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ABSTRACT 
 
Population dynamics is the study of the abundance of a species at different life stages of a species, the 

interactions between these life stages and sometimes the interactions with other species. Stage-structured 

modelling is a popular approach for population dynamics studies. This approach examines populations based 

on their ecology and allows the incorporation of complex dynamic processes. Model outputs are sensitive to 

the parameter values. It then becomes crucial to accommodate and quantify parameter uncertainty. This is of 

particular importance when the population of interest is exploited and the risk of over-exploitaion or  

extinction needs to be assessed. 

  

When studying real world examples of populations exploited by fisheries, several additional problems often 

arise such as: multiple and heterogeneous sources of information (e.g. datasets collected at different spatial 

and temporal scales), missing observations, life stages of interest not directly observable. The Bayesian 

framework allows all of these issues to be handled within the general framework. Thus has proven its 

particular value in studying the dynamics of exploited populations. Indeed, unknown quantities have 

associated probability distributions reflecting their uncertainty. Dealing with variations in the 

interactions/processes between life stages or limited and indirect ecological data is also facilitated by 

Bayesian modelling. 

 

In this study, I examined a large Atlantic salmon population located in the Foyle catchment (Ireland). This 

population has been exploited for several centuries and particularly during the 20th century. This study 

focused on the period from 1959 to present for which most monitoring data is available from the Loughs 

Agency (formerly the Foyle Fisheries Comission). The Loughs Agency is responsible for the management of 

the salmon population. The aim of the agency is “to manage [the] fisheries towards maximum sustainable 

exploitation for commercial and recreational purposes”. In order to do so, it is important to understand the 

regulatory mechanisms occurring in the population in order to (i) estimate the number of fish returning to 

river, i.e. pre-fishery abundances (PFAs), and (ii) to derive standard reference points  for assessing the 

population status with regards to its sustainable exploitation. 

 

To this end, a state-space model is implemented within a Bayesian framework. A life stage and spatially 

structured dynamic model describes the lifecycle of the Main components of Atlantic salmon in the Foyle 

catchment. Several empirical datasets related to the abundances of the stages at different scales of space and 

time, over a period of 50 years are brought together. Observations and process errors are taken into account 

ultimately allowing PFAs to be estimated. A retrospective analysis was also carried out providing insights on 

the historical status of the population and its exploitation. 

 

Geo unit specific abundances of the different states and their associated uncertainty are estimated. The main 

state of interest is the pre-fishery abundance (PFA), during the time-series considered (1959-2008) the 

salmon population reached its apex in the mid 1960’s. This was followed by a steep decrease until the mid 

1970’s. From then to present, the population followed a slow declining trend with a slight recovery in the 

mid 1980’s. This decline is shown to be mostly due to a decline of the 0+ juvenile to returning adult survival 

which is accentuated some years by some overfishing.  



ii 

 

CONTENTS 

Contents 

CHAPTER 1: FISHERIES AND ATLANTIC SALMON .......................................................................... 13 

1.1. Fisheries management ............................................................................................... 14 

1.1.1 Precautionary approach and management ........................................................... 14 

1.1.2 Sources of uncertainty ......................................................................................... 17 

1.2. Dealing with uncertainty using a Bayesian approach ............................................... 19 

1.3. A case study: Atlantic salmon in the Foyle catchment (Ireland) .............................. 20 

1.3.1 Biology ................................................................................................................ 20 

1.3.2 Conservation status of wild Atlantic salmon ...................................................... 22 

1.3.3 Foyle catchment description and data available ................................................. 22 

1.4. Bayesian modelling framework ................................................................................ 31 

1.4.1 Frequentist vs. Bayesian statistics ....................................................................... 31 

1.4.2 Bayes’ theorem ................................................................................................... 31 

1.4.3 Prior distributions ................................................................................................ 32 

1.5. Hierarchical modelling and state-space models ........................................................ 33 

1.5.1 Hierarchical modelling ........................................................................................ 33 

1.5.2 State space models .............................................................................................. 33 

1.5.3 Bayesian inference for complex model in practice ............................................. 34 

CHAPTER 2: ESTIMATING 0+ JUVENILE PRODUCTION FROM 5 MINUTES ELECTRIC 
FISHING ABUNDANCE INDICES ............................................................................................................. 36 

2.1. General introduction ................................................................................................. 36 

2.2. Building a relationship between 0+ juvenile densities and 5 minutes electric fishing 

abundance indices ............................................................................................................ 37 

2.2.1 Introduction ......................................................................................................... 37 

2.2.2 Material and methods .......................................................................................... 38 

2.2.3 Results ................................................................................................................. 48 

2.2.4 Discussion ........................................................................................................... 53 

2.3. Estimating average 0+ juvenile densities for several geographical unit ................... 56 



iii 

 

2.3.1 Data available ...................................................................................................... 56 

2.3.2 Modelling ............................................................................................................ 56 

2.3.3 Results ................................................................................................................. 63 

2.3.4 Discussion ........................................................................................................... 66 

CHAPTER 3: IS IT WORTH COUNTING REDDS TO ASSESS ATLANTIC SALMON SPAWNING 
ESCAPEMENT? ............................................................................................................................................ 68 

3.1. Introduction ............................................................................................................... 68 

3.2. Material and Methods ............................................................................................... 69 

3.2.1 Study site ............................................................................................................. 69 

3.2.2 Field data collection ............................................................................................ 70 

3.2.3 Modelling ............................................................................................................ 72 

3.2.4 Bayesian inference and posterior computations .................................................. 75 

3.2.5 Posterior model checking .................................................................................... 76 

3.2.6 Estimating adult returns from redd counts alone ................................................ 77 

3.3. Results ....................................................................................................................... 78 

3.4. Discussion ................................................................................................................. 82 

CHAPTER 4: A LIFE STAGE STATE-SPACE MODEL FOR ATLANTIC SALMON POPULATION 
DYNAMICS IN THE FOYLE CATCHMENT. .......................................................................................... 84 

4.1. Introduction ............................................................................................................... 84 

4.2. Material and methods ................................................................................................ 87 

4.2.1 Data ..................................................................................................................... 87 

4.2.2 Modelling ............................................................................................................ 92 

4.2.3 Parameters of management interest .................................................................. 102 

4.2.4 Inter-generation replacement ratio (IGRR) ....................................................... 104 

4.2.5 Bayesian inference and posterior computation ................................................. 104 

4.2.6 Posterior checking ............................................................................................. 105 

4.2.7 Predictions ......................................................................................................... 105 

4.3. Results ..................................................................................................................... 105 

4.3.1 Observation models ........................................................................................... 105 

4.3.2 Exploitation and populations dynamic model ................................................... 107 



iv 

 

4.4. Discussion ............................................................................................................... 120 

4.4.1 Modeling or dealing with limitations and constraints ....................................... 120 

4.4.2 Outputs of the model for management advice .................................................. 122 

4.4.3 Beyond the case study ....................................................................................... 124 

CHAPTER 5: GENERAL DISCUSSION .................................................................................................. 126 

5.1. Objectives ................................................................................................................ 126 

5.2. Population dynamics in the Foyle catchment ......................................................... 127 

5.2.1 Main results ....................................................................................................... 127 

5.2.2 Perspectives and improvements ........................................................................ 129 

5.2.3 Management ...................................................................................................... 131 

ANNEX 1: WINBUGS CODE: ELECTRIC FISHING CALIBRATION MODEL AND ESTIMATION 
OF AVERAGE 0+JUVENILE DENSITIES IN GRADE 1 SITE IN THE FIVE GEO UNITS FROM 1998 
TO 2008..... 132 

ANNEX 2: WINBUGS CODE: MODEL RELATING REDD COUNTS TO SPAWNERS 
ABUNDANCE..... .................................................................................................................. 153 

ANNEX 3: WINBUGS CODE: POPULATION DYNAMICS MODEL OF ATLANTIC SALMON IN 
THE FOYLE CATCHMENT. ................................................................................................... 160 

REFERENCES  ................................................................................................................ 186 

 

 

 



v 

 

List of Tables 
 

Table 1.1: Egg deposition targets for each grade of nursery habitat. .............................................................. 30 
Table 2.1: Nursery habitat classification, following the Department of Agriculture for Northern Ireland 

(DANI) classification. ............................................................................................................................ 39 
Table 2.2: Site characteristics: nursery habitat quality (H), area of the site (S) and average width of the site 

(W), index of abundances (A) and removal samples (C1, C2, C3, C4) of the 21 sites used in this study.

 ................................................................................................................................................................ 40 
Table 2.3: Summary statistics of the marginal posterior distributions of the model parameters. .................... 50 
Table 2.4: Summary of the model posterior check based on data replication. Mean differences (DY, Y being 

an observable, see text) between observed and replicated data and associated probabilities are presented 

for 3 density classes (class 1: 0 < di < 0.4; class 2: 0.4 < di < 1.4; class 3: di > 1.4). .............................. 52 
Table 2.5: Number of grade 1 (grade 1+ grade 2 according to DANI’s classification) sites electrofished every 

year in every geo units (Nt,i). .................................................................................................................. 56 
Table 2.6: Posterior model checking: Bayesian p-values of chi-square statistics ࣑ࢋ࢘   based on ࣑

data replication technique (see text). ...................................................................................................... 65 
Table 3.1: Data for the Faughan, the Finn and the Roe, years 2001 to 2006: counts of returning adults (A), 

rod catches upstream of each counters (N), proportion of the wetted area surveyed (P) and redd counts 

(R). Dash (�) indicates missing data. ..................................................................................................... 71 
Table 3.2: Prior distribution of the parameters (i=1,2,3; ε = 0.001). ............................................................... 76 
Table 3.3: Posterior model checking: Bayesian p-values of chi-square statistics ࣑ࢋ࢘ࡾ, ࣅ  ,ࡾ࣑  ,ࣅ

,ࢋ࢘ࡾ࣑ ࢋ࢘ࣅ  ,ࡾ࣑ ,ࢋ࣑࢘ or ࣅ ,ࡿࣆ ࡿ࣎  ,࣑ ,ࡿࣆ  based on data replication technique (see ࡿ࣎

text). ........................................................................................................................................................ 78 
Table 3.4: Summary statistics of the marginal posterior distributions of the models parameters. .................. 79 
Table 4.1: Summary of the commercial fisheries catch in Lough Foyle and how the 5 geo units are affected 

by them. .................................................................................................................................................. 89 
Table 4.2: Wetted areas of good and poor nursery habitat available in each geo unit (ࡳࢃ and ࡳࢃ), the 

total wetted area of nursery habitat available (࢚࢚ࢃ) and the total nursery habitat wetted area in good 

nursery habitat equivalent (ࢃ). ............................................................................................................. 91 
Table 4.3: Overview of how different pdfs obtained from observation models can be incorporated within 

subsequent dynamic models by using conjugate pdfs and corresponding pseudo-observations. ࣆ: 

posterior mean; m: posterior median; ࣌ posterior variance; CV: posterior coefficient of variation; a: 

posterior lower bound; b: posterior higher bound. .................................................................................. 98 
Table 4.4: Summary of non-informative priors of the model. ....................................................................... 101 
Table 4.5: Summary statistics of the marginal posterior distributions of the main observation model 

parameters. ............................................................................................................................................ 106 
Table 4.6: Summary statistics of the marginal posterior distributions of the main dynamic model parameters.

 .............................................................................................................................................................. 108 

 

 



vi 

 

List of Figures 
 

Figure 1.1: Atlantic salmon lifecycle. © Robin Ade and Atlantic Salmon Trust. ........................................... 22 
Figure 1.2: Map of the Foyle catchment with the different geo units location in red (Faughan), blue (Finn), 

green (Mourne), black (Roe) and orange (Foyle) and, the counters location, 1) Faughan, 2) Finn, 3) 

Mourne and 4) Roe. ................................................................................................................................ 24 
Figure 1.3: Total commercial fisheries, drift nets and draft nets salmon catches between 1959 and 2008. .... 29 
Figure 1.4: Graphical representation of a simple state-space model. The dashed orange frame represents the 

process model. The dashed blue frame represents the observation models.  ࢚ࢄ is a vector of hidden 

states during year t. The transition from ࢚ࢄ to ࢚ࢄ   is conditioned by the parameters ࣂ and forms 

the process equation. ࢚࢟ is a vector of observations depending on one or several hidden states during 

year t. These observations are conditioned by ࣂ, the vector of parameters of the different observation 

models. The relation between ࢚ࢄ and ࢚࢟ corresponds to the observation equation. ............................... 35 
Figure 2.1: Directed Acyclic Graph (DAG) of the model used to estimates densities of the sites studied. 

Ellipses represent random variables. Squares represent fixed quantities, covariates in our case. All 

observed quantities are greyed. Arrows represent the parent-child dependencies between the different 

nodes: single arrows represent probabilistic relationship between the parent(s) and child nodes, dashed 

arrows indicate deterministic relationship. The frame represents a repetition of structure over sites. 

Nodes outside the frame are unknown parameters constant across sites. ............................................... 45 
Figure 2.2: Summary of the posterior distributions of the catchability at the first pass (pi, 1) and the 0+ 

salmon densitiy (di) for the 21 sites studied. Median (●), 25% and 75% percentiles (▲ and ▼), and 5% 

and 95% percentiles (+). Numbers above the 95 percentiles correspond to the habitat grade of the site 

(1: good, 2: poor). ................................................................................................................................... 49 
Figure 2.3: 5 minutes index of abundance vs posterior distribution summary of 0+ salmon density (di) 

(mean: □, 5% and 95% percentile: +). The curve (plain line) represents the relationship between the 

density and the mean abundance index for the posterior median of the parameters κ and η (see text). . 51 
Figure 2.4: Q-q plot of the posterior probability P(D.d>0|X,Y). D.d is the difference, calculated for every 

site, between the two density estimates derived from successive removal data alone and the abundance 

index data alone (see text). The empirical cumulative distribution of P(D.d>0|X,Y) (dots) is plotted 

against a reference uniform distribution on the [0, 1] interval (plain line). ............................................ 52 
Figure 2.5: Posterior estimates of 0+ juvenile salmon density from index of abundance (IAi) data alone. 

Median (●), 25% and 75% percentiles (▲ and ▼), and 5% and 95% percentile (+). Numbers above the 

95 percentiles correspond to the habitat grade (1: good, 2: poor). .......................................................... 53 
Figure 2.6: Average 5 minutes index of abundance ( mean(At,i,n) ) between 1998 and 2008; in red, blue, 

green, black and orange the Faughan, the Finn, the Mourne, the Roe and the Foyle. ............................ 59 
Figure 2.7: Coefficient of variation of the 5 minutes index of abundance vs average 5 minutes index of 

abundance ( mean(At,i,n) ) between 1998 and 2008.for each geo unit  a) the faughan, b) the Finn, c) the 

Mourne, d) the Roe and e) the Foyle. ..................................................................................................... 60 
Figure 2.8: Directed acylic graph (DAG) of the model used to estimate average 0+ salmon densities for each 

year and each geo unit. Ellipses represent random variables. All observed quantities are greyed. Arrows 

represent the parent-child dependencies between the different nodes: single arrows represent 

probabilistic relationship between the parent(s) and child nodes, dashed arrows indicate deterministic 



vii 

 

relationship. The frame represents a repetition of structure over sites (n), geo units (i) and years (t). 

Nodes outside the frame are unknown parameters constant across sites. ............................................... 61 
Figure 2.9: Summary of the posterior distribution of the average 0+ juvenile densities ࣆࢊ for a) the Faughan, 

b) the Finn, c) the Mourne, d) the Roe and e) the Foyle. Boxes indicate 25th percentile, median and 75th 

percentile, whiskers indicate 5th and 95th percentiles. ............................................................................. 64 
Figure 2.10: Summary of the posterior distribution of the average 0+ juvenile densities’ coefficients of 

variation ࢊࢂ for the 5 geo units. Boxes indicate 25th percentile, median and 75th percentile, whiskers 

indicate 5th and 95th percentiles. Letters above whiskers indicate significantly different groups. .......... 65 
Figure 3.1: Directed Acyclic Graph (DAG) of the model relating the returning adults to the redd counts. All 

observable quantities are greyed. Arrows represent the conditional dependencies between nodes: solid 

arrows for probabilistic dependency, broken arrow for deterministic dependency. The frames represent 

a repetition of structure over units. ......................................................................................................... 75 
Figure 3.2: Posterior distributions of the yearly spawner:redd ratios for each units (�t,i) for the years 2001 to 

2006. Light grey boxes indicate years for which the proportion of the surveyed area was not available. 

Dark grey boxes indicate the posterior predictive distribution (κrep) summarize the knowledge about the 

same spawner:redd ratio when both adult counts and proportion of the surveyed area data are missing. 

The line in the middle of the box indicates the median, the boxes indicates the 25th and 75th percentiles 

and the whiskers indicate the 2.5th and 97.5th percentiles. Dashed lines indicate the mean of the 

posterior distribution of the associated μκiEquations 3.5 and 3.6). ......................................................... 80 
Figure 3.3: Posterior distributions of the spawners abundance from 1959 to 2006 for a) the Faughan, b) the 

Finn, and c) the Roe. The year 1997 for the Faughan and Roe have been removed as the red counts 

were missing. The line in the middle of the boxes indicates the median, the box indicates the 25th and 

75th percentiles and the whiskers indicate the 2.5th and 97.5th percentiles. The dashed lines indicate the 

mean spawners abundance over the time series. ..................................................................................... 81 
Figure 3.4: Coefficient of variation (CV) of the spawner abundance St,i against the associate CV of the 

relative abundance δt,i (�) and the CV of spawner abundance obtained with the incorporation of fake 

proportions of surveyed wetted area data ࢚ࡿ,  from 1959 to 2000 for a) the Faughan, b) the (□) ࢋࢇࢌ

Finn, and c) the Roe. The year 1997 for the Faughan and Roe has been removed as the red counts were 

missing. The dotted line represents the one-to-one line. ......................................................................... 82 
Figure 4.1: Graphical representation of a simple state-space model. The dashed orange frame represents the 

process model. The dashed blue frame represents the observation models ࢚ࢄ is a vector of hidden states 

during year t. The transition from ࢚ࢄ to ࢚ࢄ   is conditioned by the parameters ࣂ and forms the 

process equation. ࢚࢟ is a vector of observations of one or several hidden states during year t. These 

observations are conditioned by ࣂ, the vector of parameters of the different observation models. The 

relation between ࢚ࢄ and ࢚࢟ corresponds to the observation equation. ................................................... 86 
Figure 4.2: Map of the Foyle catchment with the location of the main commercial fisheries as named in 

Table 4.1, the units location in red, blue, green, black and orange for the Faughan, the Finn, the 

Mourne, the Roe and the Foyle respectively and, the counters location, 1) Faughan, 2) Finn, 3) Mourne 

and 4) Roe. .............................................................................................................................................. 88 
Figure 4.3: Detailed time series of the different fisheries occurring in the Foyle catchment. ......................... 90 
Figure 4.4: Directed acylic graph (DAG) representing how average 0+juvenile densities are integrated to the 

full life cycle model as pseudo-observations. ࢚ࢊ  , ,ࣆ ,ࢊࢂ and ࣒  are greyed as they are ࣒

considered as pseudo-observed. Arrows represent the parent-child dependencies between the different 



viii 

 

nodes: single arrows represent probabilistic relationship between the parent(s) and child nodes, dashed 

arrows indicate deterministic relationship. The frame represents a repetition of structure over geo units 

(i) and years (t). See text for the meaning of Θi and Φ. .......................................................................... 98 
Figure 4.5 (next page): Simplified Directed Acyclic Graph (DAG) of the state-space model described in 

equations 4.1 to 4.22. Ellipses represent random variables. Squares represent fixed quantities, 

covariates in our case. All observable quantities are greyed. Arrows represent the parent-child 

dependencies between the different nodes: plain arrows represent probabilistic relationship between the 

parent(s) and child quantities, dashed arrows indicate deterministic relationship. A frame represents a 

repetition of structure over years or geo units. Quantities outside the frame are unknown parameters 

constant across sites. Note: (i) for the survival from 0+ juvenile to returning  ࢚࢙,  the year, geo units ,ࡶ

and residuals effects were not represented. (ii) ࢚,  are observed for the Faughan, Finn and Roe units 

) ൌ , , ) between2001 and 2006 (࢚ ൌ , … , ૡ). ........................................................................... 99 
Figure 4.6: Pseudo prior and marginal posterior distribution of the average 0+ salmon densities ࢚ࢊ,  (for a ࣆ

the Faughan, b) the Finn, c) the Mourne, d) the Roe and e) the Foyle geo unit. Pseudo prior 2.5th and 

97.5th percentiles ranges are represented with a dashed line and the posterior distribution with a plain 

line. The circle indicates the mean of the distribution. ......................................................................... 107 
Figure 4.7: Density dependence relationship between spawners (fish.m-2) and 0+ juvenile densities for each 

geographical unit represented with means of the posterior distribution of the parameters concerned. 

Plain dots represent year for which electric fishing data are available, empty dots represent years 

without electric fishing data represented with means of the posterior distribution of the unknown 

values. ................................................................................................................................................... 109 
Figure 4.8: Marginal posterior distribution of a) year effect ࢚ࣁ, white boxplot indicate years depending of the 

initialisations parameters, light blue boxplots correspond to the period 1963 to 2008, yellow boxplots 

correspond to predictions for years coming and b) geo unit effect ࣇ, letters above boxplots indicate 

groups significantly different one to another. The line in the middle of the boxes indicates the median, 

the box indicates the 25th and 75th percentiles and the whiskers indicate the 2.5th and 97.5th percentiles.

 .............................................................................................................................................................. 110 
Figure 4.9: 0+ juvenile to returning adult survival ࢚࢙, ,࢚ࢿ time-series with the associated residual effect ࡶ  

for each geographical unit of the Foyle catchment. The line in the middle of the boxes indicates the 

median, the box indicates the 25th and 75th percentiles and the whiskers indicate the 2.5th and 97.5th 

percentiles. ............................................................................................................................................ 111 
Figure 4.10: Total PFA for the Foyle catchment. The dashed line corresponds to the average PFA over the 

time-series. White boxplot indicate years depending of the initialisations parameters, light blue 

boxplots correspond to the period 1963 to 2008, yellow boxplots correspond to predictions for years 

coming. The line in the middle of the boxes indicates the median, the box indicates the 25th and 75th 

percentiles and the whiskers indicate the 2.5th and 97.5th percentiles. .................................................. 112 
Figure 4.11: Marginal posterior distribution of the exploitation rates ࢚ࢎ,  for the different geo units. The line 

in the middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. Plain and dashed red line indicate the median,2.5th 

and 97.5th percentiles of the marginal posterior distribution of the reference exploitation rate ࢚ࢎ,  Red .′

dots indicate the probability of exploiting the population at a higher exploitation rate than the reference 

exploitation rate ࢚) ′ࢎ,  115 ................................................................................................................. .(ࢎ



ix 

 

Figure 4.12: Marginal posterior distribution of the spawners ࢚ࡿ,  for the different geo units. The line in the 

middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. Plain and dashed red line indicate the median, 2.5th 

and 97.5th percentiles of the marginal posterior distribution of the conservation limit ࢚ࡿ,  116 ............... .′
Figure 4.13: Evolution between 1964 and 2008 of the probability that the number of spawners returning in 

each geo unit of the Foyle catchment is not sufficient to reach their conservation limit ࢚) ′ࡿ,  .(ࡿ

Dashed lines indicate the average ࢚,  117 .............................................................................................. .ࡿ
Figure 4.14: Marginal posterior distribution of the pre fishery IGRR in log scale (ࡲࡼࢶࢍࡸ). The line in 

the middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. ................................................................................. 118 
Figure 4.15: Marginal posterior distribution of the post fishery IGRR in log scale (ࡿࢶࢍࡸ). The line in the 

middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. Bottom right panel shows the averaged probability 

that the IGRR value will be higher than 1 for all geo units considered together (ࡼ ൌ ࢚ࢶ, ࡿ  ).

 .............................................................................................................................................................. 119 

 

 



x 

 

Acknowledgments 

 

First of all I would like to thank Derick Anderson, CEO of the Loughs Agency and the 

Foyle Carlingford and Irish Lights Commission Board who funded this study. This work 

was based on earlier work of Walter Crozier and Gersham Kennedy in the Bush River, Phil 

McGinitty and Ken Whelan in the Burrishoole and Niall Ó Maoiléidigh from the Marine 

Institute. Their help and discussions at various moments during this project allowed me to 

have a better understanding of biological and management issues. 

 

During these fours years, I was lucky to be supervised by three great supervisors who 

helped me to go through this (long) journey and learn quite a bit along the way. Each of 

you helped me in your own way. Thank you Paddy for helping me making my way in the 

Loughs Agency and getting a better understanding of the situation in the Foyle system. 

Thank you Colin for always seeing the bright side of all situations and keeping me 

motivated and positive when I wasn’t. Finally, merci Etienne de m’avoir fait découvrir les 

statistisques Bayesiennes, d’avoir eu la patience d’expliquer et re-expliquer, et plus que 

tout, merci pour les nombreux echanges constructifs qui m’ont permis de mettre mon 

travail en perspective et continuer à advancer. 

 

I’d like to dedicate this thesis to my family, in particular my mum and dad who have 

always been there for me since I started University (and that’s a long few years). I was 

lucky enough to have parents who supported me in my choices. Merci Papa et Maman! 

Pour tout, pour les petits colis de 7kgs remplis de victuailles, pour les cartes postales ou 

juste pour les petits coup de fil et plus généralement pour m’avoir permis de faire ce que 

j’ai toujours voulu faire. Thanks are also due to my two beloved sisters Marion and Justine: 

Merci Baboune et Tinou pour tout vos petits mots qui m’ont eux aussi aides surtout dans 

les derniers mois! 

 

I couldn’t have finished this work without Karen. I hope you know how special and 

important you are to me. Thanks for being so supportive even when I wasn’t the nicest 

person... I can only repay you when you’ll be writing your own PhD. 

 

I was lucky enough to have three supervisors in three different countries; surprisingly 

enough, the great thing about this was not to be able to visit almost all airports of the UK 

and Ireland but to be able to meet great people in these different places. I spent the first and 



xi 

 

the last months of my PhD in the Scottish Centre for Ecology & the Natural Environment, 

it was a delight (even if I wasn’t delightful!) to be writing up on the shores of Loch 

Lomond. Thanks to all the staff and students I met there with whom I shared great 

moments: Adrian, Andy, Davy, Liz, Monica and Stu. Special thanks are due to Rona for 

her legendary cooking skills (eating delicious food when I wasn’t at my best really cheered 

me up) and thanks are due to Jen for her positive attitude and her delicious coffee (thanks 

for maintaining my body awake during the last weeks!). I spent 2 years and a half in Derry 

working in the Loughs Agency getting support from all the people working there. I’d like 

to thank all the crews who collect the data, this work wouldn’t have been possible without 

them. Thanks Art for those two crazy summers of electrofishing, a couple of attempts of 

adult trapping and all the constructive chats we had. Thank you Rachel for providing all 

the GIS information. Thank you David for being nice to me even when I kept asking you 

more and more stuff about these counters! Thanks are also due to all the ladies working in 

the administration department who were always helpful and made my life so much easier 

in many occasions! 

 

I also spent a bit more than a year in the INRA station of Saint Pée sur Nivelle which 

provided a great working environment. Merci à Philippe Gaudin pour m’avoir acceuilli au 

sein de l’unité ECOBIOP et permis de finir ma these dans les meilleures conditions 

possible. Merci aussi à David pour être toujours partant pour des sorties photo et à Mélanie 

pour les discussions toujours constructives autour de tasses de thé aux arômes divers et 

variés! 

 

Finally, as Billy D. says, keep the salmon blues alive! 

 
 

  



xii 

 

Declaration 
 

I hereby declare that the work on this thesis has not been submitted for another degree. It is 

entirely my own composition and that research described herein was carried out by me 

unless otherwise stated or acknowledged. 

 

 

      Guillaume Dauphin 

 



 13 

Chapter 1 Fisheries and Atlantic salmon 

 

 

 

 

 

Chapter 1:  
Fisheries and Atlantic salmon 

 

 

Fisheries management requires ecological and environmental knowledge about the species 

exploited. This knowledge is used to provide information on the dynamics and the 

abundances of the species of interest, specifically to determine appropriate rates of 

exploitation. Many exploited fish populations have complex life histories such as 

diadromous species (e.g. salmonids (Salmonidae), eels (Anguillidae), and sturgeons 

(Acipenseridae)). Thus complex models will be necessary to take account of the highly 

complex life-histories of these species. In general, increasingly complex models require 

more parameters to describe the variability occurring within the population (e.g. where 

individuals of a same population do not mature simultaneously or are not exploited at the 

same time). More parameters require more data to provide reasonable estimates of these 

parameters. 

 

The ideal situation to build a model describing the dynamics of a complex life cycle 

species would be to have information regarding the abundance and the transition rates for 

each life stage however, in most cases, data are available only for one or two life stages. In 

this study, I utilise different methods to deal with partial information on the lifecycle of an 

exploited species of high conservation value with a complex lifecycle (Atlantic salmon, 

Salmo salar L.) in order to provide abundance estimates and population management 

advice. 

 

In this chapter, I describe the general context of applied fisheries management for Atlantic 

salmon. I then describe the Foyle catchment and its Atlantic salmon fishery, studied in this 

thesis. The Atlantic salmon lifecycle as well as the data available for the Foyle population 

are also described.  
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1.1. Fisheries management 

Three types of management strategy are available to fisheries managers to manage 

exploitation rates or fish population (Blankenship and Leber, 1995): 1) artificial stock 

enhancement, 2) habitat manipulation (e.g. increasing available habitat, etc.), and 3) to use 

traditional exploitation limitation tools (e.g. quotas and bag limits, seasonal closure). 

 

The applicability of stock enhancement as a management technique is still in question 

(Hilborn, 1998) as it has been relatively unsuccessful in the past (Molony et al., 2003) 

mainly because of lack of knowledge of the conditions required for effective stocking. 

Indeed, to be efficient, accurate information on the habitat suitability at the site where the 

species will be introduced is needed. Even used with all the data requirements met, many 

risks such as an increase of intra-specific competition and loss of genetic diversity have 

been associated with stock enhancement management strategies. 

 

Habitat manipulation or restoration in contrast, attempts to improve or enhance 

environmental conditions for the exploited species; for salmon, this has been largely 

carried out mainly in freshwaters in order to increase juvenile production (NASCO, 2001). 

 

The most used tool is fisheries regulation since it seems to be the easiest way to control the 

number of fish caught, through the number of fishing licences given each year, the fishing 

season duration, the type of gear used, etc. However, to provide efficient exploitation 

regulations, the managers need scientific information about the abundance before the 

fisheries take effect (pre-fishery abundance) and reference values of stock or exploitation 

rate necessary to observe a long-term sustainable population. 

 

Once a model of the population dynamics has been designed and judged close enough to 

reality. The managers can decide which reference points they want to use. 

 

1.1.1 Precautionary approach and management  

1.1.1.1 Food and Agriculture Organization (FAO) statement 

As defined by the FAO (1997), the precautionary approach to fisheries management states 

that scientists should: 
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- “provide stock conservation limits and management targets for all rivers stocks” 

- “provide advice on the risks of not achieving objectives […] by considering 

uncertainty in the current state of stocks […] in biological reference points related 

to specific management objectives” 

- “provide catch options, or alternative management advice, for fisheries managed by 

the North Atlantic Salmon Conservation Organisation (NASCO)” 

 

This conceptual approach has led to the definition of biological reference points (BRPs) 

 

1.1.1.2 Definition of Biological Reference Points (BRPs) 

Fisheries management principles are summarized by Olver et al. (2005): 1) The long-term 

sustainability of native fish stocks should be maintained; 2) habitat of these stocks should 

be preserved; 3) the native biological community should not be modified; 4) the harvest 

should not exceed the regeneration rate of the population; and 5) spawning aggregations 

should not be directly exploited. 

 

BRPs are quantities describing a population’s state, calculated at a specific life history 

stage. Under the precautionary approach, the distinction between limit reference points 

(LRPs) and the target reference points (TRPs) is fundamental. LRPs are critical threshold 

values that should never be crossed (Mace, 1994), whereas TRPs are desired states of the 

population from a management perspective which are estimated on the basis of optimising 

criterions such as the level of stock that will achieve long-term maximum sustainable yield 

(MSY, Caddy and McGarvey,1996) to fisheries. The International Council for the 

Exploration of the Sea has accepted since 1997 (ICES,1997) that both LRPs and TRPs 

should be used as standard management parameters for exploited populations. LRPs set 

boundaries that should not be crossed while TRPs are values to aim for in sustainable 

fisheries. Following NASCO recommendations, the terms “conservation limits” and 

“management targets” will be used for LRPs and TRPs respectively as these terms indicate 

that management should be associated by sustainability. 

 

In order to be consistent with the precautionary approach, reference points should be 

expressed using spawning biomass levels (Blim) and fishing mortality rate limits (Flim) 

(ICES, 1997). Rosenberg et al. (1994) describe the advantages and disadvantages of 

applying Flim and Blim. 
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Conservation limits can be specified as a maximum fishing mortality rate or a minimum 

biomass level for the stock. Using fishing mortality to set the conservation limit present the 

advantage of being directly related to the fishing activity and can therefore be controlled 

directly. There is a theoretical and empirical basis for selecting maximum fishing mortality 

levels (ICES, 1997). There are several economic advantages in using Flim, a fishery near 

the Flim will not have to close but rather substantially reduce its catches. Also, setting a 

maximum fishing mortality can protect the stock from depletion due to over-fishing in the 

long-term (Rosenberg and Restropo, 1996). This allows reducing the socio-economic 

impact of fishery closure. In addition, the data and life history information required from 

the stock is relatively low. However there are some disadvantages to using maximum 

fishing mortality rates. For instance, the fishing mortality based definition may not be 

appropriate at all biomass levels (e.g. stock rebuilding might not be possible when stock 

was overfished in the past). Fishing mortality rate does not account for environmental 

condition change or changes of life history characteristics and requires to be modified 

when these occur (Rosenberg and Restrepo,1996). Also there are no explicit stock-

recruitment considerations (King, 1995), which means that avoiding recruitment failure is 

not guaranteed. 

 

When conservation limits are set based on minimum biomass level, this level sets a 

standard for rebuilding stocks. Using minimum biomass level can also allow the stock to 

be protected during long periods of poor environmental conditions (i.e. under undesirable 

conditions the minimum stock level provides a buffer by ensuring the survival of a 

proportion of the stock for an eventual recovery when environmental conditions improve). 

In addition, the concept of minimal spawning escapement is easily understood by the 

different groups involved in salmon management (Potter, 2001). But as for the fishing 

mortality rate, there are disadvantages to using minimum biomass level as a management 

tool. Setting these reference points is difficult and requires a high level of good quality data 

(Rosenberg and Restrepo, 1996) as short time-series of stock-recruitment data can lack of 

constrast in spawner abundance or environmental conditions. Another issue occurs when 

the minimum biomass level is treated as a fixed value, which can lead to highly variable 

catches and severe socio-economic impacts (Hilborn, 2001). 

 

Reference points based on either Blim or Flim are dependent on the stock-recruitment 

relationship produced by the models used to describe the population dynamics. These 

population models and associated data are both subject to uncertainties that need to be 
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accounted for in order to measure the risk of reaching the reference points and achieving 

the management strategies. 

 

1.1.2 Sources of uncertainty 

In this thesis, I use probabilistic modelling which focus on linking models to available 

datasets. A model is always a partial and simplified representation of the reality. It looks at 

unobservable variables and unknown parameters of a given population of interest by using 

available datasets related to observable quantities. Several papers review the different types 

of uncertainty and how crucial it is to account for them when building models (Chatfield, 

1995; Draper et al.,1987; Francis and Shotton, 1997; Hodges, 1987; Regan et al., 2002; 

Rosenberg and Restrepo, 1994). The quantification of the various sources of uncertainty 

has been of particular interest in recent years in order to develop harvest or fishery-

management strategies (Frederik and Peterman, 1995; McAllister et al., 1999; Smith et al., 

1993), to measure risk associated to these strategies (Francis and Shotton, 1997; Ludwig et 

al., 1993; Richards and Maguire, 1998) and, fishery stock assessment (Hilborn et al., 1993; 

Punt and Hilborn, 1997; Schnute and Richards, 2001). 

 

When dealing with fisheries the main sources of uncertainty are: 1) natural variability in 

distribution, abundance and productivity of fish populations, 2) observation error (i.e. 

imperfect information), 3) model error, 4) communication problems between the different 

stakeholders (scientists, managers), 5) unclear management objectives and 6) 

implementation error (i.e. the difference between a management goal and its actual 

realization) (Harwood and Stokes, 2003; Peterman, 2004). All these sources (if they are not 

taken in account) are likely to create biases in applications related to the management of 

the fish population. 

 

In this study, population dynamics is the main focus and therefore (4), (5) and (6) which 

correspond to management issues are not addressed. (3) is very complicated to address in 

complex model as it involves looking at models considering the combination of the 

different model hypotheses. This becomes a vast task as the number of parameters increase 

and is associated with important computational problems: running all the possible models 

would be too time consuming. Therefore, in this study I mainly focus on (1) and (2) which 

are also called process uncertainty and observation uncertainty respectively. 
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1.1.2.1 Measurement or observation uncertainty 

This type of uncertainty represents the limits of the information available in the datasets 

and has principally two components: 1) the measurement error, which is a aconsequence 

of the way in which observations are taken (e.g. the choice of sampling strategy, or errors 

in data collection). Indeed, the conditions of observation are often very difficult to control 

and sampling techniques may require indirect observation protocols which multiply the 

sources of uncertainty (Solow, 1998). 2) the estimation (or inference) error, which is the 

inaccuracy and imprecision introduced by the method of statistical inference used to 

estimate system parameters from observations. 

 

1.1.2.2 Process uncertainty 

Process uncertainty represents stochasticity, which is a component that can’t be ignored in 

models used in biology and in particular in ecology. The process uncertainty is the 

probabilistic component of a model, it includes all the effects that are not explicitely 

expressed in cause and effect relationship represented in the model. When dealing with 

populations, process uncertainty can be split in two components: environmental 

stochasticity and demographic stochasticity. Both are often treated together (Harwood and 

Stokes, 2003). The environmental stochasticity represents the environmental factors, which 

can vary for unknown reasons during the study and affect individuals (or groups of them) 

in the same way. This variability cannot be avoided when the studies take place in the 

wild; it is impossible to be able to measure and incorporate in the model all the 

environmental factors that influence the population studied (and thus the parameters 

surveyed). The demographic stochasticity represents at a population level, the stochastic 

behaviour of each individuals of this population. It can be modelled in two ways: 1) by 

considering the inter-individual variability of the vital parameters (i.e. survival, fecundity; 

Clark, 2003; Fox and Kendall, 2002) or 2) by considering that all individuals have the 

same vital parameters but have a random behaviour conditionally on these parameters. In 

this situation, when the size of the population increases, the part of the process uncertainty 

due to the demographic stochasticity becomes generally negligible in comparison to the 

environmental variability. 
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1.2. Dealing with uncertainty using a Bayesian approach 

Since the end of the 1980’s (Dixon and Ellison, 1996), the use of Bayesian inference has 

expanded rapidly in ecological research and environmental decision making in various 

field such as: dynamics of single species (Barrowman et al., 2003; Calder et al., 2003; 

Clark et al., 1999; Clark et al., 2003a; O’Hara et al., 2002; Schnute and Kronlund, 1996; 

Walters & Ludwig, 1994; Wintle et al., 2003), dynamics of interacting species (Clark et 

al., 2003b; Frigessi et al., 2005) and multispecies community ecology (Fleishman et al., 

2003; Peterson et al., 2003; Shen et al., 2003). Several papers have described the 

importance of Bayesian inference in ecology (Clark, 2005; Ellison, 2004) and more 

generally as a tool to deal with uncertainty (Chatfield, 1995) or more specifically in a 

framework for decision making in natural resource management (Dorazio and Johnson, 

2003). 

 

Bayesian inference has become popular in population dynamics because it allows 

uncertainty to be accounted for directly in the results of the analysis by probability 

distribution functions associated with the unobservable state variables and unknown 

parameters. It provides a unique, coherent and rigorous framework which allows 

incorporation of: (1) results from previous analysis probability distribution function thus 

allowing an update of the existing knowledge (Weeks and Berkeley, 2000), (2) data from 

other populations when data are lacking for the population of interest (Myers and Mertz, 

1998), (3) expert knowledge (Malakoff, 1999). Finally, recent advances in computer 

technology, the development of numerical methods (Markov chain Monte Carlo) (Chen et 

al, 2000; Clark, 2006; Gilks et al., 1996) and the development of more user-friendly 

software package (WinBUGS, Thomas et al., 1992; BayesX, Lang et al., 2002; FirstBayes, 

O’Hagan, 1996), Bayesian analysis are less difficult to apply. 

 

Most Bayesian models for diadromous species such as Atlantic salmon focus on the 

freshwater phase of the life history and therefore ignore the sea fisheries and their 

management (Mäntyniemi and Romakkaniemi, 2002; Power and Power, 1994; Rivot and 

Prévost,2002; Wyatt, 2002). However, several recent studies have been looking at a more 

comprehensive approach, looking at the full life cycle (Michielsens et al., 2008; Rivot et 

al., 2004). Theoretical aspects of these models will be discussed in section 1.4 and 1.5. 
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1.3. A case study: Atlantic salmon in the Foyle catchment 
(Ireland) 

1.3.1 Biology 

Atlantic salmon (Salmo salar L.)1 is a fish which belongs to the class Actinopterygii and 

the family  Salmonidae, which includes whitefish (Coregoninae), graylings (Thymallinae) 

and charrs, Pacific salmon and trout, (Salmoninae). 

 

Salmon occur on both sides of the Atlantic Ocean and are found in rivers flowing in the 

western seaboard of Europe from northern Portugal to the White Sea, in the British Isles, 

Iceland and Greenland. On the Eastern seaboard of North America, they are found from 

approximately 40°N northwards to northern Québec. As a result of anthropomorphic 

activities (e.g. salmon commercial farming), salmon have expanded their natural range to a 

more global distribution (McKinell et al., 1997; McKinnell and Thompson, 1997; Ward, 

1994). 

 

The Atlantic salmon is euryhaline (i.e. can tolerate a wide range of salt concentrations and 

can live in both fresh and salt-water) which allows it to have an anadromous life history. 

The juvenile stage is spent in freshwater with the later stages usually in the marine 

environment. After several years spent in rivers, salmon move downstream as smolts to 

travel to the sea where they will spend several months to several years in the ocean before 

returning to freshwater to spawn. 

 

The complex life cycle of Atlantic salmon (Figure 1.1) has been extensively studied (Crisp, 

2000; Klemetsen, 2003; Mills, 1971). Spawning takes place in the winter. The female 

selects a place with clean flowing water and gravel of suitable size (spawning area). She 

then digs a cavity where eggs are laid to be fertilised by the male. The female then covers 

the eggs with gravel creating a mound called a redd. Each female generally produces one 

redd (Crisp, 2000; Hay, 1987). After incubation, the young fish which is called an alevin 

hatches with a yolksac attached to it. As the yolksac is utilised, the alevin emerges from the 

gravel and starts to feed, disperse and defend territories. Once dark marks appear on its 

flank, the fish is then called a parr. During this stage the juveniles inhabit riffle areas
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 (nursery habitat). The reproduction, embryonic development and the juvenile stages 

correspond to critical stages where density-independent environmental factors and density 

dependent regulation mechanisms occur (Elliott, 2001; Jonsson et al., 1998;  Milner et al., 

2003). After spending one to six years in the river depending on water temperature and 

food availability (Gibson, 1993), the parr undergoes several morphological (e.g. body 

silvering, parr marks disappear) and physiological (increased salinity tolerance, olfactory 

sensitivity …) transformations, which allow it to travel to open sea (McCormick et al., 

1998). Elliot (2001) and Friedland (2003) emphasize that this transition phase between 

freshwater and the sea (i.e. in estuaries and coastal areas) is one of the major bottlenecks 

occurring in the life cycle. During their downstream migration to the open sea, the young 

salmon are called smolts. They will then spend one year or more at sea before returning to 

freshwater to spawn (Hansen and Jacobsen, 2000). Several marine feeding areas are 

known: Iceland, western Greenland and the Faroe Islands north of Scotland. If a fish has 

spent one year in the sea, it is called a one-sea-winter fish or grilse; if more than one winter 

has been spent at sea, the fish is known as a multi-sea-winter fish. Their marine survival is 

dependent on environmental fluctuations. The precise mechanisms of which are still 

unknown (Friedland, 1998; Hansen and Quinn, 1998) and predation which decreases as the 

salmon grows (Potter and Crozier, 2000). In most cases, salmon will return to the streams 

into which they hatched. This behaviour is called homing. Some proportion of the males 

never travel to sea but instead become sexually mature in the rivers and can take part in the 

spawning with female adult salmon. These fish are described as precocious male parr 

(Crisp, 2000). However salmon returning from the sea have experienced better growth 

opportunities due to greater food availability at sea compared to freshwater (Hawkins, 

2000; McCormick et al., 1998). After spawning, a small proportion of fish survive and go 

back to the sea. These fish are called kelts. The post-spawning survival is generally low but 

can reach 17.5 % in certain populations (Hutchings and Jones, 1998). In the Foyle 

catchment, the post-spawning survival is estimated around 7% (Elson and Tuomi, 1975). 

For this reason salmon have been considered as semelparous in the Foyle area. 
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Figure 1.1: Atlantic salmon lifecycle. © Robin Ade and Atlantic Salmon Trust.  

 

1.3.2 Conservation status of wild Atlantic salmon 

For various reasons, salmon populations are important for humans. They are of economic 

importance for the commercial and recreational fisheries. In most of the river systems in 

North America and Europe, salmon populations have declined or disappeared (Parrish, 

1998). The reasons for this decline are due to human activities such as significant river 

modification (e.g. from the 19th century, construction of dams) which can cut salmon off 

from reproduction areas, degradation of the aquatic habitat quality, and overfishing 

(Armstrong et al., 1998; Parrish, 1998). The salmon’s presence in rivers is evidence of 

good water quality and also has symbolic value. People enjoy seeing salmon feeding in the 

river or jumping waterfalls.  

 

1.3.3 Foyle catchment description and data available 

1.3.3.1 Geography 

The Foyle catchment is located in the North West of the island of Ireland and is 

approximately 4,500 km². Located on the border of the Republic of Ireland and Northern 

Ireland, the catchment is under the jurisdictions of a governmental cross-border 
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organisation: the Loughs Agency of the Foyle Carlingford and Irish Lights Commission.  

 

For the purposes of this study, the catchment is divided into five geographical (“geo units, 

Figure 1.2) based on the locations of fish counting devices in the catchment. Four geo units 

correspond to the wetted area above the fish counter structures and are named after the 

main stream which goes through them (Faughan, Finn, Mourne and Roe). The last geo 

unit, named “Foyle” is composed of the wetted area of the remaining parts of the Foyle 

catchment but not including the Culdaff River and the area north of the Faughan units. 

These two areas were not included in the Foyle unit since they are known for having a very 

small population of salmon and are less well monitored than the rest of the system. 

.  
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1.3.3.2 Salmon biology in the Foyle catchment 

Most Atlantic salmon return to their natal stream to spawn (i.e. homing) (Hansen et al., 

1993; Westerberg, 1982), therefore the gene flow between the various tributaries of a river 

is relatively low. This leads over a longtime-scale to the development of genetically 

different subpopulations. Conservation of genetic diversity is increasingly recommended in 

fisheries management because it is regarded as local adaptation to a particular local habitat. 

In order to improve the management regime, a genetic assessment of the Foyle salmon 

population was carried out in 2003, looking at the variability of six microsatellites loci 

known to detect stock differences (Booth, 2003). The study postulated the presence of two 

distinct genetically differentiated groups (metapopulations) within the Foyle system; a 

western group comprising of the River Finn and River Derg and their respective tributaries, 

and an eastern group comprising of the rest of the Foyle Rivers. In 2008 (Ensing and 

Crozier), this vision was refined showing the existence of at least three clear higher level 

populations within the Foyle system. Ensing and Crozier (2008) show that the Foyle 

salmon stock conforms to a member-vagrant evolutionary model (i.e. the genetic structure 

of the populations are maintened by areas that limit the dispersal and advection of eggs and 

early lifestage). This member-vagrant evolutionary model predicts that population structure 

evolves as a result of natural selection that favours precise homing of sexually mature 

adults of the same gene pool to spawn in appropriate spawning areas. This process results 

in strong genetic structuring in populations with locally adapted gene pools as a result of 

reproductive isolation where the basic level of genetic differentiation appears in a spatial 

scale within a 5-20 kilometres range (Booth, 2003; Ensing and Crozier, 2008). It should 

also be noted that the genetics of the fish caught by the commercial fisheries have been 

studied in 1999, 2001 and 2003 (2000 and 2002 samples are currently being examined). 

For these three years it appears that one or two rivers stocks are mainly exploited by this 

fishery. Thus, in 1999 the main contribution was from the R. Derg and Cloughfin R. and in 

2001 and 2003, the main contributor was the R. Finn. 

 

1.3.3.3 Data available 

During the last fifty years, the Foyle Fisheries Commission and subsequently the Loughs 

Agency have collected a large amount of data related to salmon abundance and habitat. 
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a. Commercial and recreational catches 

One of the longest the time-series of data is the commercial and recreational catches. Since 

1952, the number of salmon caught by the different fisheries has been recorded. The two 

main commercial fisheries use drift and draft nets. 

 

The drift nets are gill nets (Mills, 1989), which are laid out near the water surface in the sea 

lough. These nets can be used in a range of 12 miles from the North coast. Each year, up to 

139 drift licences were issued and split into three categories: 1) sea licences, allowing 

fishing exclusively in the open sea within a 12 miles range of the mouth of Lough Foyle, 2) 

lough licences, allowing fishing exclusively in the sea lough and 3) sea and lough licences 

allowing fishing in both sea and lough. Two types of drift nets are used: those used at sea 

are 1500 metres long with a depth of 45 meshes and a mesh size of 63 millimetres while 

the nets used in the lough are similar except that their length is 900 meters. At the 

beginning of the time-series, fishing was allowed 24 hours a day, 4 days a week from the 

31st of May until the 31st of August. Several regulation changes led to a consistent decrease 

of the authorised fishing season. Nowadays, the netting season is limited to the 15th June to 

31st August, Monday to Thursday from 6:00 am to 6:00 pm. 

 

The draft nets are seine nets, which are used in the main river Foyle and the River Roe at 

defined netting stations. In contrast to drift nets which are immobile, the operation of draft 

nets is an active capture technique. One fisherman holds one hand of the net, and then a 

boat leaves from the bank and goes downstream to create a loop. The other end of the net 

is given to another fisherman. The two fishermen then pull out the net. The draft netting 

season is identical to the drift nets except they can be used 24 hours a day as tides and 

water flow limit fishing opportunities. Fishermen using drift and draft nets licences are 

required to report their catches to the Loughs Agency. 

 

In addition, the Foyle Fisheries Commission (precursor of the Loughs Agency) had its own 

draft net fisheries in the main River Foyle and the River Roe (3 sites: Prehen, Rosses Bay 

and mouth of the Roe). One supplementary licence was also issued to use fixed engines 

(similar to a box trap) annually in the lough. The Foyle Fisheries Commission also ran a 

stake netting fishery which was similar to fixed engine but was temporary between 1952 

and 1988. Stake nets were made of a barrier net stretched at right angles to the shoreline 

leading to a box trap where the salmon were caught. Between 1964 and 1990, bag nets 
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where used in the estuary, they were similar to stake nets, the only difference being that 

they were permanently fixed.  

 

Anglers are also required to report their catches but it seems like reported angling catches 

are very low in particular at the beginning of the time-series until a carcass-tag system was 

implemented in 2001, rod catches before this data are thus likely to be minimum values. 

 

b. Counter structures 

Four resistivity counters (Fewings, 1994) provide data on the number of adult salmon 

returning from sea to rivers from 2001 to 2006. They are located at the downstream end of 

four geo units (Faughan, Finn, Mourne and the Roe, Figure 1.2). They detect upstream and 

downstream movements of any fish with a body length greater than 45 cm. This detection 

threshold is lower than the minimum size of a returning adult Atlantic salmon in the Foyle 

system. Brown trout (Salmo trutta L.) could potentially be counted however, calibration 

work on the counters have shown that the number of fish other than salmon that might be 

included in the counts is negligible relative to the number of salmon (Loughs Agency, 

personal communication). Subtracting total downstream movements from total upstream 

movements provides the total number of salmon which returned for a given year. Three of 

the counting structures (Faughan, Finn and Roe) effectively count all fish moving upstream 

or downstream of the counting structure. The remaining counter is located at the 

downstream end of the Mourne unit and only counts an unknown proportion of returning 

salmon. This proportion is dependent on the weather conditions as when the river is high, 

fish can move upstream without passing through the counting structure. 

