

Diversité de Ralstonia solanacearum au Cameroun et bases génétiques de la résistance chez le piment (Capsicum annuum) et les solanacées

Gabriel Mahbou Somo Toukam

► To cite this version:

Gabriel Mahbou Somo Toukam. Diversité de Ralstonia solanacearum au Cameroun et bases génétiques de la résistance chez le piment (Capsicum annuum) et les solanacées. Sciences du Vivant [q-bio]. AgroParisTech, 2010. Français. NNT: . tel-02824238

HAL Id: tel-02824238 https://hal.inrae.fr/tel-02824238

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

N°/__/__/__/__/__/__/__/__/

THÈSE

pour obtenir le grade de

Docteur (Ph D)

de

L'Institut des Sciences et Industries du Vivant et de l'Environnement

(Agro Paris Tech)

Spécialité : Biologie/Génétique Évolutive et d'Amélioration des Plantes

présentée et soutenue publiquement par

Gabriel MAHBOU SOMO TOUKAM

le 2 mars 2010

DIVERSITE DE RALSTONIA SOLANACEARUM AU CAMEROUN ET BASES GENETIQUES DE LA RESISTANCE CHEZ LE PIMENT (CAPSICUM ANNUUM) ET LES SOLANACEES

Directeur de thèse : Alain PALLOIX

Travail réalisé à la Station de Pathologie Végétale (SPV) et l'Unité de Génétique et d'Amélioration de Fruits et Légumes (UGAFL), UR 1052, INRA-AVIGNON, BP 94, 84143 Montfavet Cedex et à l'Institut de Recherche Agricole pour le Développement (IRAD) BP 2067 Yaoundé- Cameroun

Devant le jury :

 M. André GALLAIS, Professeur Émérite, AgroParisTech M. Jacques LE GOUIS, Directeur de Recherches, INRA 	Président Rapporteur
Mme Claire NEEMA, Professeur, AgroParisTech	Rapporteuse
M. Philippe PRIOR, Directeur de Recherches, CIRAD-INRA	Examinateur
M. Jacob NGEVE MBUA, Directeur de Recherches, Directeur Général, IRAD	Examinateur
M. Alain PALLOIX, Directeur de Recherches, INRA	Directeur

'ari

N°/__/__/__/__/__/__/__/__/__/

pour obtenir le grade de

Docteur (Ph D)

de

L'Institut des Sciences et Industries du Vivant et de l'Environnement

(Agro Paris Tech)

Spécialité : Biologie/Génétique Évolutive et d'Amélioration des Plantes

présentée et soutenue publiquement par

Gabriel MAHBOU SOMO TOUKAM

Le 2 mars 2010

DIVERSITE DE *RALSTONIA SOLANACEARUM* AU CAMEROUN ET BASES GENETIQUES DE LA RESISTANCE CHEZ LE PIMENT (*CAPSICUM ANNUUM*) ET LES SOLANACEES

Directeur de thèse : Alain PALLOIX

Travail réalisé à la Station de Pathologie Végétale (SPV) et l'Unité de Génétique et d'Amélioration de Fruits et Légumes (UGAFL), UR 1052, INRA-AVIGNON, BP 94, 84143 Montfavet Cedex et à l'Institut de Recherche Agricole pour le Développement (IRAD) BP 2067 Yaoundé- Cameroun

Devant le jury :

 M. André GALLAIS, Professeur Émérite, AgroParisTech M. Jacques LE GOUIS, Directeur de Recherches, INRA 	Président Rapporteur
Mme Claire NEEMA, Professeur, AgroParisTech	Rapporteuse
M. Philippe PRIOR, Directeur de Recherches, CIRAD-INRA	Examinateur
M. Jacob NGEVE MBUA, Directeur de Recherches, Directeur Général, IRAD	Examinateur
M. Alain PALLOIX, Directeur de Recherches, INRA	Directeur

A Henriette ma bien aimée et aux enfants MAHBOU : SIMO Audrey, NAINKAM Ruth, KAMDEM Paule, WOUEDJE Christelle et aux familles NKOUNCHOU et DJOKO. Merci pour votre soutien.

A la mémoire de mes parents NAINKAM TEINKAM Jeanne et SOMO TOUKAM Luc Pascal.

RESUME

<u>Titre :</u> DIVERSITE DE *RALSTONIA SOLANACEARUM* AU CAMEROUN ET BASES GENETIQUES DE LA RESISTANCE CHEZ LE PIMENT (*CAPSICUM ANNUUM*) ET LES SOLANACEES.

La connaissance de la diversité génétique de *R. solanacearum* autant que la connaissance du déterminisme génétique de la résistance sont importantes pour établir une stratégie de lutte contre cette bactérie ubiquiste. Elles permettent de choisir et d'orienter des méthodes de lutte et le développement d'outils de contrôle de quarantaine adaptés.

Dans un contexte scientifique de plus en plus tourné en génétique par l'approche plante modèle et dans lequel les Solanacées occupent la place de plante pionnière d'une part, et d'autre part par l'émergence de contournement des résistances liées à la grande diversité génotypique et phénotypique de *R. solanacearum* (au point où on parle ici de complexe d'espèce), l'objectif de cette thèse est de contribuer à établir les bases d'un programme d'amélioration des Solanacées contre cette phytobactériose majeure au Cameroun. En recourant à une approche moléculaire, notamment la méthode de caractérisation phylophasique qui décrit la diversité génétique des souches de *R. solanacearum* en quatre phylotypes et séquevars, nous avons révélé l'existence de trois phylotypes dans ce pays d'Afrique dont la diversité agro-climatique lui vaut le surnom d'« Afrique en miniature ». Ces phylotypes sont le I (*Asiaticum*), II (*Americanum*) et III (*Africanum*).

Les souches du phylotype III du Cameroun se sont révélées génétiquement distinctes des souches africaines de référence originaires du Zimbabwe et de l'Océan Indien. Les souches isolées sur pomme de terre dans les hauts plateaux de l'Ouest du Cameroun se classent dans les deux phylotypes, à savoir le II (r3-bv2) et le III. Ces souches du phylotype II et III des hauts plateaux de l'Ouest infectent aussi bien la pomme de terre que la tomate, et pourraient constituer une menace économique pour ces cultures dans cette région. Dans cette étude, les souches du phylotype I émergent en zone forestière humide comme une contrainte majeure à la culture des Solanacées. Ce constat a orienté le choix d'une souche de ce phylotype (CMR143) dans les travaux de la cartographie génétique de la résistance chez le piment. Pour ce faire, deux géniteurs de résistance différents CM334 et PM687 ont été considérés. Ces études génétiques ont montré une forte héritabilité de la résistance au flétrissement bactérien chez le piment. La détection de QTL par analyse de variance (ANOVA), par cartographie d'intervalle, simple (SIM) et composite (CIM), ont révélé l'existence de 3 à 6 QTLs et d'interactions digéniques dans le contrôle de la résistance du piment au flétrissement bactérien. Ces résultats confirment le caractère oligogénique de la résistance du piment au flétrissement bactérien. En mettant ensemble ces QTLs et ces interactions digéniques, 47 à 64% de la variance phénotypique sont expliqués selon le caractère de résistance considéré. Par ailleurs, il est montré que la résistance du piment au flétrissement bactérien est fortement associée à la limitation de l'envahissement de la tige par la bactérie. De plus, cette étude a mis en évidence le caractère phylotype-spécifique de la résistance, car seulement 33% de facteurs génétiques contribuent au contrôle du flétrissement bactérien lors de tests avec le phylotype 2. La localisation de ces derniers permet de conclure en validant partiellement l'hypothèse de synténie entre la tomate et le piment.

Mots clés : *Ralstonia solanacearum*, multiplexe PCR, phylotype, séquevar, QTLs, synténie, tomate, piment, Cameroun, Guadeloupe, AFLP, cartographie.

ABSTRACT

<u>Title</u> : DIVERSITY OF *RALSTONIA SOLANACEARUM* IN CAMEROON AND GENETIC BASIS OF RESISTANCE OF PEPPER (*CAPSICUM ANNUUM* L.) AND SOLANACEAE.

The knowledge of genetic diversity of *R. solanacearum* as well as the knowledge of genetic determinism of pepper resistance are critical for elaborating a strategy against this ubiquist bacteriat. They will facilitate the choice and direction of fighting methods and the development of well adapted tools for quarantine measures. In a modern approach of genetics more and more based on plant models, Solanaceaes occupy a place of pioneer. On an other hand the emerging breakdown of resistances seems to be due to large genotypic and phenotypic diversity of R. solanacearum. In such a context, the objective of this thesis is to set up the basis for an improvement programme of Solanaceous species against this major bacterial disease in Cameroon. A molecular methodology was used, namely the phylophasic characterization method, which describes R. solanacearum genetic diversity into four phylotypes and sequevars. We have revealed the existence of three phylotypes in this African country where agro-climatic diversity makes it named "little Africa". These phylotypes are : I (Asiaticum), II (Americanum) and III (Africanum). The strains of phylotype III from Cameroon are genetically distinct from African reference strains originating from Zimbabwe and Indian Ocean. The strains isolated on potato plants from the highlands in Western Cameroon belong to both phylotypes II (r3-bv2) and III. Strains of phylotype II and III from Western highlands can infect potato as well as the tomato plants. They constitute an economic threat for these crops in this mountainous area (AEZ3 : Foumbot, Baham, Dschang, Mbouda, Bafoussam, Bamougoum). In our study, strains of phylotype I emerge in wet forests zone (AEZ5 : Yaoundé, Obala, Okola, Akonolinga, Bafia) and represent a major threat for Solanaceous crops. This statement directed the choice of a strain from phylotype I, CMR143, in further work on genetic mapping.

Consequently, two distinct pepper genitors of resistance were used, namely CM334 and PM687. Our genetic studies have revealed a strong heritability of pepper to bacterial wilt resistance. Using analysis of variance (ANOVA), simple interval mapping (SIM) and composite interval mapping (CIM) methods, we revealed the existence of 3-6 QTLs associated to digenic interactions for the control of pepper bacterial wilt. Putting together these QTLs and these digenic interactions, 47 to 64% of the phenotypical variance could be explained according to the character of resistance to be considered. Therefore, we confirmed the oligogenic character of pepper to bacterial wilt. Following Chi 2 tests we have shown that pepper resistance to bacterial wilt is strongly associated with the limitation of bacterial entry into plant stem. In addition, this study highlighted the phylotype-specific character of such a resistance. Only 33% of genetic factors contribute to the control of bacterial wilt in our experiments with phylotypes 1 and 2. These results were further confirmed by the genetic cartography of pepper resistance QTLs. Their localization makes it possible to partially validate the assumption of synteny between tomato and pepper at a macro level.

Key words : *Ralstonia solanacearum*, multiplex PCR, phylotype, séquevar, QTLs, synteny, tomato, pepper, Cameroon, Guadeloupe, AFLP, mapping.

REMERCIEMENTS

Ce travail de thèse est une vaste œuvre collective dont je n'en suis que le premier auteur. Plusieurs personnes y ont contribué, tant au Cameroun qu'en France. En effet, ces travaux nous ont conduits à travailler dans trois laboratoires : la Station de Pathologie Végétale (SPV) et l'Unité de Génétique et d'Amélioration de Fruits et Légumes (UGAFL) de l'INRA d'Avignon, et l'Institut pour la Recherche Agricole et le Développement à Yaoundé au Cameroun,

Je remercie Rémi KAHANE, parrain de cette thèse et le Professeur André GALLAIS. Le premier pour avoir tout mis en œuvre au CIRAD et à l'IRAD pour que j'obtienne les appuis scientifiques et les financements nécessaires pour porter ce travail de recherche. Il n'a ménagé aucun effort pour l'aboutissement de ce travail.

Le Professeur André GALLAIS, pour m'avoir accepté d'abord en DAA Ingénierie de la Production Végétale (IPV) à l'INA-PG et en thèse par la suite. J'ai apprécié au plus haut point son encadrement par ses précieux conseils. Je lui témoigne toute ma reconnaissance.

J'adresse mes vifs remerciements à Jacques LE GOUIS et Claire NEEMA qui ont accepté d'être les rapporteurs de cette thèse. A tous les autres membres de mon jury, je dis « merci » pour l'intérêt qu'ils ont porté à mon travail.

Alain PALLOIX et Philippe PRIOR, oui je vous cite en même temps. Vous m'avez tous les deux conduits chacun à sa façon dans une fantastique aventure humaine et scientifique. Alain tu as co-dirigé cette thèse que tu as suivie d'un œil très vigilant, tout au long de son parcours. C'est pendant mes différents séjours à tes côtés et les voyages que j'ai véritablement acquis mes marques de sélectionneur. Philippe tu as eu le mérite de m'entraîner avec une passion contagieuse dans le monde obscur de *Ralstonia solancacearum*. Des différentes prospections réalisées ensemble je garde des souvenirs inoubliables.

J'adresse mes sincères remerciements à Véronique LEFEBVRE et toute l'équipe du laboratoire de Biologie Moléculaire. La disponibilité sans faille de Véronique, ses conseils et sa contribution dans l'élaboration de l'approche méthodologique pour les aspects de synténie ont été capital.

Je remercie le Dr Charles THE, qui a suscité en moi la passion pour la génétique. Ses conseils et ses encouragements ont été bien précieux.

Je remercie l'Ambassade de France au Cameroun et son Service de Coopération et d'Action Culturelle (SCAC) à Yaoundé au Cameroun qui m'a accordé une bourse de mobilité pour mes séjours en France. Je pense en particulier à Olivier DAVID qui a marqué un très grand intérêt pour l'aboutissement de ce travail. Merci Olivier, tu as été un excellent accompagnateur.

Je remercie Jacques et Marie Thérèse DAVID, ma famille d'accueil aux Lilas en banlieue parisienne. Jacques et Marie, vous m'avez accepté véritablement comme un fils.

Je remercie les responsables de l'IRAD à Nkolbisson et Foumbot, nommément Dr. Njoya Aboubakar, Directeur Général Adjoint et Directeur scientifique de l'IRAD, Dr. Jacob Ngueve, Coordonnateur scientifique des cultures annuelles, pour l'intérêt scientifique qu'ils ont porté jusqu'à l'aboutissement de ce travail. Drs. Onguene Nere et Njoya Paul pour les différents appuis à travers les projets BAD et REPARAC, appuis qui ont servi au phénotypage des RILs et des lignées haploïdes doublées.

Je remercie les différents responsables du Ministère de l'agriculture et du Développement Rural (MINADER) du Cameroun que j'ai rencontré au cours des différentes missions de collecte et d'isolement des bactéries à travers le Cameroun. Je cite quelques noms, MM. Benjamin MENDAMA de la DDA du Mfoundi à Yaoundé, Jean KENMOGNE de la DAA d'Akonolinga, Gervais EVINA de la DAA d'Obala, Mme GUEMDO de la DAA à Bafoussam, Richard TIEMGNE DAA à Bandjoun, Dieudonné NEMBOT de la base phytosanitaire à Dschang, sans oublier les personnes rencontrées à Bafang, à Melong, à Baham, N'Gaoundéré, Mbouda, Foumbot et Buea. A tous je dis mille fois merci.

Je remercie Caroline GUILBAUD de la SPV de l'INRA à Avignon qui a guidé mes premiers pas dans un laboratoire de bactériologie et de biologie moléculaire.

Merci à Mr. Lin, stagiaire de l'AVRDC avec qui j'ai partagé bureau et paillasse pour le « tuyau » concernant le dosage des ADN bactérien en PCR multiplexes.

J'adresse mes vifs remerciements à toute l'équipe GAFL d'Avignon, Anne Marie Sage PALLOIX, Thérèse PHALY, Ghislaine NEMOUCHI, j'ai appris de vous la planification, la préparation et la mise en place d'un essai en serre et en champ. Je garde de beaux souvenirs pour ces journées ensoleillées au champ de piment.

A Patrick SIGNORET, j'exprime toute ma gratitude et ma reconnaissance pour avoir guidé mes premiers pas au laboratoire de biologie moléculaire, pour les aspects relatifs à la génétique. Que d'émotions nous avons partagés lors de la mise œuvre de la technique AFLP sur la population des HD. Depuis l'extraction de l'ADN sur jeunes plants de piment en serre, la purification, le dosage, la double digestion suivie de la ligation, le marquage au P³² jusqu'à la révélation de l'autoradiographie. Ce furent des moments faits d'anxiété et la joie. Tu m'as fait puiser de façon illimitée dans ton expérience pour que cette anxiété se transforme très souvent en moments de joie. Le souvenir du premier coulage de gel polyacrylamide reste gravé dans ma mémoire. J'espère sincèrement que tu trouveras un motif de satisfaction dans l'aboutissement ce travail.

Un grand merci à Pierre TEGUEFOUET mon collègue et ami, NKODO et Félix VOUNDI tous de l'IRAD à Nkolbisson pour le sérieux qu'ils ont mis à respecter les consignes en serre et en champ pendant les opérations de phénotypage au Cameroun.

ACRONYMES ET ABREVIATIONS

µg: microgramme µl : microlitre uM : micromolaire ADN : Acide Désoxyribonucléique AFLP : Amplified Fragment Length Polymorphism ANOVA : Analyse de variance ATP : Adenosine Tri Phosphate AVRDC : Asian Vegetable Research and Development Centre BET : Bromure d'éthydium cM : Centimorgan (Unité de mesure de distance sur un carte génétique. Un cM équivaut à 1 pour 100 de recombinaison entre deux locus i.e. un crossing-over pour cent méioses) CM334 : Criollo de Morelos 334 CMV : Cucomber Mosaic Virus **CVMV : Chili Veinal Mottle Virus** DAA : Délégation d'Arrondissement de l'Agriculture dATP : Désoxyadénosine Tri Phosphate dCTP : Désoxycytidine Tri Phosphate dGTP : Désoxyguanosine Tri Phosphate DO : Densité optique dTTP : Désoxythymidine Tri Phosphate EDTA : Acide Ethylène Diamine Tétraacétique FAO : Food and Agriculture Organization des Nations Unies HD : Haploïde Doublé **IBPGR** : International Board on Plant Genetic Resources INRA : Institut National de la Recherche Agronomique **ISSR : Inter Simple Sequence Repeats** min : minute ml : millilitre mm : millimètre mM : millimolaire Mpb/1C : Mega paire de base par génome haploïde N : solution normale NaOH : Hydroxyde de sodium **NEB : EDTA Borate** Ng : nanogramme PCR : Polymerase Chain Reaction PepMoV : Pepper Mottle Virus pH : Potentiel d'Hydrogène PVY : Potato Virus Y Qsp : quantité suffisante pour QTL : Quantitative Trait Loci **RADP** : Rapid Amplification Polymorphism DNA **RFLP** : Restriction Fragment length Polymorphism **RIL** : Recombinant Inbred Lines

SDS : Sodium Dodecyl Sulfate

sec : seconde

SNP : Single Nucleotid Polymorphism

spp. : species (toutes espèces)

TAE : Tris Acétate EDTA

TE : Tris EDTA

TEV : Tobacco Etch Virus

TMV : Tomato Mosaic Virus

TSWV : Tomato Spotted Wilt Virus

UGAFL : Unité de Génétique et d'Amélioration de Fruits et Légumes

UV : Utra Violet

VPg : Viral Protein Genome linked

SOMMAIRE

Résumé	4
Abstract	5
Remerciements	6
Acronymes et abréviations	8
Liste des figures	15
Liste des tableaux	19
Liste des annexes	21
Liste des figures annexes	22
Introduction générale	23
Chapitre 1 : L'espèce piment et le flétrissement bactérien	25
1.1- Le piment	25
1.1.1- Présentation de la famille des Solanacées	25
1.1.2- Présentation du piment	25
1.1.3- Origine et diversification du piment	26
1.1.4- Importance économique du piment	29
1.1.5- Amélioration du piment	31
1.1.5.1- Les principales maladies et ravageurs du piment	31
A- Les maladies virales	31
B- Les maladies cryptogamiques	33
C- Les maladies bactériennes	34
D- Les nématodes	35
E- Insectes et mites	35
1.1.5.2- Régime de reproduction du genre <i>Capsicum</i>	35
1.1.5.3- Pools genetiques	35
1.1.5.5- Cartes génétiques du piment	38
1.1.5.6- Gènes majeurs et QTLs de résistance chez le piment	39
A- Gènes majeurs et QTLs de résistance aux bioagresseurs	40
B- Gènes majeurs et QTLs gouvernant des caractères horticulturaux	42
1.1.5.7- Résistance du piment au flétrissement bactérien	43

1.2- Flétrissement bactérien causé R. solanacearum (Smith 1986) Yabuuchi et al. 199645

1.2.1- Importance socio-économique de la maladie	45
1.2.2- Diversité phénotypique et génétique de Ralstonia solanacearum	48
1.2.2.1- Importance de la connaissance de la diversité	48
1.2.2.2- Classification de Ralstonia solanacearum	49
A- Classification par races	49
B- Classification en biovars	49
C- Approches moléculaires dans la description de la diversité génétique	50
D- Classification par phylotypes	51
1.2.3- Symptomatologie	52
1.2.3.1- Symptômes sur la tomate	53
1.2.3.3- Symptômes sur la pomme de terre	53
1.2.3.4- Symptômes sur le bananier	54
1.2.3.5- Symptômes sur le tabac	55
1.2.4- Epidémiologie	55
1.2.4.1- Conservation	55
1.2.4.2- Dissémination	56
1.2.4.3- Colonisation bactérienne des plantes	56
1.2.5- Déterminants du pouvoir pathogène	56
1.2.5.1- Les exoenzymes	57
1.2.5.2- Les exopolysaccharides	57
1.2.5.4 Cànag impliquée dans la matricité de la heatérie	58
1.2.5.4- Genes impliques dans la motricite de la bacterie	38 50
1.2.6.1 Méthodos de lutte chimique	Jo
1.2.6.1 - Methodes de lutte chimique	58 50
1.2.0.2-Méthodes de lutte génétique	
1.2.0.3- Memode de lutte generique	
1.3- Synténie chez les Solanacées	60
1.3.1- Définition et intérêt du concept	60
1.3.2- Définition de quelques notions utilisées en génétique comparative	61
1.3.3- Notion de la génétique évolutive, cartographie comparée et génomique	62
1.3.4- Comparaison des génomes de piment, tomate, pomme de terre et aubergine	e 62
1.3.3- Expériences d'utilisation de la synténie	65
1.3.3.1- Généralités	65
1.3.3.2- Non conformité entre synténie structurale et synténie fonctionnelle	66
1.3.3.3- Conformité entre synténie structurale et synténie fonctionnelle	67
1.4- Problématique de la thèse	71
Chapitre 2 : Etude élargie de la diversité génétique de <i>Ralstonia solanacearum</i> au	73
	13

Abstract	73
Introduction	74
Materials and methods	75
Bacterial strains	75
Pathogenicity tests	78
DNA typing	78
PCR amplification and DNA sequencing of the endoglucanase (<i>egl</i>)	and DNA repair
(<i>mutS</i>) genes	79
Sequence analysis and construction of phylogenetic trees	79
Results	80
<i>R. solanacearum</i> strain collection	80
PCR-based identification and characterization of R. solanacearum st	rains 81
Pathogenicity	81
Phylogenetic analysis	82
Geographic distribution of phylotypes in Cameroon	85
Discussion	85
Acknowlegments	
Literature cited	
Principaux résultats	91
Complémént d'article	

Projet d'article : Can the synteny between tomato and pepper be a useful approach to identify QTLs linked to bacterial wilt caused by *Ralstonia solanacearum* on pepper?95

Introduction	95
Material and methods	97
Plant material and DNA extraction	97
Bacterial strains and inoculation procedure	97
Field experiment for bacterial wilt assessment and phenotypic data analysis	98
Strategy of choice of molecular markers	99
Partial map construction	100
QTL detection	100
Results	101
Inheritance of the resistance and trait correlations	101
Partial map construction based on hypothesized QTL carrier chromosomes from	
tomato	104
QTLs detection	105

Discussion	109
Macrosynteny and QTLs detection	109
Conservation versus diversification of genes involved in bacterial wilt resistar	nce 112
Conclusion	113
Acknowledgments	113
Bibliography cited in article	113
Principaux résultats	116
Chapitre 4 : Déterminisme génétique de la résistance du piment (<i>Capsicum annuu</i> au flétrissement bactérien : y a-t-il envahissement de la tige ou restrict	ım L.) ion de
la bactérie chez un géniteur résistant ?	118
Projet d'article : Bacterial wilt resistance of pepper (<i>Capsicum annuum</i> L.) is controlled by a few additive and epistatic QTLs and is associated with the restrof the bacteria spread in the plant stems	riction 118
Introduction	118
Materials and methods	120
Plant material	120
Bacterial strain and inoculation procedure	120
Field experiment for bacterial wilt assessment and phenotypic data analysis	121
Assessment of the bacterial in plant	122
Linkage map	122
QTLs and epitasis detection	122
Results	123
Phenotypic evaluation	123
Bacteria epicotyls stem tissue assessment	124
QTLs and epitasis detection	125
Discussion	129
Presence of bacteria in the stem plant tissues	129
Synteny of pepper and tomato for bacterial wilt resistance QTLs	130
Acknowledgments	131
Bibliography cited	131
Principaux résultats	135
Complément d'article	136
Estimation des paramètres génétiques	136
Distribution de la population des RIL en classes AUDPC	136
Illustration de deux types d'epistasie détectées dans cette étude	137
Chapitre 5 : Discussion générale et perspectives	138

5.1- Rappel des principaux résultats 138
5.1.1- Diversité génétique de R. solanacearum 138
5.1.2- Bilan des QTLs détectés 139
5.2- Diversité Ralstonia solanacearum vs quarantaine, épidémiosurveillance 140
5.3- Diversité et conservation des QTLs aux niveaux intraspécifique / inter générique141
5.4- Sélection du piment pour la résistance à <i>Ralstonia solanacearum</i> , spécificité / non spécificité QTLs vs sélection 143
Références bibliographiques 144
Annexes 160
Figures annexes 174

LISTE DES FIGURES

Chapitre 1

Figure 1-1 : Dendrogramme des principales Solanacées cultivées. L'arbre phylogénétique est basé sur la variation des sites de restriction de l'ADN chloroplastique (Doganlar et al., 2002) d'après Omlstead et Palmer, 1997). La longueur des branches est proportionnelle au nombre approximatif des changements des sites de restriction
Figure 1-2 : Clés de détermination des espèces domestiques du genre Capsicum (D'après IBPGR, 1983)
Figure 1-3 : Variation de la forme du fruit des principales espèces cultivées de piment (<i>Capsicum</i> spp.). Échantillon de la collection des ressources génétiques de l'INRA d'Avignon (Source : Alain PALLOIX)
Figure 1-4 : Principaux centres de diversification de cinq espèces de Capsicum domestiquées (Source : Pickergill, 2003) 29
Figure 1-5 : Symptôme d'infections virales sur feuille de piment. (A) TMV ; (B) PVY ; (C) CVMV ; (D) TSWV ; (E) PVMV sur <i>C. chinense</i> , très fréquent au Cameroun ; (F) Mosaïque foliaire due à AIMV ; (G) TEV ; filiformisme des feuilles (H) et décoloration annulaires sur fruit (I) du au CMV. (Photo INRA)
Figure 1-6 : Symptômes d'infections fongiques sur piment : (A) Nécrose du collet dû à <i>Phytophthora capsici</i> ; (B) Oïdium ; (C) et (D) Anthracnose (Photo INRA) 34
Figure 1-7 : Compatibilité de croisement entre les différents pools du genre <i>Capsicum</i> . Les flèches sont pointées en direction du parent femelle. Les lignes en tirés indiquent que les hybrides sont obtenus relativement facilement. Les lignes en pointillés indiquent que très peu de d'hybrides peu fertiles sont obtenus ou leur obtention dépend des accessions choisies comme parent (Source : PALLOIX, 2006)
Figure 1-8 : Caryotypes de la majorité des espèces de <i>Capsicum</i> comprenant la majorité des espèces sauvages de <i>C. annuum</i> et toutes les espèces <i>C. chinense</i> et <i>C. frutescens</i> (au dessus) ; caryotype spécifique à toutes les espèces domestiquées et quelques espèces sauvages de <i>C. annuum</i> (au milieu) ; variations possibles dans la localisation et le nombre de chromosomes satellites (1 à 3) dans le genre (en bas). Selon Djian-Caporalino et al, (2006)
Figure 1-9 : R. solanacearum (Source : C. Boucher et J. Vasse, http://www.genomenewsnetwork)
Figure 1-10 : A - Aspect caractéristique d'une culture de <i>R. solanacearum</i> sur milieu de Kelman modifié. B- Une souche dite SFR (Source : Mahbou et Prior)
Figure 1-11 : A-Différentes amorces utilisées lors de la caractérisation phylophasique et leur origine sur l'ITS B- Les souches du phylotype 2 sont ensuite testées afin d'identifier si elles sont des souches pomme de terre (Pdt ou race froide), Solanacées, ou Musa. (D'après Prior et Fegan)
Figure 1-12 : Correspondance entre la classification phylophasique et les autres systèmes de classification. On peut remarquer que les seules correspondances existantes entre les races et les biovars le sont entre les races 3 et 5 qui correspondent respectivement aux biovars 3 et 5.

Figure 1-21 : Position hypothétique de quelques QTLs conférant la résistance du piment au flétrissement bactérien suivant la position des QTLs connus chez la tomate. On peut y voir la correspondance attendue entre T6~P6, T12~P9, et T4~P4......**70**

Chapitre 2

Chapitre 3

Figure 3-2 : Correlation among traits in the second year of experimentation in Guadeloupe103

Chapitre 4

Figure 4-1 : Time course of bacterial wilt incidence of different genotypes of peppers during the experimentation in Cameroon. Mean percentage of wilted plants is indicated for the resistant parental line (CM334), the susceptible parental line Yolo Wonder (YW), their F1

Figure 4-2 : Correlation between A50 and Af...... 124

Figure 4-4 : Histogramme de distribution de la population des lignées recombinantes en différentes classes suivant les différents caractères de résistance utilisés dans cette étude ... 136

LISTE DES TABLEAUX

Chapitre 1

Tableau 1-1 : Les espèces décrites du genre <i>Capsicum</i> . (Source : Alain PALLOIX, extrait deGenetic Ressources, Chromosome Engineering, and Crop Improvement, sous presse)
Tableau 1-2 : Production mondiale de piments (Source : FAOSTAT 2007, F.A.O., http://faostat.fao.org)
Tableau 1-3 : Principales caractéristiques génétiques et génomiques des quatre espèces deSolanacées les plus cultivées (Arumuganathan et Earle, 1991)
Tableau 1- 4 : Liste de cartes génétiques réalisées à l'aide de marqueurs moléculaires chez le piment
Tableau 1-5 : Caractères introduits dans C. annuum à travers des croisements interspécifiques41
Tableau 1-6 : Caractères introduits dans C. annuum à travers des croisements interspécifiques42
Tableau 1-7 : Synthèse des études portant sur la détection de QTLs de résistance au flétrissement bactérien chez la tomate
Tableau 1-8 : Caractéristiques differentielles des biovars de Ralstonia solanacearum

Chapitre 2

Table 2-1 : Ralstonia solanacearum strains used in this study
Table 2-2 : Phylotype distribution of <i>Ralstonia solanacearum</i> strains collected in Cameroon within agroecological zones (AEZ) based upon DNA typing using phylotype multiplexpolymerase' chain reaction (PCR) and the race3/boivar 2 (R3bv2)-specific 630/631 PCR tests 81
Table 2-3 : Pathogenicity of selected <i>Ralstonia solanacearum</i> strains on potato, tomato, and pepper 81
Table 2-4 : Characteristics of agro-ecological zones (AEZ) in Cameroon

Chapitre 3

 Table 3-1 : Number of polymorphic bands generated by each AFLP primer combination 99

Table 3-2 : Analysis of variance of four resistance criterion of bacteriel wilt resistance in thedoubled haploid progeny of pepper for three experiments in Cameroon and Guadeloupe.... 101

Table 3-3 : Genetic analysis of resistance to bacterial wilt in the DH progeny : variancecomponents, heritability, and estimated genetic factors of the year experiment in Cameroonand the two years experiment in Guadeloupe.102

 Table 3-4 : Pearson's correlation coefficients between experimentations for the AUDPC at the end of the experimentation
 102

Table 3-5 : QTL detected in the DH population for the resistance related traits after inoculation with two *R. solanacearum* strain : a phylotype I strain in Cameroon (AfC, A50C,

Chapitre 4

 Table 4-1 : Analysis of variance of four resistance criteria against bacterial wilt.
 124

Chapitre 5

LISTE DES ANNEXES

Annexe 1 : Composition du Milieu de Kelman Modifie pour isolement de Ralsa solanacearum ⁽¹⁾	tonia . 160
Annexe 2 : Protocole d'extraction de l'ADN génomique des feuilles de pir (Fulton and Tanksley, 1995)	ment . 161
Annexe 3 : Dosage natif de l'ADN génomique des feuilles de piment (GAFL: IN AVIGNON)	NRA . 163
Annexe 4 : Principe de la technique AFLP TM	. 164

LISTE DES FIGURES ANNEXES

INTRODUCTION GENERALE

Le piment appartient au genre Capsicum. C'est l'un des légumes les plus consommés dans le monde, et dans les cinq premiers en Afrique. Son importance tient des différents usages dont il est l'objet sur tous les cinq continents. Au Cameroun et en Afrique en général, cette importance tient davantage du rôle que sa culture joue du fait de sa fonction génératrice de revenus aux paysans, que par le volume monétaire généré. Son appartenance à la famille des Solanacées, famille de plantes regroupant la tomate, la pomme de terre, l'aubergine, pétunia, plante avec lesquelles il partage en commun les mêmes maladies. Sous les tropiques, le flétrissement bactérien causé par Ralstonia solanacearum, est une contrainte majeure à la culture des Solanacées. L'impact dévastateur de cette maladie vient tout juste après celui des maladies causées par les complexes viraux (PVY, TMV, PVMV) et les maladies fongiques (Phytophthora capsici, anthracnose). De plus, les résistances développées par les sélectionneurs sont mises à mal par la grande diversité génotypique et phénotypique existant chez cette bactérie. Chez les Solanacées, les mécanismes de résistance / tolérance vis-à-vis de R. solanacearum sont différents entre la tomate et le piment. Le répertoire de gènes de ces deux espèces est le même. Le nombre haploïde de chromosomes de 12 est identique chez les deux espèces. Les deux génomes diffèrent juste par quelques translocations, inversions, duplications de gènes qui sont survenues au cours des âges et qui ont entraîné leur spéciation.

Ces faits font du pathosystème *Ralstonia solanearum-Solanacées*, et plus précisément du couple tomate-piment un excellent terrain d'investigation en génétique comparative par l'approche plante modèle.

La création de variétés résistantes au flétrissement bactérien reste la méthode de lutte la plus appropriée contre cette bactérie ubiquiste. A l'heure actuelle, à notre connaissance, aucune variété de piment n'a été développée pour la résistance au flétrissement bactérien.

Les travaux relatifs à l'étude du déterminisme de la résistance du piment au flétrissement bactérien ont cependant permis de savoir que chez cette plante, il s'agit d'une résistance oligogénique. Aucune étude relative à la cartographie des loci contrôlant les caractères quantitatifs (QTLs) au flétrissement bactérien pour le piment n'est disponible. Cependant, on dispose d'une abondante bibliographie pour la tomate. En effet la tomate, plante modèle dans la famille des Solanacées, a très tôt bénéficié des outils de la biologie moléculaire. Elle fut ainsi la première plante dont une carte génétique saturée à l'aide de la première génération de marqueurs, les marqueurs RFLP étaient disponibles. Certains de ces marqueurs ont par la suite servi pour la confection des cartes génétiques du piment, de la pomme de terre et de l'aubergine. Ce qui a rendu possible la comparaison entre les différents génomes des Solanacées, ouvrant ainsi la porte à de nombreux travaux de génétique comparative entre ces différentes espèces. Cette famille botanique est ainsi devenue un groupe de plantes pionnières dans cette discipline.

Ce travail de thèse s'intègre dans l'une des thématiques développées conjointement par la Station de Pathologie Végétale de l'INRA d'Avignon d'une part et par le Pôle de Pathologie et de Protection Végétale du Cirad à la Réunion d'autre part. Ces deux institutions sont associées dans un vaste programme de recherche visant à décrire et à structurer la diversité génétique connue chez *R. solanacearum* au niveau mondial. Un des objectifs majeurs de cette plate-forme de collaboration est de caractériser les résistances éventuelles chez les Solanacées en confrontant les ressources génétiques des Solanacées à la diversité génétique connue et décrite chez cette bactérie.

Cette vaste thématique de recherche vise à terme à mieux valoriser les ressources génétiques des Solanacées face à la diversité génétique et phénotypique de *R. solanacearum*, une des causes de contournement de résistance développée à *R. solanacearum*. Cette plate-forme est élargie à un consortium regroupant une dizaine de partenaires privés, entreprises semencières internationales.

Cette thèse a bénéficié du financement du Ministère Français des Affaires Étrangères (MAE), du CIRAD, de l'INRA, et de l'IRAD à travers le projet REPARAC.

CHAPITRE 1: L'ESPECE PIMENT ET LE FLETRISSEMENT BACTERIEN

1.1- LE PIMENT

1.1.1- PRÉSENTATION DE LA FAMILLE DES SOLANACÉES

La famille des Solanacées est subdivisée en trois sous-familles, les Solanoideae, les *Cestroideae* et les *Nolanoideae*. La tribu des *Solaneae*, qui appartient à la sous famille des *Solanoideae* comprend plusieurs genres au nombre desquels *Capsicum* (piment), *Lycopersicon* (la tomate) et *Solanum* (pomme de terre et aubergine), plantes utilisées dans l'alimentation humaine, sont les Solanacées les plus cultivée dans le monde. Par ailleurs, cette famille botanique est l'une des plus importantes parmi les plantes car 2300 espèces y sont dénombrés (D'Arcy, 1991). Sur la base de la variation du nombre de site de l'ADN chloroplastique des *Solanoideae*, la tomate et la pomme de terre appartiennent au même clade tandis que ceux de l'aubergine et du piment sont distincts (**Figure 1-1**).

FIGURE 1-1 : DENDROGRAMME DES PRINCIPALES SOLANACEES CULTIVEES. L'ARBRE PHYLOGENETIQUE EST BASE SUR LA VARIATION DES SITES DE RESTRICTION DE L'ADN CHLOROPLASTIQUE (DOGANLAR ET AL., 2002) D'APRES OMLSTEAD ET PALMER, 1997). LA LONGUEUR DES BRANCHES EST PROPORTIONNELLE AU NOMBRE APPROXIMATIF DES CHANGEMENTS DES SITES DE RESTRICTION.

Ceci suggère que ces plantes auraient évolué à partir d'un ancêtre commun. Au nombre des autres plantes importantes de cette famille, on peut aussi ajouter la belladone, le *Datura* et la jusquiame. Elles agissent sur le système nerveux et de ce fait ont des applications en médecine douce. Toujours dans cette famille, le tabac approvisionne une importante filière industrielle. Dans l'alimentation humaine, le légume le plus consommé au monde est la tomate. La place de la pomme de terre est importante et historiquement célèbre pour le rôle que cette plante a joué et joue encore dans l'alimentation.

1.1.2- PRÉSENTATION DU PIMENT

Le piment est originaire du nouveau monde, où il a été domestiqué il y 9000 ans. Le nom générique piment désigne aussi bien les variétés à petits fruits brûlants tout comme celles à gros fruits doux encore appelés poivron. Au Mexique il est appelé chile (langue Nahuatl chez les Aztèques), en anglais américain, chili, dans les Caraïbes et les Antilles aji, les espagnols l'appellent pimiento, les anglais pepper, les italiens peperone, les germaniques et le nord européen paprika. Il appartient au genre *Capsicum* spp., du grecque kapsa [$\kappa \pi \psi \alpha$] qui signifie capsule en référence à la forme en boîte du fruit.

1.1.3- ORIGINE ET DIVERSIFICATION DU PIMENT

Le genre compte 25 espèces officiellement admises (Baral & Bosland, 2002) dont 5 domestiquées (**Tableau 1-1**).

Sections	Nom des espèces	Zone de distribution (ou de collecte)		
Complexe Capsicum C. annuum L. var. glabriiusc		<i>i</i> Du nord de la Colombie et du sud des USA		
annuum	(wild) var. annuum (domestiqué)			
	C. chinense Jacq.	Caraïbes, Amérique centrale et du sud		
	C. frustescens L.	Amérique Centrale		
Complexe Capsicum	C. baccatum L. var. baccatum	Argentine, Bolivie, Brésil, Paraguay, Pérou		
baccatum	(sauvage) (syn. C. microcarpum)			
	var. pendalum (domestiqué)			
	C. praetermissum Heiser & Smith	Sud du Brésil		
Complexe Capsicum	C. pubescens Ruiz & Pav.	Haut plateaux d'Amérique latine (Bolivie,		
pubescens		Pérou)		
	C. eximium Hunz.	Argentine, Bolivie		
	C. cardenasii Heiser & Smith	Bolivie		
Complexe additionnel :	C. chacoense Hunz.	Argentine, Bolivie, Paraguay		
Espèces sauvages de	C. galapagoense Hunz.	Galapagos Islands, Equateur		
Capsicum				
	C. buforum Hunz.	Brésil		
	C. Campilopodium Sendt.	Sud du Brésil		
	C. coccineun (Rusby) Hunz.	Bolivie, Pérou		
	C. cornutum (Hiern) Hunz.	Sud du Brésil		
	C. dimorphum (Miers)	Colombie		
	C. dusenii Bitter	Sud-est du Brésil		
	C. hookerianum (Miers)	Équateur		
	C. leptopodum (Dunal)	Brésil		
	C. minutiflorum (Rusby) Hunz.	Argentine, Bolivie, Paraguay		
	C. mirabile Mart ex. Sendt	Sud du Brésil		
	C. parvifolium Sendt.	Colombie, Nord-est du Brésil, Venezuela		
	C. scolnikianum Hunz.	Perou		
	C. schottianum Sendt.	Argentine, Sud du Brésil, Sud-est du		
		Paraguay		
	C. tovarrii (Eshbaugh WH)	Perou		
	C. villosum Sendt.	Sud du Brésil		

 TABLEAU
 1-1
 : LES
 ESPECES
 DECRITES
 DU
 GENRE
 CAPSICUM.
 (SOURCE
 : ALAIN
 PALLOIX,
 EXTRAIT
 DE
 GENETIC

 RESSOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT, SOUS PRESSE).
 Improvement, sous presse).
 Improvement, sous presse).

Les plus cultivées sont *Capsicum annuum* L., *Capsicum frutescens, Capsicum chinenses, Capsicum pubescens* et *Capsicum baccatum* var *pendalum* (Eshbaugh, 1977) . Le piment est originaire du nouveau monde. L'espèce *C. annuum* est actuellement la plus cultivée parmi les cinq. Sa culture s'étend sur les cinq continents. Elle est originaire du Mexique, du Guatemala et du sud des États-Unis. Cette espèce se caractérise par une corolle de couleur blanche, des anthères bleues ou violettes, un calice dentelé et la présence d'une seule fleur par nœud. *C. chinense*, originaire de l'Amazonie, est génétiquement l'espèce la plus proche de *C. annuum*. Sa caractéristique la plus distinctive est la présence d'une constriction entre

le calice et le pédoncule, et l'insertion de plusieurs fleurs (fruits) par nœud. Il est admis que *C. annuum* et *C. chinense* auraient divergées d'un ancêtre commun.

C. frutescens serait originaire du Mexique. Sa particularité est de disposer de fleurs de couleur verdâtre érigées formant un angle aigu à la jonction calice pédoncule. Après *C. annuum, C. chinense* et *C. frutescens* sont les espèces les plus cultivées au monde. C'est aussi parmi deux espèces que se recrutent les piments les plus brûlants (Greenleaf, 1986). *C. baccatum* et *C. pubescens* sont originaires du Pérou et/ou de la Bolivie (Pickersgill, 1969). C'est dans cette région qu'ils sont le plus cultivés. *C. baccatum* se distingue par des fleurs blanches, la présence de spots jaunes sur la corolle et des étamines libres. Enfin, *C. pubescens* se différencie des autres espèces par des feuilles velues et des graines noires de forme irrégulières. Sa culture est confinée exclusivement dans les Andes et les Hauts plateaux d'Amérique centrale. On ne lui connaît pas encore d'ancêtres sauvages. Toutefois, *C. cardenassi* et *C. eximium*, deux espèces sauvages que l'on rencontre dans le centre des Andes du Pérou et de la Bolivie et avec lesquels *C. pubescens* maintient une compatibilité sexuelle partielle, pourraient en être les ancêtres.

Les caractères distinctifs de ces espèces et une vue de la diversité de formes du fruit des principales espèces cultivées sont présentés ci-dessous (**Figure 1-2** et **Figure 1-3**).

1. Seeds dark, corolla purple.	C pubescens
1. Seeds straw-coloured, corolla white or greenish white (rarely purple)	2
2. Corolla with diffuse yellow spots at bases of lobes.	.C. baccatum
2. Corolla without diffuse yellow spots at bases of lobes	.3
3. Corolla puple	4
4. Howers solitary	C. annum
4. Flowers 2-more at each nodes	C. chinense
3. Corolla white or greenish-white.	5
5. Calyx of mature fruit with annular constriction at junction with pedicel	6
6. Flowers solitary	7
7. Corolla milky white, lobes usually straight, pedicels often declining at	C. annum
7. Corolla greenish white, lobes usually slightly revolute, pedicels crect at	C. frutescens
6. Flowers 2-more at each nodes	8
8. Corolla milky	С. атит
8. Corolla greenish	9
9. Pedicels erect at anthesis, corolla lobes usually slightly revolute	C. frutescens
9. Pedicels declining at anthesis, corolla lobes straight	.C. chinense

FIGURE 1-2 : CLES DE DETERMINATION DES ESPECES DOMESTIQUES DU GENRE CAPSICUM (D'APRES IBPGR, 1983).

FIGURE 1-3: VARIATION DE LA FORME DU FRUIT DES PRINCIPALES ESPECES CULTIVEES DE PIMENT (CAPSICUM SPP.). ÉCHANTILLON DE LA COLLECTION DES RESSOURCES GENETIQUES DE L'INRA D'AVIGNON (SOURCE : ALAIN PALLOIX).

Parti de ces centres primaires de domestication, le piment est arrivé en Europe suite aux expéditions de Christophe Colomb qui le ramena lors de son premier voyage en 1493. Ce sera donc par le Portugal et l'Espagne que le piment sera introduit en Europe, continent à partir duquel il fera plus tard diffusé dans le reste du monde II y sera adopté et concurrencera le poivre (De Candolle, 1883). A la faveur des expéditions commerciales menées par les Portugais et les Espagnols entre le XVIème et XVIIème, il sera introduit en Afrique, via les comptoirs commerciaux du golfe de Guinée et de l'Angola jusqu'en Inde, Indonésie et en Chine (Somos, 1984 ; Palloix et al., 2004), (**Figure 1-4**).

FIGURE 1-4 : PRINCIPAUX CENTRES DE DIVERSIFICATION DE CINQ ESPECES DE CAPSICUM DOMESTIQUEES (SOURCE : PICKERGILL, 2003).

1.1.4- IMPORTANCE ÉCONOMIQUE DU PIMENT

Au Cameroun, l'importance de cette plante est surtout due au fait que sa culture génère des revenus substantiels à des milliers de familles. Le piment arrive en sixième position en terme de générateur de revenus dans le secteur horticole après la tomate, le bananier, le maïs, le gombo et la morelle noire (*Solanum nigrum*) et en première position dans le groupe des épices en zone forestière humide à pluviométrie bimodale (Gockowski & Ndoumbe, 1999). Ces deux auteurs ont par ailleurs démontré que, 75% des paysans possèdent au moins une parcelle de culture de piment dans cette région du pays.

Le piment est consommé comme légume frais ou cuit, séché et pulvérisé sous forme de poudre comme colorant ou épice. Dans l'industrie pharmaceutique, il trouve des applications grâce aux capsaicinoides (Hoffman et al., 1983), responsable du goût brûlant, caractéristique qui a fait la célébrité du piment dans le monde. L'industrie agroalimentaire utilise le piment comme colorant et comme épice. Son utilisation comme colorant est due à la présence de la capsanthine et la capsorubine.

La production mondiale de piment était estimée à 30 millions de tonnes en 2007. Les principaux producteurs mondiaux de piments frais sont la Chine (14 millions tonnes, 47 % de la production mondiale), le Mexique (1,8 millions) et la Turquie (1,7 million de tonnes) (FAOSTAT 2007, F.A.O., http://faostat.fao.org). Cette performance de la Chine est plus due à l'étendue des surfaces cultivées qu'aux rendements. Selon les données de ce site de la FAO, le Cameroun a produit 9 500 tonnes de piment frais en 2007. En Afrique, le Nigeria et l'Egypte sont les premiers producteurs africains de piment frais alors que l'Ethiopie est le premier producteur de piment sec avec 115 000 t (soit 25% de la production africaine de piment séché suivi de la Chine. Pour

la productivité, les Pays-Bas détiennent le record mondial de rendement en production de piment frais avec 267 t / ha. Avec un rendement moyen en production de piment frais de 1,41 t / ha, le Cameroun est parmi les trois derniers mondiaux. La Réunion détient le record mondial de productivité de piment séché avec un rendement de 15,56 tonnes/ha (**Tableau 1-2**).

	Poivrons et piments frais		Poivrons et piments secs		secs	
	Production (t)	Rendements (t/ha)	Rang mondial (SUR 117)	Production (t)	Rendements (t/ha)	Rang mondial (SUR 67)
AFRIQUE	2 541 998			455 150		
Nigeria	723 000	7,82	7	49 500	4,95	11
Egypte	475 000	15,83	8	45 600	4,56	12
Ghana	279 000	3,58	11	81 000	6,48	7
Tunisie	278 000	13,24	12	7 000	2,50	30
Algerie	268 055	12,97	13	7 600	2,00	28
Ethiopie	138 191	2,17	22	115 000	0,40	6
Cameroun	9 500	1,41	69	6 300	1,37	32
Runion	_	-	_	700	15,60	51
AMERIQUE	3 309 704			236 865		
Mexique	1 890 428	21,52	2	60 000	1,62	10
USA	855 870	26,77	6	0	-	_
Argentine	127 000	19,84	24	3 300	1,03	37
Venezuela	124 106	18,22	25	0	-	67
Cuba	55 807	9,54	33	0	-	_
ASIE	18 300 308			1 978 929		
Chine	14 026 272	21,50	1	250 000	6,25	2
Indonesie	1 128 790	5,53	4	0	-	64
Corée	414 136	6,81	9	0	-	_
Japon	149 600	42,74	20	0		65
Sri Lanka	62 790	3,63	30	0		_
Inde	0			1 200 000		1
EUROPE	2 916 515	10.00		107 450		
Turquie	1 759 224	19,99	3	0	-	66
Espagne	1 059 500	48,38	5	5 000	2,27	34
Pays Bas	320 000	266,67	10	0	-	_
Italie	252 194	18,92	14	0	-	_
Hongrie	208 200	40,04	16	33 000	7,50	15
Romanie	184 939	9,98	18	33 000	1,06	16
OCEANIE	61 183			0		
Nouvelle Zelande MONDE	2 000 27 129 708	33,90	90	0 2 778 394		

TABLEAU 1-2: PRODUCTION MONDIALE DE PIMENTS (SOURCE : FAOSTAT 2007, F.A.O., HTTP ://FAOSTAT.FAO.ORG).

