F. Alber, S. Dokudovskaya, L. M. Veenhoff, W. Zhang, J. Kipper et al., The molecular architecture of the nuclear pore complex, Nature, vol.450, pp.695-701, 2007.

W. Batterson, D. Furlong, and B. Roizman, Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle, J. Virol, vol.45, pp.397-407, 1983.

M. Beck, F. Forster, M. Ecke, J. M. Plitzko, F. Melchior et al., Nuclear pore complex structure and dynamics revealed by cryoelectron tomography, Science, vol.306, pp.1387-1390, 2004.

N. Belgareh, G. Rabut, S. W. Bai, M. Van-overbeek, J. Beaudouin et al., An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells, J. Cell Biol, vol.154, pp.1147-1160, 2001.

R. Bernad, H. Van-der-velde, M. Fornerod, and H. Pickersgill, Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export, Mol. Cell. Biol, vol.24, pp.2373-2384, 2004.

B. R. Bowman, R. L. Welschhans, H. Jayaram, N. D. Stow, V. G. Preston et al., Structural characterization of the UL25 DNApackaging protein from herpes simplex virus type 1, J. Virol, vol.80, pp.2309-2317, 2006.

F. Abaitua and P. O'hare, Identification of a highly conserved functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein, J. Virol, vol.82, pp.5234-5244, 2008.

J. D. Baines and B. Roizman, The open reading frames U L 3, U L 4, U L 10, and U L 16 are dispensable for the replication of herpes simplex virus 1 in cell culture, J. Virol, vol.65, pp.938-944, 1991.

W. Batterson, D. Furlong, and B. Roizman, Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle, J. Virol, vol.45, pp.397-407, 1983.

A. R. Brack, J. M. Dijkstra, H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus, J. Virol, vol.73, pp.5364-5372, 1999.

M. A. Bucks, K. J. O'regan, M. A. Murphy, J. W. Wills, and R. J. Courtney, Herpes simplex virus type 1 tegument proteins VP1/2 and UL37 are associated with intranuclear capsids, Virology, vol.361, pp.316-324, 2007.

D. H. Chen, H. Jiang, M. Lee, F. Y. Liu, and Z. H. Zhou, Three-References Baines, 1992.

J. D. Baines, P. L. Ward, G. Campadelli-fiume, and B. Roizman,

J. T. Bechtel and T. Shenk, Human cytomegalovirus UL47 tegument protein functions after entry and before immediate-early gene expression, J Virol, vol.76, pp.1043-1050, 2002.

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, J. Cell Sci, vol.119, pp.4155-4163, 2006.

M. Bornens, Centrosome composition and microtubule anchoring mechanisms, Curr. Opin. Cell Biol, vol.14, pp.25-34, 2002.

J. P. Caviston and E. L. Holzbaur, Microtubule motors at the intersection of trafficking and transport, Trends Cell Biol, vol.16, pp.530-537, 2006.

S. E. Antinone and G. A. Smith, Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis, J. Virol, vol.84, pp.1504-1512, 2010.

M. G. Lyman and L. W. Enquist, Herpesvirus interactions with the host cytoskeleton, J. Virol, vol.83, pp.2058-2066, 2009.

H. Mabit, M. Y. Nakano, U. Prank, B. Saam, K. Dohner et al., Intact microtubules support adenovirus and herpes simplex virus infections, J. Virol, vol.76, pp.9962-9971, 2002.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J. Cell Biol, vol.136, pp.1007-1021, 1997.

K. Radtke, D. Kieneke, A. Wolfstein, K. Michael, W. Steffen et al., Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog, vol.6, p.1000991, 2010.

K. Dohner, A. Wolfstein, U. Prank, C. Echeverri, D. Dujardin et al., Function of dynein and dynactin in herpes simplex virus capsid transport, Mol. Biol. Cell, vol.13, pp.2795-2809, 2002.

M. Miranda-saksena, R. A. Boadle, A. Aggarwal, B. Tijono, F. J. Rixon et al., Herpes simplex virus utilizes the large secretory vesicle pathway for anterograde transport of tegument and envelope proteins and for viral exocytosis from growth cones of human fetal axons, J. Virol, vol.83, pp.3187-3199, 2009.

K. Dohner, C. H. Nagel, and B. Sodeik, Viral stop-and-go along microtubules: taking a ride with dynein and kinesins, Trends Microbiol, vol.13, pp.320-327, 2005.

A. Wolfstein, C. H. Nagel, K. Radtke, K. Dohner, V. J. Allan et al., The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro, Traffic, vol.7, pp.227-237, 2006.

A. Aggarwal, M. Miranda-saksena, R. A. Boadle, B. J. Kelly, R. J. Diefenbach et al., Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons, J. Virol, vol.86, pp.6123-6137, 2012.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, J. Virol, vol.79, pp.3200-3205, 2005.

G. W. Luxton, S. Haverlock, K. E. Coller, S. E. Antinone, A. Pincetic et al., Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5832-5837, 2005.

H. Mabit, M. Y. Nakano, U. Prank, B. Saam, K. Dohner et al., Intact microtubules support adenovirus and herpes simplex virus infections, J. Virol, vol.76, pp.9962-9971, 2002.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J. Cell Biol, vol.136, pp.1007-1021, 1997.

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, J. Cell Sci, vol.119, pp.4155-4163, 2006.

K. Radtke, D. Kieneke, A. Wolfstein, K. Michael, W. Steffen et al., Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog, vol.6, p.1000991, 2010.

T. Kramer, T. M. Greco, M. P. Taylor, A. E. Ambrosini, I. M. Cristea et al., Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons, Cell Host Microbe, vol.12, pp.806-814, 2012.

B. G. Klupp, W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter, Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein, J. Virol, vol.76, pp.3065-3071, 2002.

P. Desai, G. L. Sexton, J. M. Mccaffery, and S. Person, A null mutation in the gene encoding the herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation, J. Virol, vol.75, pp.10259-10271, 2001.

P. J. Desai, A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells, J. Virol, vol.74, pp.11608-11618, 2000.

A. Aggarwal, M. Miranda-saksena, R. A. Boadle, B. J. Kelly, R. J. Diefenbach et al., Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons, J. Virol, vol.86, pp.6123-6137, 2012.

S. E. Antinone and G. A. Smith, Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis, J. Virol, vol.84, pp.1504-1512, 2010.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, J. Virol, vol.79, pp.3200-3205, 2005.

G. W. Luxton, S. Haverlock, K. E. Coller, S. E. Antinone, A. Pincetic et al., Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.5832-5837, 2005.

S. V. Zaichick, K. P. Bohannon, A. Hughes, P. J. Sollars, G. E. Pickard et al., The herpesvirus VP1/2 protein is an effector of dyneinmediated capsid transport and neuroinvasion, Cell Host Microbe, vol.13, pp.193-203, 2013.

F. Abaitua, M. Hollinshead, M. Bolstad, C. M. Crump, and P. O'hare, A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore, J. Virol, vol.86, pp.8998-9014, 2012.

W. Batterson, D. Furlong, and B. Roizman, Molecular genetics of herpes simplex virus. VIII. Further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle, J. Virol, vol.45, pp.397-407, 1983.

G. W. Luxton, J. I. Lee, S. Haverlock-moyns, J. M. Schober, and G. A. Smith, The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport, J. Virol, vol.80, pp.201-209, 2006.

A. P. Roberts, F. Abaitua, P. O'hare, D. Mcnab, F. J. Rixon et al., Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1, J. Virol, vol.83, pp.105-116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667493

V. Jovasevic, L. Liang, and B. Roizman, Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus, J. Virol, vol.82, pp.3311-3319, 2008.

J. Schipke, A. Pohlmann, R. Diestel, A. Binz, K. Rudolph et al., The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus, J. Virol, vol.86, pp.3682-3700, 2012.

M. Krautwald, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37, J. Virol, vol.83, pp.3389-3396, 2009.

M. Sandbaumhuter, K. Dohner, J. Schipke, A. Binz, A. Pohlmann et al., Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment, Cell. Microbiol, vol.15, pp.248-269, 2013.

D. Pasdeloup, M. Mcelwee, F. Beilstein, M. Labetoulle, and F. J. Rixon, Herpesvirus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress, J. Virol, vol.87, pp.2857-2867, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652401

D. Pasdeloup, D. Blondel, A. L. Isidro, and F. J. Rixon, Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25, J. Virol, vol.83, pp.6610-6623, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02659374

D. A. Mcclelland, J. D. Aitken, D. Bhella, D. Mcnab, J. Mitchell et al., pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds, J. Virol, vol.76, pp.7407-7417, 2002.

