P. .. Seeds and . ????????????????-??,

. ?????-??????, 2 2. Corolla with diffuse yellow spots at bases of lobes????????????????.??. C. baccatum 2. Corolla without diffuse yellow spots at bases of lobes???????????????, ???? C. pubescens 1. Seeds straw-coloured, corolla white or greenish white (rarely purple)

. Flowers-solitary?, . .. ????????????-?????, . ??, and . ???????, Corolla milky white, lobes usually straight, pedicels often declining at anthesis?, vol.7

C. ,

, Corolla greenish white, lobes usually slightly revolute, pedicels erect at anthesis

C. Frutescens,

, Flowers 2-more at each nodes

C. ,

, Pedicels declining at anthesis, corolla lobes straight??????????, Pedicels erect at anthesis, corolla lobes usually slightly revolute????? C. frutescens 9

M. Fegan and P. Prior, How complex is the "Ralstonia solanacearum species complex". Pages 449-462 in : Bacterial Wilt Disease and the Ralstonia solanacearum Species Complex, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02833579

M. Fegan and P. Prior, Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana, Australas.Plant Pathol, vol.35, pp.93-101, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666362

M. Fegan, M. Taghavi, L. I. Sly, and A. C. Hayward, Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. Pages 19-33 in : Bacterial Wilt Disease -Molecular and Ecological Aspects, INRA Editions, 1998.

W. J. Fouche, S. Poussier, D. D. Trigalet, D. Berger, and T. Coutinho, Molecular identification of some African strains of Ralstonia solanacearum from eucalypt, 2006.

, J. Gen. Plant Pathol. (Japan), vol.72, issue.6, pp.369-373

M. R. Gillings and P. Fahy, Genomic fingerprinting : Towards a unified view of the Pseudomonas solanacearum species complex. Pages 95-112 in : Bacterial Wilt : The Disease and Its Causative Agent, CAB International, 1994.

J. Gockowski, J. Mbazo'o, G. Mbah, F. Moulende, and T. , African traditional leafy vegetables and the urban and peri-urban poor, Food Policy, vol.28, pp.221-235, 2003.

V. Grimault and P. Prior, Grafting tomato cultivars resistant or susceptible to bacterial wilt : Analysis of resistance mechanisms, J. Phytopathol, vol.141, issue.3, pp.330-334, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02702584

A. Guidot, P. Prior, J. Schoenfeld, S. Carrere, S. Genin et al., Genomic structure and phylogeny of the plant pathogen Ralstonia solancearum inferred from gene distribution analysis, J. Bacteriol, vol.189, issue.2, pp.377-387, 2007.

P. M. Hanson, J. Wang, O. Lucardo, S. Y. Hanudin, G. L. Hartman et al., Variable reactions of tomato lines to bacterial wilt evaluated at several locations in South-East Asia, HortScience, vol.31, pp.143-146, 1996.

P. Ji, M. T. Momol, S. M. Olson, P. M. Pradhanang, and J. B. Jones, Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions, Plant Dis, vol.89, pp.497-500, 2005.

T. H. Jukes and C. R. Cantor, Evolution of protein molecules. Pages 21-132 in : Mammalian Protein Metabolism, 1969.

A. Kelman, The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on tetrazolium medium, Phytopathology, vol.44, pp.693-695, 1954.

F. Lemessa and W. Zeller, Isolation and characterisation of Ralstonia solanacearum strains from Solanaceae crops in Ethiopia, J. Basic Microbiol, vol.47, issue.1, pp.40-49, 2007.

W. Ludwig, O. Strunk, R. Westram, L. Richetr, H. Meier et al., ARB : A software environment for sequence data, Nucleic Acids Res, vol.32, issue.4, pp.1363-1371, 2004.

L. V. Madden and M. Wheelis, The threat of plant pathogens as weapons against U.S. crops, Annu. Rev. Phytopathol, vol.41, pp.155-176, 2003.

V. V. Michel and T. W. Mew, Effect of a soil amendment on survival of Ralstonia solanacearum in different soils, Phytopathology, vol.88, pp.300-305, 1998.

P. M. Pradhanang, P. Ji, M. T. Momol, S. M. Olson, J. L. Mayfield et al., Application of acibenzolar-S-methyl enhances host resistance in tomato against Ralstonia solanacearum, Plant Dis, vol.89, pp.989-993, 2005.

P. Prior and M. Fegan, Recent development in the phylogeny and classification of Ralstonia solanacearum, ISHS-Acta Hortic. 28. Prior, P., and Fegan, M. 2005. Recent developments in the phylogeny and classification of Ralstonia solanacearum, vol.695, pp.127-136, 2005.

P. Prior, V. Grimault, and J. Schmit, Resistance to bacterial wilt (Pseudomonas solanacearum) in tomato : Present status and prospects. Pages 209-224 in : Bacterial wilt : The disease and its causative agent, CAB International, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02848189

L. X. Ran, C. Y. Liu, G. J. Wu, L. C. Loon, and P. A. Bakker, Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China, Biol. Control, vol.32, issue.1, pp.111-120, 2005.

