20000 simulations are available in Table 3.6. The normal and uniform
distributions show similar behaviour. Even for small sample size, the empirical mean is
close to the expected mean value of 100. The variance converges to its expected value of
200 as the sample size increases. The smaller variance than expected for small sample size
leads to a number of rejected hypotheses lower than expected (around 3% instead of 5%
expected). Both for the log-normal and student distributions, the empirical mean is also
close to the expected mean value of 100. In contrast, the empirical variance is much smaller
than expected and especially in the student distribution case. This results in fewer rejected
hypotheses (between 1.37% and 3.42% for the log-normal distribution and between 0.52%
and 1.06% for the student distribution). This di�erent behaviour can be explained by the
asymmetry of the log-normal distribution and the heavy tail of the student distribution.
The statistical criterion proposed shows robustness with respect to the normality hypothesis.
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normal uniform log-normal student
n = 10 E 100.18 99.95 99.94 100.05

V 148.72 158.23 112.25 83.47
R 3.04 3.12 1.37 0.52

n = 20 E 100.14 100.16 99.93 99.93
V 171.80 178.57 128.30 92.09
R 3.64 4.08 1.95 0.87

n = 50 E 99.98 99.95 100.10 99.98
V 191.89 193.18 151.76 96.35
R 4.69 4.71 3.01 0.92

n = 100 E 99.98 100.11 100.00 100.03
V 195.11 197.79 163.30 97.53
R 4.86 5.00 3.42 1.06

Table 3.6: Simulations under H0 without correlation - E is the empirical mean, V is the unbiased empirical variance and R is
the percentage of rejected hypotheses under H0 at the 5% level computed over 20000 simulations. The simulations have been
performed for the normal, uniform, log-normal and student distributions. n corresponds to the number of observations. The
number of variables has been set at 100.
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Figure 3.9: Typical histograms for simulations under H0 without correlation - Two typical histograms of the statistical
criterion over 20000 simulations. The data have been simulated using the normal and log-normal distributions. n corresponds
to the number of observations. The number of variables has been set at 100. The χ2(100) probability density function is
displayed as a red line.
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Figure 3.10: Typical histograms for simulations under H0 with correlation - Two typical histograms of the statistical criterion
over 20000 simulations. The data have been simulated using the normal distribution. n corresponds to the number of obser-
vations, ρ is the correlation value, and pc is the number of correlated variables. The number of variables has been set at 100.
The χ2(100) probability density function is displayed as a red line.
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H0 with correlation

In this subsection, correlation has been introduced between a subset of pc variables using
the following method:

1. The X̃j columns of the matrix X̃ are independently distributed and have been simulated
according to a N (0, 1) distribution.

2. A variable subset of size pc (taking the values 2, 5, 10 and 20) is chosen from the matrix
X̃.

3. The pairwise correlation between the pc variables is set at ρ (taking the values 0.2, 0.5
and 0.8). The correlation matrix ∆ between the pc variables is noted:

∆ =


1 ρ · · · ρ

ρ
. . . . . .

...
...

. . . . . . ρ
ρ · · · ρ 1

 = Λ′Λ

4. Using the Cholesky decomposition, the matrix ∆ is re-written as the matrix-product
∆ = Λ′Λ.

5. The X̃c corresponding to the pc variables from the matrix X̃ is replaced with X̃cΛ.
Therefore, the matrix X̃ has pc variables following a normal distribution with pairwise
correlation of ρ and p− pc independent variables following a normal distribution.

6. The new matrix X̃ is then scaled and centered as already described at the beginning
of Subsection 3.6.1.

Results The complete set of histograms of the statistical criterion is presented in An-
nexes - Figure A.2 but only two typical histograms are available in Figure 3.10. The
mean (E), variance (V ) and the percentage of rejected hypotheses (R) at the level of 5%
under H0 over the 20000 simulations are available in Annexes - Figure A.3. For all the
simulations, the mean of the statistical criterion �uctuates around its expected value of
100. The variance increases with pc, ρ and n: the statistical criterion distribution becomes
asymmetric and this leads to an icrease in the percentage of rejected hypotheses. For low
correlation (ρ = 0.2), the increase in the percentage of rejected hypotheses is visible only
for the highest number of correlated variables pc = 20 (R = 6.22% for n = 100). For in-
termediate correlation (ρ = 0.5), the increase in the percentage of rejected hypotheses is
already visible for a number of correlated variables pc = 10 (R = 6.53% for n = 100). For
high correlation (ρ = 0.8), the increase in the percentage of rejected hypotheses starts being
visible even with a small number of correlated variables pc = 5 (R = 5.64% for n = 100);
for the highest number of correlated variables pc = 20 the percentage reaches values greater
than 12.00% (R = 12.81% for n = 100). The increase in the correlation within the data
makes the statistical criterion less conservative with respect to the hypothesis H0.
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H1 without correlation

In this subsection a class e�ect has been introduced for a subset of pc variables using the
following method:

1. The X̃j columns of the matrix X̃ are independently distributed and have been simulated
according to a N (0, 1) distribution.

2. A variable subset of size pc (taking the values 2, 5, 10 and 20) is chosen from the matrix
X̃.

3. Each value X̃ij of X̃c corresponding to the pc variables from the matrix X̃ is replaced
with X̃ij + 1 if the observation i belongs to class 1. Therefore, the matrix X̃ has pc
variables with a class e�ect (the within-class distribution being normal) and p − pc
independent variables following a normal distribution.

4. The new matrix X̃ is then scaled and centered as already described at the beginning
of Subsection 3.6.1.

Results The complete set of histograms of the statistical criterion is presented in An-
nexes - Figure A.4 but only two typical histograms are available in Figure 3.11. The
mean (E), variance (V ) and the percentage of rejected hypotheses (R) at the level of 5%
under H0 over the 20000 simulations are available in Table 3.7. E, V and R increase with
the number of observations n and the number of variables with a class e�ect pc. With only
pc = 5 the statistical criterion is able to reject all the H0 hypotheses for a number of 100
observations. For small sample size like n = 20, at least pc = 20 variables are needed to
reach almost 100% of rejected hypotheses (99.78% exactly). In order to e�ciently identify
the signal in the data with the proposed statistical criterion, the following requirements are
needed: either the number of observations or the number of variables with a class e�ect must
be high.

H1 with correlation

In this subsection, both a pairwise correlation and a class e�ect have been introduced for a
subset of the same pc variables using the following method:

1. The X̃j columns of the matrix X̃ are independently distributed and have been simulated
according to a N (0, 1) distribution.

2. A variable subset of size pc (taking the values 2, 5, 10 and 20) is chosen from the matrix
X̃.

3. The correlation has been simulated for the pc variables according to the method de-
scribed in H0 with correlation.

4. The class e�ect has been added for the same subset of pc variables according to the
method described in H0 without correlation.

Results The complete sets of histograms of the statistical criterion are represented in
Annexes - Figure A.5 but only two typical histograms are available in Figure 3.12.
The mean (E), variance (V ) and the percentage of rejected hypotheses (R) at the level of
5% under H0 over the 20000 simulations are available in Annexes - Figure A.6. The
qualitative behaviour for E, V and R is similar to what was described in the situation where
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n = 10 n = 20 n = 50 n = 100
pc = 2 E 103.17 107.22 119.21 139.09

V 151.58 181.74 231.00 275.91
R 4.62 10.66 35.76 81.14

pc = 5 E 107.65 117.27 147.47 197.73
V 158.14 205.66 284.96 413.78
R 9.46 30.28 91.68 100.00

pc = 10 E 115.20 135.04 194.90 294.79
V 164.94 234.44 388.43 618.37
R 23.67 75.50 100.00 100.00

pc = 20 E 130.27 170.25 290.20 489.81
V 185.73 294.58 578.26 1054.64
R 66.14 99.78 100.00 100.00

Table 3.7: Simulations under H1 without correlation - E is the empirical mean, V is the unbiased empirical variance and R
is the percentage of rejected hypotheses under H0 at the 5% level computed over 20000 simulations.The number of variables
has been set at 100.
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Figure 3.11: Typical histograms for simulations under H1 without correlation - Histograms of the statistical criterion over
20000 simulations. The data have been simulated using the normal distribution. n corresponds to the number of observations
and pc is the number of variables with a class e�ect. The number of variables has been set at 100. The χ2(100) probability
density function is displayed as a red line.
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Figure 3.12: Typical histograms for simulations under H1 with correlation - Histograms of the statistical criterion over 20000
simulations. The data have been simulated using the normal distribution. n corresponds to the number of observations, ρ is
the correlation value, and pc is the number of variables with a class e�ect and correlated. The number of variables has been
set at 100. The χ2(100) probability density function is displayed as a red line.
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there is no correlation. However, the most striking characteristic is the huge increase in V
as the correlation value ρ increases. As a consequence, R approaches 100% in some cases
while it was equal to 100% in the situation without correlation. With only pc = 5, the
statistical criterion is able to reject 99.98% (ρ = 0.2), 99.64% (ρ = 0.5) and 99.2% (ρ = 0.8)
of H0 hypotheses for a number of 100 observations. For small sample size like n = 20, at
least pc = 20 variables are needed to reach more than 79% of rejected hypotheses while in
the situation without correlation the statistical criterion was able to reject 99.78% of the
hypotheses. R also increases as the correlation decreases (79.17% with ρ = 0.8, 86.83% with
ρ = 0.5 and 94.92% with ρ = 0.2). The increase in correlation (increase of the ρ value and/or
the pc value) tends to reduce the ability to identify the signal in the data due to an increase
in variance; this is especially the case for small sample size.

3.6.3 Assessment of the statistical criterion on real data

The e�ciency of the statistical criterion we proposed has been evaluated using the two real
datasets from Chin et al. (2006) and Stransky et al. (2006). We remind the reader that the
dataset from Chin et al. (2006) consists of 20244 probes and 89 observations. The dataset
from Stransky et al. (2006) consists of 8111 probes and 48 observations.

Results In both datasets the criteria are signi�cant (p-value< 10−10). It is 24860 and
30572 for Chin et al. (2006) and Stransky et al. (2006) respectively. We have estimated
the percentage of rejected H0 hypotheses under 20000 permutations (the class label have
been resampled). The percentage is 36.7% and 37.1% for Chin et al. (2006) and Stransky
et al. (2006) respectively. This can be explained by an increase in the variance of the
statistical criteria while the means remain close to their expected values (data not shown).
The histograms of the distribution are similar to what is observed in Figure 3.10 in the case
of high correlation except that the asymmetry of the distribution is higher. Indeed, in real
datasets we expect that a lot of probes are very likely to be correlated (the average pairewise
absolute value correlation is 0.174 and 0.164 for Chin et al. (2006) and Stransky et al. (2006)
respectively). In the original data we used, a correlation mechanically exists due to the class
e�ect. Then, whatever the resampling, the correlation structure due to the between-class
e�ect will always remain which can be unfair for our assessment. Therefore, we restricted
the permutations for a subset of the data corresponding to only one class. Labels have been
randomly assigned to create two balanced classes. In this case, the conclusions still hold the
same which con�rms the e�ect induced by the correlation on the statistical criterion. This
suggests a limited interest of the criterion for real data.

3.6.4 Discussion and perspectives

We have developed a statistical criterion to test the signi�cance of the �rst PLS compo-
nent. The criterion has been shown to be e�cient on simulated data for independently and
identically distributed variables. In the case of correlated variables, the test based on the
statistical criterion tends to be less conservative leading to reject the H0 hypotheses while
it should not. On real data, there is a lot of correlation between genes. As a result, the
statistical criterion also tends to reject the H0 hypothesis in situation where there is no sig-
nal in the data. Therefore, both the results on simulated and real data suggest to improve
the statistical criterion in order to take into account the correlation between the variables.
Besides this, we can also mention the following improvements:

• We have derived the asymptotic distribution of the statistical criterion as n, the number
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of observations, tends to in�nity. The asymptotic distribution could also be evaluated
as p, the number of variables, tends to in�nity.

• In the PLS-LM we require that the continuous variables are scaled in order to have the
same weight. The scaling is done without taking into account the class information.
Then, the scaling could be done using an intra-class standard-deviation. In this case,
the distribution of the statistical criterion should be derived.

• The last improvement concerns the other components. Indeed, we have only focused
here on the �rst component. Due to the complexity of the PLS algorithm, it is not
straightforward to derive the distribution of the statistical criterion for the next com-
ponent. One way to answer this issue could be the use of residuals theory (Ellenberg,
1973).
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3.7 Conclusion

In this chapter, two contributions related to the class prediction problem have been pre-
sented. The �rst one concerns a supervised classi�cation method which is able to combine
both continuous and discrete predictor variables in the context of high-dimensionality. This
method has been named PLS-LM since its combines a Partial Least Squares dimension re-
duction approach with a Location Model. The model has been applied using both mRNA
expression and DNA copy number data. In the second contribution, a statistical criterion
has been de�ned to test the signi�cance of the signal captured by the �rst PLS compo-
nent. The results have shown both the supervised classi�cation method and the statistical
criterion to be e�cient on simulated data. However, in the case of real microarray data,
the results are not yet so convincing. Indeed, the proposed classi�ers which combine both
mRNA expression and DNA copy number data do not allow the improvement of prediction
performance with respect to classi�ers which only consider mRNA expression data. More-
over, the test based on the proposed statistical criterion is not enough conservative when
there is correlation between the variables which is the rule in microarray experiments. It
suggests to improve the statistical criterion in order to use it with microarray experiments.

High-throughput microarray experiments are very complex data and deciphering their
complexity remains a di�cult task. As a result, simple and naive classi�ers often produce
the best results when a small amount of data is available, beating sophisticated models,
such as the PLS-LM. For example, in the framework of survival analysis in breast cancer,
Haibe-Kains et al. (2008) found that models using a single gene or a small set of biologically
driven selected genes yielded similar or even better performance than models �tted from
genome-wide data. Therefore, we believe that increasing the sample size would be valu-
able to correctly estimate on real data the parameters needed by our model on one hand,
and to better capture the complexity of the data on another hand. Nevertheless, we have
o�ered an original approach to handle mixed data in genomic study in the context of high-
dimensionality. Perspectives of improvements have been proposed to increase the e�ciency
of the PLS-LM in real situations.
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Ceiling of the Sistine Chapel
Michelangelo, 1508-1512

Tant que tu n'atteindras pas la vérité,
tu ne pourras la corriger. Toutefois,

si tu ne peux pas la corriger, tu ne l'atteindras pas.
En attendant, ne te résigne pas.

Livre des Conseils

Conclusion

In the present manuscript, we have described the biostatistical algorithms and bioinformatics
tools we have developed during the thesis. They are devoted to the analysis of DNA copy
number pro�les from high-throughput microarray experiments. The algorithms deal with
the di�erent steps which are necessary to analyse such data. We have developed MANOR
to normalise aCGH data, GLAD to identify DNA copy number alterations from aCGH pro-
�les and ITALICS to both normalise and identify alterations from A�ymetrix data. These
algorithms are available as R packages from the Bioconductor project website. They allow
the extraction of relevant biological information from DNA copy number pro�les. All the
algorithms are integrated into CAPweb which is a web-plaform allowing the biologists to
easily use our di�erent algorithms without any particular bioinformatics skills and visualise
the data with the VAMP software. In a clinical application to uveal melanoma, our biosta-
tistical algorithms have allowed the identi�cation of informative alterations which e�ciently
predict the high-risk tumours.

Besides DNA copy number pro�les, many other molecular pro�les are available. They
represent a valuable additional information such as the widely used mRNA expression pro-
�les. Integrative analyses are needed in order to combine these di�erent levels of information.
We have therefore proposed an original supervised classi�cation method which combines both
mRNA expression and DNA copy number pro�les to build signatures for prediction of the
clinical phenotype of patients. Although not completly convincing yet on real data, the
proposed method has been demonstrated to improve the prediction performance in simu-
lated data. Therefore, it is very likely that the method could be valuable for prediction
purposes in some real situtations close to simulation con�gurations. We also conjecture that
increasing sample size would improve the learning capicity of the supervised classi�cation
method. Indeed, the underlying biological mechanisms responsible for the determination of
patient's clinical phenotype are heterogenous and very complex. Therefore, collecting more
information is clearly needed. Typically, both more samples than we have so far and other
types of molecular pro�les are necessary in order to unravel e�ciently the complexity of the
data. Morever, we know that the genes, proteins and other biological entities cooperates
with precise relationships within a huge network which is far from being understood. The
method we have developed in the context of supervised classi�cation does not incorporate
information regarding this biological network. Therefore, we believe that incorporating new
predictor variables which take into account the relationships between the di�erent biologi-
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cal entities would improve the prediction performance since the prediction rule will better
exploit the biological knowledge. Basically, the network could be split into modules of biolog-
ical entities where each module represents a biological function and renders the underlying
biological mechanisms. Then, the new predictor variable could be a linear combination of
the biological entities involved in the module or any other clever summarisation of the data.
However, building such new predictor variables so that they are biologically relevant still
remains a di�cult task. Indeed, very few information is known about the biological network
so that these new variables can be built accurately. Therefore, lots of e�ort must be paid to
improve the knowledge of the network we have. This is precisely the goal of systems biology
which integrates inside mathematical approaches di�erent levels of molecular information
to build models able to �gure out the underlying biological processes. These models allow
the decomposition of the biological network into modules which are needed to build new
predictor variables.

The challenges of biostatistics and bioinformatics are de�nitely to provide integrative
analysis methods combining information from di�erent types of molecular pro�les but also
from di�erent technologies such as microarrays and high-throughput sequencers. All these
data represent highly valuable prospects and their integrative analyses will give new insigths
in order to decipher the complexity of cancer.
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Glossary

BAC

A BAC (Bacterial Arti�cial Chromosome) is a plasmid vector in which a DNA sequence
has been inserted (from 100 up to 300 kilobases).

bagging

Bootstrap aggregating (bagging) is an algorithm to improve machine learning of clas-
si�cation and regression models in terms of stability and classi�cation accuracy.

bootstrap

Bootstrap is the practice of estimating properties of an estimator by measuring those
properties when sampling from an approximating distribution. This is performed by
constructing a number of resamplings with replacement from the observed dataset.

carcinogenesis

see tumoral progression.

carcinoma

A carcinoma is a cancer which arises from epithelial cells.

chromatin

Chromatin is the complex of DNA, RNA and proteins which constitutes a chromosome.
See also nucleosome.

CpG islands

CpG islands are regions in DNA which contain many adjacent cytosine and guanine
nucleotides. The p in CpG refers to the phosphodiester bond between the C and G.
These islands occur in 40% of the promoters of human genes (from Esteller, 2008).

genomic imprinting

Genomic imprinting is a genetic phenomenon by which certain genes are expressed in
a parent-of-origin-speci�c manner. Imprinted genes are either expressed only from the
allele inherited from the mother, or from the allele inherited from the father.

histone

see nucleosome.

leukemia

A leukemia is a malignancy of any variety of hematopoetic cell types, including the
lineages leading to lymphocytes and granulocytes, in which the tumour cells are non-
pigmented and dispersed throughout the circulation.

lymphoma

A lymphoma is a cancer which originates in lymphocytes (a type of white blood cell
in the vertebrate immune system). There exist many types of lymphomas.
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melanoma

A melanoma is a tumour arising from melanocytes, the pigmented cells of the skin and
iris.

metastasis

A metastasis is a tumour growth forming at one site in the body, the cells of which
derive from another tumour located elsewhere in the body.

neuroblastoma

A neuroblastoma is a paediatric extra-cranial solid tumour arising from a sympathetic
nervous system tissue.

nucleosome

A nucleosome is a protein octamer composed of two types of histones among H2A,
H2B, H3 and H4, and around which DNA is wrapped in chromatin.

oligonucleotide

An oligonucleotide is a DNA sequence (typically about 25-60 nucleotides).

oncology

Oncology is the science which studies tumours including their development, diagnosis,
treatment, and prevention.

over�tting

Over�tting is �tting a statistical model which has too many parameters. As a conse-
quence, the model has a very poor ability to generalise beyond the �tting data.

parametric

A parametric statistic is a statistic where the data are assumed to follow a given
probability density function. This is in opposition to non-parametric statistics where
no assumption is needed for the probability density function followed by the data.

pathologist

A pathologist is a physician who studies and diagnoses diseases through examination
of organs, tissues and cells.

sarcoma

A sarcoma is a cancer of the connective or supportive tissue (bone, cartilage, fat,
muscle, blood vessels) and soft tissue.

stem cell

Stem cells are cells which retain the ability to renew themselves through mitotic cell
division and can di�erentiate into a diverse range of specialised cell types.

tumoral progression

Tumoral progression is the process of multi-step evolution of a normal cell into a tumor
cell. It is also termed tumorigenesis, oncogenesis or carcinogenesis.
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ABSTRACT
Motivation: Array-CGH can be used to determine DNA copy number,
imbalances in which are a fundamental factor in the genesis and
progression of tumors. The discovery of classes with similar patterns
of array-CGH profiles therefore adds to our understanding of cancer
and the treatment of patients. Various input data representations for
array-CGH, dissimilarity measures between tumor samples and clus-
tering algorithms may be used for this purpose. The choice between
procedures is often difficult. An evaluation procedure is therefore
required to select the best class discovery method (combination of
one input data representation, one dissimilarity measure and one
clustering algorithm) for array-CGH. Robustness of the resulting
classes is a common requirement, but no stability-based comparison
of class discovery methods for array-CGH profiles has ever been
reported.
Results: We applied several class discovery methods and evaluated
the stability of their solutions, with a modified version of Bertoni’s χ2-
based test (Bertoni and Valentini, 2007). We conclude that Minimal
Regions of alteration (a concept introduced by Rouveirol et al.,
2006) for input data representation, sim (Liu et al., 2006) or agree
(van Wieringen et al., 2008) for dissimilarity measure and the use of
average group distance in the clustering algorithm produce the most
robust classes of array-CGH profiles.
Availability: The software is available from http://bioinfo.

curie.fr/projects/cgh-clustering. It has also been partly
integrated into VAMP (La Rosa et al., 2006). The data sets used are
publicly available from ACTuDB (Hupé et al., 2007).
Supplementary Material: Certain mathematical definitions and
tables of results may be obtained from Bioinformatics online.
Contact: isabel.brito@curie.fr

1 INTRODUCTION
Recurrent non random genomic alterations, including changes in
DNA copy number in particular, are hallmarks of cancer. The
characterization of these imbalances is critical to our understanding
of tumorigenesis and cancer progression (Albertson et al., 2003,
Mitelman, 2005).

∗to whom correspondence should be addressed

Comparative Genomic Hybridization (CGH) is a molecular
cytogenetics technique for the efficient characterization of
chromosomal gains and losses. Two differently labeled tumoral
(test) and healthy (reference) DNA samples are hybridized with
normal metaphase chromosome. The relative intensity of the test
signal over the reference signal (the signal ratio) reflects the
imbalance in copy number between the two samples at a given
location (for statistical reasons, ratio are log-transformed and the
signal will be termed log-ratio hereafter). The initial resolution
of the technique (about 10 Mbp) improved considerably with the
advent of array-based Comparative Genomic Hybridization (array-
CGH) in the late 1990s (Solinas-Toldo et al., 1997; Pinkel et al.,
1998). Array-CGH initially used BAC clone arrays (Snijders et al.,
2001) or cDNA arrays (Pollack et al., 1999). More recently, the
use of oligonucleotide arrays (Lucito et al., 2003; Carvalho et al.,
2004) or tiling-resolution arrays (Ishkanian et al., 2004) has further
improved the sensitivity and resolution of the technique (typically
20-80 bp for oligonucleotide arrays and about 100 kbp for BAC
arrays).

The identification of tumor classes is an important step in
cancer research. A class is defined as a family of tumors
with similar biological traits and similar clinical features. Class
discovery methods have been extensively used for expression data
(Quackenbush, 2006 or Thalamuthu et al., 2006), particularly for
tumor classification (e.g. Sørlie et al., 2003). In this respect, DNA
copy number is as crucial as mRNA expression, and biologists and
clinicians routinely make use of information concerning genome
alterations to investigate tumor biology and to treat patients. For
example, chromosome 3 monosomy is used as an indicator of high
metastatic risk in uveal melanoma, whereas EGFR amplification
is an indication for trastuzumab treatment in breast cancer (Vogel
et al., 2002). However, array-CGH data have specific features
differentiating them from expression array data. First, the log-ratio
signals calculated have a small range, which may be discretized
into different classes: loss, normal, gain and amplification. Second,
neighboring genomic segments are likely to be altered in the same
way. Due to these particular features, class discovery for array-CGH
data merits a separate analysis, and this constitutes the scope of our
work.

c© Oxford University Press . 1
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Only a few studies dedicated to class discovery for CGH or array-
CGH data have been published. Mattfeldt et al. (2001), Liu et al.
(2006) and Liu et al. (2007) examined chromosomal CGH data
whereas van Wieringen et al. (2008) explored array-CGH data.

Liu et al. (2006) stressed the unusual nature of CGH data and
recommended the use of particular dissimilarity measures. They
proposed several different dissimilarity measures, the most original
of which is sim, which measures the number of contiguous
genomic intervals of alterations of the same type overlapping
between pairs of samples. Liu et al. (2007) presented an algorithm
for identifying small sets of important genomic intervals called
markers. They showed that markers distinguished effectively
between different histological cancer types, thereby improving the
quality of clustering.

van Wieringen et al. (2008) proposed the WECCA algorithm
(weighted clustering of called array-CGH data), a method including
a dissimilarity measure and a clustering algorithm devoted to array-
CGH data. They defined two dissimilarity measures based on the
concepts of agreement (agree) and concordance (conc). Agree
is defined as the probability of alterations being identical at the same
location in two different samples, under a null model. Conc reflects
the similarity in ordering of the types of alteration in two different
samples. The clustering algorithm functions as an agglomerative
linkage adapted to these two dissimilarity measures and is called
total. van Wieringen et al. (2008) demonstrated that total
linkage is likely to produce tight clusters. Moreover, WECCA
produces clusters strongly associated with survival.

Continuing on from these studies, we compared several class
discovery methods with a view to identifying the method most
appropriate for array-CGH data. We define a class discovery method
as the combination of an input data representation, a dissimilarity
measure and a clustering algorithm. In many fields, biology and
cancer research in particular, it is important for the classes identified
to be statistically stable. However, the stability of the classes
obtained has never before been estimated for array-CGH data. We
therefore tried to determine the best way to obtain stable classes of
tumors. Stability is defined as follows: if the class discovery method
is applied repeatedly to independent samples and generates similar
solutions in each case, then it may be considered statistically stable.

This paper is structured as follows. In Section 2, we discuss
several possibilities for representing the input data of an array-CGH
experiment. Section 3 provides a description of array-CGH data
preprocessing. In Section 4, we present the dissimilarity measures
and clustering algorithms used in this article, and the stability-
based validation method applied. Section 5 shows results for several
public data sets. In Section 6 we present and discuss our results.
The mathematical definitions used throughout this article and some
results tables are provided as Supplementary Material.

2 INPUT DATA REPRESENTATION STRATEGIES
In an array-CGH experiment, a signal intensity is measured for each
probe, for the tumor sample and the reference. The log-ratio of the
signal for the sample to the signal for the reference is calculated
and denoted signal log-ratio. These log-ratios may be used directly
or further processed before their use as input data for classification.
It remains unclear which input data representation is optimal for

class discovery. Below, we consider several strategies for input data
representation for array-CGH classification.

2.1 Strategies using “All probes”
These strategies are straightforward, as they make use of all probes.
The input data representation for each probe may be:

• log-ratio - data are expressed on the base 2 logarithmic
scale. This representation is the most common in array-CGH
data analysis.

• smoothed log-ratio - the log-ratio of the probe is
smoothed using its neighbors in the genome. In algorithms such
as GLAD (Hupé et al., 2004), the smoothed log-ratio values
are calculated by estimating a piecewise constant function of
the raw log-ratios, using a segmentation procedure. GLAD
uses an adaptive weight smoothing algorithm, ensuring that
only neighboring probes with similar DNA copy numbers are
smoothed together. Several algorithms for the segmentation of
array-CGH data have been described (see Lai et al., 2005, for
a review).

• calls - the data are encoded as discrete and ordinal variables:
the calls may be -1 for a probe corresponding to a region of loss,
0 for a normal region, 1 for a region of gain and 2 for a region
of amplification.

2.2 Strategies using “Data compression”
In array-CGH data, some probes may be redundant because
neighboring genomic segments are likely to be altered in the same
way. Data compression strategies involve reducing the number of
dimensions so that only a few relevant variables are handled.

Statistical compression The number of dimensions is
reduced by Principal Components Analysis (PCA). PCA computes
a linear combination of probes that jointly account for most of the
variability in the data. PCA is carried out on log-ratio values and the
first components identified constitute the input data representation
associated with this strategy.

Biological compression Variable compression is based
on the concept of Minimal Regions (Rouveirol et al., 2006). A
Minimal Region (MR) is defined as the largest sequence of altered
probes (contiguous probes with identical, and not normal, calls)
common to a subset of array-CGH profiles, called support. Each
MR is coded as 1 if the sample belongs to the support and as 0 if it
does not. Other concepts similar to MR have been proposed, such as
markers (Liu et al., 2007), SIRAC (Lai et al., 2007) and CGHregions
(van de Wiel and van Wieringen, 2007).

3 DATA PRE-PROCESSING
3.1 Data sets
We used five array-CGH data sets publicly available from ACTuDB
(Hupé et al., 2007). The following table provides a brief description
of each data set, with all datasets identified by the name of the first
author.
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data set no. of no. of platform tumor
arrays probes tissue

Blaveri et al., 2005 98 2146 HumArray bladder
2.0

Gysin et al., 2005 25 2415 HumArray pancreas
2.0

Patil et al., 2005 49 2385 HumArray liver
1.14

Douglas et al., 2004 85 3127 BAC/PAC colon

Veltman et al., 2003 49 1741 HumArray bladder
1.11

3.2 Missing values
Array-CGH experiments, like most microarray experiments, often
generate missing values, due to poor hybridization, high levels of
heterogeneity between replicates, image corruption or scratches on
the slide.

Several methods have been used to impute missing values for
expression data (Brock et al., 2008). We propose a novel missing
value imputation method more appropriate for array-CGH data. Our
method is applied to each sample independently and is based on
the genome metric. Each probe is assigned a chromosomal position,
deduced from its distance in base pairs from the p-telomere.

Missing values are imputed as follows. Let us assume that probe i
has a missing value in one sample. Denote by a and b the two probes
closest (on the left and right, respectively) to i in the sample.

1. If a and b have the same call, they probably belong to the same
genomic region and i naturally belongs to that region, with i
given by:
- The log-ratio average of a and b as the log-ratio of i,
- The interpolation value of the smoothing points of a and b as
the smoothed log-ratio of i,
- The call of a and b as a call,

2. If a and b have different calls,
2.1. If one is normal, preference is given to the alteration and
i is given the call, log-ratio or smoothed log-ratio of the altered
probe.
2.2. If neither is normal, i is given the call, log-ratio or
smoothed log-ratio of the probe closest to i.

3. If a has a missing value, then we look for the first probe before
a without a missing value and proceed as in 1. or 2. The same
procedure is applied if b has a missing value except that we
look for the first probe after b.

For all data sets, log-ratios, smoothed log-ratios
and callswere downloaded from ACTuDB. The sex chromosomes
were excluded from the analysis. All data sets presented missing
values (between 3 and 13 % of the data), which were imputed with
our procedure. We performed PCA on log-ratios and retained the
principal components jointly accounting for at least 90% of data
variability. MR were obtained with VAMP (La Rosa et al., 2006),
with support ranging from 5 to 50% of the tumors, using increments
of 5%.

4 CLASS DISCOVERY PROCEDURES
Mathematical definitions for the items marked ∗ in this section
may be found in the Supplementary Material. Once the input
data representation has been chosen, the class discovery procedure
requires the choice of a dissimilarity measure and a clustering
algorithm.

4.1 Dissimilarity measures
The objects studied here are tumor samples. As it is not possible
to devise a general formula for identifying the best dissimilarity
measure for each individual situation, we consider some of the most
frequently used methods (Legendre and Legendre, 1998).

We use the general notation dissimilarity measure to refer to a
distance or a similarity or a dissimilarity. To convert a distance or
dissimilarity measure into a similarity measure, or vice versa, the
value is simply subtracted from the maximum value obtained.

For each input data representation strategy, we calculated
different pairwise dissimilarity measures: Euclidean, Manhattan
and Pearson correlation. We also calculated the dissimilarity
measures proposed by Liu, and by van Wieringen: sim, agree and
conc. All three were applied only to calls and biological
compression strategies.
sim accounts for the number of contiguous genomic intervals

of alterations of the same type overlapping in pairs of samples.
In some circumstances, the similarity between one sample and
itself may be smaller than that between two different samples
(see Supplementary Material for an example). To prevent this
situation, we made a minor correction: let S be the similarity sim
matrix between pairs of samples with generic element sjl, j, l =
1, . . . , p, then assign sjj = max sjl.

