S. C. Bishop, Possibilities to breed for resistance to nematode parasite infections in 380 small ruminants in tropical production systems, Animal, vol.6, pp.741-748, 2012.

,

M. Silva, T. S. Sonstegard, O. Hanotte, J. M. Mugambi, J. F. Garcia et al., , p.383

F. A. Iraqi, A. E. Mcclintock, S. J. Kemp, P. J. Boettcher, M. Malek et al., Identification of quantitative trait loci affecting resistance to gastrointestinal 385 parasites in a double backcross population of Red Maasai and Dorper sheep, Anim Genet, vol.384, p.71, 2011.

A. Jabbar, Z. Iqbal, D. Kerboeuf, G. Muhammad, M. N. Khan et al., Anthelmintic resistance: The 205 state of play revisited, Life Sci, vol.79, issue.26, pp.2413-2444, 2006.

C. Morris, M. Wheeler, T. Watson, B. Hosking, and D. Leathwick, Direct and correlated responses to 207 selection for high or low faecal nematode egg count in Perendale sheep, New Zeal J Agric Res, vol.208, issue.1, p.10, 2005.

L. Karlsson and J. C. Greeff, Selection response in fecal worm egg counts in the Rylington Merino 210 parasite resistant flock, Aust J Exp Agric, vol.46, pp.809-820, 2006.

K. E. Kemper, D. G. Palmer, S. M. Liu, J. C. Greeff, S. C. Bishop et al., Reduction of faecal worm egg 212 count, worm numbers and worm fecundity in sheep selected for worm resistance following 213 artificial infection with Teladorsagia circumcincta and Trichostrongylus colubriformis, Vet 214 Parasitol, vol.171, issue.3, pp.238-284, 2010.

Z. Li, Z. Chen, X. Lan, L. Ma, Y. Qu et al., Two novel cSNPs of weaver gene in Chinese indigenous 216 goat and their associations with milk yield, Mol Biol Rep, vol.37, pp.563-572, 2010.

J. X. Hou, X. P. An, Y. X. Song, J. G. Wang, T. Ma et al., Combined effects of four SNPs within goat 218 PRLR gene on milk production traits, Gene, vol.529, pp.276-81, 2013.

, caprine MTHFR gene that is associated with milk protein levels, Anim Genet, vol.47, pp.499-503, 2016.

Q. Xiong, J. Chai, X. Li, X. Suo, N. Zhang et al., Two tagSNPs in the prolactin receptor gene are 222 associated with growth and litter traits in Boer and Macheng Black crossbred goats, Livest Sci, vol.223, pp.71-78, 2016.

R. Zhang, F. Lai, J. Wang, H. Zhai, Y. Zhao et al., Analysis of the SNP loci around transcription start 225 sites related to goat fecundity trait base on whole genome resequencing, Gene, vol.226, p.10, 2017.

L. Ma, Q. Qin, Q. Yang, M. Zhang, H. Zhao et al., Associations of six SNPs of POU1F1-PROP1-228 PITX1-SIX3 pathway genes with growth traits in two chinese indigenous goat breeds, Ann Anim, p.229

. Sci, , vol.17, p.11, 2017.

J. Zhou, X. Zhu, W. Zhang, F. Qin, S. Zhang et al., A novel single-231 upstream region of the prolactin receptor gene is associated with fiber traits in Liaoning 232 cashmere goats, Genet Mol Res, vol.10, issue.4, pp.2511-2517, 2011.

X. Wang, Z. D. Zhao, H. R. Xu, L. Qu, H. B. Zhao et al., Variation and expression of KAP9.2 gene 234 affecting cashmere trait in goats, Mol Biol Rep, vol.39, issue.12, pp.10525-10534, 2012.

L. Wang, Y. Zhang, M. Zhao, R. Wang, R. Su et al., SNP discovery from transcriptome of Cashmere goat 236 skin, Asian-Australasian J Anim Sci, vol.28, issue.9, pp.1235-1278, 2015.

G. Minozzi, S. Mattiello, L. Grosso, P. Crepaldi, S. Chessa et al., First insights in the genetics of 238 caseous lymphadenitis in goats, Ital J Anim Sci, vol.16, pp.31-39, 2017.