1.1.5- AMÉLIORATION DU PIMENT

1.1.5.1- Les principales maladies et ravageurs du piment

L'étendue de son aire géographique de culture aux cinq continents, sous des types de climats variés (tempéré, méditerranéen, subtropical et tropical) et la généralisation de la culture intensive monovariétale, sont deux facteurs essentiels qui font de la culture du piment une cible de choix pour les parasites et le développement des épidémies. Il existe dans la littérature plusieurs références traitant des maladies du piment (Palloix, 1992 ; AVRDC, 1990 ; Yoon et al., 1989). Il est ainsi dénombré parmi les principaux agents pathogènes du piment les virus, les champignons, les bactéries, les nématodes les insectes et les acariens.

A- Les maladies virales

De toutes les maladies du piment, celles causées par les virus constituent la première contrainte à sa culture. 32 virus et mycoplasmes appartenant à 15 groupes taxonomiques sont dénombrés parmi ceux qui causent des pertes au piment (IPGRI et al., 1995 ; Palloix, 2006). Les virus transmis mécaniquement tels que les tobamovirus sont les plus fréquemment rencontrés en culture sous abris alors que ceux transmis par les insectes appartenant aux groupes des poty-, cucumo- et les tospovirus sont plus fréquents et de sévérité plus grande. Il est fréquent de rencontrer des complexes viraux sur des plantes infectées, ce qui amplifie les symptômes et rend plus difficile le diagnostic viral en l'absence de tests sérologiques.

Au nombre des **tobamovirus** qui attaquent le piment, le virus de la mosaïque du tabac (*TMV* ou *Tobacco Mosaic Virus*), le *ToMV* ou *Tomato Mosaic Virus* et le *PMMV* ou *Pepper Mild-Mosaic Virus*, sont transmis par les semences à partir de la surface extérieure des téguments. Des protocoles de désinfection de semences existent et sont efficaces dans la limitation de la transmission de ces virus. Ces méthodes de désinfection des semences utilisent des solutions à base d'hypochlorite de sodium, d'éthanol, de triphosphate de sodium, l'acide sulfurique et de captane (Greenleaf, 1986 ; Duffe et al., 1989) citant Dempsey (1978), et Black (1982). Les symptômes d'une infection virale aux tobamovirus comprennent des mosaïques faibles ou assez marquées, les nécroses des parties végétatives, la malformation et la décoloration du fruit.

Parmi les **cucumovirus**, le virus de la mosaïque du concombre (*CMV* ou *Cucumber Mosaic Virus*) cause d'énormes dégâts au piment dans le monde entier, particulièrement en climats tempéré et méditerranéen ainsi que sur le continent asiatique. Il est transmis à partir des adventices au piment par les aphidés (pucerons) de manière non persistante. Ce qui rend difficile la prévention contre ce virus. Les symptômes sur feuilles sont une mosaïque ponctiforme (de couleur mate), le filiformisme de jeunes feuilles, le syndrome de "feuilles-de chêne" sur les veilles feuilles, la malformation du fruit avec décoloration en forme d'anneaux et la stérilité lorsque l'infection arrive à un stade de croissance juvénile de la plante.

Les **potyvirus** constituent un groupe de virus très répandu et diversifié causant des dégâts chez le piment. Plusieurs membres de virus appartenant à ce groupe infectent le piment. Le virus Y de la pomme de terre (*PVY* ou *Potato virus Y*), est assez rependu partout où le piment est cultivé. Ce virus a fait l'objet de nombreuses

études, parmi lesquelles l'une des plus novatrice a porté sur les mécanismes de contournement de résistance et l'évaluation à priori de leur durabilité dans l'interaction piment-PVY (Ayme et al., 2006 ; Ayme et al 2007). Cette étude a mis en évidence que la résistance quantitative du piment au PVY est contrôlée par différents allèles de résistance majeure au locus *pvr2* par plusieurs facteurs à effets mineurs (*Quantitative traits locus* ou QTL). La durabilité des résistances conférées par les différents allèles dépend principalement du nombre de mutations nécessaires au virus pour contourner ces différents allèles, mutations qui ont été identifiées dans la zone centrale la protéine VPg (Viral Protein Genome linked) du virus (Ayme et al 2006 ; Ayme et al 2007). Les résistances complexes associant gène majeur et QTLs de résistance ont été démontrées plus durables et soulignent l'importance du fond génétique dans lequel est introduit le gène majeur pour le contrôle de l'émergence de souches pathogènes virulentes (Palloix et al 2009).

Cette étude sert de référence dans la compréhension de durabilité et de contournement de résistance polygéniques chez les virus. Le virus de la marbrure du piment (PVMV, Pepper veinal mottle virus) et le ChiVMV (Chili veinal vottle virus) sont répandus respectivement en Afrique subsaharienne et en Asie où ils causent de dégâts importants sur Capsicum chinense (Ahmed et al., 2001). Le Tobacco etch virus (TEV) et le Pepper mottle virus (PepMoV) sont surtout présents en Amérique Nord et Sud. Le Pepper severe mosaic virus (PSMV) et le Pepper yellow mosaic virus (PYMV), sont deux potyvirus communément rencontrés au sud de l'Amérique centrale (Green et Kim, 1991). Plusieurs accessions de piment sont porteuses de résistance aux potyvirus, suggérant la coévolution de ce groupe de virus avec le genre Capsicum. Les symptômes d'une infection aux potyvirus sont très variables, ils varient de mosaïques nervaires et gaufrage des feuilles aux nécroses des fruits et de la tige en fonction du génotype de la plante et des conditions.

Le dernier groupe important de virus qui causent de pertes sur piment dans le monde entier est celui des **tospovirus**. Le plus ubiquiste de tous est le virus de la maladie bronzée de la tomate (*Tomato spotted wilt virus* ou *TSWV*). C'est un virus de quarantaine. D'autres virus de ce groupe ont une aire de distribution plus localisée. On rencontre ainsi le *GRSV* (*Groundnut ringspot virus*) et l'*INSV* (*Impatiens necrotic spot virus* en Afrique du Sud et en Amérique, le *GBNV* (*Groundnut bud necrosis virus*) en Inde (Moury et al., 1997a ; Moury *et al.*, 1997b).

On peut enfin signaler les **begomovirus** comme une contrainte potentielle à la culture du piment de part le monde. De nombreuses souches virales de ce groupe sont fréquemment isolées du piment en Amérique latine et en Inde, plus rarement au Sud de l'Europe et en Afrique (Chakraborty et al., 2003 ; Hussain et al., 2003a ; Hussain et al., 2003b).

Une vue des symptômes des plus courant de ces différents virus sur le piment est donnée à la **Figure 1-5**.

FIGURE 1-5: SYMPTOME D'INFECTIONS VIRALES SUR FEUILLE DE PIMENT. (A) TMV ; (B) PVY ; (C) CVMV ; (D) TSWV ; (E) PVMV SUR C. CHINENSE, TRES FREQUENT AU CAMEROUN ; (F) MOSAÏQUE FOLIAIRE DUE A AIMV ; (G) TEV ; FILIFORMISME DES FEUILLES (H) ET DECOLORATION ANNULAIRES SUR FRUIT (I) DU AU CMV. (PHOTO INRA).

B- Les maladies cryptogamiques

Après les virus, la deuxième contrainte à la culture du piment est causée par les maladies cryptogamiques. Celles-ci comprennent deux groupes :

Le premier groupe est constitué de celles qui proviennent du sol : Parmi elles, la plus répandue dans le monde est celle causée par l'oomycète *Phytophthora capsici*. Elle est la première cause de la pourriture racinaire du piment dans le monde. Les infections primaires peuvent apparaître au niveau du collet de la plante à n'importe quel stade de développement de la plante. On peut alors observer des lésions nécrotiques à la base de la tige, des branches, des feuilles et même du fruit. La plante flétrit subitement et meurt. Ce champignon sévit surtout dans les zones irriguées par gravité. Comme autres champignons telluriques attaquant le piment, ont peut citer *Phytophthora parasitica, Fusarium oxysporum* et *Rhizoctonia solani*. En zone intertropicale, le flétrissement « southern blight » causé par *Sclerotium rolfsii* est courant en saison sèche, avec des symptômes similaires à ceux causés par *Phytophthora capsici* à savoir flétrissement brusque et pourriture du collet de la

plante à la différence qu'ici apparaissent des sclérotes brunâtres sur le collet. En zone tempérée sévit la verticilliose, flétrissement causé par *Verticillium dahliae*. Cette maladie se manifeste par l'assèchement des marges et du bout des veilles feuilles qui précèdent le flétrissement progressif de la plante. L'irrigation par inondation favorise le développement de ces maladies. Les rotations culturales et la gestion de l'eau d'irrigation sont de première importance dans le contrôle de ces pathogènes telluriques. En effet leur nature nécrotrophe leur permet de survivre plusieurs années dans le sol.

Le deuxième groupes est constitué de celles qui proviennent de l'air : nous signalerons ici l'oïdium causé par *Leveillula taurica*, la cercosporiose causée par *Cercospora capsici* et l'anthracnose causée par *Colletotrichum* spp. Comme les principales causes de pertes sur culture du piment en zone tempérée et tropicale. Les fongicides systémiques constituent un moyen de contrôle efficace contre ces champignons intercellulaires (**Figure 1-6**).

FIGURE 1-6 : SYMPTOMES D'INFECTIONS FONGIQUES SUR PIMENT : (A) NECROSE DU COLLET DU A PHYTOPHTHORA CAPSICI ; (B) OÏDIUM ; (C) ET (D) ANTHRACNOSE (PHOTO INRA).

C-Les maladies bactériennes

Les taches bactériennes des feuilles causées par *Xanthosomas compestris* pv. *Vesictoria* et le flétrissement bactérien causé par *R. solanacearum* sont les principales maladies bactériennes qui entraînent de dégâts importants à la culture du piment en zone intertropicale.

D- Les nématodes

Les nématodes à galles appartenant au genre *Meloidogyne* causent de dégâts sérieux sur le piment, l'aubergine, la tomate et la pomme de terre. Plus de 50 espèces ont été décrites chez *Meloidogyne* Deberdt (1999) citant Jepson (1987). Parmi elles, 4 espèces se distinguent par l'importance du niveau de pertes qu'elles causent en culture légumières, *Meloidogyne incognita, M. javanica, M. arenaria* en toutes régions et *M. hapla* en zone tempérées (Netscher & Sikora, 1990). La présence de galles sur le système racinaire est le principal symptôme associé à l'infection par *Meloidogyne* spp.

E- Insectes et mites

Plus de 35 espèces d'insectes et de mites attaquent le piment (IPGRI et al., 1995 ; Palloix, 2006). Ils sont responsables de pertes directes qu'ils occasionnent par leurs piqures ou celles indirectes par la transmission de virus divers.

1.1.5.2- Régime de reproduction du genre Capsicum

Le piment est une espèce autogame préférentielle. Ce caractère est lié à la domestication, car la majorité des espèces sauvages sont allogames. Certains cultivars montrent une tendance à la cléistogamie, toutefois de façon naturelle, des taux d'allo-pollinisation varient de 7,6 à 36,8% avec une moyenne de 16,5% au champ, Greenleaf, (1986) citant Odland & Poter (1941). Ce taux d'allogamie peut parfois dépasser 40% suivant les conditions environnementales (Breuils & Pochard, 1975), notamment du fait de l'action de nombreux insectes pollinisateurs au nombre desquels on peut citer les abeilles, les mouches, les thrips, voire atteindre 90% du fait de la protogynie (situation dans laquelle la floraison femelle a lieu avant la floraison mâle), commune chez cette espèce. Cette situation amène certain auteurs à penser que le piment devrait être considéré comme une espèce allogame facultative (Odland & Poter, 1941; Franceschetti, 1971).

Il est ainsi nécessaire pour le sélectionneur de s'entourer de précautions d'isolement lors de la production de semences issues d'autofécondation comme de croisements. Le genre étant hermaphrodite, il est nécessaire de procéder à la castration de la fleur avant l'anthèse.

1.1.5.3- Pools génétiques

Pour le généticien, la variabilité génétique constitue le réservoir dans lequel il s'approvisionne. Elle est la source du progrès génétique. Chez le genre *Capsicum*, les échanges de gènes entre espèces ont principalement profité à l'espèce *C. annuum*, la plus cultivée au monde. La structuration de la diversité génétique du genre *Capsicum* est complexe. En combinant les résultats relatifs à l'origine géographique, les caractères morphologiques, le système de reproduction, l'analyse du caryotype et les marqueurs biochimiques et moléculaires, plusieurs auteurs ont regroupé le genre *Capsicum* en trois complexes principaux comprenant les cinq espèces cultivées et leurs apparentés sauvages. Ces trois complexes sont divisés en deux groupes phylogénétiques principaux à savoir le groupe dit des 'fleurs blanches' comprenant les complexes *C. annuum* (avec *C. frutescens* et *C. chinense*) et *C.*
baccatum et celui dit des 'fleurs pourpres' se résumant au seul complexe *C. pubescens.* Signalons toutefois que la couleur de la fleur n'est pas un caractère distinctif strict. En effet plusieurs accessions de *C. annuum* possédant l'allèle *A* de l'anthocyane ont une corolle de couleur pourpre. Certaines accessions de *C. eximium* ont une corole de couleur blanche avec des marges bleuâtre. Les relations entre les différentes espèces du complexes du genre *Capsicum* sont présentées cidessous (**Figure 1-7**).

FIGURE 1-7: COMPATIBILITE DE CROISEMENT ENTRE LES DIFFERENTS POOLS DU GENRE C*APSICUM*. LES FLECHES SONT POINTEES EN DIRECTION DU PARENT FEMELLE. LES LIGNES EN TIRES INDIQUENT QUE LES HYBRIDES SONT OBTENUS RELATIVEMENT FACILEMENT. LES LIGNES EN POINTILLES INDIQUENT QUE TRES PEU DE D'HYBRIDES PEU FERTILES SONT OBTENUS OU LEUR OBTENTION DEPEND DES ACCESSIONS CHOISIES COMME PARENT (SOURCE : PALLOIX, 2006).

1.1.5.4- Génome et cytogénétique

Genre diploïde, *Capsicum* a un nombre de chromosomes de base de 12. Cette propriété est partagée avec d'autres Solanacées dont la tomate, la pomme de terre, l'aubergine et pétunia. Une cellule de piment contient environ 5,6 à 7,5 pg d'ADN et approximativement une taille physique du génome variant entre 2700-3400 Mpb par chromosome. Ceci représente environ trois à quatre fois la taille du génome de la tomate et de l'aubergine (**Tableau 1-3**)

Espèce / genre	Piment	Tomate	Pomme de	Aubergine	
	Capsicum spp.	Lycopersicon esculentum	terre Solanum tuberosum	Solanum melongena	
Mode de reproduction	préférentiellement autogame	autogame	autogame	préférentiellement autogame	
Nombre chromosomique de base	12	12	12	12	
Niveau de ploïdie	diploïde	diploïde	tétraploïde	diploïde	
Taille du génome (Mpb/C)	2702-3420	907-1000	1597-1862	1100-1197	
Quantité d'ADN par cellule haploïde (pg/C)	2.8 pour Capsicum annuum	0.74-0.94	1.65	1.14	

TABLEAU 1-3: PRINCIPALES CARACTERISTIQUES GENETIQUES ET GENOMIQUES DES QUATRE ESPECES DE SOLANACEESLES PLUS CULTIVEES (ARUMUGANATHAN ET EARLE, 1991).

L'une des principales caractéristiques du caryotype de *Capsicum* est qu'il possède trois chromosomes facilement reconnaissables : le chromosome I de grande taille et les chromosomes XI et XII qui sont acrocentriques. L'un est porteur d'un satellite contenant l'organisateur nucléolaire (Pochard, 1970). Une présentation du caryotype du genre *Capsicum* est donnée ci-dessous (**Figure 1-8**).

FIGURE 1-8: CARYOTYPES DE LA MAJORITE DES ESPECES DE CAPSICUM COMPRENANT LA MAJORITE DES ESPECES SAUVAGES DE C. ANNUUM ET TOUTES LES ESPECES C. CHINENSE ET C. FRUTESCENS (AU DESSUS) ; CARYOTYPE SPECIFIQUE A TOUTES LES ESPECES DOMESTIQUEES ET QUELQUES ESPECES SAUVAGES DE C. ANNUUM (AU MILIEU) ; VARIATIONS POSSIBLES DANS LA LOCALISATION ET LE NOMBRE DE CHROMOSOMES SATELLITES (1 A 3) DANS LE GENRE (EN BAS). SELON DJIAN-CAPORALINO ET AL, (2006).

1.1.5.5- Cartes génétiques du piment

Les premiers essais de cartographie du piment datent de 1970 par E. Pochard. A l'aide d'une collection de trisomiques représentant chacun des 12 chromosomes, il parvint à individualiser les douze chromosomes et à les désigner suivant un code de couleur, établissant ainsi la première carte chromosomique du piment. Ces travaux permirent d'une part l'identification de trois chromosomes caractéristiques, le chromosome I (chromosome le plus long), le chromosome XI (un petit chromosome à centromère subterminal) et le chromosome XII (le plus petit chromosome, acrocentrique, portant l'organisateur nucléolaire) (Pochard et al., 1992 ; Thabuis, 2002), et d'autre part d'assigner 10 caractères morphologiques et quelques locus d'isozymes à 7 chromosomes (Tanksley, 1984 ; Pochard et Dumas de vaulx, 1982 ; Pochard, 1977). Cette ébauche de carte servit par la suite à assigner sept groupes de liaison génétique à sept chromosomes lors des travaux de cartographie qui devaient suivre à l'aide de marqueurs moléculaires. Le piment devint ainsi la Solanacée qui bénéficia en second après la tomate de la découverte de marqueurs moléculaires par Botstein et al., (1980). Ceci se fit toutefois après le maïs, le riz et l'orge. Mieux, les sondes RFLP qui servirent à cartographier la tomate furent utilisées pour la carte piment ; l'existence de marqueurs communs entre les deux plantes permit de réaliser les premières comparaisons de génome entre la tomate et le piment (Tanksley et al., 1988), inaugurant de ce fait l'ère de la génétique comparative dans le règne végétal. Plusieurs cartes détaillées du piment seront publiées par la suite. Leur réalisation bénéficiera du développement des nouvelles techniques de marguage moléculaire pour la détection du polymorphisme. Ces techniques vont des marqueurs RFLP, basés sur le polymorphisme de longueur des fragments de restriction, jusqu'aux SNP qui exploitent le polymorphisme d'un nucléotide en passant par les techniques d'empreinte génétique (RADP, AFLP, SSR). Ces marqueurs seront ainsi utilisés sur le piment pour les études de diversité génétique, d'identification variétale et d'estimation de la pureté des hybrides, de réalisation de cartes génétiques, la cartographie de QTLs de caractères d'intérêts (résistance aux maladies et traits horticoles). les études de génomique et la sélection assistée par margueurs. Une revue de l'application de ces techniques de marguage moléculaire sur le piment est donnée par Lefebvre (2004). La liste des cartes génétiques du piment publiées et réalisées à l'aide de marqueurs moléculaires est donnée dans le tableau ci-dessous (Tableau 1-4).

Référence	Population de cartographie	Nombre de marqueurs cartographiés (type de marqueurs prédominants)	Nombre de groupes de liaison	Taille totale de la carte (cM/H: Haldane, K: Kosambi)
Tanksley (1984)	80-153 BC interspécifique [(<i>C. annuum</i> cv. NM6 x <i>C. chinense</i> CA4 x NM6-4] et 85-295 descendants F2 (<i>C. annuum</i> cv. NM6-4 x <i>C. chinense</i> CA4)	9 isozymes	4	~52
Tanksley (1988)	46 descendants issus d'un BC interspécifique [(<i>C. annuum</i> cv. Doux des Landes CA50 x <i>C. chinese</i> CA4) x CA50	80 marqueurs (RFLP + isozymes)	14	634
Prince et al. (1993)	46 descendants issus d'un croisement interspécifique (<i>C. annuum</i> CA133 x <i>C. chinense</i> CA4)	192 marqueurs (RFLP + isozymes)	19	720
Levebvre et al. (1997)	Carte consensus issue de trois croisements intraspecifiques de <i>C. annuum</i> HD200 (94 Haploïde Doublé Perenial x Yolo Wonder) + HD591 (44 Haploïde Doublé Vat x CM334) + HD702 (31 Haploïde Doublé Yolo x CM334)	83-189 marqueurs (RFLP + RADP)	15-16	417-1515 (K)
Kim et al. (1997)	86 descendants F2 issus d'un croisement interspécifique (<i>C. annuum</i> 2002 x <i>C. chinense</i> 1679)	174 marqueurs (AFLP)	12	non disponible
Livingstone et al. (1999)	75 descendants F2 issus d'un croisement interspécifique (<i>C. annuum</i> NuMex Rnaky x <i>C. chinense</i> PI159234)	677 marqueurs (RFLP, Isozyme, RADP, AFLP)	13	1246 (K)
Kang et al. (2001)	107 descendants F2 issus d'un croisement interspécifique (<i>C. annuum</i> TF68 x <i>C. chinense</i> Habanero)	580 marqueurs (RFLP, AFLP)	16	1350 (H)
Ben Chaim et al. (2001)	180 descendants F2 issus d'un croisement interspécifique <i>C. annuum</i> (Maor) x Perennial	177 marqueurs (RFLP, RADP, AFLP et morphologiques)	12	1740 (K)
Livingstone et al. (2002)	Trois populations issues de croisements intraspecifiques de <i>C. annuum</i> HV (101 Haploïde Doublé H3 x Vania) + PY (114 Haploïde Doublé Perennial x Yolo Wonder) + YC (151 descendants Yolo Wonder x CM334)	208 marqueurs (RFLP, RADP, AFLP et morphologiques)	16-20 par carte arrangés en 12 groupes de liaison consensus	685-1668 (H)
Rao et al. (2003)	248 descendants issus d'un BC2 interspécifique [(<i>C. annuum</i> cv. Maor) x <i>C. frutescens</i> BG2816]	80 marqueurs RFLP	12	1100 (K)
Paran et al. (2003)	75 descendants F2 issus d'un croisement interspécifique (<i>C. annuum</i> NuMex Rnaky x <i>C. chinense</i> PI159234)	2262 marqueurs sur la carte intégrée	13	1832 (disponible sur http://www.keygene .com/pdf/int_map_ pepper_complete.p df
	 83 descendants issues d'un BC1 [(C. annuum 100/63 x C. chinense PI152225) x 199/63] 180 descendants F2 issus d'un croisement 			
	interspécifique <i>C. annuum</i> (Maor) x Perennial 101 Haploïde Doublé issus d'un croisement H3 x Vania– HV			
	114 Haploïde Doublé issus d'un croisement Perennial x Yolo Wonder= PY			
	151 descendants issus d'un croisement Yolo Wonder x CM334 = YC2			
Barchi et al. (2007)	297 descendants F5 issus d'un croisement intraspecifique (Yolo Wonder x CM334) = F5YC	587 marqueurs (507 AFLP, 40SSR, 19 RFLP, 17 SSAP, 4STS)	49 groupes de liaison	1533

TABLEAU 1-4 : LISTE DE CARTES GENETIQUES REALISEES A L'AIDE DE MARQUEURS MOLECULAIRES CHEZ LE PIMENT.

1.1.5.6- Gènes majeurs et QTLs de résistance chez le piment

Un QTL (*Quantitative Trait Locus*) est un locus impliqué dans la variation d'un caractère quantitatif, c'est-à-dire un caractère montrant une variation phénotypique continue. La cartographie génétique de QTLs est basée sur le principe de la

recherche du déséquilibre de liaison entre un QTL et un marqueur moléculaire. Pour cela il faut disposer d'une population de cartographie (population en ségrégation), de données de génotypage (et éventuellement d'une carte génétique) et des valeurs phénotypiques des individus de cette population. La réalisation des différentes cartes génétiques du piment a permis de cartographier génétiquement de nombreux gènes et des QTLs gouvernant la résistance aux maladies et des caractères d'intérêts agronomiques. L'intérêt pour les sélectionneurs à terme est de pouvoir utiliser les marqueurs en sélection, voire de cloner les allèles favorables pour leur identification. Dans tous les cas ceci nécessite une cartographie de précision.

A- Gènes majeurs et QTLs de résistance aux bioagresseurs

Les travaux recensés ici portent sur les principaux parasites et microbes pathogènes (cf. paragraphe 1.1.5.1.) qui menacent la culture du piment. Les résistances recensées sont de déterminisme génétique varié allant de la résistance monogénique à la résistance polygénique, avec une majorité de résistances polygéniques très souvent associées à des interactions épistatiques.

Divers virus ont donné lieu à une détection des QTLs les contrôlant. Pour les potyvirus, notamment le PVY (Kang et al., 2005 ; Ruffel et al., 2005 ; Ardeno-Andres et al., 2002 ; Ruffel et al., 2002 ; Grube et al., 2000a ; Caranta et al., 1999 ; Caranta et al., 1997a ; Kyle et Palloix, 1997), le TEV (Kang et al., 2005) et le PepMoV , sept gènes majeurs ont été caractérisé (*pvr*1 à *pvr*7). Ces derniers montrent différents niveau de spécificité vis-à-vis des souches de ces trois virus. Ainsi par exemple, les gènes *pvr*4 et *pvr*7 localisés sur le chromosome 10, contrôlent une résistance dominante à toutes les souches de PVY et de PepMoV connues, ainsi qu'au PepYMV, PepSMV (Janzac et al, 2009). Le gène *pvr*2 a été cloné, situé sur le chromosome 4. De nombreux allèles qui contrôlent une résistance récessive plus spécifique d'un virus donné (PVY et/ou TEV) ou d'un pathotype de Potyvirus ont été identifiés (Charron et al, 2008). Pour le PVMV qui rappelons le sévit en Afrique et au Cameroun en particulier, la complémentation des gènes majeurs *pvr*2 et *pvr*6 permet de le contrôler, aucun de ces gènes pris isolement n'est cependant pas efficace dans son contrôle (Caranta, 1996).

La résistance au TMV est l'une des plus anciennement exploitée sur piment. Elle est contrôlée par une série de 4 allèles *L1* à 4. Ces quatre allèles proviennent de quatre espèces de *Capsicum*. L'allèle *L3* vient de *C.chinense* Jacq. et confère la résistance aux souches 1 et 2 tandis que l'allèle *L4* venant de *C. chacoense* Hunziker confère la résistance aux souches 1 et 3. (Lefebvre et al., 1995 ; Greenleaf, 1986 ; Pochard, 1977).

Seuls des résistances partielles ont été identifiées dans le contrôle du CMV (Pochard and Daubeze 1989, Dufour et al. 1989, Nono-Womdim et al.1993, Ben Chaim et al. 2001b, Caranta et al. 1997b, Caranta et al.2002) chacune agissant distinctement sur une étape du cycle viral dans la plante. Deux à quatre QTLs associés à une à deux interactions digéniques contrôlent ce virus sur piment. La stratégie originale de contrôle du CMV développée par l'INRA avec succès est le cumul progressif de résistances polygéniques. Ce succès tient du cumul dans un même génotype des résistances partielles d'origine diverse contrôlant chacune un cycle du virus et du développement de l'épidémie.

Pour les maladies cryptogamiques, les QTLs *Pc_10.1* contrôlant la résistance à l'oomycète *Phytophthora capsici* (Thabuis et al., 2003 ; Lefebvre & Palloix, 2006) et

Lt_10.1 contrôlant la résistance au mildiou causé par *Leveillula taurica* (Lefebvre et al., 2003) ont été cartographiés. Voorrips et al., (2004) ont identifiés des QTLs de résistance à l'anthracnose causé par *Colletetrichum* spp.

Le tableau ci-dessous (**Tableau 1-5**) présente un résumé des géniteurs de résistance utilisés pour introduire chez *Capsicum annuum*, espèce de piment la plus cultivée au monde, quelques gènes de résistance aux maladies.

Espèces donneuses (Accessions)	Caractères (Gene)	Références
C. frutescens (cv Tabasco)	Hypersensitivity to TMV (<i>L2</i>)	Cook (1960)
C. chinense (PI 152225,PI 159236)	Hypersensitivity to PMMV (<i>L3</i>)	Boukema (1980)
	Hypersensitivity to TSWV (<i>Tsw</i>)	Black et al. (1991), Moury et al. (1997)
	Resistance to PVY and TEV (<i>pvr1</i>)	Greenleaf (1956), Kyle and Palloix (1997)
PRI 95030	ResistancetoColletotrichum spp.	Voorrips et al. (2004)
C. chacoense (PI 260429)	Hypersensitivity to PVMV (<i>L4</i>)	Boukema (1982)
	Hypersensitivity to Xanthomonas vesicatoria (Bs2)	Cook and Guevara (1984)
C. baccatum (Pen 3–4)	Partial resistance to CMV (polygenic)	Pochard (1977b), Dufour et al. (1989), Caranta et al. (2002)

 TABLEAU 1-5 : CARACTERES INTRODUITS DANS C. ANNUUM A TRAVERS DES CROISEMENTS INTERSPECIFIQUES.

En ce qui concerne la résistance aux bactéries, les gènes *Bs2* et *Bs3* conférant la résistance aux races 1 et 2 de *Xanthosomas compestris* ont été identifiés (Kim et al., 2001 ; Pierre et al., 2000 ; Tai et al., 1999a ; Tai et al., 1999b). *Bs2* a été cloné, toutefois son assignation à un chromosome précis du piment demeure inconnue. Aucune étude de cartographie de QTLs de résistance à *R. solanacearum* n'est disponible. On sait toutefois que le déterminisme génétique de la résistance est oligogénique, avec 2 à 5 facteurs génétiques, et est stable en conditions tropicales (Lafortune et al., 2005).

Enfin, les gènes majeurs *Me1, Me3, Me4, Me7, Mech1 et Mech2* de résistance aux nématodes (*Meloidogyne* spp.) ont été cartographiés sur le chromosome 9 du piment (Djan-Caporalino et al., 2007 ; Djan-Caporalino et al., 2001). *Me4, Mech1* et *Mech2* sont spécifiques de certaines souches de *Meloidogyne* tandis que *Me1, Me3 et Me7*

présentent un large spectre d'action couvrant le contrôle des souches des espèces M. arenaria, M. javanica, et M. Incognita. Une revue des QTLs de résistance cartographiés sur le piment est donnée par Lefebvre, (2004). Un résumé des QTLs cartographiés chez le piment est donné dans le tableau ci-dessous (Tableau 1-6).

Egnàng donnougog (A conggiong)	Comostànos (Como)	Déférences			
Espèces donneuses (Accessions)	Caracteres (Gene)	Keierences			
C. frutescens (cv Tabasco)	Hypersensitivity to TMV (<i>L2</i>)	Cook (1960)			
C. chinense (PI 152225,PI 159236)	Hypersensitivity to PMMV (<i>L3</i>)	Boukema (1980)			
	Hypersensitivity to TSWV (<i>Tsw</i>)	Black et al. (1991), Moury et al. (1997)			
	Resistance to PVY and TEV (<i>pvr1</i>)	Greenleaf (1956), Kyle and Palloix (1997)			
PRI 95030	Resistance to <i>Colletotrichum</i> spp.	Voorrips et al. (2004)			
C. chacoense (PI 260429)	Hypersensitivity to PVMV (<i>L4</i>)	Boukema (1982)			
	Hypersensitivity to Xanthomonas vesicatoria (Bs2)	Cook and Guevara (1984)			
C. baccatum (Pen 3–4)	Partial resistance to CMV (polygenic)	Pochard (1977b), Dufour et al. (1989), Caranta et al. (2002)			

B- Gènes majeurs et QTLs gouvernant des caractères horticulturaux

Plusieurs caractères horticulturaux ont été cartographiés chez le piment. On peut ainsi citer le nombre de fleurs par nœud (Prince et al., 1993) (le QTL majeur contrôlant ce caractère est porté par le chromosome 2 du piment), les caractères liés au fruit et au rendement (Efrati et al., 2005 ; Ben Chaim et al., 2003b ; Rao et al., 2003 ; Ben Chaim et al., 2001b), au développement de la plante et à la forme du fruit (Barchi et al., 2009), au contenu en capsaicinoïdes du fruit (Blum et al., 2003), la pigmentation anthocyanique (De Jong et al., 2004), la restauration de la stérilité mâle cytoplasmique (Wang et al., 2004). Une revue est donnée dans Palloix (2006) et Greenleaf (1986).

1.1.5.7- Résistance du piment au flétrissement bactérien

A notre connaissance et ce, contrairement à la tomate, il n'y a pas eu beaucoup de travaux portant sur la résistance du piment au flétrissement bactérien. Quelques publications traitent directement du piment et du flétrissement bactérien. Les thèmes évoqués sont relatifs au screening de ressources génétiques ou aux mécanismes de résistance du piment au flétrissement bactérien.

Rahman et al. (1999), ont mené des travaux portant sur l'histopathologie comparée de variétés résistantes et sensibles chez le piment. Cette étude a clairement démontré que la résistance au flétrissement bactérien chez ce géniteur était associée à la limitation de la pénétration de la bactérie dans la plante. Cette limitation de la pénétration bactérienne est elle-même attribuée à l'induction de barrières morphologiques et physiques chez la plante résistante. Ce qui est en contradiction avec les travaux de Grimault & Prior (1994) qui utilisaient toutefois un autre géniteur de résistance différent. Dans une étude comparative portant sur l'invasion racinaire par R. solanacearum chez la tomate, le piment et l'aubergine, ces deux auteurs établissent que la résistance chez ces trois Solanacées n'est pas associée à la limitation de la pénétration de la bactérie dans les tissus vasculaires des racines de ces plantes. Les génotypes résistants de tomate et d'aubergine se caractérisent par la limitation de l'invasion bactérienne par la plante, contrairement au géniteur de piment utilisé qui manifeste plutôt une tolérance à cette invasion, les génotypes résistants s'accommodant plutôt bien à de hautes densités bactériennes dans leur tissus (Grimault & Prior, 1993).

La deuxième étude notable traitant de ce sujet porte sur le déterminisme génétique de la résistance du piment au flétrissement bactérien. C'est ainsi que nous apprenons que la résistance du piment au flétrissement bactérien est oligogénique, contrôlée par 2 à 5 facteurs génétiques et stable sous les conditions tropicales (Lafortune et al., 2005). A notre connaissance, aucune étude de cartographie génétique des QTLs conférant la résistance du piment au flétrissement au flétrissement bactérien n'est disponible.

Pour la tomate, en revanche, cinq études portant sur la détection de QTLs gouvernant la résistance au flétrissement bactérien ont été recensées.

La plus récente, celle de Carmeille et al., en utilisant le géniteur de résistance *L.* esculentum cv Hawaï 7996, le parent sensible *L. pimpinellifolium* WVa 700 et une souche réunionaise du phylotype II de *R. solanacearum* (JT516-Race3, Biovar 2, Phylotype IIB) met en évidence le caractère oligogénique de la résistance en détectant 4 QTLs portés par les chromosomes T3, T4, T6 et T8 de la tomate, le QTL à effet le plus fort (9%) se trouvant sur le chromosome T6. Ces QTLs expliquent 3,2 à 29,8% de la variation phénotypique suivant le critère de résistance choisi. Le niveau d'héritabilité élevé (0,82 à 0,88), démontre par ailleurs la forte implication de facteurs génétiques dans le contrôle de cette résistance chez la tomate. Signalons enfin que cette étude a aussi révélé le caractère phylotype-spécifique de cette résistance (Carmeille et al., 2006).

Six années plutôt, Wang et al.(2000), à l'aide de la même population de cartographie mettaient déjà en évidence le caractère oligogénique et race-spécifique de la

résistance de la tomate au flétrissement bactérien en détectant des QTLs portés par les chromosomes T3, T6, T8 et T12. Dans cette étude, le QTL à effet le plus fort était pour la souche *Pss4* (Race 1, Biovar 1), une souche endémique à Taïwan. Ce QTL est porté par le chromosome T12 et contribue pour 74% de la variation phénotypique (Wang et al., 2000). Avant ces deux auteurs, d'autres études établissaient le caractère oligogénique de la résistance de la tomate au flétrissement bactérien. Toutes font état de QTLs à effet fort sur le chromosome 6 de la tomate en utilisant pour certain des géniteurs de résistance et des souches bactériennes différentes (Deberdt, 1999 ; Mangin et al., 1999 ; Thoquet et al., 1996b ; Danesh et al., 1994), (**Tableau 1-7**).

Auteurs/ réferences	DANESH et a	ANESH et al, 1994 TOQUET et al, 1995 MANG		WANGIN et al, 1999 WANG		VANG et al, 2000		CARMEILLE et al, 2004								
Souches bactériennes	UW364-Race	1, Biovar 1		GMI8217	-Race1, Bio	war 1	GMI8217-Race1, Biovar		/ar 1	Pss4-Race1, biovar 3 Phylotype I, Seq 15			JT516-Race 3, Biovar 2, Phylotype IIB-Seq 15		var 2, 1 15	
Population de cartographie	L285xCLN28	6BC1F2-25-1	4-7	Hawaï7996	xWVa700		Hawai7996xWVa700 Hawai7996xWVa700			Hawai7996xWVa700						
	Marqueurs	Position	R^2	Marqueurs	Position	R^2	Marqueurs	Position	R^2	Marq	ueurs	Position	R^2	Marqueurs	Position	R^2
Chromosome 2										GP50)4	106cM	<10%			
Chromosome 3				CP6 P12	60 cM									CP226 CP6	40 cM	
				GP226	70 cM	10%								PIT2		9% Ri
				05	95 cM	Ri								TC515		
				05	95 CIVI									K4d	72.cM	
Chromosome 4				TG268										CD49	0 cM	
chi dilasolite i				CT145										TG464	30 cM	
				TC268	30 cM									TC268		9-13%
				TG464b	50 CM									CT145		Csr
				GP165		10%								CD73		
				CD73		ĸ								GP165		
				F5N20												
				K12												
				N17-1	45 cM											
Chromosome 6	TG297	1cM		AscPer	0 cM		Cf2		1	2% C	f2	0		TG178	0 cM	
	TG231			K4_3						Т	G178			CD67		
	TG178	9cM		Cf 2			TG73	38 cM		C	D67			TG232		
	TG243			TG178	8 cM		TG240	42 cM	1	3% T	G118	20 cM	[TG118		
	TG118			CD67	10 cM	200/	TC406			Т	G153	25 cM	12%	TG153		22 200/
	TG153	26cM	77% Ri	TG232	12 cM	20% Ri	TG162	52 cM		C	P18	30 cM	Ι	CP18		22-30% Ri
	TG25	31cM	30% Si	TG325	14 cM		CT109	68 cM		Т	G73	38 cM	I	TG73	30 cM	
	CT184			TG118	20 cM					Т	G240	48 cM	[TG240		
	TG365	43cM		TG153										TG406	40 cM	
	CT136	45cM		CP18	30 cM									TG162	52 cM	
	TG292			TG73										CT109	60 cM	
	TC280 CT102			TG240	40 cM											
Chromosome 7	TG272	1 cM		16102	80 CIVI											
chiomosonic /	TG51b	18 cM	24% Si													
	TG135	20 cM														
	TG183	50 cM														
Chromosome 8	CP112	0 cM		CP112	0 cM	10% Ri				CP11	2	0 cM				
	CD40	4 cM	10% Ri	CD40	4 cM	KI				CD40)	3 cM	< 10%			
										CT13	5	10 cM				
CI 10	TG230		24,6% Ri	PAL2												
Chromosome 10	TG285		38,2% Si	CP105												
Chromosome 11				D6b	45cM											
				GP162	52cM	5% Ri										
				GP505												
				010	55 cM											
Chromosome 12										TG50	64	30 cM				
										K4a		65 cM	/4%			
										CIR	50	115 CM				

Au bilan, cinq chromosomes de la tomate sont porteurs de principaux QTLs de résistance au flétrissement bactérien, ce sont par ordre d'importance les chromosomes 6, 12, 4, 10 et 8. L'analyse génétique de la résistance du piment au flétrissement bactérien a fait l'objet de peu d'études. La cartographie de locus en jeu permettra de mieux connaître ces derniers à des fins de sélection future. L'expérience des études de cartographie chez la tomate montre que les locus en jeu dépendent des souches bactériennes et des géniteurs de résistances utilisés. Afin d'orienter efficacement la construction de génotypes de piment résistant au flétrissement bactérien, II serait donc recommander de confronter la diversité génétique du piment à celle de la bactérie, car les mécanismes et les spectres d'action peuvent être variés, tout comme la réponse à différents phylotypes.

1.2- FLÉTRISSEMENT BACTÉRIEN CAUSÉ *R. SOLANACEAR UM* (SMITH 1986) YABUUCHI ET AL. 1996

1.2.1- IMPORTANCE SOCIO-ÉCONOMIQUE DE LA MALADIE

Le flétrissement bactérien est une maladie tellurique causée par une bactérie ubiquiste du nom de *R. solanacearum* (Yabuuchi et al., 1992). C'est sur ce nom qu'est actuellement désignée cette bactérie gram-négatif qui est à l'origine de l'une des phytobactériose les plus répandues et des plus dévastatrices dans le monde. Cette bactérie opère sous une gamme variée de climats comprenant aussi bien les climats tempéré, méditerranéen, subtropical que tropical où elle est capable d'infecter près de 450 espèces de plante chez 54 familles botaniques ; aussi bien chez les monocotylédones que les dicotylédones (Hayward, 1991). Sur la tomate, cette bactérie peut occasionner des pertes allant jusqu'à 91% en champ (Ram, 1987). Aux USA, elle est placée sur la liste des armes potentiellement utilisables pour le bioterrorisme (Madden & Wheelis, 2003).

La gamme d'hôte est large et en constante augmentation du fait d'une part de sa grande plasticité (Bertolla et al., 1997) et d'autre part de sa grande diversité génétique et phénotypique (Prior et Fegan, 2005). Cette diversité est à l'origine du contournement des résistances (Hartman et Elphinstone, 1994 ; Prior et Steva, 1990 ; Velupillai et Stall, 1984). Au nombre des espèces connues et d'importance économique affectées par R. solanacearum, on peut citer la tomate, le tabac, la pomme de terre, le piment et l'aubergine chez les Solanacées ; l'arachide (Fabacées ou Papilionacées), plante sur laquelle cette bactérie constitue une contrainte à la culture en Chine ; Héliconia et le bananier (Musacées) sont du nombre des plantes attaquées par R. Solanacearum. Les Héliconia sont reconnus comme étant le réservoir naturel des souches de R. solanacearum qui attaquent préférentiellement les bananiers dans les Amériques. Cette bactérie tellurique y est responsable de la redoutable maladie Moko dont le vecteur est un insecte. On peut enfin citer l'Eucalyptus (Myrtacées), dont la culture est une pratique sylvicole assez répandue dans le monde et au Cameroun pour nommer quelques une des plantes dont la culture est menacée par cette phytobactériose en Asie, en Amérique et en Afrique (Ran et al., 2005 ; Roux et al., 2001). Au Cameroun, cette maladie est signalée dans 4 zones agro-écologiques (le Cameroun en compte 5) à savoir les hautes savanes guinéennes, les hauts plateaux de l'ouest, et les deux zones forestières à pluviométrie respectivement monomodale et bimodale. Les données sur le niveau

des pertes directes ou indirectes ne sont pas disponibles. Toutefois cette phytobactériose est citée comme étant la principale contrainte à la production de tomate dans les départements de la Lékié (Obala, Okola) et du Mbam (Bafia) en zone forestière humide à pluviométrie bimodale (encore appelée zone V). Cette zone est reconnue comme le deuxième bassin de production de tomate au Cameroun (Anonyme, 2002). Dans les hauts plateaux de l'Ouest Cameroun (Foumbot, Dschang, Bamougoum, Baham, Mbouda), considéré comme le grenier potager du Cameroun et de l'Afrique centrale, le flétrissement bactérien y est également cité comme une contrainte majeure à la culture des Solanacées. Ceci est d'autant plus dommageable qu'ici comme dans les autres régions du pays, la culture des Solanacées, notamment celle du piment et de la tomate, joue un rôle socio-économique important, car elle est pourvoyeuse de revenus substantiels aux paysans, à la fois nombreux et vulnérables dans le système de production agricole du Cameroun (Gockowski & Ndoumbe, 1999).

La bactérie, connue aujourd'hui sous le nom de *R. solanacearum*, l'agent responsable du flétrissement bactérien a été décrit pour la première fois en 1896 aux États-Unis sur le tabac. Cette bactérie ubiquiste, jadis était appelée *Bacillus solanacearum* (Smith, 1896). Les premiers rapports au sujet du flétrissement bactérien datent de la fin du 19^{ieme} siècle. Ils portent sur la pomme de terre, le tabac, la tomate, et l'arachide en Asie, en Amérique du sud et au sud des États –Unis. Plus d'un siècle de travaux divers couvrant les domaines allant de la physiologie, l'éthologie, la génétique à la phylogénie de cette bactérie ont enrichie l'état des connaissances sur cette bactérie.

En 1914, c'est sur le nom de *Pseudomonas solanacearum* (Smith) qu'est désigné cette bactérie. A la faveur de l'évolution des techniques de biologie moléculaire, cette appellation évoluera en 1992 pour devenir *Burholderia solanacearum* (Yabuuchi et al., 1992) validé en 1993, et aujourd'hui *R. solanacearum* validé en 1996 (Yabuuchi et al., 1996).

Généralement, les bactéries sont classées sur la base des séquences de l'ARN ribosomique (ARNr), sur la base des séquences de 16SARNr, de l'homologie ADN-ADN, de l'analyse du profil des acides gras et d'autres caractéristiques phénotypiques. Il a été proposé que toutes les Pseudomonacées du groupe II soient placées dans un nouveau genre appelé *Burkholderia* (Yabuuchi et al., 1992). Des analyses phylogénétiques et phénotypiques / phylophasiques ultérieures mettront en évidence la dissimilarité entre *P. solanacearum*, *P. pickettii, Alcaligenes eutrophus* et le genre *Burkholderia*, ce qui débouchera sur la création d'un nouveau genre appelé *R. solanacearum* comprenant ces trois espèces (Yabuuchi et al., 1996).

R. solanacearum est une protéobactérie de la subdivision β . Elle appartient au groupe d'homologie II (non fluorescent) sur la base de l'ARNr (OEMPP, 2004), en forme de bâtonnets de 0,5 x 1,5 µm en moyenne qui appartient à la famille des Pseudomonacées. Elle a une coloration gram négatif (He et al., 1983), et possède un ou plusieurs flagelles polaires la rendant de ce fait mobile (**Figure 1-9**).

Cette mobilité contribue significativement au pouvoir pathogène de la bactérie au stade initial de l'infection (Tans-Kersten et al., 2001). En culture sur milieu de Kelman (Kelman, 1954) enrichi au chlorure de triphéniltétrazolium (TTC), les colonies sont visibles et reconnaissables très souvent à leur aspect muqueux dû à la production d'exopolysaccharides (EPS), de forme irrégulière, de couleur blanchâtre évoluant à rosée au centre après 48h à 28°C. Cette forme muque use est généralement

associée à la virulence (Kelman, 1954). A l'opposé, sur milieu de Kelman la forme rugueuse présente de petites colonies non virulentes, rondes et de couleur rouge vif du fait de l'accumulation de triphénylformazan (**Figure 1-10**).

FIGURE 1-9 : R. SOLANACEARUM (SOURCE : C. BOUCHER ET J. VASSE, HTTP//WWW.GENOMENEWSNETWORK).

FIGURE 1-10 : A - ASPECT CARACTERISTIQUE D'UNE CULTURE DE R. SOLANACEARUM SUR MILIEU DE KELMAN MODIFIE. B-UNE SOUCHE DITE SFR (SOURCE : MAHBOU ET PRIOR).

1.2.2- DIVERSITÉ PHÉNOTYPIQUE ET GÉNÉTIQUE DE RALSTONIA SOLANACEARUM

1.2.2.1- Importance de la connaissance de la diversité

La connaissance de la diversité est à la base du déploiement d'une stratégie de lutte adaptée intégrant la sélection de variétés résistantes, des outils de diagnostic efficaces et le contrôle de quarantaine, voire de prévision de développement de la maladie. Tel est aussi le but que devrait atteindre tout système de description de la diversité. Buddenhagen en 1986 affirmait : « Pour avoir un sens biologique, la taxonomie d'une bactérie phytopathogène doit être corrélée à son potentiel pathogénique ou son origine géographique » (traduit de Buddenhagen, 1986). Dans le même sens et plus tard, d'autres auteurs phytopathologistes complétaient cette affirmation en écrivant : « Les propriétés d'isolats inconnus devraient partager en commun des propriétés biologiques et écologiques, outil de prédiction et d'orientation, pouvoir être prédites si elles sont assignées à un groupe, refléter avec précision l'ensemble des propriétés biologiques des isolats » (Gillings & Fahy, 1994). Les phytopathologistes (voir les pathologistes tout court) accordent de plus en plus d'intérêt aux travaux relatifs à la structuration des populations pathogènes.

Les critères utilisés pour la description des structures des populations pathogènes peuvent être l'éloignement géographique, l'hôte, les profils métaboliques et de plus en plus il est fait recourt aux critères moléculaires. L'éloignement géographique ne suffit pas à structurer les populations de potyvirus (MOURY, Communication personnelle).

Parallèlement, le déploiement de gènes de résistance intègre de plus en plus l'aspect de la durabilité. Dans leurs efforts de prédiction de la durabilité de résistance chez différents agents phytopathogènes, McDonald & Linde (2002) énumèrent cing forces évolutives structurant les populations pathogènes à savoir les mutations, la taille de la population et la dérive génétique aléatoire, le flux de gène et de génotype, le mode de reproduction et le système de croisement. Il est ainsi admis grâce aux travaux de ces deux auteurs que plus une population sera sujette à des variations dans la structure de sa population, plus elle présentera un risque élevé dans le contournement des gènes de résistance déployés. Pour R. solanacearum si nous considérons le système de reproduction, cette bactérie est naturellement transformable, c'est-à-dire capable d'intégrer et d'exprimer l'ADN extérieur via des mécanismes de transfert horizontaux, faculté la dotant de ce fait d'une grande plasticité (Guidot et al., 2007 ; Bertolla et al., 1999 ; Bertolla et al., 1997 ; Brumbley et al., 1993). Les faits évoqués ci-dessus révèlent la complexité dans de déploiement d'une approche visant à cerner du point de vue génétique R. solanacearum en groupe partageant de propriétés communes, entreprise au demeurant incontournable dans le déploiement d'une stratégie de lutte.

La recherche par les acteurs de la lutte contre cette phytobactérie d'un système de classification pertinent a connu une accélération en 2005 avec la caractérisation phylophasique (Fegan & Prior, 2005), méthode basée sur une approche moléculaire structurant la diversité génétique actuellement connue chez *R. solanacearum* en quatre phylotypes corrélés à l'origine géographique. Les connaissances récentes au sujet de ce système de classification permettent à l'heure actuelle de parier sur un fonctionnement différent entre les phylotypes, notamment en se référant aux travaux qui ont mis en évidence l'existence d'une corrélation entre une famille des effecteurs

de type III de la bactérie (déterminant majeur du pouvoir pathogène), et les phylotypes (Lavie et al., 2004).

