

Biologie intégrative du métabolisme de la baie du raisin Christian Kappel

▶ To cite this version:

Christian Kappel. Biologie intégrative du métabolisme de la baie du raisin. Sciences du Vivant [q-bio]. Université de Bordeaux Ségalen (Bordeaux 2), 2010. Français. NNT: . tel-02823638

HAL Id: tel-02823638 https://hal.inrae.fr/tel-02823638

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université Victor Segalen Bordeaux 2

Année 2010

Thèse n° 1793

pour le

DOCTORAT DE L'UNIVERSITÉ VICTOR SEGALEN BORDEAUX 2

Mention : Sciences, Technologie, Santé Spécialité : Bioinformatique

Présentée et soutenue publiquemnet

Le 16 décembre 2010 Par

Christian Dominik KAPPEL

Biologie intégrative du métabolisme de la baie de raisin

Membres du jury

M. Mondher BOUZAYEN, Professeur, ENSA Toulouse	Rapporteur
M. Mario PEZZOTTI, Professeur, U. Vérone	Rapporteur
M. Patrice THIS, Directeur de Recherche, INRA Montpellier	Président du jury

M. Tatrice THIS, Directeur de Recherche, INRA Montpeller M. Yves GIBON, Directeur de Recherche, INRA Bordeaux

- M. Antoine DARUVAR, Professeur, U. Bordeaux
- M. Serge DELROT, Professeur, U. Bordeaux

Rapporteur Rapporteur Président du jury Examinateur Examinateur Directeur de thèse

Table des matières

1	Intr	oduct	ion	17
	1.1	La vig	gne	18
		1.1.1	Importance économique de la vigne et défis actuellement	
			posés à la profession	18
		1.1.2	Développement de la vigne	18
		1.1.3	Le développement du raisin	20
	1.2	Chang	gement climatique et micro-environnement de la vigne	26
		1.2.1	Conséquences du changement climatique	26
		1.2.2	Les effets sur le raisin	27
	1.3	Analy	ses transcriptomiques à haut débit du développement de la	
		vigne		28
		1.3.1	Introduction	28
		1.3.2	Les microarrays actuellement disponibles	29
		1.3.3	Les nouvelles technologies de séquençage	33
		1.3.4	La maturation de la baie	33
	1.4	Concl	usions et objectifs des travaux de thèse	39
2	Mat	tériels	et méthodes	40
_	2.1	Dispo	sitifs expérimentaux et échantillonnage au vignoble	41
		2.1.1	Dispositif expérimental au Château Luchev-Halde en 2008	41
		2.1.2	Dispositif expérimental au Château Luchev-Halde en 2009	44
		2.1.3	Dispositif expérimental en serre	46
	2.2	Analy	ses de métabolites	46
		2.2.1	Préparation	46
		2.2.2	Analyses de sucres	46
		2.2.3	Analyses de l'acide malique et de l'acide tartrique	47
		2.2.4	Analyses de flavonoïdes par HPLC	47
		2.2.5	Analyses d'acides aminés par HPLC	48
		2.2.6	Analyses statistiques	48
	2.3	Analy	ses transcriptomiques des échantillons en serre	48
		2.3.1	Analyses microarrays Vitis vinifera $AROS^{TM}$	48
	2.4	Analy	ses transcriptomiques des échantillons du vignoble	50
		2.4.1	Extraction d'ARN	50
		2.4.2	Analyses microarrays CombiMatrix	50
		2.4.3	PCR quantitative en temps réel	52
	2.5	Analy	ses bioinformatiques et intégration des données	54
	-	2.5.1	Comparaison des expériences en serre et au vignoble au	
			niveau transcriptomique	54

		2.5.2 2.5.3	Coexpression différentielle des gènes au vignoble Integration des données métaboliques et transcriptomiques	54 54
3	Rés 3.1	ultats Tempé 3.1.1 3.1.2	et discussion rature et rayonnement	56 57 57 58
	3.2	Analys 3.2.1 3.2.2 3.2.3 3.2.4	ses de métabolites	62 62 63 65 73
	3.3	Analys 3.3.1 3.3.2 3.3.3	ses transcriptomiques	76 76 81 87
4	3.4	Intégra 3.4.1 3.4.2	ation des données	92 92 93
4 Bi	Con bliog	raphie	ns et perspectives	99 104
				100
A	Ann A.1 A.2 A.3	Tempé A.1.1 Analys A.2.1 A.2.2 A.2.3 A.2.4 A.2.5 Analys	Tatures et rayonnement Températures des baies Températures des baies Ses de métabolites Ses de métabolites Ses de métabolites Pools Ses de métabolites Sucres Ses de métabolites Acides malique et tartrique Ses de métabolites Flavonoïdes Ses transcriptomiques Ses transcriptomiques Ses transcriptomiques	129 130 131 131 131 134 138 139 148 149 140
		A.3.1 A.3.2	Expression différentielle des gènes au vignoble Comparaison des expériences en serre et au vignoble	149 176

Table des figures

1.1	Cycle reproducteur de la vigne	20
1.2	Anatomie d'une baie de raisin mûre	21
1.3	Schéma de développement du raisin	22
1.4	Schéma représentant la régulation hormonale au cours du développement du raisin	24
2.1	Coupe transverlase présentant le dispositif expérimental au vi- gnoble en 2008	41
2.2	Coupe transverlase présentant le dispositif expérimental au vi- gnoble en 2009	45
3.1	Différences de température entre les huit conditions expérimentales le 27 août 2008	57
3.2	Différences de température entre les conditions w.e.o et e.s.i jus-	50
<u> </u>	qu'à deux semaines après le debut de l'experience en 2008	-09 -60
ა.ა ე_/	Différences de revennement modélisé et de température entre les	00
3.4	conditions w.e.o et e.s.i en 2008 jusqu'à deux semaines après le	
	début de l'expérience.	61
3.5	Concentrations en glucose et fructose au jour 7 et au jour 14 après	
	traitement en 2008	62
3.6	Analyses de variance des concentrations en acide malique et en	
	acide tartrique en fonction des conditions en 2008	64
3.7	Analyses de variance des concentrations en flavonoïdes dans les	
	pellicules en 2008.	65
3.8	Concentrations des flavonols totaux en 2008	66
3.9	Concentrations des anthocyanes totales en 2008	68
3.10	Analyses de varince des proportions et concentrations de types	
	d'anthocyanes dans les pellicules en 2008	69
3.11	Proportion d'anthocyanes trioxygénées	71
3.12	Concentrations des flavonoïdes en 2009.	73
3.13	Analyses de variance des concentrations en acides aminés dans	
	les pulpes en 2008	74
3.14	Distribution par catégories fonctionnelles des gènes différentiellement	;
	exprimés au vignoble.	76
3.15	Soft cluster des expressions de gènes et métabolites	78
3.16	Diagramme de Venn des gènes au vignoble et en serre	82
3.17	Distribution par catégories MapMan des gènes en serre et au	
	vignoble	86

3.18	Diagrammes de Venn de corrélations	87
3.19	Circos-plot des co-expressions différentielles des gènes du	
	métabolisme secondaire	88
3.20	Nombre de co-expressions différentielles des gènes	90
3.21	Heatmap des co-expressions différentielles des gènes entre les	
	conditions w.e.o et e.s.i.	91
3.22	Figure MapMan de la biosynthèse des flavonoïdes.	96
3.23	Heatmap des corrélations entre transcrits et métabolites	97
3.24	Réseaux de gènes et métabolites	98
4.1	Stimulations de la voie de biosynthèse des flavonoïdes	102
A.1	Températures absolues des baies des huit conditions expérimentales	
	le 27 août 2008	130
A.2	Concentrations en acide malique et acide tartrique en 2008	138
A.3	Concentrations des anthocyane-glycosides en 2008	139
A.4	Proportions d'anthocyane-glucosides en 2008	140
A.5	Concentrations des anthocyane-3-acétyl-glycosides en 2008	141
A.6	Proportions des anthocyane-3-acétyl-glycosides par rapport aux	
	anthocyanes totales en 2008	142
A.7	Concentrations des anthocyane-3-coumaryl glycosides en 2008.	143
A.8	Proportions des anthocyane-3-coumaryl-glycosides par rapport	
	aux anthocyanes totales en 2008	144
A.9	Concentrations des anthocyanes trioxygénées en 2008	145
A.10	Concentrations des anthocyanes dioxygénées en 2008	146
A.11	Concentrations des flavonoïdes individuelles mesurées en 2009.	147
A.12	Profils de cencentrations de quelques acides aminés en 2008	148

Liste des tableaux

$2.1 \\ 2.2 \\ 2.3 \\ 2.4 \\ 2.5 \\ 2.6 \\ 2.7$	Conditions du dispositif expérimental au vignoble en 2008 Plan de prélèvement de baies au vignoble en 2008 Dates de prélèvements pour la constitution de pools en 2008 Pools de baies broyés en 2008	$\begin{array}{c} 42 \\ 42 \\ 43 \\ 43 \\ 45 \\ 51 \\ 53 \end{array}$
3.1	Mesures de température pour les deux premières semaines à partir	
3.2	du traitement en 2008	58
	effeuillage en 2008.	63
3.3	Différentiels de concentration des flavonoïdes entre les conditions	
	w.e.o et e.s.i en 2008	72
3.4	Différentiels de concentration de types d'anthocyanes entre les	70
35	Différential de concentration des acides aminés entre les condi	(3
0.0	tions we o et e s i en 2008	75
3.6	Nombre de gènes différentiellement sur- ou -sous-exprimés	77
3.7	Catégories MapMan significativement sur- ou sous-représentées	
	parmi les gènes différentiellement exprimés au vignoble. \ldots .	77
3.8	Catégories MapMan significativement sur- ou sous-représentées	
_	parmi les gènes différentiellement exprimés aux cinq temps	77
3.9	Catégories sur- ou sous-représentées dans les cluster	79
3.10	Correlations microarrays et PCRq.	81
3.11	Genes differentiellement exprimes au vignoble et en serre suite a	0.9
9 19	Cénes différentiellement exprimés en vienable et en some suite à	83
0.12	une stimulation par la lumière	84
3 13	Catégories ManMan sur, ou sous-représentées en serre et au vi-	04
0.10	gnoble.	85
3.14	Gènes que corrèlent avec la différence de température cumulée.	92
3.15	Gènes qui corrèlent avec la différence de température journalière.	92
Δ 1	Pools de baies pour les analyses de métabolites en 2008	131
A.2	Concentrations de sucres solubles mesurées par réfractomètre en	101
		135
A.3	Concentrations de glucose et de fructose en 2008	135

A.4	Gènes différentiellement exprimés entre les conditions w.e.o et
	e.s.i en 2008
A.5	Gènes différentiellement exprimés au vignoble et en serre suite à
	une stimulation par la chaleur et la lumière

Liste des abréviations

ADN Acide désoxyribonucléique

ADNc Acide désoxyribonucléique complémentaire

ALA Alanine

ANS Anthocyanin synthase

Anth Anthocyanes

Anth-glc Anthocyane-glycosides

Anth-glc-ac Anthocyane-acétyl-glycosides

Anth-glc-cou Anthocyane-coumaryl-glycosides

Anth-glc-diox Anthocyane-glycosides dioxygénés

Anth-glc-triox Anthocyane-glycosides trioxygénés

ARG Arginine

ARN Acide ribonucléique

ARNm Acide ribonucléique messager

ASN Aspargine

ASP Aspartate

cDNA-AFLP cDNA-amplified fragment length polymorphism analysis

CHS Chalcone synthase

CHS Chalcone synthase

Cy-3-gal Cyanidine-3-galactoside

Cy-3-glc Cyanidine-3-glycoside

Cy-3-glc Delphinidine-3-glycoside

Cy-3-glc Malvidine-3-glycoside

Cy-3-glc Pétunidine-3-glycoside

Cy-3-glc-ac Cyanidine-3-acétyl-glycoside

- Cy-3-glc-ac Delphinidine-3-acétyl-glycoside
- Cy-3-glc-ac Malvidine-3-acétyl-glycoside
- Cy-3-glc-ac Pétunidine-3-acétyl-glycoside
- Cy-3-glc-cou Cyanidine-3-coumaryl-glycoside
- Cy-3-glc-cou Delphinidine-3-coumaryl-glycoside
- Cy-3-glc-cou Malvidine-3-coumaryl-glycoside
- Cy-3-glc-cou Pétunidine-3-coumaryl-glycoside
- Cy3 Cyanine 3
- Cy5 Cyanine 5
- CYS Cystéine
- dNTP Désoxyribonucléotide
- DTT Dithiothréitol
- ENITAB École Nationale d'Ingénieurs des Travaux Agricoles de Bordeaux
- EST Expressed Sequence Tag
- F3'5'H Flavonoïde-3'5'-hydroxylase
- FLS Flavonol synthase
- GABA Acide gamma-aminobutrique
- GLN Glutamine
- GLU Glutamate
- GLY Glycine
- H_2O Eau
- HIS Histidine
- HPLC High Pressure Liquid Chromatography
- HSP Heat shock protein
- ILEU Isoleucine
- IPCC Intergovernmental Panel on Climate Change
- j jour ou jours
- LEU Leucine
- LYS Lysine
- MET Métionine

- MPSS Massively Parallel Signature Sequencing
- NCBI National Center for Biotechnology Information
- p. page
- PCR Polymerase Chain Reaction
- PHE Phénylalanine
- Pn-3-glc Péonidin-3-glycoside
- Pn-3-glc-ac Péonidine-3-acétyl-glycoside
- Pn-3-glc-cou Péonidine-3-coumaryl-glycoside
- PRO Proline
- Querc-3-gal Quercétine-3-galactoside
- Querc-3-glc Quercétine-3-glycoside
- RNase Ribonucléase
- Rnasin Inhibiteur de RNase
- SER Serine
- THR Thréonine
- TYR Tyrosine
- VAL Valine

Remerciements

A tout le monde.

Résumé

La surface des vignobles mondiaux représente environ 7,9 millions ha, ce qui correspond à une production annuelle de 67 millions de tonnes de baies. La production mondiale annuelle de vins est de l'ordre de 300 millions hl/an. La surface du vignoble français est de 843 000 ha. La viticulture moderne doit affronter trois défis majeurs interdépendants : réduire l'utilisation des produits phytosanitaires, s'adapter au changement climatique, maîtriser la qualité et la typicité pour garder ou conquérir de nouveaux marchés.

En 2007, la vigne est devenue la première espèce fruitière pérenne dont le génome a été séquencé. Cette avancée scientifique ouvre de nombreuses perspectives en termes de génomique fonctionnelle (ensemble de méthodes permettant de caractériser la fonction des gènes) et de biologie intégrative (ensemble de méthodes visant à appréhender le fonctionnement global de la plante et ses réponses à l'environnement). Ces perspectives dépendent pour une bonne part de la maîtrise de quantités importantes de données qu'il convient d'organiser et de corréler grâce à des outils informatiques adaptés.

Des approches fonctionnelles concernant des gènes candidats et des approches transcriptomiques à haut débit ont permis d'identifier certains gènes ou certaines familles de gènes impliqués dans le développement et la maturation de la baie de raisin, mais au moment où cette thèse a débuté, aucun travail de biologie intégrative n'avait été entrepris.

Le travail présenté ici, qui décrit l'obtention et l'analyse de métadonnées transcriptomiques et biochimiques portant sur la réponse de la baie à l'environnement radiatif, s'inscrit dans ce contexte. En procédant à un effeuillage partiel après la véraison, nous avons modulé l'exposition des baies au rayonnement solaire. Ceci a permis d'étudier l'influence du rayonnement (baie exposée, non exposée), de la position de la grappe (est, ouest) et de la position de la baie (à l'extérieur ou à l'intérieur de la grappe). Des baies ont été récoltées à 5 moments différents après l'effeuillage et utilisées pour des analyses métabolomiques et transcriptomiques. Leur contenu en sucres, acides organiques, acides aminés, anthocyanes et flavonols a été analysé par des dosages enzymatiques et par chromatographie liquide à haute performance). L'expression des gènes a été étudiée avec des microarrays représentatifs de l'ensemble du génome de la vigne (29600 gènes) pour les conditions présentant les différences métaboliques les plus marquées (baies exposées, situées à l'ouest et

à l'extérieur de la grappe vs baies non exposées, situées à l'est et à l'intérieur de la grappe). Des analyses statistiques et corrélatives ont été conduites pour (a) déterminer les métabolites qui répondent au traitement et les facteurs qui les influencent (b) déterminer les gènes qui répondent aux traitements et ceux qui semblent co-régulés (c) préciser les réseaux de gènes et de métabolites qui semblent reliés. L'effeuillage n'affecte pas la teneur en sucres ou en acide tartrique des baies, il affecte peu les acides aminés, mais il augmente la teneur en flavonols et diminue la teneur en acide malique. Il affecte plus particulièrement les gènes associés au stress abiotique, au métabolisme secondaire, au transport et au métabolisme hormonal. Des expériences complémentaires ont permis d'identifier divers gènes spécifiquement associés à la composante thermique de l'exposition au soleil, parmi lequels des gènes codant pour des HSP, des transporteurs ABC, et des enzymes du métabolisme flavonoïdique. Des réseaux reliant des gènes et des métabolites ont pu être construits, qui associent des métabolites secondaires à des gènes de fonctions connues, ou à de nouveaux gènes candidats dont il conviendra d'étudier la fonction précise.

Abstract

The total surface of vineyards worldwide is about 7.9 millions ha, which corresponds to an annual production of 67 millions tons berries. The annual world production of wines is about 300 millions hl/year. The French wineyard occupies 843 000 ha, among which 481 000 ha are dedicated to high quality wines (VQPRD) and 362 000 ha to table wines. Modern viticulture must deal with three major and related challenges : reduce the use of organic and inorganic phytochemicals, adapt the vineyard to climatic change and control the quality and the typicity in order to keep or gain new markets.

In 2007, the grapevine became the first perennial fruit species whose genome was sequenced. This scientific breakthrough opens new pespectives in terms of functional genomics (set of methods allowing to characterize the function of genes) and integrative biology (set of methods allowing to study the global functioning of the plant and its response to the environment). These perspectives mainly depend on our ability to analyze large sets of data with adequate informatic tools.

Functional approaches on candidate genes, and high throughput transcriptomic approaches have allowed to identify some genes or some gene families involved in the development and ripening of the grape berry, but when this Ph. D work started, no paper based on integrative biology was published on grapevine.

The present work, which describes the collection and analysis of transcriptomic and metabolomic metadata related to the response of the berry to sun exposure. The exposure of the berries to the sun was controlled through a partial defoliation after veraison. This allowed to study the effects of sun exposure (exposed or shaded berries), of the position of the cluster (east, west) and of the anatomical position of the berry (outside or inside the berry). Berries were collected at 5 different time points after defoliation and used for metabolomic and transcriptomic analysis. Their content in sugars, amino acids, organic acids, anthocyanins and flavonols was analyzed by enzymatic assays and high performance liquid chromatography. For the berries whose metabolic content differed the most (exposed, west and outside berries vs shaded, east and inside berries), gene expression was studied with microarrays bearing a set of probes covering the whole genome of grapevine (29600 genes). Correlative and statistical analysis were conducted in order to (a) determine the metabolites that are the most responsive to the treatment, and the most important

factors that control them (b) determine the genes that respond to the treatment and seem to be co-regulated (c) to precise the networks of genes and metabolites which seem related. Defoliation does not affect the sugar and tartaric acid contents, hardly affects amino acids, but it increases flavonol content and decreases malic acid content. It affects more specifically genes associated with abiotic stress, secondary metabolism, transport and hormonal metabolism. Additional experiments allowed us to identify genes that are specifically associated with the thermal component of sun exposure, among which genes encoding HSP, ABC transporters, and enzymes of flavonoid metabolism. Networks relating genes and metabolites could be constructed. These networks associate secondary metabolites with genes of known function and new candidate genes for which the function will have to be precised.

Avant-propos

La viticulture moderne doit affronter trois défis majeurs et interdépendants : réduire l'utilisation des produits phytosanitaires organiques et inorganiques, s'adapter au changement climatique, maîtriser la qualité et la typicité pour garder ou conquérir de nouveaux marchés.

La vigne, culture ancestrale et véhicule d'un art de vivre, a récemment acquis ses galons de noblesse pour la communauté des physiologistes végétaux car elle est devenue la première espèce fruitière pérenne dont le génome a été séquencé. Cette avancée scientifique ouvre de nombreuses perspectives en termes de génomique fonctionnelle (ensemble de méthodes permettant de caractériser la fonction des gènes) et de biologie intégrative (ensemble de méthodes visant à appréhender le fonctionnement global de la plante et ses réponses à l'environnement).

Ces perspectives dépendent pour une bonne part de la maîtrise de quantités importantes de données qu'il convient d'organiser et de corréler grâce à des outils informatiques adaptés.

Le travail présenté ici, qui décrit l'obtention et l'analyse de métadonnées transcriptomiques et biochimiques portant sur la réponse de la baie à l'environnement radiatif, s'inscrit dans ce contexte. Chapitre 1

Introduction

1.1 La vigne

La Vigne est une espèce ligneuse, grimpante et pérenne, qui peut se multiplier par voie sexuée, par bouturage ou par greffage. Elle est cultivée pour ses fruits, les baies de raisin, utilisées pour la production de vin, de raisin de table et de raisins secs.

Taxonomie. La Vigne appartient au genre *Vitis*, de la famille des Vitacées. Le genre *Vitis* a été divisé en deux sous-genres, *Vitis* et *Muscadinia* dont le génome nucléaire est porté par 2 n = 38 et 2 n = 40 chromosomes respectivement (Jackson, 2008). C'est essentiellement le premier genre qui est utilisé pour la production de vins (This et al., 2006).

1.1.1 Importance économique de la vigne et défis actuellement posés à la profession

Les raisins peuvent être consommés en fruit frais ou secs, et ils sont utilisés pour l'élaboration de vins et de liqueurs. La surface des vignobles mondiaux représente environ 800 millions ha, ce qui correspond à une production annuelle de 67 millions de tonnes de baies. La production mondiale annuelle de vins est de l'ordre de 300 millions hl/an. La surface du vignoble français est de 843 000 ha, dont 481 000 ha et 362 000 ha dévolus aux vins VQPRD et vins de table respectivement (données 2006, Viniflhor).

La viticulture doit actuellement faire face à deux enjeux agronomiques majeurs qui sont la nécessité de réduire l'utilisation des produits phytosanitaires, et celle de faire face au changement climatique. La viticulture européenne utilise 20% des produits phytosanitaires utilisés en agriculture (indice moyen de fréquence de traitement = 12,5, comparé à 3,8 pour les céréales). En 2008, le gouvernement français a demandé à l'agriculture française de diminuer l'utilisation des pesticides d'un facteur 2 dans les dix ans. Les producteurs, les consommateurs, les marchés nationaux et internationaux et les pouvoirs publics sont de plus en plus sensibles et vigilants aux aspects environnementaux de l'agriculture.

Le changement climatique affecte déjà la physiologie de la vigne, le rendement et la composition des fruits, et finalement la qualité et la typicité des vins (Schultz, 2000; Garcia de Cortazar, 2006). Depuis le début des années 1990, les changements majeurs incluent le raccourcissement du cycle végétatif, des vendanges plus précoces, un rendement accru, une élévation de la teneur en sucres et une diminution d'acidité. La maturation précoce des baies pendant la saison chaude est défavorable à la qualité aromatique.

1.1.2 Développement de la vigne

Le développement de la vigne se fait sur deux ans et en deux cycles : le cycle végétatif et le cycle reproducteur. Le cycle végétatif se caractérise par une phase de croissance au printemps et en été, une phase d'accumulation de réserves dans le bois jusqu'à la fin de l'automne, puis une phase hivernale de repos. Le cycle reproducteur mène au développement et à la maturation des baies de raisin.

Le cycle végétatif

Le cycle végétatif, qui correspond à la croissance des organes : rameaux, feuilles, vrilles et racines, comporte plusieurs stades phénologiques (Baggiolini, 1952; Lorenz et al., 1995). Il débute au printemps après une phase de dormance hivernale quand les températures du sol commencent à dépasser les 10°C. S'il y a eu élagage, des pleurs de sève brute apparaissent au niveau des coupures, suite à une poussée d'eau venant des racines par force osmotique (Huglin and Schneider, 1998). Cette période de "pleurs" peut durer jusqu'à un mois. Elle est suivie par le débourrement qui marque la reprise d'activité du bourgeon latent et de la croissance. Le bourgeon gonfle, les écailles s'écartent et la bourre (ou coton) apparaît avant qu'émergent une pointe verte, puis les premières feuilles. Le début du débourrement varie en fonction du cépage et de la température (Blouin and Guimberteau, 2000). Un rameau émerge du bourgeon latent et continue à croître et à s'allonger. Les feuilles s'étalent et s'accroissent, et de nouvelles feuilles apparaissent.

Quarante à 80 j après le débourrement, quand les températures journalières moyennes avoisinent 15 à 20°C, des inflorescences apparaissent au sommet des pousses entre les premières feuilles. Les inflorescences marquent la poursuite du cycle reproducteur et mènent vers la création de nouveaux bourgeons latents pour l'année suivante. Un rameau contenant jusqu'à 3 grappes commence à se former dedans (Huglin and Schneider, 1998). Ce sont les bourgeons latents qui assurent à la fois la reproduction et la croissance végétative (Carmona et al., 2008). Jusqu'à la floraison, la photosynthèse ne permet pas de subvenir à l'intégralité des besoins énergétiques de la vigne (Lebon et al., 2008). Celle-ci vit sur les réserves de l'année précédente.

La phase de croissance se poursuit jusqu'au milieu de l'été, menant à l'aoûtement qui est caractérisé par un brunissement de l'écorce des rameaux, des vrilles et des grappes. Le liège se forme et des réserves s'accumulent sous forme d'amidon et de lignine dans les sarments. Les teneurs en eau dans les tissus du bois diminuent de façon synchrone. Les réserves proviennent des feuilles qui sont progressivement vidées de leur contenu. La vigne commence à perdre ses feuilles au début de l'automne, ce qui marque la fin du cycle végétatif de l'année. L'aoûtement se poursuit jusqu'à la fin de l'automne, avant les premières gelées. La vigne passe ensuite en dormance hivernale jusqu'au printemps suivant.

Le cycle reproducteur

Le cycle reproducteur qui mène vers la formation des baies est un processus qui dure deux années et est interrompu par la dormance hivernale (Fig. 1.1 page suivante). Les inflorescences sont initiées et préformées dans les bourgeons latents l'année précédant leur développement après débourrement (Lebon et al., 2008). La différenciation des fleurs commence au printemps avec la reprise d'activité du bourgeon latent. Les inflorescences apparaissent au sommet des pousses entre les premières feuilles, se séparent et commencent à prendre la forme d'une grappe. Des températures basses après le débourrement semblent provoquer une augmentation de la taille des inflorescences et le nombre de fleurs (Petrie and Clingeleffer, 2005). La floraison qui a lieu vers la fin du printemps dure une quinzaine de jours. Elle aboutit à la libération du pollen et est rapidement suivie de la fécondation. Des gelées tardives et des conditions climatiques trop fraîches ou pluvieuses peuvent provoquer une fécondation partielle et incomplète à ce moment. Des ovaires mal fécondés produisent des baies de taille réduite qui n'arrivent jamais à maturité. Dès que les ovaires commencent à se développer, on parle de nouaison. Les ovules évoluent en graines (pépins) et des baies commencent à se développer pour protéger les graines. On commence alors à parler de "grappe". Les inflorescences stériles deviennent des vrilles. Les baies restent vertes jusqu'au milieu de l'été, moment où elles atteignent la véraison. La véraison correspond à un ralentissement de la croissance, mais à l'apparition simultanée et coordonnée de plusieurs bouleversements métaboliques, parmi lesquels le début d'une forte accumulation de sucres et d'anthocyanes. Les baies ramollissent et changent de couleur, ce qui traduit le début de la maturation, laquelle se prolongera jusqu'à la fin de l'été. Si le raisin n'est pas vendangé, il peut entrer dans une phase de sur-maturation par la suite. Au cours de la surmaturation, les baies flétrissent, la concentration en sucres augmente, de même que la sensibilité aux attaques fongiques et bactériennes.

FIGURE 1.1 – Cycle reproducteur de la vigne montrant les deux phases annuelles. (Carmona et al., 2008; Coombe and Dry, 2005)

1.1.3 Le développement du raisin

Morphologie et anatomie de la baie de raisin

Les baies de raisin sont des fruits charnus, regroupés en grappes, fixés au sarment par un pédoncule. Les ramifications finales du pédoncule, les pédicelles, portent les baies. Chaque baie est composée de trois tissus majeurs - la pulpe, la pellicule et le noyau - ainsi que de faisceaux libéro-ligneux qui l'alimentent en eau et assimilats (Figure 1.2 - page suivante) (Kennedy, 2002). Le pinceau constitue le prolongement du pédicelle à l'intérieur de la baie.

La pellicule. Les cellules de la pellicule sont caractérisées par des vacuoles qui accumulent des composés phénoliques et arômatiques (Hardie et al., 1996), des plastes et de nombreuses mitochondries responsables d'une intense activité métabolique. La pellicule est recouverte d'une matière cireuse, appelée pruine,

FIGURE 1.2 – Anatomie d'une baie de raisin mûre (Kennedy, 2002) : pellicule (Skin), la pulpe (Flesh), les pépins (Seed).

qui la rend imperméable et peut être colonisée par diverses levures (Reynier, 2007). C'est l'accumulation d'anthocyanes dans la pellicule qui distingue les cépages rouges ou gris (Walker et al., 2007).

La pulpe. La pulpe représente le plus grande partie du volume de la baie. Les cellules qui la composent sont spécialisées dans l'accumulation des sucres (glucose et fructose en particulier), d'acides organiques (acide malique et tartrique) et d'eau (Carmona et al., 2008).

Les pépins. Les pépins résultent de la fécondation des ovules. Le nombre de pépins dans une baie varie de 1 à 4, la taille et le poids de la baie augmentent avec leur nombre (Huglin and Schneider, 1998). Ils accumulent entre autres des tannins.

Phases de croissance de la baie de raisin

Le développement de la baie suit une double sigmoïde avec deux phases principales (Fig. 1.3 - page suivante). La première phase herbacée mène à la formation de la baie. La seconde est une phase de maturation de celle-ci. Les deux phases sont séparées par une période de ralentissement de croissance (période de latence) qui correspond à la fin de la première phase de croissance (Ollat et al., 2002).

La phase herbacée. La phase herbacée débute à la floraison et peut durer jusqu'à 60 j (Huglin and Schneider, 1998). Cette première phase correspond à la formation de la baie et à la production des pépins (Cadot et al., 2006). Les pépins atteignent presque leur taille finale. La croissance est déterminée par le nombre

FIGURE 1.3 – Schéma représentant le développement du raisin de la floraison à maturité (Kennedy, 2002). Passage de la phase végétative (BERRY FOR-MATION) à la maturation (BERRY RIPENING) en passant par une phase de latence juste avant la véraison. Les événements majeurs de développement sont illustrés dans des cadres verts : nouaison (setting), division cellulaire dans le péricarpe (pericarp cell division), phase de latence (lag phase), véraison (Veraison), maturité (Engustment). L'axe des abscisses indique les jours après floraison. La concentration du jus des baies en sucres est donnée en dessous en degrés Brix. La taille relative et la couleur des baies sont montrées à intervalles de 10 j. Les périodes principales d'accumulation de métabolites sont indiquées dans le cadre gris. Les flux en provenance du xylème (Xylem) et du phloème (Phloem) sont indiqués sous forme de courbes suivant la croissance des baies.

de pépins, certaines phytohormones, les relations source-puits et les conditions climatiques (Ollat et al., 2002). La croissance est due aux divisions et au grandissement cellulaires. La plupart des divisions se font avant l'anthèse, les dernières divisions se faisant en partie périphérique jusqu'à 40 j après l'anthèse (Coombe, 1960). Le grandissement commence 10 à 15 j après fécondation et se poursuit jusqu'à la fin de la phase herbacée (Cadot et al., 2006). Pendant toute cette période, la baie est verte, acide et amère. Elle présente une activité photosynthétique significative et produit donc un peu de sucres. Mais pour couvrir ses besoins métaboliques, elle importe grâce à la sève phloémienne du saccharose produit dans les feuilles (Reynier, 2007). L'eau est majoritairement importée par le xylème (Ollat et al., 2002). A ce stade, la concentration en hexoses est inférieure à 150 mM (Fillion et al., 1999). Plus de 20 acides organiques sont présents dans la baie de raisin (Kliewer, 1966). Les plus importants sont l'acide malique et l'acide tartrique qui s'accumulent dans le mésocarpe, et qui représentent jusqu'à 92% des acides organiques totaux. L'acide tartrique, très important pour la qualité du vin, s'accumule en début de phase herbacée; l'acide malique qui sera consommé par les levures lors de la fermentation alcoolique (Conde et al., 2007) s'accumule en fin de phase herbacée. Des acides hydroxycinnamiques, des tannins (Possner and Kliewer, 1985) et de faibles quantités d'acide citrique et d'acide succinique sont également présents (Conde et al., 2007). Le pH et la qualité du vin sont affectés par la quantité totale d'acides organiques, le rapport acide tartrique/acide malique et la quantité d'ions de potassium. Il y a également accumulation de minéraux (Possner and Kliewer, 1985), d'acides aminés (Stines et al., 2000), de micro-nutriments et de méthoxypyrazines (Allen and Lacey, 1999). A la fin de la phase herbacée, la croissance ralentit pendant 10 à 20 j, la teneur en chlorophylle diminue, et les baies commencent à se pigmenter.

La phase de maturation. La phase de maturation débute avec la véraison. Elle est accompagnée de changements physiologiques très importants. Les baies ramollissent et leur composition chimique change. Le volume de la baie augmente de façon importante, du fait du grandissement cellulaire. En effet, la taille des cellules augmente 2 à 3 fois du début à la fin de cette phase (Kennedy, 2002; Harris et al., 1968). La baie devient un véritable organe puits (Ollat et al., 2002). La pulpe accumule de grandes quantités d'eau et de sucres. Les sucres sous forme de saccharose proviennent de la photosynthèse foliaire et sont importés par le phloème via la voie apoplasmique (Zhang et al., 2006). Ils sont ensuite hydrolysés par des invertases et stockés sous forme de glucose et fructose. Les acides aminés s'accumulent également en quantités importantes (Kennedy, 2002), alors que l'acidité diminue. Cette diminution est due à une consommation d'acide malique pour la respiration (Conde et al., 2007), et à une dilution due au grossissement de la baie (Reynier, 2007). Dans la pellicule, on observe la présence de plastes et de nombreuses mitochondries développées témoignant d'une activité métabolique intense, et les composés flavonoïdiques s'accumulent. Les méthoxypyrazines sont dégradées par la lumière (Kennedy, 2002). Les tanins, qui sont oxydés dans les pépins (Kennedy et al., 2000), sont modifiés dans la pellicule et leur taille augmente (Kennedy et al., 2001). Des arômes ou des précurseurs d'arômes terpéniques s'accumulent dans la pulpe et la pellicule.

FIGURE 1.4 – Schéma représentant la régulation hormonale au cours du développement du raisin (Conde et al., 2007) de la nouaison à la récolte (HAR-VEST). La phase herbacée est représentée par les parties I et II, la phase de maturation par la partie III. Le contenu en hormones est donné en unités arbitraires pour indiquer l'évolution relative de chaque composé. Les périodes principales d'accumulation de métabolites sont indiquées en bas (Fig. 1.3 - p. 22).

Régulation hormonale

La phase herbacée. De la fécondation à la nouaison, les hormones produites par les pépins ou par les tissus maternels contrôlent la division et l'expansion cellulaire. Les hormones intervenant au cours de la phase herbacée sont surtout les auxines, les cytokinines et gibbérellines. La concentration en auxines est maximale juste après l'anthèse et faible pendant le reste du temps. L'application d'auxine exogène retarde la maturation (Davies et al., 1997). La synthèse des gibbérellines bioactives présente un pic dans les fleurs (Symons et al., 2006).

La phase de maturation. La vigne est un fruit non climactérique, contrairement aux fruits climactériques comme la banane ou la tomate qui produisent un pic d'éthylène au cours de la maturation. Le contrôle hormonal de la maturation de la baie semble être lié à une combinaison de signaux plutôt qu' à une hormone particulière (Coombe and Hale, 1973; Giovannoni, 2004). Comme le montre la figure 1.4 - page précédente, trois hormones sont surtout impliquées : l'ABA, l'éthylène et les brassinostéroides.

Acide abscissique : ABA. L'ABA s'accumule dans les baies après la véraison (Coombe and Hale, 1973; Okamoto et al., 2004; Baydar and Harmankaya, 2005; Deytieux-Belleau et al., 2007) et sa concentration diminue un peu quand la baie est mûre (Davies et al., 1997). Il semble jouer un rôle déterminant dans le contrôle de l'accumulation des sucres (Coombe and Hale, 1973; Conde et al., 2007). Un retard de l'accumulation d'ABA est corrélé avec un retard similaire dans l'accumulation de sucres (Pirie and Mullins, 1976; Davies et al., 1997). L'ABA induit la transcription d'un régulateur transcriptionnel contrôlant l'expression d'un transporteur d'hexoses (Cakir et al., 2003), celle d'une protéine kinase stimulant l'expression de plusieurs transporteurs d'hexoses (Lecourieux et al., 2010) et celle d'une invertase acide (Pan et al., 2005; Giribaldi et al., 2010). L'ABA stimule aussi l'accumulation de composés phénoliques (Jeong et al., 2004; Cantin et al., 2007; Lacampagne et al., 2009; Owen et al., 2009; Wheeler et al., 2009). Un déficit hydrique entraîne une augmentation de sa concentration dans les baies (Okamoto et al., 2004; Deluc et al., 2009). Des transcrits liés à sa synthèse ont été identifiés dans des baies en cours de maturation (Deluc et al., 2007; Pilati et al., 2007). Une étude protéomique suggère que l'ABA agirait par le biais de protéines impliquées dans le processus de maturation, comme ADH2, XET et des enzymes de la biosynthèse des anthocyanes (Giribaldi et al., 2010).

Éthylène. L'éthylène est présent à un niveau faible tout au long de la maturation de la baie, mais un pic mineur de synthèse peut être détecté au stade pré-véraison. Une déficience en éthylène limite l'augmentation du diamètre de la baie (Mailhac and Chervin, 2006), alors qu'une application d'éthylène à la véraison la stimule (Chervin et al., 2008) en provoquant une élongation des cellules. L'éthylène interviendrait également dans la diminution de l'acidité (Weaver and Montgomery, 1974; Chervin et al., 2004) et l'accumulation de saccharose (Chervin et al., 2006). Il augmente l'accumulation d'anthocyanes (El-Kereamy et al., 2003; Chervin et al., 2004) et affecte le développement des saveurs et des arômes de la baie (Tesniere et al., 2004; Mailhac and Chervin, 2006). L'éthylène stimule notamment l'expression de l'UDP glucose-flavonoid 3-O-glycosyltransférase (UFGT) (Tira-Umphon et al., 2007; Chervin et al., 2009). La sensibilité à l'éthylène change au cours de la maturation (Coombe and Hale, 1973; Lelievre et al., 1997; Tesniere et al., 2004), et elle augmente quand la teneur en auxines baisse.

Brassinostéroides. La teneur en brassinostéroides augmente après la véraison et un traitement par les brassinostéroides accélère la maturation. Lorsque leur synthèse est inhibée, le développement de la baie est retardé de façon significative. Les profils d'expression de plusieurs gènes de leur voie de biosynthèse sont parallèles à l'accumulation de brassinostéroides en début de la phase de maturation (Symons et al., 2006).

1.2 Changement climatique et micro-environnement de la vigne

Le changement climatique en cours (Intergovernmental Panel On Climate Change, 2007) modifie sensiblement l'environnement de la vigne. On observe une augmentation de la température annuelle moyenne, du rayonnement solaire et de la concentration de CO_2 dans l'air. L'IPCC a prédit une augmentation de la température en Europe de 1,5 à 3°C jusqu'à la fin du $21^{ème}$ siècle. Ceci s'accompagne notamment d'un accroissement de la demande en eau de la plante.

1.2.1 Conséquences du changement climatique

Depuis 1950, la température environnante a augmenté dans la majorité des vignobles mondiaux. L'effet de la poursuite de cette augmentation sera probablement très différent suivant les variétés et les régions : les vignobles européens en particulier risquent de dépasser la température optimale pour la maturation (Jones et al., 2005). L'augmentation de la température provoque une accélération de la phénologie dans divers vignobles français. Ceci a notamment été observé en Alsace depuis 1972 (Duchêne and Schneider, 2005). Des modèles prédisent un avancement du débourrement de 6 à 11 j en 2050 et un avancement de la récolte supérieur à 15 j en 2030 et jusqu'à 45 j en 2050 en Australie (Webb, 2006; Webb et al., 2007). Des observations faites en Australie ont montré un avancement de la maturité de 0,5 à 3 j par an entre 1993 et 2006. Cet avancement est corrélé avec le changement de température pour le Cabernet Sauvignon et le Chardonnay, mais pas pour le Syrah (Shiraz) (Petrie and Sadras, 2008). Une simulation de l'évolution des stades de développement de Syrah prédit un avancement de la floraison d'environ 1 mois pour une augmentation de 4°C dans le région montpelliéraine (Lebon, 2002). Une simulation réalisée pour les cépages Riesling et Gewurztraminer prévoit qu'en Alsace, la véraison sera avancée de 23 j par rapport aux années 1976 à 2008 pour la fin du 21^{eme} siècle (Duchêne et al., 2010). Dans tous les cas, la véraison sera déplacée et la maturation aura lieu pendant une période plus chaude. La température avance le débourrement des bourgeons dormants, la croissance des rameaux et le développement de la surface foliaire, et elle augmente aussi la vigueur des rameaux latéraux pour toute la saison de croissance (Keller and Tarara, 2010).

Au niveau thermique, la production de vins de qualité dépend de trois facteurs :

- Une somme de température adéquate
- Un risque faible de gel
- Et l'absence de températures extrêmes

Une étude utilisant des modèles climatiques locaux prédit une baisse de 80% des vignobles de forte qualité des États-Unis pour la fin du 21^{eme} siècle (White et al., 2006). Cette baisse sera surtout due à l'augmentation des jours très chauds (température supérieure à 35°C). Les viticulteurs seront peut-être amenés à utiliser des clones ou des cépages mieux adaptés aux nouvelles conditions climatiques pour maintenir la qualité des vins. Il est nécessaire de tenir compte des températures extrêmes et pas seulement de l'augmentation de la température moyenne. Des expériences en serre ont montré qu'une température élevée exerce des effets négatifs sur le développement des baies. Une température élevée pendant la floraison inhibe la nouaison; des températures trop importantes autour de la véraison et à mi-maturité arrêtent l'expansion cellulaire et l'accumulation de sucres (Greer and Weston, 2010). Ceci est probablement dû à une disponibilité moindre du carbone, liée à une baisse observée de la photosynthèse. Une simulation de l'avancement des stades phénologiques pour une descendance de 120 plantes d'un croisement de Riesling et Gewurztraminer a montré que même le génotype le plus tardif sera confronté à des températures plus importantes qu'aujourd'hui au milieu du 21^{eme} siècle (Duchêne et al., 2010).

1.2.2 Les effets sur le raisin

L'augmentation globale de la température provoque une augmentation de la concentration de sucres et une baisse de l'acidité dans les baies, ainsi qu'un déséquilibre des composés arômatiques (Jones et al., 2005). En chauffant la surface des baies exposées, le rayonnement solaire entraîne une augmentation supplémentaire de la température des baies par rapport à celle de l'air. Le rayonnement et la température ont une grande incidence sur l'accumulation de flavonoïdes dans la pellicule. Des expériences comparant des grappes exposées et ombragées en utilisant différentes densités de feuillages (Bergqvist et al., 2001: Spayd et al., 2002; Pereira et al., 2006; Tarara et al., 2008; Matus et al., 2009; Chorti et al., 2010) ou des boîtes entourant les grappes (Downey et al., 2004; Cortell and Kennedy, 2006; Ristic et al., 2007) ont montré que le rayonnement solaire stimule la biosynthèse des flavonols. Une expérience utilisant des filtres UV a montré que ce sont les rayonnements ultraviolets qui ont le plus d'incidence (Spayd et al., 2002). Le rayonnement stimule également l'accumulation d'anthocyanes (Smart et al., 1988; Rojas-Lara and Morrison, 1989; Bergqvist et al., 2001; Spavd et al., 2002; Joscelvne et al., 2007; Matus et al., 2009) ou modifie leur spectre en modifiant les quantités d'anthocyanes dioxygénées (Price et al., 1995; Downey et al., 2004; Pereira et al., 2006; Cortell and Kennedy, 2006; Tarara et al., 2008; Chorti et al., 2010) ou d'anthocyanes trioxygénées (Spavd et al., 2002; Cortell and Kennedy, 2006; Ristic et al., 2007; Chorti et al., 2010). Une intensité de rayonnement trop importante peut provoquer une baisse de la quantité totale d'anthocyanes (Bergqvist et al., 2001; Spayd et al., 2002; Joscelyne et al., 2007; Matus et al., 2009).

L'augmentation de la température provoque une réduction des concentrations d'anthocyanes (Buttrose et al., 1971; Kliewer and Torres, 1972; Kliewer and Schultz, 1973; Bergqvist et al., 2001; Spayd et al., 2002; Mori et al., 2004; Yamane et al., 2006; Mori et al., 2007; Tarara et al., 2008). Elle favorise leur dégradation et inhibe la transcription des gènes de leur biosynthèse (Mori et al., 2007). Elle peut également modifier leur spectre en augmentant les proportions des formes coumarylées (Spayd et al., 2002; Downey et al., 2004) ou en baissant les proportions des formes acétylées (Cohen et al., 2008). Des modificatinos des formes dioxygénées ont également été observées (Cohen et al., 2008; Guidoni et al., 2008). La température et le rayonnement solaire ont probablement un effet combiné sur l'accumulation d'anthocyanes (Tarara et al., 2008; Ristic et al., 2007).

Une température trop forte au niveau de la baie inhibe l'accumulation des sucres (Kliewer, 1977; Greer and Weston, 2010). Les résultats relatifs à l'incidence sur l'accumulation de sucres d'une élévation de température au niveau des grappes (par exposition directe au soleil), et non au niveau de la plante entière, sont contradictoires (Downey et al., 2004; Cortell and Kennedy, 2006; Pereira et al., 2006; Ristic et al., 2007).

1.3 Analyses transcriptomiques à haut débit du développement de la vigne

Ce paragraphe reprend en partie un chapitre d'ouvrage écrit avec Charles Romieu et Serge Delrot (Romieu et al., 2010).

1.3.1 Introduction

De grands progrès ont été accomplis dans les approches génomiques de la vigne au cours des dernières années. Un nombre important d'outils ont été développés ou sont en cours de développement. Parmi d'autres, des populations de cartographie génétique, des cartes génétiques et physiques (Adam-Blondon et al., 2005; Marguerit et al., 2009) et une collection d'EST contenant plus de 360000 séquences déposées au NCBI (27 août 2010) sont disponibles. Des études transcriptomiques à haut débit de la vigne se développent depuis une dizaine d'années. Les premières expériences ont constitué à fixer des ADNc sur une membrane en nylon et à y hybrider des extraits d'ARN (Davies and Robinson, 2000). La plupart des expériences ont été faites avec des microarrays, mais d'autres techniques comme des analyses par EST, par cDNA-AFLP (Polesani et al., 2008; Zamboni et al., 2008), par séquençage MPSS (Iandolino et al., 2008) ou par du séquençage dit de nouvelle génération (Denoeud et al., 2008; Bellin et al., 2009) ont également été utilisées.

L'utilisation de microarrays pour la génomique des plantes présente des avantages et des limites (Rensink and Buell, 2005). L'annotation structurale de gènes dépend de données expérimentales abondantes comme les EST et les ADNc, qui permettent de confirmer des phases de lectures ouvertes. L'annotation fonctionnelle au contraire dépend surtout de l'utilisation d'outils bioinformatiques et dans des cas limités de preuves fonctionnelles expérimentales directes. Les microarrays permettent de suivre simultanément l'expression de milliers de gènes dans une seule expérience. Le niveau d'expression peut être mesuré pour tous les gènes pour lesquels il y a un clone ou pour lesquels une séquence est disponible. Il s'agit d'une approche non ciblée. La méthode principale pour identifier la fonction d'un gène à partir de son profil d'expression consiste à suivre son expression spatio-temporelle afin de l'associer à un phénotype spécifique ou à une réponse déterminée. Une autre méthode consiste à associer un gène inconnu à des gènes connus, sur la base de de leur co-expression ou de leur co-régulation.

Des analyses d'EST et des projet de séquençage de génomes ont progressivement mené vers le développement de méthodes à haut débit pour estimer le niveau des transcrits dans divers organes de vigne. Plusieurs types de microarrays sont en cours d'utilisation par la communauté des chercheurs travaillant sur la vigne. La plupart d'entre eux ont été conçus pour Vitis vinifera, mais des microarrays concus pour d'autres espèces comme Arabidopsis thaliana ont quelquefois été utilisés (Espinoza et al., 2007a). Les microarrays de vigne peuvent être repartis en deux catégories : des microarrays d'ADNc sur lesquels des sondes d'ADN sont déposées, et des microarrays pour lesquels une synthèse in situ des sondes oligonucléotidiques est réalisée. Un ou plusieurs échantillons peuvent être hybridés sur des microarrays pour mesurer des niveaux d'expression d'ARNm absolues ou relatives. Ces microarrays ont notamment été utilisés pour étudier les niveaux d'expression des gènes au cours du développement de la baie (Terrier et al., 2005; Waters et al., 2005; Ageorges et al., 2006), la modulation par l'expression de gènes étrangers à la vigne (Franks et al., 2006), les stress hydrique et salin (Cramer et al., 2007) et la réponse à l'infection par des virus (Espinoza et al., 2007b).

1.3.2 Les microarrays actuellement disponibles

Microarrays à ADNc

Le criblage différentiel avec des ADNc fixés sur des membranes de nylon peut être considéré comme l'ancêtre des microarrays. Cette méthode a été utilisée pour la première fois sur la vigne en 2000 (Davies and Robinson, 2000). Avant cette date, les études d'expression sur la vigne ont été limitées à des gènes individuels ou des petits groupes de gènes candidats. Le travail se concentrait sur quelques gènes régulateurs et sur des gènes structuraux de fonction connue comme des enzymes ou des transporteurs impliqués dans le métabolisme primaire, le ramollissement des baies ou la synthèse d'anthocyanes. Le criblage différentiel d'ADNc obtenus à partir de baies à différents stades de développement sur des membranes de nylon a permis d'identifier 16 gènes qui sont les plus exprimés au début de la maturation (Davies and Robinson, 2000). Le nombre de clones fixés sur la membrane n'est pas connu, mais l'abondance des transcrits de Grip3 et Grip4 est telle dès le début de la maturation que ces transcrits ont dû être éliminés au préalable pour pouvoir détecter d'autres gènes différentiellement hybridés sur la membrane. Les mêmes ARNm ont pu être identifiés comme étant liés à la maturation par un séquençage de deux banques d'ADNc au stage vert et au stage de maturité de la baie (Terrier et al., 2001). 146075 séquences de Vitis étaient déposées dans la base de données Gen-Bank au NCBI avant le 30 septembre 2003. Ces séquences ont été regroupées en un jeu de 25746 unigènes (Goes Da Silva et al., 2005) à l'aide des outils TIGR Gene Indices Clustering Tools (Pertea, 2003).

La connaissance des séquences n'est pas nécessaire pour la préparation de microarrays à ADNc. Ils sont souvent considérés comme un système ouvert

permettant l'identification de nouveaux transcrits de gènes. Cinq années se sont écoulées entre les travaux pionniers (Davies and Robinson, 2000) et la première utilisation de microarrays à ADNc pour la vigne (Waters et al., 2005). Des puces microarrays ont été préparées à partir de 4608 clones d'ADNc amplifiés par PCR et obtenus à partir de banques d'ADNc de baies au cours de la maturation. Un double marquage avec Cy3 et Cy5 a permis d'identifier 341 ARNm avec un différentiel d'expression important au cours du développement de la pellicule de baie. Comme le nombre de produits PCR a été probablement plus faible que le nombre de colonies fixés sur membrane de nylon (Davies and Robinson, 2000), on peut raisonnablement conclure que la meilleure résolution est due à l'utilisation de fluorophores. Les meilleures cibles des ARNm identifiés dans des bases de données protéiques ont été publiées, mais malheureusement les séquences des clones d'ADNc ne sont pas accessibles dans le domaine public.

Des microarrays à ADNc permettant un double marquage avec des fluorophores pour 1225 séquences ont été conçus pour étudier l'expression de différents transgènes dans des racines pilifères de Vitis. Aucun gène différentiellement exprimé n'a pu être identifié, probablement à cause du nombre trop faible de sondes sur la puce (Franks et al., 2006). Les bibliothèques d'ADNc d'organes ou de tissus particuliers de la vigne ont été sous-représentées dans les jeux d'unigènes du TIGR et du NCBI utilisés en 2003 pour la conception des microarrays. Il a également été supposé que ces puces n'étaient pas adaptées pour une utilisation avec des *Vitis* non *vinifera* à cause de la divergence des séquences. Pour ces raisons, des microarrays "sur mesure" continuent d'être préparés dans différents laboratoires, et ceci malgré le coût important en temps et en argent. Des microarrays pour des bourgeons de Vitis portant 9216 sondes ont récemment été utilisés pour identifier des profils d'expression associés à des étapes de transition entre l'endodormance et l'écodormance des bourgeons de Vitis riparia en fonction du nombre d'heures de froid subies (Mathiason et al., 2009). 1469 gènes différentiellement exprimés ont pu être identifiés. Des microarrays de 2712 sondes ont permis d'identifier 121 transcrits et 29 séquences de gènes uniques différentiellement exprimés entre des feuilles jeunes des cépages Regent et Trincadeira (Figueiredo et al., 2008). Cependant, tous les clones fixés sur les microarrays ont été sélectionnés de façon aléatoire à partir de banques non normalisées. Des informations importantes comme le nombre et la séquence des gènes manquent fréquemment. Ceci empêche d'appliquer des techniques de fouille de données et de comparer avec les résultats obtenus avec d'autres microarrays. Il est également possible que les produits PCR obtenus avec des amorces génériques s'hybrident avec plusieurs gènes d'une famille multigénique à cause de leur TM élevé. Ceci nuit à la sensibilité des microarrays et peut induire des confusions sur les profils d'expression.

Les premiers profils d'expression à haut débit ont été publiés quasi simultanément avec deux système différents : des microarrays à ADNc (Waters et al., 2005) et des microarrays à oligonucléotides (Terrier et al., 2005) en utilisant deux fluorophores, Cy3 et Cy5 dans les deux cas. Des analyses bioinformatiques sur des EST de 7 banques et des gènes candidats connus et accessibles en 2002 ont permis d'assembler un jeu de gènes de 3175 séquences. Afin de d'éviter un blocage des réactions de séquençage par des polyT, et d'éviter des parties 3' non traduites, et afin d'améliorer l'annotation fonctionnelle, le séquençage a été ancré du côté 5' des clones pour la plupart des programmes EST au début des années 2000. Malgré les difficultés évoquées, Terrier et al. (2005) ont pri-

vilégié le séquençage de banques d'ADNc de baies du côté 3' pour obtenir des sondes plus spécifiques (Terrier et al., 2001). L'orientation des séquences a été vérifiée en identifiant les queues polyA et en comparant les séquences obtenues avec des séquences protéiques publiques. Des séquences non orientées ont été considérées dans les deux sens. Des oligonucléotides de 50 mer ont été conçus préférentiellement dans les régions non-codantes du côté 3' proche du codon stop en tenant compte du Tm et de la spécificité. La conception, la synthèse et la fixation sur des lames microarrays ont été faites par MWG Biotech. Chaque sonde a été spottée à deux endroits. Ces microarrays ont été utilisés quasi exclusivement avec des échantillons de baies. En combinaison avec les banques d'EST à partir desquelles ils ont été faits, ils ont permis la caractérisation de changements des niveaux d'expression des gènes associés au développement de la baie (Terrier et al., 2005; Glissant et al., 2008), à des mutations de couleur de la pulpe et de la pellicule (Ageorges et al., 2006) et au mutant sans pulpe "fleshless" (Fernandez et al., 2007). Pour certains gènes, les profils d'expression des microarrays ont été confirmés avec des données de PCR quantitative.

Microarrays 14k

Les 100000 EST et les séquences d'ADNc disponibles au NCBI en 2003 ont permis de calculer deux jeux d'unigènes différents. Un premier au TIGR et un autre au NCBI avec 19451 et 14000 séquences respectivement. Deux jeux de sondes ont été conçus pour deux plateformes différentes : le *Vitis vinifera* AROS et le GeneChip[®] Affymetrix.

Puces Qiagen/Operon. Un jeu de sondes de 70 mer, le *Vitis vinifera* AROSTM1.0, mis au point chez Qiagen/Operon (http://omad.operon.com/download) est devenu disponible en 2003. Il comprend un total de 14562 sondes oligo-nucléotidiques qui doivent être fixés sur des lames par les utilisateurs. Les séquences des sondes peuvent être téléchargées sur le site d'Operon. Les sondes sont basées sur la version 3 du *Vitis vinifera* Gene Index (VvGI) du 18 août 2003 (http://compbio.dfci.harvard.edu/tgi). La dernière version 7 a été mise en ligne le 17 avril 2010.

Le VvGI comprend des séquences consensus (TC) assemblées à partir d'EST et de transcrits non-redondants qui se chevauchent sur au moins 40 bases avec une identité de séquences supérieure à 94% et des "singletons" qui ne répondent pas aux critères de chevauchement. L'assemblage a été fait avec le programme TGICL, avec une première étape de clusterisation avec un programme Mega-Blast légèrement modifié suivie d'un assemblage final réalisé avec le programme CAP3 (http ://compbio.dfci.harvard.edu/tgi/gifaq.html). L'objectif a été de construire des cadres ouverts de lecture les plus longs possibles à partir des EST, mais cette procédure peut quand même générer des artefacts comme des constructions chimériques. En 2010, cette stratégie a permis de construire un jeu d'unigènes de 80778 séquences (VvGI version 7, 17 avril 2010), un nombre plus que trois fois supérieur au nombre de séquences du jeu d'unigènes du NCBI (*Vitis vinifera* Unigene Build #11, 2 août 2010).

Le jeu d'unigènes au NCBI est bien plus stringent : des fragments multiples d'un gène sont rejetés. Comme les unigènes doivent avoir un côte 3' terminal, des transcrits obtenus à partir de projets de séquençage de génomes ne sont pas considérés, et la séquence retenue pour un unigène est la séquence la plus longue et non un assemblage. Aucun effort particulier n'a été fait pour placer les sondes dans la partie non-traduite du côté 3'. Leur spécificité est uniquement fondée sur les séquences dans la version 3 du VvGI, chaque séquence de sonde possède au plus 70% d'identité avec tous les autres transcrits et elle ne peut pas avoir plus de 20 bases en commun avec aucun autre transcrit. Des microarrays avec des sondes AROSTM1.0 ont été utilisés pour étudier l'effet de l'éthylène sur le transcriptome de la baie (Chervin et al., 2008), l'expression des gènes dans les feuilles suite à une infection par des phytoplasmes (Rotter et al., 2008; Hren et al., 2009) ou par le champignon pathogène *Eutypa lata* (Rotter et al., 2009; Camps et al., 2010), pour identifier des gènes cibles des facteurs de transcription VvMybA1 (Cutanda-Perez et al., 2009) et VvMybPA2 (Terrier et al., 2009) et pour suivre l'expression différentielle des gènes dans les baies après la récolte (Becatti et al., 2010). Ces puces ont également été utilisées pour aborder l'expression du génome dans les baies au cours du développement des espèces *Muscadinia rotundifolia* et *Vitis aestivalis* (Samuelian et al., 2009).

Affymetrix Vitis vinifera GeneChip[®] Le Vitis vinifera GeneChip[®] conçu par Affymetrix (http://www.affymetrix.com est composé de 16436 jeux de sondes qui correspondent à 12908 séquences cibles de Vitis vinifera et 1547 séquences cibles d'autres espèces ou hybrides de Vitis dans la base de données Genbank. Chaque jeu de sondes est composé de jusqu'à 16 sondes oligonucléotidiques d'une longueur de 25mer. Les oligonucléotides sont synthétisés in situ sur les lames en quartz par photolitographie. Les microarrays Affymetrix sont utilisés pour mesurer l'expression absolue de transcrits avec un seul fluorophore. Ces microarrays ont été utilisés pour étudier l'expression du génome au cours de la maturation du raisin (Deluc et al., 2007; Pilati et al., 2007; Sweetman et al., 2009), ainsi que les changements induits par des stress abiotiques (Cramer et al., 2007; Tattersall et al., 2007; Sreekantan et al., 2010) dont la température en particulier (Mori et al., 2007). Ils ont également été utilisés pour étudier les effets de l'ABA exogène appliqué à la véraison (Koyama et al., 2010). Les puces Affymetrix ont par ailleurs permis de comparer le transcriptome de différentes espèces de Vitis (Fung et al., 2007), et d'identifier les gènes qui réagissent à une infection foliaire par des virus (Espinoza et al., 2007b), le mildiou (Fung et al., 2008) ou des phytoplasmes (Albertazzi et al., 2009), ainsi que les gènes sensibles à un phytoéliciteur dans des cultures cellulaires (Zamboni et al., 2009). Des analyses intéressantes ont été menées pour caractériser l'expression des gènes dans les différents tissus de la baie (Grimplet et al., 2007) et au niveau de 32 baies individuelles à mi-maturation (Lund et al., 2008).

Microarrays pour le génome complet

Suite au séquençage du génome de la vigne (Jaillon et al., 2007), il a été possible de produire des microarrays portant des sondes correspondant à l'intégralité des transcrits identifiés. Des microarrays "génome complet" Combimatrix CustomArrayTM et Nimblegen sont actuellement utilisés dans plusieurs laboratoires. Une première version de ces microarrays a été préparée à Vérone en utilisant le système Combimatrix avec 3 réplicats de 24624 sondes oligonucléotidiques. D'autres versions réactualisées pour les sondes ont été faites pour les deux systèmes afin de tenir compte de la dernière mise à jour du génome de la vigne (12X, http://www.cns.fr/vitis). Les deux systèmes sont utilisés pour mesurer les intensité absolues d'expression sans comparaison relative comme avec le microarrays AROSTM.

Association et annotation des sondes de microarrays

Tous les microarrays, à part ceux faits pour le génome de la vigne, sont largement fondés sur des EST. Comme des séquences prédites à partir de ces EST sont mises à jour régulièrement, leur annotation et leur association aux sondes des microarrays doivent l'être également. Au fur et à mesure des mises à jour du VvGI et des unigènes du NCBI, et suite à la publication du génome de la vigne, il s'est avéré qu'une partie des sondes ne correspondaient plus à des cibles dans les nouveaux ensembles de séquences ou qu'elles avaient perdu leur spécificité. Ceci est particulièrement problématique pour les jeux de sondes (probesets) des puces Affymetrix quand toutes les sondes d'un jeu ne correspondent plus à la même cible. Les aquaporines prédites à partir du génome de la vigne illustrent bien cette problématique.

Traitement des données et identification de gènes différentiellement exprimés

Les analyses bioinformatiques constituent une partie cruciale des expériences microarrays. Le traitement des mesures d'intensité est nécessaire pour tenir compte de biais techniques à l'intérieur d'une lame et entre plusieurs microarrays d'une même expérience. La correction du bruit de fond et la normalisation à l'intérieur d'une lame ou entre microarrays affecte fortement l'identification de gènes différentiellement exprimés entre deux conditions (Rotter et al., 2008). De nombreux outils commerciaux existent à cet effet, mais il est préférable d'utiliser des outils "open source" comme R/Bioconductor (R Development Core Team, 2010; Gentleman et al., 2004) afin de comprendre toutes les aspects d'une analyse et être capable de la reproduire. Bioconductor est un projet "open source" qui regroupe des outils pour l'analyse et la compréhension de données omiques.

1.3.3 Les nouvelles technologies de séquençage

Les nouvelles technologies de séquençage ont pu être utilisées pour identifier des transcrits de vigne (Bellin et al., 2009) et améliorer l'annotation du génome (Denoeud et al., 2008). Une étude de la maturation du raisin utilisant cette approche a récemment permis d'identifier des transcrits avec des épissages alternatifs (Zenoni et al., 2010). Du fait de leur résolution supérieure, de leur sensibilité importante, de leur caractère non exhaustif, et de leur coût qui baisse rapidement, ces techniques remplaceront vraisemblablement à court terme les microarrays.