R. D. Everett, S. Rechter, P. Papior, N. Tavalai, T. Stamminger et al., PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0, J. Virol, vol.80, pp.7995-8005, 2006.

U. Vielkind and S. H. Swierenga, A simple fixation procedure for immunofluorescent detection of different cytoskeletal components within the same cell, Histochemistry, vol.91, pp.81-88, 1989.

I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, J. Struct. Biol, vol.151, pp.182-195, 2005.

K. Dohner, A. Wolfstein, U. Prank, C. Echeverri, D. Dujardin et al., Function of dynein and dynactin in herpes simplex virus capsid transport, Mol. Biol. Cell, vol.13, pp.2795-2809, 2002.

P. M. Ojala, B. Sodeik, M. W. Ebersold, U. Kutay, and A. Helenius, Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro, Mol. Cell. Biol, vol.20, pp.4922-4931, 2000.

K. Rode, K. Dohner, A. Binz, M. Glass, T. Strive et al., Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression, J. Virol, vol.85, pp.4271-4283, 2011.

S. Turcotte, J. Letellier, and R. Lippe, Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress, J. Virol, vol.79, pp.8847-8860, 2005.

J. J. Liu, J. Ding, A. S. Kowal, T. Nardine, A. E. Delcroix et al., BPAG1n4 is essential for retrograde axonal transport in sensory neurons, J. Cell Biol, vol.163, pp.223-229, 2003.

J. J. Liu, J. Ding, C. Wu, P. Bhagavatula, B. Cui et al., Retrolinkin, a membrane protein, plays an important role in retrograde axonal transport, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.2223-2228, 2007.

S. D. Ryan, K. Bhanot, A. Ferrier, Y. De-repentigny, A. Chu et al., Microtubule stability, Golgi organization, and transport flux require dystonin-a2-MAP1B interaction, J. Cell Biol, vol.196, pp.727-742, 2012.

M. Kapur, W. Wang, M. T. Maloney, I. Millan, V. F. Lundin et al., Calcium tips the balance: a microtubule plus end to lattice binding switch operates in the carboxyl terminus of BPAG1n4, EMBO Rep, vol.13, pp.1021-1029, 2012.

E. Avitabile, D. Gaeta, S. Torrisi, M. R. Ward, P. L. Roizman et al., Campadelli-Role of Dystonin in Herpesvirus Entry, vol.87, 1920.

U. F. Greber and M. Way, A superhighway to virus infection, Cell, vol.124, pp.741-754, 2006.

H. Mabit, M. Y. Nakano, U. Prank, B. Saam, K. Dohner et al., Intact microtubules support adenovirus and herpes simplex virus infections, J. Virol, vol.76, pp.9962-9971, 2002.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J. Cell Biol, vol.136, pp.1007-1021, 1997.

C. A. Harley, A. Dasgupta, and D. W. Wilson, Characterization of herpes simplex virus-containing organelles by subcellular fractionation: role for organelle acidification in assembly of infectious particles, J. Virol, vol.75, pp.1236-1251, 2001.

S. Turcotte, J. Letellier, and R. Lippe, Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress, J. Virol, vol.79, pp.8847-8860, 2005.

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, J. Cell Sci, vol.119, pp.4155-4163, 2006.

K. Radtke, K. Dohner, and B. Sodeik, Viral interactions with the cytoskeleton: a hitchhiker's guide to the cell, Cell Microbiol, vol.8, pp.387-400, 2006.

J. C. Warren, A. Rutkowski, and L. Cassimeris, Infection with replicationdeficient adenovirus induces changes in the dynamic instability of host cell microtubules, Mol. Biol. Cell, vol.17, pp.3557-3568, 2006.

J. P. Brunet, N. Jourdan, J. Cotte-laffitte, C. Linxe, M. Geniteau-legendre et al., Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration, J. Virol, vol.74, pp.10801-10806, 2000.

J. L. Zambrano, O. Sorondo, A. Alcala, E. Vizzi, Y. Diaz et al., Rotavirus infection of cells in culture induces activation of RhoA and changes in the actin and tubulin cytoskeleton, PLoS One, vol.7, p.47612, 2012.

Y. Arakawa, J. V. Cordeiro, and M. Way, F11L-mediated inhibition of RhoA-mDia signaling stimulates microtubule dynamics during vaccinia virus infection, Cell Host Microbe, vol.1, pp.213-226, 2007.

A. Ploubidou, V. Moreau, K. Ashman, I. Reckmann, C. Gonzalez et al., Vaccinia virus infection disrupts microtubule organization and centrosome function, EMBO J, vol.19, pp.3932-3944, 2000.

N. Jouvenet and T. Wileman, African swine fever virus infection disrupts centrosome assembly and function, J. Gen. Virol, vol.86, pp.589-594, 2005.

E. Avitabile, D. Gaeta, S. Torrisi, M. R. Ward, P. L. Roizman et al., Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis, J. Virol, vol.69, pp.7472-7482, 1995.

A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein, J. Virol, vol.75, pp.8697-8711, 2001.

N. D. Stow and E. C. Stow, Isolation and characterization of a herpes simplex virus type 1 mutant containing a deletion within the gene encoding the immediate early polypeptide Vmw110, J. Gen. Virol, vol.67, pp.2571-2585, 1986.

G. Elliott, W. Hafezi, A. Whiteley, and E. Bernard, Deletion of the herpes simplex virus VP22-encoding gene (UL49) alters the expression, localization, and virion incorporation of ICP0, J. Virol, vol.79, pp.9735-9745, 2005.

P. Desai, N. A. Deluca, J. C. Glorioso, and S. Person, Mutations in herpes simplex virus type 1 genes encoding VP5 and VP23 abrogate capsid formation and cleavage of replicated DNA, J. Virol, vol.67, pp.1357-1364, 1993.

A. P. Roberts, F. Abaitua, P. O'hare, D. Mcnab, F. J. Rixon et al., Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1, J. Virol, vol.83, pp.105-116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667493

D. Pasdeloup, F. Beilstein, A. P. Roberts, M. Mcelwee, D. Mcnab et al., Inner tegument protein pUL37 of herpes simplex virus type 1 is involved in directing capsids to the trans-Golgi network for envelopment, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02661938

, J. Gen. Virol, vol.91, pp.2145-2151

D. A. Mcclelland, J. D. Aitken, D. Bhella, D. Mcnab, J. Mitchell et al., pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds, J. Virol, vol.76, pp.7407-7417, 2002.

D. Pasdeloup, D. Blondel, A. L. Isidro, and F. J. Rixon, Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25, J. Virol, vol.83, pp.6610-6623, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02659374

K. Kaelin, S. Dezelee, M. J. Masse, F. Bras, and A. Flamand, The UL25 protein of pseudorabies virus associates with capsids and localizes to the nucleus and to microtubules, J. Virol, vol.74, pp.474-482, 2000.

U. Vielkind and S. H. Swierenga, A simple fixation procedure for immunofluorescent detection of different cytoskeletal components within the same cell, Histochemistry, vol.91, pp.81-88, 1989.

R. B. Baucke and P. G. Spear, Membrane proteins specified by herpes simplex viruses. V. Identification of an Fc-binding glycoprotein, J. Virol, vol.32, pp.779-789, 1979.

I. F. Sbalzarini and P. Koumoutsakos, Feature point tracking and trajectory analysis for video imaging in cell biology, J. Struct. Biol, vol.151, pp.182-195, 2005.

T. Stearns, L. Evans, and M. Kirschner, Gamma-tubulin is a highly conserved component of the centrosome, Cell, vol.65, pp.825-836, 1991.

Y. Zheng, M. K. Jung, and B. R. Oakley, Gamma-tubulin is present in Drosophila melanogaster and Homo sapiens and is associated with the centrosome, Cell, vol.65, pp.817-823, 1991.

S. J. Doxsey, P. Stein, L. Evans, P. D. Calarco, and M. Kirschner, Pericentrin, a highly conserved centrosome protein involved in microtubule organization, Cell, vol.76, pp.639-650, 1994.

M. Liu, E. E. Schmidt, and W. P. Halford, ICP0 dismantles microtubule networks in herpes simplex virus-infected cells, PLoS One, vol.5, p.10975, 2010.

G. Elliott and P. O'hare, Herpes simplex virus type 1 tegument protein VP22 induces the stabilization and hyperacetylation of microtubules, J. Virol, vol.72, pp.6448-6455, 1998.

G. W. Luxton, J. I. Lee, S. Haverlock-moyns, J. M. Schober, and G. A. Smith, The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport, J. Virol, vol.80, pp.201-209, 2006.

A. Wolfstein, C. H. Nagel, K. Radtke, K. Dohner, V. J. Allan et al., The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro, Traffic, vol.7, pp.227-237, 2006.