1.2.2.2- Classification de Ralstonia solanacearum

A- Classification par races

Ce système de classification divise les souches de *R. solanacearum* en cinq races sur la base de la plante hôte (Buddenhagen et al., 1962) :

- Les souches de la race 1 affectent les Solanacées (tabac, tomate, piment, poivron, aubergine), les bananiers diploïdes ornementaux, les Composées, les Légumineuses, les Euphorbiacées, les Casuarinacées et les Rubiacées. Cette race est la plus répandue en milieu tropical et présente la plus large gamme d'hôtes ;
- La gamme d'hôte des souches de la race 2 est constituée des Musacées (Bananiers triploïdes et certains diploïdes) et autres Héliconia spp.. Certaines souches de cette sont responsables de la fameuse maladie « Moko » en Amérique centrale et dans les Caraïbes. Elles sont transmises par un insecte. Son aire géographique comprend l'Amérique centrale et l'Indonésie ;
- La race 3 est pathogène de la pomme de terre et la tomate en conditions tempérées. Encore appelée « race froide » par opposition aux « races tropicales », sa température optimale est de 15°C;
- La race 4 rassemble les souches hôtes du gingembre et autres Zingibéracées ;
- La race 5 regroupe les souches inféodées au mûrier.

B- Classification en biovars

Cette méthode de classification subdivise *R. solanacearum* en 6 biovars. Développée dès 1964 (Cook et Sequira, 1994 ; Hayward, 1991 ; 1964), elle est basée sur le profil métabolique des souches par leur capacité à réduire trois hexoses alcools (mannitol, dulcitol et sorbitol) et trois disaccharides (cellobiose, lactose et maltose). Un sixième biovar, baptisé 2T, isolé de la pomme de terre se distingue du biovar 2 (race 3) par une activité métabolique différente qui lui permet d'utiliser le D-tréhalose (Martin et al., 1981). La seule correspondance qui existe entre les systèmes de classification en races et biovars est que la race 3 correspond au biovar 2 et la race 5 au biovar 5. Le système de classification par race et biovar est actuellement en vigueur au plan international (**Tableau 1-8**).

	Biovar 1	Biovar 2	Biovar 3	Biovar 4	Biovar 5
Cellobiose	_	+	+	_	+
Lootogo	-	+	+	_	+
Lactose	_	+	+	-	+
Maltose			+	- +	+
Mannitol	-	-			·
Dulcitol	-	-	+	+	-
Sorbitol	-	-	+	+	-

TABLEAU 1-8 : CARACTERISTIQUES DIFFERENTIELLES DES BIOVARS DE RALSTONIA SOLANACEARUM.

C- Approches moléculaires dans la description de la diversité génétique

Le système de classification basé sur des caractères phénotypiques n'est ni consistant au regard de l'origine géographique de la bactérie, ni à celui de ses propriétés biologiques en relation avec son pouvoir pathogène ou son épidémiologie. La race 1 est ainsi un groupe « fourre-tout » car les souches qui ne sont ni de la race 1, ni de la race 3 tendent à y être introduites par défaut.

Une autre limite de ce système de classification vient de ce que la correspondance entre la race 2 et le biovar 3 n'est pas toujours respectée. Cette faiblesse du système international de classification en vigueur a amené Cook et al. à proposer un système de classification basé sur les distances RFLP (Cook et Seguira, 1994 ; Cook et al., 1989). Suite à ces travaux, les souches présentes à l'époque ont été réparties en 46 groupes génétiques appelés MLG (Multi Locus Genotype) répartie en deux divisions : (1) la division 1 comprenant les souches de race 1, 4 et 5 et les biovars 3,4 et 5 d'une part appelée « Asiaticum », et (2) la division II comprenant des souches des races 1, 2 et 3 et des biovars 1, 2 et 2T d'autre part appelée « Américanum ». Par la suite plusieurs travaux viendront confirmer cette dichotomie (Taghavi et al., 1996; Gillings et Fahy, 1993 ; Seal et al., 1992). Une étape supplémentaire importante dans la description de la structuration de la diversité par les outils moléculaire sera par la suite franchie avec le séquençage du fragment compris entre 16S-23SrARN (ITS pour Intergenic Spacer Region), des gènes polygalacturonase (pgl) et endoglucanase (egl) (Fegan et al., 1998); tout en confirmant la division en deux classes, elle révéla l'existence d'un troisième groupe originaire d'Indonésie. En 2000, grâce aux analyses PCR-RFLP du gène hrp, des gènes egl et hrpB (Poussier et Luisetti, 2000 ; Poussier et al., 2000a ; Poussier et al., 2000b ; Poussier et al., 1999), l'existence d'un quatrième groupe originaire d'Afrique sera révélée. Cette configuration a conduit Fegan et Prior à entrevoir une configuration de la diversité génétique de R. solanacearum en quatre groupes majoritairement corrélés à l'origine géographique, et à rechercher des amorces spécifiques pour les discriminer. Telle est la genèse de la caractérisation phylophasique regroupant les souches de R. solanacearum par phylotypes.

D- Classification par phylotypes

Développée par Fegan et Prior Fegan & Prior (2005), cette classification est aussi appelée caractérisation hiérarchique. Comme son nom l'indique, elle se fait en plusieurs phases :

- la première est la détermination de l'espèce. Elle est réalisée par l'utilisation de l'amorce 759/769 développée par Opina et al.(1997) pour le diagnostic moléculaire de *R. solanacearum*;
- (2) la deuxième phase est celle de la détermination du phylotype. Elle est réalisée par une PCR multiplexe. Durant cette phase, des amorces spécifiques à chaque phylotype amplifient les séquences complémentaires sur l'ADN des souches.Ces amorces sont toutes issues de l'ITS (Internal Transcribe Site), (Figure 1-11).

Un phylotype se définit comme un cluster monophylétique de souches révélé par l'analyse phylogénétique des séquences. Ce regroupement doit être consistent indépendamment de la partie du génome séquencée. Ceci peut être le gène *mutS*, *hrp*, *egl*, l'ITS et autres.

 B
 Musa

 Image: marked state
 Image: marked state

 Image: marked state
 Imag

FIGURE 1-11 : A-DIFFERENTES AMORCES UTILISEES LORS DE LA CARACTERISATION PHYLOPHASIQUE ET LEUR ORIGINE SUR L'ITS ; B-LES SOUCHES DU PHYLOTYPE 2 SONT ENSUITE TESTEES AFIN D'IDENTIFIER SI ELLES SONT DES SOUCHES POMME DE TERRE (PDT ENCORE APPELLEE RACE FROIDE), SOLANACEES, OU MUSA. (D'APRES PRIOR ET FEGAN). Les phases ultimes visent à déterminer le séquevar et enfin le clone. Le sequevar est déterminé sur la base des méthodes moléculaires (RADP, AFLP...) et regroupe des souches ayant en commun la même empreinte génétique. Le sequevar est un groupe de souches dont le profil sur la base du séquençage des gènes endoglucanase (*egl*) ou *mutS* diverge de moins de 1%. IL n'existe pas de correspondance entre race-biovar et phylotype. Les souches originaires d'Afrique et d'Indonésie restent à explorer (**Figure 1-12**)

FIGURE 1-12 : CORRESPONDANCE ENTRE LA CLASSIFICATION PHYLOPHASIQUE ET LES AUTRES SYSTEMES DE CLASSIFICATION. ON PEUT REMARQUER QUE LES SEULES CORRESPONDANCES EXISTANTES ENTRE LES RACES ET LES BIOVARS LE SONT ENTRE LES RACES 3 ET 5 QUI CORRESPONDENT RESPECTIVEMENT AUX BIOVARS 3 ET 5. LES RACES ET LES GROUPES MLG AFRICAINS ET INDONESIENS SONT INCONNUS OU A EXPLORER. LES TRAVAUX DE TAGHAVI ET AL., (1996) ET HAYWARD, (1991) ; POUSSIER ET AL., (2000A) ; KISHUN , (1987) ; ET YABUUCHI ET AL., (1992) ONT REVELES L'EXISTENCE DES GROUPES INDONESIENS ET AFRICAINS (SOURCE : INRA).

La **phylogénie** est basée sur la comparaison des relations génétiques dans une population. L'étude phylogénétique permet ainsi d'établir des relations de filiation. Son intérêt est de comprendre le passé évolutif afin de prédire le futur. La construction d'un arbre phylogénétique est basée sur l'étude du niveau de similarité / dissimilarité entre les séquences nucléotidiques de ses individus.

1.2.3- SYMPTOMATOLOGIE

Le spectre d'action de *R. solanacearum* étant très étendu, cette phytobactériose présente plusieurs facies dans son expression.

1.2.3.1- Symptômes sur la tomate

Chez la tomate, la manifestation la plus classique est l'épinastie foliaire, suivi du flétrissement irréversible de la plante (**Figure 1-13**). A ce symptôme est très souvent associée l'apparition sur la tige de bourrelets et de racines adventives, résultant de l'accumulation d'acide indole acétique dans les cellules végétales (Buddenhagen & Kelman, 1964). Une section de la tige placée dans un verre d'eau présentera un filament laiteux, formé d'exsudats blanchâtres de colonies bactériennes provenant des vaisseaux du xylème (Digat & Caffier, 1996).

FIGURE 1-13 : SYMPTOMES DE FLETRISSEMENT BACTERIEN SUR TOMATE. A : EPINASTIE FOLIAIRE SUIVIE D'UN FLETRISSEMENT IRREVERSIBLE DE LA PLANTE. B : EXSUDAT FORME DE COLONIES BACTERIENNES (SOURCE : MAHBOU ET INRA).

Chez le piment les symptômes sont plus discrets. En cas d'attaque sévère, on peut toutefois constater une épinastie foliaire suivi d'un flétrissement, parfois réversible de la plante comme chez la tomate. Le faciès le plus caractéristique est la chute des feuilles suivie du dessèchement de la plante. Très souvent on observe un retard de croissance chez la plante (**Figure 1-14A**).

1.2.3.3- Symptômes sur la pomme de terre

Chez la pomme de terre, le flétrissement de la plante est plus discret et arrive pendant les heures les plus chaudes de la journée. Par la suite la plante entière flétrie. Cette bactérie est responsable de la pourriture brune du tubercule, «Brown rot » suivant la terminologie anglo-saxonne. Le tubercule infecté présente des exsudats laiteux au niveau de l'anneau vasculaire et finit par se décomposer. Ce dernier laisse échapper une odeur nauséabonde très caractéristique de la pourriture des tubercules (**Figure 1-14B**).

FIGURE 1-14 : SYMPTOMES DE FLETRISSEMENT BACTERIEN SUR PIMENT ET TUBERCULE DE POMME DE TERRE. A : EPINASTIE FOLIAIRE SUIVIE D'UN FLETRISSEMENT IRREVERSIBLE DE LA PLANTE, B : EXSUDAT FORME DE COLONIES BACTERIENNES AU NIVEAU DE L'ANNEAU VASCULAIRE (SOURCE : MAHBOU ET INRA).

1.2.3.4- Symptômes sur le bananier

Sur le bananier, cette bactérie est responsable de la redoutable « Moko », de la maladie du sang du bananier "Bacterial Blood Disease" et la maladie de "Bugtok". Les symptômes de moko sur le bananier sont proches de ceux causés par *Fusarium oxysporium* (OEMPP, 2004). Les vecteurs sont des insectes (les abeilles, les mouches des fruits, *Trigona* spp., *Polybia* spp., *Drosophila* spp., et plusieurs autres genres de mouches) qui contactent les bactéries lors des butinages sur des inflorescences de bananiers contaminées vers des inflorescences saines. Cette contamination peut s'opérer sur des distances allant jusqu'à 150 km (Buddenhagen & Kelman, 1964). Cette maladie se manifeste sur bananier par le jaunissement de feuilles et un arrêt prématuré de la croissance des mains de bananes. Notons enfin que le gros des dégâts causés sur bananiers est fait par les souches de la race 2. Toutefois, certaines souches de Solanacées peuvent attaquer les bananiers, et causer la fausse Moko (**Figure 1-15**).

FIGURE 1-15: BUGTOK DISEASE. (A) ET (B) SYMPTOMES DU FLETRISSEMENT BACTERIEN SUR BANANE A CUIRE. ELLE SEVIT AUX PHILIPPINES ; (C) ET (D) SYMPTOMES DE MOKO, MALADIE QUI SEVIT EN AMERIQUE CENTRALE, EN AMERIQUE DU SUD ET AUX PHILIPPINES. ELLE EST TRANSMISE PAR INSECTES ; (E) LA FAUSSE MOKO EST PROVOQUEE PAR DES SOUCHES DE BACTERIE ISOLEES SUR TOMATE. CE SONT TROIS LES TROIS FACIES DU FLETRISSEMENT BACTERIEN CAUSE *R*. *SOLANACEARUM* SUR LE BANANIER (SOURCES : INRA).

1.2.3.5- Symptômes sur le tabac

Chez le tabac, un des symptômes majeurs est le flétrissement unilatéral et le jaunissement prématuré des plantes. Les feuilles d'un côté de la plante ou même la moitié d'une feuille présenteront des signes de flétrissement. En cas de sévérité de l'attaque, la feuille flétrira sans changer de couleur et restera attachée à la plante (OEMPP, 2004).

Le symptôme de flétrissement commun à la tomate, au bananier, au piment et au tabac est le brunissement des tissus du xylème.

1.2.4- ÉPIDÉMIOLOGIE

1.2.4.1- Conservation

La forte plasticité de cette bactérie ubiquiste lui confère des réservoirs d'inoculum et des modes de disséminations variés. Elle alterne la vie sous forme rugueuse dans le sol, avec la forme aqueuse qu'elle retrouve lorsqu'elle infecte une plante. Lorsqu'elle ne se retrouve pas dans l'eau, le sol et la plante sont deux niches écologiques qui rythment la vie de cette bactérie.

Dans **le sol**, germe tellurique par excellence, cette bactérie y survie plusieurs années grâce aux racines des plantes hôtes et non hôtes de la rhizosphère (Granada & Sequira, 1983). Cependant dans un sol nu sa capacité de survie reste très discutée. De nombreux types de sols peuvent être contaminés par *R. solanacearum*, toutefois, leurs propriétés physico-chimiques conditionnent la survie de la bactérie (Hayward, 1991). Ils peuvent ainsi être suppressifs comme c'est le cas avec les vertisols et les sols argileux ou conducteurs comme les sols ferralitiques. Les argiles présentes dans les sols joueraient à cet effet un rôle essentiel. Avec la dessiccation, la fermeture du réseau poreux des argiles entraînerait un effet stérique létal pour les bactéries (Prior et al., 1993).

Les plantes, présentant des symptômes de flétrissement ou non, sont des réservoirs d'inoculum car porteuses d'infections latentes (Skoglund et al., 1993 ; Hayward, 1991 ; Prior, 1990 ; Graham et Lloyd, 1979). De nombreuses plantes adventices hôtes sont aussi une source importante d'inoculum (Hayward, 1991). L'humidité et la température sont deux facteurs environnementaux connus pour leurs influences sur l'expression de la maladie. Les sols humides et bien drainés sont plus favorables à la survie de la bactérie que les sols secs ou inondés (Buddenhagen & Kelman, 1964). La température influence la survie de la bactérie et l'interaction hôte-pathogène (van Overbeek et al., 2004 ; Hayward, 1991). Très tôt, Kelman (1954) a ainsi démontré qu'entre 0 et 10℃, la maladie ne se manifeste pas malgré la présence de la bactérie dans le sol ; L'optimum de température pour la manifestation de cette maladie se situant entre 30 et 35℃ sauf pour les souches dite s « froide » pour lesquelles il est voisin de 23℃ (Buddenhagen & Kelman, 1964).

1.2.4.2- Dissémination

Plusieurs voies servent à la transmission de flétrissement bactérien. Au nombre de celles-ci on peut citer la transmission par les semences vraies dont celles d'arachide et de la tomate. Elle peut aussi se faire par le matériel végétal planté dont les tubercules de pomme de terre (Hayward, 1991) ; par les insectes sur le bananier (Buddenhagen & Elsasser, 1962). Enfin l'une des voies c'est la transmission mécanique par blessure de racines lors de pratiques culturales ou par les blessures dues au nématodes sur divers hôtes (Kelman, 1953 ; Deberdt et al., 1999).

1.2.4.3- Colonisation bactérienne des plantes

C'est par contact entre la bactérie et la plante dans le sol que la virulence est déclenchée. Se déplaçant alors par chimiotactisme, la bactérie pénètre alors dans la plante à travers les ouvertures naturelles au niveau de la coiffe racinaire ou encore des blessures causées par les nématodes (*Meloidogyne* spp.) ou l'homme (Deberdt et al., 1999).

1.2.5- DÉTERMINANTS DU POUVOIR PATHOGÈNE

Un des enjeux actuels de la microbiologie est de caractériser d'un point de vue moléculaire, les mécanismes de virulence des bactéries pathogènes. Une littérature

abondante permet aujourd'hui une meilleure compréhension du mécanisme qui régit l'interaction *R.solanacearum*-plante hôte.

Deux concepts permettent d'appréhender le pouvoir pathogène d'une bactérie. D'une part la virulence, définie comme la capacité d'une souche de bactérie à interagir de façon compatible avec un génotype hôte conduisant à la maladie ; d'autre part l'agressivité qui est l'intensité des symptômes induits par une bactérie lors d'une réaction compatible avec l'hôte. L'agressivité peut être mesurée à travers l'AUDPC (Area Under Disease Progress Curve), elle-même déduite de la cinétique de flétrissement.

Nous pouvons regrouper l'état des connaissances relatives aux facteurs propres à la bactérie qui déterminent le pouvoir pathogène en quatre groupes : les enzymes hydrolytiques, les effecteurs qui régissent les gènes *hrp*, les gènes régulateurs qui permettent à la bactérie de passer de la forme aqueuse (pathogène) à la phase rugueuse (non pathogène), et ceux impliqués dans la motilité de la bactérie.

1.2.5.1- Les exoenzymes

Trois enzymes hydrolytiques extracellulaires produites par *R. solanacearum* jouent un rôle déterminant dans le pouvoir pathogène par leur action dans la dégradation des tissus de la plante infectée. Ce sont l'endoglucanase (*egl*) (Saile et al., 1997 ; Roberts et al, 1988), les polygalacturonases *pgl*A, *pgl*B (ou *peh*B) et *pgl*C (ou *peh*C) (Huang et Allen, 2000 ; Schell et al., 1994 ; Boucher et al., 1992) et une pectine methylestherase (Tans-Kersten et al, 1998). Ces enzymes ne sont cependant pas indispensables pour la virulence. Toutefois les souches porteuses de la mutation des gènes les codant sont moins agressives (Tans-Kersten et al., 1998 ; Schell , 1996 ; Schell et al., 1994 ; Roberts et al., 1988).

1.2.5.2- Les exopolysaccharides

Dès 1954, Kelman établissait déjà la relation entre la virulence et l'aspect mugueux des colonies de R. solanacearum en milieu de culture (Kelman, 1954). Il est ainsi établi que les souches présentant un aspect muqueux sont plus virulentes que celles dont l'aspect est rugueux. L'aspect muqueux est dû à la production par les souches virulentes des exopolysaccharides (EPS). L'EPS est constitué d'un polymère acide, polymère est composé d'une unité trimérique répétée Nleauel de acetylgalactosamine, d'acide 2N-acetyl-2-desoxy-L-galacturonique et d'acide 2Nacetyl-4-(hydroxybutanoyl)-2,4,6-trideoxy-D-glucose (Orgambide et al., 1991). Les gènes eps et ops gouvernent la production d'EPS (Schell, 1996 ; Cook et Segueira, 1991). Quatre fractions d'EPS sont produites. L'EPSI est cependant la plus importante (40% du poids total). Elle constituerait le facteur essentiel du pouvoir pathogène de R. solanacearum (Chapman et Kao, 1998 ; Schell, 1996). A contrario, l'aspect ruqueux des souches les rend moins agressives même si elles ne perdent pas leurs virulences (Denny et al., 1990; Schell, 1996). Le passage de la phase ruqueuse à la phase aqueuse s'appelle la conversion phénotypique. Ce passage est contrôlé par une mutation dans le gène phcA (Poussier et al., 2003). Le rôle des EPS est suspecté dans l'expression des symptômes de flétrissement chez la plante en raison de leur accumulation dans les vaisseaux du xylème, elle-même suivie de la

formation de bouchons qui empêcheraient la circulation de l'eau et des éléments minéraux (Cook et Sequeira, 1991 ; Kao et Sequeira, 1991 ; Denny et al., 1990). Outre cette action d'obturation, l'EPS empêcherait les bactéries de se fixer aux agglutinines végétales (Young & Sequeira, 1986 ; Boucher et al., 1992). Toutefois, le rôle de l'EPS dans l'expression du pouvoir pathogène reste discuté (Denny et al., 1990).

1.2.5.3- Les gènes hrp

Ces gènes, communs aux bactéries gram-négatifs sont responsables du système sécrétoire dit de type III, encore désigné SSTT (Alfano et Collmer, 2004 ; Aizawa, 2001 ; Lahaye et Bonas, 2001 ; Guéneron et al., 2000). Il permet aux bactéries qui les possèdent de sécréter et d'injecter des effecteurs (dont les protéines d'Avirulence Avr) *via* un système complexe à l'intérieur du cytoplasme des cellules eucaryotes. Ces gènes sont indispensables à l'établissement de la relation bactérie-hôte (Genin et al., 1992). Une déficience dans le fonctionnement de la machinerie du SSTT entraîne la perte du pouvoir pathogène de la bactérie ; cette déficience elle-même conduisant à la perte de la capacité de la bactérie à coloniser les tissus végétaux (Young & Sequeira, 1986 ; Kanda et al., 2000).

1.2.5.4- Gènes impliqués dans la motricité de la bactérie

La motricité de *R. solanacearum* lui est conférée par les flagelles. L'étude de deux gènes impliqués dans la voie de biosynthèse du flagelle (*fli*M et *fli*C) a mis en évidence l'importance de cet organe dans le stade précoce de l'invasion et la colonisation de la plante (Tans-Kersten et al., 2001).

1.2.6- MÉTHODES DE LUTTE

Les méthodes de luttes sont nombreuses et comprennent les méthodes chimiques, biologiques, prophylactiques, la désinfection du sol, les techniques culturales et la lutte génétique. Vue la forte interaction génotype-environnement, aucune méthode utilisée isolément ne peut être efficace sur le long terme ; seule leur utilisation en lutte raisonnée pourrait apporter de résultats efficaces, approche pour laquelle il n'existe malheureusement pas de données expérimentales.

1.2.6.1- Méthodes de lutte chimique

Elles consistent à utiliser des produits phytopharmaceutiques pour lutter contre un organisme nuisible. A côté de la chloropicrine, du métam sodium, le formol, l'hypochlorite de calcium, le bromure de méthyle ces trois dernières décades, ont fait l'objet d'utilisation à grande échelle pour le contrôle de *R. solanacearum* sur plantules. Ces produits donnent des résultats satisfaisants en culture hors sol mais en champ les résultats sont limités dans le temps. Par ailleurs, ils ont des effets néfastes sur l'environnement et coûtent cher. Les effets sur l'environnement du bromure de méthyle ont entrainé son interdiction, ce qui a ouvert la recherche sur le choix de méthodes alternatives (Frank, 2003).

1.2.6.2-Méthodes de lutte biologique

Ces méthodes consistent à combattre un organisme nuisible par l'utilisation de mécanismes naturels appartenant soit au règne animal soit au règne végétal, ou qui en dérivent.

Les souches avirulentes de *R. solanacearum*, les espèces bactériennes antagonistes, l'utilisation de mycorhizes ou de plantes sauvages à effet inhibiteur sur les populations de *R. solanacearum*, sont au nombre d'exemples cités dans la littérature.

L'utilisation de mutants *hrp* qui devancent les souches pathogènes dans la colonisation du système racinaire et des tissus vasculaires empêchent l'invasion ultérieure de la plante par ces dernières (Smith et al., 1998 ; Trigalet et al., 1998 ; Kempe et Sequeira, 1983). Les souches de *Pseudomonas* fluorescent sont utilisées avec succès dans le contrôle du flétrissement bactérien sur les jeunes plants d'*Eucalyptus urophylla* dans le sud de la Chine (Ran et al., 2005). C'est aussi le cas sur tomate dans ce pays (Guo et al., 2004). La combinaison d'un traitement du sol par enfouissage de parties séchées de *Géranium carolinianum* en association avec la solarisation s'avère efficace dans le contrôle de *R. solanacearum* sur la pomme de terre en champ au Japon (Ooshiro et al., 2004). Les travaux de Zhu et Yao (2004) ont établi l'efficacité *in vivo* de *Glomus versiforme* dans l'inhibition de *R. solanacearum* par une augmentation localisée et systémique de phénols dans les racines de tomate.

La lutte biologique, si elle donne des résultats prometteurs en conditions contrôlées, n'a pas une efficacité prouvée en conditions naturelles. Sa pratique reste encore peu répandue. Son efficacité est par ailleurs fortement dépendante des conditions environnementales.

Les amendements de sol en substance organique (boue de station d'épuration, farine de soja, bagasse de canne à sucre), en urée et oxyde de calcium ont donné des résultats satisfaisants dans le contrôle du flétrissement bactérien (Wydra et al., 2005 ; Michel et Mew, 1998). Ceci serait dû à une amélioration de la résistance du sol et à une réduction de la population bactérienne. L'utilisation de plantes non-hôtes (maïs, riz) en cultures intercalaires s'avère efficace dans la réduction de l'incidence de la maladie via la réduction de la quantité d'inoculum (Adhikari & Basnyat, 1998) même si leur efficacité est discutable car dépendante de la souche de la bactérie et de la durée de la culture intercalaire (Michel et al., 1997 ; Michel et al., 1996).

1.2.6.3- Méthode de lutte génétique

Cette méthode est la plus utilisée et la plus efficace dans la lutte contre le flétrissement bactrien (Hayward, 1991). Elle a permis l'amélioration du tabac, de la tomate, de la pomme de terre, de l'arachide et de l'aubergine (Gousset et al., 2004 ; Collonier et al., 2001 ; Laferriere et al., 1999 ; Prior et al., 1998). Elle consiste à identifier des génotypes résistants à travers des tests d'évaluation des collections de ressources génétiques (Carmeille et al., 2006a ; Carmeille et al., 2006b ; Wang et al., 1998 ; Hartman et Elphinstone, 1994 ; Denoyés, 1988). Suivent ensuite l'analyse génétique de cette résistance (Carmeille et al., 2006a ; Lafortune et al., 2005 ; Nishi et al., 2003 ; Wang et al., 2000 ; Deslandes et al., 1998 ; Thoquet et al., 1996a ;

Thoquet et al., 1996b) et l'introgression des gènes ou des QTLs (Quantitative Trait Locus) qui contrôlent la résistance dans des génotypes d'intérêt agronomique. La plupart des analyses génétiques citées ci-dessus ont mis en évidence une résistance de type polygénique à l'exception du gène récessif *rrsl* qui contrôle la résistance sur un écotype d'*Arabidopsis thaliana* (Deslandes et al., 1998).

Pour la tomate, s'il a été possible de développer des variétés ayant une résistance stable dans des conditions environnementales locales, cette stabilité est très souvent perdue dans le temps et dans l'espace (Wang et al., 1998 ; Hanson et al., 1996 ; Prior et al., 1994). Cette instabilité de la résistance est due à la grande variabilité phénotypique (virulence et agressivité) et génotypique des souches de *R*. *solanacearum* d'une part et les différences agro-pédo-climatiques qui influencent le développement de la maladie d'autre part.

Le greffage de variétés de tomate sensible sur porte-greffe résistant (tomate ou aubergine) est une technique de contrôle. Elle peut être employée dans le cadre d'une solution de lutte à court terme. Son application à large échelle reste difficilement envisageable du fait de son coût élevé et la difficulté de sa mise en œuvre (Grimault & Prior, 1994).

Pour fermer ce chapitre, nous dirons que *R. solanacearum* présente une très grande diversité génétique et phénotypique. Cette diversité est de mieux en mieux connue tant du point de vue génétique que des mécanismes régissant sa pathogénicité. En face, des méthodes de lutte potentiellement diversifiés sont déployées. Le développement de la lutte génétique, l'une des méthodes de lutte les plus prometteuses, n'a pas jusqu'alors bénéficié du fort potentiel de ressources existantes qui sont à explorer. Il faut relever enfin l'influence prépondérante des facteurs environnementaux dans le déploiement des différentes méthodes de lutte.

1.3- SYNTÉNIE CHEZ LES SOLANACÉES

1.3.1- DÉFINITION ET INTÉRÊT DU CONCEPT

Le mot synténie vient des mots grecs syn qui veut dire ensemble et taenia qui signifie ruban. C'est la conservation du contenu des gènes au sein des chromosomes homologues d'espèces différentes. L'utilisation de ce mot en génétique date de l'ère pré-génomique. De nos jours le concept de la synténie à été étendu pour traiter des questions d'homéologie, c'est-à-dire de l'homologie résiduelle de chromosomes initialement homologues dans leur totalité (McCouch Susan, 2001). On parle de chromosomes homéologues lorsqu'ils présentent le même arrangement mais ne peuvent pas s'apparier à la méiose (Gallais et Bannerot, 1992). Un chromosome homéologue provient des différents génomes constitutifs chez les espèces allopolyploïdes. La synténie se définit comme la conservation du répertoire de gènes au sein d'un chromosome homéologue chez des espèces différentes. Elle est différente de la colinéarité qui est la conservation de l'ordre de ces gènes. Elle peut s'observer à deux niveaux. Au niveau du génome de la plante ou encore d'un segment chromosomique, on parlera alors de macrosynténie ou au niveau d'un locus ou d'une séquence nucléotidique, auquel cas il s'agira de la microsynténie.

Un des centres d'intérêt de la génétique comparative est de savoir si l'homologie structurale confère l'homologie de fonction. La génétique comparative permet ainsi le

transfert de l'information génétique des plantes à structure génomique simple et facile à étudier vers des plantes à génome de plus grande taille et de structure plus complexe. Ces plantes à structure génomique simple sont ainsi appelées plantes modèles. *Arabidopsis thaliana* (plante possédant 5 chromosomes) est la plante modèle chez les dicotylédones, le riz l'est chez les monocotylédones. Les génomes entiers de ces deux plantes furent les premiers à être séquencés dans le règne végétal (Arabidopsis Genome Initiative, 2000). *Medicago truncatula* est la plante modèle chez les Fabacées, groupe de plantes comprenant entre autre le soja, le haricot, le pois. Au niveau générique, la tomate est **la plante modèle** chez les Solanacées.

1.3.2- DÉFINITION DE QUELQUES NOTIONS UTILISÉES EN GÉNÉTIQUE COMPARATIVE

Du point de vue génétique, deux gènes sont dits **homoloques** lorsqu'ils sont situés au même locus. Deux gènes homologues sont de ce fait issus d'un même locus ancestral. Cette notion s'oppose à celle de l'**analogie** qui est une ressemblance parfois due à une pression de sélection sur un gène dupliqué ou résultant d'une convergence, on parle de ce fait de gène analogue. L'orthologie et la paralogie sont deux notions qui s'opposent par le processus de création de gènes homologues. L'orthologie est une ressemblance entre gènes homologues issus d'un même locus ancestral par événement de spéciation. On parlera alors de gènes orthologues entre différentes espèces. L'orthologie s'oppose à la paralogie. La paralogie est une ressemblance entre gènes paralogues et orthologues ont ainsi des histoires évolutives différentes. Le terme métalogie renvoie à la comparaison d'un gène d'une espèce donnée avec un paralogue de ce gène dans une autre espèce. Ci-dessous une présentation schématique des différentes notions employées en génétique (**Figure 1-16**).

FIGURE 1-16 : REPRESENTATION SCHEMATIQUE DES NOTIONS D'HOMOLOGIE, D'ANALOGIE, D'ORTHOLOGIE, DE PARALOGIE ET DE METALOGIE (SOURCE : SIGNORET, 2008).

1.3.3- NOTION DE LA GÉNÉTIQUE ÉVOLUTIVE, CARTOGRAPHIE COMPARÉE ET GÉNOMIQUE

Depuis la maîtrise des éléments structurants la vie que sont l'ADN et l'ARN, il est admis que tous les êtres vivants descendent d'un ancêtre commun il y a trois à quatre milliards d'années (Woese, 2000). Les différences actuelles résulteraient ainsi de l'évolution qui a entraîné une diversité de formes, de fonctions et d'adaptation des organismes vivants.

La génétique évolutive cherche à comprendre les bases génétiques de l'évolution. Elle vise donc à identifier les bases génétiques qui contrôlent les forces biologiques régissant la spéciation ; c'est-à-dire la compréhension du processus à l'aide duquel à travers le temps, divers organismes vivants évoluent pour devenir de espèces nouvelles, l'établissement des relations phylogénétiques liant divers espèces malgré des millions d'années d'évolution. L'un des buts ultimes étant l'utilisation de ces connaissances phylogénétiques dans le but d'accélérer les connaissances des génomes d'espèces apparentés. Cette quête permanente dans la connaissance des génomes passe par l'établissement des cartes génétiques pour chaque espèce. L'avènement de marqueurs hétérologues a donné lieu à la cartographie comparée qui est l'alignement et la comparaison de cartes génétiques de plusieurs espèces. Dans la pratique, le principe de cartographie comparée consiste à utiliser les données acquises sur une espèce ou un groupe d'espèces pour accélérer la caractérisation d'une espèce apparentée. Ceci pourrait déboucher par exemple sur le clonage positionnel. Le terme génomique fut utilisé pour la première fois en 1986 pour désigner le séquençage et la cartographie du génome humain. En utilisant le langage que constitue les gènes à travers l'ADN et l'ARN et surtout du développement de techniques de séquençage, elle a pour objectif de comprendre la structure, la fonction et l'évolution de divers organismes (McCouch Susan, 2001).

1.3.4- COMPARAISON DES GÉNOMES DE PIMENT, TOMATE, POMME DE TERRE ET AUBERGINE

Au paragraphe 3.1, nous avons présenté les relations phylogéniques étroites existant entre les principales Solanacées et posé l'hypothèse de leur évolution à partir d'un génome ancestral commun. Les travaux de phylogénie conduits sur la base de variation du nombre de sites de restriction de l'ADN chloroplastique par Olmstead et Palmer (1997), relèvent l'appartenance de la tomate et de la pomme de terre au même clade. Le piment et l'aubergine sont placés dans des clades distincts. Nous avons annoncé aussi en introduction générale que la comparaison des génomes des plantes avait commencée avec les Solanacées. Les marqueurs utilisés à cet effet furent les marqueurs RFLP qui permettent de détecter des gènes orthologues simple copie dont les séquences présentent plus de 70% de similarité (Fulton et al., 2002). Ainsi dès 1988, Tanksley et al., à l'aide des margueurs hétérologues issus de la tomate, comparaient les génomes de la tomate et du piment. Cette étude a mis en évidence la conservation du répertoire de gènes entre les deux espèces (Tanksley et al., 1988). Ces marqueurs issues de la tomate servirent par la suite pour la construction des cartes génétiques du piment (Livingstone et al., 1999), de l'aubergine (Doganlar et al., 2002 ; Doganlar et al., 2002) et de la pomme de terre (Bonierbale et al., 1988). Ces marqueurs communs servirent pour la comparaison avec la tomate.

Une étude très récente portant sur la comparaison des génomes du piment et de la tomate réalisée à l'aide de 299 marqueurs orthologues dont 263 COSII (Conserved

Ortholog Set) et 36 RFLP / CAPS dérivés de sonde unique tomate, démontre que depuis la divergence de leur plus récent ancêtre commun survenue il y a environ 20 millions d'années, la tomate et le piment se sont différenciés grâce à 19 inversions, 6 translocations chromosomiques et de nombreuses transpositions de gènes. Les deux génomes partagent aujourd'hui en commun 35 segments chromosomiques conservés à l'intérieur desquels l'ordre des gènes / marqueurs est bien conservé. La taille de ces segments varie de 6 à 117cM avec une moyenne de 32 cM (cM en référence à la carte du piment), couvrant de 52% (P1) à 7% (P7) des différents groupes chromosomiques du piment avec une couverture totale de 1117 cM, soit 69% de la carte génétique du piment (Wu et al., 2009) (**Figure 1-17**).

Livingstone et al (1999), dans une étude comparative entre les génomes des deux plantes, ont démontré l'existence de 18 blocs homéologues entre le piment et la tomate couvrant 98,1% du génome de la tomate et 95% de génome du piment. Les mécanismes d'évolution de ces génomes, voire des Solanacées en général, sont des inversions paracentriques (inversion n'impliquant pas le centromère) ou péricentriques (inversion impliquant le centromère), des translocations et des duplications de gènes.

FIGURE 1-17 : COMPARAISON ENTRE LA CARTE DU PIMENT ET CELLE DE LA TOMATE. LES MARQUEURS ORTHOLOGUES SONT RELIES PAR DES LIGNES. LES LIGNES AVEC DES TIRETS INDIQUENT QUE L'UN OU L'AUTRE MARQUEUR, OU LES DEUX SONT CARTOGRAPHIES A LOD<2, DE CE FAIT NE SONT PAS UTILISES POUR LA DETECTION DES INVERSIONS (WU ET AL, 2009).

Enfin entre la tomate et l'aubergine, une bonne conservation de synténie est notée. Seules 23 inversions paracentriques et cinq translocations différencient les deux génomes (Doganlar et al., 2002), (**Figure 1-18**).

FIGURE 1-18 : COMPARAISON DES GENOMES DE LA TOMATE ET DE L'AUBERGINE. (SOURCE : DOGANLAR ET AL, 2002).

Tous ces travaux de génomique comparative chez les Solanacées ont permis d'avoir une vision globale de l'évolution de la structure du génome du piment, de la tomate, la pomme de terre et de l'aubergine. Par ailleurs, la cartographie comparée des facteurs de résistance nous renseigne sur l'existence de 'clusters' intergénériques de facteurs de résistance aux bioagresseurs. Ces clusters de gènes de résistance diffèrent tant par leur déterminisme génétique que leur effet phénotypique (Grube et al., 2000), (**Figure 1-19**).

Au-delà de l'organisation structurale, un accent particulier a été mis sur l'organisation fonctionnelle des locus de résistance aux bioagresseurs et de ceux contrôlant des caractères agronomiques chez les Solanacées. Ceci fait l'objet des deux paragraphes qui suivent.

FIGURE 1-19 : ORGANISATION DES GENES DE RESISTANCE CHEZ LA TOMATE, LE PIMENT ET LA POMME DE TERRE (SOURCE : GRUBE ET AL, 2000B).

1.3.3- EXPÉRIENCES D'UTILISATION DE LA SYNTÉNIE

1.3.3.1- Généralités

Jusqu'à présent nous avons montré que la macro synténie existe entre les Solanacées les plus cultivées. Ces relations de synténie ont été mises en évidence entre la tomate, le piment, la pomme de terre et l'aubergine. Cette synténie structurale implique t'elle souvent ou toujours la synténie de fonction? A-t-elle déjà permis d'accélérer la connaissance d'un génome? Pour répondre à cette question, nous ferons une revue de la littérature en partant des Solanacées.

Pour certains caractères horticulturaux, le regroupement en cluster intergénériques avait été observé chez les Poacées (Moore et al., 1995 ; Leister et al., 1998).

1.3.3.2- Non conformité entre synténie structurale et synténie fonctionnelle

L'un des cas les plus cités dans la littérature concerne le gène contrôlant la résistance au TMV. Chez le piment il s'agit du gène *L* et chez la tomate les gènes *Tm-1* et *Tm-2* et le gène *N* chez le tabac. Tous sont des gènes majeurs dominants conférant une résistance totale au TMV. Ces trois gènes ne se retrouvent pas dans des régions synténiques chez les trois espèces (Grube et al., 2000b ; Pflieger et al., 1999 ; Lefebvre et al., 1995 ; Levesque et al., 1990).

La résistance au TSWV (Tomato Spotted Wilt Virus) est contrôlée chez la tomate par locus *Sw5* porté par le chromosome T9 et chez le piment par *Tsw* porté par le chromosome P10. Plusieurs homologues de *Sw-5* ont été cartographiés, mais aucun n'est porté par le chromosome P10. Ces deux loci donnent un deuxième exemple de manque de synténie fonctionnelle entre la tomate et le piment (Jahn et al., 2000) pour la résistance à une maladie. L'étude du fonctionnement des ces deux gènes révèle par ailleurs qu'ils n'ont pas le même mode de fonctionnement car IIs ne reconnaissent pas le même gène d'avirulence côté virus. En effet, le gène *L* reconnait la capside virale alors que *Tm2* la replicase. Cette différence pourrait être associée à l'absence de synténie fonctionnelle. Cette différence dans le mode de fonctionnement est aussi rencontrée avec le TSWV.

Le troisième exemple vient de la résistance au PVY (Potato Virus Y) et au PepMoV (Pepper Mottle Virus). Cette maladie est contrôlée chez le piment par les gènes dominants *Pvr4* et *Pvr7* portés par le chromosome P10 et la chez la pomme de terre par le gène *Ry*, localisé sur le chromosome PXI. Ces gènes ne sont pas orthologues, cependant *Pvr4*, *Pvr7* et *Ry* contrôlent le PVY suivant le même mode d'action (Grube et al., 2000). Ce manque de synténie fonctionnelle a aussi été observé chez les Poacées. C'est le cas avec les homologues de gènes de résistance du riz, de l'orge et du millet où un manque de synténie entre ces facteurs de résistance a été mis en évidence (**Figure 1-20**) (Leister et al., 1998), de même entre la tomate et la pomme de terre (Pan et al., 2000). Ces exemples sont à l'opposé des cas recensés dans la littérature, où synténie structurale coïncide avec synténie fonctionnelle.

FIGURE 1-20 : CARTOGRAPHIE COMPAREE DES HOMOLOGUES DU GENE R CHEZ CERTAINES ESPECES MONOCOTYLEDONES : LE RIZ, LE MILLET ET L'ORGE. (SOURCE LEISTER ET AL, 1998).

1.3.3.3- Conformité entre synténie structurale et synténie fonctionnelle

La double résistance au PVY et au TEV est contrôlée chez le piment par le gène récessif *pvr2*. Son homologue chez la tomate *pot-1* a été cartographié sur une position génomique colinéaire (Parrella et al., 2002). Ces deux locus ont été clonés et identifiés à deux orthologues d'un même gène : le facteur d'initiation eucaryotique 4E (eIF4E) (Ruffel et al., 2002 ; Ruffel et al., 2005). Contrairement à *L* et *Tm2, pvr2* et *pot1* ont pour gène d'avirulence la VPg du PVY : ce sont donc bien les mêmes fonctions qui contrôlent la sensibilité et la résistance. Cependant pour les nématodes, l'oïdium et le phytophthora, ce champ d'étude reste à explorer.

Chez les Solanacées, *Me3-Me4, Mi-3* et *Gpa2* confèrent la résistance à différents genres de nématodes. Le locus *Me3-Me4* est situé sur le chromosome P9 du piment. Il occuperait une position orthologue à *Mi-3* chez la tomate cartographié sur le chromosome T12 et le locus *Gpa2* de la pomme de terre porté par le chromosome KXII (Djian-Caporalino et al., 2007 ; Djian-Caporalino et al., 2001). Le QTL à effet fort

conférant la résistance à *Phytophthora capsici* sur le chromosome P5 du piment est orthologue au QTL de résistance à *Phytophthora infestans* porté par le chromosome KIV de la pomme de terre (Thabuis et al., 2003 ; Pflieger et al., 2001) et au chromosome T4 de la tomate (Brouwer et al., 2004 ; Brouwer & St. Clair, 2004). Le locus *R3* qui contrôle la résistance au *Phytophthora infestans* « late blight » chez la pomme de terre et le locus *I2* de résistance au flétrissement causé par *Fusarium* spp sont colinéaires (Huang et al., 2004). Pour terminer avec les maladies chez les Solanacées, signalons l'orthologie des QTLs de résistance conférant la résistance mildiou causé par *L. taurica* portés par les chromosomes P6 et P9 du piment et ceux conférant la résistance de la tomate au mildiou portés par les chromosomes T6 et T12 (Lefebvre et al., 2003).

Les QTLs contrôlant les caractères horticulturaux semblent mieux conservés au fil de la domestication chez les Solanacées. Plusieurs QTLs contrôlant des caractères horticulturaux ont été détectés dans des régions génomiques correspondant à celles contrôlant ces caractères chez la tomate, notamment ceux contrôlant la forme du fruit dont le diamètre et le poids du fruit, l'épaisseur du péricarpe, le diamètre du pédicelle, suggérant pour ces gènes leur probable orthologie (Ben Chaim et al., 2001). De même, des gènes orthologues contrôleraient la forme et la coloration du fruit piment et du tubercule de pomme de terre (Ben Chaim et al., 2003). Quelques années plus tôt, l'orthologie de deux loci putatifs impliqués dans la coloration des organes avait été mise évidence. Elle implique le gène CrtZ-2 qui code pour la βcarotène hydroxylase situé sur le chromosome P3 du piment et co-ségrége avec les QTLs contrôlant la coloration rouge clair / foncé du fruit situé sur le chromosome PIII d'une part, et le locus Y de la pomme de terre responsable de la coloration de la couleur de la chair du tubercule (Thorup et al., 2000). Ce travail faisait suite à celui de (Lefebvre et al., 1998), qui ont démontré que le margueur au locus CCS qui code pour la capsanthine-capsorubine synthase co-ségrége parfaitement avec le locus y responsable de la couleur du fruit du piment. Son homologue chez la tomate est le locus *B* situé sur le chromosome 6 responsable de l'accumulation du beta-carotène dans le fruit. B et y seraient donc orthologues. Trois QTLs contrôlant le poids du fruit et la forme chez la tomate (fsz2b.1, fw3.1/fsz3.1 et fs8.1) ont des orthologues putatifs chez le piment et l'aubergine (Frary et al., 2004). Une relation d'orthologie entre les QTL contrôlant le poids et la forme du fruit a été établie entre le piment et la tomate (Zygier et al., 2005). Tous ces exemples démontrent une bonne conservation de synténie pour les caractères horticulturaux, ce qui n'est pas souvent le cas pour les bioagresseurs.

Chez les Poacées, de tels liens entre homologie positionnelle et homologie fonctionnelle sont mis en évidence. Le paradigme évolutif des graminées effectué sur la base de la génétique comparative stipule que : (1)- l'organisation chromosomique chez les graminées est restée largement conservée malgré 60 millions d'année d'évolution, (2)- 25 groupes de liaison du riz représentent de façon adéquate l'étendue du génome des graminées ; (3)- les blocs synténiques seraient utiles pour la prédiction de la position des caractères agronomiques importants (Salse et al., 2004). Ce que n'avait pas attendu l'équipe de Ahn pour démontrer que la mutation qui détermine la perte de la ligule chez le maïs et le riz est conservée (Anh et al., 1993). Le gène majeur de tolérance au gel occupe la même position chez le seigle, le blé et l'orge (Plaschke et al., 1993). Le seigle est la céréale la plus résistante à la toxicité d'origine aluminique. Récemment, la colinéarité entre les génomes du riz et

du seigle a été mise à contribution pour détecter le gène *Alt3* de tolérance à la toxicité aluminique du sol chez le riz (Miftahudin et al., 2005). La relation de synténie entre la canne à sucre, le blé, le riz et le sorgho a permis une avancée dans la cartographie d'un gène majeur de résistance à la rouille (Asnaghi et al., 2000).

Signalons des cas d'orthologie inter-spécifique (mais intra-générique). Chez la tomate, le gène *Pto* impliqué dans la résistance à *Pseudomonas syringea* pv. *Tomato* a été cartographié sur le chromosome T5 de l'espèce sauvage apparentée à la tomate *Lycopersicon pimpinellifolium*. Son homologue *LhirPto* est positionné au même locus sur la carte de *L. hirsutum*, une autre espèce sauvage apparentée à la tomate. *LhirPto* contrôle également la résistance à *Pseudomonas* (Riely & Martin, 2001).

Il se dégage que les caractères horticulturaux semblent mieux conservés entre le piment et la tomate que les gènes de résistance aux bioagresseurs durant la spéciation. Au cours de la domestication des plantes, est-ce que l'homme aurait sélectionné préférentiellement pour les mêmes critères horticulturaux au sein des espèces différentes? En effet, au cours de leur évolution, il semblerait que face à la multitude de bioagresseurs, les différentes espèces de plantes semblent avoir co-évoluées avec les différents bioagresseurs. Lesquels bioagresseurs en présentant très souvent aussi bien une grande variabilité tant génotypique que phénotypique, auraient entrainées la tomate et le piment à des adaptations différentes lors des processus de spéciation. Ce fait milite indubitablement en faveur de l'intérêt de la génomique comparative pour les caractères horticulturaux. Ceci n'empêche pas toutefois de penser à l'intérêt que pourrait avoir la génomique comparative Pour la résistance aux bioagresseurs.

Quelques exemples militent toutefois pour cet intérêt. Abordons cette question en considérant pathosystème *R. solanacearum*-Solanacées.

R. solanacearum attaque toutes les espèces de Solanacées. Plusieurs études ont démontré que la même souche bactérienne était capable d'attaquer plusieurs espèces de plante (Wang et al., 1998 ; Mahbou Somo Toukam et al., 2009), c'est-àdire in fine d'établir une relation de compatibilité avec la plante. Du côté des Solanacées les plus cultivées, une bonne synténie est observée. Même si la cartographie des QTLs de résistance sur tomate s'est faite pour la plupart des auteurs en utilisant la première génération de margueurs moléculaires à savoir les marqueurs RFLP et ne permet pas toujours un alignement direct avec la carte du piment ; il est aujourd'hui possible de mettre à profit les cartes tomate expen 2000 ou 1992 [(base de données Sol genomic network (http://sgn.cornell.edu/solanaceaeproject/)] et en comparant à la carte Capsicum COSII directement dans la base. Ceci rend possible la localisation de façon hypothétique des QTLs attendus sur les chromosomes du piment, d'après ceux cartographiés chez la tomate. Même si cette approche ne donne pas des résultats très précis, il est toutefois possible de présupposer sur quel bras chromosomique du piment on attendrait ces QTLs (Figure 1-21).

FIGURE 1-21 : POSITION HYPOTHETIQUE DE QUELQUES QTLS CONFERANT LA RESISTANCE DU PIMENT AU FLETRISSEMENT BACTERIEN SUIVANT LA POSITION DES QTLS CONNUS CHEZ LA TOMATE. ON PEUT Y VOIR LA CORRESPONDANCE ATTENDUE ENTRE T6~P6, T12~P9, ET T4~P4.

1.4- PROBLÉMATIQUE DE LA THÈSE

L'objectif général de cette thèse est d'acquérir les connaissances nécessaires pour initier, au Cameroun, un programme d'amélioration du piment contre le flétrissement bactérien causé par *R. solanacearum*. Le contexte scientifique décrit dans la partie bibliographique montre que :

La sélection sera confrontée à la grande variabilité génétique et phénotypique de *R. solanacearum* ;

Les connaissances acquises sur l'espèce modèle des Solanacées - la tomate- et sur la génomique comparative chez les Solanacées pourrait permettre d'appréhender plus rapidement la génétique de caractère chez le piment.