1.3.4 La maturation de la baie

Des approches globales fondées sur l'utilisation de microarrays pour étudier la tomate ont permis d'obtenir un grand nombre d'informations sur la maturation des fruits charnus (Giovannoni, 2001; White, 2002). La tomate est un fruit climactérique qui ne représente toutefois qu'une partie des fruits des angiospermes. Du fait de son importance économique et de sa complexité, la maturation de la baie a été le premier processus étudié avec des approches transcriptomiques chez la vigne, espèce à fruit charnu non climactérique.

La majorité des travaux de biologie moléculaire sur la baie de raisin ont d'abord concerné des gènes individuels ou un petit nombre de gènes. Quelques études d'EST (Ablett et al., 2000; Terrier et al., 2001), de criblage différentiel (Davies and Robinson, 2000) et de cDNA-AFLP (Venter et al., 2001) ont amorcé le développement d'approches globales. Les premières études transcriptomiques larges sur le développement de la baie de raisin ont été publiées en 2005 (Waters et al., 2005; Terrier et al., 2005).

A l'aide de microarrays de 3175 sondes pour des unigènes de Vitis vinifera, Terrier et al. (2005) ont identifié des gènes différentiellement exprimés dans des baies de Shiraz à 9 stades de développement. La comparaison des stades de la phase herbacée et de la phase de maturation a montré une expression différentielle (activation ou répression) de 781 transcrits (25%), entre les deux stades. L'analyse des profils d'expression a montré que les changements les plus importants se produisent avec le ramollissement de la baie en l'espace de 24 h, juste avant de pouvoir observer une coloration ou un changement de concentration en eau, sucres ou acides. Beaucoup des gènes identifiés appartiennent à des catégories fonctionnelles inconnues. Les inductions de quelques transcrits observées au cours de la maturation ont pu être confirmées. Elles concernent notamment les transcrits codant pour les protéines GRIP (Grape Ripening Induced Proteins) probablement impliquées dans la structure de la paroi cellulaire (GRIP3/4, 13 et 28) et dans des réponses au stress (GRIP 22 et 61) (Davies and Robinson, 2000), des transcrits liés à la défense, comme des thaumatines, des PR-4 ou des endochitinases (Robinson et al., 1997; Tattersall et al., 1997; Davies and Robinson, 2000) et l'UDP glucose-flavonoid 3-O-glycosyl transférase (UFGT) qui contrôle l'étape finale de la synthèse des anthocyanes responsables de la coloration de la baie (Boss et al., 1996). L'expression de 660 transcrits baisse fortement au cours de la maturation. Ils comprennent notamment ceux liés à l'activité photosynthétique, ce qui s'explique par le basculement complet de la baie verte, faiblement active pour la photosynthèse, vers un état de puits après la véraison où elle importe des sucres à partir des feuilles matures. Deux nouveaux transporteurs d'hexoses présumés sont induits au cours de la maturation des baies de Shiraz. Leurs profils d'expression très similaires sont strictement parallèles à l'accumulation des sucres, avec une chute à la sur-maturation, quand l'importation de sucres prend fin. Une glutathion S-transférase présente un profil d'expression parallèle à l'accumulation d'anthocyanes. L'expression différentielle de gènes impliqués dans le contrôle hormonal de facteurs de transcription suggère un rôle pour plusieurs hormones (cytokinines, gibbérellines, acide jasmonique). L'analyse de facteurs de transcription a montré une induction de gènes RAP2 et WRKY à la véraison, ce qui indique une augmentation des stress biotiques et abiotiques.

En utilisant les mêmes microarrays que ci-dessus, Glissant et al. (2008) ont étudié l'expression des gènes de Chardonnay et de Shiraz à 8 stades de développement en se focalisant sur ceux qui pourraient intervenir dans le ramollissement des baies. Soixante-trois transcrits correspondant à des gènes impliqués dans le métabolisme de la paroi cellulaire ont été étudiés plus en détail. Différents membres d'un même famille de gènes présentent des profils d'expression très différents au cours du développement de la baie. C'est le cas pour les glucanases, les a-mannosidases, les xyloglucan endotransglycosylases (XET), les pectine méthyl estérases, les protéines riches en proline et les GRIP. La même observation a pu être faite pour les PIP (plasma membrane intrinsic proteins) et les TIP (tonoplast intrinsic proteins) qui favorisent le transport transmembranaire d'eau et de petites molécules. Fouquet et al. (Fouquet et al., 2008) ont conçu des sondes spécifiques basées sur 30 régions non traduites d'ADNc afin de faire des macroarrays, ce qui a permis de confirmer la baisse d'expression de certains gènes codant pour des aquaporines au cours de la maturation de la baie. Ces profils d'expressions spécifiques pour différents membres d'une même famille de gènes montrent qu'il faut étudier les profils d'expression des facteurs de transcription qui contrôlent leur expression. Ceci peut être fait avec des approches à haut débit en identifiant des transcrits fortement co-exprimés. Dans ce cas, le profil d'expression d'un gène codant pour une protéine "zinc finger" est étroitement corrélé avec celui d'une polygalacturonase (polygalacturonase like protein) et deux isoformes codant pour une pectine acétylestérase sont co-exprimés avec un autre gène de protéine "zinc finger" (B-box type).

Waters et al. (2005) ont préparé des microarrays portant 4608 clones d'ADNc amplifiés par PCR à partir d'une banque d'ADNc faite à partir de baies entières de Shiraz à différents stades de maturation. Ils ont étudié les profils d'expression des gènes correspondants aux ADNc au cours du développement de la pellicule. Des analyses statistiques ont pu identifier 4 ensembles de gènes présentant des profils d'expression distincts au cours du développement de la baie. Le premier ensemble est composé de gènes pour lesquels la transcription est maximale au cours de la floraison puis baisse continuellement, comme ceux codant pour des protéines impliquées dans la photosynthèse. Le second est dominé par des gènes impliqués dans la biosynthèse des flavonoïdes. Il a été montré une régulation coordonnée des gènes codant pour la 4-coumarate-CoA ligase, la chalcone synthase, la chalcone isomérase, la flavanone hydroxylase, l'anthocyanidine réductase et le cytochrome b5. L'expression de ces gènes est maximale 2 semaines après floraison. Le troisième groupe de gènes présente une expression maximale 5 semaines après la floraison, à mi-terme entre floraison et véraison, ce qui correspond à une phase de croissance rapide des baies. Les gènes codant pour des protéines structurales de la paroi cellulaire y sont les plus représentés. Le quatrième ensemble est sur-exprimé de la véraison jusqu'à 13 semaines après la floraison. Cet ensemble comprenait surtout des gènes de fonction inconnue.

Pilati et al. (2007) ont étudié l'expression des gènes dans des baies récoltées avant et après véraison avec des microarrays Affymetrix. Leur étude a été menée sur trois années afin de tenir compte des variations saisonnières sur l'expression des gènes au cours du développement de la baie. Ils ont identifié 1477 gènes qui avaient un comportement similaire chaque année. Il a été possible d'identifier des isoformes spécifiquement liées à la maturation à l'intérieur d'une famille de gènes et d'identifier des gènes qui réagissent fortement aux conditions climatiques. Une annotation fonctionnelle par des termes de la Gene Ontology a montré que les catégories d'organisation et de biogenèse de la paroi cellulaire, du métabolisme des glucides et des métabolites secondaires, et les gènes de réponse aux stress sont spécifiquement induits au cours de la phase de maturation. Les gènes codant pour des protéines impliquées dans la photosynthèse sont les plus réprimés. Ces données confirment celles obtenues par Terrier et al. (2005) et Waters et al. (2005) mais indiquent également un contrôle possible de la maturation par des hormones différentes (auxines, éthylène) et par la lumière. Un pic oxydatif qui n'avait pas été observé auparavant chez la vigne a été décrit. Il se caractérise par une accumulation rapide de H_2O_2 à partir de la véraison, et par la modulation de beaucoup d'enzymes "ROS scavenging".
Deluc et al. (2007) ont étudié l'expression des gènes dans des baies de Cabernet Sauvignon à sept stades de développement de baie avec le même microarray Affymetrix. Ils ont également suivi des métabolites sélectionnés. L'objectif était de comprendre les effet de la régulation transcriptionnelle sur la production de métabolites spécifiques. Au cours du développement, 28% des transcrits présentent un différentiel d'expression d'un facteur 2 au moins. D'après leur profil d'expression, ces 4151 gènes ont été repartis dans 20 groupes. Des gènes codant pour des facteurs de transcription ou impliqués dans la synthèse de l'ABA et la signalisation calcique ont été identifiés comme candidats participant à la progression d'événements clés du développement comme la véraison, ou comme des gènes associés à des processus comme la distribution de l'auxine, la production d'arômes, et la régulation et la séquestration des voies des flavonoïdes. L'expression des gènes impliqués dans le métabolisme des sucres indique l'existence d'une voie alternative de production de glucose et de trioses phosphates de la véraison à maturité.

Grimplet et al. (2007) ont utilisé les microarrays Affymetrix pour étudier l'expression des gènes dans la pellicule, la pulpe et les pépins de Cabernet Sauvignon au cours du développement et suite à un stress hydrique. Soixanteseize% des gènes présents sur les puces Affymetrix ont été exprimés au cours des expériences, dont 28% avec un différentiel d'expression d'un facteur 2 ou plus dans un des trois tissus. La pellicule se caractérise par l'expression de gènes liés à la synthèse de flavonoïdes, à la résistance aux pathogènes et à la modification de la paroi cellulaire. La pulpe qui est considérée comme un tissu nutritif contient de nombreux transcrits liés au fonctions de la paroi cellulaire et au transport. Les pépins sont riches en transcrits de gènes codant les enzymes de la voie des phénylpropanoïdes et des protéines de réserve. Le stress hydrique affecte 13% des transcrits, avec des expressions différentielles surtout présentes dans la pulpe et dans la pellicule. Les gènes affectés par le stress hydrique codent surtout pour des protéines de réserve et des gènes inconnus. Dans la pellicule des baies provenant de plantes stressées, ce sont les transcrits liés au métabolisme des phénylpropanoïdes et de l'éthylène ainsi que ceux liés à des pathogènes, à l'énergie et à l'interaction avec l'environnement qui sont sur-représentés.

La date de la récolte est un facteur important qui joue sur la qualité du vin. Cette date est toujours déterminée à partir de paramètres macroscopiques et relativement empiriques. Les baies d'une même grappe ne sont pas toujours au même stade de maturité. Des approches transcriptomiques peuvent aider à identifier des marqueurs de maturité plus précis en identifiant des gènes dont les profils d'expression changent avec l'état de maturité désiré. Lund et al. (2008) ont analysé l'expression des gènes dans des baies individuelles de Cabernet Sauvignon provenant de 2 grappes de 2 plantes différentes à 50% d'initiation de maturation en utilisant les microarrays Affymetrix et des PCR quantitative pour des gènes non-présents sur les microarrays. Les profils d'expression globaux ne changent pas de façon statistiquement significative en fonction de la plante et en fonction de la position de la baie dans la grappe. Des profils globaux ont pu être associés avec la pigmentation des baies, ce qui a donc été considéré comme un bon indicateur de maturation. Afin d'étudier l'initiation de la maturation, la transduction des signaux a été particulièrement étudiée. Trois "receptor-like kinases" et 17 facteurs de transcription ont été surexprimés avec le ramollissement des baies et jusqu'à la première coloration. Une 9-cis-époxycaroténoïde dioxygénase (VvNCED2) et un orthologue possible d'un

récepteur d'ABA (VvGCR2) sont fortement corrélés à l'initiation de la maturation. Six transcrits correspondant à des "receptor like kinasas" et 15 transcrits correspondant à de facteurs de transcription sont sous-exprimés pendant la même période.

L'utilisation d'approches transcriptomiques pour étudier des mutants naturels est une technique pour identifier des gènes directement impliqués dans le phénotype du mutant. La transcriptomique est également utilisée pour étudier l'expression des gènes dans des plantes transgéniques qui sur-expriment des facteurs de transcriptions dont les cibles moléculaires ne sont pas tous connues.

Afin d'identifier des gènes impliqués dans le développement précoce du fruit de la vigne, Fernandez et al. (2007) ont utilisé le mutant "î" qui n'a quasiment pas de pulpe. Les microarrays AROSTMont permis d'identifier 53 et 50 gènes qui étaient respectivement sous- et sur-exprimés dans le mutant. Des expériences d'hybridation suppressive soustractive entre le mutant et le sauvage ont également permis d'identifier des transcrits différentiellement exprimés durant les premières étapes de développement du péricarpe. La mutation favorise l'expression de plusieurs gènes liés à la maturation ou au stress et diminue l'expression de plusieurs gènes de régulation. Parmi ceux-ci, il y a cinq gènes qui encodent des protéines associées au développement chez d'autres espèces : tissue protein 2, ATHB13, BURP domain protein, PISTILLATA, YABBY2. L'expression de ces gènes est affectée pendant le développement précoce du fruit, ce qui suggère qu'ils jouent un rôle dans la morphogénèse de la baie.

Biosynthèse des flavonoïdes

La biosynthèse des flavonoïdes, y compris les anthocyanes et les proanthocyanidines, a été étudiée avec une attention particulière dans quelques études transcriptomiques.

La synthèse des anthocyanes et la couleur des baies de raisin sont contrôlées par de nombreux facteurs de transcription des familles Myb, bHLH et WD40. L'expression de l'UFGT est également contrôlée par un facteur Myb. Afin d'explorer davantage des profils d'expression de gènes coordonnés avec la détermination de la couleur, Ageorges et al. (2006) ont développé une stratégie double en utilisant des bibliothèques d'hybridations soustractives suppressives (SSH) et des microarrays à oligonucléotides. Deux bibliothèques SSH ont été obtenues en comparant deux cépages rouges dont les baies contiennent soit de la pulpe rouge (Lacryma) soit de la pulpe blanche (Gamay). Des analyses transcriptomiques ont été menées pour identifier des isogènes exprimés constamment dans des tissus rouges, quelque soit le paramètre responsable (génotype, développement, tissu). Un ensemble de neuf isogènes a pu être identifié, dont quatre sont liés au métabolisme des flavonoïdes : chalcone synthase (isogène CHS3), glutathion S-transférase (GST), UFGT et caffeoyl méthyl transférase (CaOMT). Les deux dernières ont été caractérisées pour la première fois chez la vigne. Ces résultats suggèrent qu'en plus de l'UFGT, des gènes situés en amont de la chalcone synthase et en aval de la GST et de la CaOMT pourraient intervenir dans la détermination de la couleur de la baie de raisin.

Mori et al. (2007) ont étudié l'effet de la température sur la composition en anthocyanes et sur la réponse transcriptomique dans des baies de Cabernet Sauvignon. Des températures élevées (maximum 35°C) réduisent la quantité d' anthocyanes de plus de la moitié par rapport à des baies témoin placées à une température maximale de 25° C. Une analyse transcriptomique avec des microarrays Affymetrix Vitis GeneChip[®]) a permis d'identifier 405 gènes différentiellement exprimés. Hormis la di-hydroflavonol-réductase (DFR) et la flavanone-3-hydroxylase (F3H), les gènes de la voie de biosynthèses des anthocyanes ne sont pas réprimés significativement par une température élevée. Afin d'étudier la possibilité de dégradation des anthocyanes par un traitement à température élevée, des isotopes stables de L-[1-13C]-phénylalanine ont été incorporés dans des baies vertes ramollies. Le suivi des anthocyanes marquées au C13 a permis de mettre en évidence leur dégradation, qui se combine avec l'effet de la répression de la DFR et la F3H.

VvMybA1 est un facteur de transcription supposé contrôler la biosynthèse des anthocyanes dans les baies, car il contrôle l'expression de l'UFGT. Afin d'identifier d'autres cibles possibles, Cutanda-Perez et al. (2009) ont provoqué une expression ectopique de VlmybA1-2, qui est l'allèle de VvMybA1 de *Vitis labruscana*, dans les racines pilifères. Cette expression déclenche une production et un stockage d'anthocyanes dans tous les organes végétatifs, mais elle n'affecte pas la biosynthèse de proanthocyanidines. Une analyse transcriptomique avec les puces Qiagen/Operon a montré une régulation des gènes impliqués aussi bien dans la voie des proanthocyanidines que dans la voie des anthocyanines. Des gènes spécifiques à la voie des proanthocyanidines comme BAN et LAR ne sont pas affectés. Compte tenu des gènes différentiellement exprimés VvMYBA1 active probablement de façon coordonnée les gènes des dernières étapes de la synthèse des anthocyanes.

VvMybPA1 a été le premier facteur de transcription identifié qui est impliqué dans la régulation de la voie métabolique des proanthocyanidines (Bogs et al., 2007). Un autre, VvMybPA2 (Terrier et al., 2009), est surtout exprimé dans l'exocarpe de baies jeunes et dans les feuilles. Ces facteurs de transcription présentent une forte homologie de séquence protéique avec d'autres facteurs Myb de plantes qui régulent la biosynthèse des flavonoïdes. Leur expression ectopique dans des racines pilifères augmente d'un facteur cinq la quantité en proanthocyanidines. Les analyses transcriptomiques ont été faites avec les puces Qiagen/Operon. La surexpression des deux gènes activé des gènes de la voie des flavonoïdes, y compris ceux codant pour l'anthocyanidine réductase (ANR) et la leucoanthocyanidine réductase 1 (LAR1) qui sont les enzymes terminales pour la biosynthèse des épicatéchines et des catéchines respectivement. De nouveaux acteurs potentiels de la voie des proanthocyanidines comme des glycosyltransférases et des transporteurs ont été identifiés (Terrier et al., 2009).

Chervin et al. (2008) ont étudié l'effet de l'éthylène appliqué à 8 semaines après floraison sur l'expression des gènes avec des puces Qiagen/Operon. Vingtquatre h après le traitement, 73 gènes différentiellement exprimés ont pu être identifiés. Un traitement par l'éthylène à la véraison augmente le diamètre des baies à cause d'une absorption de sève et d'une modification de la paroi cellulaire permettant l'élongation de la cellule. Deux groupes de gènes sont affectés, les aquaporines et certains gènes qui contrôlent le métabolisme de la paroi cellulaire : polygalacturonases, xyloglucan endotransglycosylases (ETH), pectine méthyl estérases, cellulose synthases et expansines. Une XTH (xyloglycan endotransglucosylase/hydrolase) et une aquaporine ont été identifiés comme de bons candidats pour expliquer l'expansion cellulaire induite par l'éthylène.

L'expression des gènes impliqués dans la biosynthèse des flavonoïdes dans les baies à véraison et à maturité a été étudiée pour deux espèces nord-américaines de vigne : Vitis rotundifolia ('Noble') et Vitis aestivalis ('Cynthiana') (Samuelian et al., 2009). Des analyses microarrays ont été faites pour les baies de 'Noble', puis 28 gènes impliqués dans des étapes critiques de la biosynthèse des flavonoïdes ont été suivis par PCRq pour les deux espèces. Les gènes de la voie des flavonoïdes impliqués dans le développement de la couleur présentent un comportement similaire aussi bien pour 'Noble' que pour 'Cynthiana', ce qui indique une conservation de la régulation de voie métabolique des flavonoïdes.

1.4 Conclusions et objectifs des travaux de thèse

Les bases physiologiques et moléculaires du développement et de la maturation de la baie de raisin sont de mieux en mieux connues. Néanmoins, les facteurs déclenchant la maturation, et l'influence des paramètres climatiques sont moins bien compris, du fait de divers résultats contradictoires, et du fait que les travaux reposent sur des approches partielles. L'avénement des approches transcriptomiques à haut débit permet d'appréhender le comportement global de familles de gènes, mais aboutit rarement a identifier la fonction précise d'un gène donné, ou à mettre en évidence son rôle déterminant. Quand des problèmes relatifs au métabolisme doivent être abordés, il est très intéressant d'essayer de corréler les résultats des approches transcriptomiques et métabolomiques (Saito et al., 2008; Mounet et al., 2009)

Dans ce contexte, notre travail de thèse a visé à mettre en relation données climatiques, transcriptomiques et métabolomiques pour mieux comprendre les bases moléculaires des effets de l'effeuillage, pratique viticole courante, sur la maturation de la baie. Chapitre 2

Matériels et méthodes

2.1 Dispositifs expérimentaux et échantillonnage au vignoble

Des dispositifs expérimentaux permettant d'étudier les effets du microclimat sur la baie de raisin ont été mis en place au Château Luchey-Halde (44.8201004° latitude, -0.53200891° longitude) de l'ENITAB à Pessac en 2008 et en 2009. Un bloc de 10 rangs de Cabernet Sauvignon orientés nord-sud comportant environ 70 pieds de vigne chacun a été sélectionné. Le Château Luchey-Halde est un vignoble de production qui fait partie de l'appellation Pessac-Léognan (voir http://www.luchey-halde.com/).

2.1.1 Dispositif expérimental au Château Luchey-Halde en 2008

En 2008, 4 des 10 rangs ont été utilisés pour étudier 8 conditions en fonction de trois facteurs, comme décrit dans le tableau 2.1. L'expérience a débuté après la véraison, lorsque les baies ont atteint 17° Brix le 27 août 2008. Avant le lever du soleil, un rang a été partiellement effeuillé côté ouest, et un autre côté est. Cent grappes de chaque rang ont été sélectionnées et marquées pour des prélèvements de baies. La figure 2.1 représente une coupe transversale des rangs et illustre la mise en place du dispositif et les conditions expérimentales.

FIGURE 2.1 – Coupe transversale présentant le dispositif expérimental au Château Luchey-Halde en 2008 sur 10 rangs de l'ouest (west) à l'est (east). Les feuillages des vignes sont représentés en vert avec une incision pour indiquer l'effeuillage côté ouest pour le $2^{\grave{e}me}$ rang et côté est pour le $6^{\grave{e}me}$ rang à partir de la gauche. Les grappes sont représentées par des triangles rouges. Les lignes pointillées montrent les différentes phases d'accessibilité aux rayons du soleil au cours de la journée pour les grappes du $6^{\grave{e}me}$ rang à partir de la gauche. Les conditions expérimentales au niveau des grappes sont indiquées avec les codes décrits au tableau Tab. 2.1.

Code	Orientation	Exposition	Position
w.e.o	west	exposed	outward
w.e.i	west	exposed	inward
w.s.o	west	shaded	outward
w.s.i	west	shaded	inward
e.e.o	east	exposed	outward
e.e.i	east	exposed	inward
e.s.o	east	shaded	outward
e.s.i	east	shaded	inward

TABLE 2.1 – Conditions du dispositif expérimental au Château Luchey-Halde en 2008 en fonction de trois facteurs : l'orientation est (east) ou ouest (west) des grappes ; l'exposition (exposed) ou non (shaded) des grappes et la position des baies sur la grappe vers l'intérieur (inward) ou vers l'extérieur (outward) du feuillage. En 2009, le dispositif expérimental ne comportait que les conditions e.e.o et e.e.i.

Prélèvements

Des baies ont été prélevées à plusieurs temps au cours de la journée du traitement (effeuillage) ainsi que le soir des jours 1, 2, 4, 7, 14, 21 et 34 après traitement (voir Tab. 2.2). Environ 100 baies ont été prélevées pour chaque condition et pour chaque temps. Elles ont été immédiatement congelées dans de l'azote liquide, puis stockées à -80°C. Deux baies ont été prélevées sur chaque grappe marquée et pour chaque temps afin de tenir compte de leur position par rapport au feuillage.

Date	Jour	Jour de l'année	Action	Heure locale
2008-08-27	Mercredi	240	Effeuillage	6 :00
			Lever du soleil	7:19
			Prélèvement	9:30
			Prélèvement	12:00
			Prélèvement	14:00
			Prélèvement	16:00
			Prélèvement	20:00
2008-08-28	Jeudi	241	Prélèvement	20:00
2008-08-29	Vendredi	242	Prélèvement	20:00
2008-08-31	Dimanche	244	Prélèvement	20:00
2008-09-03	Mercredi	247	Prélèvement	20:00
2008-09-10	Mercredi	254	Prélèvement	20:00
2008-09-17	Mercredi	261	Prélèvement	20:00
2008-10-01	Mercredi	275	Prélèvement	19:00

TABLE 2.2 – Plan de prélèvement de baies pour le dispositif expérimental au Château Luchey-Halde en 2008.

Échantillonnage pour les analyses de métabolites. Cinq pools de trois baies ont été préparés pour chaque condition (Tab. 2.1) le soir du jour 0 et les

jours 7, 14 et 34 après traitement, et pour les conditions w.e.o et e.s.i uniquement pour les jours 1 et 4 après traitement (Tab. 2.2, Tab. A.1).

Échantillonnage pour les analyses de transcriptome. Trois pools de 20 baies ont été préparés pour les conditions w.e.o et e.s.i (voir Tab. 2.1) et pour 5 temps : le soir après le traitement et les soirs du 1^{er} , $4^{\grave{e}me}$, $7^{\grave{e}me}$ et $14^{\grave{e}me}$ jour après le traitement (Tab. 2.3). Les baies ont été broyées dans de l'azote liquide pour obtenir des poudres homogènes. Les poudres des 30 pools (Tab. 2.4) ont été stockées à -80° C pour des analyses moléculaires.

Code	Date	Jour de l'année	Jours après traitement
d0	2008-08-27	240	0
d1	2008-08-28	241	1
d4	2008-08-31	244	4
d7	2008-09-04	247	7
d14	2008-09-10	254	14

TABLE 2.3 – Dates de prélèvements sélectionnées pour la constitution de pools pour des analyses moléculaires en 2008.

TABLE 2.4: Pools de baies broyés en poudre homogène pour des analyses moléculaires. La colonne Pool indique les codes d'identification pour chacun.

Pool	Date	Condition	Jour après traitement
b08.1	2008-08-27	w.e.o	0
b08.2	2008-08-27	w.e.o	0
b08.3	2008-08-27	w.e.o	0
b08.4	2008-08-27	e.s.i	0
b08.5	2008-08-27	e.s.i	0
b08.6	2008-08-27	e.s.i	0
b08.7	2008-08-28	w.e.o	1
b08.8	2008-08-28	w.e.o	1
b08.9	2008-08-28	w.e.o	1
b08.10	2008-08-28	e.s.i	1
b08.11	2008-08-28	e.s.i	1
b08.12	2008-08-28	e.s.i	1
b08.13	2008-08-31	w.e.o	4
b08.14	2008-08-31	w.e.o	4
b08.15	2008-08-31	w.e.o	4
b08.16	2008-08-31	e.s.i	4
b08.17	2008-08-31	e.s.i	4
b08.18	2008-08-31	e.s.i	4
b08.19	2008-09-04	w.e.o	7
b08.20	2008-09-04	w.e.o	7
b08.21	2008-09-04	w.e.o	7
b08.22	2008-09-04	e.s.i	7
			suite

43

TABLE2.4 suite					
Pool	Date	Condition	Jour après traitement		
b08.23	2008-09-04	e.s.i	7		
b08.24	2008-09-04	e.s.i	7		
b08.25	2008-09-10	w.e.o	14		
b08.26	2008-09-10	w.e.o	14		
b08.27	2008-09-10	w.e.o	14		
b08.28	2008-09-10	e.s.i	14		
b08.29	2008-09-10	e.s.i	14		
b08.30	2008-09-10	e.s.i	14		

Mesures météorologiques

Les températures ont été mesurées pour chaque condition à l'aide de thermocouples insérés à l'intérieur de trois baies. Les mesures ont été faites toutes les 30 secondes, moyennées tous les 15 min et enregistrées avec une station d'enregistrement Campbell 10X. Une station météorologique présente au vignoble a permis d'enregistrer le climat local, et en particulier la température et le rayonnement solaire. Les différences de température entre les deux conditions ont été calculées en degrés Celsius par heure (°C/h) : les différences de températures horaires moyennes ont été sommées pour les périodes d'intérêt.

2.1.2Dispositif expérimental au Château Luchey-Halde en 2009

Pour des raisons techniques, il n'a pas été possible de reproduire le dispositif expérimental mis en place en 2008. Tous les rangs ont été partiellement effeuillés côté est début juillet, bien avant véraison. Ceci correspond à une pratique culturale courante dans le Bordelais, et au Château Luchev-Halde en particulier. Seulement deux des 8 conditions décrites dans le tableau 2.2 ont été suivies. Environ 100 grappes sur 4 rangs ont été sélectionnées et marquées pour des prélèvements de baies. La figure 2.2 représente une coupe transversale des rangs et illustre la mise en place du dispositif et les conditions expérimentales.

Prélèvements

Des baies ont été prélevées à intervalles d'une semaine en commençant 4 à 6 semaines après effeuillage jusqu'à la récolte et à sur-maturité (voir tableau 2.5). Environ 100 baies ont été prélevées pour chaque condition et pour chaque temps sauf pour le temps post-récolte, où environ 50 baies ont été prélevées. Elles ont été immédiatement congelées dans de l'azote liquide, puis stockées à -80°C. Deux baies ont été prélevées sur chaque grappe marquée pour tenir compte de leur position par rapport au feuillage.

Échantillonage pour les analyses de métabolites Trois pools de 40 baies ont été préparés pour chacune des 2 conditions le soir du 18 août 2009.

FIGURE 2.2 – Coupe transversale présentant le dispositif expérimental au Château Luchey-Halde en 2009 sur 10 rangs de l'ouest (west) à l'est (east). Les feuillages des vignes sont représentés en vert avec une incision pour indiquer un effeuillage côté est pour tous les rangs. Les grappes sont représentées par des triangles rouges. Les lignes pointillées montrent les différentes phases d'accessibilité aux rayons du soleil au cours de la journée pour les grappes du $6^{\grave{eme}}$ rang à partir de la gauche. Les conditions expérimentales au niveau des grappes sont indiquées avec les codes décrits au tableau 2.1.

Date	Jour	Jour de l'année	Action	Heure locale
2009-07-01/10		182/191	Période d'effeuillage	
2009-08-18	Mardi	230	Début mesures	11:30
2009-08-19	Mercredi	231	Prélèvement	20:30
2009-08-26	Mercredi	238	Prélèvement	20:30
2009-09-03	Jeudi	246	Prélèvement	20:30
2009-09-10	Jeudi	253	Prélèvement	20:30
2009-09-16	Mercredi	259	Prélèvement	20:00
2009-09-24	Jeudi	267	Prélèvement	20:00
2009-10-06	Mercredi	279	Prélèvement	19:30
2009-10-12/16		285/289	Vendanges	
2009-10-19	Lundi	292	Prélèvement	19:30

TABLE 2.5 – Plan de prélèvement de baies pour le dispositif expériment al au Château Luchey-Halde en 2009.

2.1.3 Dispositif expérimental en serre

Des dispositifs expérimentaux en serre avec des boutures fructifères de Cabernet Sauvignon ont été mis en place en 2007 et en 2008 dans le cadre d'un projet de recherche des docteurs David Lecourieux et Philippe Pieri, et dans le cadre du doctorat de Jérémy Pillet depuis 2008. Des boutures fructifères ont été suivies dans trois conditions différentes après véraison :

- Contrôle sans traitement particulier.
- Réchauffement des grappes avec un radiateur de 07h à 20h pour surélever la température des baies de 10°C par rapport au contrôle.
- Illumination des grappes avec des lampes de 07h à 20h avec aération par ventilateur pour maintenir la température des baies au niveau du contrôle.

Une vingtaine de boutures fructifères portant une seule grappe de raisins ont été utilisées pour chaque condition. En 2007, des baies ont été prélevées à la fin du premier jour de traitement et 10 j après. En 2008, des baies ont été prélevées à 2, 4, et 12 h après le début des traitements, puis 17 j après le début du traitement. Les baies prélevées ont été coupées en deux parties. Seules les parties exposées ont été utilisées pour les analyses.

2.2 Analyses de métabolites

2.2.1 Préparation

La pellicule, la pulpe et les pépins ont été séparés. Leur poids a été déterminé au niveau de chaque pool de trois baies et le nombre de pépins a été compté (Tab. A.1). Les pellicules ont été lyophilisées, puis broyées avec un broyeur à billes MM200 (Retsch, Haan, Allemagne). Les pulpes ont été broyées, puis centrifugées pendant 10 min à 3700 g pour isoler le jus.

2.2.2 Analyses de sucres

La teneur en sucres solubles dans les jus a été déterminée par réfractométrie le premier jour du traitement en 2008 : 30 baies ont été prélevées de façon aléatoire. Cinq semaines après traitement, les mêmes mesures ont été faites pour 15 baies de la condition w.e.o, 15 baies de la condition e.e.o et 19 baies de la condition e.s.i. En 2009 les mesures ont été faites le 17 août pour une quarantaine de baies de chacune des conditions e.e.o et e.e.i.

Analyses de sucres par méthode enzymatique

Les teneurs en glucose et en fructose ont été déterminées pour les jus des pools b361 à b440 (Tab. A.1) par une méthode enzymatique. L'identification de leur concentration est fondée sur des mesures de variance d'absorbance à 340 nm provoqués par des changements de concentration en NADH. Ces changements sont liés de façon stoechiométrique aux concentrations des produits d'intérêt à travers d'une cascade de réactions enzymatiques.

D-glucose + ATP
$$\xrightarrow{HK}$$
 Glucose-6-phosphate + ADP (2.1)

** *

D-fructose + ATP \xrightarrow{HK} Fructose-6-phosphate + ADP (2.2)

Fructose-6-phosphate \xrightarrow{PGI} Glucose-6-phosphate (2.3)

Glucose-6-phosphate + NAD $\xrightarrow{G-6-PDH}$ D-gluconate-6-phosphate + NADH (2.4)

Les kits enzymatiques ont été achetés chez BioSenTec (Toulouse, France), les standards chimiques ont été achetée chez Sigma (St Louis, MO, USA).

2.2.3 Analyses de l'acide malique et de l'acide tartrique

Les teneurs en acide malique et acide tartrique ont été déterminées pour les jus des pools b361 à b440 (Tab. A.1) avec une méthode automatique de colorimétrie au moyen d'un autoanalyseur TRAACS 800 (Bran & Luebbe, Plaisir, France). Le TRAACS est un autoanalyseur à flux continu qui détermine la concentration de substances à l'aide d'un colorimètre qui mesure les changements de couleur en présence d'analytes. Les réactifs et standards chimiques ont été achetés chez Sigma (St Louis, MO, USE).

2.2.4 Analyses de flavonoïdes par HPLC

Les concentrations en flavonoïdes ont été déterminées pour les pellicules des pools b161 à b519 (Tab. A.1) et pour les 6 pools des expériences en 2009. Les pellicules sèches ont été extraites dans du méthanol contenant 0.1% de HCl (v/v) et l'extrait a été filtré dans une seringue en polypropylène à travers un filtre de 0,45 mum (Pall Gelman Corp., Ann Harbor, USA). Les analyses ont été faites avec un système HPLC Summit composé d'une pompe P680, d'un échantillonneur automatique ASI-100TTMet avec un détecteur UVD 340U UV-Vis à 520, 360, 310 et 280 nm (Dionex Corporation, Sunnvale, CA, USA). Vingt muL de l'échantillon sont injectés, la séparation est faite à température ambiante sur une colonne en phase inverse Ultrasphere ODS 25 cm x 4,6 mm (granulométrie de 5 mum) pourvue d'une pré-colonne Ultraspere ODS 4,5 cm x 4,6 mm (Beckman Instruments Inc., Fullerton, CA, USA). Tous les réactifs sont de qualité analytique. L'eau ultra pure 18 M Ω est obtenue grâce au système de purification d'eau UHQ (ELGA, Bucks, UK). L'acétonitrile a été acheté chez Baker (Mallinckrodt Baker France, Noisy-Le-Sec, France), l'acide formique (99%) chez Merck (Merck Eurolab, Fontenay-sous-Bois, France). La séparation est faite pendant 70 min avec une vitesse d'élution de $0,6 \text{ mL min}^{-1}$ dans un gradient linéaire : 80% d'éluant A (acide formique 10% dans de l'eau (v/v)) à 85% d'éluant B (acide formique 10% et acétonitrile 30% dans de l'eau (v/v)). Les composés ont été quantifiés en fonction de l'aire des pics avec le logiciel Chromeleon version 6.60 (Dionex Corporation, Sunnyvale, CA, USA) en utilisant des standards externes. L'identification des composés phénoliques a été faite en fonction de leur temps de rétention et en comparant leurs spectres d'absorption avec ceux de standards purs. La malvidine-3-glucoside (Oenin) a été utilisée comme référence pour la quantification des anthocyanes à 520 nm et la quercétine-3-glucoside pour la quantification des flavonols à 360 nm. Tous les standards ont été achetés chez Extrasynthese (Genay, France).

2.2.5 Analyses d'acides aminés par HPLC

Les concentrations en acides aminés ont été déterminées pour les pulpes des pools b161 à b440 (Tab. A.1). Les jus de pulpe ont été dérivatisés avec du 6aminoquinolyl-N-hydroxysuccinimidyl-carbamate (Cohen and Michaud, 1993). Les acides aminés ont été analysés avec un système HPLC Waters 2695 pourvu d'un détecteur de fluorescence Waters 474 (Waters, Milford, MA, USA). La séparation a été faite pendant 67 min sur une colonne Nova-Pack C18 AccQ-Tag (Waters, Milford, MA, USA) à 37°C avec une vitesse d'élution d'un mL min⁻¹ dans un gradient linéaire : 100% d'éluant A (tampon d'acétate de sodium, 140 mM à pH 7,5) à 100% d'éluant B (acétonitrile 60% dans de l'eau (v/v)). Des chromatogrammes correspondant à une excitation à 250 nm et une émission à 395 nm ont été enregistrés. Les composés ont été quantifiés en fonction de l'aire des pics avec le logiciel Chromeleon version 6.60 (Dionex Corporation, Sunnyvale, CA, USA) en utilisant des standards externes. Les standards ont été achetés chez Sigma (St Louis, MI, USA). Les éluants ont été filtrés à travers une membrane de polypropylène GHP (Pall Gelman Corporation, Ann Harbor, USA). Vingt acides aminés ont été identifiés et quantifiés comme décrit par Pereira et al. (Pereira et al., 2006). Les résultats ont été exprimés en nmol par mL de jus.

2.2.6 Analyses statistiques

Toutes les analyses statistiques ont été faites avec le langage de programmation statistique R (R Development Core Team, 2010). Les différences entre groupes d'échantillons (même temps et même condition) ont été calculées en divisant les moyennes. La signification statistique des différences a été vérifiée par test de Student avec les fonctions t.test ou pairwise.t.test. Deux groupes pour lesquels le test de Student a donné une p-Value inférieure à 0,05 ont été considérés comme significativement différents. Les incidences et interactions des facteurs orientation, exposition, position (Tab. 2.1) et temps ont été déterminés par analyses de variance (ANOVA) des concentrations et proportions en utilisant la formule suivante : valeur \sim orientation × exposition × position × temps, valeur étant la concentration ou la proportion. Chaque facteur ou interaction avec une p-Value inférieure à 0,05 a été considéré comme significatif. Les polyphénols et acides aminés ont été groupés par clustering hiérarchique avec la fonction hclust (R Development Core Team, 2010). Les p-Values ont été visualisées à l'aide des paquetages R lattice (Sarkar, 2010) et latticeExtra (Sarkar and Andrews, 2010).

2.3 Analyses transcriptomiques des échantillons en serre

2.3.1 Analyses microarrays Vitis vinifera AROSTM

Les analyses ont été faites en utilisant des microarrays portant le jeu de sondes *Vitis vinifera* AROSTM(Qiagen/Operon Array Ready Oligo Set). Il contient 14562 sondes oligonucléotidiques d'une longueur de 70 mer. Les sondes ont été conçues pour les séquences du *Vitis vinifera* Gene Index releas 3 du 18 août 2003 (http://compbio.dfci.harvard.edu). Les sondes ont été fixées sur des lames

miroir (Amersham, GE Healthcare) au Génopole Longuedoc-Roussillon Montpellier, Institut de Génomique Fonctionnelle.

Identification des gènes différentiellement exprimés

Les intensités de fluorescence des deux fluorophores ont été enregistrées avec un scanneur GenePix 4000B (Axon Instruments, Canada). La quantification des sondes a été faite avec le logiciel Maia 2.75 (Novikov and Barillot, 2007). Les mesures de mauvaise qualité ont été identifiées à l'aide des algorithmes de contrôle de qualité de Maia et ont été marquées. L'analyse des données a été faite avec des outils R/Bioconductor (R Development Core Team, 2010; Gentleman et al., 2004). Les mesures d'intensité au niveau des sondes marquées, ainsi que toutes les mesures saturées (intensité au dessus de 50000) ont été écartées pour la suite des analyses. La normalisation des intensités médianes de fluorescence des deux fluorophores sur chaque lame a été faite à l'aide de l'outil Goulphar (Lemoine et al., 2006) : une normalisation lowess a été suivie d'une normalisation "print-tip median". Les gènes différentiellement exprimés ont été identifiés avec l'outil Limma (Smyth, 2004). Les p-Values ont été ajustées avec la méthode Benjamin-Hochberg.

Mappage des sondes oligo-nucléotidiques et annotation des gènes cibles

Les séquences des sondes microarrays ont été automatiquement cartogaphiées contre les séquences de la version 12X du génome de la vigne (Jaillon et al., 2007) par homologie de séquences en utilisant le programme blast (Altschul et al., 1997). Les séquences des gènes cibles ont été annotées par homologie en utilisant le programme blast (Altschul et al., 1997) et la base de données de séquences protéiques uniref100 release 15.14 (Suzek et al., 2007). Les qualificateurs du tableau 2.6 ont été utilisés pour décrire la qualité des annotations.

MapMan vigne

L'outil MapMan (Thimm et al., 2004) a été adapté à la vigne dans le cadre d'un projet avec des chercheurs de Slovénie, d'Italie, d'Allemange et des Etats-Unis (Rotter et al., 2009). Le projet avait démarré avant la publication du génome de la vigne (Jaillon et al., 2007). Les séquences du *Vitis vinifera* Gene Index release 5 du 21 juin 2006 ont été associées à l'ontologie MapMan. Les séquences des sondes microarrays ont été cartographiées contre ces séquences permettant une utilisation du logiciel MapMan avec les fichiers d'analyse microarray.

2.4 Analyses transcriptomiques des échantillons du vignoble

2.4.1 Extraction d'ARN

Extraction d'ARN pour des analyses microarrays

Les ARN ont été extraits à partir de 100 à 150 μ g de poudre des pools faits à partir des échantillons de 2008 (Tab. 2.4) en utilisant un kit commercial (Sigma-Aldrich SpectrumTM Plant Total RNA Kit). L'extraction a été réalisée en suivant le manuel d'utilisation. Le sous-protocole A avec deux fois plus de solution de fixation a été utilisé pour l'étape 4. Le rendement a été déterminé avec un spectrophotomètre NanoDrop[®] ND-1000. La qualité des ARN a été vérifiée en utilisant un Bioanalyzer Agilent Technologies 2100 avec des puces RNA Nano Chips (Kit-Recoder No 5067-1511).

Extraction d'ARN pour des analyses par PCR quantitative

Le même protocole que celui décrit ci-dessus a été utilisé, mais un traitement supplémentaire pour la digestion de l'ADN a été fait entre l'étape 4 et 5 du manuel d'utilisation avec le Sigma-Aldrich On-Column DNase I Digestion Set.

2.4.2 Analyses microarrays CombiMatrix

Conception des microarrays

Des puces microarrays pour le génome complet de la vigne (Jaillon et al., 2007; Velasco et al., 2007) ont été conçues et fabriquées par les équipes des professeurs Massimo Delledonne et Mario Pezzotti à Vérone avec le système Combi-Matrix CustomArrayTM (http://www.combimatrix.com). Ce système permet de produire rapidement des microarrays personnalisés en assemblant les sondes d'oligonucléotides directement sur la puce. Les sondes ont été conçues à partir de la version 12X du génome de la vigne qui est une évolution de la première version publiée (Jaillon et al., 2007). Trois réplicats techniques de chaque sonde ont été placés de façon aléatoire sur la puce.

Expériences microarrays

Un μ g d'ARN de chaque échantillon a été amplifié avec un kit commercial (KREATECH Biotechnology RNA ampULSe Amplification and Labeling Kit for CombiMatrix arrays). Des ARN anti-sens ont été marqués avec de la Cyanine 5 et ont été hybridés contre les lames microarrays en suivant les protocoles du fabricant. Les intensités de fluorescence ont été enregistrées avec un scanneur GenePix 4000B (Axon Instruments, Canada). La quantification au niveau des sondes a été faite avec la version 7 du logiciel GenePix Pro de la société Axon, les mesures de mauvaise qualité ont été marquées et filtrées ultérieurement. Les lames microarrays ont été lavées selon le protocole du fabricant pour une réutilisation jusqu'à six fois. Six lames microarrays ont été utilisées pour cette expérience.

Identification des gènes différentiellement exprimés

L'analyse des données a été faite avec des outils R/Bioconductor (R Development Core Team, 2010; Gentleman et al., 2004). Les mesures d'intensité au niveau des sondes marquées ainsi que tous les mesures saturées (intensité au dessus de 50000) ont été écartées pour la suite des analyses. Les intensités ont été corrigées pour tenir compte du bruit de fond avec la méthode normexp (Ritchie et al., 2007). Des valeurs aberrantes au niveau des réplicats techniques des sondes sur la même puce ont été identifiées par test de Grubbs (p-Value < 0.05) et ont été écartées. L'intensité d'expression pour chaque sonde a été calculée en faisant la moyenne des réplicats techniques, et elle a été écartée si le coefficient de variation des réplicats était supérieur à 0,5. Une normalisation quantile a été faite pour les valeurs d'intensité de toutes les puces (Smyth, 2003). Les gènes différentiellement exprimés d'une condition à l'autre pour chacun des 5 temps ont été identifiés avec l'outil Limma (Smyth, 2004). Les p-Values ont été ajustées avec la méthode Benjamin-Hochberg.

Mappage des sondes oligo-nucléotidiques

Les séquences des sondes microarrays ont été automatiquement cartographiées contre les séquences de la version 12X du génome de la vigne (Jaillon et al., 2007) par homologie de séquences en utilisant le programme blast (Altschul et al., 1997). La spécificité des cartographies des sondes identifiées lors de l'analyse différentielle a été vérifiée manuellement. Si une sonde n'avait pas de cible parmi les séquences de la version 12X du génome de la vigne, une cible a été cherchée parmi les gènes prédits de la version 8X et parmi les séquences nucléotidiques non-génomiques déposées au NCBI.

Annotation des gènes cibles

Les séquences des gènes cibles ont été annotées par homologie en utilisant le programme blast (Altschul et al., 1997) et la base de données de séquences protéiques uniref100 release 15.14 (Suzek et al., 2007). Les qualificateurs du tableau 2.6 ont été utilisés pour décrire la qualité des annotations.

Critère	Qualificateur
>90% d'identité d'alignement	homologue to
>70% d'identité d'alignement	similar to
${<}{=}70\%$ d'identité d'alignement	weakly similar to
${>}98\%$ de couverture de la cible	complete
${<}{=}98\%$ de couverture de la cible	partial

TABLE 2.6 – Qualificateurs d'annotation en fonction de l'identité d'alignement et la couverture avec la séquence cible.

Annotation fonctionnelle. Des domaines fonctionnels des gènes cibles ont été identifiés avec la version 4.6 de l'outil InterProScan (Zdobnov and Apweiler, 2001) et la version 27.0 des bases de données associées. Des termes de la Gene Ontology (Ashburner et al., 2000) ont été associés aux gènes par InterProScan à partir des domaines identifiés.

MapMan vigne. Les séquences des gènes cibles ont été associées à l'ontologie MapMan (Thimm et al., 2004; Rotter et al., 2009) à l'aide de l'outil Mercator. Les associations ont été vérifiées manuellement à l'aide des annotations faites précédemment.

Analyse par catégories MapMan

Des catégories significativement sur-ou sous-représentées ont été identifiées par test de Fisher en utilisant la fonction fisher.test de R (R Development Core Team, 2010). La distribution de catégories MapMan observée pour les sondes *Vitis vinifera* AROSTMa été utilisée comme référence pour les deux plateformes microarray car aucune association globale aux catégories MapMan n'existe pour les lames Combimatrix.

Corrélation de l'expression différentielle des gènes avec la température des baies

Des corrélations de Pearson entre les profils d'expression différentielle des gènes et les profils de différence de température cumulée des baies et de différence de température journalière des baies ont été calculées avec la fonction rcorr du paquetage R (R Development Core Team, 2010) Hmisc. Les p-Values ont été calculées par cette même fonction. Les corrélations avec une p-Value inférieure ou égale à 0.05 ont été considérées comme significatives.

2.4.3 PCR quantitative en temps réel

Les expressions de quelques gènes sélectionnés ont été vérifiées pour les expériences au vignoble en 2008 par PCR quantitative en temps réel en utilisant le fluorophore SYBER green et un thermocycler CFX96TMReal-Time PCR Detection System de Bio-Rad.

Transcription reverse

Des ADNc ont été produits par transcription inverse à partir des ARN extraits pour des analyses par PCR quantitative. Deux μ g d'ARN ont été complétés à 12 μ L avec de l'eau purifiée et désionisée Trois μ L d'oligo dT (10 μ M) ont été ajoutés. Le mélange a été chauffé à 75°C pendant 10 min, pour dénaturer les structures secondaires de l'ARN, puis placé immédiatement dans la glace. Dix μ L d'un mélange réactionnel composé de 5 μ L de tampon M8MLV 5X (Promega), 2 μ L de dNTP (20 mM), 1 μ L de DTT (100 mM), 1 μ L de Rnasin (40 U/ μ L, Promega) et 1 μ L de M-MLV transcriptase inverse (200 U/ μ L, Promega) ont été ajoutés par la suite. Le tout a été placé à 42°C pendant 60 min pour la synthèse des ADNc. La réaction a été arrêtée en chauffant le mélange à 95°C pendant 10 min. L'ADNc a été dilué dans 500 μ L d'eau purifiée et désionisée puis stocké à -20°C.

Conception des amorces

Les amorces (tableau 2.7) ont été conçues avec le logiciel Molecular Beacon de Bio-Rad (SNZ1, CHS, Exp, COA, F3'5'H, F3'5'H-B3), le logiciel Primer3 (Rozen and Skaletsky, 1999) (GolS1', GolS1") ou bien elles ont été extraites de publications scientifiques (FLS4, EF1 γ , Actin (Reid et al., 2006), GAPDH (Reid et al., 2006)). Leur efficacité a été déterminée d'après le protocole de Bio-Rad avec le logiciel CFXTMManager. La spécificité de chaque amorce a été vérifiée par dépôt d'une fraction aliquote sur gel d'agarose 1%.

ID	Gène cible	Amorce sens (S) et anti-sens (AS)	Е
Actin	GSVIVT01026580001	S : CTTGCATCCCTCAGCACCTT	0,99
		AS : TCCTGTGGACAATGGATGGA	
CHS	GSVIVT00037967001	S : TGAGGTAGAAGCCAGTGAAG	$0,\!87$
		AS : GTGCCAATAGCCAGAACC	
COA	GSVIVT01008862001	S: TGGAAGAATTGGTTAATGATAGGC	0,825
		AS : CGAGGATGGTAAGGCTGAA	
$\mathrm{EF1}\gamma$	GSVIVT01023227001	S : CAAGAGAAACCATCCCTAGCTG	$1,\!00$
		AS : TCAATCTGTCTAGGAAAGGAAG	
EXP	GSVIVT01011437001	S : TTGTCGTCACTGCCACTAA	0,876
		AS : GAACCTGATGCCTCCTGAT	
F3'5'H	gi-224038267	S:TTGGTGGGAAGGCTCTTG	0,949
		AS : TTCGCTGGCTCAACTCAA	
F3'5'H-B3	gi-111144658	S : AACTTCCATACCTACAAGCCATA	0,836
		AS : TAGTAGCCGTTCACTTCACAT	
FLS4	GSVIVT01008910001	S : AAACCACCTACTTACAGAGC	1,00
		AS : ACCTAACCCCAGTGACAGAC	
GAPDH	GSVIVT01007521001	S : TTCTCGTGAGGGCTATTCCA	0,99
		AS : CCACAGACTTCATCGGTGACA	
GolS1'	GSVIVT01028174001	S: CGGTTTACCCACCCGAGAACCAGAC	0,765
		$\mathbf{AS}: \mathbf{TGTACTGTGGCGTGTGACTCCATGT}$	
GolS1"	GSVIVT01028176001	S: GTGCCGGTTTACAAGAACCAGACCCA	0,824
		AS : TCCGTCTGGTAGCTCAAAGAGGTGGT	
SNZ1	GSVIVT01017087001	S: TGAGACGGTTCGGAATGT	0,774
		AS : AGTGCCTAACAGCCTGAA	

TABLE 2.7 – Amorces pour PCR quantitative. ID est l'identifiant de la paire d'amorces pour un ou plusieurs gènes cibles. E est l'efficacité de la paire d'amorces.

Amplification des gènes candidats

Chaque réaction d'amplification a été faite dans un volume de 10 μ L contenant : 2 μ L d'ADNc, 2,5 muL d'eau purifiée et désionisée (H₂O Milli-Q[®]), 5 μ L de GoTaq[®] qPCR Master Mix, 0,25 μ L d'une solution d'amorce sens à 10 μ M et 0,25 μ L d'une solution d'amorces anti-sens à 10 μ M. Trois réplicats techniques de chaque réaction ont été faits pour chacun des 30 échantillons.

Calculs des niveaux d'expression et comparaison avec les résultats microarrays

Les valeurs d'expression ont été déterminées par la méthode développée par Vandesompele en 2002 (Vandesompele et al., 2002) en utilisant le langage de programmation R (R Development Core Team, 2010). Les facteurs de normalisation pour chaque échantillon correspondent à la moyenne géométrique des gènes de référence Actin, $EF1\gamma$ et GAPDH.

2.5 Analyses bioinformatiques et intégration des données

2.5.1 Comparaison des expériences en serre et au vignoble au niveau transcriptomique

Les analyses transcriptomiques ont été conduites avec differentes plateformes microarrays décrites plus haut. La comparaison de l'expression des gènes a été faite via les cibles des sondes dans la version 12X de génome de la vigne.

2.5.2 Coexpression différentielle des gènes au vignoble

Gènes différentiellement exprimés

Les valeurs d'intensité en log2 mesurées au niveau des sondes ont été sélectionnées pour les gènes identifiés comme étant différentiellement exprimés. Ces valeurs qui ont satisfait aux contrôles de qualité et qui ont été normalisées ont été moyennées au niveau des réplicats biologiques. Les corrélations de Pearson pondérées d'ordre 4 (Zhang and Horvath, 2005; Langfelder and Horvath, 2008) (avec leurs p-Values) pour chaque combinaison possible de gènes ont été calculées avec la fonction rcorr du paquetage R Hmisc (Harrell and contributions from many other users, 2010) et pour les deux conditions w.e.o et e.s.i séparément. Le degré de signification de la différence de corrélation d'une même paire de gènes entre les deux conditions a été calculé avec un z-test pour deux échantillons.

2.5.3 Integration des données métaboliques et transcriptomiques

Clustering des expressions différentielles des gènes et des différentiels de concentration des métabolites

Les valeurs d'expression des gènes identifiés à l'aide de l'outil Limma et les concentrations des métabolites en log2 ont été normalisées et groupées avec le paquetage de soft-clustering R/Bioconductor Mfuzz (Futschik and Carlisle, 2005). Chaque gène et chaque métabolite ont été associés avec une probabilité de 0 à 1 à chaque cluster. Le nombre de 10 clusters a été sélectionné au préalable, le paramètre m de l'algorithme a été de 1,25. Des catégories MapMan sur- ou sous-représentés dans chaque cluster ont été identifiées par test de Fisher.

Corrélation entre gènes et métabolites

Les corrélations de Pearson pondérées d'ordre 4 entre les concentratinos des métabolites et l'expression des gènes transcriptomiques ont été calculées avec la fonction rcorr du paquetage R Hmisc (Harrell and contributions from many other users, 2010). Les profils des métabolites et des gènes ont été groupés séaprément par classement hiérarchique avec la fonction hclust (R Development Core Team, 2010). Les corrélations entre gènes et métabolites ont été visua-lisées à l'aide des paquetages R lattice (Sarkar, 2010) et latticeExtra (Sarkar and Andrews, 2010).

Visualisation des corrélations sous forme de réseau. Les métabolites et les gènes présentant des corrélations de différentiels significatives ont été visualisés sous forme de réseau avec le logiciel BioLayout Express 3D (Theocharidis et al., 2009).

Intégration des données métaboliques et transcriptomiques avec l'outil MapMan

Une carte représentant un extrait de la voie de biosynthèse des flavonoïdes (Matus et al., 2009) a été préparée pour une utilisation avec MapMan. Le fichier de mappage MapMan a été étendu afin de pouvoir représenter des différentiels de concentrations de métabolites présents sur la carte. Les différentiels en log2 d'expression des gènes et les différentiels en log2 de concentration en métabolites ont été combinés dans un seul fichier pour le logiciel MapMan. Chapitre 3

Résultats et discussion

3.1 Température et rayonnement

3.1.1 Température des baies

La température des baies dépend de la température de l'environnement et de l'énergie transmise par le rayonnement solaire incident. Dans le cas de notre dispositif expérimental avec des vignes orientées nord-sud, la température des baies exposées du côté est a été augmentée de 12°C par rapport à la température ambiante au cours des matinées. Au cours de l'après-midi, la température des baies exposées du côté ouest a été augmentée de la même façon (Fig. 3.1). Ceci

Différences de température en °C entre les huit conditions expérimentales (Tab. 2.1 - p. 42) et la température de l'air de 07h00 à 20h00 le jour de l'effeuillage en 2008 (27 août 2008).

s'explique par la trajectoire du soleil au cours de la journée et donc la quantité de rayonnement reçue par les baies. Les températures maximales ont été plus importantes pour les baies exposées du côté ouest, du fait que la température ambiante est plus élevée au cours de l'après-midi (Fig. A.1 - p. 130). Ces résultats corroborent et précisent des résultats antérieurs qui montraient que des baies

exposées au soleil peuvent atteindre une température supérieure de 10°C par rapport à la température de l'air (Bergqvist et al., 2001; Spayd et al., 2002; Pereira et al., 2006). Pour des baies vertes, une différence de 12°C a même été observée (Smart and Sinclair, 1976).

Différences de température des baies

Pour l'expérience conduite en 2008, la différence de température des baies pour les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) a été, de façon générale, plus importante lors de journées plus chaudes. La figure 3.2 - page suivante illustre les différences de températures journalières et cumulées au cours des deux premières semaines après le traitement (effeuillage). Le tableau ci-dessous (Tab. 3.1) donne, en plus des informations par rapport à la température de l'environnement, les températures minimales, maximales et moyennes.

Jour	DTj	DTcum	Tmin	Tmax	Tmoy
0	17.8	17.8	14.1	28.6	21.4
1	14.7	26.8	15.7	29.2	22.0
2	19.1	37.9	13.2	31.5	22.5
3	17.5	49.5	17.2	34.1	24.7
4	7.8	54.6	18.6	25.5	20.8
5	13.3	63.5	16.5	26.9	20.3
6	9.0	64.7	14.0	26.3	19.8
7	1.5	61.9	16.7	22.2	17.5
8	5.4	63.2	14.2	21.0	16.5
9	5.8	65.0	15.0	27.3	20.3
10	2.3	66.2	15.9	22.0	17.9
11	6.6	66.7	11.8	21.9	15.7
12	15.1	72.6	9.2	27.9	19.4
13	-0.3	68.9	17.3	25.7	20.8
14	17.3	85.2	17.2	29.1	22.0

TABLE 3.1 – Mesures de température pour les deux premières semaines à partir du traitement en 2008. La colonne jour représente le jour après effeuillage. DTj et DTcum représentent les différences de température journalières entre 7h00 et 20h00, ainsi que les différences de température journalières cumulées après l'effeuillage pour les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42). Tmin, Tmax et Tmoy représentent les températures minimales, maximales et moyennes mesurées chaque jour au vignoble.

3.1.2 Modélisation du rayonnement solaire sur les baies

Les mesures de rayonnement faites au niveau des grappes n'ont pas pu être exploitées du fait de défaillances matérielles. Nous avons donc utilisé des mesures du rayonnement global faites avec la station météorologique au vignoble pour modéliser le rayonnement au niveau des baies en tenant compte des facteurs suivants (Pieri et al., non publié) :

• La rayonnement solaire global au niveau du vignoble.

FIGURE 3.2 – Différences de température en °C/h entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) en 2008 jusqu'à deux semaines après le début de l'expérience (voir Tab. 2.2 - p. 42). Les différences de température journalières ont été calculées de 7h00 du matin à 20h00 le soir. Les lignes pointillées représentent les temps de prélèvement choisis pour les analyses transcriptomiques et métabolomiques.

- La position du soleil au cours de la journée.
- La position des rangs de vignes dans la parcelle.
- La porosité du feuillage des vignes.
- La position centrale de la grappe de raisin.
- L'effeuillage du pied de vigne qui porte la grappe d'intérêt.

La méthode tient compte de tous les obstacles entre le rayonnement direct du soleil et la grappe de raisin. Pour tenir compte de la porosité du feuillage, un facteur d'atténuation du rayonnement est appliqué. La figure 3.3 - page suivante - illustre le principe de calcul du rayonnement en fonction de la position du soleil.

FIGURE 3.3 – Trajectoire est (east) ouest (west) du soleil au cours d'une journée par rapport à un repère au centre qui représente la grappe de raisin. La position du soleil est calculée en fonction de deux angles : l'azimut (azimuth) et la hauteur solaire (solar height). C'est la ligne J qui décrit ici les rayons du soleil par rapport à une grappe du vignoble au Château Luchey-Halde le 27 août 2008 à 14h.

Corrélation entre température des baies et rayonnement

Il y a une bonne corrélation entre les différences de température mesurées et les différences de rayonnement modélisées entre les conditions w.e.o et e.s.i en 2008 jusqu'à deux semaines après le début de l'expérience. La corrélation des différences journalières est de 0,77 avec une p-Value de $8,5 \times 10^{-4}$, et celle des différences cumulées est de 0,95 avec une p-Value de $3,0 \times 10^{-8}$. Les valeurs ont été normalisées par rapport à la valeur maximale avant de calculer les corrélations.

FIGURE 3.4 – Différences normalisées de rayonnement modélisé et de température entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) en 2008 jusqu'à deux semaines après le début de l'expérience (voir Tab. 2.2 - p. 42). Les lignes pointillées représentent les temps de prélèvement choisis pour les analyses métabolomiques et transcriptomiques.

3.2 Analyses de métabolites

3.2.1 Sucres

Au début des expériences en 2008, la concentration des sucres solubles était de 17°Brix (Tab. A.2 - p. 135). Les mesures faites sur des pools de pulpes de baies au jour 7 et au jour 14 après effeuillage n'indiquent aucune différence de concentration en glucose et en fructose entre les huit conditions expérimentales. Aucun test de Student comparant les huit conditions aux deux temps n'a permis de trouver une différence significative (p-Value < 0,05). Une analyse de variance tenant compte des facteurs temps (moment des prélèvements), orientation, exposition et position identifie le temps comme seul facteur significatif (p-Value < 0,05). La figure 3.5 montre les concentrations en glucose et fructose aux jours 7 et 14.

Conditions expérimentales

FIGURE 3.5 – Boxplot montrant les concentrations en glucose (glu) et fructose (fru) au jour 7 (d7) et au jour 14 (d14) après traitement en 2008.

Les mesures de la concentration des sucres solubles cinq semaines après l'effeuillage indiquent une différence significative possible entre les conditions w.e.o et e.s.i (p-Value 0,066) et e.e.o et e.s.i (p-Value 0,066) en utilisant des tests de Student. La concentration est de 22°Brix pour les conditions w.e.o et e.e.o et de 21,3°Brix pour la condition e.s.i (Tab. A.2 - p. 135).

En 2009, la concentration des sucres solubles était de $18,6^{\circ}$ Brix et $17,4^{\circ}$ Brix pour les conditions e.e.o et e.e.i respectivement. Cette différence de concentration s'est conservée jusqu'à maturité (différences non significatives avec 6 baies par échantillon).

L'augmentation de la température environnante accélère la phénologie et l'accumulation des sucres (Jones et al., 2005). L'accumulation de sucres peut également être induite par une luminosité plus importante au niveau de la plante entière, sans modification de température (Kliewer, 1977). Les résultats sur l'incidence de la température ou du rayonnement au niveau de la baie sont contradictoires. La plupart des auteurs n'ont observé aucune différence (entre autres (Downey et al., 2004; Matus et al., 2009)), d'autres ont observé une baisse de l'accumulation dans des baies ombragées (Rojas-Lara and Morrison, 1989) ou un retard de la maturation (Joscelyne et al., 2007).