The agreemeasure is defined as the probability of measurements
for an arbitrary probe in two different samples being identical and
conc is the probability of measurements of an arbitrary probe
in two different samples being concordant (i.e. with the same
order in terms of magnitude; see van Wieringen et al., 2008 for
details). These measures are based on the assumption that samples
are independent and probes are distributed according to a mixture
model.

4.2 Clustering algorithms
Many different clustering algorithms have been described (see Jain
et al., 1999 for a review).

Hierarchical algorithms are widely used because of their appea-
ling tree representation. Hierarchical agglomerative or bottom-up
clustering is a process beginning with the joining of the two most
similar objects, with iterative merging of objects or groups of objects
until all are included in a single set. By contrast, hierarchical
divisive or top-down clustering algorithms begin with the whole
set of objects, dividing this set successively in two until each
group comprises only one object. Both agglomerative and divisive
procedures may be carried out with several linkage methods. In
this paper we applied the agglomerative linkages complete∗,
average∗, weighted∗ and Ward∗ and the divisive linkages
diana∗, tsvq∗ and hybrid∗.

We also applied partitioning clustering algorithms, which produce
flat, non imbricated, clusters. The most common partitioning
algorithm is the k-means algorithm, which was designed for use
with Euclidean distance. We also used a variant, k-centroids,
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which adapts the k-means algorithm to other dissimilarity
measures. Cluster centroids are defined such that the average
dissimilarity of the object of a cluster to all the objects in the cluster
is minimal. Finally, we included the algorithm proposed by van
Wieringen et al. (2008) and called total, which is associated only
with agree and conc.

4.3 Evaluation stage
4.3.1 Stability It is difficult to evaluate class discovery solutions,
particularly as no class labels are known and so no error rate can
be estimated. However, a panoply of criteria for the validation of
class discovery solutions has been proposed (Handl et al., 2005).
External indices assess class discovery solutions according to object
labeling, which may be provided by an expert, whereas internal
indices evaluate a particular notion of class discovery quality, such
as the separation of clusters.

We validated class discovery solutions in terms of their stability.
Stability is an internal index because it assesses the preservation
of class discovery solutions across perturbations of the original
data. We compared solutions emerging from two perturbations of
the original data, using the Jaccard coefficient∗. This coefficient
requires a partition to be calculated. In the case of hierarchical
algorithms, the Jaccard coefficient is calculated for each partition
considered.

Several ways of perturbing the data have been proposed. We
decided to resample the data by repeatedly drawing overlapping
subsets of samples from the same dataset without replacement
(Levine and Domany, 2001 and Ben-Hur et al., 2002).

4.3.2 Assessing the significance of solutions We assessed the
statistical significance of the stability of the structure discovered
by the class discovery method, using the χ2-based test proposed
by Bertoni and Valentini (2007). This test was initially designed
to determine the number of clusters in a stability framework, but
can easily be transposed for class discovery method selection in the
same framework, as described below.

A perturbation procedure was applied 2M times to the data set X,
building M pairs of subsets of X. Let C be a set of R class discovery
methods C = {C1, . . . , Cr, . . . , CR}. R methods are then applied
to the M pairs of subsets and the number k of clusters for each
solution is fixed. The similarity of each pair of solutions is then
calculated srm, r = 1, . . . , R; m = 1, . . . , M . The (srm)
values are the realizations of the random variable Sr .

Bertoni and Valentini (2007) concluded that E[Sr] can be used as
an index of the reliability of class discovery solutions: if E[Sr] ≃ 1
the solution is stable. The stability of the solution is considered to
decrease with increasing distance of E[Sr] from 1.
This result was demonstrated by Bertoni and Valentini (2007) in the
model selection framework, but it also applies mutatis mutandis to
this context. As we tested a number of methods, we incorporated a
multiple testing correction step into the stability analysis.

E[Sr] may be estimated by its empirical mean ξr , defined as
ξr = 1/M

PM
m=1 srm. ξr is then sorted in descending order,

G = (ξp(1), ξp(2), . . . , ξp(R)) where p is a permutation index such
that (. . . ξp(r1) ≥ ξp(r2) . . . ). Class discovery solutions are then
ordered from the most to the least stable.

Let us consider the Bernoulli random variable Br = I(Sr > s0)
where s0 ∈ [0, 1] is a fixed threshold, θr = P (Sr > s0) and I is the

indicator function. The sum Xr =
PM

m=1 Brm of M independent
and identically distributed (i.i.d.) Br follows a binomial distribution
B(M, θr). For a sufficiently large M,

Zr =
Xr −Mθrp
Mθr(1− θr)

∼ N (0, 1).

Assuming Zr i.i.d., r = 1, . . . , R and θ estimated by its pooled
estimate

θ̂ =

PR
r=1 Xr

RM
.

Then,

Y =

RX
r=1

(Xr −Mθ̂)2

Mθ̂(1− θ̂)
∼ χ2(R− 1).

The null hypothesis “H0: all the θr are equal to θ” is tested against
the alternative hypothesis “H1: not all θk are equal”, with Y used
as the test statistic. If the null hypothesis is rejected, we exclude
the least stable method, according to the sorting of G, and repeat
the test. P-values were adjusted for multiple testing by Bonferroni-
Holm correction (Holm, 1979).

This χ2-based test is repeated until no significant difference is
detected or until only one class discovery method is left. The set of
methods remaining represents the set of stable methods discovered.

For all data sets, resampling was performed by establishing
M = 100 pairs of subsets of each data set. For each subsample, we
randomly picked 80 % of the data set. A dissimilarity measure and a
clustering algorithm were applied to each subsample. We considered
partitions in k = 2 to 10 clusters. For each partition, the Jaccard
index was used to compare pairs of solutions from pairs of subsets.

Finally, the χ2-based test was applied iteratively for the detection
of stable class discovery solutions for a Bonferroni-Holm-corrected
significance level of 5%. The threshold s0 was set at 0.98.

All methods are implemented within the R programming
language (http://www.r-project.org). We used cluster
and hybridHclust R packages available from http://www.
r-project.org, clusterv and mosclust R packages
available from http://homes.dsi.unimi.it/valenti/
software.html and WECCA available from http://www.
few.vu.nl/˜wvanwie/software/WECCA/WECCA.html.

5 RESULTS
We intensively compared the stability performances of class
discovery methods (combinations of an input data representation,
a dissimilarity measure and a clustering algorithm). We considered
five strategies for input data representation: all versions of
All probes (log-ratio, smoothed log-ratio and
calls), statistical and biological compressions.
We considered six dissimilarity measures: Euclidean and
Manhattan distances, Pearson correlation and sim,
conc and agree similarities. We applied ten clustering
algorithms: complete, average, weighted and ward
linkages, diana, tsvq, hybrid, k-means and k-centroids
and total. The χ2-based test described was applied iteratively to
detect stable class discovery methods.
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For each data set and each partition, the extensive list of class
discovery methods declared stable by the above-described χ2-based
test is provided in Table 1 of Supplementary Material.

Figure 1 indicates, for each data set, the frequency of each
input data representation, each dissimilarity measure and each
clustering algorithm in the list of class discovery methods declared
stable, all partitions taken together. For all data sets, MR
clearly outperformed the other input data representations, and
the hierarchical agglomerative linkage average outperformed
the other clustering algorithms. The situation is less clear for
dissimilarity measures: sim in three cases, agree in one case
and Euclidean, Manhattan and Pearson correlation
equally outperformed the other dissimilarity measures in one case.

We also calculated the frequency of each input data representation,
each dissimilarity measure and each clustering algorithm in the class
discovery methods declared stable for each partition from 2 to 10,
all data sets taken together (see Figure 2). MR and hierarchical
average were again identified as the input data representation
and clustering algorithm most frequently leading to stable solutions.
For dissimilarity measures, Pearson correlation performed
well in the case of two clusters and agree performed well with six
clusters. For 3, 4, 5, 7, 8, 9 and 10 clusters, sim outperformed the
other dissimilarity measures.

The most stable input data representation, dissimilarity measure
and clustering algorithm depended little on the data set or number of
clusters considered. Figure 3 shows the frequency of class discovery
methods declared stable over all possible data sets and partitions.
The most stable combinations were (MR, agree, average) and
(MR, sim, average). By contrast, the hybrid and total
algorithms gave no stable solutions.

6 DISCUSSION AND CONCLUSION
We investigated the application of several input data representations,
dissimilarity measures and clustering algorithms for array-CGH
data. We compared the resulting class discovery methods in terms
of the stability of their solutions.

We conclude that the characterization of array-CGH data by
MR (Rouveirol et al., 2006) is a good choice for class discovery
purposes, as our experiments demonstrate that stable partitions
are generally achieved with this method. As these solutions are
reached by reducing the number of data dimensions, the data are
characterized in a parsimonious manner.

The use of MR presents other advantages in addition to its par-
simony. Firstly, it allows the same weight to be assigned to each
alteration, regardless of its size. Indeed, potentially very small
alterations, such as amplifications, may be relevant as predictive
or prognostic factors. As few probes are found in such small
alterations, it may be better to use the alteration as a single entity
so that all regions are weighted equally. Secondly, this method
facilitates data interpretation because it allows biologists to study
a limited number of alterations rather than having to study all the
probes to account for differences. Finally, data representation based
on MR reduces the amount of data required for class discovery.
This feature is particularly useful for high-density array-CGH
technologies.

We recommend the use of hierarchical agglomerative average
linkage associated with sim or agree similarity measures for a
stable class discovery framework.
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Fig. 1. Frequency of input data representation, dissimilarity measure and
clustering algorithm among the class discovery methods declared stable for
each data set.
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Fig. 2. Frequency of input data representation, dissimilarity measure and clustering algorithm among the class discovery methods declared stable for each
partition from 2 to 10 clusters.
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Fig. 3. Frequency of class discovery methods declared stable
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                   Breast-conserving therapy is the preferred treatment for patients 
with early-stage breast cancer ( 1 ). It offers equal local control 
and overall survival ( 2 ) and superior psychosocial outcomes ( 3 , 4 ) 
compared with modified radical mastectomy. However, an ipsilat-
eral breast cancer recurrence can be traumatizing and can lead to 
death ( 2 ). 

 When an ipsilateral breast cancer develops, the new tumor can 
either be a true recurrence — that is, a regrowth of clonogenic cells 
that were not removed by surgery or killed by radiotherapy — or a 
new primary tumor that arises from the remaining breast tissue ( 5 ). 
Several defi nitions have been used to distinguish true recurrences 
from new primary tumors. Initially, these distinctions were based 
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  ARTICLE  

     High-Resolution Mapping of DNA Breakpoints to 
Define True Recurrences Among Ipsilateral 
Breast Cancers  
    Marc A.      Bollet   ,      Nicolas     Servant   ,      Pierre     Neuvial   ,      Charles     Decraene   ,      Ingrid     Lebigot   ,      Jean-Philippe     Meyniel   , 
     Yann     De Rycke   ,      Alexia     Savignoni   ,      Guillem     Rigaill   ,      Philippe     Hupé   ,      Alain     Fourquet   ,      Brigitte     Sigal-Zafrani   , 
     Emmanuel     Barillot   ,      Jean-Paul     Thiery                  

   Background   To distinguish new primary breast cancers from true recurrences, pangenomic analyses of DNA copy 
number alterations (CNAs) using single-nucleotide polymorphism arrays have proven useful.  

   Methods   The pangenomic profiles of 22 pairs of primary breast carcinoma (ductal or lobular) and ipsilateral breast 
cancers from the same patients were analyzed. Hierarchical clustering was performed using CNAs and 
DNA breakpoint information. A partial identity score developed using DNA breakpoint information was 
used to quantify partial identities between two tumors. The nature of ipsilateral breast cancers (true recur-
rence vs new primary tumor) as defined using the clustering methods and the partial identity score was 
compared with that based on clinical characteristics. Metastasis-free survival was compared among 
patients with primary tumors and true recurrences as defined using the partial identity score and by clini-
cal characteristics. All statistical tests were two-sided.  

   Results   All methods agreed on the nature of ipsilateral breast cancers for 14 pairs of samples. For five pairs, the 
clinical definition disagreed with both clustering methods. For three pairs, the two clustering methods 
were discordant and the one using DNA breakpoints agreed with the clinical definition. The partial identity 
score confirmed the nature of ipsilateral breast cancers as defined by clustering of DNA breakpoints in 21 
of 22 pairs. The difference in metastasis-free survival of patients with new primary tumors and those with 
true recurrences was not statistically significant when tumors were defined based on clinical and histo-
logic characteristics (5-year metastasis-free survival: 76%, 95% confidence interval [CI] = 52% to 100% for 
new primary tumors and 38%, 95% CI = 17% to 83% for true recurrences;  P  = .18; new primary tumor vs 
true recurrence, hazard ratio = 2.8, 95% CI = 0.6 to 13.7), but the difference was statistically significant 
when tumors were defined using the partial identity score (5-year metastasis-free survival: 100% for new 
primary tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).  

   Conclusions   DNA breakpoint information more often agreed with the clinical determination than CNAs in this popula-
tion. The partial identity score, which was calculated based on DNA breakpoints, allows statistical discrim-
ination between new primary tumors and true recurrences that could outperform the clinical determination 
in terms of prognosis.  

   J Natl Cancer Inst 2008;100: 48  –  58   
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on the location of the ipsilateral breast cancer (ie, the farther from 
the initial primary tumor, the more likely it is to be a new primary 
tumor) and on shared common histopathologic criteria (eg, type, 
grade, and hormone receptor status) ( 6  –  10 ). In the quest for addi-
tional ways to distinguish new primary breast tumors from true 
breast cancer recurrences, biologic studies of clonal relationships 
between the new and original tumor have also been performed. 
These studies have relied on ploidy ( 5 , 11 ), loss of heterozygosity 
( 12  –  14 ), p53 analysis ( 15 ), or X chromosome inactivation ( 16 ) or 
have been based on DNA copy number alterations (CNAs) ( 17  –
  19 ). CNA data can be obtained by high-resolution techniques, 
such as array-based comparative genomic hybridization or single- 
nucleotide polymorphism (SNP) arrays ( 20 ). One of the most 
commonly used ways to look at clonal relatedness using pange-
nomic data is to perform an unsupervised hierarchical clustering 
that organizes primary breast tumors and ipsilateral breast cancers 
on the basis of their overall genomic similarity ( 18 , 19 ). These 
measures of similarity are summarized in a dendrogram, in which 
the pattern and length of the branches refl ect the relatedness of the 
samples in terms of DNA CNAs. 

 Changes in DNA copy numbers occur at chromosomal loca-
tions called breakpoints. We hypothesized that the precise loca-
tions of these breakpoints could serve as markers for clonal 
relatedness and that we could distinguish true recurrences from 
new primary tumors by the number of common breakpoints in the 
ipsilateral breast cancer and the primary tumor. In this study, we 
fi rst aimed to test the added value of examining the clustering of 
breakpoints (over CNAs) when determining the nature of the 
ipsilateral breast cancer. Second, we aimed to develop a score to 
quantify the partial identity between two tumors according to their 
clonal relatedness (determination of the partial identity score). 
Third, we examined prognosis in terms of metastasis-free survival. 
In each case, these methods were compared with the clinical deter-
mination of the nature of the ipsilateral breast cancer. 

  Subjects and Methods 
  Selection of Patients 

 Specimens from patients with primary breast cancers and ipsilateral 
breast cancers were selected from freshly frozen samples of the 
Institut Curie tissue bank according to the following criteria: the 
primary tumor was either ductal or lobular invasive breast carci-
noma; the patient was 49 years or younger at diagnosis of the initial 
tumor; all patients were premenopausal; and there was no previous 
history of cancer, except for one nonmelanoma skin cancer. All 
patients had been treated at the Institut Curie by breast-conserving 
surgery, including dissection of the axillary lymph nodes in most 
patients, followed by radiotherapy to the breast with or without a 
boost to the tumor bed (external beam radiotherapy or brachyther-
apy) and/or to the regional lymph node – bearing areas if indicated 
and, when required, systemic treatment as part of their initial man-
agement. For all tumors, histopathologic characteristics were 
reviewed by one pathologist (B. Sigal-Zafrani). 

 To ensure that the data would be informative, we restricted 
genomic analyses to tumors (primary and recurrences) in which at 
least 50% of cancer cells had been assessed by hematoxylin, eosin, 
and saffron staining of sections from snap-frozen samples. This 

study reports a series of 22 patients with assessable pairs of primary 
breast tumors and ipsilateral breast cancers. 

 To evaluate the genomic features of a population with similar 
breast cancers, 44 control patients from the pool of patients with 
primary tumors who met the above selection criteria were matched 
to the case patients in accordance with their age at diagnosis 
and adjuvant treatment. The control patients had not experienced 
an ipsilateral breast recurrence within the time span of the local 
recurrence of the index patient. 

 This research was approved by the institutional review boards 
of the Institut Curie. No patient refused the use of her tumor 
specimens for research purposes.  

  Clinical and Histologic Studies 

 The histologic/biologic properties of the breast cancers were 
determined by subjecting tissue sections to immunohistochemical 
analysis for the estrogen receptor (clone 6F11, 1   :   200 dilution; 
Novocastra, Newcastle Upon Tyne, England) and progesterone 
receptor (clone 1A6, 1   :   200 dilution; Novocastra) antibodies. 
Tumors were considered to be positive for these receptors if at 
least 10% of the invasive tumor cells in a section showed nuclear 
staining ( 21 ). 

 In accordance with theories of the clonal evolution of tumor 
cell populations, ipsilateral breast cancers were clinically defi ned as 
true recurrences if they had the same histologic subtype (ductal or 

  CONTEXT AND CAVEATS 

  Prior knowledge 

 Detecting changes in DNA copy number using single nucleotide 
polymorphism arrays has been a useful tool in distinguishing new 
primary breast tumors from recurrences.  

  Study design 

 Comparison of hierarchical clustering of DNA copy number and 
DNA breakpoints, an identity score based on the DNA breakpoint 
information, and clinical characteristics to accurately designate 
ipsilateral breast tumors as new primary tumors or true recur-
rences in breast tumor pairs from 22 patients.  

  Contributions 

 For 14 of the pairs, all methods agreed on the designation of the 
ipsilateral breast cancer as a new primary tumor or a true recur-
rence; however, for five pairs and three pairs, both clustering meth-
ods and clustering by DNA breakpoints, respectively, agreed with 
the clinical definition. For 21 pairs, the partial identity score con-
firmed the designation of the tumor as defined by both clustering 
methods. Patients with recurrences had poorer metastasis-free 
survival than patients with new primary tumors, according to the 
partial identity score, but this difference was not statistically signifi-
cant using the clinical definition.  

  Implications 

 The partial identity score may outperform clinical determination 
for the prognosis of ipsilateral breast cancers.  

  Limitations 

 Freshly frozen tissue samples that contain a large number of cells 
from both the initial primary tumor and the ipsilateral tumor are 
needed to perform the DNA breakpoint analyses.   
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lobular) and a similar or increased growth rate, similar or loss of 
dependence on either estradiol or progesterone, and similar or 
decreased differentiation as the initial tumor ( 22 ).True recurrences 
also had to share with their primary tumors the same breast quad-
rant. Thus, new primary tumors were clinically defi ned as such 
when the ipsilateral breast cancer had occurred in a different loca-
tion, had a distinct histologic type, or had less aggressiveness fea-
tures (lower grade, appearance of hormonal receptors) than the 
initial tumor.  

  Genomic Studies 

 Total genomic DNA was extracted from tissue samples using a 
variation of the standard phenol   :   chloroform protocol ( 23 ). Genomic 
DNA was quantified by spectrophotometry using a ND-1000 
Spectrophotometer (NanoDrop, Wilmington, DE), and quality 
was assessed by 0.8% agarose gel electrophoresis. 

 Genomic DNA from each sample was prepared for microarray 
hybridization using the GeneChips Mapping 50K Xba Assay Kit 
(Affymetrix Inc., Santa Clara, CA). Briefl y, 250 ng of total genomic 
DNA was digested with the restriction enzyme XbaI and ligated to 
an adaptor sequence (XbaI adaptator: 5 ′ -ATTATGAGCACGAC
AGACGCCTGATCT-3 ′  and 5 ′ -CTAGAGATCAGGCGTCTG
TCGTGCTCATAA-3 ′ ) that recognizes the cohesive four base 
pair (bp) region (3 ′ -GATC-5 ′ ). A generic primer (5 ′ -ATT ATG 
AGC ACG ACA GAC GCC TGA TCT-3 ′ ) that recognizes the 
adaptor sequence was used to preferentially amplify adaptor-
ligated DNA fragments 250 – 2000 bp in size by the optimized 
polymerase chain reaction (PCR) conditions, according to the 
manufacturer’s instructions. The amplifi ed DNA was then frag-
mented by DNase treatment and hybridized to the Affymetrix 
GeneChips Human Mapping 50K array Xba 240 (Affymetrix), 
according to the manufacturer’s instructions. Washing, staining, 
and scanning of chips were performed using materials and methods 
provided by the manufacturer. The pangenomic profi les of the 22 
pairs of primary tumors/ipsilateral breast cancers are available on 
ACTuDB ( 24 ) ( http://bioinfo.curie.fr/actudb/ ). Human mapping 
50K array Xba 240 annotations and sequence fi les are available on 
the Affymetrix website ( http://www.affymetrix.com/support/
technical/byproduct.affx?product=100k ).  

  Metastasis-Free Survival 

 Metastasis-free survival was estimated by the Kaplan – Meier method 
( 25 ) and compared between the groups of patients defined as having 
been diagnosed with either a true recurrence or a new primary 
tumor using the log-rank test. The confidence interval (CI) of the 
hazard ratio was obtained using a semiparametric Cox model ( 26 ).  

  Statistical Methods 

  Copy Number Alteration Determination.       SNP data were gath-
ered from the pangenomic profile and analyzed using the iterative 
and alternative normalization of copy number SNP array 
(ITALICS) algorithm with default parameters, which simultane-
ously normalizes the genomic profile and detects the biologic sig-
nal. Briefly, ITALICS alternatively estimates the biologic signal 
(ie, the DNA copy number at each SNP locus) with the gain and 
loss analysis of DNA algorithm ( 27 ) and normalizes the data to 

 correct the nonrelevant effects (CG content and fragment length of 
PCR products, oligonucleotide CG content, and SNP effect). 
These two steps are repeated iteratively to improve the biologic 
signal estimation until no more improvement is seen. ITALICS 
outperforms other methods of normalization. The result of this 
process is a segmented genomic profile that consists of regions of 
homogeneous DNA and information on their corresponding copy 
numbers. Each region is given a smoothing value (ie, the median of 
the SNP copy numbers within the region) and a status (ie, gain, 
normal, or loss). 

 We defi ned a breakpoint as 1) a SNP locus located at a change 
of status (eg, normal/gain or gain/loss) or as 2) a SNP locus located 
at a change of smoothing value that occurred within a region 
of gain or loss, thus defi ning different levels of gain or loss among 
these regions. Additional breakpoints were also added at the 
extremities of the chromosome to take into account their gain or 
loss whenever applicable. Because some breakpoints could be due 
to copy number variations that occur in healthy individuals, break-
points arising in the copy number variable regions in the HapMap 
collection ( 28 ) were excluded. The visualization and further analy-
sis of the data was performed through a graphic user interface, 
Visualization and analysis of array CGH, transcriptome and other 
molecular profi les ( 29 ).  

  Hierarchical Clustering.    Similarity between genomic profiles.     We 
considered two measures of similarity among the genomic profiles 
of a primary tumor and ipsilateral breast cancer. First, we used 
the Pearson correlation between their CNA profiles. Second, we 
used a measure  M  that is derived from the percent concordance 
proposed by Waldman et al. ( 18 ) and adapted from Dice’s formula 
( 30 ) and corresponds to the number of common breakpoints divided 
by the mean number of breakpoints in either a primary tumor or an 
ipsilateral breast cancer.  M  is computed as follows, for a ( i , j ) pair.
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in which  Si  and  S    j    are the subsets of breakpoints present in the SNP 
arrays of the primary tumor,  i , and ispilateral breast cancer,  j . An 
example of  M  is given in Supplementary Fig. 1 (available online). 

 Two tumors had common breakpoints if the following condi-
tions were fulfi lled: 1) the changes in copy number occurred at 
the exact same locus and 2) the changes in copy number were of the 
same nature (ie, either an increase or a decrease in numbers) 
in the two tumors.  

  Assessing clonal relatedness from a dendrogram.       We assumed 
that clonal unrelatedness was revealed by the clustering apart of 
the two tumors (primary tumor and ipsilateral breast tumor) from 
the same patient, reflecting that they were more similar to carcino-
mas of other patients than to each other. In contrast, the clustering 
together of two tumors from the same patient indicated clonal 
relatedness among them. For both measures of similarity (Pearson 
coefficient and  M  measure), we used Ward’s criteria ( 31 ) as an 
agglomerative method in the hierarchical clustering.   

  Partial Identity Score.    Score definition.     To distinguish true recur-
rences from new primary tumors, we developed a partial identity score 
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that is based on the  M  measure of similarity described above. The 
score reflects the number of common breakpoints among the ipsilateral 
breast cancer and the primary tumor. In addition, because very frequent 
breakpoints may be less informative than frequent ones in estimating 
the clonal relatedness between two tumors, the added value of each 
breakpoint was weighted according to its frequency among the samples 
of 44 control patients. The partial identity score (PS) was thus
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in which  Fk  represents the frequency of appearance of the break-
point  k  calculated in the series of the 44 control breast cancers. An 
example of a partial identity score is given in Supplementary Fig. 1 
(available online).  

  Statistical testing for partial identity.       The partial identity score 
was calculated for all 462 possible “artificial pairs” (462 = 22 × 21, 
because each of the 22 primary tumors could be artificially paired 
with the ipsilateral breast cancer of the 21 other patients,  see   Table 3  
notes). The distribution under the null hypothesis, H0, of no par-
tial identity between the two tumors was estimated using all 462 
possible artificial pairs. We rejected H0 with a type I error fixed at 
5%, that is, we considered that a local recurrence shared partial 
identity with a primary tumor when the score was higher than the 
upper 5th percentile in the distribution of artificial pairs. The score 
was then calculated for the “natural pairs,” that is, a primary tumor 

and its ipsilateral breast cancer occurring in the same patients ( see  
 Table 3  notes). Ipsilateral breast cancers from pairs with scores 
higher than this cutoff, that is, with shared partial identity, were 
considered to be true recurrences.  

  Robustness of the score.       The robustness of the partial identity 
score was assessed by randomly selecting two subgroups of 15 and 7 
patients from the population of 22 breast cancer patients. The first 
subgroup of 15 patients was used to compute the scores of the artifi-
cial pairs and to record the cutoff score corresponding to the 95th 
percentile. This score was then used to determine the status of each 
of the natural pairs in the seven patients of the other subgroup. To 
make the comparison statistically sound, each process was repeated 
1000 times. The variation of the cutoff scores was assessed by box plot 
representation. The consistency of the ipsilateral breast cancer status 
was calculated as the percentage of extractions when the status of this 
pair was respectively a true recurrence or a new primary tumor. 

 All statistical tests were two-sided.  P  values less than .05 were 
considered to be statistically signifi cant.     

  Results 
  Clinical and Histologic Features 

 The clinical and tumor characteristics of 22 patients whose tumors 
had exploitable SNP arrays were analyzed ( Tables 1  and  2 ). 
According to clinical and histologic criteria ( Table 2 ), nine of the 
22 ipsilateral breast cancers were new primary tumors and the other 

 Table 1.      Patient and tumor characteristics of the 22 patients whose tumors (both PT and IBC) had exploitable SNP arrays *   

  Pair Age, y Family Prob BRCA1 BRCA2 pT pN

Surgical 

margin, 

mm

Radiotherapy dose, Gy
No. of 

cycles of 

chemotherapy  †   

 Whole 

breast

Tumorectomy 

bed  

  P1 23.1 0 20 0 2 1 0  ≥ 4 54 54 4 
 P2 42.1 1 NA NA NA 1 0  ≥ 4 50 50 0 
 P3 42.6 0 NA NA NA 1 0  ≥ 4 54 54 0 
 P4 48.2 1 44 0 0 1 0  ≥ 4 50 50 0 
 P5 45.5 0 NA NA NA 1 1  ≥ 4 50 60 4 
 P6 35.7 0 8 0 0 2 0  ≥ 4 51 66 4 
 P10 46.2 0 NA NA NA 2 0 0 – 3 50 70 0 
 P11 49.0 1 95 0 1 2 0  ≥ 4 50 64 0 
 P12 48.9 1 NA NA NA 1 0  ≥ 4 52 52 0 
 P13 45.0 0 NA NA NA 2 0  ≥ 4 51 67 6 
 P14 43.6 0 NA NA NA 1 0 0 – 3 50 50 0 
 P15 46.1 0 NA NA NA 1 0  ≥ 4 50 65 0 
 P16 48.4 0 NA NA NA 1 0  ≥ 4 50 66 0 
 P18 27.9 1 82 0 0 2 0 0 – 3 50 70 4 
 P19 49.1 0 NA NA NA 2 0 0 – 3 51 65 4 
 P20 47.1 0 NA NA NA 2 1 0 – 3 45 65 4 
 P21 46.3 0 NA NA NA 1 0 DCIS 50 70 0  ‡   
 P22 35.0 0 NA NA NA 2 2  ≥ 4 50 75 6  ‡   
 P23 30.8 0 NA NA NA 2 0  ≥ 4 50 66 4 
 P24 47.7 0 NA NA NA 1 1  ≥ 4 50 60 6 
 P25 43.0 0 NA NA NA 1 0 0 – 3 45 60 0  ‡   
 P26 30.5 0 NA NA NA NA 1  ≥ 4 52 70 4  ‡    

  *   PT = primary tumor; IBC = ipsilateral breast cancer; SNP = single nucleotide polymorphism; Family = family history of breast cancer in the first two degrees 
(0 = no, 1 = yes); Prob = age-specific risk estimates of breast cancer according to the Claus Model  (32) ; BRCA1 and BRCA2 = mutation found in BRCA1 and 
BRCA2 (0 = not found, 1 = deleterious, 2 = possibly deleterious, NA = not available); pT = histologic tumor classification according to Union Internationale 
Contre le Cancer (UICC) ( 33 ); pN = histologic lymph node classification according to UICC; DCIS = ductal carcinoma in situ.  

   †    Chemotherapy consisted of 5-fluorouracil, anthracyclines, and cyclophosphamide.  

   ‡    Patients were treated with tamoxifen for 5 years.   
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13 were true recurrences. Ipsilateral breast cancers occurred at a 
median time of 3.1 years after the initial breast cancer diagnosis 
(range = 0.8 – 6.5 years). In three of 22 (14%) patients, ipsilateral 
breast cancers occurred in a different quadrant than the initial 
tumor; all of these were defined clinically as new primary tumors.          

  Genomic Studies 

 The pangenomic profiles of a primary tumor and its ipsilateral 
breast cancer revealed common breakpoints, with a precision 
within a SNP that can be used as markers of their clonal related-
ness. Pair 5 is given as an illustration ( Fig. 1 ).     

 The median number of breakpoints per array was statistically 
signifi cantly higher for ipsilateral breast cancers (median = 71, 
range = 21 – 433) than for primary tumors (median = 52, range = 
4 – 646) ( P  = .001) ( Table 3 ). The mean number of common break-
points per pair was also statistically signifi cantly higher for natural 
pairs (mean = 18.8, SD = 18.8) than for artifi cial pairs (mean = 4.1, 
SD = 3.1) ( P  = 0.5 × 10  � 6 ).      

  Clustering by Copy Number Alterations or Breakpoints 

 According to hierarchical clustering by DNA CNAs ( Fig. 2 ) and by 
breakpoints ( Fig. 3 ), five and six ipsilateral breast cancers, respec-
tively, were new primary tumors. The two clustering methods and 
the clinical definition agreed for 14 pairs ( Table 2 ). However, for five 
pairs (P6, P12, P16, P20, P22), the clinical definition disagreed with 

both clustering methods and, for three others (P1, P2, P15), the 
clustering by breakpoints disagreed with that by CNAs but agreed 
with the clinical definition. The recurrences in pairs 1 and 2 were 
identified as true recurrences by the CNA clustering but as new pri-
mary tumors by the clinical definitions because of the reappearance 
of estrogen receptors in the pair 1 ipsilateral breast cancer and differ-
ent histologic type (ductal instead of lobular carcinoma) in pair 2. In 
pair 15, CNA clustering did not find a true recurrence, whereas the 
clinical definition did. No statistically significant differences in clini-
cal and histologic characteristics between the patients diagnosed with 
new primary tumors or true recurrences were observed by break-
point information, apart from a suggestion for patients with new pri-
mary tumors to be younger and to have a more frequent family 
history of breast cancer (Supplementary Table 1, available online).          