A. E. Robertson, Factors affecting the population of Ralstonia solanacearum in a naturally infested field planted to tobacco. Pages 369-373 in : Bacterial Wilt Disease : Molecular and Ecological Aspects, 1998.

N. Saitou and M. Nei, The neighborjoining method : A new method for reconstructing phylogenetic trees, Mol. Biol. Evol, vol.4, pp.406-425, 1987.

A. Sanchez-perez, L. Mejia, M. Fegan, A. , and C. , Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurence of tomato fruit infection, Plant Pathol, vol.57, pp.1-12, 2008.

J. Schönfeld, A. Gelsomino, L. V. Overbeek, A. Gorissen, K. Smalla et al., Effects of compost addition and simulated solarisation on the fate of Ralstonia solanacearum biovar 2 and indigenous bacteria in soil, FEMS Microbiol. Ecol, vol.43, pp.63-74, 2003.

J. J. Smith, L. C. Offord, M. Holderness, and G. S. Saddler, Genetic diversity of Burkholderia solanacearum (synonym Pseudomonas solanacearum) race 3 in Kenya, Appl. Environ. Microbiol, vol.61, pp.4263-4268, 1995.

J. J. Smith, L. C. Offord, G. N. Kitaba, Z. K. Murimi, A. Trigalet et al., The development of biological control agents against Ralstonia solanacearum race 3 in Kenya. Pages 306-308 in : Bacterial Wilt Disease : Molecular and Ecological Aspects, 1998.

;. Mangin and . Carmeille, Ceux-ci concernent les caractères D10G1, A20G2, A50G2, AfG2 et A50C, certes avec des effets faibles. Ceci dénote une bonne stabilité de ces QTLs à travers les environnements et les phylotypes ; (3) seul 23,6 cM (15% en référence à Wu et al, 2009) du chromosome P4 ont été couverts à travers la carte partielle qui a été produite dans le cadre de cet essai. L'effet faible noté chez ces QTLs peut s'expliquer par la nature en cloche des QTLs, la partie cartographiée pourrait ainsi se trouver dans la vicinité du QTL hypothétique; (4) la dernière explication peut aussi venir de la faiblesse du nombre d'individus génotypés (51) par le marqueur pvr2 dans la population de HD. Ces faits mis ensemble nous amènent à conclure que même si n'avons pas pu cartographier un QTL à effet fort sur le chromosome P4 du piment dans la population des HD, nous ne pouvons pas non plus affirmer l'inexistence d'un QTL sur ledit chromosome dans la population des HD, Cependant, les études de Mangin et Wang n'ont par exemple pas détecté de QTLs sur T4 alors que ce fut le cas dans celles de Carmeille et Toquet, 1999.

, Par contre un QTL a été détecté chez les deux parents sur le chromosome P9, bien que celui-ci montre un effet faible dans les deux cas. Les seuls QTLs à effets forts chez le piment ont été localisés sur le chromosome P4, dont l'un dans une région de génome correspondant à la région porteuse d'un QTL à effet faible sur le chromosome T3. On peut noter que ces deux régions chromosomiques avaient déjà été démontrées pour leur synténie vis-à-vis de la résistance aux nématodes pour P9-T12 (Djian-Caporalino, 2007) et pour la résistance aux potyvirus sur, Considérant l'hypothèse de synténie entre les genres Capsicum (piment) et Solanum (tomate, aubergine, pomme de terre), la réponse reste également partielle. Sous l'hypothèse de synténie, on pouvait attendre des QTLs à effets forts, sur le chromosome P6 ainsi que P12, pp.4-7, 2002.

, Il reste donc nécessaire pour la recherche de QTLs de résistance à R. solanacearum chez les Solanacées, de réaliser une carte complète sans a priori sur les régions ciblées

L. Barchi, V. Lefebvre, A. Sage-palloix, S. Lanterri, and A. Palloix, QTL analysis of plant development and fruit traits in pepper using selective phenotyping, Theor Appl Genet, vol.118, pp.1157-1171, 2009.

B. Chaim, A. Borovsky, Y. , D. Jong-w-and-paran, and I. , Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper, Theor Appl Genet, vol.106, pp.889-894, 2003.

B. Chaim, A. Grube, R. C. Lapidot, M. , J. M. Paran et al., Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum, Theor Appl Genet, vol.102, pp.1213-1220, 2001.

B. Chaim, A. Paran, I. Grube, R. Jahn, M. Van-wijk-r-and-peleman et al., QTL mapping of fruit-related traits in pepper (Capsicum annuum), Theor Appl Genet, vol.102, pp.1016-1028, 2001.