3.2.2 Acides malique et tartrique

Une analyse de variance montre que les trois facteurs qui conditionnent les huit conditions expérimentales jouent un rôle significatif sur la concentration de ces acides dans les pulpes en 2008 (Fig. 3.6 - page suivante). Le temps de prélevement a été le facteur le plus important pour l'acide malique, mais il n'a pas été un facteur ayant une incidence significative pour l'acide tartrique. Les analyses montrent qu'entre les deux conditions les plus opposées, w.e.o et e.s.i, il existe des différentiels significatifs au jour 14 après le traitement (p-Value < 0,05) aussi bien pour l'acide malique que pour l'acide tartrique. L'acide malique est le seul acide organique pour lequel le différentiel de concentration augmente du jour 7 au jour 14 (Tab. 3.2).

w.e.o / e.s.i	p-Value	jour	metabolite
$0,\!687$	0,098	7	acide malique
0,550	0,040	14	acide malique
0,803	0,025	7	acide tartrique
0,851	0,022	14	acide tartrique

TABLE 3.2 – Différentiels de concentration des acides malique et tartrique entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) au jour 7 et au jour 14 après effeuillage en 2008.

La concentration de l'acide malique baisse avec le temps dans toutes les conditions expérimentales, alors que celle de l'acide tartrique reste constante (Fig. A.2 - p. 138). La concentration en acide malique est plus faible dans les baies plus fortement exposées au rayonnement solaire; la baisse de concentration a également été plus rapide pour ces baies. L'accumulation de l'acide malique avant la véraison est plus forte pour une température environnante faible (Lakso and Kliewer, 1975, 1978). A partir de la véraison, il commence à être dégradé par la respiration et donne de l'énergie pour le métabolisme de la baie (Ruffner, 1982b; Ryona et al., 2008). La concentration en acide malique n'est pas affectée par un différentiel d'exposition et de température des

FIGURE 3.6 – Heatmap des p-Values de deux analyses de variance des concentrations en acide malique et en acide tartrique en fonction du temps et des trois facteurs conditionnant les modalités de l'expérience : concentration ~ temps × orientation × exposition × position. Les p-Values sont indiquées par un code couleur d'après le gradient de 0 à 1 à droite de la figure. Les p-Values significatives sont marquées par des symboles comme décrit en haut de la figure.

baies avant véraison (Ruffner et al., 1976; Ryona et al., 2008; Buttrose et al., 1971), mais elle l'est par un différentiel d'exposition des feuilles (Rojas-Lara and Morrison, 1989). La concentration d'acide malique à maturité est plus basse si la température est plus élevée (Buttrose et al., 1971). Le rayonnement solaire a augmenté la température des baies et cette augmentation peut expliquer la dégradation plus rapide de l'acide malique. Un effet similaire a été observé antérieurement (Pereira et al., 2006). Il est possible que l'acide malique serve de source de carbone pour la synthèse de métabolites secondaires (Sweetman et al., 2009).

L'acide tartrique est synthétisé au début du développement de la baie et il y a très peu de synthèse ou de dégradation après véraison (Saito and Kasai, 1968; Morrison and Noble, 1990). Il n'y a pas d'indications significatives concernant une respiration possible de tartrate après véraison (Ruffner, 1982a). Le différentiel observé entre les deux conditions w.e.o et e.s.i (Tab. 3.2 - p. 63) peut être dû à des causes antérieures à l'effeuillage.

3.2.3 Flavonoïdes

Une analyse de variance des concentrations en polyphénols dans la pellicule des baies de raisin montre que les flavonols varient plus fortement en fonction des facteurs expérimentaux (Fig. 3.7).

FIGURE 3.7 – Heatmap des p-Values d'analyses de variances des concentrations en flavonoïdes dans les pellicules en fonction du temps (jour 0 au jour 14) et des trois facteurs conditionnant les modalités de l'expérience : concentration ~ temps × orientation × exposition × position. Les flavonoïdes ont été groupés en fonction de leurs profils de p-Values. Les p-Values sont indiquées par un code couleur d'après le gradient de 0 à 1 à droite de la figure. Les p-Values significatives sont marquées par des symboles comme décrit en bas de la figure.

Flavonols

Les analyses de variance montrent que de façon générale, les flavonols ont réagi significativement aux trois facteurs des huit conditions expérimentales. Plusieurs flavonols n'ont pas pu être identifiés par manque d'échantillons de référence. C'est leur spectre d'absorption qui permet de présumer qu'il s'agit bien de flavonols. Toutes les concentrations ont augmenté sous l'effet du rayonnement solaire (Fig. 3.8 - page suivante). Un clustering hiérarchique des flavonoïdes en fonction de l'incidence des facteurs d'après les analyses de variance regroupe tous les flavonols, à l'exception du quercétine-3-galactoside (Querc-3-gal) (Fig. 3.7 - page précédente). On distingue deux sous-groupes : le premier est composé de plusieurs flavonols non identifiés (flav5, flav9b, flav12), du myricétine-3-glycoside et du quercétine-3-glycoside, le second est composé des flavonols non identifiés flav8 et flav12b.

FIGURE 3.8 – Boxplot montrant les concentrations des flavonols totaux (flav) en g par g de pellicule sèche aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

Diverses données de la littérature indiquent que la quantité de flavonols dépend du rayonnement solaire. L'ombrage des baies de raisin après véraison réduit leur contenu en flavonols (Downey et al., 2004; Cortell and Kennedy, 2006; Ristic et al., 2007; Matus et al., 2009), et l'effet est encore plus important avec un ombrage avant la floraison (Downey et al., 2004). Le rayonnement solaire augmente la quantité en flavonols (Spayd et al., 2002) et en particulier la quantité en quercétine (Price et al., 1995) et en quercétine-3-glycoside (Price et al., 1995; Haselgrove et al., 2000; Tarara et al., 2008). Cette augmentation peut être observée aussi bien dans les pellicules que dans les pulpes (Pereira et al., 2006). Un filtrage des rayonnements UV réduit la quantité totale de flavonols (Spayd et al., 2002), ce qui indique que les rayonnements à ces longueurs d'onde sont responsables de l'effet observé. L'effet des rayonnements UV sur les flavonols a également été observé dans les feuilles de vigne (Pontin et al., 2010) et chez la pomme (Reay and Lancaster, 2001).

Anthocyanes

La concentration totale en anthocyanes a augmenté au cours de l'expérience pour toutes les conditions (Fig. 3.9 - page suivante). L'augmentation a été la plus forte au cours de la première semaine après traitement, ce qui peut s'expliquer par le "beau temps" pendant cette période (Tab. 3.1 - p. 58), mais également par le stade de maturation. Une analyse de variance identifie le facteur exposition conditionné par l'effeuillage comme significatif avec une p-Value en dessous de 0,1 (Fig. 3.10 - p. 69). Le rayonnement solaire est plus important pour les baies exposées et cause également une élevation de leur température. Des travaux d'autres chercheurs ont observé des baisses d'accumulation d'anthocyanes dans des baies ombragées (Rojas-Lara and Morrison, 1989; Bergqvist et al., 2001; Spayd et al., 2002; Joscelyne et al., 2007; Matus et al., 2009). Ces observations et le fait que le facteur orientation, responsable d'une température absolue supérieure au niveau des baies du côté ouest, ne semble pas avoir d'incidence indiquent que c'est bien le rayonnement qui est à l'origine de ces variations.

Des analyses de variance des concentrations montrent que les anthocyanes ne réagissent pas comme les flavonols aux conditions expérimentales testées (Fig. 3.7 - p. 65). Un clustering hiérarchique permet d'identifier deux grands groupes. Tous les métabolites sauf le cyanidine-3-coumaryl-glycoside et le cyanidine-3-acétyl-glycoside évoluent de façon significative par rapport au facteur temps.

Un premier groupe contient des anthocyanes-acétyl-glycosides et anthocyaneglycosides dont les membres réagissent différamment en fonction de la position de la baie et de l'exposition de la grappe (effeuillage), mais non en fonction de l'orientation est/ouest. Ce groupe est composé des glycosides et des formes acétylées des cinq anthocyanes principales, mail il n'y a pas la forme glycosylée de la péonidine : cyanidine-3-glycoside, cyanidine-3-acétylglycoside, péonidine-3-acétyl-glycoside, malvidine-3-glycosides, malvidine-3acétyl-glycoside, pétunidine-3-glycoside, pétunidine-3-acétyl-glycoside, delphinidine-3-glycoside, delphinidine-3-acétyl-glycoside.

Anthocyane-glycosides. La concentration des anthocyane-glycosides a augmenté au cours du temps, surtout pendant la première semaine après le traitement. Leur proportion parmi la concentration totale d'anthocyanes a également augmenté, avec un maximum au jour 34.

Les analyses de variance des concentrations identifient la position de la baie et l'exposition de la grappe comme facteurs principaux au niveau de plusieurs molécules particulières (Pt-3-glc, Pn-3-glc, Mv-3-glc, Dp-3-glc (Fig. 3.7 - p. 65)). Une analyse de variance des concentrations totales des anthocyane-glycosides indique une incidence du facteur position pour une p-Value < 0,1. Une analyse de variance des anthocyane-glycosides par rapport à l'ensemble des anthocyanes avec les formes acétylées et coumarylées identifie le même facteur

FIGURE 3.9 – Boxplot montrant les concentrations des anthocyanes totales (anth) en g par g de pellicule sèche aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage.

comme étant très significatif (Fig. 3.10 - page suivante). On peut conclure à un effet positif du rayonnement sur l'accumulation d'anthocyane-glycosides. Cette tendance s'observe au niveau des concentrations (Tab. A.3 - p. 139) et au niveau des proportions (Tab. A.4 - p. 140) au jour 14 mais non au jour 34.

Anthocyane-acétyl-glycosides. La concentration des formes acétylées a surtout augmenté au cours de la première semaine après le début du traitement. La proportion des formes acétylées par rapport à la quantité totale en anthocyanes a baissé au cours des expériences de 29% à 24% en moyenne (Fig. A.6 - p. 142). Des analyses de variance ne permettent pas de conclure à une incidence significative d'un facteur au niveau des concentrations totales, mais elles suggèrent une forte incidence de la position et de l'orientation est/ouest au niveau des proportions (Fig. 3.10 - page suivante). L'évolution des proportions est opposée à celle des anthocyane-glycosides jusqu'au jour 14 après effeuillage (Fig. A.4 - p. 140). La plus faible concentration au niveau des baies orientées

Métabolites p-Values : *** < 0.001 ; ** < 0.01 ; * < 0.05 ; . < 0.1

FIGURE 3.10 – Heatmap des p-Values d'analyses de variance des proportions et concentrations de types d'anthocyanes parmi l'ensemble d'anthocyanes dans les pellicules en 2008 en fonction du temps (jour 0 au jour 14) et des trois facteurs conditionnant les modalités de l'expérience : proportion $\sim temps \times orientation \times exposition \times position$. Les types ont été groupés en fonction de leurs profils de p-Values. Les p-Values sont indiquées par un code couleur d'après le gradient de 0 à 1 à droite de la figure. Les p-Values significatives sont marquées par des symboles comme décrit en bas de la figure. Les types d'anthocyanes sont précédés par "Prop" pour les analyses de variance des proportions et par "Conc" pour ceux des concentrations.

vers l'extérieur par rapport à celles orientées vers l'intérieur au jour 34 (Fig. A.5 - p. 141) explique les proportions plus fortes d'anthocyane-glycosides à ce moment (Fig. A.4 - p. 140).

Certains chercheurs ont montré qu'il y a de plus faibles proportions d'anthocyanes acétylées avec des températures plus basses (Cohen et al., 2008). D'autres ont montré une baisse des formes acétylées sous l'effet du rayonnement solaire à température constante (Tarara et al., 2008). Dans le cas des expériences au vignoble en 2008, ces deux effets ont été combinés car le rayonnement chauffe également les baies.

Anthocyane-coumaryl-glycosides. Un deuxième groupe identifié par le clustering hiérarchique est surtout composé de formes coumarylées d'anthocyanes qui réagissent différemment aux trois facteurs. Ce groupe comporte les coumaryl-glycosides de la cyanidine, de la péonidine, de la malvidine, de la pétunidine et de la delphinidine ainsi que le péonidine-3-glycoside et un flavonol, le quercétine-3-galactoside.

Le facteur d'orientation est/ouest de la grappe est significatif. Ceci indique une incidence particulière de la température qui est plus élevée pour les grappes orientées vers le côté ouest du rang (Fig. A.1 - p. 130). Ce phénomène a déjà été observé pour des années chaudes par rapport a des années plus fraîches (Downey et al., 2004). Un réchauffement du fruit augmente la concentration des formes coumarylées et un refroidissement la baisse (Spayd et al., 2002). Une autre étude a montré qu'une forte exposition à la lumière du soleil baisse les proportions de malvidine-coumaryl-glycoside (Haselgrove et al., 2000). D'après l'analyse de variances (Fig. 3.7 - p. 65), la position et l'exposition, facteurs jouant sur l'accessibilité au rayonnement solaire, n'ont pas d'incidence significative sur le Mv-3-glc-cou. Au contraire l'incidence est significative pour les autres anthocyane-coumaryl-glycosides par contre.

Les deux effets antagonistes de la température et de la lumière s'observent particulièrement bien au jour 34 (j34) après effeuillage pour les quantités totales d'anthocyane-coumaryl-glycosides (Fig A.7 - p. 143). On constate une concentration plus faible des formes coumarylées pour les conditions où les baies ont été orientées vers l'extérieur, et par conséquent plus accessibles à la lumière par rapport aux conditions où les baies ont été orientées vers l'intérieur (e.e.o par rapport à e.e.i par exemple). En même temps, on observe une concentration moyenne plus forte pour les baies provenant de grappes orientées du côté ouest pour lesquelles la température a été plus élevée. Ces effets se retranscrivent au niveau des proportions des formes coumaryl (Fig. 3.10 - page précédente et Fig. A.8 - p. 144).

Formes di- et tri-oxygénées d'anthocyanes. La concentration en anthocyanes trioxygénées a augmenté fortement au cours de la première semaine après le traitement. Elle a continué d'augmenter jusqu'au jour 34 (Fig. A.9 - p. 145). La concentration en anthocyanes dioxygénées a augmenté légèrement pendant la première semaine après traitement pour la plupart des conditions, avant de baisser à son niveau initial pour six sur huit conditions au jour 34 après traitement (Fig. A.10 - p. 146). Par conséquent, la proportion des anthocyanes trioxygénées a augmenté constamment jusqu'au jour 34 (Fig. 3.11 - page suivante). Une analyse de variance des concentrations en anthocyanes dioxygénées pendant les deux premières semaines après le début du traitement indique une incidence significative de la position de la baie et, à un niveau moindre, de l'exposition (Fig. 3.10 - page précédente). Aucun effet des facteurs expérimentaux sur les anthocyanes trioxygénées n'est observé pour cette période. Ces informations permettent de conclure à un effet positif du rayonnement solaire sur l'accumulation d'anthocyanes dioxygénées.

Une analyse de variance des proportions d'anthocyanes dioxygénées pendant les deux premières semaines après effeuillage indique une incidence significative des trois facteurs expérimentaux (Fig. 3.10 - p. 69). Par symétrie, il en est de même pour la proportion d'anthocyanes trioxygénées.

FIGURE 3.11 – Boxplot montrant les proportions des anthocyanes trioxygénées par rapport à l'ensemble des anthocyanes aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage.

Plusieurs chercheurs ont observé des variations de ces types d'anthocyanes, leurs observations sont par contre souvent contradictoires. Ainsi, une augmentation des anthocyanes dioxygénées (péonidines, cyanidines) a été observée pour des fruits ombragés (Downey et al., 2004; Cortell and Kennedy, 2006; Pereira et al., 2006; Ristic et al., 2007) ou pour des fruits exposés (Price et al., 1995; Tarara et al., 2008; Chorti et al., 2010). De même, une augmentation des anthocyanes trioxygénées (delphinidines, pétunidines, malvidines) a été observée pour des fruits ombragés (Spayd et al., 2002; Chorti et al., 2010) ou pour des fruits exposés (Cortell and Kennedy, 2006; Ristic et al., 2007).

Influence de la température sur la concentration des anthocyanes. Les expériences n'ont pas montré d'incidence de la température sur la concentration totale en anthocyanes. D'après les travaux de nombreux chercheurs, une
température élevée baisse la concentration des anthocyanes (Buttrose et al., 1971; Kliewer and Torres, 1972; Kliewer and Schultz, 1973; Haselgrove et al., 2000; Bergqvist et al., 2001; Spayd et al., 2002; Mori et al., 2004; Yamane et al., 2006; Tarara et al., 2008). Cette baisse est probablement due à une dégradation plus importante sous l'influence de la température (Mori et al., 2007). Aucune dégradation des anthocyanes sous l'effet de la température n'a pu être détectée lors des expériences menées au vignoble.

Différentiel de concentration

Quinze flavonoïdes présentent un différentiel entre les conditions les plus extrêmes, w.e.o et e.s.i (Tab. 2.1 - p. 42), à au moins un des 5 temps avec une p-Value inférieure à 0.05 (Tab. 3.3).

flavonoïde	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
Cy-3-gal	0.71	0.364	1.63	0.183	2.21	0.081	1.31	0.573	1.68	0.454
Cy-3-glc	0.88	0.502	1.06	0.686	1.14	0.382	1.63	0.110	1.37	0.322
Cy-3-glc-ac	0.92	0.600	0.99	0.943	1.09	0.610	1.50	0.151	1.35	0.335
Cy-3-glc-cou	1.11	0.364	1.49	0.025	1.50	0.017	1.95	0.041	1.91	0.114
Pn-3-glc	1.09	0.508	1.21	0.187	1.25	0.037	1.61	0.015	1.69	0.101
Pn-3-glc-ac	1.07	0.650	1.15	0.224	1.12	0.325	1.40	0.013	1.48	0.144
Pn-3-glc-cou	1.20	0.288	1.50	0.033	1.42	0.055	1.74	0.001	1.94	0.064
Dp-3-glc	0.92	0.616	1.10	0.584	1.17	0.306	1.34	0.124	1.31	0.288
Dp-3-glc-ac	0.89	0.452	0.95	0.712	1.07	0.584	1.26	0.207	1.15	0.542
Dp-3-glc-cou	1.06	0.751	1.29	0.163	1.37	0.092	1.39	0.079	1.45	0.207
Pt-3-glc	0.92	0.571	1.06	0.705	1.21	0.208	1.41	0.043	1.35	0.231
Pt-3-glc-ac	0.97	0.855	1.00	0.999	1.11	0.377	1.27	0.122	1.21	0.394
Pt-3-glc-cou	1.12	0.560	1.33	0.111	1.45	0.056	1.51	0.004	1.56	0.115
Mv-3-glc	0.98	0.909	0.99	0.945	1.17	0.285	1.18	0.049	1.28	0.222
Mv-3-glc-ac	1.01	0.965	0.96	0.737	1.04	0.721	1.05	0.523	1.10	0.595
Mv-3-glc-cou	1.09	0.758	1.10	0.559	1.18	0.386	1.21	0.095	1.35	0.202
flav5	1.57	0.116	3.02	0.006	3.15	0.016	4.57	0.000	4.78	0.017
flav8	-	-	-	-	-	-	2.40	0.132	9.21	0.012
flav9b	1.70	0.176	2.36	0.011	2.73	0.005	3.49	0.001	4.62	0.008
flav12	2.85	0.035	8.52	0.017	5.61	0.003	13.52	0.008	18.23	0.011
flav12b	2.27	0.331	1.78	0.142	2.04	0.041	2.20	0.007	3.82	0.006
Myricetine-3-glc	1.54	0.122	2.47	0.013	2.80	0.003	3.60	0.001	4.29	0.009
Querc-3-gal	1.25	0.413	3.16	0.018	2.54	0.038	3.44	0.003	3.46	0.020
Querc-3-glc	2.08	0.055	9.18	0.020	6.26	0.004	8.28	0.001	12.65	0.009

TABLE 3.3 – Différentiels de concentration des flavonoïdes entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à 5 temps après effeuillage en 2008. Les rapports sont donnés dans les colonnes j0, j1, j4, j7, j14 avec les p-Values du test de Student respectifs. Les différences avec une p-Value inférieure à 0,05 sont surlignées en couleur.

Tous les flavonols qui ont pu être détectés montrent des différentiels allant jusqu'à un facteur 18 pour le flavonol non-identifié flav12. Les différentiels sont beaucoup moins importants pour les anthocyanes. Les différentiels des anthocyanes ont augmenté de façon continue du jour 0 au jour 14 avec une augmentation plus forte pour les formes dioxygénées (péonidine et cyanidine) (Tab 3.4 - page suivante). Au jour 34, seuls les flavonols et les anthocyane-glycosides dioxygénées restent sur-représentés dans la condition w.e.o.

L'évolution des flavonoïdes en 2009

En 2009, les baies orientées vers l'extérieur montrent une augmentation des concentrations totales on anthocyanes, et surtout en flavonols, le 18 août (Fig. 3.12 - page suivante (a)). L'augmentation de la concentration en anthocyanes s'explique surtout par l'augmentation des formes coumarylées (Fig. 3.12 - page suivante (b)) qui représentent presque 30% des anthocyanes dans la conditions e.e.o. Certaines anthocyanes acétylées comme le péonidine-acétyl-glycoside

	j0	j1	j4	j7	j14	j34
anth	0.99	1.06	1.17	1.28	1.31	1.03
flav	1.53	3.81	3.42	4.48	5.82	1.76
anth-glc-diox	1.03	1.20	1.24	1.59	1.59	1.31
anth-glc-triox	0.97	1.02	1.14	1.22	1.26	0.98
anth-glc-ac	0.99	0.99	1.07	1.16	1.16	1.00
anth-glc	0.97	1.07	1.20	1.32	1.35	1.05
anth-glc-cou	1.11	1.24	1.28	1.37	1.49	0.95

TABLE 3.4 – Différentiels de concentration de types d'anthocyanes entre les conditions w.e.o et e.s.i à 6 temps après effeuillage en 2008.

et le delphinidine-acétyl-glucoside présentent une concentration plus faible dans des baies orientées vers l'exterieur (Fig. A.11 - p. 147).

FIGURE 3.12 – Effets de l'effeuillage sur les concentrations en flavonoïdes en 2009. (a) montre les concentrations totales en anthocyanes (anth) et flavonols (flav), (b) montre les concentratinos des formes acétylées (anth-glc-ac), glyco-sylées (anth-glc) et coumarylées (anth-glc-cou).

3.2.4 Acides aminés

Une analyse de variance a montré que les acides aminés réagissent fortement aux conditions expérimentales. Le facteur exposition dû à l'effeuillage n'a pas eu d'incidence significative sur beaucoup d'acides aminés (Fig. 3.13 - page suivante), mais il interagit néanmoins avec l'orientation est/ouest des grappes. La concentration de la plupart des acides aminés a augmenté au cours du temps, ou bien elle est restée inchangée. L'impact des facteurs peut donc s'expliquer par une vitesse d'accumulation différente, comme pour la phénylalanine et la valine par exemple (Fig. A.2.5 - p. 148 (a) et (b)). La concentration de la tyrosine (TYR) a baissé (Fig. A.2.5 - p. 148 (c)) et celle de l'aspartate (ASP) a augmenté jusqu'au jour 7 après traitement, puis elle a baissé (Fig. A.2.5 - p. 148 (d)).

FIGURE 3.13 – Heatmap des p-Values d'une analyse de variance des concentrations en acides aminés en fonction du temps et des trois facteurs conditionnant les modalités de l'expérience : concentration \sim temps \times orientation \times exposition \times position. Les acides aminés ont été groupés en fonction de leur profils de p-Values. Les p-Values sont indiquées par code couleur d'après le gradient de 0 à 1 à droite de la figure. Les p-Values significatives sont marquées par des symboles comme décrit en bas de la figure.

Une expérience similaire a montré une augmentation de l'HIS, VAL et PRO dans les pulpes à maturité (Pereira et al., 2006). Nos données montrent une variation concernant beaucoup plus d'acides aminés. Il est possible que ces variations s'estompent jusqu'à la maturité. Contrairement aux observations faites par Pereira et al. (2006), il n'y a pas eu d'augmentation du différentiel en PRO en fonction des conditions expérimentales. Celle-ci commence à s'accumuler quelques semaines après véraison pour le Cabernet Sauvignon (Stines et al., 2000). L'augmentation du différentiel doit se faire plus tard au cours du développement de la baie.

Différentiel de concentrations

Neuf acides aminés ont présenté un différentiel entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à au moins un des 5 temps avec une p-Value inférieure à 0.05 (Tab. 3.5 - page suivante). La différence de concentration entre les deux conditions a augmenté depuis le début du traitement. Les augmentations les plus importantes concernent VAL, ALA et HIS. L'augmentation de LEU et ILEU indique une modification de la voie de biosynthèse de la valine de de la leucine. Une régulation des gènes impliqués dans cette voie a été observée chez

le riz et chez Arabidopsis thaliana (Jiao et al., 2005).

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
ASP 1.15 0.309 0.98 0.856 0.80 0.241 1.25 0.105 0.89 0.401 ILEU 1.95 0.6050 1.44 0.113 1.77 0.115 1.79 0.010 2.52 0.004 ARG 1.22 0.326 0.84 0.241 0.75 0.383 0.94 0.693 1.43 0.086 ALA 1.11 0.443 0.96 0.762 0.94 0.800 1.05 0.882 1.61 0.053 SER 1.11 0.443 0.96 0.762 0.94 0.800 1.05 0.882 1.61 0.053 SER 1.11 0.490 0.920 0.86 0.494 1.08 0.633 1.41 0.026 Inf 0.0363 JYS Inf 0.374 Inf 0.181 1.62 0.273 4.51 0.030 PHE 1.69 0.248 1.75 0.038 1.62 0.0261 1.72 0.077	aa	jO	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
	ASP	1.15	0.309	0.98	0.856	0.80	0.241	1.25	0.105	0.89	0.401
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ILEU	1.95	0.050	1.44	0.113	1.77	0.115	1.79	0.010	2.52	0.004
	ARG	1.22	0.326	0.84	0.241	0.75	0.383	0.94	0.693	1.43	0.086
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ALA	1.11	0.443	0.96	0.762	0.94	0.800	1.05	0.882	1.61	0.053
ASN NA NA NA NA NA 5.66 0.266 Inf 0.363 LYS Inf 0.374 Inf 0.374 Inf 0.181 1.62 0.273 4.51 0.030 PHE 1.69 0.248 1.75 0.036 1.62 0.026 1.85 0.003 2.07 0.015 TYR 1.31 0.323 0.99 0.981 0.97 0.927 1.84 0.016 1.72 0.077 PRO 1.17 0.439 0.97 0.875 0.93 0.653 1.10 0.710 1.12 0.307 CYS NA	SER	1.11	0.490	0.90	0.392	0.86	0.494	1.08	0.633	1.41	0.024
LYS Inf 0.374 Inf 0.374 Inf 0.181 1.62 0.273 4.51 0.030 PHE 1.69 0.248 1.75 0.036 1.62 0.026 1.85 0.003 2.077 0.015 PTR 1.31 0.323 0.99 0.981 0.97 0.927 1.84 0.016 1.72 0.077 PRO 1.17 0.439 0.97 0.875 0.93 0.663 1.10 0.710 1.12 0.309 HIS 1.50 0.173 1.11 0.658 1.09 0.766 1.61 0.042 2.24 0.017 CYS NA <td< td=""><td>ASN</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>5.66</td><td>0.266</td><td>Inf</td><td>0.363</td></td<>	ASN	NA	NA	NA	NA	NA	NA	5.66	0.266	Inf	0.363
PHE 1.69 0.248 1.75 0.036 1.62 0.026 1.85 0.003 2.07 0.015 TYR 1.31 0.323 0.99 0.981 0.97 0.927 1.84 0.016 1.72 0.077 PRO 1.17 0.439 0.97 0.875 0.93 0.653 1.10 0.710 1.12 0.307 HIS 1.50 0.173 1.11 0.658 1.09 0.766 1.61 0.042 2.24 0.017 CYS NA	LYS	Inf	0.374	Inf	0.374	Inf	0.181	1.62	0.273	4.51	0.030
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PHE	1.69	0.248	1.75	0.036	1.62	0.026	1.85	0.003	2.07	0.015
PRO 1.17 0.439 0.97 0.875 0.93 0.653 1.10 0.710 1.12 0.309 HIS 1.50 0.173 1.11 0.658 1.09 0.766 1.61 0.042 2.24 0.017 CYS NA	TYR	1.31	0.323	0.99	0.981	0.97	0.927	1.84	0.016	1.72	0.077
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	PRO	1.17	0.439	0.97	0.875	0.93	0.653	1.10	0.710	1.12	0.309
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	HIS	1.50	0.173	1.11	0.658	1.09	0.766	1.61	0.042	2.24	0.017
VAL 1.51 0.170 1.33 0.087 1.32 0.168 1.67 0.008 2.29 0.0066 LEU 1.60 0.105 1.09 0.622 1.10 0.686 1.54 0.008 2.13 0.009 MET 1.85 0.088 0.89 0.559 0.83 0.239 1.33 0.302 1.45 0.059 GLU 0.97 0.830 0.91 0.515 0.82 0.198 0.87 0.344 1.07 0.614 GLN 1.34 0.253 0.88 0.516 0.74 0.318 1.25 0.313 1.60 0.036 GLY 1.16 0.805 1.09 0.561 0.99 0.884 1.31 0.100 1.30 0.039 GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.468 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37	CYS	NA	NA								
LEU 1.60 0.105 1.09 0.622 1.10 0.686 1.54 0.034 2.13 0.009 MET 1.85 0.088 0.89 0.559 0.83 0.239 1.33 0.302 1.45 0.069 GLU 0.97 0.830 0.91 0.515 0.82 0.198 0.87 0.344 1.07 0.614 GLN 1.34 0.253 0.88 0.516 0.74 0.318 1.25 0.313 1.60 0.036 GLY 1.16 0.805 1.09 0.561 0.99 0.894 1.31 0.100 1.30 0.036 GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.468 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.663 0.061 0.94 0.668 0.97 0.803	VAL	1.51	0.170	1.33	0.087	1.32	0.168	1.67	0.008	2.29	0.006
MET 1.85 0.088 0.89 0.559 0.83 0.239 1.33 0.302 1.45 0.059 GLU 0.97 0.830 0.91 0.515 0.82 0.198 0.87 0.344 1.07 0.614 GLN 1.34 0.253 0.88 0.516 0.74 0.318 1.25 0.313 1.60 0.036 GLN 1.16 0.805 1.09 0.561 0.99 0.894 1.31 0.100 1.30 0.039 GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.468 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.669 0.99 0.920 0.63 0.061 0.94 0.688 0.97 0.860	LEU	1.60	0.105	1.09	0.622	1.10	0.686	1.54	0.034	2.13	0.009
GLU 0.97 0.830 0.91 0.515 0.82 0.198 0.87 0.344 1.07 0.614 GLN 1.34 0.253 0.88 0.516 0.74 0.318 1.25 0.313 1.60 0.036 GLY 1.16 0.805 1.09 0.561 0.99 0.894 1.31 0.100 1.30 0.039 GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.468 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.663 0.061 0.94 0.688 0.97 0.801	MET	1.85	0.088	0.89	0.559	0.83	0.239	1.33	0.302	1.45	0.059
	GLU	0.97	0.830	0.91	0.515	0.82	0.198	0.87	0.344	1.07	0.614
GLY 1.16 0.805 1.09 0.561 0.99 0.894 1.31 0.100 1.30 0.039 GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.408 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.669 0.99 0.920 0.63 0.061 0.94 0.688 0.97 0.860	GLN	1.34	0.253	0.88	0.516	0.74	0.318	1.25	0.313	1.60	0.036
GABA 1.01 0.903 0.87 0.205 1.06 0.584 0.99 0.948 1.13 0.468 THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.663 0.061 0.94 0.688 0.97 0.800	GLY	1.16	0.805	1.09	0.561	0.99	0.894	1.31	0.100	1.30	0.039
THR 1.23 0.211 1.02 0.872 0.92 0.682 1.37 0.049 1.70 0.030 NH3 0.92 0.669 0.99 0.920 0.63 0.061 0.94 0.688 0.97 0.860	GABA	1.01	0.903	0.87	0.205	1.06	0.584	0.99	0.948	1.13	0.468
NH3 0.92 0.669 0.99 0.920 0.63 0.061 0.94 0.688 0.97 0.860	THR	1.23	0.211	1.02	0.872	0.92	0.682	1.37	0.049	1.70	0.030
	NH3	0.92	0.669	0.99	0.920	0.63	0.061	0.94	0.688	0.97	0.860

TABLE 3.5 – Différentiel de concentration des acides aminés (aa) entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à 5 temps après effeuillage en 2008. Les rapports sont donnés dans les colonnes j0, j1, j4, j7, j14 avec les p-Values respectives issues du test de Student. Les différences avec une p-Value inférieure à 0,05 sont surlignées en couleur.

3.3 Analyses transcriptomiques

3.3.1 Expression différentielle des gènes au vignoble

Pour l'expérience conduite en 2008, 398 gènes ont été considérés comme différentiellement exprimés (Tab. A.4 - p. 149) entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à au moins un des 5 temps en prenant comme critère de sélection une p-Value ajustée de 0,05 ou un différentiel d'un ratio 2 et une p-Value de 0,01. La figure 3.14 montre la distribution de ces gènes par catégories fonctionnelles de l'ontologie MapMan (Thimm et al., 2004; Rotter et al., 2009).

FIGURE 3.14 – Distribution par catégories fonctionnelles de l'ontologie Map-Man (Thimm et al., 2004; Rotter et al., 2009) des gènes différentiellement exprimés entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à au moins 1 des 5 temps en 2008. Les catégories MapMan sont en ordonnée et les nombres de gènes en abscisse.

Un suivi de l'expression différentielle des gènes par jour de prélèvement montre un pic du nombre de gènes affectés le jour 4 (Tab. 3.6 - page suivante). Le minimum de gènes affectés correspond au jour 7 de prélèvement, qui a été le jour le moins chaud et avec la plus faible différence de température entre

les conditions w.e.o et e.s.i (Tab. 3.1 - p. 58). La différence de rayonnement modélisée a également été parmi les plus faibles (Fig. 3.4 - p. 61). Ceci indique donc une bonne corrélation entre les variations de température et le nombre de gènes différentiellement exprimés.

	jour 0	jour 1	jour 4	jour 7	jour 14
Sur-exprimés	113	147	140	50	115
Sous-exprimés	65	13	42	19	27
Total	178	160	182	69	142

TABLE 3.6 – Nombre de gènes différentiellement sur- ou sous-exprimés entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) à chacun des 5 temps après effeuillage.

Les tests de Fisher montrent que parmi les gènes différentiellement exprimés, il y a une proportion significative de gènes faisant partie de cinq catégories MapMan particulières : métabolisme secondaire, métabolisme hormonal, stress abiotique, transport et non-associés / inconnus (Tab. 3.7).

Bin	OR	pV
secondary metabolism	6.62	1.0E-11
hormone metabolism	2.74	8.3E-04
stress.abiotic	9.43	1.2E-25
transport	2.24	1.9E-03
not assigned	0.42	2.5E-16

TABLE 3.7 – Catégories MapMan (Bin) significativement sur- ou sousreprésentées (p-Value < 0.05) parmi les gènes différentiellement exprimés au vignoble. Le colonne OR contient le rapport des chances (odds ratio) et est suivie de la colonne avec les p-Values associées du test de Fisher (pV).

Une analyse par catégories MapMan des gènes différentiellement exprimés aux cinq temps a permis d'étudier plus en détail les différentiels (Tab. 3.8). Certains gènes codant pour des facteurs de transcription sont sous-représentés au jour 4.

	jO		j1		j4		j7		j14	
Bin	OR	$_{\rm PV}$								
secondary metabolism	4.42	7.7E-04	4.94	3.8E-04	7.46	1.0E-07	4.16	4.0E-02	4.84	9.6E-04
hormone metabolism	3.23	4.9E-03	2.65	3.1E-02	3.16	5.6E-03	2.01	2.7E-01	3.55	5.1E-03
stress.abiotic	20.43	1.8E-33	26.34	1.3E-39	13.74	4.8E-22	23.38	2.1E-17	32.34	1.5E-43
RNA	0.70	3.8E-01	1.08	7.6E-01	0.37	1.9E-02	0.82	1.0E + 00	0.90	8.7E-01
transport	1.19	6.5E-01	1.80	1.4E-01	2.00	4.2E-02	3.26	1.4E-02	2.04	6.7E-02
not assigned	0.38	1.3E-09	0.22	1.5E-17	0.40	5.3E-09	0.31	8.7E-06	0.22	6.1E-16

TABLE 3.8 – Catégories MapMan (Bin) significativement sur- ou sousreprésentées (p-Value < 0.05) parmi les gènes différentiellement exprimés aux cinq temps de prélèvement. Les colonnes OR contiennent le rapport des chances (odds ratio) et sont suivies des colonnes avec les p-Values associées du test de Fisher (pV). Les p-Values < 0.05 sont surlignées en couleur.

Métabolisme secondaire

Vingt-cinq gènes associés au métabolisme secondaire ont été différentiellement exprimés à au moins une des cinq temps (MapMan Bin 16, Tab. A.4 - p. 149). La plupart de ces gènes sont associés aux métabolismes des flavonoïdes, des phénylpropanoïdes et des isoprénoïdes/terpénoïdes. Seules la chalcone synthase (GSVIVT00037967001) et la flavonol synthase 4 (GSVIVT01008910001, mesurées par PCRq) ont été significativement sur-exprimées à tous les temps.

Clustering et première intégration avec les données métaboliques

Un groupement des profils d'expression des gènes et des concentrations des métabolites a permis de distinguer des profils de comportement par rapport aux cinq temps (Fig. 3.15).

FIGURE 3.15 – Soft-cluster des expressions normalisées des gènes et des concentrations normalisées des métabolites sur cinq temps. Les clusters ont été calculés avec l'outil mfuzz (Futschik and Carlisle, 2005). Les lignes rouges indiquent la tendance centrale des clusters, les lignes grises les profils des gènes et métabolites avec leur degré d'appartenance aux différents clusters.

Les flavonoïdes sont majoritairement associés au cluster 3 et les acides aminés aux cluster 2 et 4 (Fig. 3.9). Aucune autre catégorie n'est significativement surreprésentée dans les cluster 2 et 3. Pour le cluster 4, par contre, il y a une sous-représentation des gènes liés au stress abiotique et une sur-représentation des gènes liés au métabolisme lipidique. Les gènes associés au métabolisme secondaire sont significativement sur-représentés dans le cluster 10 avec un grand nombre de gènes inconnus.

Cluster	Bin	Sgn	Nb	pVal
1	stress.abiotic	-	1/52	0.03
2	acides aminés	+	6/31	7.7E-4
3	flavonoïdes	+	21/41	1.7E-22
4	acides aminés	+	9/63	2.5E-4
4	stress.abiotic	-	1/63	0.01
4	lipid metabolism	+	3/63	0.04
5	PS	+	4/32	3.1E-04
6	transport	+	5/34	0.03
7	not.assigned	+	24/47	1.1E-03
7	cell wall	+	2/45	0.03
8	not assigned	+	15/32	0.04
9	stress.abiotic	+	40/72	2.4E-31
9	not assigned	+	3/72	1.1E-08
9	minor CHO metabolism	+	2/72	0.03
10	not.assigned	+	18/34	3.1E-03
10	secondary metabolism	+	5/34	0.03

TABLE 3.9 – Catégories sur- ou sous-représentées dans les clusters. La première colonne donne le numéro du cluster (Fig. 3.15 - page précédente), la seconde le bin MapMan ou le type de métabolites, la troisième le sens de la représentation. La colonne Nb donne le nombre de gènes x de la catégorie et le nombre de gènes dans le cluster y (x/y). La dernière colonne donne la p-Value du test de Fisher.

Le cluster 3 des flavonoïdes contient notamment une chalcone synthase qui se situe à l'entrée de la voie de biosynthèse des flavonoïdes et une UDPglucose/UDP-galactose flavonole-3-O-glycosyltransférase/galactosyltransférase (Vv GT6, GSVIVT01029122001) qui intervient dans la synthèse des flavonolglycosides (Ono et al., 2010). Ses substrats sont la quercétine, le kaempférol et l'isorhamnétine. Il contient également deux transporteurs d'acides aminés (GSVIVT01037496001, GSVIVT01023906001) et un transporteur d'ammonium (GSVIVT01001853001), un gène codant pour une protéine induit par la lumière (Early light-induced protein, GSVIVT01018044001) et un autre qui code pour une protéine se liant à la chlorophylle a-b (chlorophyll a-b binding protein, GSVIVT01020858001), un possible facteur de transcription GATA (GSVIVT01032702001) identifié par son domaine avec Interproscan (Zdobnov and Apweiler, 2001), une gibbérelline-2-oxydase (GSVIVT01025945001) et plusieurs autres gènes difficile à annoter.

Le cluster 2 comporte les acides aminés GLN, ARG, ASP, SER, TYR et beaucoup de gènes difficiles à identifier. On y retrouve les flavonoïde-3'5'hydroxylases qui font également partie du cluster 6 avec quasi la même probabililité. Le cluster 4 contient les acides aminés PHE, LEU, MET, ILEU, VAL, GLY, HIS, PRO et GABA.

Plus de la moitié des gènes du cluster 9 sont associés au stress abiotique. Il s'agit essentiellement de gènes codants pour des protéines de stress thermique (HSP). Parmi les autres membres, il y a notamment des gènes codant pour la galactinol synthase (GSVIVT01028174001, GSVIVT01028176001), pour une protéine de biosynthèse de la vitamine B6 (GSVIVT01017087001), pour une UDP-glycosyltransférase (GSVIVT01016417001), pour la sous-unité alpha d'une protéine qui se lie à la grande sous-unité de la RuBisCO (large subunit-binding protein subunit alpha). Il y a également plusieurs facteurs de transcription : trois HSF (Heat Shock Factor) (GSVIVT01035385001, GSVIVT01033781001, GSVIVT01010595001), un C2H2 (Zinc finger) (GSVIVT01032538001), HB (Homeobox) (GSVIVT01033744001). Au niveau des métabolites, on retrouve le cyanidine-3-galactoside, et les trois acides aminés THR, ALA et HIS.

PCR quantitative en temps réel

L'expression de neuf gènes a été suivie par PCR quantitative en temps réel. Les corrélations des mesures de l'expression des gènes par PCRq et par microarray sont significatives pour tous les gènes testés, sauf deux (Tab. 3.10 - page suivante). Les corrélations ont été calculées au niveau des 30 pools d'échantillons, puis au niveau des valeurs moyennes pour les trois réplicats biologiques. L'expression de la flavonol synthase 4 (FLS4) n'a été déterminée que par PCRq, car il n'y a pas de sonde correspondante sur les microarrays Combimatrix utilisés.

Le profil d'expression du gène codant pour la chalcone synthase (CHS), qui est significatif et stable d'après les données microarrays, ne se confirme pas par PCRq. Il est possible que ceci soit dû à un problème d'amorces lié à une incertitude sur la séquence cible. Les amorces ont été dessinées pour un gène prédit dans la première version du génome de la vigne (GSVIVT00037967001). Le même gène n'est plus prédit dans la version 12X du génome malgré l'existence de la séquence génomique. Le profil d'expression de la chlorophyllide a oxygénase n'est pas confirmé pas non plus par PCRq. Une corrélation négative indiquerait même une tendance opposée par rapport aux mesures microarrays.

Plusieurs sondes sur les microarrays Combinatrix correspondent à plusieurs endroits cibles sur le génome de la vigne. Ceci est notamment le cas des sondes pour des gènes codant pour des flavonoïde-3'5'-hydroxylases. Les sondes 10e96ef8e474962da3c4edce3fd24b4e, 10e96ef8e474962da3c4edce3fd24b4e et da3cfa9c3b8ff907a45d01a769641022 ont respectivement 8, 6 et 2 endroits cibles sur le chromosome 6 de la version 12X du génome de la vigne sans qu'il y ait prédiction de gènes. L'annotation des ces sondes a été faite par l'intermédiaire de séquences déposées au NCBI. Les deux premières sondes correspondent à gi—111144658 et la troisième à gi—224038267. Les amorces pour les analyses par PCRq ont également été faites par rapport aux séquences du NCBI. Les corrélations entre les mesures par microarrays et par PCRq sont significatives pour les trois sondes et leurs cibles associées, si on les considère au niveau des valeurs moyennes des réplicats biologiques. Des travaux récents ont identifié 16 flavonoïde-3'5'-hydroxylases dans le génome de la vigne dont 15 paralogues sur le chromosome 6 (Falginella et al., 2010). Ceci indique l'existence de plusieurs flavonoïde-3'5'-hydroxylases aux endroits cibles multiples des sondes microarrays. L'identification du ou des paralogues dont l'expression varie en fonction

ID	cor30	pVal	cor10	pVal	Sonde
CHS	0.07	0.715	0.35	0.328	c8ddc6a0a72e1f564408b38ce5030cfe
COA	-0.24	0.192	-0.33	0.347	9886b9d7a6720f08c6fd2efc344ac11f
EXP	0.54	0.002	0.73	0.016	a5c84f25b9d6c9c9d8f9786651bf3256
F3'5'H	0.46	0.013	0.59	0.074	da3cfa9c3b8ff907a45d01a769641022
F3'5'H-B3	0.24	0.207	0.82	0.004	3ecd73ff614d873c688b9b0b928c5b95
	0.22	0.244	0.64	0.048	10e96ef8e474962da3c4edce3fd24b4e
GolS1'	0.50	0.005	0.65	0.127	a8 fa 6 b9 2101 ad 3 cd 3 661 e 8 b 869 e 7 e 3 e 5
	0.53	0.003	0.64	0.048	98b849ed0d479f4f07948bae7ef6ed4d
GolS1"	0.49	0.006	0.68	0.029	a8 fa 6 b9 2101 ad 3 cd 3 661 e 8 b 869 e 7 e 3 e 5
	0.54	0.002	0.64	0.043	98b849ed0d479f4f07948bae7ef6ed4d
FLS4	-	-	-	-	-
SNZ1	0.30	0.109	0.70	0.025	9f5c80ddf5ec0c8bb7d2b31b29eaadab

TABLE 3.10 – Correlations de Spearman des mesures d'expression de gènes par PCRq et par microarrays. La colonne ID contient les identifiants utilisés pour les paires d'amorces (Tab. 2.7 - p. 53), la colonne Sonde donne les sondes correspondantes sur les puces microarray. La colonne cor30 donne les corrélations des mesures au niveau de chacun des 30 pools, la colonne cor10 donne les corrélations des valeurs moyennes pour les trois réplicats biologiques de chaque condition. Les colonnes pVal donnent les p-Values respectives.

des conditions expérimentales nécessiterait une vérification de tous les 15 paralogues par PCRq.

Deux sondes, a8fa6b92101ad3cd3661e8b869e7e3e5 et 98b849ed0d479f4f07948bae7ef6ed4d, correspondent toutes les deux à deux gènes codant pour des galactinol synthases : GSVIVT01028174001, GSVIVT01028176001. Ces deux gènes ne sont prédits que dans la version 12X du génome de la vigne et non dans la première version. Les séquences sont adjacentes sur le chromosome 7 et quasiment identiques, il s'agit probablement de paralogues. Des amorces spécifiques ont permis de confirmer l'existence des transcrits pour les deux gènes. Leurs profils d'expression sont quasiment identiques et corrèlent significativement avec les profils mesurés au niveau des deux sondes.

Un gène codant pour une alpha expansine (EXP) et un autre codant pour une protéine impliqué dans la biosynthèse de la pyridoxine (SNZ1) présentent des corrélations significatives entre les mesures par PCRq et par microarrays.

3.3.2 Comparaison des expériences en serre et au vignoble

Expression différentielle des gènes en serre

L'exposition d'une baie au rayonnement solaire suite à l'effeuillage entraîne d'une part une augmentation d'exposition à la lumière, et d'autre part, un réchauffement de la baie. Ces deux effets peuvent modifier, séparément ou ensemble, l'expression du génome et la synthèse des métabolites. Pour essayer de séparer les effets thermiques des effets lumineux, nous avons comparé les résultats obtenus avec les baies provenant de plantes effeuillées au champ, et ceux obtenus avec des baies ayant subi un réchauffement imposé par des ventilateurs en serre (effet thermique, mais pas de différentiel lumineux).

1137 gènes réagissant à la chaleur et 1942 gènes réagissant à la lumière ont

pu être identifiés parmi les expériences en serre. Les critères de sélection ont été une p-Value ajustée de 0,05 ou un différentiel d'un rapport 2 et une p-Value de 0,01.

Comparaison au niveau des gènes

Seul un petit nombre de gènes a été affecté aussi bien au vignoble qu'en serre (Fig. 3.16). Onze gènes différentiellement exprimés dans les expériences au vignoble ont pu être spécifiquement liés à la chaleur (Tab. 3.11 - page suivante), et 29 à la lumière (Tab. 3.12 - p. 84). Les onze gènes induits par la chaleur comprennent notamment 3 HSP, une beta glucanase et une stilbène synthase. Les 29 gènes induits par la chaleur comprennent notamment 5 ATPases ABC, deux transporteurs et 2 gènes liés à la photosynthèse.

FIGURE 3.16 – Diagramme de Venn indiquant les gènes différentiellement exprimés lors des expériences au vignoble (Vignoble) et en serre suite à une stimulation des baies par la température (Tserre) ou la lumière (Rserre)

Quarante-cinq gènes ont été différentiellement exprimés lors des deux types d'expériences en serre et au vignoble (Tab. A.5 - p. 176). Parmi eux, il y a 29

Gène ID	Annotation	Bin
GSVIVT01031464001	none	35.2
GSVIVT01033538001	UniRef100_Q9M3U4—homologue to Beta 1-3 glucanase n=1 Tax=Vitis vinifera	26.4
	RepID=Q9M3U4_VITVI partial (63%)	
GSVIVT01007880001	UniRef100_Q3L1D0—similar to Heat shock protein 101 n=1 Tax=Vitis vinifera	20.2.1
	RepID=Q3L1D0-VITVI complete	
GSVIVT01007122001	none	35.2
GSVIVT01033926001	UniRef100_B4KBB0—weakly similar to Alkaline phosphatase n=1	35.2
	Tax=Drosophila mojavensis RepID=B4KBB0_DROMO partial (17%)	
GSVIVT01035803001	UniRef100_Q43557—weakly similar to Unidentified n=1 Tax=Medicago sativa	35.2
	RepID=Q43557_MEDSA partial (92%)	
GSVIVT01016398001	UniRef100_Q6WHC0—weakly similar to Chloroplast small heat shock protein	20.2.1
	class I n=1 Tax=Capsicum frutescens RepID=Q6WHC0_CAPFR partial (72%)	
GSVIVT01023134001	UniRef100_A4ZX74—weakly similar to Small heat shock protein n=1	20.2.1
	Tax=Cyclamen persicum RepID=A4ZX74_9ERIC partial (95%)	
GSVIVT01015947001	none	35.2
GSVIVT01017261001;	$UniRef100_B6T7B9$ —weakly similar to Phytosulfokine receptor n=1 Tax=Zea	35.3
GSVIVT01018081001	mays RepID=B6T7B9_MAIZE partial (43%);UniRef100_A5JPK5—homologue	
	to GDP-mannose-3',5'-epimerase n=1 Tax=Vitis vinifera Re-	
	pID=A5JPK5-VITVI partial (68%)	
GSVIVT01010590001	UniRef100_A0FDZ8—homologue to Stilbene synthase 1 n=1 Tax=Vitis vinifera	16.8.2.3
	RepID=A0FDZ8_VITVI complete	

TABLE 3.11 – Gènes différentiellement exprimés au vignoble et en serre suite à une stimulation par la chaleur.

HSP, et d'autres gènes dont le profil d'expression est similaire aux HSP pour les expériences au vignoble (cluster 9, 3.3.1 - p. 78) : chlorophyllide a oxygénase, galactinol synthase, UDP-glycosyltransférase, protéine de biosynthèse de la vitamine B6, HSF (GSVIVT01035385001). On observe également une leucanthocyanin dioxygénase présumée (GSVIVT01011165001) et un ou plusieurs facteurs de transcription sensibles à l'éthylène correspondant à une seule sonde sur la puce microarray Combimatrix (GSVIVT01013920001; GSVIVT01013923001; GSVIVT01013924001; GSVIVT01013917001).

Cette comparaison est préliminaire et devra être étayée par d'autres résultats car il n'y a pas eu de réplicats biologiques pour les expériences en serre. Les stades de développement ne sont pas exactement les mêmes en serre et au vignoble.

Comparaison au niveau des catégories de gènes

Une comparaison avec les données transcriptomiques issues des expériences en serre a permis d'identifier les catégories MapMan de gènes significativement surou sous-représentées qui sont plutôt liées à une stimulation par une température plus élevée ou par un rayonnement plus intense (Tab. 3.13 - p. 85). Ces données indiquent en particulier une stimulation des gènes de transport par la chaleur. Les gènes faisant partie du métabolisme secondaire sont sur-représentés au vignoble mais non en serre. La distribution par catégories fonctionnelles des trois expériences illustre ces différences (Fig. 3.17 - p. 86).

Gène ID	Annotation	Bin
GSVIVT01013418001	UniRef100_O08788-2—weakly similar to Isoform 2 of Dynactin subunit 1 n=1 Tax=Mus musculus RepID= $O08788$ 2 n=rtial (20%)	35.2
SVIVT01005846001	Tax=Mus musculus RepID=C08788-2 partial (2%) UniRef100_Q9FG54—weakly similar to Root cap protein 2-like protein n=1	33.2
GSVIVT01017613001	UniRef100_Q9LTX7—weakly similar to Gb—AAF56406.1 n=1	35.2
SVIVT01021405001	Tax=Arabidopsis thaliana RepID=Q9LTX7_ARATH partial (35%) UniRef100_CIK5D0—weakly similar to Chloroplast chlorophyll A-B binding	1.1.1.1
SVIVT01031526001	protein n=1 Tax=Gossypium hirsutum RepID=CIR5D0_GOSHI partial (77%) UniRefloxD-P08926—similar to RuBisCO large subunit-binding protein subu- nit alpha, chloroplastic n=1 Tax=Pisum sativum RepID=RUBA_PEA partial (07%).	29.6
\$SVIVT01014633001; \$SVIVT01014631001	(97%) UniRef100_B9GJX7—weakly similar to Multidrug resistance protein ABC transporter family n=1 Tax=Populus trichocarpa RepID=B9GJX7_POPTR partial (69%);UniRef100_B9GJX7—weakly similar to Multidrug resis- tance protein ABC transporter family n=1 Tax=Populus trichocarpa RepID=B9GJX7_POPTR partial (76%)	34.16
SVIVT01014633001; SVIVT01014631001	UniRef100_B9GJX7—weakly similar to Multidrug resistance protein ABC transporter family n=1 Tax=Populus trichocarpa RepID=B9GJX7.POPTR partial (69%) UniRef100_B9GJX7—weakly similar to Multidrug resis- tance protein ABC transporter family n=1 Tax=Populus trichocarpa RenD=BGLX7_POPTR partial (76%)	34.16
SVIVT01029687001	UniRef100_Q9LP92—weakly similar to T32E20.28 n=1 Tax=Arabidopsis tha- liana RepID=C9LP92_ARATH partial (54%)	35.2
SVIVT01005679001	UniRef100-Q38798—weakly similar to Calnexin homolog 2 n=1 Tax=Arabidopsis thaliana RepID=CALX2-ABATH partial (31%)	30.3
SVIVT01013864001	UniRef100_B8D1G3—weakly similar to ABC transporter related n=1 Tax=Halothermothrix orenii H 168 RepID=B8D1G3.HALOH partial (21%)	34.16
SVIVT01013864001	UniRef100_B8D1G3—weakly similar to ABC transporter related n=1 Tax=Halothermothrix orenii H 168 RepID=B8D1G3_HALOH partial (21%)	34.16
SVIVT01005149001; SVIVT01002527001	UniRef100_Q0WSA8—weakly similar to Peptidylprolyl isomerase n=1 Tax=Arabidopsis thaliana RepID=Q0WSA8_ARATH partial (12%);UniRef100_B6TI78—similar to Peptidyl-prolyl isomerase n=1 Tax=Zea	31.3.
SVIVT01005149001; SVIVT01002527001	mays RepID=B61178_MAIZE complete UniRef100_Q0WSA8_weakly similar to Peptidylprolyl isomerase n=1 Tax=Arabidopsis thaliana RepID=Q0WSA8_ARATH partial (12%);UniRef100_B6T178_msimilar to Peptidyl-prolyl isomerase n=1 Tax=Zea mays RepID=B6T778_MAIZE complete	31.3.
SVIVT01016881001	UniRef100_Q9FZ62—similar to F11A6.5 protein n=1 Tax=Arabidopsis tha- liana BenDD=O9FZ62 ABATH partial (83%)	26.1
SVIVT01035504001	UniRef100_B9HCP2—similar to Beta-ketoacyl-coa synthase family protein n=1 Tax=Populus trichocarpa BepID=B9HCP2_POPTB partial (78%)	11.1.1
SVIVT01030408001 SVIVT01032463001	uniRef100_064594—weakly smilar to F1707.4 n=1 Tax=Arabidopsis thaliana	35. 35.
SVIVT01008912001 SVIVT01032692001	none UniRef100_C1PDR7—weakly similar to Stage II sporulation protein E, pro- tein serine/threonine phosphatase n=1 Tax=Bacillus coagulans 36D1 Re- pDP_C1PDR7_BACCQ partial (10%)	35.: 35.:
SVIVT01003453001	UniRef100_Q8GRU0—weakly similar to Os07g0113500 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q8GRU0_ORYSJ partial (92%)	34.9
<pre>SVIVT01022490001 SVIVT01017515001; SVIVT01012311001; SVIVT01005333001; SVIVT01006523001; SVIVT01016021001; SVIVT01016021001; SVIVT01038038001; SVIVT01018641001</pre>	none UniRef100_A7M6E8—similar to Tm-1^GCR26 protein n=1 Tax=Solanum lyco- persicum RepD=A7M6E8_SOLLC partial (8%); ;UniRef100_A7M6E8—similar to Tm-1^GCR26 protein n=1 Tax=Solanum lycopersicum Re- pID=A7M6E8_SOLLC partial (8%); ;UniRef100_Q337U5—weakly similar to Osl0g0438700 protein n=2 Tax=Oryza sativa RepID=Q337U5_ORYSJ partial (38%); UniRef100_B9N856—weakly similar to ABC transporter fa- mily protein n=1 Tax=Populus trichocarpa RepID=B9N856_POPTR partial (22%)::	35.: 35.:
SVIVT01000687001	UniRef100_B9GGW7—similar to Gibberellin 2-oxidase n=1 Tax=Populus tri- chocarpa BenID=B9GGW7_POPTB complete	17.5.
SVIVT01034455001	UniRef100_B5KJ72—weakly similar to ST5a n=2 Tax=Brassica rapa Re- pID=B5KJ72_BRARC partial (93%)	11.
SVIVT01023054001	UniRef100_UPI0000DDB970-weakly similar to Os01g0148000 n=1 Tax=Oryza sativa Japonica Group RepID=UPI0000DD8970 partial (4%)	16.
SVIVT01010335001	UniRef100_B9GJB7—similar to Lysine/histidine transporter n=1 Tax=Populus trichocarpa RepID=B9GJB7_POPTR complete	34.
SVIVT01014437001	UniRef100_UPI000150563F—weakly similar to ATM2 (ARABIDOPSIS THALIANA MYOSIN 2); motor n=1 Tax=Arabidopsis thaliana Re- DD=UPI000150563F complete	31.
SVIVT01018517001	UniRef100_A9PD49_homologue to Enolase n=1 Tax=Populus trichocarpa Re- DD=A9PD49_POPTR complete	4.1
SVIVT01018878001	UniRef100_A3REN2—weakly similar to Dehydrin 1a n=1 Tax=Vitis vinifera RepID=A3REN2_VITVI complete	35.5
SVIVT01025302001	UniRef100_B9GM76—similar to ZIP transporter n=1 Tax=Populus trichocarpa RepID=B9GM76_POPTR complete	34.12

TABLE 3.12 – Génes différentiellement exprimés au vignoble et en serre suite à une stimulation par la lumière

Bin	Nom	temp	$_{\rm pV}$	ray	$_{\rm pV}$	Vig	$_{\rm pV}$
10	cell wall	2.22	6.2E-04	1.34	2.5E-01	0.53	3.8E-01
13	amino acid metabolism	0.55	2.0E-01	0.35	2.6E-02	0.43	3.3E-01
15	metal handling	4.79	1.8E-04	4.70	2.1E-04	0.89	1.0E + 00
16	secondary metabolism	1.44	1.9E-01	1.08	7.5E-01	6.62	1.0E-11
17	hormone metabolism	2.66	5.4E-06	1.60	4.9E-02	2.74	8.3E-04
20.1	stress.biotic	3.31	1.8E-07	3.25	2.6E-07	1.56	2.3E-01
20.2	stress.abiotic	5.41	1.6E-21	4.82	2.6E-18	9.43	1.2E-25
26	misc	1.81	1.2E-04	1.20	2.8E-01	1.58	5.5E-02
27	RNA	0.53	5.9E-05	0.59	7.2E-04	0.96	1.0E + 00
28	DNA	0.37	3.5E-02	0.55	2.0E-01	1.84	9.2E-02
29	protein	0.45	5.6E-09	0.54	1.3E-06	0.72	8.4E-02
30	signalling	0.28	2.3E-06	0.37	5.3E-05	1.06	7.8E-01
31	cell	0.57	6.9E-02	0.20	5.4E-05	1.26	4.7E-01
33	development	2.20	1.1E-03	2.27	6.1E-04	1.89	6.6E-02
34	transport	1.74	1.4E-03	1.09	6.1E-01	2.14	1.9E-03
35	not assigned	0.77	2.0E-04	1.08	2.4E-01	0.42	2.5E-16
4	glycolysis	2.62	3.8E-02	0.37	5.2E-01	1.87	3.0E-01

TABLE 3.13 – Catégories MapMan (Bin) significativement sur-ou sousreprésentées (p-Value < 0.05) parmi les gènes différentiellement exprimés lors des expériences au vignoble (Vig) et en serre suite à une stimulation des baies par la température (temp) ou de la lumière (ray). Ces colonnes contiennent le rapport des chances (odds ratio) et sont suivies de colonnes avec les p-Values associées du test de Fisher (pV). Les p-Values < 0.05 sont surlignées.

FIGURE 3.17 – Distribution par catégories fonctionnelles de l'ontologie Map-Man (Thimm et al., 2004; Rotter et al., 2009) des gènes différentiellement exprimés entre les conditions w.e.o et e.s.i à au moins 1 des 5 temps en 2008 (Vig) et les gènes différentiellement exprimés en serre suite à une stimulation des baies par de la température (temp) ou la lumière (ray). Les catégories MapMan sont portées en ordonnée et la fraction de gènes faisant partie de chaque catégorie est portée en abscisse.

3.3.3 Co-expression différentielle des gènes au vignoble

L'analyse de l'expression des gènes permet d'identifier des gènes différentiellement exprimés entre deux conditions. Souvent, on utilise des algorithmes de regroupement afin d'identifier ceux des gènes qui présentent un comportement similaire dans les différentes conditions testées.

L'analyse de co-expression différentielle conduit à l'identification de paires (Lai et al., 2004; Choi et al., 2005; Mo et al., 2009) ou des groupes (Kostka and Spang, 2004; Watson, 2006; Cho et al., 2009; Southworth et al., 2009; Tesson et al., 2010) de gènes ayant un comportement fortement similaire dans une condition, mais non dans une autre. On compare le comportement de tous les gènes entre eux dans une condition, puis dans l'autre. Si les expressions des gènes x et y augmentent de la même façon dans une condition A, mais non dans une condition B où l'expression de x baisse et ceux d'y augmente, on est confronté à une co-expression différentielle.

Paires de gènes ayant un comportement différent

Une analyse des gènes différentiellement exprimés premet d'identifier 384 paires de gènes parmi les 79003 possibles dont la co-expression différentielle est statistiquement significative (p-Value < 0.05) (Fig. 3.18). Souvent il s'agit de paires de gènes dont la corrélation est statistiquement significative dans au moins une des conditions. On identifie 184 paires différentiellement co-exprimés (cercle dce) pour lesquelles la corrélation est significative pour la condition w.e.o, 145 pour la condition e.s.i. et 2 pour les deux conditions (Fig. 3.18 (a)).