H. Nakagawa, K. Koyama, Y. Murata, M. Morito, T. Akiyama et al., EB3, a novel member of the EB1 family preferentially expressed in the central nervous system, binds to a CNS-specific APC homologue, Oncogene, vol.19, pp.210-216, 2000.

D. Pasdeloup, M. Mcelwee, F. Beilstein, M. Labetoulle, and F. J. Rixon, Herpesvirus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress, J. Virol, vol.87, pp.2857-2867, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652401

J. M. Kollman, A. Merdes, L. Mourey, and D. A. Agard, Microtubule nucleation by gamma-tubulin complexes, Nat. Rev. Mol. Cell Biol, vol.12, pp.709-721, 2011.

A. Dammermann, A. Desai, and K. Oegema, The minus end in sight, Curr. Biol, vol.13, pp.614-624, 2003.

K. Döhner, C. H. Nagel, and B. Sodeik, Viral stop-and-go along microtubules: taking a ride with dynein and kinesins, Trends Microbiol, vol.13, pp.320-327, 2005.

A. Efimov, A. Kharitonov, N. Efimova, J. Loncarek, P. M. Miller et al., Asymmetric CLASPdependent nucleation of noncentrosomal microtubules at the trans-Golgi network, Dev. Cell, vol.12, pp.917-930, 2007.

V. B. Bystrevskaya, T. V. Lobova, V. N. Smirnov, N. E. Makarova, and A. A. Kushch, Centrosome injury in cells infected with human cytomegalovirus, J. Struct. Biol, vol.120, pp.52-60, 1997.

R. Witte, V. Andriasyan, F. Georgi, A. Yakimovich, and U. F. Greber, Concepts in Light 428 Microscopy of Viruses, vol.10, 2018.

K. Grunewald, Three-dimensional structure of herpes simplex virus from cryo-430 electron tomography, Science, vol.302, issue.5649, pp.1396-1398, 2003.

W. W. Newcomb, J. J. Brown, F. J. Rixon, and A. J. Davison, Time-dependent transformation of the herpesvirus McGeoch, Virus Res, vol.117, pp.90-104, 2006.

E. E. Heldwein, Up close with herpesviruses, Science, vol.360, pp.34-35, 2018.

T. Zeev-ben-mordehai, C. Hagen, and K. Grunewald, A cool hybrid approach to the herpesvirus 'life' cycle, Curr Opin Virol, vol.5, pp.42-49, 2014.

R. Lachmann, Herpes simplex virus latency, Expert Rev Mol Med, vol.5, pp.1-14, 2003.

A. R. Mcnab, The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA, J Virol, vol.72, pp.1060-1070, 1998.

N. D. Stow, Packaging of genomic and amplicon DNA by the herpes simplex virus type 1 UL25-null mutant KUL25NS, J Virol, vol.75, pp.10755-10765, 2001.

Y. Miyamoto, K. Yamada, and Y. Yoneda, Importin alpha: a key molecule in nuclear transport and non-transport functions, J Biochem, vol.160, pp.69-75, 2016.

P. M. Ojala, B. Sodeik, M. W. Ebersold, U. Kutay, and A. Helenius, Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro, Mol Cell Biol, vol.20, pp.4922-4931, 2000.

V. G. Preston, J. Murray, C. M. Preston, I. M. Mcdougall, and N. D. Stow, The UL25 gene product of herpes simplex virus type 1 is involved in uncoating of the viral genome, J Virol, vol.82, pp.6654-6666, 2008.

C. Strambio-de-castillia, M. Niepel, and M. P. Rout, The nuclear pore complex: bridging nuclear transport and gene regulation, Nat Rev Mol Cell Biol, vol.11, pp.490-501, 2010.

K. E. Coller, J. I. Lee, A. Ueda, and G. A. Smith, The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins, J Virol, vol.81, pp.11790-11797, 2007.

A. M. Copeland, W. W. Newcomb, and J. C. Brown, Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsid-nucleus attachment, J Virol, vol.83, pp.1660-1668, 2009.

F. Abaitua, T. Daikoku, C. M. Crump, M. Bolstad, and P. O'hare, A single mutation responsible for temperaturesensitive entry and assembly defects in the VP1-2 protein of herpes simplex virus, J Virol, vol.85, pp.2024-2036, 2011.

F. Abaitua, R. N. Souto, H. Browne, T. Daikoku, and P. O'hare, Characterization of the herpes simplex virus (HSV)-1 tegument protein VP1-2 during infection with the HSV temperature-sensitive mutant tsB7, J Gen Virol, vol.90, pp.2353-2363, 2009.

W. Batterson, D. Furlong, and B. Roizman, Molecular genetics of herpes simplex virus. VIII. further characterization of a temperature-sensitive mutant defective in release of viral DNA and in other stages of the viral reproductive cycle, J Virol, vol.45, pp.397-407, 1983.

F. Abaitua, M. Hollinshead, M. Bolstad, C. M. Crump, and P. O'hare, A Nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore, J Virol, vol.86, pp.8998-9014, 2012.

X. Dai and Z. H. Zhou, Structure of the herpes simplex virus 1 capsid with associated tegument protein complexes, Science, vol.360, 2018.

M. Mcelwee, S. Vijayakrishnan, F. Rixon, and D. Bhella, Structure of the herpes simplex virus portal-vertex

, PLoS Biol, vol.16, p.2006191, 2018.

K. Rode, Uncoupling uncoating of herpes simplex virus genomes from their nuclear import and gene expression, J Virol, vol.85, pp.4271-4283, 2011.

J. Schipke, The C terminus of the large tegument protein pUL36 contains multiple capsid binding sites that function differently during assembly and cell entry of herpes simplex virus, J Virol, vol.86, pp.3682-3700, 2012.

S. Cohen, S. Au, and N. Pante, How viruses access the nucleus, Biochim Biophys Acta, vol.1813, pp.1634-1645, 2011.

N. Fay and N. Pante, Nuclear entry of DNA viruses, Front Microbiol, vol.6, 2015.

J. W. Flatt and U. F. Greber, Viral mechanisms for docking and delivering at nuclear pore complexes, Semin Cell Dev Biol, vol.68, pp.59-71, 2017.

O. Kobiler, N. Drayman, V. Butin-israeli, and A. Oppenheim, Virus strategies for passing the nuclear envelope barrier, Nucleus, vol.3, pp.526-539, 2012.

L. Sage, V. Mouland, and A. J. , Viral subversion of the nuclear pore complex, Viruses, vol.5, 2013.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming herpes simplex virus 1 capsids to the nucleus, J Cell Biol, vol.136, pp.1007-1021, 1997.

G. W. Luxton, J. I. Lee, S. Haverlock-moyns, J. M. Schober, and G. A. Smith, The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport, J Virol, vol.80, pp.201-209, 2006.

A. Wolfstein, The inner tegument promotes herpes simplex virus capsid motility along microtubules in vitro, Traffic, vol.7, pp.227-237, 2006.

K. Radtke, Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog, vol.6, p.1000991, 2010.

S. E. Antinone and G. A. Smith, Retrograde axon transport of herpes simplex virus and pseudorabies virus: a livecell comparative analysis, J Virol, vol.84, pp.1504-1512, 2010.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, J Virol, vol.79, pp.3200-3205, 2005.

G. W. Luxton, Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc Natl Acad Sci U S A, vol.102, pp.5832-5837, 2005.

J. J. Liu, BPAG1n4 is essential for retrograde axonal transport in sensory neurons, J Cell Biol, vol.163, pp.223-229, 2003.

S. D. Ryan, Microtubule stability, Golgi organization, and transport flux require dystonin-a2-MAP1B interaction, J Cell Biol, vol.196, pp.727-742, 2012.

C. L. Leung, R. K. Liem, D. A. Parry, and K. J. Green, The plakin family, J Cell Sci, vol.114, pp.3409-3410, 2001.

M. P. Dodding and M. Way, Coupling viruses to dynein and kinesin-1, EMBO J, vol.30, pp.3527-3539, 2011.

S. V. Zaichick, The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion, Cell Host Microbe, vol.13, pp.193-203, 2013.

A. L. Richards, The pUL37 tegument protein guides alpha-herpesvirus retrograde axonal transport to promote neuroinvasion, PLoS Pathog, vol.13, p.1006741, 2017.

A. Kumar, V. Rajendran, R. Sethumadhavan, and R. Purohit, CEP proteins: the knights of centrosome dynasty, Protoplasma, vol.250, pp.965-983, 2013.

M. Bornens, The centrosome in cells and organisms, Science, vol.335, pp.422-426, 2012.

E. Avitabile, Redistribution of microtubules and Golgi apparatus in herpes simplex virus-infected cells and their role in viral exocytosis, J Virol, vol.69, pp.7472-7482, 1995.