  Partial Identity Score 

 According to the partial identity score reported for each pair in 
 Table 2 , 15 ipsilateral breast cancers were true recurrences and 
seven were new primary tumors ( Fig. 4 ). With a type I error set at 
5%, the partial identity score disagreed with clustering by break-
points in pair 12 only; the clinical definition was new primary tumor 
because of a change in tumor location. When the score was deter-
mined according to Waldman’s percent of concordance without 
either weighing the influence of the coexistence of breakpoints 
according to their frequency in a similar population or excluding 

 Table 2 .     Histologic characteristics of the primary tumors and their ipsilateral breast cancers: distinctions between new primary tumors 
and true recurrences according to clinical criteria or clustering methods *   

  Pair

Primary tumors

Time, y

Ipsilateral breast cancers

New primary tumors or 

true recurrences

Score  Type Grade ER PR Location Type Grade ER PR CNA BKP Clinical Divergence  

  P1 D 3 0 40 6.5 1 D 2 90 15 TR NP  ‡  NP CNA 0.020 
 P2 D 2 90 40 5.3 1 L 1 90 70 TR NP  ‡  NP CNA 0.000 
 P3 D 3 30 80 3.1 1 D 3 60 90 TR TR  ‡  TR No 0.465 
 P4 L 1 90 80 3.5 1 L 2 90 80 TR TR  ‡  TR No 0.278 
 P5 D 2 90 40 2.0 1 D 2 80 90 TR TR  ‡  TR No 0.555 
 P6 L 1 90 100 3.1 1 L 2 70 70 NP NP  ‡  TR Clinical 0.104 
 P10 L 3 80 95 5.0 0 D 2 70 40 NP NP  ‡  NP No 0.059 
 P11 L 3 0 0 6.3 1 D 3 0 0 NP NP  ‡  NP No 0.029 
 P12 L 2 90 50 2.9 0 L 2 90 0 TR TR † NP Clinical 0.116 
 P13 D 2 20 85 4.6 1 D 2 95 20 TR TR  ‡  TR No 0.240 
 P14 L 2 90 60 2.5 1 L 2 0 100 TR TR  ‡  TR No 0.310 
 P15 D 2 100 80 3.3 1 D 2 70 100 NP TR  ‡  TR CNA 0.127 
 P16 D 2 80 30 3.8 1 D 1 20 70 TR TR  ‡  NP Clinical 0.317 
 P18 D 3 0 0 2.2 1 D 2 80 50 NP NP  ‡  NP No 0.004 
 P19 § D 3 0 0 3.0 1 D 3 0 0 TR TR  ‡  TR No 0.325 
 P20 D 3 0 0 1.4 0 D 3 0 0 TR TR  ‡  NP Clinical 0.139 
 P21 D 2 80 0 4.2 1 D 2 70 TR TR  ‡  TR No 0.360 
 P22 § D 2 20 50 3.5 1 M 3 15 0 TR TR  ‡  NP Clinical 0.394 
 P23 D 3 0 0 0.8 1 D 3 0 0 TR TR  ‡  TR No 0.341 
 P24 § D 3 0 0 1.0 1 D 3 0 0 TR TR  ‡  TR No 0.311 
 P25 § D 3 75 70 2.2 1 D 3 70 15 TR TR  ‡  TR No 0.375 
 P26 D 3 0 0 1.8 1 D 3 0 0 TR TR  ‡  TR No 0.519  

  *   Type = histologic type (D = ductal, L = lobular, M = micropapillary); Grade = histologic grade; ER = estrogen receptor; PR = progesterone receptor; Location 
(1 = IBC at the index quadrant, 0 = IBC at a different quadrant); CNA = cluster according to copy number alterations; BKP = cluster according to breakpoints; 
Clinical = definition according to clinical criteria; NP = new primary tumor; TR = true recurrence.  

   †    NP according to the partial identity score.  

   ‡    Agreement with the definition by the partial identity score.  

  §   The ipsilateral breast cancers of these pairs received chemotherapy before surgery.   
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the breakpoints that occur in the copy number variable regions in 
the HapMap collection, the attribution of the status of three pairs 
(20 changed from a true recurrence to a new primary, whereas 
6 and 12 became true recurrences) and two pairs (10 and 12 changed 
from new primaries to true recurrences) changed, respectively.     

 The status of all pairs was confi rmed by the 1000 random 
extractions (Supplementary Table 2, available online). The mean 
cutoff value was 0.1203 (SD = 0.0102) (Supplementary Fig. 2, 
available online). The cutoff used to determine the status of the 22 
ipsilateral breast cancers, which was defi ned using all 462 artifi cial 
pairs, was 0.1212.  

  Prognostic Value of the Determination of the Nature of 

the Ipsilateral Breast Cancer 

 Patients who were diagnosed with true recurrences had lower 
 metastasis-free survival than those diagnosed with new primary 
tumors (Supplementary Fig. 3, available online). The difference in 
metastasis-free survival in the two groups was not statistically signifi-
cant when they were defined based on clinical and histologic charac-
teristics (5-year metastasis-free survival: 76%, 95% CI = 52% to 
100% for new primary tumors and 38%, 95% CI = 17% to 83% for 
true recurrences;  P  = .18; primary tumors vs true recurrences, hazard 
ratio = 2.8, 95% CI = 0.6 to 13.7). However, metastasis-free survival 
was different when the groups were defined according to the partial 
identity score (5-year metastasis-free survival: 100% for new primary 
tumors and 29%, 95% CI = 11% to 78% for true recurrences;  P  = .01).   

  Discussion 
 DNA breakpoint information was more often in agreement with the 
clinical definition than that from CNAs to define true recurrences 

among ipsilateral breast cancers in this population. We developed a 
partial identity score that is based on DNA breakpoints, which 
allowed statistical discrimination between new primary tumors and 
true recurrences. This score outperformed the clinical prognosis 
determination in terms of metastasis-free survival. 

 We chose to base our study on a series of young (<50 years old) 
premenopausal women not only because young age is recognized as 
one of the most important independent prognostic factors for ipsi-
lateral breast recurrence ( 34  –  40 ) but also to ensure a very high level 
of homogeneity. In addition, all patients had undergone breast-
conserving surgery followed by whole-breast radiotherapy for their 
initial breast cancers, which were selected as either ductal or lobular 
invasive carcinomas, and were treated at the same cancer center. 

 Our results show that some ipsilateral breast cancers share with 
their primary tumors many DNA CNA breakpoints at the same 
locations (precision to within a SNP, as illustrated in  Fig. 1 ). From 
these observations, we produced a method of determining true 
recurrences that relies on a number of assumptions. The fi rst and 
most obvious is that the vast majority of breast cancers are of clonal 
origin. The second is that a tumor retains a substantial number of 
genomic alterations throughout its evolution. The third assump-
tion, which is key to the method that we have developed, is that the 
exact locations of the breakpoints that are on the edge of a given 
change in DNA copy numbers are better hallmarks of a given 
tumor than the magnitude or width of the genomic alteration 
itself. For example, because the deletion that causes the loss of 
Phosphatase and TENsin homolog (PTEN) alters regulatory 
pathways that lead to precocious development and neoplasia in the 
mammary gland ( 41 ), it can be found in many breast cancers ( 42  –
  44 ); however, the exact location of the breakpoints bordering this 
deletion can be specifi c to a given tumor. We provide as an 

 Fig. 1.      Genomic profi les of tumors of pair 5 to illustrate the fi nding of 
common breakpoints within a single nucleotide polymorphism (SNP). 
A genomic profi le represents the ordered values of the DNA copy num-
bers obtained as described in “Subjects and Methods”. Each  dot  repre-
sents the number of DNA copies at each SNP position. Regions with 

gains are in  red , with losses in  green , with no DNA copy number altera-
tions in  yellow .  A ) Pangenomic profi les.  B ) Profi les of chromosomes 20, 
21, and 22. Top primary tumor of pair 5; bottom, ipsilateral breast can-
cer of pair 5. The  blue horizontal line  represents the smoothing line and 
the  dotted vertical line  the breakpoint position.    
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 example (Supplementary Fig. 4, available online) the prototype case 
of PTEN deletion in which the breakpoints are identical between 
the primary tumor and ipsilateral breast cancer of pair 5 and yet 
differ in all the other tumors that also harbor a loss of PTEN. 

 Because clustering is commonly used to determine whether two 
tumors are clonally related and because it performs better than 
previously developed similarity scores ( 18 , 19 ), we addressed the 
issue of whether there was added value in looking at breakpoints 
rather than at CNAs by comparing clustering by CNAs and by 
breakpoints to determine the nature of the ipsilateral breast can-
cer. We concluded from the comparison of clusterings of CNAs 
and of breakpoints that breakpoint information is more valid than 
CNA information because when they were discordant, the defi ni-
tion by breakpoints always agreed with the clinical defi nition, 
which is routinely used in clinical practice. 

 A second issue was whether a method could be found to quantify 
the partial identity between two tumors. We chose to use a partial 
identity score rather than the results of clustering for a number of 
reasons. 1) Clustering methods have been designed for exploratory 
data analysis, so that using a score is more appropriate for a dis-
crimination purpose. 2) A score induces a natural ordering of the 
pairs from the most dissimilar to the most similar, which is not the 
case for clustering. 3) The assessment of clonal relatedness by a 
score can be statistically motivated through the choice of a thresh-
old, as we have demonstrated in the present work. For clustering, 
clonal relatedness of two tumors depends only on their being clus-
tered apart on the dendrogram, which leads to inconsistent deci-

sions over time. As illustrated by Fig. 3, if pair 2 had not been 
included in the study, the ipsilateral breast cancer from pair 6 would 
have been considered as a true recurrence rather than a new primary 
tumor. Conversely, the assessment of the partial identity score 
robustness was satisfactory with a narrow range of the cutoff 
(Supplementary Fig. 2, available online) and with the consistency of 
the ipsilateral breast cancer status (Supplementary Table 2, avail-
able online). Moreover, a score allows one to choose the cutoff that 
best distinguishes new primary tumors from true recurrences. In 
this study, we chose a type I error rate at 5% to favor sensitivity for 
diagnosing true recurrences over the specifi city. Further studies will 
be needed to verify the biologic validity of this choice (Supplementary 
Fig. 3, available online). 

 In addition, we chose to weigh the infl uence of a common 
breakpoint between the ipsilateral breast cancer and its primary 
tumor by a factor that takes into account the frequency of this 
given breakpoint in a population of similar tumors. This weighting 
changed the determination of three of 22 pairs. 

 The clinical defi nition considered an ipsilateral breast cancer as 
a new primary tumor when the partial identity score did not in 
three instances. In the fi rst because of a change in location for pairs 
12 and 20, in the second because of a lesser degree of differentia-
tion for pair 16, and in the third because of a change in histology 
for pair 22. The fi rst example illustrates the possibility that a true 
recurrence can occur at a distance from the fi rst cancer. The sec-
ond exemplifi es the possibility for a true recurrence to have many 
but not all of the striking alterations present in the primary tumor. 

 Table 3 .     Number of common breakpoints in natural (same patient) and artificial (two different patients) pairs of primary tumors 
(vertically) and ipsilateral breast cancers (horizontally)  

  No. of 

BKPs 

in 

IBC *  Pair

No. of BKPs in PT * 

77 11 46 16 94 8 22 4 31 55 12 11 58 646 89 69 127 49 60 57 41 72 

P1 P2 P3 P4 P5 P6 P10 P11 P12 P13 P14 P15 P16 P18 P19 P20 P21 P22 P23 P24 P25 P26  

  433 P1 6  †  3 12  ‡  3 8 5 § 5 1 4 5 6 1 1 7 § 8 6 7 3 8 8 5 12  ‡   
 25 P2 0 0  †  1 0 1 0 0 0 3  ‡  0 1 0 0 0 1 0 2 1 0 1 0 0 
 43 P3 3 2 23  †    ‡   § 5 5 2 10 § 2 § 4 6 5 4 3 4 11 5 7 6 4 8 4 9 
 26 P4 5 3 7 9  †    ‡   § 5 2 7 0 6 § 4 4 3 2 0 9  ‡  3 4 5 3 6 3 5 

 128 P5 3 3 11 4 64  †    ‡   § 1 7 0 4 4 5 2 2 2 8 4 3 8 3 2 3 10 
 21 P6 3 3 4  ‡  3 3 3  †  4  ‡  0 4  ‡  1 4  ‡  2 0 0 3 1 2 1 1 2 4  ‡  2 
 23 P10 3 2 4 3 3 1 3  †  1 2 2 1 1 1 3 5  ‡  1 1 2 1 1 5  ‡  3 
 97 P11 5 2 19  ‡  6 9 1 9 2  †   § 6 § 9 7 6 § 5 7 § 14 7 10 9 4 12 4 13 
 35 P12 6  ‡  3 4 5 4 2 3 0 6  †    ‡   § 2 2 3 2 0 4 3 3 3 1 4 4 4 
 74 P13 3 2 7 3 6 1 5 1 3 18  †    ‡   § 4 3 2 2 7 3 3 4 2 2 5 2 
 35 P14 1 2 7 3 7 3 5 0 3 5 10  †    ‡   § 2 1 3 6 3 4 3 2 3 5 4 
 49 P15 5 2 5 3 4 2 3 0 6  ‡   § 4 1 5  †  4 2 3 2 4 3 1 1 2 2 
 84 P16 2 2 3 2 3 0 2 0 4 2 0 3 23  †    ‡   § 1 1 1 3 2 0 3 3 4 
 53 P18 2 2 9  ‡  3 3 1 5 1 3 2 3 2 0 2  †  7 5 3 2 3 2 3 5 

 150 P19 9 § 4 § 18 5 8 2 10 § 2 § 3 10 5 5 5 7 § 42  †    ‡   § 13  †  11 6 11 10 6 10 
 93 P20 4 1 6 1 5 0 3 1 2 4 1 2 1 5 7 12  †    ‡  3 4 6 3 3 6 

 219 P21 2 1 12 3 6 1 5 2 § 2 5 3 4 4 6 8 7 63  †    ‡   § 6 7 8 3 5 
 100 P22 5 2 17 5 8 1 10 § 1 5 5 5 4 5 3 13 9 10 31  †    ‡   § 6 10 5 9 
 73 P23 7 1 10 3 6 1 7 2 § 3 5 5 2 1 5 12 10 6 6 25  †    ‡   § 6 3 10 
 69 P24 6 2 11 5 3 2 6 1 4 5 3 2 3 5 9 5 5 3 7 23  †    ‡   § 1 11 
 42 P25 4 3 9 5 5 2 7 2 § 4 5 5 2 2 2 5 4 4 6 1 2 18  †    ‡   § 3 
 88 P26 5 3 11 7 7 1 9 1 6 § 5 3 2 4 3 17 5 2 8 5 9 3 43  †    ‡   §   

  *   Number of BKPs per tumor. BKP = breakpoint; PT = primary tumor; IBC = ipsilateral breast cancer.  

   †    Numbers correspond to the 22 natural pairs of PTs and their IBCs arising in the same patient; numbers in the other cells correspond to the 462 (22 × 21) artificial 
pairs of each PT with all other possible IBCs arising in other patients.  

   ‡    Pairs with the most common BKPs per PT.  

  §   Pairs with the most common BKPs per IBC.   
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A criticism that can be made of the clinical defi nition is that it 
assumes that a true recurrence is derived from its primary tumor 
instead of only being related to it. A true recurrence, according to 
some clinical defi nitions ( 5 , 6 , 11 ), cannot be more differentiated 
than its primary tumor. Usual classifi cations defi ne differentiation 
according to histologic grading, DNA ploidy, or the presence of 
ductal carcinoma in situ. They are based on the assumption that 
tumors accumulate genetic alterations with time ( 22 , 45 , 46 ) and 
that the chronologic order of these alterations refl ects the develop-
ment of a tumor clone. This assumption is, however, challenged by 
the fact that the ipsilateral breast cancers are neither more aggres-
sive nor more undifferentiated than their primary tumors ( 47 ). 

 The situation with pair 22 illustrates another possible limitation 
of histologic determination. Here, the clinical status of the ipsilat-
eral breast cancer was of a new primary tumor because its histo-
logic type was a micropapillary carcinoma, whereas the initial 
tumor was a ductal carcinoma. However, after further histologic 
analysis, a minor component of micropapillary carcinoma was 
revealed in the initial carcinoma that otherwise would have been 
overlooked (Supplementary Fig. 5, available online). This fi nding 
implies that, in some instances, the current histologic taxonomy, 
which is based more on architectural features than on biologic 
ones, could become obsolete and that some ipsilateral breast can-
cers could qualify as true recurrences without sharing the same 
histologic type as their primary tumors. 

 We observed that patients with true recurrences had lower 
metastasis-free survival than patients with new primary tumors 

and that this difference became statistically signifi cant when the 
partial identity score, instead of clinical defi nition, was used to 
defi ne ipsilateral breast cancer types. This observation has been 
shared by many authors ( 5 , 6 , 10 , 12 ). Possible explanations are, 

 Fig. 3  .    Dendogram of hierarchical clustering by breakpoints (Ward – Dice) 
of 22 available pairs of primary tumors (TP) and their ipsilateral breast 
cancer (RL).  Boxes  represent natural pairs with a true recurrence, that 
is, a pair of tumors from one patient clustered together.    

 Fig. 4  .    Partial identity score. Histogram performed on 462 artifi cial pairs 
(two different patients) of tumors and representation of the 22 natural 
(same patient) pairs of primary tumors (PT)/ipsilateral breast cancer 
(IBC). x-axis: partial identity score (the higher the score, the more likely 
the IBC is a true recurrence), y-axis: number of artifi cial pairs in  boxes . 
The  vertical dashed bar  represents the upper 5th percentile of the artifi -
cial pairs distribution and the threshold above which true recurrences 
were defi ned (rejection of the null hypothesis). Each  dot  represents one 
of the 22 natural pairs (its identifi er is written above it).    

 Fig. 2  .    Dendogram of hierarchical clustering by DNA copy number altera-
tions (Ward – Pearson) of 22 available pairs of primary tumors (TP) and 
their ipsilateral breast cancer (RL).  Boxes  represent natural pairs with a 
true recurrence, that is, a pair of tumors from one patient clustered 
together.    
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fi rst, that a true recurrence is the expression of clones that are 
resistant to adjuvant treatment and therefore could be more diffi -
cult to eradicate and, second, that it could be the tip of the iceberg, 
that is, distant metastases. Conversely, new primary tumors have a 
prognosis similar to de novo primary cancers but can also refl ect a 
genetic predisposition to develop breast cancer, in the contralat-
eral breast in particular. The clinical implication should therefore 
be to advocate the use of a systemic treatment in the case of true 
recurrences and the use of either chemoprevention, such as hor-
mone therapies ( 48  –  50 ) or screening with magnetic resonance 
imaging ( 51  –  53 ), for patients who are diagnosed with new primary 
tumors. Here, using breakpoint information led to a better dis-
crimination between new primary tumors and true recurrences in 
terms of metastasis-free prognosis than the clinical defi nition. 

 We also hope that a better distinction among ipsilateral breast 
cancers of tumors that are genetically related to their primary 
tumors, that is, true recurrences, will help reveal genetic differ-
ences that would provide new information on radioresistance and 
tumor aggressiveness. To date, little is known about the differen-
tial or similarity of the pangenomic expression or the nature of 
both new primary tumors and ipsilateral breast cancers. Kreike 
et al. ( 54 ) performed a gene expression analysis of 18   000 cDNAs in 
nine pairs of primary breast cancer with their ipsilateral breast 
recurrences among women who were younger than 51 years at the 
time of their initial breast-conserving therapy. Paired data analysis 
showed no set of genes that had consistently different levels of 
expression in primary tumors and local recurrences. Another route 
that has still scarcely been explored is the search for a biologic sig-
nature to predict the risk of local recurrence, especially after 
breast-conserving treatment ( 54  –  56 ). A better distinction between 
new primary tumors and true recurrences is needed to perform a 
supervised study based on the occurrence of true recurrences only 
and not of all ipsilateral breast cancers. 

 However, our scoring method, which is based on the DNA 
breakpoint partial identity, has two shortcomings. First, it suf-
fers from the need to conserve unaltered, freshly frozen tissue 
samples of both the primary tumor and the ipsilateral breast 
recurrence. This problem should, however, be resolved in time 
with the possibility of performing the same genomic studies on 
formalin-fi xed paraffi n-embedded tissue samples ( 57 – 61 ) or 
when cryoconservation of either biopsies or fi ne-needle aspira-
tions (because only 250 ng of DNA is needed, ie, less than 
50   000 cells) become standard practice and will make it possible 
to perform SNP arrays on many more patients. Second, it 
requires selecting tumors with a cancer cellularity of more than 
50%, discarding in the process a number of potentially analyz-
able tumors. This loss should be diminished in time with both 
a better selection of frozen tissue material due to the increased 
experience of the pathologist and the possibility of performing 
laser capture microdissection.    
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A critical function for transforming growth factor-b,
interleukin 23 and proinflammatory cytokines in
driving and modulating human TH-17 responses

Elisabetta Volpe1,2, Nicolas Servant3–5, Raphaël Zollinger1,2, Sofia I Bogiatzi1,2, Philippe Hupé3–6,
Emmanuel Barillot3–5 & Vassili Soumelis1,2

Interleukin 17 (IL-17)–producing T helper 17 cells (TH-17 cells) have been described as a T helper cell subset distinct from

T helper type 1 (TH1) and TH2 cells, with specific functions in antimicrobial defense and autoimmunity. The factors driving

human TH-17 differentiation remain controversial. Using a systematic approach combining experimental and computational

methods, we show here that transforming growth factor-b, interleukin 23 (IL-23) and proinflammatory cytokines (IL-1b and IL-6)

were all essential for human TH-17 differentiation. However, individual TH-17 cell–derived cytokines, such as IL-17, IL-21,

IL-22 and IL-6, as well as the global TH-17 cytokine profile, were differentially modulated by TH-17-promoting cytokines.

Transforming growth factor-b was critical, and its absence induced a shift from a TH-17 profile to a TH1-like profile. Our results

shed new light on the regulation of human TH-17 differentiation and provide a framework for the global analysis of

T helper responses.

Since the initial description of T helper type 1 (TH1) and TH2 cells1,
cytokines have seemed increasingly important for the induction,
regulation and function of distinct T helper subsets. In the TH1-TH2
paradigm, single cytokines such as interleukin 12 (IL-12) or IL-4
induce the differentiation of TH1 or TH2 cells, respectively2. Other
parameters, such as the dose of antigen or type of costimulation, are
able to modulate TH1 or TH2 responses2.

Another subset of T helper cells that produce IL-17 (TH-17 cells)
has been identified as being distinct from TH1 and TH2 cells3,4. TH-17
cells have specific functions in antimicrobial immunity5,6 and auto-
immune inflammation7–9. In mice, many cytokines are required and
act in a coordinated way to induce TH-17 differentiation, with a
critical function for transforming growth factor-b (TGF-b; A002271)
and IL-6 (refs. 8,10,11). IL-6 induces IL-21 production, which subse-
quently favors TH-17 differentiation in an autocrine way12–14. Mouse
TH-17 cells produce not only IL-17 but also IL-21 (ref. 15), IL-22
(ref. 16) and, in some cases, IL-10 (ref. 17). It is unclear at present
whether TH-17 cells can produce additional T helper cytokines and to
what extent the requirements for induction of these TH-17-associated
cytokines are similar. Understanding the regulation of the global
TH-17 cytokine profile is essential, as each T helper cytokine has
specific functions.

Characterizing the factors driving human TH-17 differentiation is of
particular interest because of the importance of TH-17 cells in health

and disease. Five independent reports have addressed this issue with
unexpectedly contradictory results. Three studies showed IL-1b18,
IL-23 (ref. 19) or polyclonal stimulation with antibody to CD3
(anti-CD3) and anti-CD28 (ref. 20) to be sufficient for the generation
of human TH-17 cells, in contrast to the many factors required in
mice. Two other studies were not able to differentiate naive CD4
T cells into TH-17 cells, even with conditions shown to be efficient in
mouse or human systems21,22. Finally, TGF-b, which has been shown
to be essential for mouse TH-17 differentiation, has been reported as a
negative regulator in humans18,19. Thus, the requirements for human
TH-17 differentiation remain controversial23. Here we show that
TGF-b, IL-23 and proinflammatory cytokines (IL-1b and IL-6) were
essential components of human TH-17 differentiation and expression
of IL-17A, IL-17F, the IL-23 receptor (IL-23R) and the transcription
factor RORgt. However, experimental and computational methods
showed that each TH-17-promoting cytokine had a specific function
in the regulation of the global TH-17 cytokine profile.

RESULTS

Driving IL-17 production

To define the cytokine requirements for the induction of human
TH-17 differentiation, we did a standard naive CD4 T cell differentia-
tion assay in the presence of polyclonal stimulation with anti-CD3 and
anti-CD28. We systematically tested all cytokines shown to be involved
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in the polarization of IL-17-producing cells in mouse systems. In the
first set of experiments, we independently considered TGF-b, IL-23
and proinflammatory cytokines (IL-1b, IL-6 and tumor necrosis
factor (TNF); Fig. 1a). None of these components individually was
sufficient to induce detectable IL-17 (Fig. 1a). A combination of these
three components, however, induced high production of IL-17
(Fig. 1a). IL-17 dropped to undetectable amounts in the absence of
proinflammatory cytokines and decreased by 70% in the absence of
TGF-b or IL-23 (Fig. 1a), which indicated that the three components
were required for optimal IL-17 production. We obtained similar
results with CD3+CD4+CD45RA+ peripheral blood naive T cells
obtained by negative or positive selection and with total CD4+

T cells from cord blood (data not shown).
In a second set of experiments, we addressed the function of

individual proinflammatory cytokines. In the presence of TGF-b and
IL-23, the removal of TNF had only a small effect on IL-17 production
(Fig. 1a). We obtained similar results in the presence or absence of
IL-1b and/or IL-6, which confirmed that TNF does not have a
substantial effect on IL-17 production (Supplementary Fig. 1 online),
contrary to what has been reported for mice11. The removal of IL-1b or
IL-6 induced a comparably substantial decrease (over 50%; Fig. 1b).
Any combination of one, two or three of the proinflammatory
cytokines was not sufficient to induce detectable IL-17 production in
the absence of TGF-b and IL-23 (Fig. 1b). T cell population expansion
on day 5 of culture was similar in all cytokine combinations, which
indicated that differences in cytokine production could not be attrib-
uted to insufficient expansion (Supplementary Fig. 2a,b online).

Intracellular cytokine staining confirmed that TGF-b, IL-23 and
proinflammatory cytokines induced a well defined IL-17-producing
cell population (Fig. 1c), which dropped by 70% in the absence of
TGF-b or IL-23. That paralleled the data obtained by enzyme-linked
immunosorbent assay (ELISA). The decrease in IL-17 was accompa-
nied by an increased cell population producing interferon-g (IFN-g),
up to threefold in the absence of TGF-b (Fig. 1c). IL-17-producing
cells did not make IFN-g; this distinguished them from TH1 cells,
which are generated in the presence of IL-12. We detected no
IL-17-producing cells among unpolarized T cells (TH0 cells) or in
TH1 conditions (Fig. 1c), which again confirmed the ELISA data
(Fig. 1a). Using the frequency of the IL-17-producing population,

we calculated an average production of 0.006 pg IL-17 per cell. That is
similar to the amount of IL-17 produced by in vitro–differentiated or
ex vivo memory TH-17 cells in other human studies (range, 0.001–
0.016 pg/cell)19,22.

Many endogenous factors present in the T cell cultures could have
possibly altered the cytokine requirements for IL-17 production, and it
was important to clarify their function in our system. First, we
addressed the effect of serum TGF-b, as we used medium containing
10% fetal calf serum for our experiments. When we added a TGF-b-
blocking monoclonal antibody to the complete TH-17 combination,
IL-17 decreased considerably, consistent with the inhibition of exo-
genous TGF-b (Supplementary Fig. 3a online). In the absence of
exogenous TGF-b, we noted a residual small amount of IL-17, which
was not significantly affected by monoclonal antibody to TGF-b
(P ¼ 0.5; Supplementary Fig. 3a). This indicated that endogenous
(serum) TGF-b had only a marginal function in our system. We also
did TGF-b ‘titration’, which confirmed that TGF-b acted positively to
regulate IL-17 production in a dose-dependent way (Supplementary
Fig. 3b). Second, we addressed the function of serum itself, which may
affect TH-17 differentiation independently of TGF-b. Although abso-
lute IL-17 production was higher in the absence of serum than in the
presence of serum, we found that the cytokine requirements and
regulation of IL-17 production were similar in these two types of
culture media (Supplementary Fig. 4 online); TGF-b, IL-23 and
proinflammatory cytokines were all required for IL-17 production.
We also addressed the function of endogenous IL-4 and IFN-g, two
cytokines described in the mouse to inhibit TH-17 differentiation4. We
repeated the same type of experiment in the presence of monoclonal
antibodies blocking IL-4 and IFN-g and found that the cytokine
requirements to induce IL-17 production were not affected (Supple-
mentary Fig. 4). In summary, none of endogenous factors tested
modified the cytokine requirements for the induction of IL-17 produc-
tion, and TGF-b invariably had a critical function independently of the
experimental system.

IL-17 production is associated with typical TH-17 features

To address whether IL-17 production was associated with the acquisi-
tion of typical features of TH-17 cells, we first measured mRNA
encoding various IL-17 family members. Optimal TH-17 conditions
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Figure 1 TGF-b, IL-23 and proinflammatory cytokines are required for the differentiation of human CD4+ TH-17

cells. (a,b) ELISA of IL-17 in supernatants of naive T cells differentiated for 5 d in the presence of anti-CD3

plus anti-CD28 and various combinations of TGF-b, IL-23 and proinflammatory cytokines (Infl; IL-1b, IL-6 and

TNF), measured after 24 h of restimulation with anti-CD3 plus anti-CD28. o10, concentration below 10 pg/ml.

*, P o 0.01; **, P o 0.001 (Wilcoxon test). Data (mean and s.e.m.) are representative of eight independent

experiments. (c) Flow cytometry of intracellular IL-17 and IFN-g in naive T cells stimulated in presence of

anti-CD3 plus anti-CD28 and various cytokines (above plots), assessed after 6 h of restimulation with anti-CD3 plus anti-CD28. TH0, no polarizing

cytokines; TH1, IL-12; Infl, IL-1b and IL-6 and TNF. Numbers in quadrants indicate percent IL-17+IFN-g– cells (top left), IL-17+IFN-g+ cells (top right)

or IL-17–IFN-g+ cells (bottom right). Data are from one experiment representative of five independent experiments.
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(TGF-b, IL-23 and proinflammatory cytokines) induced the most
mRNA encoding IL-17A and IL-17F (Fig. 2a), two cytokines asso-
ciated with TH-17 differentiation24. However, we did not detect
measurable amounts of other IL-17 family members, such as IL-17E
(IL-25), which is related more to TH2 responses25 (data not shown).
TGF-b and proinflammatory cytokines were also required for the
induction of IL-23R mRNA (Fig. 2a), another important character-
istic of TH-17 cells10,26.

The transcription factor RORgt has been shown to be critical for
mouse TH-17 differentiation26. To assess the relationship between
human RORgt expression and IL-17 production, we measured the
transcription of RORC, which encodes the human ortholog of mouse
RORgt. We quantified RORc mRNA in many optimal and suboptimal
TH-17-polarizing conditions, similar to those used above (Fig. 1a,b).
We noted a strong correlation between the amount of RORc transcript
and IL-17 transcript or protein (Fig. 2b), which indicated that RORc
expression was both a sensitive and specific marker of human TH-17
cells and suggested that RORgt could be involved in regulating the
production of human IL-17. IL-17F expression was less associated
with RORc than was IL-17A expression (Supplementary Fig. 5
online), which confirmed a published result obtained with mice27.
To directly address the function of RORgt in controlling IL-17
production, we used short-hairpin RNA (shRNA) to ‘knock down’
RORc expression. RORc-specific shRNA but not control shRNA
induced a decrease of about 50% in RORc mRNA expression
(Supplementary Fig. 6 online); this decrease was sufficient to inhibit
IL-17A mRNA and protein at all concentrations of shRNA tested
(Fig. 2c). The effect on IL-17F expression was weaker but was dose
dependent (Fig. 2c). Expression of the ‘housekeeping’ genes RPL34
(encoding ribosomal protein L34) and HPRT (encoding hypoxanthine
guanine phosphoribosyl transferase) was not affected by RORc-
specific or control shRNA (data not shown); expression of other
genes not reported before to depend on RORc, such as those encoding
IFN-g, TNF and IL-23R, was also not affected by shRNA treatment,

which indicated that the inhibition of IL-17 was specific (Supple-
mentary Fig. 6). Overall, our data show that a combination of TGF-b,
IL-23 and proinflammatory cytokines was both necessary and suffi-
cient to induce typical features of TH-17 differentiation.

