J. Abadin, S. J. Gonzalez-prieto, L. Sarmiento, M. C. Villar, and T. Et-carballas, Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes, Soil Biology & Biochemistry, vol.34, pp.1739-1748, 2002.

M. K. Abbasi and W. A. Adams, Gaseous N emission during simultaneous nitrificationdenitrification associated with mineral N fertilization to a grassland soil under field conditions, Soil Biology & Biochemistry, vol.32, pp.1251-1259, 2000.

T. M. Addiscott, Kinetics and temperature relationships of mineralization and nitrification in Rothamsted soils with differing histories, Journal of Soil Science, vol.34, pp.343-353, 1983.

S. Agele, B. Ewulo, and I. Et-oyewusi, Effects of Some Soil Management Systems on Soil Physical Properties, Microbial Biomass and Nutrient Distribution Under Rainfed Maize Production in a Humid Rainforest Alfisol, Nutrient Cycling in Agroecosystems, vol.72, pp.121-134, 2005.

G. I. Agren and E. Bosatta, Reconciling differences in predictions of temperature response of soil organic matter, Soil Biology & Biochemistry, vol.34, pp.129-132, 2002.

O. Andren and K. Paustian, Barley straw decomposition in the field: a comparison of models, Ecology, vol.68, pp.1190-1200, 1987.

O. Andren, E. Steen, and K. Rajkai, Modeling the Effects of Moisture on Barley Straw and Root Decomposition in the Field, Soil Biology & Biochemistry, vol.24, pp.727-736, 1992.

A. Andriulo, J. Guerif, and B. Et-mary, Evolution of soil carbon with various cropping sequences on the rolling pampas. Determination of carbon origin using variations in natural 13C abundance, Agronomie, vol.19, pp.349-364, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00885936

T. Appel, Non-biomass soil organic N -the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl 2 -extractable upon soil drying, Soil Biology & Biochemistry, vol.30, pp.1445-1456, 1998.

T. Appel and F. Xu, Extractability of N-15-Labeled Plant Residues in Soil by Electroultrafiltration, Soil Biology & Biochemistry, vol.27, pp.1393-1399, 1995.

M. S. Aulakh, D. A. Rennie, and E. A. Paul, Gaseous nitrogen losses from cropped and summer-fallowed soils, Canadian Journal of Soil Science, vol.62, pp.187-196, 1982.

D. Baize, Guide des analyses pédologiques, INRA éditions, pp.1-257, 1988.

J. Balesdent and S. Recous, Les temps de residence du carbone et le potentiel de stockage de carbone dans quelques sols cultivés français, Canadian Journal of Soil Science, vol.77, pp.187-193, 1997.

A. R. Barbhuiya, A. Arunachalam, H. N. Pandey, K. Arunachalam, M. L. Khan et al., Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest, European Journal of Soil Biology, vol.40, pp.113-121, 2004.

E. Beauchamp, W. Reynolds, D. Brasche-villeneuve, and K. Kirby, Nitrogen mineralization kinetics with different soil pretreatments and cropping histories, Soil Sci Soc Am J, vol.50, pp.1478-1483, 1986.

S. J. Bechtold and R. J. Naiman, Soil texture and nitrogen mineralization potential across a riparian toposequence in a semi-arid savanna, Soil Biology & Biochemistry, vol.38, pp.1325-1333, 2006.

D. Benbi, C. Biswas, and J. Et-kalkat, Nitrate distribution and accumulation in an Ustochrept soil profile in a long term fertilizer experiment, Fertilizer Research, vol.28, pp.173-177, 1991.

I. Bertrand, O. Delfosse, and B. Mary, Carbon and nitrogen mineralization in acidic, limed and calcareous agricultural soils: apparent and actual effects, Soumis à Soil Biology & Biochemistry, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02666547

N. J. Bradbury, A. P. Whitmore, P. Hart, and D. S. Et-jenkinson, Modeling the Fate of Nitrogen in Crop and Soil in the Years Following Application of N-15-Labeled Fertilizer to Winter-Wheat, Journal of Agricultural Science, vol.121, pp.363-379, 1993.

J. Bremner, Nitrogen Availability indexes. In: Black C (ed) Methods of soil analysis, pp.1324-1345, 1965.

N. Brisson, B. Mary, D. Ripoche, M. H. Jeuffroy, F. Ruget et al., STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn, Agronomie, vol.18, pp.311-346, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00885888

N. Brisson, F. Ruget, P. Gate, J. Lorgeau, B. Nicoullaud et al., STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize, Agronomie, vol.22, pp.69-92, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02677219

P. D. Brooks, J. M. Stark, B. B. Mcinteer, and T. Preston, Diffusion method to prepare soil extracts for automated nitrogen-15 analysis, Soil Sci Soc Am J, vol.53, pp.1707-1711, 1989.