 

c. Redd counts 

From 1952 until the present, the Foyle Fisheries Commission (and subsequently the 

Loughs Agency) has counted redds annually during and immediately following, the 

spawning period in approximately 260 zones which correspond to 14 main rivers and 

tributaries within the catchment (depending on the year, up to 33% of the total wetted area 

of a geo unit can be surveyed to count redds). Even if the accuracy of counting is 

dependent on environmental conditions (e.g. when high flow, the poor visibility prevent 

easy counting) it is still a good method in long-term population monitoring (Elson and 

Tuomi, 1975; Isaak et al., 2003). 
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d. Electrofishing 

For salmon, the main population bottleneck occurs during the juvenile life stage (Gibson, 

1993). This stage is therefore important to monitor. Juvenile salmon populations have been 

intensively studied in various ways: growth rate (Arnekliev et al., 2006; Jenkins et al., 

1999), behaviour (Imre and Boisclair, 2004; Imre et al., 2004), habitat requirement 

(Armstrong et al., 2003; Gibson, 2002; Heggenes and Cunjack, 1999), and population 

regulation (Egglishaw and Shackley, 1985). 

 

Following the technique described by Crozier and Kennedy (1994), Loughs Agency field 

staff have been collecting 0+ juvenile index of abundance every year since 1998. The 

index is the number of 0+ juvenile salmon caught during 5 minutes of continuous sampling 

at a given site. Between 77 and 476 sites were sampled every year between July and 

September, covering the whole catchment. The different quality of habitat for 0+ juveniles 

was evaluated qualitatively by different covariates: percentage of the different types of 

substrate of the riverbed (bedrock, boulder, cobble, gravel, fines, sand and mud), width and 

length of the site sampled, flow speed and flow level, and vegetation overhang. 

 

1.3.3.4 Management history within the Foyle catchment 

The Loughs Agency is a statutory cross-border body, which is responsible for the 

management, conservation, protection, improvement and development of the inland 

fisheries of the Foyle and Carlingford areas. Its long term aim is to manage the salmon 

fisheries towards maximum sustainable exploitation for commercial and recreational 

purposes (Loughs Agency corporate plan 2005/2007). 

 

Over the last fifty years, the commercial fisheries season has been modified by regulations 

initiated by the Foyle Fisheries Commission and subsequently the Loughs Agency. Until 

1961, the Foyle Fisheries Commission, was delivering unlimited fishing licences to 

whomever could pay and has ensured that sanctuary areas were not fished. In 1961, the 

number of licences was reduced and limited to a certain number each year, additionally 

one person could only be granted one licence (Hadoke, 1972). The fisheries season 

duration was reduced over time (see section 1.3.3.3a). Also, in 1963 installation of 

powered winches on the fishing boats led to a catch increase in the following years (Figure 

1.3). 
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Figure 1.3: Total commercial fisheries, drift nets and draft nets salmon catches between 1959 and 2008. 

 

Following Elson and Tuomi’s report (1975) a real-time management regime was set up. 

This regime has been refined over the years and is now as follows: the fishery is expected 

to meet in-season population abundances at the Mourne counter (Figure 1.2). The first 

target must be reached two weeks after the start of the fishing season (30th June) when 

more than 2600 salmon must have passed the counter structure. If the target is not 

achieved, depending on the water flow as measured at a local Department of the 

Environment gauging station, the commercial and recreational fisheries will be closed for 

either 24 or 48 hours. In the same way if a target of 4200 fish is not achieved by the 10th 

July, the fisheries may be closed for 24 or 48 hours. However, whatever the status of the 

abundance target, the fisheries can only be closed for a maximum of 48 hours during one 

season. In contrast, if more than 8000 salmon have passed the Mourne counter by the 24th 

July, the commercial fishing season will be extended by 96 hours. Finally, if less than 7000 

salmon have passed the Mourne counter by the 20th September, the recreational fishery 

season will be curtailed by 10 days. 

 

The conservation limit estimate of 8000 salmon was calculated from the amount of nursery 

habitat available upstream of the Mourne counter and an estimated juvenile carrying 

capacity. Several works (Armstrong et al., 2003; Bult et al., 1999; Crozier and Kennedy, 

1991) have highlighted the importance of in-stream habitat and the relationships between 
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its three main components (holding, spawning and nursery habitat) on the productivity of 

the rivers. On this basis and using the data collected during habitat surveys, the 

management targets were improved and calculated according to three identified nursery 

habitat grades from one to three (the lower the number the better the quality of habitat) to 

which was associated an egg deposition target (Table 1.1).  

 
Table 1.1: Egg deposition targets for each grade of nursery habitat 

Grade 1 10 eggs.m-2 

Grade 2 5 eggs.m-2 

Grade 3 2.5 eggs.m-2 

 

Data from the Loughs Agency hatchery indicates that the average fecundity of Foyle 

salmon is about 2500 eggs per female and that the sex ratio is 60:40 (female:male) (Loughs 

Agency, unpublished data) . Using this information and the total area of nursery above the 

Mourne counter, a target egg deposition of 9.7 millions eggs is obtained. This corresponds 

to a conservation limit of approximately 6500 salmon. Taking account of angling, 

poaching and natural predation, the previous spawning target is increased by 25% which 

gives a management target of 8000 adult salmon above the Mourne counter. 

 

Since its introduction, this spawning target has always been achieved except in 2001 (only 

6250 adults counted). However, there are some problems with this management regime; as 

it appears (Loughs Agency, 2003), that there is some annual variation in the timing of 

salmon returns. Some salmon from some rivers move into the lough at different times 

inside or outside of the fishing season, therefore there may be differential exploitation rates 

on different river stocks (Ensing and Crozier, 2008). The actual system uses the number of 

salmon moving upstream of the Mourne counter as a proxy of the whole population and 

thus misses these more subtle variations. 

 

Between 1953 and 1977 several rivers of the catchment were stocked with eggs and fry in 

the Foyle catchment in order to improve the productivity of the population. The highest 

number of eggs planted in suitable gravel for egg development was 1 200 000 in 1956. 

About half of the eggs or fry planted every year came from salmon from the Foyle system, 

the other half came from hatcheries located on other Irish rivers. It is very difficult to 

measure how the eggs coming from Foyle salmon have affected the population and the 

number of returning adults but concerning eggs and fry coming from other rivers, a recent 

genetic report on the salmon population in the Foyle area (Booth, 2004), suggests that there 
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is no genetic evidence of these populations in the actual Foyle salmon. In other words, the 

eggs and fry stocked and originating from other rivers than the Foyle river did not manage 

to return as adults and spawn, or contribute to future generations. 

 

1.4. Bayesian modelling framework 

In this section I describe the basics of Bayesian theory in order to introduce the 

methodology used in chapters 2, 3 and 4. This description will be kept minimal as many 

textbooks describe extensively Bayesian theory (Berger, 1985; Bernardo and Smith, 1994) 

or methodology (Congdon, 2001; Lee, 1997), general Bayesian treatments (Carlin and 

Louis, 2000; Gelman et al., 2004) or specific applications to ecology (Clark and Gelfand, 

2006; Clark, 2007). 

 

1.4.1 Frequentist vs. Bayesian statistics 

1) Two formal frameworks exist to do statistical inference from observed data (i.e. 

frequentist and Bayesian framework).  

2) The conceptual differences, advantages and drawbacks of each frameworks have 

been largely and extensively discussed (Berger, 1985). 

3) In this study, I decided to use the Bayesian framework for practical reasons since 

this framework is more convenient when working on complex models such as the 

ones presented in the following chapters (Clark, 2007). 

 

Conceptual aspects of Bayesian theory have been extensively reviewed (Bernardo and 

Smith, 1994; Box and Tiao, 1992; Gelman et al., 1993). In the past the use of Bayesian 

analysis was discouraged because of the high level of numerical integration needed, 

however some recently developed computer intensive sampling methods have made this 

easier (Albert and Chib, 1996; Gilks et al, 1993; Heath, 1997). 

 

1.4.2 Bayes’ theorem 

Probability statements about a vector of unknown quantities (e.g. model parameters) ߠ, 

given a vector of observed data ݕ, require a model providing a joint probability distribution 

for ߠ and ݕ. This joint probability or density distribution ሺߠ,  ሻ is the product of twoݕ

probability distributions which combine a priori knowledge about the parameters ሺߠሻ 
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(also known as the prior distribution) and the sampling distribution (or data distribution) 

  .ሻߠ|ݕሺ

 

ሺ1.1ሻ ሺߠ, ሻݕ ൌ ሻߠሺ ·  ሻߠ|ݕሺ

 

The posterior distribution ሺݕ|ߠሻ of the parameter ߠ given the observation ݕ is obtained by 

using Equation 1.1 : 

 

ሺ1.2ሻ ሺݕ|ߠሻ ൌ
,ߠሺ ሻݕ

ሻݕሺ ൌ
ሻߠሺ · ሻߠ|ݕሺ

ሻݕሺ  

Where  

ሺ1.3ሻ ሺݕሻ ൌ න ሻߠሺ ·  ߠሻ݀ߠ|ݕሺ

 

ሻݕሺ  is a normalisation factor which is not dependent on ߠ  and with fixed ݕ  can be 

considered as constant. Therefore Equation (1.2) is often written in its unnormalized form: 

 

ሺ1.4ሻ ሺݕ|ߠሻ ן ሻߠሺ ·  ሻߠ|ݕሺ

 

In some cases inference about an unknown observable ݕ is required (e.g. missing values, 

predictions). The unknown observable ݕ is easily estimated conditionally on the observed 

data ݕ. 

 

ሺ1.5ሻ ሺݕ|ݕሻ ൌ න ሻߠ|ݕሺ ·  ߠሻ݀ݕ|ߠሺ

 

These few equations summarise the technical core of Bayesian inference about unknown 

quantities of a given model conditionally on observed data.  

 

1.4.3 Prior distributions  

Being able to choose prior distributions allows the incorporation of the current level of 

knowledge about any variable. Using non-informative prior distributions, allow inferences 

to be made only based on the information yielded into the data. Construction of reference 

non-informative prior distributions can be done formally (Kass and Wasserman, 1996; 

Gelman, 2004, 2006), but Bayesian inference also allows the incorporation of prior 
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knowledge (e.g. expert knowledge) on a given variable by using informative prior 

distributions (Hilborn and Lierman, 1998, Bernier et al., 2000; Gelman et al., 2003). 

 

1.5. Hierarchical modelling and state-space models 

1.5.1 Hierarchical modelling 

Hierachical Bayesian models (HBMs, Congdon, 2001; Gelman et al., 2004) describe the 

heterogeneity across different spatial (e.g. different habitats) or temporal units (e.g 

different years of a time-series). Formally this is done by supposing that the vector of 

parameters ߠ is a random quantity sampled from a prior distribution ሺߠ|λሻ with ߣ is a 

vector of hyper parameters. For instance, if ݕ is an observed abundance of juvenile salmon 

in a geographical unit ݅, ߠ would be the true abundance of juvenile salmon in geographical 

unit ݅ . In this context, ߣ  could be a parameter controlling spatial variation across 

geographical units. If ߣ is known, equation 1.2 becomes 

 

ሺ1.6ሻ ሺݕ|ߠ, ሻߣ ൌ
,ݕሺ ሻߣ|ߠ

ሻߣ|ݕሺ ൌ
ሻߠ|ݕሺ · ሻߣ|ߠሺ

ሻߣ|ݕሺ  

 

However in most cases ߣ will not be known and a hyperprior distribution ሺߣሻ will be 

required.  

 

ሺ1.7ሻ ሺߠ, ሻݕ|ߣ ൌ
ሻߠ|ݕሺ · ሻߣ|ߠሺ · ሻߣሺ

ሻݕሺ ൌ
 ሻߠ|ݕሺ · ሻߣ|ߠሺ · ߣሻ݀ߣሺ

 ሻߠ|ݕሺ · ሻߣ|ߠሺ · ߣ݀ߠሻ݀ߣሺ
 

 

1.5.2 State space models 

Bayesian state-space models are specific hierarchical models which are made of a dynamic 

(or process) component which is composed of unobserved variables and an observation 

component which is composed of observed variables and is a function of the dynamic 

component.  

 

This can be summarized in two equations (Calder et al., 2003; Carlin et al., 1992). The first 

one called the process equation summarizes the links between the different states of the 

model. 



34 

Chapter 1 Fisheries and Atlantic salmon  

ሺ1.8ሻ ܺ௧ ൌ ,ଵߠ,൫ܺ௧ିଵܨ  ௧൯ߝ

 

Where the function F accounts for all the equations describing the dynamics of the system 

studied (e.g. survival, density dependence, etc. for population dynamics) and reflects the 

dependence of the different hidden states at a given time on the hidden states at another 

time conditional on the transition parameters ߠଵ and a stochastic component ߝ௧. The second 

equation is called the observation equation: 

 

ሺ1.9ሻ ݕ௧ ൌ ,ሺܺ௧ܩ ,ଶߠ ߱௧ሻ 

 

where the function G describes the link between the observed datasets ݕ௧ and the hidden 

states ܺ௧ conditional on the observation model parameters ߠଶ and the stochastic component 

of the observation models ߱௧ . The Bayesian statistical inference calculates the joint 

posterior probability density functions (pdf) of all the model parameters ߠ ൌ ሺߠଵ,  ଶሻ andߠ

the hidden states series ܺ conditionally on the observations series ݕ. 

 

ሺ1.10ሻ ሺߠ, ሻݕ|ܺ ן ሻߠሺ · ሻߠ|ሺܺ · ,ܺ|ݕሺ  ሻߠ

 

A basic state space model is described in Figure 1.4. 

 

1.5.3 Bayesian inference for complex model in practice 

Markov chain Monte Carlo (MCMC) methods are today the most popular computing tools 

in Bayesian practice. This is due to their ability to enable inference for joint posterior 

distributions of very high dimension. This is done by reducing the high-dimensional 

problem by treating recursively a sequence of lower dimensional (often one dimensional) 

problems. MCMC methods do not provide a closed form of the posterior distribution 

(equation 1.2 or 1.7) but a sample of values from this distribution. If the sample is large 

enough, the histogram of the sampled values is a good approximation to this distribution. 

Other computation techniques such as sequential importance sampling (SIS) can be used. 

The basic SIS algorithm is the weighted bootstrap of Smith and Gelfand (1992): first a 

joint prior distribution on the parameters and initial states is defined. Based on this prior, a 

large number of initial parameters and state vectors are generated; each pair of parameter 

and state parameter vectors is called a “particle”. Each particle is then stochastically 

projected to the first time period using the state process distribution. The particle density 
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then provides an estimate of the predicted state distribution. The filtered state distribution 

is estimated by using the observation process distribution to calculate a likelihood weight 

and take a weighted resample from the particles. This process is then repeated for 

subsequent time periods, first using the state process distribution to project forward to the 

next time period and then “correcting” the resulting predicted state distribution using the 

weighted resample, with weights calculated according to the observation process. This 

distribution yields estimates of the filtered state and parameter density at each time point. 

The parameter density at the final time point is an estimate of posterior parameter density 

given all the data. This technique is not necessarily more efficient than MCMC (see 

comparaison between MCMC and SIS in Newman et al., 2009) 

 

All the models presented in this study were implemented using WinBUGS. This software 

performs MCMC simulations using principally a generalised Gibbs sampling algorithm 

(Spiegelhalter et al., 2003). 

 
Figure 1.4: Graphical representation of a simple state-space model. The dashed orange frame represents the 

process model. The dashed blue frame represents the observation models.  ܺ௧ is a vector of hidden states 

during year t. The transition from ܺ௧  to ܺ௧ାଵ is conditioned by the parameters ߠଵ and forms the process 

equation. ݕ௧  is a vector of observations depending on one or several hidden states during year t. These 

observations are conditioned by ߠଶ , the vector of parameters of the different observation models. The 

relation between ܺ௧ and ݕ௧ corresponds to the observation equation. 

 

ܺ௧ ܺ௧ାଵ ܺ௧ିଵ

௧ିଵݕ  ௧ାଵݕ ௧ݕ

 ଵߠ

For t in 1,...,n 

 ଶߠ
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Chapter 2:  
 Estimating 0+ juvenile production from 5 minutes 
electric fishing abundance indices 

 

 

2.1.  General introduction 

Fish population research and management is usually based on a quantitative assessment of 

their abundance. In this the chapter, focus is brought on the abundance of juvenile salmon 

spending their first summer in the river (0+ juvenile salmon). In salmon populations, this 

stage is of primary interest since the transition from eggs to 0+ juveniles is a major 

bottleneck (Elliot, 2001; Milner et al., 2003). In addition the 0+ juvenile stage is the 

earliest and often the only development stage than can be used by managers prior to 

fisheries and independently from fisheries. The most widely used technique to obtain 0+ 

juvenile abundances at a site is a combination of electric fishing and a removal sampling 

technique (Bohlin et al., 1990). 

 

In this chapter a hierarchical Bayesian calibration model (HBM) relating a timed sampling 

technique to 0+ salmon juvenile densities is proposed. HBM enables an improvement of 

single site estimates by "borrowing strength" between sites through a transfer of 

information from sites with informative data to data-poor sites. It also allows rescue 

estimates for sites with missing data and can make predictions for sites with no observed 

data. Using posterior distributions of the parameters estimated from this calibration 

exercise, another HBM model was designed to produce average 0+ juvenile densities for 

large geographical units (“geo units”) based on local site 0+ juvenile densities estimated 

from the large number of 0+ juvenile index of abundance collected between 1998 and 2008 

in the whole Foyle catchment by the Loughs Agency field crews. The average 0+ juvenile 

densities obtained from this model are then introduced into the full life-cycle state-space 
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model as pseudo-observations. Using total wetted area of the nursery habitat available in 

each geo unit, a 0+ juvenile production can be calculated. 

 

2.2. Building a relationship between 0+ juvenile densities 
and 5 minutes electric fishing abundance indices 

This section (2.2) has been published as a scientific paper in Fisheries Management and 

Ecology (Dauphin et al., 2009). The WinBUGS code corresponding to this model can be 

found in Annex 1. 

 

2.2.1 Introduction 

Animal population ecology studies often require population abundance estimates. A wide 

range of both sampling and statistical techniques have been developed to enable population 

size to be determined (Williams et al., 2002; Royle and Dorazio, 2006). For stream 

dwelling salmonid fish populations, a two-stage sampling scheme is often used. A set of 

sites is first selected within a river network and then the fish are sampled within each site. 

A combination of electric fishing and a removal sampling technique is the most commonly 

used method for assessing fish population size at a site (Bohlin et al., 1990). Statistical 

modelling approaches have been proposed and refined in order to improve estimates of 

population size from removal sampling data (Bohlin et al., 1990; Mäntyniemi et al., 2005). 

More recently, the joint treatment of multi-site data sets has been developed within a 

hierarchical Bayesian modelling (HBM) framework (Wyatt, 2002; Dorazio et al., 2005; 

Rivot et al., 2008). HBM enables an improvement of single site estimates by "borrowing 

strength" between sites through a transfer of information from sites with informative data 

to data-poor sites. It also allows the rescue of estimates for sites with missing data and can 

make predictions for sites with no observed data. 

 

Removal sampling by electric fishing is time and manpower consuming, making it difficult 

to utilise on a large number of sites. Several authors have proposed less demanding 

methods in order to increase the number of sites covered with the same human resources 

input (Lobón-Cerviá and Utrilla, 1993; Winstone, 1993; Crozier and Kennedy, 1994; 

Kruse et al., 1998; Prévost and Nihouarn 1999; Bateman et al., 2005). These rapid 

assessment techniques also use electric fishing but are faster, as they only require a single 

timed sample for each site. They essentially provide relative abundance measures. To be 
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used for absolute population abundance estimation, they need to be first inter-calibrated 

with another method of population size estimation, such as successive removal sampling. 

 

Usually this inter-calibration is done in two steps. First, point estimates of fish abundance 

are derived from the more classical and resource demanding method. Then, standard 

statistical techniques are applied to regress the (point estimate of) fish abundance against 

the index of abundance (IA) obtained by the rapid assessment technique (Lobón-Cerviá 

and Utrilla, 1993; Winstone, 1993; Crozier and Kennedy, 1994; Kruse et al., 1998; Prévost 

and Nihouarn 1999; Bateman et al., 2005). With the aim of estimating the absolute 

abundance from an IA, such an approach is not wholly satisfactory. The uncertainty around 

the estimation of the absolute abundance estimates is usually ignored. A better approach 

would be to include the uncertainty of the abundance estimates when utilising the IA alone 

in order to quantify the confidence that can be put in the abundance estimates. 

 

As a solution to this problem and to improve the inter-calibration, a model using a HBM 

framework is utilised here to inter-calibrate a classical abundance estimation method 

(using successive removal) with a rapid assessment technique. The underlying principle of 

the model is that the data collected using each technique ultimately derives from the same 

unknown quantity of interest, i.e. the fish density. In addition the assumption of 

exchangeability between the study sites, after conditioning on covariates measured at the 

site level when suitable is made. Probability of capture (i.e. catchability) and fish density 

are allowed to vary between sites and they are assumed to be drawn from a common prior 

probability distribution governed by some unknown parameters and covariates if any. 

Besides the known advantages of the HBM (see above), this approach allows the estimate 

of the absolute abundance from abundance index data alone while accounting for all the 

sources of uncertainty. Here this approach is applied to a data set collected for young of the 

year juveniles of salmon on the River Faughan, Northern Ireland. 

 

2.2.2 Material and methods 

2.2.2.1 Sampling and data collection procedures 

Twenty one sites were sampled using both successive removal and rapid abundance index 

methods during the summers of 2006 (11 sites between the 15th of July and the 10th of 

August) and 2007 (10 sites between the 20th and 31st of July) in the River Faughan, a sub-

catchment of the Foyle, Northern Ireland. Sites were chosen in order to reflect the diversity 
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of the juvenile salmon production areas both in terms of geographical location and of 

nursery habitat types, using the Department of Agriculture for Northern Ireland (DANI) 

classification (Table 2.1) as a guide to habitat quality. 

 
Table 2.1: Nursery habitat classification, following the Department of Agriculture for Northern Ireland 

(DANI) classification. 

Habitat DANI Grade Characteristics 

Good 

Grade 1 - 0.5-8 % Gradient 

 - Stable cobble / boulder substrate ≥ 70 % bed cover 

 - Providing adequate cover 

Grade 2 Marginally outside Grade 1 on one count only 

Poor 
Grade 3 Well outside Grade 1 on one or more counts 

Grade 4 Absent, deep, channelised, silty, etc. 

 

Prior to sampling, stop nets were installed upstream and downstream to prevent fish 

movement into or out of the study site. Length and width of the site were measured (Table 

2.2). As recommended by Bohlin et al. (1989) all sites had an area larger than 50 m-2. Two 

types of electric fishing sampling were conducted on every site by two operatives. To 

provide an IA, a single timed electric fishing sample of 5 minutes was carried out using the 

protocol inspired of Crozier and Kennedy (1994): two operatives starting fishing 

continuously in an upstream direction for 5 minutes using a single anode backpack 

electrofishing apparatus within the area delimited by the stop nets but avoiding the 5 

meters stretches adjacent to the upstream and the downstream nets. This was done to avoid 

any artificially denser areas caused by the movement of the disturbed fish. The time spent 

handling the fish caught was discounted so that the 5 minutes correspond to actual fishing 

only (Crisp and Crisp, 2006).  

 

Thirty minutes after the five minutes electric fishing, three (occasionally four) successive 

removal samplings (passes) were conducted at the same site (Table 2.2). During these 

passes, the goal was to capture as many fish as possible while moving from the 

downstream end to the upstream of the site and therefore no time limit was imposed to 

complete one pass. The thirty minutes allow the juveniles to recover their positions in the 

stream (Crozier and Kennedy, 1994). The removal samples covered the sites from the 

downstream nets to the upstream nets and were conducted systematically to cover the 

whole area of the site with no time limit. 
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Both sampling methods were conducted with a single anode, backpack electric fishing 

apparatus (24V DC input, 240 V, 100W, 50Hz pulsed DC output). One operative fished 

with the anode and the other operative collected fish with a single hand net. The same two 

operatives conducted all the electric fishing for all the sites. Salmon and brown trout, 

Salmo trutta L. juveniles were identified according to standard morphological criteria 

(Maitland, 2004). Distinction between 0+ and 1+ juveniles was based on the fork length of 

the fish, as the distribution of this variable for a given site was bimodal with very little 

overlap. Only 0+ juvenile salmon are considered further in the analysis. 

 
Table 2.2: Site characteristics: nursery habitat quality (H), area of the site (S) and average width of the site 

(W), index of abundances (A) and removal samples (C1, C2, C3, C4) of the 21 sites used in this study. 

Site (i) Hi Si (m2) Wi (m) Ai 
Removal samples 

Ci,1 Ci,2 Ci,3 Ci,4 

1 Good 382 9.65 17 50 38 20 - 

2 Poor 135 7.4 6 21 13 11 - 

3 Good 133 8.6 10 18 6 7 9 

4 Good 172 9.15 13 32 28 17 11 

5 Good 134 5.35 28 104 54 55 36 

6 Good 108 5.9 13 27 21 18 11 

7 Poor 112 3.15 0 1 1 0 - 

8 Good 120 5.65 2 5 2 1 2 

9 Good 105 5.05 27 62 36 27 17 

10 Poor 86 3.6 12 11 7 4 - 

11 Poor 72 4.2 25 53 38 29 13 

12 Poor 202 5.35 6 8 5 1 - 

13 Poor 90 3.6 6 17 2 2 2 

14 Poor 173 4.05 3 4 2 2 - 

15 Poor 142 3.3 2 3 1 1 - 

16 Poor 74 3.95 0 1 1 1 - 

17 Poor 61 3.5 6 7 3 1 - 

18 Good 82 3.8 32 39 30 31 19 

19 Good 78 3.1 18 54 26 20 15 

20 Good 93 3.05 16 48 24 6 - 

21 Poor 67 3.4 23 52 22 8 - 
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2.2.2.2 Modelling 

Henceforth unknown quantities which are constant across sites (i.e. model parameters) will 

be denoted by Greek lower case letters and observable quantities by capital Roman letters. 

Intermediate unknown quantities varying between sites and depending upon parameters 

(i.e. latent variables) will be denoted by lower case Roman letters. The notation a|b ~ f(b) 

means the random variable a (whether unknown or observable) conditional on b, is 

distributed according to the probability distribution function (pdf) f. 

 

a. Relating density to the IA 

For every site i = 1, 2, …, 21, a 5 minute IA (Ai) was obtained first. Assuming that the fish 

were distributed randomly within the sampled site, count data could be modelled as 

resulting from a Poisson distribution. 

 

 ሺ݈ሻ݊ݏݏ݅ܲ~|݈ܣ (2.1)

 

The parameter li depends essentially on the fish density in the site sampled, the area swept 

during the five minutes of electric fishing and the probability of capture of a fish present in 

the area swept. The standardisation of the electric fishing protocol (see above) for the 5 

minutes abundance index aimed at reducing the variability of the area swept and the 

probability of capture between sites. Ideally, it would be null and the li parameter would 

then be a deterministic (monotonously increasing) function of the density di. However, 

some variability in the area swept and the probability of capture is expected between the 

sites due to variation in the physical characteristics of the sites (depth, substrate, water 

velocity, etc.) or in the way the electric fishing protocol was actually applied. In addition, 

the 0+ parr are most probably not randomly distributed but tend to be clustered in 

favourable micro-habitats (Baglinière and Arribe-Moutounet, 1985). All these phenomena 

are potential sources of variability which lead to the overdispersion of the abundance index 

relative to a Poisson distribution. Therefore we modelled the abundance index according to 

a Negative Binomial distribution, i.e. the overdispersed alternative to the Poisson 

distribution: 

 

,|ܽܣ (2.2) ,ሺ݈ܽܽ݅݉݊݅ܤ ݁ݒ݅ݐܽ݃݁ܰ~߮ ߮ሻ 
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ai and φ are the shape and inverse scale parameters, respectively. The mean of this 

distribution is li = ai / φ. It is deterministically linked to the density di: 

 

(2.3) ݈ ൌ ߢ · ݀
ఎ 

 

κ is the factor of proportionality between the IA and the density di ; η is a power coefficient 

applied to the density di to take into account the possibility of a non linear relationship 

between the 5 minute IA and the density. This possibility is introduced because it is 

expected the operatives fail to capture a proportion of the fish effected by the electric field 

and this proportion could increase with fish density. The parsimonious hypothesis of a 

constant scale φ over the sites leads to a variance of Ai | κ, di proportional to its mean li. 

 

b. Relating density to multiple removal samples 

After removing the fish from the initial 5 minute sample, the number of fish remaining 

was: 

 

(2.4) ݊,ଵ ൌ ݊
௧௧ െ  ܫ

 

Where ݊
௧௧  is the number of fish present in site i before any electric fishing operation 

started. The number of fish caught during the first removal sample Ci,1 is assumed to 

follow a binomial distribution. 

 

(2.5a) ܥ,ଵห݊,ଵ, ,൫݊,ଵ݈ܽ݅݉݊݅ܤ~,ଵ  ,ଵ൯

 

where pi,j is the capture probability at site i for the jth pass . The number of fish remaining 

in the site after the first removal is: 
 

(2.6a) ݊,ଶ ൌ ݊,ଵ െ  ,ଵܥ
 

Catch and number of fish remaining for the following removals are derived in the same 

way. 

 

(2.5b) ܥ,ଶห݊,ଶ, ,൫݊,ଶ݈ܽ݅݉݊݅ܤ~,ଶ ,ଶ൯

(2.5c) ܥ,ଷห݊,ଷ, ,൫݊,ଷ݈ܽ݅݉݊݅ܤ~,ଷ  ,ଷ൯

(2.5d) ܥ,ସห݊,ସ, ,൫݊,ସ݈ܽ݅݉݊݅ܤ~,ସ  ,ସ൯

(2.6b) ݊,ଷ ൌ ݊,ଶ െ  ,ଶܥ

(2.6c) ݊,ସ ൌ ݊,ଷ െ  ,ଷܥ
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Several studies (e.g. Bohlin and Cowx, 1990; Riley et al., 1993; Peterson et al., 2004; 

Rosenberger and Dunham, 2005) have shown that the probability of capture tends to 

systematically decrease over successive passes. This feature was incorporated in the model 

by assuming that, in the logit scale, the probability of capture decreased by an unknown 

amount ε between two consecutive passes: 

 

,൯൫ݐ݅݃ܮ (2.7) ൌ ,ିଵ൯൫ݐ݅݃ܮ  െ ݆  ߝ ൌ 2, … ߝ ݀݊ܽ 4,  0 

 

The number of fish ni
tot

 present at site i before any electric fishing operation is dependent 

on the density. It is assumed to issue from a Poisson distribution with parameter mi. 

 

(2.8) ݊
௧௧|݉~ܲ݊ݏݏ݅ሺ݉ሻ 

 

The parameter mi is in turn calculated from the fish density di and the area of the site Si: 

 

(2.9) ݉ ൌ ݀ · ܵ 

 

c. Hierarchical structure on the probability of capture for the removal 

sampling pi,1, and the fish density di 

The probability of capture pi,1 can vary with the width Wi of the river at site i (Kennedy and 

Strange 1981). Conditionally on Wi, the sampling sites are assumed to be exchangeable 

with regard to the probability of capture, i.e. the pi,1 are potentially different but apart from 

Wi we have no clue about the causes of their variation. They are thus modelled as drawn 

from a common non informative probability distribution which parameters depend on Wi. 

 

,ߙ|,ଵ൯൫ݐ݅݃ܮ (2.10) ,ߚ ܹ~݈ܰܽ݉ݎሺߤ,  ሻߪ

ߤ (2.11) ൌ ߙ  ߚ · ܹ 

 

Density may depend on the nursery habitat quality for young of the year salmon. The 

quality of nursery habitat was assessed following the DANI classification. However due to 

the low numbers of sites, DANI category 1 (the best quality) and 2 and 3 and 4 (the poorest 

quality) were pooled. The new categories correspond to ‘good’ nursery habitat (DANI 1 & 

2) (Hi = 1) and ‘poor’ nursery habitat (DANI 3 & 4) (Hi = 2). Conditionally on the habitat 
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category Hi, the sites are assumed to be exchangeable with regard to the fish density. di is 

assumed to follow a Gamma distribution.  

 

(2.12) ݀|ܾ, ,ሺܾܽ݉݉ܽܩ~߰ ߰ሻ 

(2.13) ܾ ൌ ߛ ·  ሺுିଵሻߩ

 

The mean density in the habitat category 1 is δ = γ/ψ. The mean fish density in the habitat 

category 2 is ρ×δ. The scale parameter ψ is assumed to be constant across sites.  

The structure of conditional dependency of the relations (2.1-2.13) can be graphically 

summarised in a Directed Acyclic Graph (DAG) (Figure 2.1). 

 

2.2.2.1 Prior distributions 

In order to obtain posterior inferences primarily reflecting the information brought by the 

data, little-informative and independent prior distributions were assigned to the model 

parameters. The classical choice for scale parameters of an inverse-Gamma distribution 

with small values of the shape and inverse scale was adopted here. A Gamma(0.01,0.01) 

prior was assigned to 1/κ, 1/η, 1/ρ, 1/σ2, φ, and ψ. A ‘flat’ Normal prior distribution with 0 

mean and 1000 variance was attributed to α, β and ε, but restricting this density to positive 

values in the last case. A Gamma(1,0.01) distribution, used as a proper distribution 

approximating a uniform distribution, was assigned to δ. 
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Figure 2.1: Directed Acyclic Graph (DAG) of the model used to estimates densities of the sites studied. 

Ellipses represent random variables. Squares represent fixed quantities, covariates in our case. All observed 

quantities are greyed. Arrows represent the parent-child dependencies between the different nodes: single 

arrows represent probabilistic relationship between the parent(s) and child nodes, dashed arrows indicate 

deterministic relationship. The frame represents a repetition of structure over sites. Nodes outside the frame 

are unknown parameters constant across sites. 

 

2.2.2.2 Model checking 

The model was checked for the adequacy of its fit to the data and its plausibility for its 

main purpose, i.e. evaluating fish densities based on either abundance indices or removal 
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sampling. The posterior predictive data replication technique proposed by Gelman et al. 

(2004) was used first to derive the posterior predictive distribution of the observables, for 

the same sites for which observations are available. It was then used to compare model 

derived posterior predictions with empirical observations. Under the premise that the 

model adequately represents the process which has given rise to the observed data, the 

observed data should be consistent under their posterior predictive distribution. Yi being an 

observable variable at the sampling unit i, with Yrepi its replicate, i.e. data that could have 

been observed assuming the model is adequate. The posterior predictive distribution of 

Yrepi is: 

 

ሺ2.14ሻ ሺܻ݁ݎ|ܻ, ܺሻ ൌ න ሻߠ|݁ݎሺܻ · ,ܻ|ߠሺ ܺሻ ·  ߠ݀

 

where θ is the set of parameters (α, β, ε, γ, κ, η, ρ, σ, φ, ψ), Y is the set of observed data (A, 

C1, C2, C3, C4), X is the set of covariates (S,W,H) and p(Yrep|θ) is the probability model 

previously presented (eq. 2.1 to 2.13). To compare observed and replicated data, DYi = Yi-

Yrepi. was computed. Under the model assumptions, the expectation of the distribution of 

the DYi is by definition 0. Because the fish density is the variable of main interest in the 

model, patterns of distribution of DYi vs fish density di were examined. Following the 

"binned residuals" approach proposed by Gelman et al. (2004, p.170) for discrete data, DYi 

was averaged for the sites i in three classes of fish density. The bounds of the three classes 

of fish densities d (class 1: 0 < d < 0.4; class 2: 0.4 < d < 1.4; class 3: d > 1.4,d being 

expressed in fish.m-2) were chosen in order to have roughly balanced numbers of sites per 

class. This was used to check for systematic discrepancy between the model and the 

empirical data as a function of fish density. The distributions of the averaged DYi are easier 

to interpret than the individual distribution of their DYi component. Indeed the DYi 

distributions are discrete and often not symmetric. Averaging has the effect of forcing 

symmetry of the distributions around their 0 expectation. This technique was applied to the 

observables A, C1, C2 and C3 (the fourth removal was conducted at less than half of the 

sites and thus was not considered further). 

 

In order to assess the plausibility of the model in its main objective, estimating fish density 

by either method (removal sampling or single timed sampling), the consistency of the two 

methods in the density estimates they provide was evaluated. For every site i, the 5 minute 

rapid assessment index and population removal estimations are considered independently 
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as if they were two distinct sites but with exactly the same characteristics (i.e. fish 

population, physical habitat features, etc.). Densities are then estimated for these two fake 

sites with the rest of the dataset remaining unchanged. The new dataset is then composed 

of n+1 sites: n-1 sites have data from both methods (i.e. 5 minute rapid assessment index 

and population removal estimations) and two sites have data from only one method (either 

5 minutes rapid assessment index or successive removal catches). Estimated densities of 

the two fake sites (d.Ai, d.removali) with data from only one method were compared (see 

next paragraph for an explanation of the method for estimating density based on one type 

of data only). The probability that the difference of the two estimates, Ddi = d.Ai-

d.removali, is higher than zero, P(Ddi > 0 | X,Y) was calculated. This technique was applied 

successively to the 21 sites. The empirical distribution of these probabilities was compared 

to a reference uniform distribution on the [0, 1] interval through a quantile-quantile (q-q) 

plot (Figure 2.4). 

 

2.2.2.3 Estimation of juvenile density from abundance indices alone 

The fish density at any site where only the 5 minute rapid assessment index is collected can 

be estimated. This is achieved by extending the current data set with the additional IA 

observed data and considering the corresponding removal catch data that are missing. 

Relying on the standard assumptions that the missing data are "missing at random" (MAR), 

they can be considered as any other unknown in the model and therefore their posterior 

distribution can be computed by standard Markov chain Monte Carlo (MCMC) sampling 

technique. From a sample drawn from the joint posterior distribution of all the unknowns, 

i.e. model parameters, latent variables and missing data, it is straightforward to look 

marginally at the posterior distribution of the fish density for sites with IA observations 

only. This integrates the joint posterior distribution of all the unknowns over the 

parameters, the latent variables except the fish densities of interest, and the missing data. It 

is important to note that for this approach to be founded, the MAR condition must be 

verified. Assuming that both the sites with both types of data and the sites with IA 

observations only, are picked at random (conditionally on the habitat category, the river 

width and the site area covariates) within a common set of sites this ensures that the MAR 

condition is verified. Simpler assumptions than the latter can also meet the MAR condition 

(but see Gelman et al. (2004) for more precision about the Bayesian treatment of missing 

data and Rivot et al. (Appendix A, 2008) for a discussion in the case of electric fishing 
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data in which it is shown that the data missing process is ignorable when collecting electric 

fishing data). 

 

For illustration, densities of 10 fake sites corresponding to 5 fixed abundance indices levels 

(5, 15, 25, 35, 45) across the two habitat categories were estimated. Densities of the fake 

sites with good habitat and densities of the fake sites with poor habitat were then 

compared. 

 

2.2.2.4 Posterior computations 

For every analysis presented, the joint distribution of all the unknowns (i.e. parameters, 

latent variables, observables in the case of missing data or for data replication) 

conditionally on all the observed data was approximated using MCMC sampling (Gelman 

et al., 2004). All computations were carried out with the OpenBUGS® software (version 

3.0.3; Thomas et al., 2006; Spiegelhalter et al., 2003) and the Lattice and Coda packages 

of R (version 2.7.0, www.r-project.com). Gelman-Rubin (Brooks and Gelman, 1998) 

diagnostics as implemented by OpenBUGS® was used to test the convergence of the 

MCMC sampling on the model parameters. Three chains with contrasting starting points 

were used. The Gelman-Rubin statistic indicated good mixing of the MCMC chains was 

obtained after 106 iterations. An additional sample of 10 000 values (106 iterations, but 

retaining 1 iteration every 100, thinning was chosen based on the autocorrelation of the 

parameters’ chains) from a single chain was then used to approximate the joint posterior 

distribution of all the unknowns. 

 

2.2.3 Results  

2.2.3.1 Posterior estimations of model unknowns 

0+ salmon juvenile density varies widely across sites: estimates (posterior means of the di) 

range from 0.043 to 3.67 0+ salmon.m-2 (Figure 2.2). The uncertainty around estimates (as 

shown by the 90% posterior credibility intervals) tends to increase with the density. 

However, relative to the estimated density, the uncertainty tends to be reduced: the 

posterior CV’s of the di’s shows a decreasing trend from 0.59 at 0.069 fish.m-2 to 0.21 at 

2.31 fish.m-2. The posterior probability that the habitat quality influences the mean density 

across sites, i.e. P(ρ < 1 | X,Y), is greater than 95%. On average, poor habitat sites have 
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their density almost reduced by half, relative to good habitat sites (ρ posterior mean is 0.53; 

Table 2.3). 

 

Figure 2.2: Summary of the posterior distributions of the catchability at the first pass (pi, 1) and the 0+ 

salmon densitiy (di) for the 21 sites studied. Median (●), 25% and 75% percentiles (▲ and ▼), and 5% and 

95% percentiles (+). Numbers above the 95 percentiles correspond to the habitat grade of the site (1: good, 

2: poor). 

 

The ε parameter accounting for the decrease in catchability over successive passes shows a 

posteriori a clear mode at 0.17 and low probabilities in the neighbourhood of 0 (Table 2.3). 

The catchability during the removal sampling experiments (Figure 2.2) varies widely 

across sites: estimates (posterior mean of pi,j) range from 0.120 to 0.450 (grand mean = 

0.250) for the first pass, 0.105 to 0.410 for the second, and 0.091 to 0.373 for the third. It 

decreases with increasing width of the sampled sites: P(β < 0 | X,Y) is above 97.5% (Table 

2.3). The catchability estimates show no systematic pattern of association with the fish 

density (Figure 2.2), but their uncertainty tends to decrease with density. Indeed more fish 
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are caught with increasing density and in binomial experiments the posterior precision of 

probability estimates depends primarily on the number of draws. 

 
Table 2.3: Summary statistics of the marginal posterior distributions of the model parameters. 

 

There is a positive relationship between the IAs and the 0+ salmon densities (Figure 2.3). 

The κ parameter is fairly precisely estimated (CV = 12.8%; Table 2.3). The abundance 

index tends to increase slower than proportionally with the density: P(η < 1 | X,Y) is 

greater than 97.5% (Table 2.3). The inverse scale parameter φ is on average very high 

(Table 2.3) but it is poorly estimated and low values cannot be excluded a posteriori. The 

overdispersion of the IA distribution relative to a simple Poisson distribution would be 

rather weak but it cannot be ruled out that it is significant. 

 mean sd 2.5% 25% median 75% 97.5% 

α -1.03 0.30 -1.69 -1.19 -0.99 -0.82 -0.54 

β -0.21 0.08 -0.37 -0.26 -0.20 -0.15 -0.05 

δ 2.61 0.84 1.47 2.04 2.46 2.99 4.69 

ε 0.17 0.07 0.03 0.12 0.17 0.22 0.31 

φ 37.70 45.76 1.66 7.69 19.28 48.16 169.80 

γ 1.35 0.42 0.68 1.05 1.30 1.58 2.30 

κ 12.78 1.64 9.30 11.82 12.88 13.90 15.66 

η 0.68 0.07 0.55 0.63 0.68 0.72 0.82 

ψ 0.56 0.22 0.21 0.40 0.53 0.68 1.08 

ρ 0.53 0.16 0.28 0.41 0.51 0.62 0.91 

σ2 
0.23 0.19 0.01 0.10 0.18 0.30 0.71 
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Figure 2.3: 5 minutes index of abundance vs posterior distribution summary of 0+ salmon density (di) (mean: 

□, 5% and 95% percentile: +). The curve (plain line) represents the relationship between the density and the 

mean abundance index for the posterior median of the parameters κ and η (see text). 

 

2.2.3.2 Posterior model checking 

The comparison of replicated data with observations did not reveal any significant 

discrepancy (Table 2.4). The density estimates appear consistent whatever the electric 

fishing method used. The empirical distribution of the probability of the difference of the 

two estimates to be greater than zero (P(D.d > 0 | X,Y)) is close to a [0,1] uniform 

probability distribution (Figure 2.4). There is however a slight tendency for the P(D.d > 0 | 

X,Y) values to be more concentrated around 0.5 than the reference uniform distribution. 

This may be due to the fact that the comparison is made for two density estimates which 

tend to be more uncertain than the others as they are based only on part of the data (IA or 

removal catch) used for the others (IA and removal catch). 
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Table 2.4: Summary of the model posterior check based on data replication. Mean differences (DY, Y being 

an observable, see text) between observed and replicated data and associated probabilities are presented for 

3 density classes (class 1: 0 < di < 0.4; class 2: 0.4 < di < 1.4; class 3: di > 1.4). 

 class 1 class 2 class 3 

  mean DY P(DY < 0) mean DY P(DY < 0) mean DY P(DY < 0) 

5 min IA -0.527 0.701 -0.409 0.740 -0.849 0.600 

C1 0.633 0.335 1.153 0.243 0.065 0.312 

C2 -0.239 0.865 0.071 0.695 -2.778 0.500 

C3 -0.437 0.451 -0.994 0.864 1.674 0.768 

 

 

Figure 2.4: Q-q plot of the posterior probability P(D.d>0|X,Y). D.d is the difference, calculated for every 

site, between the two density estimates derived from successive removal data alone and the abundance index 

data alone (see text). The empirical cumulative distribution of P(D.d>0|X,Y) (dots) is plotted against a 

reference uniform distribution on the [0, 1] interval (plain line). 

 

2.2.3.3 Estimation of juvenile density from abundance indices alone 

Density estimates based on IA data are notably less precise than those which assimilate the 

additional information brought by removal sampling data (Figure 2.5). The uncertainty, as 

measured by the width of the 90% a posteriori probability interval, increases with the IA 

value. This partly reflects our initial modelling hypothesis that the IA variability increases 
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with the density. However, the posterior CV of the densities tends to decrease with the IA 

value (from 0.64 at 5 fish.5min-1 to 0.36 at 45 fish.5min-1). Little difference was found in 

the density estimates when comparing good and poor habitat for the same IA value (Figure 

2.5). This reflects the overwhelming influence of the IA vs the habitat category in 

estimating the density. A difference of 10 in the IA almost ensures that the underlying 

densities are different, although the degree of certainty decreases with increasing IA. The 

posterior probability that the densities are different between sites of good habitat with an 

IA of 5 and an IA of 15 is 98% whereas it is 85% when comparing sites with IA of 35 and 

45. The same pattern is observed for poor habitat. 

 

 

Figure 2.5: Posterior estimates of 0+ juvenile salmon density from index of abundance (IAi) data alone. 

Median (●), 25% and 75% percentiles (▲ and ▼), and 5% and 95% percentile (+). Numbers above the 95 

percentiles correspond to the habitat grade (1: good, 2: poor). 

 

2.2.4 Discussion 

The model and the data presented show a clear and positive relationship between an 

abundance index collected by a single timed electric fishing technique and the underlying 

0+ salmon juvenile density. The posterior checks revealed no major discrepancy between 

the model assumptions and the observed data, while showing consistency in the density 

appraisal provided by the timed electric method and the classical successive removal 
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method. All the effects introduced in the model presented in this paper (i.e. density vs 

habitat, catchability vs river width, power function in the A vs density link) were justified 

in a posteriori model assessment. The posterior probability that the associated parameters 

(ρ, β, η) were greater or lower than the reference value corresponding to an absence of 

effect were all very low. 

 

Several publications have already addressed the issue of inter-calibrating single timed 

electric fishing sampling with the classical multiple pass removal method (Lobón-Cerviá 

and Utrilla, 1993; Winstone 1993; Crozier and Kennedy, 1994; Kruse et al., 1998; Prévost 

and Nihouarn, 1999; Bateman et al., 2005). In the original approach adopted here the 

removal catches and the IA are assumed to be both random variables and both dependant 

on a common unknown density. Other approaches generally use regression techniques of 

the density against an IA, where the density had been estimated previously from multiple 

removal catch (or mark-recapture) data. For density estimation based on the IA alone, such 

approaches are not satisfactory because the unknown density is replaced by a point 

estimate. A potentially significant part of the uncertainty inherent to the density estimation 

is thus ignored, resulting in over-precise estimates. 

 

The posterior inferences made in this model rely primarily on the removal catch data. Only 

these data allow derivation of absolute estimates of the fish density. The absolute density 

estimates in turn allows the estimate of the proportionality parameter κ and the power 

coefficient η of the relationship between fish density and the (relative) IA. The posterior 

knowledge gained on κ and η is key for estimating the (absolute) fish density when only IA 

data are available. Here the parameter κ is precisely estimated mostly because of 

significant variation in the 0+ salmon density over the set of 21 sites (Figure 2.2). 

 

The Bayesian paradigm for statistical inference and its implementation by means of 

MCMC sampling techniques makes the estimation of density from IA observation alone, 

straightforward, while ensuring the major sources of uncertainty are accounted for. For this 

approach to be valid, the MAR condition must be verified for the "missing" removal catch 

data. Although it can be assumed that this is true in many cases (Gelman et al., 2004; Rivot 

et al., 2008), the verification of the MAR condition must be scrutinised on a case specific 

basis. 
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Here, the density estimates obtained from IA data alone are fairly imprecise. This reflects 

both the variability of the IA observations for a given density and the uncertainty about the 

density estimates for the sites where the two types of data were collected. The hierarchical 

setting of our model helps to improve the precision of the density estimates by "borrowing 

strength" between sites (Rivot et al. 2008). Despite this transfer of information between 

sites, the density estimates remained relatively imprecise in many instances. The precision 

of these estimates depends mainly on the removal catch data. Indeed, the comparison of 

estimates between both electric fishing techniques (i.e. single timed and successive 

removal techniques), undertaken as a posterior check of our model, shows that the 

estimates from removal catch data are significantly more precise than those derived from 

the IA data. The main cause for the poor precision of the density estimates is a rather low 

catchability, always below 0.5 (mean of the posterior pdfs). In addition, it decreases over 

successive passes. A low catchability means that a smaller proportion of the total 

population on the site is captured. Therefore there is less certainty about the actual number 

of fish on the site. The low catchability might be explained by the utilisation of a single dip 

net during the successive removal samples, leading the operatives to miss fish, and the 

small size of the 0+ salmon at the time of sampling (average size is 52.65 mm) (Peterson et 

al. 2004). For further inter-calibration work, the removal catch data should be collected 

using a protocol aimed at maximizing fish catchability. This can be done by increasing the 

number of people catching the juveniles and by using different types of nets. Whatever the 

improvement that could be obtained in terms of precision, estimates of 0+ salmon density 

from IA data shall remain more uncertain than those derived from well conducted 

experiments of successive removals. Despite this, IAs allow the estimate of 0+ salmon 

density and the differentiation of contrasted levels of fish density, while being much less 

resource intensive than successive removal sampling.  

 

When resources for fish population surveys are limited or when a broad spatial coverage is 

of primary importance, trading off a loss of local precision against increasing the number 

of sampling sites is inevitable. This is typically the case when surveys are carried out for 

providing management advice on large river systems. Covering a large number of sites 

with a single timed electric fishing technique is an attractive option, but it has to be 

assessed on a case specific basis given the sampling design used and the precision of the 

estimates derived from the IA. The Bayesian modelling approach presented here is thus a 

valuable tool which has the dual merit of allowing estimation of density from single pass 

electric fishing data alone while fairly assessing the associated uncertainty. 
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2.3. Estimating average 0+ juvenile densities for several 
geographical unit 

The WinBUGS code corresponding to this model can be found in Annex 1. 

 

2.3.1 Data available 

5 minutes electric fishing in the Foyle catchment started in 1998 for the Faughan, the Finn, 

the Roe and the Foyle unit. In 1999, sites from the Mourne unit were incorporated. Since 

then more sites in all geo units were sampled and added to the existing list of sites. Over 

the years, there was some confusion in the attribution of grade for poor nursery habitat 

(grade 3 and 4 following the DANI classification). Therefore I chose to keep only sites for 

which a reliable assessment of the nursery habitat quality was available. Thus depending of 

the year, between 6 and 216 sites were available to estimate average 0+ salmon densities 

(Table 2.5). 

 
Table 2.5: Number of grade 1 (grade 1+ grade 2 according to DANI’s classification) sites electrofished 

every year in every geo units (Nt,i). 

 

 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Faughan 6 21 13 16 18 17 24 26 24 27 28 

Finn 28 46 18 23 7 24 29 14 26 48 49 

Mourne – 27 32 106 137 148 149 144 155 216 131 

Roe 18 53 31 37 30 36 42 43 57 59 54 

Foyle 10 13 18 27 23 25 29 29 35 34 38 

 

2.3.2 Modelling 

2.3.2.1 Adding information from the calibration model 

To estimate the average 0+ salmon densities per year we need to use some parameters from 

the calibration however we do not want these parameters to be affected by the observations 

(At,i,n, the index of abundance at the nth site, in the ith geo unit and, in the tth year) used to 

estimate the average densities per geo unit per year. Therefore, the distributions of these 
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parameters are “cut” from the model so they are not updated by the new observations. 