Cytokine profiles of TH1, TH2 and TH-17 cells

We then defined the detailed TH-17 cytokine profile relative to that of
standard TH0, TH1 and TH2 subsets. TH1 differentiation was driven by
IL-12, TH2 differentiation was driven by IL-4, and TH0 differentiation
was driven by polyclonal stimulation (anti-CD3 plus anti-CD28) in
the absence of any polarizing cytokines (Fig. 3). We did not use
blocking monoclonal antibodies in any of these conditions to avoid
interfering with potential autocrine loops. We also assessed the
expression of transcription factors associated with each of the T
helper cell subsets. As expected, TH1 and TH2 conditions induced
the highest expression of the transcription factors T-bet and GATA-3,
respectively, and RORc was highly specific for TH-17 cells (Fig. 3a),
which confirmed data obtained with mice26. We measured the
expression of ten T helper cell–associated cytokines for the TH0,
TH1, TH2 and TH-17 subsets (Fig. 3b). IL-17 and IL-6 were the
most specific for TH-17 and were either absent or produced in very
small amounts in TH1 and TH2 conditions; a second set of cytokines,
IL-21, IL-22, TNF and IFN-g, could be detected in TH-17 and TH1
conditions and, notably, IL-21 and IL-22 had similar or higher
expression in TH1 conditions versus TH-17 conditions; and a third
set of cytokines, IL-10, IL-4, IL-5 and IL-13, was produced mainly in
TH2 conditions. Thus, TH-17 conditions induced the production of
many cytokines in addition to IL-17.

Differential regulation of individual TH-17 cell–derived cytokines

How IL-17-promoting cytokines regulate the production of diverse
TH-17-associated cytokines is not known. To address that issue, we
measured T helper cell cytokines in the presence or absence of
individual TH-17-promoting cytokines. As shown before (Fig. 1a,b),
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Figure 2 TGF-b, IL-23 and proinflammatory cytokines induce typical TH-17 features. (a) RT-PCR analysis of the expression of RORc, IL-17A, IL-17F and

IL-23R mRNA in naive CD4+ T cells differentiated in vitro for 5 d in presence of anti-CD3 plus anti-CD28 and various cytokine combinations (below graphs),

followed by 24 h of restimulation with anti-CD3 plus anti-CD28. Cycling threshold values are normalized to those of mRNA encoding ribosomal protein

L34, and data are normalized to the maximum value obtained for each donor. Data are the mean and s.e.m. of three independent experiments. (b) IL-17A

transcript and IL-17 protein from cells cultured in the presence of TH-17-inducing cytokines (IL-1b, IL-6, TNF, TGF-b and IL-23) or in the absence of

individual components of that group, correlated to RORc transcripts with the Pearson correlation (R, correlation coefficient). Data are representative of six

experiments. (c) RT-PCR of IL-17A and IL-17F mRNA and ELISA of IL-17 protein in naive T cells cultured in serum-free medium and infected with various
dilutions (below graphs) of supernatants containing shRNA-expressing lentiviral vector specific for RORc (shRORc) or empty vector (Mock; negative control)

during the first day of TH-17 differentiation, then washed extensively and cultured for additional 5 d in TH0 or TH-17 conditions and analyzed after 24 h of

restimulation with anti-CD3 plus anti-CD28. TH0, no polarizing cytokines; TH-17, IL-1b, IL-6, TNF, TGF-b and IL-23. Data are the mean and s.e.m. of three

independent experiments.
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removal of any of the five TH-17-promoting cytokines, except for TNF,
decreased the production of IL-17 by over 50% (Fig. 4). Notably, each
TH-17-associated cytokine was regulated in a specific way: IL-22 was
generally stable, even in the absence of critical TH-17-inducing
cytokines such as IL-1b, IL-6 and IL-23, and the removal of TGF-b
induced a significant increase in IL-22 pro-
duction, which indicated that IL-17 and
IL-22 were differentially regulated by TGF-b
(Fig. 4). IL-21, shown before to be an impor-
tant autocrine factor in the induction of
mouse TH-17 differentiation12,13, was speci-
fically dependent on IL-23 (Fig. 4 and Sup-
plementary Fig. 7 online). Notably, although
TH-17 conditions induced only low produc-
tion of IL-10, this production was higher in
the absence of IL-1b (Fig. 4). We obtained an
opposite result with IFN-g, which indicated
that IL-1b differentially regulated IL-10 and
IFN-g. Finally, IL-6 production was mostly
dependent on TGF-b and IL-23, a regulation
that is more closely related to that of IL-17.
Overall, each TH-17-associated cytokine was
regulated in a specific way. This suggested
that individual TH-17-promoting cytokines
might not only control the amount of IL-17
produced but also modulate quantitatively
and qualitatively the global T helper cytokine
profile, potentially inducing a shift in the
type of T cell response.

TH-17 profile modulated by cytokines

To test the hypothesis that TH-17-promoting
cytokines might drive or modulate the global
T helper cytokine profile, we measured all ten
T helper cytokines in control T helper cell

conditions (TH0, TH1 and TH2), in ‘optimal’ TH-17 conditions and
after the removal of individual TH-17-promoting cytokines (Fig. 5a).
We obtained complete data sets (ten cytokines in nine polarizing
conditions) from six independent experiments. To allow for compar-
ison among profiles, we normalized values obtained for each cytokine
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Figure 3 The TH-17 cytokine profile has specific features but also features that overlap with those of other T helper cell–polarizing conditions. (a) RT-PCR

analysis of the expression of T-bet, RORc and GATA-3 mRNA in naive T cells differentiated with anti-CD3 plus anti-CD28 in TH0, TH1, TH2 or TH-17

conditions and then restimulated for 24 h with anti-CD3 plus anti-CD28. Cycling threshold values are normalized to those of L34. Data are the mean and

s.e.m. of three independent experiments. (b) Cytometric bead assay or ELISA of IL-17, IL-21, IL-22, IL-4, IL-5, IL-6, IL-10, IL-13, IFN-g and TNF in

culture supernatants of naive T cells differentiated in TH0, TH1, TH2 or TH-17 conditions and then restimulated for 24 h with anti-CD3 plus anti-CD28. TH0,
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Figure 4 TH-17 cell–derived cytokines are differentially regulated by TH-17-promoting cytokines. ELISA

and/or cytometric bead assay of IL-17, IL-6, IL-21, IL-22, IL-10 and IFN-g in supernatants of naive
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Data are the mean and s.e.m. of seven independent experiments.
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to the maximum value obtained for that cytokine across the whole
data set for each donor (Fig. 5a). Three cytokine sets characterized
each profile: IL-10, IL-4, IL-5 and IL-13 were highest in TH2 condi-
tions; IFN-g and IL-22 were highest in TH1 conditions; and IL-17, IL-6
and TNF were highest in TH-17 conditions. IL-21 was similarly high in
TH1 and TH-17 conditions (Fig. 5a). Overall, the TH-17 profile was
distinct from those of TH1 and TH2. The analysis of cytokine profiles
generated in the absence of each TH-17-promoting factor identified a
notable diversity. It became apparent that each of these cytokines not
only controlled IL-17 production but induced substantial changes in
the global TH-17 cytokine profile. For example, removing IL-1b
decreased IL-17 and IFN-g and increased IL-10; removing TGF-b
induced a decrease in the entire TH-17 ‘cluster’ and an increase in the
TH1 ‘cluster’; and removing IL-23 decreased the TH-17 sets without
any substantial change in the other cytokines (Fig. 5a).

We sought to determine whether the profiles generated in sub-
optimal TH-17 priming conditions (through the removal of individual
TH-17-promoting cytokines) represented new T helper cell profiles or
whether they were related to any of the standard TH1, TH2 or TH-17
profiles. Computational methods were necessary because of the
complexity of the data. We used cluster analysis as an exploratory
tool to identify similarities among all the profiles (Fig. 5b). The
agglomerative coefficient of 0.85 obtained indicated that the clustering
allowed the separation of samples into clusters of conditions. The
resampling similarity index of 0.093 reflected highly robust clusters
and suggested high statistical significance. The standard T helper
conditions showed that the TH1, TH2 and TH-17 conditions segregated

into different clusters, which confirmed their distinct cytokine profiles.
The TH0 condition segregated with the TH2 condition, probably
because of the baseline production of small amounts of TH2 cytokines
in the absence of TH1 and TH-17 cytokines (Fig. 3b). Among the
suboptimal TH-17 conditions, the removal of TNF induced only a
minor change in the profile, which clustered with the optimal TH-17
condition. Notably, the removal of TGF-b induced a shift in the
profile, which clustered with the TH1 condition; the removal of IL-1b,
IL-6 or IL-23 induced profiles with no distinct similarity to the TH1,
TH2 or TH-17 conditions (Fig. 5b).

We used principal component analysis to complement the cluster
analysis and applied this to the average cytokine values obtained for
the six donors for each T helper condition (Fig. 5c). This analysis can
be viewed as a simplification of the data projected along two axes (the
two principal components) that best represented the entire data set
and preserved maximum dispersion of the data28. We projected the T
helper cell profiles generated in each polarizing condition onto this
two-dimensional space (Fig. 5c). Each polarizing condition presented
in this way was thus a simplified representation of the cytokine
profiles shown for the same polarizing conditions described above
(Fig. 5a). The two principal components enabled good discrimination
among the TH0, TH1, TH2 and TH-17 profiles, which confirmed that
they represented distinct entities (Fig. 5c). The removal of TNF
induced the smallest deviation from the TH-17 profile; in the absence
of TGF-b, the remaining IL-23 and proinflammatory cytokines
induced a profile that was more closely related to that of TH1,
which was ‘converted’ to a TH-17 profile in the presence of TGF-b.
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Figure 5 IL-23 and proinflammatory cytokines induce a TH1-like

profile that ‘converts’ to a TH-17 profile after the addition of TGF-b.

(a) ELISA and/or cytometric bead assay of cytokine production by

differentiated T cells in TH1, TH2, TH-17 and suboptimal TH-17

conditions (absence of individual TH-17-promoting cytokines).

Cytokine amounts are normalized to the maximum value obtained

for that cytokine across the entire data set for each donor. Open

bars, highest expression in TH2 conditions; filled bars, highest

expression in TH1 conditions; light gray bars, highest expression in

TH-17 conditions; dark gray bars, similarly high expression in TH1

and TH-17 conditions. Data are the mean and s.e.m. of six

independent experiments. (b) Cluster analysis of the data in a by

Pearson correlation distance. Culture conditions are separated into
clusters by comparison of their linkage distance. Agglomerative

coefficient, 0.85 (reflects data structure; values near 1 indicate well separated clusters); resampling similarity index, 0.093 (values near 0 indicate a robust

cluster). (c) Principal component analysis of the data in a. T helper conditions (ovals) are positioned in a space defined by the principal components 1 and

2, which are the two ‘best’ axes representing the entire data set. Black ovals, TH0, TH1, TH2 and TH-17 profiles; gray ovals, removal of cytokines from the

TH-17 conditions. Red arrows indicate T helper cell–derived cytokines that contribute to the differences among culture conditions. The direction and

length of such vectors indicate the importance of each T helper cytokine in discriminating the T helper profiles (Supplementary Methods online).
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The cytokine vectors indicated the importance of the individual T
helper cell–derived cytokines in the discrimination of the different T
helper profiles according to the length and direction of the vector
(Fig. 5c). For example, the IL-4 and IFN-g vectors pointed in opposite
directions, which indicated that they were inversely correlated.
Accordingly, the TH2 profile was determined not only by IL-4 but
also by the lack of IFN-g (opposite vector). The TH1-like profile
induced in the absence of TGF-b ‘segregated away’ from TH-17 along
the second principal component. According to the cytokine vectors,
the presence of IFN-g and IL-22, along with the decreased IL-17 and
IL-6, explained the separation of these two profiles (Fig. 5c). Similarly,
IL-10, along with smaller amounts of IL-17 and IL-6, explained the
separation between the TH-17 profile and the TH-17 profile without
IL-1b. Our computational analysis of the global T helper profiles thus
demonstrated that the removal of individual TH-17-promoting cyto-
kines generated a diversity of distinct T helper cytokine profiles.
Although TNF had a small effect on the global TH-17 profile, the
removal of TGF-b induced substantial changes and a shift toward a
TH1-like profile.

DISCUSSION

Here we have shown that TGF-b, IL-23 and proinflammatory cyto-
kines were essential in driving and regulating four key aspects of
human TH-17 differentiation: IL-17 production; the acquisition of TH-
17-specific features; individual TH-17-derived cytokines; and the
global TH-17 cytokine profile. The TH-17 pathway has been linked
to the pathogenesis of several autoimmune diseases, including psori-
asis29, experimental allergic encephalomyelitis9, arthritis7 and colitis30.
It is also crucial in immunity to mycobacteria31 and Candida albicans6.
In mice, several studies have shown that TGF-b and IL-6 are essential
in driving TH-17 differentiation8,10,11, with regulatory T cells as a
potential source of TGF-b11. This indicates that proinflammatory
cytokines in the absence of TGF-b are not sufficient to induce a TH-17
response, which gives a central function to TGF-b in the generation of
both regulatory T cells and TH-17 cells. Two studies in human systems
have questioned the importance of TGF-b, showing that IL-1b18 or
IL-23 (ref. 19) is sufficient to induce TH-17 differentiation and that
TGF-b negatively regulates this response18,19. Those studies18,19 used
much longer T cell assays than the mouse studies8,10,11 and detected
substantial IL-17 production in control medium18 or IL-2 alone19,
which suggests that T cells might have less stringent requirements for
IL-17 production. In our study, although we obtained a lower yield in
IL-17-producing cells, we did not find measurable IL-17 in the absence
of polarizing cytokines (TH0) either by ELISA or by intracellular flow
cytometry. This suggests that the standard 5-day T cell assay is less
sensitive but more specific than systems with longer culture duration.
In these conditions, we found that TGF-b was required for
optimal human TH-17 differentiation and the acquisition of typical
TH-17-associated features, such as expression of IL-17A, IL-17F,
IL-23R and RORc.

Other factors that might explain the discrepancies among human
TH-17 studies18–22 include the following: the cytokine combinations
used, which do not always overlap18,19,22; the use of exogenous IL-2,
which produces population expansion of differentiated TH-17
cells18,32; and the use of monoclonal antibody blocking IL-4 and/or
IFN-g18,33, two cytokines that inhibit mouse TH-17 differentiation4.
The differences might also be due to the serum added to the culture
medium, which usually contains TGF-b and may also affect TH-17
differentiation in a TGF-b-independent way. Because of the
many experimental parameters that could potentially affect TH-17
differentiation, we confirmed our basic findings in six different

systems: CD3+CD4+CD45RA+ peripheral blood naive T cells purified
by positive or negative selection; total cord blood CD4 T cells; serum-
containing medium; serum-containing medium and monoclonal
antibody blocking TGF-b; serum-free medium; and serum-free med-
ium and monoclonal antibody blocking IL-4 and IFN-g. Although the
absolute amount of IL-17 varied, the cytokine requirements to induce
optimal IL-17 production in each of these experimental systems
were similar.

Another important issue that remains controversial is the function
of IL-23, a cytokine of the IL-12 family associated with TH-17
responses34. In mice, IL-23 acts on IL-23R-expressing differentiated
TH-17 cells to induce their population expansion in vitro11 and
in vivo35 but does not influence TH-17 differentiation10,11. In humans,
IL-23 is sufficient for TH-17 differentiation19. Our data have con-
firmed an important function for IL-23 in human TH-17 differentia-
tion but only in synergy with TGF-b and proinflammatory cytokines,
which were essential for inducing IL-23R expression.

Studies have shown that human and mouse TH-17 cells can produce
IL-22 (refs. 16,18). However, IL-22 is also produced by polyclonally
stimulated naive CD4+ cells36 and TH1 cells37 and is inhibited by
TH-17-inducing conditions in memory CD4+ T cells20. Our study has
provided further evidence that IL-22 is not specific for TH-17 cells and
could have even higher production by TH1 cells. This could explain
the different functions of IL-17 and IL-22 in inflammatory responses38

and autoimmune diseases39.
In mice, IL-21 is dependent on IL-6 (refs. 12,23) and is produced in

TH-17 conditions but not in TH1 or TH2 conditions13,15. In contrast,
we have shown that human IL-21 was produced in TH1-polarizing
conditions as well as TH-17-polarizing conditions and that its produc-
tion depended on IL-23. Given those results and our data on IL-23R
expression, we can infer a sequence wherein TGF-b and proinflam-
matory cytokines induce IL-23R, which enables IL-23 to induce IL-21
production in a second step. The production of IL-21 during TH-17
responses might enhance B cell immunity40, which is involved in the
physiopathology of autoimmune diseases such as lupus erythematosus
and multiple sclerosis.

IL-10 is produced by mouse TH-17 cells driven by TGF-b and IL-6
and confers regulatory functions on them17. Our results suggest that in
humans, the presence of IL-1b in a TH-17 environment could inhibit
IL-10 production. During the resolution of inflammation, a decrease in
or lack of IL-1b may simultaneously decrease the production of IL-17
and enhance the production of IL-10, which would further favor
immune contraction through its anti-inflammatory properties41.

Studies of TH1 and TH2 cells have shown that T helper subsets can
produce a broader array of cytokines than initially described and that
some T cell cytokines have limited specificity for a given T helper
subset but are potentially associated with important functional proper-
ties, such as proinflammatory, for TNF42, or regulatory, for IL-10
(refs. 43–45). Thus, focusing on a single T helper cell–derived cytokine,
such as IFN-g for TH1 cells or IL-4 for TH2 cells, gives only a partial
view of a complex T helper cell response. Here we have shown that
optimal TH-17-polarizing conditions also drove the production of an
array of cytokines, including IL-21, IL-22, IL-6, TNF and IFN-g.
Although each of these cytokines has different functions, they could
collectively affect the global outcome of a TH-17 response. Most
notably, we have also shown that TH-17 cell–derived cytokines were
regulated in a specific way. We speculate that in vivo, priming of naive
T cells might occur in optimal but also suboptimal polarizing condi-
tions, depending on spatiotemporal factors. Each polarizing environ-
ment might induce a different T helper cytokine profile, contributing
to the diversity and regulation of an immune response. In our in vitro
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model, proinflammatory cytokines and IL-23 polarized CD4 T cells
toward a TH1-like profile, so they produced mainly IFN-g, IL-21 and
IL-22. The addition of TGF-b in such an environment, which could
mimic the onset of TGF-b-producing regulatory T cells, induced a
switch toward a typical TH-17 profile. It has been reported that TGF-b
‘antagonizes’ TH1 responses by inhibiting expression of IFN-g as well as
of T-bet46,47. We have shown that TGF-b might act in a more global
way and was able to convert a TH1-like profile into a TH-17 response.

To our knowledge, this is the first study to analyze global T helper
cell cytokine profiles with computational approaches. This could open
new perspectives for the pharmacological modulation of T helper
responses and could help elucidate and/or allow the prediction of the
outcome of a specific therapeutic intervention. Applied to the TH-17
cytokine profile, our data could help identify and target pathogenic
components while preserving or enhancing protective aspects in the
same T helper response.

METHODS
Purification of naive CD4+ T lymphocytes from adult blood. Peripheral

blood mononuclear cells were separated by Ficoll-Hypaque centrifugation

(Amersham Biosciences) from buffy coats obtained from samples from

healthy blood donors (Saint Antoine-Crozatier Blood Bank, Paris). CD4+

T Lymphocytes were purified by immunomagnetic depletion with the

human CD4+ T Cell Isolation Kit II (Miltenyi Biotec), with the addition

of biotinylated anti-CD45RO (C2400-67; USBiological). Naive CD4+ T cells

(CD3+CD4+CD45RA+CD45RO–) had a purity of over 96%, as shown by flow

cytometry (Supplementary Fig. 8 online). For some experiments, peripheral

blood naive CD4+ T cells were isolated with the CD4+ T Cell Isolation Kit II

(Miltenyi Biotec), followed by staining with allophycocyanin–anti-CD4 (VIT4;

Miltenyi Biotec) and phycoerythrin–anti–CD45RA (PNIM1834; Immunotech)

and cell sorting of double-positive cells (purity, over 99%) with a FACSAria (BD

Bioscience). Human cord blood was obtained by an ethically approved

convention (Necker Hospital, Paris), and total CD4+ T cells were purified with

the CD4+ T Cell Isolation Kit II (Miltenyi Biotec).

T helper cell differentiation assay. Naive CD4+ T cells were cultured in 48-well

plates (Falcon) at a density of 8 � 104 cells per well in Yssel’s medium (a gift

from H. Yssel) containing 10% (vol/vol) FCS (Hyclone) or X-VIVO 15 serum-

free medium (Lonza) in presence of Dynabeads CD3/CD28 T Cell Expander

(one bead per cell; Invitrogen) and the following cytokines: IL-1b (10 ng/ml),

IL-6 (20 ng/ml), TNF (10 ng/ml), TGF-b (1 ng/ml), IL-23 (100 ng/ml), IL-4

(25 ng/ml) and/or IL-12 (10 ng/ml; R&D Systems). For some experiments,

anti-TGF-b (human LAP; 27235; R&D Systems), anti-IFN-g (B27; BD Bio-

sciences) and/or anti-IL-4 (34019; R&D Systems) were added to the cultures at

a concentration of 10 mg/ml. For interference with RORc function, in some

experiments lentiviral vectors were used that contained a plasmid encoding

shRNA selected for its ability to suppress RORc mRNA expression (33658;

Open Biosystems) or empty pLKO.1 vector (Open Biosystems), generated as

described48. After 5–6 d, cells were collected and washed extensively and their

viability was determined by trypan blue exclusion. Cells (1 � 106 cells/ml) were

restimulated for 6 h (for flow cytometry intracellular staining) or for 24 h (for

ELISA and RT-PCR) with Dynabeads CD3/CD28 T Cell Expander (one bead

per cell). For shRNA experiments, naive T cells were cultured in serum-free

medium at a density of 1 � 105 cells per well in 96-well round-bottomed plates

and were infected with various concentrations of lentiviral vector expressing

shRNA or with empty vector (negative control) for the first day of TH-17

differentiation. Cells were washed extensively and were cultured for an addi-

tional 5 d in TH0 or TH-17 conditions. IL-17A and IL-17F transcripts and IL-17

protein were analyzed after 24 h of restimulation with anti-CD3 and anti-CD28.

Analysis of cytokine production. Cytokines in culture supernatants were

measured by IL-17 ELISA (R&D Systems), IL-21 ELISA (eBioscience) or

IL-22 ELISA (Antigenix) or with IL-4, IL-5, IL-6, IL-10, IL-13, IFN-g or

TNF cytometric bead assay Flex Sets (BD Bioscience) according to the

manufacturer’s instructions. Cells producing IFN-g and IL-17 were analyzed

by intracellular cytokine staining after the addition of brefeldin (10 mg/ml)

during the final 3 h of restimulation. Cells were made permeable with Cytofix/

Cytoperm reagents (BD Biosciences). Cells were stained with fluorescein

isothiocyanate–conjugated anti-IFN-g (4S.B3; BD Pharmingen) and phyco-

erythrin-conjugated anti-IL-17 (eBio 64DEC17; eBioscience) and washed and

then were analyzed by flow cytometry (FACScan; Becton Dickinson).

Real-time quantitative RT-PCR. Total RNA was extracted with an RNeasy

Micro kit (Qiagen). A mixture containing random hexamers, oligo(dT)15

(Promega) and SuperScript II Reverse Transcriptase (Invitrogen) was used

for cDNA synthesis. Transcripts were quantified by real-time quantitative

PCR on an ABI PRISM 7900 sequence detector (Applied Biosystems)

with Applied Biosystems predesigned TaqMan Gene Expression Assays and

Absolute QPCR ROX mix (Thermo Fisher Scientific). The following probes

were used (Applied Biosystems assay identification numbers in parentheses):

IL-17A (Hs00174383_m1), IL-17F (Hs00369400_m1), RORc (Hs01076112_m1),

IL-23R (Hs00332759_m1), T-bet (Hs00203436_m1), GATA-3 (Hs00231122),

TNF (Hs 00174128_m1) and IFN-g (Hs00174143_m1). For each sample,

mRNA abundance was normalized to the amount of ribosomal protein L34

(Hs00241560_m1).

Statistical analysis. A nonparametric two-tailed Wilcoxon test was used for

pairwise comparisons of cytokines. P values of 0.05 or less were considered

statistically significant. The Pearson correlation coefficient was used to assess

the significance of correlation among IL-17A, IL-17F mRNA or IL-17 protein

and RORc. Data for the clustering and principal component analysis (Supple-

mentary Methods online) were corrected for the ‘donor effect’ through the

application of a linear model. For information summaries, replicates were

aggregated in each condition to their barycentric value for each cytokine and

the principal component analysis was computed with these variables. The

Pearson correlation distance and the Ward’s criteria as an agglomerative

method were used for hierarchical clustering analysis.

Accession code. UCSD-Nature Signaling Gateway (http://www.signaling-

gateway.org): A002271.

Note: Supplementary information is available on the Nature Immunology website.
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ACTuDB, a new database for the integrated analysis of array-CGH and

clinical data for tumors
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In recent years, an increasing number of projects have
investigated tumor genome structure, using microarray-
based techniques like array comparative genomic hybri-
dization (array-CGH) or single nucleotide polymorphism
(SNP) arrays. The forthcoming studies have to integrate
these former results and compare their findings to the
existing sets of copy number data for validation. These
sets also form the basis from which many comparative
retrospective analyses can be carried out. Nevertheless,
exploitation of this mass of data relies on a homogeneous
preparation of copy number data, which will make it
possible to compare them together, and their integration
into a unified bioinformatics environment with ad hoc
analysis tools and interfaces. To our knowledge, no such
data integration has been proposed yet. Therefore the
biologists and clinicians involved in cancer research
urgently need such an integrative tool, which motivated
us to undertake the construction of a database for array-
CGH and other DNA copy number data for tumors
(ACTuDB). When available, the associated clinical,
transcriptome and loss of heterozygosity data were also
integrated into ACTuDB. ACTuDB contains currently
about 1500 genomic profiles for tumors and cell lines for
the bladder, brain, breast, colon, liver, lymphoma,
neuroblastoma, mouth and pancreas, together with data
for replication timing experiments. The CGH array data
were processed, using ad hoc algorithms (probe mapping,
breakpoint detection, gain or loss status assignment and
visualization) developed at Institut Curie. The database is
available from http://bioinfo.curie.fr/actudb/ and can be
browsed with a user-friendly interface. This database will
be a useful resource for the genomic profiling of tumors, a
field of highly active research. We invite research groups
involved in tumor genome profiling to submit their data to
ACTuDB.
Oncogene (2007) 26, 6641–6652; doi:10.1038/sj.onc.1210488;
published online 14 May 2007

Keywords: DNA copy number; database; tumors;
bioinformatics platform; molecular profiles; clinical data

Introduction

Genome alterations are a hallmark of cancer (Albertson
et al., 2003; Pinkel and Albertson, 2005). Several
microarray-based techniques can be used to identify
copy number changes in the genome at an unprece-
dented high resolution, from the megabase range down
to a few tens of kilobases. These techniques include
array comparative genomic hybridization (array-CGH),
the use of cDNA arrays or oligonucleotide arrays and
single nucleotide polymorphism (SNP) arrays (see
Ylstra et al., 2006 for a review of the various platforms).
The identification of genome alterations is useful in
several ways. First, the characterization of these copy
number changes can provide insight into tumor pro-
gression mechanisms. Second, this method can be used
to identify genes involved in tumor progression: tumor
suppressor genes and oncogenes are thought to be
located in regions of loss and gain, respectively. Finally,
variation in genomic alterations could be used to classify
tumors molecularly, facilitating the diagnosis of new
patients and assessments of their prognosis.

Many studies have been carried out on bladder cancer
(Veltman et al., 2003; Blaveri et al., 2005; Stransky et al.,
2006), brain cancer (Bredel et al., 2005; Kotliarov et al.,
2006), breast cancer (Pollack et al., 2002; Fridlyand
et al., 2006), colon cancer (Douglas et al., 2004; Nakao
et al., 2004), liver cancer (Patil et al., 2005), lymphoma
(de Leeuw et al., 2004), neuroblastoma (Janoueix-
Lerosey et al., 2005; Mosse et al., 2005), mouth cancer
(Snijders et al., 2005), pancreas cancer (Gysin et al.,
2005) and replication timing (Woodfine et al., 2004;
Janoueix-Lerosey et al., 2005). Comparisons of the
results of experiments from different laboratories, on
different types of cancer, are required to validate results
or hypotheses and to improve our understanding of the
recurrent alterations involved in cancer. To our know-
ledge, no database allows today comparison in a
rigorous way, that is no database have solved the
question yet of how to make heterogeneous array copy
number data comparable. We have, therefore, defined
and carried out a protocol for homogeneous pretreat-
ment of DNA copy number data and integration into
ACTuDB (Array CGH Tumor DataBase) – a database
compiling published array-CGH datasets that can be
used for the browsing, visualization and analysis of
tumor profiles via a user-friendly interface. In the
Results section, the user interface, several analysis
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scenarios and meta-analyses are described. We then
describe in the Materials and Methods section the
various datasets available in ACTuDB and present how
these data have been analysed with our algorithms to
allow direct comparisons.

Results

Access and data analysis
Data browsing in ACTuDB is based on VAMP software
(La Rosa et al., 2006). VAMP is a graphical user
interface for the visualization and analysis of array-
CGH, transcriptome and other molecular profiles. We
describe below the way in which data are organized,
visualized and queried.

Data organization. Datasets are stored as ‘projects’
under the name of the first author and the year of
publication. Within a project, the user can access the
data either in ‘Chromosome’ mode (only the data for
one particular chromosome are loaded) or in ‘Genomic’

mode (the profiles for all the concatenated chromosomes
are loaded). The database loads and compares data
from different projects, possibly corresponding to
different array technologies or with different array
designs.

Data visualization. VAMP software offers several
possibilities for visualization, for example, the classical
CGH karyotype view (see Figure 1) and genome-wide
multitumor comparison views (see Figures 2–5) are
available, facilitating the comparison of different arrays.
Additional information for each clone or DNA region
can be retrieved interactively from various public
databases, through external links (NCBI, UCSC,
Ensembl). We advise the reader to refer to the VAMP
documentation available at the following URL: http://
bioinfo.curie.fr/vamp/doc.

Transverse analysis of array-CGH experiments
Users can easily carry out transverse analyses for a set of
tumors from one or several projects. We present here
three scenarios of potential interest to biologists.

Figure 1 The classical karyotype view (dataset from Patil et al., 2005).
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Finding informative genomic regions. The identification
of systemic alterations within a set of tumors is central
to the analysis of CGH array data for two reasons.
First, it can pinpoint new candidate genes, as tumor
suppressor genes and oncogenes are thought to be
present in regions of loss and gain, respectively. Second,
some alterations may be significantly correlated with
clinical phenotype and may therefore be useful for
diagnosis and prognosis. The simplest way to identify
informative regions is to work at the probe level. For
each probe, the fraction of tumors with gains and losses
over the dataset is displayed in the FrAGL view (see
Figure 6). Instead of looking for individual probes
carrying genome alterations, it is often fruitful to

consider the geography of the genome and to look for
whole regions. Rouveirol et al. (2006) have described
algorithms for this analysis (see Figure 4), and defined
two categories of regions, included in ACTuDB:

� Minimal regions of gain (or loss) correspond to the
intersection for all tumors of the gained (or lost)
regions. These regions are minimal, in that no
breakpoint evidence is available to narrow the region
further.

� Recurrent regions of gain (or loss) are defined as
regions gained (or lost), with the same extremities
(breakpoint positions), in a sufficient number of
tumors.

Figure 2 Genome-wide multitumor comparison views. The results of the GLAD algorithm can also be displayed: the black line
corresponds to the smoothing value, breakpoints are shown as vertical red dashed lines and outliers are circled in black (dataset from
Blaveri et al., 2005).
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Identification of new subgroups of tumors. Class dis-
covery is a central objective of genomic studies.
ACTuDB facilitates such analyses, through hierarchical
clustering: different object and cluster distances (Eu-
clidean, Pearson correlation, Manhattan; Ward, Single
linkage, Complete linkage, Group Average) for log-
ratios, status or smoothing values (the smoothing value
of a region is the signal statistically inferred from the
signals for all its probes by the GLAD algorithm; the
status of a region is loss, normal, gain or amplicon, and
is also assessed by GLAD). It is also possible to cluster
the data based on the minimal/recurrent regions of
alteration described above or on user-defined regions.
The use of region status rather than information for all
probes has two advantages. It eliminates redundancy
between contiguous probes and gives the same weighting
to each region, which is important because very small
regions (such as amplicons) may be highly relevant for
diagnosis/prognosis. This approach also makes it easy
to provide a biological interpretation for clustering, as it
is generally based on less than a hundred regions rather
than thousands of probes. It should be noted that if

users wish to cluster data from different projects with
different designs, the only way to do this is to make use
of regions.