Pour atteindre cet objectif, nous nous sommes posé les questions suivantes :

Quelle est la diversité génétique de *R. solanacearum* au Cameroun ? Sachant que les souches de *R. solanacearum* d'origine africaine ont été très peu étudiées, quelle est le positionnement phylogénique des souches isolées au Cameroun ? Quelle est leur originalité par rapport aux souches connues dans le monde ? Quelles sont les QTLs qui confèrent la résistance du piment au flétrissement bactérien ? Est-il possible de détecter les QTLs conférant la résistance du piment au flétrissement bactérien par les connaissances acquises sur la tomate, plante modèle chez les Solanacées ? Y a t-il eu diversification ou conservation intra spécifique ou intra générique de ces QTLs ?

Ainsi en partant d'une étude large de la diversité génétique existante chez cette bactérie, ce travail a pour objectif de cartographier des gènes de résistance du piment et de tester leur éventuelle orthologie avec les QTLs cartographiés chez la tomate.

La partie expérimentale de la thèse est construite en 3 parties :

1- La diversité génétique existante chez *R. solanacearum* au Cameroun a été décrite après collecte et isolement de souches bactériennes dans les principales zones agroclimatique. L'analyse de la diversité est réalisée par caractérisation phylophasique, méthode qui contrairement au système race-biovar a le mérite d'établir la corrélation entre la bactérie et son origine géographique. Ce chapitre est présenté sous forme d'un article publié dans Plant Disease sous le titre « Broad diversity of *R. solanacearum* strains in Cameroon ».

Pour l'analyse génétique de la résistance chez le piment, deux géniteurs de résistance partielle ont été choisis, de par leur comportement vis-à-vis des souches de *R. solanacearum* testées, ainsi que du fait que des descendances en ségrégation étaient disponibles pour le phénotypage :

2- La première descendance, haploïde doublée, avait été étudiée précédemment en Guadeloupe, en infection naturelle renforcée par une souche locale du phylotype II (Lafortune et al, 2005), mais aucune carte génétique de cette descendance n'est
disponible. Nous avons donc comparé la génétique de cette résistance à celle de la résistance à une souche CMR 143 du phylotype I camerounaise. Afin de réduire l'effort technique de cartographie génétique, le marquage moléculaire a été ciblé sur les chromosomes supposés porteurs de QTLs, d'après l'hypothèse de synténie avec la tomate. Ce chapitre est présenté sous forme d'un article en cours de rédaction.

3- La deuxième descendance est une série de lignées recombinantes dont la carte génétique était déjà construite, mais la ségrégation pour la résistance inconnue. Celle-ci a donc été testée vis-à-vis de la même souche CMR 143 camerounaise et les QTLs de résistance analysés sans *a priori*. Ce chapitre est présenté sous forme d'un article en cours de soumission.

Dans le chapitre « discussion générale et perspectives », un point sur les résultats acquis, ouvre la discussion sur la diversité réciproque de l'agent pathogène, sur la spécificité des QTLs de résistance vis-à-vis de la variabilité bactérienne, mais aussi entre géniteurs de résistance, ainsi que sur l'intérêt d'utiliser la synténie pour faciliter les analyses génétiques. Enfin, les perspectives de cette étude pionnière pour la sélection et la protection des cultures seront évoquées.

CHAPITRE 2 : ETUDE ELARGIE DE LA DIVERSITE GENETIQUE DE *RALSTONIA SOLANACEAR UM* AU CAMEROUN

L'objectif principal de ce chapitre a été d'étudier la diversité génétique de *R. solanacearum* dans les principaux bassins de production de Solanacées au Cameroun. La connaissance de cette diversité devrait permettre d'orienter de façon efficace les choix de sélection.

Les résultats sont présentés sous forme d'un article. Cet article a été plublié dans Plant Disease.

ARTICLE : BROAD DIVERSITY OF *RALSTONIA SOLANACEARUM* STRAINS IN CAMEROON

Gabriel Mahbou Somo Toukam, Institut de Recherche Agronomique pour le développement, IRAD, Programme Légumineuses et Cultures Maraîchères, Yaoundé, BP 2067 Yaoundé, Cameroun ; **Gilles Cellier** and **Emmanuel Wicker**, CIRAD, UMRC53, Peuplement Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410, Saint- Pierre, La Réunion, France ; **Caroline Guilbaud**, Institut National de la Recherche Agronomique (INRA), Avignon, Station de Pathologie Végétale, BP94, Montfavet, F-84140, France ; **Rémi Kahane**, CIRAD, UPR Horticulture, Bdde la Lironde, F-34398 Montpellier, France ; **Caitilyn Allen**, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA ; and **Philippe Prior**, CIRAD-INRA, UMRC53 PVBMT, F-97410, Saint-Pierre, La Réunion, France.

ABSTRACT

Mahbou Somo Toukam, G., Cellier, G., Wicker, E., Guilbaud, C., Kahane, R., Allen, C., and Prior, P. 2009. Broad diversity of *Ralstonia solanacearum* strains in Cameroon. **Plant Dis.93:1123-1130.**

In 2005, an extensive survey of bacterial wilt in Cameroon collected 110 strains of Ralstonia solanacearum from wilting tomato, potato, pepper, huckleberry (Solanum scabrum), sesame, and amaranth. The genetic diversity and phylogeny of selected strains from Cameroon were assessed by multiplex-polymerase chain reaction (PCR), race 3/biovar 2-specific PCR, and sequence analyses of the mutS and egl genes. These data were compared with those from 33 reference strains covering the known diversity within the R. solanacearum species complex. Strains isolated in Cameroon clustered into three of the four known phylotypes : I (Asian), (American), and III (African). Lowland tomato strains belonged to phylotype I and were quite homogeneous. The strains belonging to phylotype II were genetically diverse, and partitioned into subclusters IIA and IIB (sequevar 1, race 3/biovar 2). Cameroon strains in the African phylotype III were distinct from reference strains from Zimbabwe or the Indian Ocean, highlighting the genetic diversity present within this phylotype. Strains from potatoes growing in the highlands of West Cameroon fell into both phylotypes II (race 3/biovar 2) and III. These phylotype II and III highland strains attacked both potato and tomato and could therefore pose an economic threat to

potato and tomato crops throughout Central Africa. This is the first comprehensive report on the genetic diversity of *R. solanacearum* strains in Cameroon.

INTRODUCTION

Bacterial wilt, the vascular disease caused by the soilborne bacterium Ralstonia solanacearum, is regarded as a major limiting factor for many crops worldwide, including subsistence food crops, small farming cash crops, and industrial crops including vegetables (Solanum tuberosum, S. lycopersicum, Capsicum spp.), banana (Musa spp.), peanuts (Arachis hypogaea), and tobacco (Nicotiana tabacum) (15). Global economic losses due to bacterial wilt of potatoes have been estimated at US\$950 million per year (5). This disease, also known as potato brown rot, is caused by the biovar 2 Andean subgroup of R. solanacearum, historically known as race 3 biovar 2 (R3bv2). R3bv2 is a guarantine pest in Europe and North America, and is listed in the United States as a bioterrorism Select Agent (20). In Africa, losses due to this pathogen have a major socio-economic impact on key resource crops such as tomato, pepper, eggplant, and potato (43), which are a source of cash for thousands of low-income farmers, especially in Cameroon (11). Bacterial wilt severely affects huckleberry (Solanum scabrum), also called African nightshade, an indigenous leafy vegetable widely grown in the humid forest zone of West and Central Africa as a subsistence food crop and cultivated for its edible leaves in more than 20 African countries (11).

Many different strategies have been evaluated for the control of bacterial wilt. These include soil disinfection (15), soil amendment (21, 22, 34), biological control (30,36), chemical elicitors of systemic acquired resistance (26), and the use of genetic resources such as resistant rootstock for grafting of susceptible varieties (12). To date, breeding for resistance to bacterial wilt is still considered the most promising strategy for long-lasting control (29). Unfortunately, wilt resistance often breaks down due to the genomic plasticity and the large genetic and phenotypic diversity within the *R. solanacearum* species complex (6,10). For example, tomato lines that were resistant to bacterial wilt in one geographic area were susceptible in another because of local pathogen strain variation (40). In addition, the effectiveness of genetic resistance is highly dependent on the subtle interactions among host, pathogen, and environmental conditions (14,29,40,41). Thus, knowledge of local pathogen diversity is a key prerequisite for successful disease resistance breeding.

Historically, *R. solanacearum* was subclassified into races and biovars, but these systems were neither predictive nor phylogenetically meaningful. Recently, Fegan and Prior (6) proposed a new hierarchical classification scheme, based on sequence analysis of the internal transcribed spacer (ITS) region, the endoglucanase (*egl*) gene, and the *hrpB* gene, that subdivides *R. solanacearum* into phylotypes, defined as "a monophyletic cluster of strains revealed by phylogenetic analysis of sequence data" (6,7). Four phylotypes were distinguished. Phylotype I corresponds to the "Asiaticum" division 1 of Cook et al. (3) and contains strains belonging to biovars 3, 4, and 5. Phylotype II corresponds to the "Americanum" division 2 of Cook et al.(3) and contains strains belonging to biovar 1/race 1, biovar 1/race 2 (Moko disease-causing strains), R3bv2, and biovar 2T strains. Phylotype III contains strains from Africa and the Indian Ocean, which belong to biovars 1 and 2T. Phylotype IV contains strains strains strains from Japan, and a single strain from Australia, belonging variously to biovars 1, 2, and 2T. Phylotype IV also contains the closely

related species *Ralstonia syzygii* and the banana blood disease bacterium (BDB). Each phylotype can be further subdivided into sequevars based on differencesin sequence of a 750-bp region of the endoglucanase (*egl*) gene. The phylotyping scheme proposed by Fegan and Prior (6) is broadly consistent with the former phenotypic and molecular typing schemes, and adds valuable information about the geographical origin and in some cases the pathogenicity of strains. A recent study (13) hybridized genomic DNA of 18 strains, representative of the known diversity within the *R. solanacearum* species complex, to a microarray of genes from the sequenced genome of strain GMI1000. The resulting hierarchical clustering of strains perfectly matched the previous classification in four phylotypes.

To date, although bacterial wilt disease is known to be wide spread in Africa, the genetic diversity of *R. solanacearum* strains prevalent on the continent, and in Cameroon in particular, is scarcely documented. Strains were reported and described from potato crops in Kenya, Burundi, Nigeria, Egypt (35), South Africa (37), and Ethiopia (18), from tobacco crops in Zimbabwe (31), from eucalyptus in South Africa (4,9), from groundnut in Uganda (1), and from tomato in Benin (42). However, "there is little or no published information on distribution or importance" (5). Understanding local pathogen diversity is the foundation of a successful breeding and integrated management program (33). In Cameroon, a breeding program was launched to improve bacterial wilt resistance in pepper. The purpose of this present study was to assess the overall genetic diversity of *R. solanacearum* that may challenge new pepper germplasm. The resulting distribution and diversity map of the pathogen populations will be used to optimize this pepper breeding program, but also to focus African bacterial wilt control strategies in Solanaceous crops, including potatoes.

MATERIALS AND METHODS

Bacterial strains

Strains used in this study (*n* = 143) are listed in **Table 2-1** and **Supplemental Table 2-1.** They include *R.* solanacearum strains from Cameroon (n = 110) and international reference strains (n = 33) provided by authors and obtained from collections (Collection Françaises de Bactéries Phytopathogènes [CFBP], Angers, France). Strains were collected throughout Cameroon in March 2005 during an extensive survey covering a linear distance of about 2,500 km. Fifty-two sites were identified by local or regional extension agents and surveyed for sampling. Various host species of economic importance were sampled, including tomato (Solanum lycopersicum), sweet pepper (Capsicum annuum), hot pepper (Capsicum chinense), potato (Solanum tuberosum), huckleberry (S. scabrum), amaranth (Amaranthus spp.), and sesame (Sesamum spp.). Two priorities guided the survey: (i) representing the five different agro-ecological zones (AEZ) present in Cameroon (Table 2), and (ii) sampling the major vegetable cropping areas within each AEZ where bacterial wilt was known to be the major biotic constraint to crop production. Most fields had a single collection site, but some large fields were sampled at two sites. At each collection site, two or three plants showing typical bacterial wilt symptoms were cut at midstem, and stem pieces (6 to 10 cm long) were kept at about 20°C in a cool box prior to isolation of R. solanacearum. Sampling and isolations were done on the same day. Samples were surfacedisinfected with 70%

ethanol, peeled, subsampled, and macerated in sterile distilled water. Macerates were streaked on Kelman's triphenyltetrazolium chloride (TZC) agar medium (17) supplemented with 1% yeast extract. Plates were incubated at room temperature (28 \pm 5°C). Bacterial colonies developing the typical irregular mucoid *R. solanacearum* morphotype were then subcultured on fresh TZC medium for further purification. Isolated strains of *R. solanacearum* were given an isolate number and stored in sterile water at room temperature.

A set of 44 representative *R. solanacearum* strains from Cameroon, chosen on the basis of their phylotype signment, host of isolation, and geographical origin, were deposited at the Collection Française de Bactéries Phytopathogènes [CFBP] in Angers, France (**Supplemental Table 2-1**).

Strain ^a	Host	Origin (AEZ) ^b	Phylotype/sequevar ^c	Pathogenicity tested ^d	Reference ^d
Strains from	Cameroon				
CMR1	Tomato	Obala (V)	I/13		TS
CMR7	Tomato	Obala (V)	I/13		TS
CMR13	Tomato	Obala (V)	I/13		TS
CMR134	Huckleberry	Bafia (V)	I/13	YES	TS
CMR137	Tomato	Bafia (V)	I/13		TS
CMR96	Huckleberry	Akonolinga (V)	I/13		TS
CMR117	Tomato	Yaoundé (V)	I/13		TS
CMR109	Tomato	Yaoundé (V)	I/13		TS
CMR111	Amaranthus	Yaoundé (V)	I/13		TS
CMR128	Tomato	Yaoundé (V)	I/13		TS
CMR17	Tomato	Obala (V)	I/14		TS
CMR123	Tomato	Yaoundé (V)	I/14		TS
CMR87	Tomato	Akonolinga (V)	IIA/35		TS
CMR89	Tomato	Akonolinga (V)	IIA/35		TS
CMR91	Huckleberry	Akonolinga (V)	IIA/35		TS
CMR102	Tomato	Akonolinga (V)	IIA/35		TS
CMR120	Tomato	Yaoundé (V)	IIA/35	YES	TS
CMR131	Tomato	Yaoundé (V)	IIA/35		TS
CMR116	Tomato	Yaoundé (V)	IIA/35		TS
CMR118	Tomato	Yaoundé (V)	IIA/35		TS
CMR 47	Tomato	Foumbot (III)	IIA/35		TS
CMR 69	Tomato	Bafang (III)	IIA/35		TS
CMR 39	Tomato	Dschang (III)	IIA/41	YES	TS
CMR121	Tomato	Yaoundé (V)	IIA/52		TS
CMR18	Tomato	Baham (III)	IIB/1		TS
CMR24	Potato	Bamougoum (III)	IIB/1	YES	TS
CMR 34	Tomato	Baham (III)	IIB/1	YES	TS
CMR 35	Tomato	Baham (III)	IIB/1	YES	TS
CMR 44	Potato	Dschang (III)	IIB/1		TS

TABLE 2-1: RALSTONIA SOLANACEARUM STRAINS USED IN THIS STUDY.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMR15	Tomato	Obala (V)	III/29	YES	TS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CMR30	Tomato	Baham (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR32	Huckleberry	Dschang (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 36	Tomato	Baham (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 43	Potato	Dschang (III)	III/29	YES	TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 50	Tomato	Mbouda (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 51	Tomato	Mbouda (III)	III/29		TS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CMR 52	Potato	Dschang (III)	III/29		TS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CMR 56	Huckleberry	Foumbot (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 62	Tomato	Foumbot (III)	III/29		TS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CMR 63	Tomato	Foumbot (III)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 75	Tomato	Melong (IV)	III/29		TS
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CMR 76	Tomato	Melong (IV)	III/29		TS
CMR 66 Huckleberry Balang (III) III.29 IIII.29 III.29 III.29	CMR 78	Penner	Melong (IV)	III/29	YES	TS
Reference strains Interview of Mathematical Science Strains Interview of Mathematical Science Strains Interview of Mathematical Science Scie	CMR 66	Huckleberry	Bafang (III)	III/49	125	TS
R292 Mulberry China I/12 (27) JT523 Potato Reunion Is. I/13 (27) JT523 Potato Reunion Is. I/13 (27) CFBP765 Tobacco Japan I/15 (27) ACH92 Ginger Australia I/16 (27) GM11000 Tomato French (1) (27) GB11000 Tomato Martinique IIA/35 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2957 Tomato Martinique IIA/36 (1) ICMP7063 Potato Kenya IIA/7 (27) R60 Tomato USA IIA/7 (27) IPO1609 Potato Netherlands IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) NCPPB3987 Potato Brazil IIB/25 YES (27) MOLK2 Ban	Reference stra	ins	Durung (III)			15
Integra Integra <t< td=""><td>R292</td><td>Mulberry</td><td>China</td><td>I/12</td><td></td><td>(27)</td></t<>	R292	Mulberry	China	I/12		(27)
CFEP765 Tobaco Japan L/15 (27) ACH92 Ginger Australia L/16 (27) GM11000 Tomato French (1) (27) GM1000 Tomato French (1) (1) CFBP2968 Eggplant Guadeloupe L/18 (1) NCPPB3190 Tomato Malaysia L/18 (1) CFBP2957 Potato Martinique IIA/35 (1) CFBP2958 Tomato Guadeloupe IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) ICMP7963 Potato Kenya IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (27) NCPPB3987 Potato Brazil IIB/28 YES (27) UW9	IT523	Potato	Reunion Is	I/12 I/13		(27)
ACH92 Ginger Australia I/15 (27) GM11000 Tomato French (1) (27) GM1000 Tomato French (1) (1) CFBP2968 Eggplant Guadeloupe I/18 (1) CFBP2972 Potato Matrinique IIA/35 (1) CFBP2957 Tomato Martinique IIA/36 (1) CFBP2958 Tomato Martinique IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) JT516 Potato Netherlands IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (27) NCPPB3987 Potato Peru IIB/25 YES (27) MOLK2 Banana Philippines IIB/3 (27) UW9 Heliconia Costa Rica IIB/3 (27) UW129 Ban	CFBP765	Tobacco	Ianan	I/15		(27)
GMI 1000 Tomato French (1) GWI 1000 Tomato French (1) CFBP2968 Eggplant Guadeloupe I/18 (1) NCPPB3190 Tomato Malaysia I/18 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2957 Tomato Martinique IIA/35 (1) CFBP2958 Tomato Guadeloupe IIA/39 (1) ICMP7963 Potato Kenya IIA/7 (27) IPO 1609 Potato Netherlands IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (27) NCPPB3987 Potato Brazil IIB/25 YES (27) MOLK2 Banana Philippines IIB/3 (27) UW9 Heliconia Costa Rica IIB/3 (27) UW102 Banana Potu IIB/3 (27) UW70 Banana <t< td=""><td>ACH92</td><td>Ginger</td><td>Australia</td><td>I/15 I/16</td><td></td><td>(27)</td></t<>	ACH92	Ginger	Australia	I/15 I/16		(27)
CHIRDO Formation Guyana I/18 (1) CFBP2968 Eggplant Guadeloupe I/18 (1) NCPPB3190 Tomato Malaysia I/18 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2972 Potato Martinique IIA/36 (1) CFBP2973 Tomato Guadeloupe IIA/39 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) ID01609 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/25 YES (27) NCPPB3987 Potato Brazil IIB/28 YES (27) MOLK2 Banana Honduras IIB/3 (27) UW9 Heliconia Costa Rica IIB/3 (27) UW129	GMI1000	Tomato	French	1/10		(27)
CFBP2968 Eggplant Guadeloupe 1/18 (1) NCPPB3190 Tomato Malaysia 1/18 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2957 Tomato Martinique IIA/36 (1) CFBP2958 Tomato Guadeloupe IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) JPO1609 Potato Netherlands IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/25 YES (27) MOLK2 Banana Philippines IIB/3 (27) MOLK2 Banana Philippines IIB/3 (27) UW9 Heliconia Costa Rica IIB/3 (27) UW70 Banana Costa Rica IIB/3 (27) UW129 Banana <td< td=""><td>GMI1000</td><td>Tomato</td><td>Guvana</td><td>I/18</td><td></td><td>(1)</td></td<>	GMI1000	Tomato	Guvana	I/18		(1)
NCPPB3190 Tomato Malaysia I/18 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2957 Tomato Martinique IIA/35 (1) CFBP2958 Tomato Guadeloupe IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) IPO1609 Potato Netherlands IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (27) NCPPB3987 Potato Peru IIB/25 YES (27) MOLK2 Banana Philippines IIB/3 (27) (27) UW9 Heliconia Costa Rica IIB/3 (27) (27) UW70 Banana Honduras IIB/3 (27) (27) UW129 Banana Costa Rica IIB/3 (27) UW120 Banana Peru	CFBP2968	Eggplant	Guadeloupe	I/18		(1)
CFBP2972 Potato Martinique IIA/35 (1) CFBP2972 Potato Martinique IIA/35 (1) CFBP2973 Tomato Martinique IIA/36 (1) CFBP2974 Potato Martinique IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) IPO1609 Potato Netherlands IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (27) UW551 Geranium Kenya IIB/25 YES (27) NCPPB3987 Potato Brazil IIB/28 YES (27) MOLK2 Banana Philippines IIB/3 (27) (27) UW9 Heliconia Costa Rica IIB/3 (27) UW10 Banana Poru IIB/4 (27) UW102 Banana Peru IIB/4 (28)	NCPPB3190	Tomato	Malavsia	I/18		(1)
CFBP2957 Tomato Martinique IIA/36 (1) CFBP2958 Tomato Guadeloupe IIA/36 (1) ICMP7963 Potato Kenya IIA/7 (27) K60 Tomato USA IIA/7 (27) IPO1609 Potato Netherlands IIB/1 YES (27) JT516 Potato Reunion Is. IIB/1 YES (27) UW551 Geranium Kenya IIB/1 YES (38) CIP10 Potato Peru IIB/25 YES (27) MOLK2 Banana Philippines IIB/3 (27) UW9 Heliconia Costa Rica IIB/3 (27) CFBP1409 Banana Honduras IIB/3 (27) UW10 Banana Colmbia IIB/4 (27) UW129 Banana Peru IIB/4 (27) UW129 Banana Peru IIB/4 (28) CFBP6784	CFBP2972	Potato	Martinique	IIA/35		(1)
CFBP2958TomatoGuadeloupeIIA/39(1)ICMP7963PotatoKenyaIIA/7(27)K60TomatoUSAIIA/7(27)IPO1609PotatoNetherlandsIIB/1YES(27)JT516PotatoReunion Is.IIB/1YES(27)UW551GeraniumKenyaIIB/1YES(38)CIP10PotatoPeruIB/25YES(27)NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)UW9BainanaHondurasIIB/3(27)UW70BananaColombiaIIB/3(27)UW129BananaPeruIIB/4(27)UW129BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19(28)JT525GeraniumReunion Is.III/19(28)NCPPB332PotatoZimbabweIII/23YES(1)CF3858PotatoZimbabweIII/23YES(1)CFB7058PotatoJapanIV/8(1)Psi7TomatoIndonesiaIV/10(27)	CFBP2957	Tomato	Martinique	IIA/36		(1)
ICMP7963PotatoKenyaIIA/7(27)K60TomatoUSAIIA/7(27)IPO1609PotatoNetherlandsIIB/1YES(27)JT516PotatoReunion Is.IIB/1YES(27)UW551GeraniumKenyaIIB/1YES(27)UW551GeraniumKenyaIIB/1YES(38)CIP10PotatoPeruIIB/25YES(27)NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)UW70BananaColombiaIIB/3(27)UW70BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CFBP3059EgglantBurkina FasoIII/23YES(1)CFB7058PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	CFBP2958	Tomato	Guadeloupe	IIA/39		(1)
K60TomatoUSAIIA7(27)IPO1609PotatoNetherlandsIIB/1YES(27)JT516PotatoReunion Is.IIB/1YES(27)UW551GeraniumKenyaIIB/1YES(38)CIP10PotatoPeruIIB/25YES(27)NCPPB3987PotatoBrazilIIB/25YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW129BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)CFBP734PotatoMadagascarIII/19YESUW21BananaHondurasIIA/6(28)CFBP322PotatoZimbabweIII/23YESJT525GeraniumReunion Is.III/19YESJT525PotatoZimbabweIII/23YES(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CFB7858PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	ICMP7963	Potato	Kenva	ПА/7		(1) (27)
IPO 1609PotatoNetherlandsIIIP/1YES(27)JT516PotatoReunion Is.IIB/1YES(27)UW551GeraniumKenyaIIB/1YES(38)CIP10PotatoPeruIIB/25YES(27)NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)UW70BananaCosta RicaIIB/3(27)UW70BananaPeruIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CF358PotatoCameroon(1)(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	K60	Tomato	USA			(27)
JT516PotatoReunion Is.IIB/1YES(27)UW551GeraniumKenyaIIB/1YES(38)CIP10PotatoPeruIIB/25YES(27)NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMatriniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)JT525GeraniumReunion Is.III/19YES(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CFB9736EggplantBurkina FasoIII/23YES(1)CIP358PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	IPO1609	Potato	Netherlands	IIB/1	YES	(27)
UW551GeraniumKenyaIIB/1YES(3)CIP10PotatoPeruIIB/25YES(27)NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)CFBP183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMatriniqueIIB/4(28)CFBP6784AnthuriumMatriniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19YESJT525GeraniumReunion Is.III/22(1)CFB93059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(I1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	JT516	Potato	Reunion Is.	IIB/1	YES	(27)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UW551	Geranium	Kenva	IIB/1	YES	(38)
NCPPB3987PotatoBrazilIIB/28YES(27)MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW70BananaPeruIIB/4(27)UW129BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(I1)PSi7TomatoIndonesiaIV/10(27)	CIP10	Potato	Peru	IIB/25	YES	(27)
MOLK2BananaPhilippinesIIB/3(27)UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19YES(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(27)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	NCPPB3987	Potato	Brazil	IIB/28	YES	(27)
UW9HeliconiaCosta RicaIIB/3(27)CFBP1409BananaHondurasIIB/3(27)CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW129BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19YESJT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)III/29(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	MOLK2	Banana	Philippines	IIB/3		(27)
CFBP1409BananaHondurasIIB/3(27)CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(II)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	UW9	Heliconia	Costa Rica	IIB/3		(27)
CFBP1183HeliconiaCosta RicaIIB/3(27)UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(11)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	CFBP1409	Banana	Honduras	IIB/3		(27)
UW70BananaColombiaIIB/4(27)UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19YESJT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/23YES(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(II)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	CFBP1183	Heliconia	Costa Rica	IIB/3		(27)
UW129BananaPeruIIB/4(27)UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19YESJT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	UW70	Banana	Colombia	IIB/4		(27)
UW162BananaPeruIIB/4(28)CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YESNCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(II)(II)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	UW129	Banana	Peru	IIB/4		(27)
CFBP6784AnthuriumMartiniqueIIB/4(28)A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(11)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	UW162	Banana	Peru	IIB/4		(28)
A3909HeliconiaHawaiiIIA/6(27)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(11)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	CFBP6784	Anthurium	Martinique	IIB/4		(28)
UW21BananaHondurasIIA/6(21)UW21BananaHondurasIIA/6(28)CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	A3909	Heliconia	Hawaii	IIA/6		(27)
CFBP734PotatoMadagascarIII/19(28)JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(III)III/29(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	UW21	Banana	Honduras	IIA/6		(27) (28)
JT525GeraniumReunion Is.III/19YES(28)NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(III)III/29(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	CFBP734	Potato	Madagascar	III/19		(28)
NCPPB332PotatoZimbabweIII/22(1)CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon(1)(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	JT525	Geranium	Reunion Is.	III/19	YES	(28)
CFBP3059EggplantBurkina FasoIII/23YES(1)CIP358PotatoCameroon (III)III/29(1)MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)	NCPPB332	Potato	Zimbabwe	III/22		(1)
CIP358PotatoCameroon(1)(III)III/29(1)MAFF301558PotatoJapanIV/8PSi7TomatoIndonesiaIV/10	CFBP3059	Eggplant	Burkina Faso	III/23	YES	(1)
IIII/29III/29MAFF301558PotatoJapanIV/8PSi7TomatoIndonesiaIV/10	CIP358	Potato	Cameroon	111/ 23		(1)
MAFF301558PotatoJapanIV/8(1)PSi7TomatoIndonesiaIV/10(27)			(III)	III/29		(1)
PSi7 Tomato Indonesia IV/10 (27)	MAFF301558	Potato	Japan	IV/8		(1)
	PSi7	Tomato	Indonesia	IV/10		(27)

^a Names of strains in Reunion collection (strains from Cameroon) and in international collections (references). CFBP : Collection Française de Bactéries Phytopathogènes [CFBP], Angers, France ; RUN : collection at CIRAD-INRA Reunion.

^bAEZ = agro-ecological zone (Cameroon).

^c Phylotypes were determined by phylotype multiplex–polymerase chain reaction (Pmx-PCR). II/1 strains amplified the race3/biovar2 (R3bv2)-specific band with primer pair 630/631. The phylotype was confirmed by phylogenetic trees based on *mutS*, and sequevars were determined by phylogenetic trees based on *egl* sequence analyses as described in Fegan and Prior (6,7) and Prior and Fegan (28).

^d Pathogenicity tested on potato, tomato, and pepper (see results in **Table 2-3**).

^e TS = this study ; 1 = P. Prior, INRA-CIRAD, Reunion Island, unpublished data.

Pathogenicity tests

A set of seven *R. solanacearum* Cameroon strains and seven reference strains that spanned the genetic diversity reported in this study was tested for pathogenicity on susceptible cultivars of potato (cv. Désirée), tomato (cv. L390), and Pepper (cv. Yolo Wonder) in a growth chamber at $28 \pm 1^{\circ}$ C day/ $24 \pm 1^{\circ}$ C night, relative humidity of 90 \pm 5% and a 14 h/10 h photoperiod. Bacterial suspensions were prepared in Tris buffer (0.01 M Tris/HCI, pH 7.2) and spectrophotometrically adjusted to OD600nm = 0.1 (approximately 108 CFU ml-1). The root system of each plant was wounded with a scalpel ; then 5 ml of inoculums per plant was poured on the wounded root system of 10 plants belonging to each of the three susceptible plant species at the three to four fully expanded leaf stage. Ten plants of each species, drenched with 0.01 M Tris buffer (pH 7.2), were used as controls. Symptom development in inoculated plants was monitored every 4 to 5 days for 4 weeks after inoculation. If at least one plant showed typical wilt symptoms, the interaction was classified as compatible (pathogenic).

DNA typing

Phylotype multiplex-polymerase chain reaction (Pmx-PCR) of the 16S-23S ITS was used to determine the phylotype of each strain based on the methods and hierarchical classification scheme described previously (6). Briefly, Pmx-PCR includes the primers 759/760 (23) as an internal marker to amplify the 280-bp "universal" R. solanacearum-specific reference band, plus a set of four phylotypespecific forward primers (Nmult :21 :1F : 5'-CGTTGATGAGGCGCGCAATTT-3' ; Nmult :21 :2F : 5'-AAGTTATGGACGGTGGAAGTC-3' ; Nmult :22 :InF : 5'-ATTGCCAAGACGAGAGAAGTA-3' Nmult :AF 5'-:23 ATTACGAGAGCAATCGAAAGATT-3') with a unique and conserved reverse primer (Nmult :22 :RR : 5'-TCGCTTGACCCTATAACGAGTA-3'). This Pmx-PCR produces the following phylotype-specific PCR products: a 144-bp amplicon from phylotype I strains ; a 372-bp amplicon from phylotype II strains ; a 91-bp amplicon from phylotype III strains; and a 213-bp amplicon from phylotype IV strains. Strains that were classified as phylotypell were further tested using the PCR primer pair 630-F (5'-ATACAGAATTCGACCGGCACG-3') and 631-R(5'-AATCACATGCAATTCGCCTACG-3'), which specifically amplifies a 357-bp fragment from strains in phylotype II, sequevar 1, historically known as R3bv2 (8).

PCR amplification and DNA sequencing of the endoglucanase (*egl*) and DNA repair (*mutS*) genes

Strain genetic diversity and phylogeny were further characterized by comparative analysis of the partial nucleotide sequences of the endoglucanase (eql) and the DNA repair protein (mutS) genes. PCR amplifications of a 750-bp region of the egl gene were performed using the primer pair Endo-F (5'-ATGCATGCCGCTGGTCGCCGC-3') and Endo-R (5'-GCGTTGCCCGGCACGAAC ACC-3') (6). The reaction mixture (50 µl, total volume) contained 1× PCR buffer (supplied by the manufacturer), 1.5 mM MgCl2, 200 µM of each dNTP, 4 pmol of each primer, a 2 µl volume of a turbid bacterial suspension as template (about 5 ng/µl), and 1 U of AmpliTaq Gold DNA Polymerase (Applied Biosystems, Foster City, CA). Reaction mixtures were heated to 96°C for 9 min and then cycled through 30 cycles of 1 min at 95°C, 40 s at 55°C, 2 min at 72°C, with a 10 min final extension at 72°C, and a final hold at 12°C. Amplification of the 758-bp fragment of the *mutS* gene was performed in a total volume of 25 µl containing 1x PCR buffer (Promega, Charbonnières-les-Bains, France), 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.8 µM DMSO, 1.25 U of Tag pmol of the primers mutSRsF. 1570 (5'-Polymerase (Promega), 9 ACAGCGCCTTGAGCCGGTACA-3') and mutS-RsR.1926 (5'-GCT GATCACCGGCCCGAACAT-3'), and 2 µl of a turbid bacterial suspension as template (about 5 ng/µl). Reaction mixtures were first heated to 96°C for 5 min, and then cycled through 35 cycles of 1 min at 94°C, 1 m in at 66°C, and 1.5 min at 72°C, with a 5-min final extension at 72°C (27). All PCR amplifications were performed using an MJ PTC100 thermocycler (MJ Research, Bio-Rad Laboratories, Inc., Hercules, CA). Samples (5 µl) of PCR reaction mixtures were resolved on a 2% Trisacetate-EDTA agarose electrophoresis gel, and PCR products were revealed by staining DNA in 0.5 µg·ml-1 ethidium bromide. PCR products were sent to MWGbiotech (Ebersberg, Germany) for purification and sequencing of both strands. For both egl and mutS genes, PCR primers used to amplify partial sequence of these genes were also used as sequencing primers.

Sequence analysis and construction of phylogenetic trees

The partial sequences of the chromosomally located housekeeping gene *mutS* and the megaplasmid located virulence gene *egl* were analyzed using the ARB Software Environment (19) (http://www.arb-home.de/). Sequences were manually aligned using the ARB sequence editor. Evolutionary relationships between sequences were analyzed using the three major phylogenetic approaches offered by the ARB Software : (i) using the algorithm of Jukes and Cantor (16), phylogenetic trees were constructed from the genetic distance data by using the neighbor-joining (NJ) method (32) with 5,000 bootstrap resamplings of the data to test the tree topologies ; (ii) maximum likelihood (ML) methods using the FastDNAml program ; and (iii) the maximum parsimony (MP) methods using the Phylip DNAPARS package implemented by the ARB software. From the pool of *mutS* and *egl* sequences included in this study (77 and 76 sequences, respectively), representative reference strains were identified, and sequences from newly described strains were deposited into the GenBank database.

RESULTS

R. solanacearum strain collection

A total of 110 *R. solanacearum* strains were recovered from wilted tomato, sweet and hot pepper, potato, huckleberry, amaranth, and sesame plants (**Table 2-1**). Bacterial wilt is widely distributed in Cameroon, but disease incidence and severity were highest in AEZ V (Yaoundé, lowlands) and AEZ III (Bafoussam, highlands), which are also the main vegetable cropping areas of Cameroon. The phylotyping results of the 110 *R. solanacearum* strains by AEZ are reported in **Table 2-2**. From these 110 strains, a set of 44 representative strains collected in Cameroon was selected for phylogenetic analysis (**Table 2-1**) including strains from all phylotypes and most of the hosts. No *R. solanacearum* strains were obtained from AEZ I (**Figure 2-1**).

FIGURE 2-1 : MAP OF CAMEROON SHOWING THE FIVE AGRO-ECOLOGICAL ZONES AND THE LOCATIONS WHERE *RALSTONIA SOLANACEARUM* STRAINS OF PHYLOTYPE I, IIA, IIB), AND III WERE SAMPLED.

PCR-based identification and characterization of R. solanacearum strains

Multiplex PCR analyses demonstrated that three of the four *R. solanacearum* phylotypes were present in Cameroon : the Asian phylotype I, the American phylotype II, and the African phylotype III (**Table 2-2**). Strains of phylotype I constituted the largest group (45.5% of the 110 strains). Strains of phylotype II represented 35% of the collection. Among these phylotype II strains, 5% were identified as sequevar 1 (R3bv2) because the characteristic R3bv2-specific 304-bp band was amplified from their DNA using the 630/631 primer pair. Strains of African phylotype III represented only 18% of the 110 collected isolates.

TABLE 2-2: PHYLOTYPE DISTRIBUTION OF *RALSTONIA SOLANACEARUM* STRAINS COLLECTED IN CAMEROON WITHIN AGROECOLOGICAL ZONES (AEZ) BASED UPON DNA TYPING USING PHYLOTYPE MULTIPLEX-POLYMERASE' CHAIN REACTION (PCR) AND THE RACE3/BOIVAR 2 (R3BV2)-SPECIFIC 630/631 PCR TESTS.

	No. of strains				
AE7		Phylotype	II		Total no. of
ALL	Phylotype I	subcluster/sequ	uevar	Phylotype III	strains
		A/non r3-bv2	B/1 (r3-bv2)		
II	0	1	0	0	1
III	0	11	5	14	30
IV	0	1	0	5	6
V	50	22	0	1	73
Total no. of strains (%)	50 (45.5)	35 (31.8)	5 (4.5)	20 (18.2)	110
Hosts	Tomato Potato Pepper Hukleberry Amaranth	Tomato Pepper Huckleberry	Tomato Potato	Tomato Potato Pepper Huckleberry	

Pathogenicity

All Cameroon strains tested (n = 7) were pathogenic on potato (**Table 2-3**). Plants developed symptoms approximately 5 days after inoculation, showing a typical leaf margin rolling-up and epinasty, followed by a generalized and characteristic wilt. All strains except the reference R3bv2 strain IPO1609 (13, 39) were pathogenic to tomato. Cameroon strains CMR15 and CMR43, as well as reference strains IPO1609, CIP10, and NCPPB3987, were classed as not pathogenic to pepper because no symptoms developed 4 weeks after inoculation.

TABLE 2 2.			DAISTONIA	SOLANIACEADUM	STDAINIS			EDDED
IADLE Z-3 :	PATHOGENICITY	OF SELECTED	RALSIONIA	SOLANACEARUM	STRAINS	UN FUIAIO,	TOMATO, AND P	CFFCK.

			Phylotype	Patl	hogenicit	y on
			and			
Strain ^a	Host	Origin ^b	subcluster ^c	Potato	Tomato	Pepper
CMR134	Huckleberry	Bafia (V)	Ι	+	+	+
CMR39	Tomato	Dschang (III)	IIA	+	+	+
CMR120	Tomato	Yaoundé (V)	IIA	+	+	+
CMR34	Tomato	Baham (III)	IIB	+	+	+
JT516	Potato	Reunion Is.	IIB	+	+	+
UW551	Geranium	Kenya	IIB	+	+	+
IPO1609	Potato	Netherlands	IIB	+	-	-
NCPPB3987	Potato	Brazil	IIB	+	+	-
CIP10	Potato	Peru	IIB	+	+	-
CMR43	Potato	Dschang (III)	III	+	+	-
CMR15	Tomato	Obala (V)	III	+	+	-
CMR78	Pepper	Melong (IV)	III	+	+	+
JT525	Geranium	Reunion Is.	III	+	+	+
CFBP3059	Eggplant	Burkina Faso	III	+	+	+
Control (Waterhouse				-	-	-
RN et Glover LA)						

Phylogenetic analysis

Partial *egl* and *mutS* gene sequences were generated from a set of representative strains from Cameroon (n = 44) and compared with those from *R. solanacearum* reference strains covering the known genetic diversity within the four phylotypes (6, 27). Trees constructed with maximum likelihood, parsimony, and distance NJ phylogenetic approaches were totally congruent ; therefore, we present only NJ phylogenetic trees with bootstrap values (**Figure 2-2 & Figure 2-3**). Trees constructed with *egl* and *mutS* sets of sequences were in general agreement with one difference in topology : phylotype III was most closely related to phylotype II in the *egl*-derived tree, while it was more closely related to phylotype I in the *mutS* tree. Apart from this different branching order, trees constructed using the two different sequences showed similar branching patterns clearly partitioning the four phylotypes as previously described (6). The reference strains from phylotypes I, II, III, and IV clustered separately with high bootstrap values.

The 44 representative strains collected in Cameroon were classified into phylotypes according to Pmx-PCR results (**Table 2-2**).

Phylotype I strains were isolated from various hosts including tomato, *Solanum nigrum* (CMR96 and CMR134), and *Amaranthus* spp. (CMR111) produced in the hot and humid lowland AEZ V. These strains were closely related according to both *egl* and *mutS* sequence analyses.

Phylotype II strain DNA sequences resolved into two main branches : subclusters A and B (7). Within subcluster A, all strains isolated from tomato and huckleberry had *egl* sequences differing by less than 1% from the *egl* sequence of sequevar 35 reference strain CFBP2972 (P. Prior, INRA-CIRAD, Réunion, *unpublished data*). They were thus assigned phylotype IIA sequevar 35 (IIA/35). Within subcluster B, all strains were indistinguishable from reference sequevar 1 strains IPO1609 (The Netherlands) and JT516 (Reunion Island) (27). These phylotype IIB/1 strains were all isolated in the cool highlands of AEZ III from potato plants with brown rot symptoms (CMR24, CMR44) and from wilting tomato plants (CMR18, CMR34, CMR35).

Phylotype III strains from Cameroon fell, for most of these, in a subgroup near the reference strain CIP358, previously typed as phylotype III/29 (P. Prior, INRACIRAD, Réunion, *unpublished data*). The strain CMR66 was more closely related to the phylotype III/23 reference strain CFBP3059 from Burkina Faso (6). No strains collected in Cameroon in this study belonged to phylotype IV, the Indonesian cluster of *R. solanacearum*.

Phylotype IV

FIGURE 2-2: PHYLOGENETIC NEIGHBOR-JOINING TREE BASED ON THE PARTIAL ENDOGLUCANASE (*EGL*) GENE SEQUENCES OF STRAINS FROM CAMEROON AND *RALSTONIA SOLANACEARUM* SPECIES COMPLEX REFERENCE STRAINS. THE NUMBER AT EACH NODE IS THE BOOTSTRAP VALUE (5,000 RESAMPLINGS), AND SIGNIFICANT BOOTSTRAP VALUES LESS THAN 100% ARE INDICATED AT EACH NODE. SCALE BAR REPRESENTS 1 NUCLEOTIDE SUBSTITUTION PER 100 NUCLEOTIDES.

Phylotype IV

FIGURE 2-3 : PHYLOGENETIC NEIGHBOR-JOINING TREE BASED ON PARTIAL SEQUENCES OF THE DNA REPAIR MUTS GENE FROM STRAINS FROM CAMEROON AND RALSTONIA SOLANACEARUM SPECIES COMPLEX REFERENCE STRAINS. THE NUMBER AT EACH NODE IS THE BOOTSTRAP VALUE (5,000 RESAMPLINGS), AND SIGNIFICANT BOOTSTRAP VALUES LESS THAN 100% ARE INDICATED AT EACH NODE. SCALE BAR REPRESENTS 1 NUCLEOTIDE SUBSTITUTION PER 100 NUCLEOTIDES.

Geographic distribution of phylotypes in Cameroon

The distribution of phylotypes within the agro-ecological zones visited in this study reflected some epidemiological traits of *R. solanacearum* strains (particularly regarding virulence/temperature relationships) (**Table 2-2**). *R. solanacearum* was mainly isolated in the humid lowland AEZ V and in the highland AEZ III. Phylotype III strains were found in AEZ III, IV, and V, with a majority collected in AEZ III, which is a major potato and tomato cropping area. Phylotype II strains were found in AEZ II, III, and IV ; however, phylotype IIB strains were more prevalent in the highlands of West Cameroon (AEZ III), whereas phylotype IIA strains, isolated from various hosts, were distributed among all AEZs visited. All phylotype I strains were collected in the lowland AEZ V see **Figure 2-1** and **Table 2-4** for AEZ characteristics.

AEZ (districts)	Rainfall (mm)	Elevation (m.a.s.l.) ^a	Mean annual Temperature (range)
I : Sudano- sahelian zone (Garoua)	500-900	250-500	28°C (7.7)
II : High Guinea savannah (Ngaoundéré)	1500-1800	500-1500	23°C (6.4)
III :Western highlands (Bamougoum, Foumbot, Baham, Dschang, Mbouda)	1800-2400	1500-2500	21°C (2.2)
IV: Humid forest (monomodal rainfall) (Melong, Buea)	2000-11000	0-2500	26°C (2.8)
V : Humid forest (bimodal rainfall) (Yaoundé, Okola, Obala, Bafia, Akonolinga).	1500-2000	400-1000	25°C (2.4)

TABLE 2-4 : CHARACTERISTICS OF AGRO-ECOLOGICAL ZONES (AEZ) IN CAMEROON.

^a meters above sea level

DISCUSSION

Bacterial wilt, caused by *R. solanacearum*, was observed in the major vegetable cropping areas of highland and lowland regions surveyed in Cameroon. In this country, farmers from all the regions visited were familiar with bacterial wilt, called "Djom-djom" disease in the Obala area (AEZ V), literally translated as "sleep-sleep" referring to the sudden wilt of tomatoes ; "Sudden-death" in Baham (AEZ III) ; "Water-disease" in Foumbot (AEZ III) in the highlands of West Cameroon ; and "Direct-attack" by tomato growers in Buea (AEZ IV) on the slopes of Mount Cameroon. One hundred and ten strains of *R. solanacearum* were collected from the major cash and/or subsistence crops, and 44 representative strains were positioned in the global phylogenetic scheme of the *R. solanacearum* species complex (6), along with 33 reference strains. These analyses revealed a high genetic diversity among the pathogen strains collected in this country. Phylotype assignment by Pmx-PCR was perfectly congruent with phylogenetic positioning based on sequences of *egl* and *mutS* genes. Cameroon strains of *R. solanacearum* belonged to three of the four

previously described phylotypes (6) : I, II, III. The presence in Africa of these three groups was previously known (5), but our study is the first to describe the distribution of the three phylotypes in a single Central African country. Phylotype I strains of R. solanacearum represented almost half of the collected strains and were overrepresented in AEZ V of Yaounde, a warm and humid lowland region, especially in the rainy season of March (Table 2-2). This result confirms previous reports on phylotype I (ex-biovar 3) strains originating from Southern Africa (24, 25). As expected from this group, they were found in several host species including tomato, potato, pepper, huckleberry, and amaranth. Phylotype I strains may thus be considered the major bacterial wilt constraint for vegetable crops in the lowland bimodal humid forest region of Cameroon (AEZ V; Yaoundé, Akonolinga, Obala, Bafia). In contrast, phylotype III and phylotype IIB (R3bv2) strains were preferentially isolated from AEZ III, a highland cropping area with a temperate climate (Baham, Bafoussam, Bamougoum, Dschang, Foumbot). Strains from phylotype IIA were found in both AEZ III and AEZ V. A further survey including a systematic collection sampling method may help to refine and validate these geographic distribution patterns. Among the phylotype II strains of *R. solanacearum*, we noted differing host range and geographical distributions for IIA and IIB strains. Phylotype IIA strains were isolated from, and prevalent on, tomato and huckleberry crops in all regions sampled, with a majority of the strains originating from the lowland areas. Phylotype IIB/1 (R3bv2) strains were only isolated from potato and tomato in the highland AEZ III, the major potato cropping region. These strains, which are considered to be nearclonal, are hypothesized to have adapted (coevolved) with potato (10). This study confirms that strains in phylotype IIB/1 have a host range that is not limited to potato under natural African highland and tropical conditions. This finding is of major concern for tomato growers in Cameroon, as well as in other African countries where phylotype II/1 strains (R3bv2) have been reported, including Nigeria (35), Uganda, Rwanda, and Tanzania (5), Ethiopia (18), and South Africa (5,9). Indeed, some phylotype IIB/1 strains are highly virulent on the most commonly used wilt resistant tomato lines (2). We show here that phylotype III strains of Cameroon have the same host range (potato and tomato) and the same cool highland environment (AEZ III) as phylotype IIB/1 strains, and caused the same brown rot-like syndrome on potato. Although indistinguishable on the basis of symptom development, disease severity in potato, and prevalence in cool potato growing areas, R. solanacearum strains that cause wilt in potato in the highland areas of Cameroon should be referred to as (i) the African brown rot group, composed of phylotype III strains, and (ii) the Andean brown rot group, composed of phylotype IIB/1 (R3bv2) strains that most likely were introduced through imported latently infected potato tubers. The presence of these two phylogenetically distinct but epidemiologically congruent pathogen groups in the West African highlands must be taken into account in the development of control strategies, including diagnostic tools and especially regional disease resistance breeding programs. Phylogenetic analysis of R. solanacearum strains collected in Cameroon and comparisons with reference strains from neighboring countries revealed that the recently described phylotype III (6), formerly described as the "African biovar 1" strains (24,25), encompasses broad variability Three subgroups with strong bootstrap support were observed, distinguishing (i) the southern Africa and Indian Ocean strains (III/19 and II/21), containing the reference strain NCPPB332 (from Zimbabwe), and phylotype III/19 reference strains CFBP734

(Madagascar) and JT525 (Reunion Island), (ii) the Central Africa strains, mostly represented in Cameroon (III/29), and (iii) a subgroup still poorly investigated, containing the strain CMR66, and the phylotype III/23 reference strain CFBP3059 from Burkina Faso (6). We thus tentatively propose further subdivision of phylotype III into three clusters, awaiting further data from additional African strains for confirmation. Additional pan-African studies in southern, central, and northern Africa should reveal the genetic variability that remains to be described within phylotype III. As a follow-up to this study, a typical lowland phylotype III strain, CMR15 (CFBP6941), is being completely sequenced to investigate the conserved and specific gene repertoires of these hitherto poorly described strains within the R. solanacearum species complex. This study provides the first comprehensive information on genetically diverse strains of *R. solanacearum* in the Central African country of Cameroon. A recent survey in Ethiopia (18), although based on biovar classification, suggests that the diversity we found in Cameroon is not unique in Africa. The relationships between the wide genetic diversity and strain virulence phenotypes demands further investigation. Understanding the biological implications of such broad genetic diversity is critically important for the development of locally adapted strategies for bacterial wilt resistance breeding in Cameroon and other African countries that share similar agro-ecological environments.

ACKNOWLEGMENTS

This research was supported by grants from the French Ministry of Foreign Affairs (French Embassy in Yaoundé) and from the Delegation for International Scientific Exchanges, CIRAD. We thank M. Fegan, A. Guidot, and L. Gagnevin for critically reviewing the manuscript.

LITERATURE CITED

1. Busolo-Bulafu, C. M. 1998. Resistance to bacterial wilt in Uganda. Pages 306-308 in : Bacterial wilt disease : Molecular and ecological aspects. P. Prior, C. Allen, and J. G. Elphinstone, eds. INRA Editions, Paris.