F. Bertolla, F. Van-gijsegem, N. X. Simonet, and P. , Conditions for natural transformation of Ralstonia solanacearum, Applied and Environmental Microbiology, vol.63, pp.4965-4968, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02686008

F. Bertolla, A. Frostegard, B. Brito, N. X. Simonet, and P. , During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material, Mol. Plant-Microbe Interactions, vol.12, pp.467-472, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02868613

E. Blum, M. Mazourek, M. Curry, J. Thorup, T. Liu et al., Molecular mapping of capsaicinoid biosynthesis gene and quantitative trait locis analysis for capsaicinoid content in Capsicum, Theor Appl Genet, vol.108, pp.79-86, 2003.

M. W. Bonierbale, R. L. Plaisted, and S. D. Tanksley, RFLP maps based on a common set of clone reveal modes of chromosomal evolution in potato and tomato, Genetics, vol.120, pp.1095-1103, 1988.

D. Botstein, R. L. White, S. M. Davis, and R. W. , Construction of a genetic linkage map in man using restriction fragment length polymorphisms, Am J Hum Genet, vol.32, pp.314-331, 1980.

C. A. Boucher, G. Cl, and M. Arlat, Molecular genetics of pathogenicity determinants of Pseudomonas solanacearum with special emphasis on hrp genes, Ann. Rev. Phytopathol, vol.30, pp.443-461, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02711980

G. Breuils and E. Pochard, Essai de fabrication de l'hybride de piment 'Lamuyo-INRA' avec l'utilisation d'une stérilité mâle génique (ms 509), Ann. Amélior. Plantes, vol.25, pp.309-409, 1975.

D. J. Brouwer, E. S. Jones, . St, and D. A. Clair, QTL analysis of quantitative resistance to Phytophthora infestans (late bligth) in tomato and comparisons with potato, Genome, vol.47, pp.475-492, 2004.

D. J. Brouwer, . St, and D. A. Clair, Fine mappingof three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs, Theor Appl Genet, vol.108, pp.628-638, 2004.

I. W. Buddenhagen, Bacterial wilt revisited, Bacterial wilt disease in Asia and the South Pacific: proceedings of an international workshop held at PCARRD, pp.126-143, 1985.

I. W. Buddenhagen and T. A. Elsasser, An insect-spread bacterial wilt epiphytotic of bluggoe banana, Nature, vol.194, pp.164-165, 1962.

B. Iw and A. Kelman, Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum, Annual Review of Phytopathology, vol.2, pp.203-230, 1964.

I. W. Buddenhagen, S. L. Kelman, and A. , Designation of races in Pseudomonas solanacearum, Phytopathology, vol.52, p.726, 1962.

C. M. Busolo-bulafu, Resistance to bacterial wilt in Uganda, Bacterial wilt disease: molecular and ecological aspects, pp.306-308, 1998.

C. Caranta, A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to pepper veinal mottle virus, Phytopathology, vol.86, pp.739-743, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02696956

C. Caranta, V. Lefebvre, and A. Palloix, Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broard-spectrum quantitative trait loci, Mol. Plant-Microbe Interact, vol.10, pp.872-878, 1997.

A. Carmeille, C. Caranta, J. Dintinger, P. Prior, L. J. Besse et al., Identification of QTL for Ralstonia solanacearum race 3-phylotype II resistance in tomato, Theor Appl Genet, 2006.

A. Carmeille, P. Prior, H. Kodja, F. Chiroleu, L. J. Besse et al., Evaluation of resistance to race 3, biovar 2 of Ralstonia solanacearum in tomato germplasm, Journal of phytopathology, vol.154, pp.398-402, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02667990

C. Charron, M. Nicolai, J. L. Gallois, C. Robaglia, B. Moury et al., Natural variation and functional analyses provide evidence for coevolution between plant eIF4E and potyviral VPg, The Plant Journal, vol.54, pp.56-68, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02751888

D. Cook, E. Barlow, and L. Sequeira, Genetic diversity of Pseudomonas solanacearum : detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response, Molecular Plant-Microbe Interactions, vol.2, pp.113-121, 1989.

W. G. D'arcy, The solanaceae since 1976, with a review of its biography, Royal Botanic Gardens Kew and Linnean Society of London, 1991.

, De Candolle A. 1883. L'origine des plantes cultivées

D. Jong, W. S. Eannetta, N. T. , D. Jong, and M. Bodis, Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae, Theor Appl Genet, vol.108, pp.423-432, 2004.

P. Deberdt, Analyse de la résistance au flétrissement bactérien (Ralstonia solanacearum-Race 1) gouverné par le chromosome 6 de la tomate, p.195, 1999.

P. Deberdt, P. Quénéhervé, D. A. Prior, and P. , Increased susceptibility to bacterial wilt in tomatoes by nematode galling and the role of the Mi gene in resistance to nematodes and bacterial wilt, Plant Pathology, vol.48, pp.408-414, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02696799

T. P. Denny, B. Carney, and M. A. Schell, Inactivation of multiple virulence genes reduces the ability of Pseudomonas solanacearum to cause wilt symptoms, Mol. Plant-Microbe Interact, vol.3, pp.293-300, 1990.