FIGURE 3.18 – Diagrammes de Venn comparant des paires de gènes dont les profils d'expression présentent une corrélation significative (p-Value < 0.05) dans les conditions w.e.o ou e.s.i. ou dont les corrélations sont significativement différentes (p-Value < 0.05) entre ces conditions (dce). (a) ne tient pas compte de corrélations positives et négatives, (b) en tient compte. Les corrélations positives sont indiquées en noir et les corrélations négatives en bleu.

Parmi les 384 paires différentiellement co-exprimées, on observe une surreprésentation des gènes liés au stress abiotique et une sous-représentation de gènes inconnus et des gènes liés au stress biotique et à l'ADN. Pour les deux paires de gènes qui ont une comportement diamétralement opposé, il s'agit d'une protéine kinase (sonde 3cd20095264f0b0195496c434dae6569 ayant une multitude de cibles avec la même annotation) avec un gène de fonction inconnue (GSVIVT01037740001) et une HSP (GSVIVT01016428001) avec un autre gène de fonction inconnue (GSVIVT01010757001).

Metabolisme secondaire. Quarante-huit co-expressions différentielles impliquent des gènes associés du métabolisme secondaire. Le plus grand nombre de ces interactions sont avec des gènes inconnus (not assigned) ou avec des gènes associés au stress, des HSP en particulier (Fig. 3.19.

FIGURE 3.19 – Circos-plot (Krzywinski et al., 2009) des co-expressions différentielles des gènes du métabolisme secondaire. Les gènes sont regroupés dans des blocs noirs en périphérie et regroupés par leurs catégories MapMan. Les co-expressions différentielles sont représentées par des traits rouges.

Le gène pour lequel le nombre de co-expressions différentielles est le plus

important est Vv GT6 (GSVIVT01029122001) (Ono et al., 2010), une UDPglucose/UDP-galactose flavonol-3-O-glycosyltransférase/galactosyltransférase. Il en montre 9 avec des petits HSP, un avec un HSP plus grand (GSVIVT01033476001) et un avec un MBF1c présumé (muliprotein binding factor) (GSVIVT00016760001), un coactivateur transcriptionnel. Ces gènes présentent tous une corrélation négative significative avec Vv GT6 pour la condition w.e.o et aucune correlation particulière pour la condition e.s.i. MBF1c est notamment impliqué dans la réponse de la tomate à un stress thermique (Frank et al., 2009). Des études avec Arabidopsis ont montré que MBF1c est peut-être un régulateur de thermotolérance en amont de l'acide salicylique, du tréhalose, de l'éthylène et des protéines PR (pathogenesis related) (Suzuki et al., 2008). Il perturbe ou active partiellement les voies de signalisation de l'éthylène (Suzuki et al., 2005). Les auteurs concluent à une régulation indépendante des HSP. Deux autres gènes différentiellement co-exprimés avec Vv GT6 présentent une corrélation positive avec la condition w.e.o et une corrélation négative pour la condition e.s.i avec celui-ci. Il s'agit de VvGLP6 (germin-like protein 6) (GSVIVT00016457001) et d'une Map kinase (GSVIVT01026487001).

MBF1c est également différentiellement co-exprimé avec une cinnamyl/sinapyl alcohol déhydrogénase (CAD) (GSVIVT01002109001). Dans ce cas, la corrélation est significativement positive pour la condition w.e.o. Des études chez la pomme de terre ont identifié une cinnamyl alcohol déhydrogénase induite par le stress biotique et abiotique et par plusieurs hormones (Kim et al., 2010). Cinq autres HSP ont également des corrélations positives avec la CAD pour la condition w.e.o. Un gènes inconnu (GSVIVT01008662001) présente une corrélations positive pour la condition e.s.i.

D'autres co-expressions différentielles intéressantes sont ce entre la flavonoïde-3'5'-hydroxylase et un MADS-box gène 5 (GSVIVT01025945001) identifié comme étant lié au développement des ovules (Boss, 2002) ou ceux d'une leucoanthocyanidin dioxygénase présumée (GSVIVT01011165001) avec une UDP glycosyl/glycoronyl transférases (GSVIVT01027064001). Dans les deux cas, les corrélations sont positives pour la condition e.s.i et positives pour la condition w.e.o. La flavanone-3-hydroxylase présumée (GSVIVT01027361001) présente une co-expression différentielle avec une cinnamoyl-CoA-réductase présumée (GSVIVT01027307001), leur corrélation étant positive dans la condition e.s.i. Il n'y a aucune corrélation pour la condition w.e.o.

Gènes avec le plus grand nombre de co-expressions différentielles Au total 293 des 398 gènes inclus dans l'analyse montrent des coexpressions différentielles significatives. Le nombre de co-expressions différentielles par gène est petit pour la plus grande partie d'entre eux (Fig. 3.21 - p. 91).

Les gènes avec le plus grand nombre de co-expressions différentielles codent pour un transporteur ABC (sonde correspondant à deux cibles avec la même annotation, GSVIVT01014633001 et GSVIVT01014631001), une protéine kinase (GSVIVT01010757001), une UDP glycosyl/glycoronyl transférase présumée (GSVIVT01027064001) et Vv GT6 discuté au paragraphe précédent. Respectivement ils montrent 21, 19, 15 et 13 co-expressions différentielles. La plupart sont des interactions avec des HSP. Sauf pour le cas de Vv GT6, les corrélations avec les HSP sont positives pour la condition w.e.o et négatives pour la condition e.s.i.

FIGURE 3.20 – Nombre de co-expressions différentielles des gènes.

Le transporteur ABC interagit avec une UDP-glycosyltransférase (GSVIVT01016417001), MBF1c, un gène codant pour une fonction inconnue (GSVIVT01019816001) et une VvGLP6 (GSVIVT00016457001). La corrélation avec VvGLP6 est négative pour la conditions w.e.o et positive pour la conditions e.s.i. Tous les autres gènes montrent un profil opposé.

Pour la protéine kinase on retrouve une co-expression avec MBF1c, VvGLP6 et la même UDP glycosyl/glucuronyl transférase, avec le même profil que pour le transporteur ABC. Une chlorophyllide a oxygénase (GSVIVT01008862001) présente le même profil. Un gène codant probablement pour une sous-unité de la dynactine (GSVIVT01013418001) présente une corrélation significative pour w.e.o et aucune corrélation pour e.s.i.

L'UDP glycosyl/glucuronyl transférase présumée montre une corrélation positive avec VvGLP6 pour la condition w.e.o et une tendance de corrélation négative pour w.e.o. Pour la condition w.e.o, elle est corrélée négativement avec une leucoanthocyanidin dioxygénase présumée (GSVIVT01011165001) et une HTC possible (GSVIVT01003748001).

VvGLP6 se comporte de façon opposée par rapport à Vv GT6 aux trois autres gènes discutés. L'expression de VvGLP6 a surtout été observé dans des jeunes baies, une sur-expression a été observé suite à une infection par le mildou dans les feuilles (Godfrey et al., 2007). VvGPL6 fait portie de la sous-famille 3 des germin-like portéines qui se lient à l'auxine. La séquence de GLP6 est très proche de celle de 2 GLP de prune régulées par l'auxine (El-Sharkawy et al., 2010).

Une grande partie des HSP montrent des co-expressions différentielles avec plusieurs des 4 gènes discutés, mais aucune n'en montre avec tous les 4.

Groupes de gènes ayant un comportement différent

Un clustering des corrélations significativement différentes identifiées par z-test a permis d'identifier des groupes de gènes ayant un comportement coordonné entre eux dans une des deux conditions, mais non dans l'autre (Fig. 3.21 - page suivante).

FIGURE 3.21 – Heatmap des co-expression différentielle des gènes entre les conditions w.e.o. et e.s.i. La figure représente les p-Values des z-test de comparaison de corrélations. Les valeurs faibles indiquent un co-expression significativement différente dans les deux conditions. Les barres de couleur en haut et à droite indiquent les groupes d'un clustering hiérarchique.

Ces groupes ressortent en blocs violet sur la figure qui représente les p-Values des différences de corrélations entre deux gènes. Un grand bloc rose en particulier en haut à droite est groupé dans deux clusters (orange et blanc). Cet ensemble comporte surtout des gènes liés au stress abiotique qui y sont significativement sur-représentés (HSP). Le cluster blanc comprend une surreprésentation de gènes liés aux protéines et contient notamment le gène Vv GT6 (GSVIVT01029122001), une UDP-glucose/UDP-galactose flavonol-3-O-glycosyltransférase/galactosyltransférase et deux autres UDP glycosyl/glycoronyl transférases présumées (GSVIVT01027064001, GSVIVT01019767001).

3.4 Intégration des données

3.4.1 Corrélation de l'expression différentielle des gènes au vignoble avec la température des baies

Des calculs de corrélation entre les profils d'expression différentielle des gènes entre les conditions w.e.o et e.s.i en 2008 et les différences de température des baies calculées au préalable ont permis d'identifier des gènes qui réagissent de façon coordonnée avec la température. Les profils d'expression de 7 gènes corrèlent de façon significative (p-Value < 0,05) avec les différences de température cumulées depuis le début du traitement (Tab. 3.14) : 3 corrèlent positivement, 4 négativement. Ving-neuf gènes, dont 22 positivement et 7 négativement, corrèlent de la même façon avec les différences de température journalières (Tab. 3.15). Neuf des 22 premiers sont classés dans la catégorie MapMan stress abiotique chaleur.

Gène ID	Annotation	cor
GSVIVT00029885001	UniRef100_C7C5S8—weakly similar to PME inhibitor n=1 Tax=Nicotiana ben-	-0.96
	thamiana RepID=C7C5S8_NICBE partial (95%)	
gi—111144658	UniRef100_A6XHG1—Flavonoid 3'5' hydroxylase n=1 Tax=Vitis vinifera Re-	-0.94
	pID=A6XHG1_VITVI partial (92%)	
gi—224038267	UniRef100_C0KY91—Flavonoid-3',5'-hydroxylase n=1 Tax=Vitis amurensis	-0.94
	RepID=C0KY91_9ROSI partial (94%)	
GSVIVT01035504001	UniRef100_B9HCP2—similar to Beta-ketoacyl-coa synthase family protein n=1	-0.88
	Tax=Populus trichocarpa RepID=B9HCP2_POPTR partial (78%)	
GSVIVT01033335001	UniRef100_A9I4B0—weakly similar to Strain DSM 12804, complete genome	0.92
	n=1 Tax=Bordetella petrii DSM 12804 RepID=A9I4B0_BORPD partial (16%)	
GSVIVT01029059001	none	0.92
GSVIVT01023134001	UniRef100_A4ZX74—weakly similar to Small heat shock protein n=1	0.92
	Tax=Cyclamen persicum RepID=A4ZX74_9ERIC partial (95%)	

TABLE 3.14 – Gènes dont les expressions différentielles entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) en 2008 corrèlent de façon significative (p-Value < 0,05) avec la différence de température cumulée depuis le début du traitement (effeuillage). La colonne cor contient les valeurs de corrélation.

Deux des trois gènes dont les profils d'expression corrèlent positivement avec la température cumulée n'ont pas pu être identifiés (GSVIVT01033335001 et GSVIVT01029059001). Pour le troisième, il s'agit d'une petite HSP (GSVIVT01023134001). Deux des gènes négativement corrélés codent pour des flavonoïd-3'5'-hydroxylases, un gène codant pour un inhibiteur de la pectineméthylestérase (GSVIVT01018600001) et un autre pour une beta-ketoacyl-CoAsynthase (GSVIVT01035504001).

 $_{\text{TABLE 3.15:}}$ Gènes dont les expressions différentielles entre les conditions w.e.o et e.s.i (Tab. 2.1 - p. 42) en 2008 corrèlent de façon significative (p-Value < 0,05) avec la différence de température journalière de 7h00 du matin à 20h00 le soir. La colonne cor contient les valeurs de corrélation.

Gène ID	Annotation	cor
GSVIVT01013936001	none	-0.96
GSVIVT01037811001	UniRef100_B9HN10—weakly similar to Nucleobase ascorbate transporter n=1	-0.96
	Tax=Populus trichocarpa RepID=B9HN10_POPTR complete	
GSVIVT01037673001	UniRef100_B6SRX6-weakly similar to Anther-specific proline-rich protein	-0.94
	APG n=1 Tax=Zea mays RepID=B6SRX6_MAIZE partial (91%)	
GSVIVT01024279001	UniRef100_B9H566—weakly similar to Cytochrome P450 n=1 Tax=Populus	-0.94
	trichocarpa RepID=B9H566_POPTR partial (40%)	
GSVIVT01035548001	UniRef100_Q38JU2—similar to Cryptochrome DASH, chloroplas-	-0.93
	tic/mitochondrial n=1 Tax=Solanum lycopersicum RepID=CRYD_SOLLC	
	partial (93%)	
		suite

TABLE3.15 suite		
Gène ID	Annotation	cor
GSVIVT01019510001	UniRef100_Q7X6N6—weakly similar to Os07g0601100 protein n=1 Tax=Oryza	-0.92
GGVUVED01000055001	sativa Japonica Group RepiD=Q7X0N6-ORYSJ complete	0.0
GSVIV101036977001;	Unikerilou-QoskQ8—weakiy similar to Osu7g0498900 protein n=1	-0.9
GSVIV101036991001	Tax=Oryza sativa Japonica Group RepiD=G09RQ8_ORYSJ partial	
	(33%); Unikeriou-QopkQ8—weakly similar to Osurg0498900 protein n=1	
CCNUNT01028856001	Lax=Oriza sativa Japonica Group RepiD=Q09RQ8-ORI 51 partial (32%)	0.88
G5V1V101028856001	University - weakly similar to neat shock protein 85 n=1	0.00
CSVIVT01010252001	Iax = 10000000 in Rep $ID = 0.5785 = 100000$ complete Un $Rep = 100000000000000000000000000000000000$	0.88
63 11 101010232001	$Cinterior_Q211 V = Similar to estimate protein 5 i=1 Tax=Arabidopsis that$	0.88
GSVIVT01018044001	Initial G_{0} (0) P93169—similar to Early light-induced protein $n=1$ Tax=Glycine	0.89
00111101010011001	may RepID=P93169 SOYBN partial (58%)	0.00
GSVIVT01037052001	UniBef100 O9LMU1—similar to F2H15 10 n=1 Tax=Arabidonsis thaliana Be	0.89
00111101001002001	DID=O9LMU1 ABATH partial (76%)	0.00
GSVIVT01001315001	$U_{n} = g_{0} = 0$ B7ZEP6—weakly similar to Small heat-shock protein $n=1$	0.89
05111101001010001	Tax=Chenopodium rubrum BepID=B7ZEP6 CHEBU partial (90%)	0.00
GSVIVT00018357001	UniBef100 D1MIX5—similar to Small heat shock protein 17.1 kDa n=1	0.9
	Tax=Vitis vinifera BepID=D1MIX5 VITVI complete	
GSVIVT01009142001	none	0.9
GSVIVT01035385001	UniRef100_P41152—weakly similar to Heat shock factor protein HSF30 $n=1$	0.91
	Tax=Solanum peruvianum RepID=HSF30_SOLPE partial (85%)	
none	none	0.91
GSVIVT01027064001	UniRef100_Q9AR73—weakly similar to Hydroquinone glucosyltransferase n=1	0.91
	Tax=Rauvolfia serpentina RepID=HQGT_RAUSE complete	
GSVIVT01030206001	UniRef100_A5BHI9—similar to CBL-interacting protein kinase 08 n=1	0.91
	Tax=Vitis vinifera RepID= $A5BHI9$ -VITVI partial (92%)	
GSVIVT01014633001;	UniRef100_B9GJX7—weakly similar to Multidrug resistance protein ABC	0.92
GSVIVT01014631001	transporter family $n=1$ Tax=Populus trichocarpa RepID=B9GJX7_POPTR	
	partial (69%);UniRef100_B9GJX7—weakly similar to Multidrug resis-	
	tance protein ABC transporter family n=1 Tax=Populus trichocarpa	
CO	RepID=B9GJX7_POPTR partial (76%)	
GSVIVT01016429001	UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1	0.92
COMPANY TO 1000 7 4 400 1	Tax=Vitis vinifera RepID=DIMIX5_VITVI complete	0.00
GSVIV101033744001	Unikeriou-QISN34—weakiy similar to Homeodomain-related n=1	0.92
CONTRA1028174001	Tax=Medicago truncatura RepiD=Q15054_MEDTR complete	0.02
GSVIV 101028174001; CSVIVT01028176001	trisboarpa y Popular deltaidar DeptD=C540C5 0POSI partial	0.95
63 11 101028170001	(72%) UniPof100 C5H0C5 cimilar to Calactinal curthase 4 p=1 Tax=Bapula	
	(10%), control-control-control similar to cancer symptotic sympton (10%), control	
GSVIVT01017087001	UniBef100 $O45FF1$ —weakly similar to Pyridovine biosynthesis protein n=1	0.93
05111101011001001	Tax=Lotus iaponicus RepID=045FF1_LOTIA partial (96%)	0.00
GSVIVT01019407001	UniBef100-UPI0001B7A4F0 weakly similar to UPI0001B7A4F0 related clus-	0.95
	ter n=1 Tax=Battus norvegicus BepID=UPI0001B7A4F0 partial (48%)	
GSVIVT01033476001	UniRef100_Q6YUA7—similar to Qs08g0464000 protein n=1 Tax=Oryza sativa	0.95
	Japonica Group RepID=O6YUA7_ORYSJ partial (65%)	
GSVIVT01031526001	UniRef100_P08926-similar to RuBisCO large subunit-binding protein subu-	0.96
	nit alpha, chloroplastic n=1 Tax=Pisum sativum RepID=RUBA_PEA partial	
	(97%)	
GSVIVT01030056001	UniRef100_UPI00015057C8—similar to ATP binding $n=1$ Tax=Arabidopsis	0.97
	thaliana RepID=UPI00015057C8 partial (97%)	
GSVIVT01016429001	UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1	0.98
	$Tax=Vitis vinifera RepID=D1MIX5_VITVI complete$	
GSVIVT01016396001	UniRef100_Q9LPG9—weakly similar to T3F20.15 protein n=1	0.99
	Tax=Arabidopsis thaliana RepID=Q9LPG9_ARATH partial (39%)	

La majeure partie des gènes dont l'expression est positivement corrélée à la différence de température journalière sont des HSP et un facteur de transcription de leur régulation (HSF, GSVIVT01035385001). S'y trouvant également un autre facteur de transcripton, HB (GSVIVT01033744001), une UDP glycosyl/glycoronyl transférase (GSVIVT01027064001) identifiée comme étant différentiellement co-exprimés avec une leucoanthocyanidin dioxygénase présumée (GSVIVT01011165001) et un transporteur ABC dont le comportement par rapport à VvGLP est opposé en fonction de la condition expérimentale. Un dihydroflavonol présumé (GSVIVT01019510001) est négativement corrélé avec la différence de température journalière.

3.4.2 Intégration des données métaboliques et transcriptomiques

Intégration de données transcriptomiques et métabolomiques avec l'outil MapMan

L'outil MapMan permet de visualiser des différentiels d'expression des gènes et des différentiels de concentration de métabolites sur une figure représentant une portion de la voie des flavonoïdes (Fig. 3.22 - p. 96) (Matus et al., 2009). Le

gène codant pour la chalcone synthase (CHS) en début de la voie de biosynthèse a été sur-exprimé à tous les 5 temps après traitement. Deux semaines après l'effeuillage, le péonidine-3-glycoside est accumulée differentiellement entre les deux conditions (Tab. 3.3 - p. 72). Dès le début du traitement, la voie des anthocyanes a été orientée vers une baisse de la prodution d'anthocyanes dioxygénées par une sous-expression de F3'5'H.

L'accumulation des flavonols a été stimulée par une sur-expression importante de la FLS4 à tous les temps. La sur-expression de Vv GT6 aux jours 4 et 7 et de la F3H en début de traitement a également été favorable à cette accumulation. Aucun des facteurs de transcription Myb étudiés par Matus et al. (2009) dans le contexte d'une augmentation du rayonnement sur les baies n'a été différentiellement exprimé entre les conditions w.e.o et e.s.i. En particulier Myb12 n'a pas montré de profil similaire à la FLS4 comme cela a été le cas lors des expériences de Matus et al. (2009).

Corrélation entre données métaboliques et transcriptomiques

Plusieurs groupes de métabolites ont un comportement distinct par rapport à l'expression des gènes (Fig. 3.23 - p. 97). Les anthocyane-coumaryl-glycosides, sauf le malvidine-coumaryl-glycoside, et le péonidine-glycoside ont un comportement proche des flavonols (group à droite). Il y a deux groupes d'acides aminés dont un qui comporte en plus le cyanidine-acétyl-glycoside et le cyanine-galactoside.

La figure 3.24 - p. 98 montre des réseaux d'interactions possibles entre gènes différentiellement exprimés entre les conditions w.e.o et e.s.i et métabolites. Alors que certaines relations sont attendues, et valident au moins en partie l'approche suivie et les résultats obtenus, d'autres sont plus surprenantes, engageant à la prudence, et d'autres enfin semblent intéressantes et dignes d'être approfondies.

Les relations positives entre chalcone synthase, quercétine-glucoside et quercétine-galactoside sont cohérentes au regard de la position de la CHS au début de la voie de biosynthèse des flavonoïdes. Une UDP-glycosyl/glycoronyl transférase inconnue (GSVIVT01027064001) est probablement spécifique aux flavonols comme le montre son interaction avec le quercétine-3-glucoside et flav12.

D'autres relations intéressantes concernent par exemple celles trouvées entre certaines HSP (GSVIVT01035429001, GSVIVT01023134001) et Cy-3-glc-cou, Querc-3-glc, Querc-3-gal et flav12. Elles suggèrent une relation entre stress thermique et métabolisme des anthocyanes et des flavonols, et la synthèse de ces flavonols particuliers, dont il conviendrait de préciser la structure, est peut-être induite en réponse au stress thermique. Il est envisageable que ces HSP confèrent une thermo-tolérance comme décrite pour 4 autres HSP (Kobayashi et al., 2010). GSVIVT01023134001 est significativement corrélé à la différence de température cumulée entre les baies des conditions w.e.o et e.s.i (Tab. 3.14 - p. 92).

Une alpha expansine (GSVIVT01011437001) et un inhibiteur de la pectineméthylestérase (GSVIVT01018600001) négativement corrélés à la différence de température cumulée sont négativement corrélés à plusieurs flavonols et anthocyanes. Ceci indique un lien opposé entre accumulation de flavonoïdes et croissance cellulaire. Chez *Arabidopsis thaliana*, la répression d'une hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transférase (HCT) impliquée dans la biosynthèse des lignines provoque la réduction de la croissance de la plante et une redirection des flux métaboliques vers la biosynthèse des flavonoïdes (Besseau et al., 2007). Les expériences au vignoble montrent une baisse de l'expression d'une HCT possible (GSVIVT01003748001) pour la condition w.e.o. Les auteurs émettent l'hypothèse que la croissance de la plante est inhibée par une régulation des flux d'auxines par les flavonoïdes, mais ceci a été contesté par les travaux ultérieurs (Li et al., 2010).

Les anthocyanes Pn-3-glc, Pn-3-glc-ac, Pn-3-glc-cou, Pt-3-glc-cou, Dp-3-glccou sont significativement liées à un transporteur ABC (deux sondes correspondant probablement à GSVIVT01013864001), un transporteur d'acides aminés (GSVIVT01037496001) et une position sur le génome de la vigne sans prédiction de gène (uknw2). Même si un transporteur MATE (Multidrug And Toxic Exclusion) a déjà été identifié pour le transporteur des anthocyanes acylées (Gomez et al., 2009), il est probable que d'autres transporteurs soient impliqués dans la compartimentation des anthocyanes, compte tenu de la large diversité chimique de cette famille. L'identification du transporteur d'acides aminés présumés est plus surprenante, et sa relation éventuelle avec les flavonols et/ou les anthocyanes devra donc être validée. Il est possible qu'il s'agisse d'une annotation incorrecte.

Les F3'5'H sont positivement liées aux Pn-2-glc et Pn-3-glc-ac. La sousexpression des F3'5'H a pour conséquence la stimulation de la voie de biosynthèse des anthocyanes dioxygénées cyanine et péonidine (Fig. 3.22 - page suivante). L'expression des F3'5'H est négativement corrélée à la différence de température cumulée entre les deux conditions.

Un deuxième mini-réseau (Fig. 3.24 - p. 98 (b)) concerne le lien négatif d'un transporteur ZIP (GSVIVT01025302001) avec la VAL, LEU et PHE.

FIGURE 3.22 – Figure MapMan représentant une portion de la voie de biosynthèse des flavonoïdes (Matus et al., 2009) au jour 14 après effeuillage. Les différentiels d'expression des gènes et les différentiels de concentration entre les conditions w.e.o et e.s.i sont indiqués par des petits carrés colorés d'après la légende en haut à gauche. Les différentiels sont donnés en log2. Les gènes qui ne sont pas différentiellement exprimés dans cette expérience sont indiqués par des ronds gris. Pour les flavonols, ce sont les différentiels au niveau des formes glycosylées qui sont donnés.

ont été classés en fonction de leur profil de corrélation. Les valeurs de corrélation sont indiquées d'après le code couleur du gradient à droite. métabolites entre les conditions w.e.o et .e.s.i (Tab. 2.1 - p. 42). Les métabolites FIGURE 3.23 – Heatmap des corrélations de différentiels de transcrits et de

FIGURE 3.24 – Réseaux de gènes et de métabolites (a) et (b) montrant les corrélations significatives (p-Value <0,05) positives (en rouge) et négatives (en bleu)

Chapitre 4

Conclusions et perspectives

Le raisin est probablement un des fruits dont la qualité peut être manipulée de la façon la plus significative par l'environnement physique, lui-même susceptible d'être modulé par les pratiques agronomiques. Dans un contexte où le changement climatique modifie profondément l'environnement physique, et ou des modifications importantes du contenu des baies ont déjà été observées depuis quelques décennies, il est important de développer des approches systémiques permettant d'appréhender de façon globale les réponses à l'environnement. Le génome de la vigne ayant été séquencé, et des microarrays couvrant la totalité de ce génome étant disponibles, il est devenu possible de développer des études transcriptomiques exhaustives, et de corréler ces résultats avec l'analyse d'un grand nombre de métabolites, également en progrès technique constant.

Les approches de biologie intégrative commencent à se répandre, mais elles sont encore très peu nombreuses sur le raisin, et notre travail a tenté de mettre en oeuvre une démarche générique en prenant l'exemple de l'effeuillage sur le métabolisme de la baie.

De nombreux paramètres peuvent contrôler directement ou indirectement le métabolisme de la baie : la charge virale, la vigueur végétative, le rapport source/puits, l'environnement thermique et lumineux de la plante et de la baie, les génomes du porte-greffe et de la variété, l'amendement, le statut hydrique, etc... L'effeuillage, dont la pratique est ancienne, favorise l'aération des baies, limitant le risque de maladie, augmente la teneur en anthocyanes et en tannins sur les vins rouges, et favorise les arômes fruités par rapport aux arômes végétaux. Il peut être pratiqué depuis le printemps jusqu'à l'arrière-saison, mais le stade optimal pour l'amélioration des qualités organoleptiques est difficile à cerner. Il modifie tant les capacités photosynthétiques de la plante que l'environnement physique et microbiologique des baies. C'est donc cette pratique que nous avons choisie pour mettre en place une approche de biologie intégrative : elle est très répandue mais encore mal comprise, facile à mettre en oeuvre, et peut affecter de différentes façons le métabolisme du fruit.

Nos résultats montrent qu'un effeuillage relativement tardif (lorsque les baies ont atteint 17°Brix n'affecte pas le contenu en sucres, mais augmente la teneur en anthocyanes et surtout en flavonols sur une période de 2 semaines. Ceci peut être intéressant pour les qualités sensorielles du vin, et ses effets potentiellement bénéfiques pour la santé (richesse en flavonols anti-oxydants). Toutefois, la diminution de la teneur en acide malique pourrait induire une baisse d'acidité préjudiciable aux qualités gustatives et au vieillissement du vin, mais nous n'avons pas mesuré l'acidité totale ni le potassium. Ces observations doivent donc être confirmées et approfondies sur le plan agronomique et oenologique en répétant cet essai sur différents millésimes, et en mesurant certains paramètres ou composés qui ne l'ont pas encore été (acidité, tannins, stilbènes). Les résultats de la littérature s'accordent en effet à conclure que la lumière peut augmenter la teneur en anthocyanes (Smart et al., 1988; Bergqvist et al., 2001; Spavd et al., 2002; Joscelyne et al., 2007; Matus et al., 2009) et surtout en flavonols (Price et al., 1995; Haselgrove et al., 2000; Spayd et al., 2002; Downey et al., 2004; Pereira et al., 2006; Cortell and Kennedy, 2006; Ristic et al., 2007; Matus et al., 2009). Plusieurs résultats suggèrent que la lumière augmente la richesse en sucres des baies (Rojas-Lara and Morrison, 1989; Joscelyne et al., 2007) ce qui est en accord avec nos observations faites en 2008 au jour 34 après effeuillage, et en 2009.

Différents comportements ont été identifiés pour certains des constituants

étudiés. La concentration des anthocyanes di-oxygénées augmente sous l'effet de la lumière. La proportion des anthocyane-acétyl-glycosides baisse par rapport aux anthocyane-glycosides natives sous l'effet de la lumière. Des effets antagonistes de la température (effets stimulateurs) et de la lumière (effets inhibiteurs) ont été observés pour les anthocyanes coumarylées. Ceci illustre la complexité et la finesse des régulations du métabolisme qui sont mises en jeu.

L'étude de l'expression et de la co-expression des gènes et des corrélations gènes-métabolites peut constituer une voie d'approche pour mieux comprendre ces régulations. Les deux conditions diamétralement opposées, w.e.o et e.s.i, ont été sélectionnées pour faire des analyses transcriptomiques aux jours 0, 1, 4, 7 et 14 après le début de l'éxpérience. Ces conditions montrent des différences significatives au niveau de beaucoup des métabolites analysés. Elles se distinguent au niveau de l'orientation est/ouest des grappes, au niveau de l'exposition suite à un effeuillage ou non et au niveau de la position de la baie.

L'augmentation du rayonnement solaire et de la température pour la condition w.e.o affecte particulièrement les gènes liés au métabolisme secondaire, au métabolisme hormonal, au stress abiotique, au transport et les gènes nonassociés / inconnus. Nous avons identifié des gènes dont l'expression est corrélée aux différences de température journalières (29 gènes) ou cumulées (7 gènes) mesurées au niveau des baies.

Une comparaison avec les données transcriptomiques issues d'expériences en serre, qui découplent l'effet du rayonnement et de la température, a permis d'identifier des gènes affectés au vignoble et spécifiquement liés à un des stress. Une sur-représentation des gènes impliqués dans le transport peut-être liée à la chaleur.

La co-expression différentielle permet d'identifier des gènes qui sont corégulés dans seulement une des deux conditions ou ceux dont les co-régulations sont opposées. Un grand nombre de gènes sont co-régulés avec des HSP dans la conditions w.e.o, positivement ou négativement.

Pour ce qui concerne les transcrits co-exprimés, il convient de vérifier par PCR leur profil d'expression dans les échantillons que nous avons utilisés, et dans des réplicats qui seront préparés ultérieurement. Il serait également intéressant de fouiller les bases de données transcriptomiques disponibles chez Arabidopsis pour déterminer si l'expression des homologues les plus proches est affectée par la température et/ou la lumière, et si les gènes correspondants sont également co-régulés chez cette espèce.

L'analyse de réseaux des corrélations de gènes et métabolites permet de déduire l'interaction entre transcriptome et métabolome. Nous avons notamment identifié une interaction opposée entre accumulation de flavonoïdes et extension cellulaire et des liens très proches de quelques anthocyanines avec des transporteurs.

La description de réseaux est une approche qui se généralise petit à petit dans la communauté de recherche en biologie végétale (Allen et al., 2010; Diretto et al., 2010), mais elle a été peu exploitée en biologie végétale, bien que quelques données aient été publiées sur le métabolisme des fruits (Mounet et al., 2009; Garcia et al., 2009). Récemment, elle a été utilisée pour comprendre les effets du passerillage sur la baie de raisin (Zamboni et al., 2010). Nos résultats s'inscrivent dans une démarche similaire, bien que nous n'ayons pas effectué d'analyse protéomique, contrairement à ces auteurs. Chez Arabidopsis, l'exploitation de vastes bases de données transcriptomiques et métabolomiques peut conduire à décrypter certaines voies mineures du métabolisme secondaire (Hirai et al., 2004, 2005; Tohge et al., 2005; Saito et al., 2008). Dans cette perspective, il est important que la communauté de recherches sur la vigne puisse alimenter des bases de données bien ciblées pour atteindre à long terme une efficacité similaire à celle de la communauté (bien plus large) des chercheurs travaillant sur l'arabette.

Plusieurs réactions différentes aux stress lumineux et thermiques ont été observées. Une première passe par les HSF et HSP qui induisent une thermotoléronce. Une deuxième modifie les voies hormonales comme indiqué avec MBF1c. Une troisième implique des stimulateur du transfert d'électrons (LHC, cytochromes).

Les modifications observées au niveau des flavonoïdes entre les conditions w.e.o et e.s.i en 2008 s'expliquent par de simples alterations au niveau de leur voie de biosynthèse (Fig. 4.1). L'induction de l'expression de la CHS et de la FLS4 augmentent la quantité totale des flavonols et des anthocyanes. La sousexpression de la F3'5'H diminue la biosynthèse des formes tri-oxygénées.

FIGURE 4.1 – Stimulations de la voie de biosynthèse des flavonoïdes.

Diverses voies doivent être poursuivies pour étayer et approfondir les résultats que nous avons obtenus.

Pour ce qui concerne les métabolites, il conviendrait d'identifier les flavonols de structure inconnue dont la concentration est affectée par la température et par le rayonnemnet. Ceci peut être réalisé par des techniques de spectrométrie de masse (collaboration avec le Pr. Mérillon, EA GESVAB, ISVV, Bordeaux). Les analyses métaboliques que nous avons conduites pourrait également être étendue aux stilbènes (coll. Mérillon) et aux tannins (UMR Oenologie, ISVV, Bordeaux). Un niveau intermédiaire d'analyses entre le transcriptome et le métabolome, qui n'a pas encore été exploré, mais qui pourrait être plus pertinent, plus rapide et moins cher que l'analyse protéomique est celui des activités enzymatiques. Un travail préliminaire concernant le dosage de quelques enzymes du métabolisme primaire das la baie de raisin a été engagé en collaboration avec le Dr. Yves Gibon (Doumayala, mémoire de Master, 2010). Il conviendrait d'approfondir et d'étendre ce travail à quelques enzymes majeures du métabolisme secondaire (PAL, chalcone synthase, stilbène synthase).

Divers gènes candidats qui sont ressortis de nos cribles et dont la fonction est présumée par homologie de séquence (transporteurs ABC notamment), ou des gènes de fonctions inconnues peuvent faire l'objet d'une analyse fonctionnelle. Des tests de complémentation de mutants d'Arabidopsis, ou de sur-expression ou d'extinction par RNAi chez la vigne pourraient également être conduits pour étudier les conséquences phénotypiques et métaboliques de ces dé-régulations.

Bibliographie

- E Ablett, G Seaton, K Scott, and D Shelton. Analysis of grape ESTs : global gene expression patterns in leaf and berry. *Plant Science*, 159(1) :87-95, October 2000. ISSN 0168-9452. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945200003356. 34
- Anne-Françoise Adam-Blondon, A Bernole, G Faes, D Lamoureux, S Pateyron, M S Grando, M Caboche, R Velasco, and B Chalhoub. Construction and characterization of BAC libraries from major grapevine cultivars. *Theoretical and Applied Genetics*, 110(8) :1363-71, May 2005. ISSN 0040-5752. doi : 10.1007/s00122-005-1924-9. URL http://www.ncbi.nlm.nih.gov/pubmed/15834699. 28
- Agnès Ageorges, Lucie Fernandez, S Vialet, Didier Merdinoglu, Nancy Terrier, and Charles Romieu. Four specific isogenes of the anthocyanin metabolic pathway are systematically co-expressed with the red colour of grape berries. *Plant Science*, 170(2) :372-383, February 2006. ISSN 01689452. doi : 10.1016/j.plantsci.2005.09.007. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945205003535. 29, 31, 37
- Giorgia Albertazzi, Justyna Milc, Alessandra Caffagni, Enrico Francia, Enrica Roncaglia, Francesco Ferrari, Enrico Tagliafico, Emilio Stefani, and Nicola Pecchioni. Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. *Plant Science*, 176(6) :792-804, June 2009. ISSN 01689452. doi : 10.1016/j.plantsci.2009.03.001. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945209000892. 32
- Elizabeth Allen, Annick Moing, Timothy Md Ebbels, Mickaël Maucourt, A Deri Tomos, Dominique Rolin, and Mark A Hooks. Correlation Network Analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. *BMC Systems Biology*, 4 :62, January 2010. ISSN 1752-0509. doi : 10.1186/1752-0509-4-62. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890501/. 101
- MS Allen and MJ Lacey. Methoxypyrazines of grapes and wines, pages 31–38. American Chemical Society, Washington, DC, 1999. ISBN 978-0841235922. 23

- SF Altschul, TL Madden, AA Schaffer, and J. Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. *Nucleic Acids Research*, 25(17) :3389–402, September 1997. ISSN 0305-1048. URL http://nar.oxfordjournals.org/cgi/content/abstract/25/17/3389. 49, 51
- M Ashburner, CA Ball, JA Blake, D Botstein, H Butler, JM Cherry, AP Davis, K Dolinski, SS Dwight, JT Eppig, MA Harris, DP Hill, L Issel-Tarver, A Kasarskis, S Lewis, JC Matese, JE Richardson, M Ringwald, GM Rubin, and G Sherlock. Gene ontology : tool for the unification of biology. The Gene Ontology Consortium. *Nature Genetics*, 25 (1):25–29, May 2000. ISSN 1061-4036. doi : 10.1038/75556. URL http://www.ncbi.nlm.nih.gov/pubmed/10802651. 52
- M Baggiolini. Les stades repères dans le developpement annuel de la vigne et leur utilisation pratique. *Revue Romande d'Agriculture, de Viticulture et d'Arboriculture,* 8 :4–6, 1952. 19
- NG Baydar and N Harmankaya. Changes in endogenous hormone levels during the ripening of grape cultivars having different berry set mechanisms. *Turkish Journal of Agriculture and Forestry*, 29 :205-210, 2005. URL http://mistug.tubitak.gov.tr/bdyim/abs.php?dergi=tar&rak=0405-4. 25
- Elisa Becatti, Lamia Chkaiban, Pietro Tonutti, Claudio Forcato, Claudio Bonghi, and Anna Maria Ranieri. Short-term postharvest carbon dioxide treatments induce selective molecular and metabolic changes in grape berries. Journal of Agricultural and Food Chemistry, 58(13): 8012–20, July 2010. ISSN 1520-5118. doi: 10.1021/jf100936x. URL http://www.ncbi.nlm.nih.gov/pubmed/20557098. 32
- Diana Bellin, Alberto Ferrarini, Antonio Chimento, Olaf Kaiser, Natasha Levenkova, Pascal Bouffard, and Massimo Delledonne. Combining next-generation pyrosequencing with microarray for large scale expression analysis in non-model species. BMC genomics, 10(1):555, November 2009. ISSN 1471-2164. doi: 10.1186/1471-2164-10-555. URL http://www.ncbi.nlm.nih.gov/pubmed/19930683. 28, 33
- J Bergqvist, Nick K Dokoozlian, and N Ebisuda. Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. *American Journal* of Enology and Viticulture, 52(1):1–7, 2001. 27, 28, 58, 67, 72, 100
- Sébastien Besseau, Laurent Hoffmann, Pierrette Geoffroy, Catherine Lapierre, Brigitte Pollet, and Michel Legrand. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. *The Plant cell*, 19(1) :148-62, January 2007. ISSN 1040-4651. doi : 10.1105/tpc.106.044495. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820963/. 95
- Jacques Blouin and Guy Guimberteau. Maturation et maturité des raisins. Bordeaux, France, 2000. ISBN 978-2902416493. 19

- Jochen Bogs, Felix W Jaffé, Adam M Takos, Amanda R Walker, and Simon P Robinson. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. *Plant physiology*, 143(3) : 1347-61, March 2007. ISSN 0032-0889. doi : 10.1104/pp.106.093203. URL http://www.plantphysiol.org/cgi/content/abstract/143/3/1347. 38
- Р Boss. Cloning and characterisation of grapevine (Vitis vinifera L.) MADS-box genes expressed during inflorescence and berry development. Plant Science, 162(6) :887-895, June 2002.ISSN 01689452. doi : 10.1016/S0168-9452(02)00034-1. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945202000341. 89
- Paul K Boss, Christopher Davies, and Simon P Robinson. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. *Plant Physiology*, 111(4):1059–1066, August 1996. ISSN 1532-2548. URL http://www.plantphysiol.org/cgi/content/abstract/111/4/1059. 34
- MS Buttrose, CR Hale, and W Mark Kliewer. Effect of Temperature on the Composition of 'Cabernet Sauvignon' Berries. American Journal of Enology and Viticulture, 22(2):71–75, 1971. 27, 64, 72
- Yves Cadot, Maria Teresa Miñana Castelló, and Michel Chevalier. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. Journal of Agricultural and Food Chemistry, 54(24) :9206-15, November 2006. ISSN 0021-8561. doi : 10.1021/jf061326f. URL http://www.ncbi.nlm.nih.gov/pubmed/17117811. 21, 23
- Birsen Cakir, Alice Agasse, Cécile Gaillard, Amélie Saumonneau, Serge Delrot, and Rossitza Atanassova. A grape ASR protein involved in sugar and abscisic acid signaling. *The Plant Cell*, 15(9) :2165-80, September 2003. ISSN 1040-4651. doi : 10.1105/tpc.013854.contain. URL http://www.plantcell.org/cgi/content/abstract/15/9/2165. 25
- Céline Camps, Christian Kappel, Pascal Lecomte, Céline Léon, Eric Gomès, Pierre Coutos-Thévenot, and Serge Delrot. A transcriptomic study of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) interaction with the vascular ascomycete fungus Eutypa lata. *Journal of Experimental Botany*, 61 (6) :1719–37, June 2010. ISSN 1460-2431. doi : 10.1093/jxb/erq040. URL http://www.ncbi.nlm.nih.gov/pubmed/20190040. 32
- C Cantin, M Fidelibus, and C Crisosto. Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of 'Crimson Seedless' grapes. *Postharvest Biology and Technology*, 46(3) :237-241, December 2007. ISSN 09255214. doi : 10.1016/j.postharvbio.2007.05.017. URL http://linkinghub.elsevier.com/retrieve/pii/S0925521407002025. 25

- María José Carmona, Jamila Chaïb, José Miguel Martínez-Zapater, and Mark R Thomas. A molecular genetic perspective of reproductive development in grapevine. Journal of Experimental Botany, 59(10) :2579– 96, January 2008. ISSN 1460-2431. doi : 10.1093/jxb/ern160. URL http://www.ncbi.nlm.nih.gov/pubmed/18596111. 19, 20, 21
- Christian Chervin, Ashraf El-Kereamy, Jean-Paul Roustan, Alain Julien Lamon, and Mondher Bouzayen. Latché, Ethylene seems required for the berry development and ripening in grape, a nonclimacteric fruit. Plant Science, 167(6) :1301–1305, December 2004.ISSN 01689452. doi : 10.1016/j.plantsci.2004.06.026. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945204002961. 25
- Christian Chervin, Nancy Terrier, Agnès Ageorges, and Fabien Ribes. Influence of ethylene on sucrose accumulation in grape berry. American Journal of Enology and Viticulture, 57(4):511–513, 2006. 25
- Christian Chervin, Arak Tira-Umphon, Nancy Terrier, Mohamed Zouine, Dany Severac, and Jean-Paul Roustan. Stimulation of the grape berry expansion by ethylene and effects on related gene transcripts, over the ripening phase. *Physiologia Plantarum*, 134(3):534–46, November 2008. ISSN 1399-3054. doi: 10.1111/j.1399-3054.2008.01158.x. URL http://www.ncbi.nlm.nih.gov/pubmed/18785902. 25, 32, 38
- Christian Chervin, Arak Tira-Umphon, P Chatelet, and A Jauneau. Ethylene and other stimuli affect expression of the UDP glucose-flavonoid 3-0glucosyltransferase in a non-climacteric fruit. *Vitis*, 48(1):11-16, 2009. URL http://cat.inist.fr/?aModele=afficheN&cpsidt=21103848. 25
- Sung Bum Cho, Jihun Kim, and Ju Han Kim. Identifying set-wise differential co-expression in gene expression microarray data. *BMC Bioinformatics*, 10: 109, January 2009. ISSN 1471-2105. doi: 10.1186/1471-2105-10-109. URL http://www.biomedcentral.com/1471-2105/10/109. 87
- Jung Kyoon Choi, Ungsik Yu, Ook Joon Yoo, and Sangsoo Kim. Differential coexpression analysis using microarray data and its application to human cancer. *Bioinformatics (Oxford, England)*, 21(24) :4348-55, December 2005. ISSN 1367-4803. doi : 10.1093/bioinformatics/bti722. URL http://www.ncbi.nlm.nih.gov/pubmed/16234317. 87
- Evaghelia Chorti, Silvia Guidoni, Alessandra Ferrandino, and Vittorino Novello. Effect of Different Cluster Sunlight Exposure Levels on Ripening and Anthocyanin Accumulation in Nebbiolo Grapes. *American Journal of Enology and Viticulture*, 61(1):23–30, 2010. 27, 71
- SA Cohen and DP Michaud. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via highperformance liquid chromatography. *Analytical Biochemistry*, 211(2):279– 287, 1993. ISSN 0003-2697. doi : DOI:10.1006/abio.1993.1270. URL http://dx.doi.org/10.1006/abio.1993.1270. 48
- Seth D Cohen, Julie M Tarara, and James A Kennedy. Assessing the impact of temperature on grape phenolic metabolism. *Analytica Chimica Acta*, 621 (1):57-67, July 2008. ISSN 1873-4324. doi: 10.1016/j.aca.2007.11.029. URL http://www.ncbi.nlm.nih.gov/pubmed/18573371. 28, 69
- Carlos Conde, Paulo Silva, Natacha Fontes, ACP Dias, and RM Tavares. Biochemical changes throughout grape berry development and fruit and wine quality. *Food*, 1(1) :1-22, 2007. URL http://hdl.handle.net/1822/6820. 23, 24, 25
- Bryan George Coombe. Relationship of Growth and Development to Changes in Sugars, Auxins, and Gibberellins in Fruit of Seeded and Seedless Varieties of Vitis Vinifera. *Plant physiology*, 35(2):241–50, March 1960. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC405950/. 23
- Bryan George Coombe and Peter R. (ed's) Dry. Grape Berry Development and Winegrape Quality. Winetitles, 2nd edition, 2005. ISBN 9780975685006. URL http://winetitles.com.au/bookstore/bookstore.asp?action=details&item=14. 20
- Bryan George Coombe and CR Hale. The hormone content of ripening grape berries and the effects of growth substance treatments. *Plant physiology*, 51(4) :629–34, April 1973. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC366320/. 25, 26
- Jessica M Cortell and James A Kennedy. Effect of shading on accumulation of flavonoid compounds in (Vitis vinifera L.) pinot noir fruit and extraction in a model system. *Journal of Agricultural and Food Chemistry*, 54(22) : 8510-20, November 2006. ISSN 0021-8561. doi : 10.1021/jf0616560. URL http://www.ncbi.nlm.nih.gov/pubmed/17061828. 27, 28, 66, 71, 100
- Grant Cramer, Ali Ergül, Jerome Grimplet, Richard Tillett, Elizabeth AR Tattersall, Marlene Bohlman, Delphine Vincent, Justin Sonderegger, Jason Evans, Craig Osborne, David Quilici, Karen Schlauch, David A Schooley, and John Cushman. Water and salinity stress in grapevines : early and late changes in transcript and metabolite profiles. *Functional & Integrative Genomics*, 7(2) :111–134, April 2007. ISSN 1438-793X. doi : 10.1007/s10142-006-0039-y. URL http://www.springerlink.com/content/33q7k38160332121. 29, 32
- Maria-Cruz Cutanda-Perez, Agnès Ageorges, Camila Gomez, Sandrine Vialet, Nancy Terrier, Charles Romieu, and Laurent Torregrosa. Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. *Plant Molecular Biology*, 69(6):633– 48, April 2009. ISSN 0167-4412. doi : 10.1007/s11103-008-9446-x. URL http://www.ncbi.nlm.nih.gov/pubmed/19096760. 32, 38
- C Davies, PK Boss, and Simon P Robinson. Treatment of Grape Berries, a Nonclimacteric Fruit with a Synthetic Auxin, Retards Ripening and Alters the Expression of Developmentally Regulated Genes. *Plant physiology*, 115(3) :1155–1161, November 1997. ISSN 1532-2548. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC158572/. 25

- Christopher Davies and Simon P Robinson. Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening. Cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. *Plant physiology*, 122(3) :803–12, March 2000. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/pubmed/10712544. 28, 29, 30, 34
- Laurent G Deluc, Jérôme Grimplet, Matthew D Wheatley, Richard L Tillett, David R Quilici, Craig Osborne, David A Schooley, Karen A Schlauch, John C Cushman, and Grant R Cramer. Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. *BMC genomics*, 8, November 2007. ISSN 1471-2164. doi : 10.1186/1471-2164-8-429. 25, 32, 35
- Laurent G Deluc, David R Quilici, Alain Decendit, Jérôme Grimplet, Matthew D Wheatley, Karen A Schlauch, Jean-Michel Mérillon, John C Cushman, and Grant R Cramer. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay. *BMC genomics*, 10:212, January 2009. ISSN 1471-2164. doi : 10.1186/1471-2164-10-212. URL http://www.ncbi.nlm.nih.gov/pubmed/19426499. 25
- France Denoeud, Jean-Marc Aury, Corinne Da Silva, Benjamin Noel, Odile Rogier, Massimo Delledonne, Michele Morgante, Giorgio Valle, Patrick Wincker, Claude Scarpelli, Olivier Jaillon, and François Artiguenave. Annotating genomes with massive-scale RNA sequencing. *Genome Biology*, 9(12) : R175, January 2008. ISSN 1465-6914. doi : 10.1186/gb-2008-9-12-r175. URL http://www.ncbi.nlm.nih.gov/pubmed/19087247. 28, 33
- Christelle Deytieux-Belleau, Séverine Gagné, Annie L'Hyvernay, Bernard Donèche, and Laurence Geny. Possible roles of both abscisic acid and indolacetic acid in controlling grape berry ripening process. *Journal International des Sciences de la Vigne et du Vin*, 41 :141–148, 2007. 25
- Gianfranco Diretto, Salim Al-Babili, Raffaela Tavazza, Federico Scossa, Velia Papacchioli, Melania Migliore, Peter Beyer, and Giovanni Giuliano. Transcriptional-metabolic networks in {beta}-carotene-enriched potato tubers : the long and winding road to the "Golden" phenotype. *Plant phy*siology, 154(October) :899–912, July 2010. ISSN 1532-2548. doi : 10.1104/pp. 110.159368. URL http://www.ncbi.nlm.nih.gov/pubmed/20671108. 101
- Mark O Downey, John S Harvey, Simon P Robinson, Csiro Plant Industry, Horticulture Unit, P O Box, and Glen Osmond. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 10(1):55–73, 2004. doi: 10.1111/j. 1755-0238.2004.tb00008.x. 27, 28, 63, 66, 70, 71, 100
- Eric Duchêne and Christophe Schneider. Grapevine and climatic changes : a glance at the situation in Alsace. Agronomy for Sustainable Development, 25 (1) :93-99, January 2005. ISSN 0249-5627. doi : 10.1051/agro:2004057. URL http://www.edpsciences.org/10.1051/agro:2004057. 26
- Eric Duchêne, Frédéric Huard, Vincent Dumas, Christophe Schneider, and Didier Merdinoglu. The challenge of adapting grapevine varieties to climate change. *Climate Research*, 41(3) :193–

204, May 2010. ISSN 0936-577X. doi : 10.3354/cr00850. URL http://www.int-res.com/abstracts/cr/v41/n3/p193-204/. 26, 27

- Ashraf El-Kereamy, Christian Chervin, JP Roustan, and V. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. *Physiologia Plantarum*, 119(2) :175–182, October 2003. ISSN 0031-9317. doi: 10.1034/j.1399-3054.2003.00165.x. URL http://www3.interscience.wiley.com/journal/118834640/abstract. 25
- I El-Sharkawy, I Mila, M Bouzayen, and S Jayasankar. Regulation of two germinlike protein genes during plum fruit development. *Journal of experimental botany*, 61(6):1761-70, June 2010. ISSN 1460-2431. doi: 10.1093/jxb/erq043. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2852666/. 90
- C Espinoza, C Medina, S Somerville, and P Arce-Johnson. Senescenceassociated genes induced during compatible viral interactions with grapevine and Arabidopsis. *Journal of Experimental Botany*, 58(12):3197– 212, January 2007a. ISSN 0022-0957. doi: 10.1093/jxb/erm165. URL http://www.ncbi.nlm.nih.gov/pubmed/17761729. 29
- C Espinoza, a Vega, C Medina, K Schlauch, G Cramer, and P Arce-Johnson. Gene expression associated with compatible viral diseases in grapevine cultivars. *Functional & integrative genomics*, 7(2):95-110, April 2007b. ISSN 1438-793X. doi: 10.1007/s10142-006-0031-6. URL http://www.ncbi.nlm.nih.gov/pubmed/16775684. 29, 32
- Luigi Falginella, Simone D Castellarin, Raffaele Testolin, Gregory A Gambetta, Michele Morgante, and Gabriele Di Gaspero. Expansion and subfunctionalisation of flavonoid 3',5'-hydroxylases in the grapevine lineage. BMC genomics, 11(1):562, October 2010. ISSN 1471-2164. doi: 10.1186/1471-2164-11-562. URL http://www.ncbi.nlm.nih.gov/pubmed/20939908. 80
- Lucie Fernandez, Laurent Torregrosa, Nancy Terrier, Lekha Sreekantan, Jérôme Grimplet, Chris Davies, Mark R Thomas, Charles Romieu, and Agnès Ageorges. Identification of genes associated with flesh morphogenesis during grapevine fruit development. *Plant Molecular Biology*, 63(3):307–23, March 2007. ISSN 0167-4412. doi : 10.1007/s11103-006-9090-2. URL http://www.ncbi.nlm.nih.gov/pubmed/17268889. 31, 37
- Andreia Figueiredo, Ana Margarida Fortes, Silvia Ferreira, Mónica Sebastiana, Young Hae Choi, Lisete Sousa, Bartolomeu Acioli-Santos, Fernando Pessoa, Robert Verpoorte, and Maria Salomé Pais. Transcriptional and metabolic profiling of grape (Vitis vinifera L.) leaves unravel possible innate resistance against pathogenic fungi. *Journal of Experimental Botany*, 59(12): 3371-81, January 2008. ISSN 1460-2431. doi: 10.1093/jxb/ern187. URL http://www.ncbi.nlm.nih.gov/pubmed/18648103. 30
- Laurent Fillion, Agnès Ageorges, Sarah Picaud, Pierre Coutos-Thévenot, Rémi Lemoine, Charles Romieu, and Serge Delrot. Cloning and expression of a hexose transporter gene expressed during the ripening of grape berry. *Plant physiology*, 120(4) :1083-94, August 1999. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC59342/. 23

- Romain Fouquet, Céline Léon, Nathalie Ollat, and François Barrieu. Identification of grapevine aquaporins and expression analysis in developing berries. *Plant Cell Reports*, 27(9) :1541–50, September 2008. ISSN 0721-7714. doi : 10.1007/s00299-008-0566-1. URL http://www.ncbi.nlm.nih.gov/pubmed/18560835. 35
- Gil Frank, Etan Pressman, Ron Ophir, Levia Althan, Rachel Shaked, Moshe Freedman, Shmuel Shen, and Nurit Firon. Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. Journal of experimental botany, 60(13) :3891– 908, January 2009. ISSN 1460-2431. doi : 10.1093/jxb/erp234. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2736902/. 89
- T K Franks, K S Powell, S Choimes, E Marsh, P Iocco, B J Sinclair, C M Ford, and R van Heeswijck. Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. *Transgenic Research*, 15(2) :181–95, April 2006. ISSN 0962-8819. doi : 10.1007/s11248-005-3737-7. URL http://www.ncbi.nlm.nih.gov/pubmed/16604459. 29, 30
- Raymond WM Fung, Wenping Qiu, Yingcai Su, Daniel P Schachtman, Kari Huppert, Csaba Fekete, and László G Kovács. Gene expression variation in grapevine species Vitis vinifera L. and Vitis aestivalis Michx. Genetic Resources and Crop Evolution, 54(7) :1541-1553, February 2007. ISSN 0925-9864. doi : 10.1007/s10722-006-9146-9. URL http://www.springerlink.com/index/10.1007/s10722-006-9146-9. 32
- Raymond WM Fung, Martin Gonzalo, Csaba Fekete, Laszlo G Kovacs, Yan He, Ellen Marsh, Lauren M McIntyre, Daniel P. Schachtman, and Wenping Qiu. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. *Plant Physiology*, 146 (1):236-249, January 2008. ISSN 0032-0889. doi: 10.1104/pp.107.108712. URL http://www.plantphysiol.org/cgi/content/abstract/146/1/236. 32
- Matthias E Futschik and Bronwyn Carlisle. Noise-robust soft clustering of gene expression time-course data. *Journal of Bioinformatics and Computational Biology*, 3(4) :965-88, August 2005. ISSN 0219-7200. URL http://www.ncbi.nlm.nih.gov/pubmed/16078370. 54, 78
- Virginie Garcia, Rebecca Stevens, Laurent Gil, Louise Gilbert, Noé Gest, Johann Petit, Mireille Faurobert, Mickael Maucourt, Catherine Deborde, Annick Moing, Jean-Luc Poessel, Daniel Jacob, Jean-Paul Bouchet, Jean-Luc Giraudel, Barbara Gouble, David Page, Moftah Alhagdow, Capucine Massot, Hélène Gautier, Martine Lemaire-Chamley, Antoine de Daruvar, Dominique Rolin, Bjoern Usadel, Marc Lahaye, Mathilde Causse, Pierre Baldet, and Christophe Rothan. An integrative genomics approach for deciphering the complex interactions between ascorbate metabolism and fruit growth and composition in tomato. *Comptes rendus biologies*, 332(11) :1007–21, November 2009. ISSN 1768-3238. doi: 10.1016/j.crvi.2009.09.013. URL http://www.ncbi.nlm.nih.gov/pubmed/19909923. 101

- R Gentleman, V Carey, D Bates, Ben Bolstad, and M. Bioconductor : open software development for computational biology and bioinformatics. *Genome Biology*, 5(10) :R80, January 2004. ISSN 1465-6914. doi : 10.1186/gb-2004-5-10-r80. URL http://www.biomedcentral.com/1465-6906/5/R80/abstract. 33, 49, 51
- Jim Giovannoni. Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52 :725-749, June 2001. ISSN 1040-2519. doi: 10.1146/annurev.arplant.52.1.725. URL http://www.ncbi.nlm.nih.gov/pubmed/11337414. 33
- JJ Giovannoni. Genetic regulation of fruit development and ripening. *The Plant Cell*, 16(Supplement) :170-180, 2004. doi : 10.1105/tpc.019158.Fruit. URL http://www.plantcell.org/cgi/content/full/16/suppl_1/S170. 25
- Marzia Giribaldi, Laurence Gény, Serge Delrot, and Andrea Schubert. Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries. *Journal of Experimental Botany*, 61(9) :2447– 58, May 2010. ISSN 1460-2431. doi : 10.1093/jxb/erq079. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2877898/. 25
- David Glissant, Fabienne Dédaldéchamp, and Serge Delrot. Transcriptomic analysis of grape berry softening during ripening. *Journal International des Sciences de la Vigne et du Vin*, 42(1) :1-13, 2008. URL http://www.jisvv.com/view_abstract.php?id=160. 31, 34
- Dale Godfrey, A.J. Able, and I.B. Dry. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection : a possible role in defense? *Molecular plant-microbe interactions : MPMI*, 20(9) :1112-25, September 2007. ISSN 0894-0282. doi : 10.1094/ MPMI-20-9-1112. URL http://www.ncbi.nlm.nih.gov/pubmed/17849714. 90
- F. Goes Da Silva, Alberto Iandolino, Fadi Al-Kayal, M.C. Bohlmann, M.A. Cushman, Hyunju Lim, Ali Ergul, Rubi Figueroa, E.K. Kabuloglu, Craig Osborne, and Others. Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple Vitis species and development of a compendium of gene expression during berry development. *Plant physiology*, 139 (2):574, October 2005. ISSN 0032-0889. doi: 10.1104/pp.105.065748. URL http://www.plantphysiol.org/cgi/content/abstract/139/2/574. 29
- Camila Gomez, Nancy Terrier, Laurent Torregrosa, Sandrine Vialet, Alexandre Fournier-Level, Clotilde Verriès, Jean-Marc Souquet, Jean-Paul Mazauric, Markus Klein, Véronique Cheynier, and Agnès Ageorges. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. *Plant physiology*, 150(1) :402–15, May 2009. ISSN 0032-0889. doi : 10.1104/pp.109.135624. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675721/. 95
- Dennis H. Greer and Chris Weston. Heat stress affects flowering, berry growth, sugar accumulation and photosynthesis of Vitis vinifera cv. Semillon grapevines grown in a controlled environment. *Functional Plant Bio*-

logy, 37(3) :206, 2010. ISSN 1445-4408. doi : 10.1071/FP09209. URL http://www.publish.csiro.au/?paper=FP09209. 27, 28

- Jerome Grimplet, Laurent G Deluc, Richard Tillett, Matthew Wheatley, Karen Schlauch, Grant Cramer, and John Cushman. Tissue-specific mRNA expression profiling in grape berry tissues. *BMC Genomics*, 8(1), June 2007. ISSN 1471-2164. doi: 10.1186/1471-2164-8-187. 32, 36
- Silvia Guidoni, Alessandra Ferrandino, and Vittorino Novello. Effects of Seasonal and Agronomical Practices on Skin Anthocyanin Profile of Nebbiolo Grapes. American Journal of Enology and Viticulture, 59(1):22–29, 2008. 28
- WJ Hardie, TP O'Brien, and VG Jaudzems. Morphology, anatomy and development of the pericarp after anthesis in grape, Vitis vinifera L. Australian Journal of Grape and Wine Research, 2(2):97-142, July 1996. ISSN 1322-7130. doi: 10.1111/j.1755-0238.1996.tb00101.x. URL http://doi.wiley.com/10.1111/j.1755-0238.1996.tb00101.x. 20
- Frank E Jr Harrell and With contributions from many other users. *Hmisc : Harrell Miscellaneous*, 2010. URL http://cran.r-project.org/package=Hmisc. 54, 55
- JM Harris, PE Kriedemann, and JV Possingham. Anatomical aspects of grape berry development. Vitis, 7(2):106–119, 1968. 23
- L. Haselgrove, D. Botting, R. Heeswijck, P.B. Hø j, P.R. Dry, C. Ford, and P.G. I. Land. Canopy microclimate and berry composition : The effect of bunch exposure on the phenolic composition of Vitis vinifera L cv. Shiraz grape berries. Australian Journal of Grape and Wine Research, 6(2) :141– 149, July 2000. ISSN 1322-7130. doi : 10.1111/j.1755-0238.2000.tb00173.x. URL http://doi.wiley.com/10.1111/j.1755-0238.2000.tb00173.x. 66, 70, 72, 100
- Masami Yokota Hirai, Marion Klein, Yuuta Fujikawa, Mitsuru Yano, Dayan B Goodenowe, Yasuyo Yamazaki, Shigehiko Kanaya, Yukiko Nakamura, Masahiko Kitayama, Hideyuki Suzuki, Nozomu Sakurai, Daisuke Shibata, Jim Tokuhisa, Michael Reichelt, Jonathan Gershenzon, Jutta Papenbrock, and Kazuki Saito. Elucidation of gene-to-gene and metaboliteto-gene networks in arabidopsis by integration of metabolomics and transcriptomics. *The Journal of Biological Chemistry*, 280(27) :25590– 5, July 2005. ISSN 0021-9258. doi : 10.1074/jbc.M502332200. URL http://www.ncbi.nlm.nih.gov/pubmed/15866872. 102
- M.Y. Hirai, Mitsuru Yano, D.B. Goodenowe, Shigehiko Kanaya, Tomoko Kimura, Motoko Awazuhara, Masanori Arita, Toru Fujiwara, and Kazuki Saito. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. *Proceedings of the National Academy of Sciences*, 101(27) :10205-10, July 2004. ISSN 0027-8424. doi : 10.1073/pnas.0403218101. URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=454188&tool=pmcentrez&renderty 102