R. Piskol, G. Ramaswami, J. B. Li, A. Cánovas, G. Rincon et al., SNP discovery in the bovine 242 milk transcriptome using RNA-Seq technology, J Hum Genet, vol.93, pp.592-600, 2010.

U. Sharma, P. Banerjee, J. Joshi, A. Kumar-vijh-r.-;-fernández, D. Pérez-montarelo et al., Identification of SNPs in Goats ( Capra hircus ) using 244 RNA-Seq Analysis, Int J Anim Vet Adv, vol.4, issue.4, pp.272-83, 2012.

, Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and 247 RNA editing, Anim Genet, vol.48, issue.2, pp.1-26, 2017.

G. Yu, L. Wang, Y. Han, and Q. He, clusterProfiler: an R Package for Comparing Biological Themes, p.251

W. Luo and C. Brouwer, Pathview: An R/Bioconductor package for pathway-based data integration 253 and visualization, Among Gene Clusters. Omi A J Integr Biol, vol.16, issue.5, pp.1830-1831, 2012.

E. T. Cirulli, A. Singh, K. V. Shianna, D. Ge, J. P. Smith et al., Screening the human exome: A 255 comparison of whole genome and whole transcriptome sequencing, Genome Biol, vol.11, issue.5, p.1, 2010.

O. Morozova and M. A. Marra, Applications of next-generation sequencing technologies in functional 258 genomics, Genomics, vol.92, issue.5, pp.255-64, 2008.

R. W. Li, M. Rinaldi, and A. V. Capuco, Characterization of the abomasal transcriptome for mechanisms of 260 resistance to gastrointestinal nematodes in cattle, Vet Res, vol.42, issue.1, p.25, 2011.

M. Huse, The T-cell-receptor signalling network, J Cell Sci, vol.122, p.26, 2009.

W. Zhang and H. T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells

A. A. Bhuiyan, J. Li, Z. Wu, P. Ni, A. A. Adetula et al., Exploring the Genetic Resistance to 265 Gastrointestinal Nematodes Infection in Goat Using RNA-Sequencing, Int J Mol Sci, vol.12, issue.1, p.751, 2002.

K. M. Mcrae, B. Good, J. P. Hanrahan, M. S. Mccabe, P. Cormican et al., Exploring the 271 mechanisms of resistance to Teladorsagia circumcincta infection in sheep through transcriptome 272 analysis of abomasal mucosa and abomasal lymph nodes, Nucleic Acids Research, vol.224, issue.1, p.218719, 2015.

A. M. Ahmed, PLoS ONE, vol.10, issue.5, p.124823

A. F. Amarante, Veterinary Parasitology, vol.80, issue.4, pp.311-324

A. F. Amarante, lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemo International Journal for Parasitology, vol.128, pp.417-429, 2012.

R. M. Anthony, Nature Reviews Immunology, vol.7, issue.12, pp.975-987, 197201.

K. Arsenopoulos, S modulating host resistance against gastrointestinal nematode parasites in sheep, Journal of the Hellenic Veterinary Medical Society, vol.68, issue.2, pp.131-144

D. Artis and . Grencis, Mucosal Immunology, vol.1, issue.4, pp.252-264

S. Athanasiadou, Veterinary Parasitology, vol.99, issue.3, pp.205-219

M. Atlija, nematodes i Genetics Selection Evolution

, BioMed Central, vol.48, issue.1, p.4

R. L. Baker, -humid tropics to gastrointestinal nematode infections and the peri-parturient rise in faecal egg Veterinary Parasitology, vol.79, pp.53-64

R. L. Baker, -intestinal nematode parasites and relationships with productivity of Red Maasai, Dorper and Red Maasai × Dorper crossbred lambs in the sub-Animal Science, il interactions with Parasite Immunology, vol.76, issue.1, pp.311-318

J. C. Bambou, parasitological and local cellular responses in resi BioMed Research International, p.9, 2013.

K. J. Beh, Anim Genet, vol.33, issue.2, p.829

M. V. Benavides, Small Ruminant Research, vol.46, issue.2, pp.97-105

M. V. Benavides, Beraldi, D. et al. -parasite interactions in lambs infected with International Journal for Parasitology, Infection in Goat Using RNA-International Journal of Molecular Sciences, vol.83, issue.1, pp.185-194