2. Carmeille, A., Prior, P., Kodja, H., Chiroleu, F., Luisetti, J., and Besse, P. 2006. Evaluation of resistance to race 3, biovar 2 of *Ralstonia solanacearum* in tomato germplasm. J. Phytopathol. 154(7-8) :398-402.

3. Cook, D., Barlow, E., and Sequeira, L. 1989. Genetic diversity of *Pseudomonas solanacearum* : Detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2 :113-121.

4. Coutinho, T., Roux, J., Riedel, K., Terblanche, J., and Wingfield, M. 2000. First report of bacterial wilt caused by *Ralstonia solanacearum* on eucalypts in South Africa. – Erstnachweis einer durch *Ralstonia solanacearum* verursachten Bakterienwelke an *Eukalyptus* in Sndafrika. For. Pathol. (Germany) 30(4).

5. Elphinstone, J. G. 2005. The current bacterial wilt situation : A global overview. Pages 9-28 in : Bacterial Wilt Disease and the *Ralstonia solanacearum* Species

Complex. C. Allen, P. Prior, and A. C. Hayward, eds. American Phytopathological Society, Saint Paul, MN.

6. Fegan, M., and Prior, P. 2005. How complex is the "*Ralstonia solanacearum* species complex". Pages 449-462 in : Bacterial Wilt Disease and the *Ralstonia solanacearum* Species Complex. C. Allen, P. Prior, and A. C. Hayward, eds. American Phytopathological Society, Saint Paul, MN.

7. Fegan, M., and Prior, P. 2006. Diverse members of the *Ralstonia solanacearum* species complex cause bacterial wilts of banana. Australas.Plant Pathol. 35 :93-101.

8. Fegan, M., Taghavi, M., Sly, L. I., and Hayward, A. C. 1998. Phylogeny, diversity and molecular diagnostics of *Ralstonia solanacearum*. Pages 19-33 in : Bacterial Wilt Disease -Molecular and Ecological Aspects. P. Prior, C.Allen, and J. Elphinstone, eds. Springer, INRA Editions, Berlin.

9. Fouche, W. J., Poussier, S., Trigalet, D. D., Berger, D., and Coutinho, T. 2006. Molecular identification of some African strains of *Ralstonia solanacearum* from eucalypt [*Eucalyptus*] and potato [*Solanum tuberosum*]. J. Gen. Plant Pathol. (Japan) 72(6) :369-373.

10. Gillings, M. R., and Fahy, P. 1994. Genomic fingerprinting : Towards a unified view of the *Pseudomonas solanacearum* species complex. Pages 95-112 in : Bacterial Wilt : The Disease and Its Causative Agent, *Pseudomonas solanacearum*. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK.

11. Gockowski, J., Mbazo'o, J., Mbah, G., and Fouda Moulende, T. 2003. African traditional leafy vegetables and the urban and peri-urban poor. Food Policy 28 :221-235.

12. Grimault, V., and Prior, P. 1994. Grafting tomato cultivars resistant or susceptible to bacterial wilt : Analysis of resistance mechanisms. J. Phytopathol. 141(3) :330-334.

13. Guidot, A., Prior, P., Schoenfeld, J., Carrere, S., Genin, S., and Boucher, C. 2007. Genomic structure and phylogeny of the plant pathogen *Ralstonia solancearum* inferred from gene distribution analysis. J. Bacteriol. 189(2) :377-387.

14. Hanson, P. M., Wang, J.-F., Lucardo, O., Hanudin, S. Y., Hartman, G. L., Lin, Y.-C., and Chen, J.-T. 1996. Variable reactions of tomato lines to bacterial wilt evaluated at several locations in South-East Asia. HortScience 31 :143-146.

15. Ji, P., Momol, M. T., Olson, S. M., Pradhanang, P. M., and Jones, J. B. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions.Plant Dis. 89 :497-500.

16. Jukes, T. H., and Cantor, C. R. 1969. Evolution of protein molecules. Pages 21-132 in : Mammalian Protein Metabolism. H. N. Munro, ed. Academic Press, New York.

17. Kelman, A. 1954. The relationship of pathogenicity in *Pseudomonas solanacearum* to colony appearance on tetrazolium medium. Phytopathology 44 :693-695.

18. Lemessa, F., and Zeller, W. 2007. Isolation and characterisation of *Ralstonia solanacearum* strains from Solanaceae crops in Ethiopia. J. Basic Microbiol. 47(1) :40-49.

19. Ludwig, W., Strunk, O., Westram, R., Richetr, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüssman, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K. H. 2004. ARB : A software environment for sequence data. Nucleic Acids Res. 32(4) :1363-1371.

20. Madden, L. V., and Wheelis, M. 2003. The threat of plant pathogens as weapons against U.S. crops. Annu. Rev. Phytopathol. 41 :155-176.

21. Michel, V. V., and Mew, T. W. 1998. Effect of a soil amendment on survival of *Ralstonia solanacearum* in different soils. Phytopathology 88 :300-305.

22. Michel, V. V., Wang, J.-F., Midmore, D. J., and Hartman, G. L. 1997. Effects of intercropping and soil amendment with urea and calcium oxide on the incidence of bacterial wilt of tomato and survival of soil-borne *Pseudomonas solanacearum* in Taiwan. Plant Pathol. 46 :600-610.

23. Opina, N., Tavner, F., Hollway, G., Wang, J.-F., Li, T.-H., Maghirang, R., Fegan, M., Hayward, A. C., Krishnapillai, V., Hong, W. F., Holloway, B. W., and Timmis, J. 1997. A novel method for development of species and strainspecific DNA probes and PCR primers for identifying *Burkholderia solanacearum* (formerly *Pseudomonas solanacearum*). Asia Pacific J. Mol. Biol. Biotechnol. 5 :19-30.

24. Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffiner, B., Luisetti, J., and Trigalet, A. 2000. Genetic diversity of *Ralstonia solanacearum* as assessed by PCR-RFLP of the hrp region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 146 :1679-1692.

25. Poussier, S., Vandewalle, P., and Luisetti, J. 1999. Genetic diversity of African and worldwide strains of *Ralstonia solanacearum* as determined by PCR-restriction fragment length polymorphism analysis of the *hrp* gene region. Appl. Environ. Microbiol. 65(5) :2184-2194.

26. Pradhanang, P. M., Ji, P., Momol, M. T., Olson, S. M., Mayfield, J. L., and Jones, J. B. 2005. Application of acibenzolar-*S*-methyl enhances host resistance in tomato against *Ralstonia solanacearum*. Plant Dis. 89 :989-993.

27. Prior, P., and Fegan, M. 2005. Recent development in the phylogeny and classification of *Ralstonia solanacearum*. Pages 127-136 in : Proc. 1st Int. Sympos. Tomato Dis. T. Momol and J. B. Jones, eds. ISHS-Acta Hortic. 28. Prior, P., and Fegan, M. 2005. Recent developments in the phylogeny and classification of *Ralstonia solanacearum*. Acta Hortic. 695 :127-136.

29. Prior, P., Grimault, V., and Schmit, J. 1994. Resistance to bacterial wilt (*Pseudomonas solanacearum*) in tomato : Present status and prospects. Pages 209-224 in : Bacterial wilt : The disease and its causative agent, *Pseudomonas solanacearum*. A. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK.

30. Ran, L. X., Liu, C. Y., Wu, G. J., Loon, L. C. v., and Bakker, P. A. H. M. 2005. Suppression of bacterial wilt in *Eucalyptus urophylla* by fluorescent *Pseudomonas* spp. in China. Biol. Control 32(1) :111-120.

31. Robertson, A. E. 1998. Factors affecting the population of *Ralstonia solanacearum* in a naturally infested field planted to tobacco. Pages 369-373 in : Bacterial Wilt Disease : Molecular and Ecological Aspects. P. Prior, C. Allen, and J. G. Elphinstone, eds. INRA Editions, Paris.

32. Saitou, N., and Nei, M. 1987. The neighborjoining method : A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 :406-425.

33. Sanchez Perez, A., Mejia, L., Fegan, M., and Allen, C. 2008. Diversity and distribution of *Ralstonia solanacearum* strains in Guatemala and rare occurence of tomato fruit infection. Plant Pathol. 57 :1-12.

34. Schönfeld, J., Gelsomino, A., Overbeek, L. v., Gorissen, A., Smalla, K., and Elsas, J. v. 2003. Effects of compost addition and simulated solarisation on the fate of *Ralstonia solanacearum* biovar 2 and indigenous bacteria in soil. FEMS Microbiol. Ecol. 43:63-74.

35. Smith, J. J., Offord, L. C., Holderness, M., and Saddler, G. S. 1995. Genetic diversity of *Burkholderia solanacearum* (synonym *Pseudomonas solanacearum*) race 3 in Kenya. Appl. Environ. Microbiol. 61 :4263-4268.

36. Smith, J. J., Offord, L. C., Kitaba, G. N., Murimi, Z. K., Trigalet, A., and Saddler, G. S. 1998. The development of biological control agents against *Ralstonia solanacearum* race 3 in Kenya. Pages 306-308 in : Bacterial Wilt Disease : Molecular and Ecological Aspects. P. Prior, C. Allen, and J. Elphinstone, eds. INRA Editions, Paris.

37. Swanpoel, A. E., and Young, B. W. 1988. Characteristics of South African strains of *Pseudomonas solanacearum*. Plant Dis. 72 :403-405.

38. Swanson, J. K., Yao, J., Tans-Kersten, J., and Allen, C. 2005. Behavior of *Ralstonia solanacearum* race 3 biovar 2 during latent and active infection of geranium. Phytopathology 95 :136-143.

39. van Elsas, J. D., Kastelein, P., van Bekkum, P., van der Wolf, J. M., de Vries, P. M., and van Overbeek, L. S. 2000. Survival of *Ralstonia solanacearum* biovar 2, the causative agent of potato brown rot, in field and microcosm soils in temperate climates. Phytopathology 90 :1358-1366.

40. Wang, J.-F., Chen, N.-C., and Li, H.-M. 1998. Resistance sources of bacterial wilt in eggplant (*Solanum melongena*). Pages 284-289 in : Bacterial Wilt Disease : Molecular and Ecological Aspects. P. Prior, C. Allen, and J. Elphinstone, eds. Springer, INRA editions, Berlin, Paris.

41. Wang, J.-F., Hanson, P., and Barnes, J. A. 1998. Worldwide evaluation of an international set of resistant sources to bacterial wilt in tomato. Pages 269-275 in : Bacterial Wilt Disease : Molecular and Ecological Aspects. P. Prior, C. Allen, and J. G. Elphinstone, eds. Springer-Verlag, Berlin.

42. Wydra, K., and Dannon, E. 2006. Silicon as inducer of resistance in tomato against *Ralstonia solanacearum*. Bull. OILB/SROP 29 :91-96.

43. Yoon, J. Y., Green, S. K., Tschanz, A. T., Tsou, S. C. S., and Chang, L. C. 1989. Pepper improvement for the tropics : Problems and the AVRDC approach. Pages 86-98 in : Tomato and pepper production in the tropics- Proc. Int. Sympos. Integrated Manag. Practices. S. K.Green, T. D. Griggs, and B. T. McLean, eds. AVRDC, Tainan, Taiwan.

PRINCIPAUX RÉSULTATS

- Trois phylotypes connus dans le monde sont présents au Cameroun à savoir le phylotype I (Asiaticum), le phylotype II (Américanum) et le phylotype III (Africanum);
- Les souches du phylotype I en émergeant de façon préférentielle dans la zone de forêt humide à pluviométrie bimodale se présentent dans cette zone comme une contrainte majeure à la culture des Solanacées dans cette région ;
- Les souches du phylotype III sont fortement associées à la zone des hauts plateaux de l'Ouest Cameroun. Avec les souches du phylotype II, elles y constituent une contrainte majeure à la culture des Solanacées et en particulier de la pomme de terre ;

- Les souches du phylotype II ne sont pas associées à une zone agroécologique particulière. Celles de la race 3 biovar 2 encore appelées race froide sont localisées exclusivement à la zone relativement tempérée des haut plateaux de l'Ouest du Cameroun. Leur position phylogénétique dans le cluster des souches originaires des Pays-Bas permet de conclure sur leur origine néerlandaise à travers la culture de pomme de terre ;
- Aucune souche moko n'a été détectée au cours de cette étude ;
- Le tiers des isolats obtenus dans la zone des hauts plateaux de l'ouest du Cameroun n'ont pu être diagnostiqué par l'amorce spécifique 759-760 qui révèle *R. solanacearum* sur le plan moléculaire ;
- Les souches du phylotype III isolées au Cameroun sont différentes des souches de référence originaires du Zimbabwe et de l'île de la Réunion.

COMPLÉMÉNT D'ARTICLE

SUPPLEMENTAL TABLE 2-1 : STRAINS OF *R*. SOLANACEARUM COLLECTED IN CAMEROON, WITH THEIR HOST AND LOCATION OF ORIGIN, AND THEIR PHYLOTYPE ASSIGNMENT (SUPPLEMENTAL ONLINE).

Strain ^a	Alternate name ^b	Host	Origin ^c	PCR typing ^d
CMR2 to 6	RUN120 to124	Tomato	Obala (V)	Ι
CMR8 to12	RUN126 to130	Tomato	Obala (V)	Ι
CMR14	RUN132	Tomato	Obala (V)	Ι
CMR16	RUN134	Tomato	Obala (V)	Ι
CMR19 to 22	RUN136 to 139	Tomato	Obala (V)	Ι
CMR29	RUN142	Tomato	Obala (V)	II
CMR31	RUN144	Tomato	Foumbot (III)	II
CMR 33	RUN146	Tomato	Dschang (III)	III
CMR 46	RUN153	Tomato	Foumbot (III)	II
CMR 53	RUN235	Potato	Dschang (III)	III
CMR 55	RUN52	Tomato	Foumbot (III)	II
CMR 59	RUN161	Pepper	Foumbot (III)	II
CMR 60	RUN162	Tomato	Foumbot (III)	II
CMR 67	RUN167	Huckleberry	Bafang (III)	II
CMR 68	RUN168	Tomato	Bafang (III)	III
CMR 70	RUN170	Tomato	Bafang (III)	II
CMR 77	RUN173	Tomato	Melong (IV)	III
CMR79	RUN175	Tomato	Melong (IV)	III
CMR84	RUN176	Tomato	Buea (IV)	II
CMR88	RUN178	Tomato	Akonolinga (V)	II
CMR90	RUN180	Tomato	Akonolinga (V)	II
CMR92	RUN182	Huckleberry	Akonolinga (V)	II
CMR97 to 99	RUN184 to 186	Huckleberry	Akonolinga (V)	Ι
CMR100 to101	RUN187 to 188	Tomato	Akonolinga (V)	II
CMR103	RUN190	Tomato	Akonolinga (V)	II
CMR107	RUN191	Tomato	Yaoundé 2 (V)	Ι
CMR110	RUN193	Amaranthus	Yaoundé 2 (V)	Ι
CMR112 to 113	RUN195 to 196	Amaranthus	Yaoundé 2 (V)	Ι
CMR114 to 115	RUN197 to 198	Tomato	Yaoundé 2 (V)	Ι
CMR122	RUN204	Tomato	Yaoundé 2 (V)	II
CMR124	RUN206	Tomato	Yaoundé 1 (V)I	Ι

Strain ^a	Alternate name ^b	Host	Origin ^c	PCR typing ^d
CMR125	RUN207	Tomato	Yaoundé 5 (V)	II
CMR126 to 127	RUN208 to 209	Tomato	Yaoundé 1 (V)	Ι
CMR129 to 130	RUN211 to 212	Tomato	Yaoundé 5 (V)	II
CMR132	RUN214	Tomato	Yaoundé 4 (V)	II
CMR135 to 136	RUN216 to 217	Tomato	Bafia (V)	Ι
CMR138 to 141	RUN219 to 222	Tomato	Bafia (V)	Ι
CMR142 to 146	RUN223 to 227	Pepper	Bafia (V)	Ι
CMR147	RUN228	Tomato	Ngoundéré (II)	II
CMR151	RUN229	Sesame	Bafia (V)	II

^a CMR8 to 12 : the strains CMR8, CMR9, CMR10, CMR11 and CMR12 were collected and isolated from the same site.
 ^b RUN accession number in the collection of CIRAD-INRA Reunion.
 ^c District and Agro-ecological zone (in brackets).
 ^d Phylotype assignment, as determined by Pmx-PCR and 630/631 PCR tests.

SUPPLMENTAL TABLE	2-1 (SUITE) : <i>R</i> .	SOLANACEARUM	STRAINS,	ALTERNATE	NAMES	AND	GENEBANK	ACCESSION
NUMBERS (SUPPLEMENT	AL ONLINE CONT	NUED).						
							_	

Strain ^a	Alternate	Reference ^b	GeneBank accession no. for	
	name		mutS	egl
Strains from Cam	eroon			
CMR1	CFBP7023	TS	EF439789	EF439746
CMR7	CFBP7024	TS	EF439784	EF439765
CMR13	CFBP7025	TS	EF439793	EF439742
CMR17	CFBP7026	TS	EF439771	EF439744
CMR134	CFBP7058	TS	EF439794	EF439740
CMR137	CFBP7059	TS	EF439795	EF439741
CMR96	CFBP7046	TS	EF439788	EF439768
CMR117	CFBP7051	TS	EF439769	EF439734
CMR123	CFBP7055	TS	EF439778	EF439737
CMR109	CFBP7048	TS	EF439790	EF439731
CMR111	CFBP7049	TS	EF439791	EF439732
CMR128	CFBP7056	TS	EF439792	EF439738
CMR87	CFBP7043	TS	EF439805	EF439727
CMR89	CFBP7044	TS	EF439806	EF439766
CMR91	CFBP7045	TS	EF439807	EF439767
CMR102	CFBP7047	TS	EF439796	EF439730
CMR120	CFBP7053	TS	EF439799	EF439736
CMR131	CFBP7057	TS	EF439801	EF439739
CMR116	CFBP7050	TS	EF439797	EF439733
CMR118	CFBP7052	TS	EF439798	EF439735
CMR121	CFBP7054	TS	EF439800	EF439725
CMR 39	CFBP7032	TS	EF439803	EF439726
CMR 47	CFBP7035	TS	EF439802	EF439754
CMR 69	CFBP7039	TS	EF439804	EF439761
CMR18	ND	TS	EF439808	EF439745
CMR24	CFBP7027	TS	EF439809	EF439747
CMR 34	CFBP7029	TS	EF439810	EF439750
CMR 35	CFBP7030	TS	EF439811	EF439751
CMR 44	CFBP7034	TS	EF439812	EF439728
CMR15	CFBP6941	TS	EF439770	EF439743
CMR30	CFBP7028	TS	EF439772	EF439748
CMR32	CFBP6942	TS	EF439773	EF439749
CMR 36	CFBP7031	TS	EF439774	EF439752
CMR 43	CFBP7033	TS	EF439775	EF439753

Strain ^a	Alternate	Reference ^b	GeneBank accession no. for	
	name		mutS	egl
CMR 50	CFBP7060	TS	EF439776	EF439755
CMR 51	CFBP7061	TS	EF439777	EF439756
CMR 52	CFBP7062	TS	EF439779	EF439757
CMR 56	CFBP7022	TS	EF439780	EF439758
CMR 62	CFBP7036	TS	EF439781	EF439759
CMR 63	CFBP7037	TS TS	EF439782	EF439763
CMR 75 CMP 76	CFBP7040 CFBP7041	15 TS	EF439/85 EF430786	EF439762 EE430763
CMR 78	CFBP7042	TS	EF439780	EF439764
CMR 66	CFBP7038	TS	EF439783	EF439729
Reference strains	Si Di 7000	10	ER 139703	EI (3772)
R292	RUN91	28	AY756801	AF295255
GMI1000	RUN54	6	AY756804	AF295251
CFBP2968	RUN58	2	AY756800	EF371806
JT523	RUN333	28	AY756803	AF295252
CFBP765	RUN34	28	AY756740	EF371810
NCPPB3190	RUN78	28	AY756738	AF295253
ACH92	RUN158	28	AY756764	AF295254
CFBP2958	RUN28	28	AY756806	AF295266
CFBP2957	RUN27	28	EF371845	AF295265
CFBP2972	RUN30	28	AY756807	AF295264
ICMP7963	RUN55	28	AY766776	AF295263
K60	RUN65	28	AY756799	AF295262
IPO1609	RUN1	28	EF371849	EF371814
JT516	RUN160	28	AY756783	AF295258
NCPPB3987	RUN81	28	AY756785	AF295261
CIP10	RUN110	28	AY756821	AF295260
MOLK2	RUN74	28	EF371848	EF371841
UW9	RUN450	28	AY756744	AF295257
CFBP1409	RUN452	28	AY756751	EF371808
CFBP1183	RUN457	28	AY756749	EF371805
UW70	RUN99	28	AY756794	DQ011550
UW129		28	AY756782	EF371811
UW162	RUN453	29	AY756795	AF295256
CFBP6784	RUN16	29	AY756742	EF371813
A3909	RUN9	28	AY756753	EF371812
UW21	RUN97	29	AY756758	DQ011546
CFBP734	RUN477	29	AY756746	AF295274

CHAPITRE 3 : LA SYNTENIE ENTRE LA TOMATE ET LE PIMENT PEUT-ELLE SERVIR DANS UNE APPROCHE D'IDENTIFICATION DES QTLS DE RESISTANCE AU FLETRISSEMENT BACTERIEN CHEZ LE PIMENT?

Les deux objectifs de ce chapitre sont :

- Essayer de réduire l'effort technique de cartographie des QTLs de résistance au flétrissement bactérien chez le piment en mettant à profit la synténie révélée entre la tomate et le piment. Ainsi, en partant de la connaissance des zones porteuses de QTLs de résistance au flétrissement bactérien chez la tomate, localiser les zones à priori porteuses de QTLs de résistance au flétrissement bactérien chez le piment et y placer des marqueurs à des fin de cartographie ;
- Comparer la stabilité des QTLs de résistance à travers deux environnements différents (années) et deux phylotypes (phylotypes I et II).

Les résultats sont présentés sous forme d'un projet d'article en préparation pour TAG.

PROJET D'ARTICLE : CAN THE SYNTENY BETWEEN TOMATO AND PEPPER BE A USEFUL APPROACH TO IDENTIFY QTLS LINKED TO BACTERIAL WILT CAUSED BY *RALSTONIA SOLANACEARUM* ON PEPPER?

G. Mahbou Somo Toukam^a, P. Teguefouet Feuidio^a, P. Signoret^b, D. Lafortune^c and A. Palloix^b

^aInstitut de Recherche Agricole pour le développement, IRAD, Programme Légumineuses et Cultures Maraîchères, Yaoundé, BP 2067 Yaoundé, Cameroun. ^{be}INRA, Génétique et Amélioration Fruits et Légumes, UR 1052 Domaine St Maurice, BP94, F-84143, Montfavet Cedex, France.

^c INRA-URPV, Domaine Duclos, Prise d'eau, 97170 Petit Bourg, Guadeloupe, France

* To whom correspondence should be addressed. E-mail : alain.palloix@avignon.inra.fr Phone : (262) 262 49 92 60 Fax : (262) 262 49 92 93

INTRODUCTION

Solanaceous plants are pioneer plants in the field of comparative genomics. Plants in this family share quantity of genes including numerous QTLs involved in horticultural traits and disease resistance genes. In the beginning of this century, breeders seek ways to access rapidly and directly to the information at the molecular level thanks to the discovery of molecular markers, the alignment of plant genomes and the development of bioinformatics. Research on the genome of model plants is intended to shorten the way to get rapid access to information on plant with larger genome.

The question can be asked whether it is possible to identify QTLs for a plant trait thanks to the information of alignment between plants of related species. Methodologies such as positional cloning (Stracke et al., 2004), insertional mutagenesis, candidate gene approach (Thorup et al., 2000) and comparative genomics (Asnaghi et al., 2000; Pupilli et al., 2004; Huang et al., 2005; Miftahudin et al., 2005) have been successfully used to accelerate gene or QTL detection of related species without mapping. For example, the orthology between the tomato *pot-1* gene and *pvr2-elF4E* pepper gene for the control of potyvirus have been demonstrated (Ruffel et al., 2005). In this study, we address the question whether the knowledge of tomato resistance loci to the bacterial wilt *R. solanacearum can* help in the analysis of resistance in another Solanaceous crop, the pepper.

Bacterial wilt caused by *R. solanacearum* is a common disease on Solanaceous crops. *R. solanacearum* has a great plasticity (Bertolla et al., 1999). The host range of *R. solanacearum* is wide. The same strain of *R. solanacearum* can cause disease to different plant species (Wang et al., 1998 ; Mahbou Somo Toukam et al., 2009). Considering all these facts, the pathogen system *R. solanacearum* - Solanaceous crop, most precisely *R. solanacearum*-pepper and tomato, is an interesting system for disease comparative genomics. Several papers dealing with QTLs detection of bacterial wilt resistance on tomato have been published. All these studies have detected significant QTL effects on tomato chromosome (T6), with a phenotypic variation ranging from 12 to 77% of phenotypic variance explained (Carmeille et al., 2006 ; Wang et al., 2000 ; Deberdt, 1999 ; Mangin et al., 1999 ; Thoquet et al., 1996 ; Danesh et al., 1994). One of these studies revealed a major QTL with a strain specific effect on T12 which contributes 74% of the phenotypic variance (Wang et al., 2000). A few studies detected QTLs on the upper arm of chromosome T4 and chromosome T3 (Thoquet et al., 1996 ; Carmeille et al., 2006).

The correspondences between these tomato carrier regions with pepper were checked. These two plants share in common more than 90% of their genome content despite the 20 millions years since the divergence of the two species. T6 and T10 are perfectly homeologue to pepper chromosome P6 and P10 respectively; Between P6 and T6 differs only with an inversion that corresponds to entire short arm of T6. T4 corresponds to the lower arm of P4 and the upper arm of P5 ; T3 upper arm of P4 and lower arm of P3 ; T11 corresponds to upper P12 and lower P11 ; T12 corresponds to the lower arm of P9 and P12 (Livingstone et al., 1999 ; Wu et al., 2009). Much more, some nearest associated markers to bacterial wilt resistance mapped on tomato and listed by at least two authors can be aligned on pepper genome. These include TG118, TG153, TG178, TG162, TG240, TG73 on T6 ; TG464, TG268, CD73, CT145 on T4 (Carmeille et al., 2006 ; Wang et al., 2000 ; Deberdt, 1999 ; Thoquet et al., 1996 ; Danesh et al., 1994).

Considering the frequencies of detection and the individual effects, the QTLs on T6 (the upper arm of the chromosome between 0-60cM), T3 (30-95cM segment), T4 (0-45cM segment), T10 (upper arm) and T12 (lower arm) provide potential candidates to target for hypothetic orthologous genes for bacterial wilt resistance in pepper. Their corresponding orthologous regions on tomato are provided by pepper chromosome T6~P6, T3~up P4+low P3, T4~up P5+low P4, T10~P10, T12-~low P12+up P9, thus making pepper chromosomes or segment on P3, P4, P6, P9, P10 and P12 potential carriers of hypothetic orthologous QTLs on pepper.

To the best of our knowledge, no study dealing with the mapping of QTL involved in bacterial wilt resistance of pepper have been published so far. The genetics of pepper resistance was explored in a pepper doubled haploid progeny, considering a single *R. solanacearum* phylotype (Lafortune et al, 2005), but no genetic map was available from this progeny. Therefore, we attempted to use our knowledge of QTLs governing bacterial wilt resistance in tomato, in order to characterize the QTLs controlling the resistance to different *R. solanacearum* phylotypes in pepper.

In the present paper, we constructed a partial map of pepper, based on the alignment of QTL-carrier chromosomes of tomato and the doubled haploid (DH) progeny of pepper. QTL analysis in this progeny confronted to two different phylotypes of *R*. *solanacearum* showed that pepper QTLs can be aligned with tomato QTLs, but explained only a small part of resistance, and that the synteny hypothesis between the two species is only partly successful in delivering useful tools for resistance breeding.

MATERIAL AND METHODS

Plant material and DNA extraction

PM 687 is a *Capsicum annuum* inbred line obtained from the USDA PI 322719 accession. It produces small pungent fruits. 'Yolo Wonder' is a bell pepper inbred line from the University of California (USA). A progeny of 117 doubled haploid (DH) lines were obtained from the F1 hybrid through *in vitro* androgenesis. This progeny was tested for resistance to several pepper pathogens and pests in previous studies including bacterial wilt resistance (Lafortune et al, 2005).

Total genomic DNA was extracted from young leaves tissue of each DH and the parental lines using the Fulton protocol (Fulton et al., 1995). A 1% (w/v) agarose gel electrophoresis was used to check the DNA quality, and the ethidium bromide staining of an agarose gel loaded with standards and DNA samples to asses its quantity.

Bacterial strains and inoculation procedure

Two *R. solanacearum* strains were used in this trial : (i) - A phylotype I strain, CMR 143 (RUN 224) isolated on *Capsicum chinense* in Bafia, Cameroon (Mahbou Somo Toukam et al, 2009) was used for the trial in Cameroon ; (ii) - A phylotype II strain (race1/biovar1) isolated from pepper in the experimental field of INRA-URPV in Guadeloupe, Lesser Antilles and was used for the trial in Guadeloupe. The inoculation procedures were very identical in the two places. In Cameroon, the strain was streaked on in a modified Kelman's medium (Kelman, 1954)[1% bacto-peptone (Difco), 0.1% yeast extract (Difco), 1.8% bactoagar (Difco), 0.63% glycerol, 0.01% casamino acids (Difco)], pH adjusted between 7.2-7.4 with NaOH, for 48 hrs. The plates were flooded with distilled sterile water. This aqueous suspension was spectrophotometrically adjusted to approximately 10^8 CFU per ml (OD₆₀₀=0.2) by dilution into sterile distilled water. In Guadeloupe the inoculation procedure took place as described by (Lafortune et al., 2005).

In both cases, inoculation was performed by pouring 2 ml of bacterial suspension into each individual 50-ml plant pot at the stage of 5-6 fully expanded leaves, 4-7 days before transplanting to field.

Field experiment for bacterial wilt assessment and phenotypic data analysis

Resistance tests on DH population were conducted in Cameroon at the IRAD experimental field station Nkolbisson-Yaoundé, Cameroon (N 03° 52.135- EO 11° 26.330) during the 2005 short rainy season (21.4-28.2 °C). The 117 DH lines were sown, but only 93 of these could be evaluated due to poor germination. Field resistance test was conducted in a randomized complete block design with 3 replicates (blocks) of 10 plants of each inbred line including the two parental lines and the F1 hybrid. Yolo Wonder and PM687 were repeated twice as control in each replicate. Fertilizer rates and plant spacing were according to current agronomic practices in Cameroon. In Guadeloupe, field experiments for bacterial wilt assessment and phenotypic data analysis was repeated during two years and took place as described by Lafortune et al (2005), in a randomized complete block design with10 plants per block and 5 blocks.

In Cameroon and in Guadeloupe, disease development was assessed at weekly intervals between the 1st and the 20th week after inoculation (wai) by scoring each plant as susceptible (at least one leaf wilted) or resistant (no symptom). The proportion of wilted plants was then calculated in each of the inbred lines involved in the test, the two parents and their F1 progeny. The area under disease progress curve value (AUDPC) was further determined as AUDPC= $\Sigma^{n}_{i=1}$ [(p_i+p_{i+1})/2](t_{i+1}-t_i) where p_i is the proportion of wilted plants at the date t_i (t=1, 2,..., n). These values were determined at three stages of the experiment, including the initial stage called Ai, corresponding to the AUDPC value of each inbred line when the resistant parent PM687 reached its maximum percentage of wilt (15% in Cameroon, 10 and 20% respectively in Guadeloupe during the first and second year of trial); A50 corresponding to the AUDPC value of each inbred line when 50% of the plants of the whole progeny presented wilt symptoms; Af corresponding to the AUDPC value of each inbred line at the end of the experiment (weeks). A 4th criterion was considered : the date Di at which each inbred line reached the percentage of wilt 'i' (15% in Cameroon, 10 and 20% respectively in Guadeloupe during the first and second year of trial as previously announced).

For all these four criteria, analysis of variance of AUDPC was performed according to the model $Y = \mu + g_i + b_j + e_{ij}$, where μ = population mean, g_i = genotype (DH lines), b_j = block effect and e_{ij} = residual. In this study, only DH with complete data set in all blocks was considered (69 DH lines in Cameroon, 82 in Guadeloupe during the two years of trial). Because of the homozygocity of DH lines, genotypic variance was equal to additive variance (in the absence of epistatic effects) and narrow sense heritability (h^2_n) values were computed using the formula $h^2_n = VA / (VA + VE/n)$, where VA is the genotypic variance, VE the environmental variance (including block and error effects) and n is the number of repeats (n=3 in Cameroon and 5 in Guadeloupe during the two years of trial). An estimation of the number of segregating genes in the DH populations was computed according to (Mather & Jinks, 1982) and (Snape et al., 1984). This was done using the formulae $k_1 = [(P1-P2)/2)]^2/VA$ and $k_2 = [(L_{max}-L_{min})/2]^2/VA$ respectively, where P₁ and P₂ are the parent values, L_{min} and L_{max} the two extreme DH lines and VA the additive variance. Phenotypic coefficients of correlation among the four resistance criteria were computed using Pearson's product moment.

Strategy of choice of molecular markers

In order to target genomic regions of pepper expected a priori to carry resistance QTLs, we utilized an in silico five step markers selection approach based on (i)exhaustive inventory of Quantitative Trait Loci (QTLs) mapped on tomato ; (ii)location of the genomic areas and associated markers (RFLP) on tomato map ; (iii)localization of corresponding genomic areas on pepper maps based on the alignment between pepper and tomato genome realized by (Livingstone et al., 1999; Wu. et al., 2009) ; (iv)- Inventory of the available markers in these intervals (RFLP, AFLP, GC, SSR) based on the pepper maps of Lefebvre et al 2002 and Paran et al 2004 ; (v)selection of the polymorphic markers between the parental lines (Yolo Wonder x PM687). As a result, a set of 19 AFLP primer combinations were used to perform AFLP reactions as described by (Vos et al., 1995). These primes produce 220 polymorphic markers (**Table 3-1**). The *Eco*RI, primer was end-labelled with [y-³³P] dATP to allow fragment visualisation by autoradiography. Segregating markers were encoded by adding to the PC code a three-digit number reflecting the fragment's molecular weight in base pairs and a letter related to the allelic origin ('y' for Yolo Wonder and 'm' for PM687). Two resistance genes segregating in the progeny were added as phenotypic markers : pvr2 for resistance to Potato Virus Y (chromosome P4) and Me3 for resistance to root knot nematodes chromosome P9). One SCAR marker (Scar_b94) linked to Me3 (Djian-Caporalino et al, 2007) was also included into the map.

N°	Primer	Number of
	combination	polymorphic
		bands
1	E33/M49	8
2	E33/M56	9
3	E34/M53	10
4	E36/M52	14
5	E37/M59	11
6	E37/M62	11
7	E39/M48	8
8	E40/M47	5
9	E42/M55	15
10	E43/M53	13
11	E41/M49	14
12	E31/M58	16
13	E38/M60	11
14	E40/M49	15
15	E41/M61	20
16	E43/M54	7
18	E36/M47	9
19	E35/M48	24
	Total	220

TABLE 3-1 : NUMBER OF POLYMORPHIC BANDS GENERATED BY EACH AFLP PRIMER COMBINATION.

Partial map construction

With the aim of mapping the zones of interest, known genes markers (Me3, Me4, Me5. Me6. TMV22, pvr2 and Scar b94) were added to the 220 polymorphic markers generated by the 19 combinations of above primers. Linkage analyses were generated from the B1 model of Mapmaker / EXP version 3.0 (Lander et al., 1987). LGs were determined with the "group" command, using as thresholds for linkage detection a minimum LOD of 3 and a maximum recombinant fraction (r) of 0.3. The sequence of commands was : (i) "order" to determine the most likely marker order within each LG; (ii) "ripple" to confirm marker order using a LOD of 3; (iii) "try" to identify the most likely position of unordered markers within their LG; (iv) "genotype" to identify likely singletons. Putative singletons were checked by re-genotyping and, where necessary, correcting the scoring for markers flanking the apparent recombination event. Recombination fractions were converted into map distances with the Haldane mapping function (Haldane, 1919). Ordered LGs were assigned to chromosome by alignment of markers shared with previous maps (Lefebvre et al 2002, Paran et al 2004). When several LGs where assigned to the same chromosome, "compare" was used to identify the most likely order. The merged groups were validated with "ripple" and a LOD of 3.

QTL detection

Genotypic effect and heritabilities of genotypic mean values were computed from the ANOVA analysis results as described by (Lefebvre & Palloix, 1996). Detection of QTLs governing bacterial wilt resistance was performed using the three methods implemented by QTL Cartographer software : the linear regression (LR, ANOVA), simple interval mapping (SIM, Model 3) and composite interval mapping (CIM, Model 6) with the mean values of each doubled haploid line. A forward-backward stepwise regression analysis was performed, with a window size of 10 cM and a walking speed of 2 cM, a maximum of 5 markers was used as cofactors in the CIM procedure (Model 6). Significance thresholds were computed for SIM and CIM by 1,000permutations tests for each resistance criterion. The digenic interactions between all the markers of the framework map were tested using a two-way analysis of variance with an interaction component using the Im model of R software (Ihaka & Gentleman, 1996). Significant epistasis was retained when $P < 10^{-4}$ after 18 096 tests were done on a set of 117 markers. Magnitude of the marker(s)-associated phenotypic effect is described by the coefficient of determination of the model (R^2). Regression R^2 values taken at the peak LOD score of a QTL were used to indicate the percentage of the phenotypic variation explained by the QTL. The global coefficient of determination (global R²) for significant markers and digenic interaction was estimated through multiple linear regression of the trait over the markers with the highest LOD values, and the significant interactions.

RESULTS

Inheritance of the resistance and trait correlations

The genitor PM687 was found to be moderately resistant against the different *R. solanacearum* strains in the condition of this experimentation, with 15, 10 and 20% respectively of wilting in Cameroon, Guadeloupe in year 1 and 2, 20 weeks after inoculation (wai). Meanwhile, the susceptible parent Yolo Wonder reached a percentage wilt equal or closes to 100%. The F1-hybrid showed intermediate values between the two parents PM687 and Yolo Wonder means, indicating incomplete dominance of the resistance (**Figure 3-1**) Analysis of variance of each resistance trait revealed a high significant genetic variance, confirmed by high heritability (from 0,63 to 0,93 depending to the trials and the traits), attesting the genetic basis of the four resistance component in the three trials **Table 3-2** & **Table 3-3**.

FIGURE 3-1 : TIME COURSE OF BACTERIAL WILT INCIDENCE FOR DIFFERENT GENOTYPES OF PEPPER DURING THE EXPERIMENTATION IN CAMEROON AND GUADELOUPE. MEAN PERCENTAGE OF WILTED PLANTS IS INDICATED FOR THE RESISTANT PARENTAL LINE PM687, THE SUSCEPTIBLE PARENTAL LINE YOLO WONDER (YW), THEIR F1 HYBRID (F1), THE DOUBLED HAPLOID INBRED LINE POPULATION (DH MEAN). VERTICAL BARS ARE STANDARD DEVIATION OF THE POPULATION.

TABLE	3-2	: A	NALYSIS	OF	VARIANCE	OF	FOUR	RESISTANCE	CRITERION	OF	BACTERIEL	WILT	RESISTANCE	IN	THE	DH
PROG	ENY (OF F	PEPPER FC	OR T	HREE EXPERI	MN	ETS IN (CAMEROON A	AND GUADE	LOL	JPE.					

				A ⁱ			A50			Af			\mathbf{D}^{i}	
	Sources of variation	df	Mean square	F value	p (F)	Mean square	F value	p (F)	Mean square	F value	p (F)	Mean square	F value	p (F)
Cameroon	Genotype	68	4 306,06	10,01	2,69x10 ⁻³⁷	159 452,74	17,74	1,01x10 ⁻⁵⁴	409 466,70	17,01	2,28x10 ⁻ 53	50,42	7,17	2,76x10 ⁻²⁸
	Block	2	531,10	1,23	29x10 ⁻⁰²	1 413,33	0,16	85x10 ⁻⁰²	1 286,04	0,05	95x10 ⁻⁰²	6,30	0,90	41x10 ⁻⁰²
	Residual	136	430,37			8 986,43			24 072,47			7,03		
Cuadalauna	Genotype	81	3 903,06	2,97	4,2x10 ⁻¹²	121 480,56	6,82	1,9x10 ⁻³⁶	315 993,09	8,25	4,9x10 ⁻⁴⁴	3 903,06	2,97	4,2x10 ⁻¹²
vear 1	Block	4	13 372,34	10,17	9,0x10 ⁻⁰⁸	336 991,07	18,92	5,4x10 ⁻¹⁴	779 588,40	20,35	5,7x10 ⁻¹⁵	13 372,34	10,17	9,0x10 ⁻⁰⁸
	Residual	324	1 314,46			17 809,24			38 308,18			1 314,46		
Cuadalauna	Genotype	81	6 174,89	4,04	2,4x10 ⁻¹⁹	164 872,58	10,10	7,0x10 ⁻⁵³	386 648,60	11,99	5,6x10 ⁻⁶¹	44,68	6,28	2,4x10 ⁻³³
vear 2	Block	4	12 158,80	7,95	4,0x10 ⁻⁰⁶	218 366,77	13,37	$4,2x10^{-10}$	579 981,04	17,99	2,4x10 ⁻¹³	61,06	8,58	1,4x10 ⁻⁰⁶
year 2	Residual	324	1 530,16			16 327,85			32 240,20			7,12		

¹This value is 15 for Cameroon and respectively 10 and 20 and for Guadeloupe in year 1 and 2.

TABLE 3-3: GENETIC ANALYSIS OF RESISTANCE TO BACTERIAL WILT IN THE DH PROGENY : VARIANCE COMPONENTS, HERITABILITY, AND ESTIMATED GENETIC FACTORS OF THE YEAR EXPERIMENT IN CAMEROON AND THE TWO YEARS EXPERIMENT IN GUADELOUPE.

	Paramet	ers Ai	A50	Af	Di
	$\sigma^2{}_{\rm A}$	1858,52	51176,69	70559,55	8,07
	$\sigma_{\rm E}^2$	1190,86	11988,54	16083,33	5,81
	h^2_n	0,82	0,93	0,93	0,81
	μ	65,53	518,36	626,72	8,06
Comoroon	L_{min}	0,00	115,00	155,00	4,67
Cameroon	L _{max}	283,33	1253,17	1453,17	20,00
	P_1	4,17	129,17	157,20	5,92
	P_2	93,33	894,35	1087,70	20,00
	\mathbf{k}_1	1,07	2,86	3,07	6,14
	k ₂	10,80	6,33	5,97	7,28
	$\sigma^2 A$	488,31	19955,77	53728,98	12,12
	$\sigma^2 E$	14611,50	21701,70	38308,18	17,16
	h²n	0,63	0,82	0,88	0,78
	μ	24,61	172,08	300,28	11,06
Cuadalauna yaar 1	Lmin	0,00	9,00	17,00	5,00
Guadeloupe year 1	Lmax	125,78	689,22	1050,22	18,40
	P_1	8,00	49,00	81,00	5,00
	P_2	89,03	561,09	923,88	15,20
	\mathbf{k}_1	3,36	3,29	3,31	2,15
_	k_2	8,10	5,80	4,97	3,70
	$\sigma^2 A$	950,89	29216,16	69545,72	7,38
	$\sigma^2 E$	1748,84	18791,74	38919,96	7,78
	h²n	0,73	0,89	0,90	0,82
	μ	32,13	247,23	464,75	12,92
C 1-1 2	Lmin	0,00	2,00	10,00	8,40
Guadeloupe year 2	Lmax	126,55	661,56	1011,56	20,00
	P_1	0,00	28,00	95,33	17,80
	P ₂	146,00	566,86	955,86	8,60
	k ₁	5,60	2,48	2,66	2,87
	k ₂	4,21	3,72	3,61	4,56

Correlations between traits in experimentation for all traits as well as correlation between different experimentations for AfC, AfG1 and AfG2 were computed. Among traits in each experimentation, high significant Pearson's correlation were detected for the three experimentations ($p<10^{-5}$), indicating a tight linkage between the four traits, indicating that during the 20 weeks of observation in the field, the same genetics factors are expressed (**Table 3-4**).

EXPERIM	ENIAIIC	DN.		
	AfC	AfG2	AfG1	AfC-AfG2 mean
AfC	_	0,32	0,30	0,33
		p=0,014	<i>p</i> =0,023	<i>p</i> = <i>0</i> , <i>0116</i>
AfG2		_	0,77	0,94
			$p=1,13x10^{-12}$	p=nd

TABLE 3-4: PEARSON'S CORRELATION COEFFICIENTS BETWEEN EXPERIMENTATIONS FOR THE AUDPC AT THE END OF THE EXPERIMENTATION.

Therefore we chose to present only the correlation among traits during the second year in Guadeloupe (Figure 3-2).

On the same time, comparing results between different experimentations, significant Pearson's correlations between AfC and AfG1(r = 0,30) or AfC and AfG2 (r = 0,32) as well as AfC and the AfG1-AfG2 mean (r = 0,33) were detected. Looking for the relationship between the two years of test in Guadeloupe, we got a Pearson's

correlation r= 0,77 with a strong probability ($p=1,13 \times 10^{-12}$) indicating the strong environment dependence of bacterial wilt resistance (**Figure 3-3**). This suggests that (1)- If the expression of genetic resistance factors which controls resistance in Guadeloupe from one year to another is majoritary preserved, few genetic factor depend on the environment for their expression. Factors such as humidity and temperature are reported to have an influence on the expression of bacterial wilt; (2) - Given the relative high score of resistance of PM687 and the weak level of correlation between test in Cameroon and Guadeloupe (0,33) just a part of genetic factors controlling bacterial wilt resistance across phylotype I (Cameroon) and phylotype II (Guadeloupe) are expressed.

FIGURE 3-2 : CORRELATION AMONG TRAITS IN THE SECOND YEAR OF EXPERIMENTATION IN GUADELOUPE.

FIGURE 3-3 : RELATIONSHIPS BETWEEN THE AUDPC AT THE END OF THE EXPERIMENT OF BACTERIAL WILT ON THE DOUBLED HAPLOID LINES OF PEPPER FROM THE MEAN OF THE TWO YEARS EXPERIMENTATION IN GUADELOUPE USING A BACTERIAL STRAIN OF PHYLOTYPE II AND THE YEAR EXPERIMENTATION IN CAMEROON USING A BACTERIAL STRAIN OF PHYLOTYPE I.

Partial map construction based on hypothesized QTL carrier chromosomes from tomato

The 19 AFLP primer combinations provided 224 polymorphic markers (**Table 3-1**). The core map obtained included 117 markers, mostly AFLP, but also one SCAR and two resistance loci (*pvr2* and *Me3*) distributed in 14 linkage groups, out of which 9 were assigned to 8 chromosomes. This partial map spans a total length of 737,1 cM, representing 45% coverage of the pepper genome in reference to Wu et al map (2009). The targeted chromosomes (P6, P10, P9 and P4 span a total length of 310,1 cM, which represents (42% of the partial map) distributed as follows : P6 contains two sub-group (P6a and P6b) of 9 and 4 markers respectively and spans a total length of 86,9 cM, followed by P10 with 12 markers spanning over 106,3 cM, P9 with 17 markers spanning over 93,3 cM and P4 with only 3 markers spanning over 23,6 cM. This gives an average coverage of 1 maker per 6,8 cM of the targeted pepper region. Overall targeted region represent 20% coverage of the pepper genome (**Figure 3-4**).

FIGURE 3-4 : PARTIAL MAP OF DH. DISTANCES ARE IN CM. 9 LINKAGE GROUPS HAVE BEEN ASSIGNED TO 8 CHROMOSOMES. THESE LINKAGE GROUPS HAVE BEEN FORMED WITH A THRESHOLD LOD OF 3, MAXIMUM RECOMBINATION OF 0,3. IT COMPRISES 117 MARKERS AND SPAN 737,1 CM (45% OF THE PEPPER GENOME). THIS MAP HAS BEEN DRAWN BY MAPCHART SOFTWARE (VOORRIPS, 2002).

QTLs detection

QTLs of bacterial wilt resistance detected in this study are listed in **Table 3-5**. Results obtained through CIM and IM and ANOVA where identical, but more QTLs were detected through CIM, and slightly different from those with ANOVA. This slight difference between CIM and ANOVA results is due to the biased segregation of some significant markers :

 \succ With both methods, only QTLs with weak individual effects were detected (R² from 0,01 to 0,13), although the LOD score and *p* values were high for part of it. All resistant alleles at significant QTLs detected have their origin from Yolo Wonder, the susceptible parent, except the date QTL detected on P6b in Cameroun;

With CIM analysis, QTLs P11 for most traits, and in most trials, indicating a relative conservation of QTLs across environments and phylotypes (**Figure 3-5**). A weak effect QTL on P6b was also detected for the criteria D15, D10 and D20 in the 3 trials. This QTL is specific for the date trait. Moreover, linked to marker E41/M49_85m, the resistant allelic phase in the two experimentations in Guadeloupe originated from the susceptible parent Yolo Wonder while in Cameroon its originated from the resistant parent PM687, suggesting a difference in the functional mechanism involved in the expression of this QTL across phylotypes (**Table 3-5**). A significative epistatic effects (p=0,0005) were also detected between P2 and LG5 for Date values in the second year trial in Guadeloupe and in Cameroon. This epistatic effect contributed to an important part of the phenotypic variance were detected on chromosomes P2, P9, P10 and (R²=0, 22), (**Figure 3-5**).

➤ With ANOVA, QTLs on P2 and P11 were also detected as well as that on P9, depending on trait and trial, but in a distinct region of the chromosome. Additive QTLs in chromosomes P4, P6a and P5 and epistatic effect between P2 and LG5 were again detected. This epistatic effect between P2 and Lg5 were detected only in the second year of trial in Guadeloupe for the four traits (**Table 3-5**).

FIGURE 3-5 : MAP LOCATION OF QTLS FOR BACTERIAL WILT RESISTANCE. AREA UNDER DISEASE PROGRESS CURVE AF, A50, AI AND DI. DISTANCES (IN CENTIMORGANS) ARE TO THE LEFT OF EACH LINKAGE GROUP. QTLS ARE PRESENTED AS LARGE VERTICAL BARS TO THE LEFT OF THE LINKAGE GROUP WITH THE UPPER NUMBER IN EACH BAR BEING THE LOD VALUE IN ITALIC BEING THE R² VALUE. THE DARK HORIZONTAL BAR IN THE QTL INDICATES THE POSITION OF THE LOD PEAK AND THE LENGTH OF THE QTL INDICATES THE LOD-1 SUPPORT INTERVAL FROM THE LOD PEAK. LINES INDICATE THE TWO MARKERS INVOLVED IN THE EPISTASIS.

TABLE 3-5: QTL DETECTED IN THE DH POPULATION FOR THE RESISTANCE RELATED TRAITS AFTER INOCULATION WITH TWO *R*. SOLANACEARUM STRAIN : A PHYLOTYPE I STRAIN IN CAMEROON (AFC, A50C, A15C AND D15C) AND A PHYLOTYPE II STRAIN IN GUADELOUPE DURING TWO DIFFERENT YEARS OF TEST (AFW1, A50W1, A10W1, D10W1 FOR YEAR 1 TEST AND AFW2, A50W2, A10W2, D10W2 FOR YEAR 2 TEST). THE NUMBER OF COFACTORS USED IN CIM ANALYSIS IS INDICATED AFTER THE TRAIT. SIGNIFICANCE AT THE 5%, 1%, 0.1% AND 0.01% LEVELS ARE INDICATED BY *, **, *** AND ****, RESPECTIVELY FOR EACH TRAIT AND TRIAL..

