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Abstract

Cocoa is an important cash crop in Central and West Africa, especially in Cameroon. In this

part of the world, cacao production is impacted by several diseases, like the Cocoa Swollen Shoot

Virus (CSSV) and the black pod disease, and several pests, like Miridae, Distantiella theobroma and

Sahlbergella singularis, causing significant damage to pods and vegetative parts of the cocoa tree,

and thus impacting the cocoa production. However, the damage and losses associated with this pest

remain difficult to estimate due in particular to the bio/ecology of this species (camouflage, low

number of individuals, etc) preventing a good estimate of the population dynamics along the year.

Statistical models have shown to be ineffective in describing these dynamics. That is why we have

developed several Mathematical models to describe the time evolution dynamics of mirids, including

the effect of different control methods. After an introductory chapter where we recall the biology

and ecology of mirids, we develop, analyze and study a compartmental cooperative periodic and non-

periodic model in chapter 2. Then, considering time developments and sexual maturation duration for

females, we develop and study a delayed cooperative model (with and without periodic parameters).

In this latter model, we consider different control methods, including chemical control (insecticides)

and semi-chemical control (sexual confusion and trapping). Through our numerical simulations, we

recover recommendation given by mirid control organizations for the use of insecticides and show that

chemical treatment can be replaced efficiently by mating disrupting and trapping. We also derive a

global sensitivity analysis highlighting the importance of some key parameters. Then, based on the

previous results, we develop, in chapter 3, a more complex delay model, modeling mating disrupting

and trapping, using the piecewise-smooth system approach. Our analysis shows the existence of two

thresholds based on mirid’s biological parameters: one under which the control has no effect on

established populations, and the second above which control on established populations is feasible.

We illustrate our results with various numerical simulations and discuss the results. We conclude our

thesis with possible extension of our models and also applications in the field.

Keywords: Cocoa pest, Pest control, Sahlbergella singularis, chemical control, Mating disruption,

Mathematical models, Delay differential equations, Piecewise smooth system, Cooperative system,

Stability analysis, Numerical simulation.
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RESUME

Le cacao est la principale culture de rente Afrique Centrale Occidentale, en particulier au Camer-

oun. Dans cette région du monde, la production est affectée par plusieurs maladies parmi lesquelles, le

Cacao Swollen Shoot Virus (CSSV) et la pourriture brune du cacaoyer causée par Phytophthora sp..

Elle est aussi affectée par les ravageurs notamment les mirides Distantiella theobroma et Sahlbergella

singularis qui causent d’énormes dégâts sur les cabosses et les parties végétatives du cacaoyer. Au

Cameroun, S. singularis est décrite comme l’espèce la plus présente dans les cacaoyères et la plus

préjudiciable pour la production. Cependant, les dégâts et les pertes associés à ce ravageur restent

difficiles à estimer en raison de la bio-écologie de cette espèce (camouflage, faible nombre d’individus)

empêchant une bonne estimation in situ de la dynamique des populations. Les modèles statistiques ont

jusqu’alors été peu efficaces pour appréhender cette dynamique. Des modèles mathématiques semblent

plus adaptées. C’est pourquoi, dans le cadre de nos travaux, nous avons développé plusieurs modèles

mathématiques pour décrire la dynamique d’évolution des mirides, mais aussi l’effet des différentes

méthodes de contrôle sur les tailles de population de mirides. Après un chapitre introductif où nous

rappelons la biologie et l’écologie des mirides, nous développons et analysons un modèle coopératif

(en distinguant les cas où les paramètres sont périodiques ou pas) au chapitre 2 et nous obtenons

les conditions sur la persistance ou non de la population des mirides. Ensuite, en tenant compte de

la durée de développement larvaire et de la période de maturation des femelles, nous développons

et étudions un modèle coopératif à retard (avec et sans paramètres périodiques). A ce modèle, nous

appliquons les différentes méthodes de lutte: la lutte chimique (insecticides) et la lutte semiochim-

ique (confusions sexuelle et piégeage). A l’aide de nos simulations numériques, nous obtenons des

résultats en termes de recommandations pour lutte contre les mirides et montrons que le traitement

chimique peut être remplacé efficacement par le traitement semiochimique. Nous faisons une analyse

de sensibilité globale du modèle mettant en exergue l’importance de certains paramètres clés. Sur la

base des résultats précédents, nous développons au chapitre 3, un modèle à retard plus complexe,

modélisant la confusion sexuelle et le piégeage, en utilisant l’approche des systèmes réguliers par

morceaux. Notre analyse mathématique montre l’existence de deux seuils basés sur les paramètres

biologiques des mirides: un seuil sous lequel le contrôle n’a aucun effet sur les populations établies,
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et le second seuil qui permet de contrôler les populations établies. Nous illustrons nos résultats par

des simulations numériques. Nous concluons notre thèse avec une extension possible de nos modèles,

mais également nous proposons des travaux qui peuvent être menés sur le terrain.

Mots clés: Ravageurs du cacaoyer, Sahlbergella singularis, Equations différentielles à retard,Modèles

mathématiques, Systèmes monotones, Lutte contre les ravageurs, Confusion sexuelle, Analyse mathé-

matique, Stabilité, Simulations numériques, "Systèmes réguliers par morceaux".
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General Introduction

Cacao (Theobroma cacao) is originated from wet tropical forest in equatorial America [5]. It

is essentially cultivated because of its beans which are destined for the industry of chocolate and

also to the pharmaceutical and cosmetic industry [6]. Cacao cultivation began during the Maya era in

Central America and Mexico [7]. Towards the end of the 17th century, it was introduced in many other

countries like: Curaçao (Pays-Bas), Jamaica, Martinique, Dominicain Republic, Brasil, Guyane, and

Grenade (France). In 19th century, global cocoa production has proved insufficient. It was therefore

necessary to extend production to other continents like Africa which constitutes nowadays the main

producers [6]. In the years 1950, production of beans in Africa represents approximately 70% of the

world production estimated to 700 000 tons (ICCO, 2008). Nowadays, world production is evaluated

to 4, 552 billions of tons (ICCO, 2017). Cameroon was the third producer in 2017 with 380 000 tons

of beans outpaced by Côte d’Ivoire and Ghana (ICCO, 2017). Despite cocoa (Theobroma cacao)

is essential for the livelihood of millions of small producers in Africa especially in Cameroon [8],

Cameroon production is by the damages caused by two pests, Sahlbegella singularis and Distantiella

theobroma known as mirids bug or cacao capsids [9, 10].

Mirids (Sahlbegella singularis and Distantiella theobroma) which originate from the forests of

Central Africa, have very similar life histories and regularly live together in cacao-based systems [11].

In Cameroon Sahlbegella singularis is nowadays the most common and the most harmful for the

production [1]. Mirids feed on cacao and are responsible to the losses of 25 to 30% of the potential

production in West Africa more precisely in Ghana and in Côte d’Ivoire [12]. In Cameroon, the losses

of production due to the action of mirids represent 30% to the potential national production [13].

Another species of bugs also feed on cacao; we can cite mirid Helopeltis, bug Pentatomidae, Coreidae

and Pyrrhocoridea [14]. Mirids also feed on other plants like Cola nitida and Ceiba pentandra known

to be the alternative hosts when cacao resource is unavailable. Mirids feed on the sap of young semi-

lignifed branches, on plant tissues by injecting a digestive saliva, on buds and on fruits [11, 15].

Mirid damage on the pod is relatively superficial since the pods cortex is very thick. In general,

the most harmful damage that is also the less obvious to quantify is the damage caused to cocoa

vegetative growth parts. Those lesions prevent sap circulation favouring leaves fall and branches
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death that is characteristic of mirids attacks. Extensive feeding by mirids on branches results in the

degradation of the canopy of discrete groups of trees, which can be up to 100 and are referred as

mirid pockets. The impact of mirids on cacao tree is a long term impact as cacao is a perennial

plant, which can produce for more than 20 years. Damage of mirid bugs on the cacao are cumulated

over time and can lead to premature ageing of plantations and to the rapid death of the most

severely damaged trees [16, 17, 18]. Losses due to mirids are difficult to estimate but can reach

30% to 40% of potential production [19, 20] depending on the system management strategy. In fact,

mirids attacks are known to be the most harmful in full sun plantations. In multi-strata and highly

diversified [21, 22] cacao-based agroforestry system as the one that is widespread in Cameroon, shade

management is a relevant option to control mirid population [15]. But shade management is a long-

term process that is sometimes difficult to set up for the farmers given antagonistic effects on black pod

disease. Whatever the type of system considered, synthetic insecticides of the neonicotinoid family,

such as λ-cyhalothrine and imidacloprid [9]are still themain input used to control these pests [23].

Since 1970, the economic threshold for phytosanitary intervention has been fixed at 0.7 mirids/tree

in Cameroon [15] and 0.6 mirids/tree in Ghana [24]. These indicators based on mirid populations

are however difficult to evaluate regarding the ecology of the species. In fact, it is challenging to

count mirids individuals (immatures and adults) on the field since they used to hide during the

day to avoid direct light. It is likely a relatively low level of mirid population can cause important

damage in the plantation. Mirids do not pullulate in the plantations even during the peak period.

Due to controversial effects of chemical insecticides, alternative cocoa pest control methods have

been developed including cultural management, varietal management [25], as well as semio-chemical

management, using synthetic sexual pheromone traps [26] or the use of plant extracts as pesticides [9].

Considering the difficulty to estimate mirid population and to obtain long-term data on the field,

the mathematical approach appears as the most relevant option to forecast the efficiency of control

strategy. In that sense, the aim of this work is to develop some (generic) mathematical models of

mirid population to better predict its time evolution in a plot under different management strategies.

Several compartmental models, with constant or periodic parameters, are developed based on the

mirid life cycle. The work is organised as follows:

• The first chapter presents the context and main motivation of our study. We also present the

cocoa mirid and especially Sahlbergella singularis species which is predominant in Cameroon.

We present the biology and the ecology of this species and the importance to construct a

mathematical model. The aim of this literature review is to regroup all the mathematical tools

used to solve our different systems
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• In Chapter 2, we study the dynamics of this pest. Based on biological and ecological partial

knowledge, we built and analyse 2 cooperative mathematical models that aim to describe

the time dynamics of the cocoa mirids. We first develop a cooperative stage-structured model,

derived some qualitative results, and a sensitivity analysis study in order to determine the most

important parameters. Assuming that all parameters are or not periodic, we obtain conditions

that allow the persistence or not of the population. We highlight the influence of cocoa pods

variation along the year on the time evolution of the population. Then, we derive a 2-stage

cooperative time-delay model, with 2 delays, that takes into account the egg’s development time

and the female’s maturation time. We illustrate our theoretical results with some simulations

and show that the delayed system provides the best results compared with real observations.

Finally, we focus on chemical control that is commonly used in Cameroon and compare it to

a new biological control, mixing mating disrupting and trapping. We discuss the results and

provide future perspectives based on this work.

• In Chapter 3, we consider a biological control method, based on mating disrupting, using

artificial sex pheromones, and trapping, to limit the impact of mirids in plots. We develop and

study a piece-wise smooth delayed dynamical system. A theoretical analysis is provided in order

to derive all possible dynamics of the system. We show that two main threshold parameters exist

that will be useful for practical applications, and also to derive successful control strategies.

We illustrate and discuss our results when cacao pods are either constant along the year or

periodic. To conclude, we will provide future perspectives based on this work.
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1
Literature review and Mathematical tools

In this chapter, we provide a non exhaustive literature review on Mirids and the importance of

Cocoa in Africa. We also summarize important results related to the mathematical theories that we

will use throughout the manuscript, namely, the theory of monotone systems, the theory of delay

differential equations and also the theory of Piecewise smooth systems.

1.1 The cacao tree: Theobroma cacao

1.1.1 Origin and importance

Cacao (Theobroma cacao) is originated from wet tropical forest in equatorial America [5]. Cacao-

culture is an old activity because it was made for a long time by people Maya in Central America

and Mexico. These people use cocoa as feeding product and also as change. Since the 19th century,

it is cultivated in African countries. Cocoa is considered by these countries as the first cash crop.

In West and Central Africa, cacao cultivation require approximately 10% of the yields destined to

agriculture. Cacao plantations require respectively 6.88, 6.29, 1.05, and 0.78% of the yield of Côte

d’Ivoire, Ghana, Nigeria and Cameroon. Since the 20th century, the world cacao production increases

between 2 and 2.5% and reaches 1.5 billion of tons in 1964, and today exceeds 2 billion of tons.

The main importers of cacao around the world are United States of America, Germany, France,

United Kingdom and Russia (CNUCED, 2007). In cacao year 2015-2016, production is evaluated to

3.965 billion of tons with a prediction of 4.552 billions for the next year (ICCO). Table 1.1 regroups

the cacao production for the years 2014-2015; 2015-2016 and a prediction for the year 2016-2017.