, Veterinary Microbiology, vol.6, issue.5, pp.741-748

B. V. Elsevier and S. Bolormaa, Journal of Animal Breeding and Genetics, vol.181, issue.1, pp.207-214

S. Bowdridge, s I and class II major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertagia circumcincta Parasitology research, Molecular Ecology, vol.196, issue.1, p.640

A. Cánovas, , vol.21, pp.592-598

J. A. Castillo, microsatellites, fecal egg count, blood packed cell volume and blood eosinophilia in Pelibuey sheep infected with Haemonc Veterinary Parasitology, vol.177

K. M. Charon, Clarke, R. A. et al. s and nematode resistance association of a Veterinary Immunology and Immunopathology, Journal of Animal and Feed Sciences, vol.11, issue.1, pp.15-29

R. L. Coffman, associated with resistance to gastrointestinal nematodes in a naturally-parasitized population Parasitology, vol.245, pp.571-582

V. Costa, European Journal of Human Genetics, vol.21, issue.1, pp.173-178

A. M. Crawford, tive trait loci for resistance to parasitic, BMC genomics, vol.7, p.178, 2016.

G. Davies, Heredity, vol.96, issue.3, pp.252-258

H. J. Dawkins and R. Windon, International Journal for Parasitology, vol.19, issue.2, 199205.

C. Diez-tascón, Diez-Tascón, C. et al. is of selection lines from outbred populations to Physiological genomics, 7th World Congress on Genetics Applied to Livestock Production, vol.21, pp.90019-90021

J. M. Dzik, nfection affects p47phox protein expression in guinea, Experimental Parasitology, vol.112, issue.3, pp.158-163

N. A. Ellis, res Proc. Assoc. Advmt. Anim. Breed. Genet, pp.544-547, 2014.

L. C. Falzon, -analysis of factors associated with Preventive Veterinary Medicine, Annual Review of Immunology, vol.117, issue.2, pp.303-333

F. D. Finkelman, González-Haemonchus contortus with the recombinant rHc23, sheath morphogenesis in Brugia Molecular and Biochemical Parasitology, vol.15, pp.1-12

A. Gossner, with resistance to the sheep nematode Teladorsagia circumcinc Veterinary Research, vol.44, pp.1-13

A. G. Gossner, Veterinary Research, vol.43, issue.1, pp.1-11

Z. Guo, Scientific Reports, Genetics, selection, evolut, vol.6, p.46

L. Hültner, -wide association studies for common diseases, MEA) is structurally related and European Journal of Immunology, vol.112, issue.1, pp.1413-1416

J. F. Huntley, Ingham, A. et al. expression changes in the gut mucosa of genetically resistant sh, Teladorsagia circumcincta: Primary and secondary responses in serum and gastric lymph of Parasite Immunology, vol.20, pp.371-384, 1934.

M. Janßen, Merinoland shee Archiv fur Tierzucht, vol.47, pp.291-302

O. M. Keane, BMC genomics, vol.7, p.42

O. M. Keane, -DQA1 allele frequency differences between nematode-Physiological Genomics, 30, pp.253-261

K. E. Kemper, Knight, P. A. et al. -like molecule, chitinase-3 like-1 (YKL-40), is upregulated in the abomasum in response to challenge with the gastrointestinal nematode, Veterinary Immunology and Immunopathology, vol.93, issue.3, p.78

T. Korn, de la Chevrotière, C. et al. against Haemonchus co Veterinary Parasitology, Annual Review of Immunology, vol.27, issue.1, pp.337-343, 1934.