Experimentation	Trait	Chrom	. Markers	Position (cM)	Lr	F	Р	Individual R ²	Global R ²
Guadeloupe vear 1	AfG1	P2	E36 /M52_495y	0	4,51	4,52*	0,036	0,04	0,25
·		P6a	E33/M56_193y	8,4	10,2	10,43**	0,002	0,2	
		P9	E33/M49_160m	93,3	5,14	5,16*	0,025	0,07	
		P11	E37/M59_377m	0	8,62	8,79**	0,004	0,05	
		Lg4	E36/M52_694y	0	8,87	9,06**	0,003	0,17	
		Lg5	E41/M49_197m	0	6,78	6,86**	0,01	0,05	
	A50G1	P2	E36/M52_495y	0	5,09	5,11*	0,026	0,04	0,27
		P6a	E33/M56_193y	8,4	10,4	10,68**	0,001	0,22	

OTLs with additive effect (detected by LR).

		P9	E33/M49_160m	93,3	5,07	5,09*	0,026	0,07	
		P11	E37/M59_377m	0	8,88	9,06**	0,003	0,05	
		Lg4	E36/M52_694y	0	9,62	9,85**	0,002	0,17	
		Lg5	E41/M49_197m	0	6,94	7,03**	0,009	0,05	
	A10G1	P2	E36/M52_495y	0	5,4	5,43*	0,021	0,04	0,25
		P6a	E33/M56_193y	8,4	7,29	7,39**	0,008	0,12	
		P10	E41/M49_272y	0	4,03	4,03*	0,047	0,03	
		P11	E37/M59_377m	0	6,52	6,59*	0,012	0,05	
		P11	E37/M59_377m	71,5	8,07	8,21**	0,005	0,15	
		Lg5	E41/M61_387m	76,6	6,3	6,36*	0,013	0,05	
	D10G1	P4	E40/M49_344y	23,6	4,2	4,20*	0,043	0,05	0,15
		P6b	E41/M49_85m	7,7	7,9	8,03**	0,005	0,08	
		P10	E41/M49_272y	0	6,21	6,27*	0,014	0,06	
Guadeloupe year 2	AfG2	P2	E36/M52_495y	0	6,89	6,97**	0,009	0,04	0,49
·		P2	E43/M54_248m	123,8	3,95	3,95*	0,049	0,03	
		P4	E37/M59_238m	0	4,46	4,47*	0,037	0,03	
		P6a	E35/M48_116m	35,2	4,86	4,88*	0,029	0,03	
		Lg4	E39/M48_233m	2,7	18,8	20,03****	<10-4	0,22	
		Lg5	E41/M61_387m	76,6	6,34	6,40*	0,013	0,04	
	_	P2xLg5	E38/M60_803y x E41/M49_215m				0,0005	0,23	
	A50G2	P2	E36/M52_495y	0	6,1	6,16*	0,015	0,04	0,50
		P2	E43/M54_248m	123,8	4,37	4,37*	0,039	0,03	
		P4	E37/M59_238m	0	5,34	5,37*	0,022	0,03	
		P6a	E35/M48_116m	35,2	6,42	6,48*	0,012	0,03	
		Lg4	E39/M48_233m	2,7	18,8	20,08****	<10-4	0,2	
		Lg5	E41/M61_387m	76,6	5,82	5,87*	0,017	0,04	
		P2xLg5	E38/M60_803y x E41/M49_215m				0,0005	0,2	
	A20G2	P4	E37/M59_238m	0	6,22	6,28*	0,014	0,09	0,53
		P6a	E35/M48_116m	35,2	10,4	10,72**	0,001	0,14	
		Lg4	E39/M48_233m	2,7	15,2	15,95***	<10-4	0,14	
		Lg5	E40/M49_210y	88,6	4,12	4,12*	0,045	0,05	
		P2xLg5	E38/M60_803y x E41/M49_215m				0,0015	0,2	
	D20G2	P6b	E37/M59_87y	3,3	6,25	6,31*	0,013	0,06	0,31
		Lg2	E31/M58_194m	3,7	4,37	4,37*	0,039	0,05	
		P2xLg5	E38/M60_803y x E41/M49_215m				0,0005	0,28	
Cameroon	AfC	P10	E41/M61_716m	27,2	4,2	4,20*	0,043	0,06	0,17
		P11	E40/M49_172y	9,2	7,05	7,14**	0,009	0,13	
	A50C	P10	E41/M61_716m	27,2	4,24	4,24*	0,042	0,06	0,19
		P11	E40/M49_172y	9,2	7,68	7,80**	0,006	0,14	
		P4	E37/M59_238m	0	4,38	4,39*	0,038	0,07	
	A15C	P6a	E33/M56_193y	8,4	4,38	4,39*	0,038	0,06	0,25
		Lg3	E43/M53_119y	0	7,48	7,59**	0,007	0,08	
		P5	E42/M55_513m	75,5	6,32	6,38*	0,013	0,08	
	D15C	P10	E31/M58_372m	66,2	8,76	8,95**	0,003	0,07	0,07
		Ul4	E37/M62_Hm				0,0025	0,09	
--------------	----------	-------------------------------	-------------	-------------------------------	------------------	--------------------------	----------	---------------------	----------------------------
QTLs wit	h addit	ive effect (d	etected by	CIM).					
Traits	Chrom.	Markers ^a		Position ^b (cM)	LOD ^C	individual $R^{2^d}(\%)$	Additive	Resistant allele	Global R ² %
AfG1 (3cof)	P2	E36/M52_495y		0	5,28**	0,05	-518,76	У	0, 25
	P2	E43/M54_291m		46	6,43***	0,07	-528,83	У	
	P9	Me3-Scar_b94		4	6,48***	0,13	-522,54	у	
	P10	E31/M58_372m		66,2	6,19**	0,09	-517,8	у	
	P11	E37/M59_377m		0	5,48**	0,05	-545,62	у	
	P11	E41/M49_448m		77,7	6,26***	0,08	-538,4	у	
A50G1 (3cof)	P2	E34/M53-181m		12,4	7,42***	0,04	-335,16	у	0,27
	P2	E41/M61_173y		95,7	6,86**	0,05	-325,07	у	
	P9	Scar_b94 E31/M58_372m	-	4	6,93**	0,06	-333,05	У	
	P10	E35/M48_191m		66,2-89,8	8,04***	0,07	-337,7	У	
	P11	E37/M59_377m		0	6,97**	0,06	-346,42	у	
A10G1 (1cof)	P2	E36/M52_495y		0	7,5*	0,07	-59,89	У	0,25
	P9	Scar_b94		4	7,81*	0,06	-58,32	У	
	P11	E41/M49_448m		77,7	9,81**	0,07	-69,03	У	
	LG5	E41/M49_197m		0	8,37**	0,07	-64,87	у	
D10G1 (4cof)	P6b	E41/M49_85m - E41/M61_409m		7,7-36,7	3,18**	0,05	10,04	m	0,15
AfG2(1cof)	P2	E43/M54_291m		46	4,33***	0,05	-589,31	у	0,43
	P2	E43/M54_248m		123,8	3,01**	0,04	-550,18	у	
	P9	Scar_b94		4	3,48**	0,05	-570,19	у	
A50G2 (2cof)	P9	Scar_b94		4	4,65**	0,04	-355,24	у	0,29
	P9	E42/M55_826y		70,5	3,72**	0,02	-355,14	у	
	P10	E31/M58_372m		66,2	3,83**	0,02	-361,3	у	
	P11	E41/M49_448m		77,7	3,49**	0,09	-408,48	у	
	LG5	E41/M49_197m		0	2,3*	0,04	-353,96	у	
A20G2(1cof)	P2	E43/M54_291m		46	6,43*	0,02	-72,7	у	0,17
	P9	Scar_b94- E34/N	453-209m	4,00-13,30	13,82**	0,04	-75,06	у	
	P10	E31/M58_372m		66,2	14,27**	0,01	-72,98	у	
	P11	E41/M49_448m		77,7	11,18**	0,06	-77,31	у	
	LG2	E31/M58_194m E41/M49_197m-		0	7,92*	0,11	-80,74	У	
	LG5	E36/M52_469m		0-19,3	13,34**	0,08	-74,89	у	
D20G2(2cof)	P6b	E41/M49_85m		7,7	18,75***	0,06	12,68	m	0, 31
AfC (3cof)	-	-		-	-	-	-	-	0,00
A50C(3cof)	-	-		-	-	-	-	-	0,00
A15C(2cof)	P6a	E42/M55_618m		37,2	2,70*	0,02	-131,56	у	
	P10	E41/M49_272y		0	3,69*	0 ,02	-124,4	У	0,16
	P10	E31/M58_372m		66,2	2,92*	0,06	-135,8	У	
	P11	E41/M61_329m		50,1	6,75**	0,09	-173,79	У	
	LG1	E41/M49_120m		19,5	3,13*	0,02	-135,47	у	
D15C(5cof)	P6b	E41/M49_85m		7,7	2,31*	0,04	-4,94	у	0 ,05
QTLs wit	h epista	atic effect (d	letected by	two-way	ANOV	VA) for t	rait D2	0G2.	
Chromosome	Marker			R ^{2c}	уу	my	ym	mm	
P2 * Lg5	E38/M60	_803y x E41/M49	215m	0,22	14,1	11,35	12,53	15,49	

DISCUSSION

Macrosynteny and QTLs detection

No major QTLs were detected as could have been expected from the synteny hypothesis between pepper and tomato : only minor QTLs with weak effect, even in the collinear regions of T6~P6, the must probable to carry an orthologous QTLs.

However, QTLs mapped in the chromosomes P4, P6a and b, P9, P10 and P11 may be related with the QTLs from tomato mapped in the respective chromosome T4, T6, T12, T10 and T11 if the genomic regions carrying these QTLs are collinear.

Considering the P4, just a fragment of 23, 6 cM (15% of P4 chromosomes) were got in the present study. We detected a QTL on P4 linked to marker E37/M59_238m at 8,1cM of the known gene *pvr2*. This finding is in accordance with previous works on synteny between pepper and tomato in the control of potyviruses (Parrella et al, 2002). Parrella mapped the *pot-1* gene conferring resistance to potyvirus on chromosome T3 on a region corresponding to P4. This was recently confirmed by Wu et al, (2009), through the RFLP orthologous marker TG132 which is mapped in a region confirming the synteny between P4 and T3. Marker TG132 was reported to be linked to *pot 2* by Parrella. Thus, we can conclude that on the common ancestor of Solanacea, this genomic region on the P4~T3 were specialized both for the resistance to potyviruses and bacterial wilt resistance.

Two QTLs were mapped on P6. The QTLs carried by P6a and b. QTL on P6a is linked to marker E33/M56_193y and E37/M53_91y. Given its position laying in the range 30-50cM on the pepper chromosome and the perfect coliniarity between P6 and T6, this QTL can be related to the QTLs detected by Carmeille (2006), Danesh (1994), Thoquet (1996), Wang (2000) and Mangin (1999). It's in that region that we expected much to detect a major QTL (**Figure 3-6**).

FIGURE 3-6 : ALIGNMENT OF P6 CHROMOSOME WITH THE P6 OF OTHERS PEPPER MAPS (BASED ON WORKS OF BARCHI ET AL, 2007 AND THIS STUDY).

The second QTL on P6b is linked to markerE41/M49_409m. This QTL can't be related to any known orthologous region on P6 since we have been unable to align it. Mapped only for Date trait, this QTL were detected for all the trials. Surprisingly, the additive value gotten with this QTL during the trial in Guadeloupe with phylotype II was positive (10,4 and 12,6 respectively during first and the second year of trial) indicating its allele origin from the susceptible parent (Yolo Wonder) ; in Cameroon with phylotype I stain of *R. solanacearum,* the negative value obtained indicates that the allele was supply by the resistant parent. This result indicated that despite its broad expression among the phylotypes, the functioning of this QTIs is phylotype dependant. This indicates another aspect of the complexity of bacterial wilt resistance.

The targeted region on P9 chromosome corresponds to T12, the tomato region bearing major specific QTL detected by Wang et al, 2000. We have been able to align it with the P9 chromosome trough the markers Scar_b94 associated to *Me3* gene and the AFLP marker COO_132p corresponding to E33/M49_132m on the partial DH map (Djian-Caporalino, 2007) This alignement indicates that 38% (in reference to the integrated pepper Djian-Caporalino's map) of the P9 chromosome was generated by the partial map constructed in the present study. This QTL is expressed for all AUDPC traits in Guadeloupe during the two years of trials. With up 13% of individual R² expression, it is the major QTL detected in this study by CIM (**Figure 3-7**).

FIGURE 3-7: ALIGNMENT OF P9 CHROMOSOME ISSUE ON THE INTEGRATED P9 MAP OF DJIAN-CAPORALINO ET AL (2007), THE T12 ACCORDING TO TANKSLEY ET AL, (1992) AND THE T12 CARRYING THE MAJOR PHYLOTYPE SPECIFIC QTL OF RESISTANCE TO BACTERIAL WILT ACCORDIND TO WANG ET AL, 2000 AND THIS STUDY).

Associated to marker Scar b94, it was mapped in a region close to the Meloidogyne nematode *Me3* resistance gene. This association between bacterial wilt resistance and Meloidogyne resistance was detected by Lafortune et al (2006) in repulsion phase that corresponds to our results. Debert et al, (1999) and Thoquet et al also detected such a linkage between at least one gene governing bacterial wilt resistance and *Mi* gene on tomato. Djian-Caporalino et al (2007) demonstrate that this region corresponds to the T12 region carrying Melodoigine resistance genes *Mi-3* and *Mi-5* on tomato. With all these facts together, we can conclude that this genomic region correspond to T12. It shares a syntenic relation with tomato both for the resistance to bacterial wilt and for nematode.

The P10 chromosome was the best covered in this study with up to 80% of chromosome coverage in reference to Wu al pepper map. Two QTLs were detected on this chromosome. Given their position and the perfect synteny with tomato T10 chromosome, the first QTL linked to marker E41/M40_272y can be related to the QTL mapped by Danesh and al (1994), while the second QTL, linked to marker E31/M58_372y can be related to their ortholog counterpart detected on tomato by Thoquet et al, (1996) (Figure 3-8).

FIGURE 3-8 : ALIGNMENT OF THE P10 DH CHROMOSOME WITH THE P10 OF OTHERS PEPPER MAPS (BASED ON WORKS OF BARCHI ET AL, 2007 AND THIS STUDY).

With the chromosome P11, 3 QTLs were detected. Following the criteria of selection of hypothetic ortologous region of pepper settle in this study, P11 was the less promising pepper chromosome in term of syntenic relationship with tomato. To our knowledge, Toquet and al (1995) are the only authors who found a weak QTL on tomato T11 which can be related to one of the bottom QTL detected on pepper P11. However, the occurrence of QTLs on this chromosome are in accordance with Lafortune (2005) who anticipated on the existence of a QTL on P11, giving the knowledge about the linkage between the TMV and the resistance to bacterial wilt on pepper on one hand, and the mapping of the L gene conferring resistance to TMV on P11.

Conservation versus diversification of genes involved in bacterial wilt resistance

Correlations between data obtained from the same progeny in Guadeloupe and Cameroon reached 0.33 that is weak despite highly significant. Correlation between the data from the 2 years in Guadeloupe was higher (0.78). This means that part but not all the resistance factors are expected to be expressed in both environments and towards both phylotypes.

Looking further at QTL detection in the different trials showed that most of the significant QTLs detected in Cameroon with phylotype 1 (P10 and P11 in CIM, P2 P11 and the interaction P2xLG5 in ANOVA) were already detected in the Guadeloupe trials with phylotype II. These QTLs very probably displayed a non specific effect towards both phylotypes.

On the contrary, the QTLs in P6a, P6b and P9 were below the LOD threshold in Cameroon, which could be due to their specificity toward the phylotype 2 but also to the difference in environment between these trials.

The tomato QTLs mapped in T6 and T12 were reported for their specificity toward different phylotypes : strain Pss4 (phylotype I) for Wang et al. (2000) and JT516 (Phylotype II) for Carmeille et al. (2004). If these QTLs are admitted as collinear with the pepper QTLs in P6a and P9 respectively, it is noteworthy that they may also

display a specific effect toward the phylotype 2 in pepper as observed for the T6 QTL from tomato, but contrarily to the T12 QTL that was ineffective toward this phylotype. This may bring to conclude that during evolution, there has been diversification of resistance gene against bacterial wilt.

CONCLUSION

Bacterial wilt resistance on pepper is confirmed to be a complex trait. Knowledge from tomato genome and QTL mapping did not obviously helped in targeting the resistance QTLs in pepper : the potential syntenic QTLs displayed very weak effects in pepper and most of the genetic variance for resistance is expected to depend on other loci. Thus genome-wide mapping remains necessary to map the QTLs governing resistance to this pathogen. Some QTLs were also shown for their non specific spectrum of action toward both phylotype tested, but their additive as well as epistatic effects were weak. Because of the high diversity of R solanacearum, its wide host range and the potential specificity of interactions as shown in tomato, a larger genetic mapping in several resistance sources will be necessary to assist the breeding programs in pepper. Breeding on disease resistance will have to face specificity of resistance genitor, diversity of bacterial strains and environmental specificity. To conclude on the issue of the usefulness of the synteny approach for QTL mapping is ambiguous, as shown in this study. In Guadeloupe, we have been able to show, with just 45% coverage of the pepper genome that the synteny between tomato and pepper can be used to identify weak effect QTLs linked to bacterial wilt caused by R. solanacearum on pepper. Few QTLs of resistance have been detected. In some cases this strategy can be unsuccessful as it was the case in Cameroon where no major QTLs were detected. However, this approach will never replace the classical mapping strategy.

ACKNOWLEDGMENTS

This research was supported by grants from the French Ministry of Foreign Affairs (French Embassy in Yaoundé), the the Delegation for International Scientific Exchanges, CIRAD, the REPARAC project and Programme Légumineuses et Cultures Maraichères of IRAD.

BIBLIOGRAPHY CITED IN ARTICLE

- Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D'Hont A (2000) Application of synteny accross Poaceae to determine the map location of sugarcane rust resistance gene. *Theor Appl Genet* **101** :962-969.
- Barchi L, Bonnet J, Boudet C, Signoret P, Nagy E, Lanteri S, Palloix A, Lefebvre V (2007) A high-resolution, intraspecific linkage map of pepper (*Capsicum annuum* L.) and selection of reduced recombinant inbred line subsets for fast mapping. Genome 50:51-60.
- Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen *Ralstonia solanacearum* naturally develops a state of

competence and exchanges genetic material. *Mol Plant-Microbe Interactions* **12** :467-472.

- Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTL for *Ralstonia solanacearum* race 3-phylotype II resistance in tomato. *Theor Appl Genet* doi 101007/s00122-006-0277-3.
 - **Deberdt P. 1999.** Analyse de la résistance au flétrissement bactérien (*Ralstonia solanacearum*-Race 1) gouverné par le chromosome 6 de la tomate. Montpellier : Université des Sciences et Techniques du Languedoc Montpellier II, 195p..
- Djan-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O'Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (*Capsicum annuum* L.) resistance loci *Me*₃ and *Me*₄ loci conferring heat-stable resistance to root-knot nematodes (*Meloidogyne* spp.). *Theor Appl Genet* 103 :592-600
- Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze AM, Palloix A, Dalmasso A, Abad P (1999) Spectrum of resistance to root-knot nematodes and inheritance of heatstable resistance in pepper (*Capsicum annuum* L.). *Theor Appl Genet* 99 :496-502.
- Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (*Meloidogyne* spp.) *Me* resistance genes in pepper (*Capsicum annuum* L.) are clustered on the P9 chromosome. *Theor Appl Genet* **114** :473-486 doi 10.1007/s00122-006-0447-3.
- Fulton TM, Chunwongse J, Tankley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. *Plant Mol Biol Rep* 13 :207-209 Haldane JBS (1919) The mapping function. *J Genet* 8 :299-309.
- Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm TJA, van Eck HJ, Baker B, Jacobsen E, Visser RGF (2005) Comparative genomics enabled the isolation of the *R3a* late blight resistance gene in potato. *The Plant Journal* 42 :241-261.
- **Ihaka R, Gentleman R 1996.** R : a language for data analysis and graphics. *Journal of Computational and Graphical Statistics* **5 : 299-314**.
- Kelman A (1954) The relationship of pathogenicity in *Pseudomonas solanacearum* to colony appearance on a tetrazolium chloride medium. *Phytopathology* 44 :693-695.
- Lafortune D, Béramis M, Daubèze AM, Boissot N, Palloix A (2005) Partial resistance of pepper to bacterial wilt is oligogenic and stable under the tropical conditions. *Plant Disease* 89 :501-506.

- Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER : an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. *Genomics* 1 :174-181.
- Lefebvre V, Palloix A (1996) Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease : a case study, the interaction pepper *Phytophthora capsici* Leonian. *Theor Appl Genet* 93 :503-511.
- Lefebvre V., Pflieger S., Thabuis A., Caranta C., Blattes A., Chauvet JC., Daubeze A.M., Palloix A. 2002. Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome, 45 : 839-854.
- Livingstone KD, Lackney VK, Blauth JR, Wijk van Rik, Jahn MK (1999) Genome Mapping in Capsicum and the Evolution of Genome Structure in the Solanaceae. *Genetics* 152 :1183-1202.
- Mahbou Somo Toukam G, Cellier G, Wicker E, Guilbaud C, Kahane R, Allen C, Prior P (2009) Broad diversity of *Ralstonia solanacearum* strains in Cameroon. *Plant Disease* 93 :1123-1130.
- Mather K, Jinks JL (1982) Biometrical genetics, 3rd edn, Chapman and Hall, London Miftahudin TC, Ross K, Scoles GJ, Gustafson JP (2005) Targeting the aluminium tolerance gene *Alt3* region in rye, using rice/rye micro-colinearity. *Theor Appl Genet* 110 :906-913.
- Paran I., Rouppe Van Der Voort J., Lefebvre V., Jahn M., Landry L., Van Schriek M., Tanyolac B., Caranta C., Ben Chaim A., Livingstone K., Palloix A. Peleman J. 2004. An integrated genetic linkage map of pepper (*Capsicum* spp.), Molecular Breeding 13 :251-261.
- Parrella G, Ruffel S, Moretti A, Morel C, Palloix A. 2002. Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (*Lycopersicon* spp.) and pepper (*Capsicum* spp.) genomes. *Theor. Appl. Genet.* 105 : 855-861.
- Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in *Paspalum* spp. *Mol Gen Genomics* 270 :539-548.
- Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene *pot-1* is the tomato orthologue of the pepper *pvr2-elF4E* gene. *Mol Gen Genomics* 274 :346-353.

- Snape JW, Wright AJ, Simpson E (1984) Methods for determining the gene numbers for quantitative characters using double haploid lines. *Theor Appl Genet* 67 :143-148.
- Stracke S., Sato S., Sandal N., Koyama M., Kaneko T., Tabata S., Parniske M. (2004) Exploitation of colinear relationships between the genomes of *Lotus japonicus*, *Pisum sativum* and *Arabidopsis thaliana*, for positional cloning of a legume symbiosis gene. Theor Appl Genet 108 :442-449.
- Thorup TA., Tanyolac B., Livingstone KD., Popovsky S., Paran I., Jahn M. (2000) Candidate gene analyssis of organ pigmentation loci in the Solanaceae. *PNAS* 97 :11192-11197.
- Voorrips RE (2002) Mapchart : Software for the graphical presentation of linkage maps and QTLs. *The Journal od Heridity* 93 :77-78.
- Vos P, Hogers R, Bleeker M, Reijand M, van de Lee T, Hornes M, Fritjers A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP : A new technique for DNA fingerprinting. *Nucleic Acids Res* 23 :4407-4414.
- Wang JF, Hanson PM, Barnes JA (1998) Worldwide evaluation of international set of resistance sources to bacterial wilt in tomato. Pages 269-275. In : Prior P, Allen C, Elphinstone J (eds) Bacterial Wilt Disease : Molecular and Ecological Aspects. INRA Editions, Paris, pp 34-43.
- Wu F., Eannetta NT., Xu Y., Durrett R., Mazourek M., Jahn MM, Tanksley SD (2009) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118 :1279-1293.

PRINCIPAUX RÉSULTATS

- Dans la majorité, seuls des QTLs à effet faible provenant du parent sensible « Yolo » sont détectés ;
- Malgré une couverture assez parfaite de la vicinité autour des marqueurs TG118 et TG240 colinéaires au chromosome P6 du piment et plusieurs fois cité comme étant associé à un QTL majeur de résistance du flétrissement bactérien chez la tomate chez le piment, aucun QTL majeur n'est cartographié chez le piment dans cette zone à priori porteuse de QTL de résistance au flétrissement bactérien ;
- L'approche de synténie entre la tomate et le piment n'est pas idéale pour accélérer la détection de QTLs de résistance chez le piment ;
- Seule une partie faible de facteurs génétiques chez le géniteur de résistance PM687 est commune dans le contrôle la résistance entre les souches bactériennes de phylotype différent ;

- La majeure partie des facteurs de résistance est conservée dans différents environnements;
- La résistance au flétrissement bactérien chez le piment est oligogénique et associée à la fois à des quelques QTLs phylotype-spécifiques et des QTL dont l'expression dépend de l'environnement ;
- La résistance du piment au flétrissement bactérien est contrôlée par des QTLs à effets additifs et épistatique.

CHAPITRE 4 : DETERMINISME GENETIQUE DE LA RESISTANCE DU PIMENT (*CAPSICUM ANNUUM* L.) AU FLETRISSEMENT BACTERIEN : Y A-T-IL ENVAHISSEMENT DE LA TIGE OU RESTRICTION DE LA BACTERIE CHEZ UN GENITEUR RESISTANT ?

Ce chapitre a quatre objectifs :

- Etudier le déterminisme génétique de la résistance du piment au flétrissement bactérien ;
- Cartographier les QTLs piment contrôlant la résistance du piment au flétrissement bactérien ;
- Etudier la colonisation bactérienne de la tige en relation avec la (Capsicum annuum) résistance au flétrissement bactérien chez le piment ;
- Vérifier à l'échelle chromosomique l'orthologie des QTLs cartographiés chez le piment avec ceux de la tomate.

Ce chapitre est présenté sous forme d'article en cours de soumission à TAG.

PROJET D'ARTICLE : BACTERIAL WILT RESISTANCE OF PEPPER (*CAPSICUM ANNUUM* L.) IS CONTROLLED BY A FEW ADDITIVE AND EPISTATIC QTLS AND IS ASSOCIATED WITH THE RESTRICTION OF THE BACTERIA SPREAD IN THE PLANT STEMS

<u>G. Mahbou Somo Toukam^a</u>, <u>P. Signoret^b</u>, <u>P. Teguefouet Feuidjio^a</u>, <u>V. Lefvebre^b and A.</u> <u>Palloix^b</u>

^aInstitut de Recherche Agricole pour le développement, IRAD, Programme Légumineuses et Cultures Maraîchères, Yaoundé, BP 2067 Yaoundé, Cameroun ; b^cInstitut National de la Recherche Agronomique (INRA), Génétique et Amélioration Fruits et Légumes, UR 1052 Domaine St Maurice, BP94, F-84143, Montfavet Cedex, France.

* To whom correspondence should be addressed. <u>E-mail : alain.palloix@avignon.inra.fr</u> Phone : (262) 262 49 92 60 Fax : (262) 262 49 92 93

INTRODUCTION

The Solanaceae family, including the genera Capsicum spp (peppers), Lycopersicon esculentum (tomatoes) and Solanum tuberosum (potatoes) are the most cultivated world vegetables (Food and Agricultural in the Organization. http ://faostat.fao.org/faostat, 2004). They are susceptible to bacterial wilt (BW) caused by the soil borne bacterium R. solanacearum. This gram negative bacterium causes bacterial wilt in a wide range of crops (pepper, eggplant, tomato, potato, tobacco, banana, peanut, etc.) in five continents covering various regions : these include tropical, subtropical and warm temperate regions (Hayward, 1991). In the

intertropical belt, this bacterium is the fourth major disease threat on pepper, after virus complexes, *Phytophthora* root rot and anthracnose (Yoon *et al.*, 1989).

Sources of resistance or quantitative trait loci (QTLs) involved in the resistance to this ubiquitous bacterium were found on a few Solanaceae crops namely : tomatoes (Carmeille et al., 2006b ; Wang et al., 2000 ; Wang et al., 1998 ; Thoquet et al., 1996b ; Danesh et al., 1994), peppers (Lafortune et al., 2005), potatoes (Laferriere et al., 1999), eggplant (Gousset et al., 2004 ; Collonier et al., 2001) and tobacco (Tanaka et al., 2003). These authors found that the resistance is partial, oligogenic and display race-specific or phylotype-specific determinism. In *Arabidopsis thaliana*, Deslandes et al. (1998) found that one major recessive gene, *RRSI*, governs the resistance to BW, indicating the complexity of this character.

On the international plan, *R. solanacearum* is usually classified according to five races with respect to the host range and six biovars on the basis of its biochemical properties (Hayward, 1994; 1991; He et al., 1983; Hayward, 1964; Buddenhagen et al., 1962). Recently, a phylophasic classification was developed. This classification, based on a molecular approach describes the diversity of *R. solanacearum* like a species complex. It gathers the bacteria into four phylotypes related to the geographic origin of the bacterial strain. The *Asiaticum* (Phylotype II), *Americanum* (Phylotype II), the *Africanum* (Phylotype III), the *Indonesian* (Phylotype IV)(Fegan et Prior, 2005; Poussier et al., 2000a; Poussier et al., 2000b; Cook et Sequira, 1994; Cook et Sequeira, 1991).

In pepper, sources of resistance exist. 'PM 687' derived from an Indian local population PI 201234, a resistance genitor was recently used to reveal the oligogenic control of resistance and its stability over environments using the Phylotype II strain of *R. solanacearum* (Lafortune et al., 2005). Due to the similarity in oligogenic control of resistance between pepper and tomato, and to the studies of Rahman et al 1999, the authors hypothesized that resistance mechanisms may also be related between these species. However, Grimault et al (1994) and Abdullah et al (1998) showed in another resistance source that BW resistance on pepper was due to the tolerance to wilt despite the invasion of the plant stems by the bacterium, contrarily to the resistance of tomato in which the bacterial invasion was restricted. Based on relation between the capacity of the plant to restrict *R* solanacearum invasiveness in the stem and in order to select more stable genitor for tomato breeding purpose, Grimault et al, (1994) defined an index of selection combining bacterial colonization at midstem and bacterial wilt percentage. Therefore, for equal bacterial wilt percentage, the breeder will be recommended to choose the plant with lower bacterial colonization percentage. Does this pattern be identical with pepper? Otherwise, does a resistant pepper plant limit the penetration of the bacterium in its stem cell tissues, or has it rather developed a tolerance mechanism ?

In the present study, we confirm Criollo de Morelos (CM334) as a partially resistant genitor for which a high density genetic pepper map was recently published (Barchi et al., 2007). To the best of our knowledge, no QTLs of bacterial wilt resistance have been mapped so far on pepper.

Meanwhile, the comparison of pepper and tomato genomes has been achieved through the use of common RLFP markers for the development of high resolution maps (Bernatzky and Tanksley, 1986 ; Helentjaris et al., 1986). Ten years ago, a study revealed that 18 homeologous linkage blocks cover 95% of pepper genomes and 98% of the tomato genome. Gene repertoire between these two plants is

conserved (Livingstone et al., 1999). Wu et al. (2009) confirm this by demonstrating that since the divergence from their last common ancestor approximately 20 million years ago, pepper and tomato genomes share 35 conserved syntenic segments within which gene / markers order is well preserved. Therefore the question of the existence of orthologous genes conferring resistance to bacterial wilt between pepper and tomatoes can be raised.

In the present paper, we mapped the QTLs for BW resistance in a RILF5-6 population from a cross between Yolo wonder (YW) and Criollo de Morelos 334 (CM334) using a phylotype I strain. Resistance criteria were derived from area under the disease progress curve (AUDPC) and date of wilt. Secondly we test whether or not the resistance of pepper to bacterial wilt was associated with the penetration of bacteria into tissue cells above the cotyledon in the stem ; and finally we verify at a macro level whether or not BW is governed in tomato and pepper by probable orthologous genes.

MATERIALS AND METHODS

Plant material

We used a Recombined Inbred Lines (RIL) population of peppers. This population was developed at Institut National de la Recherche Agronomique (INRA)-Montfavet, France, by single seed descent, and comprised a set of 297 F5 RIL that were used for the map (Barchi et al, 2007). From this RIL population, the 93 most informative F5 RIL were extracted (Barchi et al, 2007) and the 93 F6 families were phenotyped for resistance, reducing the experimental effort and cost (selective phenotyping). The RIL population originated from a cross between a BW susceptible line, Yolo wonder (YW), and a BW resistant line, Criollo de Morelos 334 (CM334), a Mexican hot pepper. The parental lines were obtained at INRA-Montfavet by 5-7 successive selfings to generate homozygous inbred lines. Seeds of the RIL progenies were obtained by selfing plants under an insect-proof tunnel.

Bacterial strain and inoculation procedure

A phylotype I *R. solanacearum* strain, CMR 143 (RUN 224) isolated from *Capsicum chinense* (pepper) in Bafia, Cameroon was used (Mahbou Somo Toukam et al, 2009). This strain can be considered as representative of genetic diversity of the low land humid forest agro-ecological zone characterized by two rainy seasons according to previous works (Mahbou Somo Toukam et al., 2009). The strain was streaked on in a modified Kelman's medium (Kelman, 1954)[1% bacto-peptone (Difco), 0.1% yeast extract (Difco), 1.8% bactoagar (Difco), 0.63% glycerol, 0.01% casamino acids (Difco)], pH adjusted between 7.2-7.4 with NaOH, for 48 h. The plates were flooded with distilled sterile water. This aqueous suspension was spectrophotometrically adjusted to approximately 10^8 CFU per ml (OD₆₀₀=0.2) by dilution into sterile distilled water.

Each RILF6 line seeds were planted into 50 ml plant pot on disinfected vegetal soil in a green house. At the stage of 5-6 fully expanded leaves, inoculation of potted plants

was made by pouring 2 ml of bacterial suspension in 50ml pot substrate one week before transplanting in the field. Each plant therefore received $2x10^8$ cfu of bacteria. A knife was inserted 4-5 cm into the soil to cut the root along one side (Winstead & Kelman, 1952).

Field experiment for bacterial wilt assessment and phenotypic data analysis

Resistance tests of the F6 RIL population were conducted in Cameroon at the IRAD experimental field station NIkolbisson-Yaoundé, Cameroon (N 03° 52.135- EO 11° 26.330) during the 2005 short rainy season (21.4-28.2 °C). A total of 30 plants of each 93 inbred line were grown including the two parental lines (CM334 and Yolo Wonder). Field resistance was conducted in a randomized complete block design with 3 replicates (blocks) of 10 plants of each of the 93 inbred lines. Yolo Wonder and CM334 were repeated twice as control in each replicate. Fertilizer rates and plant spacing were according to current agronomic practices in Cameroon. Two inbred lines out of 93 did not germinate.

Disease development was assessed once weekly between the 1st and the 16th week after inoculation (wai) by scoring each plant as susceptible (at least one leaf wilted) or resistant (no symptom). The proportion of wilted plants was then calculated in each of the 93 inbred lines, the two parents and their F1 progeny. The area under progress disease curve (AUDPC) was further determined as AUDPC= $\Sigma^{16}_{i=1}[(p_i+p_{i+1})/2](t_{i+1}-t_i)$ where p_i is the proportion of wilted plants at the date t_i (t=1, 2,..., 16). These values were determined at three stages of the experiment, including the initial stage called A24, corresponding to the AUDPC value of each inbred line at the date when the resistant parent CM334 reached its maximum percentage of wilt (24%); A50 is the AUDPC value of each inbred line when 50% of plants of the whole population presented wilt symptoms; Af is the AUDPC value of each inbred line at the end of the experiment (16 weeks). A 4th criterion was considered and is the date (in weeks) at which each inbred line reached 24% of wilt, this percentage corresponding to the maximum wilt rate of the resistant parent at the end of the experiment.

For all these four criteria, analysis of variance of AUDPC was performed according to the model Y = μ + g_i + b_j + e_{ij}, where μ = population mean, g_i = genotype (F6RIL lines), b_j = block effect and e_{ij} = residual. In this study, only RIL with complete data set were considered (88 RIL lines). Because of the homozygocity of RILF6 lines, genotypic variance was equal to additive variance (in the absence of epistatic effects) and narrow sense heritability (h²_n) values were computed using the formula h²_n = VA / (VA + VE/n) where VA is the genotypic variance, VE the environmental variance (including block and error effects) and n is the number of repeats (n=3). An estimation of the number of segregating genes in the RIL populations was computed according to Mather and Snape (Mather & Jinks, 1982; Snape et al., 1984). This was done using the formulae k₁= [(P1-P2)/2)]²/\sigma²_A and k₂=[(L_{max}-L_{min})/2]²/ $\sigma²_A$ respectively, where P₁ and P₂ are the parent values, L_{min} and L_{max} the two extreme RILF6 lines and $\sigma²_A$ the additive variance.

Phenotypic coefficients of correlation among the four resistance criteria were computed using Pearson's product moment.

Assessment of the bacterial in plant

One set of 50 wilted plants and one set of non-wilted plants were randomly chosen. For the wilted plants, 2 to 5 plants were selected for bacteria plant tissue assessment till a total of 50 plants was assessed. For the non-wilted plant, 50 bacterial symptomless plants were selected at the end of the experimentation (16th week after inoculation). The presence of bacteria was assessed in their stem tissues above the cotyledon. The presence of bacteria was assessed according to (Mahbou Somo Toukam et al., 2009). For this purpose, segments of 6 cm to 10 cm length were removed from the main stem of the plants, maintained 20℃ in a cool box and processed the same day for isolation of R. solanacearum. Samples were surface disinfected with 70% ethanol, peeled, and sub-sampled (2 cm segment) were macerated in sterile distilled water. Macerates were streaked on Kelman's triphenyltetrazolium chloride (TZC) agar medium (up cit) that was complemented with yeast extract (1%). Bacterial colonies developing typical R. solanacearum morphotypes were noted for the presence or absence of bacteria. These 100 plants where divided into three classes according to their Af score, including the resistant parent class (CM334), the susceptible parent class (YW) and intermediate (the F1 hybrid class). More precisely, from the Af value range from 35.42 to 1364.44, these plants were assigned in three classes. The CM334 class, with Af value ranging from [35,42-557,5], the intermediate class called F1 hybrid class with Af value of F1 [557,5-725,00] and the susceptible parent class or YW class with Af range include in [725,00-1364.44]. 557,5 and 725,00 are the lowest and the highest F1 Af score mean within the three repetitions. The assessment of plants of FI hybrid class was performed on a majority of F1 plants during the trial. Then a cross table with the presence or absence of bacteria were generated with SPSS version 2.0 software and *Pearson* χ^2 test were computed to test whether or not resistance is associated with the limitation of the bacteria in the stem above the epicotyls.

Linkage map

The genetic map used for the RILF6 experiment was described by Barchi et al (2007). MAPMAKER v3.0b program (Lander et al., 1987) was used for map construction. Markers were assigned a linkage group with a minimum LOD score of 8 and a minimum recombination fraction of 0.1. The distance between markers is calculated according to Haldane mapping function (Haldane, 1919). A molecular marker of the *pvr2* locus was added (Rubio et al, 2008) and lead to the reorganization of the chromosome P4. 342 markers including AFLP, SSR, RFLP, SSAP and STS constituted the framework map. These markers are distributed on 45 linkage groups, out of which 15 were assigned to the 12 chromosomes (1535 cM) of pepper and 30 small linkage groups (520 cM) were not. This map spans for a total length of 2055 Haldane cM, with an average inter-marker distance of 6 cM.

QTLs and epitasis detection

Genotypic effect and heritabilities of genotypic mean values were computed from the ANOVA analysis results as described by (Lefebvre & Palloix, 1996). QTLs controlling

bacterial wilt was performed using linear regression (LR), simple interval mapping (SIM, Model 3) and composite interval mapping (CIM, Model 6) with the QTL Cartographer software on mean value of each RIL line. Using a forward-backward stepwise regression analysis, with a window size of 10 cM and a walking speed of 2 cM, a maximum of 2 markers was used as cofactors in the CIM procedure (Model 6). Significance thresholds were computed for SIM and CIM by 1,000-permutations tests for each resistance criterion. The digenic interactions between markers of the framework map were tested using a two-way analysis of variance with an interaction component using R software (Im model of R). The global coefficient of determination (global R2) was calculated from a multiple regression model including the markers with highest LOD values one per QTL) and the digenic interactions using R software (Ihaka & Gentleman, 1996)

Significant epistasis was retained when $P < 5x10^{-5}$ after 50720 tests were done for each of the 4 criteria on a set of 319 markers. Magnitude of the marker(s)-associated phenotypic effect is described by the coefficient of determination of the model (R²). Regression R² values taken at the peak LOD score of a QTL were used to indicate the percentage of the phenotypic variation explained by the QTL.

RESULTS

Phenotypic evaluation

The genitor Criollo de Morelos 334 was found to be moderately resistant against Phylotype I CMR143 strain in the condition of this experimentation, with 24% of wilting after 16 weeks after inoculation (wai). The susceptible parent Yolo Wonder reached a percentage wilt of 100% at 6 wai. The F1-hybrid showed intermediate values between the two parental means, indicating incomplete dominance of the resistance response (**Figure 4-1**).

FIGURE 4-1: TIME COURSE OF BACTERIAL WILT INCIDENCE OF DIFFERENT GENOTYPES OF PEPPERS DURING THE EXPERIMENTATION IN CAMEROON. MEAN PERCENTAGE OF WILTED PLANTS IS INDICATED FOR THE RESISTANT PARENTAL LINE (CM334), THE SUSCEPTIBLE PARENTAL LINE YOLO WONDER (YW), THEIR F1 HYBRID (F1), AND THE RECOMBINED INBRED LINE POPULATION (RILF6 MEAN). VERTICAL BARS ARE STANDARD DEVIATION OF THE POPULATION.

Analysis of variance of each resistance trait revealed a high significant genetic variance, attesting the genetic basis of the four resistance component (**Table 4-1**).

			AfYC				1	A50YC				A24	YC			D24	YC	
Sources of																		
variations	df	SS	MS	F	P(F)	SS	df	MS	F	$P\left(F\right)$	SS	MS	F	P(F)	SS	MS	F	P(F)
Genotypes	87	35 623 603	409 467	17	,28 x10 ⁻⁵³	13 872 388	87	159 453	17,7	01x 10 ⁻⁵⁴	374 627	4 306	10	69 x 10 ⁻³⁷	2 969,02	34,1	5,9	38 x 10 ⁻²³
Blocks	2	2 572	1 286	0,05	0,95	2 827	2	1 413	0,16	0,85	1 062	531	1,23	0,29	2,67	1,34	0,2	0,79
Residual	174	4 188 609	24 072			1 563 638	174	8 986			74 885	430			1 001,77	5,76		
Total	263	39 814 784				15 438 853	263				450 574				3 973,46			

TABLE 4-1 : ANALYSIS OF VARIANCE OF FOUR RESISTANCE CRITERIA AGAINST BACTERIAL WILT.

Transgression towards the susceptible parent was observed, suggesting the presence of resistance alleles in the susceptible parent YW.

The Pearson correlation coefficients between traits ranged from 63 to 99%, with a high probability $(2, 2 \times 10^{-16} \text{ to } 1, 74 \times 10^{-12})$, indicating a strong dependence between different traits. It's the case for example between Af and A50 as illustrated (**Figure 4-2**). This indicates that during the times curse of the trial ; the same genetic factors are displayed.

FIGURE 4-2 : CORRELATION BETWEEN A50 AND AF.

Bacteria epicotyls stem tissue assessment

Results presented indicate a strong relationship ($p = 5,04 \times 10^{-15}$) between the absence of wilt symptoms and the absence of bacteria in stem tissue. This indicated that resistant the resistant genotypes have developed a mechanism to limit the penetration of bacteria in stem tissue above the epicotyls in the condition of this test (**Table 4-2**).

TABLE 4-2: CROSS TABLE OF PRESENCE AND ABSENCE OF BACTERIA IN DIFFERENT DISEASE CLASSES. WILTED PLANTS ARE REGISTERED AND ASSESSED BETWEEN THE 4TH AND THE 16TH WAI, VALUE OF THE F1 CLASS ARE OBTAINED ON THE F1 HYBRID ; CM334 CLASS IS MADE OF PLANTS STILL IN THE FIELD AT THE END OF THE TRIAL IE 16 WAI. THE BILATERAL ASYMPTOTIC SIGNIFICATION OF THE CHI2 OF PEARSON IS P=5, 04 X 10⁻¹⁵

	Af Classes						
	CM334 [35.42-557.5]	F1 [557.5-725[Y W [725-1364.44]	Total			
Absence of bacteria	41	5	1	47			
Presence of bacteria	5	8	40	53			
Total	46	13	41	100			

QTLs and epitasis detection

QTLs were named according to two names digits nomenclature including the name of the parasite (*Rs* for *R. solanacearum*) followed by one digit indicating the carrier chromosome and a number. When the chromosome was not identified, we affected the linkage group (Lg) number to facilitate further nomenclature on the same chromosome. The same QTLs were detected using the three models of analysis LR, IM and CIM. Therefore, we decided to present only the results using the CIM method as regarding QTL position an R^2 . When several linked markers were significantly associated with the resistance, we considered the overall region as a single QTL.

Depending on the trait, three to five genomic regions distributed on three linkages groups including chromosome P4a, P10a and Lg22 were involved in the quantitative resistance of pepper against bacterial wilt caused by *R. solanacearum*.

During this study, we were able to detect significative QTLs only for trait Af and A50.

For trait Af, area under disease progress curve at the end of the experiment, 3 genomic regions were detected (**Figure 4-3**). One major QTLs carried by the chromosome P4 named *Rs_P4a.1* controlled 24% of the variance explained, alongside two putative QTLs named *Rs_P4a_2* and *Rs_Lg22_1* carried by chromosome P4a and linkage group 22. *Rs_P4a.1* and *Rs_4.2* explain 35% of the phenotypic variance. These 3 QTLs altogether explained 47% of the phenotypic variance. The most tightly linked coupling phase markers of *Rs_P4a.1* and *Rs_P4a.2* are respectively TG132 and E38M61_158y (**Table 4-3**). No significant digenic interaction was detected for this criterion.

Trait	Name	Chrom.	Marker ^a	Position ^b (cM)	LOD value ^c	R ^{2d} individual (%)	Allele	Additive effect	Phenotypic variance explained by the QTLs (R ² global %) ^e	Heritability
Af	Rs_P4a_1	P4	TG132	0	4,75**	24	CM334	159,90	47	0,94
	Rs_P4a_2	P4	E38/M61_158y	107,01	3,54*	22	CM334	140,31		
	Rs_Lg22_1	Lg22	E41/M54_351c	32,37	3,28*	8	CM334	101,81		
A50	Rs_P4a_3	P4	TG132	0	3,51*	23	CM334	96,17	57	0,94
	Rs_P4a_4	P4	E38/M61_158y	107,01	3,45*	20	CM334	87,32		
	Rs_P9_1	P9	E38M61_320c	104,3	3,16*	19	CM334	78,67		
	Rs_P10a_2	P10a	E41/M61_266y	66,74	3,07*	8	CM334	64,95		
	Rs_P11a_1	P11a	E32/M55_079c	28,36	3.12*	6	CM334	58,88		
	Rs_Lg22_2	Lg22	E41/M54_351c	32,37	3,30*	9	CM334	66,4		

TABLE 4-3: QTLS FOR THE BACTERIAL WILT RESISTANCE DETECTED IN THE F6YC RIL PROGENY.

^a Markers indicates the nearest upper flanking marker to QTL

^b This is the position from the peak position in centiMorgans.

 $^{\circ}$ *p<0,10 for putative QTLs ; **p<0, 05 for significant QTLs. The threshold values for putative and significant QTLs are respectively 3, 15 and 3, 80 for Af ; 3, 05 and 3, 68 for A50.

^d Is the proportion of phenotypic variance explained by a QTL at the test site

^e Calculated by multiple regression including for each character significative QTLs and epistasis.

Concerning **trait A50**, six putative QTLs with individual r² ranging from 8 to 23% were detected on five linkage groups and six genomic regions. These QTLs on the six genomic regions explained altogether 57% of the phenotypic variance. These comprise P4a, P9, P10a, P11a and Lg22. With the digenic interaction between P1 and P10a, all together they explained 64% of the phenotypic variance. As for Af, the two QTLs carried par P4a are the most important in the expression of this character, with respectively 23 and 20 % of individual R² for Rs_P4a_3 and Rs_P4a_4 . QTLs detected for this trait A50 are probably the same that are displayed for trait Af on linkage groups P4 and Lg22 (**Figure 4-3**).

FIGURE 4-3: MAP LOCATION OF QTLS FOR BACTERIAL WILT RESISTANCE. AREA UNDER DISEASE PROGRESS CURVE AF, A50, A24 AND D24. THE VALUE REPRESENTS THE SCORE OF EACH RIL LINE RESPECTIVEVELY AT THE END, AT 50 AND 24 % WILTING PERCENTAGE OF THE TOTAL NUMBER OF RIL LINES. D24 IS THE DISTRIBUTION OF THE DATE SCORE BY EACH RIL LINE WHEN 24% OF THE RIL LINE PRESENT WILTS SYMPTOMS. DISTANCES (IN CENTIMORGANS) ARE TO THE LEFT OF EACH LINKAGE GROUP. QTLS ARE PRESENTED AS LARGE VERTICAL BARS TO THE LEFT OF THE LINKAGE GROUP WITH THE UPPER NUMBER IN EACH BAR BEING THE LOD VALUE IN ITALIC BEING THE R² VALUE. THE DARK HORIZONTAL BAR IN THE QTL INDICATES THE POSITION OF THE LOD PEAK AND THE LENGTH OF THE QTL INDICATES THE LOD-1 SUPPORT INTERVAL FROM THE LOD PEAK. MARKERS LINKED TO QTL ARE INDICATED IN BOLD. THOSE INVOLVED IN EPISTATIC RELATION ARE UNDERLINED. LINES INDICATE THE TWO MARKERS INVOLVED IN THE EPISTASIS. NUMBER IN THE CIRCLE ON THE LINES INDICATES THE R² OF THE DIGENIC INTERACTION, THE CHARACTER FOR WHICH THIS DIGENIC RELATION IS INVOLVED IS INDICATED IN BOLD IN THE BOTTOM OF THE CIRCLE.

For the traits **A24** and **D24**, no QTL was detected due to LOD scores lower than the threshold. QTLs detected on chromosome P9, P10a and Lg22 for trait A50 were no longer detected for Af due to low LOD level. This can be explained by one of the limitation of selective phenotyping. Barchi et al (2009) also gave experimental evidence that selective phenotyping reduced the performance of QTL detection as a direct result of reducing the population size : only the most significant QTLs (with highest LOD scores) were detected compare to the large population, and individuals R^2 values were skewed with frequent overestimations. This made us hypothesized on the possibilities of detecting additional QTLs by looking for those rejected for insufficient LOD. Results indicate that QTLs detected on P10, P11, LG22 and P4a would have been eligible for trait Af, A24 and D24. An additional specific QTL for Date 24 QTL on P5 could have been admitted (**Table 4- 4**).