A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of VP22, a major virion tegument protein, J Virol, vol.75, pp.8697-8711, 2001.

M. H. Naghavi, G. G. Gundersen, and D. Walsh, Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread, Proc Natl Acad Sci U S A, vol.110, pp.18268-18273, 2013.

D. J. Procter, The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread, Dev Cell, vol.45, p.107, 2018.

R. J. Eisenberg, Herpes virus fusion and entry: a story with many characters, Viruses, vol.4, pp.800-832, 2012.

T. K. Chowdary, Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL, Nat Struct Mol Biol, vol.17, pp.882-888, 2010.

E. E. Heldwein, Crystal structure of glycoprotein B from herpes simplex virus 1, Science, vol.313, pp.217-220, 2006.

C. Krummenacher, Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry, J Virol, vol.72, pp.7064-7074, 1998.

R. I. Montgomery, M. S. Warner, B. J. Lum, and P. G. Spear, Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family, Cell, vol.87, pp.427-436, 1996.

B. C. Herold, D. Wudunn, N. Soltys, and P. G. Spear, Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity, J Virol, vol.65, pp.1090-1098, 1991.

D. T. Macleod, T. Nakatsuji, K. Yamasaki, L. Kobzik, and R. L. Gallo, HSV-1 exploits the innate immune scavenger receptor MARCO to enhance epithelial adsorption and infection, Nat Commun, vol.4, 1963.

K. Grunewald, Three-dimensional structure of herpes simplex virus from cryo-electron tomography, Science, vol.302, pp.1396-1398, 2003.

U. E. Maurer, B. Sodeik, and K. Grunewald, Native 3D intermediates of membrane fusion in herpes simplex virus 1 entry, Proc Natl Acad Sci U S A, vol.105, pp.10559-10564, 2008.

W. W. Newcomb and J. C. Brown, Time-dependent transformation of the herpesvirus tegument, J Virol, vol.83, pp.8082-8089, 2009.

G. A. Smith, Assembly and Egress of an Alphaherpesvirus Clockwork, Adv Anat Embryol Cell Biol, vol.223, pp.171-193, 2017.

C. G. Handler, R. J. Eisenberg, and G. H. Cohen, Oligomeric structure of glycoproteins in herpes simplex virus type 1, J Virol, vol.70, pp.6067-6070, 1996.

L. M. Hook, J. Huang, M. Jiang, R. Hodinka, and H. M. Friedman, Blocking antibody access to neutralizing domains on glycoproteins involved in entry as a novel mechanism of immune evasion by herpes simplex virus type 1 glycoproteins C and E, J Virol, vol.82, pp.6935-6941, 2008.

J. Chojnacki, Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy, Science, vol.338, pp.524-528, 2012.

A. F. Read, Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens, PLoS Biol, vol.13, p.1002198, 2015.

V. Nair, Evolution of Marek's disease --a paradigm for incessant race between the pathogen and the host, Vet J, vol.170, pp.175-183, 2005.

B. W. Calnek, H. K. Adldinger, and D. E. Kahn, Feather follicle epithelium: a source of enveloped and infectious cell-free herpesvirus from Marek's disease, Avian Dis, vol.14, pp.219-233, 1970.

C. Denesvre, Morphogenesis of a highly replicative EGFPVP22 recombinant Marek's disease virus in cell culture, J Virol, vol.81, pp.12348-12359, 2007.

B. G. Klupp, H. Granzow, G. M. Keil, and T. C. Mettenleiter, The capsid-associated UL25 protein of the alphaherpesvirus pseudorabies virus is nonessential for cleavage and encapsidation of genomic DNA but is required for nuclear egress of capsids, J Virol, vol.80, pp.6235-6246, 2006.

B. L. Trus, Allosteric signaling and a nuclear exit strategy: binding of UL25/UL17 heterodimers to DNA-Filled HSV-1 capsids, Mol Cell, vol.26, pp.479-489, 2007.

D. Henaff, G. Remillard-labrosse, S. Loret, and R. Lippe, Analysis of the early steps of herpes simplex virus 1 capsid tegumentation, J Virol, vol.87, pp.4895-4906, 2013.

M. Leelawong, J. I. Lee, and G. A. Smith, Nuclear egress of pseudorabies virus capsids is enhanced by a subspecies of the large tegument protein that is lost upon cytoplasmic maturation, J Virol, vol.86, pp.6303-6314, 2012.

S. Loret, G. Guay, and R. Lippe, Comprehensive characterization of extracellular herpes simplex virus type 1 virions, J Virol, vol.82, pp.8605-8618, 2008.

T. Russell, B. Bleasdale, M. Hollinshead, and G. Elliott, Qualitative Differences in Capsidless L-Particles Released as a By-Product of Bovine Herpesvirus 1 and Herpes Simplex Virus 1 Infections, J Virol, vol.92, 2018.

X. Che, Functions of the ORF9-to-ORF12 gene cluster in varicella-zoster virus replication and in the pathogenesis of skin infection, J Virol, vol.82, pp.5825-5834, 2008.

Z. Zhang, Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor, PLoS Pathog, vol.6, p.1000971, 2010.

H. F. Jiang, ORF7 of Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in Differentiated Neuronal Cells, J Virol, vol.91, 2017.

K. W. Jarosinski, S. Arndt, B. B. Kaufer, and N. Osterrieder, Fluorescently tagged pUL47 of Marek's disease virus reveals differential tissue expression of the tegument protein in vivo, J Virol, vol.86, pp.2428-2436, 2012.

K. W. Jarosinski and J. F. Vautherot, Differential expression of Marek's disease virus (MDV) late proteins during in vitro and in situ replication: role for pUL47 in regulation of the MDV UL46-UL49 gene locus, Virology, vol.484, pp.213-226, 2015.

S. Arzt, F. Baudin, A. Barge, P. Timmins, W. Burmeister et al., Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its Nterminal domain show that M1 is an elongated monomer, Virology, vol.279, pp.439-446, 2001.

H. Badrane, C. Bahloul, P. Perrin, and N. Tordo, Evidence of two Lyssavirus phylogroups with distinct pathogenicity and immunogenicity, J. Virol, vol.75, pp.3268-3276, 2001.

D. Blondel, T. Regad, N. Poisson, B. Pavie, F. Harper et al., Rabies virus P and small P products interact directly with PML and reorganize PML nuclear bodies, Oncogene, vol.21, pp.7957-7970, 2002.

M. Chenik, K. Chebli, Y. Gaudin, and D. Blondel, In vivo interaction of Rabies virus phosphoprotein (P) and nucleoprotein (N): existence of two N-binding sites on P protein, J. Gen. Virol, vol.75, pp.2889-2896, 1994.

M. Chenik, K. Chebli, and D. Blondel, Translation initiation at alternate in-frame AUG codons in the rabies virus phosphoprotein mRNA is mediated by a ribosomal leaky scanning mechanism, J. Virol, vol.69, pp.707-712, 1995.

M. Chenik, M. Schnell, K. K. Conzelmann, and D. Blondel, Mapping the interacting domains between the rabies virus polymerase and phosphoprotein, J. Virol, vol.72, pp.1925-1930, 1998.

U. Fischer, J. Huber, W. C. Boelens, I. W. Mattaj, and R. Luhrmann, The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs, Cell, vol.82, pp.475-483, 1995.

M. Fornerod, M. Ohno, M. Yoshida, and I. W. Mattaj, CRM1 is an export receptor for leucine-rich nuclear export signals, Cell, vol.90, pp.1051-1060, 1997.

Z. F. Fu, Y. Zheng, W. H. Wunner, H. Koprowski, and B. Dietzschold, Both the N-and the C-terminal domains of the nominal phosphoprotein of Rabies virus are involved in binding to the nucleoprotein, Virology, vol.200, pp.590-597, 1994.

R. T. Fuerst, E. G. Niles, F. W. Studier, and B. Moss, Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase, Proc. Natl. Acad. Sci. U.S.A, vol.83, pp.8122-8126, 1986.

B. Gigant, F. Iseni, Y. Gaudin, M. Knossow, and D. Blondel, Neither phosphorylation nor the amino-terminal part of Rabies virus phosphoprotein is required for its oligomerization, J. Gen. Virol, vol.81, pp.1757-1761, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02118375

D. Gorlich and I. W. Mattaj, Nucleocytoplasmic transport, Science, vol.271, pp.1513-1518, 1996.

D. Gorlich, S. Kostka, R. Kraft, C. Dingwall, R. A. Laskey et al., Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope, Curr. Biol, vol.5, pp.383-392, 1995.