A. Bruand, Improved prediction of water-retention properties of clayey soils by pedological stratification, Journal of Soil Science, vol.41, pp.491-497, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02705420

C. Bruchou and B. Et-mary, Analyse statistique de caractéristiques permanentes et non permanentes du sol d'une parcelle agricole, Hétérogénéité parcellaire et gestion des cultures, M. Guérif (éd.), Science Update, INRA Editions, 2006.

M. Burger, L. Jackson, E. Lundquist, D. Louie, R. Miller et al., Microbial responses and nitrous oxide emissions during wetting and drying of organically and conventionally managed soil under tomatoes, Biology and Fertility of Soils, vol.42, pp.109-118, 2005.

M. Cabrera, Modeling the flush of nitrogen mineralization caused by drying and rewetting soils, Soil Sci Soc Am J, vol.57, pp.63-66, 1993.

M. Cabrera and D. Kissel, Potentially mineralizable nitrogen in disturbed and undisturbed soil samples, Soil Sci Soc Am J, vol.52, pp.1010-1015, 1988.

M. Cabrera and D. Kissel, Evaluation of a method to predict nitrogen mineralized from soil organic matter under field conditions, Soil Sci Soc Am J, vol.52, pp.1027-1031, 1988.

C. Cambardella and E. Elliott, Particulate soil organic-matter changes across a grassland cultivation sequence, Soil Sci Soc Am J, vol.56, pp.777-783, 1992.

C. Campbell, Y. Jame, and G. Et-winkleman, Mineralization rate constants and their use for estimating nitrogen mineralization in some Canadian prairie soils, Canadian Journal of Soil Science, vol.64, pp.333-343, 1984.

C. A. Campbell, V. O. Biederbeck, R. P. Zentner, and G. P. Et-lafond, Effect of crop rotations and cultural practices on soil organic matter, microbial biomass and respiration in a thin black chernozem, Canadian Journal of Soil Science, vol.71, pp.363-376, 1991.

C. A. Campbell, G. P. Lafond, A. J. Leyshon, R. P. Zentner, and H. H. Et-janzen, Effect of cropping practices on the initial potential rate of N mineralization in a thin black chernozem, Canadian Journal of Soil Science, vol.71, pp.43-53, 1991.

C. Campbell, Y. Jame, and G. Et-winkleman, Mineralization rate constants and their use for estimating nitrogen mineralization in some Canadian prairie soils, Canadian Journal of Soil Science, vol.64, pp.333-343, 1984.

K. Cassman and D. Munns, Nitrogen mineralization as affected by soil moisture, temperature, and depth, Soil Sci Soc Am J, vol.44, pp.1233-1237, 1980.

M. H. Chantigny, D. A. Angers, T. Morvan, and C. Et-pomar, Dynamics of pig slurry nitrogen in soil and plant as determined with N-15, Soil Sci Soc Am J, vol.68, pp.637-643, 2004.

M. Chavent and B. Patouille, Calcul des coefficients de régression et du PRESS en régression PLS1, Modulad, vol.30, pp.1-11, 2003.

M. J. Connell, R. J. Raison, and P. K. Et-khanna, Nitrogen mineralization in relation to site history and soil properties for a range of Australian forest soils, Biology and Fertility of Soils, vol.20, pp.213-220, 1995.

L. Cote, S. Brown, D. Pare, J. Fyles, and J. Et-bauhus, Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixedwood, Soil Biology & Biochemistry, vol.32, pp.1079-1090, 2000.

P. Dalias, J. M. Anderson, P. Bottner, and M. M. Couteaux, Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions, Global Change Biology, vol.7, pp.181-192, 2001.

P. Dalias, J. M. Anderson, P. Bottner, and M. M. Couteaux, Long-term effects of temperature on carbon mineralisation processes, Soil Biology & Biochemistry, vol.33, pp.1049-1057, 2001.

P. Dalias, J. M. Anderson, P. Bottner, and M. M. Couteaux, Temperature responses of net nitrogen mineralization and nitrification in conifer forest soils incubated under standard laboratory conditions, Soil Biology & Biochemistry, vol.34, pp.691-701, 2002.

E. A. Davidson, Sources of nitric-oxide and nitrous-oxide following wetting of dry soil, Soil Sci Soc Am J, vol.56, pp.95-102, 1992.

E. A. Davidson, I. A. Janssens, and Y. Q. Luo, On the variability of respiration in terrestrial ecosystems: moving beyond Q(10), Global Change Biology, vol.12, pp.154-164, 2006.

S. De-neve and G. Et-hofman, Modelling N mineralization of vegetable crop residues during laboratory incubations, Soil Biology and Biochemistry, vol.28, pp.1451-1457, 1996.

S. De-neve and G. Hofman, Quantifying soil water effects on nitrogen mineralization from soil organic matter and from fresh crop residues, Biology and Fertility of Soils, vol.35, pp.379-386, 2002.