Cacao cultivation has its high development in Black Africa and countries like Côte d’Ivoire, Ghana,

Nigeria and Cameroon which are the main producers in the world with approximately 72% of the

world production [ICCO 2016]. Cacao is essential for the livelihood of millions of small producers

in Africa especially in Cameroon [8] and the increasing of cocoa production contribute to increase

an income of farmers and also to fight against poverty. Despite this production, cacao cultivation
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1.1 The cacao tree: Theobroma cacao

Table 1.1: Production of cocoa beans (thousand tons). Source: ICCO Quarterly Bulletin of

Cocoa Statistics, Vol XLIII, No 1, Cocoa year 2016/17. Published: 28-02-2017

2014/2015 Estimates Forecasts

2015/16 2016/17

Africa 3074 72, 3% 2911 73, 4% 3365 73, 9%

Cameroon 232 211 250

Côte d’Ivoire 1796 1581 1900

Ghana 740 778 850

Nigeria 195 141 135

Others 110 141 135

America 777 18, 3% 657 16, 6% 766 16, 8%

Brazil 230 140 190

Ecuador 261 232 270

Others 286 285 306

Asia and Oceania 400 9, 4% 397 10, 0% 421 9, 2%

Papua New Guinea 36 36 41

Others 39 41 50

World total 4251 100, 0% 3965 100, 0% 4552 100, 0%

faced to many factors bugs: this leads to the losses of production of cacao in these countries. Bug

control was recommended to increase production of cacao and reinforce the economy of countries

producers. Principally in Cameroon, cacao-culture is practised in many regions of the country. It is

an old practise. Firstly practised during a long time in the traditional way, the culture of cacao in

Cameroon has been ameliorated since the introduction of the news systems of culture: agroforests.

Production and marketing of all these cultures associated with cacao in agroforests and also the

marketing of cocoa contribute to reinforce the economy of the country: This represent an enormous

source of income for farmers and increase yielding of the country. So, cacao cultivation contributes to

the increasing of the economy of the country. Cacao and coffee production represents approximately

2% of national PIB, 6% of primary PIB and approximately 1/3 of PIB of sub-sector of agricultural

products destined to exportation and transformation. Cacao and coffee producers have a great rule to

the equilibrium oh commercial balance of Cameroon and in the elaboration of income of populations

of areas of production.
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1.1 The cacao tree: Theobroma cacao

Cacao is a tree which can have a mean higher of 25 meters in the case of it has been cultivated

in the savannah area. Generally, farmers limit his higher growth between 5 and 7 meters. The high

of cacao is on the average 1.5 meters when the crown appears but this high can change according

to variety of trees, conditions of culture and environment. The crown is most high in the shady

plantations than sunny plantations [6]. Cacao tree is represented by figure 1.1.1.

Figure 1.1: Cacao tree

1.1.2 Characteristics of agroforests in Cameroon

There exists two types of culture in Cameroon: mono-farming systems and agroforestery systems.

Mono-farming designate the whole agricultural or forestries practices in which it is only one

plant or a very limited species which are cultivated on a big area. Mono-farming systems based on

cacao culture come from massive and complete clearing of the forest. This apparent mono-farming

is shaded by the presence of the annual cultures associated during the first three years of plantation

corresponding this time exactly to the delay of entry in production of cacao tree in "full sun" situation

or by the presence of tuft of banana tree surviving in adults plantation. Cacao culture begins after

the third year.

In 2000, Torquebiau define agroforestery as an simultaneous or sequentially association of trees,

annuals cultures or animals productions in order to obtain goods and courses useful for humans [27].

These systems of culture are called agroforests. There exists several types of agroforests in the world

(culture under arboreous cover, systems in linear disposition, sequentially agorforesteries technical,...).

Doctorate Thesis 6



1.1 The cacao tree: Theobroma cacao

The main agroforests are the ones which belong to the category of simultaneous associated trees

because of their ecological asset such that biodiversity, protection of the ground and recycling of nu-

triments [28]. Then, agroforests are generally typical by a dominant culture, main source of revenues

or utilization (hevea, coffee tree, cacao), they are also invested of other components (trees, creepers,

shrubs), organized in multi strata [29]. There exists two types of agroforests: agroforests based on cul-

ture of "canopy" and culture based on culture of sub-stage. We will principally interest to agroforests

based on cacao culture in Cameroon. In Cameroon, precisely in the regions of centre and southern of

Cameroon, agroforests based on cacao culture are association of two different cultures: cacao which

is the main culture and other species associated pluri-specific and multi-functional, more difficult to

characterize and to evaluate with the agronomic tools.

In Cameroon, agroforests are also organised in three strata of high: the higher strata, interme-

diary strata and strata of cacao. Cocoa production in Cameroon is primarily affected by mirid bug

Sahlbergella singularis, and Black Pod (BP) disease, caused by Phytophthora megakarya, whose host

range is currently not well known.

In Cameroon, the mean yield is small (evaluated between 100 to 1200 kg/ha). This small produc-

tion is due to diseases, pests and also to the ageing of plantations. After extracting beans, pods of

cacao should be use as fertilisers (organic fertiliser) and also to the feeding of animals. In the same

plot, cacao may be cultivated in association with several other culture like banana. Cacao can also

be associated with fruit trees such that plum tree (Dacryodes edulis), avocado tree (Persea ameri-

cana), coconut palm or palm tree (Elacis guincensis). A plot can be exploited for 20 years. This time

depends on the care of the plantation. After 25 years, production reduces considerably because of

difficulties linked to the care of trees which became very high. The areas of production of cacao in

Cameroon are the regions of Centre, South, East, South-West and Littoral.

Schematically, we can identify 4 layers of vegetation in the Cocoa agroforests in Cameroon: the

upper stratum composed of forest trees about 15 to 30 meters high, the intermediate stratum mostly

composed of fruit trees about 5 to 15 m high, the low stratum mostly composed of cocoa trees

and Musaceae between 2 and 5 m high and the lower strata consisting mainly of young plants and

Herbaceae less than 2 meters high. Despite its schematic character, all or part of this classification

in four strata has been used in the vast majority of vertical structure studies of cocoa agroforests in

Cameroon ([30], [6]).

Trees which assure shade on cacao tree present a high diversity. Forest native species are associated

to the fruit species which participate to the daily feeding and susceptible to be commercialise (avocado

tree, citrus fruit, mango tree, plum tree). Generally, native trees are highly favoured and represent

Doctorate Thesis 7



1.1 The cacao tree: Theobroma cacao

Figure 1.2: Cacao tree in association with coconut palm

a high part of arboreous population. These species give medicinal, feeding resources and many other

domestic uses. Cocoa cultivation in agroforests in Cameroon give the yield plus or less consequent

to the Cameroon economy. In fact, the yield varies to 2 to 3 tons per hectare. In Cameroon, in the

areas ecologically favourable to the culture of cacao tree, there exists an equatorial climate. There is a

climate favourable to the culture of cacao. The main regions where high practice of cacao cultivation

are regions of Centre, South and West. In the "Centre" region, the culture of cacao is doing in

the districts of Ntui, Bokito, Bafia, Talba and Ngomedzap and approximately. In this area, cocoa

cultivation is strongly practised. The South region has a land favourable to the cocoa cultivation:

the most cacao plantation area are Lolodorf, the district of Ntem, of Dja and Lobo. In the West

region, the culture of cacao is practised in "Bamiléké" countries especially in the districts of Kekem

and Bana. However, we also have the big cacao plantations in Kumba, Manfé, Mbongue, Tombel and

Limbé.

Cameroon is a country which has several agricultural resources such as banana and cacao. In

fact, since 2005 Cameroon is the fifth world producer on cocoa with annual production evaluated

at 242, 600 tons of beans per year [31]. According to the International Cocoa Organization (ICCO),

Cameroon is ranked third in the world with 380,000 tonnes in 2017, compared to 882,175 tonnes for

Ghana and 2.01 million tonnes for Côte d’Ivoire. This increase in production is due to the fact that

in 2012, Cameroon set up a "New Generation" program to boost cocoa production. Since then, this

program has created 15,333 hectares of cocoa plantations in the country. Specifically, this program,

which stems from a study revealing that the average age of producers in particular production areas,
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1.1 The cacao tree: Theobroma cacao

is based on the recruitment of young people interested in cocoa farming, for a training spread over 3

years.In central Cameroon, the cocoa growing model appears to be different from the one prevailing

in many cocoa producing countries such as Côte d’Ivoire. In this part of Cameroon, we found that

cocoa stands were more than 40 years earlier, corresponding to the age of cocoa tree senescence.

For cocoa cultivation, annual precipitations on the average are variable between 1400 and 1600

mm per year and are principally separated in two periods: the small rainy season between Mars and

May and the big rainy season between September and November.

1.1.3 Phenology and physioloygy of cacao tree Theobroma cacao

The genus Theobroma originated millions of years ago in South America, to the east of the Andes.

Theobroma has been divided into twenty-two species of which textit T. cacao is the most known.

It was the Maya who provided tangible evidence of cocoa as a domesticated crop. Archaeological

evidence in Costa Rica says cocoa was drunk by Maya traders. The first to drink chocolate was

Christopher Columbus, who reached Nicaragua in 1502 searching for a road to the spices of the East.

But it was Hernan Cortès, leader of an expedition in 1519 to the Aztec empire, who returned to Spain

in 1528 bearing the Aztec recipe for cocktail (chocolate drink) with him. The drink was originally

received unenthusiastically and it was not until it became a popular drink in the Spanish courts.

Strong demand for chocolate has boosted cocoa cultivation worldwide. Amelonado cacao from Brazil

was planted in Principe in 1822, Sao Tomé in 1830 and Fernando Po in 1854, then in Nigeria in 1874

and Ghana in 1879. In Cameroon, cocoa was introduced during the colonial period of 1925 to 1939.

Cacao (T. cacao) is a plant of the family of Sterculiaceae and originated from the wet tropical

forests of Central America [7]. The firsts exportations of cacao towards Europa are been done in 1 585.

In 17e century, there are many plantations of cacao around the world and it was through Fernando

Pô island (actually Malabo), Sao Tome and Principe, which cacao is introduced in Africa. Cacao will

be introduced in Cameroon in 1892 by Germans ([32], [33], [34]).

Table 1.2 recapitulate the taxonomy of cacao tree. The growth of leaves and stems is done by

successively thrusts separated by rest period. During these periods, the final buds take back their

"dormancy" [35]. Several factors influence the growth of leaves and stems in particular temperature,

daylight, tenor of hydrate of carbon and regulators of growth.

Production needs several stage: flowering, fruition, harvesting and marketing of beans. Cacao tree

is able to flower all the year. Cocoa is raised from seed. Seeds will germinate and produce good plants

when taken from pods not more than 15 days under-ripe. A bud is cut from a tree and placed under

a flap of bark on another tree. The budding patch is then bound with raffia and waxed tape of clear
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1.1 The cacao tree: Theobroma cacao

Table 1.2: Systematic of Theobroma cacao.

Reign Vegetative

Branch Spermaphytes

Sub-branch Angiospermes

Class Dicotyledon

Sub-class Dilleniidae

Order Malvales

Family Malvaceae

Gender Theobroma

Specie Theobroma cacao

plastic to prevent moisture loss. When the bud is growing, the old tree above it is cut off. A strip of

bark is removed from a branch and the area covered in sawdust and a polyethylene sheet. The area

will produce roots and the branch can then be chopped off and planted. The flowering of cacao has

the particularity to appear on branch and trunk. There exists a large flowers which succeed all the

year. On mature cacao, flowering is cyclic so to speak that the high growing period alternate to the

small growing period [36]. The next period after flowering is fruiting. The number of fruits present

on cacao tree depends on the genotype of cacao. There is function of fertility of land, availability of

water and daylight. Maturity of fruits can be affect by temperature: we remark that during the warm

months, pods needs approximately 140 to 175 days for its total development whereas during the cold

period, pods need approximately 167 to 207 days for its total development.

Cacao produces yearly several thousand of flowers but only less than 5% of these flowers develop

to young fruits. This small percent is mainly due to the phenomenon of drying pf young fruits. this

phenomenon appears about 50 to 60 days after pollination and influence the production by affecting

20 to 90% of young fruits (cherelle) produced. The fruit of cacao is called pod and the eatable part

of the pod is called beans. When a pod has a height less than 10 centimetres, it is called "cherelle".

There are supported by a peduncle which proceeds from the development of thickness of the peduncle

of flowers. Cacao fruit needs tree or four months or even five or six months for their total development.

This time depends on the variety of cacao tree and it is necessary for the full development of fruits.