C. De-la-chevrotière, Animal Genetics, vol.43, issue.6, pp.768-775

M. Larsen, -intestinal nematodes -Facts, future, or Veterinary Parasitology, vol.72, p.112, 1934.

C. G. Lee, Like Proteins in Inflammation, Annual Review of Physiology, vol.73, issue.1, pp.479-501

M. S. Lees, Veterinary Parasitology

B. V. Elsevier, , vol.179, p.122, 2013.

R. W. Li, Veterinary Parasitology

B. V. Elsevier and G. Luffau, Genetics Selection Evolution, vol.190, issue.1, p.205

K. M. Mackinnon, ls difference in gene expression Veterinary Immunology and Immunopathology, Nature Reviews Immunology, vol.130, issue.9, p.1712, 1934.

K. Marshall, resistance to haemonchus Animal Genetics, vol.40, issue.3, pp.262-272

K. Marshall, Seq SNP data to reveal potential causal Animal Genetics, vol.44, issue.3, p.557

D. Mcbean, Veterinary Parasitology. Elsevier B.V, vol.229

M. I. Mccarthy, -wide association studies for complex traits: Consensus, Nature Reviews Genetics, vol.9, issue.5, pp.356-369

K. M. Mcrae and B. Good, sagia circumcincta infection in Veterinary Parasitology, vol.206, 1934.

K. M. Mcrae and J. C. Mcewan, tures of selection in sheep bred for resistance BMC genomics, vol.15, p.637

K. M. Mcrae, Parasite Immunology, vol.37, pp.605-613

K. M. Mcrae, Veterinary Immunology and Immunopathology, vol.224, issue.1-2, pp.121-125

M. Menzies, antioxidant and mucous genes down the longitudinal axis of the sheep gut Parasite Immunology, vol.32, pp.36-46

, Veterinary Immunology and Immunopathology, vol.6, issue.1, pp.167-259

J. D. Milner, dominant hyper-Nature, vol.452, pp.773-776

C. Morris, New Zealand Journal of Agricultural Research, vol.48, issue.1, pp.1-10, 2005.

C. A. Morris, ey sheep to selection for resistance or Animal Science, vol.64

C. A. Morris, Definition According to Profiles of Lymphokine Activities and Secr The Journal of Immunology, Annual Review of Immunology, vol.70, issue.1, pp.145-173

L. Murphy, Nematode Infection with Selective Upregulation of Ym1 and Chitinase and Fizz Family Members Are a Generalized Feature of Nematode Infection with Selective Upregulation of Infection and immunity, /joh200196. Nakao, A. et al. -inducible antagonist of TGF-beta Nature, vol.137, pp.1-15

P. M. Outteridge, -DRB genes in the sheep using primers, Immunology and Cell Biology, vol.74, issue.4, pp.253-261, 1934.

C. S. Pareek, during the immune response to tissue-International Journal for Parasitology, PLoS ONE, vol.12, issue.2, pp.13-21

K. A. Paterson, Proceedings of the Association for the Advancement of Animal Breed Genet., 14, the National Academy of Sciences of the United States of America, vol.95, pp.3714-3719

, PLoS ONE, vol.9, issue.2, p.88337

A. Pernthaner, -specific IgE responses in intestinal lymph of genetically resistant and susceptible sheep during infection with Trichostrongylus Veterinary Immunology and Immunopathology, vol.104, pp.69-80

A. Pernthaner, sheep during repeated experimental infections with the nematode parasite Trichostrongylus Veterinary Immunology and Immunopathology, vol.114, pp.3351-3353

V. Riggio, -wide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface Heredity, vol.110, pp.420-429

V. Riggio, Journal of Animal Breeding and Genetics, vol.131, issue.6, pp.1-10

N. Robinson, ocal cytokine and galectin expression after challenge International Journal for Parasitology. Australian Society for Parasitology Inc, vol.41, issue.5, pp.487-493

R. M. Rodrigues, class i molecules are required for efficient control of Strongyloides venezuelensis infection in Immunology, vol.128

A. Rowe, fistulation and two Haemonchus strains do not substantially confound host gene expression in Veterinary Parasitology, vol.154

G. Sallé, Journal of Animal Science, vol.90, issue.13

G. Sayers, B. Good, and J. P. Hanrahan, Research in Veterinary Science, vol.79, issue.3, pp.191-196

G. Sayers, B. Good, J. P. Hanrahan, M. Ryan, and J. M. Angles, Histocompatibility Complex DRB1 gene: its role in nematode resistance in Suffolk and Textel Parasitology, vol.131, pp.403-409

G. Sayers, ferences in mucosal and systemic antibody response to Parasitology, vol.135, pp.159-171

, S63 S72. doi: 10.1017/S003118209900579X. -specific Veterinary Parasitology, vol.56, pp.149-162, 2013.