L. Deslandes, P. Frédéric, L. Laurence, C. Sylvie, C. Canan et al., Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum, The American Phytopathological Society, vol.11, pp.659-665, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02689557

D. Caffier and D. , Alerte face à une redoutable maladie des Solanacées, La Défense des Végétaux, vol.482, pp.33-37, 1996.

C. Djan-caporalino, L. Pijarowski, A. Fazari, M. Samson, L. Gaveau et al., High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me 3 and Me 4 loci conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp, Theor Appl Genet, vol.103, pp.592-600, 2001.

C. Djian-caporalino, L. Pijarowski, A. Januel, V. Lefebvre, A. M. Daubeze et al., Spectrum of resistance to root-knot nematodes and inheritance of heatstable resistance in pepper (Capsicum annuum L.), Theor Appl Genet, vol.99, pp.496-502, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02695758

C. Djian-caporalino, A. Fazari, ·. Arguel, . Mj, T. Vernie et al., Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome, Theor Appl Genet, vol.14, pp.473-486, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02756920

S. Doganlar, A. Frary, M. C. Daunay, R. N. Lester, and S. D. Tanksley, A compartive genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae, Genetics, vol.161, pp.1697-1711, 2002.

C. Dogimont, A. Palloix, A. M. Daubeze, G. Marchoux, and P. E. Gebre-selassie-k, Genetic analysis of broad spectrum resistance to potyviruses using doubled haploid lines of pepper (Capsicum annuum), Euphytica, vol.88, pp.231-239, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02696762

P. Duffe, S. Gebre, G. P. Grima, and A. , , 1989.

, Procédés de désinfection efficaces contre virus et bactéries, étude de mise au point. PMH Revue Horticole, vol.298, pp.59-63

O. Dufour, A. Palloix, K. Gebre-selassie, E. Pochard, and G. Marchoux, The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper, Can J Bot, vol.67, pp.655-660, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02726775

J. G. Elphinstone, The current bacterial wilt situation: a global overview, Bacterial wilt disease and the Ralstonia solanacearum species complex, pp.9-28, 2005.

W. H. Eshbaugh, The taxonomy of the genus Capsicum-Solanaceae, Thirth Eucarpia Meeting on Genetics and Breeding of Capsicum and Eggplant, 1977.

M. Fegan, G. Hollway, H. Ac, and J. Timmis, Development of a diagnostic test based upon the polymerase chain reaction (PCR) to identify strains of Ralstonia solanacearum exhibiting the biovar 2 genotype, Bacterial Wilt Disease: Molecular and Ecological Aspects, pp.34-43, 1998.

M. Fegan and P. Prior, How complex is the "Ralstonia solanacearum species complex, Bacterial wilt disease and the Ralstonia solanacearum species complex, pp.449-462, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02833579

M. Fegan and P. Prior, Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana, Australasian Plant Pathology, vol.35, pp.93-101, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666362

M. Fegan, M. Taghavi, L. Sly, and H. , Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum, Bacterial wilt disease -Molecular and ecological aspects, pp.19-33, 1998.

, Food and Agricultural Organisation

U. Franceschetti, Natural cross pollination in pepper (Capsicum annuum L, 1971.

, Eucarpia Meeting on Genetic and Breeding of Capsicum

N. M. Frank, Development of alternative strategies for managment of soil borned pathogens currently controlled with methyl bromide, Annual Review of Phytopathology, vol.41, pp.325-350, 2003.

A. Frary, T. M. Fulton, D. Zamir, and S. D. Tanksley, Advanced backcroo QTL analysis of a Lycopersicon esculentum x L. pennellii cross and identification of possible orthologs in the Solanaceae, Theor Appl Genet, vol.108, pp.485-496, 2004.

T. M. Fulton, C. J. Tankley, and S. D. , Microprep protocol for extraction of DNA from tomato and other herbaceous plants, Plant Mol. Biol. Rep, vol.13, pp.207-209, 1995.

T. M. Fulton, R. Van-der-hoeven, E. Nt, and S. D. Tankley, Identification, analysis, and utilization of conserved ortholog set markers for comparartive genomics in higher plants, Plant Cell, vol.14, pp.1457-1467, 2002.

A. Callais and H. Bannerot, Amélioration des espèces végétales cultivées, INRA ed, 147, rue de l'Université-75007 Paris, p.768, 1992.

S. Genin, C. L. Gough, C. Zischek, and C. A. Boucher, Evidence that the HrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum, Molecular Microbiology, vol.6, pp.3065-3076, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02701894

G. Mr and P. Fahy, Genomic Fingerprinting: towards a unified view of the Pseudomonas solanacarum species complex, Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum, pp.95-112, 1994.

G. Ndoumbe and N. M. , An analysis of horticultural production and marketing systems in the forest margins ecoregional benchmark of southern Cameroon, Resource and Crop Management Research Monograph, 1999.

J. Gockowski, J. Mbazo'o, M. G. , F. Moulende, and T. , African traditional leafy vegetables and the urban and peri-urban poor, Food policy, vol.28, pp.221-235, 2003.