Traits	Chromosomes	Markers	Position	LOD	Individual
					R ²
Af	P10a	E41/M61_266y	66.8	2.88	9
	P11a	E41/M54_242c	19.6	2.62	6
	P11a	P25/M45_260y	94.6	2,32	4
A24	P10a	E41/M61_266y	66.8	2.01	8
	P4a	TG132	0	2.07	7
	P4a	E38/M61_158y	111.5	2.67	11
	P2	P35/M41_246y	74.2	2.01	8
	LG22	P15/M40_091c	22.1	2.44	8
D24	P4a	TG132	0	2.42	10
	P4a	E38/M61_158y	111.5	2.24	17
	P5	P25/M42_129y	92.6	2.40	9
	P10a	E41/M61_266y	66.8	1.85	10
	P11a	E41/M54_242c	19.6	2.25	14

TABLE 4- 4 : OTHER POSSIBLE QTLS IN THE HYPOTHESIS OF LARGE SCALE POPULATION.

However, four significative digenic epistatic interactions were detected in this study implying both cis and trans interactions. These interactions can be divided in two types : The first type concern the interaction between additive QTLs and QTLs specifically involved in epistasis. This is the case for D24 where chromosomes P4a through maker E38/M61_158y and P8 through marker P35/M33_273c are linked to the additive QTL. The second case concerns the A50, D24 and A24 traits for which only markers specifically involved in the epistatic relation were detected. For A24, two epistatic relationships involving chromosomes P1and P9 in one hand and P3 and P8 in the other hand respectively are concerned. For the A50 trait, the interaction implies the chromosomes P1 and P10 through markers E38/M60_285c and E38/M60_117c. None of these epistatic markers correspond to an additive QTLs or even a possible putative QTL. Three epistasis relationships detected here are trans, namely P1 x P10 (A50), P3 x P8 (A24) and P4 x P8 (D24). P1 x P9 (A24) is a cis epistasis interaction (**Table 4-5**).

Trait	A50	A24	A24	D24
Chromosomes	P1 x P10	P1 x P9	P3 x P8	P4xP8
Epistasis	E38/M60_285c x E38/M60_117c	E38/M60_285c x E42/M48_317c	P35/M39_205c x P35/M33_273c	E38/M61_158yx P35/M33_273c
	4,47x10 ⁻⁵	1,84x10 ⁻⁵	2,29x10 ⁻⁵	1,13X10-5
R^2	0,19	0,17	0,21	0,21
YY	221,89	102,41	12,39	4,73
СҮ	394,18	28,18	63,62	11,73
YC	472,35	18,41	41,03	7,28
CC	224.64	15.04	19.01	7.05

TABLE 4-5: THE EFFECT OF INTERACTION BETWEEN TWO MARKERS ON THE BACTERIAL WILT RESISTANCE COMPONENTS.

 3 SIGNIFICATIVES EPISTASIS HAVE BEEN DETECTED.

DISCUSSION

Concerning the methodological aspect of QTL detection, this study also confirms the feasibility of QTL detection and mapping using just a set of 93 most informative representative individuals out of 297 according to (Barchi et al., 2007). Overall, with this model, up to six QTLs have been detected with 0 to two digenic interactions, confirming the oligogenic and complex genetic basis of the resistance of pepper against bacterial wilt caused by *R. solanacearum* (Lafortune et al., 2005).

With heritabilities of 0,94 and QTL and epistatic interaction explaining from 47 to 57% of the genetic variance, it has been possible to explain up of to 50% of the genetic variance.

Tight colocalizations between *Rs_P4a-1* and *Rs_P4a-3*, between *Rs_P4a-2* and *Rs_P4a-4*, and between *Rs_LG22-1* and *Rs_LG22-2* indicate that the same QTLs very probably affect the A50 and Af resistance parameters.

It is important to note that the A50 trait, delivered all the QTLs detected with the Af trait plus additional QTLs on chromosomes P9, P10a and P11a, thus providing more information. When 50% of the plants of the segregating population presented wilt symptoms, enventhoug these QTLs were detected as putative. This was predictable considering the quality of relation between A50 and Af (**Figure 4-2**). This could lead to a gain of time. In the present study, this gain of time represents 5 weeks in the duration of experimentation. Early trait such as A24 and D24, if in this study they were not useful for QTLs detection, their importance remains in the evaluation of the severity of the disease across environments and phylotypes, since bacterial wilt severity is reported to be quite environment dependant.

Presence of bacteria in the stem plant tissues

Assessing the presence of bacteria in stem tissue above the epicotyls was enough to conclude for a restriction of the bacteria in the tissue of the resistant plant (Table 4-2). This result is in accordance with (Rahman et al., 1999). These authors reported the limitation of bacteria spread in xylem vessels of resistant cultivars of pepper as an induced response to bacterial infection. This reaction is reported to take place in three steps. The first may include the development of a cell wall coating developed together with the swelling of the primary wall of the xylem; the second is the formation of various type of vesicles in the vascular parenchyma cells, which envelop the bacterial mass and lastly, the induction of hypersensitive reaction in the xylem vessels resulting in the distortion and lysis of bacteria. The same result was reported in tomato where restriction of R. solancearum invasiveness in vascular tissues of the stem was reported to be associated with its resistance properties (Grimault & Prior, 1993 ; Grimault et al., 1994). But is in contrast with results formerly reported by (Grimault & Prior, 1994); They reported the non reduction of colonization in the resistant cultivar Narval, and they hypothesized that pepper seems to be more tolerant than tomato and eggplant to high bacterial population. It can therefore be hypothesized that the strain characteristics in terms of virulence capacity as well as the source of resistance in the host may impact the mechanisms of interaction.

Synteny of pepper and tomato for bacterial wilt resistance QTLs

Looking for macro synteny with loci conferring resistance to bacterial wilt in tomato, in the present study, QTLs were mapped on chromosome P4, P9, P10a and P11a. Considering the lower part of chromosome T4, close to the TG 268 region (Wu. et al., 2009) and the TG 464 region Carmeille et al., (2006) which correspond to the lower region of P4 in pepper. Similarly the QTL detected by Wang et al (2000) in the chromosome T12 (TG120 region) which was specific of the Pss4 phylotype I Asian strain, is already aligned with the lower part of the P9 chromosome of pepper were we detected a significant QTL for A50. In the same time, P10a and P11a share a perfect colinearity with T10, thus QTL detected on these two colocalizations suggest a possible orthology relationship between the tomato and pepper QTLs for resistance to BW. However, the pepper QTL Rs_P4a-1/Rs_P4a-3, clearly collocate with the pvr2/eIF4E-1 locus that was shown to be orthologous between pepper and tomato and correspond to a region of the chromosome T3 were no QTL was mapped for resistance to BW. Reciprocally, no significant QTLs were detected in the pepper P6 chromosome, despite its extensive coverage with markers : this chromosome is fully aligned with the T6 from tomato (Wu et al, 2009) which carries the major and conserved QTLs for resistance toward several R. solanacearum strains in several tomato cultivars (Carmeille et al., 2006a ; Wang et al., 2000 ; Thoquet et al., 1996b), and resistance QTLs could be expected in this genome region under the synteny hypothesis. We could therefore conclude for the existence of partial orthology between pepper and tomato resistance gene against bacterial wilt caused by R. solanacearum at a macro level, even though this hypothesis will need further fine mapping for confirmation.

The detection of two major QTLs on P4a will spur more interest in this chromosome. It is known to carry *pvr2* potyviruses resistance gene, (Caranta et al., 1997; Ruffel et al., 2002), C2, the orange fruit color gene (Thorup et al., 2000; Huh et al., 2001). Bacterial wilt resistance is controlled by 2 major QTLs carried by chromosome P4 and minor QTLs with additive and epistatic effect. This pattern with major QTLs detected alongside minor QTLs is not unique to the pathosystem pepper-Rasltonia solanacearum. Such a pattern was found in many disease resistance mapping QTL studies. For example, studying bacterial wilt resistance of tomato, Carmeille found a major QTL stable during hot and humid season on tomato chromosome 6 and three minor QTLs depending on the season (Carmeille et al., 2006); anthracnose resistance QTL on pepper (Voorrips et al., 2004) ; resistance of pepper to potyviruses (Caranta et al., 1997; Ruffel et al., 2002) displayed a comparable pattern. We can hypothesize that the general scheme of bacterial wilt resistance on pepper is oligogenic, with a couple of major QTLs carried by the chromosome and few QTLs with minor effect controlling environment dependable characters such as strain phylotypes, temperatures, humidity and soil types.

As a general conclusion, the partial resistance to the bacterial wilt in the pepper accession CM334 was shown to result from the partial restriction of the bacterial spread within the stem tissue and not only to the tolerance to the wilt syndrome. A few QTLs control this phenotype with major effects on chromosome P4. This chromosome is known to carry several alleles for resistance to other diseases but also major alleles controlling fruit traits and plant development (Djian-Caporalino et al 2006, Barchi et al 2009). Breeding for Bacterial wilt in bell pepper types will require to

select for useful recombinants in this genome region but also to cumulate several QTLs to maintain a high resistance level.

ACKNOWLEDGMENTS

This research was supported by grants from the French Ministry of Foreign Affairs (French Embassy in Yaoundé), the the Delegation for International Scientific Exchanges, CIRAD, the REPARAC project and Programme Légumineuses et Cultures Maraichères of IRAD.

BIBLIOGRAPHY CITED

Abdullah H and Rahman MA, 1998. Multiplication of *R. solanacearum* in *Capsicum annuum*. In : Bacterial Wilt Disease, molecular and ecological aspects. P. Prior, C. Allen and J. Elphinstone Eds. Springer-Verlag, Berlin-Heidelberg-New York, 309-315.

Barchi L, Bonnet J, Boudet C, Signoret P, Nagy E, Lanteri S, Palloix A et Lefebvre V, 2007. A high-resolution, intraspecific linkage map of pepper (*Capsicum annuum* L.) and selection of reduced recombinant inbred line subsets for fast mapping. *Genome*, 50 : 51-60.

Barchi L., Lefebvre V., Sage-Palloix A-M, Lanterri S., Palloix A. 2009. QTL analysis of plant development and fruit traits in pepper using selective phenotyping. Theor Appl Genet, 118 :1157-1171.

Buddenhagen IW, Sequeira L et Kelman A, 1962. Designation of races in *Pseudomonas solanacearum. Phytopathology*, 52 : 726.

Caranta C, Lefebvre V et Palloix A, 1997. Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broard-spectrum quantitative trait loci. *Mol. Plant-Microbe Interact.*, 10 : 872-878.

Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J et Besse P, 2006a. Identification of QTL for *Ralstonia solanacearum* race 3-phylotype II resistance in tomato. *Theor Appl Genet*, doi 10.1007/s00122-006-0277-3.

Carmeille A, Prior P, Kodja H, Chiroleu F et Luisetti J, 2006b. Evaluation of resistance to race 3, biovar 2 of *Ralstonia solanacearum* in Tomato germplasm. *Journal of Phytopathology*, 154 : 398-402.

Collonier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, Souvannavong V, Ducreux G et Sihacharkr D, 2001. Source of resistance against *Ralstonia solanacearum* in fertile somatic hybrids of eggplant (*Solanum melongena* L.) with *Solanum aethiopicum* L. *Plant Science*, 160 : 301-313.

Cook D et Sequeira L, 1991. Genetic and biochemical characterization of *Pseudomonas solanacearum* gene cluster required for extracellular polysaccharide production and virulence. *J Bacteriology*, 173 : 1654-1662.

Cook D et Sequira L, 1994. Strain differenciation of *Pseudomonas solanacearum* by Molecular Genetics Methods. *In* "Bacterial wilt : the disease and its causative agent, *Pseudomonas solanacearum*", (Ed) Hayward AC, Hartman GL, Wallingford, UK. CAB International. pp 77-93.

Danesh D, Aarons S, McGill GE et Young ND, 1994. Genetic dissection of oligogenic resistance to bacterial wilt in tomato. *Moleclar Plant-Microbe Interactions*, 7 :(4) 464-471.

Djian-Caporalino C, Fazari A, Arguel MJ, VernieT, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V et Abad P, 2007. Root-Knot nematode (*Meloidogyne* spp.) *Me* resistance genes in peppers (*Capsicum annuum* L.) are clustered on the P9 chromosome. *Theor Appl Genet*, 114 : 473-486.

Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze A M, Palloix A, Dalmasso A et Abad P, 1999. Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (*Capsicum annuum* L.). *Theor Appl Genet*, 99 : 496-502.

Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A 2006. *Capsicum*. In *Genetic Resources, Chromosome Engineering, and Crop Improvement series,* Volume 3, Vegetable crops. Edited by R. J. Singh, CRC Press, Florida, pp. 185-243.

Dogimont C, Palloix A, Daubeze AM, Marchoux G, Gebre-Selassie K et Pochard E, 1996. Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (*Capsicum annuum*). *Euphytica*, 88 : 231-239.

Fegan M et Prior P, 2005. How complex is the "*Ralstonia solanacearum* species complex"? *In* "Bacterial wilt : The disease and the *Ralstonia solanacearum* species complex", (Ed) Allen C, Prior P, Hayward AC, St Paul, MN. American Phytopathological Society. pp 449-461.

Food and Agricultural Organisation. http://faostat.fao.org/faostat, 2007.

Gousset C, Cécile C, Karden M, Ika M, Giuseppe LR, Pascale B, Aline S et Darasinh S, 2004. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (*S. melongena* L.). *Plant Science*, doi: 10.1016/j.plantsci.2004.07.034 :

Grimault V, Anais G et Prior P, 1994. Distribution of *Pseudomonas solanacearum* in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. *Plant Pathology*, 43 : 663-668.

Grimault V et Prior P, 1993. Bacterial wilt resistance in tomato is associated with tolerance of vascular tissues to *Pseudomonas solanacearum*. *Plant Pathology*, 42 : 589-594.

Grimault V et Prior P, 1994. Invasiveness of *Pseudomonas solanacearum* in tomato, eggplant and pepper : a comparative study. *European Journal of Plant Pathology*, 100 :(3-4) 259-267.

Haldane J, 1919. The combination of linkage values, and the calculation of distance between loci of linked factors. *J Genet*, 8 : 299-309.

Ihaka R, Gentleman R. 1996. R : a language for data analysis and graphics. *Journal of Computational and Graphical Statistics* **5 : 299-314**.

Hayward AC, 1964. Characteristics of *Pseudomonas solanacearum*. Journal of Applied Bacteriology, 27 : 265-277.

Hayward AC, 1991. Biology and epidemiology of bacterial wilt caused by *Pseudomonas solanacearum. Annual Review of Phytopathology*, 29 : 65-87.

Hayward AC, 1994. The hosts of *Pseudomonas solanacearum. In* "Bacterial wilt : the disease and its causative agent, *Pseudomonas solanacearum*", (Ed) Hayward A C, Hartman G L, Wallingford. CAB International. pp 9-24.

He LY, Sequeira L et Kelman A, 1983. Characteristics of strains of *Pseudomonas* solanacearum. Plant Disease, 67 : 1357-1361.

Kelman A, 1954. The relationship of pathogenicity in *Pseudomonas solanacearum* to colony appearance on a tetrazolium chloride medium. *Phytopathology*, 44 : 693-695.

Laferriere LT, Helgeson JP et Allen C, 1999. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of reristance to bacterial wilt caused by *Ralstonia solanacearum. Theor Appl Genet*, 98 : 1272-1278.

Lafortune D, Béramis M, Daubèze AM, Boissot N et Palloix A, 2005. Partial resistance of pepper to bacterial wilt is oligogenic and stable under the tropical conditions. *Plant Disease*, 89 : 501-506.

Lander ES, Geen P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE et Newburg L, 1987. Mapmaker : an interactive computer package for constructing primary gentic linkage maps of experimental and natural populations. *Genomics*, 1 : 174-181.

Lefebvre V, Daubèze AM, van der Voort JR, Peleman J, Bardin M et Palloix A, 2003. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. *Theor Appl Genet*, 107 : 661-666.

Lefebvre V et Palloix A, 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease : a case study, the interaction pepper - *Phytophthora capsici* Leonian *Theor Appl Genet*, 93 : 503-511.

Livingstone KD, Lackney VK, Blauth JR, Wijk van Rik et Jahn MK, 1999. Genome Mapping in *Capsicum* and the Evolution of Genome Structure in the Solanaceae. *Genetics*, 152 : 1183-1202.

Mather K et Jinks JL, 1982. Biometrical genetics. (Ed) 3rd Chapman and Hall, London.

Palloix A, Daubeze AM, Phaly T et Pochard E, 1990. Breeding transgressive lines of pepper for resistance to *Phytophthora capsici* in a recurrent selection system. *Euphytica*, 51 : 141-150.

Palloix A, Daubeze AM et Pochard E, 1988. Times sequences of root infection and resistance expression in an artificial inoculation method of pepper with *Phytophthora capsici. J. Phytophathol.*, 123 : 12-24.

Poussier S, Prior P, Luisetti J, Hayward AC et Fegan M, 2000a. Partial Sequencing of the *hrpB* and endoglucanase genes confirms and expands the known diversity within the *Ralstonia solanacearum* species complex. *System Appl. Microbiol*, 23 : 479-486.

Poussier S, Trigalet-Demery D, Vandewalle P, Goffinet B, Luisetti J et Trigalet A, 2000b. Genetic diversity of *Ralstonia solanacearum* as assessed by PCR- RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. *Microbiology*, 146 : 1679-1692.

Rahman MA, Abdullah H et Vanhaecke M, 1999. Histopathology of susceptible and Resistant *Capsicum annuum* cultivars infected with *Ralstonia solanacearum. J. Phytophathology*, 147 : 129-140.

Rubio M., Caranta C., Palloix A. 2008. Functional markers for selection of potyvirus resistance alleles at the *pvr2*-eIF4E locus in pepper using tetra-primer arms PCR. Genome 51 : 767-771.

Snape JW, Wright AJ et Simpson E, 1984. Methods for determining the gene numbers for quantitative characters using double haploid lines. *Theor Appl Genet*, 67 : 143-148.

Tanaka M, Matsumoto T, Yanai S, Domukai M, Toki D, Hayashi T, Kiuchi S, Yasue H, Uenishi H, Kobayashi E et Awata T, 2003. Conservation of the syntenies between porcine chromosome 7 and human chromosoms 6, 14 and 15 demonstarted by radiationhybrid mapping and linkage analysis. *Animal Genetics*, 34 : 255-263.

Thabuis A, Lefebvre V, Bernard G, Daubèze AM, Phaly T, Pochard E et Palloix A, 2004. Phenotypic and molecular evaluation of a recurrent selection program for a polygenic resistance to *Phytophthora capsici* in pepper. *Theor Appl Genet*, 109 : 342-351.

Thabuis A, Palloix A, Pflieger S, Baubèze AM, Caranta C et Lefebvre V, 2003. Comparative mapping of *Phytophthora* resistance loci in pepper germplasm : evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. *Theor Appl Genet*, 106 : 1473-1485.

The R foundation for statistical computing, 2007. R version 2.6.0 (2007-10-03). Software. ISBN 3-900051-07-0.

Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H et Grimsley N, 1996. Quantitative Trait Loci determining resistance to bacterial wilt in tomato cultivar Hawaï 7996. *Mol. Plant-Microbe Interact.*, 9 : 826-836.

Wang J-F, Hanson PM et Barnes JA, 1998. Worldwide evaluation of international set of resistance sources to bacterial wilt in tomato. *. In* "Bacterial Wilt Disease : Molecular and Ecological Aspects", (Ed) Prior P, Allen C, Elphinstone J, Paris. INRA Editions. pp 269-275.

Wang J-F, Olivier J, Thoquet P, Mangin B, Sauviac L et Grimsley NH, 2000. Resistance of tomato line Hawaï7996 to *Ralstonia solanacearum* Pss4 in Taïwan is controlled mainly by a major strain-spacific locus. *Mol. Plant-Microbe Interact.*, 13 :(1) 6-13.

Winstead NN et Kelman A, 1952. Inoculation techniques for evaluating resistance to *Pseudomonas solanacearum. Phytopathology*, 42 : 628-634.

Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM et Tanksley SD, 2009. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus *Capsicum. Theor Appl Genet*, DOI 10.1007/s00122-009-0980-y.

Yoon JY, Green SK, Tschanz AT, Tsou SCS et Chang LC, 1989. Pepper improvement for the tropics : problems and the AVRDC approach. *In* "Tomato and pepper production in the Tropics, Proc. Int. Sympos. Integrated management practices, Tainan, Taiwan 21-26 march 1998", (Ed) Green S K, Griggs T D, McLean B T, Tainan, Taiwan. AVRDC. pp 86-98.

PRINCIPAUX RÉSULTATS

- La résistance au flétrissement bactérien chez le piment est contrôlée par quelques QTLs à effet additifs et épistatiques ;
- La résistance au flétrissement bactérien chez piment (CM334) est associée à la limitation de la bactérie dans les tissus de la tige ;
- Les loci portant les QTLs de résistance du piment au flétrissement bactérien sont majoritairement orthologues à ceux contrôlant le flétrissement bactérien chez la tomate.

COMPLÉMENT D'ARTICLE

Estimation des paramètres génétiques

TABLE 4-6 : ESTIMATION DES PARAMETRES GENETIQUES DANS LA POPULATION DES LIGNEES RECOMBINANTES.

	A 24	A 50	Af	D24
Paramètres				
$\sigma^{2}{}_{A}$	1 291,52	50 184,12	128 551,06	14,47
$\sigma^{2}{}_{E}$	431,52	8 900,37	23 813,53	7,02
h ² _n	0,90	0,94	0,94	0,86
μ	28,26	319,71	601,27	7,70
L_{min}	0,00	0,00	35,42	2,33
L _{max}	179,05	864,44	1 364,44	16,00
P ₁	0,83	45,00	146,67	2,67
P_2	132,00	683,33	1 210,67	14,67
\mathbf{k}_1	3,33	2,03	2,20	2,49
k_2	6,21	3,72	3,44	3,23

Distribution de la population des RIL en classes AUDPC

FIGURE 4-4 : HISTOGRAMME DE DISTRIBUTION DE LA POPULATION DES LIGNEES RECOMBINANTES EN DIFFERENTES CLASSES SUIVANT LES DIFFERENTS CARACTERES DE RESISTANCE UTILISES DANS CETTE ETUDE.

Illustration de deux types d'epistasie détectées dans cette étude

Cf. Figure 4-5.

FIGURE 4-5 : ILLUSTRATION DE DEUX TYPES DE RELATION EPISTATIQUES OBTENUES DURANT L'ESSAI AU CAMEROUN AVEC LES RIL : A- EPISTASIE EN TRANS ; B- EPISTASIS EN CIS

CHAPITRE 5 : DISCUSSION GENERALE ET PERSPECTIVES

Le travail de thèse présenté dans ce manuscrit avait pour objectif de doter les sélectionneurs de données cognitives afin qu'ils puissent orienter de façon stratégique la lutte contre le flétrissement bactérien sur les Solanacées au Cameroun. L'objectif appliqué se résume en deux axes principaux :

- La description de la diversité génétique de *R. solanacearum* au Cameroun en plaçant celle-ci dans le double contexte local et mondial de la connaissance de la bactérie ;
- La cartographie et l'étude du déterminisme génétique du flétrissement bactérien chez le piment. Deux méthodologies ont été utilisées : dans un premier temps (1)- par la mise à profit de la synténie entre la tomate (plante modèle chez et Solanacées) et le piment afin de réduire l'effort technique de cartographie, et dans un deuxième temps (2)- la réalisation d'une cartographie classique de QTLs de résistance du piment, en recourant à une population déjà cartographiée ainsi qu'à l'échantillonnage par « selective phenotyping » afin de réduire l'effort technique de phénotypage.

5.1- RAPPEL DES PRINCIPAUX RÉSULTATS

5.1.1- DIVERSITÉ GÉNÉTIQUE DE *R. SOLANACEARUM*

La réalisation de l'étude de la diversité génétique effectuée par la méthode de caractérisation phylophasique, méthode basée sur l'utilisation des outils moléculaire ayant l'avantage d'apporter des informations utiles sur l'origine géographique des souches et parfois leur comportement épidémiologique. Ainsi l'utilisation de cette méthode a permis de répartir les 110 souches de *R. solanacearum* isolées au Cameroun parmi trois phylotypes sur les quatre décrit au monde, et de dégager la première esquisse de leur distribution géographique :

- Les souches du phylotype I (*Asiaticum*) isolées au Cameroun entrent dans une branche à part dans l'arbre phylogénétique. Elles représentent en nombre le plus gros contingent des souches isolées (45.5%) et sont associées à la zone forestière humide à pluviométrie bimodale du Cameroun (Yaoundé, Akonolinga, Bafia, Obala, Okola). Ces souches constituent une menace à la culture des Solanacées en zone forestière humide à pluviométrie bimodale.

- Les souches du phylotype II (*Américanum*) ; Celles isolées au Cameroun se subdivisent en deux sous clusters à savoir le sous cluster A (non-R3bv2) et le sous cluster B (R3bv2). Elles ont été isolées dans toutes les zones d'étude. La distribution géographique des souches de ce phylotype ne marque aucune tendance à une zone agroclimatique. Cependant toutes les souches de R3bv2 isolées dans cette étude proviennent de la zone des hauts plateaux de l'ouest du Cameroun (Bafoussam, Foumbot, Dschang, Baham).

- Les souches du phylotype III (*Africanum*) isolées dans cette étude sont génétiquement différentes des souches références africaines originaires du Zimbabwe et de l'océan indien. Associées à la zone des hauts plateaux de l'Ouest du Cameroun, elles sont pathogènes de la pomme de terre et de la tomate. Elle provoque des symptômes comparables à la pourriture brune bien qu'étant génétiquement différentes des souches R3bv2v classiques. Ces souches constituent une contrainte à la culture des Solanacées en zone des hauts plateaux de l'ouest du Cameroun.

Il a par ailleurs été noté au cours de cette étude, qu'une soixantaine de souches isolées en zone des Hauts Plateaux de l'Ouest du Cameroun sur des plantes présentant des symptômes de flétrissement ne soient pas diagnostiquées par l'amorce 759-760 (Opina et al, 1997). Sachant que les souches africaines étaient sous représentées dans l'étude d'Opina suscitée, étude qui avait permis d'isoler la sonde 759-760 qui sert au diagnostic de *R. solanacearum* au niveau moléculaire, nous pensons qu'une partie de la diversité génétique de cette bactérie nous a échappé dans cette région du Cameroun où nous avons isolé en majorité les souches africaines du phylotype III. Comme perspectives, ces souches devraient faire l'objet d'études ultérieures, en commençant par la vérification du postulat de Koch, jusqu'au développement et à l'utilisation d'outils moléculaires en vue de leur caractérisation.

Si les souches isolées dans cette étude n'ont pas modifié la topologie de l'arbre phylogénétique mondial de *R. solanacearum*, leur originalité vient du fait qu'elles occupent des clusters à part. La grande diversité recensée ici et décrite à l'échelle unique d'un pays, le Cameroun, considéré comme l'Afrique en miniature de part la grande diversité agro climatique qui le caractérise, contribuera à la meilleure connaissance des souches africaines de *R. solanacearum*.

5.1.2- BILAN DES QTLS DÉTECTÉS

Deux approches méthodologiques ont été utilisées pour la détection des QTLs de résistance chez le piment dans cette étude :

(1)- L'approche méthodologique faisant appel à la synténie entre le piment et la tomate a consisté dans un premier temps à identifier par analyse bibliographique chez la tomate les régions chromosomiques porteuses de QTLs (T6, T12, T4, T10, T12) et par la suite à cibler les zones correspondantes chez le piment comme étant supposées porteuses de QTLs de résistance au flétrissement bactérien, soit les chromosomes P6, P9, P4, P10. Aucune carte génétique n'était disponible sur le croisement considéré. Ainsi en utilisant une population de 117 haploïdes doublés issus d'un croisement entre le géniteur de résistance PM687 originaire de l'Inde et Yolo Wonder un piment doux, sensible au flétrissement et originaire des USA, le choix de 19 couples d'amorce AFLP a permis de générer 220 marqueurs polymorphes qui ont permis de générer une carte de 731 cM, couvrant 43% du génome du piment. La cartographie génétique a par la suite permis de détecter des QTLs portés par les chromosomes P2, P6, P9, P10, P11 du piment et les groupes de liaison non assignés Lg1 et Lg5. Ce qui a permis d'expliquer jusqu'à 43% de l'effet génétique, dépendamment de la méthode de détection utilisée et du caractère de résistance considéré (Table 5-1).

Essai	Caractères	h²	LR	CIM
			Variance phénotypique expliquée	Variance phénotypique expliquée
Guadeloupe 1	AfG1	0,93	0,25	0,25
	A50G1	0,93	0,27	0,27
	A10G1	0,82	0,25	0,25
	D10G1	0,81	0,15	0,15
Guadeloupe 2	AfG2	0,88	0,49	0,43
	A50G2	0,82	0,5	0,29
	A20G2	0,63	0,53	0,17
	D20G2	0,78	0,31	0,31
Cameroun	AfC	0,9	0	0
	A50C	0,89	0	0
	A15C	0,73	0,16	0,16
	D15C	0,82	0,05	0,05

TABLE 5-1 : BILAN DES EFFETS GENETIQUES EXPLIQUES AVEC LA POPULATION DES HD

(2)- La deuxième démarche méthodologique utilisée a fait recours à une sous population de 93 RIL représentant les individus les plus informatifs choisis dans une population de 297 lignées recombinantes pour lesquels une carte génétique saturée avait récemment été publiée. Cette population de RIL est issue d'un croisement entre Yolo Wonder et CM334 un piment originaire du Mexique. Suivant le trait, en considérant la variance phénotypique, les interactions digéniques détectées et l'héritabilité, **43 à 53% de la variance génétique ont pu être expliquée** respectivement pour les caractères de résistance Af et A50 en CIM. **Ces QTLs de résistance ont été cartographiés sur les chromosomes P4, P9, P10a, P11a** et le groupe de liaison Lg22.

5.2- DIVERSITÉ *RALSTONIA SOLANACEARUM* VS QUARANTAINE, ÉPIDÉMIOSURVEILLANCE

Les résultats présentés dans le présent manuscrit de thèse peuvent susciter deux axes majeurs de réflexion quant à leur utilisation en relation avec la quarantaine et l'épidémio surveillance :

- Au niveau national, Les souches collectées dans cette étude pionnière serviront de référentiel pour toutes études à venir en matière de lutte contre le flétrissement bactérien au Cameroun. La présente étude est un cliché représentant la situation de référence actuelle au Cameroun de la structuration de la diversité génétique de *R. solanacearum*. Comme perspective, des études complémentaires devraient être menées afin d'étendre les connaissances actuelles à la partie septentrionale du Cameroun. Elle devra permettre de dresser le profil épidémiologique complet de cette bactérie au Cameroun. La réalisation d'une telle étude dotera le Cameroun d'un outil d'épidémio surveillance de *R. solanacearum*. C'est aussi le lieu d'évoquer

actuellement l'absence des redoutables souches Moko (race2) qui attaquent le bananier, à l'échelle de notre étude. Cette information est d'autant plus importante que la culture du bananier occupe une place économique importante, voire stratégique dans la sécurité alimentaire du pays. L'esquisse de distribution de cette redoutable bactérie telle qu'elle ressort dans la présente étude suggère la mise en place à l'échelle du pays d'un système de quarantaine qui devrait être actif entre les différentes zones agroécologique du pays. Le matériel visé concernera le matériel végétal susceptible de propager certain phylotype dans les zones où ils sont encore absents.

- Au niveau international, un autre point de l'originalité de notre étude est qu'elle a révélé l'existence de certaines souches du phylotype III qui peuvent attaquer autant la tomate que la pomme de terre. Les sondes particulières pour détecter ces souches devraient être produites afin qu'une meilleure épidémiosurveillance de la propagation desdites souches soit mise en place. Elles constituent pour l'industrie de la pomme de terre et la tomate une menace importante.

5.3- DIVERSITÉ ET CONSERVATION DES QTLS AUX NIVEAUX INTRASPÉCIFIQUE / INTER GÉNÉRIQUE

Une des questions posées dans le cadre de cette thèse était de savoir si pendant leur évolution, il y avait eu diversification ou conservation intragénérique / intraspécifique des facteurs de résistance au flétrissement bactérien chez les Solanacées. Pour répondre à cette question, nous allons réexaminer les résultats obtenus en cartographie génétique chez deux géniteurs de résistance différents avec la souche CMR143, notamment les deux essais au Cameroun impliquant les populations RIL et HD en relation avec la synténie chez la tomate.

Le bilan des QTLs détectés avec la population de RIL indique que les chromosomes P4, P9, P10a, P11a sont porteurs de QTLs de résistance au flétrissement bactérien. Le chromosome P4 est porteur de deux QTLs majeurs. Ces résultats sont en cohérence partielle avec ceux obtenus sur les HD où, rappelons-le, seuls des QTLs à effet faible ont été détectés sur les chromosomes P2, P6, P9, P10, P11. Ainsi dans les deux populations, les chromosomes P9, P10 et P11 sont en commun porteurs de QTLs de résistance au flétrissement bactérien. Si les positions occupées par ces QTLs ne sont pas souvent les mêmes, ceci pourrait s'expliquer par la perte de précision inhérente aux effectifs insuffisants d'individus phénotypés dans les deux méthodologies utilisées. Si nous minimisons les différences portant sur les QTLs à effet faible détectés dans les deux populations de cartographie portant sur les chromosomes P2 et P6, la guestion à laguelle il faudra alors apporter une réponse afin d'unifier les deux résultats est : pourquoi le QTL à effet relativement fort détecté sur le chromosome P4 et proche du marqueur *pvr*2 dans la population RIL ne l'a pas été dans la population des HDA 100 (Yolo Wonder x PM687) malgré l'alignement des deux cartes dans cette région ? Quelques éléments de réponse peuvent être apportés : (1) ces QTLs sont éventuellement spécifiques au parent CM334. L'influence de la spécificité dans la détection des QTIs au niveau intraspécifique a déjà été observée chez la tomate. Notons que la même population de cartographie de tomate (Hawai7996 x WVa700) et des souches bactériennes différentes pour les tests de phénotypage a été utilisée lors des études réalisées par Toquet (1995),

Mangin (1999), Wang (2000) et Carmeille (2004). Cependant, les études de Mangin et Wang n'ont par exemple pas détecté de QTLs sur T4 alors que ce fut le cas dans celles de Carmeille et Toquet. Mieux, l'étude de Wang est la seule à révéler l'existence d'un QTLs qui à lui seul explique 74% de la variation phénotypique sur le chromosome 12 de la tomate ; (2) les QTLs ont été détectés sur le chromosome P4 dans les trois essais par la méthode de régression linéaire. Ceux-ci concernent les caractères D10G1, A20G2, A50G2, AfG2 et A50C, certes avec des effets faibles. Ceci dénote une bonne stabilité de ces QTLs à travers les environnements et les phylotypes ; (3) seul 23,6 cM (15% en référence à Wu et al, 2009) du chromosome P4 ont été couverts à travers la carte partielle qui a été produite dans le cadre de cet essai. L'effet faible noté chez ces QTLs peut s'expliquer par la nature en cloche des QTLs, la partie cartographiée pourrait ainsi se trouver dans la vicinité du QTL hypothétique; (4) la dernière explication peut aussi venir de la faiblesse du nombre d'individus génotypés (51) par le marqueur *pvr2* dans la population de HD. Ces faits mis ensemble nous amènent à conclure que même si n'avons pas pu cartographier un QTL à effet fort sur le chromosome P4 du piment dans la population des HD, nous ne pouvons pas non plus affirmer l'inexistence d'un QTL sur ledit chromosome dans la population des HD. Ceci amène à conclure qu'il y a eu conservation au moins partielle intra spécifique des facteurs de résistance au flétrissement bactérien chez le piment. Ce constat ouvre la possibilité de trouver potentiellement chez d'autres géniteurs de piment des sources de résistance portées par les chromosomes P4, P9, P10 et P11.

Considérant l'hypothèse de synténie entre les genres Capsicum (piment) et Solanum (tomate, aubergine, pomme de terre), la réponse reste également partielle. Sous l'hypothèse de synténie, on pouvait attendre des QTLs à effets forts, sur le chromosome P6 ainsi que P12. Sur le chromosome P6 un QTL putatif (peu significatif) et à effet faible (allèle résistant provenant du parent sensible) n'a été détecté que dans une descendance. Par contre un QTL a été détecté chez les deux parents sur le chromosome P9, bien que celui-ci montre un effet faible dans les deux cas. Les seuls QTLs à effets forts chez le piment ont été localisés sur le chromosome P4, dont l'un dans une région de génome correspondant à la région porteuse d'un QTL à effet faible sur le chromosome T3. On peut noter que ces deux régions chromosomiques avaient déjà été démontrées pour leur synténie vis-à-vis de la résistance aux nématodes pour P9-T12 (Djian-Caporalino, 2007) et pour la résistance aux potyvirus sur P4-T3 (Parrella et al. 2002). En conclusion, on ne peut rejeter l'hypothèse de synténie, mais il faut convenir qu'elle n'explique qu'une faible part de la variation génétique observée : certains QTLs ne montrent pas de candidats orthologues. D'autres pourraient être de bons candidats, mais alors les orthologues putatifs des QTLs à effet forts chez la tomate auraient des effets faibles chez le piment, et réciproquement. Une des conséquences est que les a priori de l'analyse réalisée sur la descendance HDA100 n'ont pas permis de détecter l'essentiel de la variabilité utile dans ce croisement (aucun allèle du parent résistant). Il reste donc nécessaire pour la recherche de QTLs de résistance à *R. solanacearum* chez les Solanacées, de réaliser une carte complète sans a priori sur les régions ciblées. Les connaissances acquises restent du domaine du cognitif pour la comparaison a posteriori des régions candidates.

5.4- SÉLECTION DU PIMENT POUR LA RÉSISTANCE À *RALSTONIA SOLANACEARUM*, SPÉCIFICITÉ / NON SPÉCIFICITÉ QTLS VS SÉLECTION

Enfin, l'ultime question posée dans cette thèse était d'apporter une réponse à la sélection dans sa confrontation à la diversité génétique décrite chez R. solanacearum. Cette étude a fait ressortir trois phylotypes (I, II et III) au Cameroun. Les tests de phénotypage en champ ont montré l'existence chez les géniteurs PM687, CM334 et même le géniteur sensible Yolo Wonder de facteurs de résistance portés par 5 à 7 régions chromosomiques associées ou non à des interactions épistatiques. De plus les travaux de cartographie impliquant des phylotypes différents à travers des environnements différents ont permis de cartographier des QTLs généralistes d'une part et ceux spécifiques à un environnement ou un phylotype d'autre part. De plus, des résultats récents (A. Lebeau, communication personnelle et soumis) montrent que l'on ne peut établir de relation entre phylotypes et profils de pathogénicité sur des collections variétales de piment, aubergine ni tomate. Ceci suggère la nécessité d'apporter une réponse appropriée à la spécificité de la région dans la construction et le déploiement de génotypes résistants au flétrissement bactérien, spécificité intégrant la diversité bactérienne ainsi que l'effet environnemental. De facon plus explicite, pour le Cameroun, en zone forestière humide à pluviométrie bimodale, zone où émergent les phylotypes I et II en priorité, le/les géniteurs résistants aux souches isolées de ces phylotypes devront être utilisés, en zone des hauts plateaux de l'ouest du Cameroun, l'orientation devra se faire vers la recherche de géniteurs de résistance aux souches du phylotype II et III à travers des tests multi locaux afin d'intégrer l'aspect environnemental. La détection d'allèles à spectre large à certains QTLs apparaît très intéressante, ceux-ci pouvant être déployés largement. Par contre si certaines souches/phylotypes requièrent des QTLs plus spécifiques, alors ceux-ci devront être introgressés spécifiquement dans les variétés destinées aux zones géographiques correspondantes. Le transfert de telles résistances oligogéniques dans des fonds génétiques favorables requiert une certaine souplesse dans les programmes de sélection, qui pourrait-être obtenue à travers un schéma de sélection approprié, à l'exemple d'une sélection récurrente de population source permettant de maintenir et recombiner les QTLs utiles dans des fonds génétiques améliorés au niveau agronomique, et d'où seront extraites par consanguinité les variétés à déployer, avec assistance ou on de marqueurs.
RÉFÉRENCES BIBLIOGRAPHIQUES

Adhikari TB and Basnyat RC. 1998. Effect of crop rotation and cultivar resistance on bacterial wilt of tomato in Nepal. *Can. J. Plant Pathol.*, 20:283-287.

Ahmed EA, Daubeze AM, Lafortune D, Depestre T, Nono Woumdim R, Berke T, Gaddagimath N B, Nemouchi G, Phaly T and Palloix A. 2001. Constructing multiresistant genotypes of sweet pepper for cultivation in the tropics. In XIth EUCARPIA Meeting on Genetics and Breeding of Capsicum and Eggplant, pp. 293-297.

Anh S, Anderson JA, Sorrells ME and Tankley SD. 1993. Homoeologous relationships of wheat and maize chromosomes. *Molecular and General Genetics*, 241:1651-1656.

Anonyme. 2002. Diagnostic discontinue de base dans les exploitations agricoles de la province du Centre.

Arabidopsis Genome Initiative. 2000. Analysis of the genome saquence of the flowering plant *Arabidopsis thaliana*. *Nature*, **408:796-815**.

Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC and D'Hont A. 2000. Application of synteny accross Poaceae to determine the map location of sugarcane rust resistance gene. *Theor Appl Genet*, 101:962-969.

Ayme V, Petit-Pierre J, Souche S, Palloix A and Moury B. 2007. Molecular dissection of the Potato virus Y VPg virulence gene reveals complex adaptations to the *pvr*2 resistance allelic series in pepper. *Journal of General Virology*, 88:1594-1601.

Ayme V, Souche S, Caranta C, Jacquemond M, Chadoeuf J, Palloix A and Moury B. 2006. Different mutations in the Genome_linked protein VPg of Potato Virus Y confer virulence on the *pvr*23 resistance in pepper *Molecular Plant-Microbe Interactions*, **19:557-563**.

Ayme V 2005. Mécanisme de contournement des résistances et évaluation à priori de leur durabilité dans l'interaction Piment (*Capsicum annuum* L.) - Virus Y de la pomme de terre (PVY). In *Biologie des populations et écologie*, **pp. 131.**

Baral JB and Bosland PW. **2002.** An updated synthesis of the *Capsicum* genus. *Capsicum Eggplant Newsl.*, **21**:11-21.

Barchi L, Bonnet J, Boudet C, Signoret P, Nagy E, Lanteri S, Palloix A and Lefebvre V. 2007. A high-resolution, intraspecific linkage map of pepper (*Capsicum annuum* L.) and selection of reduced recombinant inbred line subsets for fast mapping. *Genome*, 50:51-60.

Barchi L, Lefebvre V, Sage-Palloix A-M, Lanterri S. and Palloix A. 2009. QTL analysis of plant development and fruit traits in pepper using selective phenotyping. *Theor Appl Genet,*, **118** 1157-1171.

Ben Chaim A, Borovsky Y, De Jong W and Paran I. 2003. Linkage of the *A* locus for the presence of anthocyanin and *fs10.1*, a major fruit-shape QTL in pepper. *Theor Appl Genet*, **106**:**889-894**.

Ben Chaim A, Grube RC, Lapidot M, Jahn M and Paran I. 2001. Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in *Capsicum annuum*. *Theor Appl Genet*, **102**:**1213-1220**.

Ben Chaim A, Paran I, Grube R, Jahn M, van Wijk R and Peleman J. 2001. QTL mapping of fruit-related traits in pepper (*Capsicum annuum*). *Theor Appl Genet*, 102:1016-1028.

Bertolla F, Van Gijsegem F, Nesme X and Simonet P. 1997. Conditions for natural transformation of *Ralstonia solanacearum*. *Applied and Environmental Microbiology*, 63:4965-4968.

Bertolla F, Frostegard A, Brito B, Nesme X and Simonet P. 1999. During infection of its host, the plant pathogen *Ralstonia solanacearum* naturally develops a state of competence and exchanges genetic material. *Mol. Plant-Microbe Interactions*, 12:467-472.

Blum E, Mazourek M, O'connel M, Curry J, Thorup T, Liu K, Jahn M and Paran I. 2003. Molecular mapping of capsaicinoid biosynthesis gene and quantitative trait locis analysis for capsaicinoid content in *Capsicum*. *Theor Appl Genet*, 108:79-86.

Bonierbale MW, Plaisted RL and Tanksley SD. 1988. RFLP maps based on a common set of clone reveal modes of chromosomal evolution in potato and tomato. *Genetics*, **120:1095-1103**.

Botstein D, White RL, Skolnick M and Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. *Am J Hum Genet*, 32:314-331.

Boucher CA, Gough CL and Arlat M. 1992. Molecular genetics of pathogenicity determinants of *Pseudomonas solanacearum* with special emphasis on *hrp* genes. *Ann. Rev. Phytopathol*, 30:443-461.

Breuils G and Pochard E. **1975.** Essai de fabrication de l'hybride de piment 'Lamuyo-INRA' avec l'utilisation d'une stérilité mâle génique (*ms* 509) . *Ann. Amélior. Plantes*, **25:309-409**.

Brouwer DJ, Jones ES and ST. Clair DA. **2004.** QTL analysis of quantitative resistance to *Phytophthora infestans* (late bligth) in tomato and comparisons with potato. *Genome*, **47**:**475-492**.

Brouwer DJ and St. Clair DA. **2004.** Fine mappingof three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. *Theor Appl Genet*, **108:628-638**.

Buddenhagen IW 1986. Bacterial wilt revisited. In *Bacterial wilt disease in Asia and the South Pacific: proceedings of an international workshop held at PCARRD, Los Banos, Philippines, 8-10 October 1985*, **pp. 126-143**.

Buddenhagen IW and Elsasser TA. 1962. An insect-spread bacterial wilt epiphytotic of bluggoe banana. *Nature*, 194:164-165.

Buddenhagen IW and Kelman A. 1964. Biological and physiological aspects of bacterial wilt caused by *Pseudomonas solanacearum*. *Annual Review of Phytopathology*, **2:203-230**.

Buddenhagen IW, Sequeira L and Kelman A. 1962. Designation of races in *Pseudomonas solanacearum*. *Phytopathology*, **52**:726.

Busolo-Bulafu CM. 1998. Resistance to bacterial wilt in Uganda. In *Bacterial wilt disease: molecular and ecological aspects*, pp. 306-308.

Caranta C. 1996. A complementation of two genes originating from susceptible *Capsicum annuum* lines confers a new and complete resistance to pepper veinal mottle virus. *Phytopathology*, **86**:**739-743**.

Caranta C, Lefebvre V and Palloix A. **1997.** Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broard-spectrum quantitative trait loci. *Mol. Plant-Microbe Interact.*, **10**: **872-878**.

Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J and Besse P. 2006. Identification of QTL for *Ralstonia solanacearum* race 3-phylotype II resistance in tomato. *Theor Appl Genet* doi 10.1007/s00122-006-0277-3.

Carmeille A, Prior P, Kodja H, Chiroleu F, Luisetti J and Besse P. 2006. Evaluation of resistance to race 3, biovar 2 of *Ralstonia solanacearum* in tomato germplasm. *Journal of phytopathology*, **154**:398-402.

Charron C, Nicolai M, Gallois JL, Robaglia C, Moury B, Palloix A and Caranta C. 2008. Natural variation and functional analyses provide evidence for coevolution between plant eIF4E and potyviral VPg. *The Plant Journal*, 54:56-68.

Cook D, Barlow E and Sequeira L. 1989. Genetic diversity of *Pseudomonas solanacearum* : detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. *Molecular Plant*-*Microbe Interactions*, **2:113-121**.

D'Arcy WG. **1991.** *The solanaceae since 1976, with a review of its biography,*, Royal Botanic Gardens Kew and Linnean Society of London.

De Candolle A. 1883. L'origine des plantes cultivées, Genève.

De Jong WS, Eannetta NT, De Jong DM and Bodis M. 2004. Candidate gene analysis of anthocyanin pigmentation loci in the *Solanaceae*. *Theor Appl Genet*, **108**:423-432.

Deberdt P. 1999. Analyse de la résistance au flétrissement bactérien (*Ralstonia solanacearum*-Race 1) gouverné par le chromosome 6 de la tomate, **pp. 195**.

Deberdt P, Quénéhervé P, Darrasse A and Prior P. 1999. Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of the *Mi* gene in resistance to nematodes and bacterial wilt. *Plant Pathology*, **48**:**408-414**.

Denny TP, Carney B F and Schell MA. **1990.** Inactivation of multiple virulence genes reduces the ability of *Pseudomonas solanacearum* to cause wilt symptoms. *Mol. Plant-Microbe Interact.*, **3:293-300**.

Deslandes L, Frédéric P, Laurence L, Sylvie C, Canan C, William K, Holub E, Beynon J, Arlat M and Marco Y. 1998. Genetic characterization of *RRS1*, a recessive locus in *Arabidopsis thaliana* that confers resistance to the bacterial soilborne pathogen *Ralstonia solanacearum*. *The American Phytopathological Society*, **11:659-665**.

Digat B and Caffier D. **1996.** Alerte face à une redoutable maladie des Solanacées. *La Défense des Végétaux*, **482:33-37**.

Djan-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O'Byrne C, Lefebvre V, Caranta C, Palloix A and Abad P. 2001. High-resolution genetic mapping of the pepper (*Capsicum annuum* L.) resistance loci Me_3 and Me_4 loci conferring heat-stable resistance to root-knot nematodes (*Meloidogyne* spp.). *Theor Appl Genet*, **103:592-600**.

Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubeze AM, Palloix A, Dalmasso A and Abad P. 1999. Spectrum of resistance to root-knot nematodes and inheritance of heatstable resistance in pepper (*Capsicum annuum* L.). *Theor Appl Genet*, 99:496-502.

Djian-Caporalino C, Fazari A, Arguel · MJ., Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V and Abad P 2007. Root-knot nematode (*Meloidogyne* spp.) *Me* resistance genes in pepper (*Capsicum annuum* L.) are clustered on the P9 chromosome. *Theor Appl Genet*, 14:473-486 doi 410.1007/s00122-00006-00447-00123. **Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD. 2002.** A compartive genetic linkage map of eggplant (*Solanum melongena*) and its implications for genome evolution in the Solanaceae. *Genetics* **161: 1697-1711**.

Dogimont C, Palloix A, Daubeze AM, Marchoux G, Gebre-Selassie K and Pochard E. 1996. Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (*Capsicum annuum*). *Euphytica*, **88:231-239**.

Duffe P, Gebre S, Gognalons P and Grima A. 1989. Semences de tomate. Procédés de désinfection efficaces contre virus et bactéries, étude de mise au point. *PMH Revue Horticole*, **298:59-63**.

Dufour O, Palloix A, Gebre-Selassie K, Pochard E, Marchoux G (1989). The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Can J Bot **67 : 655-660**.