After this, pod will ripen during one or two months, to undergo interior transformations and to

change colours. The high of a pod varies between 10 and 35 centimetres. On the average, its length

varies between 15 and 20 centimetres and its width varies between 10 and 15 centimetres. The weight

of a pod varies between 200 g and 1 Kg (on the average 400 and 500g). A pod contain approximately
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1.1 The cacao tree: Theobroma cacao

30 to 40 beans. The weight of a bean after elimination of the pulp and husk varies between 1.3g and

2.3g; after drying, the weight of the bean varies between 0.9g and 1.5g. fermentation and drying of

the beans of the pods lead to obtaining of commercial cacao. This commercial cacao is be useful to

the production of chocolate and obtaining a cocoa butter. Different stages of evolution of the pod are

represented in figure 1.3.

(a) (b)

(c) (d)

Figure 1.3: Stage of evolution of cocoa pods: (a) flower; (b) cherelle; (c) young pod; (d) pod.

African continent is the main producer of cocoa. In 2010, its production was evaluated to 2.6

millions of tons for the world production variable of 3.4 to 3.7 millions of tons. In Cameroon, cacao

production has an important for the rural populations: it is the main source of income to farmers.

Cacao production also contribute to the reinforce of the economy of the country. For the higher pro-

duces in commercial cocoa, cacao need to be cultivated in pure culture under shade ([37], [33]). Now,

when cacao is cultivated without shade, its optimum production will be obtain if all environmental
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factors are favourable: availability in mineral elements in sufficient quantities, regular share in fer-

tilizer, sufficient and well retort pluviometry, protection against bio-agressors [5]. when there is not

mineral fertilizers (as it is the case of familial cocoa plantation), produce of cacao plantation is heavy

during the first years of exploitation but after 20 to 30 years and even less, cacao plantation break

down ([38], [39]).

1.1.4 Diseases and bugs of T. cacao

As all plants or vegetative organism, cacao tree faced to several diseases: diseases of fungicidal

or viral origins. Cacao also faced to the multiple attacks doing by pests and diseases and principally

mirids which lead to many damage observed on the plant. Among fungicidal attacks, the main disease

of cacao tree in Cameroon is the black pod diseases caused by Phytohptora megakarya which is the

main specie observed in Cameroon. This disease on fruits which present one or several brown spot

can also be observed on leaves, roots where it leads to the appearance of chancres [6]. In the countries

where P. megakarya is the dominant, the losses of production can be evaluated to 50%. As fungicidal

attacks, we can also cite the moniliose caused by Moniliophthora roreri which is only present on the

American continent.

As viral disease, we can cite the Cacao Swollen Shoot Virus (CSSV) due to the "Cocoa Swollen

Shoot Virus". This disease is manifested by the appearance of inflation of the wood of branches and

roots [40]

Another factor which influence production of cacao tree is the action of pests. These bugs are

responsible of the most damages on cacao and lead to important losses of production. In young

plantations, many insects destroy a terminal bud and retard the development of the tree. In Cameroon,

there are two main types of mirids Distantiella theobroma and Sahlbergella singularis which is the

dominant specie. The impact of mirids on cocoa production varies between regions and between

farmers fields, this is the variability of shading. Heavy shades reduce mirid density but also cocoa

vegetative growth. At the same time, shade has negative effects on cocoa trees: the declining cocoa

tree abundance and favour the black pod disease.

1.2 Cacao mirids

Mirids constitute the largest family belonging to the order Heroptora. They are the most common

insects on cocoa and about 40 mirid species prey on the tree. They are considered most harmful to

the tree. Mirids can also feed and grow on other host plants (Cola nitida, Ceiba pentandra) and are
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divided into two main tribes namely: Odoniellini and Monaloniili. In Cameroon, there are several

species of mirids belonging to different tribes. The most common species of the tribe Monaloniini

found in Cameroon is Helopeltis Afropeltis. The most harmful species found in Cameroon belong to

the tribe Odeniellini and are represented by Distantiella Theobroma and Sahlbergella singularis which

predominate in most of the plantations. In this study, we are interested to the S. singularis specie.

1.2.1 The cacao mirid: Sahlbergella singularis

1.2.1.1 Presentation of Sahlbergella singularis

The adult female of Sahlbergella singularis is shown in Figure 1.4. The cocoa mirid Sahlbergella

singularis, like other mirids is a sucking insect. Adults and nymphs feed on cocoa fruit and shoot

thanks to the rostrum. Using their ovipositor, females also laid their eggs in the pods and sometimes

in the shoots. Systematic of Sahlbergella singularis according Delvare and Aberlenc [41] is given by

the table 1.3.

Figure 1.4: Female adult of Sahlbergella singularis.

1.2.2 Life cycle of S.singularis

The life cycle of S. singularis is composed of 3 stages: egg stage, nymph stage, and adult stage

that develop mainly on pods either on shoots. The eggs are individually inserted into the host plant

tissues [42] principally in the cortex of pods and sometimes under the bark of young shoots [43].
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Table 1.3: Systematic of Sahlbergella singularis

Order Hemiptera

Sub-order Heteroptera

Infra-order Cimicomorpha

Super-family Incertae sedis

Family Miridae

Sub-family Bryocorinae

Tribe Odoniellini

Genus Sahlbergella Haglund 1895

Specie S. singularis Haglund 1895

The incubation period of eggs is on average 15 days with a minimum of 9 days 25 and a maximum

of 21 days [44] before reaching nymph stage. Mirid S. singularis has a very long life cycle (eggs to

adults). It is on average 40 days with a minimum of 36 days [30] and a maximum of 50 days [11] The

percentage of hatching eggs is globally 96.53% as the eggs are protected in the pods cortex.

Eggs Nymph Adults
τ1 = 15 days τ2 = 25 days

τ3 = 10 days

Figure 1.5: Life cycle of S. singularis

Adult stage can be subdivided into two stages: females and males. The under stage female can

also be subdivided into two classes: immature females and mature females. Immature females are

females aged less than 10 days: Indeed, after emergence, female need approximatively 10 days to

have mating and begin laying eggs. Females S. singularis mate with one male (that is around 4-5

days old) 3 to 7 days after their emergence. The female produce and release pheromones until their

death but males older than 19 days are not receptive any more to those pheromones [14]. After

emergence, the female leaves the tree from which it originated to migrate to another tree. It is likely

the females do not lay all their eggs on the same pod. Eggs are inserted individually and rarely by

two in the tissue of the host plant. During a laying phase, the female could lay a maximum of 4

eggs per day [1]. In general, females start to lay eggs after 10 days old. But it has to be noticed that
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Table 1.4: Table of values on parameters of the development of Sahlbergella singularis.

Longevity of males 37.20

Longevity of female 30-50 38.15

Fecundity (nymphs) 35.35 37.9± 3.09 14.6± 6.7 50.7

±10.42 max: 111.4 max: 79

Fecundity (eggs) 29-62 65 52.52

Sex-ratio 1:1.03 1:1.5 1:1.17

Fecundity period 16 days

Number of eggs 3.2825

by a female per day

References Babin et al Anikwé Babin et al Youdeowei Estimated

2011 2010 2006-2008 1973

some immature females (< 10 days old) could lay eggs but they died without passing from immature

stage to mature females. Number of eggs laid by those immature females will be added to the total

number of eggs laid during the mature female stage to calculate the average fecundity per female

which is around 50.7 nymphs or 52.52 eggs. The mean number of eggs laying by a female per day was

calculated like the ratio between the total number of eggs laid by a female and the fecundity period.

The fecundity period is the mean time between the first and the last egg-laying. It lasts on average

16 days from the 15th to the 31th day after female emergence. Based on those estimation, the daily

fecundity per female is around 3.28 eggs. The daily survival of mirids adult has been evaluated thanks

to data collected and the results are respectively 98.14% for immature females, 92.778% for mature

females and 93% for males. A proportion 72.1% of immature females becomes mature females. To

model the evolution of S. singularis, we consider the same survival rate for adult which is the one of

mature females; the sex ratio which we consider is 1 : 1.5 [11]. Longevity of adult female describes

the period between emergence and death. Table 1.4 recapitulate all the data about the development

of adults S. singularis.

1.2.3 Biology of S. singularis

1.2.3.1 Development of S. singularis

The eggs of S. singularis are individually inserted into the host plant tissues [14] principally on

the pods and sometimes on the branches of the cocoa tree [43]. The egg is cylindrical and slightly
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curved shape with length comprise between 1.6 and 1.9 mm. It is whitish and becomes shortly pink

before hatching. The incubation period of eggs is on average 15 days with a minimum of 9 days [45]

and a maximum of 21 days [44] and after these days the mirid spends egg stage to nymph stage.

The percentage of hatching eggs is globally 96.53% The insertion of eggs S. singularis in a host

tissue is shown in figure 1.6. After hatching, nymphs evolve from the first to fifth nymph stage.

Figure 1.6: Eggs of Sahlbergella singularis inserted into the host tissue (cortex pod left and

peduncle pod right). FR: Respiratory filament OP: cap [1].

Nymphs S. singularis are able to move within a cacao tree to find pods and shoots to ensure their

nutrition and development. Nymphs S. singularis would take in average 25 days to complete their

nymph development. The data used to model the development cycle of S. singularis were obtained

from different items. For unknown data (at least the one that do not appear in the articles), we

made an estimate using the raw data that were collected by Cameroonian colleagues. Published

studies conducted in Cameroon ([46], [11], [30]) were realized at constant temperature (24.7±0.9◦C).

For studies conducted in Nigeria ([45], [2]), the temperature during the experiments ranges from

24◦C during the day and 22◦C during the night [2]; and from 15.88◦C during the day to 36.16◦C

during the night for Youdeowei experiments [45]. These values represent the minimum and maximum

temperature values obtained according to the month in which took place the breeding. The data

reflecting detailed larval development parameters are recorded in Table 1.5.

1.2.3.2 Mating, reproduction and egg-laying

After emergence, nymphs become adults males or females. Males need 2 days to have their sexual

maturity whereas females need approximately 3 to 7 days [1]. Existence of sexual pheromon has been

demonstrated for this specie. This sexual pheromon attract males towards females.
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Table 1.5: Values of the development (days) of S. singularis according to several authors.

Stage Development Development Development Development Development

Anikwé Babin Babin Youdeowei Wacri, in

2010 2011 2006- 1973 Lavabre,

2008 1977

Eggs 14.1 min 16 13.1 17.4

11-16 13-21

L1 3.8 2.7 4.5

2-4 3-8

L2 4.0 2.9 4.8

2-4 3-7

L3 4.1 3.5 4.5

2-5 3-6

L4 5.3 2.7 3.7

2-7 3-7

L5 7.6 6.3 5.2

3-9 3-8

Nymphs 27 24.88+0.34 22.7+3.7

Total 41.1 36.022+3.4 46

max 49.225 40-50

Hatching rate 96.53

1.2.3.3 Feeding behavior of S. singularis

Mirid S. singularis usually feed on the cacao by sucking the sap. For their development, nymphs

extract sap using their stylus. So they bite cocoa via pods, young shoots and twigs. Experiments in

the laboratory used to estimate the average number of bites per nymph and according to its stage

of development. In this experiment, there was only one larva per box which receive a cherelle about

10 cm for its nutrition. There is no competition with another nymph food for resource. The data

obtained were recorded in the table 1.6. The number and diameter of bites for the adult is the same

as nymph of the fifth nymph stage. Males and females feed on pods and shoots: the number and

diameter of bites for adult is consigned in Table 1.6 (same values for fifth larval stage).

Furthermore, the feeding behaviour of Sahlbergella singularis has also been evaluated from efficacy
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Table 1.6: Number and diameter of nymphs bites Sahlbergella singularis per day

stage L1 stage L2 stage L3 stage L4 stage L5

Number of bites 27.53 28.46 26.72 24.77 26.88

Diameter of bites 1mm 1mm 2-3mm 2-3mm 4-5mm

tests of insecticide. In these tests, the authors compare the number of bites of S. singularis in the

presence of insecticides and control groups (without insecticide) [47]. The number of bites per mirid

was obtained under laboratory condition on different genotypes of cocoa trees to assess the resistance

of different genotypes of cocoa trees ([25], [48]); these tests were done on twigs of 6cm cocoa long,

each corresponding to different genotypes of cocoa. These studies presented a number of bites per

mirid, ranges from 2 to 12.1 bites per day: this according to the genotype of the cocoa tree, but also

with the stage of development of mirid. Thus, the genotype of the tree determines mirid bites because

some trees seem more susceptible to mirid bites than others. For the study of our models, we prefer

using the data reported in the table 1.6.

1.2.4 Ecology of S.singularis

1.2.4.1 Estimated mirid populations in plots

Several methods are used to assess the number of mirids present in the plots. In some published

papers, the authors counted mirids on the trees every week. There is some lack with this method

as the visual estimation is not easy due to the size of the insect and its hiding behaviour. With

this method, we have to know that most of nymphs are counted twice or sometimes three times.

So the estimation of the population in the plot based on this method should take account of these

adjustments.

The other method is based on Knock-down method. Once a year, trees are treated with an

insecticide (by fumigation). Insects that were present on the trees fall on a white plastic bag on the

soil. This method is quite exhaustive to evaluate the density at a precise time and also to evaluate

distribution in the plantations but it can’t be used to follow a population dynamics and to estimate

the level of population during one year.