G. Ga and L. Sequira, Survival of Pseudomonas solanacearum in soil, rhizosphère and plant roots, Canadian Journal of Microbiology, vol.29, pp.433-440, 1983.

S. K. Green and J. S. Kim, Characteristics and control of viruses infecting peppers: A literature review. Asian Vegetable Research and Development Centre, Technical Bulletin, p.18, 1991.

W. H. Greenleaf, Pepper breeding, Breeding Vegetable Crops, pp.67-134, 1986.

V. Grimault, A. G. Prior, and P. , Distribution of Pseudomonas solanacearum in the stem tissues of tomato plants with different levels of resistance to bacterial wilt, Plant Pathology, vol.43, pp.663-668, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02700893

V. Grimault and P. Prior, Bacterial wilt resistance in tomato is associated with tolerance of vascular tissues to Pseudomonas solanacearum, Plant Pathology, vol.42, pp.589-594, 1993.

V. Grimault and P. Prior, Grafting tomato cultivars resistant or susceptible to bacterialwilt: Analysis of resistance machanisms, J. Phytophathology, vol.141, pp.330-334, 1994.

V. Grimault and P. Prior, Invasiveness of Pseudomonas solanacearum in tomato, eggplant and pepper: a comparative study, European Journal of Plant Pathology, vol.100, pp.259-267, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02701242

R. C. Grube, R. Er, and M. Jahn, Identification and comparative mapping of dominant Potyvirus resistance gene cluster in Capsicum, Theor Appl Genet, vol.101, pp.852-859, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02695631

R. C. Grube, R. E. , and M. J. , Comparative Genetics of Disease Resistance Within the Solanaceae, Genetics, vol.155, pp.873-887, 2000.

A. Guidot, P. Prior, J. Schoenfeld, S. Carrere, G. S. Boucher et al., Genomic structure and phylogeny of the plant pathogen Ralstonia solancearum inferred from gene distribution analysis, Journal of Bacteriology, vol.189, pp.377-387, 2007.

J. Guo, H. Qi, -. Guoy, H. Ge, L. Gong et al., Biocontrol of tomato wilt by plant growth-promoting rhizobacteria, Biological Control, vol.29, pp.66-72, 2004.

J. Haldane, The combination of linkage values, and the calculation of distance between loci of linked factors, J Genet, vol.8, pp.299-309, 1919.

J. Haldane, The mapping function, J. Genet, vol.8, pp.299-309, 1919.

A. C. Hayward, Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum, Annual Review of Phytopathology, vol.29, pp.65-87, 1991.

L. Y. He, S. L. Kelman, and A. , Characteristics of strains of Pseudomonas solanacearum, Plant Disease, vol.67, pp.1357-1361, 1983.

P. G. Hoffman, P. C. Lego, and . Galettowg, Separation and quantification of red pepper major heat principles by reverse-phase high-pressure liquid chromatography, J. Agric. Food Chem, vol.31, pp.1326-1330, 1983.

S. Huang, E. Van-der-vossen, H. Kuang, V. Vleeshouwers, N. Zhang et al., Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato, The Plant Journal, vol.42, pp.241-261, 2005.

S. Huang, V. G. Vleeshouwers, J. S. Werij, R. C. Hutten, H. J. Van-eck et al., The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities, Mol. Plant-Microbe Interact, vol.17, pp.428-435, 2004.

J. H. Huh, B. C. Kang, S. H. Nahm, S. Kim, K. S. Ha et al., A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp, Theor Appl Genet, vol.102, pp.524-530, 2001.

R. Ihaka-r-and-gentleman, R: a language for data analysis and graphics, Journal of Computational and Graphical Statistics, vol.5, pp.299-314, 1996.

A. Ipgri and C. , Descriptor for Capsicum spp. International Plant Genetic Ressources Institute, 1995.

M. Jahn, I. Paran, K. Hoffmann, E. R. Radwanski, K. D. Livingstone et al., Genetic mapping of the Tsw locus for resistance to the Tospovirus Tomato Spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato, Moleclar Plant-Microbe Interaction, vol.13, pp.673-682, 2000.

B. Janzac, M. F. Fabre, M. B. Palloix, and A. , Phenotype and spectrum of action of the Pvr4 resistance in pepper against potyviruses and selection for virulent variants, Plant Pathology, vol.58, pp.443-449, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667731

P. Ji, M. T. Momol, S. Olson, P. Pm, and J. B. Jones, Evaluation of thymol as biofumigant for control of bacterial wilt of tomato under field conditions, Plant Disease, vol.89, pp.497-500, 2005.

J. Th and C. R. Cantor, Evolution of protein molecules, Mammalian protein metabolism, pp.21-132, 1969.

A. Kanda, S. Ohnishi, H. Tamiyama, H. Hasegawa, M. Yasukohchi et al., Type III secretion machinary-deficient mutants of Ralstonia solanacearum lose their ability to colonize resulting in loss of pathogenicity, J Gen Plant Pathol, vol.69, pp.250-257, 2000.