D. Vries, W. Kros, J. Oenema, O. De-klein, and J. , Uncertainties in the fate of nitrogen II: A quantitative assessment of the uncertainties in major nitrogen fluxes in the Netherlands, Nutrient Cycling in Agroecosystems, vol.66, pp.71-102, 2003.

P. De-willigen, Nitrogen turnover in the soil-crop system; comparison of fourteen simulation models, Fertilizer Research, vol.27, pp.141-149, 1991.

K. Debosz and A. Ersboll, A simple statistical model for predicting N mineralization during soil incubation, European Journal of Agronomy, vol.3, pp.361-365, 1994.

M. B. Dodd, W. K. Lauenroth, B. Et, and . Ic, Nitrogen availability through a coarse-textured soil profile in the shortgrass steppe, Soil Sci Soc Am J, vol.64, pp.391-398, 2000.

P. Dubrulle, J. Machet, and N. Et-damay, Azofert: a new decision support tool for fertiliser N recommendations. Controlling nitrogen flows and losses 12th Nitrogen Workshop, pp.500-501, 2003.

T. M. Egelkraut, D. E. Kissel, M. L. Cabrera, and W. Et-adkins, Predicting N mineralized in a Georgia Coastal Plain field, Nutrient Cycling in Agroecosystems, vol.66, pp.1-12, 2003.

B. Ellert and J. Bettany, Temperature dependence of net nitrogen and sulfur mineralization, Soil Science Society of America Journal, vol.56, pp.1133-1141, 1992.

N. Fierer and J. Schimel, Effects of drying-rewetting frequency on soil carbon and nitrogen transformations, Soil Biology & Biochemistry, vol.34, pp.777-787, 2002.

N. Fierer, J. M. Craine, K. Mclauchlan, and J. P. Et-schimel, Litter quality and the temperature sensitivity of decomposition, Ecology, vol.86, pp.320-326, 2005.

R. Fox and W. Piekielek, Field testing of several nitrogen availability indexes, Soil Sci Soc Am J, vol.42, pp.747-750, 1978.

J. France and J. Thornley, Mathematical Models in Agriculture. butterworths, London, Franzluebbers AJ (1999) Potential C ans N mineralization and microbial biomass from intact and increasingly disturbed soil of varying texture, Soil Biology & Biochemistry, vol.31, pp.1083-1090, 1984.

B. Gabrielle, B. Mary, R. Roche, P. Smith, and G. Et-gosse, Simulation of carbon and nitrogen dynamics in arable soils: a comparison of approaches, European Journal of Agronomy, vol.18, pp.107-120, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02763444

C. Giardina, M. Ryan, R. Hubbard, and D. Binkley, Tree species and soil textural controls on carbon and nitrogen mineralization rates, Soil Sci Soc Am J, vol.65, pp.1272-1279, 2001.

D. Godwin and C. Jones, Nitrogen dynamics in soil-plant systems, pp.287-321, 1991.

J. L. Gonçalves and J. Carlyle, Modelling the influence of moisture and temperature on net nitrogen mineralization in a forested sandy soil, Soil Biology & Biochemistry, vol.26, pp.1557-1564, 1994.

C. Henault and J. C. Germon, NEMIS, a predictive model of denitrification on the field scale, European Journal of Soil Science, vol.51, pp.257-270, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02696923

C. Hénault, F. Bizouard, P. Laville, B. Gabrielle, B. Nicoullaud et al., Predicting in situ soil N 2 O emission using NOE algorithm and soil database, Global Change Biology, vol.11, pp.115-127, 2005.

S. Hénin and M. Dupuis, Essai de bilan de la matière organique des sols, Annales Agronomiques, vol.15, pp.161-172, 1945.

S. Heumann and J. Bottcher, Temperature functions of the rate coefficients of net N mineralization in sandy arable soils: Part I. Derivation from laboratory incubations, Journal of Plant Nutrition and Soil Science, vol.167, pp.381-389, 2004.

S. Houot, J. Molina, R. Chaussod, and C. Et-clapp, Simulation by NCSOIL of net mineralization in soils from the Deherain and 36 Parcelles fields at Grignon, Soil Sci Soc Am J, vol.53, pp.451-455, 1989.
URL : https://hal.archives-ouvertes.fr/hal-02722961

R. Hyvonen, G. I. Agren, and P. Et-dalias, Analysing temperature response of decomposition of organic matter, Global Change Biology, vol.11, pp.770-778, 2005.

H. Janzen, C. Campbell, S. Brandt, G. Lafond, and L. Townley-smith, Light-fraction organic matter in soils from long-term crop rotations, Soil Sci Soc Am J, vol.56, pp.1799-1806, 1992.

S. Jarvis, E. Stockdale, M. Shepherd, and D. Et-powlson, Nitrogen mineralization in temperate agricultural soils: processes and measurement, Advances in Agronomy, vol.57, pp.187-235, 1996.

D. S. Jenkinson, The turnover of organic carbon and nitrogen in soil, Philos Trans R Soc Lond B, vol.329, pp.361-368, 1990.