Parameters such as the number of occupied trees and the tree infestation index have to be con-

sidered in order to better estimate the number of mirid present in the plots. The number of occupied

trees represents the proportion of trees showing mirids presence or damage depending of the authors

and the papers. The tree infestation index represents the average number of mirids present on a
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Figure 1.7: Fluctuation in the mean monthly population of S. singularis per 100 trees in

Ibadan, Nigeria [2].

tree. The number of trees is marked by mirids recorded using sampling reduction method. The num-

ber of identified mirids per hectare is quite variable. The maximum densities are about 2500 mirids

hectare [16] or approximately 7000 per hectare mirids [49]. In Cameroon, we have on average 2, 1

mirids per tree [15].

Figure 1.7 represents the fluctuation of miridae populations obtained in [2] during the following

period: the mean monthly population of Sahlbergella singularis per 100 sampled trees in Nigeria over

a period of three years (2004, 2005 and 2006). The peak of populations of mirids is obtained in

September 2005 with 107 mirids. There was respectively 42 and 59 mirids in October 2004 and 2006.

In April and May 2004, from March to July 2005 and May to July 2006, the result of their study

showed the absence of Sahlbergella singularis in the field. Figure 1.8 represents the mean number of

S. singularis per tree in tree regions of Côte d’Ivoire. The peak of populations of mirids is obtained

in September with a mean of 20 mirids per tree.

1.2.4.2 Seasonal variations of mirids populations

Mirids dynamics varied greatly during the year. Density of population is likely to be influenced by

pods availability on the trees. Mirid population is low on cocoa during the period from February to

March. From June to July, the populations start to grow more or less rapidly depending on external

conditions like weather and fruits production on the trees. The peak of the population appears

between September and November when the pods are almost mature ([11]; [50]; [2],[3]). Between

January and March, despite the low number of pods present on cacao tree, it is still possible to collect

mirids principally on the greedy and branches. Even if the lack of resource (i.e pods) can explain the
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Figure 1.8: Seasonal variations of Sahlbergella singularis in Côte d’Ivoire [3].

decrease in mirid population, other hypotheses have been formulated to explain the drastic decline

that occurred between February and March. In Babin et al. 2010 [15], it is assumed that lower mirid

populations observed in plantations during a certain period of the year (the period from November-

December to June) is due to declining fertility of females and increased mortality of individuals 1.5.

Thus, it seems that development parameters (longevity, fecundity) of mirids vary depending on season.

The G8 and G9 generations obtained in June, July and August (during pods formation on the trees)

were the most productive generations with high fecundity and female longevity. On the other hand,

generations G11 and G12 obtained in November, December and January showed lowest fecundity and

female longevity. In Kouame et al. 2014 [3], it is assumed that the lower mirid population is observed

in plantations between February to June. This variation depends on temperature and pluviometry.

Another hypothesis that can explain the drop of the mirid population on the plot is migration.

In fact, cacao is cultivated in agroforestery systems in association with several other crops among

which potential mirid host plants (Cola nitida, Ceiba pentandra). Mirids are originated from African

forests therefore before the arrival of cocoa in Cameroon, those insects developed on other forest trees

like D. dewevrei, Ceiba pentandra in Cameroon. So it could not be excluded that mirids take refuge

in those trees when resources from cocoa trees become less suitable for the species development. An

experience proved that S singularis is able to feed on D. dewevrei but its capacity to multiply on

this tree remains to be confirm. Then, when development condition become more favourable on the

cocoa trees, the mirids can re-infest the plantations.

1.2.4.3 Dispersal availability of S. singularis

Moving of S. singularis in the plot is an important factor using for evaluate the interaction

Doctorate Thesis 20



1.2 Cacao mirids

between S. singularis and cacao. Eggs of S. singularis are immobile and wait for hatching to become

nymphs. Nymphs of S. singularis are very mobile but only in the same tree. Nymphs do not have the

ability to fly from one plant to another. They must complete their development and become adults

for that; therefore, nymphs usually feed on the same cocoa tree view on the same tree. The dispersal

potential of this species is entirely determined by the mirid adult flight capabilities. Concerning adults

S. singularis, studies in Ghana and Nigeria, according to various methods have demonstrated that

adult mirids can fly 24 hours after emergence, but the first long flight occurs only after 3 to 5 days.

A fight of mirid can be started by coming of predator and in this case, flight is short and in zigzag or

in spiral [51]. He esteem that, on the average the distance travelled by adult of D. theobroma is 1.1

km for males and 2.3 km for females, with on the average speed of 3.4 meters per second. Youdeowei

distinguish two types of flight of S. singularis: the trivial flight and the dispersion flight. A trivial

flight only last for some seconds and have for main objective the feeding or researching of partner for

mating. A dispersion flight can last more than thirty minutes and allow S. singularis to colonize a

new habitats [52]. In the same article, he observe that female of S. singularis are able to flight more

than one hour without any interruption and males more than one hour and thirty minutes.

1.2.5 Interaction between mirids and cacao in agroforests.

Interaction between mirids and cacao is essentially due to the action of mirids on cacao. Mirids

use cocoa for their feeding and their development. Mirids feed and lay on cacao tree: this action lead

to damages observed on the tree: anecdotal damages on a pod and cumulated damages on the other

parts of the tree.

Mirids tend to hide themselves to feed and move quickly. So,it is difficult to establish a link

between mirids population and damages observed in the yield because the treatment is based on

the estimation of population of mirids and not on the damages observed in the yields. Moreover,

several farmers cannot see the insect but they are able to recognize the damages on the pods. The

bite on pod are check off on peduncle and according to the cortex size, damages on pods are remain

anecdotal. In fact, the harvest remains interesting and the selling of beans continues. The most

damages (damages which appears on the other parts of cacao tree) are cumulated over time and can

lead to the destruction of the tree ([17], [53], [16], [43]).

1.2.6 Damage caused by mirids

Feeding and egg-laying of S. singularis lead to important damages observed on cacao tree. These

damages are observed in several parts of the tree especially pods, shoots, branches and leaves. Dam-
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Figure 1.9: Damages observed on cacao due to the action of S. singularis

ages observed in the pods are anecdotal: indeed, once the pod has passed cherelle stage it can no

longer die under the action of mirids. The death on pods due to S. singularis is only in "cherelle"

stage: this damages lead to the deformation of the fruit current in growing and even drying of the

fruit if peduncle is affected. The bites of S. singularis on pods don’t prevent harvesting but damages

on the rest of part of the tree can lead to the destruction of the tree. When mirids feed on leaves

or on branches of cacao, this involves the interruption of the circulation of the sap in this part. We

observe the phenomenon of the drying of the leaves and branches. Damage on the pod and leaves

is represented by figure 1.9. Several parts of the tree where the attacks of mirids are repetitive are

especially damaged. These parts of mirids are called "mirid pocket". They concerns generally any

about ten trees which are particularly non productive and present several "gourmands". They are

attractive for the mirid for the feeding and egg-laying and generally leads to the death of the tree.

The feeding lesions due to the impact of mirids are also infected by a parasitical toadstool Calonectria

rigidiuscula. These lesions develop in cankers which accumulate and weaken the branches and the

trunk of the tree; this lead to the death of the entire branches, all the coronet and even the tree. This

phenomenon is currently called "die-back".
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1.2.6.1 Effects of the action of mirids on the growth of cacao tree

Mirid aggression cause a losses of leaves due to the fact that they cannot supply in saps. Mirid

aggression lead to the death of many plants: in fact, it has been proved in one study that for a total

of 14 infected plants, we observe the death of 6 plants. According to treatment, some plants before

their death develop "rejects" (death due to the action of toadstool) and others not. Then appearing

of new flowers is elevated of infected plants than non infected plants.

1.2.6.2 Impact of the action of mirids on the development of cherelle: Cherelle

withered

Mirid aggression lead to the death of several "cherelle". Withered of "cherelle" is either due to

mirid aggression, or internal factors of cocoa and environmental factors. Biting "cherelle" tend to be

wither instead of to evolve as pods. In mean, 63% of biting "cherelle" whiter. In the plot, there has a

small "cherelle" aggression. Mirid which prefer feed on pods are very low in the plot between February

and June; this period correspond to the flowering and "cherelle" development. Mirid aggression on

"cherelle", even if they are low, they are very harmful for the "cherelle" development.

1.2.7 Natural enemies and control S. singularis

Mirid S. singularis have many natural enemies: entomopathogenus, parasitoids, parasites and

predators. Leiophron (Euphoros) sahlbergellae is the only parasite which lives in depend on the larvae

of S. singularis. A parasitism rate of this specie is evaluated to less than 6 to 20% in Cameroon [14].

Several species of toadstool are identified as harmful for the population of S. singularis: we can cite

Hirsutella sp. and Beauveria sp.. More recently, a stock of Beauveria bassiana has been isolated in

Cameroon [54]. There is not several species of predators of mirids. We can cite species of spider and

ants which are predators of D. theobroma. In consideration of the morphological similarity between

S. singularis and D. theobroma, these species of predators of D. theobroma are probably predators of

S. singularis.

1.2.8 How to control S. singularis?

There exists many strategies to control mirids in generally and S. singularis in particularly:

agronomic control, biological control, chemical control, varietal control. We also control mirids by

using attractive traps or insecticide doing by plants. In Cameroon, farmers develop a way to control

mirids using cultivated plants as hemp or tobacco; also using plants which we find in cacao agroforests
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like bubinga and tali to make insecticides. These insecticides also have a rule to clean up the plot

against diseases and bugs. Another method which can be used to struggle against mirids is to do the

pheromone traps. In fact, before mating female S. singularis usually broadcast sexual pheromon for

attract males. This method is used to capture mirids in order to eradicate mirids population. The

trap catches the optimum number of males mirids when it is at 1, 8 metres above ground level when

suspended in cacao tree. In Cameroon, by using this method, the densities of mirids are evaluated

to approximately 2.5− 7 mirids per tree at the peak of the proliferation period, while the economic

threshold level for cocoa mirids in Cameroon has been determined at just 0.7 mirids per tree [15].

The chemical management of mirids is doing by use of insecticide. Agronomic management regroups

all the cultural methods which permit to create the non favourable conditions to the development

of mirids populations (to rid the "gourmands" which are the part on the tree where mirids lays

in absence of pods, to remove all the alternative hosts plants). Varietal control consists to replace

the variety of cacao traditionally cultivated by variety more resistant or tolerant of mirids attacks.

Biological control is in opposition to chemical control. It consists to use organisms in order to prevent

or reduce damages caused by mirids: the use of natural enemies of S. singularis in this case.

Despite all these ways of mirid control, the losses of production due to the action of mirids are

very important and lead to the important economic losses for the world producers of cacao. Another

approach to solve this problem caused by mirids would be to use mathematical approach. By using

the life cycle of mirids and its interaction with cacao tree, may be we will develop or ameliorate

strategies to control mirids.

1.3 Problematic

The culture of cacao is important for the economy of Cameroon but this activity faced to many

diseases and bugs of cocoa. More precisely, cacao bug S. singularis are very harmful for the cacao

trees. They are responsible of many damages and a small quantities of bugs are able to cause several

damages. Damages caused by this bug are approximately 40% of the potential production on the

plot: it is enormous. Since cacao is the first cash crop, these losses of production lead to the decrease

of the economy of country. Many research works are developed in order to study the bug S. singularis

and the other diseases of T. cacao; but none of the works in our knowledge consider the evolution

of damages caused by mirid bug S. singularis, the mechanism of destruction of cocoa due to the

action of S. singularis. The population of mirids constitute an enormous source of problems for the

cacao cultivation around the world and especially in Cameroon in particular. There are two types
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of damages caused by mirids: anecdotal and cumulated damages. We would want to understand the

evolution of these damages caused by mirids in the plots in Cameroon: we would want to know

approximately how much time is necessary for a plot deserted to the mercy of mirids to become

completely destructed. We would also want to be able to explain to the farmers which will be the

indicator to start a treatment. The aims of this study are multiple: to predict how populations of S.

singularis develop in the plot at time, to apprehend the distribution of damages caused by mirids in

the plot, to test the strategies of control mirid population in order to increase cocoa production in

Cameroon, to contribute to control mirids in agroforests in Cameroon.

Then, our research question is to estimate the evolution of damages due to mirids especially S.

singularis in Cameroon using mathematical models. The objectives are to acquire knowledges in order

to understand the base of interaction between cacao and S. singularis, to integrate all these knowledges

in order to formalize this interaction between S. singularis and cacao. Our aims are multiple: to

predict the appearance and the level of S. singularis in the plot, to apprehend the distribution of

damages caused by mirids in the plot, to test the strategies of control of mirids population in order

to increase cocoa production in Cameroon, to contribute to control against mirids in the agroforests

in Cameroon.