F. W. Schwaiger, associated with low faecal egg counts following natural, predominantly Ostertagia cir, International Journal for Parasitology, vol.25, issue.7, pp.815-822

K. P. Shakya, Veterinary Parasitology

B. V. Elsevier and U. Sharma, Seq International Journal of Animal and Veterinary Advances, vol.181, issue.2, pp.272-283

A. Sher, Proceedings of the National Academy of Sciences of the United States of America, vol.87, pp.63-71, 2016.

E. J. Soulsby, Helminths, Arthropods and protozoa of domesticated animals, 1982.

M. J. Stear, counts in four-month-old lambs following natural, predominantly Ostertagia circumcincta, International Journal for Parasitology, vol.17, issue.4, pp.423-428

M. J. Stear, tivity against 4th-stage larvae and density-dependent effects on the number of 4th-stage larvae of Teladorsagia circumcincta in Parasitology, .x. Stear, M. J., Innocen Veterinary Immunology and Immunopathology, vol.389, pp.239-244

T. H. Terrill, Regulation by IFN-gamma and IL-Veterinary Immunology and Immunopathology, Immunological Reviews, vol.186, issue.1, pp.337-344, 2014.

D. Vagenas, l of resistance to gastro-intestinal parasites in crossbred cashmere-producing goats: Responses to selection, genetic parameters and relationships with Animal Science, vol.74, 199208.

R. H. Valilou, The known unknowns of antigen, the MHC-Frontiers in Genetics, 6(MAR), vol.37, pp.607-618

L. Wang, Haemonchus contortus and its immune-Parasites and Vectors, Asian-Australasian Journal of Animal Sciences, vol.28, issue.9, pp.425-436

A. R. Williams, contamination onto pasture during the peri-Animal, Veterinary Parasitology, vol.4, issue.1, pp.90034-90043

L. G. Zaros, Restricted Cytotoxic T Cells: Studies on the Biological Role of Polymorphic Major Transplantation Antigens Determining T-Cell Restriction-Advances in Immunology, vol.113, pp.51-177

P. I. Zvinorova, ematodes the potential in low-Veterinary Parasitology, vol.225, pp.19-28

×. Romane and . Martinik, Blackbelly Backcross 1 (PCV), 2 (PCV, SexR), 3 (FEC, WB) 4 (Len, pH), 5 (FEC, IgG, WB, PCV) 7 (FEC, Len), 9 (FEC), 10 (Peps) 12 (FEC, PCV, pH), 13 (FEC, IgG) 14 (Peps), 15 (FEC), 16 (FEC, WB) 17 (pH, PCV), 18 (Len), 19 (Len), 20 (FEC), 21 (FEC, Peps), 23 (FEC, WB), p.25

. Brown, Strongyle Soay No clear association with FEC/ specific antibodies and antinuclear antibodies, 2013.

B. W. Fec, Scottish Blackface, vol.6, p.21

*. Fec, * (FEC), 4* (FEC, IgA, p.20

(. Riggio, SNP (50k) Mixed (Nematodirus and Strongyles, vol.13, 2013.

S. Blackface, M. Sarda-lacaune, ;. Blackbelly, and . Riggio, , 2014.

, 15*, 17*, 26* (PCV)

. Benavides, SNP, 2015.

, T. circumcincta Spanish Churra, vol.6, p.25

. Atlija, 2016) sM, specific marker

M. Snp, single nucleotide polymorphism; chr., chromosome; FEC, fecal egg count; PCV, packed-cell volume

, SexR, sex ratio in adult worm population

L. , female worm length; pH, abomasal pH; Peps, pepsinogen; WC

, AFWL, adult female worm length

, EPW, eggs per worm; LWT, live weight

, ADG, average daily gain

, LA, linkage analysis; GWAS, genome wide association selection. * Suggestive marker