Comparison of array-CGH and transcriptome data. Such
comparisons are possible when the available transcrip-
tome profiles have been integrated into the database. This
is the case for the dataset of Pollack et al. (2002), Patil
et al. (2005) and Stransky et al. (2006). The user can
investigate whether gene expression displays particular
alterations. Typically, the biologist will search for genes
overexpressed in amplified regions or underexpressed in
lost regions (see Figure 7).

Comparison of array-CGH and loss of heterozygosity
data. In the dataset of Kotliarov et al. (2006), both the
copy number and loss of heterozygosity (LOH) have
been studied with the Affymetrix GeneChips Human
Mapping 100K SetS. In Figure 8, displayed are the
DNA copy number profiles for chromosomes 10 and 13,
and corresponding LOH profiles for sample HF0505

Figure 3 Dotplot view (dataset from Blaveri et al., 2005).
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Xba. For chromosome 10 the DNA copy number is
diploid, whereas the LOH profile gives a strong evidence
of loss of heterozigosity; this leads to the conclusion that
chromosome 10 is isodisomic. For chromosome 13,
LOH profile confirms the loss region identified on the
DNA copy number profile.

Meta-analysis examples
We present here two meta-analyses examples on colon
and bladder cancer. The detailed guidelines to
perform these analyses are available as Supplementary
Information.

Comparison of the frequency of alterations in two colon
datasets. For each probe, the fraction of tumors with
gains and losses over the Nakao et al. (2004) dataset and
the Douglas et al. (2004) dataset has been computed

separately and displayed in a FrAGL view (see
Supplementary Information for details – colon-meta-
analysis.pdf file). The results show similar pattern
between the two datasets: similar frequency are observed
for gains of chromosomes 20 (>65%), 8q (B40%),
losses of chromosomes 8p (>40%) and 18q (>60%).
The chromosome 13 gain tends to be more frequent in
Douglas et al. (2004) (B60%) than in Nakao et al.
(2004) (B35%).

Amplicon in bladder cancer. The minimal amplified
regions have been identified for the three bladder cancer
datasets (Veltman et al., 2003; Blaveri et al., 2005;
Stransky et al., 2006) (see Supplementary Information
for details – bladder-meta-analysis.pdf file). Amplicons
are located at 6p22, 8q22-q23, 11q13 and are present in
the three datasets. The gene list within the regions is

Figure 4 Example of informative genomic regions for 37 colorectal cancers from Douglas et al. (2004). Genome alterations already
reported by Douglas et al. (2004) were identified by our software (alterations are represented by vertical bandings ranging from dark to
light pink for gain regions, dark to light green for loss regions and blue for amplified regions – amplicons are arbitrarily defined here as
regions with log2-ratio>2). These alterations include gain of chromosomes 20, 13, 8q and loss of 8p, 18q or 17q11.2-q12 amplification
as reported by Douglas et al. (2004), gain of chromosome 7p and loss of chromosomes 4, 14q, 15q, 17p, 21q and 22q. The left panel
shows the alterations identified on chromosome 8 with respect to cytogenetic banding.
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given as Supplementary Information (gene-list.pdf file);
among them we can mention some of them involved in
human tumors: E2F3, CDKAL1, SOX4 on chromo-
some 6, COX6C on chromosome 8 and CCND1 on
chromosome 11. We then focus on the chromosome 6
analysis using only the Stransky et al. (2006) dataset to
compare the genome alterations with respect to gene
expression level. E2F3 gene expression was found to
be highly correlated with DNA copy number level
(correlation¼ 0.88). This correlation was already
reported by Hurst et al. (2004).

Discussion

ACTuDB is a database that compiles array-CGH
profiles and clinical data for tumors and can be browsed
using VAMP software. All data in ACTuDB have been
homogeneously pretreated as microarray probe map-
ping, breakpoint detection and gain/loss assignment.
When available, expression data can also be compared
with the genomic profiles. Transverse analysis can
be carried out, by searching for minimal/recurrent

alterations and compare their frequency between dif-
ferent projects or identifying subgroups of tumors
with clustering techniques. Informative regions can
be compared with genome annotations, such as gene
position, to pinpoint candidate genes or with replication
timing experiments. ACTuDB provides a user-friendly
interface with more advanced analysis algorithms than
existing databases (Baudis, 2006). It also offers the
possibility of adding other types of genome annotations
potentially relevant for biologists. The database cur-
rently contains BAC, cDNA and oligonucleotide array
data but can accept any kind of profile related to DNA
copy number obtained with different platforms. In
addition, any kind of molecular profile can be incorpo-
rated into ACTuDB, provided that data are available
for genome position and there is a quantitative value to
plot. Typical molecular profiles that can be integrated
into the database include DNA copy number data,
transcriptome data, ChIP-on-chip (Chromatine Immu-
no Precipitation) data and LOH data. We encourage
our colleagues to submit their datasets to ACTuDB
upon publication. They should contact us at actudb@
curie.fr and follow the guidelines provided at http://
bioinfo.curie.fr/actudb/.

Figure 5 Clustering results based on recurrent alterations (as identified in Figure 4) and comparison with clinical data (CINþ in blue,
MSIþ in red) for the dataset from Douglas et al. (2004).
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Materials and methods

Data content
The data integrated into ACTuDB have been collected from
available published data for the analysis of tumor genomic
profiles by BAC, cDNA array-CGH or SNP arrays. The
datasets are summarized in Table 1 and are presented more in
detail in what follows.

Array-CGH datasets for cancers. The datasets in ACTuDB
consist mostly of DNA copy number profiles for tumors of
various origins as listed below (bladder, brain, breast, colon,
liver, lymphoma, mouth, neuroblastoma and pancreas).
Associated clinical and gene expression data have also been
included in the database, when available.

� Bladder cancer: copy number changes were studied in
bladder tumors at different stages (Veltman et al., 2003),
and small regions with high levels of amplification or
homozygous deletion were identified. In a study of 98
tumors, Blaveri et al. (2005) confirmed the alterations
reported by Veltman et al. (2003) and identified additional
alterations. Various statistical analyses demonstrated that
copy number variation between pairs of known onco-
genes and tumor suppressor genes was associated with changes
in pathways known to be involved in bladder cancer

(retinoblastoma and p53-MDM2 pathways). Stransky et al.
(2006) proposed an approach for identifying candidate
regions controlled by epigenetic mechanisms in cancer and
for the characterization of one of these regions combining
DNA copy number data and transcriptome data.

� Brain cancer: Bredel et al. (2005) carried out copy number
profiling for 54 gliomas differing in histogenesis and tumor
grade, using a 42 000-clone cDNA array. The analysis led to
the delimitation of the precise (gene-specific) boundaries of
known and new chromosomal alterations. Genes involved
in gliomagenesis were identified. A subset of these genes was
shown to be associated with the genetic subgroups of glial
brain tumors (astrocytic or oligodendrocytic phenotype).
Kotliarov et al. (2006) identified in 178 gliomas novel
regions of copy number alteration and LOH using the
Affymetrix GeneChip Human Mapping 100K SetS.

� Breast cancer: Pollack et al. (2002) profiled DNA copy
number alterations of 44 primary breast tumors and 10 cell
lines, using a cDNA array also used for transcriptome
profiling of the same samples. This study was original in the
direct comparison of DNA copy number changes and gene
expression for a subset of four breast cancer cell lines and 37
tumors. Fridlyand et al. (2006) identified three subtypes of
tumor from CGH array data for 67 breast cancer samples.

� Colon cancer: Nakao et al. (2004) identified many small,
previously uncharacterized genomic regions in 125 primary

Figure 6 FrAGL (Frequency of Amplicon, Gain and Loss) view. The values correspond to the percentage of gained and lost clones
identified with GLAD over the whole dataset from Patil et al. (2005). Recurrent genome alterations, such as 1q, 6p 8q, 20q gains and
4q, 8p, 13q 16q, 17p losses, can be clearly identified on this plot, as reported by the authors of the original publication.
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tumors. The frequency of alteration was compared with
clinical phenotypes: tumor stage and location, and the
patient’s age and sex were found to have little effect,
whereas microsatellite instability had a significant effect.
Douglas et al. (2004) reported genomic alterations in 48 cell
lines and 37 tumors and that samples displaying chromo-
somal instability (CIN) presented a larger number of
alterations than samples displaying microsatellite instability
(MSI).

� Liver cancer: the study by Patil et al. (2005) aimed to
identify chromosomal aberrations in 49 hepatocellular
carcinomas. Like Pollack et al. (2002), Patil et al. (2005)
compared genome alterations with gene expression quanti-
fied in a previous study (Chen et al., 2002). They found that
high levels of Jab1 expression were significantly correlated
with DNA copy number gain at 8q.

� Lymphoma: only one of the papers contributing data to
ACTuDB dealt with non-solid tumors. Cell lines from
patients with mantle cell lymphoma (MCL), an aggressive

non-Hodgkin’s lymphoma, were studied by de Leeuw
et al. (2004), with the aim of identifying secondary
genomic alterations concomitant with the translocation
t(11;14) and determining whether the eight cell lines tested,
all of which are widely used as models, adequately
represented MCL.

� Mouth cancer: Snijders et al. (2005) analysed 89 oral
squamous cell carcinomas with the aim of defining
minimum common amplified regions. They then used
expression analysis to identify candidate driver genes in
amplicons and to deduce the genetic pathways involved in
the disease.

� Neuroblastoma: Mosse et al. (2005) characterized 42 cell
lines. Janoueix-Lerosey et al. (2005) identified the genome
alterations in 28 neuroblastoma cell lines and compared
their location with replication timing profiles. They found
an association between breakpoint position and early
replication regions.

� Pancreas cancer: Gysin et al. (2005) studied 25 cell lines
from patients with pancreatic cancer, investigating copy
number abnormalities and trying to understand precisely
how these genetic alterations interact to generate the
aberrant pathophysiology of the cancer. By combining
these results with those from expression arrays, the authors
identified candidate genes contributing to cancer cell
invasion and metastasis.

Genome annotation data. Comparisons of genomic profiles
with genomic annotation of any kind can help to elucidate the
mechanisms involved in tumor progression. In ACTuDB, the
user can visualize annotations, such as human gene structure,
microRNA genes and genomic variants. Moreover, the results
of two replication timing studies are provided. It may be
interesting to compare breakpoint locations with replication
timing pattern, as it has been suggested that chromosome
breakpoints occur preferentially within early replicating
regions (evidence to support this hypothesis has been obtained
for neuroblastoma (Janoueix-Lerosey et al., 2005)). The
annotation data are detailed below:

� Gene structure: the structural profiles of genes are updated
from the UCSC Genome Browser (http://genome.ucsc.edu;
Karolchik et al., 2003) (release hg18). All the information
available for the gene, such as its name, position, intron–
exon structure and alternative splicing variants, are
provided. Coding exons are shown as red blocks and
introns, as horizontal red lines connecting the exons. The 50

and 30 untranslated regions (UTR) are displayed in dark
green and a lighter green, respectively.

� Genomic variants: The Database of Genomic Variants
(http://projects.tcag.ca/variation), which was first described
by Iafrate et al. (2004), includes genomic variants – defined
as DNA regions larger than 1 kb and presenting copy
number variation among a panel of unrelated individuals.
When available, a list of diseases previously shown to be
associated with this region is provided.

� MicroRNA, which was first described by Lee et al. (1993), is
now considered to be a major factor in cell regulation.
MicroRNA expression can affect the cell cycle and
survival mechanisms. MicroRNA loss or amplification
has been reported in several types of cancer (Calin and
Croce, 2006), and microRNA expression profiles can be
used to classify human cancers (Lu et al., 2005). We have
collected the microRNA data from the miRBase Sequence
Database (http://microrna.sanger.ac.uk/sequences) (Release
9.0) of the Sanger Institute (Griffiths-Jones, 2006) in
ACTuDB.

Figure 7 Array-CGH (top profile) and expression ratio (second
profile in descending order) of the same human tumors. The
expression ratio was computed from Affymetrix U95 array of a
bladder tumor sample and of a reference sample with no alteration
on chromosome 11 (Stransky et al., 2006). This confrontation
pinpoints the probable implication of the gene cyclin D1 and
fibroblast growth factor 3 in this tumor. The second profile is the
ratio of the tumoral transcriptome array to the reference
transcriptome profile.
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� Replication timing: Woodfine et al. (2004) suggested
that array-CGH technology could be used to assess
the replication timing of sequences during the S phase of
the cell cycle. They used human lymphoblastoid cells and
found a positive correlation between replication timing
and various genome parameters, including GC content,
gene density and transcriptional activity. Janoueix-Lerosey
et al. (2005) also assessed the replication timing pattern of
seven neuroblastoma cell lines and obtained similar results.
They also found that the breakpoint frequency in 28
neuroblastoma cell lines was higher in early replicated
regions than elsewhere.

Protocol for array pretreatment before integration
into ACTuDB
Probe mapping. A pipeline has been developed for mapping
the probes onto a common human genome sequence reference:
for each publication, the genome position is based on the last
Working Draft version (current version is 36.1), with updating
for each new release. The microarray data collected in
ACTuDB were collected with three different types of probe,
each involving a specific mapping process, as described below:

� BacEnd clones were mapped, using information from public
databases and an internal database from Institut Curie. The

Figure 8 DNA copy number profile of chromosome 10 (top profile) and corresponding LOH profile (second profile from top), and
DNA copy number profile of chromosome 13 (third profile from top) and corresponding LOH profile (bottom profile) for sample
HF0505 Xba from the Kotliarov et al. (2006) dataset. For DNA copy number, the results of the GLAD algorithm are displayed
(yellow correspond to normal region and green to loss region). For LOH profile log10(P-value) from Affymetrix software is displayed
(this log10(P-value) is small for heterozygous regions and large for LOH regions): blue regions correspond to LOH and red regions do
not show LOH.
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mapping process consists of four-ordered steps, with each
step corresponding to a database query. We used the
information from the first database in which the probe

appeared, ignoring all other databases. The databases were
searched in the following order: (i) the UCSC Genome
Browser annotation database (release hg18) (Karolchik

Table 1 List of publications from which microarray data have been integrated into ACTuDB

Author Cancer Sample number Molecular
profile

Platform Clinical data

Fridlyand et al. (2006) Breast 67 tumors DNA copy
number

BAC array HumArray1.14
and 2.0, UCSF

ER, TP53, tumor and vital
statuses, radiation site, recurrence,
CGH subtype, stage, grade,
follow-up, treatment, y

Kotliarov et al. (2006) Brain 178 tumors DNA copy
number

GeneChips Human
Mapping 100K SetS

Brain 178 tumors LOH GeneChip Human Mapping
100K SetS

Stransky et al. (2006) Bladder 57 tumors DNA copy
number

BAC array HumArray2.0,
UCSF

Sex, grade, TNM, primary tumor
(yes/no)

Bladder 57 tumors Expression Affymetrix U95A/Av2
Blaveri et al. (2005) Bladder 98 tumors DNA copy

number
BAC array HumArray2.0,
UCSF

Age, sex, stage, grade and lymph
node status

Bredel et al. (2005) Brain 54 tumors DNA copy
number

cDNA array

Gysin et al. (2005) Pancreas 25 cell lines DNA copy
number

BAC array HumArray2.0,
UCSF

Janoueix-Lerosey et al.
(2005)

Neuroblastoma 28 cell lines DNA copy
number

BAC array

Replication tim-
ing

7 cell lines

Mosse et al. (2005) Neuroblastoma 42 cell lines DNA copy
number

BAC array

Patil et al. (2005) Liver 44 tumors DNA copy
number

BAC array HumArray1.14,
UCSF

Age, sex, stage, tumor size,
disease-free survival, HBV and
HCV status, venous invasion,
encapsulation

5 cell lines
Snijders et al. (2005) Mouth 89 tumors DNA copy

number
BAC array HumArray2.0,
UCSF

Age, sex, TP53 status, location and
differentiation

de Leeuw et al. (2004) Lymphoma 8 cell lines DNA copy
number

BAC array SMRT array

Douglas et al. (2004) Colon 37 tumors DNA copy
number

BAC/PAC array Genome instability

48 cell lines
Nakao et al. (2004) Colon 125 tumors DNA copy

number
BAC array HumArray1.14,
UCSF

Age, sex, stage, location microsa-
tellite instability (BAT26 marker)

Woodfine et al. (2004) Fibroblast 1 cell line DNA copy
number

BAC array

Veltman et al. (2003) Bladder 41 tumors DNA copy
number

BAC array HumArray1.11,
UCSF

Stage

8 normal DNA
Chen et al. (2002) Liver 207 tumors Expression cDNA array The patients are the same as in

Patil et al. (2005)
Pollack et al. (2002) Breast 44 tumors DNA copy

number
cDNA array

10 cell lines
Breast 5 chromosome X

37 tumors Expression
4 cell lines

Snijders et al. (2001) Fibroblast 15 cell lines DNA copy
number

BAC array HumArray1.14,
UCSF

Summary

DNA copy number 834 tumors
186 cell lines

LOH Expression 8 normal DNA
178 tumors

Replication timing 301 tumors
4 cell lines
8 cell lines

Total 1519

Abbreviations: ACTuDB, Array CGH Tumor DataBase; CGH, comparative genomic hybridization; LOH, loss of heterozygosity.
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P Hupé et al

6650

Oncogene



et al., 2003) for the BacEnd; (ii) the SANGER/DECIPHER
database (http://www.sanger.ac.uk/PostGenomics/decipher)
using the 1Mb clone, the 32K clone set and the international
clone sets information; (iii) the Institut Curie database in
which each BacEnd sequence is mapped onto the NCBI
build 36.1, using the BLAT algorithm from the UCSC
Genome Browser (Kent, 2002); (iv) the UCSC Genome
Browser annotation database (hg18) for STS. The percen-
tage of clones mapped at each stage in the process was
(i) 38.3, (ii) 35.0, (iii) 2.6 and (iv) 2.0. Thus, overall, a mean
of 77.1% of the BacEnd clones were mapped.

� IMAGE clones were mapped from the UCSC Genome
Browser annotation database (hg18). An average of 84.3%
of IMAGE clones were mapped.

� Affymetrix probes sets were mapped from the UCSC
Genome Browser annotation database (hg18) for expression
arrays and from the SANGER/DECIPHER database for
SNP arrays: the average of mapped probes sets were 94.8
and 100%, respectively.

The percentage of mapped probes for each publication is
given in Table 2.

Breakpoint detection. Genomic profiles were analysed using
the GLAD algorithm (Hupé et al., 2004). GLAD identifies
chromosomal regions with same DNA copy number, delimited
by breakpoints. A label (Gain, Normal, Loss or Amplicon) is
assigned to each region, based on its median DNA copy
number. Amplicons are defined as probes with a signal ratio
greater than 2. Outliers are also detected and correspond to
probes with a signal value significantly different from the
region in which they lie. The GLAD algorithm was also used
to analyse the replication timing experiments, but with other
parameters, as described by Janoueix-Lerosey et al. (2005).

Hardware requirements and implementation
ACTuDB is based on a client–server architecture. On the client
side, a Java-enabled HTML 4.0-compliant browser (Firefox,
Safari, Internet Explorer) is required. Users must also
configure their Java Virtual Machine according to the
instructions given at http://bioinfo.curie.fr/actudb/. The user’s
computer must have at least 512Mb of memory. On the server
side, ACTuDB combines an XML repository with a dynamic
web interface written in HTML and a Java applet. The website
is powered by an Apache server.
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ABSTRACT

Assessing variations in DNA copy number is
crucial for understanding constitutional or somatic
diseases, particularly cancers. The recently devel-
oped array-CGH (comparative genomic hybridization)
technology allows this to be investigated at the
genomic level. We report the availability of a web
tool for analysing array-CGH data. CAPweb (CGH
array Analysis Platform on the Web) is intended as a
user-friendly tool enabling biologists to completely
analyse CGH arrays from the raw data to the visualiza-
tion and biological interpretation. The user typically
performs the following bioinformatics steps of a CGH
array project within CAPweb: the secure upload of the
results of CGH array image analysis and of the array
annotation (genomic position of the probes); first
level analysis of each array, including automatic nor-
malization of the data (for correcting experimental
biases), breakpoint detection and status assignment
(gain, loss or normal); validation or deletion of the
analysis based on a summary report and quality cri-
teria; visualization and biological analysis of the
genomic profiles and results through a user-friendly
interface. CAPweb is accessible at http://bioinfo.
curie.fr/CAPweb.

INTRODUCTION

In recent years, array-CGH (comparative genomic hybridiza-
tion) has become the technology of choice for large scale
investigations of DNA copy number changes between two
genomes. Today, CGH arrays allow the ratio of DNA copy
number between a test and a reference sample to be simulta-
neously assessed in 2000 to 30 000 positions in the genome,
giving a resolution of between 1.5 Mb to 100 kb (1,2). Its main

applications are the study of diseases in which the DNA copy
number varies in certain locations of the genomes, due to
either constitutional mutations (hereditary or de novo), such
as human genetic diseases (3) or somatic changes, such as in
cancers (4). The identification of regions of altered DNA gives
valuable information about the genes involved in the disease,
and many projects have been launched worldwide to deter-
mine the genome structure of tumour cells (4). Array-CGH is
also an important source of information for studying genome
evolution, for example in bacteria (5) or mammals (6). We
have developed a Web tool, called CAPweb (CAP: CGH array
Analysis Platform), for bioinformatics analysis of CGH arrays.
This tool combines the following tasks: (i) data management,
(ii) array normalization, (iii) automatic breakpoint detection
and assessment of gain and loss regions, (iv) quality control
and (v) a graphical user interface for browsing and analysing
the genomic profiles.

Several tools have recently been developed for analysing
CGH array data, such as CGH-Explorer (7), ArrayCyGHt (8),
CGHPRO (9), WebArray (10) or ArrayCGHbase (11),
although the only web-accessible servers are ArrayCyGHt,
WebArray and CAPweb. Among these three, only CAPweb
allows project management and the upload of raw data files
without pre-processing. It also offers unique features for the
analysis and visualization of array-CGH data. CAPweb
accepts raw data from the main microarray image analysis
software. As far as we are aware, CAPweb is the only platform
dedicated to biologists that allows the complete analysis of raw
CGH arrays from the raw data to visualization and biological
interpretation.

DESCRIPTION

The CAPweb server allows the user to store, analyse and
manage his or her data. We will now describe its operation
(Figure 1). A tutorial is accessible at http://bioinfo.curie.fr/
tutorial/CAPweb/capweb_tutorial.html.

*To whom correspondence should be addressed. Tel: +33 0 1 4234 65 31; Fax: +33 0 1 42 34 65 28; Email: capweb@curie.fr
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Figure 1. Different views of CAPweb Interface showing how the CGH array analysis proceeds, see text for details.

W478 Nucleic Acids Research, 2006, Vol. 34, Web Server issue



User registration, data upload and management

The first step of the analysis is user registration
[Figure 1(1)], which ensures the confidentiality of the submitted
data. The user is sent a login/password by email and can then
create one or more projects to upload data files [Figure 1(2)].
Several input formats from microarray image analysis
software are currently supported: Genepix (http://www.
moleculardevices.com/pages/instruments/gn_genepix4000.
html), Imagene (http://www.biodiscovery.com/index/
imagene), Spot (12) and MAIA (13). CAPweb requires only
two types of file: (i) a raw intensity file (one file for Genepix and
MAIA, two files for Imagene and Spot) and (ii) a genomic
position file mapping each spot to a name and its position on
the genome under CSV (semi colon separator) format.

For each project, the ‘Array Management’ page
[Figure 1(3)] lists all the arrays, their analysis status and
the summary report file, and allows new analyses to be
launched.

The array files are permanently stored on the server: the user
can only browse the arrays of his or her projects, and only the
user is allowed to delete them.

CGH array analysis

From the ‘Array management’ page, the user can launch the
array analyses. The analyses are run in the background, allow-
ing the user to use CAPweb for other analyses.

Data Normalization (MANOR). As in all microarray analyses,
CGH array data must be normalized to correct for experi-
mental artefacts while preserving the true biological signal.
For this goal, CAPweb uses the Bioconductor package
MANOR, which includes spot and clone filtering steps that
discards spots having too low a signal-to-noise ratio or clones
with a poor replicate consistency, and, most importantly, it
includes a spatial normalization step. This step aims to correct
for spatial effects on the arrays. We identified these as the
predominant experimental artefact in the array-CGH data we
have studied. The corresponding algorithm is based on a spa-
tial trend estimation and a signal segmentation method with a
spatial constraint, as described in P. Neuvial et al. (manuscript
submitted).

Breakpoint detection and assessment of gain and loss region
(GLAD). This step aims to identify chromosomal regions hav-
ing an identical DNA copy number, which are delimited by
breakpoints. CAPweb uses the Bioconductor package GLAD,
which implements an algorithm described in (14). This method
first uses the spatial structure of array-CGH data to adaptively
calculate a smoothed signal value for each clone. These
smoothed signal values are then used to detect breakpoints
and outliers, and then genomic regions having the same under-
lying copy number are clustered together.

Quality control. Various statistical criteria can help the user
assess the quality of the array. These include intra-replicate
variability, genomic neighbour variability, the percentage of
spots filtered out after image analysis and the amplitude of
signal gap between regions having a different DNA copy
number. These quality criteria are reported in an HTML
summary report file, which also displays key features of
the normalization process: array image and genomic profile

before and after normalization, and a summary of the normal-
ization. This file [Figure 1(7)] allows the user to compare the
quality of the data before and after analysis. Based on this
information, the user may choose to keep or discard the
analysis.

This data analysis step can be run without an extensive
knowledge of the underlying statistical algorithms by using
default parameters. Default parameters have been calibrated
by comparing quality criteria for various parameter value in
two datasets: one from UCSF (218 arrays, Spot format, as a
collaboration with Dan Pinkel), and one from Institut Curie/
INSERM U509 (181 arrays, Genepix format). This part is
described in detail elsewhere (P. Neuvial et al. manuscript
submitted). However, CAPweb allows the user to choose
the value of several parameters for filtering, spatial normal-
ization and breakpoint detection. The summary report also
helps in comparing the results of analyses carried out with
different parameter values [Figure 1 (4–6)].

Visualization (VAMP) and biological analysis

Once the first level of array analysis has finished, the user can
visualize and further analyse the data through a graphical user
interface: VAMP—visualization and analysis of array-CGH,
transcriptome and other molecular profiles (P. La Rosa et al.
manuscript submitted) [Figure 1 (8)]. Several visualization
types are proposed, such as the classical CGH karyotype
view or the genome-wide multi-tumour comparison view.
These allow the user to easily compare different arrays. Addi-
tional information concerning each clone or DNA region can
be interactively retrieved from different public databases
through external links. Other functions for analysing CGH
data are provided within the interface, such as looking for
minimal or recurrent regions of alterations (15), clustering, etc.

VAMP allows the user to display genomic profiles at vari-
ous resolutions [from the whole genome to small regions
(clone level)]. All the analyses results (breakpoint detection,
assignment of gain/lost region, quality criteria, etc.) can also
be displayed within VAMP. VAMP has many other functions
for navigation, querying and analysis that we have not
explained here; we refer the reader to the documentation
and demo for further details (http://bioinfo.curie.fr/vamp/doc).

Note that the user can analyse at least 200 arrays with 1GB
of memory.

IMPLEMENTATION

The CAPweb server is based on freely available components
(Figure 2). The database for user management and array man-
agement was built on mySQL. PHP scripts ensure registration
and project management. Perl scripts control the launching of
statistical analyses written in R. A Java applet and XML files
are used for the visualization. CAPweb integrates the MANOR
and GLAD R packages and the VAMP software, all of which
were developed at the Institut Curie.

The security in CAPweb is based on mysql authentication
and cookie session. Uploaded data are considered strictly con-
fidential. The CAPweb server is also available upon request for
local installation on Unix/Linux/MacOS X operating systems.
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CONCLUSION

Array-CGH is a popular technology that is now used in many
projects ranging from the characterization of tumours to the
study of genome evolution. As with any large scale technol-
ogy, its exploitation relies heavily on the availability of bioin-
formatics tools for managing and analysing the data. Many
bioinformatics algorithms and interfaces have been developed
but biologists have lacked a web-based platform for integrat-
ing these tools in a user-friendly manner. CAPweb offers this
service and combines array normalization, quality control,
breakpoint detection and the biological interpretation of the
results. It also helps with data management. Currently, the
public CAPweb server at the Institut Curie contains 800 arrays.

In this paper we have presented CAPweb 1.0 version. A new
version is currently being developed, which will allow the user
to analyse high density oligonucleotide arrays, such as Affy-
metrix GeneChip� Arrays or Nimblegen� Arrays, to integrate
any clinical information, and to add gene expression profiles
so that copy number profiles can be compared and correlated
to them.
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ABSTRACT

Motivation: Microarray-based CGH (Comparative Genomic

Hybridization), transcriptome arrays and other large-scale genomic

technologies are now routinely used to generate a vast amount of

genomic profiles. Exploratory analysis of this data is crucial in helping

to understand the data and to help form biological hypotheses. This

step requires visualization of the data in a meaningful way to visual-

ize the results and to perform first level analyses.

Results: We have developed a graphical user interface for visualiza-

tion and first level analysis of molecular profiles. It is currently in use

at the Institut Curie for cancer research projects involving CGH

arrays, transcriptome arrays, SNP (single nucleotide polymorphism)

arrays, loss of heterozygosity results (LOH), and Chromatin

ImmunoPrecipitation arrays (ChIP chips). The interface offers the

possibility of studying these different types of information in a con-

sistent way. Several views are proposed, such as the classical CGH

karyotype view or genome-wide multi-tumor comparison. Many fun-

ctionalities for analyzingCGHdataareprovidedby the interface, includ-

ing looking for recurrent regions of alterations, confrontation to

transcriptome data or clinical information, and clustering. Our tool

consists of PHP scripts and of an applet written in Java. It can be run

on public datasets at http://bioinfo.curie.fr/vamp

Availability: The VAMP software (Visualization and Analysis of array-

CGH,transcriptome and other Molecular Profiles) is available upon

request. It can be tested on public datasets at http://bioinfo.curie.fr/

vamp. The documentation is available at http://bioinfo.curie.fr/

vamp/doc

Contact: vamp@curie.fr

1 INTRODUCTION

Array Comparative Genome Hybridization (array-CGH) is a

recently developed technology based on DNA microarrays

(Pinkel et al., 1998; Snijders et al., 2001; Solinas-Toldo et al.,
1997; Ishkanian et al., 2004) that can be used to investigate

DNA copy number differences between two samples. A CGH array-

generally consists of spotted clones of genomic sequences (e.g.

bacterial artificial chromosomes) that cover part or all of the gen-

ome. Both DNA samples are labeled with distinct fluorescent dyes

and undergo competitive hybridization onto the CGH array. The

array is then scanned with a scanner or a CCD camera, and the

acquired image is analyzed (gridding, spot addressing, spot seg-

mentation, spot quantification, outlier detection), normalized (to

remove as much as possible any systematic spatial or intensity

biases, e.g. Neuvial et al., (2005), duplicate statistical analysis is

then carried out (each clone is generally spotted in several copies),

and adequate statistical algorithms detect any loss or gain regions

(Hupé et al., 2004; Olshen et al., 2004; Fridlyand et al., 2004; Jong

et al., 2003; Picard et al., 2005; Eilers and de Menezes, 2005; Bilke

et al., 2005). CGH arrays are often used in cancer research because

chromosome aberrations are thought to be causal in tumor progres-

sion (Albertson et al., 2003; Pinkel and Albertson, 2005). Here,

normal DNA is used as reference and the test sample would be

tumoral biopsy DNA. The normal sample has two copies of each

genomic region, whereas tumor DNA may show losses or gains in

certain DNA regions. Measurement of the signal intensities of the

reference and tumor samples for each clone makes it possible to

determine the lost or gained regions in the tumor sample. Further

analyses can include the determination of recurrent loss or gain of

DNA regions, clustering of samples and determination of candidate

oncogenes and candidate tumor suppressor genes within the altered

regions (based on their annotations or on their transcription level). It

is also possible to link array-CGH results to the clinical phenotype

or to biological parameters through, for example, supervised clas-

sification or correlation analysis. The visualization of the data is a

crucial step in the analysis procedure and is essential for hypothesis

formulation and model-free reasoning. We have developed, in the

framework of large-scale array-CGH projects, a graphical user

interface that allows several visualization modes of the CGH

profiles and offers several data analysis tools. The software also

displays a large variety of genomic profiles, such as transcriptome,�To whom correspondence should be addressed.
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Loss Of Heterozygosity (LOH), Vogelstein et al. (1989), Single

nucleotide polymorphism (SNP) arrays (Bignell et al., 2004;

Huang et al., 2004) and ChIP chip [Chromatin ImmunoPrecipitation

coupled with microarrays, Buck and Lieb (2004)] profiles and

allows addition of new tools for data treatment or analysis. We

have called the software VAMP for ‘Visualization and Analysis of

Molecular Profiles’. In this article we first detail how data are visually

presented in VAMP, and then we explain how the user interacts with

the software and which functionalities are offered for data analysis.