These parameters are identified by the superscript “cut” 

 

2.3.2.2 Model description 

The model estimating the average densities of 0+ per year and per geo unit borrow a great 

part of the calibration model’s structure. Three indices are used: t corresponds to the year 

(1998 to 2008), i corresponds to the geo unit (Faughan, Finn, Mourne, Roe, and Foyle) 

and, n correspond to the site number. Each year, in each geo unit, Nt,i sites are electrofished 

for 5 minutes providing an index of abundance At,i,n for each site. The index of abundance 

At,i,n are modelled as resulting from a Negative Binomial distribution (see section 2.2.2.2 

above for a more detailed description). 

 

,௧,,หܽ௧,,ܣ (2.14) ߮௨௧ ~ ݈ܰ݁݃ܽܽ݅݉݊݅ܤ ݁ݒ݅ݐሺܽ௧,,, ߮௨௧ሻ 

 

The index of abundance can equivalently be modelled as resulting from a Poisson 

distribution for which its parameter lt,i,n follows a Gamma distribution: 

 

  ሺ݈௧,,ሻ݊ݏݏ݅ܲ~ ௧,,ห݈௧,,ܣ  (2.15)

(2.16)  ݈௧,,~ܽ݉݉ܽܩሺܽ௧,,, ߮௨௧ሻ 

 

The mean of the At,i,n distribution is  

 

(2.17) ݈௧,, ൌ ܽ௧,, ߮௨௧⁄  

 

Where lt,i,n is deterministically linked to the site’s 0+ density  

 

(2.18) ݈௧,, ൌ ௨௧ߢ · ൫݀௧,,൯ ఎೠ  

 

Where κcut  is the proportion factor between the index of abundance At,i,n and the density 

dt,i,n and ηcut is the power coefficient applied to the density to account for possible non-

linear relationship between At,i,n and dt,i,n respectively. Both parameters are extracted from 

the calibration model.  

The site density ݀௧,, is assumed to follow a Gamma distribution 
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(2.19) ݀௧,, ห ߙ௧,
ௗ , ௧,ߚ

ௗ ௧,ߙ൫ܽ݉݉ܽܩ ~ 
ௗ , ௧,ߚ

ௗ ൯ 

 

Where  

 

(2.20a) ߙ௧,
ௗ ൌ ݀௧,

ఓ · ௧,ߚ
ௗ   

 

And 

ሺ2.20ܾሻ ߚ௧,
ௗ ൌ

݀௧,
ఓ

൫ܥ ܸ
ௗ ൈ ݀௧,

ఓ ൯ଶ 

 

Usually, for a Gamma distribution ߠ~Γሺߙ, ሻߚ , the parameters can be expressed as: 

ߙ ൌ ሻߠሺݎܽݒ · ߚ ଶ andߚ ൌ ఈ
ாሺఏሻ. In equations 2.20a and b, the parameters ߙ௧,

ௗ  and ߚ௧,
ௗ  were 

re-parameterised in function of ݀௧,
ఓ  and ܥ ܸ

ௗ. ݀௧,
ఓ  is the average density of geo unit i during 

year t. All the ݀ ௧,
ఓ  were assumed to be independent between geo units as there was no 

systematic correlation in the average index of abundance per geo unit ( mean(At,i,n) ); The 

correlation between the different series of mean(At,i,n) varied between 0.109 and 0.774. The 

݀௧, 
ఓ  were also assumed to be independent between years as the autocorrelation of the series 

of means (At,i,n) for each geo unit was in most case weak (Faughan: 0.300, Finn: 0.191, 

Mourne: 0.472, Roe: 0.225, and Foyle: 0.623) (Figure 2.6). 
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Figure 2.6: Average 5 minutes index of abundance ( mean(At,i,n) ) between 1998 and 2008; in red, blue, 

green, black and orange the Faughan, the Finn, the Mourne, the Roe and the Foyle. 

 

ܥ ܸ
ௗ are the coefficients of variation (standard deviation / mean) of the average density for 

geo unit i. The ܥ  ܸ 
ௗ of a given geo unit is assumed to be independent of the other ܥ  ܸ 

ௗ 

however for parsimony it was assumed that the ܥ  ܸ 
ௗ of a given geo unit remains constant 

across years. Parameterisation using ܥ  ܸ 
ௗs was decided after looking through the different 

other parameter such as standard deviation, variance and scale. Coefficient of variation was 

the parameter varying the less according to the average index of abundance (Figure 2.7) 

and had no systematic trends such as the systematic increase of variance or standard 

deviation along with the increase of the average index of abundance. 
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Figure 2.7: Coefficient of variation of the 5 minutes index of abundance vs average 5 minutes index of 

abundance ( mean(At,i,n) ) between 1998 and 2008.for each geo unit  a) the faughan, b) the Finn, c) the 

Mourne, d) the Roe and e) the Foyle. 

 

The structure of conditional dependency of relations (2.14) to (2.20) can be graphically 

summarised in a Directed Acyclic Graph (DAG) (Figure 2.8). 

 

2.3.2.3 Prior distribution 

To ensure best use of the calibration model (Dauphin et al., 2009) the parameters linking 

the index of abundance At,i,n and the site densities dt,i,n, ߟ௨௧, ߢ௨௧ and ߮௨௧ were drawn 

from the posterior distribution of η, κ and φ respectively. In order to obtain posterior 

inferences primarily reflecting the information brought by the data, little-informative and 

independent prior distributions were assigned to the remaining model parameters. A 

,ሺ1ܽ݉݉ܽܩ 0.001ሻ  distribution, used as an appropriate distribution approximating a 
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uniform distribution, was assigned to ݀  
ௗఓ. The coefficients of variation of the densities, 

ܥ ܸ
ௗ, were given a ܽ݉݉ܽܩሺ0.001,0.001ሻ distribution 

 
Figure 2.8: Directed acylic graph (DAG) of the model used to estimate average 0+ salmon densities for each 

year and each geo unit. Ellipses represent random variables. All observed quantities are greyed. Arrows 

represent the parent-child dependencies between the different nodes: single arrows represent probabilistic 

relationship between the parent(s) and child nodes, dashed arrows indicate deterministic relationship. The 

frame represents a repetition of structure over sites (n), geo units (i) and years (t). Nodes outside the frame 

are unknown parameters constant across sites. 

 

2.3.2.4 Posterior computations 

For every analysis presented, the joint distribution of all the unknowns (i.e. parameters, 

latent variables, observables in the case of missing data or for data replication) 

conditionally on all the observed data was approximated using MCMC sampling (Gelman 

et al., 2003). All computations were carried out with the OpenBUGS® software (version 

3.0.3; Thomas et al., 2006; Spiegelhalter et al., 2003) and the Lattice and Coda packages 

of R (version 2.7.0, www.r-project.com). Gelman-Rubin (Brooks and Gelman, 1998) 

diagnostics as implemented by OpenBUGS® was used to test the convergence of the 

MCMC sampling on the model parameters. Three chains with contrasting starting points 

݀௧,
ఓ  

௧,ߙ
ௗ ௧,ߚ 

ௗ  

dt,i,n

ηcut,κcut 

ܥ ܸ
ௗ 

at,i,n

At,i,nφcut 

For i in 1,...,5 
For t in 1,...,11

For n in 1,...,Nt,i
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were used. The Gelman-Rubin statistic indicated good mixing of the MCMC chains was 

obtained after 106 iterations. An additional sample of 10 000 values (106 iterations, but 

retaining 1 iteration every 100) from a single chain was then used to approximate the joint 

posterior distribution of all the unknowns. 

 

2.3.2.5 Model checking 

Following the approach proposed by Gelman et al. (1996), the compatibility between the 

assumed model and the data was checked by means of posterior predictive assessment 

techniques. These techniques extend classical goodness-of-fit test in the Bayesian setting 

by averaging over the posterior distribution of unknown quantities of the model. The χ2 

discrepancy was used as a discrepancy measure to assess a posteriori the consistency 

between the model and the index of abundance data (Gelman et al., 2004). 

 

ሺ2.21ሻ χ2ሺܣ|݈ሻൌ 
ቀܣ௧,, െ ௧,,ห݈௧,,൯ቁܣ൫ܧ

ଶ

௧,,ห݈௧,,൯ܣ൫ݎܸܽ
t,i,n

ൌ 
൫ܣ௧,, െ ݈௧,,൯ଶ

݈௧,,t,i,n

 

 

We compared the realized discrepancies χ2(A,l) computed with the observed values of At,i,n, 

with a posterior predicted χ2 discrepancy denoted χ2(Arep,l) and computed from posterior 

replications of the  observed data only: the ܣ௧,,
  were drawn from the distribution 

௧,,ܣ
 ห݈௧,,~ܲ݊ݏݏ݅൫݈௧,,൯  and the lt,i,n from their posterior distribution. The use of 

posterior predictive replications aims at checking the adequacy between the data and the 

assumptions made in our model that provide lt,i,n estimates. 

The 2χ  discrepancies (equation 2.21) were calculated over all the (t,i,n) electrofishing 

sites and for all the (t,i,n) electrofishing sites within each geo unit i in order to check for 

inconsistencies for any particular geo unit. Bayesian p-values, i.e. the posterior probability 

that ߯ଶሺܣ|݈ሻ  ߯ଶሺܣ|݈ሻ, were used to identify inconsistencies between the model and 

the index of abundance data. A p-value close to 0.5 indicates consistency, whereas extreme 

values (lower than 0.05 or higher than 0.95) will provide warnings of inconsistencies  

between the model and the data. The p-values are easily obtained by means of MCMC 

sampling. Gelman et al. (1996) and Marshall and Spiegelhalter (2007) provide more details 

about posterior predictive model checking and associated computational issues. 
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2.3.3 Results 

2.3.3.1 Posterior estimations of model unknowns 

The variables of interest in this model are the average densities per geo unit ߤ௧.
ௗ  and the 

average densities’ coefficients of variation ܥ ܸ
ௗ. Other variables such as site densities dt,i,n 

were only checked for consistency as they were expected to give similar posterior 

distributions than the ones obtain from index of abundance only in Dauphin et al. (2009). 

 ௨௧ and ߮௨௧ were not considered since they are not updated by the additional dataߢ ,௨௧ߟ

and their posterior distributions are therefore exactly the same than the ones estimated in 

the calibration model. 

 

The average densities per geo unit and per year are estimated with high levels of 

uncertainty with coefficients of variation ranging from 35.6% to 188% (Figure 2.9). 

However, higher values of coefficients of variation (> 90%) for these variables occurred in 

years when less than fifteen grade 1 sites were electrofished in the geo units. With a mean 

of the posterior distributions of 6.56, 7.03 and 4.97 0+ juveniles.m-2, the Faughan, the Roe 

and the Foyle units have on average considerably higher average density than the Finn and 

the Mourne units (1.26 and 1.41 0+ juveniles.m-2, respectively). 
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Figure 2.9: Summary of the posterior distribution of the average 0+ juvenile densities ݀ఓ for a) the Faughan, 

b) the Finn, c) the Mourne, d) the Roe and e) the Foyle. Boxes indicate 25th percentile, median and 75th 

percentile, whiskers indicate 5th and 95th percentiles. 

 

The average densities’ coefficients of variation variable ܥ ܸ
ௗ  are very well estimated 

(Figure 2.10) with posterior coefficients of variations ranging from 6.5 to 8.6 %. All ܥ ܸ
ௗ 

were higher than 100%. The different geo units can be split into 3 groups with significantly 

different ܥ ܸ
ௗ. The mean of the posterior distribution of ܥ ܸ

ௗ for the Faughan and the Finn 

units was 129%, for the Mourne and the Roe units it was 158% and for the Foyle unit, the 

mean of the posterior distribution was 195%. 
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Figure 2.10: Summary of the posterior distribution of the average 0+ juvenile densities’ coefficients of 

variation ܥ ܸ
ௗ  for the 5 geo units. Boxes indicate 25th percentile, median and 75th percentile, whiskers 

indicate 5th and 95th percentiles. Letters above whiskers indicate significantly different groups. 

 

2.3.3.2 Posterior model checking 

The χ2 discrepancies statistics do not reveal any significant inconsistencies between our 

model and the data (Table 2.6). All the p-values are reasonably close to 0.50 when 

considering geo units one by one or all together.  

 
Table 2.6: Posterior model checking: Bayesian p-values of chi-square statistics ߯ଶሺܣ|݈ሻ  ߯ଶሺܣ|݈ሻ based 

on data replication technique (see text). 

  p-value 

ܲ൫߯ଶሺܣ|݈ሻ  ߯ଶሺܣ|݈ሻ൯  All geo units 0.480 

 Faughan 0.593 

 Finn 0.504 

 Mourne 0.406 

 Roe 0.554 

 Foyle 0.343 
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2.3.4 Discussion 

The model proposed in this section allows estimating local site densities of 0+ salmon 

juveniles using posterior distribution of parameters estimated in a calibration model (see 

section 2.2). These densities were then brought together to estimate yearly average 

densities for each geo unit of the catchment. The posterior checks carried out did not reveal 

any significant discrepancy between the model and the observed data. 

 

Yearly average density per geo unit ݀௧.
ఓ  were fairly imprecise reflecting the vague local 

densities estimated only from the index of abundance At,i,n, nevertheless some patterns 

emerged and differences appeared among geo units. Thus, The Faughan, the Roe and the 

Foyle geo units showed some unusually high 0+ densities with average posterior 

distribution means above 5 fish.m-2, in some cases even reaching 10 fish.m-2. Such 

densities have never been recorded in this area (Crozier and Kennedy, 1994) or anywhere 

else. The maximum density found in the literature was around 7 0+ juveniles per square 

meter (Niemelä et al., 2005). These particularly high values are mainly explained by the 

fact that in these geo units, many At,i,n are above 50 (See annex 1 for complete data set) and 

since the calibration relationship is monotonically increasing, there are no mathematical 

constraints to preventing such high densities even if they have no biological reality. 

Obtaining these high densities is due to the assumption that the calibration relationship is 

the same for each geo units and each crew performing the single timed electrofishing every 

year. This is an important assumption that needs to be made since almost no data on how 

the crews’ technique differs is available. The ݀௧.
ఓ  estimated for the Finn and the Mourne 

are significantly smaller than the one estimated for the 3 others geo units. The high At,i,n in 

these 3 geo units and therefore the differences in mean 0+ juvenile densities across geo 

units could be explained by several reasons: 1) the habitat quality in these 3 geo units is on 

average higher than in the other 2 geo units (for an equivalent grade, the food production is 

better and/or more shelters are available), 2) the different crews collecting for the At,i,n do 

not have the same efficiency in their sampling. This can be due to slight differences in the 

sampling protocol. 

 

Both hypotheses could be responsible for the density differences encountered: The 

Faughan and the Roe units are located in an area which is known to have important 

agricultural activity which can lead to higher river productivity (Loughs Agency, personal 

communication). Also two of the three geo units with higher ݀௧.
ఓ  (the Faughan and the 



67 
 

Chapter 2 0+ juvenile densities 

Roe) and consequently higher At,i,n are sampled by the same crew. The remaining geo unit 

with high ݀௧.
ఓ  is sampled for its majority by the crew sampling the Faughan and the Roe 

units. 

 

The average 0+ juvenile densities’ coefficients of variation ܥ ܸ
ௗ  were all very precisely 

estimated at high values (all posterior means above 100%). Such high values indicate a 

high variability in site densities caused by high variability in the At,i,n. Such variability can 

be explained by several possibilities: 1) Sampling occurs in geo units which have large 

wetted area. It is likely that variability in good quality nursery habitat occurs across these 

geo units; 2) every year the sampling is carried out during a 2-3 months period during the 

summer. Sampling conditions may change over years and within a season (e.g. water 

discharge, conductivity, etc.) and lead to varying efficiency while sampling; 3) within each 

geographical sampling can be carried out by several crews (as mentioned above), crews 

might not have the same efficiency leading to additional variability in the At,i,n. It is 

difficult to measure how much each of these hypotheses contribute to the general 

variability of the 0+ juvenile densities. The differences among At,i,n  for sites ranked as 

good in terms of nursery habitat can range from 0 to 301 in the same geo unit the same 

year (e.g. Roe unit in 2005 see annex 1).  

 

Future modelling could be improved by having some calibration exercise performed by 

each crew. If the parameters linking the index of abundance to the density differs between 

crews, then the different set of parameters should be used to estimate the ߤ௧.
ௗ  according to 

the crew that collected the index of abundance. 
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Chapter 3:  
Is it worth counting redds to assess Atlantic 
salmon spawning escapement? 

 

 

This chapter has been submitted as a scientific article in Fisheries Research and is 

currently under review. The WinBUGS code corresponding to this model can be found in 

Annex 2. 

 

3.1. Introduction 

Redd counts are widely used as an indicator of spawner population size for salmonids 

(Hay, 1987; Emlen, 1995; Rieman and Myers, 1997; Rieman and Allendorf, 2001; Isaak et 

al., 2003; Al-Chokhaky et al., 2005; Gallagher and Gallagher, 2005). One of the 

advantages of redd counting is its relatively low cost. With limited resources it is possible 

to monitor different rivers of a large catchment over long periods of time. Therefore long 

time-series redd count data are frequently available for salmonid populations (ICES, 1995; 

Thurow, 2000; Crozier et al., 2003). Redd counts are often criticised because they lack 

assessment of their associated uncertainty while several authors have documented that 

sampling error is common in redd counts (Rieman and McIntyre, 1996; Bonneau and 

LaBar, 1997; Dunham et al., 2001). A number of factors may affect a redd census such as 

redd age, redd size, redd density, physical characteristics of the redd location (substrate 

color, amount of flow, etc.), vegetation cover, year to year climatic variation (storm/flood 

events), and observer experience. Even though, redd counts are often significantly 

correlated to the spawner abundances (Beland, 1996; Dunham et al., 2001; Gallagher and 

Gallagher, 2005). 
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More accurate measures of spawner abundances can be obtained by means of fish counters. 

Resistivity or infra-red devices provide abundance data for upstream migrating adults 

returning from the sea (Dunkley and Shearer, 1982; Shardlow and Hyatt, 2004). Counts are 

usually automated and allow counting migrating fish over  the whole year. There are some 

uncertainties associated to these counts especially during flood events for resistivity 

counters (Dunkley and Shearer, 1982; Hendry et al., 2007) or at high adult densities for 

infrared counters (Shardlow and Hyatt, 2004). Since this is a relatively new technology, 

available fish counter datasets are usually limited in time. Until they become more 

common and extensively used, it is important to find other sources of information to 

quantify adult abundance.  

 

When redd counts and fish counters data are simultaneously available, it may be possible 

to build a calibration relationship between the two datasets. This calibration can then be 

used to derive spawner estimates and assess their associated uncertainty when only redd 

counts data are available. With this aim, a generic Bayesian hierarchical model is 

developed here. The proposed methodological approach is illustrated using an Atlantic 

salmon (Salmo salar L.) data set from three tributaries of the Foyle river system, Ireland. 

Redd counts and fish counter data were gathered simultaneously over a short period of 

time (2001 to 2006) and redd count data only were collected over an earlier and much 

longer period (1959 to 2000). 

 

3.2. Material and Methods 

3.2.1 Study site  

The Foyle River basin drains a 4500 km2 catchment on the North coast of Ireland (55°00’ 

N; 07°20’ W). The Foyle supports a large population of Atlantic salmon with commercial 

catches reaching more than 80 000 fish in the mid 1960’s. The catchment also supports  

Arctic charr (Salvelinus alpinus L.), brown trout (Salmo trutta L.), European eel (Anguilla 

Anguilla L.), Lampreys (Petromyzon marinus L., Lampetra fluviatilis L. and Lampetra 

planeri Bloch) and three spined stickleback (Gasterosteus aculeatus L.) (Loughs agency, 

2009a,b,c). 
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3.2.2 Field data collection 

Atlantic salmon redds have been consistently counted in the Foyle catchment from 1959 to 

2006, except for the Faughan and the Roe sub-catchments in 1997. In addition, the wetted 

area of river surveyed for redd counts is also available since 2001. Fish counters provide 

adult abundances for three tributaries of the Foyle River basin (Faughan, Finn and Roe 

rivers) from 2001 to 2006 (Table 3.1). 

 

3.2.2.1 Redd counts 

During reproduction, which occurs usually during winter (November to February), female 

salmon dig a hole in the gravel where she lays her eggs. After egg deposition and 

fertilisation, she covers the eggs with gravel to complete the nest (redd). The gravel 

recently moved and cleaned are visible from the bank of the river and thus redds can be 

counted. During spawning time, Loughs Agency Fishery Officers aim to survey annually 

460km of river channel. Depending on environmental conditions, some areas are visited 

one or several times during the spawning season. Training in salmon redd identification is 

provided by experienced Fishery Officers. 
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Table 3.1: Data for the Faughan, the Finn and the Roe, years 2001 to 2006: counts of returning adults (A), 

rod catches upstream of each counters (N), proportion of the wetted area surveyed (P) and redd counts (R). 

Dash (⎯) indicates missing data. 

 Year    A  N  P  R 

Faughan 2001 1518 656  ⎯  233

2002 4288  597  ⎯  673

2003 3097  335  0.33  441

2004 2855  464  0.33  501

2005 4245  822  0.33  766

2006 3625  501  0.03  35

Finn 2001 3311  1162  0.17  137

2002 5768  2263  0.16  234

2003 6461  590  0.16  101

2004 3771  627  ⎯  149

2005 8571  1118  0.24  343

2006 5748  752  0.06  94

Roe 2001 3265  267  ⎯  186

2002 5459  408  0.31  630

2003 4086  158  0.32  672

2004 1922  357  0.08  43

2005 2917  309  0.32  844

2006 5375  444  0.32  428

 

3.2.2.2 Fish counters 

Three Logie Aquantic 2100c resistivity counters (Fewings, 1994) were used to quantify the 

number of adult salmon returning from the sea from 2001 to 2006. They are located at the 

downstream end of the Faughan, Finn, and Roe rivers. During the period of time 

considered, the fish counters provided uninterrupted counts. Important flood events 

occurred in 2007 and 2008 leading to inconsistent counts. These years are therefore, not 

included in this study. The total river width is covered in order to count all upstream and 

downstream movements of any fish with a body length greater than 45 cm passing the fish 

counter. This detection threshold is lower than the minimum size of a returning adult 

Atlantic salmon in the Foyle system and well above the average size of returning sea trout 

which is the only species that could also move across the fish counter. Validation of the 

fish counters is undertaken by two ways; firstly pseudo-graphical signals are collected and 
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examined for the characteristic fish signal, secondly, video footage of fish passing the 

counting station is related to the signals generated by the counter and counts either 

accepted or rejected on that basis. Total annual fish counts from January to December of a 

given year are obtained by subtracting total downstream movements from total upstream 

movements (Table 1). Some downstream movements may correspond to kelts (adults 

migrating downstream after spawning) while the upstream movements may include the 

small number of sea trout bigger than 45cm (Elson and Tuomi, 1975). These errors are 

considered minor relative to the number of adult salmon returns. Given the methodological 

focus of the present paper, they are ignored in the following. These potential errors are 

incidental with regard to the modelling approach presented thereafter. It would apply 

equally well to more refined measures of adults returns.  

 

3.2.3 Modelling 

Henceforth unobservable quantities will be denoted by Greek lower case letters and 

observable quantities by capital Roman letters. The notation a|b ~ f(b) means the random 

variable a (whether unobservable or observable) conditionally on b is distributed according 

to the probability distribution function (pdf) f. Unobservable quantities are necessarily 

unknown but observable quantities may be unknown as well if not observed (missing data). 

In our case, adult counts are observable quantities but they have been observed only for the 

last 6 years of the time series (2001-2006). 

 

3.2.3.1 The relationship between spawners and redd counts 

Each redd count is identified by two indices: t = 1,…,48 for years 1959 to 2006 and i = 

1,2,3 for the three rivers equipped with a fish counter. The number of redds counted Rt,i in 

year t upstream from the counter i is assumed to be drawn from a Negative Binomial 

distribution (Muhlfeld et al., 2006) which is written as a Poisson distribution with its rate 

parameter λt,i following a Gamma distribution (Mangel, 2006, p. 103-112): 

 

(3.1) ܴ௧,หߣ௧,~ܲ݊ݏݏ݅൫ߣ௧,൯ 

 

λt,i, depends on the number of spawners, St,i, a spawner:redd ratio κt,i, and the proportion of 

wetted area of the catchment unit that has been surveyed for redd counting Pt,i.  
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௧.ߣ (3.2) ൌ ܵ௧, · ௧,ߢ · ௧ܲ, 

 

The spawners are the adults which manage to reach the spawning grounds. Thus, St,i is 

obtained from the adult returns At,i, and the rod catches upstream from the counters Ct,i. 

 

(3.3) ܵ௧, ൌ ௧,ܣ െ ௧ܰ, 

 

For the years 2001 to 2006, the fish counters are assumed to provide an exact count of the 

number of returning adults, i.e. At,i. For the years prior to 2001, these data are missing 

(section 3.2.6). 

 

3.2.3.2 Hierarchical structure for the spawner:redd ratio κ  

The quantity κt,i is the yearly average spawner:redd ratio. Two embedded levels of 

variation can affect this ratio: between rivers and between years within rivers. Differences 

between rivers in the nature of the bottom substrate, the channel morphology, the 

occurrence of aquatic weeds and hydrological characteristics (including water clarity) can 

modify the ability to visually detect redds (Table 3.1). River specific characteristics of the 

salmon spawners (e.g. size, sex ratio) can also result in a between river effect on the 

spawner:redd ratio. Yearly variation of the characteristics of the spawners, of the 

environmental conditions affecting redd detection and of the observers experience and 

practices during redd counting can influence the number of redds counted each year 

(Peterson and Metcalfe, 1981; Crisp and Carling, 1989). The spawner:redd ratio κt,i is 

assumed to be drawn from a Gamma distribution with river specific shape αi and inverse 

scale βi parameters. 

 

,ߙ|௧,ߢ (3.4) ,ߙሺܽ݉݉ܽܩ~ߚ  ሻߚ

 

The river specific αi and βi parameters account for the between rivers effects while the 

random variations conditional on these parameters account for the within rivers yearly 

variations. αi and βi  can be expressed according to the corresponding mean κμ i  and 

precision τκ: 

 

ߙ (3.5) ൌ ሺߤ
ሻଶ · ߬ 

ߚ (3.6) ൌ ߤ
 · ߬  
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The mean κμ i  is assumed to be river specific while the precision κτ  does not vary across 

rivers. The latter hypothesis is a parsimonious approach because precision (i.e. inverse of 

the variance) parameters are difficult to estimate from small numbers of observations. In 

our case, only the last six years were available for each river to estimate each river specific 

precision parameter. 

 

3.2.3.3 Hierarchical structure for the number of returning adults 

It was assumed that the number of adults returning to the Faughan, the Finn and the Roe 

were drawn from river-specific Log-Normal distributions: 

 

ߤ௧,หܣ (3.7)
ௌ, ߬

ௌ~݈ܽ݉ݎܰ݃ܮ൫ߤ
ௌ, ߬

ௌ൯ 

 

where μS
i and τSi are the mean and the precision of the underlying normal distribution. The 

Log-Normal distribution was chosen as it is the standard for modelling random variations 

of population abundance when little is known about the causal mechanisms (Halley and 

Inchausti, 2002). As for κt,i, the mean parameter is assumed to vary across rivers. In 

addition, the precision parameter is also allowed to vary, as early model trials showed 

poorer estimation of spawner abundances with this parameter remaining constant across 

rivers. 

 

3.2.3.4 Taking into account the area surveyed for redd counts 

The area surveyed for redd counting was not available every year and for every river. In 

order to account for this source of uncertainty in the relationship between the adult counts 

and the redd counts, the variations of this proportion were explicitly modelled. Whether 

observed or not (i.e. missing data), it is assumed the logit of the proportion of wetted area 

surveyed was drawn from a common normal probability distribution: 

 

൫ݐ݅݃ܮ (3.8) ௧ܲ,൯|ߤ,, ߬~݈ܰܽ݉ݎሺߤ, ߬ሻ 

 

where μP and τP are the mean and the precision of the underlying normal distribution. No 

between river variation was introduced in the absence of evidence of any river specific 

factors influencing the proportion of wetted area surveyed for redd counting. This was 
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confirmed in early trials of the model incorporating such variations and not providing 

better estimates. 

 

3.2.4 Bayesian inference and posterior computations 

The structure of conditional dependency of the model’s relations (Equations 3.1-3.8) can 

be graphically summarised in a Directed Acyclic Graph (DAG) (Figure 3.1). The Bayesian 

treatment of this model for deriving posterior probability distribution of all the unknown 

quantities requires that a prior probability distribution is assigned to each of the free 

parameters of the model , i.e. those not conditioned by any quantity in the DAG. Weakly-

informative and independent prior PDFs were used (Table 3.2) in order to ensure that our 

posterior inferences would primarily reflect the information brought by the observed data. 

 

 
Figure 3.1: Directed Acyclic Graph (DAG) of the model relating the returning adults to the redd counts. All 

observable quantities are greyed. Arrows represent the conditional dependencies between nodes: solid 

arrows for probabilistic dependency, broken arrow for deterministic dependency. The frames represent a 

repetition of structure over units.  

 

The joint posterior distribution of all the model unknowns (i.e. unobservable quantities and 

observables in case of missing data) was approximated using Markov chain Monte Carlo 

(MCMC) sampling (Gelman et al., 2003). All computations were carried out with the 

OpenBUGS® software (version 3.0.3; Thomas et al., 2006; Spiegelhalter et al., 2007) and 

the Lattice and Coda packages of R (version 2.5.1, www.r-project.org). We used the 

Gelman-Rubin (Brooks and Gelman, 1998) diagnostics as implemented by OpenBUGS® to 

 ௧,ܣ

ܵ௧, 

 ௧,ߢ ௧,ߣ
 ߙ

 ߚ

௧ܲ, 

௧ܰ, 

ܴ௧, 

߬
ௌ 

ߤ
ௌ 

ߤ
 

߬ 

 ߤ

߬ 

for t = 1,..,48 

for i = 1,2,3 
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test the convergence of the MCMC sampling on the model parameters. Three chains with 

contrasted starting points were run. The Gelman-Rubin statistic indicated good mixing of 

the MCMC chains was obtained after 106 iterations. An additional sample of 10 000 values 

(106 iterations, but retaining 1 iteration every 100) from a single chain was then used to 

approximate posterior distributions. 

 
Table 3.2: Prior distribution of the parameters (i=1,2,3; ε = 0.001). 

Parameter Distribution 

μP ~ Beta(1, 1) 

τP ~ Gamma(ε, ε) 

μκi ~ Gamma(1, ε) 

τκ ~ Gamma(ε, ε) 

ߤ
ௌ ~ Unif(0, 5.105) 

߬
ௌ

 ~ Gamma(ε, ε) 

 

3.2.5 Posterior model checking 

Following the approach proposed by Gelman et al. (1996), the compatibility between the 

assumed model and the data was checked by means of posterior predictive assessment 

techniques. These techniques extend classical goodness-of-fit tests in the Bayesian setting 

by averaging over the posterior distribution of unknown quantities of the model. We used 

the omnibus χ2 statistic as a discrepancy measure to assess a posteriori the consistency 

between the model and the data (Gelman et al., 2003). 

 

ሺ3.9ሻ ߯ଶሺܴ, ሻߣ ൌ 
ቀܴ௧, െ ௧,൯ቁߣ൫ܴ௧,หܧ

ଶ

௧,൯௧,ߣ൫ܴ௧,หݎܸܽ

ൌ 
൫ܴ௧, െ ௧,൯ଶߣ

௧,௧,ߣ

 

 

With X being any observable quantity and θ the set of unknown parameters controlling the 

pdf of X. 

 

The realized discrepancies ߯ଶሺܴ, ሻߣ  computed with the observed values of Rt,i, were 

compared to two posterior predicted χ2 discrepancies denoted ߯ଶሺܴଵ, ሻߣ  and 

߯ଶሺܴଶ, ,ሻ. ߯ଶሺܴଵߣ  ሻ was computed from posterior replications of the  observed dataߣ

only: the ܴ௧,
ଵ  were drawn from the distribution ܴ௧,

ଵหߣ௧,~ܲ݊ݏݏ݅൫ߣ௧,൯  and the λt,i 

from their posterior distribution. ߯ଶሺܴଶ,  ሻ was computed from posterior replicationsߣ
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of both the observed Rt,i, and the λt,i the ܴ௧,
ଶ  were drawn from the distribution 

ܴ௧,
ଶหߣ௧,

~ܲ݊ݏݏ݅൫ߣ௧,
൯ and the ߣ௧,

 from their posterior predictive distribution. The 

use of posterior predictive replications at two different levels of our hierarchical model 

aims at checking the adequacy between the data and the assumptions made in our model at 

these two levels. 

 

The 2χ  discrepancies (equation 3.9) were calculated over all the (t,i) observation units and 

for all the (t,i) observations units within each river i in order to check for inconsistencies 

for any particular river. Bayesian p-values, i.e. the posterior probability that 

߯ଶሺܴଵ, ሻߣ  ߯ଶሺܴ, ሻߣ  or ߯ଶሺܴଶ, ሻߣ  ߯ଶሺܴ, ሻߣ , were used to identify 

inconsistencies between the model and the redd counts data. A p-value close to 0.5 

indicates consistency, whereas extreme values (lower than 0.05 or higher than 0.95) will 

provide warnings. The p-values are easily obtained by means of MCMC sampling. Gelman 

et al. (1996) and Marshall and Spiegelhalter (2007) provide more details about posterior 

predictive model checking and associated computational issues. 

 

3.2.6 Estimating adult returns from redd counts alone 

From 1959 to 2000, the data available are restricted to the redd counts. The corresponding 

area surveyed and returning adult data are missing. Relying on the standard assumption 

that the missing data are "missing at random" (Gelman et al., 2003), they can be 

considered as any other unknown in the model. Their posterior distribution conditionally 

on all the observed data (i.e. redd counts from 1959 to 2006 and adult counts and area 

surveyed from 2001 to 2006; Table 3.1) can be computed by standard MCMC sampling 

techniques. In addition, a relative measure of spawners abundance δt,i was calculated for 

each river i and year t as the ratio of the absolute abundance of this given (t,i) unit to the 

average adult abundance for the river i. 

 

ሺ3.10ሻ ߜ௧, ൌ
ܵ௧,

1
48 · ∑ ܵ௧,

௧ୀଶ
௧ୀଵଽହଽ

 

 

This relative abundance measure was calculated with the aim of comparing the precision of 

absolute vs. relative abundance estimates derived from the same redd count data.  
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In order to evaluate the potential value of having fully observed the covariate Pt,i, fake 

observations of the proportion of wetted area surveyed 
fake
itP ,  were generated by a random 

draw in the posterior predictive distribution of the Pt,i for years when redd counts are the 

only data available (1959 to 2000). The posterior inferences of spawner abundances 
fake
itS ,  

were then derived as if the 
fake
itP ,  were true available data. 

 

3.3. Results 

The χ2 discrepancy statistics do not reveal any significant inconsistencies between our 

model and the data (Table 3.4). All the p-values ranged between 0.21 and 0.62 for any 

level of replication. The free parameters of the model, prior to posterior distribution 

comparison (Table 3.2 and Table 3.3) reveal a significant updating as a result of the 

information brought by the observed data. The posterior mean of the μp parameter 

corresponds to an average proportion of wetted area surveyed of 21.4%. Posterior mean 

values of the unknown proportions of wetted area surveyed range from 0.18% to 0.40%. 

The spawner:redd ratio is different across rivers. It is, on average, higher for the Faughan 

compared to the Roe (P(μκ1 ≥ μκ3) = 0.88) which is higher than the Finn (P(μκ3 ≥ μκ2) = 

0.92 ). When all data are available, the κt,i  are estimated with low uncertainty (posterior 

distributions CVs ranging from 0.035 to 0.155; Figure 3.2). When the proportion of the 

wetted area surveyed is missing, the uncertainty of the estimates dramatically increases 

(CVs ranging from 0.298 to 0.549).  

 
Table 3.3: Posterior model checking: Bayesian p-values of chi-square statistics ߯ଶሺܴଵ, ሻߣ  ߯ଶሺܴ,  ,ሻߣ

߯ଶሺܴଶ, ሻߣ  ߯ଶሺܴ, ሻߣ  or ߯ଶሺܣ, ,ௌߤ ߬ௌሻ  ߯ଶሺܣ, ,ௌߤ ߬ௌሻ  based on data replication technique (see 

text). 

  p value 

P൫߯ଶሺܴଵ, ሻߣ  ߯ଶሺܴ, ሻ൯ All unitsߣ 0.507 

Faughan 0.506 

Finn 0.503 

Roe 0.500 

P൫߯ଶሺܴଶ, ሻߣ  ߯ଶሺܴ, ሻ൯ߣ All units 0.508 

Faughan 0.510 

Finn 0.502 

Roe 0.500 
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Table 3.4: Summary statistics of the marginal posterior distributions of the models parameters. 

 

 mean sd 2.5% 25% median 75% 97.5% 

μP 0.214 0.038 0.147 0.188 0.211 0.236 0.297 

τP 1.365 0.496 0.579 1.007 1.303 1.654 2.464 

ଵߤ


 0.615 0.095 0.441 0.552 0.611 0.671 0.816 

ଶߤ


 0.333 0.076 0.203 0.282 0.327 0.376 0.501 

ଷߤ


 0.478 0.089 0.315 0.418 0.473 0.531 0.670 

τκ 28.35 13.69 8.023 18.44 26.18 36.12 60.81 

ଵߤ
ௌ

 3612 467 2787 3289 3580 3904 4620 

ଶߤ
ௌ

 6872 811 5511 6297 6791 7351 8708 

ଷߤ
ௌ

 5924 799 4604 5375 5837 6391 7739 

߬ଵ
ௌ

 4.282 2.226 1.561 2.735 3.764 5.275 10.05 

߬ଶ
ௌ

 9.788 4.461 3.684 6.559 8.956 12.08 20.88 

߬ଷ
ௌ

 4.660 1.946 1.956 3.300 4.332 5.643 9.387 

 

The absolute number of spawners estimated a posteriori between 1959 and 2000 from the 

redd counts only are very uncertain, with posterior CVs ranging from 0.35 to 0.56 (year 

1997 is excluded for the Faughan and the Roe river since no redd counts were available for 

this year) (Figure 3.3). The pattern of variation over the time series shows a peak of 

abundance in the 1960 for the river Faughan and the river Roe but is relatively flat for the 

Finn. 
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Figure 3.2: Posterior distributions of the yearly spawner:redd ratios for each units (κt,i) for the years 2001 to 

2006. Light grey boxes indicate years for which the proportion of the surveyed area was not available. Dark 

grey boxes indicate the posterior predictive distribution (κrep) summarize the knowledge about the same 

spawner:redd ratio when both adult counts and proportion of the surveyed area data are missing. The line in 

the middle of the box indicates the median, the boxes indicates the 25th and 75th percentiles and the whiskers 

indicate the 2.5th and 97.5th percentiles. Dashed lines indicate the mean of the posterior distribution of the 

associated μκi (Equations 3.5 and 3.6) 

 

Compared to absolute abundance, the relative abundance measure provides slightly, but 

systematically, more precise estimates (lower CVs; Figure 3.4). The incorporation of fake 

observations of the proportion of wetted area surveyed fake
itP ,  significantly improves the 

precision of abundances estimates for the Faughan and the Roe, but the improvement is 

only marginal for the Finn.  
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Figure 3.3: Posterior distributions of the spawners abundance from 1959 to 2006 for a) the Faughan, b) the 

Finn, and c) the Roe. The year 1997 for the Faughan and Roe have been removed as the red counts were 

missing. The line in the middle of the boxes indicates the median, the box indicates the 25th and 75th 

percentiles and the whiskers indicate the 2.5th and 97.5th percentiles. The dashed lines indicate the mean 

spawners abundance over the time series. 
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Figure 3.4: Coefficient of variation (CV) of the spawner abundance St,i against the associate CV of the 

relative abundance δt,i (•) and the CV of spawner abundance obtained with the incorporation of fake 

proportions of surveyed wetted area data ܵ௧,
 (□) from 1959 to 2000 for a) the Faughan, b) the Finn, and 

c) the Roe. The year 1997 for the Faughan and Roe has been removed as the red counts were missing. The 

dotted line represents the one-to-one line. 

 

3.4. Discussion 

The model proposed in this study relates salmon spawner abundance and the number of 

redds counted in the field. Its structure is generic and could be applied to other redd counts 

and spawner abundance data sets, at least for salmonids. The posterior checks did not 

reveal any discrepancy between the model and the observed data in our case. Provided that 

some spawner abundance and redd counts have been jointly observed for some years, the 

model can be used to estimate spawner abundance from redd count data alone and assess 

the associated uncertainty. In this study counts of fish from the fish counters are assumed 

to accurately reflect the spawning escapement. Any discrepancies between the actual fish 

counter counts and the real spawning escapement are included within the spawner:redd 
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ratio parameters ߢ௧, . The magnitude and variation in these uncertainties could be 

incorporated into further studies. 

 

In the present study, the posterior estimates of absolute spawner abundance derived from 

redd counts data alone are very uncertain. This results from the cumulative effect of three 

main sources of uncertainty: the between year variability of the κt,i coefficient (Figure 3.2), 

the lack of observation and the inter-annual variation of the Pt,i covariates and the posterior 

uncertainty about the mean and precision parameters κμ i , τκ, μP and τP (Table 3.4). Some 

of these sources of uncertainty have already been identified and taken into account 

separately by some authors (Dunham et al., 2001; Gallagher and Gallagher, 2005; 

Muhlfeld et al., 2006). The modelling approach proposed here is original, in that they are 

considered jointly in a single and consistent (hierarchical) framework. The approach could 

easily be extended by introducing observed covariates explaining part of the random 

variations in the κt,i and the Pt,i .  

 

Looking at a relative index of abundance essentially amounts to removal of the posterior 

uncertainty about the mean parameters κμ i  and μP. The precision of the posterior estimates 

is somewhat improved, but the other main sources of uncertainty remain. A much more 

significant improvement could be obtained if the proportion of wetted area surveyed (Pt,i) 

was known every year. When the fake fake
itP , data were used, the CVs of the posterior 

distributions of the abundance were notably reduced for the Faughan and the Roe River 

(Figure 3.4).  

 

It is concluded from this exercise that redd counts can be a valuable source of information 

for monitoring spawning abundance of salmonids and should not be dismissed a priori. 

The generic modelling presented herein allows estimating spawner abundance from redd 

count data alone and to assess the associated uncertainty. This assessment is essential as 

the uncertainty of the abundance estimates may be large. Ancillary data informing the redd 

counting process (e.g. the proportion of wetted area surveyed) can make a great difference 

in improving the precision of the abundance estimates. 

  



 

Chapter 4 State-space modelling of A. Salmon in the Foyle  

 

 

 

 

 

Chapter 4:  
A life stage state-space model for Atlantic salmon 
population dynamics in the Foyle catchment. 

 

 

This chapter is written as a manuscript to be submitted in Fish and Fisheries or Ecological 

Monographs. The WinBUGS code corresponding to this model can be found in Annex 3. 

 

4.1. Introduction 

Population dynamics is the study of the abundance at different life stages of a species, the 

interactions between these life stages and sometimes the interactions with other species 

(Hilborn and Mangel, 1997; Walters and Martell, 2004). Stage-structured modelling is a 

popular approach for population dynamics studies (Tuljapurkar and Caswell, 1997; 

Caswell, 2001). This approach examines populations based on their ecology and allows the 

incorporation of complex dynamic processes. Model outputs are sensitive to the parameter 

values. It then becomes crucial to accommodate and quantify parameters uncertainty. This 

is of particular importance when the population of interest is exploited and the risk of over-

exploitaion or to extinction needs to be assessed (Ludwig et al. 1993; Francis and 

Shotton,1997; Hilborn and Mangel, 1997, Schnute and Richards, 2001). 

  

When studying real world case studies of population exploited by fisheries, several 

additional problems often arise such as: multiple and heterogeneous sources of information 

(e.g. datasets collected at different spatial and temporal scales and with different spatial 

and temporal coverage), missing observations, life stages of interest not directly 

observable. The Bayesian framework allows dealing naturally with all these issues. It has 

proven its particular value in studying the dynamics of exploited populations (Ellison, 

1996; Hilborn, 1997; Punt and Hilborn, 1997; Wade, 2000, 2001). Indeed, unknown 
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quantities have associated probability distributions reflecting their uncertainty. Dealing 

with variations in the interactions/processes between life stages (Clark, 2003; Clark et al., 

2003) or limited and indirect ecological data (Legendre, 1993) is also facilitated by 

Bayesian modelling. 

 

Bayesian state-space models have become a common tool to deal with diverse datasets and 

uncertainties related to observation or process errors (Clark and Bjørnstad, 2004; Rivot et 

al., 2004; Michielsens et al., 2008). A state-space model is composed of two equations 

(Carlin et al., 1992; Calder et al., 2003). The first one is called the process equation:  

 

ሺ4.1ሻ ܺ௧ ൌ ,ଵߠ,൫ܺ௧ିଵܨ  ௧൯ߝ

 

where the function F accounts for all the equations describing the dynamics of the system 

studied (survival, density dependence, etc. for population dynamics) and reflects the 

dependence of the different hidden states at a given time on the hidden states at another 

earlier time conditionally on the transition parameters ߠଵ and a stochastic component ߝ௧. 

The second equation is called the observation equation: 

 

ሺ4.2ሻ ݕ௧ ൌ ,ሺܺ௧ܩ ,ଶߠ ߱௧ሻ 

 

where the function G describes the link between the observed datasets ݕ௧ and the hidden 

states ܺ௧  conditionally on the observation model parameters ߠଶ  and the stochastic 

component of the observation models ߱௧. The Bayesian statistical inference calculates the 

joint posterior probability density functions (pdf) of all the model parameters ߠ ൌ ሺߠଵ,  ଶሻߠ

and the hidden states series ܺ conditionally on the observations series ݕ.   

 

ሺ4.3ሻ ሺߠ, ܺ|ݕሻ ן ሻߠሺ · ሻߠ|ሺܺ · ,|ܺݕሺ  ሻߠ

 

A basic state space model is described in Figure 4.1.  
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Figure 4.1: Graphical representation of a simple state-space model. The dashed orange frame represents the 

process model. The dashed blue frame represents the observation models ܺ௧ is a vector of hidden states 

during year t. The transition from ܺ௧  to ܺ௧ାଵ is conditioned by the parameters ߠଵ and forms the process 

equation. ݕ௧ is a vector of observations of one or several hidden states during year t. These observations are 

conditioned by ߠଶ, the vector of parameters of the different observation models. The relation between ܺ௧ and 

 .௧ corresponds to the observation equationݕ

 

In this study, I examined a large Atlantic salmon population located in the Foyle catchment 

(Ireland). This population has been exploited for several centuries and particularly during 

the 20th century. This study focused on the period from 1959 to present for which most 

monitoring data is available from the Loughs Agency (formerly the Foyle Fisheries 

Comission). The Loughs Agency is responsible for the management of the salmon 

population. The aim of the agency is “to manage [the] fisheries towards maximum 

sustainable exploitation for commercial and recreational purposes” (Loughs Agency, 

2005). In order to do so, it is important to understand the regulatory mechanisms occurring 

in the population in order to (i) estimate the number of fish returning to river prior to 

homewater exploitation, i.e. pre-fishery abundances (PFAs), and (ii) to derive standard 

reference points (ICES, 1993) for assessing the population status with regards to its 

sustainable exploitation. 

 

To this end, a state-space model is implemented within a Bayesian framework. A life stage 

and spatially structured dynamic model describes the lifecycle of the main components of 

Atlantic salmon in the Foyle catchment. Several empirical datasets related to the 

abundances of the stages at different scales of space and time, over a period of 50 years are 

ܺ௧ ܺ௧ାଵ ܺ௧ିଵ

௧ିଵݕ  ௧ାଵݕ ௧ݕ

 ଵߠ

For t in 1,...,n 

 ଶߠ
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brought together. Observations and process errors are taken into account ultimately 

allowing PFAs to be estimated. A retrospective analysis is also carried out providing 

insights on the historical status of the population and its exploitation. 

 

4.2. Material and methods 

4.2.1 Data 

The different datasets available provide information on the salmon population abundance 

at different stages during its lifecycle. Freshwater juvenile abundances are quantified by 

means of an index of abundance of young of the year (0+) fish. Information on the 

abundance of adults returning from the sea is obtained through the various fisheries 

occurring in the sea lough (drift net fisheries) and at the mouth of large rivers in the Foyle 

system (draft nets fisheries). The abundance of adults returning to the spawning grounds is 

assessed using fish counters and redd (spawning nests) counts. 

 

4.2.1.1 Geographical structure  

The catchment was divided in five geographical units (“geo units”) (Figure 1.2) to take in 

account the spatial structure of the population while coping with constraints imposed by 

the structure of the data collection scheme. Four geo units correspond to the wetted area 

above fish counter structures and are named after the main stream which flows through 

them (Faughan, Finn, Mourne and Roe). The last geo unit, named “Foyle” is composed of 

the wetted area of the remaining parts of the Foyle catchment but excluding the Culdaff 

River and the area north of the Faughan geo unit (Figure 4.2). These two areas do not hold 

any significant population of salmon. 
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4.2.1.1 Commercial fisheries data 

Various commercial fisheries were conducted in the Foyle catchment between 1959 and 

2008. The two main types of gears used were drift nets, which are gill nets deployed close 

to the surface in the sea lough and up to 12 miles out from the North coast and draft nets, 

which are seine nets deployed in the main river Foyle and the river Roe. Each year, up to 

139 drift net licences were issued and split in three categories, 1) sea licences, allowing to 

fish exclusively in the open sea within a 12 miles range of the mouth of lough Foyle, 2) 

lough licences, allowing fishing exclusively in the sea lough and 3) sea and lough licences 

allowing to fish in both sea and lough. The drift and draft nets fishing season extended 

from the 1st of May to the 31st of August in 1959 and was consistently reduced over years 

to a fishing season extending from the 15th June to the 31st August in 2008. One 

supplementary licence was also issued to use fixed engines annually in the lough.  

 

In addition, the Foyle Fisheries Commission (now the Loughs Agency) had its own draft 

nets fisheries in the main River Foyle and the river Roe (Foyle Fisheries: Culmore, Prehen, 

Roe and Rosses bay, Table 4.1). The Foyle Fisheries Commission also ran a stake netting 

fishery which were similar to fixed engine but were temporary. Time-series and location of 

these fisheries are described in Table 4.1 and Figure 4.2 and 4.3 

 
Table 4.1: Summary of the commercial fisheries catch in Lough Foyle and how the 5 geo units are affected 

by them.  

Model 

notation 
Data source 

Length of the 

time-series 
Geo units affected 

௧,௧௧ܥ
ௗ,௦  Drift nets (sea only) 1959 to 2006 

All geo units 
௧,௧௧ܥ

ௗ,௦ା Drift nets (sea + lough) 1959 to 2006 

௧,௧௧ܥ
ௗ,  Drift nets (lough only) 1959 to 2008 

௧,௧௧ܥ
  Fixed engines 1963 to 1990 

௧,௧௧ܥ
ி௬,௨ 

Draft nets (Foyle, Faughan) 1959 to 2008 Faughan, Finn, 

Mourne and Foyle Foyle Fisheries (Rosses bay) 1959 to 1980 

௧,௧௧ܥ
ி௬,௩  

Foyle Fisheries (Culmore) 1959 to 1988 Finn, Mourne 

 and Foyle Foyle Fisheries (Prehen) 1959 to 1970 

௧ܥ
ோ 

Draft nets (Roe) 1959 to 2004 
Roe only 

Foyle Fisheries (Roe) 1959 to 1972 
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Figure 4.3: Detailed time series of the different fisheries occurring in the Foyle catchment. 
 

4.2.1.2 Fish counter data 

Resistivity counters (Fewings, 1994) provided data on the number of adult salmon 

returning from the sea to the Foyle catchment from 2001 to 2006. They are located at the 

downstream end of four main branches of the the Foyle system, i.e. the Faughan, the Finn, 

the Mourne and the Roe in order to determine the number of adult salmon migrating into 

these geo units (Figure 4.2). Three counters (on the Faughan, Finn and Roe) effectively 

count all fish passing the counters locations, thus allowing total fish counts. The Mourne 

counter only offers partial counts. All counters detect upstream and downstream 

movements of any fish with a body length greater than 45 cm. This detection threshold is 

lower than the minimum size of a returning adult salmon in the Foyle system. Given the 

location of the counters and their size threshold for detection, the number of fish other than 

salmon that might be included in the counts is considered negligible relative to the number 

of salmon. Subtracting total downstream movements from total upstream movements 

provides the total number of salmon which returned in a geo unit for a given year. 
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4.2.1.3 Redd counts  

From 1959 to present, the Loughs Agency has annually counted redds during and 

immediately following the spawning period in approximately 260 zones which correspond 

to 14 main rivers and tributaries within the catchment. Depending on the year, up to 33% 

of the total wetted area of a geographical unit was walked to count redds. Despite the fact 

that the accuracy of counting is dependent of environmental conditions (e.g. when high 

flow, the poor visibility reduces the reliability of the counting) it is a valuable and widely 

used method for long-term salmonids population monitoring (Elson and Tuomi, 1975; 

Isaak et al., 2003). In 1997, weather conditions did not allow redd counting in the Faughan 

and the Roe. 