A. Kelman, The bacterial wilt caused by Pseudomonas solanacearum. A literature review and bibliography, N. Dak. Agr. Exp. Sta. Bul, vol.1, pp.1-194, 1953.

A. Kelman, The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium chloride medium, Phytopathology, vol.44, pp.693-695, 1954.

L. T. Laferriere, H. Jp, and A. C. , Fertile Solanum tuberosum+S. commersonii somatic hybrids as sources of reristance to bacterial wilt caused by Ralstonia solanacearum, Theor Appl Genet, vol.98, pp.1272-1278, 1999.

D. Lafortune, M. Béramis, A. M. Daubèze, N. Boissot, and A. Palloix, Partial resistance of pepper to bacterial wilt is oligogenic and stable under the tropical conditions, Plant Disease, vol.89, pp.501-506, 2005.

E. S. Lander, P. Geen, J. Abrahamson, A. Barlow, M. J. Daly et al., Mapmaker: an interactive computer package for constructing primary gentic linkage maps of experimental and natural populations, Genomics, vol.1, pp.174-181, 1987.

M. Lavie, B. Seunes, P. P. Boucher, and C. , Distribution and sequence analysis of a family of type III-dependent effectors correlate with the phylogeny of Ralstonia solanacearum strains, Moleclar Plant-Microbe Interactions, vol.17, pp.931-940, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02683276

V. Lefebvre, Molecular markers for genetics and breeding: development and use in pepper (Capsicum spp.). In Biotechnology in Agriculture and Forestry, Molecular Marker Systems in plant Breeding and Crop improvement, pp.189-214, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02834251

V. Lefebvre, A. M. Daubèze, J. R. Van-der-voort, J. Peleman, B. M. Palloix et al., QTLs for resistance to powdery mildew in pepper under natural and artificial infections, Theor Appl Genet, vol.107, pp.661-666, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02681019

V. Lefebvre, M. Kuntz, C. B. Palloix, and A. , The capsanthin-capsorubin synthase gene: a candidate gene for the locus controlling the red fruit color in pepper, Plant Molecular Biology, vol.36, pp.785-789, 1998.

V. Lefebvre and A. Palloix, Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper, Phytophthora capsici Leonian Theor Appl Genet, vol.93, pp.503-511, 1996.
URL : https://hal.archives-ouvertes.fr/hal-02687199

D. Leister, J. Kurth, D. A. Laurie, M. Yano, T. Sasaki et al., Rapid reorganisation of resistance gene homologues in cereal genomes, Proc. Natl. Acad. Sci, vol.95, pp.370-375, 1998.

L. Zeller and W. , Isolation and characterisation of Ralstonia solanacearum strains from Solanaceae crops in Ethiopia, Journal of Basic Microbiology, vol.47, pp.40-49, 2007.

K. D. Livingstone, V. K. Lackney, J. R. Blauth, W. Van-rik, and M. K. Jahn, , 1999.

, Genome Mapping in Capsicum and the Evolution of Genome Structure in the Solanaceae, Genetics, vol.152, pp.1183-1202

W. Ludwig, O. Strunk, R. Westram, L. Richetr, H. Meier et al., ARB: a software environment for sequence data, Nucleic Acids Research, vol.32, pp.1363-1371, 2004.

. Madden and M. Wheelis, The threat of plant pathogens as weapons against U.S. crops, Ann. Rev. Phytopathol, vol.41, pp.155-176, 2003.

M. Somo-toukam, G. Cellier, G. Wicker, E. Guilbaud, C. Kahane et al., Broad diversity of Ralstonia solanacearum strains in Cameroon, Plant Disease, vol.93, pp.1123-1130, 2009.

C. Martin, F. E. Nydegger, and U. , Bacterial wilt of potatoes in Amazon Bassin, Plant Disease, vol.65, pp.245-248, 1981.

K. Mather and J. L. Jinks, Biometrical genetics, 1982.

M. Susan and R. , Genomics and Synteny. Plant Physiology, vol.125, pp.152-155, 2001.

M. Ba and C. Linde, Pathogen population genetics, evolutionary potential, and durable resistance, Annu. Rev. Phytopathol, vol.40, pp.349-379, 2002.

T. C. Miftahudin, K. Ross, G. J. Scoles, and J. P. Gustafson, Targeting the aluminium tolerance gene Alt3 region in rye, using rice/rye micro-colinearity, Theor Appl Genet, vol.110, pp.906-913, 2005.

H. Mitsuo and T. Kenichi, Genetic Diversity of japanese strains of Ralstonia solanacearum, Bacteriology, vol.91, pp.399-407, 2001.

G. Moore, K. M. Devos, W. Z. Gale, and M. D. , Grasses, line up and form a circle, Current Biology, vol.5, pp.737-739, 1995.