- Matjaz Hren, Petra Nikolić, Ana Rotter, Andrej Blejec, Nancy Terrier, Maja Ravnikar, Marina Dermastia, and Kristina Gruden. 'Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC genomics, 10 :460, January 2009. ISSN 1471-2164. doi : 10.1186/1471-2164-10-460. URL http://www.ncbi.nlm.nih.gov/pubmed/19799775. 32
- Pierre Huglin and Christophe Schneider. Biologie et écologie de la vigne. Lavoisier Tec Et Doc, Paris, 2e edition, 1998. ISBN 9782743002602. 19, 21
- Alberto Iandolino, Kan Nobuta, Francisco Goes da Silva, Douglas R Cook, and Blake C Meyers. Comparative expression profiling in grape (Vitis vinifera) berries derived from frequency analysis of ESTs and MPSS signatures. *BMC Plant Biology*, 8:53, January 2008. ISSN 1471-2229. doi: 10.1186/ 1471-2229-8-53. URL http://www.ncbi.nlm.nih.gov/pubmed/18474095. 28
- Intergovernmental Panel On Climate Change. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. URL http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html. 26
- Ronald Jackson. Wine Science, Third Edition : Principles and Applications (Food Science and Technology). Academic Press, 2008. ISBN 0123736463. URL http://www.sciencedirect.com/science/book/9780123736468. 18
- Olivier Jaillon, Jean-Marc Aury, Benjamin Noel, Alberto Policriti, Christian Clepet, Alberto Casagrande, Nathalie Choisne, Sébastien Aubourg, Nicola Vitulo, Claire Jubin, Alessandro Vezzi, Fabrice Legeai, Philippe Hugueney, Corinne Dasilva, David Horner, Erica Mica, Delphine Jublot, Julie Poulain, Clémence Bruyère, Alain Billault, Béatrice Segurens, Michel Gouyvenoux, Edgardo Ugarte, Federica Cattonaro, Véronique Anthouard, Virginie Vico, Cristian Del Fabbro, Michaël Alaux, Gabriele Di Gaspero, Vincent Dumas, Nicoletta Felice, Sophie Paillard, Irena Juman, Marco Moroldo, Simone Scalabrin, Aurélie Canaguier, Isabelle Le Clainche, Giorgio Malacrida, Eléonore Durand, Graziano Pesole, Valérie Laucou, Philippe Chatelet, Didier Merdinoglu, Massimo Delledonne, Mario Pezzotti, Alain Lecharny, Claude Scarpelli, François Artiguenave, M Enrico Pè, Giorgio Valle, Michele Morgante, Michel Caboche, Anne-Françoise Adam-Blondon, Jean Weissenbach, Francis Quétier, and Patrick Wincker. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161): 463–7, September 2007. ISSN 1476-4687. doi : 10.1038/nature06148. URL http://www.ncbi.nlm.nih.gov/pubmed/17721507. 32, 49, 50, 51
- Seok Tae Jeong, Nami Goto-Yamamoto, Shozo Kobayashi, and M. Esaka. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. *Plant Science*, 167(2) :247-252, August 2004. ISSN 01689452. doi : 10.1016/j.plantsci.2004.03.021. URL http://linkinghub.elsevier.com/retrieve/pii/S016894520400144X. 25

- Yuling Jiao, Ligeng Ma, Elizabeth Strickland, and Xing Wang Deng. Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. *The Plant Cell*, 17(12):3239–56, December 2005. ISSN 1040-4651. doi: 10.1105/tpc.105.035840. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1315367/. 75
- Gregory V Jones, Michael A White, Owen R Cooper, and Karl Storchmann. Climate Change and Global Wine Quality. *Climatic Change*, 73(3):319–343, December 2005. ISSN 0165-0009. doi: 10.1007/s10584-005-4704-2. URL http://www.springerlink.com/index/10.1007/s10584-005-4704-2. 26, 27, 63
- Venetia L Joscelyne, Mark O Downey, Marica Mazza, and Susan E P Bastian. Partial shading of Cabernet Sauvignon and Shiraz vines altered wine color and mouthfeel attributes, but increased exposure had little impact. Journal of Agricultural and Food Chemistry, 55(26) :10888– 96, December 2007. ISSN 0021-8561. doi : 10.1021/jf0721621. URL http://www.ncbi.nlm.nih.gov/pubmed/18052125. 27, 63, 67, 100
- Markus Keller and Julie M Tarara. Warm spring temperatures induce persistent season-long changes in shoot development in grapevines. *Annals of Botany*, 106(1):131-41, July 2010. ISSN 1095-8290. doi: 10.1093/aob/mcq091. URL http://aob.oxfordjournals.org/content/106/1/131. 26
- James A Kennedy. Understanding grape berry development. Practical Winery & Vineyard, 2002(July/August), 2002. URL http://www.practicalwinery.com/JulyAugust02/julaug02p14.htm. 20, 21, 22, 23
- James A Kennedy, MA Matthews, and Andrew L Waterhouse. Changes in grape seed polyphenols during fruit ripening. *Phytochemistry*, 55(1) :77-85, September 2000. ISSN 0031-9422. URL http://www.ncbi.nlm.nih.gov/pubmed/11021647. 23
- James A Kennedy, Y Hayasaka, S Vidal, E J Waters, and G P Jones. Composition of grape skin proanthocyanidins at different stages of berry development. Journal of Agricultural and Food Chemistry, 49(11):5348-55, November 2001. ISSN 0021-8561. URL http://www.ncbi.nlm.nih.gov/pubmed/11714327. 23
- Young-Hwa Kim, Jung Myung Bae, and Gyung-Hye Huh. Transcriptional regulation of the cinnamyl alcohol dehydrogenase gene from sweetpotato in response to plant developmental stage and environmental stress. Plant cell reports, 29(7) :779–91, Julv ISSN 1432-203X. doi : 10.1007/s00299-010-0864-2. 2010 URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886125/. 89
- W Mark Kliewer. Sugars and Organic Acids of Vitis vinifera. Plant physiology, 41(6) :923-31, June 1966. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC1086453/. 23
- W Mark Kliewer. Influence of Temperature, Solar Radiation and Nitrogen on Coloration and Composition of Emperor Grapes. American Journal of Enology and Viticulture, 28(2):96–103, 1977. 28, 63

- W Mark Kliewer and HB Schultz. Effect of Sprinkler Cooling of Grapevines on Fruit Growth and Composition. American Journal of Enology and Viticulture, 24(1):17–26, 1973. 27, 72
- W Mark Kliewer and Rodrigo E Torres. Effect of Controlled Day and Night Temperatures on Grape Coloration. American Journal of Enology and Viticulture, 23(2):71–77, 1972. 27, 72
- Masayuki Kobayashi, Hironori Katoh, Tsutomu Takayanagi, and Shunji Suzuki. Characterization of thermotolerance-related genes in grapevine (Vitis vinifera). Journal of Plant Physiology, 167(10) :812-9, July 2010. ISSN 1618-1328. doi : 10.1016/j.jplph.2009.12.005. URL http://www.ncbi.nlm.nih.gov/pubmed/20096476. 94
- Dennis Kostka and Rainer Spang. Finding disease specific alterations in the co-expression of genes. *Bioinformatics (Oxford, England)*, 20 Suppl 1 :i194–9, August 2004. ISSN 1367-4811. doi : 10.1093/bioinformatics/bth909. URL http://www.ncbi.nlm.nih.gov/pubmed/15262799. 87
- Kazuya Koyama, Keiko Sadamatsu, and Nami Goto-Yamamoto. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Functional & integrative genomics, 10(3):367-381, August 2010. ISSN 1438-7948. doi: 10.1007/s10142-009-0145-8. URL http://www.ncbi.nlm.nih.gov/pubmed/19841954. 32
- Martin Krzywinski, Jacqueline Schein, Inanç Birol, Joseph Connors, Randy Gascoyne, Doug Horsman, Steven J Jones, and Marco A Marra. Circos : an information aesthetic for comparative genomics. *Genome Research*, 19(9) : 1639–45, September 2009. ISSN 1549-5469. doi: 10.1101/gr.092759.109. URL http://www.ncbi.nlm.nih.gov/pubmed/19541911. 88
- Soizic Lacampagne, Séverine Gagné, and Laurence Gény. Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin : new elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expres. Journal of Plant Growth Regulation, 29(1) :81–90, September 2009. ISSN 0721-7595. doi : 10.1007/s00344-009-9115-6. URL http://www.springerlink.com/index/10.1007/s00344-009-9115-6. 25
- Yinglei Lai, Baolin Wu, Liang Chen, and Hongyu Zhao. A statistical method for identifying differential gene-gene co-expression patterns. *Bioinformatics (Oxford, England)*, 20(17) :3146-55, November 2004. ISSN 1367-4803. doi : 10.1093/bioinformatics/bth379. URL http://www.ncbi.nlm.nih.gov/pubmed/15231528. 87
- Alan N Lakso and W Mark Kliewer. The Influence of Temperature in Grape Berries Malic Acid Metabolism in Grape Berries. *Plant physiology*, 56:370– 372, 1975. 63
- AN Lakso and W Mark Kliewer. The Influence of Temperature on Malic Acid Metabolism in Grape Berries. II. Temperature Responses of Net Dark CO2 Fixation and Malic Acid Pools. American Journal of Enology and Viticulture, 29(3):145–149, 1978. 63

- Peter Langfelder and Steve Horvath. WGCNA : an R package for weighted correlation network analysis. *BMC Bioinformatics*, 9 :559, January 2008. ISSN 1471-2105. doi : 10.1186/1471-2105-9-559. URL http://www.ncbi.nlm.nih.gov/pubmed/19114008. 54
- Eric Lebon. Changementns climatiques : Quelles conséquences pour la viticulture. In *6èmes Renconres Rhodaniennes*, pages 31–36, Orange, France, 2002. 26
- G Lebon, G Wojnarowiez, B Holzapfel, F Fontaine, N Vaillant-Gaveau, and C Clément. Sugars and flowering in the grapevine (Vitis vinifera L.). Journal of Experimental Botany, 59(10) :2565-78, January 2008. ISSN 1460-2431. doi : 10.1093/jxb/ern135. URL http://www.ncbi.nlm.nih.gov/pubmed/18508810. 19
- Fatma Lecourieux, David Lecourieux, Celine Vignault, and Serge Delrot. A Sugar-Inducible Protein Kinase, VvSK1, Regulates Hexose Transport and Sugar Accumulation in Grapevine Cells. *Plant Phy*siology, 152(2) :1096-1106, 2010. doi : 10.1104/pp.109.149138. URL http://www.plantphysiol.org/cgi/content/abstract/152/2/1096. 25
- JM Lelievre, Alain Latche, Brian Jones, and M. Ethylene and fruit ripening. *Physiologia Plantarum*, 101(4) :727-739, December 1997. ISSN 0031-9317. doi : 10.1111/j.1399-3054.1997.tb01057.x. URL http://www3.interscience.wiley.com/journal/119168776/abstract. 26
- Sophie Lemoine, Florence Combes, Nicolas Servant, and Stéphane Le Crom. Goulphar : rapid access and expertise for standard two-color microarray normalization methods. *BMC Bioinformatics*, 7 :467, January 2006. ISSN 1471-2105. doi : 10.1186/1471-2105-7-467. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626094/. 49
- Xu Li, Nicholas D Bonawitz, Jing-Ke Weng, and Clint Chapple. The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids. *The Plant cell*, 22(5):1620– 32, May 2010. ISSN 1532-298X. doi: 10.1105/tpc.110.074161. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899864. 95
- D Lorenz, K Eichhorn, H Bleiholder, R Klose, U Meier, and E Weber. Growth Stages of the Grapevine : Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale†. Australian Journal of Grape and Wine Research, 1(2) :100-103, 1995. URL http://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.1995.tb00085.x/abstract. 19
- Steven T Lund, Fred Y Peng, Tarun Nayar, Karen E Reid, and James Schlosser. Gene expression analyses in individual grape (Vitis vinifera L.) berries during ripening initiation reveal that pigmentation intensity is a valid indicator of developmental staging within the cluster. *Plant Molecular Biology*, 68(3) : 301–315, October 2008. ISSN 0167-4412. doi : 10.1007/s11103-008-9371-z. 32, 36

- Nathalie Mailhac and Christian Chervin. Ethylene and grape berry ripening. Stewart Postharvest Review, 2(2) :1-5, March 2006. ISSN 17459656. doi : 10.2212/spr.2006.2.7. URL http://www.stewartpostharvest.com/April_2006/Chervin.pdf. 25
- Elisa Marguerit, Christophe Boury, Aurélie Manicki, Martine Donnart, Gisèle Butterlin, Alice Némorin, Sabine Wiedemann-Merdinoglu, Didier Merdinoglu, Nathalie Ollat, and Stéphane Decroocq. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. *Theoretical and Applied Genetics*, 118(7) :1261–78, May 2009. ISSN 1432-2242. doi : 10.1007/s00122-009-0979-4. URL http://www.ncbi.nlm.nih.gov/pubmed/19238349. 28
- Kathy Mathiason, Dong He, Jérôme Grimplet, J Venkateswari, David W Galbraith, Etti Or, and Anne Fennell. Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. *Functional & integrative genomics*, 9(1): 81–96, February 2009. ISSN 1438-7948. doi: 10.1007/s10142-008-0090-y. URL http://www.ncbi.nlm.nih.gov/pubmed/18633655. 30
- José Tomás Matus, Rodrigo Loyola, Andrea Vega, Alvaro Peña Neira, Edmundo Bordeu, Patricio Arce-Johnson, and José Antonio Alcalde. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. Journal of Experimental Botany, 60(3) :853-67, January 2009. ISSN 1460-2431. doi : 10. 1093/jxb/ern336. URL http://www.ncbi.nlm.nih.gov/pubmed/19129169. 27, 55, 63, 66, 67, 93, 94, 96, 100
- Wen Juan Mo, Xu Ping Fu, Xiao Tian Han, Guang Yuan Yang, Ji Gang Zhang, Feng Hua Guo, Yan Huang, Yu Min Mao, Yao Li, and Yi Xie. A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression. *BMC genomics*, 10:340, January 2009. ISSN 1471-2164. doi: 10.1186/1471-2164-10-340. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737000/. 87
- Kentaro Mori, Sumiko Sugaya, and Hiroshi Gemma. Regulatory Mechanism of Anthocyanin Biosynthesis in 'Kyoho' Grape Berries Grown under Different Temperature Conditions. *Environment Control in Biology*, 41(1):21–30, 2004. 28, 72
- Kentaro Mori, Nami Goto-Yamamoto, Masahiko Kitayama, and Katsumi Hashizume. Loss of anthocyanins in red-wine grape under high temperature. Journal of Experimental Botany, 58(8) :1935–1945, January 2007. ISSN 0022-0957. doi : 10.1093/jxb/erm055. URL http://www.ncbi.nlm.nih.gov/pubmed/17452755. 28, 32, 37, 72
- JC Morrison and AC Noble. The effects of leaf and cluster shading on the composition of Cabernet Sauvignon grapes and on fruit and wine sensory properties. American Journal of Enology and Viticulture, 41(3) :193-200, 1990. URL http://ajevonline.org/cgi/content/abstract/41/3/193. 64

- Fabien Mounet, Annick Moing, Virginie Garcia, Johann Petit, Michael Maucourt, Catherine Deborde, Stéphane Bernillon, Gwénaëlle Le Gall, Ian Colquhoun, Marianne Defernez, Jean-Luc Giraudel, Dominique Rolin, Christophe Rothan, and Martine Lemaire-Chamley. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. *Plant physiology*, 149(3):1505–28, March 2009. ISSN 0032-0889. doi: 10.1104/pp.108.133967. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2649409/. 39, 101
- Eugene Novikov and Emmanuel Barillot. Software package for automatic microarray image analysis (MAIA). *Bioinformatics (Oxford, England)*, 23(5): 639–40, March 2007. ISSN 1367-4811. doi: 10.1093/bioinformatics/btl644. URL http://www.ncbi.nlm.nih.gov/pubmed/17237062. 49
- G. Okamoto, T. Kuwamura, and K. Hirano. Effects of water deficit stress on leaf and berry ABA and berry ripening in Chardonnay grapevines (Vitis vinifera). Vitis, 43(1) :15-17, 2004. ISSN 0042-7500. URL http://cat.inist.fr/?aModele=afficheN&cpsidt=15624824. 25
- Nathalie Ollat, P Diakou-Verdin, JP Carde, François Barrieu, Jean-Pierre Gaudillère, and A Moing. Grape berry development : A review. Journal International des Sciences de la Vigne et du Vin, 36(3) :109–131, 2002. 21, 23
- E Ono, Y Homma, M Horikawa, S Kunikane-Doi, H Imai, S Takahashi, Y Kawai, M Ishiguro, Y Fukui, and T Nakayama. Functional Differentiation of the Glycosyltransferases That Contribute to the Chemical Diversity of Bioactive Flavonol Glycosides in Grapevines (Vitis vinifera). *Plant Cell*, 22 :2856– 2871, August 2010. ISSN 1040-4651. doi : 10.1105/tpc.110.074625. URL http://www.plantcell.org/cgi/doi/10.1105/tpc.110.074625. 79, 89
- SJ Owen, MD Lafond, Pat Bowen, and C. Profiles of abscisic acid and its catabolites in developing merlot grape (Vitis vinifera) berries. *American Journal of Enology and Viticulture*, 60(3) :277-284, 2009. URL http://ajevonline.org/cgi/content/abstract/60/3/277. 25
- Qiu-Hong Pan, Mei-Jun Li, Chang-Cao Peng, Na Zhang, Xun Zou, Ke-Qin Zou, Xiu-Ling Wang, Xiang-Chun Yu, Xiao-Fang Wang, and Da-Peng Zhang. Abscisic acid activates acid invertases in developing grape berry. *Physiologia Plantarum*, 125(2) :157-170, October 2005. ISSN 0031-9317. doi : 10.1111/j.1399-3054.2005.00552.x. URL http://www.blackwell-synergy.com/doi/abs/10.1111/j.1399-3054.2005.00552.x. 25
- GE Pereira, Jean-Pierre Gaudillère, Philippe Pieri, Ghislaine Hilbert, M Maucourt, Catherine Deborde, Annick Moing, and Dominique Rolin. Microclimate influence on mineral and metabolic profiles of grape berries. Journal of Agricultural and Food Chemistry, 54(18) :6765-75, September 2006. ISSN 0021-8561. doi : 10.1021/jf061013k. URL http://www.ncbi.nlm.nih.gov/pubmed/16939338. 27, 28, 48, 58, 64, 66, 71, 74, 100

- G Pertea. TIGR Gene Indices clustering tools (TGICL) : a software system for fast clustering of large EST datasets. Bioinformatics (Oxford, England),19(5):651-652,March 2003.ISSN 14602059. doi : 10.1093/bioinformatics/btg034. URL http://bioinformatics.oxfordjournals.org/content/19/5/651. 29
- Paul R. Petrie and Peter R. Clingeleffer. Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 11(1):59–65, April 2005. ISSN 1322-7130. doi : 10.1111/j.1755-0238.2005.tb00279.x. URL http://doi.wiley.com/10.1111/j.1755-0238.2005.tb00279.x. 19
- P.R. Petrie and V.O. Sadras. Advancement of grapevine maturity in Australia between 1993 and 2006 : putative causes, magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research, 14(1) :33-45, April 2008. ISSN 1322-7130. doi: 10.1111/j.1755-0238.2008.00005.x. URL http://www.blackwell-synergy.com/doi/abs/10.1111/j.1755-0238.2008.00005.x. 26
- Stefania Pilati, Michele Perazzolli, Andrea Malossini, Alessandro Cestaro, Lorenzo Demattè, Paolo Fontana, Antonio Dal Ri, Roberto Viola, Riccardo Velasco, and Claudio Moser. Genome-wide transcriptional analysis of grapevine berry ripening reveals a set of genes similarly modulated during three seasons and the occurrence of an oxidative burst at veraison. *BMC genomics*, 8 : 428, January 2007. ISSN 1471-2164. doi : 10.1186/1471-2164-8-428. URL http://www.ncbi.nlm.nih.gov/pubmed/18034875. 25, 32, 35
- Andrew Pirie and Michael G Mullins. Changes in anthocyanin and phenolics content of grapevine leaf and fruit tissues treated with sucrose, nitrate, and abscisic Acid. *Plant physiology*, 58(4):468-72, October 1976. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC543243/. 25
- Marianna Polesani, Filomena Desario, Alberto Ferrarini, Anita Zamboni, Mario Pezzotti, Andreas Kortekamp, and Annalisa Polverari. cDNA-AFLP analysis of plant and pathogen genes expressed in grapevine infected with Plasmopara viticola. *BMC genomics*, 9:142, January 2008. ISSN 1471-2164. doi:10.1186/ 1471-2164-9-142. URL http://www.ncbi.nlm.nih.gov/pubmed/18366764. 28
- Mariela A Pontin, Patricia N Piccoli, Rita Francisco, Ruben Bottini, José Miguel Martínez-Zapater, and Diego Lijavetzky. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biology, 10(1):224, 2010. ISSN 1471-2229. doi: 10.1186/1471-2229-10-224. URL http://www.biomedcentral.com/1471-2229/10/224. 67
- DRE Possner and W Mark Kliewer. The localisation of acids, sugars, potassium and calcium in developing grape berries. Vitis, 24(4) :229–240, 1985. 23
- SF Price, PJ Breen, M Valladao, and BT Watson. Cluster Sun Exposure and Quercetin in Pinot noir Grapes and Wine. American Journal of Enology and Viticulture, 46(2):187–194, 1995. 27, 66, 71, 100

- R Development Core Team. R : A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010. URL http://www.r-project.org. 33, 48, 49, 51, 52, 54, 55
- PF Reay and JE Lancaster. Accumulation of anthocyanins and quercetin glycosides in 'Gala' and 'Royal Gala' apple fruit skin with UV-B-Visible irradiation : modifying effects of fruit maturity, fruit side, and temperature. *Scientia Horticulturae*, 90 :57-68, 2001. URL http://linkinghub.elsevier.com/retrieve/pii/S0304423800002478. 67
- Karen E Reid, Niclas Olsson, James Schlosser, Fred Peng, and Steven T Lund. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biology, 6 :27, January 2006. ISSN 1471-2229. doi : 10.1186/1471-2229-6-27. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1654153/. 53
- Willem Albert Rensink and C Robin Buell. Microarray expression profiling resources for plant genomics. *Trends in Plant Science*, 10(12):603-9, December 2005. ISSN 1360-1385. doi: 10.1016/j.tplants.2005.10.003. URL http://www.ncbi.nlm.nih.gov/pubmed/16275051. 28
- Alain Reynier. Manuel de viticulture. Lavoisier Tec & Doc, 10e étidio edition, 2007. ISBN 978-2743009755. 21, 23
- Renata Ristic, Mark O Downey, Patrick G Iland, Keren Bindon, I Leigh Francis, Markus Herderich, and Simon P Robinson. Exclusion of sunlight from Shiraz grapes alters wine colour, tannin and sensory properties. *Australian Journal of Grape and Wine Research*, 13(2) :53-65, July 2007. ISSN 1322-7130. doi: 10.1111/j.1755-0238.2007.tb00235.x. URL http://www.blackwell-synergy.com/doi/abs/10.1111/j.1755-0238.2007.tb00235.x. 27, 28, 66, 71, 100
- Matthew E Ritchie, Jeremy Silver, Alicia Oshlack, Melissa Holmes, Dileepa Diyagama, Andrew Holloway, and Gordon K Smyth. A comparison of background correction methods for two-colour microarrays. *Bioinformatics (Oxford, England)*, 23(20) :2700-7, October 2007. ISSN 1367-4811. doi: 10.1093/bioinformatics/btm412. URL http://www.ncbi.nlm.nih.gov/pubmed/17720982. 51
- Simon P Robinson, AK Jacobs, and IB Dry. A class IV chitinase is highly expressed in grape berries during ripening. *Plant physiology*, 114(3) :771-8, July 1997. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/sites/ppmc/articles/PMC158363/. 34
- BA Rojas-Lara and Janice C Morrison. Differential effects of shading fruit or foliage on the development and composition of grape berries. *Vitis*, 28 :199– 208, 1989. 27, 63, 64, 67, 100
- Charles Romieu, Christian Kappel, and Serge Delrot. *Functional genomics : closed system approaches for transcriptome analyses*, chapter 12. Ed. C. Kole, Enfield, New Hampshire, USA, 2010. 28

- Ana Rotter, Matjaz Hren, Spela Baebler, Andrej Blejec, and Kristina Gruden. Finding differentially expressed genes in two-channel DNA microarray datasets : how to increase reliability of data preprocessing. Omics A Journal of Integrative Biology, 12(3) :171–182, September 2008. ISSN 1557-8100. doi : 10.1089/omi.2008.0032. 32, 33
- Ana Rotter, Céline Camps, Marc Lohse, Christian Kappel, Stefania Pilati, Matjaz Hren, Mark Stitt, Pierre Coutos-Thévenot, Claudio Moser, Björn Usadel, Serge Delrot, and Kristina Gruden. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata : extending MapMan ontology for grapevine. *BMC Plant Biology*, 9(1) : 104, January 2009. ISSN 1471-2229. doi : 10.1186/1471-2229-9-104. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731041/. 32, 49, 52, 76, 86
- Steve Rozen and Helen Skaletsky. Primer3 on the WWW for general users and for biologist programmers. *Methods in Molecular Biology*, 132(3) :365-386, 1999. doi : 10.1385/1-59259-192-2:365. URL http://www.springerlink.com/index/U16755Q84278VH5W.pdf. 53
- Hans Peter Ruffner, John S Hawker, and Charles R Hale. Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. *Phytochemistry*, 15(12) :1877–1880, 1976. 64
- HP Ruffner. Metabolism of tartric and malic acids in Vitis : A review Part A. Vitis, 21 :247–259, 1982a. 65
- HP Ruffner. Metabolism of tartric and malic acids in Vitis : A review Part B. Vitis, 21 :346–358, 1982b. 63
- Imelda Ryona, Bruce S Pan, Diego S Intrigliolo, Alan N Lakso, and Gavin L Sacks. Effects of cluster light exposure on 3-isobutyl-2-methoxypyrazine accumulation and degradation patterns in red wine grapes (Vitis vinifera L. Cv. Cabernet Franc). Journal of Agricultural and Food Chemistry, 56(22): 10838–46, November 2008. ISSN 1520-5118. doi: 10.1021/jf801877y. URL http://www.ncbi.nlm.nih.gov/pubmed/18942833. 63, 64
- Kazuki Saito, Masami Y Hirai, and Keiko Yonekura-Sakakibara. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'. *Trends in plant science*, 13(1) :36-43, January 2008. ISSN 1360-1385. doi : 10.1016/j.tplants.2007.10.006. URL http://www.ncbi.nlm.nih.gov/pubmed/18160330. 39, 102
- Kazumi Saito and Zenzaburo Kasai. Accumulation of tartric acid in the ripening process of grapes. *Plant & Cell Physiology*, 9(3):529–537, 1968. 64
- Suren K. Samuelian, Céline Camps, Christian Kappel, Ekaterina P. Simova, Serge Delrot, and Violeta M. Colova (Tsolova). Differential screening of overexpressed genes involved in flavonoid biosynthesis in North American native grapes : 'Noble' muscadinia var. and 'Cynthiana' aestivalis var. *Plant Science*, 177(3) :211-221, September 2009. ISSN 01689452. doi : 10.1016/j.plantsci.2009.05.013. URL http://linkinghub.elsevier.com/retrieve/pii/S0168945209001563. 32, 39

- Deepayan Sarkar. *lattice : Lattice Graphics*, 2010. URL http://cran.r-project.org/package=lattice. 48, 55
- Deepayan Sarkar Felix Andrews. latticeExtraExand : Graphical Utilities Based Lattice, 2010.URL traonhttp://cran.r-project.org/package=latticeExtra. 48, 55
- Richard E Smart and Thomas R Sinclair. Solar heating of grape berries and other spherical fruits. *Agricultural Meteorology*, 17(4) :241-259, 1976. ISSN 0002-1571. doi : DOI:10.1016/0002-1571(76)90029-7. URL http://dx.doi.org/10.1016/0002-1571(76)90029-7. 58
- Richard E Smart, Stephen M Smith, and Robert V Winchester. Light Quality and Quantity Effects on Fruit Ripening for Cabernet Sauvignon. American Journal of Enology and Viticulture, 39(3):250–258, 1988. 27, 100
- Gordon Κ Smyth. Normalization of cDNA microarray Methods, 31(4):265-273,data. December 2003.ISSN 10462023. doi : 10.1016/S1046-2023(03)00155-5. URL http://linkinghub.elsevier.com/retrieve/pii/S1046202303001555. 51
- Gordon K Smyth. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology*, 3 :Article3, January 2004. ISSN 1544-6115. doi : 10.2202/1544-6115.1027. URL http://www.ncbi.nlm.nih.gov/pubmed/16646809. 49, 51
- Lucinda K Southworth, Art B Owen, and Stuart K Kim. Aging mice show a decreasing correlation of gene expression within genetic modules. *PLoS genetics*, 5(12) :e1000776, December 2009. ISSN 1553-7404. doi: 10.1371/journal.pgen.1000776. URL http://www.ncbi.nlm.nih.gov/pubmed/20019809. 87
- Sara E Spayd, Julie M Tarara, DL Mee, and JC Ferguson. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. American Journal of Enology and Viticulture, 53(3):171, 2002. URL http://ajevonline.org/cgi/content/abstract/53/3/171. 27, 28, 58, 66, 67, 70, 71, 72, 100
- Lekha Sreekantan, Kathy Mathiason, Jérôme Grimplet, Karen Schlauch, Julie A Dickerson, and Anne Y Fennell. Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning. *Plant Molecular Biology*, 73(1-2): 191-205, May 2010. ISSN 1573-5028. doi: 10.1007/s11103-010-9611-x. URL http://www.springerlink.com/content/34n4285225v2h8qm. 32
- AP Stines, J Grubb, H Gockowiak, PA Henschke, PB Hø j, and R Heeswijck. Proline and arginine accumulation in developing berries of Vitis vinifera L. in Australian vineyards : Influence of vine cultivar, berry maturity and tissue type. Australian Journal of Grape and Wine Research, 6(2) :150–158, July 2000. ISSN 1322-7130. doi : 10.1111/j.1755-0238.2000.tb00174.x. URL http://doi.wiley.com/10.1111/j.1755-0238.2000.tb00174.x. 23, 74

- Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. UniRef : comprehensive and non-redundant UniProt reference clusters. *Bioinformatics (Oxford, England)*, 23(10) :1282-8, May 2007. ISSN 1367-4811. doi : 10.1093/bioinformatics/btm098. URL http://www.ncbi.nlm.nih.gov/pubmed/17379688. 49, 51
- Nobuhiro Suzuki, Ludmila Rizhsky, Hongjian Liang, Joel Shuman, Vladimir Shulaev, and Ron Mittler. Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. *Plant physiology*, 139 (3) :1313, 2005. doi : 10.1104/pp.105.070110.components. URL http://www.plantphysiol.org/cgi/content/abstract/139/3/1313. 89
- Nobuhiro Suzuki, Sunil Bajad, Joel Shuman, Vladimir Shulaev, and Ron Mittler. The transcriptional co-activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. *The Journal of biological chemistry*, 283 (14) :9269-75, April 2008. ISSN 0021-9258. doi: 10.1074/jbc.M709187200. URL http://www.ncbi.nlm.nih.gov/pubmed/18201973. 89
- Crystal Sweetman, Laurent G Deluc, Grant R Cramer, Christopher M Ford, and Kathleen L Soole. Regulation of malate metabolism in grape berry and other developing fruits. *Phytochemistry*, 70(11-12) :1329-1344, September 2009. ISSN 1873-3700. doi : 10.1016/j.phytochem.2009.08.006. URL http://linkinghub.elsevier.com/retrieve/pii/S0031942209003392. 32, 64
- Gregory M Symons, Christopher Davies, Yuri Shavrukov, Ian B Dry, James B Reid, and Mark R Thomas. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. *Plant physiology*, 140(1) :150-8, January 2006. ISSN 0032-0889. doi : 10.1104/pp.105.070706. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1326039/. 25, 26
- Julie M Tarara, Jungmin Lee, Sara E Spayd, and Carolyn F Scagel. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in merlot grapes. American Journal of Enology and Viticulture, 59(3):235-247, 2008. URL http://www.ajevonline.org/cgi/content/abstract/59/3/235. 27, 28, 66, 69, 71, 72
- David Bruce Tattersall, Robyn van Heeswijck, and Peter Bordier Hø j. ldentification and characterization of thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. *Plant Physiology*, 114(3) :759-769, July 1997. ISSN 0032-0889. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC158362/pdf/1140759.pdf. 34
- Elizabeth AR Tattersall, Jérôme Grimplet, Laurent G Deluc, Matthew D Wheatley, Delphine Vincent, Craig Osborne, Ali Ergül, Evan Lomen, Robert R Blank, Karen A Schlauch, John C Cushman, and Grant R Cramer. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and sali-

nity stress. Functional & Integrative Genomics, 7(4):317-333, October 2007. ISSN 1438-793X. doi: 10.1007/s10142-007-0051-x. URL http://www.springerlink.com/content/552706212m275315/. 32

- Nancy Terrier, Agnès Ageorges, Philippe Abbal, and Charles Romieu. Generation of ESTs from grape berry at various developmental stages. Journal of Plant Physiology, 158(12) :1575-1583, 2001. ISSN 01761617. doi : 10.1078/0176-1617-00566. URL http://linkinghub.elsevier.com/retrieve/pii/S0176161704701947. 29, 31, 34
- Nancy Terrier, David Glissant, Jérôme Grimplet, François Barrieu, Philippe Abbal, Carole Couture, Agnès Ageorges, Rossitza Atanassova, Céline Léon, Jean-Pierre Renaudin, Fabienne Dédaldéchamp, Charles Romieu, Serge Delrot, and Saïd Hamdi. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development. *Planta*, 222(5): 832–847, November 2005. ISSN 0032-0935. doi : 10.1007/s00425-005-0017-y. 29, 30, 31, 34, 35
- Nancy Terrier, Laurent Torregrosa, Agnès Ageorges, Sandrine Vialet, Clotilde Verriès, Véronique Cheynier, and Charles Romieu. Ectopic expression of VvMybPA2 promotes proanthocyanidin biosynthesis in grapevine and suggests additional targets in the pathway. *Plant physiology*, 149(2) :1028– 41, March 2009. ISSN 0032-0889. doi : 10.1104/pp.108.131862. URL http://www.ncbi.nlm.nih.gov/pubmed/19098092. 32, 38
- Catherine Tesniere, Martine Pradal, Asraf El-Kereamy, Laurent Torregrosa, Philippe Chatelet, Jean-Paul Roustan, and Christian Chervin. Involvement of ethylene signalling in a non-climacteric fruit : new elements regarding the regulation of ADH expression in grapevine. *Journal of Experimental Botany*, 55(406) :2235–40, October 2004. ISSN 0022-0957. doi : 10.1093/jxb/erh244. URL http://www.ncbi.nlm.nih.gov/pubmed/15333642. 25, 26
- Bruno M Tesson, Rainer Breitling, and Ritsert C Jansen. Diff-CoEx : a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinformatics, 11(1) :497, 2010. ISSN 1471-2105. doi : 10.1186/1471-2105-11-497. URL http://www.biomedcentral.com/1471-2105/11/497. 87
- Athanasios Theocharidis, Stjin van Dongen, Anton J Enright, and Tom C Freeman. Network visualization and analysis of gene expression data using BioLayout Express(3D). Nature Protocols, 4(10) :1535-50, January 2009. ISSN 1750-2799. doi : 10.1038/nprot.2009.177. URL http://www.ncbi.nlm.nih.gov/pubmed/19798086. 55
- Oliver Thimm, Oliver Bläsing, Yves Gibon, Axel Nagel, Svenja Meyer, Peter Krüger, Joachim Selbig, Lukas A Müller, Seung Y Rhee, and Mark Stitt. Mapman : a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. *The Plant Journal*, 37(6) :914–939, March 2004. ISSN 09607412. doi : 10.1111/j.1365-313X.2004.02016.x. URL http://blackwell-synergy.com/doi/abs/10.1111/j.1365-313X.2004.02016.x. 49, 52, 76, 86

- Patrice This, Thierry Lacombe, and Mark R Thomas. Historical origins and genetic diversity of wine grapes. *Trends in Genetics*, 22(9) :511-9, September 2006. ISSN 0168-9525. doi : 10.1016/j.tig.2006.07.008. URL http://www.ncbi.nlm.nih.gov/pubmed/16872714. 18
- A Tira-Umphon, JP Roustan, and Christian Chervin. The stimulation by ethylene of the UDP glucose-flavonoid 3-O-glucosyltransferase (UFGT) in grape tissues is independent from the MybA transcription factors. *Vitis*, 46(4):210-211, 2007. URL http://www.vitis-vea.de/admin/volltext/w108168.pdf. 25
- Takayuki Tohge, Yasutaka Nishiyama, Masami Yokota Hirai, Mitsuru Yano, Jun-ichiro Nakajima, Motoko Awazuhara, Eri Inoue, Hideki Takahashi, Dayan B Goodenowe, Masahiko Kitayama, Masaaki Noji, Mami Yamazaki, and Kazuki Saito. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. *The Plant Journal*, 42(2) :218–35, April 2005. ISSN 0960-7412. doi : 10.1111/j.1365-313X.2005.02371.x. URL http://www.ncbi.nlm.nih.gov/pubmed/15807784. 102
- Jo Vandesompele, Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, and Frank Speleman. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. *Genome Biology*, 3(7) :RESEARCH0034, June 2002. ISSN 1465-6914. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC126239/. 54
- Riccardo Velasco, Andrey Zharkikh, Michela Troggio, Dustin A Cartwright, Alessandro Cestaro, Dmitry Pruss, Massimo Pindo, Lisa M Fitzgerald, Silvia Vezzulli, Julia Reid, Giulia Malacarne, Diana Iliev, Giuseppina Coppola, Bryan Wardell, Diego Micheletti, Teresita Macalma, Marco Facci, Jeff T Mitchell, Michele Perazzolli, Glenn Eldredge, Pamela Gatto, Rozan Oyzerski, Marco Moretto, Natalia Gutin, Marco Stefanini, Yang Chen, Cinzia Segala, Christine Davenport, Lorenzo Demattè, Amy Mraz, Juri Battilana, Keith Stormo, Fabrizio Costa, Quanzhou Tao, Azeddine Si-Ammour, Tim Harkins, Angie Lackey, Clotilde Perbost, Bruce Taillon, Alessandra Stella, Victor Solovyev, Jeffrey A Fawcett, Lieven Sterck, Klaas Vandepoele, Stella M Grando, Stefano Toppo, Claudio Moser, Jerry Lanchbury, Robert Bogden, Mark Skolnick, Vittorio Sgaramella, Satish K Bhatnagar, Paolo Fontana, Alexander Gutin, Yves Van De Peer, Francesco Salamini, and Roberto Viola. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PloS ONE, 2(12) :e1326, January 2007. ISSN 1932-6203. doi : 10.1371/journal.pone.0001326. URL http://www.ncbi.nlm.nih.gov/pubmed/18094749. 50
- M Venter, Anita L Burger, and FC Botha. Molecular analysis of fruit ripening : The identification of differentially expressed sequences in vitis vinifera using cDNA-AFLP technology. *Vitis*, 40(4) :191–196, 2001. ISSN 0042-7500. URL http://cat.inist.fr/?aModele=afficheN&cpsidt=13413068. 34
- Amanda R Walker, Elizabeth Lee, Jochen Bogs, Debra A J McDavid, Mark R Thomas, and Simon P Robinson. White grapes arose through the mutation of

two similar and adjacent regulatory genes. *The Plant Journal*, 49(5):772-85, March 2007. ISSN 0960-7412. doi: 10.1111/j.1365-313X.2006.02997.x. URL http://www.ncbi.nlm.nih.gov/pubmed/17316172. 21

- Daniel L Waters, Timothy A Holton, Effie M Ablett, Slade S Lee, and Robert J Henry. cDNA microarray analysis of developing grape (Vitis vinifera cv. Shiraz) berry skin. Functional & integrative genomics, 5(1):40–58, January 2005. ISSN 1438-793X. doi: 10.1007/s10142-004-0124-z. 29, 30, 34, 35
- Michael Watson. CoXpress : differential co-expression in gene expression data. BMC Bioinformatics, 7:509, January 2006. ISSN 1471-2105. doi : 10.1186/ 1471-2105-7-509. URL http://www.ncbi.nlm.nih.gov/pubmed/17116249. 87
- RJ Weaver and Ralph Montgomery. Effect of ethephon on coloration and maturation of wine grapes. American Journal of Enology and Viticulture, 25(1) :25-27, 1974. URL http://www.ajevonline.org/cgi/content/abstract/25/1/39. 25
- LB Webb. The impact of projected greenhouse gas-induced climate change on the Australian wine industry. PhD thesis, 2006. URL http://en.scientificcommons.org/35936001. 26
- LB Webb, PH Whetton, and EWR Barlow. Modelled impact of future climate change on the phenology of winegrapes in Australia. *Australian Journal of Grape and Wine Research*, 13(3) :165-175, October 2007. ISSN 1322-7130. doi: 10.1111/j.1755-0238.2007.tb00247.x. URL http://www.blackwell-synergy.com/doi/abs/10.1111/j.1755-0238.2007.tb00247.x. 26
- S Wheeler, B Loveys, C Ford, and C Davies. The relationship between the expression of abscisic acid biosynthesis genes, accumulation of abscisic acid and the promotion of Vitis vinifera L. berry ripening by abscisic acid. Australian Journal of Grape and Wine Research, 15(3):195–204, October 2009. ISSN 13227130. doi: 10.1111/j.1755-0238.2008.00045.x. URL http://doi.wiley.com/10.1111/j.1755-0238.2008.00045.x. 25
- Michael A White, NS Diffenbaugh, Gregory V Jones, JS Pal, and F Giorgi. Extreme heat reduces and shifts United States premium wine production in the 21st century. *Proceedings of the National Academy of Sciences*, 103(30): 11217-22, July 2006. ISSN 0027-8424. doi: 10.1073/pnas.0603230103. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544068/. 27
- P. J. White. Recent advances in fruit development and ripening : an overview. Journal of Experimental Botany, 53(377) :1995-2000, October 2002. ISSN 14602431. doi : 10.1093/jxb/erf105. URL http://www.jexbot.oupjournals.org/cgi/doi/10.1093/jxb/erf105. 33
- Takayoshi Yamane, Seok Tae Jeong, Nami Goto-Yamamoto, Yoshiko Koshita, and Shozo Kobayashi. Effects of temperature on anthocyanin biosynthesis in grape berry skins. American Journal of Enology and Viticulture, 57(1):54–59, 2006. URL http://ajevonline.org/cgi/content/abstract/57/1/54. 28, 72

- Anita Zamboni, Leone Minoia, Alberto Ferrarini, Giovanni Battista Tornielli, Elisa Zago, Massimo Delledonne, and Mario Pezzotti. Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling. *Journal of experimental botany*, 59(15):4145–59, January 2008. ISSN 1460-2431. doi : 10.1093/jxb/ern256. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2639028/. 28
- Anita Zamboni, Pamela Gatto, Alessandro Cestaro, Stefania Pilati, Roberto Viola, Fulvio Mattivi, Claudio Moser, and Riccardo Velasco. Grapevine cell early activation of specific responses to DI-MEB, a resveratrol elicitor. *BMC genomics*, 10 :363, August 2009. ISSN 1471-2164. doi : 10.1186/1471-2164-10-363. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743712/. 32
- Anita Zamboni, M Di Carli, F Guzzo, M Stocchero, Sara Zenoni, Alberto Ferrarini, P Tononi, K Toffali, A Desiderio, KS Lilley, ME Pe, E Benvenuto, Massimo Delledonne, and Mario Pezzotti. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. *Plant physiology*, September 2010. ISSN 0032-0889. doi : 10.1104/pp.110.160275. URL http://www.plantphysiol.org/cgi/doi/10.1104/pp.110.160275. 101
- Evgeni M. Zdobnov and Rolf Apweiler. InterProScan-an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* (Oxford, England), 17(9) :847-8, September 2001. ISSN 1367-4803. URL http://www.ncbi.nlm.nih.gov/pubmed/11590104. 51, 79
- Sara Zenoni, Alberto Ferrarini, Enrico Giacomelli, Luciano Xumerle, Marianna Fasoli, Giovanni Malerba, Diana Bellin, Mario Pezzotti, and Massimo Delledonne. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. *Plant physiology*, 152(4) : 1787–95, April 2010. ISSN 1532-2548. doi : 10.1104/pp.109.149716. URL http://www.ncbi.nlm.nih.gov/pubmed/20118272. 33
- Bin Zhang and Steve Horvath. A general framework for weighted gene coexpression network analysis. Statistical Applications in Genetics and Molecular Biology, 4 :Article17, January 2005. ISSN 1544-6115. doi : 10.2202/ 1544-6115.1128. URL http://www.ncbi.nlm.nih.gov/pubmed/16646834. 54
- Xiao-Yan Zhang, Xiu-Ling Wang, Xiao-Fang Wang, Guo-Hai Xia, Qiu-Hong Pan, Ren-Chun Fan, Fu-Qing Wu, Xiang-Chun Yu, and Da-Peng Zhang. A shift of Phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry. *Plant physiology*, 142(1): 220-32, September 2006. ISSN 0032-0889. doi: 10.1104/pp.106.081430. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1557625/. 23

Annexe A

Annexes

A.1 Températures et rayonnement

A.1.1 Températures des baies

FIGURE A.1 – Températures absolues des baies de raisin des huit conditions expérimentales (Tab. 2.1) le jour de l'effeuillage en 2008 (27 août 2008).

A.2 Analyses de métabolites

A.2.1 Pools

TABLE A.1: Pools de trois baies pour les analyses de métabolites en 2008. ID est l'identifiant du pool, Jour correspond au jour après traitement, la condition comme décrit au tableau Tab. 2.1 - p. 42. Les poids des pellicules, des pulpes et des pépins sont indiqués en mg. La dernière colonne donne le nombre de pépins pour les trois baies.

ID	Jour	Condition	Pellicule [mg]	Pulpe [mg]	Pépins [mg]	Pépins
b161	0	w.e.o	361.82	2634.35	230.96	5
b162	0	w.e.i	360.17	2508.48	201.23	5
b163	0	e.e.o	444.91	3200.65	282.53	6
b164	0	e.e.i	383.63	2852.50	277.41	6
b165	0	W.S.O	397.03	2770.63	305.55	8
b166	0	w.s.i	372.05	2933.38	230.07	6
b167	0	e.s.o	379.99	2686.77	243.33	5
b168	0	e.s.i	377.95	2746.36	209.59	6
b169	0	w.e.o	339.74	2158.20	197.71	5
b170	0	w.e.i	388.79	2268.28	210.30	4
b171	0	e.e.o	398.78	2568.71	206.28	5
b172	0	e.e.i	450.31	3520.92	271.88	7
b173	0	W.S.O	360.12	2663.08	230.17	6
b174	0	w.s.i	430.95	3173.31	189.35	5
b175	0	e.s.o	418.94	2730.01	173.65	4
b176	0	e.s.i	402.37	2762.02	205.06	5
b177	0	w.e.o	413.62	2838.53	172.77	5
b178	0	w.e.i	454.41	3314.64	236.01	6
b179	0	e.e.o	489.59	3127.17	179.06	4
b180	0	e.e.i	393.20	3000.01	129.70	3
b181	0	W.S.O	550.08	3133.16	224.29	6
b182	0	w.s.i	448.43	3134.30	251.65	6
b183	0	e.s.o	438.69	3182.65	272.67	6
b184	0	e.s.i	376.98	2611.60	243.75	5
b185	0	w.e.o	492.38	3178.53	196.39	5
b186	0	w.e.i	481.41	3581.11	248.96	5
b187	0	e.e.o	403.57	2808.33	152.49	4
b188	0	e.e.i	415.60	3550.32	231.48	6
b189	0	W.S.O	370.83	3043.74	258.52	6
b190	0	w.s.i	376.67	3007.70	236.55	5
b191	0	e.s.o	426.55	2686.39	145.86	3
b192	0	e.s.i	438.42	2034.11	198.42	4
b193	0	w.e.o	453.26	3019.98	190.20	5
b194	0	w.e.i	498.82	3374.82	214.79	5
b195	0	e.e.o	438.87	3453.50	218.38	5
b196	0	e.e.i	453.53	3506.28	322.60	8
b197	0	W.S.O	440.76	3292.08	181.67	4

suite..

	т	0 1:			D/ · []]	
ID	Jour	Condition	Pellicule [mg]	Pulpe [mg]	Pepins [mg]	Pepins
b198	0	W.S.1	445.73	3394.76	133.07	3
b199	0	e.s.o	435.12	2922.91	225.59	5
b200	0	e.s.i	453.22	2713.25	208.59	5
b201	1	w.e.o	433.03	2186.95	177.21	4
b208	1	e.s.i	353.79	2336.05	265.62	6
b209	1	w.e.o	421.04	2895.76	232.40	5
b216	1	e.s.i	365.77	2348.28	168.91	4
b217	1	w.e.o	391.09	2997.65	198.46	4
b224	1	e.s.i	396.58	2444.02	203.29	5
b225	1	w.e.o	490.58	3079.14	240.37	5
b232	1	e.s.i	463.68	3199.02	237.93	6
b233	1	w.e.o	483.49	3366.27	228.10	5
b240	1	e.s.i	401.19	3042.35	177.59	4
b321	4	w.e.o	456.33	3176.01	241.25	6
b328	4	e.s.i	388.67	3063.32	259.29	6
b329	4	w.e.o	397.16	3324.22	273.12	6
b336	4	e.s.i	406.77	3314.89	210.62	5
b337	4	w.e.o	440.32	2935.28	184.16	5
b344	4	e.s.i	430.47	2670.81	167.58	4
b345	4	w.e.o	539.41	3664.49	334.55	8
b352	4	e.s.i	434.50	3374.03	198.43	4
b353	4	WEO	496.57	3344.02	266.25	6
b360	4	esi	391 50	3350.02	192.53	4
b361	7	weo	332.19	2013 39	166.81	4
b362	7	wei	340.00	2010.55 2404.57	166.24	4
b363	7	0.0.1 0.0	514 78	3630.93	21472	5
b364	7	e.e.o	370.15	2208 /1	100 10	4
b365	7	W.S.O	420.02	1068.81	106.40	
b366	7	w.s.o	42 <i>3.32</i> 208 10	1300.01	190.49	4 2
b367	7	w.5.1	376.05	2330.20 2817.41	$211\ 51$	5
b307	7	e.s.o	370.03 274.10	2017.41 2205.47	260.22	5
D300 b260	7	e.s.i	574.10 410 54	2290.47	209.32	0
D309 1-270	1	w.e.o	410.04	2430.40	200.95	4
D37U b271	1	w.e.1	381.00	2004.72	100.70	$\frac{5}{7}$
D371 1-279	1	e.e.o	499.98	3199.00	342.39 197.09	
D372	(e.e.1	430.78	2841.20	137.92	Ð
D3/3	(w.s.o	502.95	3048.62	173.31	4
b374	7	W.S.1	455.47	3503.98	259.01	0
b375	7	e.s.o	380.60	2380.31	693.98	3
b376	1	e.s.1	556.36	3471.12	198.85	4
b377	7	w.e.o	322.84	1238.62	123.48	3
b378	7	w.e.i	349.16	2159.56	169.32	4
b379	7	e.e.o	409.12	2569.21	138.59	4
b380	7	e.e.i	469.51	3213.66	290.50	7
b381	7	W.S.O	406.56	2214.00	142.67	3
b382	7	w.s.i	346.04	2308.60	137.53	3
b383	7	e.s.o	506.09	3608.46	268.51	5
b384	7	e.s.i	431.74	3349.60	209.20	5

TABLEA.1 suite

suite..

	т	0 1	TABLEA.I			D/ 1
ID	Jour	Condition	Pellicule [mg]	Pulpe [mg]	Pépins [mg]	Pepins
b385	7	w.e.o	546.74	3416.87	189.90	4
b386	7	w.e.i	525.73	3199.03	212.49	5
b387	7	e.e.o	488.55	3223.66	238.56	5
b388	7	e.e.i	419.02	3306.92	275.48	6
b389	7	W.S.O	451.66	2405.49	229.59	5
b390	7	w.s.i	410.33	2889.60	242.41	5
b391	7	e.s.o	521.55	3693.15	304.60	6
b392	7	e.s.i	455.73	3401.06	186.42	4
b393	7	w.e.o	450.76	3322.50	210.50	5
b394	7	w.e.i	492.87	1397.86	138.54	3
b395	7	e.e.o	553.53	3450.90	301.17	6
b396	7	e.e.i	482.27	3662.79	220.34	5
b397	7	W.S.O	471.15	2970.87	184.32	4
b398	7	w.s.i	444.53	3369.47	231.11	5
b399	7	e.s.o	408.82	2846.34	203.60	4
b400	7	e.s.i	547.25	2392.59	308.84	6
b401	14	w.e.o	493.79	2744.19	207.19	4
b402	14	w.e.i	480.97	3289.80	224.84	5
b403	14	e.e.o	518.95	2555.07	259.19	5
b404	14	e.e.i	492.70	2578.04	222.64	5
b405	14	WSO	458.90	4044 32	138.87	5
b406	14	wsi	370.84	$2458\ 47$	100.36	3
b407	14	eso	483.16	$3234\ 32$	250.07	6
b408	14	esi	404.00	2618 64	320.67	6
b400	14	W.e.O	404.00	2010.04	258.81	5
b405 b410	14	w.e.i	302.00	1465.29	147.84	3
b410 b411	14	0.0.1	438.65	2006.07	178.45	5
b412	14	c.c.o	460.33	2885.01	102.40	4
b_{412}	14	e.e.i	409.00	2600.01	192.20	4 6
b413	14	w.s.o	400.55	3010.49 3800.21	205.05	5
b414	14	w.s.1	490.74	3099.31 3207.15	208.98	J 4
D410 b416	14	e.s.o	205.25	3207.13 3412.00	208.20	4 9
D410 b417	14	e.s.i	390.20 452.52	2413.00 2409.72	120.00	3 7
D417	14	w.e.o	400.00	2490.75	000.09 002.04	
D410	14	w.e.1	445.04	2019.72	205.84	0
0419	14	e.e.o	4/1.00	2893.29	193.01	4
0420	14	e.e.1	411.68	2841.13	192.98	4
b421	14	w.s.o	433.62	2866.75	231.79	5
b422	14	W.S.1	409.06	2900.14	249.32	6
b423	14	e.s.o	407.64	2480.29	55.97	3
b424	14	e.s.i	482.94	2673.20	167.51	3
b425	14	w.e.o	464.79	1944.55	183.50	4
b426	14	w.e.i	509.72	3212.54	289.32	5
b427	14	e.e.o	590.61	3899.25	226.19	6
b428	14	e.e.i	417.43	1670.18	198.85	3
b429	14	W.S.O	404.16	2327.58	152.53	3
b430	14	w.s.i	436.29	3261.66	202.77	5
b431	14	e.s.o	509.54	2931.05	287.77	5

TABLEA.1 suite

suite..

	-	~	IADLEA.I		D ()	
ID	Jour	Condition	Pellicule [mg]	Pulpe [mg]	Pépins [mg]	Pépins
b432	14	e.s.i	435.07	2891.49	164.05	4
b433	14	w.e.o	522.82	3160.01	228.77	5
b434	14	w.e.i	488.66	3189.16	179.13	4
b435	14	e.e.o	468.01	1973.98	172.64	4
b436	14	e.e.i	469.41	2174.22	178.58	4
b437	14	W.S.O	450.46	2091.64	147.70	3
b438	14	w.s.i	519.08	2385.75	209.18	5
b439	14	e.s.o	454.50	2695.47	234.18	4
b440	14	e.s.i	518.18	756.54	228.48	5
b481	w.e.o	387.42	2262.05	182.88	4	
b482	w.s.i	437.45	2560.79	233.23	5	
b485	w.s.o	507.15	2892.29	309.76	6	
b486	w.s.i	429.93	2866.68	228.89	4	
b489	w.e.o	397.25	3069.63	139.86	3	
b490	w.e.i	497.08	3516.83	199.44	4	
b491	e.e.o	412.1	2349.05	152.95	3	
b492	e.e.i	527.79	3578.19	314.43	7	
b493	w.s.o	553.22	3666.37	247.95	6	
b494	w.s.i	503.45	2922.53	278.04	6	
b495	e.s.o	530.68	2886.71	256.06	5	
b496	e.s.i	419.1	2432.3	207.22	4	
b497	w.e.o	527.23	3300.13	298.67	5	
b498	w.e.i	372.72	2381.14	180.1	4	
b499	e.e.o	518.07	3096.71	235.03	4	
b500	e.e.i	509.22	3279.73	236.6	5	
b501	w.s.o	459.35	2631.17	167.49	3	
b504	e.s.i	544.89	3572.14	225.92	5	
b506	w.e.i	435.99	2937.54	186.85	3	
b507	e.e.o	484.43	3393.83	174.63	4	
b509	w.s.o	481.4	3090.48	202.3	4	
b510	w.s.i	550.35	3573.06	314.95	5	
b511	e.s.o	583.34	3544.47	218.39	5	
b515	e.e.o	535.89	3247.94	227.86	5	
b516	e.e.i	433.8	2960.52	177.26	5	
b519	e.s.o	519.7	2900.6	222.3	4	

TABLEA.1 suite

A.2.2 Sucres

Date	2008-08-27	2008-10-02	2008-10-02	2008-10-02
Condition		w.e.o	e.e.o	e.s.i
	$^{\circ}Brix$	$^{\circ}Brix$	$^{\circ}Brix$	$^{\circ}Brix$
Moyenne	17.05	22.04	22.04	21.28
Echantillons	17.8	23.4	22.6	21.2
	12.8	21.8	22	22.2
	13.8	22.6	20.2	20.8
	17.6	21.6	24	22.6
	18.8	20.8	23	20.8
	16.8	21	21.6	22.2
	16.6	22.6	22	21
	18.6	21.8	20.2	18.8
	16.6	21.8	21.6	19
	18.8	22.8	19.6	23
	17.2	22.8	21.8	21.8
	18.8	22.8	21.6	21
	17.4	21.8	23.8	20.4
	18.2	21	23.8	22
	18.4	22	22.8	21.8
	16.8			21.8
	17.2			21.6
	16			23.2
	17.2			19.2
	18.4			
	17.2			
	18.4			
	17.2			
	14.8			
	16.6			
	16.4			
	17.4			
	15.4			
	16.4			
	18			

TABLE A.2 – Concentrations de sucres solubles en °Brix mesurées par réfractomètre. Comme il s'agit du début du traitement les mesures du 27 août 2008 ne sont pas associées.

TABLE A.3: Concentrations de glucose (Glu) et de fructose (Fru) en g/L dans les pulpes provenant des pools indiqués dans la colonne ID (Tab. A.1 - p. 131). La colonne Jour indique le jour après traitement, la colonne Condition la condition expérimentale (Tab. 2.1 - p. 42).

ID	Jour	Condition	Glu [g/L]	Fru [g/L]
b361	7	w.e.o	74.54	78.45
				suite

	T.	IABLEA.	$\frac{1}{2}$ suite	Thurs [/T]
ID	Jour	Condition	Glu [g/L]	Fru [g/L]
b362	7	w.e.1	88.19	85.47
b363	7	e.e.o	96.16	92.50
b364	7	e.e.1	91.61	91.33
b365	7	w.s.o	92.75	100.69
b366	7	w.s.i	85.92	94.84
b367	7	e.s.o	84.78	85.47
b368	7	e.s.i	79.09	81.96
b369	7	w.e.o	76.81	79.62
b370	7	w.e.i	87.06	86.64
b371	7	e.e.o	89.33	100.69
b372	7	e.e.i	99.57	103.03
b373	7	W.S.O	97.30	97.18
b374	7	w.s.i	87.06	94.84
b375	7	e.s.o	91.61	96.01
b376	7	e.s.i	93.88	90.16
b377	7	w.e.o	96.16	100.69
b378	7	w.e.i	99.57	97.18
b379	7	e.e.o	88.19	88.99
b380	7	e.e.i	85.92	97.18
b381	7	W.S.O	98.44	101.86
b382	7	w.s.i	88.19	104.20
b383	7	e.s.o	97.30	96.01
b384	7	e.s.i	97.30	91.33
b385	7	w.e.o	90.47	87.81
b386	7	w.e.i	83.64	90.16
b387	7	e.e.o	92.75	94.84
b388	7	e.e.i	90.47	94.84
b389	7	W.S.O	99.57	93.67
b390	7	w.s.i	73.40	76.11
b391	7	e.s.o	92.75	90.16
b392	7	e.s.i	83.64	85.47
b393	7	w.e.o	98.44	100.69
b394	7	w.e.i	100 71	103.03
b395	7	e.e.o	99 57	99.52
b396	7	eei	97.30	101.86
b307	7	WSO	92 75	96.01
b398	7	wsi	92.10	03.67
b300	7	W.D.1	8/ 78	86.64
b <i>JJJJ</i>	7	0.0.0	87 NA	88.00
b400 b401	14	U.S.I	00.57	110.06
b401 b409	14	w.e.u	99.07 07 20	07 10
D402 b402	14	w.e.i	97.3U 100 71	91.18
D4U3 b404	14 14	e.e.o	100.71	104.20
D4U4 b405	14 14	e.e.i	100.20	112.40
D4U5	14	w.s.o	102.99	100.69
b406	14	W.S.1	99.57	99.52
b407	14	e.s.o	99.57	92.50
b408	14	e.s.1	89.33	99.52
				suite

TABLEA.3 suite

ID	Jour	Condition	Glu [g/L]	Fru [g/L]
b409	14	w.e.o	88.19	90.16
b410	14	w.e.i	97.30	100.69
b411	14	e.e.o	98.44	99.52
b412	14	e.e.i	95.02	104.20
b413	14	W.S.O	106.40	103.03
b414	14	w.s.i	83.64	87.81
b415	14	e.s.o	98.44	103.03
b416	14	e.s.i	98.44	92.50
b417	14	w.e.o	85.92	98.35
b418	14	w.e.i	98.44	99.52
b419	14	e.e.o	90.47	93.67
b420	14	e.e.i	91.61	96.01
b421	14	W.S.O	98.44	100.69
b422	14	w.s.i	112.09	115.91
b423	14	e.s.o	100.71	106.54
b424	14	e.s.i	97.30	98.35
b425	14	w.e.o	93.88	104.20
b426	14	w.e.i	104.13	101.86
b427	14	e.e.o	108.68	101.86
b428	14	e.e.i	102.99	99.52
b429	14	W.S.O	82.50	81.96
b430	14	w.s.i	97.30	96.01
b431	14	e.s.o	88.19	92.50
b432	14	e.s.i	89.33	86.64
b433	14	w.e.o	105.26	101.86
b434	14	w.e.i	90.47	96.01
b435	14	e.e.o	92.75	97.18
b436	14	e.e.i	64.30	63.23
b437	14	W.S.O	105.26	106.54
b438	14	w.s.i	105.26	99.52
b439	14	e.s.o	92.75	96.01
b440	14	e.s.i	90.47	94.84

TABLEA.3 suite

FIGURE A.2 – Boxplot montrant les concentrations en acide malique et acide tartrique au jour 7 (d7) et au jour 14 (d14) après traitement.

A.2.4 Flavonoïdes

Anthocyanes

FIGURE A.3 – Boxplot montrant les concentrations des anthocyane-glycosides totales en g par g de pellicule sèche aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

FIGURE A.4 – Boxplot montrant les proportions des anthocyane-glucosides par rapport à l'ensemble des anthocyanes aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

FIGURE A.5 – Boxplot montrant les concentrations des anthocyane-3-acétyl-glycosides totales en g par g de pellicule sèche aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

FIGURE A.6 – Boxplot montrant les proportions des anthocyane-3-acétyl-glycosides par rapport aux anthocyanes totales aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage.

FIGURE A.7 – Boxplot montrant les concentrations des anthocyane-3-coumaryl-glycosides totales (cou) en g par g de pellicule sèche aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

FIGURE A.8 – Boxplot montrant les proportions des anthocyane-3-coumaryl-glycosides par rapport aux anthocyanes totales aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage.

 $\tt FIGURE A.9-Boxplot montrant les concentrations des anthocyanes trioxygénées aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.$

FIGURE A.10 – Boxplot montrant les concentrations des anthocyanes dioxygénées aux jours 0 (j0), 1 (j1), 4 (j4), 7 (j7), 14 (j14) et 34 (j34) après effeuillage en 2008.