 

4.2.1.4 0+ Juvenile index of abundance 

Following the technique described by Crozier and Kennedy (1994), the Loughs Agency 

field staff have been collecting 0+ juvenile index of abundance every year since 1998. The 

index is the number of 0+ juvenile salmon caught during a 5 minutes electrofishing 

sampling at a given site. Between 77 and 476 sites were sampled every year between July 

and September, covering the whole catchment. The quality of the habitat for 0+ juveniles 

was evaluated as good or poor following the DANI’s recommendations (see Table 2.1). 

The total wetted area of nursery habitat wetted W୧ measured in m2 of good nursery habitat 

equivalent is calculated for each geo unit as ܹ ൌ  ܹ
ீଵ  ܹ

ீଶ ⁄ߩ , where ܹ
ீଵ and ܹ

ீଶ 

are the wetted areas of good and poor habitat available in each geo unit (Table 4.2) and 

1 ⁄ߩ  is the ratio between average 0+ densities in good habitats and average densities in 

poor habitats (see chapter 2, section 2.2.2). 

 
Table 4.2: Wetted areas of good and poor nursery habitat available in each geo unit ( ܹ

ீଵ and ܹ
ீଶ), the 

total wetted area of nursery habitat available ( ܹ
௧௧) and the total nursery habitat wetted area in good 

nursery habitat equivalent ( ܹ). 

Geo unit ܹ
ீଵሺmଶሻ ܹ

ீଶሺmଶሻ ܹ
௧௧ሺmଶሻ ܹሺmଶሻ 

Faughan 266992 158793 425785 343778 

Finn 1157446 174863 1332309 1242003 

Mourne  3613113 1188973 4802086 4188052 

Roe 342450 595285 937735 630305 

Foyle 313346 564840 878186 586479 
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4.2.2 Modelling 

The approach proposed by Craigmile et al. (2009) for building complex models was 

followed. Thus, the different observation models were developed first and their model fit 

assessed independently. The first versions of the dynamic model were adjusted using point 

estimators of the hidden states (i.e. ignoring the observation error). The observation models 

were then added one after another to a basic dynamic model and the model fit was assessed 

every time something new was incorporated (adding a new observation process or making 

changes in the dynamic model).  

 

Assumptions about the processes linking the different life stages are described in section 

4.2.2.1 in order to present the modelling of the salmon lifecycle. Observation models are 

described in the second section. They were linked either directly to the dynamic model 

(e.g. counters data, redds data) or, if the structure of the model is too complex (e.g. 0+ 

juvenile densities), the likelihoods contribution of these models are calculated 

independently from the dynamic model and then approximated and integrated using the 

pseudo-observations technique (Mäntyniemi, 2005; Michielsens et al., 2008). 

 

4.2.2.1 Exploitation and populations dynamics model 

a. 0+ juvenile to adult survival 

The returning adult abundance prior to homewater fisheries (pre-fishery abundance) ܲܣܨ௧, 

is assumed to follow a log-normal distribution, with mean ߤ௧,
ி and variance ߪி. 

 

ሺ4.4ሻ ݃ܮ൫ܲܣܨ௧,൯ ൌ ௧,ߤ
ி  ,ሺ0݈ܽ݉ݎܰ~௧,ߝ ௧, andߝ  ிሻߪ

 

Where  

 

ሺ4.5ሻ ߤ௧,
ி ൌ ൫݃ܮ · ௧ିଷ,ܬ  ሺ1 െ ሻ · ௧ିସ,൯ܬ  ௧,ݏ൫݃ܮ

 ൯ 

 

௧,ߤ
ி  is the average ݃ܮሺܲܣܨሻ for each geo unit each year, it depends on the juvenile 

abundances three and four years earlier. Juveniles ܬ௧,  are assumed to complete their 

lifecycle and return as adults mainly in 3 or 4 years. The proportions of juveniles returning 

as adults after 3 or 4 years are  and 1 െ   respectively. Based on status reports from the
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Loughs Agency (1953 to 1963) this assumption takes into account more than 95% of the 

possible life histories occurring in the Foyle catchment. ݏ௧,
  is the mean survival from 0+ 

juveniles to returning adults for the year t and the geo unit i. ߝ௧,  is the residual effect 

( ௧,ߝ ൌ ௧,ܣܨܲ  െ ௧,ߤ
ிሻ  and accounts for additional variations that are not explicitly 

described in the 0+ juveniles to returning adults survival model. 

 

௧,ݏ
  is the result of combined annual variations which are common to salmon from all geo 

units (this reflects the assumption that salmon from each geo unit of the Foyle catchment 

spend their time at sea in the same areas, ) and geo unit variations (during the freshwater 

life stages, from 0+ juveniles to smolts) which are common to all years. The survival is not 

bounded between 0 and 1 to reflect the fact that some fish from other geo units can return 

in another geo unit than the one they were originating from. This means that theoretically 

(if all the juveniles of a geo units returns as adults in the geo units they originate from and 

if some adults originating from other geo units return in this geo units) the “survival” ݏ௧,
  

can be higher than 1. 

 

ሺ4.6ሻ ݃ܮ൫ݏ௧,
 ൯ ൌ ௧ߛ   ߥ

 

  accounts for the variation across geo units. It follows a normal distribution centered on 0ߥ

with a variance ߪఔ ௧ߛ .  is the average across geo unit annual survival effect. The ߛ௧  are 

autocorrelated in order to reflect the environmental changes leading to variation are likely 

to be dependent on the environmental conditions of the previous year. They are assumed to 

vary according to a normal distribution centered on ߛ௧ିଵ with a random residual variation 

 .௧ (Box et al., 1996; Chatfield, 1996)ߟ

 

ሺ4.7ሻ  ߛଵ|ߛ, ,ߛሺ݈ܽ݉ݎܰ~ఊߪ   ఊሻߪ

 

And for ݐ  1 

 

ሺ4.8ሻ  ߛ௧ ൌ ௧ିଵߛ  ,ሺ0݈ܽ݉ݎܰ~ఊߪ|௧ߟ  ௧ and ሺ4.9ሻߟ  ఊሻߪ

 

b. Commercial fisheries 

The adults escaping from the commercial fisheries are calculated by subtracting the 

number of fish caught by commercial fisheries ܥ௧,
 from the ܲܣܨ௧, 
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ሺ4.10ሻ ܣ௧, ൌ ௧,ܣܨܲ െ ௧,ܥ
  

 

All the fisheries do not affect geo units in the same way and the fisheries capture are 

dependent on where fisheries are operating (Figure 4.2 and Table 4.1). 

 

ሺ4.11ܽሻ  ܥ௧,ଵ
 ൌ ௧,ଵܥ

௦  ௧,ଵܥ
ி௬,௨   for the Faughan unit 

ሺ4.11ܾሻ  ܥ௧,ଶ
 ൌ ௧,ଶܥ

௦  ௧,ଶܥ
ி௬,௨  ௧,ଵܥ

ி௬,௩ for the Finn unit 

ሺ4.11ܿሻ  ܥ௧,ଷ
 ൌ ௧,ଷܥ

௦  ௧,ଷܥ
ி௬,௨  ௧,ଶܥ

ி௬,௩ for the Mourne unit 

ሺ4.11݀ሻ  ܥ௧,ସ
 ൌ ௧,ସܥ

௦  ௧ܥ
ோ   for the Roe unit 

ሺ4.11݁ሻ  ܥ௧,ହ
 ൌ ௧,ହܥ

௦  ௧,ସܥ
ி௬,௨  ௧,ଷܥ

ி௬,௩ for the Foyle unit 

 

The different types of fisheries only provide data on total catches cumulated over the 

various geo units concerned. Therefore, it is assumed that all geo units affected by one 

specific fishery will have the same exploitation rate as the other geo units affected by this 

fishery. Since the geo unit origin of the adult salmon caught by the various fisheries is not 

available, this is the most parsimonious choice. In other words, catches for one geo unit are 

calculated proportionally to the abundance before the Foyle fisheries exploitation ܲܣܨ௧, 

(e.g. for the Finn: ܥ௧,
ி௬,௩ ൌ ி,మ

ி,మାி,యାி,ఱ
· ௧,௧௧ܥ

ி௬,௩).  

 

Licence holders who can fish outside of the lough can catch salmon originating from rivers 

outside of the Foyle catchment (Ensing and Crozier, 2008). ܥ௧,௧௧
௦  corresponds to the total 

number of fish caught by drift nets and fixed engines every year. The drift nets sea only 

licence holders have an unknown probability ଵ
ி of capturing adult salmon from the Foyle 

system. The probability of catching a fish from rivers of the Foyle catchment for the drift 

nets sea and lough licence holder ଶ
ி is assumed to be higher than the probability of sea 

only licence holder ଵ
ி since they spend on average less time fishing outside of the lough. 

Finally, it was assumed that all fish caught by lough-only licence holders originated from 

the Foyle catchment. 

 

௧,௧௧ܥ (4.12)
௦ ൌ ଵ

ி · ௧,௧௧ܥ
ௗ,௦  ଶ

ி · ௧,௧௧ܥ
ௗା  ௧,௧௧ܥ

ௗ,  ௧,௧௧ܥ
  

 

c. Spawner abundances and density dependence 
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Spawner abundances ܵ௧,are calculated by subtracting the rod catches ܥ௧,
ௗ from the adult 

abundances 

ሺ4.13ሻ  ܵ௧, ൌ ௧,ܣ െ ௧,ܥ
ௗ 

 

Spawners are related to the 0+ juvenile densities of the following year with a Beverton and 

Holt density dependence relationship (Beverton and Holt,1957). This density dependence 

relationship was retained following Walters and Martell (2004) recommendation to use it 

for salmonid juveniles. 

  

The 0+ juvenile densities ݀௧ାଵ,
ఓ  are assumed to follow a Log Normal distribution with 

mean and standard deviation parameters ߤ
ௗ and ߪௗ respectively. 

 

ሺ4.14ሻ  ݀௧ାଵ,
ఓ หߤ

ௗ, ߤ൫݈ܽ݉ݎܰ݃ܮ~ௗߪ
ௗ,  ௗ൯ߪ

Where 

ሺ4.15ሻ ߤ
ௗ ൌ ݃ܮ ቆ

ܵ௧,
௦

ௗߙ  ߚ
ௗ · ܵ௧,

௦ቇ 

and 

ሺ4.16ሻ  ܵ௧,
௦ ൌ ܵ௧, ܹ⁄  

 

ܵ௧.
௦ is the number of spawners per square meter of good nursery habitat equivalent (Table 

4.2). ܹ  is the total nursery habitat wetted area in good nursery habitat equivalent 

calculated for each geo unit (see section 4.2.1.4). ߙௗ is inversely related to the slope of the 

Beverton and Holt relationship close to the origin ܽௗ and is assumed to be the same for all 

geo units: ߙௗ ൌ 1 ܽௗ⁄ . Alternative hypothesis of considering geo unit specific ܽௗ  was 

tested but did not show any significant differences between geo units, therefore the 

parsimonious choice of a single ܽௗ  for all geo units was retained. ܽௗ  is the average 

maximum number of 0+ juveniles that one spawner can produce. ߚ
ௗ is inversely related to 

the average maximum 0+ juvenile density ݀
௫ for each geographical unit: ߚ

ௗ ൌ 1 ݀
௫⁄ . 

The ݀
௫ are assumed to be drawn from a log-normal distribution with common mean and 

standard deviation parametersߤௗ௫ and ߪௗ௫ respectively. 

 

ሺ4.17ሻ  ݀
௫|ߤௗ௫, ,ௗ௫ߤሺ݈ܽ݉ݎܰ݃ܮ~ௗ௫ߪ  ௗ௫ሻߪ
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 0+ juvenile abundances for each unit ܬ௧ାଵ, are then calculated from the density estimates 

and the total wetted area in good nursery habitat equivalent. 

 

௧ାଵ,ܬ (4.18) ൌ ݀௧ାଵ,
ఓ · ܹ 

 

4.2.2.2 Observation models 

a. Adult observations 

For the Faughan, the Finn and the Roe, counters are assumed to count all salmon 

movements and therefore provide exact adult abundances. For the Mourne unit the 

proportion of salmon counted ே is unknown and potentially variable according to the 

year. The fish counted by the counter on the Mourne are assumed to follow a Log normal 

distribution whose mean parameter is the Log of a mean proportion of the adult escaping 

from the fisheries. 

 

ሺ4.19ሻ  ௧ܰ,ଷ
 หߤ௧,ଷ

ே , ௧,ଷߤ൫݈ܽ݉ݎܰ݃ܮ~ேߪ
ே , ௧,ଷߤ  ே൯ and ሺ4.20ሻߪ

ே ൌ ே൫݃ܮ ·  ௧,ଷ൯ܣ

 

b. Spawner observations 

The same model as the one described in chapter 3 was used to relate salmon spawners to 

redd counts. However, two modifications were made in order to include redd counts from 

the Mourne and Foyle units. Redd counts are assumed to be related to the spawner 

abundance through a Poisson distribution as follow:  

 

ሺ4.21ሻ  ܴ௧,หߣ௧,
ோ ௧,ߣ൫݊ݏݏ݅ܲ~

ோ ൯ 

ሺ4.22ሻ  ߣ௧,
ோ ൌ ܵ௧, · ௧ܲ,

ோ ·  ௧,ߢ

 

 ௧, is the yearly average number of redds counted per spawner. It is assumed in this modelߢ

that all ߢ௧, are drawn from the same pdf as early trials for differences across geo units did 

not reveal any significant geo unit effect. 

 

ሺ4.23ሻ  ߢ௧,|ߙ, ,ߙሺܽ݉݉ܽܩ~ߚ  ሻߚ

ሺ4.24ሻ  ߙ ൌ ߤ ·    ߚ
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Where ߤ is the mean value of  ߢ௧,. ௧ܲ,
ோ  is the proportion of the wetted area surveyed for 

redd counting. The logit of ௧ܲ,
ோ  is assumed to follow a Normal distribution: 

 

ሺ4.25ሻ  ݐ݅݃ܮ൫ ௧ܲ,
ோ ൯หߤ

, ߤሺ݈ܽ݉ݎܰ~ߪ
,  ሻߪ

 

Where ߤ
 is the average (logit) proportion of the total wetted area. Following early trials of 

the models it was chosen to arrange geo units into two groups, the first one composed of 

the Faughan and the Roe units (ߤଵ
 ൌ ସߤ

) and the second one composed of the Finn, the 

Mourne and the Foyle units (ߤଶ
 ൌ ଷߤ

 ൌ ହߤ
 ). This distinction was made because the 

Faughan and Roe are surveyed more intensively than the other geo units. This could be due 

to their closer location to the headquarters of the Loughs Agency. 

 

c. Juvenile observations 

The posterior distributions of the average 0+ juvenile densities derived from the model 

described in chapter 2 were included in the dynamic model. The observation model 

providing the density estimates cannot be incorporated directly in the process model for 

practical reason: the time required to make inferences via MCMC methods would be too 

long. Therefore, a simplified model that allows making approximately the same inferences 

about the process model than the inference that would be made with the complex 

observation model was used. To do so, the pseudo-observations technique is implemented. 

A pseudo-observation is a numerical value which, when given the right conditional prior, 

provides a likelihood functions for a given variable Y that is similar to the posterior 

distribution of Y obtained from a complex observation model (Mäntyniemi, 2005; 

Michielsens et al., 2008). This can be achieved easily by utilising well known conjugate 

distributions (Table 2.1Table 4.3): a Normal model produces a likelihood function for the 

mean parameter that is proportional to a Normal pdf; a Poisson model yields a Gamma-

shaped likelihood function for the rate parameter; and a beta-shaped likelihood function is 

generated by a Binomial model (Gelman et al., 2004). 

 

In the dynamic model describing the life cycle of salmon in the Foyle catchment, average 

densities ݀௧ାଵ,
ఓ  are conditioned by the number of spawners ܵ௧,

  who entered the geo unit 

the precedent year, density dependence parameters Θ which are peculiar to each geo unit 

and some parameters common to all geo units and years Φ (see equations 4.4-4.25). The 

posterior distributions of ݀
ఓ  obtained from the observation model fitted Log Normal 
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distributions and conjugate Normal distributions were applied to the median of the 

associated pseudo-observation. For the sake of illustration a DAG was designed to show 

how the pseudo-observations are integrated in the dynamic model (Figure 4.4). 
Table 4.3: Overview of how different pdfs obtained from observation models can be incorporated within 

subsequent dynamic models by using conjugate pdfs and corresponding pseudo-observations. ߤ: posterior 

mean; m: posterior median; ߪଶ posterior variance; CV: posterior coefficient of variation; a: posterior lower 

bound; b: posterior higher bound. 

 

Posterior pdf for ߤ
ௗ Pseudo-observation within the life-cycle model 

݀
ఓ~݈ܰܽ݉ݎሺߤ, ൫݈݀ܽ݉ݎܰ~ߤ ଶሻߪ

ఓ,  ଶ൯ߪ

݀
ఓ~݈ܽ݉ݎܰ݃ܮሺ݉, ݈ܽ݉ݎܰ~ሺ݉ሻ݈݃ ሻܸܥ ቀlog ൫݀

ఓ൯, ଶܸܥሺ݈݃  1ሻቁ 

݀
ఓ~ܽ݉݉ܽܩሺߤ, ሻ 1ܸܥ ⁄ଶܸܥ ൫݀݊ݏݏ݅ܲ~

ఓ ሺߤ · ⁄ଶሻܸܥ ൯ 
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Figure 4.4: Directed acylic graph (DAG) representing how average 0+juvenile densities are integrated to 

the full life cycle model as pseudo-observations. ݀௧ାଵ,
ఓ,ట  and ܥ ܸ

ௗ,ట  are greyed as they are considered as 

pseudo-observed. Arrows represent the parent-child dependencies between the different nodes: single arrows 

represent probabilistic relationship between the parent(s) and child nodes, dashed arrows indicate 

deterministic relationship. The frame represents a repetition of structure over geo units (i) and years (t). See 

text for the meaning of Θi and Φ. 
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4.2.2.3 A summary: Directed Acyclic Graph (DAG) 

The dynamic model and the observation models (equations 4.4-4.25) can be brought 

together in a DAG (Figure 4.5). 

 

 

 

 
Figure 4.5 (next page): Simplified Directed Acyclic Graph (DAG) of the state-space model described in 

equations 4.1 to 4.22. Ellipses represent random variables. Squares represent fixed quantities, covariates in 

our case. All observable quantities are greyed. Arrows represent the parent-child dependencies between the 

different nodes: plain arrows represent probabilistic relationship between the parent(s) and child quantities, 

dashed arrows indicate deterministic relationship. A frame represents a repetition of structure over years or 

geo units. Quantities outside the frame are unknown parameters constant across sites. Note: (i) for the 

survival from 0+ juvenile to returning  ݐݏ,݅
ܬ , the year, geo units and residuals effects were not represented. (ii) 

௧,ܣ  are observed for the Faughan, Finn and Roe units ( ݅ ൌ ሼ1,2,4ሽ ) between2001 and 2006 ( ݐ ൌ

ሼ43, … ,48ሽ).  
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4.2.2.4 Priors 

Most of the parameters described in section 4.2.2.1 and 4.2.2.2 were given weakly 

informative priors (Gelman, in press), to reflect the lack of knowledge on these parameters 

(Table 4.4). However, for some parameters, information is available and worth 

incorporating. This was the case for the slope of the density dependence relationship ܽௗ 

and the probability of capturing fish originating from the Foyle rivers when using sea and 

sea and lough drift net fisheries. 

 

Based on the literature, I calculated a maximum value of how many juveniles could be 

produced by one spawner (ܽௗ) using the sex ratio from the Foyle catchment (Elson and 

Tuomi, 1975), fecundity of adults (Moffett et al, 2006) and survival from eggs to swim-up 

fry (Crozier and Kennedy, 1995) of Atlantic salmon from the river Bush. The Bush is a 

river geographically close to the Foyle catchment which benefits from a more detailed 

monitoring of its salmon population. The value obtained was 1843 0+ juveniles per 

spawner. As the survival between the swimup fry stage (February-March) and the moment 

the 0+ juveniles are sampled (July-August) is not taken into account, ܽௗ  was given a 

triangular distribution between 0 and 1843 with a higher probability of low values to 

reflect the belief that the higher values of this parameters are not likely to occur. 

 
Table 4.4: Summary of non-informative priors of the model.  

Parameters Distribution 

 ி ~ Uniform (0,10)ߪ

  ~ Beta (2,2)

  ~ Normal (0,0.001)ߛ

 ఊ ~ Uniform (0,10)ߪ

 ఔ ~ Uniform (0,10)ߪ

 ௗ ~ Uniform (0,10)ߪ

 ௗ௫൯ ~ Uniform (-5,5)ߤ൫݃ܮ

 ௗ௫ ~ Uniform (0,10)ߪ

 ே ~ Uniform (0,10)ߪ

ଷ
ே ~ Beta (1,1) 

  ~ Gamma (0,0.001)ߤ

  ~ Uniform (0,10)ߪ

ߤ
 ~ Beta (1,1) 

  ~ Uniform (0,10)ߪ
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Ensing and Crozier (2008) found that at least 15 % of the salmon caught by sea-only drift 

net licence fishermen originate from rivers outside of the Foyle catchment. This 

information was incorporated into the prior distribution by attributing to ଵ
  a weakly 

informative Beta distribution, rescaled to lie between 0 and 0.85 reflecting the assumption 

that extreme values (i.e. no salmon or 85% came from the Foyle system) are not likely to 

occur. In the same way we incorporated our assumption that the proportion of fish 

originating from the Foyle catchment caught by the sea and lough licence holders was 

always higher than ଵ
 by attributing to ଶ

 a non informative Beta distribution rescaled to 

lie between ଵ
 and 1. Information on the origin of salmon caught in the drift net fisheries 

was available for only one year. For that reason the parsimonious assumption that these 

probabilities were constant over the time-series was made. 

 

Equations 4.4 and 4.5 assume that the PFA of a given year is calculated conditionally on 

the juvenile production ܬ, three and four years earlier. As a consequence, the first four 

years of the model need to be initialised (no data or estimates of ܬ are available for these 

years). The juvenile production ܬ  between 1955 and 1958 (the years involved in the 

calculation of the PFAs for the four first year of the model) are calculated based on 

equations 4.14 to 4.18. The spawners ܵ௧, for these years were given weakly informative 

priors in the form of a uniform distribution covering a wide range of spawner abundances 

corresponding to posterior distributions of spawner abundances encountered in early 

versions of the state-space model presented in this chapter. These priors were little 

sensitive to the upper limit of the spawners abundance range since the shape of the 

Beverton and Holt relationship has a maximum 0+ juvenile density ceiling. 

 

4.2.3 Parameters of management interest 

Using the density dependent relationship presented above (Equation 4.15) reference points 

 and כ݄ corresponding to maximum sustainable yield (MSY) such as exploitation rate (כ )

spawner abundance ܵכ can be calculated. ܵכis the international standard for conservation 

limits chosen by the North Atlantic Salmon Conservation Organisation (NASCO) (ICES, 

1993). Schnute and Kronlund (2002) give an extensive description of how these reference 

points are obtained. When the stock-recruitment relationship is stationary over time the 

reference points are also stationary. In this study, the 0+ juvenile to returning adult survival 

is non-stationary (i.e. dynamic, varying every year) which leads to non-stationary (i.e. 

dynamic, varying every year) reference points. The reference points ݄௧,
כ  and  ܵ௧,

כ  need to be 
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re-calculated each year t and are directly related to ܽௗ, ݀
௫ and ݏ௧,

  based on Schnute and 

Kronlund (2002) calculations. 

ሺ4.26ሻ ݄௧,
כ ൌ 1 െ ඨ

1
ܽ௧,

ி 

 

where  ܽ௧,
ி ൌ ܽௗ · ൫ · ௧ାସ,ݏ

  ሺ1 െ ሻ · ௧ାହ,ݏ
 ൯ 

 

ܽ௧,
ி is the slope of the Beverton and Holt relationship recalculated to provide a spawner 

to spawner relationship, which is obtained by calculating the average number of 0+ 

juveniles surviving in each cohort (3 years or 4 years life histories).  

 

ሺ4.27ሻ ܵ௧,
כ ൌ

݄௧,
כ · ݀

௫ · ܽௗ

൫1 െ ݄௧,
כ ൯

 

 

The equations 4.26 and 4.27 provide the reference points for the cohort of adults which 

will return 4 and 5 years after the adults spawned. ݄௧,
כ  and ܵ௧,

כ  refer to the year of spawning 

corresponding to a cohort. The reference points are re-calculated to provide annual 

“reference points” ݄௧,
ᇱ  and ܵ௧,

ᇱ  for the adults returning any given year, which are the result 

of two cohorts produced from spawners 4 and 5 years earlier can be calculated. First the 

theoretical number of returning adults ܴ௧,
ᇱ  is calculated.  

 

ሺ4.28ሻ  ܴ௧,
ᇱ ൌ ቀ · ൫ܵ௧ିସ,ܪܤ

כ ൯  ሺ1 െ ሻ · ൫ܵ௧ିହ,ܪܤ
כ ൯ቁ · ௧,ݏ

 · ܹ 

 

Where ܪܤ൫ܵ௧ ,൯ ൌ ௌ,
ఈାఉ

·ௌ,
 

 

In a similar way, if both cohorts are exploited with a reference exploitation rate ݄כ the new 

“reference” capture will be: 

 

ሺ4.29ሻ  ܥ௧,
ᇱ ൌ ቀ݄௧ିସ,

כ ·  · ൫ܵ௧ିସ,ܪܤ
כ ൯  ݄௧ିହ,

כ · ሺ1 െ ሻ · ൫ܵ௧ିହ,ܪܤ
כ ൯ቁ · ௧,ݏ

 · ܹ 

 

The new reference exploitation rate ݄௧,
ᇱ  is calculated from ݄௧,

ᇱ ൌ ௧,ܥ 
ᇱ ܴ௧,

ᇱ⁄  and the new 

conservation limit ܵ௧,
ᇱ  is obtained from ܵ௧,

ᇱ ൌ ܴ௧,
ᇱ െ ௧,ܥ

ᇱ . 
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4.2.4 Inter-generation replacement ratio (IGRR) 

The IGRRs look at the ability of a given life stage cohort to replace the same life stage 

cohort that produced it. This approach is largely described by Rago (2001). More 

specifically, I look at the spawners of a given year compared to the combined cohort of 

spawners that produced them 4 and 5 years before (see Equation 4.5). To look at the 

impact of fisheries I calculate two IGRRs: the first one before exploitation (Φி) and the 

second one after exploitation (Φௌ). 

 

ሺ4.30ܽሻ  Φி ൌ
௧,ܣܨܲ

 · ܵ௧ିସ,  ሺ1 െ ሻ · ܵ௧ିହ,
 

 

ሺ4.30ܾሻ  Φௌ ൌ
ܵ௧,

 · ܵ௧ିସ,  ሺ1 െ ሻ · ܵ௧ିହ,
 

 

An IGRR equal to 1 indicates that the population is stable (i.e. one spawner produces one 

spawner). An IGGR under 1 indicates that the population is declining (i.e. one spawner 

produces less than one spawner). Finally, an IGGR higher than 1 shows that the population 

is growing (e.g. one spawner produces more than one spawner).  

 

4.2.5 Bayesian inference and posterior computation 

The joint posterior distribution of all the model unknowns (i.e. unobservable quantities and 

observables in case of missing data) was approximated using MCMC sampling (Gelman et 

al., 2003). All computations were carried out with the OpenBUGS® software (version 

3.0.3; Thomas et al., 2006; Spiegelhalter et al., 2007) and the Lattice and Coda packages 

of R (version 2.5.1, www.r-project.com). We used the Gelman-Rubin (Brooks & Gelman, 

1998) diagnostics as implemented by OpenBUGS® to test the convergence of the MCMC 

sampling on the model parameters. Three chains with contrasted starting points were used. 

The Gelman-Rubin statistic indicated good mixing of the MCMC chains was obtained after 

4·106 iterations. An additional sample of 10 000 values (4·106 iterations, but retaining 1 

iteration every 400) from a single chain was then used to approximate posterior 

distributions. In addition, the stationarity of the mean and dispersion of the MCMC chains 

was checked using OpenBUGS build-in tools.  
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4.2.6 Posterior checking 

Following the approach proposed by Gelman et al. (1996), the compatibility between the 

assumed model and the data was checked by means of posterior predictive assessment 

techniques. These techniques extend classical goodness-of-fit test in the Bayesian setting 

by averaging over the posterior distribution of unknown quantities of the model. The 

observation models were checked as they were built (see chapter 2, sections 2.2.2.2 and 

2.3.6.3; chapter 3, section 3.2.4). Following Craigmile’s approach (2009), observation 

models and changes about the process model were added progressively, checking the 

results progressively. Various checks included checking the overall coherence of the life 

stage estimates and the modelling hypothesis such as the sequential independence of the 

residuals, the independence of several series of residuals and verified that these series of 

residuals were centred on 0. 

 

4.2.7 Predictions 

PFAs for 2009 and 2010 were estimated from the constructed model. Predictions were 

made only for 2 years; this corresponds to the years for which the cohorts of 0+ juveniles 

that will produce the returning adults of the predicted year are available. The prediction of 

0+ juvenile production is very uncertain and leads to significant increase of the uncertainty 

of the estimations to a point where they cannot be used for any management purpose.  

 

4.3. Results 

4.3.1 Observation models 

4.3.1.1 Spawner observations 

Apart from the Mourne counter variance parameter ߪே  which is poorly estimated 

(coefficient of variation = 74.8%), all the other parameters of the observation model 

relating redd counts to spawner abundances are accurately estimated with coefficients of 

variation ranging from 9.6 % to 13.1% (Table 4.5). Over all the prior distributions were 

significantly updated. The probability of counting adults returning in the river at the 

Mourne unit counter is low. On average slightly more than a third of the total fish are 
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counted for this geo unit (ଷ
ே ൌ 0.344). A bit less than one redd is counted for every two 

spawners (ߤ ൌ 0.403) (Table 4.5). 

 
Table 4.5: Summary statistics of the marginal posterior distributions of the main observation model 

parameters. 

Parameters mean sd 2.5% 25% median 75% 97.5% 

 ே 0.115 0.086 0.025 0.055 0.092 0.151 0.337ߪ

ଷ
ே 0.344 0.045 0.270 0.312 0.339 0.371 0.441 

  0.403 0.029 0.349 0.383 0.402 0.422 0.465ߤ

  2.903 0.278 2.399 2.710 2.889 3.084 3.482ߪ

ଵߤ
 0.245 0.027 0.198 0.227 0.244 0.263 0.302 

ଶߤ
 0.123 0.013 0.101 0.114 0.123 0.131 0.150 

  0.536 0.043 0.458 0.506 0.533 0.564 0.625ߪ

 

4.3.1.2 Juvenile observations 

In a great majority of cases, the comparison of prior and posterior distributions of the 

average 0+ salmon densities ݀௧,
ఓ   shows a significant updating of the pseudo-likelihood 

distribution as a result of the information brought by the different datasets (other than the 

juvenile survey data) and the structure of the dynamic model (Figure 4.5). The mean of the 

marginal posterior distribution of ݀௧,
ఓ  and the probability of obtaining 0+ juvenile densities 

higher than 7 fish.m-2, which is the maximum density of wild juvenile salmonids described 

in the literature (Niemelä et al., 2005), are both considerably reduced (Figure 4.6). 
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Figure 4.6: Pseudo prior and marginal posterior distribution of the average 0+ salmon densities ݀௧,

ఓ  for a) 

the Faughan, b) the Finn, c) the Mourne, d) the Roe and e) the Foyle geo unit. Pseudo prior 2.5th and 97.5th 

percentiles ranges are represented with a dashed line and the posterior distribution with a plain line. The 

circle indicates the mean of the distribution. 

 

4.3.2 Exploitation and populations dynamic model 

4.3.2.1 Spawner to 0+ juvenile density-dependent relationship 

The parameters of the Beverton and Holt density dependent relationship are estimated with 

a variable level of certainty. The average maximum number of 0+ juveniles that one 
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spawner can produce, ܽௗ, is estimated close to the maximum range of its prior distribution 

with a CV of 10.4%. The different ݀
௫  are estimated less precisely (CVs ranging 

between 18.2% and 36.6%) and significant differences were found between geo units. Two 

of them are very low (the Finn and the Mourne), two are intermediate (the Faughan and the 

Foyle) and one is very high (the Roe). The parameters of the distribution from which the 

݀௫  is drawn: ߤௗ௫  and ߪௗ௫  are poorly estimated with CVs of 141% and 59.5% 

respectively. Finally, the variance associated to the Beverton and Holt relationship is small 

and well estimated (CV=17.7%, Table 4.6). Density dependence relationships drawn from 

the mean of the posterior distributions of the relevant parameters are represented in Figure 

4.7. The residual errors (݀௧ାଵ,
ఓ െ ߤ

ௗሻ series were evenly distributed around 0 and did not 

show any autocorrelation nor correlation between geo units. 
 

Table 4.6: Summary statistics of the marginal posterior distributions of the main dynamic model parameters. 

Parameters mean sd 2.5% 25% median 75% 97.5% 

 ி 0.165 0.045 0.072 0.136 0.165 0.195 0.253ߪ

  0.517 0.098 0.319 0.452 0.519 0.584 0.703

ଵ
  0.614 0.122 0.364 0.523 0.626 0.716 0.803 

ଶ
  0.881 0.029 0.831 0.859 0.878 0.903 0.940 

  -4.614 0.429 -5.458 -4.896 -4.613 -4.336 -3.765ߛ

 ఊ 0.340 0.060 0.234 0.298 0.337 0.377 0.472ߪ

 ଵ 0.017 0.17 -0.320 -0.097 0.017 0.129 0.355ߥ

 ଶ 1.0.14 0.149 0.727 0.912 1.015 1.113 1.311ߥ

 ଷ 0.904 0.158 0.591 0.798 0.905 1.013 1.215ߥ

 ସ -0.842 0.162 -1.144 0.954 0.850 0.734 -0.509ߥ

 ହ -1.092 0.178 -1.443 -1.212 -1.094 -0.971 -0.746ߥ

 ఔ 1.546 1.002 0.619 0.955 1.262 1.784 4.444ߪ

 ௗ 0.339 0.060 0.221 0.300 0.339 0.379 0.456ߪ

ܽௗ 1561 161.75 1196 1461 1585 1688 1801 

 ௗ௫ 5.530 7.815 0.743 2.614 3.906 5.982 19.302ߤ

݀ଵ
௫ 6.138 1.649 3.675 5.000 5.932 6.989 9.956 

݀ଶ
௫ 1.248 0.236 0.855 1.080 1.225 1.388 1.788 

݀ଷ
௫ 1.511 0.275 1.042 1.317 1.488 1.678 2.126 

݀ସ
௫ 13.385 4.144 7.094 10.340 12.705 15.740 23.330 

݀ହ
௫ 7.192 2.614 3.583 5.361 6.704 8.498 13.570 

 ௗ௫ 1.608 0.957 0.644 1.012 1.338 1.882 4.188ߪ
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Figure 4.7: Density dependence relationship between spawners (fish.m-2) and 0+ juvenile densities for each 

geographical unit represented with means of the posterior distribution of the parameters concerned. Plain 

dots represent year for which electric fishing data are available, empty dots represent years without electric 

fishing data represented with means of the posterior distribution of the unknown values. 

 

4.3.2.2 0+ juvenile to returning adult survival 

The year effects are well estimated with standard deviations of the marginal posterior 

distributions ranging between 0.149 and 0.258. The smaller standard deviations are found 

during the 6 years when all datasets were available (fisheries catches, adults counts, redd 

counts and juvenile index of abundance). Year effects for the 2 predicted years (2009 and 

2010) show an increased standard deviation (0.429 and 0.555 respectively). Figure 4.8a 

helps to visualise how (log) survival evolves over the time-series. Survival from 0+ 

juveniles to returning adults reached a peak in the middle of the 1960’s which was 

followed by a steep decline until the middle of the 1970’s. After a slight recovery until the 

beginning of the 1980’s, the survival has been slowly decreasing, reaching an historic 

minimum in 1999.  
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The geo unit effects ߥ  on the 0+ juvenile to returning adult survival are significantly 

different (Figure 4.8b). This, leads to higher 0+ juvenile to returning adult survival in the 

Finn and the Mourne units, lower 0+ juvenile to returning adult survival in the Roe and the 

Foyle units and intermediate survival in the Faughan unit. 

 
Figure 4.8: Marginal posterior distribution of a) year effect ߟ௧, white boxplot indicate years depending of the 

initialisations parameters, light blue boxplots correspond to the period 1963 to 2008, yellow boxplots 

correspond to predictions for years coming and b) geo unit effect ߥ, letters above boxplots indicate groups 

significantly different one to another. The line in the middle of the boxes indicates the median, the box 

indicates the 25th and 75th percentiles and the whiskers indicate the 2.5th and 97.5th percentiles. 

 

Based on the year and geo unit effects, yearly 0+ juvenile to returning adult survival ݏ௧,
  is 

calculated and represented with the residual effect ߝ௧, (Equation 4.4 and 4.6, Figure 

4.9Figure 4.8). The residuals series ߝ௧, do not show any (1st order) autocorrelation within 

geo units and are correlated among geo units. All geo units have the same pattern across 

the time-series which is governed by the year effect η୲. The differences in 0+ juvenile to 

returning adult survival across geo units reflect the geo unit effects (Figure 4.9).  

 

The proportion of 0+ juveniles completing their full life-cycle in 3 or 4 years are 

reasonably well estimated (CV=19%). They are approximately equal: 0.517 for   and 

0.483 for ሺ1 െ  .ሻ
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Figure 4.9: 0+ juvenile to returning adult survival ݏ௧,

  time-series with the associated residual effect ߝ௧, for 

each geographical unit of the Foyle catchment. The line in the middle of the boxes indicates the median, the 

box indicates the 25th and 75th percentiles and the whiskers indicate the 2.5th and 97.5th percentiles. 

 

4.3.2.3 Pre Fishery abundances (PFAs) 

PFAs are estimated between 1959 and 2010. The estimations for 2009 and 2010 are 

predictions. The PFAs are fairly well estimated between 1959 and 2008 with CVs ranging 

between 5.5% and 38.6%. When all datasets are available for a given year, the estimations 

noticeably improve (Figure 4.10). PFAs predictions for 2009 and 2010 are much more 

uncertain with CVs of 48.7 % and 65.6% respectively. 

 

The trend found in the PFAs estimates is similar to the one found for the 0+ juvenile to 

returning adult survival. There is a peak of abundance in the middle of the 1960’s with 
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adult abundances (mean of marginal posterior distribution) around the 400 000 fish mark 

during four years. Following this peak, there is a steep decline up to the middle of the 

1970’s when abundances are estimated around the 100 000 fish mark. Since then, there is a 

slight decreasing trend leading to the lowest abundance in 1999 (just a bit more than 50 

000 returning adults).  

 
Figure 4.10: Total PFA for the Foyle catchment. The dashed line corresponds to the average PFA over the 

time-series. White boxplot indicate years depending of the initialisations parameters, light blue boxplots 

correspond to the period 1963 to 2008, yellow boxplots correspond to predictions for years coming. The line 

in the middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. 

 

4.3.2.4 Exploitation rates and conservation limits 

The total commercial fisheries exploitation rates (including angling catches) in the 5 geo 

units are quite variable across the time-series. Means of the marginal posterior distribution 

of h range from 0.066 to 0.712 (Figure 4.11Figure 4.11). All geo units display the same 

pattern of exploitation rates across the time-series except for the Roe which lacks the peak 

of exploitation rates at the beginning of the 1970’s. Overall the Roe unit has lower 

exploitation rates which could be explained by its location (Figure 4.2): salmon returning 
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to the Roe geo units do not have to go through the lough, “avoiding” in this way many drift 

nets. For all geo units, the exploitation rates decline steeply during the last 8 years of the 

time series. This occurs after a peak of exploitation at the turn of the century. 

 

References points ݄ᇱ (equation 4.28 and 4.29) can be very variable across geo units. In the 

Finn and the Mourne units, ݄ᇱ are very high, ranging between 0.734 and 0.882 (marginal 

posterior distribution mean) over the whole time series. The Faughan geo unit also has a 

high ݄ᇱ but shows much more variation in the time series with ݄ᇱ ranging from 0.561 to 

0.816. The last two geo units have significantly lower ݄ᇱ than the other geo units, ݄ᇱ in 

these geo units ranging between 0.238 and 0.717. Overall, there is a more or less 

pronounced declining trend for the ݄ᇱ in all geo units. 

 

The probability of exploiting the population at a higher exploitation rate than ݄ᇱ ( ௧,
 ൌ

ܲ൫݄௧,  ݄௧,
ᇱ ൯ ) is represented at Figure 4.11. The Finn and the Mourne units have ௧,

  

equal to 0 in most of the years except in 1999 when this probability rises around 0.3 . The 

Faughan unit presents the same pattern but between 1998 and 2001 the population was 

most probably exploited above ݄ᇱ (௧,
  0.8). In the Roe unit, higher ௧,

  becomes more 

frequent especially in the second half of the time-series. Finally, in the Foyle unit, high ௧,
  

occur more frequently and during the whole time-series. 

 

The number of spawners (ܵ) reaches its maximum in each geo unit during the mid 1960’s 

and follows a steep decrease until the mid 1970’s. Then the number of spawner is fairly 

constant until the end of the 1990’s. The reduced number of spawners can be associated 

with the high levels of exploitation observed during this period. Following this period, 

there is an increase in the observed number of spawners especially during the last two 

years (2006 and 2007, Figure 4.12).  

 

The conservation limits ܵᇱ  decrease steadily between 1964 and 2009 by about 50% on 

average: 5200 spawners in 1964 to 2300 spawners in 2009 for the Faughan unit; 8500 

spawners in 1964 to 4700 spawners in 2009 for the Finn unit; 31500 spawners in 1964 to 

17500 spawners in 2009 for the Mourne unit; 9000 spawners in 1964 to 5000 spawners in 

2009 for the Roe unit; 6300 spawners in 1964 to 3500 spawners in 2009 for the Foyle unit.  

 

The patterns observed in the probability of having a number of spawners smaller than the 

conservation limit ܵᇱ  ( p୲,୧
ୗ ൌ  ܲ൫ܵ௧,  ܵ௧,

ᇱ ൯) are very different across geo units (Figure 
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4.13). The Finn and the Mourne units have very low probability (൏ 0.2 on average) of not 

reaching their conservation limits during most of the time series. However, this probability 

increases in the mid 1970’s and at the end of the 1990’s. The Faughan and the Roe units 

have higher chances to be under the conservation limits (௧,
ௌ  around 0.4 on average). 

Finally, in the Foyle unit it is very unlikely that the conservation limit has been reached 

during most of the years considered. During the last years of the time series, the 

probabilityp୲,୧
ୗ  decreases and is under 0.4 in all geo units except for the Foyle unit. 
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Figure 4.11: Marginal posterior distribution of the exploitation rates ݄௧, for the different geo units. The line 

in the middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the 

whiskers indicate the 2.5th and 97.5th percentiles. Plain and dashed red line indicate the median,2.5th and 

97.5th percentiles of the marginal posterior distribution of the reference exploitation rate ݄௧,
ᇱ . Red dots 

indicate the probability of exploiting the population at a higher exploitation rate than the reference 

exploitation rate ݄ᇱ (௧,
 ). 
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Figure 4.12: Marginal posterior distribution of the spawners ܵ௧, for the different geo units. The line in the 

middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the whiskers 

indicate the 2.5th and 97.5th percentiles. Plain and dashed red line indicate the median, 2.5th and 97.5th 

percentiles of the marginal posterior distribution of the conservation limit ܵ௧,
ᇱ . 
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Figure 4.13: Evolution between 1964 and 2008 of the probability that the number of spawners returning in 

each geo unit of the Foyle catchment is not sufficient to reach their conservation limit ܵ
ᇱ (௧,

ௌ ). Dashed lines 

indicate the average ௧,
ௌ . 

 

4.3.2.5 Inter-generation replacement rate (IGRR) 

The inter-generation replacement rates (IGRRs) are calculated before and after exploitation 

(Φி and Φௌ, Equations 4.30a and 4.30b). IGGRs are only calculated between 1963 and 

2008 because for the first four years of the time series (1959 to 1962) there are no 

information about the cohorts which produced the spawners of these years (Figure 4.14 and 

Figure 4.15). For a convenient reading, the IGGRs are expressed in a logarithmic scale. 

Positives values indicate an IGRR higher than 1 and negative values indicate IGGRs 

smaller than 1. 
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Figure 4.14: Marginal posterior distribution of the pre fishery IGRR in log scale (݃ܮሺߔிሻ). The line in 

the middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the whiskers 

indicate the 2.5th and 97.5th percentiles. 
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Figure 4.15: Marginal posterior distribution of the post fishery IGRR in log scale (݃ܮሺߔௌሻ). The line in the 

middle of the boxes indicates the median, the box indicates the 25th and 75th percentiles and the whiskers 

indicate the 2.5th and 97.5th percentiles. Bottom right panel shows the averaged probability that the IGRR 

value will be higher than 1 for all geo units considered together (ܲ൫൫∑ ௧,ߔ
ௌହ

ୀଵ ൯ ݅⁄  1൯).  
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exploitation (Φௌ, Figure 4.15) show very different results compared with Φி  values. 

IGRRs lower than 1 are quite frequent and the average probability across geo units of 

obtaining an IGRR higher than 1 (ܲሺΦௌ  1ሻ) is under 50% in more than half of the years 

of the time-series (Figure 4.15, bottom right panel). In most of these cases the mean value 

of Φௌ is just under 1. On two occasions, the Φௌ are significantly under 1 for a extended 

period of time for all geo units. This occurs the first time between 1967 and 1973 when the 

mean of the marginal posterior distribution of Φௌ fluctuates between 0.21 and 0.94. Then, 

between 1998 and 2001 it fluctuates between 0.18 and 0.93 . The first period with Φௌ 

values smaller than 1 occur after a period of very high abundances (Figure 4.10) the second 

period of low Φௌ occurs when adult abundances are much lower. Finally, during most of 

the last years (2002 to 2008), Φௌ has been higher than 1. 

 

4.4. Discussion 

The state-space model proposed here mimics the lifecycle of Atlantic salmon in the Foyle 

catchment and provides abundance estimates of three life stages (0+ juveniles, returning 

adults/PFAs, spawners). The full Bayesian framework allows having direct access to the 

uncertainties of all the unknown variables of the model. This model allows most of the 

information available on this population across several and heterogeneous datasets and 

different spatial and temporal scales to be summarized. Similar work has been recently 

carried out (Rivot et al., 2004; Michielsens et al., 2008) however this study is the first one 

providing such a long time-series and allows a retrospective on the history of the 

population and its fishery. In addition, in comparison to other studies in which data were 

collected for a “scientific” purpose, all the datasets used in this study are collected by a 

government agency which is principally interested in the management of salmon 

population. This study and the associated modelling exercise allow a critical review of the 

value of the information contained in the various datasets used.  

 

4.4.1 Modeling or dealing with limitations and constraints 

A model is always a functional and simplified version of what is happening in the real 

world; it allows both incorporating the knowledge available and testing hypotheses of 

interest for the modeler. In addition the model allows bringing different datasets together in 

order to evaluate the status of a population and how it has or will change. For exploited 

populations the output of the model can also be advice on the management strategies 
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(Roqueplo, 1997; Bernier et al., 2000). The modelling exercise is very much dependent on 

the data available, since in order to validate or not a model or not its outputs have to be 

compared to some observed data (Hiborn and Mangel, 1997). As a consequence, the data 

available will constrain the range of possible hypotheses to test. 

 

4.4.1.1 Transition parameters 

The first transition between life stages that is looked at is the one linking the 0+ juveniles 

to the returning adults. Due to the lack of data concerning the various life histories of the 

salmon in the Foyle catchment, all the possible life histories where not explicitly 

represented in the model. Instead, it was assumed that the returning adults resulted from 

two different cohorts of 0+ juveniles, 3 or 4 years earlier in a unknown proportion . 

Limiting the provenance of adults to only 2 cohorts was based on the data available from 

status reports indicating that fish caught between 1953 and 1966 were predominantly 3 

years old grilse (>90% of total fish sampled, (Foyle Fisheries, 1953, 1955, 1956, 1958, 

1959, 1962, 1963, 1966). In addition, in 2001, 100 fish from the drift net fisheries were 

aged and 55% of them were 3 years old grilse and 29% were 4 years old fish (grilse and 2 

sea winter fish). Both cohorts of juveniles are estimated to be on average equally 

contributing to a cohort of returning adults ( ൌ 0.517, Table 4.6). Any (year × geo unit) 

variation in the life histories will then be captured by all the other effects introduced in the 

link of 0+ juveniles to returning adults (i.e. year, geo unit and residual effects).  

 

The survival from the 0+ juvenile stage to the returning adult stage is estimated for each 

cohort of adults taking in account annual and spatial sources of variability (Equation 4.6, 

Figure 4.8). Across geo units, the survival reaches a peak in the mid 1960’s and is followed 

by a steep decline until the middle of the 1970’s. After a slight recovery until the beginning 

of the 1980’s, the survival has been slowly decreasing (Figure 4.9). Since this is the 

survival before exploitation, it indicates a change during the freshwater phase or the marine 

phase or both. Whatever these changes are, it seems like the conditions in rivers or/and at 

sea did not return to where they were since then. These high survivals observed during the 

mid 1960’s could correspond to a stable previous level or to a period of time corresponding 

to extraordinary and exceptionally favourable conditions for salmon. Several authors have 

found correlations between salmon abondances and various environmental covariates such 

as the winter North Atlantic oscillation index (Boylan and Adams, 2006; Dickson and 

Turell, 2000; Jonsson and Jonsson, 2004) or water temperature (Jonsson and Jonsson, 

2004b) but the biological mechanisms are not yet fully understood. 
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In the transition between the spawners of a given year and the 0+ juveniles the following 

year, it was assumed that the underlying mechanisms are stable over the time series as 

opposed to the non stationarity of the transition between 0+ juveniles and returning adults. 

This choice is mostly imposed by the lack of long time series related to the 0+ juvenile life 

stage. Except for the last 11 years (1998 to 2008) for which 0+ juvenile data are available, 

it is not possible to make the distinctions between the changes in the two transitions (0+ 

juvenile to returning adult and spawner to 0+ juvenile). Therefore, any annual change 

occurring in these transitions can be captured by the year effects ߟ௧ (Figure 4.8). 

 

In this study, only the Beverton and Holt density dependence relationship is considered; 

other relationships could have been used (e.g. Ricker, “hockey stick”). However, 

considering the variability observed around the theoretical curve it is unlikely that 

changing the shape of the density dependence relation will lead to major changes in the 

outputs of the model (Myers et al., 1995). 

 

4.4.2 Outputs of the model for management advice 

The main outputs of this model for management purpose are the time series of PFA, of 

exploitation rates and of reference points ݄௧,
ᇱ and ܵ௧,

ᇱ  . They allow a retrospective analysis 

of the status of salmon population from the 5 geo units of the Foyle. 

 

Historical abundances are generally estimated with fair levels of uncertainty (Figure 4.10). 

This uncertainty is considerably reduced during the 6 years when counter data are 

available. When no counter data are available it is interesting to notice that there is no 

significant differences in the uncertainty of the PFA between years during which 0+ 

juvenile index abundance are available and years in which they are not. This indicates that 

the 0+ juvenile index of abundance does not contain much useful information. As shown in 

Figure 4.6, there is a clear update of the pseudo-likelihood, issuing from the 0+ juvenile 

observation model, for each geo unit (Figure 4.6). One of the reasons for this is the high 

uncertainty (coefficients of variation up to 194% for some years) of the average 0+ 

juvenile density estimates. High uncertainty is mainly due to the calibration model that 

estimates 0+ juvenile densities from the timed index of abundance (Dauphin et al., 2009). 

This calibration exercise could be improved (see discussion in Dauphin et al., 2009) in 

order to make better use of the information contained in the 0+juvenile index of abundance 

which are costly to collect. 
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The proportion of salmon originating from the Foyle caught by the drift nets at sea (ଵ
) is 

estimated with a high uncertainty (Table 4.6). This indicates that the Foyle fishery 

potentially impacts significatively other salmon stocks. The potential (year × geo unit) 

variations in ଵ
 and ଶ

 are captured by the various effects affecting the returning adults 

 .௧,ܣܨܲ

 

The same pattern of evolution over time can be observed for ݄ᇱ and for the conservation 

limits ܵᇱ. The reference points consistently decrease over the time-series. This is much 

more evident for the conservation limit which is reduced on average by about 50 % over 

the 50 years of the time-series. This pattern is driven by the decrease of the 0+ juvenile to 

returning adult survival. 

 

The comparison of exploitation rates to the reference exploitation rates in each geo unit 

shows that in the Faughan, the Finn and the Mourne units, the exploitation rate has been 

under the reference exploitation rate ݄ᇱ during most of the years. The two other geo units 

(Roe and Foyle) have lower ݄ᇱ and have been exploited very often above this reference 

level. The only consistent decrease in the exploitation rates ݄ appear in the last 10 years of 

the time series in all geo units. This is mainly due the buying out of many drift and draft 

net licences over the last years (less than 20 drift nets and less than 20 draft nets remain 

active in 2008 from a maximum of 139 drift nets and 524 draft nets). 