A. K. Gupta, D. Blondel, S. Ghoudhary, and A. K. Banerjee, The phosphoprotein of Rabies virus is phosphorylated by a unique cellular protein kinase and specific isomers of protein kinase C, J. Virol, vol.74, pp.91-98, 2000.

E. Hiriart, G. Farjot, H. Gruffat, M. V. Nguyen, A. Sergeant et al., A novel nuclear export signal and a REF interaction domain both promote mRNA export by the Epstein-Barr virus EB2 protein, J. Biol. Chem, vol.278, pp.335-342, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01928104

J. A. Hiscox, The interaction of animal cytoplasmic RNA viruses with the nucleus to facilitate replication, Virus Res, vol.95, pp.13-22, 2003.

S. Hubner, C. Y. Xiao, and D. A. Jans, The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large Tantigen nuclear localization sequence by importin, J. Biol. Chem, vol.272, pp.17191-17195, 1997.

Y. Jacob, H. Badrane, P. E. Ceccaldi, and N. Tordo, Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein, J. Virol, vol.74, pp.10217-10222, 2000.

Y. Jacob, E. Real, and N. Tordo, Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains, J. Virol, vol.75, pp.9613-9622, 2001.

D. A. Jans and S. Hubner, Regulation of protein transport to the nucleus: central role of phosphorylation, Physiol. Rev, vol.76, pp.651-685, 1996.

D. Kalderon, W. D. Richardson, A. F. Markham, and A. E. Smith, Sequence requirements for nuclear location of simian virus 40 large-T antigen, Nature, vol.311, pp.33-38, 1984.

M. Kohler, C. Speck, M. Christiansen, F. R. Bischoff, S. Prehn et al., Evidence for distinct substrate specificities of importin alpha family members in nuclear protein import, Mol. Cell. Biol, vol.19, pp.7782-7791, 1999.

M. Mavrakis, F. Iseni, C. Mazza, G. Schoehn, C. Ebel et al., Isolation and characterisation of the rabies virus N8-P complex produced in insect cells, Virology, vol.305, pp.406-414, 2003.

M. Mavrakis, A. Mccarthy, S. Roche, D. Blondel, and R. W. Ruigrok, Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus, J. Mol. Biol, vol.343, pp.819-831, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02670801

K. Nishi, M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi et al., Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression, J. Biol. Chem, vol.269, pp.6320-6324, 1994.

E. A. Nigg, Nucleocytoplasmic transport: signals, mechanisms and regulation, Nature, vol.386, pp.779-787, 1997.

B. A. Parker and G. R. Stark, Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA, J. Virol, vol.31, pp.360-369, 1979.

H. Raux, F. Iseni, F. Lafay, and D. Blondel, Mapping of monoclonal antibody epitopes of the Rabies virus P protein, J. Gen. Virol, vol.78, pp.119-124, 1997.

H. Raux, A. Flamand, and D. Blondel, Interaction of the rabies virus P protein with the LC8 dynein light chain, J. Virol, vol.74, pp.10212-10216, 2000.

J. Robbins, S. M. Dilworth, R. A. Laskey, and C. Dingwall, Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: identification of a class of bipartite nuclear targeting sequence, Cell, vol.64, pp.615-623, 1991.

C. Tuffereau, S. Fisher, and A. Flamand, Phosphorylation of the N and M1 proteins of rabies virus, J. Gen. Virol, vol.66, pp.2285-2289, 1985.

P. Wang, P. Palese, and R. E. O'neill, The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal, J. Virol, vol.71, pp.1850-1856, 1997.

T. Wolff, G. Unterstab, G. Heins, J. A. Richt, and M. Kann, Characterization of an unusual importin alpha binding motif in the Borna disease virus p10 protein that directs nuclear import, J. Biol. Chem, vol.277, pp.12151-12157, 2002.

Z. Ye, D. Robinson, and R. R. Wagner, Nucleus-targeting domain of the matrix protein (M1) of influenza virus, J. Virol, vol.69, 1964.

C. I. Ace, T. A. Mckee, J. M. Ryan, J. M. Cameron, and C. M. Preston, Construction and characterization of a herpes simplex virus type 1 mutant unable to transinduce immediate-early gene expression, J. Virol, vol.63, pp.2260-2269, 1989.

R. C. Beale, Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo, J. Mol. Biol, vol.337, pp.585-596, 2004.

K. N. Bishop, Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr. Biol, vol.14, pp.1392-1396, 2004.

H. P. Bogerd, B. P. Doehle, H. L. Wiegand, and B. R. Cullen, A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.3770-3774, 2004.

M. Bonvin, Interferon-inducible expression of APOBEC3 editing enzymes in human hepatocytes and inhibition of hepatitis B virus replication, Hepatology, vol.43, pp.1364-1374, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00683855

J. E. Carpenter, E. P. Henderson, and C. Grose, Enumeration of an extremely high particle-to-PFU ratio for varicella-zoster virus, J. Virol, vol.83, pp.6917-6921, 2009.

H. Chen, APOBEC3A is a potent inhibitor of adeno-associated virus and retrotransposons, Curr. Biol, vol.16, pp.480-485, 2006.

S. G. Conticello, R. S. Harris, and M. S. Neuberger, The Vif protein of HIV triggers degradation of the human antiretroviral DNA deaminase APOBEC3G, Curr. Biol, vol.13, pp.2009-2013, 2003.

S. G. Conticello, C. J. Thomas, S. K. Petersen-mahrt, and M. S. Neuberger, Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases, Mol. Biol. Evol, vol.22, pp.367-377, 2005.

F. Delebecque, Restriction of foamy viruses by APOBEC cytidine deaminases, J. Virol, vol.80, pp.605-614, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00357984

J. M. Di-noia and M. S. Neuberger, Molecular mechanisms of antibody somatic hypermutation, Annu. Rev. Biochem, vol.76, pp.1-22, 2007.

K. Dohner, K. Radtke, S. Schmidt, and B. Sodeik, Eclipse phase of herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26, J. Virol, vol.80, pp.8211-8224, 2006.

K. M. Eidson, W. E. Hobbs, B. J. Manning, P. Carlson, and N. A. Deluca, Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection, J. Virol, vol.76, pp.2180-2191, 2002.

C. Esnault, APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses, Nature, vol.433, pp.430-433, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01372656

M. Goodenow, HIV-1 isolates are rapidly evolving quasispecies: evidence for viral mixtures and preferred nucleotide substitutions, J. Acquir. Immune Defic. Syndr, vol.2, pp.344-352, 1989.

R. S. Harris, DNA deamination mediates innate immunity to retroviral infection, Cell, vol.113, pp.803-809, 2003.

M. Henry, Genetic editing of HBV DNA by monodomain human APOBEC3 cytidine deaminases and the recombinant nature of APOBEC3G, PLoS One, vol.4, p.4277, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363413

K. Imai, Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination, Nat. Immunol, vol.4, pp.1023-1028, 2003.

A. Jarmuz, An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, vol.79, pp.285-296, 2002.

S. Karlin, E. S. Mocarski, and G. A. Schachtel, Molecular evolution of herpesviruses: genomic and protein sequence comparisons, J. Virol, vol.68, pp.1886-1902, 1994.

F. A. Koning, Defining APOBEC3 expression patterns in human tissues and hematopoietic cell subsets, J. Virol, vol.83, pp.9474-9485, 2009.

M. Kremer, Vaccinia virus replication is not affected by APOBEC3 family members, Virol. J, vol.3, p.86, 2006.

K. Krusong, E. P. Carpenter, S. R. Bellamy, R. Savva, and G. S. Baldwin, A comparative study of uracil-DNA glycosylases from human and herpes simplex virus type 1, J. Biol. Chem, vol.281, pp.4983-4992, 2006.

R. S. Larue, Guidelines for naming non-primate APOBEC3 genes and proteins, J. Virol, vol.83, pp.494-497, 2009.

R. S. Larue, The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals, BMC Mol. Biol, vol.9, p.104, 2008.

D. Lecossier, F. Bouchonnet, F. Clavel, and A. J. Hance, Hypermutation of HIV-1 DNA in the absence of the Vif protein, Science, vol.300, p.1112, 2003.

M. T. Liddament, W. L. Brown, A. J. Schumacher, and R. S. Harris, APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo, Curr. Biol, vol.14, pp.1385-1391, 2004.

R. Mahieux, Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00013751

, J. Gen. Virol, vol.86, pp.2489-2494

B. Mangeat, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, vol.424, pp.99-103, 2003.

R. Mariani, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif, Cell, vol.114, pp.21-31, 2003.

D. A. Mcclelland, pH reduction as a trigger for dissociation of herpes simplex virus type 1 scaffolds, J. Virol, vol.76, pp.7407-7417, 2002.