Several works have been developed in order to estimate the level of mirids in the plots [15, 24].

The result of this work is: there exists a small number of mirids but this little number of pests lead

to enormous damage. It is likely that the approach to estimate the number of this pest was not well

done. This is why we have thought of a mathematical approach to predict mirid population levels. In

the next section, we will therefore recall all the mathematical tools that will help us in the modelling

and resolution of our different models. However, biological works allowed us to have data on the life

cycle of the insect and these data will help us to implement our different mathematical models.

1.4 Dynamical systems

Definition 1.1. Dynamical systems: A dynamical system is a system whose state evolves with time

over a state space according to a fixed rule. Especially, in Mathematics, it is a system which a function

describes the time dependence of a point in a geometrical space

At any given time, a dynamical system has a state given by a tuple of real numbers (a vector)

that can be represented by a point in an appropriate space (a geometrical manifold). The evolution

rule of the dynamical system is a function which describes what future states follow from the current

state. Often, the system is deterministic, that is, for a given time interval only a one future state
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follows from the current state.

The study of dynamical systems is the focus of dynamical systems theory, which has applica-

tions to a wide variety of fields such as Mathematics, Physics, Biology, Chemistry... In applications

of mathematics, we have the delayed systems, monotone dynamical systems, piecewise dynamical

systems and so on.

1.4.1 Theory of delays differential equations (DDE)

In many applications, the future behaviour of many phenomena are assumed to be described by

the solutions of an ordinary differential equation. This implies that the future behaviour is uniquely

determined by the present and independent of the past. In order to correct and do the model more

realistic, it is better to model a phenomenon by delay differential equations, differential difference

equations, or more generally functional differential equations.

1.4.1.1 Generalities

Let the following equation be the delay differential equation:

ẋ(t) = f(t, x(t), x(t− τ)) (1.1)

where τ is the delay, x(t) is the state of the system and f : R×Rn×Rn −→ Rn a continuous function

in relation to all its arguments. Let t0 ∈ R+ be the initial time. In order to construct the solution x(t),

it is not sufficient to know only the value x(0) = x0 as in the case of ordinary differential equations.

It is necessary to know the solution on the interval [−τ, 0].

There exists many types of delays differential equation:

1. Delay differential equation

dx

dt
(t) = f(t, x(t), x(t− τ1), ..., x(t− τn))

where f : R× Rn × Rn −→ Rn, 0 ≤ τ1 < ... < τn.

Note that the set Rn can be replaced by a Banach space.

2. Neutral equation: the delay also happens on the derivative

d

dt
F (t, x |[t−τ,t]) = G(t, x |[t−τ,t])

3. Equation with delay depending on the state

d

dt
x(t) = f(x(t− r(x(t))))

with x(t) ∈ R, f : Rn −→ Rn and r : Rn −→ R+
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4. Partial delay differential equations

du

dt
(t) = Au(t) + F (u(t− τ))

where A is an operator define on a Banach space X.

1.4.1.2 Useful results about delays differential equations

Given r > 0, denote C([a, b],Rn), the Banach space of continuous mapping from the interval [a, b]

into Rn with the topology of uniform convergence. If [a, b] = [−τ, 0], we let C = C([−τ, 0],Rn) and

define the norm of an element ϕ in C by | ϕ |= sup−τ≤x≤0 | ϕ(θ) |.

Let σ ∈ R, A > 0 and x ∈ C([σ − r, σ + A],Rn), then for any t ∈ [σ, σ + A], we let xt ∈ C, be

defined by

xt(θ) = x(t+ θ), for − τ ≤ θ ≤ 0.

Let f : R×C −→ Rn be a given function. A functional differential equation is given by the following

relation  dx
dt = f(t, xt), for all t ≥ σ,

and xσ = ϕ
(1.2)

Definition 1.2. [55] x is said to be solution of (1.1) if there exists σ ∈ R, A > 0 such that x ∈

C([σ − r, σ +A],Rn) and x satisfies (1.2) for t ∈ [σ, σ +A].

We have the following results about the delays differential equations:

Lemma 1.1. [56] Let σ ∈ R and ϕ ∈ C be given and f be continuous on the product R × C. Then

finding a solution of (1.2) through (σ, ϕ) is equivalent to solving

x(t) = ϕ(0) +

∫ t

σ
f(s, xs)ds t ≥ σ and xσ = ϕ

Lemma 1.2. [56] If x ∈ C([σ − r, σ + α],Rn), then xt is a continuous function of t ∈ [σ, σ + α].

Theorem 1.1. (Existence of solutions)[56] Let D be an open subset of R×C and f : D −→ Rn be a

continuous function. For any (σ, ϕ) ∈ D, there exists a solution of equation (1.2) through (σ, ϕ).

Theorem 1.2. (Uniqueness of solutions)[56] Let D be an open subset of R × C and suppose that

f : D −→ Rn is continuous and f(t, ϕ) be Lipschitz with respect to ϕ on every compact subset of D.

If (σ, ϕ) ∈ D, then equation (1.2) has a unique solution passing through (σ, ϕ)

Theorem 1.3. Furthermore on the hypotheses of the precedent theorem, if f is a bounded function,

then equation (1.2) has a maximal solution defined on [−τ, β[ with

if β <∞ =⇒ lim sup
t−→β

| xt(., ϕ) |=∞
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1.4.2 Theory of monotone dynamical systems

Monotone dynamical systems is systems which preserve some partial order on the state space.

Monotonicity has been shown to constrain system behaviour in various ways, for example ruling out

attracting nontrivial periodic orbits, under fairly general assumptions. When the system is strongly

monotone, behaviour is constrained further: for almost all initial conditions bounded solutions con-

verge to the set of equilibria. Sometimes such generic convergence claims can be strengthened: for

instance, convergence of every bounded orbit can be obtained in a variety of special cases.

Mathematical models of biosystems, in general, and in population studies, in particular, are often

represented by continuous dynamical systems. The qualitative analysis of such systems regarding

the long term behaviour of their solutions is one of the main mathematics involvements is such

studies. The aim of our study concerns the properties of global nature like basins of attraction and

global asymptotic stability of equilibria. The theory of monotone dynamical systems offers alternative

monotonicity-based approach which is to a large extend independent of the dimensionality of the

system. There exists two types of monotone systems: Cooperative and competitive systems.

We denote by F : X −→ Rn a C1 vector field generating the (local) flow φ = {φt}, in X. Thus

the solution to the initial value problem u̇ = F (u), u(0) = x is the curve t −→ φt x, defined for t in

some open interval Ix = (σx, τx), −∞ ≤ σx ≤ 0 ≤ τx ≤ +∞.

We call F (or φ) cooperative if

∂Fi/∂xj ≥ 0 for i 6= j.

For some results we need the additional assumption that F is irreducible, i.e., the Jacobian matrices

DF (x) are irreducible. When this holds and F is cooperative then Dφt(x) > 0 for t > 0, and

p-convexity then implies that φ is strongly monotone [57]:

φt(x) < φt(y) if x < y and t > 0.

A vector field H is competitive if −H is cooperative, that is, if ∂Hi/∂xj ≤ 0 for i 6= j. Many

propositions about cooperative fields are invariant under time reversal (replacing the field by its

negative) and thus are also true for competitive fields [57].

We will give some of the main results in the theory of competitive and cooperative systems. But

first, we give some new strong monotonicity results for odes. Let J be a nontrivial open interval,

D ⊆ Rn be an open set, f : J ×D −→ Rn be a locally Lipschitz function, and consider the ordinary

differential equation

x′(t) = f(t, x) (1.3)
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Denote by x(t, t0x0) the non-continuable solution of the initial value problem x(t0) = x0 for t0 ∈ J . A

cone K in Rn is a non-empty, closed subset of Rn satisfying K+K ⊆ K, R.K ⊆ K and K ∩ (−K) =

{0}. We hereafter assume K nonempty interior in Rn.

Definition 1.3. We say that (1.3) is monotone, or order-preserving, if whenever x0;x1 ∈ D satisfy

x0 ≤ x1 and the solutions x(t, t0, x0) and x(t, t0, x1) are defined on [t0, t1], t1 > t0,

then x(t, t0, x0) ≤ x(t, t0, x1) holds for t ∈ [t0, t1].

The vector field f : J × D −→ Rn is said to satisfy the quasimonotone condition in D if for every

(t, x); (t, y) ∈ J ×D,

we have (Q) : x ≤ y and φ(x) = φ(y) for some φ ∈ K∗ implies φ(f(t, x)) ≤ φ(f(t; y)). Where K∗ is

the dual cone and is the set positive linear functionals, i.e., linear functionals

λ ∈ (Rn)∗, the dual space of Rn, such that λ(K) ≥ 0.

In order words, let us consider an n-dimensional autonomous differential system:

ẋ = f(x), (1.4)

Definition 1.4. System (1.4) is called monotone if

a ≤ b⇒ x(t, a) ≤ x(t, b)

for all t ≥ 0

In order words, the flow preserves the partial ordering between the initial condition for all time

t ≥ 0.

Definition 1.5. (Metzler matrix) A matrix A ∈ Rn×m is called Metzler if every off-diagonal entry

of A is non-negative.

The condition: J(x) :=
∂f(x)

∂x
is Metzler means that for any i 6= j,

∂fi
∂xj

(x) ≥ 0.

Thus, an increase in xj yields an increase in ẋi = fi. The state-variables "cooperate" with one another.

Let us consider the dynamical system (1.4) whose trajectories evolve on a compact set D.

Definition 1.6. The omega limit set ω(x0) of a point x0 ∈ D is the set of points p such that:

x(tk, x0)→ p for some sequence t1, t2, t3, ...→∞.

Lemma 1.3. Let x0 ∈ D. If there exists τ > 0 such that x(τ, x0) ≥ x0, then ω(x0) is a closed orbit

with period τ.

Theorem 1.4. ([58]) Almost every compact trajectory of a monotone system converges to the set of

equilibria.

Doctorate Thesis 29



1.4 Dynamical systems

Theorem 1.5. ([59]) Consider the monotone system (1.4) whose trajectories evolve on a compact

set D. If D contains a single equilibrium point e then limt→∞ x(t, a) = e for all a ∈ D.

Theorem 1.6. ([60]) Consider the monotone system (1.4) whose trajectories evolve on a compact

set D. If J(x) is tridiagonal and strongly Metzler on D then x(t, a) converges to an equilibrium for

all a ∈ D.

1.4.2.1 Cooperative systems

Let K ⊆ Rn be a closed cone with nonempty interior and denote by int(K) the interior of K in Rn.

In what follows, K∗ will be used to denote the dual cone of K, i.e.,

K∗ = {λ ∈ Rn; 〈λ, x〉 ≥ 0 for all x ∈ K}

in which 〈., .〉 is the standard inner product in Rn.

For x; y ∈ Rn, we denote

(i) x ≤K y if and only if (y − x) ∈ K;

(ii) x <K y if and only if x ≤K y and x 6= y;

(iii) x�K y if and only if (y − x) ∈ int(K).

We say that U ⊆ Rn is p-convex if tx+ (1− t)y ∈ U for all t ∈ [0; 1] whenever x; y ∈ U and x ≤K y.

We need the following key definitions:

Definition 1.7. [61] Let A be an n× n matrix.

• A is said to be cooperative with respect to K if and only if for any x ∈ K and any λ ∈ K∗ with

〈λ, x〉 = 0, we have 〈λ,Ax〉 ≥ 0.

• A is said to be irreducible with respect to K if for any x ∈ K \ {int(K) \ {0}}, there exists

λ ∈ K∗ such that 〈λ, x〉 = 0 and 〈λ,Ax〉 6= 0 (necessarily λ ∈ K∗ \ {int(K) \ {0}}).

• A is said to be totally cooperative with respect to K if Ax ∈ int(K) for all x ∈ K \ {0}.

Let us consider an n-dimensional autonomous differential system:

ẋ = f(x), x(0) = x0 (1.5)

where f : D −→ Rn, D ∈ Rn is a given vector function, i.e f = (f)i, with fi : Rn −→ R.

We assume thet f is locally Lipschitz so that local existence and uniqueness of solutions is assured.

We will use the following notations. Denote

x(x0, t)
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the solution of 1.5 initiated in x0. Further, for x, y ∈ Rn+, we have:

x ≤ y ⇐⇒ xi ≤ yi, ∀ i ∈ {1, 2, 3, ..., n}.

Typically, D is assumed open to avoid complications. However, for several models, we assume

only D ⊂ closure(int(D)) and that for some δ > 0 the vector fields defined by f(t, .), t ∈ [0, δ),

are all directed inwards at the points of ∂D. This is enough to ensure that for every a ∈ D, there

exists Ta > 0 such that the system (1.5) has a solution x(t, a) on the interval [0, Ta) which satisfies

x(a, 0) = a. We further assume that f is such that the solution initiated at a is unique. We assume

that [0, Ta) is the maximal (nonnegative) interval of existence of x(a, t).