 

The comparison of the number of spawners to the international standard reference point ܵᇱ 

(conservation limit recommended by the North Atlantic Salmon Conservation 

Organisation) shows that there are some differences across the geo units of the Foyle 

catchment. All geo units show at some stage a high probability of not reaching their 

conservation limits, but three out of five geo units (Faughan, Roe and Foyle units) show on 

average higher probability of having less spawners than the required conservation limit.  

 

The IGRR pre-fishery Φி , is above 1 during most of the time series for all geo units. 

However Φி is smaller than 1 at the end of the 1970’s and the end of the 1990’s (Figure 

4.14). Figure 4.11 and Figure 4.15 show that overall the time series for most of the geo 

units, the populations are exploited under the equilibrium exploitation rate ݄௧,
ᇱ  but the 

IGRR Φௌ is more often under the replacement value than above it. Combined with the 

strong decline in the 0+ juvenile to returning adult survival, this leads to the slow decline 

of the number of returning adults (Figure 4.9, Figure 4.10). However it can be noted that 
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during the last seven years, some very high Φௌ have occurred in certain geo units (Φௌ  2 

in 2002 in the Faughan and the Mourne unit). This indicates an increase of the population 

size which is partly resulting from the significative decrease in the exploitation rates during 

the last decade. 

 

These results provide the main outcomes of this study regarding the management of the 

salmon population. When considering the reference points associated to MSY, it appears 

that, the situation is contrasted when the geo units are considered one by one. For instance, 

the Foyle unit, which is less productive than the others (i.e. ݄ᇱ is on average much lower 

than on the other geo units), has consistently suffered of overexploitation. Indeed, the 

conservation limits were seldom achieved (Figure 4.13) and the exploitation rates were 

often exceeding their corresponding reference level (Figure 4.11). At the other extreme, the 

most productive geo units, the Finn and the Mourne, have occasionally suffered from over 

exploitation (Figure 4.11). The Roe and the Faughan were in an intermediate situation. But 

overall, the salmon (meta)population of the Foyle catchment is driven by its two more 

productive and largest components, the Finn and the Mourne, and therefore it appears that 

the population has globally not been overexploited during most of the period of time 

studied. This occurred in a context where the 0+ juvenile to returning adult survival and the 

associated reference points are consistently decreasing. It implies that the survival decrease 

is mainly responsible for the global population decline (Figure 4.10). The IGGRs before 

and after exploitation show that the fisheries have accentuated this phenomenon by 

sometimes preventing the population replacement. Replacement could have taken place if 

the exploitation had been more moderate but the population decline would have only been 

slowed down.  

 

4.4.3 Beyond the case study 

Over the last few years, Bayesian state-space modelling has become more and more 

popular in fisheries science (Punt and Hilborn 1997; Schnute and Richards, 2001). Using 

this framework, this study is similar to other works such as Rivot et al. (2004) and 

Michielsens et al. (2008). It provides useful insights for managers together with a better 

understanding and assessment of the population of interest. In addition, the work presented 

here provides reference points for several spatial units of the catchment studied which are 

estimated and updated every year with their associated uncertainties. 
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Such an approach is usually time consuming because every population has its own 

characteristics and knowledge of the different datasets and how they were collected is 

crucial to guaranty the coherence of the final model. The implementation of such model 

consists in improvements by trial and error and constant checking for consistency of 

results. It allows making the best use of all datasets available for a given study and 

summarizing the information they contain with regards to the quantities of interest. This is 

done in a formal, unique, rigorous and coherent framework which weights the information 

brought by the different sources of information used. Moreover information from other 

systems/population can be incorporated through hierarchical models or informative priors.  

 

Bayesian state space modelling shows yet again its ability to deal with complex models 

such as the one presented in this chapter. However, at the moment the implementation of 

this approach such models is facing numerical calculation problems to conduct the 

Bayesian inference. For instance running this model on WinBUGs required four and half 

days of calculation on a 64-bits computer. 

 



 

Chapter 5 General discussion 

 

 

 

 

 

Chapter 5:  
General discussion 

 

 

5.1. Objectives 

The main objective of this work lies in proposing a way to integrate multiple datasets 

collected for different purposes (e.g. management, fisheries, science) in order to retrace 

and understand the different events that have affected the Atlantic salmon population of the 

Foyle catchment as well as produce new reference points. This objective was completed by 

building a state space model describing the lifecycle of salmon in the Foyle catchment 

which was divided into five geographical units. This spatial division was a major step 

forward, as it is now possible to estimate reference points for each geographical unit. The 

incorporation of two datasets was accomplished by building two hierarchical models. The 

first (chapter 2) provides a generic way to relate an index of abundance to densities and the 

second (chapter 3) allows the estimation of adult abundances based on redd counts. 

 

Bayesian modelling provides a formal and coherent framework to integrate multiple 

sources of information to deal with uncertainty which is of particular interest for 

population dynamics and management purpose (Germano,1999; Hilborn, 1997, 

Michielsens et al., 2008; Rivot et al., 2004; Wade, 2000). The outputs of Bayesian state 

space inferences are joint posterior distributions of all unknown variables but also the 

marginal distribution of each unknown individually. In population dynamics and for 

management purposes, this is of particular interest for the variables corresponding to the 

abundance of the population at a given life stage and to reference points, and for the 

population assessments resulting from the comparison of the two.  
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5.2. Population dynamics in the Foyle catchment 

5.2.1 Main results 

In chapter 2 and 3, two observation models which allow inference on unobservable states 

of the dynamic model are presented. Both models can also be seen in a larger context of 

enhancing the value of datasets. 

 

The first observation model looks at 0+ juvenile index of abundance (IA) available for up 

to 11 years and 384 local sites widely spread throughout the catchment. Since no formal 

relationship was established between the 5 minute IA and the actual densities of 0+ 

juvenile on site was available for the Foyle catchment, data were collected during two 

summers in order to unravel this relationship. The modelling exercise reported in chapter 2 

showed evidence of different densities depending on habitat quality (good or poor based on 

DANI classification). More importantly, it provides the methodology to convert an index 

of abundance into a density estimator with its associated uncertainty. The approach used is 

generic and can be transferred to similar situations: for any fish index of abundance 

collected with electric fishing, but also more generally for any relation between relative 

indexes of abundance to absolute measure of abundance.  

 

The parameters of the relationship described in chapter 2 were then used to calculate 

retrospectively local 0+ juvenile densities for each site sampled during the last 11 years. 

Local densities were then incorporated in a basic hierarchical model in order to provide 

averaged larger scale (geo units) 0+ juvenile densities. The large scale densities estimates 

for all the time-series of two geo units (Finn and Mourne) and the first 5 years of the time 

series of another geo unit (Foyle) showed densities consistent with those found in the 

literature.  

 

The second observation model relates the abundances of adults returning in rivers to redd 

counts. This model also looks at enhancing the value of several datasets. A six years time-

series providing accurate adult salmon counts via fish counter is available for three geo 

units and related to redd counts of the associated geo unit. A simple hierarchical model 

accounting for potential differences across geo units was built to estimate the parameters of 

this relationship. This allows enhancing the value of two datasets in two different ways. 

Firstly, this relationship is “exported” to the Mourne unit where only partial adult counts 
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are available. Thanks to the hierarchical structure and the redd counts available for the 

Mourne unit, the probability of counting an adult and the adult abundances for this geo unit 

can be estimated. Secondly, using the parameters from this relationship and the redd counts 

time-series it is possible to estimate the historical abundance of adult salmon returning in 

rivers. Estimates are uncertain but provide valuable quality quantitative information. The 

model also allows estimating the average probability of counting adults returning in the 

Mourne unit. This proportion is likely to be highly variable depending on the water flow at 

the Mourne counter location during salmon run period. However, no systematic 

information is available on the water conditions during the different summers of the time 

series. Therefore, the parsimonious hypothesis of an average proportion allowed to vary 

according to a log-normal error was retained.  

 

The observation models are then incorporated into a full life cycle model structured in 

several life stages (chapter 4). The life stages are chosen according to the available datasets 

and transitions between these life stages are designed according to data available and to 

well-known relationships described in the literature (e.g. density dependence). 

Furthermore, a spatial structure is incorporated in the model by dividing the catchment into 

five geo units. This structure also corresponds approximately to the genetic structure found 

in the catchment (Booth, 2003; Ensing and Crozier, 2008). Because of the hierarchical 

structure, geo units can share some of their properties with the others or not. This spatial 

division of the Foyle catchment is a significant step forward in terms of management as it 

allows providing conservation limits for each geo units, in comparison to the single 

conservation limit used at the moment. It also allows having a refined and contrasted 

vision of the status of the different geo units (e.g. some geo units, such as the Foyle, are 

more exploited than others). It also shows that when exploiting a mixture of populations, 

some can be overexploited when the others are not. In terms of management, this implies 

deciding on which population the exploitation regulations should be adjusted on. In 

addition, the survival from 0+ juveniles to returning adults is assumed to be non stationary 

(Walters, 1987; Friedland, 1993; Walters and Kronlund, 2001). Several significant 

differences across geo units are underlined especially showing higher productivity for the 

Finn and the Mourne units (measured via the ݄ᇱ).  

 

Geo unit specific abundances of the different states and their associated uncertainty are 

estimated. The main state of interest is the pre-fishery abundance (PFA), during the time-

series considered (1959-2008) the salmon population reached its apex in the mid 1960’s. 

This was followed by a steep decrease until the mid 1970’s. From then to present, the 
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population followed a slow declining trend with a slight recovery in the mid 1980’s. In 

chapter 4, this decline is shown to be mostly due to a decline of the 0+ juvenile to returning 

adult survival which is accentuated some years by some overfishing.  

 

5.2.2 Perspectives and improvements 

A model is always a simplification of the reality and the models presented in this study are 

no exception to this rule. Most of these simplifications in these models are due to 

constraints imposed by data availability (e.g. spatial structure) or to the lack of knowledge 

about the biological processes occurring in the system (e.g. no consideration of the detailed 

life-histories). Several aspects of the Foyle Atlantic salmon population dynamics model 

could be improved with the use of datasets already available or by collection of some 

additional information. Here, several possible improvements are proposed. 

 

Density estimates of at least two geo units (Fauhan and Roe) were surprisingly high, and 

sometimes with doubtful reality. This is mainly due to the fact that the calibration 

relationship is assumed to be the same across all geo units and for each crew performing 

the electric fishing. At the time of the study, no data was available to identify differences in 

calibration relationship across geo units or crews. Therefore, the parsimonious choice of a 

calibration relation constant over all sites was made. Notable differences were identified in 

terms of IA with some crew managing to capture more than three hundreds 0+ juvenile in 5 

minutes. Such numbers can be achieved either if the site fished is very productive or if the 

crew is very effective in fishing. The fact that the geo units with the highest IA/density are 

sampled by the same crew reinforce the idea that there might be difference among the 

different crews and therefore the question linked to consistency of sample collection across 

the crews should be addressed. In order to clarify this situation, it is suggest that a 

calibration should be carried out for the different crews collecting the 0+ juvenile IA in the 

Foyle catchment. 

 

In this study, it is assumed that angling catches are known and accurate even for the period 

before 2001 when reporting of angling was not compulsory. It would be very simple to 

incorporate a simple relationship between returning adults and rod catches that would be 

calibrated during the period 2001 to present (i.e. the period during which angling returns 

are assumed to be accurate) and used to estimate true angling catches in the past. However, 

it should be kept in mind that rod catches are significantly smaller than the commercial 

catches especially at the beginning of the time series. 
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No distinction is made between the survival of juvenile salmon in freshwater and survival 

at sea. This is mainly due to the lack of data regarding the intermediate life stage (i.e. 

smolt). A smolt trap has been used since 2004 at the Faughan counter site. Capture-mark-

recapture and lengths of captured smolts are available and could be used to calculate a 

freshwater survival and sea survival (Jutila et al., 2006; Kalio-Nyberg et al., 2004) for this 

particular geo unit as well as refine abundance estimates. However, collecting information 

related to smolt abundance requires a lot of time and manpower which can be difficult to 

have consistently in a management organization such as the Loughs Agency. Therefore, 

focus should be put on improving the methodology related to the electrofishing index of 

abundance and redd counts. 

 

Another refinement would be to incorporate a measure of the fisheries effort. For the last 

10 years fishermen (drift and draft nets) have been asked to report in log-books their 

fishing time for each day of the fishing season. For years before 1998, the information 

available is less accurate and the only information available are the weekly catches for 

each licences. Moreover a preliminary assessment of the data available showed some 

discrepancies between the paper log-books and the official total figures used by the 

agencies. Therefore, clarification and data mining will be required to incorporate this 

information. This information would allow looking at the relationship between effort and 

exploitation rates and providing advice to managers regarding to the regulation of the 

exploitation rates 

 

Finally, in this study it is assumed, that all salmon return in their rivers at the same time of 

the year and that they are all subject to the same exploitation rate. This is a significant 

simpification and it might be worth considering different timing of adult returns in each 

geo units and their interaction with the timing of the fisheries. For instance, the Finn is 

known to have a proportion of adults returning during spring (Loughs Agency, 

unpublished data). Such differences in timing can lead to geo units being more or less 

exploited than other. Implementing these differences could be accomplished using the 

detailed data from counters (daily counts are available) in order to take in account the fact 

that some fish return outside of the commercial fishing season and are therefore not 

exposed to the same exploitation rate (they can still be fished by anglers). For instance, in 

the Finn the adults returning in spring will not be affected by the commercial fisheries.  

 



131 
 

Chapter 5 General discussion 

The potential improvements presented above are all based on datasets already available 

(however some datasets need some important clarifications). It could also be envisaged to 

use one of the main principles of Bayesian analysis: the possibility of incorporating 

information directly via the prior distributions. For instance, information on 0+ to smolt 

survival available from other salmon rivers could be incorporated to decompose the 0+ 

juvenile to returning adult into freshwater and marine survival. 

  

Finally and more generally, the approach followed in this study is generic and could be 

adapted and used in similar case studies. Several Atlantic salmon rivers such as the Nivelle 

(France, Dumas and Prouzet, 2003), the Bush (Northern Ireland, Kennedy and Crozier, 

1993, 1995), the Lærdalselva and Imsa (Norway, Crozier et al., 2003) or the Miramichi 

(Canada, Chaput et al., 2001) possess large datasets which could be used in a similar way.  

 

5.2.3 Management 

The models presented in this study represent significant progress for the understanding and 

the management of the salmon population in the Foyle catchment. The different biological 

hypotheses and spatial structure considered to perform the analysis allow making the best 

use of the data available and estimate population abundance and their associated 

uncertainties for this population that were never available before. As a result of the 

Bayesian framework, all variables are estimated with their associated uncertainty. Based 

on these estimates it is possible to calculate the exploitation rates and the spawner 

abundances during the time-series. Based on the density dependence relationship and the 

annual 0+ juvenile to returning adult survivals, the annual reference points as 

recommended by the NASCO and the population replacement rates for each geographical 

unit are calculated. It is then possible to see that during most of the time series the overall 

Foyle salmon (meta)population is very likely to have been exploited under the reference 

exploitation rate. Some differences are noticeable among the geo units especially for the 

Foyle which seems to have been suffering more of the fisheries exploitation. Even though 

the population follows a consistent decline since the mid 1960’s which indicates that the 

main driver for this decline is the declining 0+juvenile to returning adult survival. The 

model presented here allows short term predictions to be made which can be used to adjust 

management regulation on a yearly basis. 
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Annex 1: WinBUGS code: Electric fishing calibration 

model and estimation of average 0+juvenile densities 

in grade 1 site in the five geo units from 1998 to 2008. 

 

 

# Model 
 
# Electofishing calibration model based on Crozier & Kennedy method 
# Estimate density using fully quantitative electrofishing and 5min index of abundance 
# Sites located in the Faughan sub-catchment 
# Summer 2006 for sites 1:11 
# Summer 2007 for sites 12 to 21 
 
model 
{  
#  parameter of the catchability 
 alpha ~ dnorm(0,0.001)  
 beta ~ dnorm(0,0.001) 
 
#scale parameters  
 T.AW ~ dgamma(0.01,0.01) 
 phi ~ dgamma(0.01,0.01)#I(0.00001,) 
 psi ~  dgamma (0.01, 0.01) 
 delta ~ dgamma(1,0.01) 
  
#shape paarameters  
 inv.kappa ~ dgamma(0.01,0.01) 
 kappa <-1/ inv.kappa 
 inv.eta ~ dgamma(0.01,0.01) 
 eta <- 1/inv.eta  
 inv.rho ~ dgamma(0.01,0.01) 
 rho<-1/inv.rho 
# density parameters 
 gamma <-delta * psi 
 b[1] <- gamma 
 b[2] <- gamma * rho  
 dmoy[1] <- b[1] /psi 
 dmoy[2] <- b[2] /psi 
 epsilon ~dnorm(0,0.001)I(0,) 
 ratio.d<-dmoy[1]/dmoy[2] 
    
 for (i in 1:I){ 
# hierarchical structure of the density 
  d[i]~dgamma(b[H[i]], psi)  
  vard[i] <- b[H[i]] / (psi *psi) 
  sdd[i] <-sqrt(vard[i]) 
 
# lambda parameter for N[i] : surface * density 
  m[i]<-S[i]*d[i] 
 
 
# 5min IA is expected to be proportional to the density  
# IA.5min follows a negative binomial distributionwhich is equivalent to a surdispersed poison distribution 
 # the scale parameter is fixed (variance proportional to the mean)   
# to take in account the fact that the IA seems to reach a maximum for high densities we incorporate 'd[i] ^ a' 
# the proportionality relation between IA.5min and d is modified by the width of the site 
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# aw is the average width of the site based on up and down stream measurement 
  a[i]<-kappa * pow(d[i],eta) * phi   
  l[i] ~ dgamma(a[i],phi)I(0.01,) 
  varIA[i] <- a[i] / (phi * phi) 
  sdIA[i] <- sqrt(varIA[i]) 
  IA[i] ~ dpois(l[i])  
# The fish present on the site (N[i]) are expected to be distributed following a poison distribution 
  c.N[i]<-10*S[i] 
  N_tot[i] ~ dpois(m[i])I(,c.N[i])    
   
# parameters for length effect on catchability (catchability =cst over passes) 
  mu[i] <- alpha + beta * (W[i]-mean(W[]) ) 
  w.theta[i] ~ dnorm(mu[i],T.AW) 
  logit(p[i,1]) <-w.theta[i] 
 
# The catchability after the first pass decrease by a factor epsilon after each extra pass   
  for (k in 2:4){ 
   logit(p[i,k]) <- logit(p[i,k-1]) -epsilon  
  } 
  N1[i]<-N[i] - IA[i] 
  C1[i]~dbin(p[i,1],N1[i]) 
  N2[i]<-N1[i] - C1[i] 
  C2[i]~dbin( p[i,2],N2[i]) 
  N3[i]<-N2[i] - C2[i] 
  C3[i]~dbin( p[i,3],N3[i]) 
  N4[i]<-N3[i] - C3[i] 
  C4[i]~dbin( p[i,4],N4[i]) 
 } 
 
# Estimation of average density in grade 1 sites for each geo units from 1998 to 2008 
 
#The probability density distribution of the parameters of the calibration model are extracted to be used to estimate densities 
in all the sites sampled over the years 
kappa.cut <- cut(kappa) 
eta.cut<- cut(eta) 
phi.cut <- cut(phi) 
 
for(i in 1:5){ 
 CV[i] ~dgamma(0.001, 0.001) 
} 
# Faughan 
for (t in 1:11){ 
 mu.d.unit[t,1] ~dgamma(1,0.01) 
 var.fau[t] <-b.fau[t]/(psi.fau[t]*psi.fau[t]) 
 sd.d.unit[t,1]<-sqrt(var.fau[t]) 
 psi.fau[t] <-  mu.d.unit[t,1] / ( (CV[1] *mu.d.unit[t,1]) *(CV[1] *mu.d.unit[t,1]) ) 
 b.fau[t] <- mu.d.unit[t,1]*psi.fau[t] 
 sdIA.Fau[t]<- sd(IA.fau.tot[1:N.IA[1,t],t]) 
  
 for (n in 1:N.IA[1,t] ){ 
  d.fau[n,t]~dgamma(b.fau[t], psi.fau[t])I(0.001,) 
  a.fau[n,t]<-kappa.cut * pow(d.fau[n,t],eta.cut) * phi.cut 
  l.fau[n,t] ~ dgamma(a.fau[n,t],phi.cut)I(0.01,) 
  varIA.fau[n,t] <- a.fau[n,t] / (phi.cut * phi.cut) 
  sdIA.fau[n,t] <- sqrt(varIA.fau[n,t]) 
  IA.fau.tot[n,t] ~ dpois(l.fau[n,t]) 
 } 
} 
# Finn 
for (t in 1:11){ 
 mu.d.unit[t,2] ~dgamma(1,0.01) 
 var.fin[t] <-b.fin[t]/(psi.fin[t]*psi.fin[t]) 
 sd.d.unit[t,2]<-sqrt(var.fin[t]) 
 psi.fin[t] <-  mu.d.unit[t,2] / ( (CV[2] *mu.d.unit[t,2]) *(CV[2] *mu.d.unit[t,2]) ) 
 b.fin[t] <- mu.d.unit[t,2]* psi.fin[t] 
 sdIA.Fin[t]<- sd(IA.fin.tot[1:N.IA[2,t],t]) 
   
 for (n in 1:N.IA[2,t]){ 
  d.fin[n,t]~dgamma(b.fin[t], psi.fin[t])I(0.001,) 
  a.fin[n,t]<-kappa.cut * pow(d.fin[n,t],eta.cut) * phi.cut 
  l.fin[n,t] ~ dgamma(a.fin[n,t],phi.cut)I(0.01,) 
  varIA.fin[n,t] <- a.fin[n,t] / (phi.cut * phi.cut) 
  sdIA.fin[n,t] <- sqrt(varIA.fin[n,t]) 
  IA.fin.tot[n,t] ~ dpois(l.fin[n,t])   
 } 
} 
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# Mourne 
for (t in 2:11){ 
 mu.d.unit[t,3] ~dgamma(1,0.01) 
 var.mou[t] <-b.mou[t]/(psi.mou[t]*psi.mou[t]) 
 sd.d.unit[t,3]<-sqrt(var.mou[t]) 
 psi.mou[t] <-  mu.d.unit[t,3] / ( (CV[3] *mu.d.unit[t,3]) *(CV[3] *mu.d.unit[t,3]) ) 
 b.mou[t] <- mu.d.unit[t,3]* psi.mou[t] 
 sdIA.Mou[t]<- sd(IA.mou.tot[1:N.IA[3,t],t]) 
   
 for (n in 1:N.IA[3,t]){ 
  d.mou[n,t]~dgamma(b.mou[t], psi.mou[t])I(0.001,) 
  a.mou[n,t]<-kappa.cut * pow(d.mou[n,t],eta.cut) * phi.cut 
  l.mou[n,t] ~ dgamma(a.mou[n,t],phi.cut)I(0.01,) 
  varIA.mou[n,t] <- a.mou[n,t] / (phi.cut * phi.cut) 
  sdIA.mou[n,t] <- sqrt(varIA.mou[n,t]) 
  IA.mou.tot[n,t] ~ dpois(l.mou[n,t])   
 } 
} 
#Roe 
for (t in 1:11){ 
 mu.d.unit[t,4] ~dgamma(1,0.01) 
 var.roe[t] <-b.roe[t]/(psi.roe[t]*psi.roe[t]) 
 sd.d.unit[t,4]<-sqrt(var.roe[t]) 
 psi.roe[t] <-  mu.d.unit[t,4] / ( (CV[4] *mu.d.unit[t,4]) *(CV[4] *mu.d.unit[t,4]) ) 
 b.roe[t] <- mu.d.unit[t,4]*psi.roe[t] 
 sdIA.Roe[t]<- sd(IA.roe.tot[1:N.IA[4,t],t]) 
 
 for (n in 1:N.IA[4,t]){ 
  d.roe[n,t]~dgamma(b.roe[t], psi.roe[t])I(0.001,) 
  a.roe[n,t]<-kappa.cut * pow(d.roe[n,t],eta.cut) * phi.cut 
  l.roe[n,t] ~ dgamma(a.roe[n,t],phi.cut)I(0.01,) 
  varIA.roe[n,t] <- a.roe[n,t] / (phi.cut * phi.cut) 
  sdIA.roe[n,t] <- sqrt(varIA.roe[n,t]) 
  IA.roe.tot[n,t] ~ dpois(l.roe[n,t])   
 } 
} 
# Foyle  
for (t in 1:11){ 
 mu.d.unit[t,5] ~dgamma(1,0.01) 
 var.foy[t] <-b.foy[t]/(psi.foy[t]*psi.foy[t]) 
 sd.d.unit[t,5]<-sqrt(var.foy[t]) 
 psi.foy[t] <-  mu.d.unit[t,5] / ( (CV[5] *mu.d.unit[t,5]) *(CV[5] *mu.d.unit[t,5]) ) 
 b.foy[t] <- mu.d.unit[t,5]*psi.foy[t] 
 sdIA.Foy[t]<- sd(IA.foy.tot[1:N.IA[5,t],t]) 
  
 for (n in 1:N.IA[5,t]){ 
  d.foy[n,t]~dgamma(b.foy[t], psi.foy[t])I(0.001,) 
  a.foy[n,t]<-kappa.cut * pow(d.foy[n,t],eta.cut) * phi.cut 
  l.foy[n,t] ~ dgamma(a.foy[n,t],phi.cut)I(0.01,) 
  varIA.foy[n,t] <- a.foy[n,t] / (phi.cut * phi.cut) 
  sdIA.foy[n,t] <- sqrt(varIA.foy[n,t]) 
  IA.foy.tot[n,t] ~ dpois(l.foy[n,t])   
 } 
} 
} 
 

#data 
 
list( 
I = 21, 
# Surface in m2 for each 21 sites of the calibration 
S = c(382,135,133,172,134,108,112,120,105,86,72,202,90,173,142,74,61,82,78,93,67), 
 
# group 2: nursery grade 1+2; group1: nursery grade 3+4 
H=c(1,2,1,1,1,1,2,1,1,2,2,2,2,2,2,2,2,1,1,1,2), 
 
#IA number of 0+ salmon caught in the 5min sample  first 11 were done in 2006 the last 10 in 2007 
IA = c(17,6,10,13,28,13,0,3,27,12,25,6,6,3,2,0,6,32,18,16,23), 
 
#Width of each site 
W = c(9.65,7.4,8.6,9.15,5.35,5.9,3.15,5.65,5.05,3.6,4.2,5.35,3.6,4.05,3.30,3.95,3.5,3.8,3.1,3.05,3.4), 
#Number of 0+ salmon caught in the first non timed pass 
C1 = c(50,21,18,32,104,27,1,5,62,11,53,8,17,4,3,1,7,39,54,48,52), 
 
#Number of 0+ salmon caught in the second non timed pass 
C2 = c(38,13,6,28,54,21,1,2,36,7,38,5,2,2,1,1,3,30,26,24,22), 
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#Number of 0+ salmon caught in the third non timed pass 
C3 = c(20,11,7,17,55,18,0,1,27,4,29,1,2,2,1,1,1,31,20,6,8), 
 
#Number of 0+ salmon caught in the fourth non timed pass 
C4 = c(NA,NA,9,11,36,11,NA,2,17,NA,13,NA,2,NA,NA,NA,NA,19,15,NA,NA), 
#Number of sites with a nursery grade 1 sampled every year in each geo units 
#lines correspond to geo units (Faughan, finn, mourne, roe, foyle) and rows years (1998 to 2008 
N.IA=structure(.Data=c( 
6,21,13,16,18,17,24,26,24,27,28, 
... (see table below for full data set) 
),.Dim=c(5,11)), 
 
Geo unit 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
Faughan 6 21 13 16 18 17 24 26 24 27 28 
Finn 28 46 18 23 7 24 29 14 26 48 49 
Mourne 0 27 32 106 137 148 149 144 155 216 131 
Roe 18 53 31 37 30 36 42 43 57 59 54 
Foyle 10 13 18 27 23 25 29 29 35 34 38 
 
 
# These are all the electrofishing sites for the 5 unit: Faughan, Finn, 
# Mourne, Roe and Foyle. the columns indicate the year: 1998->2006  
 
IA.fau.tot=structure(.Data=c( 
0,18,3,101,63,74,91,79,57,75,64, 
... (see table below for full data set) 
),.Dim=c(28,11)), 

 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

0 18 3 101 63 74 91 79 57 75 64 
13 34 3 50 74 60 54 81 79 79 56 
8 5 49 30 13 85 66 120 27 51 6 
0 2 2 32 10 14 37 20 6 6 6 
9 8 10 20 10 71 12 22 3 5 70 
0 1 27 64 24 55 31 72 36 0 60 

NA 0 27 88 19 40 16 7 0 75 44 
NA 17 17 94 13 13 58 21 64 0 40 
NA 16 4 85 33 20 33 63 48 65 33 
NA 12 8 18 36 0 65 36 36 46 64 
NA 1 11 15 4 108 55 15 34 45 47 
NA 8 1 41 0 84 41 15 62 51 33 
NA 7 15 14 0 86 46 50 17 61 50 
NA 4 NA 1 10 64 73 58 10 29 40 
NA 2 NA 47 10 58 69 50 28 28 48 
NA 0 NA 28 3 74 54 34 102 64 42 
NA 8 NA NA 8 67 48 3 14 47 41 
NA 8 NA NA 26 NA 62 0 48 29 5 
NA 7 NA NA NA NA 0 0 13 46 21 
NA 3 NA NA NA NA 0 50 13 34 97 
NA 13 NA NA NA NA 32 33 2 75 27 
NA NA NA NA NA NA 7 0 0 49 27 
NA NA NA NA NA NA 0 13 0 7 15 
NA NA NA NA NA NA 40 0 97 41 22 
NA NA NA NA NA NA NA 0 NA 5 6 
NA NA NA NA NA NA NA 57 NA 5 0 
NA NA NA NA NA NA NA NA NA 64 10 
NA NA NA NA NA NA NA NA NA NA 79 

 
 
IA.fin.tot=structure(.Data=c( 
17,0,5,21,0,0,18,24,12,2,31, 
... (see table below for full data set) 
),.Dim=c(49,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

17 0 5 21 0 0 18 24 12 2 31 
8 0 0 2 1 0 22 21 9 8 45 
0 0 1 0 10 0 10 37 18 32 16 

15 0 0 0 2 0 20 19 13 31 4 
18 3 0 0 8 0 19 9 4 40 7 
12 6 1 7 2 5 5 15 0 0 15 
15 5 0 1 0 6 0 30 0 32 9 
10 4 0 2 NA 9 7 31 0 19 22 
10 0 2 3 NA 10 3 25 3 29 0 
8 0 0 3 NA 5 10 14 0 15 22 
7 0 18 4 NA 3 10 20 0 36 15 

13 4 3 5 NA 7 11 14 9 0 31 
12 8 12 6 NA 19 21 20 0 2 8 
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25 7 4 0 NA 0 26 25 0 0 15 
17 5 4 11 NA 8 22 NA 1 1 4 
16 1 11 25 NA 3 11 NA 6 2 6 
12 5 3 14 NA 5 35 NA 0 32 0 
12 29 2 15 NA 5 29 NA 0 40 26 
11 9 NA 0 NA 6 43 NA 0 0 16 
21 19 NA 0 NA 8 3 NA 14 15 44 
7 12 NA 2 NA 7 2 NA 12 2 23 

21 0 NA 0 NA 9 0 NA 8 0 6 
21 6 NA 0 NA 2 0 NA 5 6 16 
13 6 NA NA NA 1 0 NA 0 0 8 
16 0 NA NA NA NA 17 NA 0 11 0 
8 0 NA NA NA NA 32 NA 17 0 6 

NA 0 NA NA NA NA 17 NA NA 0 0 
NA 0 NA NA NA NA 13 NA NA 6 0 
NA 15 NA NA NA NA 18 NA NA 21 6 
NA 6 NA NA NA NA NA NA NA 30 11 
NA 10 NA NA NA NA NA NA NA 21 13 
NA 31 NA NA NA NA NA NA NA 14 0 
NA 15 NA NA NA NA NA NA NA 2 0 
NA 26 NA NA NA NA NA NA NA 21 19 
NA 10 NA NA NA NA NA NA NA 3 35 
NA 13 NA NA NA NA NA NA NA 3 27 
NA 0 NA NA NA NA NA NA NA 0 4 
NA 0 NA NA NA NA NA NA NA 0 4 
NA 0 NA NA NA NA NA NA NA 10 16 
NA 1 NA NA NA NA NA NA NA 42 10 
NA 1 NA NA NA NA NA NA NA 40 0 
NA 30 NA NA NA NA NA NA NA 38 18 
NA 10 NA NA NA NA NA NA NA 0 4 
NA 13 NA NA NA NA NA NA NA 0 4 
NA 7 NA NA NA NA NA NA NA 19 20 
NA 3 NA NA NA NA NA NA NA 20 5 
NA NA NA NA NA NA NA NA NA 3 0 
NA NA NA NA NA NA NA NA NA 2 20 
NA NA NA NA NA NA NA NA NA NA 14 

 
 
IA.mou.tot=structure(.Data=c( 
NA,0,4,2,0,10,75,1,2,0,0, 
... (see table below for full data set) 
),.Dim=c(216,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

NA 0 4 2 0 10 75 1 2 0 0 
NA 0 1 11 30 0 35 0 0 0 4 
NA 2 0 0 33 0 42 51 0 10 1 
NA 12 0 0 0 0 11 26 26 0 5 
NA 16 0 18 0 0 14 53 32 49 15 
NA 13 5 28 0 26 12 0 63 13 14 
NA 18 0 0 3 3 0 0 0 48 0 
NA 21 0 0 2 0 31 0 0 0 0 
NA 7 0 0 1 0 10 0 0 0 0 
NA 2 0 0 3 0 0 0 0 0 0 
NA 0 0 0 11 0 18 0 0 0 0 
NA 0 5 16 24 15 25 14 0 0 0 
NA 0 5 20 8 24 30 5 0 0 0 
NA 0 14 9 9 24 16 4 22 6 5 
NA 0 11 7 0 29 6 2 8 11 2 
NA 0 6 8 0 4 18 14 2 7 0 
NA 0 12 6 5 18 6 7 16 31 9 
NA 0 2 4 0 25 5 3 21 22 8 
NA 10 4 33 17 13 4 0 9 21 5 
NA 0 2 35 18 25 2 11 0 1 16 
NA 0 4 39 9 22 7 3 1 5 1 
NA 0 5 19 10 21 0 18 4 3 2 
NA 0 14 5 23 30 4 12 27 1 12 
NA 0 7 30 7 9 0 8 27 0 30 
NA 0 10 10 14 25 2 13 37 5 28 
NA 0 5 34 8 12 0 6 10 3 13 
NA 0 0 22 7 12 1 2 24 28 9 
NA NA 2 17 13 15 8 10 34 10 6 
NA NA 0 6 10 32 2 13 38 6 1 
NA NA 0 35 10 15 3 13 32 6 1 
NA NA 0 19 12 18 2 42 32 22 1 
NA NA 4 9 26 60 4 0 5 14 5 
NA NA NA 13 11 31 0 0 7 4 1 
NA NA NA 10 20 27 0 0 60 8 0 
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NA NA NA 6 23 89 0 9 42 15 0 
NA NA NA 17 4 44 0 20 30 0 12 
NA NA NA 32 3 15 8 13 2 3 0 
NA NA NA 41 20 10 12 11 0 8 4 
NA NA NA 38 0 7 23 3 11 19 10 
NA NA NA 18 0 2 28 0 2 12 0 
NA NA NA 12 23 13 58 0 16 4 15 
NA NA NA 22 41 6 67 12 20 37 0 
NA NA NA 17 12 8 6 2 12 17 0 
NA NA NA 9 0 4 18 0 3 15 14 
NA NA NA 6 0 4 30 0 7 25 15 
NA NA NA 37 17 2 24 0 29 31 6 
NA NA NA 9 5 6 24 0 69 30 12 
NA NA NA 0 7 0 23 52 21 27 16 
NA NA NA 4 1 0 29 16 18 32 12 
NA NA NA 0 7 0 2 7 70 17 0 
NA NA NA 0 2 0 0 0 16 20 0 
NA NA NA 2 31 3 7 37 6 12 9 
NA NA NA 12 9 2 1 55 2 13 35 
NA NA NA 5 18 4 4 88 1 28 0 
NA NA NA 6 3 5 0 62 0 36 4 
NA NA NA 11 21 3 7 67 5 6 4 
NA NA NA 24 5 7 3 31 22 4 4 
NA NA NA 11 29 19 2 16 40 0 3 
NA NA NA 7 39 13 3 18 7 5 14 
NA NA NA 16 53 7 0 14 32 0 13 
NA NA NA 0 19 5 0 0 22 0 18 
NA NA NA 0 11 1 0 25 36 18 10 
NA NA NA 0 21 14 0 5 38 0 6 
NA NA NA 0 18 18 0 122 1 15 9 
NA NA NA 1 0 3 0 0 0 54 3 
NA NA NA 0 2 7 0 0 5 2 2 
NA NA NA 0 0 3 0 0 1 58 2 
NA NA NA 6 0 4 0 0 1 38 4 
NA NA NA 0 3 6 0 0 3 27 1 
NA NA NA 0 2 1 0 0 3 16 3 
NA NA NA 0 0 5 0 0 4 17 8 
NA NA NA 46 0 1 0 0 7 17 18 
NA NA NA 4 0 0 0 0 23 18 0 
NA NA NA 5 1 2 0 2 6 14 0 
NA NA NA 13 1 7 17 7 6 0 0 
NA NA NA 0 0 0 1 12 12 0 0 
NA NA NA 2 3 14 13 33 11 1 0 
NA NA NA 0 23 18 22 0 3 4 0 
NA NA NA 0 2 6 36 25 6 7 0 
NA NA NA 1 30 10 13 30 13 6 0 
NA NA NA 18 20 29 24 15 10 2 0 
NA NA NA 9 19 40 32 19 4 5 0 
NA NA NA 20 20 32 36 12 3 17 0 
NA NA NA 12 9 38 24 0 3 13 0 
NA NA NA 13 13 6 1 0 1 15 0 
NA NA NA 30 0 39 17 1 14 22 28 
NA NA NA 3 0 32 31 0 6 10 21 
NA NA NA 27 0 45 26 1 2 50 26 
NA NA NA 22 0 38 1 2 1 29 6 
NA NA NA 16 0 18 0 18 1 75 35 
NA NA NA 14 0 21 0 56 0 4 29 
NA NA NA 3 0 12 0 29 0 0 7 
NA NA NA 7 0 25 18 32 0 2 5 
NA NA NA 17 1 10 27 94 0 5 30 
NA NA NA 13 1 11 38 30 4 3 38 
NA NA NA 11 1 0 1 0 3 5 21 
NA NA NA 24 0 3 0 2 25 6 12 
NA NA NA 21 0 18 0 2 29 57 17 
NA NA NA 12 0 27 0 24 34 4 21 
NA NA NA 5 0 0 0 0 18 9 27 
NA NA NA 9 0 0 0 0 34 0 30 
NA NA NA 15 4 0 0 26 65 0 32 
NA NA NA 9 7 0 0 39 52 0 38 
NA NA NA 2 22 3 0 19 37 4 0 
NA NA NA 6 5 13 11 1 29 5 4 
NA NA NA 16 7 2 13 8 43 1 0 
NA NA NA NA 13 0 18 44 24 0 0 
NA NA NA NA 22 0 15 41 35 0 0 
NA NA NA NA 21 0 22 33 106 0 2 
NA NA NA NA 9 0 19 33 55 0 0 
NA NA NA NA 12 8 0 24 82 4 1 
NA NA NA NA 10 0 11 4 107 3 0 
NA NA NA NA 7 6 10 0 74 0 0 



138 
 

Annex 1 Electric fishing model 

NA NA NA NA 5 6 0 0 52 2 0 
NA NA NA NA 7 4 20 42 67 7 0 
NA NA NA NA 2 0 8 39 45 0 8 
NA NA NA NA 0 0 36 57 43 0 8 
NA NA NA NA 2 0 17 7 0 0 11 
NA NA NA NA 2 0 13 0 0 0 18 
NA NA NA NA 3 10 25 4 23 0 7 
NA NA NA NA 19 10 36 23 10 1 5 
NA NA NA NA 2 8 25 0 0 6 5 
NA NA NA NA 0 19 36 3 39 2 8 
NA NA NA NA 1 6 67 2 7 24 12 
NA NA NA NA 3 8 46 2 5 7 2 
NA NA NA NA 0 10 21 3 24 17 0 
NA NA NA NA 0 6 5 3 1 10 0 
NA NA NA NA 0 10 0 26 4 8 0 
NA NA NA NA 4 32 27 16 36 41 2 
NA NA NA NA 4 8 5 19 28 35 13 
NA NA NA NA 9 8 16 14 63 38 3 
NA NA NA NA 4 24 0 14 27 30 NA 
NA NA NA NA 5 14 8 8 34 42 NA 
NA NA NA NA 5 6 5 8 15 104 NA 
NA NA NA NA 6 4 0 17 16 29 NA 
NA NA NA NA 7 15 20 12 0 47 NA 
NA NA NA NA 13 6 20 4 7 29 NA 
NA NA NA NA NA 7 21 4 2 15 NA 
NA NA NA NA NA 8 18 0 3 19 NA 
NA NA NA NA NA 2 7 1 3 15 NA 
NA NA NA NA NA 4 0 0 1 3 NA 
NA NA NA NA NA 4 29 1 0 1 NA 
NA NA NA NA NA 2 0 3 1 1 NA 
NA NA NA NA NA 4 31 2 4 0 NA 
NA NA NA NA NA 0 0 NA 0 32 NA 
NA NA NA NA NA 2 15 NA 0 20 NA 
NA NA NA NA NA 1 11 NA 0 59 NA 
NA NA NA NA NA 1 1 NA 2 0 NA 
NA NA NA NA NA NA 13 NA 3 69 NA 
NA NA NA NA NA NA NA NA 4 25 NA 
NA NA NA NA NA NA NA NA 0 9 NA 
NA NA NA NA NA NA NA NA 0 31 NA 
NA NA NA NA NA NA NA NA 1 14 NA 
NA NA NA NA NA NA NA NA 0 17 NA 
NA NA NA NA NA NA NA NA 2 26 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 13 NA 
NA NA NA NA NA NA NA NA NA 33 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 67 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 45 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 10 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
NA NA NA NA NA NA NA NA NA 30 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 32 NA 
NA NA NA NA NA NA NA NA NA 35 NA 
NA NA NA NA NA NA NA NA NA 32 NA 
NA NA NA NA NA NA NA NA NA 14 NA 
NA NA NA NA NA NA NA NA NA 42 NA 
NA NA NA NA NA NA NA NA NA 43 NA 
NA NA NA NA NA NA NA NA NA 38 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 13 NA 
NA NA NA NA NA NA NA NA NA 39 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 23 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 8 NA 
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NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 10 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 11 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 6 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 14 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
NA NA NA NA NA NA NA NA NA 18 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 7 NA 

 
IA.roe.tot=structure(.Data=c( 
11,9,0,130,12,23,142,155,107,178,53, 
... (see table below for full data set) 
),.Dim=c(59,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

11 9 0 130 12 23 142 155 107 178 53 
18 27 11 11 31 65 22 19 22 27 103 
17 22 38 1 59 85 24 13 30 90 22 
15 6 34 111 88 54 51 92 194 50 34 
13 4 49 8 10 21 10 3 244 56 50 
8 5 42 30 14 52 80 301 37 72 56 

11 4 63 69 2 17 47 14 27 89 51 
15 21 41 36 14 9 32 30 45 55 43 
2 4 29 16 26 54 97 21 59 92 35 

21 5 0 21 14 16 55 21 57 52 34 
7 23 6 43 8 29 35 32 38 56 29 
4 16 15 5 31 0 166 96 36 68 18 
7 14 18 27 22 107 53 27 20 19 34 
8 12 185 39 23 68 78 67 3 6 33 

18 17 81 36 29 62 82 174 0 0 26 
16 13 16 6 17 15 144 23 2 25 13 
2 25 24 98 23 0 49 26 22 58 1 
7 0 10 83 0 10 55 57 94 27 0 

NA 7 11 27 8 32 0 145 31 0 18 
NA 22 27 96 0 4 0 80 6 17 61 
NA 29 19 52 0 3 115 97 0 0 16 
NA 2 6 25 0 6 26 63 6 0 6 
NA 6 1 11 0 3 0 4 0 36 0 
NA 66 19 0 31 4 4 0 8 21 0 
NA 43 1 4 4 9 0 25 34 0 0 
NA 91 6 63 17 8 0 2 33 0 0 
NA 51 2 74 4 40 0 0 0 3 0 
NA 44 1 20 0 0 48 0 3 0 0 
NA 109 5 21 5 9 55 83 0 0 35 
NA 57 1 51 8 22 17 32 0 0 14 
NA 43 1 12 NA 6 18 19 0 0 27 
NA 32 NA 4 NA 14 5 0 0 0 17 
NA 20 NA 0 NA 119 8 25 93 50 1 
NA 33 NA 0 NA 6 0 0 109 9 2 
NA 29 NA 0 NA 76 4 0 5 59 0 
NA 6 NA 0 NA 37 1 0 49 33 0 
NA 44 NA 0 NA NA 0 0 0 8 0 
NA 37 NA NA NA NA 0 0 1 0 71 
NA 44 NA NA NA NA 0 40 0 4 4 
NA 74 NA NA NA NA 12 39 0 0 29 
NA 29 NA NA NA NA 9 1 29 0 39 
NA 48 NA NA NA NA 0 0 1 0 42 
NA 114 NA NA NA NA NA 0 109 39 0 
NA 11 NA NA NA NA NA NA 49 7 27 
NA 22 NA NA NA NA NA NA 1 0 45 
NA 26 NA NA NA NA NA NA 40 173 63 
NA 8 NA NA NA NA NA NA 110 27 41 
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NA 21 NA NA NA NA NA NA 40 2 28 
NA 32 NA NA NA NA NA NA 161 52 13 
NA 12 NA NA NA NA NA NA 141 110 38 
NA 194 NA NA NA NA NA NA 17 87 119 
NA 11 NA NA NA NA NA NA 6 82 27 
NA 33 NA NA NA NA NA NA 41 15 0 
NA NA NA NA NA NA NA NA 20 77 67 
NA NA NA NA NA NA NA NA 13 38 NA 
NA NA NA NA NA NA NA NA 118 56 NA 
NA NA NA NA NA NA NA NA 0 102 NA 
NA NA NA NA NA NA NA NA NA 0 NA 
NA NA NA NA NA NA NA NA NA 38 NA 

 
 
IA.foy.tot=structure(.Data=c( 
4,0,7,69,0,11,0,0,169,95,26, 
... (see table below for full data set) 
),.Dim=c(38,11)) 
) 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

4 0 7 69 0 11 0 0 169 95 26 
18 0 0 46 24 9 0 6 94 109 29 
6 0 20 164 24 48 0 122 100 125 55 
0 15 8 74 33 1 0 74 56 94 69 

15 7 30 21 40 86 10 144 10 45 51 
17 5 19 54 4 88 93 74 2 40 12 
3 6 24 3 27 0 136 98 0 16 9 
3 7 2 0 49 64 49 92 1 22 20 
0 7 19 0 0 69 102 38 167 26 21 
3 0 7 0 0 54 103 31 39 101 15 

NA 0 10 2 0 1 64 26 33 48 26 
NA 0 0 0 0 2 56 11 17 50 0 
NA 0 1 3 0 0 32 3 0 31 0 
NA NA 0 0 18 0 9 0 0 0 34 
NA NA 0 8 4 7 48 0 3 0 25 
NA NA 0 0 4 1 8 16 49 38 35 
NA NA 4 5 4 24 81 0 110 82 45 
NA NA 3 1 4 18 39 0 62 87 28 
NA NA NA 4 8 1 0 0 24 53 0 
NA NA NA 3 21 0 0 0 3 0 0 
NA NA NA 0 0 0 0 0 2 0 2 
NA NA NA 0 0 0 56 0 0 0 6 
NA NA NA 0 0 0 0 0 0 20 0 
NA NA NA 0 NA 0 0 0 16 0 0 
NA NA NA 0 NA 0 17 0 6 2 1 
NA NA NA 0 NA NA 3 4 30 1 15 
NA NA NA 0 NA NA 0 96 0 0 0 
NA NA NA NA NA NA 0 0 0 6 4 
NA NA NA NA NA NA 0 0 0 0 1 
NA NA NA NA NA NA NA NA 0 3 0 
NA NA NA NA NA NA NA NA 0 10 0 
NA NA NA NA NA NA NA NA 0 0 0 
NA NA NA NA NA NA NA NA 0 4 2 
NA NA NA NA NA NA NA NA 0 0 6 
NA NA NA NA NA NA NA NA 0 NA 0 
NA NA NA NA NA NA NA NA NA NA 0 
NA NA NA NA NA NA NA NA NA NA 0 
NA NA NA NA NA NA NA NA NA NA 0 

 
 
 
 

#Initialisation of the Gibbs sampler (1 chain) 
 
list(  
 
# d is estimated in number of fish / m2 
delta=1.8, 
inv.rho=1.81, 
psi = 0.79, 
epsilon=0.18, 
 
alpha = -0.7, 
beta = -0.17, 
inv.kappa= 0.078, 
phi=16, 
T.AW=6.2, 
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inv.eta = 1.5, 
# inits for density at the 21 calibration sites 
d = c(0.43,0.57,0.54,0.75,2.68,1.18,0.03,0.13,1.91,0.5,2.65,0.13,0.35,0.08,0.06,0.16,1.65,2.43,2.12,1.11,1.68), 
 
l= c(18,7,11,14,29,14,1,3,28,13,26,7,7,4,3,1,7,33,19,17,24), 
 
w.theta = c(-2.157,-1.215,-1.533,-0.9548,-0.5708,-0.568,-0.2705,-1.46,-0.1652,-0.3609,-0.7165,-
0.7745,0.1161,0.8448,0.4773,-1.217,-0.4425,-1.49,-0.421,0.2168,0.1112), 
 
# inits for population abumdance at the 21 calibration sites 
N = c(180,62,59,119,335,110,4,16,194,40,180,26,32,14,9,12,100,200,164,103,112), 
 
# inits for captures during the 4th pass at the calibration sites 
C4 = c(3,3,NA,NA,NA,NA,0,NA,NA,0,NA,0,NA,0,0,0,0,NA,NA,2,3), 
 
CV=c(1,1,1,1,1), 
 
# inits for average year density in each geo units-> rows: years ; columns: geo units 
mu.d.unit=structure(.Data=c( 
0.344, 0.854, NA, 0.731, 0.469, 
... (see table below for full data set) 
),.Dim=c(11,5)), 
 
Faughan Finn Mourne Roe Foyle 

0.344 0.854 NA 0.731 0.469 
0.551 0.453 0.244 1.593 0.260 
0.818 0.270 0.283 1.241 0.540 
2.186 0.357 0.758 1.611 0.930 
1.089 0.253 0.537 0.934 0.605 
2.648 0.361 0.679 1.506 1.133 
2.015 0.880 0.693 1.693 1.674 
1.755 1.248 0.789 1.871 1.565 
1.638 0.343 0.939 1.817 1.279 

1.5 0.5 0.9 2 2 
1.5 0.5 0.9 2 2 

 
# inits for faughan sites densities, column: years  
d.fau=structure(.Data=c( 
0.002,1.245,0.396,3.744,2.770,3.070,3.503,3.201,2.598,3.096,2.798, 
... (see table below for full data set) 
),.Dim=c(28,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
0.002 1.245 0.396 3.744 2.770 3.070 3.503 3.201 2.598 3.096 2.798 
1.011 1.868 0.396 2.390 3.070 2.685 2.510 3.252 3.201 3.201 2.569 
0.741 0.549 2.359 1.725 1.011 3.354 2.854 4.180 1.612 2.420 0.617 
0.002 0.306 0.306 1.797 0.855 1.060 1.972 1.331 0.617 0.617 0.617 
0.799 0.741 0.855 1.331 0.855 2.990 0.961 1.415 0.396 0.549 2.963 
0.002 0.196 1.612 2.798 1.496 2.540 1.761 3.017 1.938 0.002 2.685 