Elphinstone JG. 2005. The current bacterial wilt situation: a global overview. In *Bacterial wilt disease and the Ralstonia solanacearum species complex*, **pp. 9-28.**

Eshbaugh WH. 1977. The taxonomy of the genus *Capsicum*-Solanaceae. In *Thirth Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, July 5-8.*

Fegan M, Hollway G, Hayward AC and Timmis J. 1998. Development of a diagnostic test based upon the polymerase chain reaction (PCR) to identify strains of *Ralstonia solanacearum* exhibiting the biovar 2 genotype. In *Bacterial Wilt Disease: Molecular and Ecological Aspects*, **pp. 34-43**.

Fegan M and Prior P. 2005. How complex is the "*Ralstonia solanacearum* species complex". In *Bacterial wilt disease and the Ralstonia solanacearum species complex*, **pp. 449-462**.

Fegan M and Prior P. 2006. Diverse members of the *Ralstonia solanacearum* species complex cause bacterial wilts of banana. *Australasian Plant Pathology*, 35:93-101.

Fegan M, Taghavi M, Sly L I and Hayward A C. 1998. Phylogeny, diversity and molecular diagnostics of *Ralstonia solanacearum*. In *Bacterial wilt disease - Molecular and ecological aspects*, pp. 19-33.

Food and Agricultural Organisation. http://faostat.fao.org/faostat. 2007.

Franceschetti U 1971. Natural cross pollination in pepper (*Capsicum annuum* L.). Eucarpia Meeting on Genetic and Breeding of *Capsicum*. Turin, Italy.

Frank NM. **2003.** Development of alternative strategies for managment of soil borned pathogens currently controlled with methyl bromide. *Annual Review of Phytopathology*, **41**:**325-350**.

Frary A, Fulton TM, Zamir D and Tanksley SD. **2004.** Advanced backcroo QTL analysis of a *Lycopersicon esculentum* x *L. pennellii* cross and identification of possible orthologs in the Solanaceae. *Theor Appl Genet*, **108**:**485-496**.

Fulton TM, Chunwongse J and Tankley SD. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. *Plant Mol. Biol. Rep.*, 13:207-209.

Fulton TM, Van der Hoeven R, Eannetta NT and Tankley SD. 2002. Identification, analysis, and utilization of conserved ortholog set markers for comparartive genomics in higher plants. *Plant Cell*, 14:1457-1467.

Callais A et Bannerot H, 1992. Amélioration des espèces végétales cultivées, INRA ed, 147, rue de l'Université- 75007 Paris. **768p.**

Genin S, Gough CL, Zischek C and Boucher CA. 1992. Evidence that the *HrpB* gene encodes a positive regulator of pathogenicity genes from *Pseudomonas* solanacearum. Molecular Microbiology, 6:3065-3076.

Gillings MR and Fahy P. 1994. Genomic Fingerprinting: towards a unified view of the *Pseudomonas solanacarum* species complex. In *Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum*, **pp. 95-112.**

Gockowski J and Ndoumbe NM. 1999. An analysis of horticultural production and marketing systems in the forest margins ecoregional benchmark of southern Cameroon. In *Resource and Crop Management Research Monograph*.

Gockowski J, Mbazo'o J, Mbah G and Fouda Moulende T. 2003. African traditional leafy vegetables and the urban and peri-urban poor. *Food policy*, 28:221-235.

Granada GA and Sequira L. 1983. Survival of Pseudomonas solanacearum in soil, rhizosphère and plant roots. *Canadian Journal of Microbiology*, 29:433-440.

Green SK, Kim JS. 1991. Characteristics and control of viruses infecting peppers: A literature review. Asian Vegetable Research and Development Centre, Technical Bulletin, **p 18**.

Greenleaf WH. 1986. Pepper breeding. In Breeding Vegetable Crops, pp. 67-134.

Grimault V, Anais G and Prior P. **1994.** Distribution of *Pseudomonas solanacearum* in the stem tissues of tomato plants with different levels of resistance to bacterial wilt. *Plant Pathology*, **43**:663-668.

Grimault V and Prior P. **1993.** Bacterial wilt resistance in tomato is associated with tolerance of vascular tissues to *Pseudomonas solanacearum*. *Plant Pathology*, **42:589-594**.

Grimault V and Prior P. 1994. Grafting tomato cultivars resistant or susceptible to bacterialwilt: Analysis of resistance machanisms. *J. Phytophathology*, **141:330-334**.

Grimault V and Prior P. 1994. Invasiveness of *Pseudomonas solanacearum* in tomato, eggplant and pepper: a comparative study. *European Journal of Plant Pathology*, 100:259-267.

Grube RC, Radwanski ER and Jahn M. 2000. Identification and comparative mapping of dominant Potyvirus resistance gene cluster in *Capsicum*. *Theor Appl Genet*, 101:852-859.

Grube RC, Radwanski ER and Molly J. 2000. Comparative Genetics of Disease Resistance Within the Solanaceae. *Genetics*, 155:873-887.

Guidot A, Prior P, Schoenfeld J, Carrere S, Genin S and Boucher C. 2007. Genomic structure and phylogeny of the plant pathogen *Ralstonia solancearum* inferred from gene distribution analysis. *Journal of Bacteriology*, **189:377-387**.

Guo J-H, Qi H-Y, GuoY-H, Ge H-L, Gong L-Y, Zhang L-X and Sun P-H. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. *Biological Control*, 29:66-72.

Haldane J. 1919. The combination of linkage values, and the calculation of distance between loci of linked factors. *J Genet*, 8:299-309.

Haldane JBS. 1919. The mapping function. J. Genet, 8:299-309.

Hayward AC. 1991. Biology and epidemiology of bacterial wilt caused by *Pseudomonas solanacearum*. *Annual Review of Phytopathology*, 29:65-87.

He LY, Sequeira L and Kelman A. 1983. Characteristics of strains of *Pseudomonas* solanacearum. Plant Disease, 67:1357-1361.

Hoffman PG, Lego PC and GalettoWG. **1983.** Separation and quantification of red pepper major heat principles by reverse-phase high-pressure liquid chromatography. *J. Agric. Food Chem*, **31**:**1326-1330**.

Huang S, van der Vossen EAG, Kuang H, Vleeshouwers VGAA, Zhang N, Borm T J A, van Eck HJ, Baker B, Jacobsen E and Visser RGF. 2005. Comparative genomics enabled the isolation of the *R3a* late blight resistance gene in potato. *The Plant Journal*, 42:241-261.

Huang S, Vleeshouwers VG, Werij JS, Hutten RC, van Eck HJ, Visser RG and Jacobsen E. 2004. The *R*3 resistance to *Phytophthora infestans* in potato is conferred by two closely linked *R* genes with distinct specificities. *Mol. Plant-Microbe Interact.*, **17**:428-435.

Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH and BD K. 2001. A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (*Capsicum* spp.). *Theor Appl Genet*, **102:524-530**.

Ihaka R and Gentleman R. **1996.** R: a language for data analysis and graphics. *Journal of Computational and Graphical Statistics*, **5**:**299-314**.

IPGRI, AVRDC and CATIE. **1995.** *Descriptor for Capsicum spp. International Plant* Genetic Ressources Institute, Rome, Italy ; Asian Vegetable Reasearch & Development Center, Taipei, Taïwan ; Cetro Agronómico Tropical de Investigatión y Enseñanza, Turrialba, Costa Rica.

Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube R, Aftergoot E, Lapidot M and Moyer J. 2000. Genetic mapping of the *Tsw* locus for resistance to the *Tospovirus Tomato Spotted wilt virus* in *Capsicum* spp. and its relationship to the *Sw-5* gene for resistance to the same pathogen in tomato. *Moleclar Plant-Microbe Interaction*, 13:673-682.

Janzac B, Fabre MF, Moury B and Palloix A. 2009. Phenotype and spectrum of action of the *Pvr4* resistance in pepper against potyviruses and selection for virulent variants. *Plant Pathology*, **58**:443-449.

Ji P, Momol MT, Olson S M, Pradhanang PM and Jones JB. 2005. Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions. *Plant Disease*, 89:497-500.

Jukes TH and Cantor CR. 1969. Evolution of protein molecules. In *Mammalian* protein metabolism, pp. 21-132.

Kanda A, Ohnishi S, Hiromi Tamiyama, Hasegawa H, Yasukohchi M, Kiba A, Ahnishi K, Okuno T and Hikichi Y. 2000. Type III secretion machinary-deficient mutants of *Ralstonia solanacearum* lose their ability to colonize resulting in loss of pathogenicity. *J Gen Plant Pathol*, 69:250-257.

Kelman A. 1953. The bacterial wilt caused by *Pseudomonas solanacearum*. A literature review and bibliography. *N. Dak. Agr. Exp. Sta. Bul*, 1:1-194.

Kelman A. **1954.** The relationship of pathogenicity in *Pseudomonas solanacearum* to colony appearance on a tetrazolium chloride medium. *Phytopathology*, **44**:**693-695**.

Laferriere LT, Helgeson JP and Allen C. 1999. Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of reristance to bacterial wilt caused by Ralstonia solanacearum. Theor Appl Genet, 98:1272-1278.

Lafortune D, Béramis M, Daubèze AM, Boissot N and Palloix A. 2005. Partial resistance of pepper to bacterial wilt is oligogenic and stable under the tropical conditions. *Plant Disease*, 89:501-506.

Lander ES, Geen P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE and Newburg L. 1987. Mapmaker: an interactive computer package for constructing primary gentic linkage maps of experimental and natural populations. *Genomics*, 1:174-181.

Lavie M, Seunes B, Prior P and Boucher C. 2004. Distribution and sequence analysis of a family of type III-dependent effectors correlate with the phylogeny of *Ralstonia solanacearum* strains. *Moleclar Plant-Microbe Interactions*, **17**:931-940.

Lefebvre V. 2004. Molecular markers for genetics and breeding: development and use in pepper (*Capsicum* spp.). In *Biotechnology in Agriculture and Forestry, Molecular Marker Systems in plant Breeding and Crop improvement*, **pp. 189-214.**

Lefebvre V, Daubèze AM, van der Voort JR, Peleman J, Bardin M and Palloix A. 2003. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. *Theor Appl Genet*, 107:661-666.

Lefebvre V, Kuntz M, Camara B and Palloix A. 1998. The capsanthin-capsorubin synthase gene: a candidate gene for the locus controlling the red fruit color in pepper. *Plant Molecular Biology*, 36:785-789.

Lefebvre V and Palloix A. 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper - *Phytophthora capsici* Leonian *Theor Appl Genet*, **93:503-511**.

Leister D, Kurth J, Laurie DA, Yano M, Sasaki T, Devos K, Gradner A and Schulze-Lefert P. 1998. Rapid reorganisation of resistance gene homologues in cereal genomes. *Proc. Natl. Acad. Sci.*, 95:370-375.

Lemessa F and Zeller W. 2007. Isolation and characterisation of *Ralstonia* solanacearum strains from Solanaceae crops in Ethiopia. *Journal of Basic Microbiology*, 47:40-49.

Livingstone KD, Lackney VK, Blauth JR, Wijk van Rik and Jahn MK. 1999. Genome Mapping in *Capsicum* and the Evolution of Genome Structure in the Solanaceae. *Genetics*, 152:1183-1202.

Ludwig W, Strunk O, Westram R, Richetr L, Meier H, Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart A W, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssman R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig, T., Bode A and Schleifer K H. 2004. ARB: a software environment for sequence data. *Nucleic Acids Research*, 32:1363-1371.

Madden LV and Wheelis M. 2003. The threat of plant pathogens as weapons against U.S. crops. *Ann. Rev. Phytopathol*, **41**:**155-176**.

Mahbou Somo Toukam G, Cellier G, Wicker E, Guilbaud C, Kahane R, Allen C and Prior P. 2009. Broad diversity of *Ralstonia solanacearum* strains in Cameroon. *Plant Disease*, 93:1123-1130.

Martin C, French ER and Nydegger U. 1981. Bacterial wilt of potatoes in Amazon Bassin. *Plant Disease*, 65:245-248.

Mather K and Jinks JL. 1982. Biometrical genetics, Chapman and Hall, London.

McCouch Susan R. 2001. Genomics and Synteny. Plant Physiology, 125:152-155.

McDonald BA and Linde C. 2002. Pathogen population genetics, evolutionary potential, and durable resistance. *Annu. Rev. Phytopathol*, 40:349-379.

Miftahudin TC, Ross K, Scoles GJ and Gustafson JP. 2005. Targeting the aluminium tolerance gene *Alt3* region in rye, using rice/rye micro-colinearity. *Theor Appl Genet*, 110:906-913.

Mitsuo H and Kenichi T. 2001. Genetic Diversity of japanese strains of *Ralstonia* solanacearum. Bacteriology, 91:399-407.

Moore G, Devos KM, Wang Z and Gale MD. 1995. Grasses, line up and form a circle. *Current Biology*, 5:737-739.

Moury B, Gebre Selassie K, Marchoux G and Palloix A. 1997. High temperatue effects on hypersensitive resistance to tomato spotted wilt tospovirus (TSWV) in pepper (*Capsicum chinense* Jacq.) *Eur. J. Phytopathol.*, 104:489-498.

Moury B, Palloix A, Gebre Selassie K and Marchoux G. 1997. L'émergence des tospovirus. *Virologie*, 2:357-367.

Nono-Womdim R, Gebre-Selassie K, Palloix A, Pochard E, Marchoux G (1993). Study of multiplication of cucumber mosaic virus in susceptible and resistant *Capsicum annuum* lines. Annals of Applied Biology, 122, 49-56.

Netscher C and Sikora RA. 1990. Nematode parasites of vegetables. In *Plant parasitic Nematodes in subtropical and tropical agriculture*, pp. 237-283.

Odland ML and Poter AM. 1941. A study of natural crossing in pepper, *Capsicum frutescens.*. Proc. Am. Soc. Hortic. Sci., 38:585-588.

OEMPP. 2004. Ralstonia solanacearum. Bulletin OEPP/EPPO, 34:173-178. Ooshiro A, Takaezu K, Natsume M, Taba S, Nasu K, Uehara M and Muramoto Y. 2004. Identification and use of a wild plant with antimicrobial activity against Ralstonia solanacearum, the cause of bacterial wilt of potato. Weed Biology, 4:187-194. Opina N, Tavner F, Hollway G, Wang J-F, Li T-H, Maghirang R, Fegan M, Hayward A C, Krishnapillai V, Hong W F, Holloway B W and Timmis J. 1997. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying *Burkholderia solanacearum* (formerly *Pseudomonas solanacearum*). *Asia Pacific Journal of Molecular Biology and Biotechnology*, **5**:19-30.

Orgambide G, Montrozier H, Servin P, Roussel J, Trigalet-Demery D and Trigalet A. 1991. High heterogeneity of the exopolysaccharides of *Pseudomonas solanacearum* strain GMI1000 and the complete structure of the major polysaccharide. *J Biol Chem*, **266:8312-8321**.

Palloix A. 2006. Le piment. In *Genetic Resources, Chromosome Engineering, and Crop Improvement* pp. 187-245, (sous presse).

Palloix A, Daubeze AM, Pochard E, Pitrat M and Foury C. 2004. Piments. In *Histoire de Légumes. De l'origine à l'orée du XXI^e siècle* pp. 278-290.

Palloix A., Ayme V. and Moury B. 2009. The durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. *New Phytologist*, **183**:**190-199**.

Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D and Fluhr R. 2000. Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and *Arabidopsis*. *Genetics*, 155:309-322.

Parrella G, Ruffel S, Moretti A, Morel C and Palloix A. **2002.** Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (*Lycopersicon* spp.) and pepper (*Capsicum* spp.) genomes. *Theor Appl Genet*, **105:855-861**.

Pickersgill B. 1969. The domestication of chili peppers. In *The domestication and* exploitation of plants and animals, **pp. 443-450**.

Plaschke J, Boerner A, Xie DX, Koebner RMD, Schlegel R and Gale MD. 1993. RFLP mapping of genes affecting plant height and growth habit in rye. Theor Appl *Genet*, 85:1049-1054.

Pochard E. **1970.** Description des trisomiques de piment (*Capsicum annuum* L.) obtenus dans la descendance d'une plante haploïde. *Ann. Amélior. Plantes*, **20:233-256**.

Pochard E, Palloix A and Daubèze AM. 1992. Le piment. In Amélioration des espèces végétales cultivées, pp. 420-434.

Poussier S, Thoquet P, Trigalet-Demery D, Barthet S, Meyer D, Arlat M and Trigalet A. 2003. Host plant-dependent phenotypic reversion of *Ralstonia*

solanacearum from non-pathogenic to pathogenic forms via alterations in the *phcA* gene. *Molecular Microbiology*, **49:991-1003**.

Pradhanang PM, Ji P, Momol MT, Olson SM, Mayfield JL and Jones JB. 2005. Application of acibenzolar-S-methyl enhances host resistance in tomato against *Ralstonia solanacearum. Plant disease*, **89**:989-993.

Prince JP, Pochard E and Tanksley SD. 1993. Construction of molecular linkage map of pepper and a comparision of synteny with tomato. *Genome*, **36**:**404-417**.

Prior P, Beramis M, Clairon M, Quiquampoix H, Robert C and Schmit J. 1993. *Contribution to integreted control against bacterial wilt in different pedoclimatic situations: guadeloupe experiments.*, Kaoshiung, Taïwan: ACIAR Proceedings 45.

Prior P and Fegan M. 2005. Diversity and molecular detection of *Ralstonia solanacearum* race 2 strains by multiplex PCR. In *Bacterial wilt disease and the Ralstonia solanacearum* species complex, **pp. 405-414**.

Prior P and Fegan M. 2005. Recent development in the phylogeny and classification of *R. Solanacearum*. In *Proceedings of the First International Symposium on tomato diseases*, **pp. 127-136**.

Prior P and Fegan M. 2005. Recent developments in the phylogeny and classification of *Ralstonia solanacearum. Acta Horticulturae*:695:127-136.

Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin C L and Arcioni S. 2004. Comparative mapping reveals partial conservation of synteny at the apomixis locus in *Paspalum* spp. *Mol Gen Genomics*, 270:539-548.

Rahman MA, Abdullah H and Vanhaecke M. 1999. Histopathology of susceptible and Resistant *Capsicum annuum* cultivars infected with *Ralstonia solanacearum*. J. *Phytophathology*, 147:129-140.

Ram K. 1987. Loss in yield of tomato due to bacterial wilt caused by *Pseudomonas* solanacearum. Indian Phytopath, 40:152-155.

Ran LX, Liu CY, Wu GJ, van Loon LC and Bakker PAHM. 2005. Suppression of bacterial wilt in *Eucalyptus urophylla* by fluorescent *Pseudomonas* spp. in China. *Biological Control*, 32: (1)111-120.

Riely BK and Martin GB. 2001. Ancient origin of pathogen recognition specificity conferred by tomato disease resistance gene *Pto. Proc. Natl. Acad. Sci. USA*, 98:2059-2064.

Roberts DP, Denny TP, Schell MA. 1988. Cloning of the egl gene of *Pseudomonas* solanacearum and analysis of its role in pathogenicity. *J Bacteriology* 170: 1445-1451.

Robertson AE. 1998. Factors affecting the population of *Ralstonia solanacearum* in a naturally infested field planted to tobacco. In *Bacterial wilt disease: molecular and ecological aspects*, **pp. 369-373**.

Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C and Caranta C. 2002. A natural recessive resistance gene against potato virus Y correspond to the eukaryotic initiation factor 4E (eIF4E). *Plant Journal*, 32:1067-1075.

Ruffel S, Gallois JL, Lesage ML and Caranta C. **2005.** The recessive potyvirus resistance gene *pot-1* is the tomato orthologue of the pepper *pvr2-elF4E* gene. *Mol Gen Genomics*, **274**:**346-353**.

Saile E, McGarvey JA, Schell MA and Denny TP. 1997. Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by. *Phytopathology*, 87:1264-1271.

Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. *Molecular Biology Evolution*, 4:406-425.

Salse J, Piégu B, Cooke R and Delseny M. 2004. New in silico insight into the synteny between rice (*Oryza sativa* L.) and maize (*Zea mays* L.) highlights reshuffling and identifies new duplications in the rice genome. *The Plant Journal*, 38:396-409.

Sanchez Perez A, Mejia L, Fegan M and Allen C. 2008. Diversity and distribution of *Ralstonia solanacearum* strains in Guatemala and rare occurence of tomato fruit infection. *Plant Pathology*, **57**:1-12.

Schell MA. **1996.** To be or not to be: how *Pseudomonas solanacearum* decides whether or not to express virulence genes. *Eurpean Journal of plant Pathology*, **102**:**459-469**.

Smith EF. **1896.** A bacterial disease of tomato, pepper,eggplant and Irish potato (*Bacillus solanacearum* sp. nov.); United States Department of Agriculture, Division of Vegetable Physiology and Pathology. *Bulletin*, **12**:**1-28**.

Smith JJ, Offord L C, Holderness M and Saddler GS. 1995. Genetic diversity of *Burkholderia solanacearum* (synonym *Pseudomonas solanacearum*) race 3 in Kenya. *Applied and Environmental Microbiology*, 61:4263-4268.

Snape JW, Wright AJ and Simpson E. 1984. Methods for determining the gene numbers for quantitative characters using double haploid lines. *Theor Appl Genet*, 67:143-148.

Somos A. 1984. The paprika, Budapest, Akadémiai Kiado.

Stracke S, Sato S, Sandal N., Koyama M, Kaneko T, Tabata S and Parniske M. 2004. Exploitation of colinear relationships between the genomes of *Lotus japonicus*,

Pisum sativum and *Arabidopsis thaliana*, for positional cloning of a legume symbiosis gene. *Theor Appl Genet*, **108**:**442-449**.

Swanpoel AE and Young BW. 1988. Characteristics of South African strains of *Pseudomonas solanacearum*. *Plant Disease*, **72**:403-405.

Tanaka M, Matsumoto T, Yanai S, Domukai M, Toki D, Hayashi T, Kiuchi S, Yasue H, Uenishi H, Kobayashi E and Awata T. 2003. Conservation of the syntenies between porcine chromosome 7 and human chromosoms 6, 14 and 15 demonstarted by radiationhybrid mapping and linkage analysis. *Animal Genetics*, 34:255-263.

Tanksley SD, Bernatzky R, Lapitan NL and Prince JP. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. *Proc. Natl. Acad. Sci. USA*, 85:6419-6423.

Tans-Kersten J, Guan Y, and Allen C, 1988. *Ralstonia solanacearum* pectin methylesterase is required for growth on methylated pectin but not for bacterial wilt virulence. *Appl. Environ. Microbiol.* 64:4918-4923.

Tans-Kersten J, Huayu H and Caitilyn A. 2001. *Ralstonia solanacearum* needs motility for invasive virulence on tomato. *Journal of Bacteriology*, 183:3597-3660.

Thabuis A. 2002. Construction de résistance polygénique assitée par marqueurs: Application à la résistance quantitative du piment (*Capsicum annuum* L.) à *phythophthora capsici*, Thèse de Doctorat, INA-Paris-Grignon 196p.

Thabuis A, Palloix A, Pflieger S, Baubèze AM, Caranta C and Lefebvre V. 2003. Comparative mapping of *Phytophthora* resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. *Theor Appl Genet*, **106**:**1473-1485**.

Thorup T, Tanyolac B, Livingstone KD, Popovsky S, Paran I and Jahn M. 2000. Candidate gene analysis of organ pigmentation loci in the Solanaceae. *Proc. Natl. Acad. Sci. USA*, 97:11192-11197.

Voorrips RE. **2002.** Mapchart: Software for the graphical presentation of linkage maps and QTLs. *The Journal od Heridity*, **93:77-78**.

Voorrips RE, Fonkers R, Sanjaya L and Groenwold R. **2004.** QTL mapping of anthracnose (*Colletotrichum* spp.) resistance in a cross between *Capsicum annuum* and *C. chinense*. *Theor Appl Genet*, **109**:**1275-1282**.

Vos P, Hogers R, Bleeker M, Reijand M, van de Lee T, Hornes M, Fritjers A, Pot J, Paleman J, Kuiper M and Zabeau M 1995. AFLP: A new technique for DNA fingerprinting. *Nucleic Acids Research*, 23:4407-4414.

Wang JF, Olivier J, Thoquet P, Mangin B, Sauviac L and Grimsley NH. 2000. Resistance of tomato line Hawaï7996 to *Ralstonia solanacearum* Pss4 in Taïwan is controlled mainly by a major strain-spacific locus. *Mol. Plant-Microbe Interact.*, **13**:6-**13**.

Wang JF, Hanson PM and Barnes JA. 1998. Worldwide evaluation of international set of resistance sources to bacterial wilt in tomato. Pages 269-275. In *Bacterial Wilt Disease: Molecular and Ecological Aspects*, pp. 34-43.

Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM and Palloix A. 2004. QTL analysis of fertility restoration in cytoplasmic male sterile pepper. *Theor Appl Genet*, **109**:1058-1063.

Winstead NN and Kelman A. 1952. Inoculation techniques for evaluating resistance to *Pseudomonas solanacearum*. *Phytopathology*, **42:628-634**.

Woese CR. **2000.** Evolution-Interpreting the universal phylogenic tree. *Proceedings of the National Academy of Sciences of the United States of America*, **97:8392-8396**.

Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM and Tanksley SD 2009. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus *Capsicum. Theor Appl Genet*, **118**:1279-1293.

Wydra K and Dannon E. 2006. Silicon as inducer of resistance in tomato against *Ralstonia solanacearum. Bulletin OILB/SROP*, 29:91-96.

Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki Y and Arakawa M. 1992. Proposal of *Burkholderia* gen. nov. and transfer of seven species of the genus *Pseudomonas* homology group II to the new genus, with the type species *Burkholderia cepacia* (Palleroni and Holmes 1981) comb. nov. *Microbiology and Immunology*, 36:1251-1275.

Yabuuchi E, Kosako Y, Yano I, Hotta H and Nishiuchi Y. 1996. Transfer of two *Burkholderia* and an *Alcaligenes* species to *Ralstonia* gen. nov.: proposal of *Ralstonia picketti* (Ralston, Palleroni and Douderoff 1973) comb. nov., *Ralstonia solanacearum* (Smith 1896) comb. nov. and *Ralstonia eutropha* (Davis 1969) comb. nov. *Microbiology and Immunology*, **39:897-904**.

Yoon JY, Green SK, Tschanz AT, Tsou SCS and Chang LC. 1989. Pepper improvement for the tropics: problems and the AVRDC approach. In *Tomato and pepper production in the Tropics, Proc. Int. Sympos. Integrated management practices, Tainan, Taiwan 21-26 march 1998*, **pp. 86-98**.

Young DH and Sequeira L. **1986.** Binding of *Pseudomonas solanacearum* fimbriae to tobacco leaf cell walls and its inhibition by bacterial extracellular polysaccharides. *Physiol. Mol. Plant Pathol.*, **28:393-402**.

Zhu HH and Yao Q. **2004.** Localized and systemic increase of phenols in tomato roots induced by *Glomus versiforme* inhibits *Ralstonia solanacearum*. *J. Phytophathology*, **152:537-542**.

Zygier S, Chaim B, Efrati AB, Kaluzky G, Borovsky Y and Paran I. 2005. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and comparison of the pepper QTL map with that of tomato. *Theor Appl Genet*, **111**:**437- 445**.

ANNEXES

ANNEXE 1 : COMPOSITION DU MILIEU DE KELMAN MODIFIE POUR ISOLEMENT DE *RALSTONIA SOLANACEAR UM*⁽¹⁾

Produits	Pour 1 litre d'eau
Bacto-peptone	10 g
Casamino-acide	1 g
Extrait de levure	1 g
Agar	15 g
Eau distillée	1 litre
Glycérol /Glucose	5 g
pH ajusté entre 7 et 7.2 avec NaOH	
TTC (50mg/ml)	1 ml

Stérilisation à l'autoclave 25 min à 115°C.

Le TTC (Triphenyl 2-5 tetrazolium chlorure) est ajouté au milieu par stérilisation à l'aide d'une seringue et un filtre millipores (Φ inférieur à 2μ).

⁽¹⁾Le milieu original de Kelman ne contient pas d'extrait de levure. Le glucose ici est remplacé par le glycérol.

ANNEXE 2 : PROTOCOLE D'EXTRACTION DE L'ADN GÉNOMIQUE DES FEUILLES DE PIMENT (FULTON AND TANKSLEY, 1995)

- > Préparer le tampon de microprep juste avant l'extraction d'ADN :
 - 25 ml de tampon d'extraction (¹). Il doit être à la température ambiante au moment de faire le mélange avec les autres solutions) ;
 - 25 ml de tempon de lyse des noyaux $(^2)$;
 - 10 ml de Sarcosyl 5% ;
 - 0,2 g de sodium bisulfite pour 60 ml de tampon microprep.
- Préparer un bac de glace qui servira à placer les tubes Eppendorf de 1.5 ml dans lesquels seront placés les feuilles de piment ;
- Prélever deux à trois jeunes feuilles de piment (1 à 2 g de feuilles) qu'on enroule et place soigneusement dans un tube Eppendorf de 1.5 ml qu'on place sur la glace ;
- Ajouter 100 µl de tampon de microprep. Ajouter une pincée de sable de autoclavé de Fontainebleu (1 à 2 g environ), broyer à l'aide d'un « piston pellet » fixer au mandrin d'une perceuse électrique. Changer le piston entre chaque échantillon ou le rincer avec de l'eau distillée entre chaque broyage ;
- > Ajouter 300 μl de tampon de microprep et agiter légèrement au vortex ;
- Incuber à 65°C, 30 à 120 minutes ;
- Remplir le tube avec le mélange chloroforme/ alcool isoamylique (24:1) sous la hotte. Bien agiter soit par retournement (50 à 100 fois) ou au vortex. Bien mélanger le chloroforme au broyat ;
- Centrifuger 5 min (pas plus) à 10 000 rpm et à la température ambiante ;
- Eliminer l'isopropanol et rincer le culot avec 400 μl d'éthanol 70% froid. A ce stade, l'ADN peut être conservé à -20°C indéfiniment ;
- Centrifuger 5 min (pas plus) à 10 000 rpm et à la température ambiante ;
- Eliminer l'éthanol et renverser les tubes sur du papier absorbant. Laisser les au moins une heurte ou les placer sous vide quinze minutes ;
- Ajouter 50 μl de TE, bien reprendre le culot, centrifuger 10 mn à 10 000 rpm et stocker à 4°C une semaine ou -20°C pour un stockage plus long;
- > En PCR, utiliser 1 à 2 μ l de cet ADN en stock.

⁽¹⁾ et ⁽²⁾ : voir composition ci-dessous

Composition des tampons d'extraction et de lyse de noyaux A-Tampon d'extraction

Solution	Concentration	pour 100 ml
D-Sorbitol	0.35M	6.375g
Tris	0.1M	1.21g
EDTA	5mM	0.17g

Ajuster le pH à 7.5 (avec HCL)

EDTA: Acide éthylène diamine tétra acétique

B-Tampon de lyse de noyaux

	Concentration	pour 100 ml
Tris	200mM	20ml Tris HCL 1 M pH 8
EDTA	50mM	10ml EDTA 0.5M pH8
NaCl	5mM	11.7g
CTAB	2%	2g

Le tampon doit être conservé à 20°C/ Le CTAB précipite à 4°C.

CTAB: Hexadécyl-Triméthyl-Ammonium-Bromide

Sarcosyl 5% (N lauryl sarcosine)

Sodium bisulfite ($Na_2S_2O_5$)

Chloroforme/alcool isomylique : Utiliser les ustensiles en verre et travailler sous la hotte.

Isopropanol froid

Ethanol 70%

TE 10/1 pH 8 (Tris EDTA)

ANNEXE 3 : DOSAGE NATIF DE L'ADN GÉNOMIQUE DES FEUILLES DE PIMENT (GAFL: INRA AVIGNON)

- Faire une dilution au 1/100 des échantillons à doser dans de l'eau distillée stérile. Laisser au minimum 4h à 4 °C) pour que l'ADN se mélange bien ;
- Préparer les échantillons dans une plaque Elisa. Aliquoter 10 µl du tampon de charge dans la plaque. Ajouter 1 ou 2 µl des solutions au 1/100. Faire en parallèle des échantillons une gamme avec du Lambda dilué à 10ng/µl. Par exemple 10, 20, 30, 40, 50 ng. Préparer autant de gamme qu'il y a de peigne ;
- Déposer sur gel TAE 1 X, agarose 1%. Faire migrer entre 50 et 65 V sur 4 cm. Colorer le gel au BET;
- Comparer les intensités de bande des échantillons avec la gamme pour déterminer leur concentration. Diluer les ADN de manière à cde qu'ils aient une concentration de 500ng/µl.

ANNEXE 4 : PRINCIPE DE LA TECHNIQUE AFLP™

ANNEXE 5 : PROTOCOLE DE LA TECHNIQUE AFLP

A- DOUBLE DIGESTION

- > Protocole : digestion avec *EcoRI* et *Mse*.
- Le travail se fait sur la glace
- Composition du mix pour 1 échantillon/volume final de 20 μl :

Produits	Concentration	Volume
H ₂ O		13.45µl
TpOPA 2X (stock 10x)	2X	4µl
BSA 10ng/µl	10ng	0.4µl
DTT 5mM	5mM	0.4µl
EcoRI	10U/µl	0.25µl
MseI	5U/µl	0.5µl
ADNg	500ng/µl	2µl
Total		20 µl

Multiplier les quantités par le nombre d'échantillon + 2 ou 3 pour les erreurs de pipetage. Préparer le mix dans les Eppendorf de 0.5ml.

Bien fermer les tubes pour éviter les évaporations ;

Digestion 1 heure à 37°C. Mettre le papier imbiber d'eau autour pour éviter les évaporations (dans le cas de digestion en plaque) ;

Après la digestion faire un pulse.

B- Ligation des adaptateurs

Le travail se fait sur la glace. Composition du mix pour 1 échantillon/volume final de 5 μ l. Pour faire le mix, multiplier les quantités par le nombre d'échantillons +2 ou 3 pour les erreurs de pipetage. Composition du mix pour 1 échantillon/volume final de 5 μ l.

Produits	Concentration	Volume
H2O		1.8µl
TpOPA	2X	1µl
DTT 5mM	5mM	0.1µl
BSA	10ng	0.1µl
ATP	1mM	0.5µl
Adapt EcoRI	0.1 pmole	0.5µl
Adapt MseI	1 pmole	0.5µl
T4 ligase	1U/µl	0.5µl
Total		5 µl

Ajouter les 5 μ l ci- dessus au 20 μ l de l a double digestion et laisser incuber 3 heures minimum à «37°C. Fermer les tubes avec du parafilm.

Diluer respectivement au 1/10 les digestions-ligations: 5 μ l de digestion-ligation+45 μ l TE (**10/0.1**). Conserver les dilutions à -20°C.

Après la digestion, faire un pulse.

C-Pré-amplification

Le travail se fait sur la glace. Composition du mix pour 1 échantillon/volume final de 20 μ l. Pour faire le mix, multiplier les quantités par le nombre d'échantillons +2 ou 3 pour les erreurs de pipetage. Utiliser les barrettes de 8 tubes. Composition du mix pour **1 échantillon/volume final de 20 \mul :**

Produits	Concentration	Volume
H2O		9.2µl
Taq (Promega)	5U/ µl	0.08 µl
Tampon (Promega)	1X	2µ1
M _g Cl _{2 1} (Promega)	1.5mM	1.2µl
dNTP	0.2mM	1µl
Amorce EcoRI+A (E01)	30ng	0.6µl
Amorce MseI+C (M02)	30ng	0.6µl
Vortexer le mixe et distribuer	15 μl par tube.	
ADN digerée-ligaturée-diluée	2	5 µl
Total		20 µl

Mettre les tubes dans l'appareil PCR et fermer les tubes avec des bouchons en barette Programme : durée 2 heures

Nombre de cycle	Température	Durée
	94°C	30s
20	56°C	1 min
	72°C	1 min
1	4°C	attente

Faire un pulse ;

Vérifier la préamplification sur gel d'agarose 1% TAE 1X. Déposer 4µl de préamp. + 2 µl de bleu dilué. Laisser migrer 1 à 2 cm à 65 volts pendant 3à min au maximum. Mettre un témoin de préamplification connu. Diluer 20 fois les préamp. Dans du TE (**10/0.1**): 15µL préamp.+ 285µl de TE (10/0.1). Conserver les péamplifications à -20°C. A ce stade, il y a assez d'ADN pour tester 60 couples d'amorce par généotypes.

D- Préparation de l'amplification

Avant l'amplification proprement dite, les marquages d'amorce ECORI et du marqueur de taille doivent se faire.

Marquage des amorces EcoRI choisies

Faire le marquage dans les tubes PCR (type Perkin).

Composition du mix pour 1 échantillon/volume final de 0.5 µl

Produits	Concentration	Volume
H2O		0.238µl
Tp OPA	10X	0.05 µl
T4 Kinase	10U/µ1	0.012µl
Amorce EcoRI	50ng	0.1µl
Puis ajouter dans le labo chaud		
³³ _γ P-ATP		0.1µ1
Total		0.5µl

- Programme : (durée 1H10min)

Nombre de cycle	Température	Durée
1	37°C	1heure
1	70°C	10 min
1	4°C	attente

Les amorces ainsi marquées peuvent être utilisées de suite ou congeler à -20°C.

- Marquage des marqueurs de taille

- Marquage du Φ X174 RF DNA-hincII Digest (Pharmacia) :

Faire le marquage dans les tubes PCR (type Perkin).

Composition du mix pour 1 échantillon/volume final de 40µl

Produits	Concentration	Volume
H2O		31.6µl
Tp OPA	10X	4µl
T4 Kinase	10U/µ1	0.4µl
ΦΧ174	50ng	2µl
Puis ajouter dans le labo chaud		
$^{33}_{\gamma}$ P-ATP (labo radioactivité)		2µ1
Total		40µ1

Programme : (durée 1H10min)

Nombre de cycle	Température	Durée
1	37°C	1heure
1	70°C	10 min
1	4°C	attente

Ajouter 40µl de tampon de charge après le marquage Les amorces ainsi marquées peuvent être utilisées de suite ou congeler à -20°C.

Marquage de l'échelle AFLP 30-300bp (Life Technologies):

Faire le marquage dans un tube PCR et dans la glace

Produits	Concentration	Volume
AFLP	Inconnue	2µ1
Tp Exchange Réaction	5X	1µl
T4 Kinase	10U/µ1	1µl
³³ _γ P-ATP		2µ1
Total		6µl

Bien mélanger et faire un pulse Incuber à 37°C, 10 min. Chauffer à 65°C.

E-Amplification

- Utiliser les tubes en barrette ou les plaques de 96 puits perforées

- Déposer l'ADN préamplifiée et diluée au 1/20 et faire un pulse pour éliminer les bulles
- Pour le mix, multiplier les quantités par le nombre d'échantillon + 5 ou 6 pour les erreurs de pipetage.

Mix pour un échantillon

Produits	Concentration	Volume
Préamp diluée au 1/20		5μl
H ₂ O		9.62µl
Taq 0.4 (Promega)	5U/µl	0.08µl
Tampon 1X (Promega)	10X	1µL
$M_{g}Cl_{2}$	1.5mM	1.2µl
dNTP	<u>0.2mM@</u>	1µl
Amorce <i>Mse</i>	1.5 ng/µL	0.6µl
Amorce Eco RI marquée ⁽¹⁾		0.5µl
Volume final		20 µL
⁽¹⁾ Ajout au mix se fait au labo de		

⁽¹⁾ Ajout au mix se fait au labo de radioactivité

Programme PCR de l'amplification

Température	Durée
94°C	30 sec
65° C : la température décroit de 0.7°C	30 sec
à chaque cycle jusqu'à 56°C	
72°C	1min
94°C	30s
56°C	30s
72°C	1min
	attente
	Température94°C65°C : la température décroit de 0.7°Cà chaque cycle jusqu'à 56°C72°C94°C56°C72°C

F- Composition du gel d'Acrylamide pour piment (Gel 5% acryl/TBE 5X)

Produits	Volume	
Diluant Sequagel (urée)	68.52ml	
Concenté Acryl Sequagel	19.56ml	
TBE	9.84ml	
Temed	81.60ml	
APS 10%	406µL	

G- Composition des tampons de migration			
Cuves	Produits	concentration	Volume
	Eau		210ml
Tampon du bas	TBE	5X	70ml
	NaAC	0.25M	70ml
Tampon du haut	TBE	1X	

Solutions	Produits	Concentration	Quantité
	Tris 500 mM		121.1g
TBE 5X	Acide borique	500mM	61.83 g
	EDTA	10mM	7.45 g
	qsp H ₂ O		2 Litres
AcNa 2.5M	NaAc	0.25 mM	102.54g
	qsp H ₂ O		500 mL
	Formamide 98%		19.58 mL
	EDTA	10 Mm	400 µL
Formamide	Xylène cyanole		20 mg
	Bleu de bromophénol		20 mg
	NaOH	10mM	10 µL
	TrisHCl	1M, pH8	500 µL
TE 10/0.1	EDTA	0.5M, pH 8	10 µL
	qsp H ₂ O		50 mL
	Stériliser et conserver à 4	Р°С	
	Tris acétate		100 mM
Tampon OPA 10X	Magnésium acétate		100 mM
	Potatium acétate		500 mM
	Conserver le tampon à 4 °C. Ne pas congéler		
APS 10%	Ammonium persulfate qsp H ₂ O stérile. Conserver à 4°Cet le refaire toutes les semaines		

H- Composition des solutions nécessaires pour la technique AFLP

I- Protocole de la double digestion

Digestion avec *Eco*RI et *Mse*. Le travail se fait sur la glace

Produits	Concentration	Volume
H ₂ O		13.45µl
TpOPA 2X (stock 10x)	2X	4µl
BSA 10ng/µl	10ng	0.4µl
DTT 5mM	5mM	0.4µl
EcoRI	10U/µl	0.25µl
MseI	5U/µl	0.5µl
ADNg	500ng/µl	2µl
Total		20 µl

Multiplier les quantités par le nombre d'échantillon + 2 ou 3 pour les erreurs de pipetage. Préparer le mix dans les Eppendorf de 0.5ml.

Bien fermer les tubes pour éviter les évaporations ;

Digestion 1 heure à 37°C. Mettre le papier imbiber d'eau autour pour éviter les évaporations (dans le cas de digestion en plaque) ;

Après la digestion faire un pulse. J- Ligation des adaptateurs

Le travail se fait sur la glace. Composition du mix pour 1 échantillon/volume final de 5 μ l. Pour faire le mix, multiplier les quantités par le nombre d'échantillons +2 ou 3 pour les erreurs de pipetage. Composition du mix pour 1 échantillon/volume final de 5 μ l.

Produits	Concentration	Volume
H2O		1.8µl
TpOPA	2X	1µl
DTT 5mM	5mM	0.1µl
BSA	10ng	0.1µl
ATP	1mM	0.5µl
Adapt EcoRI	0.1 pmole	0.5µl
Adapt MseI	1 pmole	0.5µl
T4 ligase	1U/µl	0.5µl
Total		5 µl

Ajouter les 5 μ l ci- dessus au 20 μ l de l a double digestion et laisser incuber 3 heures minimum à «37°C. Fermer les tubes avec du parafilm.

Diluer respectivement au 1/10 les digestions-ligations: 5 μ l de digestion-ligation+45 μ l TE (**10/0.1**). Conserver les dilutions à -20°C.

Après la digestion, faire un pulse.

K-Préamplification

Le travail se fait sur la glace. Composition du mix pour 1 échantillon/volume final de 20 μ l. Pour faire le mix, multiplier les quantités par le nombre d'échantillons +2 ou 3 pour les erreurs de pipetage. Utiliser les barrettes de 8 tubes. Composition du mix pour 1 échantillon/volume final de 20 μ l :

Produits	Concentration	Volume
H2O		9.2µl
Taq (Promega)	5U/ µl	0.08 µl
Tampon (Promega)	1X	2µl
M _g Cl ₂₁ (Promega)	1.5mM	1.2µl
dNTP	0.2mM	1µl
Amorce EcoRI+A (E01)	30ng	0.6µl
Amorce MseI+C (M02)	30ng	0.6µl
Vortexer le mixe et distribuer	15 μl par tube.	
ADN digerée-ligaturée-diluée		5 µl
Total		20 µl

Mettre les tubes dans l'appareil PCR et fermer les tubes avec des bouchons en barette Programme : durée 2 heures

Nombre de cycle	Température	Durée
	94°C	30s
20	56°C	1 min
	72°C	1 min
1	4°C	attente

Faire un pulse ;

Vérifier la préamplification sur gel d'agarose 1% TAE 1X. Déposer 4µl de préamp. + 2 µl de bleu dilué. Laisser migrer 1 à 2 cm à 65 volts pendant 3à min au maximum. Mettre un témoin de préamplification connu. Diluer 20 fois les préamp. Dans du TE (10/0.1): 15µL préamp.+ 285µl de TE (10/0.1). Conserver les péamplifications à -20°C. A ce stade, il y a assez d'ADN pour tester 60 couples d'amorce par généotypes.

L-Amplification

Avant l'amplification proprement dite, les marquages d'amorce ECO RI et du marqueur de taille doivent se faire.

Marquage des amorces EcoRI choisies

Faire le marquage dans les tubes PCR (type Perkin).

Produits	Concentration	Volume
H2O		0.238µl
Тр ОРА	10X	0.05 µl
T4 Kinase	10U/µ1	0.012µl
Amorce EcoRI	50ng	0.1µl
Puis ajouter dans le labo chaud		
³³ _γ P-ATP		0.1µ1
Total		0.5µ1

Programme : (durée 1H10min)

Nombre de cycle	Température	Durée
1	37°C	1heure
1	70°C	10 min
1	4°C	attente

Les amorces ainsi marquées peuvent être utilisées de suite ou congeler à -20°C.

Marquage des marqueurs de taille

Marquage du ΦX174 RF DNA-hincII Digest (Pharmacia) :

Faire le marquage dans les tubes PCR (type Perkin).

Composition du mix pour 1 échantillon/volume final de 40µl

Produits	Concentratio	on Volume			
H2O		31.6µl			
Тр ОРА	10X	4µ1			
T4 Kinase	10U/µ1	0.4µl			
ΦX174	50ng	2µ1			
Puis ajoute	r				
$^{33}_{\gamma}$ P-ATP		2µ1			
Total		40µ1			
Programm	rogramme : (durée 1H10min)				
Nombre de	cycle Ten	npérature	Durée		
1	37°	С	1heure		
1	70°	С	10 min		
1	4°C		attente		

Ajouter 40µl de tampon de charge après le marquage Les amorces ainsi marquées peuvent être utilisées de suite ou congeler à -20°C.

Marquage de l'échelle AFLP 30-300bp (Life Technologies):

Faire le marquage dans un tube PCR et dans la glace :

Produits	Concentration	Volume
AFLP	Inconnue	2µ1
Tp Exchange Réaction	5X	1µl
T4 Kinase	10U/µ1	1µl
$^{33}_{\gamma}$ P-ATP		2µ1
Total		6µl

Bien mélanger et faire un pulse Incuber à 37°C, 10 min. Chauffer à 65°C.

M-Amplification

Utiliser les tubes en barrette ou les plaques de 96 puits perforées Déposer l'ADN préamplifiée et diluée au 1/20 et faire un pulse pour éliminer les bulles Pour le mix, multiplier les quantités par le nombre d'échantillon + 5 ou 6 pour les erreurs de pipetage.

Mix pour un échantillon

Produits	Concentration	Volume
Préamp diluée au 1/20		5µl
H ₂ O		9.62µl
Taq 0.4 (Promega)	5U/µl	0.08µl
Tampon 1X (Promega)	10X	1µL
M_gCl_2	1.5mM	1.2µl
dNTP	<u>0.2mM@</u>	1µl
Amorce Mse	1.5 ng/µL	0.6µl
Amorce Eco RI marquée ⁽¹⁾		0.5µl
Volume final		20 µL

Programme PCR o	de l'amplification				Dunáo
monibre de cycle				,	30 sec
12	5°C · 10 + 5 ····	antura de	roit da (20 500
13	\dot{o} c : la temp	e inson'à 54	son de (л. С.	ou sec
	72°C	e jusqu a St			1min
	94°C				30s
23	56°C			,	30s
	72°C				1min
1					attente
Composition du g	el d'Acrylamide p	our pimen	t (Gel 5	% acryl	/ TBE 5X)
Produits	·	Volume			
Diluant Sequagel (urée)	68.52ml			
Concenté Acryl Se	quagel	19.56ml			
TBE		9.84ml			
Temed		81.60ml			
APS 10%		406µL			
Composition des ta	ampons de migrat	ion			
Cuves	Produits	concentrat	ion	Volume	
m 11	Eau	- 3 7		210ml	
Tampon du bas	TBE	5X	,	/0ml	
Terrer 1 1		0.25M	,	/Uml	
Composition de so	IBE Intions nécessaire	1A s nour la te	chniau	AFID	
Solutions	Produits	<u>o pour ra te</u>	⁷ oncont	ration	Quantitá
Solutions	Tris 500 mM		Jonceill	1 au 011	121.1g
TDE 5V		-	00m-14		121.1g
1 DE 3A	Actue borique	2			01.05 g
		1	UMM		7.45 g
	qsp H ₂ O		2 Litres		
AcNa 2.5M	NaAc	NaAc 0.25 mM		l	102.54g
	qsp H ₂ O				500 mL
	Formamide 98%				19.58 mL
	EDTA	1	0 Mm		400 µL
Formamide	Xylène cyanole				20 mg
	Bleu de bromoph	énol			20 mg
	NaOH	1	0mM		10 µL
	TrisHCl	1M, pH8			500 µL
TE 10/0.1	EDTA	EDTA 0.5M. pH 8		I 8	10 μL
	qsp H ₂ O		, r -		50 mL
	Stériliser et conse	erver à 4°C			
	Tris acétate				100 mM
Tampon OPA	1115 acctate				100 11141
10X	Magnésum acétat	e			100 mM
	Potatium acétate				500 mM
	Conserver le tam	pon à 4 °C.	Ne pas	congéle	r
			1	60	
APS 10%	Ammonium nersi	ılfate			
	qsp H_2O stérile. Conserver à 4°Cet le refaire toutes les				
	semaines				

Programme PCR de l'amplification

FIGURES ANNEXES

FIGURE ANNEXE 1 : PLANTES PRESENTANT DES SYMPTOMES CARACTERISTIQUES DE FLETRISSEMENT BACTERIEN : A-PIMENT ; B- MORELLE NOIRE ; C- BASILIC ; D- PARCELLE DE PIMENT; E- TOMATE; F-ISOLEMENT DE RALSTONIA SOLANACEARUM ; G- CULTURE PURE DE RALSTONIA SOLANACEARUM (SOURCE MAHBOU).

FIGURE ANNEXE 2 : AJUSTEMENT AU SPECTROPHOTOMETRE DE L'INOCULUM PENDANT L'ESSAI DE PHENOTYPAGE DES RIL ET DES HD AU CAMEROUN.

FIGURE ANNEXE 3 : PHENOTYPAGE AU CAMEROUN : EXEMPLE DE NOTATION DE FLETRISSEMENT SUR HD.

FIGURE ANNEXE 4 : GEL DE SELECTION DE MARQUEURS POLYMORPHES ET ANCRAGE AVEC LES AUTRES CARTES PIMENTS. PER, CM, YW ET PM DESIGNENT RESPECTIVEMENT PERENIAL, CRIOLLO DE MORELOS 334, YOLO WONDER ET PM687.

FIGURE ANNEXE 5 : UN POINT DE COMMERCIALISATION DE PIMENT AU CAMEROUN (BABADJOU, ZAE 3).