D. S. Jenkinson, D. E. Adams, and A. Wild, Model estimates of CO2 emissions from soil in response to global warming, Nature, vol.351, pp.304-306, 1991.

R. G. Joergensen, The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k(EC) value, Soil Biology & Biochemistry, vol.28, pp.25-31, 1996.

A. D. Johnson, M. L. Cabrera, D. V. Mccracken, and D. E. Radcliffe, LEACHN Simulations of Nitrogen Dynamics and Water Drainage in an Ultisol, Agronomy Journal, vol.91, pp.597-606, 1999.

V. Jolley and W. Pierre, Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen-rate experiments with corn, Soil Sci Soc Am J, vol.41, pp.373-378, 1977.

N. Juma and E. Paul, Mineralizable soil nitrogen: amounts and extractability ratios, Soil Sci Soc Am J, vol.48, pp.76-80, 1984.

E. Justes, P. Denoroy, B. Gabrielle, and G. Et-gosse, Effect of crop nitrogen status and temperature on the radiation use efficiency of winter oilseed rape, European Journal of Agronomy, vol.13, pp.165-177, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02691461

E. Justes and B. Mary, N mineralisation from decomposition of catch crop residues under field conditions: measurement and simulation using the STICS soil-crop model, Controlling nitrogen flows and losses, pp.122-130, 2005.

T. Katterer and O. Andren, The ICBM family of analytically solved models of soil carbon, nitrogen and microbial biomass dynamics descriptions and application examples, Ecological Modelling, vol.136, pp.191-207, 2001.

T. Katterer, M. Reichstein, O. Andren, and A. Lomander, Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models, Biology and Fertility of Soils, vol.27, pp.258-262, 1998.

J. P. Kaye and S. C. Hart, Competition for nitrogen between plants and soil microorganisms, Trends in Ecology & Evolution, vol.12, pp.139-143, 1997.

B. A. Keating, P. S. Carberry, G. L. Hammer, M. E. Probert, M. J. Robertson et al., An overview of APSIM, a model designed for farming systems simulation, European Journal of Agronomy, vol.18, pp.267-288, 2003.

D. Keeney and J. Bremner, Characterization of mineralizable nitrogen in soils, Soil Sci Soc Am Pro, vol.30, pp.714-719, 1966.

K. Kersebaum and O. Richter, A model approach to simulate C and N transformations through microbial biomass, European Journal of Agronomy, vol.3, pp.355-360, 1994.

M. Kirschbaum, The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage, Soil Biology & Biochemistry, vol.27, pp.753-760, 1995.

W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming, Nature, vol.433, pp.298-301, 2005.

K. Kobayashi and M. U. Salam, Comparing simulated and measured values using mean squared deviation and its components, Agronomy Journal, vol.92, pp.345-352, 2000.

R. L. Kolberg, B. Rouppet, D. G. Westfall, and G. A. Peterson, Evaluation of an in situ net soil nitrogen mineralization method in dryland agroecosystems, Soil Sci Soc Am J, vol.61, pp.504-508, 1997.

C. Kroeze, R. Aerts, N. Van-breemen, D. Van-dam, K. Van-der-hoek et al., Uncertainties in the fate of nitrogen I: An overview of sources of uncertainty illustrated with a Dutch case study, Nutrient Cycling in Agroecosystems, vol.66, pp.43-69, 2003.

M. Leiros, C. Trasar-cepeda, S. Seoane, and F. Gil-sotres, Dependence of mineralization of soil organic matter on temperature and moisture, Soil Biology & Biochemistry, vol.31, pp.327-335, 1999.

A. Lemaitre, R. Chaussod, Y. Tavant, and S. Bruckert, An attempt to determine a pool of labile organic matter associated with the soil microbial biomass, European Journal of Soil Biology, vol.31, pp.121-125, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02714460

A. Lemaître, Y. Tavant, R. Chaussod, and F. Et-andreux, Characterization of microbial components and metabolites isolated from a humic calcic soil, European Journal of Soil Biology, vol.31, pp.127-133, 1995.

W. Lindemann, G. Connell, and N. Urquhart, Previous sludge addition effects on nitrogen mineralization in freshly amended soil, Soil Sci Soc Am J, vol.52, pp.109-112, 1988.

J. Liski, H. Ilvesniemi, A. Makela, and C. J. Et-westman, CO2 emissions from soil in response to climatic warming are overestimated -The decomposition of old soil organic matter is tolerant of temperature, Ambio, vol.28, pp.171-174, 1999.

X. J. Liu, X. T. Ju, F. S. Zhang, J. R. Pan, and P. Christie, Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain, Field Crops Research, vol.83, pp.111-124, 2003.

A. Lomander, T. Katterer, and O. Et-andren, Carbon dioxide evolution from top-and subsoil as affected by moisture and constant and fluctuating temperature, Soil Biology & Biochemistry, vol.30, pp.2017-2022, 1998.