B. Moury, G. Selassie, K. , M. G. Palloix, and A. , High temperatue effects on hypersensitive resistance to tomato spotted wilt tospovirus (TSWV) in pepper (Capsicum chinense Jacq.) Eur, J. Phytopathol, vol.104, pp.489-498, 1997.

B. Moury, A. Palloix, G. Selassie-k-and-marchoux, and G. , L'émergence des tospovirus, Virologie, vol.2, pp.357-367, 1997.

R. Nono-womdim, K. Gebre-selassie, A. Palloix, E. Pochard, and G. Marchoux, , 1993.

, Study of multiplication of cucumber mosaic virus in susceptible and resistant Capsicum annuum lines, Annals of Applied Biology, vol.122, pp.49-56

C. Netscher and R. A. Sikora, Nematode parasites of vegetables, Plant parasitic Nematodes in subtropical and tropical agriculture, pp.237-283, 1990.

O. Ml and A. M. Poter, A study of natural crossing in pepper, Capsicum frutescens, Proc. Am. Soc. Hortic. Sci, vol.38, pp.585-588, 1941.

. Oempp, Ralstonia solanacearum, Bulletin OEPP/EPPO, vol.34, pp.173-178, 2004.

A. Ooshiro, K. Takaezu, M. Natsume, S. Taba, K. Nasu et al.,

, Identification and use of a wild plant with antimicrobial activity against Ralstonia solanacearum, the cause of bacterial wilt of potato, Weed Biology, vol.4, pp.187-194

N. Opina, F. Tavner, G. Hollway, J. Wang, T. Li et al., A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum), Asia Pacific Journal of Molecular Biology and Biotechnology, vol.5, pp.19-30, 1997.

G. Orgambide, H. Montrozier, P. Servin, J. Roussel, . Trigalet-demery-d et al., High heterogeneity of the exopolysaccharides of Pseudomonas solanacearum strain GMI1000 and the complete structure of the major polysaccharide, J Biol Chem, vol.266, pp.8312-8321, 1991.
URL : https://hal.archives-ouvertes.fr/hal-02704793

A. Palloix, Le piment, Genetic Resources, Chromosome Engineering, and Crop Improvement, pp.187-245, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02851625

A. Palloix, A. M. Daubeze, E. Pochard, P. M. Foury, and C. , Histoire de Légumes. De l'origine à l'orée du XXI e siècle, pp.278-290, 2004.

A. Palloix, V. Ayme, and B. Moury, The durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies, New Phytologist, vol.183, pp.190-199, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02665455

Q. Pan, Y. Liu, O. Budai-hadrian, M. Sela, L. Carmel-goren et al., Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis, Genetics, vol.155, pp.309-322, 2000.

G. Parrella, S. Ruffel, A. Moretti, and A. Palloix, Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes, Theor Appl Genet, vol.105, pp.855-861, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680905

B. Pickersgill, The domestication of chili peppers, The domestication and exploitation of plants and animals, pp.443-450, 1969.

J. Plaschke, A. Boerner, D. X. Xie, R. Koebner, R. Schlegel et al., RFLP mapping of genes affecting plant height and growth habit in rye, Theor Appl Genet, vol.85, pp.1049-1054, 1993.

E. Pochard, Description des trisomiques de piment (Capsicum annuum L.) obtenus dans la descendance d'une plante haploïde, Ann. Amélior. Plantes, vol.20, pp.233-256, 1970.

E. Pochard, P. A. Daubèze, and A. M. , Le piment, Amélioration des espèces végétales cultivées, pp.420-434, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02851625

S. Poussier, P. Thoquet, D. Trigalet-demery, S. Barthet, D. Meyer et al., Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China, Biological Control, vol.32, issue.1, pp.111-120, 2003.

R. Bk and G. B. Martin, Ancient origin of pathogen recognition specificity conferred by tomato disease resistance gene Pto, Proc. Natl. Acad. Sci. USA, vol.98, pp.2059-2064, 2001.

D. P. Roberts, T. P. Denny, and M. A. Schell, Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in pathogenicity, J Bacteriology, vol.170, pp.1445-1451, 1988.

A. E. Robertson, Factors affecting the population of Ralstonia solanacearum in a naturally infested field planted to tobacco, Bacterial wilt disease: molecular and ecological aspects, pp.369-373, 1998.

S. Ruffel, M. H. Dussault, A. Palloix, B. Moury, A. Bendahmane et al., A natural recessive resistance gene against potato virus Y correspond to the eukaryotic initiation factor 4E (eIF4E), Plant Journal, vol.32, pp.1067-1075, 2002.

S. Ruffel, J. L. Gallois, L. Ml, and C. Caranta, The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-elF4E gene, Mol Gen Genomics, vol.274, pp.346-353, 2005.

E. Saile, J. A. Mcgarvey, M. A. Schell, and T. P. Denny, Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by, Phytopathology, vol.87, pp.1264-1271, 1997.

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular Biology Evolution, vol.4, pp.406-425, 1987.