NA 0.002 1.612 3.429 1.288 2.072 1.154 0.681 0.002 3.096 2.202 
NA 1.200 1.200 3.577 1.011 1.011 2.627 1.373 2.798 0.002 2.072 
NA 1.154 0.476 3.354 1.833 1.331 1.833 2.770 2.328 2.826 1.833 
NA 0.961 0.741 1.245 1.938 0.002 2.826 1.938 1.938 2.266 2.798 
NA 0.196 0.909 1.108 0.476 3.908 2.540 1.108 1.868 2.234 2.297 
NA 0.741 0.196 2.105 0.002 3.329 2.105 1.108 2.742 2.420 1.833 
NA 0.681 1.108 1.060 0.002 3.379 2.266 2.390 1.200 2.713 2.390 
NA 0.476 NA 0.196 0.855 2.798 3.043 2.627 0.855 1.688 2.072 
NA 0.306 NA 2.297 0.855 2.627 2.936 2.390 1.650 1.650 2.328 
NA 0.002 NA 1.650 0.396 3.070 2.510 1.868 3.768 2.798 2.138 
NA 0.741 NA NA 0.741 2.881 2.328 0.396 1.060 2.297 2.105 
NA 0.741 NA NA 1.574 NA 2.742 0.002 2.328 1.688 0.549 
NA 0.681 NA NA NA NA 0.002 0.002 1.011 2.266 1.373 
NA 0.396 NA NA NA NA 0.002 2.390 1.011 1.868 3.649 
NA 1.011 NA NA NA NA 1.797 1.833 0.306 3.096 1.612 
NA NA NA NA NA NA 0.681 0.002 0.002 2.359 1.612 
NA NA NA NA NA NA 0.002 1.011 0.002 0.681 1.108 
NA NA NA NA NA NA 2.072 0.002 3.649 2.105 1.415 
NA NA NA NA NA NA NA 0.002 NA 0.549 0.617 
NA NA NA NA NA NA NA 2.598 NA 0.549 0.002 
NA NA NA NA NA NA NA NA NA 2.798 0.855 
NA NA NA NA NA NA NA NA NA NA 3.201 

 
 
l.fau=structure(.Data=c( 
1,18,3,101,63,74,91,79,57,75,64, 
... (see table below for full data set) 
),.Dim=c(28,11)), 
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1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
1 18 3 101 63 74 91 79 57 75 64 

13 34 3 50 74 60 54 81 79 79 56 
8 5 49 30 13 85 66 120 27 51 6 
1 2 2 32 10 14 37 20 6 6 6 
9 8 10 20 10 71 12 22 3 5 70 
1 1 27 64 24 55 31 72 36 1 60 

NA 1 27 88 19 40 16 7 1 75 44 
NA 17 17 94 13 13 58 21 64 1 40 
NA 16 4 85 33 20 33 63 48 65 33 
NA 12 8 18 36 1 65 36 36 46 64 
NA 1 11 15 4 108 55 15 34 45 47 
NA 8 1 41 1 84 41 15 62 51 33 
NA 7 15 14 1 86 46 50 17 61 50 
NA 4 NA 1 10 64 73 58 10 29 40 
NA 2 NA 47 10 58 69 50 28 28 48 
NA 1 NA 28 3 74 54 34 102 64 42 
NA 8 NA NA 8 67 48 3 14 47 41 
NA 8 NA NA 26 NA 62 1 48 29 5 
NA 7 NA NA NA NA 1 1 13 46 21 
NA 3 NA NA NA NA 1 50 13 34 97 
NA 13 NA NA NA NA 32 33 2 75 27 
NA NA NA NA NA NA 7 1 1 49 27 
NA NA NA NA NA NA 1 13 1 7 15 
NA NA NA NA NA NA 40 1 97 41 22 
NA NA NA NA NA NA NA 1 NA 5 6 
NA NA NA NA NA NA NA 57 NA 5 1 
NA NA NA NA NA NA NA NA NA 64 10 
NA NA NA NA NA NA NA NA NA NA 79 

 
# inits for finn sites densities, column: years  
d.fin=structure(.Data=c( 
1.200,0.002,0.549,1.373,0.002,0.002,1.245,1.496,0.961,0.306,1.761, 
... (see table below for full data set)  
),.Dim=c(49,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
1.200 0.002 0.549 1.373 0.002 0.002 1.245 1.496 0.961 0.306 1.761 
0.741 0.002 0.002 0.306 0.196 0.002 1.415 1.373 0.799 0.741 2.234 
0.002 0.002 0.196 0.002 0.855 0.002 0.855 1.972 1.245 1.797 1.154 
1.108 0.002 0.002 0.002 0.306 0.002 1.331 1.288 1.011 1.761 0.476 
1.245 0.396 0.002 0.002 0.741 0.002 1.288 0.799 0.476 2.072 0.681 
0.961 0.617 0.196 0.681 0.306 0.549 0.549 1.108 0.002 0.002 1.108 
0.396 0.549 0.002 0.196 0.002 0.617 0.002 1.725 0.002 1.797 0.799 
1.108 0.476 0.002 0.306 NA 0.799 0.681 1.761 0.002 1.288 1.415 
0.855 0.002 0.306 0.396 NA 0.855 0.396 1.535 0.396 1.688 0.002 
0.855 0.002 0.002 0.396 NA 0.549 0.855 1.060 0.002 1.108 1.415 
0.741 0.002 1.245 0.476 NA 0.396 0.855 1.331 0.002 1.938 1.108 
0.855 0.476 0.396 0.549 NA 0.681 0.909 1.060 0.799 0.002 1.761 
0.681 0.741 0.961 0.617 NA 1.288 1.373 1.331 0.002 0.306 0.741 
1.011 0.681 0.476 0.002 NA 0.002 1.574 1.535 0.002 0.002 1.108 
0.961 0.549 0.476 0.909 NA 0.741 1.415 NA 0.196 0.196 0.476 
1.245 0.196 0.909 1.535 NA 0.396 0.909 NA 0.617 0.306 0.617 
0.961 0.549 0.396 1.060 NA 0.549 1.903 NA 0.002 1.797 0.002 
0.909 1.688 0.306 1.108 NA 0.549 1.688 NA 0.002 2.072 1.574 
1.535 0.799 NA 0.002 NA 0.617 2.170 NA 0.002 0.002 1.154 
1.200 1.288 NA 0.002 NA 0.741 0.396 NA 1.060 1.108 2.202 
1.154 0.961 NA 0.306 NA 0.681 0.306 NA 0.961 0.306 1.455 
0.961 0.002 NA 0.002 NA 0.799 0.002 NA 0.741 0.002 0.617 
0.961 0.617 NA 0.002 NA 0.306 0.002 NA 0.549 0.617 1.154 
0.909 0.617 NA NA NA 0.196 0.002 NA 0.002 0.002 0.741 
1.373 0.002 NA NA NA NA 1.200 NA 0.002 0.909 0.002 
0.681 0.002 NA NA NA NA 1.797 NA 1.200 0.002 0.617 
1.373 0.002 NA NA NA NA 1.200 NA NA 0.002 0.002 
1.373 0.002 NA NA NA NA 1.011 NA NA 0.617 0.002 
1.011 1.108 NA NA NA NA 1.245 NA NA 1.373 0.617 
1.154 0.617 NA NA NA NA NA NA NA 1.725 0.909 
0.741 0.855 NA NA NA NA NA NA NA 1.373 1.011 
0.855 1.761 NA NA NA NA NA NA NA 1.060 0.002 

NA 1.108 NA NA NA NA NA NA NA 0.306 0.002 
NA 1.574 NA NA NA NA NA NA NA 1.373 1.288 
NA 0.855 NA NA NA NA NA NA NA 0.396 1.903 
NA 1.011 NA NA NA NA NA NA NA 0.396 1.612 
NA 0.002 NA NA NA NA NA NA NA 0.002 0.476 
NA 0.002 NA NA NA NA NA NA NA 0.002 0.476 
NA 0.002 NA NA NA NA NA NA NA 0.855 1.154 
NA 0.196 NA NA NA NA NA NA NA 2.138 0.855 
NA 0.196 NA NA NA NA NA NA NA 2.072 0.002 
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NA 1.725 NA NA NA NA NA NA NA 2.006 1.245 
NA 0.855 NA NA NA NA NA NA NA 0.002 0.476 
NA 1.011 NA NA NA NA NA NA NA 0.002 0.476 
NA 0.681 NA NA NA NA NA NA NA 1.288 1.331 
NA 0.396 NA NA NA NA NA NA NA 1.331 0.549 
NA NA NA NA NA NA NA NA NA 0.396 0.002 
NA NA NA NA NA NA NA NA NA 0.306 1.331 
NA NA NA NA NA NA NA NA NA NA 1.060 

 
 
l.fin=structure(.Data=c( 
17,1,5,21,1,1,18,24,12,2,31, 
... (see table below for full data set) 
),.Dim=c(49,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

17 1 5 21 1 1 18 24 12 2 31 
8 1 1 2 1 1 22 21 9 8 45 
1 1 1 1 10 1 10 37 18 32 16 

15 1 1 1 2 1 20 19 13 31 4 
18 3 1 1 8 1 19 9 4 40 7 
12 6 1 7 2 5 5 15 1 1 15 
3 5 1 1 1 6 1 30 1 32 9 

15 4 1 2 NA 9 7 31 1 19 22 
10 1 2 3 NA 10 3 25 3 29 1 
10 1 1 3 NA 5 10 14 1 15 22 
8 1 18 4 NA 3 10 20 1 36 15 

10 4 3 5 NA 7 11 14 9 1 31 
7 8 12 6 NA 19 21 20 1 2 8 

13 7 4 1 NA 1 26 25 1 1 15 
12 5 4 11 NA 8 22 NA 1 1 4 
18 1 11 25 NA 3 11 NA 6 2 6 
12 5 3 14 NA 5 35 NA 1 32 1 
11 29 2 15 NA 5 29 NA 1 40 26 
25 9 NA 1 NA 6 43 NA 1 1 16 
17 19 NA 1 NA 8 3 NA 14 15 44 
16 12 NA 2 NA 7 2 NA 12 2 23 
12 1 NA 1 NA 9 1 NA 8 1 6 
12 6 NA 1 NA 2 1 NA 5 6 16 
11 6 NA NA NA 1 1 NA 1 1 8 
21 1 NA NA NA NA 17 NA 1 11 1 
7 1 NA NA NA NA 32 NA 17 1 6 

21 1 NA NA NA NA 17 NA NA 1 1 
21 1 NA NA NA NA 13 NA NA 6 1 
13 15 NA NA NA NA 18 NA NA 21 6 
16 6 NA NA NA NA NA NA NA 30 11 
8 10 NA NA NA NA NA NA NA 21 13 

10 31 NA NA NA NA NA NA NA 14 1 
NA 15 NA NA NA NA NA NA NA 2 1 
NA 26 NA NA NA NA NA NA NA 21 19 
NA 10 NA NA NA NA NA NA NA 3 35 
NA 13 NA NA NA NA NA NA NA 3 27 
NA 1 NA NA NA NA NA NA NA 1 4 
NA 1 NA NA NA NA NA NA NA 1 4 
NA 1 NA NA NA NA NA NA NA 10 16 
NA 1 NA NA NA NA NA NA NA 42 10 
NA 1 NA NA NA NA NA NA NA 40 1 
NA 30 NA NA NA NA NA NA NA 38 18 
NA 10 NA NA NA NA NA NA NA 1 4 
NA 13 NA NA NA NA NA NA NA 1 4 
NA 7 NA NA NA NA NA NA NA 19 20 
NA 3 NA NA NA NA NA NA NA 20 5 
NA NA NA NA NA NA NA NA NA 3 1 
NA NA NA NA NA NA NA NA NA 2 20 
NA NA NA NA NA NA NA NA NA NA 14 

 
 
# inits for finn sites densities, column: years  
d.mou=structure(.Data=c( 
NA,0.002,0.476,0.306,0.002,0.855,3.096,0.196,0.306,0.002,0.002, 
... (see table below for full data set) 
),.Dim=c(216,11)), 
 

 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
NA 0.002 0.476 0.306 0.002 0.855 3.096 0.196 0.306 0.002 0.002 
NA 0.002 0.196 0.909 1.725 0.002 1.903 0.002 0.002 0.002 0.476 
NA 0.306 0.002 0.002 1.833 0.002 2.138 2.420 0.002 0.855 0.196 
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NA 0.961 0.002 0.002 0.002 0.002 0.909 1.574 1.574 0.002 0.549 
NA 1.154 0.002 1.245 0.002 0.002 1.060 2.480 1.797 2.359 1.108 
NA 1.011 0.549 1.650 0.002 1.574 0.961 0.002 2.770 1.011 1.060 
NA 1.245 0.002 0.002 0.396 0.396 0.002 0.002 0.002 2.328 0.002 
NA 1.373 0.002 0.002 0.306 0.002 1.761 0.002 0.002 0.002 0.002 
NA 0.681 0.002 0.002 0.196 0.002 0.855 0.002 0.002 0.002 0.002 
NA 0.306 0.002 0.002 0.396 0.002 0.002 0.002 0.002 0.002 0.002 
NA 0.002 0.002 0.002 0.909 0.002 1.245 0.002 0.002 0.002 0.002 
NA 0.002 0.549 1.154 1.496 1.108 1.535 1.060 0.002 0.002 0.002 
NA 0.002 0.549 1.331 0.741 1.496 1.725 0.549 0.002 0.002 0.002 
NA 0.002 1.060 0.799 0.799 1.496 1.154 0.476 1.415 0.617 0.549 
NA 0.002 0.909 0.681 0.002 1.688 0.617 0.306 0.741 0.909 0.306 
NA 0.002 0.617 0.741 0.002 0.476 1.245 1.060 0.306 0.681 0.002 
NA 0.002 0.961 0.617 0.549 1.245 0.617 0.681 1.154 1.761 0.799 
NA 0.002 0.306 0.476 0.002 1.535 0.549 0.396 1.373 1.415 0.741 
NA 0.855 0.476 1.833 1.200 1.011 0.476 0.002 0.799 1.373 0.549 
NA 0.002 0.306 1.903 1.245 1.535 0.306 0.909 0.002 0.196 1.154 
NA 0.002 0.476 2.039 0.799 1.415 0.681 0.396 0.196 0.549 0.196 
NA 0.002 0.549 1.288 0.855 1.373 0.002 1.245 0.476 0.396 0.306 
NA 0.002 1.060 0.549 1.455 1.725 0.476 0.961 1.612 0.196 0.961 
NA 0.002 0.681 1.725 0.681 0.799 0.002 0.741 1.612 0.002 1.725 
NA 0.002 0.855 0.855 1.060 1.535 0.306 1.011 1.972 0.549 1.650 
NA 0.002 0.549 1.868 0.741 0.961 0.002 0.617 0.855 0.396 1.011 
NA 0.002 0.002 1.415 0.681 0.961 0.196 0.306 1.496 1.650 0.799 
NA NA 0.306 1.200 1.011 1.108 0.741 0.855 1.868 0.855 0.617 
NA NA 0.002 0.617 0.855 1.797 0.306 1.011 2.006 0.617 0.196 
NA NA 0.002 1.903 0.855 1.108 0.396 1.011 1.797 0.617 0.196 
NA NA 0.002 1.288 0.961 1.245 0.306 2.138 1.797 1.415 0.196 
NA NA 0.476 0.799 1.574 2.685 0.476 0.002 0.549 1.060 0.549 
NA NA NA 1.011 0.909 1.761 0.002 0.002 0.681 0.476 0.196 
NA NA NA 0.855 1.331 1.612 0.002 0.002 2.685 0.741 0.002 
NA NA NA 0.617 1.455 3.454 0.002 0.799 2.138 1.108 0.002 
NA NA NA 1.200 0.476 2.202 0.002 1.331 1.725 0.002 0.961 
NA NA NA 1.797 0.396 1.108 0.741 1.011 0.306 0.396 0.002 
NA NA NA 2.105 1.331 0.855 0.961 0.909 0.002 0.741 0.476 
NA NA NA 2.006 0.002 0.681 1.455 0.396 0.909 1.288 0.855 
NA NA NA 1.245 0.002 0.306 1.650 0.002 0.306 0.961 0.002 
NA NA NA 0.961 1.455 1.011 2.627 0.002 1.154 0.476 1.108 
NA NA NA 1.415 2.105 0.617 2.881 0.961 1.331 1.972 0.002 
NA NA NA 1.200 0.961 0.741 0.617 0.306 0.961 1.200 0.002 
NA NA NA 0.799 0.002 0.476 1.245 0.002 0.396 1.108 1.060 
NA NA NA 0.617 0.002 0.476 1.725 0.002 0.681 1.535 1.108 
NA NA NA 1.972 1.200 0.306 1.496 0.002 1.688 1.761 0.617 
NA NA NA 0.799 0.549 0.617 1.496 0.002 2.936 1.725 0.961 
NA NA NA 0.002 0.681 0.002 1.455 2.450 1.373 1.612 1.154 
NA NA NA 0.476 0.196 0.002 1.688 1.154 1.245 1.797 0.961 
NA NA NA 0.002 0.681 0.002 0.306 0.681 2.963 1.200 0.002 
NA NA NA 0.002 0.306 0.002 0.002 0.002 1.154 1.331 0.002 
NA NA NA 0.306 1.761 0.396 0.681 1.972 0.617 0.961 0.799 
NA NA NA 0.961 0.799 0.306 0.196 2.540 0.306 1.011 1.903 
NA NA NA 0.549 1.245 0.476 0.476 3.429 0.196 1.650 0.002 
NA NA NA 0.617 0.396 0.549 0.002 2.742 0.002 1.938 0.476 
NA NA NA 0.909 1.373 0.396 0.681 2.881 0.549 0.617 0.476 
NA NA NA 1.496 0.549 0.681 0.396 1.761 1.415 0.476 0.476 
NA NA NA 0.909 1.688 1.288 0.306 1.154 2.072 0.002 0.396 
NA NA NA 0.681 2.039 1.011 0.396 1.245 0.681 0.549 1.060 
NA NA NA 1.154 2.480 0.681 0.002 1.060 1.797 0.002 1.011 
NA NA NA 0.002 1.288 0.549 0.002 0.002 1.415 0.002 1.245 
NA NA NA 0.002 0.909 0.196 0.002 1.535 1.938 1.245 0.855 
NA NA NA 0.002 1.373 1.060 0.002 0.549 2.006 0.002 0.617 
NA NA NA 0.002 1.245 1.245 0.002 4.225 0.196 1.108 0.799 
NA NA NA 0.196 0.002 0.396 0.002 0.002 0.002 2.510 0.396 
NA NA NA 0.002 0.306 0.681 0.002 0.002 0.549 0.306 0.306 
NA NA NA 0.002 0.002 0.396 0.002 0.002 0.196 2.627 0.306 
NA NA NA 0.617 0.002 0.476 0.002 0.002 0.196 2.006 0.476 
NA NA NA 0.002 0.396 0.617 0.002 0.002 0.396 1.612 0.196 
NA NA NA 0.002 0.306 0.196 0.002 0.002 0.396 1.154 0.396 
NA NA NA 0.002 0.002 0.549 0.002 0.002 0.476 1.200 0.741 
NA NA NA 2.266 0.002 0.196 0.002 0.002 0.681 1.200 1.245 
NA NA NA 0.476 0.002 0.002 0.002 0.002 1.455 1.245 0.002 
NA NA NA 0.549 0.196 0.306 0.002 0.306 0.617 1.060 0.002 
NA NA NA 1.011 0.196 0.681 1.200 0.681 0.617 0.002 0.002 
NA NA NA 0.002 0.002 0.002 0.196 0.961 0.961 0.002 0.002 
NA NA NA 0.306 0.396 1.060 1.011 1.833 0.909 0.196 0.002 
NA NA NA 0.002 1.455 1.245 1.415 0.002 0.396 0.476 0.002 
NA NA NA 0.002 0.306 0.617 1.938 1.535 0.617 0.681 0.002 
NA NA NA 0.196 1.725 0.855 1.011 1.725 1.011 0.617 0.002 
NA NA NA 1.245 1.331 1.688 1.496 1.108 0.855 0.306 0.002 
NA NA NA 0.799 1.288 2.072 1.797 1.288 0.476 0.549 0.002 
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NA NA NA 1.331 1.331 1.797 1.938 0.961 0.396 1.200 0.002 
NA NA NA 0.961 0.799 2.006 1.496 0.002 0.396 1.011 0.002 
NA NA NA 1.011 1.011 0.617 0.196 0.002 0.196 1.108 0.002 
NA NA NA 1.725 0.002 2.039 1.200 0.196 1.060 1.415 1.650 
NA NA NA 0.396 0.002 1.797 1.761 0.002 0.617 0.855 1.373 
NA NA NA 1.612 0.002 2.234 1.574 0.196 0.306 2.390 1.574 
NA NA NA 1.415 0.002 2.006 0.196 0.306 0.196 1.688 0.617 
NA NA NA 1.154 0.002 1.245 0.002 1.245 0.196 3.096 1.903 
NA NA NA 1.060 0.002 1.373 0.002 2.569 0.002 0.476 1.688 
NA NA NA 0.396 0.002 0.961 0.002 1.688 0.002 0.002 0.681 
NA NA NA 0.681 0.002 1.535 1.245 1.797 0.002 0.306 0.549 
NA NA NA 1.200 0.196 0.855 1.612 3.577 0.002 0.549 1.725 
NA NA NA 1.011 0.196 0.909 2.006 1.725 0.476 0.396 2.006 
NA NA NA 0.909 0.196 0.002 0.196 0.002 0.396 0.549 1.373 
NA NA NA 1.496 0.002 0.396 0.002 0.306 1.535 0.617 0.961 
NA NA NA 1.373 0.002 1.245 0.002 0.306 1.688 2.598 1.200 
NA NA NA 0.961 0.002 1.612 0.002 1.496 1.868 0.476 1.373 
NA NA NA 0.549 0.002 0.002 0.002 0.002 1.245 0.799 1.612 
NA NA NA 0.799 0.002 0.002 0.002 0.002 1.868 0.002 1.725 
NA NA NA 1.108 0.476 0.002 0.002 1.574 2.826 0.002 1.797 
NA NA NA 0.799 0.681 0.002 0.002 2.039 2.450 0.002 2.006 
NA NA NA 0.306 1.415 0.396 0.002 1.288 1.972 0.476 0.002 
NA NA NA 0.617 0.549 1.011 0.909 0.196 1.688 0.549 0.476 
NA NA NA 1.154 0.681 0.306 1.011 0.741 2.170 0.196 0.002 
NA NA NA NA 1.011 0.002 1.245 2.202 1.496 0.002 0.002 
NA NA NA NA 1.415 0.002 1.108 2.105 1.903 0.002 0.002 
NA NA NA NA 1.373 0.002 1.415 1.833 3.862 0.002 0.306 
NA NA NA NA 0.799 0.002 1.288 1.833 2.540 0.002 0.002 
NA NA NA NA 0.961 0.741 0.002 1.496 3.278 0.476 0.196 
NA NA NA NA 0.855 0.002 0.909 0.476 3.885 0.396 0.002 
NA NA NA NA 0.681 0.617 0.855 0.002 3.070 0.002 0.002 
NA NA NA NA 0.549 0.617 0.002 0.002 2.450 0.306 0.002 
NA NA NA NA 0.681 0.476 1.331 2.138 2.881 0.681 0.002 
NA NA NA NA 0.306 0.002 0.741 2.039 2.234 0.002 0.741 
NA NA NA NA 0.002 0.002 1.938 2.598 2.170 0.002 0.741 
NA NA NA NA 0.306 0.002 1.200 0.681 0.002 0.002 0.909 
NA NA NA NA 0.306 0.002 1.011 0.002 0.002 0.002 1.245 
NA NA NA NA 0.396 0.855 1.535 0.476 1.455 0.002 0.681 
NA NA NA NA 1.288 0.855 1.938 1.455 0.855 0.196 0.549 
NA NA NA NA 0.306 0.741 1.535 0.002 0.002 0.617 0.549 
NA NA NA NA 0.002 1.288 1.938 0.396 2.039 0.306 0.741 
NA NA NA NA 0.196 0.617 2.881 0.306 0.681 1.496 0.961 
NA NA NA NA 0.396 0.741 2.266 0.306 0.549 0.681 0.306 
NA NA NA NA 0.002 0.855 1.373 0.396 1.496 1.200 0.002 
NA NA NA NA 0.002 0.617 0.549 0.396 0.196 0.855 0.002 
NA NA NA NA 0.002 0.855 0.002 1.574 0.476 0.741 0.002 
NA NA NA NA 0.476 1.797 1.612 1.154 1.938 2.105 0.306 
NA NA NA NA 0.476 0.741 0.549 1.288 1.650 1.903 1.011 
NA NA NA NA 0.799 0.741 1.154 1.060 2.770 2.006 0.396 
NA NA NA NA 0.476 1.496 0.002 1.060 1.612 1.725 NA 
NA NA NA NA 0.549 1.060 0.741 0.741 1.868 2.138 NA 
NA NA NA NA 0.549 0.617 0.549 0.741 1.108 3.815 NA 
NA NA NA NA 0.617 0.476 0.002 1.200 1.154 1.688 NA 
NA NA NA NA 0.681 1.108 1.331 0.961 0.002 2.297 NA 
NA NA NA NA 1.011 0.617 1.331 0.476 0.681 1.688 NA 
NA NA NA NA NA 0.681 1.373 0.476 0.306 1.108 NA 
NA NA NA NA NA 0.741 1.245 0.002 0.396 1.288 NA 
NA NA NA NA NA 0.306 0.681 0.196 0.396 1.108 NA 
NA NA NA NA NA 0.476 0.002 0.002 0.196 0.396 NA 
NA NA NA NA NA 0.476 1.688 0.196 0.002 0.196 NA 
NA NA NA NA NA 0.306 0.002 0.396 0.196 0.196 NA 
NA NA NA NA NA 0.476 1.761 0.306 0.476 0.002 NA 
NA NA NA NA NA 0.002 0.002 NA 0.002 1.797 NA 
NA NA NA NA NA 0.306 1.108 NA 0.002 1.331 NA 
NA NA NA NA NA 0.196 0.909 NA 0.002 2.656 NA 
NA NA NA NA NA 0.196 0.196 NA 0.306 0.002 NA 
NA NA NA NA NA NA 1.011 NA 0.396 2.936 NA 
NA NA NA NA NA NA NA NA 0.476 1.535 NA 
NA NA NA NA NA NA NA NA 0.002 0.799 NA 
NA NA NA NA NA NA NA NA 0.002 1.761 NA 
NA NA NA NA NA NA NA NA 0.196 1.060 NA 
NA NA NA NA NA NA NA NA 0.002 1.200 NA 
NA NA NA NA NA NA NA NA 0.306 1.574 NA 
NA NA NA NA NA NA NA NA NA 0.799 NA 
NA NA NA NA NA NA NA NA NA 0.306 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.306 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.799 NA 
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NA NA NA NA NA NA NA NA NA 1.011 NA 
NA NA NA NA NA NA NA NA NA 1.833 NA 
NA NA NA NA NA NA NA NA NA 0.306 NA 
NA NA NA NA NA NA NA NA NA 2.881 NA 
NA NA NA NA NA NA NA NA NA 0.961 NA 
NA NA NA NA NA NA NA NA NA 2.234 NA 
NA NA NA NA NA NA NA NA NA 0.961 NA 
NA NA NA NA NA NA NA NA NA 0.855 NA 
NA NA NA NA NA NA NA NA NA 0.396 NA 
NA NA NA NA NA NA NA NA NA 1.725 NA 
NA NA NA NA NA NA NA NA NA 0.396 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.306 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 1.797 NA 
NA NA NA NA NA NA NA NA NA 1.903 NA 
NA NA NA NA NA NA NA NA NA 1.797 NA 
NA NA NA NA NA NA NA NA NA 1.060 NA 
NA NA NA NA NA NA NA NA NA 2.138 NA 
NA NA NA NA NA NA NA NA NA 2.170 NA 
NA NA NA NA NA NA NA NA NA 2.006 NA 
NA NA NA NA NA NA NA NA NA 0.681 NA 
NA NA NA NA NA NA NA NA NA 1.011 NA 
NA NA NA NA NA NA NA NA NA 2.039 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 1.455 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.741 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.855 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.476 NA 
NA NA NA NA NA NA NA NA NA 0.909 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.681 NA 
NA NA NA NA NA NA NA NA NA 0.306 NA 
NA NA NA NA NA NA NA NA NA 0.617 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.476 NA 
NA NA NA NA NA NA NA NA NA 0.799 NA 
NA NA NA NA NA NA NA NA NA 0.681 NA 
NA NA NA NA NA NA NA NA NA 0.961 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 1.060 NA 
NA NA NA NA NA NA NA NA NA 0.396 NA 
NA NA NA NA NA NA NA NA NA 1.245 NA 
NA NA NA NA NA NA NA NA NA 0.476 NA 
NA NA NA NA NA NA NA NA NA 0.196 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 0.196 NA 
NA NA NA NA NA NA NA NA NA 0.549 NA 
NA NA NA NA NA NA NA NA NA 0.681 NA 

 
 
l.mou=structure(.Data=c( 
NA,1,4,2,1,10,75,1,2,1,1, 
... (see table below for full data set) 
),.Dim=c(216,11)), 
 

 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
NA 1 4 2 1 10 75 1 2 1 1 
NA 1 1 11 30 1 35 1 1 1 4 
NA 2 1 1 33 1 42 51 1 10 1 
NA 12 1 1 1 1 11 26 26 1 5 
NA 16 1 18 1 1 14 53 32 49 15 
NA 13 5 28 1 26 12 1 63 13 14 
NA 18 1 1 3 3 1 1 1 48 1 
NA 21 1 1 2 1 31 1 1 1 1 
NA 7 1 1 1 1 10 1 1 1 1 
NA 2 1 1 3 1 1 1 1 1 1 
NA 1 1 1 11 1 18 1 1 1 1 
NA 1 5 16 24 15 25 14 1 1 1 
NA 1 5 20 8 24 30 5 1 1 1 
NA 1 14 9 9 24 16 4 22 6 5 
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NA 1 11 7 1 29 6 2 8 11 2 
NA 1 6 8 1 4 18 14 2 7 1 
NA 1 12 6 5 18 6 7 16 31 9 
NA 1 2 4 1 25 5 3 21 22 8 
NA 10 4 33 17 13 4 1 9 21 5 
NA 1 2 35 18 25 2 11 1 1 16 
NA 1 4 39 9 22 7 3 1 5 1 
NA 1 5 19 10 21 1 18 4 3 2 
NA 1 14 5 23 30 4 12 27 1 12 
NA 1 7 30 7 9 1 8 27 1 30 
NA 1 10 10 14 25 2 13 37 5 28 
NA 1 5 34 8 12 1 6 10 3 13 
NA 1 1 22 7 12 1 2 24 28 9 
NA NA 2 17 13 15 8 10 34 10 6 
NA NA 1 6 10 32 2 13 38 6 1 
NA NA 1 35 10 15 3 13 32 6 1 
NA NA 1 19 12 18 2 42 32 22 1 
NA NA 4 9 26 60 4 1 5 14 5 
NA NA NA 13 11 31 1 1 7 4 1 
NA NA NA 10 20 27 1 1 60 8 1 
NA NA NA 6 23 89 1 9 42 15 1 
NA NA NA 17 4 44 1 20 30 1 12 
NA NA NA 32 3 15 8 13 2 3 1 
NA NA NA 41 20 10 12 11 1 8 4 
NA NA NA 38 1 7 23 3 11 19 10 
NA NA NA 18 1 2 28 1 2 12 1 
NA NA NA 12 23 13 58 1 16 4 15 
NA NA NA 22 41 6 67 12 20 37 1 
NA NA NA 17 12 8 6 2 12 17 1 
NA NA NA 9 1 4 18 1 3 15 14 
NA NA NA 6 1 4 30 1 7 25 15 
NA NA NA 37 17 2 24 1 29 31 6 
NA NA NA 9 5 6 24 1 69 30 12 
NA NA NA 1 7 1 23 52 21 27 16 
NA NA NA 4 1 1 29 16 18 32 12 
NA NA NA 1 7 1 2 7 70 17 1 
NA NA NA 1 2 1 1 1 16 20 1 
NA NA NA 2 31 3 7 37 6 12 9 
NA NA NA 12 9 2 1 55 2 13 35 
NA NA NA 5 18 4 4 88 1 28 1 
NA NA NA 6 3 5 1 62 1 36 4 
NA NA NA 11 21 3 7 67 5 6 4 
NA NA NA 24 5 7 3 31 22 4 4 
NA NA NA 11 29 19 2 16 40 1 3 
NA NA NA 7 39 13 3 18 7 5 14 
NA NA NA 16 53 7 1 14 32 1 13 
NA NA NA 1 19 5 1 1 22 1 18 
NA NA NA 1 11 1 1 25 36 18 10 
NA NA NA 1 21 14 1 5 38 1 6 
NA NA NA 1 18 18 1 122 1 15 9 
NA NA NA 1 1 3 1 1 1 54 3 
NA NA NA 1 2 7 1 1 5 2 2 
NA NA NA 1 1 3 1 1 1 58 2 
NA NA NA 6 1 4 1 1 1 38 4 
NA NA NA 1 3 6 1 1 3 27 1 
NA NA NA 1 2 1 1 1 3 16 3 
NA NA NA 1 1 5 1 1 4 17 8 
NA NA NA 46 1 1 1 1 7 17 18 
NA NA NA 4 1 1 1 1 23 18 1 
NA NA NA 5 1 2 1 2 6 14 1 
NA NA NA 13 1 7 17 7 6 1 1 
NA NA NA 1 1 1 1 12 12 1 1 
NA NA NA 2 3 14 13 33 11 1 1 
NA NA NA 1 23 18 22 1 3 4 1 
NA NA NA 1 2 6 36 25 6 7 1 
NA NA NA 1 30 10 13 30 13 6 1 
NA NA NA 18 20 29 24 15 10 2 1 
NA NA NA 9 19 40 32 19 4 5 1 
NA NA NA 20 20 32 36 12 3 17 1 
NA NA NA 12 9 38 24 1 3 13 1 
NA NA NA 13 13 6 1 1 1 15 1 
NA NA NA 30 1 39 17 1 14 22 28 
NA NA NA 3 1 32 31 1 6 10 21 
NA NA NA 27 1 45 26 1 2 50 26 
NA NA NA 22 1 38 1 2 1 29 6 
NA NA NA 16 1 18 1 18 1 75 35 
NA NA NA 14 1 21 1 56 1 4 29 
NA NA NA 3 1 12 1 29 1 1 7 
NA NA NA 7 1 25 18 32 1 2 5 
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NA NA NA 17 1 10 27 94 1 5 30 
NA NA NA 13 1 11 38 30 4 3 38 
NA NA NA 11 1 1 1 1 3 5 21 
NA NA NA 24 1 3 1 2 25 6 12 
NA NA NA 21 1 18 1 2 29 57 17 
NA NA NA 12 1 27 1 24 34 4 21 
NA NA NA 5 1 1 1 1 18 9 27 
NA NA NA 9 1 1 1 1 34 1 30 
NA NA NA 15 4 1 1 26 65 1 32 
NA NA NA 9 7 1 1 39 52 1 38 
NA NA NA 2 22 3 1 19 37 4 1 
NA NA NA 6 5 13 11 1 29 5 4 
NA NA NA 16 7 2 13 8 43 1 1 
NA NA NA NA 13 1 18 44 24 1 1 
NA NA NA NA 22 1 15 41 35 1 1 
NA NA NA NA 21 1 22 33 106 1 2 
NA NA NA NA 9 1 19 33 55 1 1 
NA NA NA NA 12 8 1 24 82 4 1 
NA NA NA NA 10 1 11 4 107 3 1 
NA NA NA NA 7 6 10 1 74 1 1 
NA NA NA NA 5 6 1 1 52 2 1 
NA NA NA NA 7 4 20 42 67 7 1 
NA NA NA NA 2 1 8 39 45 1 8 
NA NA NA NA 1 1 36 57 43 1 8 
NA NA NA NA 2 1 17 7 1 1 11 
NA NA NA NA 2 1 13 1 1 1 18 
NA NA NA NA 3 10 25 4 23 1 7 
NA NA NA NA 19 10 36 23 10 1 5 
NA NA NA NA 2 8 25 1 1 6 5 
NA NA NA NA 1 19 36 3 39 2 8 
NA NA NA NA 1 6 67 2 7 24 12 
NA NA NA NA 3 8 46 2 5 7 2 
NA NA NA NA 1 10 21 3 24 17 1 
NA NA NA NA 1 6 5 3 1 10 1 
NA NA NA NA 1 10 1 26 4 8 1 
NA NA NA NA 4 32 27 16 36 41 2 
NA NA NA NA 4 8 5 19 28 35 13 
NA NA NA NA 9 8 16 14 63 38 3 
NA NA NA NA 4 24 1 14 27 30 NA 
NA NA NA NA 5 14 8 8 34 42 NA 
NA NA NA NA 5 6 5 8 15 104 NA 
NA NA NA NA 6 4 1 17 16 29 NA 
NA NA NA NA 7 15 20 12 1 47 NA 
NA NA NA NA 13 6 20 4 7 29 NA 
NA NA NA NA NA 7 21 4 2 15 NA 
NA NA NA NA NA 8 18 1 3 19 NA 
NA NA NA NA NA 2 7 1 3 15 NA 
NA NA NA NA NA 4 1 1 1 3 NA 
NA NA NA NA NA 4 29 1 1 1 NA 
NA NA NA NA NA 2 1 3 1 1 NA 
NA NA NA NA NA 4 31 2 4 1 NA 
NA NA NA NA NA 1 1 NA 1 32 NA 
NA NA NA NA NA 2 15 NA 1 20 NA 
NA NA NA NA NA 1 11 NA 1 59 NA 
NA NA NA NA NA 1 1 NA 2 1 NA 
NA NA NA NA NA NA 13 NA 3 69 NA 
NA NA NA NA NA NA NA NA 4 25 NA 
NA NA NA NA NA NA NA NA 1 9 NA 
NA NA NA NA NA NA NA NA 1 31 NA 
NA NA NA NA NA NA NA NA 1 14 NA 
NA NA NA NA NA NA NA NA 1 17 NA 
NA NA NA NA NA NA NA NA 2 26 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 13 NA 
NA NA NA NA NA NA NA NA NA 33 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 67 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 45 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 10 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
NA NA NA NA NA NA NA NA NA 30 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
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NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 32 NA 
NA NA NA NA NA NA NA NA NA 35 NA 
NA NA NA NA NA NA NA NA NA 32 NA 
NA NA NA NA NA NA NA NA NA 14 NA 
NA NA NA NA NA NA NA NA NA 42 NA 
NA NA NA NA NA NA NA NA NA 43 NA 
NA NA NA NA NA NA NA NA NA 38 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 13 NA 
NA NA NA NA NA NA NA NA NA 39 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 23 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 8 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 10 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 11 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 2 NA 
NA NA NA NA NA NA NA NA NA 6 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 9 NA 
NA NA NA NA NA NA NA NA NA 7 NA 
NA NA NA NA NA NA NA NA NA 12 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 14 NA 
NA NA NA NA NA NA NA NA NA 3 NA 
NA NA NA NA NA NA NA NA NA 18 NA 
NA NA NA NA NA NA NA NA NA 4 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 5 NA 
NA NA NA NA NA NA NA NA NA 7 NA 

 
 
# inits for roe sites densities, column: years 
d.roe=structure(.Data=c( 
0.681,0.799,0.002,4.399,0.961,1.455,4.655,4.923,3.885,5.377,2.480, 
... (see table below for full data set) 
),.Dim=c(59,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
0.681 0.799 0.002 4.399 0.961 1.455 4.655 4.923 3.885 5.377 2.480 
0.909 1.612 0.909 0.909 1.761 2.826 1.415 1.288 1.415 1.612 3.792 
1.245 1.415 2.006 0.196 2.656 3.354 1.496 1.011 1.725 3.479 1.415 
1.200 0.617 1.868 3.977 3.429 2.510 2.420 3.528 5.681 2.390 1.868 
0.909 0.476 2.359 0.741 0.855 1.373 0.855 0.396 6.577 2.569 2.390 
1.200 0.549 2.138 1.725 1.060 2.450 3.227 7.521 1.972 3.017 2.569 
1.108 0.476 2.770 2.936 0.306 1.200 2.297 1.060 1.612 3.454 2.420 
1.011 1.373 2.105 1.938 1.060 0.799 1.797 1.725 2.234 2.540 2.170 
0.741 0.476 1.688 1.154 1.574 2.510 3.649 1.373 2.656 3.528 1.903 
0.909 0.549 0.002 1.373 1.060 1.154 2.540 1.373 2.598 2.450 1.868 
1.200 1.455 0.617 2.170 0.741 1.688 1.903 1.797 2.006 2.569 1.688 
0.909 1.154 1.108 0.549 1.761 0.002 5.143 3.625 1.938 2.908 1.245 
0.961 1.060 1.245 1.612 1.415 3.885 2.480 1.612 1.331 1.288 1.868 
1.200 0.961 5.511 2.039 1.455 2.908 3.175 2.881 0.396 0.617 1.833 
1.108 1.200 3.252 1.938 1.688 2.742 3.278 5.300 0.002 0.002 1.574 
0.306 1.011 1.154 0.617 1.200 1.108 4.696 1.455 0.306 1.535 1.011 
1.373 1.535 1.496 3.673 1.455 0.002 2.359 1.574 1.415 2.627 0.196 
0.681 0.002 0.855 3.303 0.002 0.855 2.540 2.598 3.577 1.612 0.002 
0.306 0.681 0.909 1.612 0.741 1.797 0.002 4.717 1.761 0.002 1.245 
0.476 1.415 1.612 3.625 0.002 0.476 0.002 3.227 0.617 1.200 2.713 
0.681 1.688 1.288 2.450 0.002 0.396 4.068 3.649 0.002 0.002 1.154 
0.741 0.306 0.617 1.535 0.002 0.617 1.574 2.770 0.617 0.002 0.617 
1.245 0.617 0.196 0.909 0.002 0.396 0.002 0.476 0.002 1.938 0.002 
1.154 2.854 1.288 0.002 1.761 0.476 0.476 0.002 0.741 1.373 0.002 
0.306 2.170 0.196 0.476 0.476 0.799 0.002 1.535 1.868 0.002 0.002 
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0.396 3.503 0.617 2.770 1.200 0.741 0.002 0.306 1.833 0.002 0.002 
0.681 2.420 0.306 3.070 0.476 2.072 0.002 0.002 0.002 0.396 0.002 

NA 2.202 0.196 1.331 0.002 0.002 2.328 0.002 0.396 0.002 0.002 
NA 3.931 0.549 1.373 0.549 0.799 2.540 3.303 0.002 0.002 1.903 
NA 2.598 0.196 2.420 0.741 1.415 1.200 1.797 0.002 0.002 1.060 
NA 2.170 0.196 0.961 NA 0.617 1.245 1.288 0.002 0.002 1.612 
NA 1.797 NA 0.476 NA 1.060 0.549 0.002 0.002 0.002 1.200 
NA 1.331 NA 0.002 NA 4.158 0.741 1.535 3.552 2.390 0.196 
NA 1.833 NA 0.002 NA 0.617 0.002 0.002 3.931 0.799 0.306 
NA 1.688 NA 0.002 NA 3.123 0.476 0.002 0.549 2.656 0.002 
NA 0.617 NA 0.002 NA 1.972 0.196 0.002 2.359 1.833 0.002 
NA 2.202 NA 0.002 NA NA 0.002 0.002 0.002 0.741 0.002 
NA 1.972 NA NA NA NA 0.002 0.002 0.196 0.002 2.990 
NA 2.202 NA NA NA NA 0.002 2.072 0.002 0.476 0.476 
NA 3.070 NA NA NA NA 0.961 2.039 0.002 0.002 1.688 
NA 1.688 NA NA NA NA 0.799 0.196 1.688 0.002 2.039 
NA 2.328 NA NA NA NA 0.002 0.002 0.196 0.002 2.138 
NA 4.046 NA NA NA NA NA 0.002 3.931 2.039 0.002 
NA 0.909 NA NA NA NA NA NA 2.359 0.681 1.612 
NA 1.415 NA NA NA NA NA NA 0.196 0.002 2.234 
NA 1.574 NA NA NA NA NA NA 2.072 5.280 2.770 
NA 0.741 NA NA NA NA NA NA 3.954 1.612 2.105 
NA 1.373 NA NA NA NA NA NA 2.072 0.306 1.650 
NA 1.797 NA NA NA NA NA NA 5.043 2.450 1.011 
NA 0.961 NA NA NA NA NA NA 4.634 3.954 2.006 
NA 5.681 NA NA NA NA NA NA 1.200 3.404 4.158 
NA 0.909 NA NA NA NA NA NA 0.617 3.278 1.612 
NA 1.833 NA NA NA NA NA NA 2.105 1.108 0.002 
NA NA NA NA NA NA NA NA 1.331 3.149 2.881 
NA NA NA NA NA NA NA NA 1.011 2.006 NA 
NA NA NA NA NA NA NA NA 4.136 2.569 NA 
NA NA NA NA NA NA NA NA 0.002 3.768 NA 
NA NA NA NA NA NA NA NA NA 0.002 NA 
NA NA NA NA NA NA NA NA NA 2.006 NA 

 
 
l.roe=structure(.Data=c( 
7,9,1,130,12,23,142,155,107,178,53, 
... (see table below for full data set) 
),.Dim=c(59,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

7 9 1 130 12 23 142 155 107 178 53 
11 27 11 11 31 65 22 19 22 27 103 
18 22 38 1 59 85 24 13 30 90 22 
17 6 34 111 88 54 51 92 194 50 34 
11 4 49 8 10 21 10 3 244 56 50 
17 5 42 30 14 52 80 301 37 72 56 
15 4 63 69 2 17 47 14 27 89 51 
13 21 41 36 14 9 32 30 45 55 43 
8 4 29 16 26 54 97 21 59 92 35 

11 5 1 21 14 16 55 21 57 52 34 
17 23 6 43 8 29 35 32 38 56 29 
11 16 15 5 31 1 166 96 36 68 18 
12 14 18 27 22 107 53 27 20 19 34 
17 12 185 39 23 68 78 67 3 6 33 
15 17 81 36 29 62 82 174 1 1 26 
2 13 16 6 17 15 144 23 2 25 13 

21 25 24 98 23 1 49 26 22 58 1 
7 1 10 83 1 10 55 57 94 27 1 
2 7 11 27 8 32 1 145 31 1 18 
4 22 27 96 1 4 1 80 6 17 61 
7 29 19 52 1 3 115 97 1 1 16 
8 2 6 25 1 6 26 63 6 1 6 

18 6 1 11 1 3 1 4 1 36 1 
16 66 19 1 31 4 4 1 8 21 1 
2 43 1 4 4 9 1 25 34 1 1 
3 91 6 63 17 8 1 2 33 1 1 
7 51 2 74 4 40 1 1 1 3 1 

NA 44 1 20 1 1 48 1 3 1 1 
NA 109 5 21 5 9 55 83 1 1 35 
NA 57 1 51 8 22 17 32 1 1 14 
NA 43 1 12 NA 6 18 19 1 1 27 
NA 32 NA 4 NA 14 5 1 1 1 17 
NA 20 NA 1 NA 119 8 25 93 50 1 
NA 33 NA 1 NA 6 1 1 109 9 2 
NA 29 NA 1 NA 76 4 1 5 59 1 
NA 6 NA 1 NA 37 1 1 49 33 1 
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NA 44 NA 1 NA NA 1 1 1 8 1 
NA 37 NA NA NA NA 1 1 1 1 71 
NA 44 NA NA NA NA 1 40 1 4 4 
NA 74 NA NA NA NA 12 39 1 1 29 
NA 29 NA NA NA NA 9 1 29 1 39 
NA 48 NA NA NA NA 1 1 1 1 42 
NA 114 NA NA NA NA NA 1 109 39 1 
NA 11 NA NA NA NA NA NA 49 7 27 
NA 22 NA NA NA NA NA NA 1 1 45 
NA 26 NA NA NA NA NA NA 40 173 63 
NA 8 NA NA NA NA NA NA 110 27 41 
NA 21 NA NA NA NA NA NA 40 2 28 
NA 32 NA NA NA NA NA NA 161 52 13 
NA 12 NA NA NA NA NA NA 141 110 38 
NA 194 NA NA NA NA NA NA 17 87 119 
NA 11 NA NA NA NA NA NA 6 82 27 
NA 33 NA NA NA NA NA NA 41 15 1 
NA NA NA NA NA NA NA NA 20 77 67 
NA NA NA NA NA NA NA NA 13 38 NA 
NA NA NA NA NA NA NA NA 118 56 NA 
NA NA NA NA NA NA NA NA 1 102 NA 
NA NA NA NA NA NA NA NA NA 1 NA 
NA NA NA NA NA NA NA NA NA 38 NA 

 
 
# inits for foyle sites densities, column: years 
d.foy=structure(.Data=c( 
0.476,0.002,0.681,2.936,0.002,0.909,0.002,0.002,5.202,3.601,1.574, 
... (see table below for full data set) 
),.Dim=c(38,11)), 
 
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
0.476 0.002 0.681 2.936 0.002 0.909 0.002 0.002 5.202 3.601 1.574 
0.396 0.002 0.002 2.266 1.496 0.799 0.002 0.617 3.577 3.931 1.688 
0.306 0.002 1.331 5.103 1.496 2.328 0.002 4.225 3.721 4.291 2.540 
1.245 1.108 0.741 3.070 1.833 0.196 0.002 3.070 2.569 3.577 2.936 
0.617 0.681 1.725 1.373 2.072 3.379 0.855 4.696 0.855 2.234 2.420 
0.002 0.549 1.288 2.510 0.476 3.429 3.552 3.070 0.306 2.072 0.961 
1.108 0.617 1.496 0.396 1.612 0.002 4.528 3.673 0.002 1.154 0.799 
1.200 0.681 0.306 0.002 2.359 2.798 2.359 3.528 0.196 1.415 1.331 
0.396 0.681 1.288 0.002 0.002 2.936 3.768 2.006 5.163 1.574 1.373 
0.396 0.002 0.681 0.002 0.002 2.510 3.792 1.761 2.039 3.744 1.108 
0.002 0.002 0.855 0.306 0.002 0.196 2.798 1.574 1.833 2.328 1.574 
0.396 0.002 0.002 0.002 0.002 0.306 2.569 0.909 1.200 2.390 0.002 

NA 0.002 0.196 0.396 0.002 0.002 1.797 0.396 0.002 1.761 0.002 
NA NA 0.002 0.002 1.245 0.002 0.799 0.002 0.002 0.002 1.868 
NA NA 0.002 0.741 0.476 0.681 2.328 0.002 0.396 0.002 1.535 
NA NA 0.002 0.002 0.476 0.196 0.741 1.154 2.359 2.006 1.903 
NA NA 0.476 0.549 0.476 1.496 3.252 0.002 3.954 3.278 2.234 
NA NA 0.396 0.196 0.476 1.245 2.039 0.002 2.742 3.404 1.650 
NA NA NA 0.476 0.741 0.196 0.002 0.002 1.496 2.480 0.002 
NA NA NA 0.396 1.373 0.002 0.002 0.002 0.396 0.002 0.002 
NA NA NA 0.002 0.002 0.002 0.002 0.002 0.306 0.002 0.306 
NA NA NA 0.002 0.002 0.002 2.569 0.002 0.002 0.002 0.617 
NA NA NA 0.002 0.002 0.002 0.002 0.002 0.002 1.331 0.002 
NA NA NA 0.002 NA 0.002 0.002 0.002 1.154 0.002 0.002 
NA NA NA 0.002 NA 0.002 1.200 0.002 0.617 0.306 0.196 
NA NA NA 0.002 NA NA 0.396 0.476 1.725 0.196 1.108 
NA NA NA 0.002 NA NA 0.002 3.625 0.002 0.002 0.002 
NA NA NA NA NA NA 0.002 0.002 0.002 0.617 0.476 
NA NA NA NA NA NA 0.002 0.002 0.002 0.002 0.196 
NA NA NA NA NA NA NA NA 0.002 0.396 0.002 
NA NA NA NA NA NA NA NA 0.002 0.855 0.002 
NA NA NA NA NA NA NA NA 0.002 0.002 0.002 
NA NA NA NA NA NA NA NA 0.002 0.476 0.306 
NA NA NA NA NA NA NA NA 0.002 0.002 0.617 
NA NA NA NA NA NA NA NA 0.002 NA 0.002 
NA NA NA NA NA NA NA NA NA NA 0.002 
NA NA NA NA NA NA NA NA NA NA 0.002 
NA NA NA NA NA NA NA NA NA NA 0.002 

 
 
 
l.foy=structure(.Data=c( 
4,1,7,69,1,11,1,1,169,95,26, 
... (see table below for full data set) 
),.Dim=c(38,11)), 
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1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 
4 1 7 69 1 11 1 1 169 95 26 
3 1 1 46 24 9 1 6 94 109 29 
2 1 20 164 24 48 1 122 100 125 55 

18 15 8 74 33 1 1 74 56 94 69 
6 7 30 21 40 86 10 144 10 45 51 
1 5 19 54 4 88 93 74 2 40 12 

15 6 24 3 27 1 136 98 1 16 9 
17 7 2 1 49 64 49 92 1 22 20 
3 7 19 1 1 69 102 38 167 26 21 
3 1 7 1 1 54 103 31 39 101 15 
1 1 10 2 1 1 64 26 33 48 26 
3 1 1 1 1 2 56 11 17 50 1 

NA 1 1 3 1 1 32 3 1 31 1 
NA NA 1 1 18 1 9 1 1 1 34 
NA NA 1 8 4 7 48 1 3 1 25 
NA NA 1 1 4 1 8 16 49 38 35 
NA NA 4 5 4 24 81 1 110 82 45 
NA NA 3 1 4 18 39 1 62 87 28 
NA NA NA 4 8 1 1 1 24 53 1 
NA NA NA 3 21 1 1 1 3 1 1 
NA NA NA 1 1 1 1 1 2 1 2 
NA NA NA 1 1 1 56 1 1 1 6 
NA NA NA 1 1 1 1 1 1 20 1 
NA NA NA 1 NA 1 1 1 16 1 1 
NA NA NA 1 NA 1 17 1 6 2 1 
NA NA NA 1 NA NA 3 4 30 1 15 
NA NA NA 1 NA NA 1 96 1 1 1 
NA NA NA NA NA NA 1 1 1 6 4 
NA NA NA NA NA NA 1 1 1 1 1 
NA NA NA NA NA NA NA NA 1 3 1 
NA NA NA NA NA NA NA NA 1 10 1 
NA NA NA NA NA NA NA NA 1 1 1 
NA NA NA NA NA NA NA NA 1 4 2 
NA NA NA NA NA NA NA NA 1 1 6 
NA NA NA NA NA NA NA NA 1 NA 1 
NA NA NA NA NA NA NA NA NA NA 1 
NA NA NA NA NA NA NA NA NA NA 1 
NA NA NA NA NA NA NA NA NA NA 1 

 
 
) 
 
 



 

Annex 2 Redds and spawners relationship model 

 

 

 

 

 

Annex 2: WinBUGS code: Model relating redd counts 

to spawners abundance. 