FIGURE A.11 – Boxplot montrant les concentrations des flavonoïdes individuelles mesurées en 2009.

A.2.5 Acides aminés

FIGURE A.12 – Boxplot des profils de concentrations de quelques acides aminés aux temps 0 (d0), 1 (d1), 4 (d4), 7 (d7) et 14 (d14) en 2008 pour les huit conditions expérimentales : (a) phénylalanine (b) valine (c) tyrosine (d) aspartate.

A.3 Analyses transcriptomiques

A.3.1 Expression différentielle des gènes au vignoble

TABLE A.4: Gènes différentiellement exprimés entre les conditions w.e.i et e.s.i (Tab. 2.1 - p. 42) avec une p-Value ajustée de 0,05 ou un différentiel d'un ratio 2 et une p-Value de 0,01 à au moins un des 5 temps après traitement. Probe ID est l'identifiant de la sonde microarray, la cible est l'identifiant du gène correspondant suivi de son annotation(2.4.2 - p. 51). Le tableau est trié par l'association des gènes cibles à des catégories MapMan (Bin). Les expressions différentielles sont données en log 2 dans les colonnes j0, j1, j4, j7 et j14 avec leurs p-Values (pVal) associés

Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
7dcef35603ef6be54b02f9904aa6da73	GSVIVT01016295001	UniRef100_B9HUE0—homologue to Light- harvesting complex I protein Lhca1 n=2 Tax=Populus RepID=B9HUE0_POPTR par- tial (83%)	1.1.1.1	1.167	0.000	0.777	0.013	0.597	0.050	0.629	0.039	1.438	0.000
3152dee769c2991b56a6460a8f4cd961	GSVIVT01021405001	UniRef100_C1K5D0—weakly similar to Chloroplast chlorophyll A-B binding pro- tein n=1 Tax=Gossypium hirsutum Re- pID=C1K5D0_GOSHI partial (77%)	1.1.1.1	0.366	0.321	0.186	0.611	0.116	0.750	0.413	0.264	1.279	0.002
a9c9ce885283991c56cef0a39ba8fd73	GSVIVT01020858001	UniRef100_P27495—weakly similar to Chloro- phyll a-b binding protein 40, chloroplastic n=1 Tax=Nicotiana tabacum RepID=CB24_TOBAC partial (87%)	1.1.1.1	1.317	0.001	1.437	0.000	0.712	0.023	1.370	0.000	1.279	0.000
5cc4e4c1c910ad0011e6473518cc9ab5	GSVIVT01037111001	UniRef100_Q00321—similar to Type I (26 kD) CP29 polypeptide n=1 Tax=Solanum lycopersi- cum RepID=Q00321_SOLLC partial (97%)	1.1.1.1	0.456	0.224	0.232	0.531	-0.008	0.982	0.144	0.698	1.043	0.009
311e633aa5589cfe7dcd71ade8e05f57	GSVIVT01016618001	UniRef100_P82538—weakly similar to PsbP-like protein 1, chloroplastic n=1 Tax=Arabidopsis thaliana RepID=PPL1_ARATH partial (93%)	1.1.1.2	0.517	0.217	1.141	0.003	-0.022	0.947	-0.083	0.824	-0.049	0.896
04394580f2ddb84a534c59a69d26be62	GSVIVT01029789001	UniRef100_D1MWY9—similar to Light- harvesting complex II protein n=1 Tax=Citrullus lanatus subsp. vulgaris RepID=D1MWY9_CITLA partial (74%)	1.1.2.1	0.345	0.307	-0.192	0.566	-0.190	0.570	-0.023	0.944	1.086	0.007
$5 \mathrm{fb4c9ef4ff8b8efb6b10c3f1f8cb7fc}$	GSVIVT01008129001	UniRef100_Q69F97—similar to Phytochelatin synthetase-like protein n=1 Tax=Phaseolus vulgaris RepID=Q69F97_PHAVU complete	10.2	-0.443	0.342	0.707	0.065	1.183	0.004	-0.242	0.510	0.478	0.200
a5c84f25b9d6c9c9d8f9786651bf3256	GSVIVT01011437001	UniRef100_COSQK2—similar to Alpha ex- pansin n=1 Tax=Rosa hybrid cultivar Re- pID=COSQK2_ROSHC complete	10.7	-0.371	0.168	-1.063	0.000	-1.671	0.000	-1.079	0.000	-2.170	0.000

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
64f0430081afd32ac1811cb047a1869e	GSVIVT01033173001	UniRef100_Q0J103—weakly similar to Os09g0472900 protein n=2 Tax=Oryza sa- tiva Japonica Group RepID=Q0J103_ORYSJ partial (81%)	10.7	1.223	0.022	0.987	0.040	1.545	0.003	-0.498	0.228	-0.543	0.349
${\tt cc4c8c47abe3b108c12e56c021c81cae}$	GSVIVT01035504001	UniRef100_B9HCP2—similar to Beta-ketoacyl- coa synthase family protein n=1 Tax=Populus tri- chocarpa RepID=B9HCP2_POPTR partial (78%)	11.1.10	0.781	0.012	1.003	0.002	0.310	0.289	-0.147	0.613	-0.015	0.958
$\rm d6d1899d40014803de14ee4eed7af124$	GSVIVT01034455001	UniRef100_B5KJ72—weakly similar to ST5a n=2 Tax=Brassica rapa RepID=B5KJ72_BRARC par- tial (93%)	11.8	-1.044	0.003	0.215	0.445	0.144	0.645	0.022	0.945	0.137	0.661
379597bd106a7c1b95d04ee3a710ebe2	GSVIVT01015119001	UniRef100_B9S5T1—similar to Phosphatidyl- choline : Diacylglycerol Acyltransferase n=1 Tax=Ricinus communis RepID=B9S5T1_RICCO partial (88%)	11.8.10	1.468	0.003	0.402	0.418	-0.589	0.190	0.089	0.840	2.206	0.002
b7d7d96df7facdcbc8fea113fc125695	GSVIVT01035091001	UniRef100_UPI0000162A71—weakly similar to li- pase class 3 family protein n=1 Tax=Arabidopsis thaliana RepID=UPI0000162A71 complete	11.9.2.1	0.170	0.715	1.320	0.002	0.277	0.467	0.050	0.895	-0.156	0.681
2fabb255ce0c6bd91cc1ac7e9486a900	GSVIVT01033033001	UniRef100_Q9SGA2—weakly similar to F1C9.18 protein n=1 Tax=Arabidopsis thaliana Re- pID=Q9SGA2_ARATH complete	11.9.3.3	0.610	0.096	0.634	0.084	0.479	0.185	0.378	0.293	1.084	0.005
${\rm f6ae 298bbf 182b9b0 faf00df 12cdfee 7}$	GSVIVT01031770001	UniRef100_Q0ZPW0—weakly similar to CXE carboxylesterase n=1 Tax=Malus pumila Re- pID=Q0ZPW0_9ROSA partial (48%)	11.9.4.5	0.838	0.068	1.292	0.003	0.152	0.702	-0.176	0.657	0.106	0.788
95442515e5ee0ae8eaaa8b070895dd77	GSVIVT01001192001	UniRef100_B9H8B8—similar to Homocysteine s- methyltransferase n=1 Tax=Populus trichocarpa RepID=B9H8B8_POPTR complete	13.1.3.4	-0.604	0.304	0.040	0.922	1.676	0.009	-0.345	0.552	0.120	0.793
906b607fc68d94e63232cd615560cd46	GSVIVT01017973001	UniRef100_A5B750—homologue to Imidazoleglycerol-phosphate dehydratase (Fragment) n=1 Tax=Vitis vinifera Re- pID=A5B750_VITVI partial (76%)	13.1.7	-2.098	0.005	-0.052	0.907	0.983	0.061	0.377	0.491	-0.393	0.534
630bc7ec3f98a6171fdc13840c86be7c	GSVIVT01031153001	UniRef100_Q5WN03—similar to Os05g0150700 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q5WN03_ORYSJ partial (21%)	15.2	-0.058	0.930	0.329	0.617	-2.160	0.000	0.338	0.469	0.683	0.152
													Surve

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
cf9b1eb7e8f141d33507fe9bc7e15586	GSVIVT01005221001 GSVIVT01005268001 GSVIVT01006589001 GSVIVT0100528001 GSVIVT01005218001 GSVIVT01006467001 GSVIVT01006467001 GSVIVT01006464001	 UniRef100_B1NA83—weakly similar to Neroli; dol/linalool synthase 1 n=1 Tax=Antirrhinum; majus RepID=B1NA83_ANTMA partial; (69%);UniRef100_B1NA83_weakly similar to Ne- rolidol/linalool synthase 1 n=1 Tax=Antirrhinum majus RepID=B1NA83_MTMA partial; (96%);UniRef100_B1NA83_weakly similar to Ne- rolidol/linalool synthase 1 n=1 Tax=Antirrhinum majus RepID=B1NA83_ANTMA partial; (80%);UniRef100_Q9SRT0_weakly similar to U-box domain-containing protein 9 n=1 Tax=Artabidopsis thaliana RepID=PUB9_ARATH complete;UniRef100_Q6Q3H3_weakly similar to (-)-germacrene D synthase n=1 Tax=Vitis vinifera RepID=Q6Q3H3_VITVI partial (21%);UniRef100_B1NA83_weakly similar to Ne- rolidol/linalool synthase 1 n=1 Tax=Antirrhinum majus RepID=B1NA83_weakly similar to Ne- rolidol/linalool synthase 1 n=1 Tax=Antirrhinum majus RepID=B1NA83_ANTMA partial (74%);UniRef100_B1NA83_weakly similar to Ne- rolidol/linalool synthase 2 n=1 Tax=Antirrhinum majus RepID=B1NA84_ANTMA partial (85%);UniRef100_B1NA84_NTMA partial (85%);UniRef100_B1NA84_NTMA partial (32%) 	16.1.5	1.257	0.007	-0.134	0.800	0.824	0.154	0.244	0.560	0.307	0.465
cce517d3ba56fea92f09f6ad2cd8dcb1	GSVIVT01036361001 GSVIVT01036333001	(JuniRef100_Q6Q3H2—weakly similar to (+)-valencene synthase n=1 Tax=Vitis vinifera RepID=Q6Q3H2_VITVI com- plete;UniRef100_Q6Q3H2_weakly similar to (+)-valencene synthase n=1 Tax=Vitis vinifera RepID=Q6Q3H2_UTVI partial (20%)	16.1.5	-0.324	0.337	-0.074	0.860	1.031	0.005	-0.263	0.434	-0.326	0.282
eeb6bcece7555f8e7d7638fdbf90bd7a	GSVIVT01014562001	UniRef100_Q6Q3H3—homologue to (-)- germacrene D synthase n=1 Tax=Vitis vinifera RepID=Q6Q3H3_VITVI partial (14%)	16.1.5	-0.180	0.723	0.546	0.159	1.138	0.007	-0.441	0.200	0.031	0.934
${\rm d}7604f6adf4d95b8c87275f841f9b2c4$	GSVIVT01035581001	UniRef100_Q8W3Z1—similar to Beta-amyrin synthase n=1 Tax=Betula platyphylla Re- pID=Q8W3Z1_9ROSI partial (21%)	16.1.5	0.201	0.694	-0.364	0.479	-1.514	0.007	0.123	0.789	0.341	0.507
7523b05d2fe7aa72a503e5d16feed56c	GSVIVT01034146001	UniRef100_B9HBS9—similar to Laccase 110b n=1 Tax=Populus trichocarpa Re- pID=B9HBS9_POPTR complete	16.10	-0.067	0.896	1.695	0.002	-0.548	0.386	-0.288	0.539	-0.156	0.803
a65b044ecc1fcab57745532131b6b9e6	GSVIVT01001913001	UniRef100_B9IHF9—weakly similar to Cin- namyl alcohol dehydrogenase-like pro- tein n=1 Tax=Populus trichocarpa Re- pID=B9IHF9_POPTR complete	16.2.1.10	-0.140	0.758	0.170	0.759	1.504	0.010	-0.357	0.340	-0.451	0.283
399b335e8cceff75942c4ec3fc00ec48	GSVIVT01002109001	UniRef100-Q516D6—similar to Sinapyl al- cohol dehydrogenase-like protein n=1 Tax=Populus tremula x Populus tremuloides RepID=Q516D6.9ROS1 partial (90%)	16.2.1.10	0.770	0.017	1.319	0.000	0.881	0.007	0.261	0.391	1.305	0.000
6f809399430b4f76b5d298ad488203b2	GSVIVT01003748001	UnRef100_B9RM18—weakly similar to Anthrani- late N-benzoyltransferase protein, putative, com- plete	16.2.1.4	0.002	0.994	0.124	0.691	-0.657	0.043	-0.182	0.559	-1.023	0.003

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
4d4bb96c074c1911c0ccc531ec14fe2f	GSVIVT01027449001; GSVIVT01027448001	UniRef100_A9P937_weakly similar to Catechol o-methyltransferase related n=1 Tax=Populus trichocarpa RepID=A9P937_POPTR par- tial (78%);UniRef100_A9P937_weakly si- milar to Catechol o-methyltransferase re- lated n=1 Tax=Populus trichocarpa Re- DD=A9P37_POPTR nartial (59%)	16.2.1.9	1.115	0.064	-2.249	0.005	-0.638	0.316	0.159	0.757	-0.676	0.247
b1c98c8ec3dbf51eed1bb108bcac4e39	GSVIVT01034685001	UniRef100_QGL8K4—weakly similar to Phloroglu- cinol O-methyltransferase n=1 Tax=Rosa chinen- sis var. spontanea RepID=Q6L8K4_ROSCH par- tial (37%)	16.2.1.9	1.565	0.004	-1.426	0.025	-0.795	0.056	-0.085	0.830	0.255	0.647
b05f7b223bd9fc3cc39a86b0305fe023	GSVIVT01021651001	UniRef100_Q9SD07—weakly similar to Mucin- like protein n=1 Tax=Arabidopsis thaliana Re- pID=Q9SD07_ARATH partial (26%)	16.4.1	-0.684	0.433	2.556	0.010	1.655	0.072	-0.864	0.149	-0.294	0.718
e423f2e213bad4ef9515f94a52a1f94c	GSVIVT01023516001	UniRef100_B2BBY6-weakly similar to Betaine- aldehyde dehydrogenase n=1 Tax=Jatropha cur- cas RepID=B2BBY6_9ROSI partial (24%)	16.4.2	0.205	0.479	1.354	0.003	0.587	0.052	-0.764	0.071	-0.563	0.091
5b63da4d7776b4c55da158aa72eca09a	GSVIVT01034169001	UniRef100_UPI0000196B2D—weakly similar to PRT6 (PROTEOLYSIS 6); ubiquitin-protein ligase n=1 Tax=Arabidopsis thaliana Re- pID=UPI0000196B2D partial (64%)	16.7	-0.256	0.571	0.403	0.323	-1.295	0.008	0.123	0.785	-0.055	0.892
541a91dccd397ec912a6f2f41435e0cb	GSVIVT01023054001	UniRef100_UPI0000DD8970—weakly similar to Os01g0148000 n=1 Tax=Oryza sativa Japonica Group RepID=UPI0000DD8970 partial (4%)	16.7	1.125	0.002	-0.071	0.808	-0.661	0.032	-0.293	0.323	0.143	0.627
e9d92adc68864f6dce33fbace98f35bd	GSVIVT01011165001	UniRef100_B9T5W6—similar to RICCO Leucoan- thocyanidin dioxygenase, putative complete	16.8.1.1	-0.150	0.527	-0.192	0.418	-0.623	0.013	-0.258	0.281	-1.019	0.000
731a8f47e7f73a452c9c47d4f0299f6b	GSVIVT01029122001	UniRef100_C7G3B6—homologue to UDP-sugar flavonoid glycosyltransferase n=1 Tax=Vitis vini- fera RepID=C7G3B6_VITVI complete	16.8.1.12	0.357	0.456	-0.003	0.994	1.069	0.005	1.114	0.040	0.236	0.640
c8ddc6a0a72e1f564408b38ce5030cfe	GSVIVT00037967001	UniRef100_A2ICC5—homologue to Chal- cone synthase n=1 Tax=Vitis vinifera Re- pID=A2ICC5_VITVI complete	16.8.2.1	1.419	0.000	1.309	0.000	0.859	0.004	1.826	0.000	1.532	0.000
a49a61b399d8fa64c0de0b9fd174cd01	GSVIVT01010590001	UniRef100_A0FDZ8—homologue to Stilbene synthase 1 n=1 Tax=Vitis vinifera Re- pID=A0FDZ8_VITVI complete	16.8.2.3	0.227	0.613	0.131	0.769	1.283	0.009	0.399	0.377	-0.242	0.547
e101cd6bdd969e81599c58da28605a62	GSVIVT01027068001	UniRef100_Q2HUD8—weakly similar to NAD- dependent epimerase/dehydratase (Frag- ment) n=1 Tax=Medicago truncatula Re- pID=Q2HUD8_MEDTR partial (65%)	16.8.3	1.626	0.005	0.719	0.136	-0.606	0.158	-0.446	0.388	-0.136	0.790
b2374e9b67d5788c0fe9462095c6aec4	GSVIVT01019510001	$\begin{array}{llllllllllllllllllllllllllllllllllll$	16.8.3	-0.462	0.318	-0.209	0.540	0.103	0.821	1.132	0.004	-0.074	0.828
3430252498c09b6ee811db413c5d0d2a	GSVIVT01027361001	UniRef100_Q9FLV0—weakly similar to Flavanone 3-hydroxylase-like protein n=1 Tax=Arabidopsis thaliana RepID=Q9FLV0_ARATH complete	16.8.3.2	1.002	0.007	0.635	0.045	0.548	0.080	0.116	0.702	0.226	0.506
10e96ef8e474962 da 3 c4 ed ce 3 fd 24 b4 e	gi—111144658	UniRef100_A6XHG1—Flavonoid 3'5' hydroxylase n=1 Tax=Vitis vinifera RepID=A6XHG1_VITVI partial (92%)	16.8.3.4	0.053	0.900	-0.133	0.751	-0.432	0.307	-0.470	0.267	-1.412	0.002
3ecd73ff614d873c688b9b0b928c5b95	gi—111144658	UniRef100_A6XHG1—Flavonoid 3'5' hydroxylase n=1 Tax=Vitis vinifera RepID=A6XHG1_VITVI partial (92%)	16.8.3.4	-0.044	0.905	-0.144	0.695	-0.438	0.238	-0.181	0.623	-1.014	0.010
da3cfa9c3b8ff907a45d01a769641022	gi—224038267	UniRef100_COKY91—Flavonoid-3',5'- hydroxylase n=1 Tax=Vitis amurensis Re- pID=C0KY91_9ROSI partial (94%)	16.8.3.4	0.099	0.686	-0.222	0.366	-0.478	0.058	-0.364	0.143	-1.051	0.000