Finally, we describe the software architecture of VAMP.

2 RESULTS

2.1 Data representation

VAMP was designed to graphically represent any genomic profile

along the genome axis. We started the development of VAMP for

array-CGH data, but we have extended it to accept, on the same

window, any kind of profile. We currently use the software for

expression arrays, SNP arrays, LOH results and ChIP chip profiling,

in addition to array-CGH. VAMP is currently used for three species

(human, mouse and yeast) but the addition of a new species is

straightforward. It is possible to visualize simultaneously, on the

same window, different types of profiles for a given species, e.g.

array-CGH and mRNA expression profiles of a tumor (Fig. 1). All

profiles in a window are drawn on the x-axis with the same scale (the

genome sequence), which allows an easy comparison of profiles.

A typical VAMP window is divided into three areas (Fig. 2): the

main frame consists of the graphical display of the profiles; the top

left frame controls zoom, search and drawing options; the bottom

left frame offers the choice between textual information (Fig. 3) on

the object under the mouse pointer, or context information, called

MiniMap (Fig. 2).

2.1.1 Main frame VAMP currently offers several types of visu-

alization that can be displayed in the main frame: (1) List View, (2)

Profile View (Fig. 2) (3) Karyotype View (Fig. 3), (4) Dot Plot View

(Fig. 4). These views all allow simultaneous visualization of several

profiles (the only limitation is the memory size of the computer

running VAMP, or more precisely, the memory allocated to the Java

virtual machine: for example with an 800 Mb Java virtual machine

memory, 700 microarrays (each with 3500 probes) can be loaded

simultaneously).

� List View: the List View lists the names of all the arrays currently

loaded and can be used for selecting or keeping track of the data

under study.

Fig. 1. Array-CGH (top profile) versus transcriptome ratio (second profile in descending order), computed for Affymetrix U95 array of a bladder tumor sample

and of a reference sample. This confrontation pinpoints the probable implication of the oncogene cyclin D1 in this tumor. The third and fourth profiles in

descending order correspond to a reference profile (average normal bladder tissue profile) and the profile of the tumor under study, respectively. The second

profile is the ratio of the fourth to the reference profile.
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� Profile View: the Profile View (Fig. 2) can display the profiles as

points, barplots or curves. It can be split into two frames, as in

Figure 1. The upper frame can, for example, contain a profile

for reference when browsing a collection of profiles in the

lower frame. The two frames have separate control of Y-scale

and Y-scrolling, but have the same X-scale and X-scrolling.

The Profile View can also display symbols for chromosome

telomeres and centromeres, and can show the results of CGH

ratio statistical analysis (e.g. breakpoints, or smoothed signal

values, see Fig. 2).

� Karyotype View: the Karyotype View (Fig. 3) displays profiles

having the well-known classical CGH rendering: vertical repre-

sentations of chromosomes with cytogenetic banding and con-

tiguous representation of sample profiles.

� Dot Plot View: the Dot Plot View does not consider the micro-

array probe positions on the genome, but only their ranks. It

displays a collection of samples as a heat map based on the

level of signal for each probe (Fig. 4).

By default, points or barplots are colored according to the signal

intensity (generally using ratios of the two channels or log-ratios)

using a continuous scale from red to yellow to green. All the pre-

viously mentioned views for the CGH data can be colored as a

function of the array-CGH data analysis. Typically, gained DNA

regions are displayed in red, lost regions in green, amplicons in blue

and normal in yellow.

Whatever view is chosen, the profiles can be represented in

Genomic mode or Chromosome mode. The Genomic mode simply

depicts the profiles along all the concatenated chromosomes. It is

the most usual representation, and allows comparison of profiles

from different samples or comparison of different types of profiles

from a given sample. The Chromosome mode is similar to the

Genomic mode except that it only displays one particular chromo-

some. It is also possible to merge several chromosomes and to

represent those chromosomes useful for the study.

� New Views: our object-oriented architecture easily allows us to

add new types of views that can be associated with particular

actions or data processing. For example, the Minimal Region

functionality is associated with a particular type of view. There-

fore, when profiles are pasted in the window, the Minimal

Region View automatically displays the array-CGH profiles

with the DNA regions recurrently lost or gained in the samples

(Fig. 2).

2.1.2 Top left frame This frame controls zoom, search and draw-

ing options. Zooming is independent on X and Y axes, and all

profiles in the same window have the same zoom control, except

Fig. 2. Genomic View, main frame: profiles along all the concatenated chromosomes; top left: zoom control, search and drawing options; bottom left: textual

information on the object under the mouse pointer or (in this figure) chromosome context information (MiniMap). The regions spanning the three tumors

highlighted in green are those that are lost in all tumors (short arm of chromosome 10, and Y chromosome); these are called minimal regions.

P.La Rosa et al.
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for Y zooming of the reference profile. The search can be carried out

on any property attached to the arrays or the clones/probes held in an

XML (eXtended Markup Language) data file or in the database (see

Fig. 6 and the Software architecture presentation below). For XML

data files, the list of properties is not limited,but is established at run

time, leading to a very flexible search option. Drawing options

include color-coding for signal values, and the threshold values

to be applied; they can be either global to the application or restric-

ted to one profile (local). User preferences can be saved on your

computer in a XML configuration file.

2.1.3 Bottom left frame (Object information and context
frame) The bottom left frame can either display textual informa-

tion on the object under the mouse pointer (Fig. 3) or context

information, called MiniMap (Fig. 2). The textual information

consists of mandatory fields (object genomic position, signal

value, project name, organism and data type) and any other type

of complementary information stored in the XML data file. For

example, in array-CGH profiles we currently display general

information about the clone under the mouse pointer (name, chro-

mosome, number of valid replicates, rank and position on the

sequence, signal ratio and standard deviation, size of the clone,

CGH status—gain/lost/normal) as well as information about the

array (name, number of spots, number of clones, number of rep-

licates, chromosomes covered, ratios or log-ratios) and information

about the sample (sample id, project name, date). MiniMap is a

special view type that gives some context on what the user is

examining in the main frame: (1) a cytogenetic representation of

the chromosome under the mouse pointing, with (2) a rule delim-

iting the region of the chromosome displayed on the main frame

and (3) the name and position of the object (array-CGH clone,

transcriptome microarray probe, etc.) under the mouse pointer. In

this view, the display can be automatically updated when the user

moves the mouse.

2.2 User interaction

All user actions are accessible either through a Menu on the menu-

bar, or through pointing to or clicking objects. When using VAMP,

the session can be saved in local XML files. Reloading the file later

on allows the continuation of the analysis within the context of the

previous work, or allows the exchange of results and data with

colleagues. All user preferences can also be stored in local XML

files. Drag and drop capability is offered for any profile, from one

window to any other window, the rendering being automatically

adapted (e.g. from a dot plot view to a karyotype view). An

advanced printing function is offered, either in visible mode

(only the profiles that are visible on the screen are printed), or in

global mode (all profiles in the view are printed). A template is

offered for defining the output of the printing (this can, for example,

include several frames in an arbitrary composition, to which text or

images can be added). It can be used for defining and printing

standardized outputs. The user can also interactively monitor the

print preferences.

2.3 Data analyses

VAMP allows addition of any new piece of software for data ana-

lysis and visualization of the results. Several functionalities have

already been implemented either as plug-ins or within the VAMP

Java source code. VAMP was initially developed for the analysis of

CGH-arrays of tumoral samples. As VAMP is actually an interface,

it is assumed that the microarray data have already been normalized,

and also, for CGH data, that breakpoints have been established and

Fig. 3. Karyotype View, classic rendering of CGH data, loss regions in green, gain in red.
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regions of DNA loss or gain inferred. VAMP can then display in the

profile frame (Fig. 2) the breakpoint positions, the status of each

region (by default, green for loss, yellow for normal, red for gain,

blue for amplicons), and the estimation of the signal value in each

region, which is computed, for example, using smoothing tech-

niques (Hupé et al., 2004). VAMP also allows the defining of

the gain and loss regions by simply applying a threshold to the

signal ratios. Examples of data analyses available within VAMP

are given below and are described in more detail in the software

documentation (http://bioinfo.curie.fr/vamp/doc).

Finding common alterations among a collection of CGH- array
profiles. CGH array analysis principally consists in finding com-

mon regions of alterations, i.e. regions that are lost in many tumors.

It is essential in these studies to distinguish between recurrent and

random alterations. Recurrent alterations pinpoint regions involved

in tumoral progression, whereas random alterations are simply the

consequence of the general instability that affects the genome of a

tumor. Among the recurrent alterations we distinguish the minimal

regions and the recurrent regions. Minimal regions are extracted by

intersecting the profiles of many tumors and looking for a sufficient

number of alterations in the tumors (this parameter is set by the user)

over the smallest possible region of the profile (Fig. 2). Tumoral

progression obeys a selection principle, and it would be expected

that the genes that need to be altered for a cell to become tumoral

must be located in the smallest possible intersection of all

alterations of a region. Recurrent regions are defined differently:

in a given tumor, an alteration is bounded by two extremities, which

can be a breakpoint or a chromosome end; when a sufficient number

of tumors have the same extremities, these extremities define a

recurrent region. We have implemented a linear algorithm that

detects such minimal and recurrent regions, which is described

in (Rouveirol et al., 2006). Gained regions appear in red in the

main frame, and lost regions appear in green (Fig. 2). Amplicons

(defined as gained regions with signal-ratio above a threshold typi-

cally equal to two) are colored in blue. The tumors that support a

region of alteration may be optionally shadowed in the region, and

for each region the user can sort these tumors.

Clustering profiles. Clustering is a general technique for

unsupervised data classification widely used in microarray data

analysis. A VAMP function offers the possibility to perform a

hierarchical clustering (Kaufman and Rousseuw, 1990) on the pro-

files in the dot plot view. This can cluster genes and tumors from

transcriptome arrays, or tumors from a CGH profile. In a CGH

profile, the clustering uses the smoothed values of the CGH profile

as variables and the Euclidean distance and Ward method for group

distance computation. VAMP displays the results as a cluster view

including a heat map and the trees resulting from the clustering

algorithm (Fig. 4).

Comparing profiles. The Menu proposes several different data

manipulation procedures for the profiles such as loading any type of

Fig. 4. VAMP interface, dotplot view of array-CGH profiles (middle panel), and dendrogram resulting from a hierarchical clustering (right panel). In between,

color-coded clinical information about the samples, with a legend (bottom left). Data from Nakao et al. (2004).

P.La Rosa et al.

2070



profile (CGH, expression, LOH, ChIP chip—an icon at the left of

each profile shows the type of loaded profile) for a given sample

(e.g. a typical application of VAMP is the simultaneous visualiza-

tion of the DNA alterations and gene under- and over-expression in

a region, Fig. 1); defining a profile as a reference and calculating

the ratio of a profile to the reference (useful for one-color micro-

arrays such as Affymetrix); averaging profiles; drawing marks

(vertical bars) or regions (such as the green regions in Fig. 2)

across all profiles (and simultaneously on the MiniMap); and

many others.

Confrontation with sample annotation. Clinical data, or any

other sample annotations, present in the XML files can be

used for filtering tumors or for sorting them. This data can be

visualized as color-coded bars in an annotation frame on the left

of the profiles, and can be easily compared with a clustering

result (Fig. 4).

Synteny analysis. VAMP can display the syntenic projection of

a profile onto the genome of another species, in which that genome

serves as a reference; a typical application is the projection of a

mouse array-CGH profile onto the human genome (Fig. 5). In our

case if an unambiguous syntenic locus was found, the mapping was

done from each clone of the mouse profile onto the location of the

most similar sequence of the human genome. The synteny relation-

ships can be shown, for a selection of regions of the genome, as links

from each clone of the profile to the location of the most similar

sequence of the reference genome.

Other functions. The right mouse button brings up a menu

with several actions associated to the clone/probe currently under

the mouse pointer. These include: centering the profile around

the current position; drawing of a vertical bar through all the pro-

files (to define a locus or a region); and linking to external web

pages from NCBI clone or MapViewer (http://www.ncbi.nlm.nih.

gov/mapview and Wheeler et al., 2005), UCSC Genome Browser

(http://genome.ucsc.edu and Kent et al., 2002), Ensembl Contig

View or CytoView (http://www.ensembl.org and Hubbard et al.,
2005), Saccharomyces Genome Database (http://www.

yeastgenome.org). New links are defined in a XML configuration

file and adding them is straightforward. Most data and results

(profiles, minimal regions, etc.) can be exported and saved in

full text, csv (comma separated values) or HTML format. We

refer the reader to the user manual for a description of the other

functions.

2.4 Software architecture and requirements

The software architecture is shown in Figure 6. The core of the

interface consists of a Java applet, and was developed using the

Swing library. It runs on any operating system supporting Java 1.4.2

Fig. 5. Array-CGH profile for a mouse tumor (top) and its syntenic projection, i.e. a humanized array-CGH profile after mapping each mouse clone onto the

human genome (bottom) and projection for two regions (middle profile) with resulting synteny relationships. Mapping is done from each clone of the mouse

profile onto the location of the most similar sequence of the human genome. Mouse clones with ambiguous syntenic locations have not been mapped onto the

human genome.
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(we recommend computers with a minimum of 1 Gb memory,

although 256 Mb is enough for small projects). The data used by

the program are of several types:

� The genome profile information, which are retrieved either

from a relational database management server (currently

Oracle�) or from XML data files. These include the signal

value for each clone/probe and its genomic location.

� The system files (also in XML), which includes the cytogenetic

description of the genome under study and the configuration

parameters (environment variables for file and URL manage-

ment). Cytogenetic banding files for human ISCN 400, 550

and 850 descriptions, as well as mouse and yeast genome

descriptions are also available. The user files, which consist

of the user visualization preferences and saved sessions.

VAMP can be used either as a local application, with all data and

configuration files directly accessible to the client, or as an applet,

with all data and configuration files installed on a server. In this

mode, only the user configuration file is stored locally on the client

machine.

VAMP can be easily installed on any platform running Java 1.4.2.

All that is needed is to convert the microarray data into XML files,

with a specific syntax described in a DTD (XML Document Type

Definition). The use of a database management server is not

mandatory, although it is recommended for large-scale projects.

Arbitrary complementary profile information can be added to the

XML files, and this information can be displayed by the interface.

3 DISCUSSION

We have developed a graphical user interface for the visualization

and analysis of any type of genomic profile, with an emphasis on

array-CGH. VAMP is currently used in cancer genomic projects on

human and mouse samples and in studying the proteins involved

in the reparation, recombination and replication of DNA in yeast. It

is used in Institut Curie and many labs in Europe and the United

States. Several publications describing data analysis with VAMP

are coming soon. Janoueix-Lerosey et al., (2005) describe the use of

VAMP for replication timing data analysis (http://microarrays.

curie.fr/publications/U509/reptiming). In Institut Curie, �3600

microarray profiles have been interfaced with VAMP to date.

Fig. 6. Software architecture of a microarray environment based on VAMP. VAMP can also be used as a local application.
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VAMP aids greatly in finding genes of clinical and biological

importance from CGH, transcriptome, LOH, ChIP chip profiles

and SNP arrays. VAMP improves upon existing solutions such

as SeeGH (Chi et al., 2004), CGHPRO (Chen et al., 2005), CGH-

Analyzer (Margolin et al., 2005) or general purpose spreadsheet

software, because it offers many different modes of visualization,

allows the display of several samples and of several types of profiles

simultaneously, and offers many data analysis functions. VAMP

can be compared with other general-purpose genomic browsers

such MapView (NCBI), Genome Browser of UCSC or Ensembl.

VAMP is well suited to handle sample profiles and to analyse this

type of data, which the other genomic browsers are not designed to

do. Therefore, in cancer research it addresses a real need and is a

useful tool for biologists and clinicians. Our software is fully port-

able and only requires a computer running Java 1.4.2 and data in

XML format.

VAMP can be run on public datasets at http://bioinfo.curie.fr/

vamp. The array-CGH data from Snijiders et al. (2001, 2005),

Pollack et al. (2002), Veltman et al. (2003), Nakao et al. (2004),

Douglas et al. (2004), de Leeuw et al. (2004), Gysin et al. (2005),

Patil et al. (2005) and Bredel et al. (2005) are currently browsable.

Expression profiles are also available for the samples from Pollack

et al. (2002).
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Abstract. Studying the molecular stratification of breast carcinoma is a real chal-
lenge considering the extreme heterogeneity of these tumors. Many patients are now
treated following recommendation established at several NIH and St Gallen consen-
sus conferences. However a significant fraction of these breast cancer patients do not
need adjuvant chemotherapies while other patients receive inefficacious therapies.
High density gene expression arrays have been designed to attempt to establish
expression profiles that could be used as prognostic indicators or as predictive
markers for response to treatment. This review is intended to discuss the potential
value of these new indicators, but also the current weaknesses of these new genomic
and bioinformatic approaches. The combined analysis of transcriptomic and geno-
mic alteration data from relatively large numbers of well annotated tumor specimens
may offer an opportunity to overcome the current difficulties in validating recently
published non overlapping gene lists as prognostic or therapeutic indicators. There
is also hope for identifying and deciphering signal transduction pathways driving
tumor progression with newly developed algorithms and semi quantitative parame-
ters obtained in simplified in vitro or in vivo models for specific transduction
pathways. ▲

Keywords : breast cancer, molecular stratification

T he number of cancers is increasing steadily in Western
countries in relation with aging and with changes in
societal behaviors. The conventional therapies, inclu-

ding surgery and radiotherapy, have benefited from major
technical advances. Chemotherapy has improved with the
discovery of more efficacious molecules, adjusted schedules
of administration and better drug combinations. Targeted
therapies are already contributing to longer relapse-free sur-
vival. These targeted therapies include hormonotherapy, ki-
nase inhibitors and monoclonal antibodies to specific recep-
tors. The therapeutic protocols are based on more stringent
clinico-histopathological criteria. However, it is well known
that only a fraction of patients will respond to these therapies.
The quality of response can be evaluated more readily in the
neo-adjuvant setting than in adjuvant therapies following
surgery. It is now clear that current stratification methods are
still relatively inadequate to define precise prognosis and to
predict response to treatment. Current strategies are therefore
aimed at establishing more accurate methods for the stratifi-
cation of cancers and for tailored therapies. However, this
goal is a major challenge still facing numerous difficulties.
Advanced oncogenomic approaches offer new tools to im-

prove stratification and to discover predictors of response to
treatment. Over the last few years, an increasing number of
publications have shown that small groups of identifier genes
could be used to determine the molecular status of tumours.
In this review we shall discuss some of the potential value of
these new findings in breast cancers, albeit stressing some
crucial issues to be solved. We shall also discuss whether the
development of preclinical models based on transgenic mice
can provide new insights into the molecular complexities of
cancer focusing on breast cancers.

Classification of breast cancers
Breast cancers comprise very heterogeneous diseases, which
are imperfectly described by histopathological and clinical
parameters. Although ductal invasive carcinomas is the most
frequently encountered histological type, other entities such
as ductal in situ carcinomas are becoming increasingly fre-
quent in westernised countries due, in part, to earlier detec-
tion of the disease. Ductal carcinomas in situ encompasses
different histological types including comedo, cribriform and
papillary. They can also be stratified as low or high nuclear
grade carcinoma. Almost 80% of high-grade in situ carci-
noma are characterized by overexpression of HER2. Invasive
lobular carcinomas is also a well-defined histological entity;
the lack of expression of E-cadherin is a hallmark of lobular
cancers as a result of mutations in a large proportion of these
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tumours. Invasive carcinomas also include histological va-
riants such as mucinous, tubular, medullary and papillary
carcinoma. Most mucinous carcinomas have good outcome.
Medullary carcinomas are poorly differentiated ductal carci-
noma, which present frequently an unexpected favorable
outcome, probably related to a high sensitivity of the tumour
to chemo- or radio-therapy. These tumours are characterized
by a high frequency of p53 mutations and by the lack of
oestrogen and progesterone receptors. Interestingly, they ex-
hibit a luminal-basal like mixed phenotype. Micropapillary
carcinomas have an unfavorable prognosis often giving rise to
microembolisms and lymph node metastasis. Mixed pheno-
types are often encountered; for instance, a large number of
ductal invasive carcinomas contain foci of in situ carcinomas
and in some cases lobular carcinomas. There is no definitive
data permitting one to establish tumor progression scenarios
for these different entities. Atypical hyperplasia can give rise
to ductal in situ carcinoma and ductal in situ carcinoma can
develop into ductal invasive carcinoma. The classical distinc-
tion between ductal and lobular carcinoma does not provide
faithful indication for the cell types at the origin of the
carcinoma. Tumour heterogeneity is a hallmark of all tu-
mours, particularly of breast carcinomas. In addition to the
cellular heterogeneity of the carcinoma cells, tumours
contain a variable proportion of stromal cells including endo-
thelial cells, myofibroblasts, lymphocytes and macrophages.
Staging and grading is a critical step to evaluate the wide
range in extension and dedifferentiation of breast carcinoma
diseases.

Staging and grading

Staging
The stage describes the extension of the tumour locally or at a
distance from the primary site. According to the International
Union against Cancer (UICC), staging should be based on
clinical characteristics at the time of diagnosis, including the
size of the tumour (T), the status of loco-regional lymph nodes
(N) and the presence of metastasis (M). Pathological charac-
teristics of the tumour, determined following surgery, provide
additional and more precise definition of the T, called pT, and
status of lymph nodes, pN. Each tumour site displays particu-
lar characteristics depending on the pattern of local invasion
and metastasis. A revised classification was proposed by the
American Joint Committee on staging system for breast
cancer [1].
– stage I corresponds to T1N0M0 tumours (invasive tumour
measuring less or equal to 2 cm) with no lymph node invol-
vement and no metastasis ;
– stage II includes from T1T2 N1 (ipsilateral lymph node
involvement) M0 tumors to T3 (over 5 cm) N0 M0 tumors ;
– stage III is even more heterogenous, comprising T0T1N2M0
and T4N0 or T4N1 or T4N2M0, and any T N3M0. T4 is a
tumour with extension to chest wall or skin; N2 corresponds
to involvement of ipsilateral axillary lymph nodes fixed or
mated or of internal mammary nodes and N3 includes ipsila-
teral infraclavicular lymph node involvement in addition to
axillary lymph node metastasis ;stage IV tumors include any T
any N and M1 (for distant metastasis).

Grading
The grade reflects the morphology and proliferative capacity
of the primary tumour. The microscopic analysis of tumour

samples has two major objectives: first, to establish a diagno-
sis of cancer and determine the type of cancer; second, to
produce a histoprognostic index, which is used to determine
the type of treatment. For breast cancer, the histoprognostic
index is based on analysis of three criteria [2]. First, architec-
ture, measuring the degree of differentiation, is ranked 1 to 3;
the score 3 describes tumours with less than 10% glandular
structure; second, anisokaryosis (variation in size of the nu-
cleus) is ranked 1 to 3; and third, proliferation is assessed by
the mitotic index (number of mitoses per 10 microscopic
fields). Tumours are defined as grade 1 when the combined
score is between 3 and 6, grade 2 for 6-7 and grade 3 for 8
or 9.

Classical diagnostic and prognostic markers

There are few classical markers routinely used in breast
carcinoma. The presence of oestrogen and progesterone re-
ceptors is determined mostly by immunohistochemical
methods. Tumours are classified as positive if at least 1-10%
of the carcinoma cells are labelled [3]. Approximately 80% of
breast carcinomas are oestrogen receptor (ER) positive. Of
these, about 75% demonstrate hormone responsiveness. Le-
vel of expression of HER2 is also critical since these patients
can potentially benefit from trastuzumab-based immunothe-
rapy, in conjunction with a cytotoxic drug. Between 15 an
25% of breast carcinomas are HER positive, namely, ovex-
pressing HER2 often as a result of gene amplification at the
HER2 locus.

Micrometastasis

Carcinoma cells can disseminate through the lymph and
blood vessels associated with the tumour bed. Lymph node
involvement is an important aspect of staging. However, the
routine examination of lymph node does not involve the
search for micrometastatic invasion. There is an increasing
interest to determine as early as possible minimal distant
dissemination of carcinoma cells. The search for micrometas-
tatic tumour cells in lymph node is now benefiting from the
sentinel lymph node technique [4]. This technical approach
is applied principally for T1 tumours as an alternative proce-
dure to initial axillary lymph node dissection. Vital dye and/or
radioactive colloid are injected in the peritumoral space prior
to surgery. The first lymph node(s) draining the tumours
(sentinel lymph node) is easily detected and excised. The
identification of tumour-free sentinel lymph node avoids rou-
tine axillary dissection, reducing thus morbidity and cost. The
prognostic value of a few carcinoma cells detected only by
immunohistochemistry is still a matter of debate. Cancer cells
have also been detected in the blood of patients. Blood-born
tumour cells are more easily detected in patients carrying
relatively large primary tumour masses. The detection of
these cells may be particularly important as a surrogate
marker to predict the response to systemic treatments. A
recent study has shown that the search for circulating carci-
noma cells in blood can be facilitated by an automated
detection of cytokeratin positive cells following immunoma-
gnetic enrichment using an anti Ep-CAM antibody. Patients
with more than 5 circulating carcinoma cells per 7.5 ml of
blood have shorter median and overall survival. Beneficial
treatment is suggested for a fraction of patients who showed
less circulating tumour cells following initiation of chemothe-
rapy [5]. Although the detection of carcinoma cells in blood is
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much less demanding and better accepted by patients, it is
clearly less sensitive than detection in the bone marrow [6].
Rare tumour cells have been detected in the bone marrow
medulla, the only other accessible site for most carcinoma.
Many studies have confirmed that immunocytochemical
techniques involving anticytokeratin antibodies provide rela-
tively reproducible results [7]. The data obtained to date
clearly show that 5-25% of patients carrying T1 tumours
(≤ 2 cm) already have disseminated cancer cells in the bone
marrow (frequency of 1 per 106 mononucleated cells). The
presence of micrometastatic tumour cells provides a novel
independent prognostic indicator for recurrence and survival
[8]. A European consortium has recently analysed data poo-
led from 4703 patients and confirmed the crucial importance
of bone marrow micrometastasis for prognosis in multivariate
analysis [9]. Bone marrow culture may in some instance
reveal the presence of micrometastatic tumors cells not detec-
ted by direct immunocytochemistry on bone marrow samples
[10]. Methods for enrichment of micrometastatic cells are
urgently needed to improve this diagnostic since these
methods are susceptible to artefacts resulting from the capture
of non-carcinomatous Ep-CAM positive cells [11]. Very inte-
restingly, CGH of chromosomes from micrometastatic cells
isolated in M0 patients revealed many less alterations than
those obtained from M1 patients, indicating the bone marrow
micrometastasis can occur at early stages of tumour progres-
sion challenging the dogma that micrometastatic cells are
derived from the most advanced primary tumour foci [12].

High density molecular profiling

Genomic alterations

The genome of breast carcinoma is remarkably unstable,
possibly as a result of early dysfunction of DNA replication,
repair and recombination machineries. Numerous chromo-
somal aberrations have already been extensively described
by classical cytogenetic approaches. The comparative geno-
mic hybridisation technique, and more recently the high
density arrays, have revealed an extraordinary complexity of
genomic alterations. A provisional list established in 2003 has
described the frequency of loss and gain on each chromo-
some [13]. Remarkably, low level gains on chromosomes are
more frequent than losses and amplification of loci. There is a
high proportion of loci that can be affected in both directions,
losses or gain. LOH and CGH studies are not providing
overlapping results, suggesting that LOH events are not des-
cribing the behaviour of individual genes but rather variably
large regions. Poor outcome correlates with distinct patterns
of alteration as seen by LOH and CGH studies. Amplification
of specific loci already allows one to define subgroups of
breast carcinomas. Aside from the well described gene ampli-
fication at the HER2 locus, comprising 7 genes, other loci
including CCND1, MDM2, MYC and EGFR have been cha-
racterised. A recent study using fluorescent in situ hybridisa-
tion on tissue arrays of more than 2000 breast carcinoma
specimens showed that co-amplifications are more prevalent
than previously described [14]. For instance, almost 30% of
CCND1-amplified tumours harbour other amplicons. More
strikingly CCND1 amplification was observed in 43% of
HER2 amplified tumours and in 56% of MDM2 amplified
tumours. A CGH array with selected BAC encoding major
regions of interest in breast cancer was used to screen a

limited number of advanced breast carcinoma. This study
identified relatively frequent amplicons coding for 112 can-
didate genes; out of these, 44 were validated [15]. Recently, a
basal-like phenotype was found with a subset of ductal inva-
sive breast by high-density arrays for molecular profiling of
transcripts. This phenotype had already been identified by
immunohistochemical characterisation of cytokeratins al-
most 20 years ago. The CGH analysis of microdissected
tumour cells from grade 3 basal CK14-positive and negative
tumours revealed that the majority of basal-like tumours have
significantly less genomic alterations than the CK14-negative
grade 3 tumours. Hierarchical clustering identified a
subgroup which contains 40% of basal-like tumours which
had a worse prognosis than the other basal-like tumours [16].
This study exemplifies the difficulty in stratifying breast carci-
noma even in the case of a relatively well defined molecular
entity by using only cytokeratins immunocytochemistry. Refi-
ned genomic and transcriptomic approaches can detect hete-
rogeneity in an otherwise fairly homogenous ER, PR and
HER2 negative group.
With the advent of new high density arrays which can scan
the genome at much higher definition, such as BAC arrays
with more than 30,000 clones, long oligonucleotide and SNP
arrays, one can expect to see many more alterations. These
new data will require new software for signal analysis and
precise determination of affected loci. In this respect, an
algorithm was developed to detect breakpoints and outliers,
and to assign a status to each loci from array CGH data [17].
This software has also been adapted to carry out the same
analysis on SNP data.
Promising data will emerge from studies aimed at defining
tumour evolution in breast tumours. One crucial issue is to
determine to what extent ductal in situ gives rise to ductal
invasive carcinoma and lobular in situ carcinoma leads to
lobular invasive carcinoma. A similar issue concerns local
regional relapses; to what extent are they clonally derived
from the primary tumour? One pilot study based on a 2400
BAC clone CGH array showed that a majority of synchronous
lobular in situ and lobular invasive carcinoma are clonally
related [18].

Point mutations

Recently, a major effort has been deployed to sequence gene
candidates from breast tumour lines and breast carcinoma
specimens. The data are compiled and published regularly by
the Sanger centre (cosmic database; The Sanger Institute:
catalogue of somatic mutations). The p53 protein is mutated
in 20-40% of breast cancers (see http:oewww-
p53.iarc.fr/index.html). Recent studies reveal that PI3K is
mutated in more than 25% of breast cancers. The mutations
are frequently found in the catalytic site. Pioneer studies with
limited number of samples could not show correlation with
anatomoclinical data [19-22]. Studies with larger number of
patients show correlation with the oestrogen receptor, lymph
node and HER2 status [23, 24]. In addition, mutation in PI3K
and the loss of PTEN are mutually exclusive [24]. Two acti-
vating mutations in PI3K have been shown to transform
normal mammary epithelial cells suggesting that such muta-
tions could contribute to tumour progression [25]. Mutations
are also relatively frequent in CDKN2A. An extensive screen
has been performed recently to search for mutations in the
kinase gene superfamily. This study, carried out in a limited
number of breast carcinoma, shows that only a few tumours
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accumulated mutations in a large number of kinases while
most other tumours do not carry any mutations [26].