E. Lundquist, L. Jackson, and K. Scow, Wet-dry cycles affect dissolved organic carbon in two California agricultural soils, Soil Biology & Biochemistry, vol.31, pp.1031-1038, 1999.

N. Macdonald, D. Zak, and K. Pregitzer, Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization, Soil Sci Soc Am J, vol.59, pp.233-240, 1995.

J. Machet, P. Dubrulle, E. Louis, and P. , AZOBIL: a computer program for fertilizer N recommendations based on a predictive balance sheet method, Congress of the European Society of Agronomy, pp.21-22, 1990.

J. Machet, S. Recous, M. Jeuffroy, B. Mary, B. Nicolardot et al., A dynamic version of the predictive balance sheet method for fertiliser N advice. Controlling nitrogen flows and losses 12th Nitrogen Workshop, pp.21-24, 2004.

T. Mahmood, R. Ali, K. Malik, Z. Aslam, and S. Ali, Seasonal pattern of denitrification under an irrigated wheat-maize cropping system fertilized with urea and farmyard manure in different combinations, Biology and Fertility of Soils, vol.42, pp.1-9, 2005.

D. Makowski, D. Wallach, and M. Et-tremblay, Using a Bayesian approach to parameter estimation; comparison of GLUE and MCMC methods, Agronomie, vol.22, pp.191-203, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02680185

G. Marion and C. Black, The effect of time and temperature on nitrogen mineralization in arctic tundra soils, Soil Sci Soc Am J, vol.51, pp.1501-1508, 1987.

B. Mary and S. Recous, Measurement of nitrogen mineralization and immobilization fluxes in soil as a means of predicting net mineralization, European Journal of Agronomy, vol.3, pp.291-300, 1994.
URL : https://hal.archives-ouvertes.fr/hal-02703939

B. Mary and E. Justes, La fourniture d'azote par les matières organiques du sol. Cinquièmes rencontres de la fertilisation raisonnée et de l'analyse de terre, 2001.

, Blois (FRA)

B. Mary, N. Beaudoin, E. Justes, and J. Machet, Calculation of nitrogen mineralization and leaching in fallow soil using a simple dynamic model, European Journal of Soil Science, vol.50, pp.549-566, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02691686

J. M. Melillo, P. A. Steudler, J. D. Aber, K. Newkirk, H. Lux et al., Soil warming and carbon-cycle feedbacks to the climate system, Science, vol.298, pp.2173-2176, 2002.

S. Menasseri, S. Houot, and R. Et-chaussod, Field test of biological and chemical methods for estimating soil nitrogen supply in a temperate climate, European Journal of Agronomy, vol.3, pp.273-279, 1994.

M. Mikha, C. Rice, and G. Milliken, Carbon and nitrogen mineralization as affected by drying and wetting cycles, Soil Biology & Biochemistry, vol.37, pp.339-347, 2005.

J. Molina, C. Clapp, and W. Et-larson, Potentially mineralizable nitrogen in soil : the simple exponential model does not apply for the first 12 weeks of incubation, Soil Sci Soc Am J, vol.44, pp.442-443, 1980.

F. Moreno, J. Cayuela, J. Fernandez, E. Fernandez-boy, J. Murillo et al., Water balance and nitrate leaching in an irrigated maize crop in SW Spain, Agricultural Water Management, vol.32, pp.71-83, 1997.

T. Morvan, P. Leterme, G. G. Arsene, and B. Et-mary, Nitrogen transformations after the spreading of pig slurry on bare soil and ryegrass using N-15-labelled ammonium, European Journal of Agronomy, vol.7, pp.181-188, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02684112

A. Mosier, C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger et al., Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle -OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology, Nutrient Cycling in Agroecosystems, vol.52, pp.225-248, 1998.

R. Myers, C. Campbell, and K. L. Et-weier, Quantitative relationship between net nitrogen mineralization and moisture content of soils, Canadian Journal of Soil Science, vol.62, pp.111-124, 1982.

B. Nicolardot, B. Mary, S. Houot, and S. Et-recous, Nitrogen dynamics in cultivated soils, pp.87-103, 1996.

B. Nicolardot, S. Recous, and B. Et-mary, Simulation of C and N mineralisation during crop residue decomposition: a simple dynamic model based on the C:N ratio of the residues, Plant and Soil, vol.228, pp.83-103, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02673993

M. Niklinska, M. Maryanski, and R. Laskowski, Effect of temperature on humus respiration rate and nitrogen mineralization: Implications for global climate change, Biogeochemistry, vol.44, pp.239-257, 1999.

H. Nordmeyer and J. Richter, Incubation experiments on nitrogen mineralization in loess and sandy soils, Plant and Soil, vol.83, pp.433-445, 1985.

K. Oorts, F. Laurent, B. Mary, P. Thiébeau, J. Labreuche et al., Long-term effect of tillage systems on soil nitrogen mineralization under field conditions in Northern France, 2006.