J. Salse, B. Piégu, C. R. Delseny, and M. , New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome, The Plant Journal, vol.38, pp.396-409, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00168790

A. Sanchez-perez, L. Mejia, F. M. , and A. C. , Diversity and distribution of Ralstonia solanacearum strains in Guatemala and rare occurence of tomato fruit infection, Plant Pathology, vol.57, pp.1-12, 2008.

M. A. Schell, To be or not to be: how Pseudomonas solanacearum decides whether or not to express virulence genes, Eurpean Journal of plant Pathology, vol.102, pp.459-469, 1996.

E. F. Smith, A bacterial disease of tomato, pepper,eggplant and Irish potato (Bacillus solanacearum sp, 1896.

, United States Department of Agriculture, Division of Vegetable Physiology and Pathology, Bulletin, vol.12, pp.1-28

J. J. Smith, L. Offord, H. M. Saddler, and G. S. , Genetic diversity of Burkholderia solanacearum (synonym Pseudomonas solanacearum) race 3 in Kenya, Applied and Environmental Microbiology, vol.61, pp.4263-4268, 1995.

J. W. Snape, W. Aj, and E. Simpson, Methods for determining the gene numbers for quantitative characters using double haploid lines, Theor Appl Genet, vol.67, pp.143-148, 1984.

A. Somos, The paprika, 1984.

S. Stracke, S. Sato, N. Sandal, M. Koyama, T. Kaneko et al., Resistance of tomato line Hawaï7996 to Ralstonia solanacearum Pss4 in Taïwan is controlled mainly by a major strain-spacific locus, Mol. Plant-Microbe Interact, vol.13, pp.6-13, 2000.

J. F. Wang, H. Pm, and J. A. Barnes, Worldwide evaluation of international set of resistance sources to bacterial wilt in tomato. Pages 269-275, Bacterial Wilt Disease: Molecular and Ecological Aspects, pp.34-43, 1998.

L. H. Wang, B. X. Zhang, V. Lefebvre, S. W. Huang, D. Am et al., QTL analysis of fertility restoration in cytoplasmic male sterile pepper, Theor Appl Genet, vol.109, pp.1058-1063, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02672228

W. Nn and A. Kelman, Inoculation techniques for evaluating resistance to Pseudomonas solanacearum, Phytopathology, vol.42, pp.628-634, 1952.

C. R. Woese, Evolution-Interpreting the universal phylogenic tree, Proceedings of the National Academy of Sciences of the United States of America, vol.97, pp.8392-8396, 2000.

F. Wu, N. T. Eannetta, Y. Xu, R. Durrett, M. Mazourek et al.,

, A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum, Theor Appl Genet, vol.118, pp.1279-1293

E. Wydra-k-and-dannon, Silicon as inducer of resistance in tomato against Ralstonia solanacearum, Bulletin OILB/SROP, vol.29, pp.91-96, 2006.

E. Yabuuchi, Y. Kosako, H. Oyaizu, I. Yano, H. Hotta et al., Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov. Microbiology and Immunology, vol.36, pp.1251-1275, 1992.

E. Yabuuchi, Y. Kosako, I. Yano, H. H. Nishiuchi, and Y. , Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia picketti (Ralston, Palleroni and Douderoff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha, nov. Microbiology and Immunology, vol.39, pp.897-904, 1969.

J. Y. Yoon, S. K. Green, A. T. Tschanz, S. Tsou, and L. C. Chang, Pepper improvement for the tropics: problems and the AVRDC approach, Tomato and pepper production in the Tropics, Proc. Int. Sympos. Integrated management practices, pp.86-98, 1989.

Y. Dh and L. Sequeira, Binding of Pseudomonas solanacearum fimbriae to tobacco leaf cell walls and its inhibition by bacterial extracellular polysaccharides, Physiol. Mol. Plant Pathol, vol.28, pp.393-402, 1986.

Z. Hh and Q. Yao, Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum, J. Phytophathology, vol.152, pp.537-542, 2004.

S. Zygier, B. Chaim, A. B. Efrati, G. Kaluzky, Y. Borovsky et al., QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and comparison of the pepper QTL map with that of tomato, Theor Appl Genet, vol.111, pp.437-445, 2005.

, Dosage natif de l' Dosage natif de l' Dosage natif de l' Dosage natif de l'ADN ADN ADN ADN génomique des feuilles de génomique des feuilles de génomique des feuilles de génomique des feuilles de piment, INRA AVIGNON) INRA AVIGNON) INRA AVIGNON, vol.3

, Faire une dilution au 1/100 des échantillons à doser dans de l'eau distillée stérile. Laisser au minimum 4h à 4 °C) pour que l'ADN se mélange bien

, Préparer les échantillons dans une plaque Elisa. avec du Lambda dilué à 10ng/µl. Par exemple 10, 20, 30, 40, 50 ng. Préparer autant de gamme qu'il y a de peigne

, Déposer sur gel TAE 1 X, agarose 1%

A. Cameroun, FIGURE ANNEXE, vol.2

P. Hd, FIGURE ANNEXE, vol.3