Transcriptomics

High density RNA profiling became possible with the advent
of new technological developments, including array spotters,
radio-labelled or fluorescent nucleotides, and phosphoro-
imagers or sensitive laser-based scanners. The first studies
showed the great utility of high density molecular profiling of
tumours. The first series of breast carcinomas analysed by the
Stanford group who pioneered cDNA arrays showed that
distinct patterns could be established for individual tumours
and that tumours analysed before and after chemotherapy
resembled each other more than tumours coming from other
patients. Lymph node metastasis profiles were also more
closely related to their primary tumour profiles than to those
of other tumours [27]. Subsequent studies using the same
technology revealed a new molecular taxonomy for breast
cancers. One major ER negative cluster contains HER2 posi-
tive, basal-like and normal breast-like tumours. The ER posi-
tive cluster can be subdivided into three distinct luminal A, B,
C subtypes [28]. Most remarkably, the newly identified basal
phenotype is associated with shorter survival times similar to
the amplified HER2 group. The ER positive luminal B and C
subtypes also showed poorer prognosis than the luminal A
subtype. These findings were confirmed in another study
showing that the luminal A and B, the normal-like, basal-like
and HER2 phenotypes were found in two independent sets of
data with similar prognostic values to the previous study.
Interestingly, a large fraction of the BRCA1 tumours exhibit a
basal-like phenotype [29]. Immunohistochemical approa-
ches can be applied with a limited number of markers to
identify about 75% of the basal-like tumours. This study
showed that a subset of basal tumours exhibited an HER1
overexpression as compared to other tumour types. This
simple approach stratified ER and HER2 negative tumours
using only cytokeratins 5/6 and 17, HER1 and c-Kit. The
relative frequency of the different subtypes in a large group of
specimens was 15% for basal-like, 23% for HER2 positive
and 40% for ER-positive tumours, 22% of the tumours could
not be classified [30].
Surprisingly, RNA profiling studies of premalignant in situ and
invasive carcinoma revealed similar profiles, suggesting that
global gene alteration patterns are already acquired in atypi-
cal ductal hyperplasia. Differences were, however, found
between different stages and subtle differences were found
between in situ and invasive forms [31].
RNA profiling can also be used to search for differential gene
expression in well defined histological entities such as lobular
and ductal invasive carcinoma. It can also provide the infor-
mation for the construction of class predictors, in the so-
called supervised classification analysis. Supervised classifi-
cation based on gene expression identified a limited list of
genes that can classify accurately lobular and ductal invasive
carcinoma. Some of the genes may indicate distinct molecu-
lar pathways for local invasion [32]. RNA profiling was also
used to define poor prognosis gene signatures. A pioneering
study identified a list of 70 genes that can predict relapse
within 5 years of diagnosis in patients with node negative
T1T2 tumours less than 55 years old [33]. In a second study,
lymph node negative and positive tumours were analysed to
evaluate the predictive power of the 70-gene signature. This
gene signature was found to be more powerful than prognosis

based on anatomical/clinical conventional criteria adopted in
consensus conferences in St-Gallen or at NIH [34]. A pro-
gnostic score also could be given by a wound-response gene
expression signature, since wound response is a biological
hallmark of tumour progression. The integration of the 70
gene signature with the wound signature in a decision tree
improved significantly the stratification of patients at high risk
of metastasis [35].
A 17-gene pan-metastatic signature was found to be shared
by different types of adenocarcinomas, possibly suggesting
that the metastatic potential is encoded in the primary tumour
and not by a small subset of carcinoma cells undergoing a
Darwinian type selection throughout progression [36]. A
similar conclusion was reached by comparing RNA profiling
of a limited number of primary and matched metastatic breast
cancer tumours [37]. An extensive study was recently carried
out on a large collection containing mostly T1T2N0 tumours
from patients who had not received adjuvant chemotherapy.
A 76-gene signature was identified with good sensitivity but
moderate specificity on a validation set. A 5.5 hazard ratio
was obtained in multivariate analysis as compared to 2.6 for
stage II and III versus stage I, demonstrating the potential
value of this new signature. This signature shared only three
genes in common with the van’t Veer signature [38].
Most of the studies so far have used different algorithmic and
biostatistical approaches to find a group of genes whose
expression profile predicts disease progression. Some studies
are based on the use of metagenes, i.e. a group of genes
behaving similarly are first identified to construct a decision
tree in a Bayesian approach. These studies, combining clini-
cal and genomic data, allow to establish probability predic-
tions of lymph node status and recurrences with a predictive
accuracy of 90% [39, 40].
Considering the formidable heterogeneity of breast tumours,
it is not surprising that multiple gene expression prognostic
signatures have been found so far. There is an advantage to
establishing breast cancer gene signatures in clinically more
homogenous cohorts such as ER and age status, two well
established prognostic parameters. The van’t Veer cohort was
analysed using these criteria and new algorithms modifying
the training set to eliminate those patients that were not
correctly classified during a cross-validation procedure led to
the definition of a new 50-gene signature [41]. This gene
signature was more clearly focusing on one pathway than
previous signatures. In this set of selected genes, overexpres-
sion of the cell cycle associated genes were clearly identifying
the poor prognosis group. It is indeed a valuable approach to
determine signatures associated with a potentially domina-
ting pathway.
A signature related to p53 status was recently published and
outperformed the stratification established on p53 sequence
data. The 32-gene signature was able to identify two major
groups of patients defined as p53 wild type and p53 mutated.
The two groups contain a small proportion of patient whose
p53 status did not fit with their group status. However, these
misclassified tumours were most likely correctly assigned for
their p53 functionality. For instance, tumours with low wild
type p53 expression may behave like mutated p53 tumours
[42]. Organ-specific metastasis is a long debated issue since
the pioneering work of Stephen Paget. The molecular profi-
ling of the MDA MB 231 pleural effusion metastatic cell line,
selected for its ability to uniquely metastasise to bone,
showed that a small set of genes was associated with organ
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specificity [43]. This set of genes differs from those conferring
a general poor prognosis included in the original 70-gene
signature [33]. This list of genes has been tested on a cohort of
breast carcinoma showing the possibility of identifying the
tumours which will metastasise to bone. A similar study has
been reported to define metastasis to lung [44]. These signa-
tures need to be validated on a much larger cohort in order to
determine whether these organ-specific signatures remain
valid for metastases occurring at multiple sites.

Weaknesses in the transcriptomic approach
The rapidly increasing number of non-overlapping lists of
genes selected for prognostic purposes and for prediction of
response to treatment by different teams has already promp-
ted several studies to identify the origin of these discrepan-
cies. These issues have been discussed in a recent review
[45]. The data from seven studies comprising lung, breast,
hepatocellular carcinoma, medulloblastoma, non-Hodgkin’s
lymphoma and acute lymphocytic leukaemia were reana-
lysed by creating multiple random training sets to study the
stability of the molecular signatures and the proportion of
misclassification. The genes selected for prognosis are cru-
cially dependent on the choice of patients included in the
training set. Clearly, the proportion of misclassified patients in
the validating step decreases when the number of patients
was increased in the training set. Most of these studies could
not prove that they perform better than random [46]. Another
study [47] showed that 50 patients is clearly a minimum for a
training set to achieve some significance, but a few hundreds
are required to build a clinically useful predictor. The 70-gene
list for prognosis of breast cancer metastasis [33] was also
analysed independently to evaluate its robustness. One im-
portant finding is that many genes are correlated with survival
but the differences in their correlation coefficients are small
and the correlation fluctuates strongly when the set of patients
is even partially modified, probably because of the high
heterogeneity of the disease [48]. The conclusion from these
studies is that gene signatures derived from high density
microarrays are not unique and not necessarily easily repro-
ducible from one platform to another platform [49]. However
it is very likely that the main cause of this lack of robustness is
linked to tumour heterogeneity and relatively poor quality of
RNA preparation in a fraction of the samples, due in part to
inadequate collection and preservation procedures. To circu-
mvent this major difficulty, a very large number of high-
quality samples, selected on histoprognostic and immunohis-
tochemical criteria, are required to diminish heterogeneity.
Laser microdissection has been utilised by several teams for
such studies; however, this approach also suffers from a
number of drawbacks including the preparation of a reasona-
ble quantity of high quality RNA to avoid two amplification
steps. Better methods need to be developed for RNA prepa-
ration from formalin-fixed paraffin-embedded specimens.
Multiplex PCR may overcome these difficulties, especially for
the new major clinical trials aimed at defining the best
multiparametric histological and molecular markers for pro-
gnosis or response to treatment [50].

Prediction of response to treatment

Gene classifiers
Molecular profiling is now thought to provide indicators
which will replace or complement the standard markers such

as stage, grade and HER2 and ER status. The surrogate mar-
kers used in the neo-adjuvant setting for pathologic complete
response, in comparison to partial response, stable disease
and tumour progression, have proven useful to establish a
limited list of gene predictors. Pathological complete res-
ponse is certainly correlated with lower risk of relapse and
death, but it is in no way a perfect surrogate for cure. In reality,
the response is rather a continuum than a very discrete entity,
which renders difficult supervised analyses [51]. In one study,
a 74-gene predictor was shown to identify non-responders
with an overall accuracy of 78%, but recognized only three
out of seven complete responders. However this gene set was
established using a limited number of tumours in the training
cohort, possibly not including other genes that could identify
complete responders in the validating set [52].
The quality of response to paclitaxel followed by
5-fluorouracil, doxorubicin and cyclophosphamide chemo-
therapy was evaluated using the molecular stratification des-
cribed above. Very interestingly, the basal-like and HER
groups responded much better than the luminal subtypes; the
normal-like type had almost no response. Noticeably, the
gene predictors for the basal subgroup were not overlapping
with those predicting response in the HER2 group strongly
suggesting different mechanisms mediating response in the
two ER negative tumor types [53].
The response to docetaxel was evaluated in a limited number
of core biopsy samples from breast cancer patients under-
going neo-adjuvant therapy. A 92-gene predictor list was able
to classify, with 90% specificity and 85% sensitivity, in a
leave-one-out validation procedure [54, 55]. A complemen-
tary study showed that residual tumour profiling was very
similar in each case and resembled that of the initially fully
resistant tumours. These results show that some specific trans-
duction pathways could confer sensitivity to docetaxel such
as stress-related DNA damage and apoptosis, while cell cycle
arrest and survival confer resistance. However, in another
study with a small number of patients, no specific gene
expression profile was identified for response to doxorubicin-
cyclophosphamide or doxorubicin-doxetaxel, which advo-
cated for larger cohorts [56].
The search for predictors of response to treatment is currently
being studied in different laboratories. A collection of 60
ER-positive tumours was analysed to identify differentially
expressed genes between responders and non responders to
tamoxifen as a monotherapy following primary surgery.
HOXB13 and IL17BR mRNA levels, determined by semi-
quantitative PCR, are sufficient to predict outcome in an
independent set of samples. Interestingly, increased HOXB3
was observed in non-responding tumours. In vitro constitu-
tive expression of this gene confers motile and invasive
properties to the MCF10A mammary cell line. HOXB3 inter-
feres in the control of ER signalling by an unknown mecha-
nism, as is the case for EGFR and HER2 signalling, which are
known to alter the response to tamoxifen [57]. This important
finding, however, was not validated on an independent col-
lection of tumours [58] stressing the crucial importance of
analysing very large and more homogenous cohorts of tu-
mours.
A 64-gene signature distinguishing good and poor prognosis
was established on a training set comprising node-negative
and node-positive patients who did or did not receive adju-
vant therapy. This set of genes was complemented by a risk
factor score. The training set showed that the patients could
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be subdivided in three clusters; the first cluster contained
mostly patients who did well without treatment and the third
cluster corresponded to patients who did poorly with treat-
ment but may benefit from other protocols. However, the
second cluster was not informative. It was not identifying a
group of patients who did poorly without treatment and who,
therefore, could have benefited from treatment. This study
was potentially aimed at determining which patients could
escape systemic chemotherapy and which patients could be
treated with an alternative therapeutic protocol to overcome
failure from the conventional treatment [59].
Resistance to trastuzumab is encountered relatively fre-
quently; however, the mechanism by which this resistance is
acquired remains unknown. One recent study has addressed
this issue by establishing a carcinoma cell line from a patient
resistant to trastuzumab. This cell line shares many characte-
ristics of the primary tumour; although it has an amplified
HER2 locus, this cell line has a mixed basal and luminal
phenotype. This tumour type is, therefore, atypical since the
HER2 cluster is mostly of the luminal phenotype. The lack of
inhibition of AKT phosphorylation by trastuzumab is so far the
only detected alteration in signalling. However, PI3K inhibi-
tors have not been used in this study to determine whether
resistance to trastuzumab can be overcome [60]. Resistance
may also be acquired through a steric hindrance mechanism
mediated by MUC4 at the cell surface. Diminished expres-
sion of MUC by RNA interference resulted in increased
binding to trastuzumab, potentially abrogating resistance to
this therapy [61].

Defining resistance

Multidrug resistance is a well know phenomenon applied to
most tumour tissues. Numerous studies have addressed me-
chanisms driving this resistance. The RNA profiling of the 48
ABC transporters, established by PCR in the NCI cell line
collection, compared the ability to respond to a panel of 1429
drugs [62] in a much better correlated manner than a previous
study based on expression profile of 9000 transcripts [63]. A
surprising result was that MDR1 (ABCB1) overexpression
potentiated the cytotoxic activity of some drugs rather than
resistance. This study opens a new strategy to overcome drug
resistance in a more rational way.

Murine models
Numerous transgenic murine models of breast carcinoma
have now been developed through the targeting of oncoge-
nes, mostly using the MMTV or WAP promoters. The two
promoters are specifically expressed in the luminal epithe-
lium, but the MMTV promoter is also expressed in some other
epithelia and is expressed at an early stage in mammary gland
development, prior to the terminal differentiation into secre-
tory cells. A major effort has been devoted to classify precisely
the proliferative lesions [64]. Most tumours forming in gene-
tically engineered mice are morphologically distinct from
spontaneous MMTV or chemically induced tumours. Many of
these tumours in genetically engineered models are not clo-
sely related to human breast tumours as they exhibit squa-
mous metaplasia. However, they have been extremely useful
to assess the role of known oncogenes. Tumours induced by
each oncogene have a specific morphological and molecular
signature as revealed by a recent study of KRAS2 expression

signature in mouse and human lung cancers [65]. For ins-
tance, HER2 tumours are composed of solid sheets of carci-
noma cells without glandular differentiation. The c-MYC
expressing tumours have large cells with pleiomorphic nuclei
with a coarse chromatin and prominent nucleoli. RAS tu-
mours form papillary-like tumours resembling transitional
cell carcinoma of the bladder. The Ret 1 tumours form small
crowded glands with large pleiomorphic nuclei. HER2 and
SV40Tag transgenes can produce ductal carcinoma in situ of
the comedo-type resembling human tumours. Papillary car-
cinoma can be obtained with the cyclin D1 transgene.
The phenotype of multigenic transgene derived tumours is
often determined by the dominating oncogene such as
c-MYC. Much care should be paid to the genetic background
of the mouse and different phenotypes are obtained with
MMTV or WAP promoters. Human and mouse tumours differ
notably with respect to their relative sensitivity to hormones,
their stroma, their capacity to metastasise and their pattern of
metastasis. Using terminal differentiation markers, luminal
myoepithelial and mesenchymal phenotypes have been iden-
tified in a large variety of mouse tumors. Three types of
neoplasms have been described; simple carcinoma, complex
carcinoma possibly originating from a stem cell, and carci-
noma undergoing an epithelial-mesenchymal transition
(EMT). Remarkably, an EMT phenotype [66, 67] has been
described in c-MYC, RAS and SV40 Tag driven tumours [68].
Mammary epithelial cells expressing Met and Myc can deve-
lop into tumours mixed luminal and myoepithelial, when
transplanted in the mammary fat pad suggesting that these
tumours arose from a bipotent progenitor [69].
Recently, the analysis of an epithelial cell line derived from
the mouse mammary gland taken at the mid gestation stage
showed remarkable epithelial cell plasticity. When deprived
from EGF, these mammary epithelial cells acquired a fibro-
blastic phenotype and expressed characteristic markers of the
basal phenotype such as K5/14 and P-cadherin [70]. Their
injection in vivo in the cleared mammary fat pad clearly
showed their capacity to produce luminal cells. These fin-
dings indicating that these basal cells display progenitor
properties together with the demonstration that the Wnt/b-
catenin pathway is playing a crucial role in the maintenance
of progenitor cells in different epithelia prompted experi-
ments to target a truncated b-catenin (resulting in constitutive
activation of the pathway) into the basal myoepithelial layer.
The myoepithelial layer has not prompted as many studies as
the luminal layer and many less transgenic mice have been
targeted to this basal layer. As the myoepithelial layer is in
direct contact with the extracellular environment and inte-
racts also directly with the luminal layer, any alteration of
these cells could direct consequences for the luminal layer. Its
disappearance in carcinomas suggests a direct role in control-
ling invasive behaviour of DCIS [71]. The truncated b-catenin
transgene induced excessive lateral branching and preco-
cious lobulo-alveolar development of the mammary gland at
mid-gestation. Most interestingly, hyperplastic foci were ob-
served in the basal layer. These cells expressed basal cytoke-
ratins, but not smooth muscle a-actin, indicating their undif-
ferentiated state. Multiparous mice also exhibited squamous
carcinoma and most importantly invasive carcinoma with a
strong basal phenotype [72]. These transgenic mice potenti-
ally represent a useful model to study breast carcinoma of the
basal phenotypes. Moreover the formation of undifferentiated
basal tumors can be interpreted as the amplification of a
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population of basal-type mammary progenitors. The mam-
mary gland is hypothesised to contain one epithelial
stem/progenitor cell in every 2000 cells [73]. Several studies
have described attempts to isolate the stem/progenitors cells
in the mouse using various approaches [74]. These cells may
be evidenced in vivo as a subpopulation of BrdU long-term
label retaining epithelial cells in the mouse and human
mammary tissues. Mammary epithelial cells belonging to the
so-called long-term label retaining cells are found to divide
asymmetrically and to retain their template strand. These cells
also self renew, thus they may represent the mammary stem
cells [75]. Other studies using surface markers have shown
that Sca-1 positive epithelial cells from the mouse mammary
gland had a much higher regenerative potential in vivo than
the Sca-1 negative cells [76]. Very recently, two studies
reported the isolation of a cell population from the mouse
mammary epithelium that is able, at the clonal level, to give
rise to the entire mammary gland if transplanted in vivo.
Interestingly, these progenitor cells were characterized by
high surface levels of integrins and cytoskeletal markers of
basal epithelial cells [77, 78].

Cancer stem cells
The presence of cancer stem cells has long been hypothesi-
zed in solid tumours. Strong evidence was already provided
in the seventies through the analysis of teratocarcinomas [79].
The enrichment of metastatic breast carcinoma cells derived
from pleural effusions using CD44 and CD24 as sorting
criteria showed that as low as 100 cells could form a mali-
gnant tumour [80]. This pioneering study opened the road for
new investigations in cancer stem cells to further enrich and
characterise the phenotype and response to treatment. Breast
cancer stem cell research is at very early stages and many
issues remain unsolved. The isolation of stem/progenitor cells
capable of self-renewing was successfully achieved with a
few primary high grade, ER positive tumours specimens. As
low as 100 tumour cells could form a tumour in SCID mice.
The phenotype of these cells was CD44-positive, CD24-
negative, Oct4-positive and connexin 43-negative [81]. An
important issue is whether these cells are enriched in the
so-called side population and whether this is related to the
level of expression of the ABCG2 transporter [82]. The phe-
notype of the stem/precursor cells needs to be more accura-
tely defined. In addition, there may be several distinct types of
progenitor cells as has been already established for normal
mammary gland [83, 84]. The fact that self-renewing proge-
nitors were not identified from aggressive ER negative tu-
mours suggests that culture conditions may not have been
suitable. Alternatively, stem cells from different types of breast
cancers may express different phenotypic markers. Clearly,
conventional drugs are unlikely to efficiently eradicate quies-
cent stem cells. In the same manner these cells may well be
resistant to radiotherapy and would then be responsible for
local or distant relapses. It would be intriguing to characterise
such cells in bone marrow micrometastasis and correlate
their presence with tumour progression in these patients.

Concluding remarks
Breast carcinomas comprise a very large set of remarkably
heterogeneous tumours. The conventional treatment of breast

cancers has made substantial progress over the last 20 years.
The new targeted therapies, although permitting longer-term
survival, have so far failed to cure metastatic diseases. At best,
metastatic cancer patients could benefit from protocols trea-
ting a chronic disease. However, as it is already known from
chronic myeloid leukaemia patients treated with Gleevec™,
resistance can be acquired through specific mutations of the
Abelson tyrosine kinase, leading eventually to progression to
an acute phase. The current dogma is that one must treat
cancer stem/progenitor cells in addition to the actively proli-
ferating cells. Defining such stem/progenitor cells, which
may be quite heterogeneous themselves, requires more basic
studies on normal stem/progenitor cells in order to unders-
tand their phenotypes. Well designed transgenic models may
help refine our understanding of cancer stem/progenitor cells.
Another major effort is to define better molecular markers,
which, in conjunction with the well established histopro-
gnostic markers, will permit tailored individual therapy. The
major challenge is indeed in the remarkable heterogeneity of
breast carcinoma. Progress has been made in unravelling this
issue with high-density arrays, landscaping the genome and
the transcriptome of breast tumours. Other high-density
screening epigenetic modifications, such as the methylome
and posttranslational modifications such as the phosphoki-
nome, have considerable potential to further define the mole-
cular status of each tumour. These combined studies may
bring more robustness to the transcriptomic data. They may
also offer new potential targets for therapies. The more
conventional surrogate markers now routinely used, such as
bone micrometatases, must also be considered for prognosis
and for evaluation of response to therapy. This formidable
task which the research community now faces will provide
major benefits to breast cancer patients in the near future. ▼
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ABSTRACT

Motivation: The identification of recurrent genomic alterations can

provide insight into the initiation and progression of genetic diseases,

such as cancer. Array-CGH can identify chromosomal regions that

have been gained or lost, with a resolution of �1mb, for the cutting-

edge techniques. The extraction of discrete profiles from raw array-

CGH data has been studied extensively, but subsequent steps in the

analysis require flexible, efficient algorithms, particularly if the number

of available profiles exceeds a few tens or the number of array probes

exceeds a few thousands.

Results: We propose two algorithms for computing minimal and

minimal constrained regions of gain and loss from discretized CGH

profiles. The second of these algorithms can handle additional

constraints describing relevant regions of copy number change. We

have validated these algorithms on two public array-CGH datasets.
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1 INTRODUCTION

Cancer is a genetic disease. Tumour initiation and progression result

from the activation of oncogenes and the inactivation of tumour

suppressor genes (Fearon and Vogelstein, 1990; Vogelstein and

Kinzler, 2004). Genomic instability is a hallmark of cancer and

most cancers display various genomic alterations, such as losses,

gains and amplifications of chromosome regions. Cancer-associated

gains and amplifications are thought to be responsible for oncogene

activation and chromosomal deletions are thought to result in the

inactivation of at least one copy of a tumour suppressor gene, the

other copy being inactivated by a point mutation or other genetic

or epigenetic event (Pinkel and Albertson, 2005).

Large-scale analysis of genomic alterations is now possible

with array-CGH (comparative genomic hybridization) (Solinas-

Toldo et al., 1997; Pinkel et al., 1998). Fragments of genomic

DNA are spotted as probes on a glass slide and hybridized with

a mixture of tumour and normal DNA, labelled with two different

fluorophores. An alternative approach to the spotting of genomic

DNA fragments is the use of cDNA arrays (Pollack et al., 2002)

or oligonucleotide arrays (Lucito et al., 2003; Herr et al., 2005).
The data obtained with array-CGH techniques should provide a

rapid, precise identification of the chromosomal regions altered

in tumours. An increasing number of tools [see, in particular,

CGHAnalyzer (Margolin et al., 2005), ChARMView (Myers

et al., 2005)] have recently become available for managing,

discretizing, visualizing sets of CGH profiles. CGHAnalyzer also

provides statistical tools for supervised or unsupervised analysis

of sets of genes, based on copy number status, with or without

discretization. However, transverse analyses of array-CGH profiles

to define genomic regions frequently subject to copy-number

change are frequently performed manually, as a preliminary step

before further analysis [see, among others Veltman et al. (2005),
Schraders et al. (2005), de Leeuw et al. (2004)]. Attempts have

recently been made to construct common alteration regions auto-

matically (Aguirre et al., 2004; Tonon et al., 2005), but this crucial
task is still mostly carried out on a manual, ad hoc basis. No general,
reusable formalization or tool for finding common or recurrent

alteration regions in a CGH-array dataset is currently available.

We define a recurrent region as a sequence of altered probes com-

mon to a set of CGH profiles and a minimal recurrent region as a

recurrent region that contains no smaller recurrent region. In many

cases, the accurate determination of minimal regions of chromo-

somal alterations is the first, crucial step towards the identification

of new oncogenes and tumour suppressor genes. If the number

of array-CGH profiles to be analysed approaches a few tens, or

if there are more than a few thousand array probes, it is very difficult

to develop a global view of all the genomic alterations in the

dataset, and therefore to identify recurrent regions of gain and

loss. Characterization of the minimal regions of alteration can

also improve our understanding of tumour progression, even before

identification of the genes involved. Minimal regions can be used as

new variables for the analysis of array-CGH profiles, e.g. to explore

the patterns of copy number alterations in groups of tumours. As

these minimal regions are thought to convey concise, biologically

meaningful information, their use should improve both supervised

and unsupervised classification analyses.

We propose a formalization and two algorithms for computing

minimal copy number alteration regions. The first step is

identification—starting from normalized array-CGH data—of the

chromosomal regions altered in a tumour. We recently described

a method, the Gain and Loss Analysis of DNA (GLAD) algorithm�To whom correspondence should be addressed.
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(Hupé et al., 2004), for the automatic detection of breakpoints, using

array-CGH profiles. GLAD assigns a status (Gain, Loss or Normal)

to each chromosomal region. We now describe two algorithms that

compute recurrent alteration regions from such sets of discretised

profiles generated by GLAD. The first one, MAR, efficiently

computes all minimal recurrent alteration regions from a set of

discretized profiles. MAR may identify too many minimal regions

(see Section 4), the manual validation of which may be time-

consuming for biologists. In such situations, the tumour biologist

may have expert knowledge concerning what makes an alteration

region relevant. It may be possible to express this knowledge as a

set of simple constraints, such as a minimum frequency of a given

alteration region in a dataset, or the number of observations defining

the border of the alteration region. We therefore propose a second

algorithm, CMAR, that computes minimal constrained regions

of chromosomal gain and loss from the discretized CGH profiles

generated by GLAD. This algorithm can easily be extended to

handle additional constraints. Although CMAR is less computation-

ally efficient than MAR (quadratic rather than linear in terms of

the number of probes describing the profiles), it should generate

fewer, potentially more relevant alteration regions. The parameters

of the current constraints implemented in CMAR can easily be

adapted to any given dataset.

In Section 2, we introduce the terminology and notations required

for the two algorithms and present the first algorithm. Section 3

introduces a number of constraints and their properties, and presents

the extension of the first algorithm to the computation of minimal

constrained regions. Section 4 provides an experimental validation

of the approach, using public CGH data for various types of cancer

and, finally, Section 5 sums up the advantages and current limita-

tions of the method and indicates promising directions for further

research.

2 MINIMAL REGIONS

The notion of a minimal common alteration region has not been

formalized as such in the bioinformatics community. This concept

is, however, used by biologists searching for candidate genes

involved in tumour initiation and progression, using data describing

genomic alterations across sets of genomic profiles. We provide

here a formalization based on Formal Concept Analysis theory

(Ganter and Wille, 1999).

2.1 Formalization

We assume that we have, as input data, a three-value discrete

matrix describing each observation in terms of gain, loss and

normal probes. It is straightforward to transform such a discrete

matrix into two boolean contexts, Mg and Ml, describing gain and

loss events in array-CGH profiles, respectively, with no loss of

information.

DEFINITION 1. A context is a triplet (O, P,M)where O is a finite set
of observations of size NO, P is a finite set of probe attributes of size
NP and M is a binary relationship between O and P, (M � O · P).
For simplicity, we will also refer to M as a context when O and
P are clearly known.

The contexts Mg and Ml are computed such that Mg(o,p) ¼ 1 if

probe p is gained in o,Mg(o, p)¼ 0 if p is not gained in o,Ml(o, p)¼ 1

if probe p is lost in o and Ml(o, p) ¼ 0 if p is not lost in o.

The computations of minimal gain and loss regions can therefore

be handled as identical, independent problems. We will now

illustrate our algorithms in the context described in Table 1.

With this representation of the array-CGH data, recurrent gained

and lost genomic regions can first be seen as rectangles of ones in

two 1–0 matrices. This problem has been extensively studied in

Data Mining, in the area of frequent itemset mining [see the seminal

paper Agrawal and Srikant (1994)]. The problem of computing

closed (Pasquier et al., 1999) and constrained (Ng et al., 1998)
patterns has recently received much attention, particularly for

large and dense extraction contexts, such as those for most DNA

array data (Pang et al., 2003; Besson et al., 2005).
The problem dealt with here is more specific: the set of probes

P is totally ordered by the relationship�P, where�P is the ordering

of probes in the genome. Consequently, the patterns of interest are

not subsets of P, but are instead sequences of probes.

We introduce the following notation for the representation and

handling of our specific sequences. Given two probe attributes pi
and pj, pi �P pj if and only if i � j. A sequence of contiguous probes

is denoted by [pi..pj]. For simplicity, a single probe sequence [pi..pi]
is denoted by pi. Strict inclusion between sets or sequences is

denoted by �, whereas loose inclusion is denoted by �.

DEFINITION 2. A lattice is a partially ordered set (L, �) such that
any two nodes n1 and n2 2 L have a single least upper bound (lub)
and a single greatest lower bound (glb). The lub s 2 L of two nodes
n1 and n2 2 L is such that n1 � s and n2 � s and there is no other
node s0 2 L such that n1� s0, n2� s0 and s0 � s. Symmetrically, given
any two nodes, n1 and n2 2 L, the glb g 2 L of n1 and n2 is such that
g� n1, g� n2 and there is no other node g

0 2 L such that g0 � n1 and
g0 � n2 and g � g0.

The set of all probe sequences of P is denoted by S(P). (S(P),�) is

a lattice, isomorphic to the lattice of intervals of [1..NP]. Therefore,

for simplicity, a sequence of S(P),[pi..pj] with 1� i� j�NP, will be

denoted [i..j].

DEFINITION 3. Let s be a sequence of probes of S(P). The extension
of s, given the context M, denoted ext(s,M) [or ext(s), when there is
no ambiguity concerning the reference context], is the set of all
observations oi of M such that all probe attributes of s are set to 1 in
oi, denoted in short as s � oi. The frequency of s is the size of its
extension.

Some sequences of S(P), the closed ones, are remarkable in the

contextM: they are the largest sequences occurring in a given set of

profiles. Closed sets and sequences are useful for Data Mining

because they provide a complete and compact representation of

all possible solutions to a mining problem.

Table 1. A boolean representation of an array-CGH dataset

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

o1 0 0 1 0 1 0 1 1 0 0 1

o2 0 0 1 0 1 1 1 1 0 1 0

o3 0 0 1 1 1 1 0 0 0 1 0

o4 1 0 1 1 1 1 0 0 0 0 0

o5 1 1 1 1 1 1 1 1 0 1 0

C.Rouveirol et al.

850



Formally, a closure operation on S(P) can be defined as follows.

DEFINITION 4. Let s a sequence of P, the closure of s given a
context M, denoted closureP(s, M) be the largest supersequence
of s that has the same extension as s. A sequence s is closed if
closureP(s, M) ¼ s. Hereafter, a closed sequence of S(P) will be
referred to as a region.

The closure of a sequence s can be computed iteratively by

intersecting the largest supersequences of s in each observation

of s extension. As a consequence, a closed sequence of P, s ¼
[pi..pj] 2 S(P) of extension e, is one for which e \ ext(pi�1) 6¼ e
and e \ ext(pi+1) 6¼ e.

EXAMPLE 1. In the context of Table 1, [p4..p5] is a sequence

of S(P) of extension {o3, o4, o5}, but is not closed. Its closure is

[p3..p6].

From the above definitions, we can derive the following proper-

ties. The proofs of these properties are provided in Appendix 1 of

the Supplementary Material.

PROPOSITION 1. Let us denote by R(P) the set of closed sequences
of P. (R(P), �) forms a lattice.

EXAMPLE 2. The set of all closed sequences of the context defined

in Table 1 is [p1..p1], [p3..p3], [p5..p5], [p7..p8], [p10..p10], [p11..p11],
[p5..p6], [p5..p8], [p3..p6], [p1..p8]. The lattice of all such sequences

is given in figure 1 of Appendix 1 of the Supplementary Material.

DEFINITION 5. A region r 2 R(P) is minimal if there is no other
region r0 2 R(P) such that r0 � r.

EXAMPLE 3. In the context of Table 1, [p3..p6] is a region, but

not a minimal one, because [p5..p6] is a closed subsequence of

[p3..p6]. Note that ext([p3..p6]) ¼ {o3,o4,o5} � ext([p5..p6]) ¼
{o2,o3,o4,o5}.

Note that the minimal regions are the smallest elements of this

lattice. The sequential organization of probes in the genome could

be used to design an efficient algorithm for detecting minimal

regions.

2.2 Computing minimal regions

This algorithm, MAR is based on a transformation of the context,

provided that the computation of minimal zones does not require

access to the extension of probes and requires only knowledge

concerning changes of extension in the genome: breakpoints.

This approach is conceptually similar to the traditional definition

of minimally altered regions based on multiple alignments of

alterations. In this case the region is the intersection of the aligned

alterations and is therefore delimited by the breakpoints that narrow

down the intersection the most.