P. L. Osty, Influence des conditions du sol sur son humidité à pF 3, Annales Agronomiques, vol.22, pp.451-476, 1971.

M. Pansu and L. Thuries, Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil, Soil Biology & Biochemistry, vol.35, pp.37-48, 2003.

V. Parnaudeau, Analysis of factors controlling soil organic matter levels in Great Plains grasslands, Caractéristiques biochimiques de produits organiques résiduaires, prédiction et modélisation de leur minéralisation dans les sols. 87pp. thèse de doctorat en Biologie et Agronomie, vol.51, pp.1173-1179, 1987.

K. Paul, I. Polglase, P. O'connell, A. Carlyle, J. Smethurst et al., Defining the relation between soil water content and net nitrogen mineralization, European Journal of Soil Science, vol.54, pp.39-47, 2003.

D. Pimentel, J. Houser, E. Preiss, O. White, H. Fang et al., Water resources: agriculture, the environment, and society, Bioscience, vol.47, pp.97-106, 1997.

M. Quemada and M. Cabrera, Temperature and moisture effects on C and N mineralization from surface applied clover residue, Plant and Soil, vol.189, pp.127-137, 1997.

R. Raison, M. Connell, and P. Et-khanna, Methodology for studying fluxes of soil mineral-N in situ, Soil Biology & Biochemistry, vol.19, pp.521-530, 1987.

M. Reichstein, T. Katterer, O. Andren, P. Ciais, E. D. Schulze et al., Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook, Biogeosciences, vol.2, pp.317-321, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00330312

M. Reichstein, J. A. Subke, A. C. Angeli, and J. D. Et-tenhunen, Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?, Global Change Biology, vol.11, pp.1754-1767, 2005.

J. Remy and A. Marin-lafleche, Soil analysis: realisation of an automatic interpretation programme, Annales Agronomiques, vol.25, pp.607-632, 1974.

J. C. Rémy and J. Hébert, Le devenir des engrais azotés dans le sol, C.R. Acad. Agric. Fr, vol.63, issue.11, pp.700-710, 1977.

A. Rey, C. Petsikos, P. G. Jarvis, and J. Grace, Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions, European Journal of Soil Science, vol.56, pp.589-599, 2005.

G. Richter, P. Widmer, and J. Richter, Biological relevance of easily extractable organic nitrogen (EUF-Norg) for the estimation of nitrogen mineralization, European Journal of Agronomy, vol.3, pp.281-289, 1994.

J. Richter, A. Nuske, W. Habenicht, and J. Bauer, Optimized N-mineralization parameters of loess soils from incubation experiments, Plant and Soil, vol.179, pp.379-388, 1982.

P. Rijtema and J. Kroes, Some results of nitrogen simulations with the model ANIMO, Fertilizer Research, vol.27, pp.189-198, 1991.

A. Rodrigo, S. Recous, C. Neel, and B. Et-mary, Modelling temperature and moisture effects on C-N transformations in soils: comparison of nine models, Ecological Modelling, vol.102, pp.325-339, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02694310

M. Roelcke, Y. Han, Z. C. Cai, and J. Richter, Nitrogen mineralization in paddy soils of the Chinese Taihu Region under aerobic conditions, Nutrient Cycling in Agroecosystems, vol.63, pp.255-266, 2002.

P. Rovira and V. Vallejo, Organic carbon and nitrogen mineralization under Mediterranean climatic conditions: the effects of incubation depth, Soil Biology & Biochemistry, vol.29, pp.1509-1520, 1997.

P. Ruiter and H. Faassen, A comparison between an organic matter dynamics model and a food web model simulating nitrogen mineralization in agro-ecosystems, European Journal of Agronomy, vol.3, pp.347-354, 1994.

P. Ruiter, J. Moore, K. Zwart, L. Bouwman, J. Hassink et al., Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields, Journal of Applied Ecology, vol.30, pp.95-106, 1993.

P. Ruiter, J. Veen, J. Moore, L. Brussard, and H. Hunt, Calculation of nitrogen mineralization in soil food webs, Plant and Soil, vol.157, pp.263-273, 1993.

A. E. Russell, D. A. Laird, and A. P. Et-mallarino, Nitrogen Fertilization and Cropping System Impacts on Soil Quality in Midwestern Mollisols, Soil Sci Soc Am J, vol.70, pp.249-255, 2006.

L. Rustad, Global change -Matter of time on the prairie, Nature, vol.413, pp.578-579, 2001.

J. Ryden and L. Lund, Nature and extent of directly measured denitrification losses from some irrigated vegetable crop production units, Soil Sci Soc Am J, vol.44, pp.505-511, 1980.

H. Schomberg, D. Endale, A. Calegari, R. Peixoto, M. Miyazawa et al., Influence of cover crops on potential nitrogen availability to succeeding crops in a Southern Piedmont soil, Biology and Fertility of Soils, vol.42, pp.299-307, 2006.