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
f3630542c787d0376f85e8d16b887162	GSVIVT00003127001	UniRef100_Q9FTA0—weakly similar to GEM-like protein 4 n=1 Tax=Arabidopsis thaliana Re- pID=GEML4_ABATH partial (73%)	17.1.3	-0.594	0.201	-0.408	0.417	0.402	0.328	-0.132	0.772	-1.494	0.007
047a413027930dc7c0fac8e68c21a736	GSVIVT01010252001	UniRef100_Q9LYV6—similar to GEM-like pro- tein 5 n=1 Tax=Arabidopsis thaliana Re- pID=CEML5 & RATH partial (87%)	17.1.3	0.637	0.020	0.813	0.004	0.137	0.599	0.046	0.858	1.111	0.000
705cc63cb579f211c2c7fc0441b66456	GSVIVT01019126001	UniRef100_B9N158—similar to Auxin efflux car- rier component n=1 Tax=Populus trichocarpa Re- plD=R0N158 GORTE complete	17.2.2	1.712	0.004	0.669	0.317	-1.015	0.140	0.056	0.927	0.031	0.962
22b6790fd522c52fd97c5ddc78d337c3	GSVIVT01019125001	UniRef100_Q673E6—weakly similar to Auxin Ef- flux Carrier n=1 Tax=Medicago truncatula Re- pID=0673E6 MEDTR partial (21%)	17.2.2	0.468	0.247	0.532	0.190	1.198	0.006	-0.284	0.427	-0.218	0.584
c43eb6125d43223f8ced0c2259deeedd	GSVIVT01024128001	UniRef100_B9H127—similar to SAUR family protein n=1 Tax=Populus trichocarpa Re- pID=R0H127 ROPTP partial (20%)	17.2.3	-0.251	0.449	-0.318	0.339	-1.180	0.004	-0.365	0.437	0.110	0.740
${\it ff77fb0ab5b11b0aa07d601a9695f2b2}$	GSVIVT01033868001	UniRef100_B9HBY6—similar to SAUR family protein n=1 Tax=Populus trichocarpa Re-	17.2.3	-1.734	0.001	-0.451	0.331	-0.619	0.142	1.477	0.025	-0.086	0.850
ce301e8e5f5e1580019a1848a2912407	GSVIVT01014067001	UniReflorO_Q9LFS3—weakly similar to Steroid 5alpha-reductase-like protein n=1 Tax=Arabidopsis thaliana Re- plD=C0LFS2_ABATH partial (02%)	17.3.1.1.1	1.444	0.009	1.954	0.002	0.754	0.194	0.597	0.248	0.865	0.139
bf72b9aa42628907e5e5c0b829b689b5	GSVIVT01034295001	UniRef100_D0F0D2—similar to Isopentenyltrans- ferase (Fragment) n=1 Tax=Vitis vinifera Re- pID=D0F0D2 VITVI complete	17.4.1	-0.076	0.838	0.175	0.676	-1.287	0.006	-0.188	0.722	-0.697	0.196
ae 67 cc 2808 ed fe 3952 bc 0c 5a 3 ed af 2a b	GSVIVT01000687001	UniRef100_B9GGW7—similar to Gibberellin 2-oxidase n=1 Tax=Populus trichocarpa Re- pID=B9GGW7 POPTR complete	17.5.1	-0.095	0.780	0.453	0.145	-0.221	0.468	0.815	0.038	1.143	0.003
edc51b6395349defebb69c47d3759147	GSVIVT01027752001	UniRef100_Q84MB3—weakly similar to 1- aminocyclopropane-1-carboxylate oxidase homolog 1 n=1 Tax=Arabidopsis thaliana RepID=ACCH1_ARATH partial (56%)	17.5.1	-2.936	0.006	-0.472	0.578	1.176	0.111	0.809	0.413	-1.133	0.198
c8af083f6674d6f8af729bc07dffd266	GSVIVT01013920001 GSVIVT01013923001 GSVIVT01013924001 GSVIVT01013917001	UniRef100_Q40478—weakly similar to Ethylene- responsive transcription factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC partial (40%);UniRef100_A7BKD0_weakly similar to Transcription factor DcERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA partial (91%);UniRef100_A7BKD0_weakly similar to Transcription factor DcERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA partial (91%);UniRef100_Q40478_weakly similar to Ethylene-responsive transcription factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC partial (1%)	17.5.2	-1.023	0.014	-1.463	0.001	-0.515	0.192	0.402	0.358	-0.869	0.033
384a4ae52d3ff894877f9a2913f670f6	GSVIVT00016760001	UniRef100_Q9LV58—similar to Multiprotein- bridging factor 1c n=1 Tax=Arabidopsis thaliana RepID=MBF1C_ARATH complete	17.5.3	0.836	0.004	0.552	0.048	0.902	0.002	0.173	0.521	1.242	0.000
9f5c80ddf5ec0c8bb7d2b31b29eaadab	GSVIVT01017087001	UniRef100_Q45FF1—weakly similar to Pyridoxine biosynthesis protein n=1 Tax=Lotus japonicus RepID=Q45FF1_LOTJA partial (96%)	17.5.3	1.287	0.001	1.429	0.001	0.822	0.031	0.030	0.934	1.936	0.000
9fec909148aafb1c0024f67c56a6f9d6	GSVIVT01033563001	UniRef100.A9XNT2—similar to Gibberellin indu- ced protein (Fragment) n=1 Tax=Sonneratia alba RepID=A9XNT2_9MYRT partial (62%)	17.6.3	0.041	0.924	-2.153	0.002	0.262	0.543	0.512	0.403	0.298	0.644
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
58712824d28d43b000fd6d6808167d2c	GSVIVT01013386001	UniRef100_Q8LAH7—weakly similar to	17.7.1.5	-0.012	0.977	0.697	0.066	1.008	0.003	-0.436	0.235	0.625	0.070
		12-oxophytodienoate reductase 1 n=1											
		Tax=Arabidopsis thaliana RepID=OPR1_ARATH											
		partial (95%)											
32524e9b28e0b091e53d9b4c47508058	GSVIVT01003433001	UniRef100_Q6A4W9—similar to GTP cyclohy-	18.3.1	1.032	0.009	0.470	0.161	-0.493	0.187	0.238	0.471	0.302	0.362
		drolase II/3.4-dihvdroxy-2-butanone 4-phosphate											
		synthase n=1 Tax=Malus x domestica Re-											
		pID=06A4W9 MALDO complete											
9886b9d7a6720f08c6fd2efc344ac11f	GSVIVT01008862001	UniBef100 O8S7E1-2—similar to Isoform 2	19.16	0.830	0.000	0.970	0.000	0 704	0.001	0.422	0.029	1 4 1 9	0.000
000000011001201000011201001110	0511110100002001	of Chlorophyllide a oxygenase chloroplas-	10.10	0.000	0.000	0.010	0.000	0.101	0.001	0.122	0.020	1.110	0.000
		tic n=1 Tax=Oryza satiya Japonica Group											
		BenID=08S7E1-2 complete											
7fccf3a8f756aeda92844118253e121e	GSVIVT01028033001	UniBef100 P32292—weakly similar to	20	-1.201	0.004	0.111	0.774	0.135	0.726	-0.057	0.883	0.441	0.258
110010000000000000000000000000000000000	65111101020035001	Indole-3-acetic acid-induced protein ABC2	20	-1.201	0.004	0.111	0.114	0.100	0.120	-0.007	0.000	0.441	0.200
		ndole-5-acetic acid-induced protein AltG2											
		-ID-ADC2 DIAAU amalata val. Taulata Ite-											
7 L 5 - ff 9 J 6 L L 8 4 - L 1 - 0 3 9 0 4 8 J 9 0 3 L f 0	CONTRACTO 1028125001	UniD-f100 D0E726 similar to Class IV shi	20.1	1.959	0.000	0.159	0.759	0.876	0.059	0.415	0.254	0.104	0.606
75501120055846518052048086295510	G5V1V101038125001	Uninerito Bor Z20-similar to Class IV chi-	20.1	-1.208	0.009	-0.155	0.758	-0.870	0.058	0.415	0.334	-0.194	0.090
		tinase n=1 fax=vitis pseudoreticulata Re-											
	CC111110000000000000000000000000000000	pID=B0FZ26_9ROSI partial (95%)	20.4.0			0.4.00					0.005		0.040
8d147861ef058c9e45b909e673f54cc5	GSVIV101023344001	UniRef100_O23693—weakly similar to MLO-like	20.1.3	1.112	0.006	-0.169	0.688	0.147	0.742	0.066	0.825	0.354	0.243
		protein 4 n=1 Tax=Arabidopsis thaliana Re-											
		pID=MLO4_ARATH partial (83%)											
ae2b52ed7b8c19437891686667932241	no match	none	20.1.7	0.051	0.916	0.168	0.752	1.705	0.006	-0.312	0.633	-0.044	0.942
eff951d7730ef9c1dcebe9e0880ac7ce	GSVIVT01023076001	UniRef100_A5LHX5—weakly similar to Kineto-	20.1.7	-0.208	0.651	0.509	0.187	1.708	0.002	-0.307	0.376	0.000	1.000
		chore protein n=1 Tax=Olimarabidopsis pumila											
		RepID=A5LHX5_OLIPU partial (18%)											
043058976f83922964b123c84d174884	GSVIVT01031991001	UniRef100_B9GLY8—weakly similar to Cc-nbs-lrr	20.1.7	0.055	0.875	1.092	0.005	-0.093	0.766	0.354	0.266	-0.584	0.073
		resistance protein (Fragment) n=1 Tax=Populus											
		trichocarpa RepID=B9GLY8_POPTR partial											
		(91%)											
e8a8dbd630b41fb4e05ae21a024a8af4	GSVIVT01026725001	UniRef100_B9MU95—weakly similar to NBS resis-	20.1.7	0.975	0.079	0.668	0.157	1.238	0.008	-0.629	0.145	-0.437	0.346
		tance protein n=1 Tax=Populus trichocarpa Re-											
		pID=B9MU95_POPTR partial (43%)											
b459a5a7d6372f6a42331b08308dcc46	GSVIVT01025992001	UniRef100_B9N1N4-weakly similar to Tir-nbs-	20.1.7	-1.242	0.002	-0.013	0.966	-0.104	0.741	0.408	0.296	0.055	0.861
		lrr resistance protein n=1 Tax=Populus tricho-											
		carpa RepID=B9N1N4_POPTR partial (23%)											
fe6ee41ac54a5106aaaf2f93e2b108f0	GSVIVT00018357001	UniRef100_D1MIX5-similar to Small heat shock	20.2.1	1.225	0.005	1.266	0.004	0.092	0.819	-0.262	0.515	2.317	0.000
		protein 17.1 kDa n=1 Tax=Vitis vinifera Re-											
		pID=D1MIX5_VITVI complete											
925cc465612c0a52f531434a7d86a6a4	GSVIVT00032232001	UniBef100_D1MIX6—similar to Small heat shock	20.2.1	2.492	0.000	1.806	0.000	2.153	0.000	1.620	0.000	2.298	0.000
		protein 17.3 kDa n=1 Tax=Vitis vinifera Be-											
		pID=D1MIX6_VITVI partial (85%)											
d2cd51b559e2646ca6d09ce33d08f5cf	GSVIVT00024197001	UniBef100 O82012—weakly similar to 17.6 kDa	20.2.1	1 244	0.004	1 903	0.000	1 988	0.000	0.481	0.229	1.011	0.016
4204010000020100400000000000000	05111100021101001	class I heat shock protein n=1 Tax=Solanum per-	20.2.1	1.2.1.1	0.001	1.000	0.000	1.000	0.000	0.101	0.220	1.011	0.010
		uvianum BenID-HSP12 SOLPE complete											
f756dc78215b5f7f7f4bf2b0778514b1	GSVIVT00031948001	UniBef100 P30236—weakly similar to 22.0 kDa	20.2.1	1 827	0.000	2.016	0.000	2 / 97	0.000	1 934	0.000	2 478	0.000
1100dc1021000111140120011001401	65717100031340001	alass IV hast shock protein p=1 Tax=Clusing max	20.2.1	1.021	0.000	2.010	0.000	2.407	0.000	1.554	0.000	2.470	0.000
		DID-UCD41 COVDN											
- 838010-69477ft1-34006-840344-01	-: 147050407	HeiD=f100 O84TX2 meable similar to SCAD like	20.2.1	1 159	0.001	0.020	0.008	0.450	0.084	0.227	0.471	0.255	0.174
a02021060241112183d90068d93ddc0D	g1-14/00248/	Unirei100_Q641A2—weakly similar to SCAR-like	20.2.1	-1.153	0.001	-0.030	0.908	0.459	0.084	-0.227	0.471	-0.355	0.174
		protein 1 n=3 1ax=Oryza sativa Japonica Group											
	COMUNITION 005 400000	Repid=SURLI_URISJ partial (3%)	00.0.1	1 510	0.000	1.000	0.000	0.050	0.000	0.045	0.016	0.403	0.000
21de18263658c8d06789019543185165	GSVIV101035433001	Unikeriuu_DIMIX6—weakly similar to Small	20.2.1	1.713	0.000	1.826	0.000	2.352	0.000	0.845	0.018	2.406	0.000
		heat shock protein 17.3 kDa n=1 Tax=Vitis vi-											
		nifera RepID=D1MIX6_VITVI partial (82%)											
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
80ef02401cfb235240d58e43e0b91913	GSVIVT01035435001;	UniRef100_D1MIX6—similar to Small heat	20.2.1	2.541	0.000	2.106	0.000	2.292	0.000	2.437	0.000	3.044	0.000
	GSVIVT01035434001	shock protein 17.3 kDa n=1 Tax=Vitis											
		vinifera RepID=D1MIX6_VITVI com-											
		plete;UniRef100_D1MIX7—similar to Small											
		heat shock protein 17.4 kDa n=1 Tax=Vitis											
		vinifera RepID=D1MIX7_VITVI partial (85%)											
b2eea8391ee54a1fd4f133079df59a6a	GSVIVT01016426001 :	UniRef100_D1MIX5—homologue to Small	20.2.1	3.095	0.000	2.622	0.000	3.642	0.000	2.055	0.025	4.177	0.000
	GSVIVT01016429001	heat shock protein 17.1 kDa n=1 Tax=Vitis											
		vinifera RepID=D1MIX5_VITVI partial											
		(12%):UniBef100_D1MIX5—similar to Small											
		heat shock protein 17.1 kDa n=1 Tax=Vitis											
		vinifera RepID=D1MIX5 VITVI complete											
df7d3cac6e8a01d754844eb0da8d3542	GSVIVT01016426001 ·	UniBef100 D1MIX5—homologue to Small	20.2.1	3 150	0.000	2 348	0.000	3 971	0.000	2 212	0.001	3 784	0.000
411406466664614161611656446466612	GSVIVT01016429001	heat shock protein 17.1 kDa n=1 Tax=Vitis	20.2.1	0.100	0.000	2.010	0.000	0.071	0.000	2.2.2	0.001	0.101	0.000
	00111101010120001	vinifera BenID-D1MIX5 VITVI partial											
		(12%) UniBef100 D1MIX5—similar to Small											
		heat shock protein 17.1 kDa n=1 Tax-Vitis											
		winifora RopID=D1MIX5 VITVI complete											
fa281dfb21802d8a081aab0560a4020d	CSVIVT01016426001	UniPef100 D1MIX5 homologue to Small	20.2.1	1 806	0.020	0 759	0.001	1 975	0.027	0.499	0.600	2.066	0.002
1a28101021802086981aa00309640300	CSVIVT01016420001	heat shock protein 17.1 kDa n=1 Tax=Vitia	20.2.1	1.890	0.020	2.700	0.001	1.875	0.037	0.488	0.000	2.900	0.002
	G3 V1 V 101010429001	vinifora RopID=D1MIX5 VITVI partial											
		(19%) UpiRef100 D1MIX5_cimilar_to_Small											
		heat shock protein 17.1 kDa n=1 Tax=Vitia											
		meat shock protein 17.1 kDa n=1 1ax=vitis											
L-220 J-f81-F-f4164F JEF-E7218fL	CCVIVT01016496001	UniDef100 D1MIX5_barrelerve to Small bast	20.2.1	1 620	0.006	1 507	0.001	2 208	0.000	0.125	0.000	9.794	0.000
De320da181e5e141645ead55e5/3181D	GSVIV101016426001	UniRef100_DIMIX5-nomologue to Small heat	20.2.1	1.639	0.006	1.507	0.001	3.308	0.000	2.135	0.000	2.724	0.000
		Shock protein 17.1 kDa n=1 lax=vitis vinifera											
SEACAERD D. C. 200 BOOK 15001 OF	GGMMW01010419001	RepiD=DIMIX5_VIIVI partial (12%)	00.0.1	0.007	0.005	1 500	0.000	0.004	0.000	1.051	0.000	0.000	0.000
f5464533c2ce6ea880c308ffa1793b85	GSVIV101016413001	UniRef100_A4ZF46—weakly similar to Cha-	20.2.1	0.667	0.335	1.730	0.002	2.684	0.000	1.371	0.009	2.393	0.000
		perone n=1 lax=Agave tequilana Re-											
	C.C	pID=A4ZF46_AGATE partial (81%)	22.2.4	1 001	0.04.0	1 0 0 1		4 000		4 800	0.004		
8173906c523da8308993fafdde63461d	GSVIV101023134001	UniRef100_A4ZX74—weakly similar to Small heat	20.2.1	1.201	0.016	1.361	0.007	1.386	0.006	1.788	0.001	2.142	0.000
		shock protein n=1 Tax=Cyclamen persicum Re-											
	~~~~	pID=A4ZX74_9ERIC partial (95%)											
1b565a3f39985dbc00f688eeeb84a4e7	GSVIVT01016572001	UniRef100_B0M1A7—weakly similar to Peroxiso-	20.2.1	2.217	0.000	1.942	0.000	2.643	0.000	2.054	0.000	2.696	0.000
		mal small heat shock protein $n=1$ Tax=Glycine											
		max RepID=B0M1A7_SOYBN partial (79%)											
05b80c922fb1bd9e5cd6921b673d9f7b	GSVIVT01001315001	UniRef100_B7ZEP6—weakly similar to Small	20.2.1	1.446	0.008	1.811	0.001	0.517	0.309	-0.076	0.880	2.757	0.000
		heat-shock protein n=1 Tax=Chenopodium ru-											
		brum RepID=B7ZEP6_CHERU partial (90%)											
c4bf145610f44d74ac8f0fdca8730738	GSVIVT01001316001	UniRef100_B7ZEP6—weakly similar to Small	20.2.1	0.081	0.905	1.012	0.107	0.052	0.939	-0.139	0.839	2.397	0.002
		heat-shock protein n=1 Tax=Chenopodium ru-											
		brum RepID=B7ZEP6_CHERU partial (92%)											
db23b4f4d3af84d9ef95e37e86efe296	GSVIVT01000923001	UniRef100_D1MIX4— Bcl-2-associated	20.2.1	0.995	0.082	1.922	0.002	1.033	0.072	0.519	0.354	2.361	0.000
		athanogene-like protein n=1 Tax=Vitis vini-											
		fera RepID=D1MIX4_VITVI partial (21%)											
101384849f4d1d28812dbecbcf6d217a	GSVIVT01016429001	UniRef100_D1MIX5—similar to Small heat shock	20.2.1	2.006	0.000	1.972	0.000	1.409	0.003	0.148	0.733	3.004	0.000
		protein 17.1 kDa n=1 Tax=Vitis vinifera Re-											
		pID=D1MIX5_VITVI complete											
1d1bb0d13442654abca44eea3e5f7b46	GSVIVT01016429001	UniRef100_D1MIX5—similar to Small heat shock	20.2.1	3.087	0.001	2.441	0.000	0.712	0.330	-0.211	0.811	3.631	0.000
		protein 17.1 kDa n=1 Tax=Vitis vinifera Re-											
		pID=D1MIX5_VITVI complete											
567afc31017ed1dc3f5ffc184e40f921	GSVIVT01016428001	UniBef100 D1MIX5—weakly similar to Small	20.2.1	2.087	0.000	1.689	0.000	3.440	0.000	2.742	0.000	2.720	0.000
	22.2.2.51010120001	heat shock protein 17.1 kDa $n=1$ Tax=Vitis vi-		2.001	0.000	2.000	0.000	5.110	0.000		5.500	2.120	2.000
		nifera BepID=D1MIX5 VITVI complete											
		inter a copie a contract of the complete											suite
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
4a2f3233063637e4fb2c42eed8fa4859	GSVIVT01035428001	UniRef100_D1MIX6—homologue to Small heat	20.2.1	1.919	0.004	2.288	0.012	1.677	0.019	1.097	0.109	3.357	0.000
		shock protein 17.3 kDa $n=1$ Tax=Vitis vinifera											
		RepID=D1MIX6_VITVI partial (54%)											
2cf9ff0ce598d262a868b6a9fe247410	GSVIVT01035435001	UniRef100_D1MIX6—similar to Small heat shock	20.2.1	1.606	0.001	1.509	0.002	2.259	0.000	1.570	0.002	1.986	0.000
		protein 17.3 kDa n=1 Tax=Vitis vinifera Re-											
		pID=D1MIX6_VITVI complete											
c40f421ae6301676a7b701fbc1277585	GSVIVT01035436001	UniRef100_D1MIX6—similar to Small heat shock	20.2.1	2.526	0.000	2.019	0.000	3.150	0.000	1.957	0.001	3.407	0.000
		protein 17.3 kDa n=1 Tax=Vitis vinifera Re-											
		pID=D1MIX6_VITVI partial (74%)											
7b359a523eeefc5eaa174c0d850498be	GSVIVT01027028001	UniRef100_O65373—weakly similar to	20.2.1	2.024	0.000	1.680	0.001	2.021	0.000	1.971	0.000	2.077	0.000
		F12F1.7 n=1 Tax=Arabidopsis thaliana Re-											
		pID=O65373_ARATH partial (51%)											
f895d76fd1484e7faa65afcdfd25089c	GSVIVT01038631001	UniRef100_O81961—weakly similar to Heat shock	20.2.1	1.038	0.114	2.927	0.000	0.856	0.238	0.510	0.428	2.056	0.003
		protein 26 (Type I) n=1 Tax=Nicotiana tabacum											
		RepID=O81961_TOBAC partial (96%)											
745a4156a9d84ff78b4fdc1f12900ba5	GSVIVT01030320001	UniRef100_P02519-weakly similar to 17.3 kDa	20.2.1	1.209	0.022	1.703	0.002	0.254	0.729	0.325	0.589	2.185	0.001
		class I heat shock protein n=2 Tax=Glycine max											
		RepID=HSP11_SOYBN partial (93%)											
01879754bc04e9c45c39841371f1d277	GSVIVT01023641001	UniRef100_P26413—weakly similar to Heat shock	20.2.1	0.802	0.047	1.038	0.001	0.940	0.002	0.111	0.684	1.255	0.000
		70 kDa protein n=1 Tax=Glycine max Re-											
		pID=HSP70_SOYBN partial (55%)											
1f45db65ec0781999baf908ddce1c3be	GSVIVT01028856001	UniRef100_P51819-weakly similar to Heat	20.2.1	2.273	0.000	1.947	0.000	2.030	0.000	0.016	0.969	2.941	0.000
		shock protein 83 n=1 Tax=Ipomoea nil Re-											
		pID=HSP83_IPONI complete											
0143143d6598acb344ba50986a998b60	GSVIVT01027380001	UniRef100_Q10KJ6—weakly similar to Expressed	20.2.1	1.128	0.001	0.632	0.045	1.528	0.000	0.552	0.077	1.208	0.000
		protein n=1 Tax=Oryza sativa Japonica Group											
		RepID=Q10KJ6_ORYSJ partial (54%)											
9ab04b6b4a88c7d8e6a6fc40fac1c6f2	GSVIVT01029304001	UniRef100_Q2HVH7-weakly similar to ATP bin-	20.2.1	0.523	0.243	0.240	0.544	-0.374	0.348	-0.483	0.417	1.387	0.005
		ding , related n=1 Tax=Medicago truncatula Re-											
		pID=Q2HVH7_MEDTR complete											
0c1e248ec06ebcd01c3a52bdc9acc61d	GSVIVT01007880001	UniRef100_Q3L1D0—similar to Heat shock	20.2.1	1.367	0.007	1.202	0.016	2.246	0.000	0.174	0.710	1.827	0.001
		protein 101 n=1 Tax=Vitis vinifera Re-											
		pID=Q3L1D0_VITVI complete											
14d03ea5c877699f4b5c57f266f8a11e	GSVIVT01014779001	UniRef100_Q3L1D0-weakly similar to Heat	20.2.1	-0.528	0.349	-0.030	0.963	0.474	0.399	0.339	0.507	-1.759	0.006
		shock protein 101 n=1 Tax=Vitis vinifera											
		RepID=Q3L1D0_VITVI partial (7%)											
f4e2a116696b88426d9fd432efb91b1a	GSVIVT01031125001	UniRef100_Q40924—similar to Luminal binding	20.2.1	1.814	0.005	2.227	0.001	0.960	0.113	0.314	0.596	1.287	0.037
		protein n=1 Tax=Pseudotsuga menziesii Re-											
		pID=Q40924_PSEMZ partial (94%)											
59464c66b55f6799ae05776ab361bec6	GSVIVT01035429001	UniRef100_Q5VRY1-2-weakly similar to Iso-	20.2.1	2.374	0.000	2.190	0.000	2.317	0.000	2.930	0.000	2.846	0.000
		form 2 of 18.0 kDa class II heat shock pro-											
		tein n=1 Tax=Oryza sativa Japonica Group											
		RepID=Q5VRY1-2 partial (83%)											
6ed048e10ed7f45b49259f84b611c1c3	GSVIVT01016398001	UniRef100_Q6WHC0-weakly similar to	20.2.1	2.408	0.000	2.385	0.000	2.818	0.000	1.693	0.002	2.931	0.000
		Chloroplast small heat shock protein											
		class I n=1 Tax=Capsicum frutescens Re-											
		pID=Q6WHC0_CAPFR partial (72%)											
19e33417cd51fcae2a0b973a35be3002	GSVIVT01033476001	UniRef100_Q6YUA7-similar to Os08g0464000	20.2.1	1.009	0.000	0.802	0.002	0.630	0.010	-0.083	0.716	1.226	0.000
		protein n=1 Tax=Oryza sativa Japonica Group											
		RepID=Q6YUA7_ORYSJ partial (65%)											
87fe45557fbdd75570688f0d1e6520f8	GSVIVT01010308001	UniRef100_Q8L7T2—weakly similar to Small heat	20.2.1	2.093	0.001	1.992	0.001	2.340	0.000	0.880	0.107	3.137	0.000
		shock protein n=1 Tax=Solanum lycopersicum											
		RepID=Q8L7T2_SOLLC partial (82%)											
		/											

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
c0794ec64a031c2ff0d7372889839d02	GSVIVT01016697001	UniRef100_Q94EN7—weakly similar to Small heat	20.2.1	1.089	0.044	1.239	0.024	1.263	0.021	0.318	0.541	2.362	0.000
		stress protein class CIII n=1 Tax=Solanum per-											
		uvianum RepID=Q94EN7_SOLPE partial (74%)											
a813561ef161d0c02377dba2d5e26d3c	GSVIVT01018654001	UniRef100_Q96331—weakly similar to	20.2.1	1.289	0.004	1.229	0.006	1.792	0.000	0.324	0.438	1.489	0.001
		23.6 kDa heat shock protein, mitochon-											
		drial n=2 Tax=Arabidopsis thaliana Re-											
		pID=HS23M_ARATH partial (64%)											
0183954fac66147275c6ffe0d6e78adf	GSVIVT01016403001	UniRef100_Q9LPG9—weakly similar to T3F20.15	20.2.1	1.117	0.067	1.857	0.004	0.182	0.757	1.743	0.045	3.114	0.000
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9LPG9_ARATH partial (36%)											
26c49cd6bb6638bee3038b623748c9de	GSVIVT01016396001	UniRef100_Q9LPG9-weakly similar to T3F20.15	20.2.1	1.060	0.007	0.946	0.015	0.452	0.221	-0.088	0.808	1.138	0.004
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9LPG9_ARATH partial (39%)											
f8ae1825f5ba5c5c1e2844248da3aaf9	GSVIVT01036049001	UniRef100_Q9ZWK3—similar to DnaJ homolog	20.2.1	1.254	0.002	1.571	0.000	1.303	0.002	0.188	0.610	2.045	0.000
		n=1 Tax=Salix gilgiana RepID=Q9ZWK3_SALGI											
		complete											
76647f20198c5e11ab25dc62e08e2f24	GSVIVT01030056001	UniRef100_UPI00015057C8—similar to ATP	20.2.1	0.971	0.001	0.770	0.005	0.085	0.737	-0.162	0.525	1.166	0.000
		binding n=1 Tax=Arabidopsis thaliana Re-											
		pID=UPI00015057C8 partial (97%)											
e6102adf4e5927df4fa26a3fd9b99e03	GSVIVT01019407001	UniRef100_UPI0001B7A4F0-weakly similar to	20.2.1	2.011	0.000	1.950	0.000	0.688	0.155	-0.106	0.822	2.919	0.000
		UPI0001B7A4F0 related cluster n=1 Tax=Rattus											
		norvegicus RepID=UPI0001B7A4F0 partial (48%)											
045dba0ebbc6e6e4ba997bd3707815c1	GSVIVT00016457001	UniRef100_A8QK92-Germin-like protein 6 n=1	20.2.99	0.341	0.311	1.126	0.003	-0.247	0.460	-0.212	0.478	0.516	0.131
		Tax=Vitis vinifera RepID=A8QK92_VITVI com-											
		plete											
3ce5b0c1ef895deae2409b4f0f72b698	GSVIVT01008662001	UniRef100_Q2R3B6—weakly similar to	21.1	-1.846	0.005	-0.135	0.747	-0.105	0.867	0.020	0.965	-0.708	0.102
		Os11g0528500 protein n=2 Tax=Orvza sativa											
		RepID=Q2R3B6_ORYSJ partial (63%)											
a94d1e57679c23fd8ea1879cc16d86ba	GSVIVT01008185001	UniRef100_Q8GWW7—similar to Agmatine	22.1.4	-0.152	0.700	-0.046	0.897	-1.225	0.002	-0.344	0.335	-0.076	0.830
		deiminase n=1 Tax=Arabidopsis thaliana Re-											
		pID=AGUA_ARATH partial (97%)											
1e915f1f619bafabb964baa4ed44879b	GSVIVT01005836001	UniRef100_Q0DWN3—weakly similar to	23.2	-0.614	0.230	2.148	0.000	0.276	0.582	-0.296	0.590	-0.006	0.993
		Os02g0805500 protein (Fragment) n=1											
		Tax=Orvza sativa Japonica Group Re-											
		pID=Q0DWN3_ORYSJ partial (80%)											
6466dfd8157a2484cf17e07154ca6b18	GSVIVT01010166001	UniRef100_Q6YV21—similar to Os02g0708200	23.3.2.2	0.229	0.509	0.634	0.077	-0.619	0.056	0.375	0.284	1.203	0.002
		protein n=2 Tax=Oryza sativa Japonica Group											
		RepID=Q6YV21_ORYSJ partial (94%)											
4fd5ccb0dc6171e69a39370cbc29ad83	GSVIVT01024279001	UniBef100_B9H566—weakly similar to Cyto-	26.10	-0.081	0.823	0.318	0.386	0.333	0.255	1.169	0.008	-0.186	0.555
		chrome P450 n=1 Tax=Populus trichocarpa											
		RepID=B9H566_POPTR partial (40%)											
b3339cf5c96461f91e77682b54b9bf3d	GSVIVT01032365001	UniBef100_O6F4F5—weakly similar to Cyto-	26.10	-1.153	0.005	0.135	0.688	-0.057	0.865	0.000	0.999	-0.327	0.335
		chrome P450 724B1 n=4 Tax=Oryza sativa Be-			0.000	0.200	0.000	0.001	0.000		0.000	0.021	0.000
		pID=C724B OBYSI partial (91%)											
3f0142d1348ee72c7155e4f12dc7431c	GSVIVT01027307001	UniBef100 A9PEK4—similar to Cinnamovl CoA	26.11	0.372	0.402	0.123	0.755	1 230	0.004	-0.071	0.856	-0.278	0.483
010112010100012011000011120011010	05111101021001001	reductase-like protein n=1 Tax=Populus tricho-	20.11	0.012	0.102	0.120	0.100	1.200	0.001	0.071	0.000	0.210	0.100
		carpa BepID=A9PFK4 POPTB complete											
e04e5cea06e6ec8509fb7a04673d3581	GSVIVT01016881001	UniBef100 O9FZ62—similar to F11A6.5 pro-	26.13	0.603	0 174	0.765	0.125	-0.038	0.931	0.115	0 791	1.570	0.001
010000000000000000000000000000000000000	001111010100001001	tein n=1 Tax=Arabidoneis thaliana Be-	20.10	0.000	0.111	0.100	0.120	0.000	0.001	0.110	0.101	1.010	0.001
		pID=09FZ62 ABATH partial (83%)											
d4acd7b079b36749459ba8aca99244a0	GSVIVT00029885001	UniBef100 C7C5S8—weakly similar to PME in-	26.18	-0.492	0.026	-0.563	0.012	-1.037	0.000	-0.879	0.000	-1 238	0.000
41404.50155501454055454645524440	C.S. 7 1 7 1 000 2 3 0 8 0 0 0 1	hibitor n=1 Tax=Nicotiana benthamiana Re-	20.10	-0.432	0.020	-0.000	0.012	-1.007	0.000	-0.019	0.000	.1.200	0.000
		pID=C7C5S8 NICBE partial (95%)											
		pib=0(00001(0bb pattial (90%)											quito
													suite

D I ID	C'11	IABLEA.4	suite D'	10	37.1		37.1		37.1		37.1	.1.4	37.1
Probe ID	Cible	Annotation	Bin	1 204	pval	1 070	p vai	14	pvai	j/	pvai 0.150	1 4 6 9	p vai
edb3539104ae24c31101771019997e85	GSVIV101016417001	Unikeriou_Coki45—weakly similar to UDP-	20.2	1.304	0.077	1.370	0.039	2.093	0.003	0.916	0.159	1.408	0.029
		Tax-Citrus sinensis BenID-C6KI45 CITSI											
		partial (74%)											
6105eafa7bf371abe008c6d3c8524a9b	GSVIVT01027064001	UniBef100 O9AB73—weakly similar to Hydroqui-	26.2	1.019	0.003	1 243	0.000	0.816	0.014	0.429	0.177	1 319	0.000
0100024435	65717101027004001	none glucosyltransferase n=1 Tax=Bauvolfia ser-	20.2	1.015	0.005	1.240	0.000	0.010	0.014	0.425	0.177	1.015	0.000
		pentina RepID=HQGT_RAUSE complete											
e1bf57197471520e78793719ee05116d	GSVIVT01006044001 :	UniRef100_Q589Y2—weakly similar to Gly-	26.2	2.001	0.008	-0.491	0.507	0.496	0.463	-0.824	0.229	1.348	0.147
	GSVIVT01006626001;	cosvltransferase n=1 Tax=Nicotiana ta-											
	GSVIVT01004328001	bacum RepID=Q589Y2_TOBAC partial											
		(82%);UniRef100_B6EWX9—weakly simi-											
		lar to Glycosyltransferase n=1 Tax=Lycium											
		barbarum RepID=B6EWX9_LYCBA com-											
		plete;UniRef100_Q589Y2—weakly similar to											
		Glycosyltransferase $n=1$ Tax=Nicotiana tabacum											
		RepID=Q589Y2_TOBAC partial (83%)											
d40868b6a1bd48bb58f440dd4e58e908	GSVIVT01019767001	UniRef100_Q9SH31—weakly similar to	26.2	0.086	0.828	1.040	0.007	0.589	0.105	-0.429	0.231	0.179	0.612
		F2K11.17 n=1 Tax=Arabidopsis thaliana Re-											
C 0005055 0100 50101 0004111 10 0	EG ((1110554))	pID=Q9SH31_ARATH partial (91%)	00.00	0.110	0.011	1.004	0.005	0.117	0.010	0.050	0.407	0.051	0.000
6a9307057a2122c56d91e2234b1bd8a2	EG.scatfold_137.74_1	UniRef100_Q42407—weakly similar to STAI-	26.22	0.118	0.811	1.364	0.005	0.117	0.813	-0.353	0.427	0.051	0.908
		18  n=1 $1ax=511ene$ latitolia subsp. alba Re-											
61ad2baf702afd887f02666a470aaa25	CSVIVT01024621001	UniPof100 OOSCUO similar to Short	26.22	1.061	0.005	0 779	0.012	0.740	0.010	0.268	0.251	0.206	0.257
01ad2ba1192a1d8811030000419aae33	G5 VIV 101024021001	chain alcohol debudrogenase-like pro-	20.22	-1.001	0.005	0.112	0.013	0.740	0.010	0.308	0.331	0.290	0.357
		tein $n-1$ Tax-Arabidopsis thaliana Be-											
		pID=09SCU0 ABATH partial (44%)											
dd98e85eff618427680d19d0066bd959	GSVIVT01037673001	UniBef100_B6SBX6—weakly similar to Anther-	26.28	-1.306	0.071	0.072	0.897	0.770	0.243	1.504	0.032	-1.521	0.009
		specific proline-rich protein APG n=1 Tax=Zea											
		mays RepID=B6SRX6_MAIZE partial (91%)											
6954e131807d0a3f3899e6756bdbf2b3	GSVIVT01021182001	UniRef100_Q6NMR9-weakly similar to GDSL es-	26.28	0.240	0.395	-0.099	0.725	-1.082	0.001	-0.064	0.820	0.052	0.868
		terase/lipase At5g45920 n=1 Tax=Arabidopsis											
		thaliana RepID=GDL84_ARATH complete											
cefd978f4cb39edc1898ceca03351eb4	GSVIVT01016689001	UniRef100_Q9SYF0—weakly similar to GDSL es-	26.28	-2.400	0.007	-1.352	0.142	0.567	0.523	0.485	0.605	0.047	0.960
		terase/lipase 2 n=1 Tax=Arabidopsis thaliana											
		RepID=GLIP2_ARATH partial (90%)											
de83bb12559343f736b467647867a3ab	GSVIVT01009881001	UniRef100_A0ZNJ8—similar to Cellulase2 n=1	26.3	0.595	0.106	-0.372	0.356	-1.056	0.007	-0.067	0.852	-0.236	0.556
		Tax=Pyrus communis RepID=A0ZNJ8_PYRCO											
	GG1414701010017001	partial (97%)	00.0	0.050	0.000	1 1 4 0	0.007	0.004	0.000	0.050	0.004	0.055	0.050
e688b17c609beb68e26e3252609a9385	GSVIV101018617001	UniRef100_Q5K6L0—weakly similar to Endo-1,4-	26.3	-0.850	0.082	1.146	0.007	0.664	0.069	0.058	0.894	-0.055	0.859
		Deta-glucanase isoform US n=1 lax=Fragaria x											
60b8d1714f8aafa0088a8f58016fadd4	CSVIVT01022528001	UniPof100 O0M2U4 homologue to Pota	26.4	0.008	0 0 8 8	2 6 2 1	0.002	0.466	0.420	0.608	0.200	1 726	0.025
09080171418461499886813801014004	65 11 101033338001	1-3 glucanase n=1 Tax=Vitis vinifera Be-	20.4	-0.008	0.588	-2.021	0.002	-0.400	0.420	-0.058	0.255	-1.730	0.025
		pID=09M3U4 VITVI partial (63%)											
d51612e23d3cf07746610a5588b694cf	GSVIVT01027123001	UniBef100 O9LVA8—weakly similar to	26.6	0.234	0.537	0.357	0.391	0.365	0.338	-0.039	0.935	-1 233	0.008
1010120204001011100104000000000401		Gb-AAB82627.1 n=1 Tax=Arabidopsis tha-	20.0	0.204	0.001	0.001	0.001	0.000	0.000	0.000	0.000	1.200	0.000
		liana RepID=Q9LVA8_ARATH complete											
2dd020deb9581873a170c108eace84b2	multiple mappings	none	26.7	-0.298	0.521	0.175	0.705	-1.484	0.008	-0.183	0.718	0.504	0.282
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
430afaa202d215a7663f0a58895cac00	GSVIVT01022699001; GSVIVT01022702001;	UniRef100_B9MYU3—similar to Ni- trilase 1 n=1 Tax=Populus tricho-	26.8	1.770	0.008	0.105	0.848	-1.677	0.005	0.942	0.133	0.299	0.586
	GSVIVT01022719001;	carpa RepID=B9MYU3_POPTR partial											
	GSVIVT01022690001;	(88%);UniRef100_Q3LRV4—similar to Ni-											
	GSVIVT01022712001	trilase 4B n=1 Tax=Lupinus angusti-											
		folius RepID=Q3LRV4_LUPAN partial											
		(92%);UniRef100_Q3LRV4—weakly simi-											
		lar to Nitrilase 4B n=1 Tax=Lupinus an-											
		gustifolius RepID=Q3LRV4_LUPAN partial											
		(29%);UniRef100_Q3LRV4—weakly simi-											
		gustifolius BenID=O3LBV4 LUPAN partial											
		(86%):UniBef100 B9MYU3—similar to Ni-											
		trilase 1 n=1 Tax=Populus trichocarpa Be-											
		pID=B9MYU3_POPTR partial (88%)											
f4ff2942e46ac456347ff320f9b85f06	GSVIVT01010650001	UniRef100_Q94KD2—weakly similar to	26.8	-0.625	0.086	1.215	0.002	1.479	0.010	-0.455	0.285	-0.515	0.295
		AT5g51950/MSG15_3 n=2 Tax=Arabidopsis											
		thaliana RepID=Q94KD2_ARATH partial (96%)											
010636d123acdee973d356a23f107a94	GSVIVT01021720001	UniRef100_Q9FKU8—weakly similar to Berberine	26.8	1.504	0.000	1.389	0.000	1.310	0.000	1.089	0.000	1.194	0.000
		bridge enzyme n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9FKU8_ARATH complete											
50da66c979ee676bf0be685f140a6492	GSVIVT01003766001	UniRef100_Q0IZR0—weakly similar to	27.1	2.219	0.001	0.649	0.225	0.008	0.988	0.177	0.707	-0.053	0.919
		Os09g0555400 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q0IZR0_ORYSJ											
82042147720bd4ba708865aa0af2a460	CSVIVT01024722001	UniPof100 ReTU64 workly similar to ATP	2712	0 722	0.250	2 872	0.007	0.746	0.240	0.278	0.766	0.107	0.877
83043147720004007088036a00126400	G3VIV101034722001	dependent $BNA$ belicase $n-1$ Tax-Zea mays	21.1.2	0.722	0.330	2.012	0.007	0.740	0.240	-0.278	0.700	-0.107	0.877
		BepID=B6TU64 MAIZE partial (62%)											
da29f0c0958096337ed6934f90337dd7	GSVIVT01023162001	UniRef100_Q9SQV1—weakly similar to DEAD-	27.1.2	-1.401	0.009	0.275	0.538	0.347	0.438	-0.233	0.711	-0.685	0.133
		box ATP-dependent RNA helicase 40 n=1											
		Tax=Arabidopsis thaliana RepID=RH40_ARATH											
		partial (5%)											
3027e69ac3d58bc92bbd40a0d159dcf8	GSVIVT01036255001	UniRef100_UPI0000163212—weakly similar to	27.3	-2.037	0.001	0.056	0.891	0.089	0.828	-0.163	0.720	-0.150	0.795
		pentatricopeptide (PPR) repeat-containing											
		protein n=1 Tax=Arabidopsis thaliana Re-											
	GGVIN/001000000001	pID=UP10000163212 complete	07.0.11	0.007	0.100	0.450	0.000	0.000	0 101	0.955	0.000	1 505	0.001
08030/1554a4c15086/8066f6/05deb4	GSVIV101009680001	Unikeriou_Q9LVQ7—similar to Zinc iinger	27.3.11	0.287	0.498	0.456	0.233	-0.299	0.431	0.377	0.322	1.505	0.001
		$pID = OQLVO7 \ AB \ ATH \ partial (42\%)$											
e8df006b46fab669239c938da80f9285	GSVIVT01034409001 ·	UniBef100 O9FNZ2—weakly similar to	27 3 12	-0.012	0.980	-1 576	0.005	0.575	0.242	-0.090	0.893	-0.430	0 441
000000000000000000000000000000000000000	GSVIVT01034397001	Zinc finger CCCH domain-containing	21.0.12	0.012	0.000	1.010	0.000	0.010	0.212	0.000	0.000	0.100	0.111
		protein 48 n=1 Tax=Arabidopsis tha-											
		liana RepID=C3H48_ARATH partial											
		(97%);UniRef100_Q9FNZ2—weakly similar											
		to Zinc finger CCCH domain-containing pro-											
		tein 48 n=1 Tax=Arabidopsis thaliana Re-											
		pID=C3H48_ARATH partial (97%)											
32ac729d1914ae79eaa9e27643bee569	GSVIVT01033381001	UniRef100_Q10M30—weakly similar to	27.3.20	-0.018	0.954	0.104	0.760	-0.618	0.081	0.367	0.424	-1.023	0.007
		Os03g0325500 protein n=1 Tax=Oryza sa-											
		applete Group RepiD=Q10M30_ORYSJ											
ff13354068703ad3550b5a3f5ad0ac21	GSVIVT01033744001	UniBef100 O1SN34_weaklysimilarto	27 3 22	0.845	0.105	1 162	0.049	0.445	0.383	-0.277	0.586	1 448	0.008
111000100000000000000000000000000000000	35,17101030144001	Homeodomain-related n=1 Tax=Medicago	21.0.22	0.040	0.100	1.102	0.043	0.440	0.000	-0.217	0.000	1.440	0.000
		truncatula RepID=Q1SN34_MEDTR complete											
		··· · · · · · · · · · · · · · · · · ·											

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
a1a6daf7bef0fd319f0c4a9ba660c8ec	GSVIVT01017010001	UniRef100_Q9ZU11—similar to Homeobox- leucine zipper protein ATHB-15 n=2 Tax=Arabidopsis thaliana Re-	27.3.22	0.283	0.604	0.278	0.610	0.055	0.914	2.282	0.001	-0.002	0.998
e5d4c238479073ead08b2c99e522d527	GSVIVT01035385001	pID=ATB15_ARATH complete UniRef100_P41152—weakly similar to Heat shock factor protein HSF30 n=1 Tax=Solanum peruvia- num RepID=HSF30 SOLPE partial (85%)	27.3.23	0.527	0.038	0.329	0.183	-0.119	0.625	-0.450	0.073	1.092	0.000
05a013e12c79fe940c5089fd61f0faf9	GSVIVT01033781001	UniRef100_Q9LLF2—weakly similar to Heat stress transcription factor A3 n=1 Tax=Solanum peruvianum RepID=C9LLF2-SOLPE complete	27.3.23	0.464	0.133	0.746	0.019	-0.081	0.788	0.086	0.776	1.753	0.000
f4eaf1d005044a3bafb92c51cfeff5e4	GSVIVT01010595001	UniRef100_Q9SCW4—weakly similar to Heat stress transcription factor B- 2a n=2 Tax=Arabidopsis thaliana Re- pID=HFB2A_ARATH partial (86%)	27.3.23	0.535	0.194	0.758	0.071	-0.294	0.471	-0.375	0.359	1.292	0.004
9f635c81609a3c4c032af94317ce716d	GSVIVT01025945001	UniRef100_Q8LLQ9—homologue to MADS- box protein 5 n=1 Tax=Vitis vinifera Re- pID=Q8LLQ9_VITVI complete	27.3.24	-0.626	0.152	-0.115	0.766	-0.106	0.760	1.450	0.001	0.067	0.891
104d26cfee4db1e2f03bd213d886e01e	GSVIVT01035231001	UniRef100_Q0PJH7—weakly similar to MYB transcription factor MYB177 n=1 Tax=Glycine max RepID=Q0PJH7_SOYBN complete	27.3.25	0.465	0.138	1.246	0.000	1.197	0.002	0.050	0.884	-0.020	0.949
8eee6f646a72c0aa09959f7ee06abc5e	GSVIVT01028328001	UniRef100_A8VPW3—similar to R2R3 Myb14 transcription factor n=1 Tax=Vitis vinifera Re- pID=A8VPW3_VITVI complete	27.3.25	-0.004	0.995	1.674	0.008	0.560	0.325	-0.627	0.182	0.292	0.571
ae3cc2c39f3ccd56323d3fced1427017	GSVIVT01033792001	UniRef100_Q9LZS0—weakly similar to GT2- like protein n=1 Tax=Arabidopsis thaliana RepID=Q9LZS0_ARATH partial (94%)	27.3.30	0.482	0.415	2.756	0.000	0.326	0.613	-0.462	0.434	0.082	0.899
16bf1d4f40b673dbc4483db577c5cd2f	GSVIVT01020864001	UniRef100.C9D118—weakly similar to WRKY transcription factor 29 n=1 Tax=(Populus to- mentosa x P. bolleana) x P. tomentosa Re- p1D=C9D118_9ROSI complete	27.3.32	-1.883	0.009	0.156	0.781	0.259	0.615	0.427	0.409	-0.027	0.962
5f6b05c08b1b6486fc3a5f17474aa05a	GSVIVT01020146001	UniRef100_Q9AXD7—weakly similar to Response regulator protein n=1 Tax=Dianthus caryophyllus RepID=Q9AXD7_DIACA partial (68%)	27.3.5	0.851	0.019	0.611	0.083	0.037	0.914	0.177	0.604	1.304	0.001
0615d6101e3c06baedbadabe11b99c20	GSVIVT01009234001	UniRef100_A9YWR2—weakly similar to BHLH transcription factor n=1 Tax=Medicago trunca- tula RepID=A9YWR2_MEDTR complete	27.3.6	-0.442	0.426	0.385	0.397	1.523	0.004	-0.159	0.723	-0.635	0.172
2fa20b5b6a9759bb692845927a5afa35	GSVIVT01008723001	UniRef100_B9H5D3—weakly similar to High mo- bility group family n=2 Tax=Populus trichocarpa RepID=B9H5D3_POPTR partial (85%)	27.3.62	0.475	0.225	0.875	0.060	1.602	0.001	0.061	0.860	-0.566	0.083
e2d9758c98a58b302f0b54a625468729	GSVIVT01013453001	UniRef100_Q9SYN8—weakly similar to F9H16.2 protein n=2 Tax=Arabidopsis thaliana Re- pID=Q9SYN8_ARATH complete	27.3.63	-1.819	0.005	-0.582	0.318	0.552	0.249	-1.377	0.051	-0.336	0.561
fd3c077921ea24daac50b394cf482db9	GSVIVT01010531001	UniRef100_Q9C7F4—weakly similar to AT1G27990 protein n=1 Tax=Arabidopsis thaliana RepID=Q9C7F4_ARATH partial (85%)	27.3.67	0.009	0.980	1.253	0.012	1.024	0.007	-0.137	0.654	0.041	0.913
c750b52b379e32d6ec4fbe8a73e6c11c	GSVIVT00017670001	UniRef100_D0EP06—weakly similar to CONSTANS-like zinc finger protein n=1 Tax=Glycine max RepID=D0EP06_SOYBN complete	27.3.7	0.794	0.108	1.495	0.009	0.645	0.142	-0.505	0.297	0.852	0.086
c99e435d3d58682e144a72bb9e859451	GSVIVT01032702001	UniRef100_Q8LRD0—weakly similar to Os01g0823600 protein n=2 Tax=Oryza sativa RepID=Q8LRD0_ORYSJ complete	27.3.9	1.174	0.000	0.969	0.000	0.980	0.000	1.045	0.000	0.606	0.014
45dc2ab43ef66b50b522c9379163dfed	GSVIVT01032538001	UniRef100_B3IX35—weakly similar to Transcrip- tion factor C2H2 n=1 Tax=Lotus japonicus Re- pID=B3IX35_LOTJA partial (97%)	27.3.99	0.591	0.108	1.325	0.001	0.721	0.053	0.134	0.708	1.146	0.004
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
618891632cbc $1599$ d1cda $23$ d $75$ d $427$ d $9$	GSVIVT01009200001	UniRef100_Q93ZQ9—weakly similar to AT1G07840 protein n=1 Tax=Arabidopsis thaliana BapD=O93ZO9 ABATH partial (97%)	27.3.99	0.757	0.231	2.220	0.002	-0.390	0.530	-0.372	0.464	0.518	0.312
ce93a00dca564667226d2c88a20d5c83	GSVIVT01011135001	UniRef100_UP1001739301—similar to DNA binding / protein binding / transcription regulator n=1 Tax=Arabidopsis thaliana Re- -UD-UD001720211 ======= (5%)	27.3.99	-1.384	0.007	0.025	0.957	0.387	0.407	0.316	0.497	-0.242	0.698
a297b131bd172fc1449ef0c627bdbbdd	GSVIVT01005841001	UniRef100_A5A338—similar to Endonuclease n=1 Tax=Glycine max RepID=A5A338_SOYBN par- tial (91%)	28.1	-0.190	0.579	-0.041	0.905	-0.239	0.486	0.500	0.153	1.070	0.004
da5427697883f746712994df11068f54	GSVIVT01038245001	UniRef100_O80560-2—similar to Isoform 2 of Type I inositol-1,4,5-trisphosphate 5- phosphatase 12 n=1 Tax=Arabidopsis thaliana RepID=O80560-2 partial (73%)	28.1	2.139	0.000	0.457	0.435	0.489	0.337	-0.714	0.228	0.209	0.649
e964a7ee1d8e7c8ee9c67f5afaff9e1b	GSVIVT01007565001	UniRef100_Q5XF07—similar to At3g48425 n=1 Tax=Arabidopsis thaliana Re- pID=Q5XF07_ARATH complete	28.1	-2.183	0.005	1.170	0.072	1.246	0.058	0.351	0.605	-0.065	0.912
0d9bc6b0c860f3b2c447b301e2e6ff60	GSVIVT01006375001	UniRef100_Q66GQ6—weakly similar to At5g65090 n=1 Tax=Arabidopsis thaliana RepID=Q66GQ6_ARATH partial (97%)	28.1	0.870	0.016	0.393	0.252	1.391	0.001	-0.094	0.781	0.042	0.901
07ae8924d458937ea256fb010fb71f52	GSVIVT01008151001	UniRef100_Q6Z8Y2—weakly similar to Os02g0111900 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q6Z8Y2_ORYSJ partial (98%)	28.1	0.205	0.517	1.240	0.002	-0.223	0.482	0.217	0.540	0.415	0.246
9613bc03efc02213e472df468609b5d6	GSVIVT01028740001	UniRef100_UPI0000162761—weakly similar to tRNA-splicing endonuclease positive effector- related n=1 Tax=Arabidopsis thaliana Re- nD=UPI0000162761 complete	28.1	-0.183	0.676	0.481	0.175	1.287	0.008	-0.102	0.768	-0.008	0.983
0bf87d929c59a41ba46b6ac66a1c6568	GSVIVT01009657001	UniRef100_Q10QF1—weakly similar to Os03g0188900 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q10QF1_ORYSJ partial (48%)	28.2	0.632	0.178	-0.027	0.933	-0.435	0.189	-0.245	0.453	1.366	0.007
614fb24f4f56734f7197b5f8a9800845	GSVIVT01035548001	UniRef100_Q38JU2—similar to Crypto- chrome DASH, chloroplastic/mitochondrial n=1 Tax=Solanum lycopersicum Re- pID=CRYD_SOLLC partial (93%)	28.2	-0.007	0.988	-0.020	0.958	0.265	0.436	1.319	0.002	-0.434	0.259
80 cd 8b 609 a e 17 b 3 a 11941 a 4 ce 4 e b f 794	GSVIVT01001092001	UniRef100_Q01L37—similar to H0209H04.1 protein n=2 Tax=Oryza sativa Re- pID=Q01L37_ORYSA partial (90%)	29.1.14	1.122	0.002	0.533	0.109	-0.131	0.686	0.187	0.565	0.588	0.079
cf9dc11e38b7bfedae691ec37264cb2b	GSVIVT01032658001	UniRef100_Q84TW3—weakly similar to Os03g0815900 protein n=3 Tax=Oryza sativa RepID=Q84TW3_ORYSJ partial (68%)	29.2.4	0.755	0.186	1.449	0.003	-0.827	0.047	-0.234	0.597	1.089	0.011
cd9f2ab39a9f118bff1e73743b939522	GSVIVT00022338001	UniRef100_D1MAF2—similar to Exportin- 1 n=1 Tax=Solanum lycopersicum Re- pID=D1MAF2_SOLLC partial (19%)	29.3.1	0.238	0.641	0.219	0.600	1.230	0.004	-0.424	0.272	0.337	0.379
8ee725c172c1ae5d9a5efe08e1488428	GSVIVT01012023001	UniRef100_UPI0001738FFE—weakly si- milar to binding / protein transpor- ter n=1 Tax=Arabidopsis thaliana Re- pID=UPI0001738FFE complete	29.3.1	0.639	0.004	0.954	0.000	0.891	0.000	0.343	0.097	1.029	0.000
08f7c14c572baa8af59781339eebc2cf	GSVIVT01021262001	UniRef100_B2ZAQ6—similar to ER lumen protein retaining receptor n=1 Tax=Gossypium raimondii RepID=B2ZAQ6_GOSRA complete	29.3.4.1	0.142	0.662	-1.411	0.009	-0.370	0.261	0.797	0.057	-0.463	0.251

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
a5d03a2fea904d5af94dca29bb6392ee	GSVIVT01017663001 GSVIVT01017602001	UnRef100_Q943Z6—similar to Signal recognition particle 19 kDa protein n=1 Tax=Arabidopsis thaliana RepID=SRP19_ARATH partial (77%);UniRef100_Q943Z6—similar to Si- gnal recognition particle 19 kDa pro- tein n=1 Tax=Arabidopsis thaliana Re- pID=SRP19_ARATH partial (77%)	29.3.4.1	0.115	0.784	0.330	0.384	-0.459	0.230	-0.332	0.381	1.190	0.004
5de7af34570df0e71ed24df21f97c948	GSVIVT01030206001	UniRef100_A5BH19—similar to CBL-interacting protein kinase 08 n=1 Tax=Vitis vinifera Re- pID=A5BH19 VITVI partial (92%)	29.4	0.628	0.110	0.907	0.025	0.060	0.875	-0.182	0.670	1.083	0.009
094 a f 5 c f c 8 a 44 b 9613883340 a b 858 d 73	GSVIVT01026487001	UniRef100_Q6RFY3—weakly similar to MAP3Ka n=1 Tax=Solanum lycopersicum RepID=Q6RFY3_SOLLC complete	29.4	-1.343	0.006	-0.272	0.504	-0.509	0.216	0.050	0.902	-0.489	0.234
e147708beba6e2110d5b365b09060de3	GSVIVT01010757001	UniRef100_Q7XSB8—weakly similar to OJ990528.30.5 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q7XSB8_ORYSJ partial (13%)	29.4	0.325	0.325	0.446	0.182	0.121	0.680	-1.317	0.001	0.186	0.570
6f23f806bd3eeb02b727cbcfed1f9a02	GSVIVT01024911001	UniRef100_UPI0000E12A6F—weakly similar to Os07g0262600 n=1 Tax=Oryza sativa Japonica Group RepID=UPI0000E12A6F partial (94%)	29.4	0.463	0.255	0.844	0.070	1.260	0.010	-0.148	0.762	-0.232	0.563
387796430097c2f14b0f1d0d911ce865	GSVIVT01002533001	UniRef100_UPI0001A7B189—weakly similar to ATP binding / kinase/ protein kinase/ protein serine/threonine kinase/ protein tyrosine kinase/ ubiquitin-protein ligase n=1 Tax=Arabidopsis thaliana ReoDD=UPI0001A7B189 partial (78%)	29.4.1.59	0.260	0.425	1.075	0.003	0.105	0.745	-0.008	0.982	0.311	0.342
f71f5029aceadcf51f0f296e2377859f	GSVIVT01013810001	UniRef100_Q84VY0—similar to At1g70550 n=1 Tax=Arabidopsis thaliana Re- pID=Q84VY0_ARATH partial (58%)	29.5	0.413	0.370	1.174	0.008	0.100	0.808	-0.278	0.498	-0.050	0.902
71c4036f79cb07189ab6ac5b5a05aa84	GSVIVT01019995001	UniRef100_UPI0000196CC9—weakly similar to CAAX amino terminal protease family protein n=1 Tax=Arabidopsis thaliana Re- pID=UPI0000196CC9 partial (83%)	29.5	1.056	0.024	-0.454	0.369	1.146	0.009	-0.478	0.236	0.541	0.221
7c43e23caa1bdf4a31f3facf6faf66e4	GSVIVT01019919001	UniRef100_A9QY38—weakly similar to Subtilase n=1 Tax=Lotus japonicus Re- pID=A9QY38_LOTJA partial (52%)	29.5.1	-0.298	0.346	0.323	0.444	1.298	0.006	0.243	0.389	-0.675	0.062
fc715e7ffe8efd0c25638091114ed18c	GSVIVT01016449001	UniRef100_Q9ZTT3—weakly similar to Subtilisin-like protease C1 n=1 Tax=Glycine max RepID=Q9ZTT3_SOYBN partial (96%)	29.5.1	0.346	0.391	0.009	0.980	1.239	0.005	-0.297	0.410	-0.106	0.768
951779f0f5137acb5e368ed5f36d6aa8	GSVIVT00027351001	UniRef100_O04584—weakly similar to F19K23.12 protein n=1 Tax=Arabidopsis thaliana Re- pID=O04584_ARATH partial (88%)	29.5.11	0.546	0.273	0.458	0.303	0.308	0.486	1.309	0.006	2.432	0.000
3977c42291fcf681958b572f3031226d	GSVIVT01009011001	UniRef100_Q5VQR7—weakly similar to Os01g0812200 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q5VQR7_ORYSJ partial (44%)	29.5.11.3	1.106	0.034	0.216	0.629	-0.372	0.406	-0.282	0.528	1.256	0.009
76ec9104ac3b6578f24f54d2689dac03	gi—225461825	UniRef100_UPI00001635ED—weakly similar to F- box family protein n=1 Tax=Arabidopsis thaliana RepID=UPI00001635ED complete	29.5.11.4	0.204	0.665	1.648	0.004	0.657	0.172	-1.138	0.024	-0.573	0.182
42c192cf551ba3fec0511f610fbc30f4	GSVIVT01020229001	UniRef100_O80742—weakly similar to U-box domain-containing protein 19 n=1 Tax=Arabidopsis thaliana Re- pID=PUB19_ARATH complete	29.5.11.4.2	-1.341	0.006	-0.043	0.931	-1.952	0.002	0.719	0.165	-0.965	0.072

suite ...

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
50cd01f6cb7d2ddae49a1c7b48cedc22	GSVIVT01003669001	UniRef100_Q6K7P0—weakly similar to	29.5.11.4.2	-0.277	0.576	1.064	0.008	-0.218	0.510	0.422	0.209	0.302	0.415
		Os02g0828900 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q6K7P0_ORYSJ											
		partial (53%)											
78d620b6fc5558c943c406bf8ad0e933	GSVIVT01030205001	UniRef100_Q9LZW3—weakly similar to	29.5.11.4.2	0.480	0.212	0.558	0.149	0.543	0.160	0.326	0.392	1.055	0.010
		U-box domain-containing protein 16											
		n=1 Tax=Arabidopsis thaliana Re-											
		pID=PUB16_ARATH partial (73%)											
47fe4add0fbd061f7be4d21a20350a9e	GSVIVT01026978001	UniRef100_Q9M313—weakly similar to RING-H2	29.5.11.4.2	-1.781	0.005	0.748	0.186	0.507	0.226	1.148	0.052	-0.059	0.886
		finger protein ATL3K n=1 Tax=Arabidopsis tha-											
		liana RepID=ATL3K_ARATH partial (75%)											
1a9b43fd78bc97a1ba3706ca8c58de0b	GSVIVT01029063001	UniRef100_Q9MAS8—weakly similar to F13M7.22	29.5.11.4.2	-0.140	0.681	-0.679	0.167	-1.141	0.003	0.033	0.922	-0.006	0.986
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9MAS8_ARATH partial (20%)											
1ba7ce7728e6273e75e7ffca1bc845fb	GSVIVT01016564001	UniRef100_O9SRO8—weakly similar to RING-H2	29.5.11.4.2	0.808	0.168	1.526	0.002	0.807	0.168	0.017	0.963	-0.355	0.510
		finger protein ATL3A n=2 Tax=Arabidopsis tha-											
		liana RepID=ATL3A_ARATH partial (68%)											
97ffd623e5ca4e53a342837bceba0e65	GSVIVT01003199001	UniRef100_B9GFH4—weakly similar to F-box fa-	29.5.11.4.3.2	0.569	0.134	-0.452	0.144	-1.420	0.002	0.415	0.177	0.313	0.300
		mily protein n=1 Tax=Populus trichocarpa Re-											
		pID=B9GFH4_POPTR partial (28%)											
9eb33169e4bce4ce7b02b55ada477756	GSVIVT01027515001	UniRef100_B9IC68-weakly similar to F-box fa-	29.5.11.4.3.2	-0.221	0.543	-0.044	0.903	-1.059	0.007	0.204	0.574	0.169	0.640
		mily protein n=1 Tax=Populus trichocarpa Re-											
		pID=B9IC68_POPTR partial (83%)											
2671f606661a53cf3cac899a9ec91305	GSVIVT01027114001	UniRef100_Q9FGB8—weakly similar to	29.5.11.4.3.2	-1.254	0.028	0.713	0.296	1.600	0.007	0.388	0.419	-0.161	0.783
		Emb-CAB71103.1 n=1 Tax=Arabidopsis tha-											
		liana RepID=Q9FGB8_ARATH partial (49%)											
b4f48f81e18c139b553752ac5568e7f7	GSVIVT01015078001	UniRef100_A5HIJ1-similar to Cysteine pro-	29.5.3	-1.225	0.002	-0.211	0.557	-0.145	0.684	0.357	0.323	-0.279	0.437
		tease Cp1 n=1 Tax=Actinidia deliciosa Re-											
		pID=A5HIJ1_ACTDE partial (94%)											
54fe66adad6e2c70c067a90c1b77de7b	GSVIVT01008844001	UniRef100_Q8LCW1—weakly similar to Nucellin-	29.5.4	-0.174	0.718	-0.055	0.928	-1.569	0.008	0.285	0.554	1.153	0.088
		like protein n=2 Tax=Arabidopsis thaliana Re-											
		pID=Q8LCW1_ARATH partial (88%)											
459e75e3047497d5453335dc2fcaef1e	GSVIVT01006895001	UniRef100_UPI000034EFE5—weakly si-	29.5.4	0.471	0.441	2.597	0.009	0.117	0.863	-0.243	0.689	-0.410	0.501
		milar to aspartyl protease family pro-											
		tein n=1 Tax=Arabidopsis thaliana Re-											
		pID=UPI000034EFE5 partial (23%)											
cad645b5e498a8f4c8dc1962553b78d8	GSVIVT01037052001	UniRef100_Q9LMU1—similar to F2H15.10	29.5.7	1.099	0.002	1.584	0.000	0.813	0.017	-0.233	0.471	1.316	0.000
		n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9LMU1_ARATH partial (76%)											
32dcf67052aeb3b08ca1b59182e66ff6	GSVIVT01031526001	UniRef100_P08926—similar to RuBisCO	29.6	0.632	0.001	0.757	0.000	0.262	0.140	-0.170	0.333	0.848	0.000
		large subunit-binding protein subunit alpha,											
		chloroplastic n=1 Tax=Pisum sativum Re-											
		pID=RUBA_PEA partial (97%)											
a8fa6b92101ad3cd3661e8b869e7e3e5	GSVIVT01028174001	; UniRef100_C5H0C5-similar to Galactinol syn-	3.1.1.2	1.007	0.003	1.046	0.002	0.759	0.020	-0.209	0.498	1.293	0.000
	GSVIVT01028176001	thase 4 n=1 Tax=Populus trichocarpa x Po-											
		pulus deltoides RepID=C5H0C5_9ROSI partial											
		(73%);UniRef100_C5H0C5—similar to Galactinol											
		synthase 4 n=1 Tax=Populus trichocarpa x Po-											
		pulus deltoides RepID=C5H0C5_9ROSI partial											
		(73%)											
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
98b849ed0d479f4f07948bae7ef6ed4d	GSVIVT01028174001;	UniRef100_C5H0C5—similar to Galactinol syn-	3.1.1.2	1.478	0.000	1.642	0.000	1.740	0.000	-0.019	0.949	1.960	0.000
	GSVIVT01028176001	thase 4 n=1 Tax=Populus trichocarpa x Po-											
		pulus deltoides RepID=C5H0C5_9ROSI partial											
		(73%);UniRef100_C5H0C5—similar to Galactinol											
		synthase 4 n=1 Tax=Populus trichocarpa x Po-											
		pulus deltoides RepID=C5H0C5_9ROSI partial											
		(73%)											
aadfaa0f6c6a6e50bff35345ee9e6b20	GSVIVT01034756001	UniRef100_B3TLT2—weakly similar to Histidine-	30.10	-1.251	0.006	0.214	0.586	0.498	0.255	-1.014	0.110	0.171	0.690
		containing phosphotransfer protein Zmhp2											
		chain D n=1 Tax=Elaeis guineensis Re-											
		pID=B3TLT2_ELAGV partial (91%)											
0792c17d5c6a3afa9f589bb3fd02ff84	GSVIVT01018044001	UniRef100_P93169—similar to Early light-	30.11	1.472	0.000	1.036	0.002	0.810	0.013	0.768	0.018	1.215	0.001
		induced protein n=1 Tax=Glycine max Re-											
		pID=P93169 SOYBN partial (58%)											
ace4372577e17f2e3f370249f1207e42	GSVIVT01036079001	UniBef100 Q5LIV2—weakly similar to	30.2	0.324	0.251	1.179	0.003	0.385	0.132	-0.532	0.092	0.161	0.563
		Os01g0966400 protein n=2 Tax=Oryza sativa					0.000		0.2.02		0.00-	0.202	
		BepID=05LIV2 OBYSI complete											
4d3014ec0f78c7d12e180af334538cdc	GSVIVT01018814001	UniBef100 C6FF70—weakly similar to Beceptor-	30.2.11	1 514	0.008	0.200	0.671	0.591	0.217	-0.183	0.698	0.037	0.948
10001100011001012010001001000000	001111010100011001	like protein kinase n=1 Tax=Glycine max Be-	00.2.11	1.011	0.000	0.200	0.071	0.001	0.211	0.100	0.000	0.001	0.010
		pID=C6FF70 SOYBN complete											
94f93025e6c4bc0d7fe25bfd9aa3cf79	GSVIVT01011375001	UniBef100 O0IZ89—weakly similar to	30 2 11	0.008	0.984	0.081	0.842	1 380	0.006	-0.349	0.397	-0.284	0.535
0110002000010000110200100000010	05111101010100001	Osl0g0119200 protein $n=1$ Tax=Oryza sa	00.2.11	0.000	0.001	0.001	0.012	1.000	0.000	0.010	0.001	0.201	0.000
		tiva Japonica Group BepID=00IZ89 OBYSJ											
		complete											
196285fe16214aa858d206221a9fda56	GSVIVT01008437001	UniBef100 O7XH55—weakly similar to Leucine	30.2.11	-0 794	0.059	0.066	0.854	1 647	0.001	-0.306	0 448	-0.317	0.534
10020010102110000002002210010000	05111101000101001	Bich Bepeat family protein $n=2$ Tax=Oryza sa	00.2.11	0.101	0.000	0.000	0.001	1.011	0.001	0.000	0.110	0.011	0.001
		tiva BepID=07XH55 OBYSI partial (43%)											
Acf13f4e051a7130879292cd1da1b5c9	CSVIVT01004465001	UniBef100 O9LKZ5_similar to Becentor-like	30 2 11	0.469	0.196	0 192	0 592	-1.087	0.005	-0.108	0.763	0.059	0.868
10110110001011000102020010010000	00111101001100001	protein kinase 2 n=1 Tax=Glycine max Be-	00.2.11	0.100	0.100	0.102	0.002	1.001	0.000	0.100	0.100	0.000	0.000
		pID=09LKZ5 SOYBN partial (88%)											
3553059dae15d832c66ac1464c172918	GSVIVT01015795001	UniBef100 O9AVE0—weakly similar to	30.2.17	0.456	0 264	0.781	0.063	1 563	0.001	-0.048	0.893	-0.380	0.297
		SBKb n=1 Tax=Arabidopsis lyrata Be-			0.202				0.002	0.0.00	0.000	0.000	
		pID=09AVE0 ABALY partial (18%)											
db0525285703f4228b29cf70743a8c2d	GSVIVT00013746001	UniBef100 O9SWF1—weakly similar to Be-	30.2.17	0.354	0.624	2 921	0.007	0.863	0.349	-0.647	0.321	-1.311	0.081
		ceptor kinase n=1 Tax=Orvza sativa Be-			0.02-				0.0.00		0.022		
		pID=09SWF1 OBYSA partial (96%)											
916d911926cb6aa3a2408fcafa49961c	GSVIVT01000432001 ·	UniBef100 UPI0001A7B0C6—weakly similar to	30.2.17	0.058	0.853	-1 218	0.002	0.302	0 497	0 191	0.618	-0 544	0.166
010001102000000000210010010	GSVIVT01000426001 ;	ATP hinding / kinase/ protein kinase/ pro-	00.2.11	0.000	0.000	1.210	0.002	0.002	0.101	0.101	0.010	0.011	0.100
	GSVIVT01000437001	tein serine/threenine kinase/ protein tyrosine											
	65111101000431001	kinase/ sugar binding n=1 Tax=Arabidopeis											
		thaliana BenID-UPI000147B0C6 partial											
		(69%) UniBef100 UPI0001A7B0C6-weakly											
		similar to ATP binding / kinase/ protein kinase/											
		protein covine /threeping kingse / protein turcsing											
		kipage/ augen binding n=1 Tax=Arabidopaig											
		thaliana BenID-UPI000147B0C6 partial											
		(65%) UniBef100 UPI000147B114 —weakly											
		similar to ATP binding / protein kinase/ protein											
		serine/threenine kinase/ protein turosine kinase/											
		sugar binding n=1 Tay=Arabidopsis thaliana											
		RepID-UPI000147B114 complete											
b371df9eb4653d847290s1s0dd5e83cd	CSVIVT00027209001	UniRef100 O1SN29_weakly_similar_to_Pro-	30.2.3	-1 474	0.002	-0.214	0.470	0.687	0.030	0.337	0.400	-0.118	0.656
55, 14150540540547250a1a044566504	35 / 1 / 10002/205001	tein kingen n=1 Tay-Medicago truncatula	50.2.5	-1.4/4	0.002	-0.214	0.410	0.007	0.000	0.007	0.400	-0.110	0.000
		BepID=01SN29 MEDTB complete											
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
535c09176625a4e243a02a360c4f4f5b	GSVIVT01030243001	UniRef100_Q0DSM5—weakly similar to Os03g0299600 protein (Fragment) n=1 Tax=Oryza sativa Japonica Group Re- pID=Q0DSM5_ORYSJ partial (40%)	30.2.99	0.522	0.146	0.373	0.403	1.048	0.006	-0.463	0.150	-0.157	0.617
0a69d24146ef54f4d143b3c3a9e23807	GSVIVT01005679001	UniRef100_Q38798—weakly similar to Calnexin homolog 2 n=1 Tax=Arabidopsis thaliana Re- pID=CALX2_ARATH partial (31%)	30.3	1.185	0.006	0.645	0.113	-0.366	0.359	0.187	0.638	0.485	0.227
f91988453426d5fe03ec63c1d059cdfd	GSVIVT01011078001	UniRef100-Q5TKI5—weakly similar to Os05g0430400 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q5TKI5-ORYSJ partial (98%)	30.5	-1.241	0.003	-0.113	0.766	0.005	0.989	0.189	0.620	-0.345	0.368
b21f1791a559b7779d19fe3e521cf6e5	GSVIVT01033123001	UniRef100_Q7Y1Y8—similar to Cullin 3a (Frag- ment) n=1 Tax=Arabidopsis thaliana Re- pID=Q7Y1Y8_ARATH partial (27%)	30.5	-0.122	0.795	0.827	0.036	1.061	0.009	-0.849	0.032	-0.006	0.987
653746e5dd1f376c88afe4546fd8632e	GSVIVT01024825001	UniRef100_Q8RU83—weakly similar to Beta- tubulin n=1 Tax=Gossypium hirsutum Re- pID=Q8RU83_GOSHI partial (75%)	31.1	0.299	0.393	0.487	0.170	-0.402	0.254	-0.044	0.909	1.980	0.000
d870d4b32f128d1f47babf50e641f674	GSVIVT01012263001	UniRef100_Q9FFM1—weakly similar to Emb—CAB70981.1 n=1 Tax=Arabidopsis tha- liana RepID=Q9FFM1_ARATH partial (75%)	31.1	-0.046	0.876	0.108	0.713	1.030	0.002	0.339	0.255	-0.507	0.095
64443b1de70218c76e209736664d7a8c	GSVIVT01005252001	UniRef100_UPI000016344C—weakly si- milar to ankyrin repeat family pro- tein n=1 Tax=Arabidopsis thaliana Re- pID=UPI000016344C partial (78%)	31.1	0.440	0.380	0.455	0.313	1.717	0.002	-0.373	0.405	0.134	0.763
1057926af1e064fc57174238f44ce0cc	GSVIVT01020522001	UniRef100_UPI000034F0CE—weakly si- milar to ankyrin repeat family pro- tein n=1 Tax=Arabidopsis thaliana Re- pID=UPI000034F0CE partial (83%)	31.1	-0.095	0.808	-0.436	0.370	1.429	0.009	-0.218	0.544	-0.607	0.105
6d196568ec2d5200b4f6a9598474f47f	GSVIVT01008027001	UniRef100_UPI0000DD8ECB—weakly similar to Os01g0952300 n=1 Tax=Oryza sativa Japonica Group RepID=UPI0000DD8ECB partial (22%)	31.1	0.342	0.337	1.395	0.002	-0.085	0.808	-0.253	0.475	-0.385	0.376
d5ad1a8988d788758a275e0d59db0368	GSVIVT01014437001	UniRef100_UP1000150563F—weakly similar to ATM2 (ARABIDOPSIS THALIANA MYO- SIN 2); motor n=1 Tax=Arabidopsis thaliana RepID=UP1000150563F complete	31.1	-0.151	0.751	1.196	0.005	-0.320	0.503	-0.279	0.475	-0.182	0.640
dbd3fd23238fcf5a37df022adf54ccd3	GSVIVT01037738001	UniRef100_O65875—similar to FtsZ protein n=1 Tax=Pisum sativum RepID=O65875_PEA partial (81%)	31.2	0.274	0.461	0.322	0.387	1.231	0.004	0.675	0.184	0.355	0.450
21979ba41be8e9061582277d1d577737	GSVIVT01011595001	UniRef100_C7SI03—weakly similar to Cyclin-like protein n=1 Tax=Thellungiella halophila Re- pID=C7SI03_THEHA partial (48%)	31.3	0.586	0.180	0.027	0.945	-0.467	0.239	-0.104	0.789	1.207	0.006
8506ac604847cbc36efbd8f60313f20b	GSVIVT01005149001; GSVIVT01002527001	UniRef100_Q0WSA8—weakly similar to Pep- tidylprolyl isomerase n=1 Tax=Arabidopsis thaliana RepID=Q0WSA8_ARATH partial (12%);UniRef100_B6T178—similar to Peptidyl- prolyl isomerase n=1 Tax=Zea mays Re- pID=B6T178_MAIZE complete	31.3.1	1.225	0.006	1.209	0.007	0.413	0.321	-0.185	0.654	0.615	0.144
1543b01dcf4fb98afa44f80c4e63fc4c	GSVIVT01019816001	UniRef100_Q651M2—weakly similar to Os09g0525600 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q651M2_ORYSJ partial (35%)	31.4	1.498	0.012	1.510	0.012	1.504	0.012	0.836	0.143	2.030	0.001
98efdbd539a442a401d2e3db5755365f	GSVIVT01028160001	UniRef100_Q29VI1—weakly similar to Patatin- like protein n=1 Tax=Gossypium hirsutum Re- pID=Q29VI1_GOSHI complete	33.1	-0.440	0.308	0.538	0.257	1.591	0.003	0.580	0.184	-0.208	0.656

		TABLEA	4 suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
7dbd46060b4b6ca136a06c5ef3a99737	GSVIVT00026978001	UniRef100_O82340—weakly similar t AT2G46300 protein n=1 Tax=Arabidopsi thaliana RepD=O82340 ABATH partial (95%)	io 33.2 is	0.087	0.809	-0.010	0.979	-1.024	0.008	0.134	0.709	-0.021	0.953
$400 {\rm ffad} 07 {\rm f} 128 {\rm dae} 1 {\rm f} 62856 {\rm d} 1 {\rm ad} 825 {\rm fc}$	GSVIVT01005846001	UniRef100_Q9FG54—weakly similar to Root ca protein 2-like protein n=1 Tax=Arabidopsis that linea BonD=00EC54 ARATH partial (78%)	р 33.2 а-	0.173	0.707	1.521	0.003	0.575	0.173	-0.751	0.114	0.227	0.623
7f1db285294181f36e01e38d0959eb07	GSVIVT01033032001	UniRef100_B9GF72-weakly similar t NAC domain protein, IPR003441 (Frag ment) n=1 Tax=Populus trichocarpa Re	:o 33.99 3- 8-	-0.318	0.369	-0.333	0.348	-1.067	0.005	-0.359	0.313	-0.289	0.415
8d40197036181e40120ec05775b7c782	GSVIVT01020387001	pID=B9GF72_POPTR partial (67%) UniRef100_B9HH05—similar to NAC domain pro- tein, IPR003441 n=1 Tax=Populus trichocarp RepID=B9HH05_POPTR partial (48%)	o- 33.99 a	1.130	0.007	0.488	0.266	0.489	0.292	-0.042	0.891	0.652	0.069
1b890c0164f060dca912aea68f2051e3	GSVIVT01019047001	UniRef100_B9HHX9—weakly similar t AP2 domain-containing transcription fac tor n=1 Tax=Populus trichocarpa Re	:o 33.99 :- :-	-0.024	0.948	0.594	0.079	-0.159	0.662	-1.177	0.001	0.877	0.024
89d18c2e1b592d363de29872960fa5bf	GSVIVT01033374001	pID=B9HHX9_POPIR partial (55%) UniRef100_B9IPM0—weakly similar to NAC dc main protein, IPR003441 n=1 Tax=Populus tr: chocarpa RedD=B9IPM0_POPTR complete	o- 33.99 i-	0.393	0.087	0.481	0.039	-0.032	0.885	0.177	0.430	1.011	0.000
7459eac8ad312e02ee5891ff8f9e21f4	GSVIVT01017111001	UniRef100_Q9LW84—similar to Penta tricopeptide repeat-containing protei At3g16010 n=1 Tax=Arabidopsis thalian RepID=PP236 AR ATH partial (08%)	a- 33.99 n aa	-0.391	0.422	1.676	0.003	0.632	0.064	0.903	0.034	0.682	0.098
5d478993e1dbba8ba8eb3b77cde99809	GSVIVT01034896001	UniRef100_Q9SRD3—weakly similar to Nodulir like protein; 66117-66707 n=1 Tax=Arabidopsi thaliana RepID=Q9SRD3_ARATH partial (94%)	n- 33.99 is	-1.493	0.005	-0.179	0.609	0.166	0.635	0.492	0.170	-0.553	0.089
${\rm fdf028398fd0b899ae6ecaaf59d8c8d9}$	GSVIVT01024073001	UniRef100_Q6I5V6—weakly similar t Os05g0430700 protein n=2 Tax=Oryza sativ RepID=Q6I5V6_ORYSJ partial (95%)	io 34.1 va	-1.238	0.003	0.057	0.894	0.227	0.553	-0.095	0.804	-0.274	0.475
20d37e21385b96273d70e98fd02e9db2	GSVIVT01029244001	UniRef100_Q7Y067—similar to Plasma membran H+-ATPase n=1 Tax=Sesbania rostrata Re pID=Q7Y067_SESRO complete	ne 34.1 e-	-1.709	0.003	-0.256	0.479	-0.101	0.779	0.165	0.647	-0.658	0.078
2224fe0c2644d4a4acc6a538b9db1ca4	GSVIVT01025302001	UniRef100_B9GM76—similar to ZIP trans porter n=1 Tax=Populus trichocarpa Re pID=B9GM76_POPTR complete	s- 34.12 e-	0.151	0.658	0.194	0.569	-1.089	0.004	0.162	0.633	0.102	0.737
5a4f367276f11b3166e1aab0c1a1a95d	GSVIVT01015522001	UniRef100_Q9SZY4—weakly similar to Nitrat transporter n=1 Tax=Arabidopsis thaliana Re pID=Q9SZY4_ARATH complete	e 34.13	0.288	0.550	1.354	0.009	0.579	0.187	-0.013	0.975	-0.227	0.599
8621001a5aba1822fb11885a04b756ea	GSVIVT01026070001	UniRef100_B9MWD3—weakly similar t Proton-dependent oligopeptide transporte (Fragment) n=1 Tax=Populus trichocarp RepID=B9MWD3_POPTR complete	a 34.13 er a	0.020	0.959	0.335	0.390	-0.551	0.121	0.092	0.811	1.332	0.002
4c97d082894a9694b24b8519fc61ce77	GSVIVT01008475001 GSVIVT01015593001	; UniRef100_B1PC61—similar to Outward rec tifying potassium channel n=1 Tax=Populu euphratica RepID=B1PC61_POPEU partici (91%);UniRef100_B1PC61_similar to Outwar rectifying potassium channel n=1 Tax=Populu euphratica RepID=B1PC61_POPEU partici (92%)	c- 34.15 15 al d 15 al	0.925	0.143	1.912	0.009	1.181	0.066	-0.227	0.680	0.183	0.766
e070f98a88cbfc727e39d11f2a9fed9a	GSVIVT01010958001	UniRef100_Q06XL9—homologue to KUP1 n= Tax=Vitis vinifera RepID=Q06XL9_VITVI par tial (17%)	1 34.15 r-	-1.872	0.004	-0.392	0.243	0.673	0.080	-0.085	0.816	-0.676	0.079

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
0908451d173d6f293386ab4ec9b1208e	GSVIVT01013864001	UniRef100_B8D1G3—weakly similar to ABC	34.16	0.305	0.194	0.556	0.023	0.411	0.085	0.546	0.025	1.158	0.000
		transporter related n=1 Tax=Halothermothrix											
		orenii H 168 RepID=B8D1G3_HALOH partial											
J2661-FFF-78JL270-82-L042-6L14	CONTRA1012864001	(21%) UniDef100 B8D1C2 methles similar to ABC	24.16	0.199	0 5 4 4	0.446	0.049	0.266	0.000	0 502	0.024	1 0.95	0.000
d3001c355c78dbae370a82cb043e0b14	G3VIV101013804001	transporter velated n=1 Tax=Halothormothriv	34.10	0.128	0.344	0.440	0.042	0.300	0.092	0.505	0.024	1.085	0.000
		oronii U 168 RopiD=ReD1C2 UALOU partial											
		(21%)											
c9ad112259fc49474d126b4b2e0890d1	CSVIVT01014633001	UniBef100 B9G IX7_weakly similar to	34.16	0.167	0.696	0.056	0.914	-0.178	0.677	-1 710	0.003	0.262	0.504
03401122051045414012054520055001	GSVIVT01014631001	Multidrug resistance protein ABC trans-	04.10	0.107	0.050	0.000	0.514	-0.170	0.011	-1.710	0.000	0.202	0.004
	0.5 111 101011001001	porter family n=1 Tax=Populus tricho-											
		carpa RepID=B9GJX7_POPTR partial											
		(69%);UniRef100_B9GJX7—weakly similar											
		to Multidrug resistance protein ABC trans-											
		porter family n=1 Tax=Populus trichocarpa											
		RepID=B9GJX7_POPTR partial (76%)											
80f779f3df671d72c8573b08ace6f45c	GSVIVT01019609001	UniRef100_B9GL16—similar to ABC transporter	34.16	-0.304	0.422	-0.648	0.094	-1.422	0.002	0.354	0.402	0.003	0.994
		family protein n=1 Tax=Populus trichocarpa Re-											
		pID=B9GL16_POPTR complete											
ba62331e1502a540a4b0d4aae0336e5c	GSVIVT01028809001	UniRef100_B9N349—weakly similar to White-	34.16	-0.106	0.733	-0.335	0.285	-1.134	0.001	-0.867	0.009	-0.700	0.032
		brown-complex ABC transporter family											
		(Fragment) n=1 Tax=Populus trichocarpa											
	CC11111004048000004	RepID=B9N349_POPTR complete		0.404				0 101		0.400		1 000	0.004
1c9d0348b8te4tc09aacc59td170td44	GSVIV101015293001	UniRef100_Q4PSF4—weakly similar to MATE ef-	34.16	0.481	0.147	0.104	0.773	-0.431	0.241	-0.193	0.595	1.203	0.001
		flux protein-related n=1 Tax=Arabidopsis tha-											
19571-1496086-0-284-2605120700052	CENTRE 1002144001	liana RepID=Q4PSF4_ARATH partial (28%)	24.16	0.200	0.400	1 402	0.001	0 1 9 9	0.702	0.018	0 622	0.264	0 505
1217111421080a00384e3101130790913	G3VIV101003144001	Differition_Q842B2—similar to Os08g0504100	34.10	-0.300	0.409	1.405	0.001	-0.128	0.725	0.218	0.035	0.204	0.505
		pID = O84ZB2 OBVS1 partial (24%)											
13f6742af15f2673880ce37ddd64184e	GSVIVT01029934001	UniBef100 UPI000034EF51—weakly si-	34 16	0 114	0.836	0.525	0 195	-1.336	0.004	0.712	0.155	-0.655	0.085
1010112010120100000001444011010	000000000000000000000000000000000000000	milar to MATE efflux family pro-	01.10	0.111	0.000	0.020	0.100	1.000	0.001	0.112	0.100	0.000	0.000
		tein $n=1$ Tax=Arabidopsis thaliana Be-											
		pID=UPI000034EF51 partial (95%)											
b06d2f8b05026ab8b9cb4a9e76334366	GSVIVT01033677001	UniRef100_C9WSP9—weakly similar to Tonoplast	34.19.2	-1.179	0.001	-0.255	0.381	0.221	0.448	-0.222	0.445	-0.347	0.237
		intrinsic protein n=1 Tax=Hevea brasiliensis Re-											
		pID=C9WSP9_HEVBR complete											
65ec9f5034d3b24454fecf58b9d18757	GSVIVT01010335001	UniRef100_B9GJB7—similar to Lysine/histidine	34.3	-0.764	0.092	0.410	0.241	1.188	0.006	-0.333	0.380	0.014	0.971
		transporter n=1 Tax=Populus trichocarpa Re-											
		pID=B9GJB7_POPTR complete											
15ab4c94451fb1d8631a88ebe658e369	GSVIVT01023906001	UniRef100_B9H1N9—weakly similar	34.3	0.561	0.080	0.978	0.004	0.701	0.032	0.301	0.337	1.001	0.003
		to Lysine/histidine transporter (Frag-											
		ment) n=1 Tax=Populus trichocarpa Re-											
	CC11111001007400001	pID=B9HIN9_POPTR partial (96%)	04.0	0 500	0.000	0.007	0.000	0.000	0.004	1 000	0.001	0.050	0.010
f0b5b75001596252755fa665e7b1e923	GSVIV101037496001	UniRef100_B9IJY3—weakly similar to Amino acid	34.3	0.788	0.006	0.987	0.002	0.820	0.004	1.008	0.001	0.658	0.018
		transporter (Fragment) n=1 Tax=Populus tricno-											
894d50bbd892ed8fd1c71952d41d924e	CSVIVT01001853001	UniBef100 P54144—weakly similar to Ammonium	34.5	0.743	0.004	0.542	0.031	-0.026	0.914	0.190	0.428	1.002	0.000
89403000008920030107193204109240	65 11 101001855001	transporter 1 member 1 $n=1$ Tax-Arabidopsis	34.0	0.743	0.004	0.342	0.031	-0.020	0.914	0.150	0.428	1.002	0.000
		thaliana BenID-AMT11 ABATH partial (47%)											
e06130b1be9d295c71ae6ab089586206	GSVIVT01003225001	UniBef100 B9HIA2—weakly similar to Phol-	34 7	-0.408	0.355	-0.062	0.874	-1 282	0.008	-0.136	0.805	0.185	0 784
	22,11,101000220001	like protein n=1 Tax=Populus trichocarpa Re-		0.100	0.000	0.002	0.011	1.202	0.000	0.100	0.000	0.100	0.104
		pID=B9HIA2_POPTR complete											
d533f25b516f6911fc41651080cf9c24	GSVIVT01037811001	UniRef100_B9HN10—weakly similar to Nucleo-	34.99	-0.607	0.093	0.077	0.807	0.216	0.493	1.122	0.007	-0.415	0.193
		base ascorbate transporter n=1 Tax=Populus tri-		0.001									
		chocarpa RepID=B9HN10_POPTR complete											
		· · · ·											quite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
051ed66f5e33a81efdb1fa4cea6f11b8	GSVIVT01003453001	UniRef100_Q8GRU0—weakly similar to	34.99	-0.953	0.136	0.573	0.353	1.951	0.008	0.490	0.487	-0.671	0.157
		Os07g0113500 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q8GRU0_ORYSJ											
		partial (92%)											
dda8c24794a2e2b602ff321b48c06d25	GSVIVT01003182001	UniRef100_O64785—weakly similar to	35.1.3	1.086	0.150	2.504	0.004	-0.371	0.532	0.841	0.136	0.469	0.520
		T1F9.16 n=1 Tax=Arabidopsis thaliana Re-											
		pID=O64785_ARATH partial (52%)											
dfbde888d8a59a07834d13cc51b964c8	GSVIVT01035922001	UniRef100_Q5E911-weakly similar to	35.1.3	1.207	0.138	-0.345	0.581	2.047	0.008	0.288	0.674	-0.173	0.782
		At4g32050 n=1 Tax=Arabidopsis thaliana											
		RepID=Q5E911_ARATH complete											
26014aa59daddfca8d6a3b95bc45dac0	GSVIVT01037740001	UniRef100_Q7Y081-weakly similar to Ag164 pro-	35.1.40	-1.384	0.004	-0.018	0.971	-0.048	0.912	-0.302	0.485	-0.039	0.928
		tein homologue n=1 Tax=Datisca glomerata Re-											
		pID=Q7Y081_DATGL partial (52%)											
95c4dc9feb8309728e96263ed4ddfc67	GSVIVT01031221001	UniRef100_O80488-weakly similar to Penta-	35.1.5	1.185	0.009	-0.157	0.758	-0.545	0.251	-0.358	0.447	0.310	0.461
		tricopeptide repeat-containing protein											
		At1g09190 n=1 Tax=Arabidopsis thaliana											
		RepID=PPR23_ARATH complete											
ca9e3658ea33dc6bbe088934116698b2	GSVIVT01012065001	UniRef100_O82178-weakly similar to Penta-	35.1.5	1.135	0.003	-0.026	0.931	0.096	0.751	-0.176	0.564	0.242	0.429
		tricopeptide repeat-containing protein											
		At2g35130 n=1 Tax=Arabidopsis thaliana											
		RepID=PP186_ABATH partial (98%)											
506f29751cfa56cc2d2f143fd29a9f34	gi—71869894	none	35.2	1 213	0.007	0.508	0.182	-0.011	0.977	-0.418	0.269	0.103	0.782
64cbce1e9294900c6f56980f3d9c0ec0	GSVIVT00011347001	none	35.2	0.842	0.174	1 490	0.036	-0.811	0.190	0.036	0.952	1 954	0.003
3c6727561a2b2d5e9291d7b989bb4f7e	GSVIVT01004032001	none	35.2	-2 199	0.010	0.581	0.254	0.233	0.676	0.250	0.738	0.170	0.844
0d4b242cd3ec982cb9da810f31416e52	GSVIVT01012694001	none	35.2	-1.093	0.005	-0.380	0.239	0.182	0.570	-0.117	0.712	0.006	0.985
9c035679100e3e9914b62f41c9f9a32d	GSVIVT01028668001	none	35.2	-0.229	0.563	0.097	0.827	1 206	0.005	-0.060	0.893	-0.091	0.819
fff8f4ae9df3a3810579e9b71d691519	none	none	35.2	-1 708	0.002	-0.405	0.327	0.416	0.315	0.106	0.846	-0.190	0.727
113fa9e3b2e0e34b933d7992301c1a1a	none	none	35.2	0.524	0.144	1.221	0.009	0.167	0.633	-1.238	0.004	0.181	0.643
41afa025c336d06c4c3bb578a9d03cc6	none	none	35.2	0.395	0.434	0.483	0.341	1.414	0.006	-0.615	0.190	-0.187	0.683
34 fb 50 ded 02 dd 865 c8 f2 465 bb bf d7 a 63	none	none	35.2	0.240	0.549	0.489	0.228	1.140	0.009	-0.504	0.168	-0.134	0.708
3e9ecc59dea523d4ca7269b52bd027bf	none	none	35.2	-2.061	0.002	1.464	0.061	0.248	0.628	0.292	0.686	-0.532	0.266
88946abbd61164cdcd07b9a49c2e686e	none	none	35.2	-0.982	0.077	0.162	0.679	1.223	0.007	0.560	0.296	-0.115	0.789
ea04618adac9fc0528bd7e6d2ed9cee5	none	none	35.2	1.197	0.004	0.685	0.163	-0.154	0.650	-0.467	0.177	0.440	0.253
138739998f9b06ec71cc138c8aef2d98	none	none	35.2	-0.435	0.345	0.443	0.337	1.915	0.010	-0.505	0.370	-0.245	0.555
a941b9717bf10b82e1fb16e602dfd509	none	none	35.2	-1.037	0.131	0.903	0.183	-0.008	0.990	1.459	0.042	-2.686	0.001
c37cbf85831a50e8177a0780ba5f1b50	none	none	35.2	0.485	0.147	-0.145	0.658	1.063	0.007	-0.119	0.715	0.441	0.185
fa8242c1a72e89ca5b2068c5c187c6dc	none	none	35.2	0.540	0.253	2.246	0.000	0.303	0.512	0.599	0.208	-0.704	0.058
2d761560b6dad05cfcf0535ee2de034f	none	none	35.2	-0.202	0.589	-0.843	0.146	0.695	0.111	0.702	0.221	-2.193	0.001
461e2fa2d5e644edb03b6567ed16eb50	none	none	35.2	0.271	0.738	1.526	0.026	2.017	0.005	-0.767	0.190	0.548	0.396
a39bc65624626f4dbf745e20219caabb	none	none	35.2	-0.181	0.578	1.661	0.001	0.099	0.759	0.224	0.443	-0.186	0.567
8f1e06b46b3b791262fa6f9329a5d1d8	none	none	35.2	0.253	0.567	0.416	0.349	1 237	0.010	0.126	0.749	-0.078	0.859
b93609bd637a65f2cfa2ed3868c4daba	none	none	35.2	0.488	0.186	-0.266	0.561	1 049	0.009	0.079	0.862	-0.219	0.545
db08516d5de9df83ad2d071360d7e0ec	none	none	35.2	-1 196	0.007	0.598	0.089	-0.060	0.857	0.258	0.504	-0.638	0.133
9762207f49af26d80ec83613d3a7a2ec	none	none	35.2	0.645	0.212	1 189	0.006	-0.123	0.806	-0.106	0.797	0.064	0.865
387b33ba4c765b84bfcb4c5eee14f024	none	none	35.2	0.315	0.560	1 754	0.008	0.375	0.487	0.200	0.591	0.263	0.655
4480a59eb489b893cf336b3e1ee862bc	GSVIVT01029059001	none	35.2	0.129	0.563	-0.079	0.722	0.910	0.000	0.740	0.003	1.063	0.000
a558ac7a4d23165fd9f5a5098ecb0077	GSVIVT01013288001	none	35.2	0.353	0.369	1 263	0.009	0.379	0.388	-0.143	0.806	0.381	0.386
e53d4b6b0187250be7643ae18dd2e38e	GSVIVT01015947001	none	35.2	-1.357	0.009	-0.676	0.190	0.530	0.231	0.191	0.586	-0.103	0.808
13e5875955eb392519cf13ccbc371eb4	GSVIVT01021761001	none	35.2	0.166	0.770	1 951	0.005	0.585	0.246	-1 125	0.062	0.236	0.559
eb374748ba6715ee709e2665b253041b	GSVIVT01017091001	none	35.2	-1.244	0.005	-0.096	0.810	-0.248	0.581	0.201	0.617	-0.322	0.424
dd62fcfe004e61deb01e9b13cef1s71b	GSVIVT01026770001	none	35.2	-0.260	0.514	0.022	0.951	1 635	0.000	-0.037	0.916	-0.011	0.978
08e984749ced401a91afec0af4876a3a	GSVIVT01008912001	none	35.2	0.447	0.167	0.698	0.021	0.645	0.031	1 285	0.000	0.99/	0.002
5502370129fb3d3e38901b8da7ca5013	CSVIVT01019402001	none	35.2	0.738	0.014	0.532	0.068	0.188	0.507	0.513	0.078	1 027	0.002
51715fc1e4153ad3eeff1965b95ade9f	GSVIVT01030408001	none	35.2	-1.800	0.000	0.010	0.981	0.110	0.789	0.479	0.266	0.038	0.930
51,15,5104100ad5cen1500550ad651	33 + 1 + 1 0 1 0 3 0 + 0 8 0 0 1	1010	50.2	-1.000	0.000	0.010	0.561	0.114	0.103	0.413	0.200	0.008	euite
													Suree

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
bf1a19376420249021a278a2482258e9	GSVIVT01007202001	none	35.2	1.421	0.003	0.267	0.583	0.434	0.281	-0.646	0.118	0.507	0.174
35994c5490723547520dd311b3cb9e46	GSVIVT01024669001	none	35.2	1.120	0.036	0.415	0.455	1.597	0.005	-0.562	0.271	0.531	0.297
bfa63780bf3bdd5fb0dc8076a34e3f67	GSVIVT01031996001	none	35.2	0.295	0.561	0.228	0.502	1.250	0.006	-0.281	0.409	-0.398	0.245
186cd5bd0ddee2cd211551364bba7c3e	GSVIVT01022036001	none	35.2	-0.152	0.743	1.351	0.008	-0.657	0.166	0.373	0.373	0.395	0.397
539c6be694b5155687cee98d0e83e858	GSVIVT01030383001	none	35.2	0.314	0.400	1.519	0.003	0.793	0.065	-0.257	0.489	-0.529	0.161
4b0979bee248e4ef2e16fb208810d00f	GSVIVT01037901001	none	35.2	0.848	0.005	1.085	0.001	1.114	0.000	1.042	0.001	1.041	0.001
55ef692d758b328d11db13a2c1816362	GSVIVT01009142001	none	35.2	1.540	0.007	0.700	0.142	0.925	0.081	-0.683	0.151	1.685	0.010
0f5de4c04d22d3306bc5718e8b00458d	GSVIVT01011199001	none	35.2	0.233	0.626	0.658	0.182	1.904	0.000	0.095	0.841	-0.647	0.086
cd952866f63aef25d0bb0c5e40d5f3cb	GSVIVT01012521001	none	35.2	0.387	0.441	1.384	0.005	-0.179	0.651	-0.341	0.496	-0.092	0.795
e29e2f8f787a2761f97e36e271118105	GSVIVT01031464001	none	35.2	-0.117	0.586	-0.551	0.015	-1.382	0.000	-0.654	0.005	-0.885	0.000
cedcd99e9523992ce52c01f4ff40ba92	GSVIVT01021934001	none	35.2	-0.686	0.024	0.182	0.527	1.202	0.000	0.673	0.045	-0.880	0.005
9389e9a89ac654eb7b1e9ddeffa1cb36	GSVIVT01022490001	none	35.2	-0.331	0.359	0.517	0.115	1.034	0.003	-0.162	0.651	-0.255	0.428
1408debc0153149e3e76e69f62c0cf18	GSVIVT01023085001	none	35.2	0.317	0.580	0.468	0.364	0.474	0.358	0.757	0.148	1.614	0.004
3e5e0d0717be9eda7b95fe3e8addf905	GSVIVT01013936001	none	35.2	-1.798	0.031	-0.449	0.535	0.537	0.460	2.042	0.033	-2.542	0.006
cd08ec510c32b608b5fb94f0d87d3c79	GSVIVT01026847001	none	35.2	0.543	0.208	1.642	0.009	-0.109	0.772	0.008	0.984	0.318	0.454
18b279702b4a864c305d32d30eacf05d	GSVIVT01013544001	none	35.2	-1.140	0.010	-0.231	0.525	-0.662	0.079	-0.077	0.887	0.117	0.746
de871bb41e0b516ee124dcf4348d9727	GSVIVT01007122001	none	35.2	-0.216	0.459	-0.335	0.256	-1.256	0.000	-0.390	0.187	-0.396	0.181
c57e539be533db70c5500d02b95743ba	GSVIVT01019430001	none	35.2	0.048	0.927	0.251	0.470	1.675	0.006	0.675	0.096	-1.268	0.049
b97a1d0d681e91ecd36d26432f3c5d2b	EG.scaffold_28.282	UniRef100_A0Y0H0—weakly similar to	35.2	0.725	0.063	0.388	0.262	1.037	0.006	-0.413	0.233	0.317	0.355
		$\begin{array}{llllllllllllllllllllllllllllllllllll$											
710eaa $4502$ c0d3b $609074$ b297 $659$ aae $4$	GSVIVT00018967001	UniRef100_A2QMA2—weakly similar to Func- tion : CMR1 n=1 Tax=Aspergillus niger CBS 513.88 RepID=A2QMA2_ASPNC partial (5%)	35.2	-1.122	0.003	0.330	0.388	-0.361	0.346	-0.182	0.592	-0.489	0.158
85a810346c8b2e54576b695671ea5b06	GSVIVT00031760001	UniRef100_A5LM87—weakly similar to Zinc metalloprotease ZmpB n=1 Tax=Streptococcus pneumoniae SP6-BS73 RepID=A5LM87_STRPN partial (8%)	35.2	-1.387	0.007	-0.165	0.715	1.108	0.067	0.896	0.153	0.341	0.494
1d91b72f8189bc15f6dc26225880ff1d	GSVIVT00011136001	UniRef100_Q5NE32—weakly similar to Non- specific lipid-transfer protein n=1 Tax=Triticum aestivum RepID=Q5NE32_WHEAT partial (70%)	35.2	-0.119	0.708	-0.383	0.233	-1.155	0.003	-1.011	0.004	-0.638	0.053
cebbc1376d08d68a140c58797e6c61ae	EG.scaffold_1.1172	UniRef100_Q6ZD72—weakly similar to Os08g0107100 protein n=1 Tax=Oryza sa- tiva Japonica Group RepID=Q6ZD72_ORYSJ campleto	35.2	0.184	0.623	1.192	0.008	0.847	0.031	0.287	0.444	0.467	0.219
e416052cd4b34785c93e58901143e7e1	GSVIVT01034251001	UniRef100_Q9FFZ5—weakly similar to Gb—AAF00669.1 n=1 Tax=Arabidopsis tha- liana RepID=Q9FFZ5_ARATH partial (32%)	35.2	-0.186	0.498	-0.096	0.754	-0.373	0.232	1.424	0.003	0.409	0.231
7a869da4245f19ff2fa5b26f8af733ba	GSVIVT01026680001; GSVIVT01003362001; GSVIVT01003372001; GSVIVT01005645001; GSVIVT01004735001;	;UniRef100_Q9SPE5—weakly simi- lar to Gamma-soluble NSF attach- ment protein n=3 Tax=Arabidopsis tha- liana RepID=SNAG_ARATH partial (18%):UniRef100_Q9SU08—homologue to	35.2	1.851	0.000	-0.112	0.717	-0.158	0.642	-0.155	0.693	-0.053	0.849
	GSVIVT01032305001 GSVIVT01012608001	Auxilin-like protein n=1 Tax=Arabidopsis thaliana RepID=Q9SU08_ARATH par- tial (5%);UniRef100_Q9SPE5-weakly si- milar to Gamma-soluble NSF attach- ment protein n=3 Tax=Arabidopsis tha- liana RepID=SNAG_ARATH partial (18%);;UniRef100_Q9SPE5-weakly simi-											
		lar to Gamma-soluble NSF attachment protein n=3 Tax=Arabidopsis thaliana Re- pID=SNAG_ARATH partial (18%);											

Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
977696b1bf95018053fdac5b7d799a3c	GSVIVT01018878001	UniRef100_A3REN2-weakly similar to De-	35.2	-1.759	0.001	-0.043	0.909	0.295	0.439	-0.108	0.799	-0.074	0.862
		hydrin 1a n=1 Tax=Vitis vinifera Re-											
		pID=A3REN2_VITVI complete											
2df02fc7ebcd43eb0570c801220f805c	GSVIVT01033335001	UniRef100_A9I4B0—weakly similar to	35.2	0.607	0.073	0.404	0.223	1.118	0.002	0.892	0.011	1.677	0.000
		Strain DSM 12804, complete genome $n=1$											
		Tax=Bordetella petrii DSM 12804 Re-											
	~~~~	pID=A9I4B0_BORPD partial (16%)											
21dd21b2b592fa07a23edc313e23b00d	GSVIVT01033335001	UniRef100_A9I4B0—weakly similar to	35.2	0.548	0.089	0.560	0.083	0.457	0.153	0.629	0.054	1.293	0.000
		Strain DSM 12804, complete genome n=1											
		Tax=Bordetella petrii DSM 12804 Re-											
500d2a4ffa0fb7007b7a0d20108ab885	CSVIVT01011542001	UniPef100 P27456 weakly similar to CACA	25.2	0.445	0.242	1 260	0.004	1 1 4 7	0.020	1 1 2 9	0.012	0.276	0 272
390d2c4iia3ib7907b7c0d20198cb883	65 1 1 1 0 1 0 1 1 3 4 2 0 0 1	binding transcriptional activator BBB /BPC4-like	30.2	0.440	0.243	1.300	0.004	1.147	0.020	-1.138	0.013	-0.370	0.373
		n-1 Tax-Vitis vinifera BenID-B2Z456 VITVI											
		partial (18%)											
fdb32ffa91ba8237d01d873ad437c751	GSVIVT01033926001	UniBef100 B4KBB0—weakly similar to Alkaline	35.2	0.368	0.369	0.850	0.045	-0.514	0.213	-0.206	0.612	1.175	0.007
		phosphatase n=1 Tax=Drosophila mojavensis Re-		0.000	0.000	0.000	0.0.00		0.2.0	0.200	0.012		
		pID=B4KBB0_DROMO partial (17%)											
6094bd13f81331a106ad644968e142ad	GSVIVT01031444001	UniRef100_B9DFD2—weakly similar to	35.2	1.228	0.001	0.571	0.175	0.336	0.278	-0.231	0.451	0.313	0.447
		AT2G27900 protein n=1 Tax=Arabidopsis											
		thaliana RepID=B9DFD2_ARATH partial (96%)											
95ab598a89b591e8d88e0caaf59eda84	GSVIVT01037861001	UniRef100_B9DHZ5—weakly similar	35.2	-2.483	0.001	0.076	0.880	0.477	0.349	0.068	0.930	-0.115	0.819
		to AT2G14850 protein (Fragment)											
		n=2 Tax=Arabidopsis thaliana Re-											
		pID=B9DHZ5_ARATH complete											
180225a433d67581deecb3b8a70e8d7b	GSVIVT01009084001	UniRef100_B9RJQ2-homologue to Queuine	35.2	-0.139	0.720	0.301	0.488	1.204	0.010	-0.293	0.452	0.168	0.664
		tRNA-ribosyltransferase n=1 Tax=Ricinus											
	C(1) 11 100100000000	communis RepID=B9RJQ2_RICCO partial (97%)		1 100			0.004	0.054					0.000
55be1d73fa71d41b3e91898248f63b3e	GSVIV101032692001	UniRef100_CIPDR7—weakly similar to Stage II	35.2	1.109	0.002	0.735	0.091	0.951	0.003	-0.602	0.037	-0.117	0.662
		sporulation protein E, protein serine/threenine											
		$P_{ap}D = C1PDP7 PACCO partial (10\%)$											
b08d068406270a7b40272a4f55dfa148	CSVIVT01024001001	UniPef100 C6FF62 weekly similar to CC	25.2	0.260	0.525	0 112	0.760	0.140	0 786	0.172	0.652	1 919	0.010
D980908400279C7D492752415501e148	G3VIV101024091001	NBS-LBB class disease resistance protein n=1	30.2	-0.209	0.323	-0.113	0.705	-0.140	0.780	0.175	0.000	-1.218	0.010
		Tax=Glycine max BepID=C6FF62 SOVBN											
		partial (11%)											
6cc0f10b183f1fe059e605885b7adc52	GSVIVT01023686001	UniRef100_C6ZRZ7—weakly similar to Leucine-	35.2	-0.452	0.385	1.129	0.077	1.883	0.002	0.173	0.736	-0.258	0.540
		rich repeat family protein / protein kinase											
		family protein n=1 Tax=Glycine max Re-											
		pID=C6ZRZ7_SOYBN partial (16%)											
0f290db6e9bd87c1e0fda352f4566095	GSVIVT01000866001	UniRef100_C7FDI6—weakly similar to TNP1 n=1	35.2	0.011	0.980	0.476	0.168	-0.530	0.127	0.368	0.281	1.343	0.005
		Tax=Glycine max RepID=C7FDI6_SOYBN par-											
		tial (38%)											
3e384a7029474a9b35f5ebe92f38225c	GSVIVT01035600001	UniRef100_D0VE83—weakly similar to G protein	35.2	-1.488	0.003	0.028	0.923	0.124	0.729	0.389	0.242	-0.446	0.183
		gamma subunit 2 n=1 Tax=Oryza sativa Indica											
	CC111110000000000000000000000000000000	Group RepID=D0VE83_ORYSI partial (49%)		0.050				0.400		0.400			
6beca330fa09e74c99f1cf3c1912e4a8	GSVIV101013418001	UniRef100_008788-2—weakly similar to Isoform 2	35.2	-0.356	0.428	1.316	0.007	0.190	0.736	-0.109	0.784	0.292	0.514
		of Dynactin subunit 1 n=1 lax=Mus musculus $D_{res} = D_{res} = 0.08788 \ D_{res} = 1.(207)$											
6777-EEE27E-LL0017J-868-L6780	CONTRA1022462001	RepID=008788-2 partial (2%)	25.0	0.615	0.110	1.070	0.010	0.079	0.859	0.227	0.200	0.750	0.061
0///a5555/5ebecab901/da808eb1/89	GSVIV101032403001	F1707.4 p=1 Tax=Arabidopaia thaliana Ro	30.2	0.015	0.119	1.070	0.010	-0.072	0.852	0.327	0.399	0.750	0.001
		DID-064594 ARATH partial (48%)											
f20b2d6ede511ef3033cf60ccc42da8e	GSVIVT01035163001	UniBef100 O65233—weakly similar to T26D22.2	35.2	0.483	0.155	0.783	0.026	0.118	0.724	-0.112	0.738	1 149	0.002
120524004001101505501000004204800	32 11 101000103001	protein n=1 Tax=Arabidopsis thaliana Re-	00.2	0.400	0.100	0.103	0.020	0.110	0.124	.0.112	0.100	1.143	0.002
		pID=O65233_ARATH complete											
		r · · · · · · · · · · · · · · · · · · ·											