D. J. Mcgeoch, F. J. Rixon, and A. J. Davison, Topics in herpesvirus genomics and evolution, Virus Res, vol.117, pp.90-104, 2006.

A. Meyerhans, Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations, Cell, vol.58, pp.901-910, 1989.

K. L. Mossman, H. A. Saffran, and J. R. Smiley, Herpes simplex virus ICP0 mutants are hypersensitive to interferon, J. Virol, vol.74, pp.2052-2056, 2000.

M. J. Nicholl, L. H. Robinson, and C. M. Preston, Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1, J. Gen. Virol, vol.81, pp.2215-2218, 2000.

C. Noguchi, G-to-A hypermutation in hepatitis B virus (HBV) and clinical course of patients with chronic HBV infection, J. Infect. Dis, vol.199, pp.1599-1607, 2009.

D. Pasdeloup, D. Blondel, A. L. Isidro, and F. J. Rixon, Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the capsid protein pUL25, J. Virol, vol.83, pp.6610-6623, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02659374

V. Petit, Murine APOBEC1 is a powerful mutator of retroviral and cellular RNA in vitro and in vivo, J. Mol. Biol, vol.385, pp.65-78, 2009.
URL : https://hal.archives-ouvertes.fr/pasteur-00363408

P. Pham, R. Bransteitter, J. Petruska, and M. F. Goodman, Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation, Nature, vol.424, pp.103-107, 2003.

E. W. Refsland, Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction, Nucleic Acids Res, vol.38, pp.4274-4284, 2010.

B. Sainz, W. P. Jr, and . Halford, Alpha/beta interferon and gamma interferon synergize to inhibit the replication of herpes simplex virus type 1, 2002.

, J. Virol, vol.76, pp.11541-11550

B. Schrofelbauer, D. Chen, and N. R. Landau, A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif), Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.3927-3932, 2004.

A. M. Sheehy, N. C. Gaddis, J. D. Choi, and M. H. Malim, Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein, Nature, vol.418, pp.646-650, 2002.

M. D. Stenglein, M. B. Burns, M. Li, J. Lengyel, and R. S. Harris, APOBEC3 proteins mediate the clearance of foreign DNA from human cells, Nat. Struct. Mol. Biol, vol.17, pp.222-229, 2010.

M. D. Stenglein and R. S. Harris, APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism, J. Biol. Chem, vol.281, pp.16837-16841, 2006.

R. Suspène, Somatic hypermutation of human mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway for DNA catabolism, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.4858-4863, 2011.

R. Suspène, Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.8321-8326, 2005.

R. Suspène, M. Henry, S. Guillot, S. Wain-hobson, and J. P. Vartanian, Recovery of APOBEC3-edited human immunodeficiency virus G 3 A hypermutants by differential DNA denaturation PCR, J. Gen. Virol, vol.86, pp.125-129, 2005.

R. Suspène, APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase, Nucleic Acids Res, vol.32, pp.2421-2429, 2004.

M. L. Szpara, L. Parsons, and L. W. Enquist, Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations, J. Virol, vol.84, pp.5303-5313, 2010.

M. Tsuge, G to A hypermutation of TT virus, Virus Res, vol.149, pp.211-216, 2010.

P. Turelli, B. Mangeat, S. Jost, S. Vianin, and D. Trono, Inhibition of hepatitis B virus replication by APOBEC3G, Science, vol.303, p.1829, 2004.

J. P. Vartanian, D. Guetard, M. Henry, and S. Wain-hobson, Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions, Science, vol.320, pp.230-233, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00363398

J. P. Vartanian, Massive APOBEC3 editing of hepatitis B viral DNA in cirrhosis, PLoS Pathog, vol.6, p.1000928, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-00507449

F. X. Wang, J. Huang, H. Zhang, and X. Ma, APOBEC3G upregulation by alpha interferon restricts human immunodeficiency virus type 1 infection in human peripheral plasmacytoid dendritic cells, J. Gen. Virol, vol.89, pp.722-730, 2008.

H. L. Wiegand, B. P. Doehle, H. P. Bogerd, and B. R. Cullen, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins, EMBO J, vol.23, pp.2451-2458, 2004.

H. Zhang, The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA, Nature, vol.424, pp.94-98, 2003.

N. Scrima, J. Lepault, Y. Boulard, D. Pasdeloup, S. Bressanelli et al., , 2014.

N. Scrima, ?. , J. Lepault, ?. , Y. Boulard et al., Results: The 970 central residues of UL36 have been analyzed by several biophysical and structural methods. Conclusion: These UL36 residues constitute an elongated fiber that is able to form monomers and dimers, Sté phane Bressanelli ?1 , and Sté phane Roche ?2 From the ? Institute for Integrative Biology of the Cell (I2BC), vol.984

, Two independent experiments are presented for fragment 760 -1733. The protein concentrations at the peak are indicated. Insets, 4 g of the purified proteins used in SEC-MALLS were analyzed by 16% (1600 -1733) or 14% (760 -1733) SDS-PAGE with Coomassie staining. C, molecular weight of fragment 760 -1733 derived from sedimentation equilibrium ultracentrifugation at 3.3, 5.4, and 8.6 M. D, sedimentation velocity experiment of fragment 760 -1733 at 5 and 9, FIGURE 1. Oligomeric status and shape of HSV-1 UL36 fragments in solution

, One monomer is colored in blue and the other one in gray. B, tryptophan fluorescence emission spectrum of fragment 1600 -1733. The maximal emission was observed at a wavelength of 338 nm. The spectrum was recorded in a 50 mM Tris, pH 8, 200 mM NaCl buffer. Spectra with a maximum emission at 338 nm were recorded in all the tested buffers, including (50 mM Tris, 20 mM to 1 M NaCl), (50 mM HEPES, pH 7, 200 mM NaCl), and (50 mM MES

, B, molecular dynamics simulations for a crystallographic molecule and a putative monomer folded back at residues 1676 -1679. Both systems were neutralized, hydrated in explicit solvent, and minimized. Protein structures are displayed as ribbons at the beginning (left) and the end (right) of the 10-ns production time. They are aligned on the stable central three-helix bundle (residues 1633-1675, colored black). Residues N-terminal to 1633-1675 are colored pale yellow, and the C-terminal residues are colored pale green, including Trp-1686, whose side chain is displayed as sticks. Middle panels, change over time for the crystallographic molecule (black lines) and the folded-back model (salmon lines) of the r.m.s.d. for all atoms in residues 1633-1722 (top) and of the distance between Trp-1686 N? and Leu-1640 O (bottom). C, targeted molecular dynamics simulations between the observed and modeled conformers. Top, FIGURE 5. Stability of crystallographic and folded-back models of fragment 1600 -1733 and interconversion between them. A, sequence conservation in alphaherpesviruses for helix C (residues 1659 -1696 in the crystal structure of 1600 -1733)

D. H. Chen, H. Jiang, M. Lee, F. Liu, and Z. H. Zhou, Threedimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus, Virology, vol.260, pp.10-16, 1999.

K. Grünewald, P. Desai, D. C. Winkler, J. B. Heymann, D. M. Belnap et al., Three-dimensional structure of herpes simplex virus from cryo-electron tomography, Science, vol.302, pp.1396-1398, 2003.

W. W. Newcomb and J. C. Brown, Structure and capsid association of the herpesvirus large tegument protein UL36, J. Virol, vol.84, pp.9408-9414, 2010.

Z. H. Zhou, D. H. Chen, J. Jakana, F. J. Rixon, and W. Chiu, Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 Virions, J. Virol, vol.73, pp.3210-3218, 1999.

A. Aggarwal, M. Miranda-saksena, R. A. Boadle, B. J. Kelly, R. J. Diefenbach et al., Ultrastructural visualization of individual tegument protein dissociation during entry of herpes simplex virus 1 into human and rat dorsal root ganglion neurons, J. Virol, vol.86, pp.6123-6137, 2012.

S. E. Antinone, S. V. Zaichick, and G. A. Smith, Resolving the assembly state of herpes simplex virus during axon transport by live-cell imaging, J. Virol, vol.84, pp.13019-13030, 2010.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, J. Virol, vol.79, pp.3200-3205, 2005.

G. W. Luxton, S. Haverlock, K. E. Coller, S. E. Antinone, A. Pincetic et al., Targeting of herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.5832-5837, 2005.

B. G. Klupp, W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter, Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein, J. Virol, vol.76, pp.3065-3071, 2002.

V. Vittone, E. Diefenbach, D. Triffett, M. W. Douglas, A. L. Cunningham et al., Determination of interactions between tegument proteins of herpes simplex virus type 1, J. Virol, vol.79, pp.9566-9571, 2005.