H. H. Schomberg and M. L. Cabrera, Modeling in situ N mineralization in conservation tillage fields: comparison of two versions of the CERES nitrogen submodel, Ecological Modelling, vol.145, pp.1-15, 2001.

A. Sexstone, T. Parkin, and J. Tiedje, Temporal response of soil denitrification rates to rainfall and irrigation, Soil Sci Soc Am J, vol.49, pp.99-103, 1985.

M. K. Shukla, R. Lal, and M. Et-ebinger, Determining soil quality indicators by factor analysis, Soil and Tillage Research, vol.87, pp.194-204, 2006.

J. Sierra and P. Renault, Temporal pattern of oxygen concentration in a hydromorphic soil, Soil Sci Soc Am J, vol.62, pp.1398-1405, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02695392

R. R. Simard, Nitrogen mineralization potential of meadow soils, Canadian Journal of Soil Science, vol.73, pp.27-38, 1993.

A. Simojoki and A. Jaakkola, Effect of nitrogen fertilization, cropping and irrigation on soil air composition and nitrous oxide emission in a loamy clay, European Journal of Soil Science, vol.51, pp.413-424, 2000.

J. Smith, P. Smith, and T. M. Et-addiscott, Quantitative methods to evaluate and compare Soil Organic Matter (SOM) Models, pp.181-199, 1996.

S. Smith and A. Sharpley, Soil nitrogen mineralization in the presence of surface and incorporated crop residues, Agronomy Journal, vol.82, pp.112-116, 1990.

, Biochemistry, vol.35, pp.629-632

G. Stanford and E. Epstein, Nitrogen mineralization-water relations in soils, Sci Soc Am Pro, vol.38, pp.103-107, 1974.

G. Stanford and S. Smith, Nitrogen mineralization potentials of soils, Soil Sci Soc Am Pro, vol.36, pp.465-472, 1972.

G. Stanford, M. Frere, and D. Schwaninger, Temperature coefficient of soil nitrogen mineralization, Soil Science, vol.115, pp.321-323, 1973.

R. Stenger, E. Priesack, and F. Et-beese, Rates of net nitrogen mineralization in disturbed and undisturbed soils, Plant and Soil, vol.171, pp.323-332, 1995.

B. A. Stevenson and P. S. Verburg, Effluxed CO 2 -13 C from sterilized and unsterilized treatments of a calcareous soil, Soil Biology & Biochemistry, 2006.

E. Stockdale and R. M. Rees, Relationships between biomass nitrogen and nitrogen extracted by other nitrogen availability methods, Soil Biology & Biochemistry, vol.26, pp.1213-1220, 1994.

M. Tabatabai, A. Khafaji, and A. , Comparison of nitrogen and sulfur mineralization in soils, Soil Sci Soc Am J, vol.44, pp.1000-1006, 1980.

M. Tenenhaus, P. La-régression, . Technip, . Paris, G. Thevenet et al., Carbon sequestration and soil cultivation in temperate climate: results of a 30 years' experimentation of arable crops. Comptes rendus de l'Academie d, Agriculture de France, vol.88, pp.71-78, 1998.

I. K. Thomsen, J. E. Olesen, P. Schjonning, B. Jensen, and B. T. Et-christensen, Net mineralization of soil N and N-15-ryegrass residues in differently textured soils of similar mineralogical composition, Soil Biology & Biochemistry, vol.33, pp.277-285, 2001.

M. Valé, C. Nguyen, E. Dambrine, and J. L. Dupouey, Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations, Soil Biology & Biochemistry, vol.37, pp.2329-2333, 2005.

J. Van-veen, J. Ladd, and M. Et-amato, Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with, Soil Biology & Biochemistry, vol.17, pp.747-756, 1985.

E. Vance, P. Brookes, and D. Et-jenkinson, An extraction method for measuring soil microbial biomass C, Soil Biology & Biochemistry, vol.19, pp.703-707, 1987.

R. R. Vanderploeg, H. Ringe, and G. Et-machulla, Late Fall Site-Specific Soil Nitrate Upper Limits for Groundwater Protection Purposes, Journal of Environmental Quality, vol.24, pp.725-733, 1995.

L. Vanscholl, A. M. Vandam, and P. A. Et-leffelaar, Mineralisation of nitrogen from an incorporated catch crop at low temperatures: Experiment and simulation, Plant and Soil, vol.188, pp.211-219, 1997.

D. Wallach, B. Goffinet, J. E. Bergez, P. Debaeke, D. Leenhardt et al., Parameter estimation for crop models: A new approach and application to a corn model, Agronomy Journal, vol.93, pp.757-766, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02681120

C. Wang, S. Wan, X. Xing, L. Zhang, and H. Et, Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China, Soil Biology & Biochemistry, vol.38, pp.1101-1110, 2006.

W. Wang, C. Smith, P. Chalk, and D. Et-chen, Evaluating chemical and physical indices of nitrogen mineralization capacity with an unequivocal reference, Soil Sci Soc Am J, vol.65, pp.368-376, 2001.