 

 

#Model 
 
#The first part of the model relates redd counts to spawner abundance, the second part of the model provides  spawners 
abundances estimates based on the parameters estimated in the first place and redd counts. 
 
model{ 
 
tau.p ~dgamma(0.001,0.001) 
var.p <- 1 / tau.p 
 
mu.p~dbeta(1,1)I(0.001,)   
L.mu.p <- logit(mu.p) 
 
mu.kappa.fau ~ dgamma(1,0.001) 
alpha.fau <- mu.kappa.fau  * beta.fau 
beta.fau <-  mu.kappa.fau * tau.kappa 
 
mu.kappa.fin ~ dgamma(1,0.001) 
alpha.fin <- mu.kappa.fin  * beta.fin 
beta.fin <-  mu.kappa.fin * tau.kappa 
 
mu.kappa.roe ~ dgamma(1,0.001) 
alpha.roe <- mu.kappa.roe  * beta.roe 
beta.roe <-  mu.kappa.roe * tau.kappa 
 
tau.kappa ~ dgamma(0.001,0.001)I(0.001,) 
var.kappa <- 1/tau.kappa 
 
for (i in 1:3){ 
 mu.spawners[i]~dunif(0,500000) 
 L.mu.spawners[i]<-log(mu.spawners[i]) 
 tau.spawners[i]~dgamma(0.001,0.001) 
} 
 
for (t in 1:T){ 
#Faughan unit 
 L.p[t,1] ~ dnorm(L.mu.p, tau.p) 
 logit(p[t,1]) <- L.p[t,1]  
 
 WA.walked[t,1] <- p[t,1] * WA.total[1] 
      
 Adults[t,1] ~ dlnorm(L.mu.spawners[1],tau.spawners[1]) 
 Spawners[t,1] <- Adults[t,1] - C.rod.amont.obs[t,1] 
  
 kappa[t,1] ~ dgamma(alpha.fau, beta.fau)I(0.001,) 
 lambda.redds[t,1] <- (Adults[t,1] - C.rod.amont.obs[t,1]) * p[t,1] * kappa[t,1]    
  
      
 Redds[t,1] ~dpois(lambda.redds[t,1])     
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# Finn unit 
      
 L.p[t,2] ~ dnorm(L.mu.p, tau.p) 
 logit(p[t,2]) <- L.p[t,2]  
    
 WA.walked[t,2] <- p[t,2] * WA.total[2] 
    
 Adults[t,2] ~ dlnorm(L.mu.spawners[2],tau.spawners[2]) 
 Spawners[t,2] <- Adults[t,2] - C.rod.amont.obs[t,2] 
    
 kappa[t,2] ~ dgamma(alpha.fin, beta.fin)I(0.001,) 
 lambda.redds[t,2] <- (Adults[t,2] - C.rod.amont.obs[t,2]) * p[t,2] * kappa[t,2]    
  
      
 Redds[t,2] ~dpois(lambda.redds[t,2])     
 
#Roe unit  
 L.p[t,3] ~ dnorm(L.mu.p, tau.p) 
 logit(p[t,3]) <- L.p[t,3]  
    
 WA.walked[t,3] <- p[t,3] * WA.total[3] 
     
 Adults[t,3] ~dlnorm(L.mu.spawners[3],tau.spawners[3]) 
 Spawners[t,3] <- Adults[t,3] - C.rod.amont.obs[t,3] 
  
 kappa[t,3] ~ dgamma(alpha.roe, beta.roe)I(0.001,) 
 lambda.redds[t,3] <- (Adults[t,3] - C.rod.amont.obs[t,3]) * p[t,3] * kappa[t,3]    
  
      
 Redds[t,3] ~dpois(lambda.redds[t,3])     
     
} 
 
# Estimating the number of spawners for each geo units between 1959 to 2000 
 
L.mu.p.cut<-cut(L.mu.p) 
tau.p.cut<-cut(tau.p) 
 
for (g in 1:3){ 
 tau.spawners.cut[g]<-tau.spawners[g] 
} 
 
for (y in 1:Y){ 
#Faughan unit 
 L.p.old[y,1] ~ dnorm(L.mu.p.cut, tau.p.cut) 
 logit(p.old[y,1]) <- L.p.old[y,1]  
    
 Spawners.old[y,1] ~ dlnorm(L.mu.spawners[1],tau.spawners.cut[1]) 
   
 kappa.old[y,1] ~ dgamma(alpha.fau.cut, beta.fau.cut)I(0.001,)    
 lambda.redds.old[y,1] <- Spawners.old[y,1]  * p.old[y,1] * kappa.old[y,1]      
     
 Redds.old[y,1] ~dpois(lambda.redds.old[y,1])    
 
#Finn unit 
 L.p.old[y,2] ~ dnorm(L.mu.p.cut, tau.p.cut) 
 logit(p.old[y,2]) <- L.p.old[y,2]  
   
 Spawners.old[y,2] ~ dlnorm(L.mu.spawners[2],tau.spawners.cut[2]) 
   
 kappa.old[y,2] ~ dgamma(alpha.fin.cut, beta.fin.cut)I(0.001,)    
 lambda.redds.old[y,2] <- Spawners.old[y,2]  * p.old[y,2] * kappa.old[y,2]      
      
 Redds.old[y,2] ~dpois(lambda.redds.old[y,2])    
 
#Roe unit 
 L.p.old[y,3] ~ dnorm(L.mu.p.cut, tau.p.cut) 
 logit(p.old[y,3]) <- L.p.old[y,3]  
    
 Spawners.old[y,3] ~ dlnorm(L.mu.spawners[3],tau.spawners.cut[3]) 
   
 kappa.old[y,3] ~ dgamma(alpha.roe.cut, beta.roe.cut)I(0.001,)    
 lambda.redds.old[y,3] <- Spawners.old[y,3]  * p.old[y,3] * kappa.old[y,3]      
      
 Redds.old[y,3] ~dpois(lambda.redds.old[y,3])    
} 
} 
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#data 
 
list( 
T=6, 
#The counters are assumed to give accurate number of returning adults 
# rows=year; columns=geo units 
Adults=structure(.Data=c( 
1518,3311,3265, 
...( see table below for full data set) 
),.Dim=c(6,3)), 
 
 Faughan Finn Roe 
2001 1518 3311 3265 
2002 4288 5768 5459 
2003 3097 6461 4086 
2004 2855 3771 1922 
2005 4245 8571 2917 
2006 3625 5748 5375 
 
 
# Redds for each geo units (Faughan, Finn, Roe, 2001 to 2006) 
# rows=year; columns=geo units 
Redds= structure(.Data = c( 
233,137,186, 
... (see table below for full data set) 
),.Dim=c(6,3)), 
 
 Faughan Finn Roe 
2001 233 137 186 
2002 673 234 630 
2003 441 101 672 
2004 501 149 43 
2005 766 343 844 
2006 35 94 428 
 
# logit of the proporotion of wetted area sampled 
# rows=years, colums=geo units 
L.p=structure(.Data = c( 
NA, -1.58,NA, 
... (see table below for full data set) 
),.Dim=c(6,3)), 
 
 Faughan Finn Roe 
2001 NA -1.58 NA 
2002 NA -1.66 -0.7986 
2003 -0.7131 -1.66 -0.7532 
2004 -0.6991 NA -2.4387 
2005 -0.7016 -1.15 -0.7478 
2006 -3.245 -2.75 -0.7272 
 
# Total wetted area for each geo unit 
WA.total=c(776412,1726922,1292616), 
 
# Rod catches upstream of the counters 
# rows=year; columns=geo units 
C.rod.amont.obs=structure(.Data=c( 
656,1162, 267, 
597,2263, 408, 
335,590,158, 
464,627,357, 
822,1118, 309 
501,752,444 
),.Dim=c(6,3)) 
 
 Faughan Finn Roe 
2001 656 1162 267 
2002 597 2263 408 
2003 335 590 158 
2004 464 627 357 
2005 822 1118 309 
2006 501 752 444 
 
Y=42, 
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# Redds for each geo units (Faughan, Finn, Roe, 1959 to 2000) 
# rows=year; columns=geo units 
Redds.old= structure(.Data = c( 
757,456,1204, 
... (see table below for full data set) 
),.Dim=c(42,3)) 
) 
 
 Faughan Finn Roe 
1959 757 456 1204 
1960 2169 391 1398 
1961 853 242 822 
1962 2114 896 1328 
1963 2039 1041 2082 
1964 1823 669 1777 
1965 2558 1171 2533 
1966 1292 1192 1264 
1967 351 1437 526 
1968 585 927 775 
1969 452 453 823 
1970 1164 621 638 
1971 513 667 676 
1972 156 536 475 
1973 90 459 124 
1974 362 523 547 
1975 468 383 821 
1976 630 340 891 
1977 356 160 552 
1978 427 489 882 
1979 479 680 1486 
1980 163 872 659 
1981 615 1371 435 
1982 449 579 650 
1983 375 1108 354 
1984 203 394 718 
1985 411 807 768 
1986 188 375 891 
1987 329 518 729 
1988 410 651 974 
1989 1058 452 1426 
1990 226 366 298 
1991 537 767 706 
1992 340 398 698 
1993 218 652 648 
1994 348 566 126 
1995 82 826 241 
1996 572 752 1247 
1997 NA 552 NA 
1998 84 357 169 
1999 53 117 136 
2000 87 159 383 
 
 

#Initialisation of the Gibbs sampler (1 chain) 
 
list( 
# initial values of the kappa parameter 
# rows=year; columns=geo units 
kappa = structure(.Data = c( 
0.412,0.3872,0.3515, 
... (see table below for full data set) 
),.Dim = c(6,3)), 
 
 Faughan Finn Roe 
2001 0.412 0.3872 0.3515 
2002 1.1 0.3897 0.4135 
2003 0.5067 0.1126 0.5193 
2004 0.6277 0.2784 0.3077 
2005 0.6799 0.1885 0.9592 
2006 0.3173 0.2612 0.2819 
 
# initial values for the logit of the probability of wetted area sampled 2001 to 2006 
# rows=year; columns=geo units 
 
L.p = structure(.Data = c( 
0.877,NA,-1.477, 
... (see table below for full data set) 
),.Dim = c(6,3)), 
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 Faughan Finn Roe 
2001 0.877 NA -1.477 
2002 -1.609 NA NA 
2003 NA NA NA 
2004 NA -1.576 NA 
2005 NA NA NA 
2006 NA NA NA 
 
 
# initial values for the logit of the probability of wetted area sampled 1959 to 2000 
# rows=year; columns=geo units 
 
L.p.old = structure(.Data = c( 
-0.7628,-1.029,0.08093, 
... (see table below for full data set) 
),.Dim = c(42,3)), 
 
 Faughan Finn Roe 
1959 -0.7628 -1.029 0.08093 
1960 -0.5703 -0.2061 -0.3784 
1961 -1.704 -2.053 -0.268 
1962 -0.0627 -2.193 -1.525 
1963 -0.364 -0.5275 0.4834 
1964 -1.646 -0.6334 0.1491 
1965 -0.4492 -1.324 -0.3842 
1966 0.3182 -1.081 -1.133 
1967 -1.456 -1.013 -1.343 
1968 -0.5661 -1.016 -1.349 
1969 0.6611 -0.4478 -1.62 
1970 -0.2066 -1.651 -1.195 
1971 -0.6686 -1.816 -0.1339 
1972 -2.92 -1.581 -0.4596 
1973 -1.934 -1.264 -2.046 
1974 -2.482 0.4432 -1.151 
1975 -0.2244 -0.3348 0.0731 
1976 -0.8791 -0.4537 -1.358 
1977 -1.535 -1.082 -0.6448 
1978 -1.373 -1.335 -0.3141 
1979 -2.336 -2.277 -0.3458 
1980 -1.705 -1.494 -0.3146 
1981 -0.4284 0.1983 -1.244 
1982 -1.103 -0.9669 -1.511 
1983 -1.968 -1.164 -2.213 
1984 -1.057 -1.885 -1.71 
1985 -1.497 -1.367 -1.599 
1986 -2.143 -1.427 -1.289 
1987 -2.144 -2.111 -1.101 
1988 -1.248 -0.9411 -0.558 
1989 -1.739 -0.8295 -0.8767 
1990 -1.785 -2.018 -1.569 
1991 -2.749 -0.8946 -1.276 
1992 -2.652 -2.796 -1.338 
1993 -1.947 -2.439 -0.2433 
1994 -2.604 -0.8273 -1.947 
1995 -2.531 -0.7578 -1.528 
1996 -2.518 0.1791 -0.4002 
1997 0.938 -1.236 -1.633 
1998 -1.817 -0.7198 -1.426 
1999 -3.393 -1.429 -1.81 
2000 -2.178 -3.118 -1.115 
 
 
# initial values for the redd counts 1959 to 2000 
# rows=year; columns=geo units 
 
Redds.old = structure(.Data = c( 
NA,NA,NA, 
... (see table below for full data set) 
),.Dim = c(42,3)), 
 
 Faughan Finn Roe 
1959 NA NA NA 
1960 NA NA NA 
1961 NA NA NA 
1962 NA NA NA 
1963 NA NA NA 
1964 NA NA NA 
1965 NA NA NA 
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1966 NA NA NA 
1967 NA NA NA 
1968 NA NA NA 
1969 NA NA NA 
1970 NA NA NA 
1971 NA NA NA 
1972 NA NA NA 
1973 NA NA NA 
1974 NA NA NA 
1975 NA NA NA 
1976 NA NA NA 
1977 NA NA NA 
1978 NA NA NA 
1979 NA NA NA 
1980 NA NA NA 
1981 NA NA NA 
1982 NA NA NA 
1983 NA NA NA 
1984 NA NA NA 
1985 NA NA NA 
1986 NA NA NA 
1987 NA NA NA 
1988 NA NA NA 
1989 NA NA NA 
1990 NA NA NA 
1991 NA NA NA 
1992 NA NA NA 
1993 NA NA NA 
1994 NA NA NA 
1995 NA NA NA 
1996 NA NA NA 
1997 970 NA 171 
1998 NA NA NA 
1999 NA NA NA 
2000 NA NA NA 
 
 
# initial values for the spawner abundances 1959 to 2000 
# rows=year; columns=geo units 
Spawners.old = structure(.Data = c( 
4408,5695,5345, 
... (see table below for full data set) 
),.Dim = c(42,3)), 
 
 
 Faughan Finn Roe 
1959 4408 5695 5345 
1960 6157 7824 4488 
1961 5650 10880 1981 
1962 6134 13560 7903 
1963 10410 13790 5914 
1964 17040 9754 7121 
1965 7171 8269 7588 
1966 4358 8261 6735 
1967 2469 9892 6611 
1968 2348 9712 6210 
1969 1758 10330 5737 
1970 3137 10690 5732 
1971 3973 5E+3 3109 
1972 3517 7198 3559 
1973 2692 11190 4579 
1974 6965 11800 3408 
1975 1794 13150 3470 
1976 2483 3015 8822 
1977 3021 8714 6589 
1978 2455 5841 6244 
1979 7696 19070 5632 
1980 2715 11790 3525 
1981 2562 5168 4488 
1982 2632 5935 5039 
1983 6443 13850 5087 
1984 1980 9414 5962 
1985 2861 11860 7723 
1986 2129 6580 8232 
1987 3101 10740 6196 
1988 3305 7011 6215 
1989 10680 6974 6596 
1990 1942 9284 5045 
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1991 14300 9016 5445 
1992 8655 12030 3207 
1993 3825 15400 5303 
1994 6589 4512 4324 
1995 2322 7349 3801 
1996 7692 6164 9483 
1997 5849 8848 3398 
1998 1932 4429 3771 
1999 3112 13240 5099 
2000 2727 9062 4094 
 
 
mu.kappa.fau = 0.633,  
mu.kappa.fin = 0.3761,  
mu.kappa.roe = 0.4847, 
mu.p = 0.2417, 
mu.spawners = c(3402,8872,4457), 
tau.kappa = 14.01, 
tau.p = 1.419, 
tau.spawners = c( 
2.795,5.481,8.363)) 



 

Annex 3 Population dynamics state-space model 

 

 

 

 

 

Annex 3: WinBUGS code: Population dynamics model 

of Atlantic salmon in the Foyle catchment. 

 

 

#Model 
 
# Full Life Cycle model 
# Estimation of hidden states (PFA, Spawners, juvenile production,...) 
# Geographic structure, 5 units: 1.Faughan; 2.Finn; 3.Mourne; 4.Roe; 5.foyle 
# DATA for years 1959 to 2008 t=1:50 
# PREDICTION for years 2009-2010 t=51,52 
# DATA available: 
# Redds t=1:50 
# Commercial catches t=1:50 
# Rod catches total t=1:38 
# Rod catch/unit t=39:50 
# EF t= 40:50 (Use of pseudo observations obtained from the observation model from calibrationwork) 
# Counters t=43:48 
 
model 
{  
#################################################################### 
# Spawners to redds relationship parameters 
 
sigma.p ~dunif(0,10) 
tau.p<-pow( sigma.p,-2) 
var.p <- 1 / tau.p 
 
p_N~dbeta(1,1) 
 
# taken from the observation model (cf. calibration) 
ratio.d ~dnorm(2.068,2.45)I(0.001,) 
 
mu.p[1]~dbeta(1,1)I(0.01,0.99)   
L.mu.p[1] <- logit(mu.p[1]) 
mu.p[2]~dbeta(1,1)I(0.01,0.99)    
L.mu.p[2] <- logit(mu.p[2]) 
 
p.diff.mup <- step(mu.p[1] - mu.p[2]) 
 
mu.kappa.foyle ~ dgamma(1,0.001)I(0.001,) 
alpha.kappa.foyle <- mu.kappa.foyle  * beta.kappa 
 
# Only one mean factor of proportionality between the counters and the redds 
 
beta.kappa  <- mu.kappa.foyle  * tau.kappa 
 
tau.kappa~ dgamma(0.01,0.01)I(0.001,) 
 
#################################################################### 
# density dependence 
 
sigma.ddlink~dunif(0,10) 
tau.ddlink<-pow( sigma.ddlink,-2) 
 
mu_dmax<- exp(L.mu_dmax) 
L.mu_dmax ~ dunif(-5,5) 
sigma.dmax ~dunif(0,10) 
tau.dmax<-pow( sigma.dmax,-2) 
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zt~dbeta(1,2) 
a_d<-zt *1843 
 
for (i in 1:5) { 
  
 dmax[i] ~dlnorm(L.mu_dmax,tau.dmax)I(,30) 
 alpha_d[i]<- 1/a_d  
 beta_d[i]<- 1 / dmax[i] 
} 
#################################################################### 
# surfaces  
 
for(i in 1:5){ 
  p.WA[i] <-  WA.total[i] / sum(WA.total[]) 
#  S.grade2[i] <- WA.total[i]-S.grade1[i] 
#total surface in GRade 1 equivalent 
  S.G1.tot[i] <-  S.grade1[i] + S.grade2[i] / ratio.d 
} 
#################################################################### 
 
# p_J1/p_J2 correspond to the transition rate from smolt to returning  
# adults (it also includes mortality). 
# Incorportaion of a hierarchical structure to pick up any inter-river variation 
  
p_J1 ~ dbeta(2,2) 
p_J2 <-1 - p_J1 
 
sigma.PFA ~ dunif(0.02,10) 
tau.PFA<-pow( sigma.PFA,-2) 
 
sigma.N~dunif(0,10)  
tau.N <-pow( sigma.N,-2)#~dgamma(0.001,0.001)I(,10000) # 
 
 
for (i in 1:5){ 
 L.dG1[1,i] ~ dnorm(0,0.001)I(-2.8,2.8) 
 log(mu.d[1,i]) <-L.dG1[1,i]  
 J[1,i] <- mu.d[1,i]*S.G1.tot[i] 
} 
# Initialization of the chains, prior on the Spawners (years  
# so the REturns of the Returns of the 4 first years of the time series  
# are restricted by the BH relationship 
 
# parameters of the BH relationship cut from the time series so the 4 "inits" years 
# don't affect the time series 
for (i in 1:5){ 
 alpha_d.cut[i] <- alpha_d[i] 
 beta_d.cut[i] <- beta_d[i] 
  
} 
tau.ddlink.cut<-tau.ddlink 
 
for (t in 1:4){ 
#based on min(2.5th) and max(97.5th) percentile obtained from 01-06 model  
  
 S.inits[t,1] ~dunif(0,100000)  
 S.inits[t,2] ~dunif(0,220000)  
 S.inits[t,3] ~dunif(0,800000)  
 S.inits[t,4] ~dunif(0,165000)  
 S.inits[t,5] ~dunif(0,180000)  
   
 for (i in 1:5){  
   
  S.sqm.inits[t,i] <- S.inits[t,i]  / S.G1.tot[i] 
   
  mu.ddlink.inits[t,i] <- log( S.sqm.inits[t,i]  /  ( alpha_d.cut[i]  + beta_d.cut[i] * S.sqm.inits[t,i] ) ) 
  L.dG1.inits[t,i]  ~ dnorm(mu.ddlink.inits[t,i],tau.ddlink.cut) 
  
  log(mu.d.inits[t,i]) <- L.dG1.inits[t,i]  
  
  J.inits[t,i] <- mu.d.inits[t,i]*S.G1.tot[i] 
 } 
} 
 
# REturns of years 1:3 only depend on the J inits (years before the time series) 
for (t in 1:3){ 
 for (i in 1:5){ 
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  mu.PFA[t,i] <- log(p_J1*J.inits[t+1,i] + p_J2*J.inits[t,i] ) +  year_effect_returns[t]+ 
unit_effect_fixed_returns[i]  
 } 
} 
 
# REturns of years 4 depend on the J inits (years before the time series) and 
# the first J of the time series 
for (i in 1:5){ 
 mu.PFA[4,i] <- log(p_J1*J[4,i] + p_J2*J.inits[4,i] ) +  year_effect_returns[4]+ unit_effect_fixed_returns[i]  
} 
 
# PFA of years 5:48 depend on the J of the time series 
for (t in 5:52){ 
 for (i in 1:5){ 
  mu.PFA[t,i] <- log(p_J1*J[t-3,i] + p_J2*J[t-4,i] ) +  year_effect_returns[t]+ unit_effect_fixed_returns[i]  
  } 
}  
 
# Total juvenile production 
for (t in 1:50){ 
 J.tot[t] <-sum(J[t,]) 
} 
 
# different effects affecting the returns  
sigma_unit_effect~dunif(0,10) 
tau_unit_effect<-pow( sigma_unit_effect,-2) 
sigma_year_effect~dunif(0,10) 
tau_year_effect<-pow( sigma_year_effect,-2) 
  
# mean effect <=> mean survival J 2 ret   
mean_effect_returns ~ dnorm(0 , 0.01) 
exp_mean_effect_returns <- exp(mean_effect_returns) 
# unit effect <=> divergence between units  
for (i in 1:5){ 
 unit_effect_returns[i] ~ dnorm(0 , tau_unit_effect) 
  
 exp_unit_effect_returns[i] <- exp(unit_effect_returns[i]) 
 unit_effect_fixed_returns[i] <- unit_effect_returns[i] - mean(unit_effect_returns[]) 
 mean_interaction_effect_returns[i]<-mean( interaction_effect_returns[,i] ) 
 mean_exp_interaction_effect_returns[i]<-mean(exp_interaction_effect_returns[,i]) 
} 
 
# year effect <=> divergence between years 
# incorporation of rank 1 autocorrelation 
# the 1st year is initialized independently 
year_effect_returns[1] ~ dnorm(mean_effect_returns , tau_year_effect) 
for (t in 2:52){ 
 year_effect_returns[t] ~ dnorm(year_effect_returns[t-1] , tau_year_effect) 
}  
for (t in 1:52){ 
 exp_year_effect_returns[t] <- exp(year_effect_returns[t]) 
 for(i in 1:5){ 
# PFA residuals 
  interaction_effect_returns[t,i] <- log(PFA[t,i]) - mu.PFA[t,i] 
  exp_interaction_effect_returns[t,i]  <- exp(interaction_effect_returns[t,i] )  
 } 
} 
 
###################################################################### 
# Survival for each cohort of juveniles 
for (t in 1:52){ 
 for (i in 1:5){ 
   s.J2Ret[t,i] <- exp( year_effect_returns[t]+ unit_effect_fixed_returns[i] ) 
 } 
} 
# proportions returns  
#proportion of salmon from the foyle stock taken by the drift nets (sea licence) 
#genetic report (ensing 2008) tell us that the minimum probability for being from another stock is 0.15% 
#therefore the probability of being from the foyle is comprised between 0.15 and 1 for the sea licences 
 p.temp~dbeta(2,2) 
 p_f <-  (1 - 0.15) * p.temp  
  
 
 
#we say that the proportion of fish from the foyle stock is higher for the Lough + sea licences 
  
 p_f.temp ~ dbeta(2,2) 
 p_f2 <- ( (1 - p_f) * p_f.temp ) + p_f  
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for (t in 51:52){ 
 PFA.tot[t] <- sum(PFA[t,])  
} 
 
for (t in 1:50){ 
 PFA.tot[t] <- sum(PFA[t,]) 
 for (i in 1:5){ 
  p.Returns[t,i] <- PFA[t,i] / PFA.tot[t] 
  p.S[t,i] <- S[t,i] / sum( S[t,] ) 
 }  
 
 theta.Csea.tot[t]<-(C.sea.tot[t]+C.roe[t]+C.foyle1[t]+C.foyle2[t])/PFA.tot[t] 
 
# Capture at sea affecting all the units  
 C.sea.tot[t] <- p_f*Drift.Sea[t] + p_f2*Drift.Sea.Lough[t] + Drift.Lough[t] + Fixed[t] 
# Capture affecting the Roe  
 C.roe[t] <- Draft.roe[t] + FF.Roe[t] 
# Capture affecting the Faughan + Finn + Mourne  + Rest 
 C.foyle1[t] <- Draft.foyle[t] +  FF.Culmore[t] 
# Capture affecting the Finn + Mourne  + Rest  
 C.foyle2[t] <- FF.Rosses[t] + FF.prehen[t] 
 
# Dispatching capture at sea equally in all units  
 for (i in 1:5){ 
  C.sea.tot.unit[t,i] <-  (PFA[t,i] / sum(PFA[t,])) * C.sea.tot[t] 
 } 
# C.sea.tot.unit[t,5] <-C.sea.tot[t] -sum(C.sea.tot.unit[t,1:4]) 
 
# Dispatching capture at sea equally in all units except the Roe   
 for (i in 1:4){ 
  C.foyle1.unit[t,i] <- (PFA[t,v.foyle1[i]] / (PFA[t,1]+PFA[t,2]+PFA[t,3]+PFA[t,5])) * C.foyle1[t] 
 } 
# C.foyle1.unit[t,4] <- C.foyle1[t] - sum( C.foyle1.unit[t,1:3]) 
 
# Dispatching capture at sea equally in all units except the Roe and the Faughan  
 for (i in 1:3){ 
  C.foyle2.unit[t,i] <- (PFA[t,v.foyle2[i] ]/ (PFA[t,2]+PFA[t,3]+PFA[t,5])) * C.foyle2[t] 
 } 
# Calculation of the total fisheries effort on every unit  
 theta.Csea[t,1] <-  (C.sea.tot.unit[t,1] + C.foyle1.unit[t,1]) / PFA[t,1] 
 theta.Csea[t,2] <-  (C.sea.tot.unit[t,2] + C.foyle1.unit[t,2] + C.foyle2.unit[t,1]) / PFA[t,2]  
 theta.Csea[t,3] <-  (C.sea.tot.unit[t,3] + C.foyle1.unit[t,3] + C.foyle2.unit[t,2])/ PFA[t,3] 
 theta.Csea[t,4] <-  (C.sea.tot.unit[t,4] + C.roe[t])/ PFA[t,4] 
 theta.Csea[t,5] <-  (C.sea.tot.unit[t,5] + C.foyle1.unit[t,4] + C.foyle2.unit[t,3]) / PFA[t,5] 
  
} 
# Calculating the total catches for each units including rod catches 
for (t in 1:50){ 
 C.tot[t,1] <- C.sea.tot.unit[t,1]  + C.foyle1.unit[t,1] + Crod.unit[t,1] 
 C.tot[t,2] <- C.sea.tot.unit[t,2]  + C.foyle1.unit[t,2] + C.foyle2.unit[t,1] + Crod.unit[t,2] 
 C.tot[t,3] <- C.sea.tot.unit[t,3]  + C.foyle1.unit[t,3] + C.foyle2.unit[t,2] + Crod.unit[t,3] 
 C.tot[t,4] <- C.sea.tot.unit[t,4]  + C.roe[t] + Crod.unit[t,4] 
 C.tot[t,5] <- C.sea.tot.unit[t,5]  + C.foyle1.unit[t,4] + C.foyle2.unit[t,3] + Crod.unit[t,5] 
} 
for (t in 1:50){  
 for (i in 1:5){ 
  h[t,i] <- C.tot[t,i] / PFA[t,i] 
} 
#First loops are for years where no counter information is available 
############################################ 
# Faughan 
# dynamic link between J and returns 
for (t in 1:38) {  
 PFA[t,1] ~ dlnorm( mu.PFA[t,1] , tau.PFA) 
  
 A[t,1] <-  PFA[t,1] - C.sea.tot.unit[t,1]  - C.foyle1.unit[t,1]  
  
 Crod.unit[t,1] <- Crod.tot[t] * (A[t,1]/sum(A[t,])) 
 theta.rod[t,1]<- Crod.unit[t,1] / A[t,1] 
 
 S[t,1] <- max(A[t,1],Crod.unit[t,1]) - Crod.unit[t,1] 
  
 L.p[t,1] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,1]) <- L.p[t,1]  
 kappa[t,1] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,1] <- S[t,1]  * p[t,1] * kappa[t,1]      
      
 R[t,1] ~dpois(lambda.R[t,1]) 
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 S.sqm[t,1] <- S[t,1]  / S.G1.tot[1] 
   
 mu.ddlink[t,1] <- log( S.sqm[t,1]  /  ( alpha_d[1]  + beta_d[1] * S.sqm[t,1] ) ) 
 L.dG1[t+1,1]  ~ dnorm(mu.ddlink[t,1],tau.ddlink) 
  
 log(mu.d[t+1,1]) <- L.dG1[t+1,1]  
  
 J[t+1,1] <- mu.d[t+1,1]*S.G1.tot[1] 
} 
# Finn 
# dynamic link between J and returns 
for (t in 1:38) {  
  
 PFA[t,2] ~ dlnorm( mu.PFA[t,2] , tau.PFA) 
  
 A[t,2] <-  PFA[t,2] -  C.sea.tot.unit[t,2]  - C.foyle1.unit[t,2] - C.foyle2.unit[t,1] 
  
 Crod.unit[t,2] <- Crod.tot[t] * (A[t,2]/sum(A[t,])) 
 theta.rod[t,2]<- Crod.unit[t,2] / A[t,2] 
  
 S[t,2] <- max(A[t,2],Crod.unit[t,2]) - Crod.unit[t,2] 
  
 L.p[t,2] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,2]) <- L.p[t,2]  
  
 kappa[t,2] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,2] <- S[t,2]  * p[t,2] * kappa[t,2]      
      
 R[t,2] ~dpois(lambda.R[t,2]) 
  
 S.sqm[t,2] <- S[t,2]  / S.G1.tot[2] 
   
 mu.ddlink[t,2] <- log( S.sqm[t,2]  /  ( alpha_d[2]  + beta_d[2] * S.sqm[t,2] ) ) 
 L.dG1[t+1,2]  ~ dnorm(mu.ddlink[t,2],tau.ddlink) 
   
 log(mu.d[t+1,2]) <- L.dG1[t+1,2]  
   
 J[t+1,2] <- mu.d[t+1,2]*S.G1.tot[2] 
} 
# Mourne 
# dynamic link between J and returns 
# for year 39 we have data on the rod catches per unit 
for (t in 1:38) { 
 Crod.unit[t,3] <- Crod.tot[t] * (A[t,3]/sum(A[t,])) 
} 
 
for (t in 1:39) {  
 
 PFA[t,3] ~ dlnorm( mu.PFA[t,3] , tau.PFA) 
  
 A[t,3] <-  PFA[t,3] -  C.sea.tot.unit[t,3] - C.foyle1.unit[t,3] - C.foyle2.unit[t,2] 
  
 theta.rod[t,3]<- Crod.unit[t,3] / A[t,3] 
 
 S[t,3] <- max(A[t,3],Crod.unit[t,3]) - Crod.unit[t,3]    
  
 L.p[t,3] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,3]) <- L.p[t,3]  
        
 kappa[t,3] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,3] <- S[t,3]  * p[t,3] * kappa[t,3]     
       
 R[t,3] ~dpois(lambda.R[t,3])   
  
 S.sqm[t,3] <- S[t,3]  / S.G1.tot[3] 
   
 mu.ddlink[t,3] <- log( S.sqm[t,3]  /  ( alpha_d[3]  + beta_d[3] * S.sqm[t,3] ) ) 
  
 L.dG1[t+1,3]  ~ dnorm(mu.ddlink[t,3],tau.ddlink) 
  
 log(mu.d[t+1,3]) <- L.dG1[t+1,3]  
   
 J[t+1,3] <- mu.d[t+1,3]*S.G1.tot[3] 
} 
 Roe 
# dynamic link between J and returns 
for (t in 1:38) {  
  
 PFA[t,4] ~ dlnorm( mu.PFA[t,4] , tau.PFA) 



165 
 

Annex 3 Population dynamics state-space model 

  
 A[t,4] <-  PFA[t,4] - C.sea.tot.unit[t,4] - C.roe[t]  
 
 Crod.unit[t,4] <- Crod.tot[t] * (A[t,4]/sum(A[t,])) 
 theta.rod[t,4]<- Crod.unit[t,4] / A[t,4] 
  
 S[t,4] <- max(A[t,4],Crod.unit[t,4]) - Crod.unit[t,4] 
  
 L.p[t,4] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,4]) <- L.p[t,4]  
  
 kappa[t,4] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,4] <- S[t,4] * p[t,4] * kappa[t,4]      
      
 R[t,4] ~dpois(lambda.R[t,4])  
  
 S.sqm[t,4] <- S[t,4]  / S.G1.tot[4] 
   
 mu.ddlink[t,4] <- log( S.sqm[t,4]  /  ( alpha_d[4]  + beta_d[4] * S.sqm[t,4] ) ) 
 L.dG1[t+1,4]  ~ dnorm(mu.ddlink[t,4],tau.ddlink) 
  
 log(mu.d[t+1,4]) <- L.dG1[t+1,4]  
   
 J[t+1,4] <- mu.d[t+1,4]*S.G1.tot[4] 
} 
# foyle  
# dynamic link between J and returns 
for (t in 1:38) {  
  
 PFA[t,5] ~ dlnorm( mu.PFA[t,5] , tau.PFA) 
   
 A[t,5] <-  PFA[t,5] - C.sea.tot.unit[t,5]  - C.foyle1.unit[t,4] - C.foyle2.unit[t,3] 
  
 Crod.unit[t,5] <- Crod.tot[t] - sum(Crod.unit[t,1:4]) 
 theta.rod[t,5]<- Crod.unit[t,5] / A[t,4] 
 
 S[t,5] <- max(A[t,5],Crod.unit[t,5]) - Crod.unit[t,5] 
 L.p[t,5] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,5]) <- L.p[t,5]  
  
 kappa[t,5] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,5] <- S[t,5]  * p[t,5] * kappa[t,5]      
      
 R[t,5] ~dpois(lambda.R[t,5])     
  
 S.sqm[t,5] <- S[t,5]  / S.G1.tot[5] 
   
 mu.ddlink[t,5] <- log( S.sqm[t,5]  /  ( alpha_d[5]  + beta_d[5] * S.sqm[t,5] ) ) 
 L.dG1[t+1,5]  ~ dnorm(mu.ddlink[t,5],tau.ddlink) 
  
 log(mu.d[t+1,5]) <- L.dG1[t+1,5]  
   
 J[t+1,5] <- mu.d[t+1,5]*S.G1.tot[5] 
} 
#second loops are for years where no counter information is available but with EF  data 
############################################ 
# Faughan 
# dynamic link between J and returns 
for (t in 39:42) {  
  
 PFA[t,1] ~ dlnorm( mu.PFA[t,1] , tau.PFA) 
  
 A[t,1] <-  PFA[t,1] - C.sea.tot.unit[t,1]  - C.foyle1.unit[t,1]  
  
 theta.rod[t,1]<- Crod.unit[t,1] / A[t,1] 
 
 S[t,1] <- max(A[t,1],Crod.unit[t,1]) - Crod.unit[t,1] 
  
 L.p[t,1] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,1]) <- L.p[t,1]  
  
 kappa[t,1] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,1] <- S[t,1]  * p[t,1] * kappa[t,1]      
      
 R[t,1] ~dpois(lambda.R[t,1]) 
   
 S.sqm[t,1] <- S[t,1]  / S.G1.tot[1] 
   
 mu.ddlink[t,1] <- log( S.sqm[t,1]  /  ( alpha_d[1]  + beta_d[1] * S.sqm[t,1] ) ) 
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 L.dG1[t+1,1]  ~ dnorm(mu.ddlink[t,1],tau.ddlink) 
  
 log(mu.d[t+1,1]) <- L.dG1[t+1,1]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,1] <- 1 / log(cv.d.pseudo[t+1,1]*cv.d.pseudo[t+1,1] + 1)  
 L.mud.pseudo[t+1,1] ~ dnorm(L.dG1[t+1,1] , precision.d.pseudo[t+1,1]) 
 log(mud.pseudo[t+1,1]) <- L.mud.pseudo[t+1,1] 
  
 J[t+1,1] <- mu.d[t+1,1]*S.G1.tot[1] 
} 
# Finn 
# dynamic link between J and returns 
for (t in 39:42) {  
 
 PFA[t,2] ~ dlnorm( mu.PFA[t,2] , tau.PFA) 
  
 A[t,2] <-  PFA[t,2] -  C.sea.tot.unit[t,2]  - C.foyle1.unit[t,2] - C.foyle2.unit[t,1] 
  
 theta.rod[t,2]<- Crod.unit[t,2] / A[t,2] 
  
 S[t,2] <- max(A[t,2],Crod.unit[t,2]) - Crod.unit[t,2] 
  
 L.p[t,2] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,2]) <- L.p[t,2]  
 kappa[t,2] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,2] <- S[t,2]  * p[t,2] * kappa[t,2]      
      
 R[t,2] ~dpois(lambda.R[t,2]) 
  
 S.sqm[t,2] <- S[t,2]  / S.G1.tot[2] 
   
 mu.ddlink[t,2] <- log( S.sqm[t,2]  /  ( alpha_d[2]  + beta_d[2] * S.sqm[t,2] ) ) 
 L.dG1[t+1,2]  ~ dnorm(mu.ddlink[t,2],tau.ddlink) 
   
 log(mu.d[t+1,2]) <- L.dG1[t+1,2]  
  
 
# Pseudo observations 
 precision.d.pseudo[t+1,2] <- 1 / log(cv.d.pseudo[t+1,2]*cv.d.pseudo[t+1,2] + 1)  
 L.mud.pseudo[t+1,2] ~ dnorm(L.dG1[t+1,2] , precision.d.pseudo[t+1,2]) 
 log(mud.pseudo[t+1,2]) <- L.mud.pseudo[t+1,2] 
   
 J[t+1,2] <- mu.d[t+1,2]*S.G1.tot[2] 
} 
# Mourne 
# dynamic link between J and returns 
for (t in 40:42) {  
  
 PFA[t,3] ~ dlnorm( mu.PFA[t,3] , tau.PFA) 
  
 A[t,3] <-  PFA[t,3] -  C.sea.tot.unit[t,3] - C.foyle1.unit[t,3] - C.foyle2.unit[t,2] 
  
 theta.rod[t,3]<- Crod.unit[t,3] / A[t,3] 
 
 S[t,3] <- max(A[t,3],Crod.unit[t,3]) - Crod.unit[t,3]    
  
 L.p[t,3] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,3]) <- L.p[t,3]  
        
 kappa[t,3] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,3] <- S[t,3]  * p[t,3] * kappa[t,3]     
       
 R[t,3] ~dpois(lambda.R[t,3])   
  
 S.sqm[t,3] <- S[t,3]  / S.G1.tot[3] 
   
 mu.ddlink[t,3] <- log( S.sqm[t,3]  /  ( alpha_d[3]  + beta_d[3] * S.sqm[t,3] ) ) 
  
 L.dG1[t+1,3]  ~ dnorm(mu.ddlink[t,3],tau.ddlink) 
  
 log(mu.d[t+1,3]) <- L.dG1[t+1,3]  
# Pseudo observations 
 precision.d.pseudo[t+1,3] <- 1 / log(cv.d.pseudo[t+1,3]*cv.d.pseudo[t+1,3] + 1)  
 L.mud.pseudo[t+1,3] ~ dnorm(L.dG1[t+1,3] , precision.d.pseudo[t+1,3]) 
 log(mud.pseudo[t+1,3]) <- L.mud.pseudo[t+1,3] 
 
 J[t+1,3] <- mu.d[t+1,3]*S.G1.tot[3] 
} 
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# Roe 
# dynamic link between J and returns 
for (t in 39:42) {  
 
 PFA[t,4] ~ dlnorm( mu.PFA[t,4] , tau.PFA) 
  
 A[t,4] <-  PFA[t,4] - C.sea.tot.unit[t,4] - C.roe[t]  
 
 theta.rod[t,4]<- Crod.unit[t,4] / A[t,4] 
 
 S[t,4] <- max(A[t,4],Crod.unit[t,4]) - Crod.unit[t,4] 
  
 L.p[t,4] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,4]) <- L.p[t,4]  
  
 kappa[t,4] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,4] <- S[t,4] * p[t,4] * kappa[t,4]      
 R[t,4] ~dpois(lambda.R[t,4])  
  
 S.sqm[t,4] <- S[t,4]  / S.G1.tot[4] 
   
 mu.ddlink[t,4] <- log( S.sqm[t,4]  /  ( alpha_d[4]  + beta_d[4] * S.sqm[t,4] ) ) 
 L.dG1[t+1,4]  ~ dnorm(mu.ddlink[t,4],tau.ddlink) 
  
 log(mu.d[t+1,4]) <- L.dG1[t+1,4]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,4] <- 1 / log(cv.d.pseudo[t+1,4]*cv.d.pseudo[t+1,4] + 1)  
 L.mud.pseudo[t+1,4] ~ dnorm(L.dG1[t+1,4] , precision.d.pseudo[t+1,4]) 
 log(mud.pseudo[t+1,4]) <- L.mud.pseudo[t+1,4] 
 
 J[t+1,4] <- mu.d[t+1,4]*S.G1.tot[4] 
} 
# foyle  
# dynamic link between J and returns 
for (t in 39:42) {  
  
 PFA[t,5] ~ dlnorm( mu.PFA[t,5] , tau.PFA) 
   
 A[t,5] <-  PFA[t,5] - C.sea.tot.unit[t,5]  - C.foyle1.unit[t,4] - C.foyle2.unit[t,3] 
  
 theta.rod[t,5]<- Crod.unit[t,5] / A[t,4] 
 
 S[t,5] <- max(A[t,5],Crod.unit[t,5]) - Crod.unit[t,5] 
  
 L.p[t,5] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,5]) <- L.p[t,5]  
  
 kappa[t,5] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,5] <- S[t,5]  * p[t,5] * kappa[t,5]      
      
 R[t,5] ~dpois(lambda.R[t,5])     
  
 S.sqm[t,5] <- S[t,5]  / S.G1.tot[5] 
   
 mu.ddlink[t,5] <- log( S.sqm[t,5]  /  ( alpha_d[5]  + beta_d[5] * S.sqm[t,5] ) ) 
 L.dG1[t+1,5]  ~ dnorm(mu.ddlink[t,5],tau.ddlink) 
  
 log(mu.d[t+1,5]) <- L.dG1[t+1,5]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,5] <- 1 / log(cv.d.pseudo[t+1,5]*cv.d.pseudo[t+1,5] + 1)  
 L.mud.pseudo[t+1,5] ~ dnorm(L.dG1[t+1,5] , precision.d.pseudo[t+1,5]) 
 log(mud.pseudo[t+1,5]) <- L.mud.pseudo[t+1,5]  
   
 J[t+1,5] <- mu.d[t+1,5]*S.G1.tot[5] 
} 
# Faughan 
# dynamic link between J and returns 
for (t in 43:48) {  
  
 PFA[t,1] ~ dlnorm( mu.PFA[t,1] , tau.PFA) 
 A[t,1] <-  PFA[t,1] - C.sea.tot.unit[t,1] - C.foyle1.unit[t,1]  
  
 N[t,1] ~dnorm( A[t,1],1)C(C.rod.amont.obs[t,1],) #A[t,1]) 
  
 theta.rod[t,1]<- C.rod.amont.obs[t,1] / A[t,1] 
 
 S[t,1] <- max(A[t,1],C.rod.amont.obs[t,1]) - C.rod.amont.obs[t,1] 
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 L.p[t,1] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,1]) <- L.p[t,1]  
  
 kappa[t,1] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,1] <- S[t,1]  * p[t,1] * kappa[t,1]      
      
 R[t,1] ~dpois(lambda.R[t,1]) 
 
 S.sqm[t,1] <- S[t,1]  / S.G1.tot[1] 
 
 mu.ddlink[t,1] <- log( S.sqm[t,1]  /  ( alpha_d[1]  + beta_d[1] * S.sqm[t,1] ) ) 
 L.dG1[t+1,1]  ~ dnorm(mu.ddlink[t,1],tau.ddlink) 
  
 log(mu.d[t+1,1]) <- L.dG1[t+1,1]  
  
# Pseudo observations 
 precision.d.pseudo[t+1,1] <- 1 / log(cv.d.pseudo[t+1,1]*cv.d.pseudo[t+1,1] + 1)  
 L.mud.pseudo[t+1,1] ~ dnorm(L.dG1[t+1,1] , precision.d.pseudo[t+1,1]) 
 log(mud.pseudo[t+1,1]) <- L.mud.pseudo[t+1,1]  
   
 J[t+1,1] <- mu.d[t+1,1]*S.G1.tot[1] 
} 
# Finn 
# dynamic link between J and returns 
for (t in 43:48) {  
 
 PFA[t,2] ~ dlnorm( mu.PFA[t,2] , tau.PFA) 
  
 A[t,2] <-  PFA[t,2] - C.sea.tot.unit[t,2] - C.foyle1.unit[t,2] - C.foyle2.unit[t,1] 
  
 N[t,2] ~dnorm( A[t,2],1)C(C.rod.amont.obs[t,2],) 
 theta.rod[t,2]<- C.rod.amont.obs[t,2] / A[t,2] 
 
 S[t,2] <- max(A[t,2],C.rod.amont.obs[t,2]) - C.rod.amont.obs[t,2] 
  
 L.p[t,2] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,2]) <- L.p[t,2]  
  
 kappa[t,2] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,2] <- S[t,2]  * p[t,2] * kappa[t,2]      
      
 R[t,2] ~dpois(lambda.R[t,2]) 
  
 S.sqm[t,2] <- S[t,2]  / S.G1.tot[2] 
   
 mu.ddlink[t,2] <- log( S.sqm[t,2]  /  ( alpha_d[2]  + beta_d[2] * S.sqm[t,2] ) ) 
 L.dG1[t+1,2]  ~ dnorm(mu.ddlink[t,2],tau.ddlink) 
   
 log(mu.d[t+1,2]) <- L.dG1[t+1,2]  
# Pseudo observations 
 precision.d.pseudo[t+1,2] <- 1 / log(cv.d.pseudo[t+1,2]*cv.d.pseudo[t+1,2] + 1)  
 L.mud.pseudo[t+1,2] ~ dnorm(L.dG1[t+1,2] , precision.d.pseudo[t+1,2]) 
 log(mud.pseudo[t+1,2]) <- L.mud.pseudo[t+1,2]  
    
 J[t+1,2] <- mu.d[t+1,2]*S.G1.tot[2] 
} 
# Mourne 
# dynamic link between J and returns 
for (t in 43:48) {  
  
 PFA[t,3] ~ dlnorm( mu.PFA[t,3] , tau.PFA) 
  
 A[t,3] <-  PFA[t,3] - C.sea.tot.unit[t,3] - C.foyle1.unit[t,3] - C.foyle2.unit[t,2] 
  
 L.mu.N[t] <-log( p_N*A[t,3] ) 
  
 N[t,3] ~dlnorm( L.mu.N[t],tau.N)C(C.rod.amont.obs[t,3],)  
  
 theta.rod[t,3]<- C.rod.amont.obs[t,3] / A[t,3] 
  
 S[t,3] <- max(A[t,3],C.rod.amont.obs[t,3]) - C.rod.amont.obs[t,3]    
 L.p[t,3] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,3]) <- L.p[t,3]  
        
 kappa[t,3] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,3] <- S[t,3]  * p[t,3] * kappa[t,3]     
       
 R[t,3] ~dpois(lambda.R[t,3])   
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 S.sqm[t,3] <- S[t,3]  / S.G1.tot[3] 
   
 mu.ddlink[t,3] <- log( S.sqm[t,3]  /  ( alpha_d[3]  + beta_d[3] * S.sqm[t,3] ) ) 
  
 L.dG1[t+1,3]  ~ dnorm(mu.ddlink[t,3],tau.ddlink) 
 log(mu.d[t+1,3]) <- L.dG1[t+1,3]  
# Pseudo observations 
 precision.d.pseudo[t+1,3] <- 1 / log(cv.d.pseudo[t+1,3]*cv.d.pseudo[t+1,3] + 1)  
 L.mud.pseudo[t+1,3] ~ dnorm(L.dG1[t+1,3] , precision.d.pseudo[t+1,3]) 
 log(mud.pseudo[t+1,3]) <- L.mud.pseudo[t+1,3]  
   
 J[t+1,3] <- mu.d[t+1,3]*S.G1.tot[3] 
} 
# Roe 
# dynamic link between J and returns 
for (t in 43:48) {  
  
 PFA[t,4] ~ dlnorm( mu.PFA[t,4] , tau.PFA) 
  
 A[t,4] <-  PFA[t,4] - C.sea.tot.unit[t,4] - C.roe[t] 
  
 N[t,4] ~dnorm( A[t,4],1)C(C.rod.amont.obs[t,4],) 
  
 theta.rod[t,4]<- C.rod.amont.obs[t,4] / A[t,4] 
 
 S[t,4] <- max(A[t,4],C.rod.amont.obs[t,4]) - C.rod.amont.obs[t,4] 
  
 L.p[t,4] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,4]) <- L.p[t,4]  
  
 kappa[t,4] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,4] <- S[t,4] * p[t,4] * kappa[t,4]      
      
 R[t,4] ~dpois(lambda.R[t,4])  
  
 S.sqm[t,4] <- S[t,4]  / S.G1.tot[4] 
   
 mu.ddlink[t,4] <- log( S.sqm[t,4]  /  ( alpha_d[4]  + beta_d[4] * S.sqm[t,4] ) ) 
 L.dG1[t+1,4]  ~ dnorm(mu.ddlink[t,4],tau.ddlink) 
  
 log(mu.d[t+1,4]) <- L.dG1[t+1,4]  
# Pseudo observations 
 precision.d.pseudo[t+1,4] <- 1 / log(cv.d.pseudo[t+1,4]*cv.d.pseudo[t+1,4] + 1)  
 L.mud.pseudo[t+1,4] ~ dnorm(L.dG1[t+1,4] , precision.d.pseudo[t+1,4]) 
 log(mud.pseudo[t+1,4]) <- L.mud.pseudo[t+1,4] 
 
 J[t+1,4] <- mu.d[t+1,4]*S.G1.tot[4] 
} 
# foyle  
# dynamic link between J and returns 
for (t in 43:48) {  
  