DEFINITION 6. Given a context (O, P, M), we define a breakpoint

as an index i, 1 < i < NP such that there is at least one observation
o for which M(o, pi) ¼ 0 and M(o, pi+1) ¼ 1 or vice versa.
Additionally, 1 is a breakpoint if M(o, p1) ¼ 1 and NP is a break-
point if M(o, pNe) ¼ 1. If M(o, pi) ¼ 0 and M(o, pi+1) ¼ 1, i is an
in-breakpoint; if M(o, pp) ¼ 1 and M(o, pi+1) ¼ 0, i is an out-
breakpoint. Note that 1 can only be an in-breakpoint and NP

an out-breakpoint. If b is a breakpoint, we will denote shift_in(b)
as the set of all observations oi 2 O such that M(oi, b) ¼ 0 and

M(oi, b + 1) ¼ 1 and shift_out(b) as the set of observations oi such
that M(oi, b) ¼ 1 and M(oi, b + 1) ¼ 0.

Note that for a given index i, 1 � i � NP can be an in- and an

out-breakpoint simultaneously. Figures 2 and 3, in Appendix 1 of

the Supplementary Material, illustrate the notions introduced

in the definition. In the MAR algorithm, we will make use of the

following:

THEOREM 1. A region r ¼ [in..out] is a minimal region if and only
if (1) in is an in-breakpoint and out is an out-breakpoint and (2)

there is no breakpoint b such that in < b < out.

The proof of this Theorem 1 is provided in Appendix 1 of the

Supplementary material. From this theorem, we can readily derive

a linear algorithm for finding all minimal regions (Fig. 1). This

algorithm clearly has complexity in O(No � Np) with NO the number

of observations and NP the number of probes.

EXAMPLE 4. Lin ¼ {p1, p3, p5, p7, p10, p11} and Lout ¼ {p1, p3, p5,
p6, p8, p10, p11}. The minimal regions of the context of Table 1

are [p1..p1], [p3..p3], [p5..p5], [p7..p8], [p10..p10], [p11..p11].

Note that if the genome studied consists of several chromosomes

and if we set the constraint that a region does not overlap two

chromosomes, the above algorithm will be iteratively applied to

all chromosomes in the genome.

3 CONSTRAINED MINIMAL REGIONS

The definition of gain/loss regions above may yield a large number

of minimal regions (see Section 4), the manual validation of which

may be time-consuming for biologists. Biologists may have expert

knowledge about what constitutes a relevant alteration region that

is much more useful than a frequency test. We therefore introduce

the notion of a minimal constrained region, which extends the

Definition 5 to regions that satisfy a particular combination of

properties C ¼ C1, . . .,Cn.

DEFINITION 7. A region r is minimal for the conjunction of con-
straints C ¼ C1, . . .,Cn if and only if r satisfies each Ci, 1 � i � n
and there is no region r0, r0 � r such that r0 satisfies C.

3.1 Constraints—properties for use in the search for

minimal regions

We have identified the following constraints as relevant for finding

recurrent chromosomal regions of gain/loss. These constraints

Compute Minimal Regions(M);

For every observation O in M
if M(O,1) = 1 then Lin := Lin 0
if M(O,NP) = 1 then Lout := Lout NP
for every other probe P of M

if M(O,P) = 0 and M(O,P+1) = 1
then Lin := Lin P

else
if M(O,P) = 1 and M(O,P+1) = 0

then Lout := Lout P
MR = (I,O) with I Lin and O Lout |

there is no J Lin Lout s.t. I<J<O
Return(MR)

Lin :=(φ); Lout := (φ)

Fig. 1. MAR: algorithm for computing all minimal alteration regions
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concern either the sequence or the extension of the region:

� Minimum/maximum frequency of the region in M.

� Minimum/maximum size of the region in number of probes.

� The region’s extension contains/does not contain a given

observation.

� The region is well bounded (see Definition 9).

The first three of these constraints are intuitive and have been

extensively studied in the domain of data mining [see, among

others De Raedt and Kramer (2001)]. Some of these constraints

are anti-monotone with respect to set inclusion (�) and can be used

to search the lattice efficiently for subsets of P (and of sequences

of P) satisfying these constraints.

DEFINITION 8. A constraint Cam is anti-monotone with respect
to � if, for all sets s and g such that g � s, if s satisfies Cam,

then g satisfies it also.

EXAMPLE 5. Setting a minimum frequency or a maximum size

for a region, or imposing that a particular observation belongs to

the extension of a region are anti-monotone constraints.

These constraints can be used to search efficiently for constrained

closed sequences, avoiding the exploration of parts of the search

space that cannot contain solutions, based on current information

collected during the search. For instance, if a set or sequence of

probes does not satisfy an anti-monotone constraint C, there is no

need to explore and evaluate its supersequences, because they will

not satisfy C. In particular, if a sequence s is infrequent in a given

contextM, all supersequences of s are infrequent inM, and need not

be evaluated.

Other properties of constraints may be useful for improving

the efficiency of pattern search [e.g. monotone or convertible

constraints (Ng et al., 1998)], but are not dealt with in this paper

(see Supplementary Material for a discussion). For instance, our

experience with CGH data analysis led us to use the following

constraint, which is neither anti-monotone nor monotone, but is

nonetheless essential for selecting relevant regions.

DEFINITION 9. Given a context (O, P, M), a region r ¼ [in..out] is
well bounded on the left given a fixed parameter b if and only if there
are at least b observations oi in ext(r,M) such thatM(oi, in� 1)¼ 0

and M(oi, in) ¼ 1. In other words, in is an in-breakpoint for at
least b observations of the extension of r. Symmetrically, r is well
bounded on the right if out is an out-breakpoint for at least b
observations of ext(r, M). A region is well bounded if and only if
it is well bounded on both the left and right.

EXAMPLE 6. Let us consider well bounded regions with b ¼ 2. In

the context of Table 1, [p5..p5] and [p7..p8] are minimal regions

according to the Definition 5, but [p5..p5] is not well bounded on

the right, whereas [p7..p8] is not well bounded on the left. [p3..p6] is
a well bounded supersequence of [p5..p5], and there is no well

bounded supersequence of [p7..p8].

Well boundedness is not anti-monotone, as demonstrated in the

above example.

The above definition can be relaxed to the following definition,

which is more suitable for our biological context.

DEFINITION 10. Given a context (O, P, M), a region r ¼ [in..out]
of extension e is well fuzzy bounded on the left given parameters b

and m (m is referred to hereafter as the margin parameter) if and
only if there are at least b observations of the extension of r that
switch from 0 to 1 in the interval [(in � m)..in]. Formally, for all
in-breakpoints i, in � m � i � in, such that shift_in(i) \ e 6¼ ;,
|[i(shift_in(i) \ e)| 	 b. The definition is symmetric for regions well
fuzzy bounded on the right. A region r is well fuzzy bounded for
parameters b and m if and only if it is both well fuzzy bounded
on both the left and right for b and m.
This definition is illustrated in figure 3 of Appendix 1.

EXAMPLE 7. Given the bound b ¼ 2, the smallest m for which

[p5..p5] is well fuzzy bounded is m ¼ 1. [p7..p8] is well fuzzy

bounded for m ¼ 2.

Computing constrained minimal regions (Fig. 2) is a more com-

plex problem than computing minimal regions, as demonstrated by

the Example 6. If the problem is defined exclusively in terms of

anti-monotonic constraints, the MAR algorithm can be used to

find all minimal regions, and those minimal regions satisfying

the anti-monotonic constraints can then be selected. However, if

non-anti-monotonic constraints are involved, a level-wise explora-

tion (Mannila and Toivonen, 1997) of the R(P) lattice should be

carried out, and this exploration should be as efficient as possible.

In the following, we assume, without loss of generality, that the set

of constraints on the solution regions can be split into AC, a con-

junction of anti-monotone constraints with respect to � and OC,
a conjunction of non-anti-monotone constraints for the problem.

CMAR searches R(P), the lattice of closed probe sequences

breadth first. The first sequences it considers are minimal regions,

as computed with the algorithm in Figure 1, because no smaller

sequence of S(P) can be closed, according to Theorem 1. If a can-

didate region r satisfies all constraints of the problem (i.e. both

AC and OC), then r is a solution. Regions that do not satisfy AC

Fig. 2. CMAR: algorithm for computing all constrained minimal alteration

regions.

Fig. 3. Candidate generation.
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are stored to prune the search space (Fig. 3). If a region r satisfies AC
but does not satisfyOC, it will be used to generate candidate regions
for the next level.

When generating candidate minimal zones of level L + 1 (Fig. 3),

the algorithm first generates all the smallest closed supersequences

of regions that failed against OC at level l (Step 1 of Algorithm 3).

It then checks that none of the resulting regions is either a superset

of a smaller region already in CMR (minimality constraint) or of

a region that failed against AC (anti-monotonicity of AC).

EXAMPLE 8. Given the context of Table 1 and its minimal regions

for Example 4, we will search for all minimal regions that have both

a minimal support of two (AC) and are delimited in at least two

observations (OC). At level 1, [p3..p3] and [p10..p10] succeed

against AC and OC, [p1..p1], [p5..p5] and [p7..p8] fail against OC
and [p11..p11] fails against AC. [p1..p1] cannot be left extended, its

right extension, [p1..p8], is a superset of [p3..p3], and should there-

fore be disregarded. The left extension of [p5..p5] is [p3..p6] and its

right extension is [p5..p6]. The smallest of these two regions, [p5..p6]
is not well delimited on the left. Finally, [p5..p6] cannot be left-

extended any further without covering a minimal region. The result

is thus {[p3..p3], [p10..p10]}. If OC is modified to be ’the region

should be fuzzy delimited in at least two observations with margin

m ¼ 1’, the above solution can be extended with [p5..p5].

THEOREM 2. The above algorithm is complete—it generates
all minimal closed sequences of P that satisfy the constraints of
the problem.

The proof of this theorem is detailed in Appendix 1 of the

Supplementary Material.

CMAR differs from algorithms that compute closed constrained

itemsets in the context of biological constraints (Pang et al., 2003;
Besson et al., 2005), because it handles sequential data. CMAR

therefore searches the lattice of intervals of [1..NP], the size of

which is NP(NP � 1)/2 , i.e. much smaller than the search space

for itemsets, of size 2NP . It therefore does not need to rely on the

Galois connexion used in the other approaches, to search the

power-set of observations, 2|O|, which in most applications1 is larger

than N2
P. The main difference between CMAR and state-of-the

art sequence mining algorithms (Pei et al., 2002; Yan et al.,
2003) is the type of sequences handled. The sequences CMAR

handles are totally pre-aligned on a fixed set of probes spread

throughout a given genome (here, the human genome), explaining

why the algorithm has a quadratic worst-time complexity, whereas

the other methods handle unaligned data streams. As a consequence,

CMAR requires a simpler and more efficient partial ordering

and fully exploits the characteristics of the handled sequences to

generate candidate closed sequences efficiently (see Algorithm in

Fig. 3). Finally, and unusually in the context of pattern mining

(Mannila and Toivonen, 1997), this algorithm computes the most

general (rather than the most specific) patterns satisfying the set of

constraints.

Our approach can also be seen, from a different viewpoint, as a

kind of biclustering algorithm (Madeira and Oliveira, 2004) for

discrete data, with the user explicitly setting constraints concerning

the shape of the 1-containing rectangles that he or she wishes to

extract from the 0–1 context matrix (the height of the rectangle sets

the frequency threshold, the closeness constraint ensures that this

rectangle has maximal width for a given set of observations, etc.).

The ordering of probes in the genome optimizes the efficiency

of search for rectangles of 1s satisfying the constraints (Gionis

et al., 2004).

3.2 Complexity

The algorithm enumerates closed sequences of S(P), starting from

the smallest ones. The number of probe sequences, and therefore

of regions, is finite [in the worst case, OðN2
PÞ], so the algorithm

terminates. It stops when no candidate regions can be generated

for a given level (i.e. all closed sequences of level l are either

supersequences of a region of CMR or FailedAC). In other

words, the complexity of the algorithm is inOðN2
PÞ, but it is efficient

as AC prunes small sequences and small sequences satisfy all the

constraints of the problem. A more detailed discussion of com-

plexity issues with CMAR can be found in Appendix 2 of the

Supplementary Material.

4 VALIDATION

In this section, we validate the proposed algorithms by applying

them to two different public datasets, containing CGH-array data for

two kinds of tumour: colorectal tumours studied with BAC arrays

(Nakao et al., 2004) and breast tumours studied with cDNA arrays

(Pollack et al., 2002). These datasets have been handled as uni-

formly as possible: each dataset was first discretized, pre-processed

and provided as input to the algorithms, which then computed

the minimal (constrained) recurrent regions. Finally, genes were

extracted from the obtained regions; the regions were visualised

with VAMP software (http://bioinfo.curie.fr/projects/VAMP) and

analysed manually.

Discretization was performed using the GLAD algorithm, as

previously described (Hupe et al., 2004). The default parameters

of the R function glad.R were used. The status (i.e. Gain, Normal,

Loss) given by the Label assignment step is used as the input for

the computation of minimal recurrent regions.

Missing values, which are frequent in microarray experiments

(some spots and/or clones are discarded owing to poor quality), need

not be preprocessed. During the minimal region computation step,

unmeasured probes take the value of their neighbouring probes,

as assigned by GLAD. They are therefore, by default, included

in neighbouring regions.

GLAD automatically detects outliers, which are difficult to han-

dle in the minimal region computation step: outliers may correspond

to noise (e.g. mislocated probes, polymorphisms, etc.), or to highly

valuable information (i.e. very narrow alteration regions). The tak-

ing into account of outliers during the minimal region computation

step may yield very short (i.e. one-probe-long) regions, the statist-

ical relevance of which may be difficult to evaluate. For this reason,

many approaches simply ignore outliers and one-probe-long regions

(Aguirre et al., 2004). We have implemented an outlier selection

procedure (see details in Appendix 3 of the Supplementary

Material) that makes use of the distributions of gain and loss outlier

log2 ratios to select gain and loss outliers with significantly large

(for gain outliers) or small (for loss outliers) log2 ratios. A similar

strategy has been implemented in the CLAC approach (Wang et al.,
2005). Outliers which are not selected are set as unmeasured.1If the number of observations to handle exceeds 20 or 30.
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All datasets were treated with both MAR and CMAR algorithms.

MAR does not handle constraints and has no parameters that

must be adjusted. The current version of CMAR has three such

parameters: minimal frequency threshold, and the bound and

margin parameters (see Definition 10). These parameters can be

adjusted according to the characteristics of the dataset and we

describe briefly here and more precisely in the appendices, the

adjustment of these parameters for the datasets studied. First,

a region r should have a minimum frequency of 10% in the dataset;

second, r should be bounded on the left and right in at least two

profiles. Note that these left and right delimiting profiles are not

necessarily the same. These constraints are very permissive: the

minimum frequency is low (i.e. much lower than the frequency

used in most current approaches), making it possible to detect rel-

evant regions with a low recurrence rate. Setting b to 2 ensures that a
region is not delimited because of noise in a single profile, thereby

increasing the biological relevance of the regions obtained.

Finally, as a means of setting the value for the last parameter,

the margin m (see Definition 10), we have studied the distribution

of distances between two consecutive breakpoints on the same

chromosome, for both gain and loss regions, and both in and

out breakpoints (see Appendices 4 and 5 of the Supplementary

Material). Intuitively, the distance between two related in- or

out-breakpoints (related in the sense that they correspond to the

same region) should be smaller than the distance between two

unrelated in or out breakpoints (see figure 3 in Appendix 1 of

Supplementary Material). The left and right margins for computing

gain and loss regions can be set to the n-th percentile of such

distributions. Basically, increasing the margin for a given bound

has the effect of both increasing the number of regions and decreas-

ing the mean size of regions. We will discuss here the results for

m equals the first quartile of breakpoint distance distributions,

for both gain and loss regions. This seems to provide a good com-

promise between the size of the minimal regions obtained and the

number of regions obtained. This value of m also gives very good

results in terms of the number of known oncogenes and tumour

suppressor genes occurring in the constrained minimal regions.

For both datasets and for the parameter setting described below,

full lists of minimal regions, and associated genes for regions

containing 20 or fewer genes, are provided in Appendices 7a and

b of the Supplementary Material for the Nakao et al. (2004) dataset
and Appendices 8a and b of the Supplementary Material for the

Pollack et al. (2002) dataset.

4.1 Colon cancer dataset

The (Nakao et al., 2004) dataset describes 125 CGH profiles,

generated with a resolution of 1.5 Mb, on a human array. Each

sample is described in terms of 2120 clones, 2081 of which were

selected after pre-processing. A summary of the computed minimal

regions can be found in Table 2.

MAR computed 142 minimal gain regions from this dataset and

173 minimal loss regions. Based on predefined constraints, CMAR

computed 121 minimal constrained regions, 55 gain regions and

66 loss regions. We found that 17% of the total number of human

genes considered, as defined in Appendix 3 of the Supplementary

Material, belonged to gained regions whereas 16% of these genes

belonged to lost regions. All the regions identified by Nakao et al.,
2004 were identified by this algorithm, including the regions on

chromosomes 8p and 20q. The mean length of gain regions was

7 BACs and 61 genes. Loss regions were slightly smaller: 5 BACs

and 46 genes. The size of the regions in BAC clones ranged from

1 to 61, with 85% of the regions containing no more than 10 BACs.

Most of the oncogenes and tumour suppressor genes known to be

involved in colorectal cancer are found in the minimal regions of

alterations (Table 2). Serpin genes, which have been identified as

potential tumour suppressor genes, are located in the frequent

minimal region of loss GS-385N22.

4.2 Breast cancer dataset

We used the dataset described by Pollack et al., (2002), for which
both mRNA and DNA copy numbers had been determined with

cDNA arrays. This dataset describes 41 profiles, 4 cell lines and

37 tumours, originally described in terms of 6095 cDNA probes,

including 5758 retained after pre-processing. The cDNA technology

is less sensitive for the detection of losses (Bilke et al., 2005), and
this dataset seems much more noisy than the colon cancer dataset

described in section 4.1: before pre-processing, about 1500 minimal

regions were identified in the dataset, >90% of which were one

Table 2. Excerpt of minimal regions for colon cancer data (Nakao et al., 2004)

Min. region G/L Freq Gene Cytoband(s) No. BACs No. of genes Length (Mb)

CTD-2141B2..RP11-58G19 l 0.32 APC 5q22.2..5q22.3 3 16 3.0

RP11-9M11..RP11-19K9 l 0.19 PTEN 10q22.3..10q24.2 9 115 14.7

RP11-13J23..RP11-207J8 l 0.23 SMAD3 15q22.2..15q23 10 74 8.9

GS-185O2� l 0.64 DCC 18q21.2 1 11 2.9

RP11-43K24 l 0.62 SMAD4 18q21.1 1 18 2.7

GS1-259E18..RP11-188A12 g 0.35 BRAF 7q32.1..7q35 23 113 14.4

RP11-265K5..RP11-73M19 g 0.23 ‘FGFR1 amplicon’ 8p12..8p11.1 11 51 9.7

RP11-128G18..RP11-237F24 g 0.49 MYC 8q24.21 4 8 3.6

RP11-10D18..RP11-94A182� g 0.66 STK6 20q13.31 17 93 11.9

GS-385N22� l 0.53 — 18q21.33 1 18 2.3

RP11-29H19..RP11-169A62� g 0.66 — 20q13.12 4 64 2.56

Each region is described with its bounding BACs (a single BAC if the region is one BAC long), its status (g for gain, l for loss), its frequency in the dataset, the gene associated with

colorectal cancer tumour progression that it contains, its bounding cytobands (a single cytoband, if applicable), its length in BACnumber, in gene number and inMb. Regions are sorted

according to their status and their location in the genome.The top part of the table lists regions that contain genes related to cancer, the lower part of the table gives themost frequently lost

and gained regions not present in the top part of the table (denoted by �).
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probe long. This high level of noise and the tendency of breast

cancer tumours to display a high level of genetic rearrangement

made it much more difficult to set the threshold for selecting out-

liers. We observed the distribution of outliers’ log2 ratios for both

tumoural and normal additional profiles (denoted X0, XX, XXX,

XXXX and XXXXX), which the authors initially used to assess the

sensitivity of the cDNA technique (the details can be found in

Appendix 5 of the Supplementary Material).

MAR computed 350 minimal gain regions and 302 minimal loss

regions, whereas CMAR computed 71 altered regions, including

36 loss and 35 gain regions. These regions contained 6.4 and 1.6 %

of all the genes considered, respectively. The mean lengths of the

regions of gain and loss were 1.6 and 9.8 cDNA probes, respect-

ively, or 8.7 and 34 genes, respectively. Most of the gain regions

identified by Pollack et al., (2002) or known to be involved in

breast cancer are found in this list: I:773724 contains CCND1,

I:825577..I:783729 contains ERBB2, a close but different region,

I:236059 contains GRB7. The algorithm also identified regions

containing RPS6KB1, NCOA3, ABC1, TP53. Clusterin, which

has been identified both as a potential oncogene and as a tumour

suppressor gene, is located in the frequently lost region, I:810358.

PDCD4, a putative tumour suppressor gene, is located in the

frequently lost region, I:328567.. I:268258. Some of the regions

frequently lost and gained seem to be fragmented, lying very close

to one another (see in particular, the various regions on 8q24

and 17q, in Appendix 8a of the Supplementary Material). Some

of these neighbouring alteration regions probably correspond to a

single minimal region as these two regions are separated by a single

or a small number of cDNAs. This would be consistent with the

findings of most studies that the minimal regions of amplification

on 17q12–17q21 always contain both ErbB2 and GRB7.

5 DISCUSSION

As datasets describing copy-number genomic alterations in sets of

samples obtained from large-scale analyses become increasingly

common, the need for adequate formalization and tools for analys-

ing such discrete datasets is also increasing.

We propose here two algorithms dedicated to the computation of

minimal recurrent alteration regions. The first computes all minimal

regions observed in a set of discretized alteration profiles. We then

introduced a set of constraints to increase the efficiency of selection

of biologically relevant regions, generating a second algorithm

designed to compute all the minimal constrained alteration regions.

The identification of minimal regions is extremely important in the

search for genes involved in tumour progression. If the minimal

regions are small enough (i.e. do not contain too many genes), the

genes located in these regions can be studied in more detail. The

genes located in a region of loss can be screened for inactivating

mutations in the remaining allele. The tumour biologist involved in

this study established, by reviewing the literature, a list of the most

common oncogenes and tumour suppressor genes (putative or pro-

ven) involved in breast and colon tumours, and most of these genes

were found to be located in the minimal regions identified. More-

over, as expected, the status of the regions (gained or lost) was con-

sistent with the supposed function of the genes involved: ‘gained’

for the oncogenes and ‘lost’ for the tumour suppressor genes.

Although many biological studies have handled minimal regions

for cancer-related studies [e.g. (Veltman et al., 2003; Tonon et al.,

2005; Schraders et al., 2005; de Leeuw et al., 2004; Veltman et al.,
2005)], very few studies (Aguirre et al., 2004; Tonon et al., 2005;
Diskin et al., 2005) have tried to formalize the notion of relevant

recurrent minimal regions of alterations or the process for automat-

ically computing such regions across a set of observations. Aguirre

et al., 2004 and Tonon et al., 2005 have made the most sophisticated

attempt to date to formalize the process for computing common

alteration regions in sets of CGH profiles. They introduce a method

that selects relevant alteration regions based on both smoothed

log2-ratios and frequency in the data. However, this method

seems to focus more on high-amplitude deviations for the definition

of potentially interesting regions. An empirical comparison of this

method with CMAR will become possible once Aguirre et al.
(2004) make their code available.

In this paper, we have dealt with datasets obtained with a BAC

arrays of �2100 probes and a cDNA array of �6000 probes.

Comprehensive segmental copy number arrays covering the

whole genome (Ishkanian et al., 2004) and oligonucleotide arrays

(Lucito et al., 2003; Herr et al., 2005) have recently been developed.
We checked the generality of our approach by applying CMAR to a

dataset describing eight mantle cell lymphoma (MCL) cell line

profiles, obtained with tiling BAC technology (de Leeuw et al.,
2004). Each profile in this dataset is described in terms of

32 433 probes (each spotted in triplicate), making it possible to

evaluate the scaling-up capabilities of CMAR. With the same

parameters as in the publication, with the margin parameter set as

for the two previous datasets (see Appendix 6 of the Supplementary

Material), CMAR obtained the regions listed in Appendix 9a of

the Supplementary Material. This informal comparison showed a

good overlap with the regions obtained by de Leeuw et al. (2004).
The identification of minimal regions should make it possible

to decrease considerably the number of variables associated with

a given tumour. Rather than having to know the status of all the

probes used in the array, copy number alterations can be coded as

the status of the minimal regions only, reducing the complexity

from 2000 to 6000 variables (in the examples we have studied)

to a few tens or hundreds of variables. Machine learning or statistics

techniques, which could not be applied efficiently to the initial CGH

data, could be applied to the simplified dataset. We are currently

extracting association rules relating combinations of alteration

regions to biological (specific gene mutations) or anatomical/

clinical attributes, such as the stage of tumours (Rouveirol and

Radvanyi, 2005).

This work could be developed in many different directions. First,

CMAR performed well with data that had a low signal-to-noise

ratio. Performance may be poorer in the presence of high levels

of noise or considerable sample rearrangement, as we observed that

some minimal regions computed from the Pollack dataset seemed

to be fragmented, possibly owing to noise. However, most of the

important cancer-related genes were still found in the minimal

region computed for this dataset. An additional parameter could

be added to CMAR to merge these regions, as proposed by Aguirre

et al., 2004. This would involve minor changes to the minimal

regions obtained in this case, as 10% of these regions were con-

tiguous. This also suggests that another type of constraint may be

more suitable for coping with noisy data. One such constraint

might involve the computation of chromosomal regions with a

high density of alterations rather than fully altered in a set of

observations.
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Genomic alterations have recently been studied with arrays

composed of 100 000 SNPs (Matsuzaki et al., 2004) or oligo-

nucleotide arrays (Lucito et al., 2003; Herr et al., 2005). These
arrays differ from the arrays considered in this study in providing

datasets with a much larger number of attributes. The CMAR

algorithm, as demonstrated by the first experiment conducted on

a tiling array dataset (with�30 000 probes), should be easy to adapt

to the determination of minimal regions of alteration in genomic

data obtained with much denser arrays.
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A.2 Theorems

Theorem 1 (singular value decomposition) Let Mnm be a matrix of size n,m (with
n > m), then its SVD is expressed as follows:

Mnm = UnmSmmV′mm
U′U = I

V′V = I

S = diag{s1, . . . , sm} with s2
1, . . . , s

2
m eigenvalue of MM′ and M′M

Theorem 2 (McNemar's test) Let CA and CB be two supervised classi�cation algorithms
trained on the same training set and tested on the same test set. For each test sample, we
record how it was classi�ed by the two algorithms and construct the following contingency
table:

n00 = number of samples misclas-
si�ed by both CA and CB

n01 = number of samples misclas-
si�ed by CA but not by CB

n10 = number of samples misclas-
si�ed by CB but not by CA

n11 = number of samples misclas-
si�ed by neither CA nor CB

Under the null hypothesis that the two algorithms have the same prediction performance
the following statistic is distributed as a χ2(1):

(|n01 − n10| − 1)2

n01 + n10

Theorem 3 (variance decomposition) Let X = (X1, · · · ,Xp) be a (n, p) matrix of p
continuous variables. Let G1, · · · ,GK be K classes with nk observations (

∑
k nk = n). Let Xk

be the submatrix of X corresponding to the observations in Gk. Let µ = E(X), Σ = V (X),
µk = E(Xk) and Σk = V (Xk). Then Σ can be expressed as follows:

Σ = ΣW + ΣB

with

ΣW =
1

n

K∑
k=1

nkΣi and ΣB =
1

n

K∑
k=1

nk(µk − µ)′(µk − µ)

Σ is named the total variance-covariance matrix, ΣW the within-class variance-covariance
matrix and ΣB the between-class variance-covariance matrix.

Theorem 4 (Cochran's theorem) Let X1, · · · , Xn be n independent and identically dis-
tributed random variables with X1 ∼ N (µ, σ2). Let us de�ne the following random variables:

µ̂ =
1

n

∑
i≤n

Xi and σ̂
2 =

1

n− 1

∑
(Xi − µ̂)2

Then:
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µ̂ ∼ N (µ,
σ2

n
) (i)

(n− 1)
σ̂2

σ2
∼ χ2

n−1 (ii)

µ̂ and σ̂2are independent (iii)

Theorem 5 (Bienaymé-Chebyshev inequality) Let X be a random variable. Then, for
any positive ε:

P (|X − E(X) ≥ ε|) ≤ V (X)

ε2

Theorem 6 (Gaussian vector) Let X1, · · · , Xn be Gaussian random variables. If they
are independent then a1X1 + · · · anXn is gaussian for any choice of real numbers a1, · · · , an.
The vector X = (X1, · · · , Xn) is said to be Gaussian.

Asymptotic statistic theorems can be found in Van der Vaart (1998).

Theorem 7 (Slutsky's theorem) Let (Xn) and (Yn) be sequences of univariate random
variables. If (Xn) converges in distribution to X and (Yn) converges in probability to a
constant c, then:

Xn + Yn
d−→ X + c (i)

XnYn
d−→ cX (ii)

Xn/Yn
d−→ X/c if c 6= 0 (iii)

Theorem 8 (continuous mapping) Let g : Rk → Rm be continuous at every point of a
set C such that P (X ∈ C) = 1.

Xn
p−→ X implies g(Xn)

p−→ g(X) (i)

Xn
d−→ X implies g(Xn)

d−→ g(X) (ii)

Theorem 9 (central limit theorem) Let X1, · · · , Xn be n independent and identically
distributed random variables with mean µ and variance σ2. Then:

n−1/2
∑
i≤n

Xi − µ
σ

d−→ N (0, 1)
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A.3 Supplementary �gures of Chapter 3
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Figure A.1: Histograms for simulations under H0 without correlation - Histograms of the statistical criterion over 20000
simulations. The data have been simulated using the normal, uniform, log-normal and student distributions. n corresponds to
the number of observations. The number of variables has been set at 100. The χ2(100) probability density function is displayed
as a red line.
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Figure A.2: Histograms for simulations under H0 with correlation - Histograms of the statistical criterion over 20000 simu-
lations. The data have been simulated using the normal distribution. n corresponds to the number of observations, ρ is the
correlation value, and pc is the number of correlated variables. The number of variables has been set at 100. The χ2(100)
probability density function is displayed as a red line.
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Figure A.3: Simulations under H0 with correlation - E is the empirical mean (in black), V is the unbiased empirical variance
(in red) and R is the percentage of rejected hypotheses under H0 at the 5% level (in green) computed over 20000 simulations.
Horizontal dashed lines represent the expected value for E (100), V (200) and R (5%) under H0 using the same color code. n
corresponds to the number of observations, ρ is the correlation value, and pc is the number of correlated variables. The number
of variables has been set at 100.
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Figure A.4: Histograms for simulations under H1 without correlation - Histograms of the statistical criterion over 20000
simulations. The data have been simulated using the normal distribution. n corresponds to the number of observations and pc

is the number of variables with a class e�ect. The number of variables has been set at 100. The χ2(100) probability density
function is displayed as a red line.

273



n=10 − ρρ=0.2 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.2 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.2 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.2 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.5 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.5 − pc=2

200 400 600 800
0

50
0

10
00

15
00

n=50 − ρρ=0.5 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.5 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.8 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.8 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.8 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.8 − pc=2

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.2 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.2 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.2 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.2 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.5 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.5 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.5 − pc=5

200 400 600 800

0
50

0
10

00
15

00
n=100 − ρρ=0.5 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.8 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.8 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.8 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.8 − pc=5

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.2 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.2 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.2 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.2 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.5 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.5 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.5 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.5 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.8 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.8 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.8 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.8 − pc=10

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.2 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.2 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.2 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.2 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.5 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.5 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.5 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.5 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=10 − ρρ=0.8 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=20 − ρρ=0.8 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=50 − ρρ=0.8 − pc=20

200 400 600 800

0
50

0
10

00
15

00

n=100 − ρρ=0.8 − pc=20

200 400 600 800

0
50

0
10

00
15

00

Figure A.5: Histograms for simulations under H1 with correlation - Histograms of the statistical criterion over 20000 simu-
lations. The data have been simulated using the normal distribution. n corresponds to the number of observations, ρ is the
correlation value, and pc is the number of variables with a class e�ect and correlated. The number of variables has been set at
100. The χ2(100) probability density function is displayed as a red line.
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Figure A.6: Simulations under H1 with correlation - E is the empirical mean (in black), V is the unbiased empirical variance
(in red) and R is the percentage of rejected hypotheses under H0 at the 5% level (in green) computed over 20000 simulations.
Horizontal dashed lines represent the expected value for E (100), V (200) and R (5%) using the same colour code. n corresponds
to the number of observations, ρ is the correlation value, and pc is the number of variables with a group e�ect and correlated.
The number of variables has been set at 100.
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