Definition 1.8. System (1.5) is said to be cooperative if for every i, j ∈ {1, 2, ..., n}, such that i 6= j

the function fi(x1, ..., xn) is monotone increasing with respect to xj.

Theorem 1.7. If f is differentiable on D, system 1.5 is cooperative if and only if

∂ fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D

Theorem 1.8. Let system (1.5) be cooperative. Then for every a, b ∈ D

a ≤ b⇒ x(a, t) ≤ x(b, t), t ∈ [0,min(Ta, Tb)]

Theorem 1.9. If system (1.5) is cooperative and irreducible, then for every a, b ∈ D

a ≤ b⇒ x(a, t)� x(b, t), t ∈ [0,min(Ta, Tb)]

Theorem 1.10. Let (1.5) be a cooperative system and let x(x0, t) be a solution of (1.5) on [0, T ). If

y(t) is a differentiable function on [0, T ) satisfying

dy

dt
≤ f(y), y(0) ≤ x0,

then

y(t) ≤ x(x0, t), t ∈ [0, T ).

Theorem 1.11. Assume system (1.5) is cooperative and let a, b ∈ D such that f(a) ≥ 0 (f(a) ≤ 0),

then the solution x(a, t) is monotone increasing (decreasing) function of t ∈ [0, Ta).

Stability of cooperative systems is given by the following theorem:

Theorem 1.12. [62] Let a, b ∈ D such that a < b, [a, b] ⊂ D and f(b) ≤ 0 ≤ f(a). Then (1.5) defines

a (positive) dynamical system on [a, b]. Moreover, if [a, b] contains a unique equilibrium p then p is

globally asymptotically stable on [a, b].
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1.4.2.2 Cooperative systems with concave nonlinearities

For autonomous systems, Hirsch [63] showed that for systems that are cooperative and irreducible,

almost all (with respect to Lebesgue measure) points whose forward orbits are bounded approach the

equilibrium set. His result implies a strong tendency of the solutions oh these systems to converge to

an equilibrium if system is cooperative and irreducible. For some particular cooperative systems, a

stronger conclusion holds: every bounded solution converges to an equilibrium. This type of cooper-

ative systems is called cooperative systems of differential equations with concave nonlinearities.

Definition 1.9. [64] Let us consider an n-dimensional autonomous differential system:

ẋ = F (t, x), x ∈ Rn (1.6)

The system of differential equations (1.6) is called cooperative with concave non-linearities if

(i)
∂ Fi
∂ xj

≥ 0, i 6= j for each (t, x) ∈ R+ × Rn+.

(ii) x > y > 0 implies DxF (t, y) > DxF (t, x).

A special case of this type of systems is periodic cooperative systems of differential equations with

concave nonlinearities. System (1.6) with periodic parameters.

In order to study the stability of equilibria in such systems, let us recall useful theorems (Theorem

3.1 in [65] and Theorem 5.5 in [64]).

Theorem 1.13 (Theorem 3.1 [65]). Let F(t, x) be continuous in R×Rn+, T -periodic in t for fixed x.

and assume DxF (t, x) exists and is continuous in R × Rn+. Assume that if x ≥ 0, with xi = 0, then

Fi(t, x) ≥ 0, 1 ≤ i ≤ n, t ∈ R. Assume

(M)
∂ Fi
∂ xj

≥ 0, i 6= j, (t, x) ∈ R× Rn+

and

DxF (t, x) is irreducible for each (t, x)R× Rn+

(C) if 0 < x < y, then DxF (t, x) ≥ DxF (t, y).

Then every solution of (1.6) with x(t0) ≥ 0 can be continued to [t0,∞] with x(t) ≥ 0 for t ≥ t0.

If F (t, 0) ≡ 0 and

z′ = DxF (t, 0)z (1.7)

is the variational equation about x ≡ 0, them limt→∞ x(t) = 0 for every solution of (1.6) with x(t0) ≥ 0

provided all Floquet multipliers of (1.7) lie inside or on the unit circle in the complex plane. If any
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multiplier of (1.7) lies outside the unit circle, then one of the following holds: (a) every solution x(t)

of (1.6) with x(t0) ≥ 0 satisfies limt→∞ x(t) =∞, or (b) (1.6) possess a unique non zero T -periodic

solution q(t). In the latter case q(t) > 0 for all t and limt→∞ x(t) = q(t) for every solution of (1.6)

with x(t0) > 0.

If F (t, 0) ≡ 0, then exactly one of the alternatives (a) or (b) occurs, except that x(t0) > 0 is

replaced by x(t0) ≥ 0 above.

In general, the determination of Floquet multipliers is not obvious at all. That is why, we will

now consider an additional result [64]: this is an algebraic criterion, related to the study of

A(t) = DxF (t, 0)

.

Let A(t) be a n× n continuous matrix in R τ -periodic in t, denote

aij = max
0≤t≤τ

aij(t), aij = min
0≤t≤τ

aij(t)

A = (aij), A = (aij)

Thus

A ≤ A(t) ≤ A, for 0 ≤ t ≤ τ.

Let p be a positive real number. In order to study system (1.6), we will use the following theorem:

Theorem 1.14. ([64], Theorem 5.5, page 203) Let F (t, x) be continuous in R×Rn+, T -periodic in t

for a fixed x and assume Dx F (t, x) exists and is continuous in R×Rn+ Assume that all solutions are

bounded in Rn+ and F (t, 0) = 0. Assume

• ∂ Fi
∂ xj

≥ 0, (t, x) ∈ R× Rn+

• and A(t) = Dx F (t, 0) is irreducible for any t ∈ R.

• If 0 < x < y, then DxF (t, x) > DxF (t, y).

Then

1. If all principal minors of −A are non-negative, then limt→+∞ x(t) = 0 for every solution of

(1.6) in Rn+

2. If −A has at least one negative principal minor, then (1.6) possesses a unique positive T -periodic

solution which attracts all initial conditions in Rn+.

Doctorate Thesis 33



1.4 Dynamical systems

1.4.2.3 Cooperative delayed systems

The aim of the present subsection is to apply the theory of cooperative systems to differential

equations containing delayed arguments. Such equations are often referred to as delay differential

equations or functional differential equations. Since delay differential equations contain ordinary dif-

ferential equations as a special case, when all delays are zero, the treatment is quite similar to the

ODE equations. The main difference is that a delay differential equation generally can’t be solved

backward in time and therefore there is not a well-developed theory of competitive systems with

delays. The following results come from [66, 67].

If τ denotes the maximum delay appearing in the equation, then the space C := C([−τ ; 0];Rn) is

a natural choice of state space. Given a cone K in Rn, CK contains the cone of functions which map

[−τ ; 0] intoK. We identify sufficient conditions on the right hand side of the delay differential equation

for the semi flow to be monotone with respect to the ordering induced by this cone. This condition

called "quasimonotone condition" reduces to the condition for ordinary differential equations when

no delays are present.

A natural space of initial conditions is the space of continuous functions on [−τ ; 0], which we

denote by C, where n = 1 in this case. C is a Banach space with the usual uniform norm

|φ| = sup
θ∈[−τ,0]

φ(θ).

If φ ∈ C is given, then it is easy to see that the equation has a unique solution x(t) for t ≥ 0 satisfying

x(θ) = φ(θ), −τ ≤ θ ≤ 0.

If the state space is C, then we need to construct from the solution x(t), an element of the space C to

call the state of the system at time t. It should have the property that it uniquely determines x(s)

for s ≥ t. The natural choice is xt ∈ C, defined by

xt(θ) = x(t+ θ); −τ ≤ θ ≤ 0.

Then, x0 = φ and xt(0) = x(t).

Let (1.8) be a delay differential system:

x′(t) = f(x(t), x(t− τ)) = f(x, Y ), (1.8)

where Y = (x(t− τ).

Following [66], If system (1.8) without delays reduces to a irreducible cooperative system, for the

time-delayed system, we can show that f verifies the quasi-monotone condition (QMD), defined as
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follows in [66, 67]

φ, ψ ∈ D, φ ≤ ψ and φi(0) = ψi(0) implies fi(φ) ≤ fi(ψ).

In fact, it suffices to use Theorem 4.5 ([67], page 308), to show that f is cooperative to deduce that

(QMD) holds for f , that is

∂fi
∂xj

(x, Y ) ≥ 0, for i 6= j, (1.9)

∂fi

∂ykj
(x, Y ) ≥ 0, for all i, j, k. (1.10)

When the quasimonotone is verified, if the initial condition is positive (with at most one zero compo-

nent), then the solution x is still nonnegative, ie, x(t) ≥ 0. The quasimonotone condition also ensure

the boundedness of the solutions.

When the delayed system satisfies the quasimonotone condition, there is no need to study the

stability/instability of the equilibria. Indeed, according to Smith [66] (chapter 5), there is a nice

property pointed out about cooperative irreducible time delay systems: the asymptotic stability of

each equilibrium is preserved for the delay differential system, whatever the values taken by the

delays.

In order to study the stability of delayed systems, we can also apply Theorems 2.2 and 2.3 (Lu [68],

page 293). Let (1.11) be the delayed differential system u′(t) = a1 u(t) + b1 v(t− d2),

v′(t) = a2 v(t) + b2 u(t− d1),
(1.11)

and G(s) = det(I s−A−B e−D s) its characteristic equation,

where

e−D s = diag(e−d1 s, e−d2 s), A =

 a1

a2

 , B =

 b1

b2


Theorem 1.15. If A and B satisfy

Re(a1), Re(a2) < 0, (1.12)

|b1 b2| < Re(a1)Re(a2) < 0, (1.13)

then for any delay d1, d2 > 0, all the roots of equation (1.11) have negative real parts.

1.4.3 Theory of piecewise dynamical systems

There are several different formalisms for dealing with continuous time non smooth systems,

including hybrid systems, variational inequalities, complementarity problems, and set valued ordinary
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differential equations (ODEs); see, e.g., [14, 60] for reviews. The key notion is that of a differential

inclusion [32, 5]. Here we allow the right-hand side of an ODE ẋ = f(x) to be not strictly a function,

but to be set-valued. For example, such set-valued functions arise in Coulomb dry friction laws

encountered in mechanics which model objects in contact that slide with velocity v only if their

tangential contact force ft exceeds some critical value. There are critical issues surrounding the well-

posedness of such systems, and often the smooth existence and uniqueness results for smooth ODEs

(see, e.g., [23]) do not apply.

For example, consider the simple system

ẋ(t) = αsign(x(t)),

where α ∈ R is a parameter that can vary and the sign function is multivalued at x = 0 with

sign(0) = [−1, 1]. When α < 0 for any value x(0), there is a unique solution to this problem and a

unique attractor, a stable equilibrium at x = 0. For α = 0, however, all points x ∈ R are equilibria,

and when α > 0, x = 0 is still an equilibrium, but is no longer stable. In the latter case, the equation

has three different solutions with initial condition x(0) = 0, showing that uniqueness of solution no

longer holds. However, from a different point of view, namely, that of bifurcation theory, this example

presents no challenge. Instead of focusing on the ill-posedness of the problem in state space, we think

instead of the asymptotic behaviour as we vary the parameter. This is a simple example of a non

smooth bifurcation. For α < 0 there is a unique attractor, and for α > 0 almost all trajectories diverge

to infinity. The case α = 0 is a pathology; therefore we single this out as a bifurcation point. Because

of the intricacy of these well-posedness issues, we shall avoid here the technicalities associated with

formulating existence and uniqueness results for the classes of system we study. Nevertheless, when

introducing various classes of PWS systems below we shall give references to the appropriate research

literature dealing with well-posedness and give some indication of the smoothness of the solutions

one should expect.

Definition 1.10. [69] A piecewise-smooth flow is given by a finite set od ODEs ẋi(t) = Fi(x, µ),

x ∈ Si; where ∪iSi = D is a domain, each Si has a non-empty interior and D is a domain.

The intersection
∑

ij := Si∩Sj is either an Rn−1-dimensional manifold included in the boundaries

∂Sj and ∂Si, or is the empty set. Each vector field Fi is smooth in both state x and parameter µ, and

defines a smooth flow φi(x, t) within any open set U ⊇ Si. In particular, each flow φi is well defined

on both side of the boundary ∂Si.

A non-empty border between two regions
∑

ij will be called a discontinuity set, discontinuity

boundary, or a switching manifold.
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When we have a single discontinuity set
∑

=
∑

12 as in this thesis

ẋ(t) =

 f1(x, µ) if x ∈ S1

f2(x, µ) if x ∈ S2.
(1.14)

where S1 ∪ S2 = D, f1 generates a flow φ1, f2 a flow φ2. When f1(x) = f2(x) at a point x ∈
∑

, but

there is a difference in the Jacobian derivatives f1,x 6= f2,x at x, then the degree of smoothness is said

to be 2.