K. E. Coller, J. I. Lee, A. Ueda, and G. A. Smith, The capsid and tegument of the alphaherpesviruses are linked by an interaction between the UL25 and VP1/2 proteins, J. Virol, vol.81, pp.11790-11797, 2007.

J. I. Lee, G. W. Luxton, and G. A. Smith, Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons, J. Virol, vol.80, pp.12086-12094, 2006.

D. Pasdeloup, D. Blondel, A. L. Isidro, and F. J. Rixon, Herpesvirus capsid association with the nuclear pore complex and viral DNA release involve the nucleoporin CAN/Nup214 and the Capsid protein pUL25, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02659374

, J. Virol, vol.83, pp.6610-6623

K. Radtke, D. Kieneke, A. Wolfstein, K. Michael, W. Steffen et al., Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures, PLoS Pathog, vol.6, p.1000991, 2010.

G. W. Luxton, J. I. Lee, S. Haverlock-moyns, J. M. Schober, and G. A. Smith, The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport, J. Virol, vol.80, pp.201-209, 2006.

D. Pasdeloup, M. Labetoulle, and F. J. Rixon, Differing effects of herpes simplex virus 1 and pseudorabies virus infections on centrosomal function, J. Virol, vol.87, pp.7102-7112, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02649896

M. Sandbaumhüter, K. Döhner, J. Schipke, A. Binz, A. Pohlmann et al., Cytosolic herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment, Cell. Microbiol, vol.15, pp.248-269, 2013.

M. Mcelwee, F. Beilstein, M. Labetoulle, F. J. Rixon, and D. Pasdeloup, Dystonin/BPAG1 promotes plus-end-directed transport of herpes simplex virus 1 capsids on microtubules during entry, J. Virol, vol.87, pp.11008-11018, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652402

D. Pasdeloup, M. Mcelwee, F. Beilstein, M. Labetoulle, and F. J. Rixon, Herpesvirus tegument protein pUL37 interacts with dystonin/ BPAG1 to promote capsid transport on microtubules during egress, J. Virol, vol.87, pp.2857-2867, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652401

S. V. Zaichick, K. P. Bohannon, A. Hughes, P. J. Sollars, G. E. Pickard et al., The herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion, Cell Host Microbe, vol.13, pp.193-203, 2013.

F. Abaitua, M. Hollinshead, M. Bolstad, C. M. Crump, and P. Hare, A nuclear localization signal in herpesvirus protein VP1-2 is essential for infection via capsid routing to the nuclear pore, J. Virol, vol.86, pp.8998-9014, 2012.

A. M. Copeland, W. W. Newcomb, and J. C. Brown, Herpes simplex virus replication: roles of viral proteins and nucleoporins in capsidnucleus attachment, J. Virol, vol.83, pp.1660-1668, 2009.

V. Jovasevic, L. Liang, and B. Roizman, Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus, J. Virol, vol.82, pp.3311-3319, 2008.

A. P. Roberts, F. Abaitua, P. O'hare, D. Mcnab, F. J. Rixon et al., Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1, J. Virol, vol.83, pp.105-116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02667493

P. J. Desai, A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells, J. Virol, vol.74, pp.11608-11618, 2000.

W. Fuchs, B. G. Klupp, H. Granzow, and T. C. Mettenleiter, Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein, J. Virol, vol.78, pp.11879-11889, 2004.

D. H. Ko, A. L. Cunningham, and R. J. Diefenbach, The major determinant for addition of tegument protein pUL48 (VP16) to capsids in herpes simplex virus type 1 is the presence of the major tegument protein pUL36 (VP1/2), J. Virol, vol.84, pp.1397-1405, 2010.

S. Svobodova, S. Bell, and C. M. Crump, , 2012.

N. Jambunathan, D. Chouljenko, P. Desai, A. Charles, R. Subramanian et al., Herpes simplex virus 1 protein UL37 interacts with viral glycoprotein gK and membrane protein UL20 and functions in cytoplasmic virion envelopment, J. Virol, vol.88, pp.5927-5935, 2014.

L. M. Kattenhorn, G. A. Korbel, B. M. Kessler, E. Spooner, and H. L. Ploegh, A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family herpesviridae, Mol. Cell, vol.19, pp.547-557, 2005.

C. Schlieker, G. A. Korbel, L. M. Kattenhorn, and H. L. Ploegh, A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae, J. Virol, vol.79, pp.15582-15585, 2005.

M. Bolstad, F. Abaitua, C. M. Crump, and P. Hare, Autocatalytic activity of the ubiquitin-specific protease domain of herpes simplex virus 1 VP1-2, J. Virol, vol.85, pp.8738-8751, 2011.

S. Wang, K. Wang, J. Li, and C. Zheng, Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits ? interferon production by deubiquitinating TRAF3, J. Virol, vol.87, pp.11851-11860, 2013.

C. Schlieker, W. A. Weihofen, E. Frijns, L. M. Kattenhorn, R. Gaudet et al., Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes, Mol. Cell, vol.25, pp.677-687, 2007.

W. Kabsch, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

G. M. Sheldrick, A short history of SHELX, Acta Crystallogr. A, vol.64, pp.112-122, 2008.

P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.213-221, 2010.

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.50, issue.4, pp.760-763, 1994.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

K. Diederichs and P. A. Karplus, Better models by discarding data?, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.1215-1222, 2013.

E. Krissinel and K. Henrick, Inference of macromolecular assemblies from crystalline state, J. Mol. Biol, vol.372, pp.774-797, 2007.

H. Zhu, F. S. Domingues, I. Sommer, and T. Lengauer, NOXclass: prediction of protein-protein interaction types, BMC Bioinformatics, vol.7, p.27, 2006.

A. Sali and T. L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol, vol.234, pp.779-815, 1993.

D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo et al., The Amber biomolecular simulation programs, J. Comput. Chem, vol.26, pp.1668-1688, 2005.

H. J. Berendsen, J. P. Postma, W. F. Gunsteren, A. Van-dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, vol.81, pp.3684-3690, 1984.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N?log(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, pp.327-341, 1977.

C. Shen, R. Menon, D. Das, N. Bansal, N. Nahar et al., The protein fluorescence and structural toolkit: Database and programs for the analysis of protein fluorescence and structural data, Proteins, vol.71, pp.1744-1754, 2008.

B. Mijatov, A. L. Cunningham, and R. J. Diefenbach, Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37, Virology, vol.368, pp.26-31, 2007.

F. Abaitua and P. Hare, Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein, J. Virol, vol.82, pp.5234-5244, 2008.

F. Abaitua, R. N. Souto, H. Browne, T. Daikoku, and P. Hare, Characterization of the herpes simplex virus (HSV)-1 tegument protein VP1-2 during infection with the HSV temperature-sensitive mutant tsB7, 2009.

, J. Gen. Virol, vol.90, pp.2353-2363

F. Abaitua, T. Daikoku, C. M. Crump, M. Bolstad, and P. Hare, A single mutation responsible for temperature-sensitive entry and assembly defects in the VP1-2 protein of herpes simplex virus, J. Virol, vol.85, pp.2024-2036, 2011.

J. A. Tullman, M. Harmon, M. Delannoy, and W. Gibson, Recovery of an HMWP/hmwBP (pUL48/pUL47) complex from virions of human cytomegalovirus: subunit interactions, oligomer composition, deubiquitylase activity, J. Virol, vol.88, pp.8256-8267, 2014.

B. Sodeik, M. W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming Herpes simplex virus 1 capsids to the nucleus, J Cell Biol, vol.136, pp.1007-1028, 1997.

J. Howard and A. A. Hyman, Dynamics and mechanics of the microtubule plus-end, Nature, vol.422, pp.753-761, 2003.

A. Dammermann, A. Desai, and K. Oegema, The minus-end in sight, Curr Biol, vol.13, pp.614-638, 2003.

K. Chabin-brion, J. Marceiller, and F. Perez, The Golgi complex is a microtubule-organizing organelle, Mol Biol Cell, vol.12, pp.2047-60, 2001.

A. Efimov, A. Kharitonov, and N. Efimova, Asymmetric CLASPdependent nucleation of noncentrosomal microtubules at the trans-Golgi network, Dev Cell, vol.12, pp.917-947, 2007.

S. Engelender, A. H. Sharp, and V. Colomer, Huntingtin-associated protein 1 (HAP1) interacts with the p150Glued subunit of dynactin, Hum Mol Genet, vol.6, pp.2205-2217, 1997.

S. H. Li, C. A. Gutekunst, S. M. Hersch, and X. J. Li, Interaction of Huntingtinassociated protein with dynactin P150Glued, J Neurosci, vol.18, pp.1261-1270, 1998.