W. Wang, C. Smith, and D. Et-chen, Towards a standardised procedure for determining the potentially mineralisable nitrogen of soil, Biology and Fertility of Soils, vol.37, pp.362-374, 2003.

W. Wang, C. Smith, and D. Et-chen, Predicting soil nitrogen mineralization dynamics with a modified double exponential model, Soil Sci Soc Am J, vol.68, pp.1256-1265, 2004.

K. L. Weier, I. C. Macrae, and R. Myers, Seasonal variation in denitrification in a clay soil under a cultivated crop and a permanent pasture, Soil Biology & Biochemistry, vol.23, pp.629-635, 1991.

A. Whitmore, A method for assessing the goodness of computer simulation of soil processes, Journal of Soil Science, vol.42, pp.289-299, 1991.

S. Wold, H. Martens, and H. Wold, (eds) Chemistry solved by the PLSR method. Matrix Pencils, Lecture Notes in Mathematics, pp.286-293, 1983.

X. Y. Yin, M. J. Kropff, G. Mclaren, and R. M. Et-visperas, A Nonlinear Model for Crop Development As A Function of Temperature, Agricultural and Forest Meteorology, vol.77, pp.1-16, 1995.

D. Zak, W. Holmes, N. Macdonald, and K. Et-pregitzer, Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization, Soil Sci Soc Am J, vol.63, pp.575-584, 1999.

Y. M. Zhang, D. L. Chen, J. B. Zhang, R. Edis, C. S. Hu et al., Ammonia volatilization and denitrification losses from an irrigated maize-wheat rotation field in the North China Plain, Pedosphere, vol.14, pp.533-540, 2004.

Y. L. Zinn, R. Lal, and D. Et-resck, Texture and organic carbon relations described by a profile pedotransfer function for Brazilian Cerrado soils, Geoderma, vol.127, pp.168-173, 2005.

K. Zwart, Denitrification in top soil and sub soil, data and model results, Controlling nitrogen flows and losses, pp.375-377, 2004.

, la gestion de l'azote doit être raisonnée de plus en plus finement pour atteindre des objectifs multiples de rendement et de qualité des produits récoltés mais aussi de respect de l'environnement. Ces objectifs ne peuvent être atteints qu'en pilotant la fertilisation azotée au plus près des besoins de la plante et en adaptant le système de culture en interculture afin de réduire les pertes d'azote nitrique et sous forme gazeuse. Pour cela, il convient de connaître et de prévoir précisément la dynamique saisonnière de la

, ) ont permis de montrer, qu'en condition de champ, la dénitrification pouvait représenter une forte perte d'azote quand les apports d'eau sont reçus avec une forte intensité par le sol en été, suite à l'irrigation ou aux pluies d'orage. Une estimation précise de la quantité d'azote minéralisé in situ par bilan dynamique d'eau et d'azote dans ces situations requiert donc une mesure ou une estimation précise de l'azote minéral perdu par dénitrification ; or ce phénomène est trop souvent considéré comme négligeable dans les systèmes de grande culture français, ce qui pourrait ne pas être le cas si l'irrigation par aspersion est pratiquée. Le concept de vitesse potentielle normalisée de minéralisation, correspondant à une valeur unique de minéralisation basée sur le temps normalisé, a été globalement validé sur un réseau expérimental de 55 parcelles de grande culture réparties sur l'ensemble du territoire français. Différents méthodes et modèles statistiques ont été testés pour décrire la variabilité observée de la minéralisation potentielle de l'azote in situ. Ainsi, la vitesse de minéralisation in situ de l'azote a été ajustée par RLM (Régression Linéaire Multiple) et PLS (Partial Least Squares regression). Les formalismes couramment utilisés, correspondant à l'effet de variables quantitatives comme la teneur en argile, en CaCO3 et la quantité d'azote organique, ainsi que la vitesse de minéralisation de l'azote mesurée in vitro n'ont pas permis d'expliquer ni de prédire, avec une bonne précision, la vitesse potentielle de minéralisation de l'azote in situ. Par contre, l'information apportée par des variables qualitatives relatives au système de culture (type de précédent cultural, nature de la rotation, apport régulier ou non de matières organiques exogènes) améliore significativement l'explication de la variabilité et les qualités prédictives des modèles statistiques sélectionnés. Les caractéristiques biologiques du sol, comme le carbone de la biomasse microbienne ou la vitesse de minéralisation in vitro du carbone, ont aussi permis d'améliorer la prédiction de la vitesse de minéralisation de l'azote in situ, et (ii) expliquer et prédire cette minéralisation in situ pour une large gamme de pédoclimats et de systèmes de grande culture français. La minéralisation de l'azote in situ a été estimée en sol nu à l'aide de mesures régulières d'eau et d'azote minéral (0-120 cm) et du programme de calcul LIXIM basé sur un bilan dynamique journalier d'azote