Definition 1.11. Systems with smoothness of degree 2 or higher are called piecewise-smooth contin-

uous systems(PWCS).

Definition 1.12. ([69], Definition 2.1, p. 638) A discontinuity boundary
∑

is said to be uniformly

discontinuous in some domain D if the degree of smoothness of the vector field across
∑

is the same

throughout D. Furthermore, we say that the discontinuity is uniform with degree m + 1 if the first

m− 1 derivatives f1 − f2 evaluated on
∑

are zero.

When the switching manifold
∑

is uniform with degree of smoothness 2, let us consider that the

system (1.14) rewritten as follows

ẋ(t) =

 f1(x, µ) if H(x, µ) > 0

f2(x, µ) if H(x, µ) < 0
(1.15)

where H defines the switching manifold
∑

by∑
:= {x ∈ D : H(x) = 0}.

For PWCS system (1.15), it is possible to identify different types of equilibria, leading to the following

definition.

Definition 1.13. ([69], Definition 2.2, p. 640) We term a point x ∈ D as a regular equilibrium

of (1.15) if x is such that either

f1(x, µ) = 0 and H(x, µ) > 0 or f2(x, µ) = 0 and H(x, µ) < 0

Alternatively, we say that a point y ∈ D is a virtual equilibrium of (1.15) if either

f1(y, µ) = 0 and H(y, µ) < 0 or f2(x, µ) = 0 and H(x, µ) > 0

For standard autonomous continuous system, i.e ẋ = f(x) with f : G∗ −→ Rn continuous, and

G∗ an open set in Rn, according to well known theory, for any given initial conditions x0 ∈ G∗, we

have existence of a unique solution u(t, x0). Let also V a compact set in Rn. Then to study the local

or global asymptotically stability of equilibria, we consider the following general definitions.
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Definition 1.14. ([70], Definition 7.1, p. 32). A compact set V ⊆ G∗ is said to be stable, if given a

neighbourhood U of V , there is a neighbourhood W of V such that x ∈W implies u(t, x) ∈ U for all

t ≥ 0.

Definition 1.15. ([70], Definition 7.5, p. 32). A compact set V ⊆ G∗ is said to be an attractor if

there is a neighbourhood U of V such that x ∈ U implies u(t, x) → V as t → ∞. If u(t, x) → V

for each x ∈ G∗, V is called a global attractor. If V is both stable and an attractor, V is said to be

asymptotically stable. V is said to be globally asymptotically stable if it is stable and a global attractor.

Definition 1.16. [71] Let ẋ(t) = f(x(t), x(t− τ)) be a delay dynamical system. A simple example of

a PWS-DDE composed of two smooth vector fields is

ẋ(t) =

 f1(x(t), x(t− τ)) if f(x(t), x(t− τ)) ≤ 0

f2(x(t), x(t− τ)) if f(x(t), x(t− τ)) ≥ 0.
(1.16)

where x(t) ∈ Rn, and f1, f2, f are sufficiently smooth functions. Transitions between the different

vector fields occur on the switching surface defined by f = 0.

Definition 1.17. [71] We define a PWS-DDE to be a collection of smooth vector fields

ẋ(t) = fm(xt) (1.17)

indexed by a mode variable m ∈ M where xt ∈ C([−τ, 0],Rn) is the solution segment x(t + s) for

−τ ≤ s ≤ 0 and M is a finite set. (Equation 1.17 encompasses distributed delays as well as discrete

delays; however, we deal here with discrete delays only.) Associated with this is a collection of events

e ∈ E where E is a finite set and e consists of a pair πe = (min,mout), a smooth event function

he(x
t) : C([−τ, 0],Rn) −→ R and a smooth jump function ge(xt) : C([−τ, 0],Rn) −→ C([−τ, 0],Rn).

The event function he = 0 implicitly defines a switching manifold marking the transition point

between the (potentially) different vector fields (fmin , fmout) and the jump function ge determines

the instantaneous change of state that occurs upon impact with the switching manifold. The minimal

state needed to uniquely identify a particular trajectory of the system starting at time t0 is thus xt0

along with the mode m at time t0.

A system with a single discontinuity is a system defined as:

ẋ(t) =

 f1(x(t), x(t− τ1), x(t− τ2)) if x ∈ S1

f2(x(t), x(t− τ1), x(t− τ2)) if x ∈ S2.
(1.18)

where S1 ∪ S2 = D, f1 generates the flow φ1, f2 generates the flow φ2.

Doctorate Thesis 38



1.4 Dynamical systems

Definition 1.18. Following [72], the degree of smoothness at a point x0 in a switching
∑

ij set of a

piecewise-smooth ODE is the highest order r such the Taylor series expansions of ϕ(x0, t) and ϕj(x0, t)

with respect to t, evaluated at t = 0, agree up to terms of O(tr−1). That is, the first non-zero partial

derivative with respect to t of the difference [ϕi(x0, t)ϕj(x0, t)]|t = 0 is of order r.
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2
Mathematical modelling of the time

evolution of Sahlbergella singularis:

Application to control’s improvement

The focus of this chapter is to study the time evolution of cacao mirid S. singularis. We will

formulate several mathematical models based on the life cycle of S. singularis described in Chapter

1. Firstly, we build an ODEs model and derive some theoretical results as well as a sensitivity

analysis and some numerical simulations. We consider two cases: the resource pods is available along

the year and the case of resource is not available along the year; in this case it is modeled by a periodic

function. Then, we derive a model with two taking into account the delays in the maturation processes

at the different stages of the life-cycle of the mirid. After a brief study, we provide some numerical

simulations and compare with the previous non-delayed model. This chapter has been published at

"Mathematical Methods in the Applied Sciences

2.1 The ODE model with constant parameters

2.1.1 Formulation of the model

In order to build the models, we recall here what we know about the biology and ecology of

Mirids. The life cycle of S. singularis is composed of three stages: egg stage, nymph stage and adult

stage that develop mainly on pods either on shoots. The eggs are individually inserted into the host

plant tissues [14] principally in the cortex of pods and sometimes under the bark of young shoots [18].

The incubation period of eggs is on average 15 days with a minimum of 9 days [45] and a maximum

of 21 days [44] before reaching nymph stage. Mirid S. singularis has a very long life cycle (eggs to

adults). It is on average 40 days with a minimum of 36 days [30] and a maximum of 50 days [11]. The

percentage of hatching eggs is globally 96.53% as the eggs are protected in the pods cortex. During
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the five nymph instars, the individuals move within a cacao tree by walk to feed on the pods and

shoots. The nymphs are able to feed just after the eggs hatching. Twenty five days are needed to

complete the nymph development considering 5 days in average per instar [11]. Globally, the total

nymph survivorship is around 68% [1]. The average daily rate of survival of the nymphs (considering

all the five instars) was estimated around 98.5% (estimated using biological data). At the emergence

there is on average one female for 0.71 male [11] (this gives a sex ratio r = 1/1.71 ≈ 0.58; in fact,

sex ratio varies between 0.5 and 0.6). Females S. singularis mate with one male 6 to 10 days after

their emergence. The first eggs are observed in average 10 days after emergence, so 4 to 8 days after

mating (estimated using biological data). Indeed, after this mating period females are considered as

mature. On average 72.1% of immature females become mature females [30]. After the emergence,

adults (males and females) fly from one cocoa tree to another ensuring the spatial dispersion of the

individuals and causing the spatial distribution of the damage in the plots. It is likely the females

do not lay all their eggs on the same pod. The average fecundity per female is around 50.7 larvae or

52.5 eggs and the fecundity period lasts on average 16 days [16, 18, 45, 2, 73]. The daily survival of

mirids adult is around respectively 98.14% for immature females, 92.8% for mature females and 93%

for males (estimated thanks to [2, 44, 45, 11, 16]). On average, 50 to 60 days are needed to obtain

a new generation of mirids [11]. This long life period for an insect to grow is a key factor for the

dynamic of mirid populations.

Mirids population dynamics varied greatly during the year. Density of population is likely to

be influenced by pods availability on the trees and by external conditions like weather [15]. The

mirid population is low on cocoa during the period from February to March. From June to July,

the populations start to grow more or less rapidly. The peak of the population appears between

September and November when the pods are almost mature [11, 50, 2, 3]. It is also assumed that

unfavourable climatic conditions (high temperature and low pluviometry) can cause declining fertility

of females and increased mortality of individuals [15] that lead to lower mirid populations observed in

plantations from November-December to June. We now formulate a model based on the life cycle of

S. singularis, summarized in Fig. 2.1. We use a stage structured model. We consider three main stages

in the development of the mirid: the egg stage (E), the nymph stage (L) (nymphs and pupae) and

the adult stage, subdivided into immature female (F1), mature female (F2) and male (M). According
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L

F1

M

F2

r νL

νF

(1− r)νL

b

(
1− E

KC

)

E

νEµE

µL

µA

µA

µA

Figure 2.1: Life cycle of Sahlbergella singularis

to the flow diagram given in Fig. 2.1, we derive the following ODES model:

Ė = b F2

(
1− E

KC

)
− (νE + µE)E,

L̇ = νE E − (νL + µL)L,

Ḟ1 = r νL L− (νF + µA)F1,

Ḟ2 = νFF1 − µAF2,

Ṁ = (1− r)νLL− µAM,

(2.1)

with non-negative initial conditions: E(0) = E0, L(0) = L0, F1(0) = F 0
1 ,

F2(0) = F 0
2 , M(0) = M0.

(2.2)

The biological parameters are described as follows: r is the sex ratio; b is the mean number of

eggs laid by an adult female mirid per day that have emerged as nymphs, KC is the maximal carrying

capacity related to the mean daily number of pods per area (ha), µE , µL and µA represents respectively

the eggs, nymphs and adults daily mortality rate, νE and νL are respectively the transition rate from

the egg to nymph stage and the nymph to adult stage; (1/(νE+µE) and (1/(νL+µL) are respectively

the mean time a mirid stays in the egg and nymph stage (measured in days); νF is the transition

rate from the immature female stage to mature female stage; 1/(νF + µA) is the mean lifespan of an

immature female mirid, measured in days.
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The non linear term r b F2

(
1− E

KC

)
is related to a specific behaviour of some insects species,

like Aedes mosquito [74, 75], and also mirids, known as skip-oviposition behaviour. Indeed, according

to expert’s knowledge, mirids (S. singularis) are able to select their breeding sites. Some cocoa trees,

particularly suitable for nymph development, show greater damage, which leads to the degradation of

the foliage and the formation of orthotropic (or greedy) shoots [1]. Thus, if breeding sites, in a given

area, already contain a lot of eggs, then females will not deposit eggs or only very few. That is why,

the oviposition rate r b F2 is limited by the available space in breeding sites,
(

1− E

KC

)
, which implies

that the birth rate in the eggs compartment is modelled by the non linear term r b F2

(
1− E

KC

)
.

Table 2.1, page 43, summarizes the parameters and their biological meaning.

Table 2.1: Parameters of model (2.1).

Parameters Biological significance Unit

b Mean number of eggs laid by a mature female female−1days−1

KC Maximal carrying capacity related to the mean

daily number of pods per ha

1/νL Duration of the development of nymphs days

1/νF Time necessary for an immature female

to become mature days

µL Mortality of nymphs days−1

µA Mortality of adults days−1

µE Mortality of eggs days−1

1/νE Time necessary for an egg to become nymph days

2.1.2 Study of the ODEs model

Lemma 2.1. : Assume that the initial conditions of the model system (2.1) satisfy (2.2), then the

model system (2.1) has a unique maximal solution X = (E,L, F,A,M).

Proof:

Model system (2.1) can be written as a Cauchy problem:

˙X(t) = F (X(t)) (2.3)
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where

F (X(t)) =



bF2(t)

(
1− E(t)

KC

)
− (νE + µE)E(t)

νEE(t)− (νL + µL)L(t)

rνLL(t)− (νF + µA)F1(t)

νF F1(t)− µA F2(t)

(1− r)νLL(t)− µAM(t)


F (X(t)) is continuously differentiable (C1). Then, using the Cauchy-Lipschitz theorem, system (2.1)

has a unique maximal solution.

2

Lemma 2.2. : Assume that the initial conditions L(0) = L0, F1(0) = F 0
1 , F2(0) = F 0

2 and

M(0) = M0 of the model system (2.1) are positive, then all solutions of the model system (2.1) are

positive.