J. R. Mcguire, J. Rong, S. H. Li, and X. J. Li, Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons, J Biol Chem, vol.281, pp.3552-3561, 2006.

E. Colin, D. Zala, and G. Liot, Huntingtin phosphorylation acts as a molecular switch for anterograde/retrograde transport in neurons, EMBO J, vol.27, pp.2124-2158, 2008.

Z. H. Zhou, M. Dougherty, J. Jakana, J. He, F. J. Rixon et al., Seeing the Herpesvirus capsid at 8.5 A, Science, vol.288, pp.877-80, 2000.

G. A. Smith and L. W. Enquist, Break ins and break outs: viral interactions with the cytoskeleton of mammalian cells, Annu Rev Cell Dev Biol, vol.18, pp.135-61, 2002.

F. Bartolini and G. G. Gundersen, Generation of noncentrosomal microtubule arrays, J Cell Sci, vol.119, pp.4155-63, 2006.

R. J. Diefenbach, M. Miranda-saksena, and E. Diefenbach, Herpes simplex virus tegument protein Us11 interacts with conventional kinesin heavy chain, J Virol, vol.76, pp.3282-91, 2002.

K. Dohner, A. Wolfstein, and U. Prank, Function of dynein and dynactin in Herpes simplex virus capsid transport, Mol Biol Cell, vol.13, pp.2795-809, 2002.

T. Kramer, T. M. Greco, M. P. Taylor, A. E. Ambrosini, I. M. Cristea et al., Kinesin-3 mediates axonal sorting and directional transport of alphaherpesvirus particles in neurons, Cell Host Microbe, vol.12, pp.806-820, 2012.

M. Martinez-moreno, I. Navarro-lerida, and F. Roncal, Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a Pepscan technique, FEBS Lett, vol.544, pp.262-269, 2003.

M. W. Douglas, R. J. Diefenbach, and F. L. Homa, Herpes simplex virus Biol Chem, vol.279, pp.28522-28552, 2004.

S. E. Antinone, G. T. Shubeita, and K. E. Coller, The Herpesvirus capsid surface protein, VP26, and the majority of the tegument proteins are dispensable for capsid transport toward the nucleus, J Virol, vol.80, pp.5494-5502, 2006.

K. Dohner, K. Radtke, S. Schmidt, and B. Sodeik, Eclipse phase of Herpes simplex virus type 1 infection: efficient dynein-mediated capsid transport without the small capsid protein VP26, J Virol, vol.80, pp.8211-8235, 2006.

S. Loret, G. Guay, and R. Lippe, Comprehensive characterization of extracellular Herpes simplex virus type 1 virions, J Virol, vol.82, pp.8605-8623, 2008.

R. J. Roller and B. Roizman, The Herpes simplex virus 1 RNA binding protein Us11 is a virion component and associates with ribosomal 60S subunits, J Virol, vol.66, pp.3624-3656, 1992.

T. Koshizuka, Y. Kawaguchi, and Y. Nishiyama, Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A, J Gen Virol, vol.86, pp.527-560, 2005.

H. Granzow, B. G. Klupp, and T. C. Mettenleiter, Entry of pseudorabies virus: an immunogold-labeling study, J Virol, vol.79, pp.3200-3205, 2005.

G. W. Luxton, S. Haverlock, K. E. Coller, S. E. Antinone, A. Pincetic et al., Targeting of Herpesvirus capsid transport in axons is coupled to association with specific sets of tegument proteins, Proc Natl Acad Sci U S A, vol.102, pp.5832-5839, 2005.

S. E. Antinone, S. V. Zaichick, and G. A. Smith, Resolving the assembly state of Herpes simplex virus during axon transport by live-cell imaging, J Virol, vol.84, pp.13019-13049, 2010.

A. Wolfstein, C. H. Nagel, K. Radtke, K. Dohner, V. J. Allan et al., The inner tegument promotes Herpes simplex virus capsid motility along microtubules in vitro, Traffic, vol.7, pp.227-264, 2006.

K. Radtke, D. Kieneke, and A. Wolfstein, Plus-and minus-end directed microtubule motors bind simultaneously to Herpes simplex virus capsids using different inner tegument structures, PLoS Pathog, vol.6, p.1000991, 2010.

M. Krautwald, W. Fuchs, B. G. Klupp, and T. C. Mettenleiter, Translocation of incoming pseudorabies virus capsids to the cell nucleus is delayed in the absence of tegument protein pUL37, J Virol, vol.83, pp.3389-96, 2009.

G. W. Luxton, J. I. Lee, S. Haverlock-moyns, J. M. Schober, and G. A. Smith, The pseudorabies virus VP1/2 tegument protein is required for intracellular capsid transport, J Virol, vol.80, pp.201-210, 2006.

M. Sandbaumhuter, K. Dohner, and J. Schipke, Cytosolic Herpes simplex virus capsids not only require binding inner tegument protein pUL36 but also pUL37 for active transport prior to secondary envelopment, Cell Microbiol, vol.15, pp.248-69, 2013.

S. V. Zaichick, K. P. Bohannon, A. Hughes, P. J. Sollars, G. E. Pickard et al., The Herpesvirus VP1/2 protein is an effector of dynein-mediated capsid transport and neuroinvasion, Cell Host Microbe, vol.13, pp.193-203, 2013.

D. Pasdeloup, M. Mcelwee, F. Beilstein, M. Labetoulle, and F. J. Rixon, Herpesvirus tegument protein pUL37 interacts with dystonin/BPAG1 to promote capsid transport on microtubules during egress, J Virol, vol.87, pp.2857-67, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652401

Y. Yang, C. Bauer, G. Strasser, R. Wollman, J. P. Julien et al., Integrators of the cytoskeleton that stabilize microtubules, Cell, vol.98, pp.229-267, 1999.

J. J. Liu, J. Ding, and A. S. Kowal, BPAG1n4 is essential for retrograde axonal transport in sensory neurons, J Cell Biol, vol.163, pp.223-232, 2003.

S. D. Ryan, K. Bhanot, and A. Ferrier, Microtubule stability, Golgi organization, and transport flux require dystonin-a2-MAP1B interaction, J Cell Biol, vol.196, pp.727-769, 2012.

M. Mcelwee, F. Beilstein, M. Labetoulle, F. J. Rixon, and D. Pasdeloup, Dystonin/BPAG1 promotes plus-end-directed transport of Herpes simplex virus 1 capsids on microtubules during entry, J Virol, vol.87, pp.11008-11026, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02652402

V. Jovasevic, M. H. Naghavi, and D. Walsh, Microtubule plus-end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells, J Cell Biol, vol.211, pp.323-360, 2015.

P. Desai, G. L. Sexton, J. M. Mccaffery, and S. Person, A null mutation in the gene encoding the Herpes simplex virus type 1 UL37 polypeptide abrogates virus maturation, J Virol, vol.75, pp.10259-71, 2001.

P. J. Desai, A null mutation in the UL36 gene of Herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells, J Virol, vol.74, pp.11608-11626, 2000.

W. Fuchs, B. G. Klupp, H. Granzow, and T. C. Mettenleiter, Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein, J Virol, vol.78, pp.11879-89, 2004.

, Virologie, vol.20, issue.1, p.2016

D. Pasdeloup, M. Labetoulle, and F. J. Rixon, Differing effects of Herpes simplex virus 1 and pseudorabies virus infections on centrosomal function
URL : https://hal.archives-ouvertes.fr/hal-02649896

, J Virol, vol.87, pp.7102-7114, 2013.

I. Ibiricu, J. T. Huiskonen, K. Dohner, F. Bradke, B. Sodeik et al., Cryo-electron tomography of Herpes simplex virus during axonal transport and secondary envelopment in primary neurons, PLoS Pathog, vol.7, p.1002406, 2011.

M. M. Saksena, H. Wakisaka, and B. Tijono, Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons, J Virol, vol.80, pp.3592-606, 2006.

G. R. Daniel, P. J. Sollars, G. E. Pickard, and G. A. Smith, Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism, J Virol, vol.89, pp.8088-91, 2015.

D. Li, L. Shao, and B. C. Chen, Extendedresolution structured illumination imaging of endocytic and cytoskeletal dynamics, ADVANCED IMAGING, vol.349, p.3500, 2015.

J. Schneider, J. Zahn, and M. Maglione, Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics, Nat Methods, vol.12, pp.827-857, 2015.

N. Arhel, A. Genovesio, and K. A. Kim, Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes, Nat Methods, vol.3, pp.817-841, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-00163778

M. H. Naghavi, G. G. Gundersen, and D. Walsh, Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate Herpesvirus-induced stable microtubule formation and virus spread, Proc Natl Acad Sci U S A, vol.110, pp.18268-73, 2013.

, Virologie, vol.20, issue.1, p.2016