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
5301d191a4a4b98b0764f48f535ea71d	GSVIVT01030534001	UniRef100_O65376—weakly similar to F12F1.10	35.2	-1.443	0.001	0.579	0.078	0.302	0.395	-0.268	0.490	-0.130	0.711
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=O65376_ARATH partial (56%)											
5c79e98d61c93c201eb044a83457c9a6	GSVIVT01011558001	UniRef100_P41438—weakly similar to Folate	35.2	-0.010	0.984	0.525	0.451	1.747	0.006	-0.207	0.655	-0.188	0.684
		transporter 1 n=2 Tax=Mus musculus Re-											
		pID=S19A1_MOUSE partial (13%)											
7173a4d0bcf3b871f8c038b17ed3f0c0	GSVIVT01021459001	UniRef100_P42084-weakly similar to Imidazo-	35.2	-0.020	0.934	-0.104	0.674	1.016	0.003	-0.123	0.657	-0.491	0.087
		lonepropionase n=1 Tax=Bacillus subtilis Re-											
		pID=HUTI_BACSU partial (30%)											
523a39c2e96efd7dc6aac0f5bfadb1ae	GSVIVT01017723001	UniRef100_Q06H31—homologue to Transla-	35.2	-1.429	0.007	-0.112	0.817	-0.263	0.589	-0.165	0.734	-0.277	0.570
		tionally controlled tumor-like protein n=1											
		Tax=Arachis hypogaea RepID=Q06H31_ARAHY											
		complete											
1ebae86ab935b300e95b63c1fb2aef08	GSVIVT01025834001	UniBef100 Q0D3G9—similar to Os07g0687100	35.2	0.418	0.245	0.054	0.878	-1.007	0.008	0.331	0.354	-0.294	0.410
		protein n=1 Tax=Oryza sativa Japonica Group											
		BepID=00D3G9 OBYSI partial (97%)											
4f12248cc8de4edbaee77b7dea4b47aa	GSVIVT01009427001	UniBef100_00DLL8—weakly	35.2	-0.325	0.406	0.512	0.195	1 202	0.005	-0.241	0.537	-0.338	0.438
411224000000000000000000000000000000000	65717101003427001	Os03g0857500 protein (Fragment) n=3	30.2	-0.020	0.400	0.012	0.150	1.202	0.000	-0.241	0.001	-0.000	0.400
		Tax-Orway sativa BenID-OODLLS OBVSI											
		partial (87%)											
86-2606807420db2-200a-24005fb0ff0	CSVIVT01026227001	UniPof100 O01C40 workly similar to	25.2	0.002	0.006	1 280	0.006	0.045	0.800	0.654	0.050	0.068	0.821
80e20008074290520998834905150110	65 11 101030337001	$O_{a}04g0492100$ protoin (Fragment) $n=1$	33.2	0.002	0.990	1.380	0.000	-0.043	0.895	-0.034	0.030	0.008	0.851
		Transport and the second secon											
		-ID-OOLCAO OBVEL											
-0780-4146-030-80-164066666166	CEVIV:01014492001	Del Defino Oloune markin (0%)	25.0	0.401	0.207	0.400	0.957	0.010	0.045	0.120	0 765	1.976	0.005
e9789a4b4ib939c80ab6406i666ac1i6	GSVIV101014423001	UniReliuo_QiuHN8—weakly similar to Expressed	35.2	0.491	0.307	0.499	0.257	-0.919	0.045	-0.129	0.765	1.376	0.005
		protein n=1 lax=Oryza sativa Japonica Group											
1 000 0004 0171 1 101050400 51 00	GOVINTED 10000000001	RepiD=Q10HN8_ORYSJ partial (56%)	05.0	1.000	0.000	0.400	0.410	0.001	0 5 50	0.404	0.055	0.000	0 411
de899c0f34ea917bc1d21958462a5bff	GSVIV101006226001	UniRef100_Q1H5E9—similar to At5g48470	35.2	1.826	0.009	0.480	0.419	0.291	0.570	0.484	0.255	0.386	0.411
		n=1 lax=Arabidopsis thaliana Re-											
	GGT 111 1704 000 400004	piD=QiH5E9_ARATH partial (87%)		0.050	0.00*			1 500		0.001			0.400
ead27b062c1b1d731d4ef3e0c4d22f83	GSVIV101026460001	UniRef100_Q21655—weakly similar to Protein	35.2	0.053	0.905	0.383	0.464	1.532	0.009	-0.781	0.072	0.596	0.198
		R03A10.1, partially confirmed by transcript											
		evidence n=1 Tax=Caenorhabditis elegans Re-											
		pID=Q21655_CAEEL partial (38%)											
8702cb79e772acdf1fba30270ea3dee5	GSVIVT01035803001	UniRef100_Q43557—weakly similar to Uni-	35.2	-0.169	0.616	-0.139	0.680	-1.010	0.006	-0.447	0.190	-0.270	0.424
		dentified n=1 Tax=Medicago sativa Re-											
		pID=Q43557_MEDSA partial (92%)											
67fb19ca2a7edce2e87d86ab9f7974a2	GSVIVT01035379001	UniRef100_Q5ZBI1—similar to Os01g0612800	35.2	0.692	0.104	0.393	0.453	0.117	0.751	0.460	0.220	1.229	0.007
		protein n=2 Tax=Oryza sativa Re-											
		pID=Q5ZBI1_ORYSJ partial (50%)											
26c513e440eff1e9245a74ef5b56769c	GSVIVT01022475001	UniRef100_Q656U1—weakly similar to	35.2	0.314	0.309	0.295	0.338	0.486	0.121	-1.258	0.002	-0.075	0.806
		Os01g0565600 protein n=2 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q656U1_ORYSJ											
		partial (26%)											
e0dca28d88b631ced15bda80cbc2e79d	GSVIVT01036977001;	UniRef100_Q69RQ8—weakly similar to	35.2	-0.763	0.191	0.097	0.871	0.942	0.031	1.623	0.004	-2.005	0.004
	GSVIVT01036991001	Os07g0498900 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q69RQ8_ORYSJ											
		partial (33%);UniRef100_Q69RQ8—weakly si-											
		milar to Os07g0498900 protein n=1 Tax=Oryza											
		sativa Japonica Group RepID=Q69RQ8_ORYSJ											
		partial (32%)											
191f6b985aa488dfed6e7a8d4583fb45	GSVIVT01024071001	UniRef100_Q6YU87—weakly similar to	35.2	-0.021	0.968	-0.026	0.959	-0.488	0.343	-0.379	0.621	1.550	0.006
		Os02g0101900 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q6YU87_ORYSJ											
		partial (73%)											
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
e95eb3b5abe41b77c45600dadce1f760	GSVIVT01012465001	UniRef100_Q7EZK6—weakly similar to	35.2	1.754	0.006	0.224	0.692	0.133	0.798	-0.191	0.680	0.407	0.535
		Os08g0564800 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q7EZK6_ORYSJ											
		partial (4%)											
48f28a88cf50ff97d086a97ff8135146	GSVIVT01007072001	UniRef100_Q7X9S1—weakly similar to Fiber pro-	35.2	0.501	0.258	0.713	0.029	-0.660	0.042	0.488	0.124	1.187	0.001
		tein Fb19 (Fragment) n=1 Tax=Gossypium bar-											
		badense RepID=Q7X9S1_GOSBA partial (96%)											
972ea5f5c63dbf25f810b56a3ee72a7b	GSVIVT01024586001	UniRef100_Q8H2J3—similar to Os07g0230500	35.2	1.768	0.002	0.546	0.240	-0.590	0.206	-0.455	0.484	0.238	0.643
		protein n=1 Tax=Oryza sativa Japonica Group											
		RepID=Q8H2J3_ORYSJ partial (34%)											
2cc5d0f2aae6a1e37ae42bae65e06026	GSVIVT01029597001	UniRef100_Q8LNB7—weakly similar to	35.2	-1.707	0.009	-0.158	0.831	1.111	0.147	-0.477	0.420	-1.186	0.079
		Os10g0178200 protein n=2 Tax=Oryza sativa											
		RepID=Q8LNB7_ORYSJ partial (84%)											
5f5a5e2724b6aa0f2750ebeef6d81bae	GSVIVT01009648001	UniRef100_Q8LNF6—weakly similar to	35.2	0.000	0.999	0.795	0.035	1.171	0.007	-0.645	0.082	-0.064	0.899
		Os10g0501500 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q8LNF6_ORYSJ											
		partial (78%)											
ca510a9bca1013eecf4622a17ece33a7	GSVIVT01029784001	UniRef100_Q8RVP4—weakly similar to Bacterial-	35.2	-0.749	0.142	-0.343	0.525	1.574	0.010	0.520	0.340	-0.059	0.928
		induced class III peroxidase n=1 Tax=Gossypium											
		hirsutum RepID=Q8RVP4_GOSHI partial (14%)											
4294776324ab533775890b86fc4f07bc	GSVIVT01025812001	UniRef100_Q8SKU1-similar to ACR toxin-	35.2	0.921	0.157	-1.894	0.009	0.721	0.260	0.479	0.313	0.895	0.146
		sensitivity inducing protein n=1 Tax=Citrus											
		jambhiri RepID=Q8SKU1_CITJA partial (86%)											
$c_{36ae792ddd7fc53ee348ad654a47f4d}$	GSVIVT01015217001	UniRef100_Q94JR4—similar to	35.2	-1.041	0.006	-0.305	0.223	0.417	0.100	0.379	0.133	-0.056	0.820
		$AT4g29590/T16L4_{-100}$ n=1 Tax=Arabidopsis											
		thaliana BepID=094JB4_ABATH partial (97%)											
8e718227550aa6bad898e82405ca2064	GSVIVT01024087001	UniBef100_Q96554—weakly similar to Carbonic	35.2	0.086	0.799	0.192	0.526	1.085	0.002	0.009	0.977	-0.620	0.180
		anhydrase n=1 Tax=Coccomyxa sp. PA Re-				0.202	0.020		0.00-			0.0-0	0.200
		pID=Q96554_9CHLO partial (20%)											
8b912b6e260f892cec962a0fc6a325f8	GSVIVT01037862001	UniRef100_Q9FPH4—similar to AT4g33900	35.2	0.402	0.212	0.706	0.035	-0.292	0.412	0.495	0.171	1.022	0.008
		n=1 Tax=Arabidopsis thaliana Re-											
		pID=09FPH4 ABATH partial (65%)											
5c475d5d5df7f51465c4932cdf8eacdd	GSVIVT01010491001	UniBef100 O9FYG0—weakly similar to	35.2	1.062	0.010	1.479	0.001	0.153	0.693	0.481	0.220	0.888	0.029
		F1N21 15 n=1 Tax=Arabidopsis thaliana Be-			0.020		0.00-	0.200	0.000		0.220	0.000	0.0-0
		pID=O9FYG0 ABATH partial (94%)											
eb0391d4665c7f09aa1f1de9ee1f312c	GSVIVT01006789001	· UniBef100 O9L187—weakly similar to	35.2	-1 705	0.005	0.191	0.637	0.282	0.582	-0.048	0.905	-0.461	0.213
00000101000011000001100000110120	GSVIVT01006677001	Emb-CAB12631.1 $n=1$ Tax=Arabidopsis	00.2	1.100	0.000	0.101	0.001	0.202	0.002	0.010	0.000	0.101	0.210
	GSVIV 101006690001	thaliana BenID-OQLIS7 ABATH partial											
	GSVIV 1010000000001	(21%) UniBef100 B9XSH4_weakly similar											
	GSVIV 101034421001	to Immunoglobulin subtype n=1 Tax-bacterium											
	65111101055111001	Ellip514 BepID=B9XSH4 9BACT partial											
		(12%) UniPof100 P2DNP2 workly simi											
		(1370); Office 100-D3D N13-weakly simi-											
		thaliana RopID=R2DNR2 ARATH par											
		tial (19%) UsiD-f100 D0CN62 similar											
		tial (12%);UllRel100_B0CN02—similar											
		harthaniana Dar D-DOCN62 NICDE											
		benthamiana Repid=BUCN02_NICBE											
		Complete; Uniker100_Q9L187—similar to											
		Emb—UAB12031.1 n=1 Tax=Arabidopsis tha-											
	COMPANY TRAINING CONST	liana RepiD=Q9L187_ARATH partial (3%)	05.0	0.000	0.454	0 500	0.001	1.000	0.001	0.000	0.000	0.000	0.468
e3c2c5d7f8b50330f854b2fa06e8c053	GSVIV101013393001	UniRef100_Q9LM77—weakly similar to	35.2	-0.393	0.474	-0.583	0.201	-1.222	0.004	0.002	0.996	-0.329	0.462
		F2D10.26 n=1 Tax=Arabidopsis thaliana Re-											
		piD=Q9LM77_ARATH partial (91%)											
													suite

		TABLEA.4	suite										
Probe ID	Cible	Annotation	Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
38846318ee75d5a27b2dd3f81ce69038	GSVIVT01029687001	UniRef100_Q9LP92—weakly similar to	35.2	1.718	0.008	-0.501	0.391	-0.853	0.062	0.046	0.915	0.126	0.771
		T32E20.28 n=1 Tax=Arabidopsis thaliana											
		RepID=Q9LP92_ARATH partial (54%)											
3f3ac00093a2d34b233d52082c4589ea	GSVIVT01019641001	UniRef100_Q9LQ19—weakly similar to F16P17.2	35.2	-1.992	0.001	-0.084	0.819	0.803	0.064	-0.211	0.642	-0.268	0.518
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9LQ19_ARATH partial (80%)											
dd71a46fde6e3e513c49ab761df2d860	GSVIVT01029084001	UniRef100_Q9LRN1—similar to	35.2	1.026	0.012	-0.005	0.989	-0.996	0.007	0.147	0.662	-0.146	0.723
		Emb—CAB39630.1 n=1 Tax=Arabidopsis tha-											
	CC11111004048040004	liana RepID=Q9LRN1_ARATH partial (12%)				0.010		0.001				4 9 9 9	
02169030741493115C1DC6C05656771a	GSVIV101017613001	Ch AFF64061 = 1 True Archidencia the	35.2	0.768	0.209	2.818	0.000	-0.281	0.527	-0.009	0.983	-1.382	0.060
		$GD = AAF 50400.1$ $\Pi = 1$ $Iax = Arabidopsis that line Rop D = O01TX7 APATH partial (25\%)$											
d077c4c1370b7cb3baf6b0236952abbd	CSVIVT01025076001	UniBef100 OQLVB6_weakly similar to	35.9	0.385	0.601	0 592	0.360	2 3 3 8	0.002	-1.207	0.079	-0.445	0.463
d077C4C1370D7CD3Da10D0230932aDDd	65 11 101023070001	Similarity to embryo-specific protein	33.2	0.385	0.001	0.392	0.300	2.338	0.002	-1.207	0.075	=0.443	0.403
		3 n=1 Tax=Arabidopsis thaliana Be-											
		pID=09LVB6 ABATH partial (56%)											
bc1f6f786afb3c8074ef0013812865fa	GSVIVT01035828001	UniBef100 Q9SSC1—similar to F18B13.26	35.2	0.323	0.436	0.127	0.782	1.641	0.010	0.087	0.833	0.051	0.911
		protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9SSC1_ARATH partial (18%)											
0ba474f6e34278a808fcbee23ef6b0df	GSVIVT01032571001	UniRef100_Q9SSG6-weakly similar to	35.2	-0.162	0.750	0.274	0.546	-1.392	0.005	-0.394	0.439	0.385	0.450
		F25A4.17 n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9SSG6_ARATH partial (27%)											
3 eea6 dad5 be 86 a 64467 e 8 d7 c 17452268	GSVIVT01018249001	UniRef100_Q9ZQP1-weakly similar to Expres-	35.2	0.305	0.490	-0.248	0.530	-1.325	0.006	0.110	0.780	-0.025	0.948
		sed protein n=1 Tax=Arabidopsis thaliana Re-											
		pID=Q9ZQP1_ARATH partial (73%)											
289f44602885efd611839e95fb9210e4	GSVIVT01010772001	UniRef100_UPI000021CA2E—weakly similar to	35.2	-1.188	0.008	-0.103	0.798	0.221	0.585	-0.432	0.427	-0.692	0.067
		Os04g0594500 n=1 Tax=Oryza sativa Japonica											
	CC11111004004000004	Group RepID=UPI000021CA2E complete			0.005							0 510	
8b0a5fd6678d01ef056e3c59c65fefa3	GSVIV-101001969001	UniRef100_UP10000ECA610—weakly similar to	35.2	-1.767	0.005	-0.230	0.722	0.230	0.690	0.257	0.691	-0.513	0.378
		UP10000ECA610 related cluster $n=1$ lax=Gallus											
4L06-EJ467J8f61f080240-2222-LfE-	CONTRA1020562001	gallus RepiD=UP10000ECA610 partial (69%)	25.0	1.017	0.007	0.220	0.627	0.145	0.756	0.005	0 779	0.242	0.257
4000a0040708101198024903222a013e	65 11 101050502001	lar to stage III sporulation protein E $n=1$	33.2	1.217	0.007	0.220	0.037	-0.140	0.750	0.095	0.112	0.343	0.337
		Tax=Gemmata obscuriglobus UOM 2246 Be-											
		pID=UPI00016C359F partial (6%)											
9b7d69debf2f74546b9b875dda381b00	multiple mappings	none	35.3	-0.032	0.953	0.367	0.469	0.948	0.077	-2.533	0.006	-0.405	0.604
bf10d9544882e2f08c21cba71f13e98d	multiple mappings	none	35.3	1.675	0.000	0.391	0.342	0.175	0.632	-0.488	0.238	0.412	0.317
84e0fb96de93b9f1d0c461979b80dddb	multiple mappings	none	35.3	2.516	0.001	0.284	0.626	1.040	0.052	-0.546	0.196	-0.270	0.559
962abad49a56f44292d6a6f99700fef2	multiple mappings	none	35.3	1.085	0.007	-0.098	0.815	-0.541	0.155	-0.272	0.468	0.072	0.846
75f7911d6907e682752f62f49c395d89	multiple mappings	none	35.3	1.452	0.007	0.804	0.080	0.079	0.869	-0.053	0.903	0.602	0.219
00fcef2903bc4131ba1660452a64be35	multiple mappings	none	35.3	-1.336	0.033	0.438	0.323	2.216	0.001	0.155	0.691	-0.718	0.079
997ca522025b314309c4419bc42f31c6	GSVIVT01030390001	; UniRef100_Q8LRG9—weakly similar to	35.3	-0.188	0.702	0.325	0.510	-1.455	0.006	0.112	0.819	0.651	0.193
	GSVIVT01030395001	Os01g0510800 protein n=1 Tax=Oryza sa-											
		tiva Japonica Group RepID=Q8LRG9_ORYSJ											
		complete;UniRef100_Q0J0U0—weakly similar to											
		Os09g0483500 protein n=2 Tax=Oryza sativa											
	CC111110040080080004	RepID=Q0J0U0_ORYSJ complete			0.400								
d812e5dfb261d262cb9a5aab56e67ca6	GSVIV101007265001	; ;UniRef100_UP1000179DE05—weakly simi-	35.3	0.788	0.166	0.499	0.373	1.561	0.006	-0.414	0.417	0.526	0.254
	GSVIV 101002344001	; lar to UP10001/9DE05 related cluster n=1											
	G5 v1 v 101020354001	partial (4%) UniPof100 POCL C6 workly											
		similar to 2-oxoglutarate-dependent dioxy-											
		genase n=1 Tax=Populus trichocarpa Re-											
		pID=B9GLG6_POPTR complete											
		I I I I I I I I I I I I I I I I I I I											suite

			TABLEA.4	suite										
Probe ID	Cible	Annotation		Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
638cd144d1df2d9a100157891057068a	GSVIVT01017515001; GSVIVT01012311001; GSVIVT01005333001; GSVIVT01006523001; GSVIVT01016021001; GSVIVT01016021001; GSVIVT01018641001	UniRef100_A7M6E8—similar to 1°GCR26 protein n=1 Tax=Sola copersicum RepID=A7M6E8_SOLL tial (8%); UniRef100_A7M6E8_sim Tm-1°GCR26 protein n=1 Tax lycopersicum RepID=A7M6I partial (8%); UniRef100_Q337U similar to Sol0g0438700 prote Tax=Oryza sativa RepID=Q337T partial (38%); UniRef100_B9N85 similar to ABC transporter fan tein n=1 Tax=Populus trichoca	Tm- num ly- C par- iilar to =Solanum E8_SOLLC 5-weakly in n=2 15_ORYSJ 6-weakly iily pro- rpa Re-	35.3	1.079	0.077	0.349	0.550	2.142	0.007	0.115	0.808	0.357	0.503
3206fa8414be4b54b04233e2d6557a9a	GSVIVT01017261001; GSVIVT01018081001	pID=B9N856_POPTR partial (22%);; UniRef100_B677B9—weakly simil Phytosulfokine receptor n=1 mays RepID=B677B9_MAIZE (43%);UniRef100_A5JPK5—homologue mannose-3',5'-epimerase n=1 Tax=Vit RepID=A5JPK5_VITVI partial (68%)	ar to Tax=Zea partial to GDP- is vinifera	35.3	-0.363	0.323	0.348	0.343	1.162	0.008	-0.160	0.693	-0.014	0.968
908db0683bbe5c42a6f1395510dde921	GSVIVT01030071001; GSVIVT01026230001	UniRef100_Q41397—weakly simil: Cf-2.1 n=1 Tax=Solanum lifolium RepID=Q41397.SOLPI plete;UniRef100_Q32BS7—weakly to Vitronectin n=1 Tax=Bos ta: pID=Q32BS7_BOVIN partial (9%)	ar to pimpinel- com- similar urus Re-	35.3	0.403	0.212	0.398	0.326	1.060	0.006	-0.307	0.337	0.373	0.198

			TABLEA.4	suite										
Probe ID	Cible	Annotation		Bin	j0	pVal	j1	pVal	j4	pVal	j7	pVal	j14	pVal
Probe ID 3cd20095264f0b0195496c434dae6569	Cible GSVIVT01013225001 GSVIVT01013223001 GSVIVT01013220001 GSVIVT01013220001 GSVIVT01013214001 GSVIVT01013213001 GSVIVT01013209001 GSVIVT01013209001 GSVIVT010131668001 GSVIVT01013222001 GSVIVT01013222001 GSVIVT01014088001 GSVIVT010140880101	Annotation UniRef100_Q9SVZ1—similar to kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1—similar (17%);UniRef100_Q9SVZ1—similar tein kinase-like protein n=1 Tax=, kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (9%);UniRef100_Q9SVZ1—weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (9%);UniRef100_Q9SVZ1—weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (9%);UniRef100_Q9SVZ1_weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (9%);UniRef100_Q9SVZ1_weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH tial (14%);UniRef100_Q40525_milar Nt-rab6 protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (7%);UniRef100_Q9SVZ1_weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH (7%);UniRef100_Q9SVZ1_weakly s Protein kinase-like protein n=1 Tax=, thaliana RepID=Q9SVZ1_ARATH tial (13%);UniRef100_Q40525_milar tial (13%);UniRef100_Q40525_milar tial (13%);UniRef100_Q40525_milar tial (9%);UniRef100_Q40525_milar Nt-rab6 protein n=1 Tax=Nico bacum RepID=Q0KJ40_POPNI (96%);UniRef100_Q40525_milar Nt-rab6 protein n=1 Tax=Nico bacum RepID=Q0KJ40_POPNI	Protein Arabidopsis partial to Pro- Arabidopsis partial o Protein Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial to Pro- Arabidopsis partial to Pro- Arabidopsis partial to Pro- Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis partial imilar to Arabidopsis ta partial to to tiana ta- partial to partial partial to partial partial partial to partial partial partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- partial to to tiana ta- ta- tiana ta- ta- ta- tiana ta- ta- ta- ta- ta- ta- ta- ta- ta- ta-	Bin 35.3	j0 -1.651	pVal 0.007	j1 -0.610	pVal 0.158	<u>j4</u> -0.924	pVal 0.115	<u>17</u> -0.137	pVal 0.764	<u>114</u> -0.008	pVal 0.986
30ee31c63fd2526b60098ab140597816	GSVIVT01036478001	like protein n=1 Tax=Arabidopsi RepID=Q9LH79.ARATH partial (95% UniRef100_UPI00017393B9—weakly si talytic/ metal ion binding / ph rate mutase n=1 Tax=Arabidopsis tl -UD=UD0001720200.comtin (4%)	s thaliana); milar to ca- osphoglyce- haliana Re-	4.11	2.231	0.007	1.532	0.050	0.847	0.170	-0.637	0.204	0.263	0.630
1e3f29e87222ab3f75daea76f036cf11	GSVIVT01018517001	piD=0P100017393B9 partial (8%) UniRef100_A9PD49—homologue olase n=1 Tax=Populus trichoc	to En- carpa Re-	4.12	-1.640	0.004	-0.212	0.714	0.077	0.882	0.426	0.412	-0.019	0.974
2214 bb 687 ad 82 fd 7969 a 73 f1 2581 2092	GSVIVT00017729001	UniRef100_Q9M6B4—similar to Al hydrogenase 7 n=1 Tax=Vitis vi pID=O9M6B4 VITVI partial (26%)	lcohol de- nifera Re-	5.3	-2.008	0.008	-0.257	0.736	-0.227	0.716	0.190	0.784	-0.621	0.323
c58542281a9caddbbbe0f14ae3d7f552	GSVIVT01030079001	UniRef100_B9SW52—similar to phosphate 1-dehydrogenase n=1 T communis RepID=B9SW52_RICCO co	Glucose-6- ax=Ricinus mplete	7.1.1	-1.775	0.008	0.938	0.024	1.412	0.014	0.208	0.612	-0.342	0.409

A.3.2 Comparaison des expériences en serre et au vignoble

 $_{\tt TABLE\ A.5:}$ Gènes différentiellement exprimés au vignoble et en serre suite à une stimulation par la chaleur et la lumière

 csylvr01011600 csylvr01011600 csylvr01011600 csylvr010166000 csylvr010166000 csylvr0101662001 csylvr010162001 csylvr010162001<	GSVIVT01008862001	Annotation UniRef100_Q8S7E1-2—similar to Isoform 2 of Chlorophyllide a oxygenase, chlo-	19.16
annuum RepID=DiMFSs.CAPAN partial (73%) UniRef100.Q4BCM7 weakly similar to Small heat stress protein class CIII n=1 Tax=Sichanum pervisama RepID=Q4EN7_SOLPE partial (74%) SVIVT01016420001 ITax=Sichanum pervisama RepID=Q4EN7_SOLPE partial (74%) UniRef100_D1MIXSminilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI complete SVIVT01016420001 UniRef100_D1MIXSminilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI complete SVIVT01016420001 UniRef100_D1MIXSminilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI complete SVIVT01016420001 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXShomologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXShomologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXShomologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXSminilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXSminilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIXS.VITVI partial (12%)(UniRef100_D1MIXSminilar to Small heat shock pro	GSVIVT01011165001	roplastic n=1 Tax=Oryza sativa Japonica Group RepID=Q8S7E1-2 complete UniRef100_D1MF88—weakly similar to Oxidoreductase n=1 Tax=Capsicum	16.8.1.1
30.11 1000000000000000000000000000000000	CSVIVT01016607001	annuum RepID=D1MF88_CAPAN partial (73%)	20.2.1
SSVIVT01016426001; UniRef100_DIMIXD—homologue to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—homologue to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—miniter to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—miniter to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—homologue to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—homologue to Small heat shock protein 20.2 SSVIVT01016420001; UniRef100_DIMIXD—homologue to Small heat shock protein 20.2 SSVIVT01016420001; Tax=Viis vinifera RepID=DIMIXS_VITVI partial 20.2 SSVIVT01016420001; Tax=Viis vinifera RepID=DIMIXS_VITVI partial 20.2 SSVIVT01016420001; Tax=Viis vinifera RepID=DIMIXS_VITVI complete 20.2 SSVIVT01016420001; UniRef100_DIMIXS—showolgue to Small heat shock p	33 11 101010097001	Tax=Solanum peruvianum RepID=Q94EN7_SOLPE partial (74%)	20.2.1
SSVIVT01016420001; Unitef100_D1MIXSmonologue To 20.2 SSVIVT01016420001; Ti, Rojner, TaxeWits Vinfera RepD=D1MIXS_VITVI 20.2 SVIVT01016420001; Ti, Rojner, Markell, SVITVI SVIVT0101642001; Ti, Rojner, Markell, SVIVT0101642001; 20.2 SVIVT01016420001; Ti, Rojner, Markell, SVIVT0101642001; Ti, Rojner, Markell, SVIVT0101642001; 20.2 SVIVT01016420001; Unitef100_D1MIXS-similar to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-monologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-homologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-homologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-homologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-monologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-monologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001; Unitef100_D1MIXS-monologue to Small heat shock protein 17.1 kDa n=1 20.2 SVIVT01016420001;	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5—homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI complete	20.2.1
GSVIVT01016426001 UniRef100.DIMIX5—isomologue to Small beat shock protein 7.1 kDa n=1 20.2 GSVIVT01016429001 Tix kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITY1 partial 20.2 GSVIVT01016429001 UniRef100.DIMIX5—isomilar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016429001 UniRef100.DIMIX5—isomilar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016429001 UniRef100.DIMIX5—isomilar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 UniRef100.DIMIX5—isomilar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 Ti.1 kDa n=1 Tax=Vitis vinfera RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016429001 UniRef	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5—homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitic vinifera RepID=D1MIX5_VITVI complete	20.2.1
GSVIVT01016429001 IAS A 100, DIMINS - MININS, VITVI complete TAXE VIIIS vinifers RepD=DIMINS, VITVI complete 20.2 GSVIVT01016429001 UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 (12%) UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 (12%) UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 (12%) UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 (12%) UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI complete 20.2 GSVIVT01016429001 I.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) UniRef100, DIMINSminilar to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI complete 20.2 GSVIVT01016429001 I.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) UniRef100, DIMINSmonologue to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) (20.1 markef100, 20.1 MINSminologue to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) (20.1 markef100, 20.1 MINSminologue to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) (20.1 markef100, 20.1 MINSminilar to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DIMINS, VITVI partial (12%) (20.1 markef100, 20.1 MINSminilar to Small heat shock protein 17.1 kDa n=1 TAXE-VIIIS vinifera RepID=DAINS, VITVI partial (12%) (20.1 markef100, 20.1 MINSminilar to Small heat shock protein 17.1 kDa n=1 TAXE-DIMINSminilar to Sm	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5_homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5_minilar to Small heat shock protein 17.1 kDa n=1	20.2.1
GSVIVT01016429001 UniRef100.DIMIX5—minilar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016429001 UniRef100.DIMIX5—trutt complete 20.2 GSVIVT01016429001 UniRef100.DIMIX5—trutt complete 20.2 GSVIVT01016429001 UniRef100.DIMIX5—trutt complete shock protein 20.2 GSVIVT01016429001 UniRef100.DIMIX5—truttis shock protein 21.2 GSVIVT01016429001 UniRef100.DIMIX5—truttis shock protein 21.2 GSVIVT01016428001 UniRef100.DIMIX5—truttis shock protein 21.2 GSVIVT01016428001 UniRef100.QI0HNS—truttis shock protein 21.2 GSVIVT01016428001 UniRef100.DIMIX5—truttis shock protein 21.2 GSVIVT0102805001 UniRef100.CIMIX6—truttis shock protein 21.2 GSVIVT01028174001 UniRef100.CIMIX6—truttis shock protein	GSVIVT01016429001	Iax= vitis vinitera RepiD=D1MIX5.vitivi complete UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera BenD=D1MIX5 VITVI complete	20.2.
GSVIVT01016426001 1.1 kba n=1 Tax=Visis viniferio.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 Tax=Visis viniferio.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 Tax=Visis viniferio.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 (12%).UiniferiO.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 (12%).UiniferiO.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 (12%).UiniferiO.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 (12%).UiniferiO.DIMIX5—timilar to Small heat shock protein 17.1 kba n=1 (20.2 GSVIVT01016426001 17.1 kba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 complete shock protein 17.1 kba n=1 (20.2 GSVIVT01016426001 11.1 kba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 partial (12%) (20.2 GSVIVT01016426001 11.1 kba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 partial (12%) (20.2 GSVIVT01016426001 11.1 kba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 partial (12%) (20.2 GSVIVT01016426001 11.1 kba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 partial (12%) (20.2 GSVIVT010280335001 11.1 klba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1 partial (12%) (20.2 GSVIVT01038126001 11.1 klba n=1 Tax=Visis vinifera RepID=DIMIX5.VITV1	GSVIVT01016429001	UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1	20.2.
GSVIVT01016428001 1.7 kDa kDa kDa 20.2 GSVIVT01016428001 1.7 kDa m=1 Tax=Vits knifter RepID=DIMIX5.VITV1 complete 20.2 GSVIVT01016428001 1.7 kDa m=1 Tax=Vits knifter RepID=DIMIX5.VITV1 complete GSVIVT01016428001 1.7.1 kDa m=1 Tax=Vits knifter RepID=DIMIX5.VITV1 complete GSVIVT01016428001 UniRef100.DIMIX6similar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016428001 UniRef100.DIMIX6similar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016428001 UniRef100.DIMIX6-similar to Small heat shock protein 17.3 kDa 20.2 GSVIVT0103335001 UniRef100.MI840-weakly similar to Strain DSM 12804, complete genome n=1 Tax=Bordetella petril DSM 12804 RepID=A91480.BORPD partial (16%) 20.2 GSVIVT01033543001 UniRef100.DIMIX6-similar to Call the shock protein 17.3 20.2 GSVIVT0103543501 UniRef100.CIMIX6-similar to Call the shock protein 17.4 KDa GSVIVT0103543501 UniRef100.CIMIX6-similar to Call the shock protein 17.4 KDa GSVIVT0103543501 UniRef100.CIMIX6-si	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5—homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI complete	20.2.3
GSVIVT010164280011 UniRef100_DIMIX5-homologue to Small beat shock protein 20.2 GSVIVT010164280011 (17) kDa m=1 Tax=Vitis vinifera RepID=DIMIX5.VITVI partial (12%) UniRef100_DIMIX5-similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=DIMIX5.VITVI opnital (12%) UniRef100_DIMIX5-similar to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01016428001 UniRef100_DIMIX5-homologue to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT01028033001 UniRef100_D22292-weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q10INS.ORYS Japatial (56%) 20.2 GSVIVT01035330001 UniRef100_A048B0-weakly similar to Small heat shock protein 17.3 20.2 GSVIVT01035434001 UniRef100_DIMIX6-similar to Small heat shock protein 17.3 20.2 GSVIVT01035434001 UniRef100_DIMIX6-similar to Small heat shock protein 17.4 kDa n=1 Tax=Vitis vinifera RepID=DIMIX6VIV1 complete 20.2 GSVIVT01035434001 UniRef100_C5H0C5-similar to Glast V diminase n=1 Tax=Vitis vinifera RepID=DIMIX6VIV1 complete 20.2 GSVIVT01035435001 UniRef100_C5H0C5-similar to Glast V diminase n=1 Tax=Vitis vinifera RepID=DIMIX6VIV1 complete 20.2 GSVIVT01028174001; UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus ditoides RepID=C5H0C5.9ROSI partial (73%) 20.2 GSVIVT0102817	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5_homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5_mimilar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI complete	20.2.
GSVIVT0101642601 UniRef100_DIMIXS—homologue to Small heat shock protein 17.1 kDa n=1 20.2 GSVIVT0101442301 UniRef100_Q10HNS—weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q10HNS_ORYSJ partial (56%) 35 GSVIVT01028053001 UniRef100_P32292—weakly similar to Indole-3-acetic acid-induced protein a=1 Tax=Diga ardiata var. radiata RepID=ARG2.PHAAU complete Genome n=1 Tax=Derdetella petri IDSM 12804 RepID=API4B0.BORPD partial (16%) 35 GSVIVT01035455001 UniRef100_A914B0—weakly similar to Strain DSM 12804, complete genome n=1 Tax=Derdetella petri IDSM 12804 RepID=A914B0.BORPD partial (16%) 35 GSVIVT01035455001 UniRef100_DIMIX6—similar to Small heat shock protein 17.3 kDa n=1 Tax=Visis vinifera RepID=DIMIX6.VITV1 complete ;UniRef100_DIMIX7—similar to Small heat shock protein 17.4 kDa n=1 Tax=Visis vinifera RepID=DIMIX7.VITV1 partial (85%) 36 GSVIVT01032085001 UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus and trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%) 35 GSVIVT01028174001 UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus and trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%) 31.1 GSVIVT01028174001 UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus and trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%) 31.1 GSVIVT01028174001 UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus antichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial	GSVIVT01016426001; GSVIVT01016429001	UniRef100_D1MIX5—homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI partial (12%);UniRef100_D1MIX5—similar to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera RepID=D1MIX5_VITVI complete	20.2.
GSVIVT01014423011 UniRef100_Q101NS=-weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q101NNS.ORYSJ partial (56%) 35 GSVIVT01028033001 UniRef100_P32292-weakly similar to Indole-3-acctic acid-induced protein a Tax=Usriga radiata var.radiata RepID=ARG2.PHAAU complete genome n=1 Tax=Eordetella petri DSM 12804 RepID=A914B0.BORPD partial (16%) 35 GSVIVT01033335001 UniRef100_D1MIX6-winilar to Small heat shock protein 17.4 36 GSVIVT01035435001; UniRef100_D1MIX6-winilar to Small heat shock protein 17.4 20.2 GSVIVT01035435001; UniRef100_D1MIX6-winilar to Small heat shock protein 17.4 20.2 GSVIVT01035435001; UniRef100_D1MIX6-winilar to Small heat shock protein 17.4 20.2 GSVIVT01038125001 UniRef100_DF226-Ginilar to Galactinol synthase 1=1 Tax=Vitis pseudoreti-culata RepID=201MIX7.VITV1 partial (55%) 35 GSVIVT01028174001; UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus ditoides RepID=C5H0C5.9ROSI partial (73%) 31.1 GSVIVT01028174001; UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus (73%) 31.1 GSVIVT01028174001; UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus (73%) 31.1 GSVIVT01028174001; UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus (73%) 31.1 GSVIVT01028174001; UniRef100.C5H0C5-similar t	GSVIVT01016426001	UniRef100_D1MIX5—homologue to Small heat shock protein 17.1 kDa n=1 Tax=Vitis vinifera BenD=D1MIX5_VITVI partial (12%)	20.2.
GSVIVT0102803001UniRef100_P32292_weakly similar to Indole-3-acetic acid-induced protein1ARG2 nel Tax=Vigna radiata var, radiata RepID=ARG2_PHAAU completeGSVIVT0103333001GSVIVT0103333001GSVIVT0103333001GSVIVT0103333001GSVIVT01033435001GSVIVT01035434001GSVIVT01035434001GSVIVT01035434001GSVIVT01035434001GSVIVT01035434001GSVIVT0103812001GSVIVT0102305001GSVIVT0102305001GSVIVT0102305001GSVIVT0102305001GSVIVT01028174001	GSVIVT01014423001	UniRef100_Q10HN8—weakly similar to Expressed protein n=1 Tax=Oryza sa- tiva Japonica Group ReDD=O10HN8_ORYSJ partial (56%)	35.
GSVIVT0103335001UniRef100.A914B0-weakly similar to Strain DSM 12804, complete genome n=1 Tax=Bordetella petrii DSM 12804 RepID=A914B0.BORPD partial (16%) INRef100.A914B0-weakly similar to Strain DSM 12804, complete genome n=1 Tax=Bordetella petrii DSM 12804 RepID=A914B0.BORPD partial (16%) INRef100.D1MIXG-similar to Small heat shock protein 17.3 20.2 KDa n=1 Tax=Dordetella petrii DSM 12804 RepID=A914B0.BORPD partial (16%) INRef100.D1MIXG-similar to Small heat shock protein 17.4 KDa n=1 Tax=Vitis vinifera RepID=D1MIX7.VITVI partial (85%) INREf100.DBP226-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C5H0C5-similar to T3P20.15 protein n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%);UniRef100.C9H0C5-similar to T3P20.15 protein n=1 Tax=Popul	GSVIVT01028033001	UniRef100_P32292—weakly similar to Indole-3-acetic acid-induced protein ABG2 n=1 Tax=Viena radiata var radiata RepID=ABG2 PHAAU complete	2
GSVIVT01033335001UniRef100_A91480—weakly similar to Strain DSM 12804, complete genome and Tax=Bordtella petrii DSM 12804 RepID=A91480_BORPD partial (16%)30GSVIVT0103543001; GSVIVT0103543001UniRef100_D1MIX6—similar to Small heat shock protein 17.3 kha n=1 Tax=Vitis vinifera RepID=D1MIX6.VITV1 com- plete;UnIRef100_D1MIX7—similar to Small heat shock protein 17.4 kha n=1 Tax=Vitis vinifera RepID=D1MIX6.VITV120.2GSVIVT01038125001 GSVIVT01028174001; GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 GSVIVT01033476001 UniRef100_CG816_ARATH compl	GSVIVT01033335001	UniRef100_A914B0—weakly similar to Strain DSM 12804, complete genome n=1 Tax=Bordetella petrii DSM 12804 RepID=A914B0_BORPD partial (16%)	35.
	GSVIVT01033335001	UniRef100_A9I4B0—weakly similar to Strain DSM 12804, complete genome n=1 Tax=Bordetella petrii DSM 12804 RepID=A9I4B0 BORPD partial (16%)	35.
GSVIVT01038125001UniRef100_0B0F226—similar to Class IV chitinase n=1 Tax=Vitis pseudoreticulata RepID=D6726_9ROSI partial (95%)20GSVIVT01023085001UniRef100_C5H0C5—similar to Class IV chitinase n=1 Tax=Populus3.1.1GSVIVT01028174001;UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus3.1.1(73%);UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus1.1.1(73%);UniRef100_C5H0C5—similar to Galactinol synthase 1 n=1 Tax=Oryza <t< td=""><td>GSVIVT01035435001; GSVIVT01035434001</td><td>UniRef100_D1MIX6—similar to Small heat shock protein 17.3 kDa n=1 Tax=Vitis vinifera RepID=D1MIX6_VITVI com- plete;UniRef100_D1MIX7—similar to Small heat shock protein 17.4 kDa</td><td>20.2.</td></t<>	GSVIVT01035435001; GSVIVT01035434001	UniRef100_D1MIX6—similar to Small heat shock protein 17.3 kDa n=1 Tax=Vitis vinifera RepID=D1MIX6_VITVI com- plete;UniRef100_D1MIX7—similar to Small heat shock protein 17.4 kDa	20.2.
GSVIVT01023085001Source of the second system of the second syste	GSVIVT01038125001	UniRef100_B0FZ26—similar to Class IV chitinase n=1 Tax=Vitis pseudoreti- aulat. PapID=PBCZ26 = OCSL partial (05%)	20.
trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%)GSVIVT01028174001;UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepLD=C5H0C5.9ROSI partial (73%); UniRef100_Q5UPG9-weakly similar to Calcotinol synthase 4 n=1 Tax=Populus 	GSVIVT01023085001 GSVIVT01028174001; GSVIVT01028176001	unita (tep1D=D07250_St051 partial (55%) none UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%);UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus	35. 3.1.1.
GSVIVT01028174001; UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 trichocarpa x Populus deltoides RepID=C5H0C5.9ROSI partial (73%) GSVIVT01028176001 UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 UniRef100_C5H0C5-similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT0101639601 UniRef100_C9UPG9-weakly similar to T3F20.15 protein n=1 20.2 GSVIVT01033476001 UniRef100_Q6YUA7-similar to C308g0464000 protein n=1 Tax=Oryza sativa 20.2 Japonica Group RepID=Q6YUA7.CMYSJ partial (65%) UniRef100_Q0LKJ6-weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q10KJ6_ORYSJ partial (54%) 10.1.1 GSVIVT01032702001 UniRef100_Q8LRD0-weakly similar to C301g0823600 protein n=2 Tax=Oryza sativa RepID=Q8LRD0_ORYSJ complete 27.3 GSVIVT01038631001 UniRef100_Q6SLARATH complete 20.2 27.3 GSVIVT01038631001 UniRef100_OC81961-weakly similar to C301g0	GSVIVT01028174001; GSVIVT01028176001	trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%) UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%); UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RenID=C5H0C5 9ROSI partial (73%)	3.1.1.
GSVIVT01028174001; UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus 3.1.1 GSVIVT01028176001 trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%); 3.1.1 GSVIVT01028176001 UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9ROSI partial (73%); 3.1.1 GSVIVT01016396001 UniRef100_C9LPG9—weakly similar to T3F20.15 protein n=1 20.2 GSVIVT01033476001 UniRef100_Q9LPG9—weakly similar to C38804640000 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q0FG9LARATH partial (54%) 20.2 GSVIVT0102738001 UniRef100_Q0LYA7—similar to C3880464000 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q0KLGORYSJ partial (65%) 20.2 GSVIVT0103748001 UniRef100_Q0S0816—weakly similar to Expressed protein n=1 Tax=Arabidopsis thaliana RepID=Q0816_ARATH complete 20.2 GSVIVT01032702001 UniRef100_Q0SLRDO—weakly similar to C301g0823600 protein n=2 Tax=Oryza sativa RepID=Q0SLRDO_ORYSJ complete 20.2 GSVIVT0103863101 UniRef100_Q0SLRDO—weakly similar to C301g0823600 protein n=2 Tax=Oryza sativa RepID=Q0SLAS_ANTH complete 20.2 GSVIVT0103863101 UniRef100_OCS18—similar to C401JaS_2 net in n=1 Tax=Arabidopsis thaliana tabacum RepID=OS1961_TOBAC partial (66%) 20.2 GSVIVT01038631001 UniRef100_C0S180=-weakly similar to T20L92.2 protein n=1 Tax=Arabidopsis tabaliana RepID=O65233_ARATH complete	GSVIVT01028174001; GSVIVT01028176001	UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9R0SI partial (73%);UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9R0SI partial (73%)	3.1.1.
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	GSVIVT01028174001; GSVIVT01028176001	UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9R0SI partial (73%);UniRef100_C5H0C5—similar to Galactinol synthase 4 n=1 Tax=Populus trichocarpa x Populus deltoides RepID=C5H0C5_9R0SI partial (73%)	3.1.1
GSVIVT01033476001 UniRef100_Q6YUA7—similar to Os08g464000 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q6YUA7_ORYSJ partial (65%) 20.2 GSVIVT01027380001 UniRef100_Q10K16—weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q10K16_ORYSJ partial (54%) 20.2 GSVIVT01003748001 UniRef100_Q10K16—weakly similar to Tax=Arabidopsis thaliana RepID=O80816_ARATH complete 20.2 GSVIVT01032702001 UniRef100_Q10K16—weakly similar to Os010823600 protein n=1 Tax=Arabidopsis thaliana RepID=Q8LRD0_ORYSJ complete 16.2.1 GSVIVT010038631001 UniRef100_Q8LRD0_weakly similar to Os010823600 protein n=2 Tax=Oryza sativa RepID=Q8LRD0_ORYSJ complete 27.3 GSVIVT01038631001 UniRef100_Q8L9D—weakly similar to Cellulase2 n=1 Tax=Pyrus communis RepID=CAZN18_FVRCO partial (97%) 26 GSVIVT0103563001 UniRef100_OS1961—weakly similar to Tax=Drole of (Type I) n=1 20.2 GSVIVT0103563001 UniRef100_OC81961—weakly similar to Tax=Arabidopsis thaliana RepID=O5233_ARATH complete 26 GSVIVT01045417001 UniRef100_C6K145—weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01016396001	UniRef100_Q9LPG9—weakly similar to T3F20.15 protein n=1 Tax=Arabidopsis thaliana RepID=Q9LPG9_ARATH partial (39%)	20.2.
GSVIVT01027380001 UniRef100_Q10KJ6—weakly similar to Expressed protein n=1 Tax=Oryza sativa Japonica Group RepID=Q10KJ6_ORYSJ partial (54%) 20.2 GSVIVT01003748001 UniRef100_C0S16—weakly similar to TaxF5_23 protein n=1 Tax=Arabidopsis thaliana RepID=O80816_ARATH complete 16.2.1 GSVIVT01032702001 UniRef100_QSLRDO_weakly similar to OS01g0823600 protein n=2 Tax=Oryza sativa RepID=QSLRDO_ORYSJ complete 27.3 GSVIVT01009881001 UniRef100_QSLRDO_weakly similar to Cellulase2 n=1 Tax=Pyrus communis RepID=A0ZNJ8_FYRCO partial (97%) 26 GSVIVT0103563001 UniRef100_OS233—weakly similar to T26D2.2 protein n=1 Tax=Arabidopsis thaliana RepID=O5233_ARATH complete 26 GSVIVT01035163001 UniRef100_OS4961—weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis thaliana RepID=O55233_ARATH complete 20.2 GSVIVT01046417001 UniRef100_CGKI45—weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01033476001	UniRef100_Q6YUA7—similar to Qs08g0464000 protein n=1 Tax=Oryza sativa Japonica Group RepID=Q6YUA7_ORYSJ partial (65%)	20.2.
GSVIVT01003748001 UniRef100_O80816 - weakly similar to T8F5.23 protein n=1 Tax=Arabidopsis thaliana RepID=O80816_ARATH complete 16.2.1 GSVIVT01032702001 UniRef100_QSUB16_MRATH complete 27.3 GSVIVT0100380101 UniRef100_QSUB16_MRATH complete 27.3 GSVIVT01009881001 UniRef100_QSUB16_MRATH complete 27.3 GSVIVT01009881001 UniRef100_QSUB-Similar to Cellulase2 n=1 Tax=Pyrus communis RepID=A0ZNJ8_PYRCO partial (97%) 26.2 GSVIVT01038631001 UniRef100_OS1961—weakly similar to Tellulase2 n=1 Carepyrus communis RepID=O81961_TOBAC partial (96%) 20.2 GSVIVT01035163001 UniRef100_OC5233_meakly similar to T26D22.2 protein n=1 Tax=Arabidopsis thaliana RepID=O65233_ARATH complete 35 GSVIVT01016417001 UniRef100_C6KI45—weakly similar to Cupp-glucosyltransferase family 1 pro- 26	GSVIVT01027380001	UniRef100_Q10KJ6—weakly similar to Expressed protein n=1 Tax=Oryza sa- tiya Japonica Group ReID=O10KJ6_ORYSJ partial (54%)	20.2.
GSVIVT01032702001 UniRef100_Q8LRD0-weakly similar to Os01g0823600 protein n=2 Tax=Oryza sativa RepID=Q8LRD0_ORYSJ complete 27.3 GSVIVT01009881001 UniRef100_Q8LRD0_ORYSJ complete 26 DID=A0ZNJ8-similar to Cellulase2 n=1 Tax=Pyrus communis RepID=A0ZNJ8_PYRCO partial (97%) 26 GSVIVT01038631001 UniRef100_O6233-weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis thaliana RepID=O65233_ARATH complete 35 GSVIVT01016417001 UniRef100_OC6KI45-weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01003748001	UniRef100_O80816—weakly similar to T8F5.23 protein n=1 Tax=Arabidopsis thaliana RepID=O80816_ARATH complete	16.2.1.
GSVIVT01009881001 UniRef100_A0ZNJ8—similar to Cellulase2 n=1 Tax=Pyrus communis Replication 26 gSVIVT01038631001 UniRef100_CA12NJ8_pYRCO partial (97%) 20.2 GSVIVT01038631001 UniRef100_OS1233—weakly similar to Heat shock protein 26 (Type I) n=1 20.2 GSVIVT01035163001 UniRef100_OC5233—weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis 35 GSVIVT01016417001 UniRef100_C6KI45—weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01032702001	UniRef100_Q8LRD0—weakly similar to Os01g0823600 protein n=2 Tax=Oryza satiya RepID=Q8LRD0_ORYSJ complete	27.3.
GSVIVT01038631001 UniRef100_OS1961—weakly similar to Heat shock protein 26 (Type I) n=1 20.2 Tax=Nicotiana tabacum RepID=O81961_TOBAC partial (96%) UniRef100_O65233—weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis 35 thaliana RepID=O65233_ARATH complete UniRef100_C6KI45—weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01009881001	UniRef100_A0ZNJ8—similar to Cellulase2 n=1 Tax=Pyrus communis Re- pID=A0ZNJ8 PYRCO partial (97%)	26
GSVIVT01035163001 UniRef100_O65233_weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis 35 thaliana RepID=O65233_ARATH complete UniRef100_C6K145_weakly similar to UDP-glucosyltransferase family 1 pro- 26	GSVIVT01038631001	UniRef100_081961—weakly similar to Heat shock protein 26 (Type I) n=1 Tax=Nicotiana tabacum RenD=081061 TOBAC partial (06%)	20.2.
GSVIVT01016417001 UniRef100_C6KI45—weakly similar to UDP-glucosyltransferase family 1 pro-	GSVIVT01035163001	UniRef100_065233—weakly similar to T26D22.2 protein n=1 Tax=Arabidopsis	35.
	GSVIVT01016417001	UniRef100_C6KI45—weakly similar to UDP-glucosyltransferase family 1 pro-	26.

Gène ID	Annotation	Bin
GSVIVT01016428001	UniRef100_D1MIX5—weakly similar to Small heat shock protein 17.1 kDa n=1	20.2.1
GSVIVT01016413001	Tax=Vitis vinifera RepID=D1MIX5_VITVI complete UniRef100_A4ZF46—weakly similar to Chaperone n=1 Tax=Agave tequilana	20.2.1
GSVIVT01027028001	RepID=A42F40_AGATE partial (81%) UniRef100_O65373—weakly similar to F12F1.7 n=1 Tax=Arabidopsis thaliana	20.2.1
GSVIVT01016403001	UniRef100-Q9LPG9—weakly similar to T3F20.15 protein n=1	20.2.1
GSVIVT01018654001	UniRef100-Q96331—weakly similar to 23.6 kDa heat shock protein, mitochon- drial n=2 Tay=Arabidonsis thaliana BenD=HS23M ARATH partial (64%)	20.2.1
GSVIVT01005252001	UniRef10_UPI000016344C—weakly similar to ankyrin repeat family protein n=1 Tax=Arabidopsis thaliana RepID=UPI000016344C partial (78%)	31.1
GSVIVT01031125001	UniRef100_Q40924—similar to Luminal binding protein n=1 Tax=Pseudotsuga menziesii RepID=Q40924_PSEMZ partial (94%)	20.2.1
GSVIVT01028856001	UniRef100_P51819—weakly similar to Heat shock protein 83 n=1 Tax=Ipomoea nil RepID=HSP83_IPONI complete	20.2.1
GSVIVT01035428001	UniRef100_D1MIX6—homologue to Small heat shock protein 17.3 kDa n=1 Tax=Vitis vinifera RepID=D1MIX6_VITVI partial (54%)	20.2.1
GSVIVT01036049001	UniRef100_Q9ZWK3—similar to DnaJ homolog n=1 Tax=Salix gilgiana Rep ID=Q9ZWK3_SALGI complete	20.2.1
GSVIVT01001315001	UniRef100_B7ZEP6—weakly similar to Small heat-shock protein n=1 Tax=Chenopodium rubrum RepID=B7ZEP6_CHERU partial (90%)	20.2.1
GSVIVT01035385001	UniRef100_P41152—weakly similar to Heat shock factor protein HSF30 n=1 Tax=Solanum peruvianum RepID=HSF30_SOLPE partial (85%)	27.3.23
GSVIVT01000923001	UniKet100_D1MIX4— Bcl-2-associated athanogene-like protein n=1 Tax=Vitis vinifera RepID=D1MIX4_VITVI partial (21%)	20.2.1
GSVIVT01016572001	Unineriuu_BUM1A7—weakly similar to Peroxisomal small heat shock protein n=1 Tax=Glycine max RepID=B0M1A7-SOYBN partial (79%) UniDef10 0651402, weakly similar to 0c0006525600 protein ==1.750	20.2.1
GSVIVT01013020001 .	sativa Japonica Group RepID=Q651M2_ORYSJ partial (35%) UniBeff100_Q40478_waakly_similar_to_Ethylane_responsive_transcript	31.4
GSVIVT01013923001;	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC par-	11.3.2
GSVIVT01013924001;	tial (40%);UniRef100_A7BKD0-weakly similar to Transcription fac-	
GSVIVT01013917001	tor DcERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA par-	
	tial (91%);UniRef100_A7BKD0—weakly similar to Transcription fac-	
	(01%) United to 0.00078, woold united to 5 the processing transport	
	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC partial	
	(71%)	
GSVIVT01013920001;	UniRef100_Q40478-weakly similar to Ethylene-responsive transcrip-	17.5.2
GSVIVT01013923001;	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC par-	
GSVIVT01013924001;	tar (40%); Unikeriou. A/BKD0—weakly similar to Transcription fac-	
00111101010011001	tial (91%);UniRef100_A7BKD0—weakly similar to Transcription fac-	
	tor DcERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUĈA partial	
	(91%);UniRef100_Q40478—weakly similar to Ethylene-responsive transcrip-	
	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC partial	
GSVIVT01013920001 ·	(/1%) UniBef100 040478—weakly similar to Ethylene-responsive transcrip-	17.5.2
GSVIVT01013923001:	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC par-	17.0.2
GSVIVT01013924001;	tial (40%);UniRef100_A7BKD0—weakly similar to Transcription fac-	
GSVIVT01013917001	tor DcERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA par-	
	tial (91%);UniRef100_A7BKD0—weakly similar to Transcription fac-	
	tor DCERF1 n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA partial	
	(9170); Uninceriou-Q40478—weakiy similar to Ethylene-responsive transcrip-	
	(71%)	
GSVIVT01013920001;	UniRef100_Q40478—weakly similar to Ethylene-responsive transcrip-	17.5.2
GSVIVT01013923001;	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC par-	
GSVIVT01013924001;	tial (40%);UniRef100_A7BKD0—weakly similar to Transcription fac-	
GSVIV101013917001	tor DCERFI n=1 Tax=Daucus carota RepID=A7BKD0_DAUCA par-	
	tor DcEBF1 n=1 Tax=Daucus carota RepID=A7BKD0 DAUCA partial	
	(91%);UniRef100_Q40478—weakly similar to Ethylene-responsive transcrip-	
	tion factor 5 n=1 Tax=Nicotiana tabacum RepID=ERF5_TOBAC partial	
COMPRESS OF THE OWNER OWNE		
G5v1VT01033123001	Unikeiiuu_Q(1118—similar to Cullin 3a (Fragment) n=1 Tax=Arabidopsis thaliana RepID=O7Y1Y8 ARATH partial (27%)	30.5
GSVIVT01030071001:	UniRef100_Q41397—weakly similar to Cf-2.1 n=1 Tax=Solanum pimpinellifo-	35.3
GSVIVT01026230001	lium RepID=Q41397_SOLPI complete;UniRef100_Q3ZBS7—weakly similar to	5516
	Vitronectin n=1 Tax=Bos taurus RepID=Q3ZBS7_BOVIN partial (9%)	
GSVIVT01035435001;	UniRef100_D1MIX6—similar to Small heat shock protein 17.3	20.2.1
GSVIVT01035434001	kDa n=1 Tax=Vitis vinifera RepID=D1MIX6_VITVI com-	
	n=1 Tax=Vitis vinifera RepID=D1MIX7 VITVI partial (85%)	
GSVIVT01035435001	UniRef100_D1MIX6—similar to Small heat shock protein 17.3 kDa n=1	20.2.1
	Tax=Vitis vinifera RepID=D1MIX6_VITVI complete	
GSVIVT01017087001	UniRef100_Q45FF1—weakly similar to Pyridoxine biosynthesis protein $n=1$	17.5.3
	Tax=Lotus japonicus RepID=Q45FF1_LOTJA partial (96%)	