 PFA[t,5] ~ dlnorm( mu.PFA[t,5] , tau.PFA) 
   
 A[t,5] <-  PFA[t,5] - C.sea.tot.unit[t,5]  - C.foyle1.unit[t,4] - C.foyle2.unit[t,3] 
  
 theta.rod[t,5]<- C.rod.amont.obs[t,5] / A[t,5] 
 
 S[t,5] <- max(A[t,5],C.rod.amont.obs[t,5]) - C.rod.amont.obs[t,5] 
  
 L.p[t,5] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,5]) <- L.p[t,5]  
  
 kappa[t,5] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,5] <- S[t,5]  * p[t,5] * kappa[t,5]      
      
 R[t,5] ~dpois(lambda.R[t,5])     
  
 S.sqm[t,5] <- S[t,5]  / S.G1.tot[5] 
   
 mu.ddlink[t,5] <- log( S.sqm[t,5]  /  ( alpha_d[5]  + beta_d[5] * S.sqm[t,5] ) ) 
 L.dG1[t+1,5]  ~ dnorm(mu.ddlink[t,5],tau.ddlink) 
  
 log(mu.d[t+1,5]) <- L.dG1[t+1,5]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,5] <- 1 / log(cv.d.pseudo[t+1,5]*cv.d.pseudo[t+1,5] + 1)  
 L.mud.pseudo[t+1,5] ~ dnorm(L.dG1[t+1,5] , precision.d.pseudo[t+1,5]) 
 log(mud.pseudo[t+1,5]) <- L.mud.pseudo[t+1,5] 
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 J[t+1,5] <- mu.d[t+1,5]*S.G1.tot[5] 
} 
# Faughan 
# dynamic link between J and returns 
for (t in 49:49) {  
  
 PFA[t,1] ~ dlnorm( mu.PFA[t,1] , tau.PFA) 
  
 A[t,1] <-  PFA[t,1] - C.sea.tot.unit[t,1] - C.foyle1.unit[t,1]  
  
 theta.rod[t,1]<- C.rod.amont.obs[t,1] / A[t,1] 
 
 S[t,1] <- max(A[t,1],C.rod.amont.obs[t,1]) - C.rod.amont.obs[t,1] 
  
 L.p[t,1] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,1]) <- L.p[t,1]  
  
 kappa[t,1] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,1] <- S[t,1]  * p[t,1] * kappa[t,1]      
      
 R[t,1] ~dpois(lambda.R[t,1]) 
   
 S.sqm[t,1] <- S[t,1]  / S.G1.tot[1] 
   
 mu.ddlink[t,1] <- log( S.sqm[t,1]  /  ( alpha_d[1]  + beta_d[1] * S.sqm[t,1] ) ) 
 L.dG1[t+1,1]  ~ dnorm(mu.ddlink[t,1],tau.ddlink) 
  
 log(mu.d[t+1,1]) <- L.dG1[t+1,1]  
  
# Pseudo observations 
 precision.d.pseudo[t+1,1] <- 1 / log(cv.d.pseudo[t+1,1]*cv.d.pseudo[t+1,1] + 1)  
 L.mud.pseudo[t+1,1] ~ dnorm(L.dG1[t+1,1] , precision.d.pseudo[t+1,1]) 
 log(mud.pseudo[t+1,1]) <- L.mud.pseudo[t+1,1]  
   
 J[t+1,1] <- mu.d[t+1,1]*S.G1.tot[1] 
} 
# Finn 
# dynamic link between J and returns 
for (t in 49:49) {  
 
 PFA[t,2] ~ dlnorm( mu.PFA[t,2] , tau.PFA) 
  
 A[t,2] <-  PFA[t,2] - C.sea.tot.unit[t,2] - C.foyle1.unit[t,2] - C.foyle2.unit[t,1] 
  
 theta.rod[t,2]<- C.rod.amont.obs[t,2] / A[t,2] 
 
 S[t,2] <- max(A[t,2],C.rod.amont.obs[t,2]) - C.rod.amont.obs[t,2] 
  
 L.p[t,2] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,2]) <- L.p[t,2]  
  
 kappa[t,2] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,2] <- S[t,2]  * p[t,2] * kappa[t,2]      
      
 R[t,2] ~dpois(lambda.R[t,2]) 
  
 S.sqm[t,2] <- S[t,2]  / S.G1.tot[2] 
   
 mu.ddlink[t,2] <- log( S.sqm[t,2]  /  ( alpha_d[2]  + beta_d[2] * S.sqm[t,2] ) ) 
 L.dG1[t+1,2]  ~ dnorm(mu.ddlink[t,2],tau.ddlink) 
   
 log(mu.d[t+1,2]) <- L.dG1[t+1,2]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,2] <- 1 / log(cv.d.pseudo[t+1,2]*cv.d.pseudo[t+1,2] + 1)  
 L.mud.pseudo[t+1,2] ~ dnorm(L.dG1[t+1,2] , precision.d.pseudo[t+1,2]) 
 log(mud.pseudo[t+1,2]) <- L.mud.pseudo[t+1,2]  
    
 J[t+1,2] <- mu.d[t+1,2]*S.G1.tot[2] 
} 
# Mourne 
# dynamic link between J and returns 
for (t in 49:49) {  
  
 PFA[t,3] ~ dlnorm( mu.PFA[t,3] , tau.PFA) 
  
 A[t,3] <-  PFA[t,3] - C.sea.tot.unit[t,3] - C.foyle1.unit[t,3] - C.foyle2.unit[t,2] 
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 theta.rod[t,3]<- C.rod.amont.obs[t,3] / A[t,3] 
  
 S[t,3] <- max(A[t,3],C.rod.amont.obs[t,3]) - C.rod.amont.obs[t,3]    
  
 L.p[t,3] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,3]) <- L.p[t,3]  
        
 kappa[t,3] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,3] <- S[t,3]  * p[t,3] * kappa[t,3]     
       
 R[t,3] ~dpois(lambda.R[t,3])   
  
 S.sqm[t,3] <- S[t,3]  / S.G1.tot[3] 
   
 mu.ddlink[t,3] <- log( S.sqm[t,3]  /  ( alpha_d[3]  + beta_d[3] * S.sqm[t,3] ) ) 
  
 L.dG1[t+1,3]  ~ dnorm(mu.ddlink[t,3],tau.ddlink) 
  
 log(mu.d[t+1,3]) <- L.dG1[t+1,3]  
# Pseudo observations 
 precision.d.pseudo[t+1,3] <- 1 / log(cv.d.pseudo[t+1,3]*cv.d.pseudo[t+1,3] + 1)  
 L.mud.pseudo[t+1,3] ~ dnorm(L.dG1[t+1,3] , precision.d.pseudo[t+1,3]) 
 log(mud.pseudo[t+1,3]) <- L.mud.pseudo[t+1,3]  
   
 J[t+1,3] <- mu.d[t+1,3]*S.G1.tot[3] 
} 
# Roe 
# dynamic link between J and returns 
for (t in 49:49) {  
  
 PFA[t,4] ~ dlnorm( mu.PFA[t,4] , tau.PFA) 
  
 A[t,4] <-  PFA[t,4] - C.sea.tot.unit[t,4] - C.roe[t] 
  
 theta.rod[t,4]<- C.rod.amont.obs[t,4] / A[t,4] 
 
 S[t,4] <- max(A[t,4],C.rod.amont.obs[t,4]) - C.rod.amont.obs[t,4] 
  
 L.p[t,4] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,4]) <- L.p[t,4]  
  
 kappa[t,4] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,4] <- S[t,4] * p[t,4] * kappa[t,4]      
      
 R[t,4] ~dpois(lambda.R[t,4])  
  
 S.sqm[t,4] <- S[t,4]  / S.G1.tot[4] 
   
 mu.ddlink[t,4] <- log( S.sqm[t,4]  /  ( alpha_d[4]  + beta_d[4] * S.sqm[t,4] ) ) 
 L.dG1[t+1,4]  ~ dnorm(mu.ddlink[t,4],tau.ddlink) 
  
 log(mu.d[t+1,4]) <- L.dG1[t+1,4]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,4] <- 1 / log(cv.d.pseudo[t+1,4]*cv.d.pseudo[t+1,4] + 1)  
 L.mud.pseudo[t+1,4] ~ dnorm(L.dG1[t+1,4] , precision.d.pseudo[t+1,4]) 
 log(mud.pseudo[t+1,4]) <- L.mud.pseudo[t+1,4] 
 
 J[t+1,4] <- mu.d[t+1,4]*S.G1.tot[4] 
} 
# foyle  
# dynamic link between J and returns 
for (t in 49:49) {  
  
 PFA[t,5] ~ dlnorm( mu.PFA[t,5] , tau.PFA) 
   
 A[t,5] <-  PFA[t,5] - C.sea.tot.unit[t,5]  - C.foyle1.unit[t,4] - C.foyle2.unit[t,3] 
  
 theta.rod[t,5]<- C.rod.amont.obs[t,5] / A[t,5] 
 S[t,5] <- max(A[t,5],C.rod.amont.obs[t,5]) - C.rod.amont.obs[t,5] 
  
 L.p[t,5] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,5]) <- L.p[t,5]  
  
 kappa[t,5] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,5] <- S[t,5]  * p[t,5] * kappa[t,5]      
      
 R[t,5] ~dpois(lambda.R[t,5])     
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 S.sqm[t,5] <- S[t,5]  / S.G1.tot[5] 
   
 mu.ddlink[t,5] <- log( S.sqm[t,5]  /  ( alpha_d[5]  + beta_d[5] * S.sqm[t,5] ) ) 
 L.dG1[t+1,5]  ~ dnorm(mu.ddlink[t,5],tau.ddlink) 
  
 log(mu.d[t+1,5]) <- L.dG1[t+1,5]  
 
# Pseudo observations 
 precision.d.pseudo[t+1,5] <- 1 / log(cv.d.pseudo[t+1,5]*cv.d.pseudo[t+1,5] + 1)  
 L.mud.pseudo[t+1,5] ~ dnorm(L.dG1[t+1,5] , precision.d.pseudo[t+1,5]) 
 log(mud.pseudo[t+1,5]) <- L.mud.pseudo[t+1,5] 
 
 J[t+1,5] <- mu.d[t+1,5]*S.G1.tot[5] 
} 
# Faughan 
# dynamic link between J and returns 
# We need to set another set of loops because we dont have pseudo observation for year 51(2009) yet 
for (t in 50:50) {  
  
 PFA[t,1] ~ dlnorm( mu.PFA[t,1] , tau.PFA) 
  
 A[t,1] <-  PFA[t,1] - C.sea.tot.unit[t,1] - C.foyle1.unit[t,1]  
  
 theta.rod[t,1]<- C.rod.amont.obs[t,1] / A[t,1] 
 
 S[t,1] <- max(A[t,1],C.rod.amont.obs[t,1]) - C.rod.amont.obs[t,1] 
  
 L.p[t,1] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,1]) <- L.p[t,1]  
  
 kappa[t,1] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,1] <- S[t,1]  * p[t,1] * kappa[t,1]      
      
 R[t,1] ~dpois(lambda.R[t,1]) 
   
 S.sqm[t,1] <- S[t,1]  / S.G1.tot[1] 
   
 mu.ddlink[t,1] <- log( S.sqm[t,1]  /  ( alpha_d[1]  + beta_d[1] * S.sqm[t,1] ) ) 
 L.dG1[t+1,1]  ~ dnorm(mu.ddlink[t,1],tau.ddlink) 
  
 log(mu.d[t+1,1]) <- L.dG1[t+1,1]  
   
 J[t+1,1] <- mu.d[t+1,1]*S.G1.tot[1] 
} 
# Finn 
# dynamic link between J and returns 
for (t in 50:50) {  
 
 PFA[t,2] ~ dlnorm( mu.PFA[t,2] , tau.PFA) 
  
 A[t,2] <-  PFA[t,2] - C.sea.tot.unit[t,2] - C.foyle1.unit[t,2] - C.foyle2.unit[t,1] 
  
 theta.rod[t,2]<- C.rod.amont.obs[t,2] / A[t,2] 
  
 S[t,2] <- max(A[t,2],C.rod.amont.obs[t,2]) - C.rod.amont.obs[t,2] 
  
 L.p[t,2] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,2]) <- L.p[t,2]  
  
 kappa[t,2] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,2] <- S[t,2]  * p[t,2] * kappa[t,2]      
      
 R[t,2] ~dpois(lambda.R[t,2]) 
  
 S.sqm[t,2] <- S[t,2]  / S.G1.tot[2] 
   
 mu.ddlink[t,2] <- log( S.sqm[t,2]  /  ( alpha_d[2]  + beta_d[2] * S.sqm[t,2] ) ) 
 L.dG1[t+1,2]  ~ dnorm(mu.ddlink[t,2],tau.ddlink) 
   
 log(mu.d[t+1,2]) <- L.dG1[t+1,2]  
   
 J[t+1,2] <- mu.d[t+1,2]*S.G1.tot[2] 
} 
# Mourne 
# dynamic link between J and returns 
for (t in 50:50) {  
  
 PFA[t,3] ~ dlnorm( mu.PFA[t,3] , tau.PFA) 
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 A[t,3] <-  PFA[t,3] - C.sea.tot.unit[t,3] - C.foyle1.unit[t,3] - C.foyle2.unit[t,2] 
 
 theta.rod[t,3]<- C.rod.amont.obs[t,3] / A[t,3] 
  
  
 S[t,3] <- max(A[t,3],C.rod.amont.obs[t,3]) - C.rod.amont.obs[t,3]    
  
 L.p[t,3] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,3]) <- L.p[t,3]  
        
 kappa[t,3] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,3] <- S[t,3]  * p[t,3] * kappa[t,3]     
       
 R[t,3] ~dpois(lambda.R[t,3])   
  
 S.sqm[t,3] <- S[t,3]  / S.G1.tot[3] 
   
 mu.ddlink[t,3] <- log( S.sqm[t,3]  /  ( alpha_d[3]  + beta_d[3] * S.sqm[t,3] ) ) 
  
 L.dG1[t+1,3]  ~ dnorm(mu.ddlink[t,3],tau.ddlink) 
  
 log(mu.d[t+1,3]) <- L.dG1[t+1,3]  
   
 J[t+1,3] <- mu.d[t+1,3]*S.G1.tot[3] 
} 
# Roe 
# dynamic link between J and returns 
for (t in 50:50) {  
  
 PFA[t,4] ~ dlnorm( mu.PFA[t,4] , tau.PFA) 
 A[t,4] <-  PFA[t,4] - C.sea.tot.unit[t,4] - C.roe[t] 
 theta.rod[t,4]<- C.rod.amont.obs[t,4] / A[t,4] 
   
 S[t,4] <- max(A[t,4],C.rod.amont.obs[t,4]) - C.rod.amont.obs[t,4] 
  
 L.p[t,4] ~ dnorm(L.mu.p[1], tau.p)I(-4.59,1.5) 
 logit(p[t,4]) <- L.p[t,4]  
  
 kappa[t,4] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,4] <- S[t,4] * p[t,4] * kappa[t,4]      
      
 R[t,4] ~dpois(lambda.R[t,4])  
  
 S.sqm[t,4] <- S[t,4]  / S.G1.tot[4] 
   
 mu.ddlink[t,4] <- log( S.sqm[t,4]  /  ( alpha_d[4]  + beta_d[4] * S.sqm[t,4] ) ) 
 L.dG1[t+1,4]  ~ dnorm(mu.ddlink[t,4],tau.ddlink) 
  
 log(mu.d[t+1,4]) <- L.dG1[t+1,4]  
 
   
 J[t+1,4] <- mu.d[t+1,4]*S.G1.tot[4] 
} 
# foyle  
# dynamic link between J and returns 
for (t in 50:50) {  
  
 PFA[t,5] ~ dlnorm( mu.PFA[t,5] , tau.PFA) 
   
 A[t,5] <-  PFA[t,5] - C.sea.tot.unit[t,5]  - C.foyle1.unit[t,4] - C.foyle2.unit[t,3] 
  
 theta.rod[t,5]<- C.rod.amont.obs[t,5] / A[t,5] 
   
 S[t,5] <- max(A[t,5],C.rod.amont.obs[t,5]) - C.rod.amont.obs[t,5] 
  
 L.p[t,5] ~ dnorm(L.mu.p[2], tau.p)I(-4.59,1.5) 
 logit(p[t,5]) <- L.p[t,5]  
  
 kappa[t,5] ~ dgamma(alpha.kappa.foyle, beta.kappa)I(0.001,) 
 lambda.R[t,5] <- S[t,5]  * p[t,5] * kappa[t,5]      
      
 R[t,5] ~dpois(lambda.R[t,5])     
  
 S.sqm[t,5] <- S[t,5]  / S.G1.tot[5] 
   
 mu.ddlink[t,5] <- log( S.sqm[t,5]  /  ( alpha_d[5]  + beta_d[5] * S.sqm[t,5] ) ) 
 L.dG1[t+1,5]  ~ dnorm(mu.ddlink[t,5],tau.ddlink) 
  
 log(mu.d[t+1,5]) <- L.dG1[t+1,5]  
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 J[t+1,5] <- mu.d[t+1,5]*S.G1.tot[5] 
} 
############################################ 
# 2 years of predictions only looking at the Returns and Adults 
 
for (t in 51:52) { 
 for (i in 1:5){  
  PFA[t,i] ~ dlnorm( mu.PFA[t,i] , tau.PFA) 
 } 
} 
} 
 

#data 
 
list( 
v.foyle1=c(1,2,3,5), 
v.foyle2=c(2,3,5), 
 T=50, 
 
Drift.Sea=c( 
... (see table below for full data set) 
), 
 
Drift.Sea.Lough=c( 
... (see table below for full data set) 
), 
 
Drift.Lough=c( 
... (see table below for full data set) 
), 
 
Draft.foyle=c( 
... (see table below for full data set) 
), 
 
Draft.roe=c( 
... (see table below for full data set) 
), 
 
Fixed=c( 
... (see table below for full data set) 
), 
 
FF.Roe=c( 
... (see table below for full data set) 
), 
 
FF.Culmore=c( 
... (see table below for full data set) 
), 
FF.Rosses=c( 
... (see table below for full data set) 
), 
 
FF.prehen=c( 
... (see table below for full data set) 
), 
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 Drift Draft Fixed FF 
 Sea Sea.Lough Lough foyle roe  Roe Culmore Rosses prehen 
1959 521 7995 521 48592 3826 0 12059 3073 4690 4296 
1960 1522 11995 1522 48706 3834 0 8954 2671 5201 1082 
1961 0 11252 0 37694 2967 0 8767 1991 4050 2726 
1962 2677 17064 2677 76688 5418 0 835 3348 5238 9463 
1963 6852 41379 6852 52765 6475 2471 1075 2876 6728 3357 
1964 6668 45919 6668 70563 7618 2271 2002 3388 6854 4264 
1965 6501 21874 6501 48399 3966 1354 660 2853 5260 2842 
1966 7512 33337 7512 51583 3268 1447 576 2893 4301 3160 
1967 8390 44884 8390 56448 3024 1887 1021 2302 6696 4471 
1968 8193 26998 8193 50191 2183 1154 925 2928 3291 10928 
1969 7271 22226 7271 47649 3520 843 1199 3003 1961 5916 
1970 11310 32486 11310 43310 2031 2080 920 2588 3340 4161 
1971 6352 20272 6352 36230 588 486 284 2883 1909 5083 
1972 6202 17803 6202 29171 243 1763 149 1930 3115 1530 
1973 5239 12587 5239 26660 487 1101 0 1838 3601 2296 
1974 7967 15799 7967 35608 1062 949 0 1261 3919 1794 
1975 3627 7290 3627 27963 1644 1054 0 789 4533 2321 
1976 2982 6983 2982 17573 1229 454 0 517 1277 1102 
1977 2615 4989 2615 19920 1223 672 0 598 2863 1300 
1978 5081 9450 5081 17795 1688 1800 0 315 2918 936 
1979 3024 4697 3024 15362 2001 1110 0 227 1758 243 
1980 8089 15140 8089 15248 1190 926 0 390 1422 224 
1981 4130 11102 4130 10296 1485 435 0 0 1313 0 
1982 5971 18947 5971 17036 3268 943 0 0 1646 0 
1983 19880 33760 19880 14237 1244 627 0 0 1490 0 
1984 4742 9582 4742 9697 595 78 0 0 863 0 
1985 5431 13994 5431 12921 1145 674 0 0 1253 0 
1986 4477 23556 4477 11355 1354 282 0 0 1083 0 
1987 4781 6400 4781 4883 551 47 0 0 415 0 
1988 1121 12502 1121 15358 818 79 0 0 763 0 
1989 13202 27037 13202 30612 478 330 0 0 0 0 
1990 6261 17921 6261 9188 1011 371 0 0 0 0 
1991 2542 11754 2542 4431 1006 0 0 0 0 0 
1992 4494 21345 4494 8223 713 0 0 0 0 0 
1993 4413 16673 4413 10152 486 0 0 0 0 0 
1994 4427 16791 4427 9232 814 0 0 0 0 0 
1995 8413 10656 8413 9986 774 0 0 0 0 0 
1996 2932 10879 2932 9792 794 0 0 0 0 0 
1997 5509 18840 5509 11652 904 0 0 0 0 0 
1998 7539 22717 7539 11019 122 0 0 0 0 0 
1999 2792 12097 2792 7715 178 0 0 0 0 0 
2000 3628 15528 3628 9004 115 0 0 0 0 0 
2001 2169 10739 2169 9476 0 0 0 0 0 0 
2002 5262 22556 5262 11917 0 0 0 0 0 0 
2003 3382 11846 3382 16991 0 0 0 0 0 0 
2004 2246 10143 2246 9485 5 0 0 0 0 0 
2005 2408 10649 2408 12143 0 0 0 0 0 0 
2006 602 5197 602 6031 0 0 0 0 0 0 
2007 0 0 2598 2774 0 0 0 0 0 0 
2008 0 0 1248 2916 0 0 0 0 0 0 
2009 0 0 0 0 0 0 0 0 0 0 
2010 0 0 0 0 0 0 0 0 0 0 
 
 
# counters counts 
# row: years, column: geo units 
N =structure(.Data = c( 
0,0,0,0 
... (see table below for full data set) 
),.Dim=c(50,4)), 
 
 Faughan Finn Mourne Roe 
1959 0 0 0 0 
1960 0 0 0 0 
1961 0 0 0 0 
1962 0 0 0 0 
1963 0 0 0 0 
1964 0 0 0 0 
1965 0 0 0 0 
1966 0 0 0 0 
1967 0 0 0 0 
1968 0 0 0 0 
1969 0 0 0 0 
1970 0 0 0 0 
1971 0 0 0 0 
1972 0 0 0 0 
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1973 0 0 0 0 
1974 0 0 0 0 
1975 0 0 0 0 
1976 0 0 0 0 
1977 0 0 0 0 
1978 0 0 0 0 
1979 0 0 0 0 
1980 0 0 0 0 
1981 0 0 0 0 
1982 0 0 0 0 
1983 0 0 0 0 
1984 0 0 0 0 
1985 0 0 0 0 
1986 0 0 0 0 
1987 0 0 0 0 
1988 0 0 0 0 
1989 0 0 0 0 
1990 0 0 0 0 
1991 0 0 0 0 
1992 0 0 0 0 
1993 0 0 0 0 
1994 0 0 0 0 
1995 0 0 0 0 
1996 0 0 0 0 
1997 0 0 0 0 
1998 0 0 0 0 
1999 0 0 0 0 
2000 0 0 0 0 
2001 1518 3311 6250 3265 
2002 4288 5768 12991 5459 
2003 3097 6461 12129 4086 
2004 2855 3771 10270 1922 
2005 4245 8571 9397 2917 
2006 3625 5748 9352 5375 
2007 NA NA NA NA 
2008 NA NA NA NA 
 
 
# Redd counts for each subcatchment 
# row: years, column: geo units 
R= structure(.Data = c( 
757, 456, 2406,1204, 179, 
... (see below for full data set) 
),.Dim=c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 757 456 2406 1204 179 
1960 2169 391 3892 1398 176 
1961 853 242 1553 822 136 
1962 2114 896 6113 1328 264 
1963 2039 1041 6575 2082 539 
1964 1823 669 8964 1777 394 
1965 2558 1171 15487 2533 922 
1966 1292 1192 18372 1264 709 
1967 351 1437 12848 526 437 
1968 585 927 5167 775 146 
1969 452 453 1828 823 109 
1970 1164 621 2991 638 178 
1971 513 667 2055 676 161 
1972 156 536 498 475 109 
1973 90 459 482 124 86 
1974 362 523 1280 547 253 
1975 468 383 797 821 91 
1976 630 340 848 891 114 
1977 356 160 611 552 111 
1978 427 489 1822 882 114 
1979 479 680 449 1486 165 
1980 163 872 796 659 226 
1981 615 1371 811 435 216 
1982 449 579 1571 650 113 
1983 375 1108 829 354 61 
1984 203 394 1062 718 89 
1985 411 807 2527 768 88 
1986 188 375 1354 891 57 
1987 329 518 1355 729 124 
1988 410 651 1686 974 32 
1989 1058 452 1864 1426 162 
1990 226 366 1446 298 45 
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1991 537 767 1399 706 54 
1992 340 398 915 698 68 
1993 218 652 981 648 91 
1994 348 566 1470 126 82 
1995 82 826 1934 241 101 
1996 572 752 2179 1247 218 
1997 NA 552 1433 NA 67 
1998 84 357 1024 169 127 
1999 53 117 231 136 16 
2000 87 159 1096 383 150 
2001 233 137 860 186 97 
2002 673 234 2184 630 147 
2003 441 101 1431 672 156 
2004 501 149 1364 43 11 
2005 766 343 3114 844 226 
2006 35 94 555 428 36 
2007 387 324 1365 604 37 
2008 637 278 3662 861 233 
 
Crod.tot=c( 
639,1068,860,768,1105,4349,5100,1524,2371,631, 
434,674,400,853,1018,1967,792,663,886,1907, 
966,1134,1517,2125,831,379,1814,1172,390,960, 
975,927,482,523,1214,1759,708,1444,0,0, 
0,0,0,0,0,0,0,0,0,0, 
0,0), 
 
# rod catches in each geo units (when detailed captures are available) 
# row: years, column: geo units 
Crod.unit=structure(.Data =c( 
NA,NA,NA,NA,NA, 
... (see below for full data set) 
),.Dim=c(52,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 NA NA NA NA NA 
1960 NA NA NA NA NA 
1961 NA NA NA NA NA 
1962 NA NA NA NA NA 
1963 NA NA NA NA NA 
1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
1975 NA NA NA NA NA 
1976 NA NA NA NA NA 
1977 NA NA NA NA NA 
1978 NA NA NA NA NA 
1979 NA NA NA NA NA 
1980 NA NA NA NA NA 
1981 NA NA NA NA NA 
1982 NA NA NA NA NA 
1983 NA NA NA NA NA 
1984 NA NA NA NA NA 
1985 NA NA NA NA NA 
1986 NA NA NA NA NA 
1987 NA NA NA NA NA 
1988 NA NA NA NA NA 
1989 NA NA NA NA NA 
1990 NA NA NA NA NA 
1991 NA NA NA NA NA 
1992 NA NA NA NA NA 
1993 NA NA NA NA NA 
1994 NA NA NA NA NA 
1995 NA NA NA NA NA 
1996 NA NA NA NA NA 
1997 187 207 572 107 14 
1998 499 325 324 130 19 
1999 156 230 558 116 19 
2000 192 215 274 26 0 
2001 656 1162 1065 267 18 
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2002 597 2263 1827 408 22 
2003 335 590 748 158 8 
2004 464 627 776 357 21 
2005 822 1128 1783 309 41 
2006 501 752 1664 444 43 
2007 1132 814 2382 500 33 
2008 861 648 1889 533 67 
2009 0 0 0 0 0 
2010 0 0 0 0 0 
 
 
C.rod.amont.obs=structure(.Data =c( 
0,0,0,0,0, 
... (see table below for full data set) 
),.Dim=c(52,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 0 0 0 0 0 
1960 0 0 0 0 0 
1961 0 0 0 0 0 
1962 0 0 0 0 0 
1963 0 0 0 0 0 
1964 0 0 0 0 0 
1965 0 0 0 0 0 
1966 0 0 0 0 0 
1967 0 0 0 0 0 
1968 0 0 0 0 0 
1969 0 0 0 0 0 
1970 0 0 0 0 0 
1971 0 0 0 0 0 
1972 0 0 0 0 0 
1973 0 0 0 0 0 
1974 0 0 0 0 0 
1975 0 0 0 0 0 
1976 0 0 0 0 0 
1977 0 0 0 0 0 
1978 0 0 0 0 0 
1979 0 0 0 0 0 
1980 0 0 0 0 0 
1981 0 0 0 0 0 
1982 0 0 0 0 0 
1983 0 0 0 0 0 
1984 0 0 0 0 0 
1985 0 0 0 0 0 
1986 0 0 0 0 0 
1987 0 0 0 0 0 
1988 0 0 0 0 0 
1989 0 0 0 0 0 
1990 0 0 0 0 0 
1991 0 0 0 0 0 
1992 0 0 0 0 0 
1993 0 0 0 0 0 
1994 0 0 0 0 0 
1995 0 0 0 0 0 
1996 0 0 0 0 0 
1997 0 0 0 0 0 
1998 0 0 0 0 0 
1999 0 0 0 0 0 
2000 0 0 0 0 0 
2001 656 1162 1065 267 18 
2002 597 2263 1827 408 22 
2003 335 590 748 158 8 
2004 464 627 776 357 21 
2005 822 1128 1783 309 41 
2006 501 752 1664 444 43 
2007 1132 814 2382 500 33 
2008 861 648 1889 533 67 
2009 0 0 0 0 0 
2010 0 0 0 0 0 
 
 
#log of the median of the  average 0+ density per geo units 
# row: years, columns: geo units 
 
L.mud.pseudo=structure(.Data = c( 
NA,NA,NA,NA,NA, 
... (see table below for full data set) 
),.Dim = c(50,5)), 
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 Faughan Finn Mourne Roe Foyle 
1959 NA NA NA NA NA 
1960 NA NA NA NA NA 
1961 NA NA NA NA NA 
1962 NA NA NA NA NA 
1963 NA NA NA NA NA 
1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
1975 NA NA NA NA NA 
1976 NA NA NA NA NA 
1977 NA NA NA NA NA 
1978 NA NA NA NA NA 
1979 NA NA NA NA NA 
1980 NA NA NA NA NA 
1981 NA NA NA NA NA 
1982 NA NA NA NA NA 
1983 NA NA NA NA NA 
1984 NA NA NA NA NA 
1985 NA NA NA NA NA 
1986 NA NA NA NA NA 
1987 NA NA NA NA NA 
1988 NA NA NA NA NA 
1989 NA NA NA NA NA 
1990 NA NA NA NA NA 
1991 NA NA NA NA NA 
1992 NA NA NA NA NA 
1993 NA NA NA NA NA 
1994 NA NA NA NA NA 
1995 NA NA NA NA NA 
1996 NA NA NA NA NA 
1997 NA NA NA NA NA 
1998 -0.447 0.286 NA 0.166 -0.068 
1999 -0.166 -0.394 -1.002 1.736 -0.765 
2000 0.632 -1.176 -1.179 1.570 -0.204 
2001 2.214 -0.688 0.286 1.862 1.407 
2002 1.127 -1.041 -0.111 0.922 0.620 
2003 2.489 -0.899 0.260 1.717 1.426 
2004 2.009 0.581 0.436 2.051 1.982 
2005 1.851 1.139 0.700 2.308 1.960 
2006 1.809 -0.790 0.920 2.192 1.922 
2007 1.972 0.379 0.564 1.999 1.966 
2008 1.874 0.379 -0.238 1.529 0.799 
 
 
#coefficient of variation of the  average 0+ density per geo units 
# row: years, columns: geo units 
 
cv.d.pseudo=structure(.Data = c( 
NA,NA,NA,NA,NA, 
... (see table below for full data set) 
),.Dim = c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 NA NA NA NA NA 
1960 NA NA NA NA NA 
1961 NA NA NA NA NA 
1962 NA NA NA NA NA 
1963 NA NA NA NA NA 
1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
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1975 NA NA NA NA NA 
1976 NA NA NA NA NA 
1977 NA NA NA NA NA 
1978 NA NA NA NA NA 
1979 NA NA NA NA NA 
1980 NA NA NA NA NA 
1981 NA NA NA NA NA 
1982 NA NA NA NA NA 
1983 NA NA NA NA NA 
1984 NA NA NA NA NA 
1985 NA NA NA NA NA 
1986 NA NA NA NA NA 
1987 NA NA NA NA NA 
1988 NA NA NA NA NA 
1989 NA NA NA NA NA 
1990 NA NA NA NA NA 
1991 NA NA NA NA NA 
1992 NA NA NA NA NA 
1993 NA NA NA NA NA 
1994 NA NA NA NA NA 
1995 NA NA NA NA NA 
1996 NA NA NA NA NA 
1997 NA NA NA NA NA 
1998 1.519 0.433 NA 0.527 1.444 
1999 0.492 0.404 0.525 0.559 1.881 
2000 0.601 0.587 0.496 0.678 0.894 
2001 0.624 0.498 0.367 0.608 0.894 
2002 0.561 1.178 0.358 0.555 0.779 
2003 0.651 0.493 0.368 0.571 0.815 
2004 0.555 0.457 0.371 0.650 0.749 
2005 0.557 0.628 0.408 0.747 0.825 
2006 0.561 0.481 0.419 0.664 0.813 
2007 0.534 0.407 0.371 0.592 0.689 
2008 0.518 0.400 0.356 0.505 0.599 
 
 
# logit of the proportion of wetted area sampled for redd counts 
# row: years, column= geo units 
 
L.p=structure(.Data = c( 
NA,NA,NA,NA,NA, 
... (see table below for full data set) 
),.Dim=c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 NA NA NA NA NA 
1960 NA NA NA NA NA 
1961 NA NA NA NA NA 
1962 NA NA NA NA NA 
1963 NA NA NA NA NA 
1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
1975 NA NA NA NA NA 
1976 NA NA NA NA NA 
1977 NA NA NA NA NA 
1978 NA NA NA NA NA 
1979 NA NA NA NA NA 
1980 NA NA NA NA NA 
1981 NA NA NA NA NA 
1982 NA NA NA NA NA 
1983 NA NA NA NA NA 
1984 NA NA NA NA NA 
1985 NA NA NA NA NA 
1986 NA NA NA NA NA 
1987 NA NA NA NA NA 
1988 NA NA NA NA NA 
1989 NA NA NA NA NA 
1990 NA NA NA NA NA 
1991 NA NA NA NA NA 
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1992 NA NA NA NA NA 
1993 NA NA NA NA NA 
1994 NA NA NA NA NA 
1995 NA NA NA NA NA 
1996 NA NA NA NA NA 
1997 NA NA NA NA NA 
1998 NA NA NA NA NA 
1999 NA NA NA NA NA 
2000 NA NA NA NA NA 
2001 NA -1.58 NA NA NA 
2002 NA -1.66 -1.8804 -0.7986 -1.3859 
2003 -0.7131 -1.66 -2.0881 -0.7532 -1.3619 
2004 -0.6991 NA -2.2820 -2.4387 -2.4208 
2005 -0.7016 -1.15 -0.8562 -0.7478 -1.3499 
2006 -3.425 -2.75 -2.8078 -0.72725 -2.6865 
2007 NA NA NA NA NA 
2008 NA NA NA NA NA 
 
 
# Surface of grade 1 nursery  habitat Based on habitat surveys 
S.grade1=c( 
266992,1157446,3613113,342450,313346), 
# Surface of grade 2 nursery  habitat Based on habitat surveys 
S.grade2=c( 
158793,174863,1188973,595285,564840), 
# Total wetted area  (GIS) 
WA.total=c( 
776412,1726922,6240284,1292616,1387720) 
) 
 

#Initialisation of the Gibbs sampler (1 chain) 
 
list( 
p.temp= 0.7, 
p_f.temp=0.95, 
tau.kappa=0.1, 
 
#initial values of the kappa parameter 
# row=years, column=geo units 
kappa = structure(.Data = c( 
0.347,0.1809,0.2491,0.4983,0.2807, 
... (see table below for full data set) 
),.Dim = c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 0.3478 0.1809 0.2491 0.4983 0.2807 
1960 0.396 0.4174 0.4407 0.3034 0.5996 
1961 0.1694 0.3791 0.2767 0.6979 0.5988 
1962 0.5073 0.3291 0.3859 0.3616 0.2921 
1963 0.3894 0.2326 0.4227 0.4392 0.6746 
1964 0.7314 0.185 0.3099 0.3656 0.3208 
1965 0.29 0.4445 0.3244 0.4719 0.6545 
1966 0.2797 0.2621 0.4206 0.4205 0.3552 
1967 0.2007 0.3056 0.5157 0.2392 0.4066 
1968 0.3183 0.309 0.2794 0.4583 0.4906 
1969 0.3631 0.4649 0.5613 0.2881 0.3911 
1970 0.4415 0.3749 0.2787 0.2373 0.3155 
1971 0.4052 0.4909 0.3248 0.2827 0.3915 
1972 0.3677 0.3135 0.1513 0.4915 0.646 
1973 0.3154 0.7796 0.4496 0.2212 0.4489 
1974 0.3213 0.2851 0.4164 0.3616 0.5687 
1975 0.2748 0.6077 0.301 0.3304 0.3431 
1976 0.3028 0.3731 0.189 0.5464 0.3939 
1977 0.5862 0.1861 0.4124 0.5549 0.5178 
1978 0.3055 0.605 0.3495 0.2803 0.4114 
1979 0.1555 0.4823 0.1411 0.8077 0.3674 
1980 0.1435 0.2518 0.2208 0.431 0.161 
1981 0.4787 0.3897 0.2725 0.5427 0.3324 
1982 0.4515 0.5721 0.5728 0.5753 0.4386 
1983 0.4417 0.5829 0.3094 0.1938 0.2123 
1984 0.2224 0.341 0.4509 0.3052 0.4156 
1985 0.3991 0.3105 0.1626 0.3847 0.3201 
1986 0.2689 0.3274 0.4259 0.3366 0.4165 
1987 0.6008 0.552 0.3158 0.2304 0.4727 
1988 0.3707 0.3489 0.4107 0.3516 0.4149 
1989 0.4774 0.3115 0.3854 0.2697 0.3464 
1990 0.6432 1.052 0.4455 0.3756 0.2554 
1991 0.2576 0.3736 0.2791 0.4655 0.3923 
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1992 0.2363 0.493 0.1731 0.1802 0.3701 
1993 0.4267 0.5961 0.2871 0.5926 0.3306 
1994 0.4865 0.4596 0.4068 0.1583 0.2032 
1995 0.2841 0.4102 0.526 0.3728 0.5307 
1996 0.4162 0.3855 0.3413 0.5208 0.6725 
1997 0.5956 0.4938 0.4479 0.2522 0.4828 
1998 0.2742 0.5654 0.3773 0.3266 0.5118 
1999 0.3587 0.379 0.2239 0.4729 0.4481 
2000 0.2735 0.4602 0.397 0.5507 0.5 
2001 0.6749 0.417 0.2725 0.3422 0.5897 
2002 0.556 0.4184 0.3902 0.3928 0.4243 
2003 0.4931 0.112 0.3197 0.4894 0.4344 
2004 0.6161 0.3999 0.4474 0.4279 0.2208 
2005 0.6621 0.1897 0.3124 1.037 0.3595 
2006 0.318 0.3243 0.3281 0.2641 0.1945 
2007 0.2688 0.3975 0.4818 0.6258 0.1438 
2008 0.5103 0.2047 0.6639 0.7043 0.5477 
 
L.mu_dmax = 1.123, 
 
L.dG1 = structure(.Data = c( 
2.236,-0.2376,1.342,2.016,1.107, 
... (see table below for full data set) 
), .Dim = c(51,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 2.236 -0.2376 1.342 2.016 1.107 
1960 1.644 -0.3655 -0.03926 1.955 0.6161 
1961 1.981 0.04026 1.027 1.943 0.6971 
1962 1.574 -0.2213 1.598 1.903 1.301 
1963 1.249 -0.01214 0.3616 1.919 1.518 
1964 0.9523 0.1782 0.5458 1.87 1.076 
1965 0.7365 0.09235 0.2554 2.149 0.4729 
1966 1.731 -0.8165 0.3727 2.261 0.7924 
1967 1.724 -0.2152 0.7259 2.513 0.1256 
1968 0.7552 0.07725 0.04047 2.131 0.9828 
1969 1.518 0.3333 0.2909 1.701 0.9296 
1970 2.011 -0.05549 0.6463 1.314 1.098 
1971 1.781 0.4479 0.5677 2.308 1.299 
1972 1.637 -0.6596 0.6169 1.532 0.7199 
1973 1.598 0.08696 -0.7035 1.682 0.03054 
1974 1.884 0.01676 0.1379 1.98 0.4161 
1975 1.307 0.3917 0.5288 2.192 0.3916 
1976 1.65 0.04349 -0.03165 1.475 1.429 
1977 0.8806 0.292 0.04573 1.201 1.016 
1978 0.9547 0.3945 -0.2895 1.544 0.1572 
1979 1.072 0.926 0.07188 1.814 0.9082 
1980 1.603 0.1345 0.001058 2.524 0.4939 
1981 1.724 0.2935 -0.07415 2.492 0.8882 
1982 0.8566 -0.3489 0.5334 1.787 0.9033 
1983 1.016 -0.4489 0.6721 1.882 0.9901 
1984 1.734 -0.135 -0.1674 2.347 -0.08436 
1985 2.231 0.3969 0.7808 2.36 0.2493 
1986 0.9222 -0.1477 0.2906 2.154 0.8263 
1987 1.443 -0.3781 -0.03455 1.728 0.1475 
1988 1.724 -0.2933 0.4063 1.975 0.1382 
1989 0.5295 -0.1841 0.0374 1.996 0.3204 
1990 1.017 0.2045 -0.4057 2.039 0.859 
1991 0.6655 -0.03377 0.4684 0.6464 0.2986 
1992 1.247 0.4182 0.1719 1.685 0.6583 
1993 1.271 0.2495 0.9309 2.113 0.4033 
1994 1.305 -0.3998 0.1327 0.9221 0.9829 
1995 1.11 -0.426 0.7778 1.036 0.5199 
1996 1.404 0.1922 0.2115 1.556 0.788 
1997 1.049 -0.06659 0.819 1.843 1.615 
1998 1.195 -0.2218 0.8908 2.014 0.6352 
1999 0.6918 -0.4601 0.006923 1.17 0.4764 
2000 1.034 -0.877 0.2332 0.965 -0.4061 
2001 1.338 -0.4529 0.5256 1.177 0.5467 
2002 0.816 -0.2382 0.3181 1.177 0.87 
2003 1.627 -0.4578 0.2171 1.568 0.932 
2004 1.793 0.4858 -0.06472 1.514 1.248 
2005 1.581 0.3646 -0.3711 1.385 0.5835 
2006 1.96 -0.5079 0.9063 1.964 0.9282 
2007 1.311 0.6984 1.158 2.316 1.542 
2008 1.729 0.3659 0.2359 1.735 1.064 
2009 1.227 0.3531 0.2129 1.238 0.5517 
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L.dG1.inits = structure(.Data = c( 
-6.925,-7.435,-0.1403,-10.63,-6.651, 
1.535,-0.04058,-23.39,1.84,0.7487, 
1.9,-0.3225,0.4655,2.02,-3.56, 
-1.916,-16.1,-9.439,-25.45,-0.318), 
.Dim = c(4,5)), 
 
L.p = structure(.Data = c( 
-1.993,-2.271,-1.365,-1.223,-1.967, 
... (see table below for full data set) 
), .Dim = c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 -1.993 -2.271 -1.365 -1.223 -1.967 
1960 -1.076 -3.001 -1.644 -1.171 -2.223 
1961 -0.7324 -2.416 -2.456 -1.681 -1.991 
1962 -1.728 -2.304 -2.838 -0.7931 -2.549 
1963 -0.8852 -1.56 -2.358 -0.7212 -1.994 
1964 -1.871 -2.033 -1.368 -0.9771 -1.63 
1965 -0.8525 -2.649 -2.125 -1.001 -2.31 
1966 -0.804 -1.775 -1.92 -1.253 -1.941 
1967 -1.401 -1.553 -1.409 -1.862 -2.273 
1968 -0.3826 -2.077 -1.343 -2.172 -3.098 
1969 -1.501 -2.022 -2.494 -1.466 -2.317 
1970 -1.028 -1.968 -2.014 -1.839 -1.805 
1971 -1.073 -2.278 -1.905 -1.627 -1.807 
1972 -1.076 -0.8447 -1.075 -1.433 -1.87 
1973 -2.289 -1.268 -2.065 -1.818 -1.497 
1974 -1.409 -1.344 -1.842 -1.523 -1.793 
1975 -1.208 -2.525 -2.845 -0.3245 -2.281 
1976 -1.164 -2.557 -2.16 -0.9903 -2.116 
1977 -1.671 -2.043 -2.197 -1.444 -0.9588 
1978 -1.206 -2.419 -1.758 -0.212 -1.388 
1979 -0.8677 -2.653 -2.876 -1.471 -2.567 
1980 -1.16 -1.457 -2.095 -0.6265 -1.161 
1981 -1.011 -1.878 -2.317 -1.66 -1.703 
1982 -0.1947 -2.73 -1.938 -0.5039 -2.153 
1983 -0.7769 -1.524 -1.667 -0.9171 -1.591 
1984 -1.479 -2.305 -1.964 -1.329 -1.927 
1985 -1.389 -1.676 -1.008 -1.713 -2.841 
1986 -0.9759 -1.508 -2.401 -0.2054 -2.902 
1987 -2.071 -2.382 -2.126 -0.9106 -1.964 
1988 -2.0 -1.667 -1.937 -0.7903 -2.982 
1989 -0.7647 -1.896 -2.186 -0.8388 -1.681 
1990 -1.54 -2.118 -1.153 -0.9355 -1.692 
1991 -0.6289 -1.271 -1.745 -0.8895 -2.055 
1992 -0.577 -2.248 -1.741 -0.02955 -2.088 
1993 -1.15 -2.026 -1.264 -1.454 -1.842 
1994 -0.9401 -2.043 -1.95 -1.055 -1.548 
1995 -2.151 -1.473 -2.186 -1.163 -2.006 
1996 -0.887 -1.935 -1.838 -0.5469 -1.889 
1997 -0.445 -2.078 -2.354 -0.3519 -2.777 
1998 -1.442 -1.573 -2.149 -0.2718 -1.901 
1999 -1.614 -2.082 -2.069 -1.092 -2.468 
2000 -1.473 -2.652 -1.915 -0.8865 -1.746 
2001 -0.5077 NA -1.659 -1.433 -1.798 
2002 -0.749 NA NA NA NA 
2003 NA NA NA NA NA 
2004 NA -2.021 NA NA NA 
2005 NA NA NA NA NA 
2006 NA NA NA NA NA 
2007 -1.119 -2.775 -1.946 -0.736 -2.468 
2008 -1.248 -2.208 -0.9226 -0.3444 -1.444 

 
 
# initial values for the redd counts 
# rows=years, columns=geo units 
R = structure(.Data = c( 
            NA,            NA,            NA,            NA,            NA, 
... (see table below for full data set) 
),.Dim = c(50,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 NA NA NA NA NA 
1960 NA NA NA NA NA 
1961 NA NA NA NA NA 
1962 NA NA NA NA NA 
1963 NA NA NA NA NA 
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1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
1975 NA NA NA NA NA 
1976 NA NA NA NA NA 
1977 NA NA NA NA NA 
1978 NA NA NA NA NA 
1979 NA NA NA NA NA 
1980 NA NA NA NA NA 
1981 NA NA NA NA NA 
1982 NA NA NA NA NA 
1983 NA NA NA NA NA 
1984 NA NA NA NA NA 
1985 NA NA NA NA NA 
1986 NA NA NA NA NA 
1987 NA NA NA NA NA 
1988 NA NA NA NA NA 
1989 NA NA NA NA NA 
1990 NA NA NA NA NA 
1991 NA NA NA NA NA 
1992 NA NA NA NA NA 
1993 NA NA NA NA NA 
1994 NA NA NA NA NA 
1995 NA NA NA NA NA 
1996 NA NA NA NA NA 
1997 970 NA NA 400 NA 
1998 NA NA NA NA NA 
1999 NA NA NA NA NA 
2000 NA NA NA NA NA 
2001 NA NA NA NA NA 
2002 NA NA NA NA NA 
2003 NA NA NA NA NA 
2004 NA NA NA NA NA 
2005 NA NA NA NA NA 
2006 NA NA NA NA NA 
2007 NA NA NA NA NA 
2008 NA NA NA NA NA 
 
 
# Initial values of the PFA 
# rows=years, column=geo units 
PFA = structure(.Data = c( 
29630,50480,80530,27710,10590, 
... (see table below for full data set) 
), .Dim = c(52,5)), 
 
 Faughan Finn Mourne Roe Foyle 
1959 29630 50480 80530 27710 10590 
1960 33490 34940 96710 35140 5031 
1961 23020 13720 110700 20960 3561 
1962 35620 41500 394200 19560 16050 
1963 25570 38500 269400 25900 10240 
1964 29540 54080 243100 33330 14190 
1965 34250 46670 5.19E+5 26320 17610 
1966 18590 38320 426700 19100 20140 
1967 14620 45770 214400 24500 20950 
1968 7995 53160 169600 23980 11640 
1969 16580 19720 1.12E+5 26980 8064 
1970 17740 24970 171700 29130 7705 
1971 9694 31660 103600 19320 6405 
1972 5507 24990 53080 8709 4523 
1973 10630 12630 47880 5876 5079 
1974 14230 26430 64530 13690 8176 
1975 12910 14190 85850 8290 5417 
1976 12930 19540 68830 8831 4092 
1977 8131 19270 34640 7785 2098 
1978 10620 18270 66820 11270 2575 
1979 12360 29160 86690 13980 8694 
1980 8566 31930 58550 7917 10720 
1981 6818 38520 48230 8019 6850 
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1982 5151 38270 50410 9845 5013 
1983 9033 37530 54580 17230 5020 
1984 8238 19880 32040 15250 2698 
1985 7133 24690 83130 17200 8068 
1986 4609 10910 70130 11230 5057 
1987 6518 13780 51700 14090 2857 
1988 14730 18360 52450 11970 1868 
1989 14610 23290 99630 27560 6131 
1990 6079 10400 39850 8644 3603 
1991 9024 13920 49600 8400 1977 
1992 6953 15060 60510 13510 3051 
1993 4866 20410 33800 10180 4789 
1994 5090 18880 53920 6276 3613 
1995 4710 18060 59460 4871 3366 
1996 6648 22490 66510 8759 3489 
1997 7494 17290 65600 7701 4159 
1998 4533 9040 58250 2545 3594 
1999 2824 7272 24290 2385 1396 
2000 4528 10480 40750 3744 4109 
2001 2777 6058 37410 4392 1972 
2002 7174 9651 76400 7563 2859 
2003 4978 10380 67960 4984 2916 
2004 4362 5762 51310 2396 1686 
2005 6291 12700 53260 3504 4705 
2006 4570 7246 40770 5966 3521 
2007 7490 14970 27160 3495 3951 
2008 7042 15180 23320 3332 2477 
2009 8695 11840 63630 6170 3471 
2010 4981 14960 75820 8424 4533 
 
 
dmax = c( 
5.51,1.116,1.588,10.41,3.457), 
 
S.inits = structure(.Data = c( 
10000,20000,50000,15000,10000, 
10000,20000,50000,15000,10000, 
10000,20000,50000,15000,10000, 
10000,20000,50000,15000,10000 
), .Dim = c(4,5)), 
 
p_J1 = 0.5, 
mean_effect_returns = -3.805, 
mu.kappa.foyle = 0.388, 
mu.p = c( 
0.2358,0.1215), 
p_N = 0.2843, 
ratio.d = 4.612, 
sigma.dmax = 0.6974, 
sigma.ddlink = 0.3648, 
sigma.p = 0.522, 
sigma.PFA = 0.1436, 
sigma_unit_effect = 1.002, 
sigma_year_effect = 0.3099, 
 
sigma.N = 0.05, 
 
unit_effect_returns = c( 
-0.8561,0.05145,-0.3006,-1.744,-1.794), 
 
year_effect_returns = c( 
-3.237,-3.707,-3.47,-3.596,-3.843, 
-3.624,-3.827,-3.968,-3.834,-3.913, 
-4.079,-4.043,-4.441,-4.908,-5.025, 
-4.639,-4.722,-4.511,-4.904,-4.769, 
-4.376,-4.384,-4.463,-4.66,-4.671, 
-5.001,-4.454,-4.709,-4.9,-4.923, 
-4.447,-4.98,-4.903,-4.7,-4.762, 
-4.693,-4.922,-4.935,-4.8,-5.156, 
-5.695,-5.501,-5.69,-4.709,-4.656, 
-5.179,-4.864,-5.037,-5.345,-5.368, 
-5.112,-5.304), 
 
zt = 0.9727) 
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