Proof:

Model system (2.1) can be written as follows:

Ẋ(t) = A(X(t))X(t), (2.4)

where

X(t) = (E(t), L(t), F1(t), F2(t),M(t))T

and

A(X(t)) =



− bA
KC
− (νE + µE) 0 0 b 0

νE −(νL + µL) 0 0 0

0 r νL −(νF + µA) 0 0

0 0 νF −µA 0

0 (1− r)νL 0 0 −µA


Integrating system of differential equation yields

Ẋ(t) = A(X(t))X(t) =⇒ X(t) = X0 exp

(∫ t

0
A(X(s))ds

)
,

where X0 = (E0, L0, F 0
1 , F

0
2 ,M

0) is an initial condition. Thus, if X0 satisfy (2.2), then for all t ≥ 0,

X(t) > 0. We can conclude that all solutions of L(t), F (t) and M(t) with non-negative initial

conditions is non-negative, then X(t) ∈ R4
+. Consequently, if the initial data are in R5

+, the solutions

stays in R5
+: E = 0, L = 0, F1 = 0, F2 = 0 and M = 0 are vertical and horizontal null lines

respectively. Thus, the trajectories can not cut these axes: so model system (2.1) is biologically well

posed.
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Theorem 2.1. The compact

Ω = {(E,L, F1, F2,M) ∈ R5
+;E(t) ≤ KC , L(t) ≤ νEKC

νL + µL
F1(t) ≤

r νL νEKC

(νL + µL)(µA + νF )
, (2.5)

F2(t) ≤
r νL νF νEKC

µA(νL + µL)(νF + µA)
and M(t) ≤ (1− r) νL νEKC

µA(νL + µL)
}

is positively invariant by (2.1).

Proof: Lemma 2.2 shows the positivity of solutions. Let us prove the boundness of the solurions:

• Let us prove that E(t) ≤ KC for al t ≥ t0.

Let us suppose that there exists ε > 0 such that

t1 ≤ t1 + ε < T and E(t1 + ε) > KC .

Let us define

t∗1 = inf{t ≥ t1, L(t) ≥ KC} then E(t∗1) = KC .

Thus,

E(t) = E(t∗1) + Ė(t∗1)(t− t∗1) + o(t− t∗1) and Ė(t∗1) = −(νE + µE)E(t∗1) < 0.

So, there exists ε1 > 0 such that

t∗1 ≤ t < t∗1 + ε1 and E(t∗1) < KC .

This is absurd because t∗1 = inf{t ≥ t1, E(t) ≥ KC}. Consequently, E(t) ≤ KC for all t ≥ t0.

• By integrating equations in L, F1, F2 and M separately, we find the born of each popuation.

Consequently, solutions of our model are bounded and Ω is positively invariant for the model.

2

Now, we will derive some quantitative analysis of system (2.1).

Proposition 2.1. Model (2.1) always has a trivial equilibrium X0 = (0, 0, 0, 0, 0) and the basic

offspring number is given by:

N0 =
r b νL νF νE

µA(νE + µE)(νF + µA)(νL + µL)
. (2.6)

N0 represents the mean number of adults female produced by one adult female over its lifespan. It is

sometimes called the basic offspring number.

Doctorate Thesis 45



2.1 The ODE model with constant parameters

Proof :

The jacobian is given by:

J(X) =



−(νE + µE)− b F2

KC
0 0 b

(
1− E

KC

)
0

νE −(νL + µL) 0 0 0

0 r νL −(νF + µA) 0 0

0 0 νF −µA 0

0 (1− r) νL 0 0 −µA


. (2.7)

Around the trivial equilibrium X0 = (0, 0, 0, 0, 0)T , one has

J(X0) =



−(νE + µE) 0 0 b 0

νE −(νL + µL) 0 0 0

0 r νL −(νF + µA) 0 0

0 0 νF −µA 0

0 (1− r) νL 0 0 −µA


.

J(X0) is a Metzler matrix and can be written as a following block matrix:

J(X0) =

 A B

C D

 ,

where

A =


−(νE + µE) 0 0

νE −(νL + µL) 0

0 rνL −(νF + µA)

 , B =


b 0

0 0

0 0

 ,

C =

 0 0 νF

0 (1− r)νL 0

 et D =

 −µA 0

0 −µA

 .

Matrix J(X0) is Metzler stable if and only if matrix A and D − CA−1B are Metzler stable [76].

Matrix A has three negative eigenvalues: −(νE + µE), −(νL + µL) and −(νF + µA). So A is Metzler

stable.

Now, we prove that matrix D − CA−1B is Metzler stable. A simple calculation gives

A−1 =
1

det(A)


(νL + µL)(νF + µA) 0 0

−νE(νF + µA) (νE + µE)(νF + µA)

rνEνL −rνL(νE + µE) (νE + µE)(νF + µA)

 .

where

det(A) = −(νE + µE)(νL + µL)(νF + µA)
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This leads to

CA−1B =
1

det(A)

 r b νE νF νL 0

(1− r) b νE (νF + µA) 0

 ,

then

D − CA−1B =


−µA +

r b νE νL νF
(νE + µE)(νL + µL)(νF + µA)

0

(1− r) b νE (νF + µA)

(νE + µE)(νL + µL)(νF + µA)
−µA

 .

Matrix D − CA−1B is Metzler stable if and only if

r b νE νL νF
µA (νE + µE) (νL + µL) (νF + µA)

≤ 1.

The basic offspring number is

N0 =
r b νE νL νF

µA (νE + µE) (νL + µL) (νF + µA)
.

2

Lemma 2.3. System (2.1) has two possible equilibria:

(i) a trivial equilibrium X0 = (0, 0, 0, 0, 0) which always exists and is an asymptotic equilibrium

for the system.

(ii) a positive equilibrium X∗ = (E∗, L∗, F ∗1 , F
∗
2 ,M

∗), defined as follows:

E∗ =
(N0 − 1)

N0
KC , L

∗ =
νE

νL + µL
E∗, F ∗1 =

r νE νL
(νL + µL)(νF + µA)

E∗, (2.8)

F ∗2 =
r νE νL νF

µA(νL + µL)(νF + µA)
E∗ and M∗ =

(1− r) νE νL
µA(νL + µL)

E∗.

which exists when N0 > 1.

Proof Setting the fifth equations of model (2.1) equal to zero, we find equilibria define in (2.8).

2

System (2.1) is a cooperative system [66]. Then, the dynamic of system (2.1) is summarized in the

following theorem:

Theorem 2.2. Assume that (E0, L0, F 0
1 , F

0
2 ,M

0) ∈ Ω.
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(i) When N0 ≤ 1, the trivial equilibrium X0 is globally asymptotically stable, which means that the

mirid population will dwindle until extinction, whatever the initial population.

(ii) When N0 > 1, the trivial equilibrium X0 is unstable, and the positive equilibrium X∗ is globally

asymptotically stable, which means that the mirid population persists.

Proof: It suffices to verify the assumptions of theorem 1.12.

(i) When N0 ≤ 1, model system (2.1) has only the trivial equilibrium X0. By taking a = 0 and

b =

(
KC ,

2νEKC

νL + µL

3 r νL νEKC

(νL + µL)(νF + µA)
,

4 r νE νL νF KC

µA(νL + µL)(νF + µA)
,

2 (1− r) νE νLKC

µA(νL + µL)

)
,

we have f(a) = 0 and f(b) ≤ 0. Thus, according to Theorem 1.12, the trivial equilibrium X0

is globally asymptotically stable on [0, b], hence on Ω when N0 ≤ 1.

(ii) When N0 > 1, there exists ε > 0 such that N0 > 1 + ε. Let Eε sufficiently small such that

Eε ≤ ε, Lε =
νE(1 + ε)

(νL + µL)N0
Eε, F1ε =

r νL (1 + ε)

(νF + µA)N0
Lε,

F2ε =
(νE + µE) (1 + ε)2

bN 2
0

Eε, Mε =
(1− r) νL (1 + ε)

µAN0
Lε

Let bε = (Eε, Lε, F1ε, F2ε, Mε). Then, from the right-hand side of (2.1) and the fact that

N0 > 1 + ε and KC � 1, we deduce:

f(bε) ≥



ε (νE + µE)(1 + ε)2
(

1− 1 + ε

KC

)
Eε

νE

(
1− 1 + ε

N0

)
Eε

r νL

(
1− 1 + ε

N0

)
Lε

νF

(
1− 1 + ε

N0

)
F1ε

(1− r) νL
(

1− 1 + ε

N0

)
Lε


> 0.

Hence, according to Theorem 1.12, equilibrium X∗ is globally asymptotically stable on [bε, b].

Since bε can be selected to be smaller than any x > 0, we have that X∗ is asymptotically stable

on Ω with basin of attraction Ω̃ = Ω \ {(0, 0, 0, 0, 0)}. This also implies that X0 is unstable.

2

Doctorate Thesis 48



2.1 The ODE model with constant parameters

2.1.3 Sensitivity analysis

It is important to know the relative importance of some factors that maintain or not a mirid

population. We may estimate the sensitivity index of N0 with respect to a parameter p, as follows:

γN0
p =

∂N0

∂p
.
p

N0
(2.9)

Straightforward calculation leads to the following result:

γN0
r = γN0

b = 1, γN0
νE

=
µE

νE(νE + µE)
,

γN0
νL

=
µL

νL(νL + µL)
, γN0

νF
=

µF
νF (νF + µA)

,

γN0
µE

= − 1

νE + µE
, γN0

µL
= − 1

νL + µL
, γN0

µA
= − νF

µA(νF + µA)

Clearly, r and b have the strongest impact on N0. However, this gives us only partial informations.

In particular, we will now focus on the variables E, L, F1, F2 and M . That is why, we derive some

global sensitivity analysis using two well-known methods: the eFast and the LHS-PRCC methods.

The eFast method given in Fig.2.2, page 50, highlights first-order effects (main effects) and total

effects (main and all interaction effects) of the parameters on the Model Outputs. Complementary

to the eFast method, we derived a LHS-PRCC sensitivity analysis given in Fig.2.3, page 51. LHS-

PRCC stands for Latin Hypercube Sampling and PRCC for Partial rank correlation coefficient. These

two methods give complementary information. Indeed the PRCC method provides mainly information

about how the outputs is impacted if we increase (or decrease) the inputs of a specific parameter while

the eFast indicates which parameter uncertainty has the greatest impact on the output variability

(see for instance [77] for further explanations). In Table 2.2, page 51, we provide ranges of values

for the model parameters. These ranges were estimated based on the Data obtained by Babin and

collaborators.

As expected, variation of the carrying capacity KC has strong an impact on all variables, and

also µA. For the transition rates νL, νE , νF , and the mortality rate µL, their impact is weaker, but

according to the LHS-PRCC analysis, is not negligible. Thus obviously, among all parameters, the

parameters KC , µA, νL, νE , νF , and µL are the most important parameters to estimate. Finally,

according to the sensitivity analysis method that is considered b does not have the same impact.

However, we think that this is an important parameter too.

2.1.4 Mirid system with periodic coefficients

In this section, we consider the previous model, but with periodic time-dependent parameters,

since we know that most of the parameters may depend on the environment. In fact, mirids dynamics
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2.1 The ODE model with constant parameters

Figure 2.2: e-FAST Sensitivity analysis at T = 500. White bar:first-order effects; Sum of white

and grey bars: total effect.
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2.1 The ODE model with constant parameters

Table 2.2: Range of values for the parameters of system (2.1).

Parameters Range Source

r [0.5, 0.6] estimated

b [1.5; 4] estimated

KC [1, 10000] estimated

νL [1/35, 1/10] estimated

νF [1/10, 1/6] estimated

µL [1/100, 1/10] estimated

µA [1/100, 1/10] estimated

µE [1/100, 1/10] estimated

νE [1/10, 1/20] estimated

Figure 2.3: LHS-PRCC Sensitivity analysis at T = 500.

vary greatly during the year; density of populations is likely to be influenced by pods avail ability on

the trees. In [30], it is admitted that lower mirid populations observed in the plots during a certain

period of the year is due to the declining fertility of females and increasing mortality of individuals.

Thus it seems that development parameters (longevity, fecundity, mortality) of mirids vary depending
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2.1 The ODE model with constant parameters

on season.

We assume that all those parameters are T -periodic functions and are bounded: below, by a non

negative minimal value, and above by a positive maximal value, that is pmin ≤ p(t) ≤ pmax for all

t ≥ 0, and p = r, b, µL, µA, µE , νL, νF , νE or KC . We also split the carrying capacity in two parts,

KC(t) +C: KC(t), the mean number of pods available for breeding, and C, the alternative breeding

sites including other tree hosts, like Cola nitida, Ceiba pentandra [1]. Thus, Model (2.1) becomes

Ė = b(t)F2

(
1− E

C +KC(t)

)
− (νE(t) + µE(t))E,

L̇ = νE(t)E − (νL(t) + µL(t))L,

Ḟ1 = r(t) νL(t)L− (νF (t) + µA(t))F1,

Ḟ2 = νF (t)F1 − µA(t)F2,

E(0) = E0, L(0) = L0, F1(0) = F 0
1 , F2(0) = F 0

2

(2.10)

System (2.10) enters the family of periodic concave cooperative system with a concave non-linearity ([64],[65]).

In fact:

We will use a theorem 1.14 (see Chapter 1) proved in [65]. We have:

F (t, x) =



b(t)F2

(
1− E

C +KC(t)

)
− (νE(t) + µE(t))E

νE(t)E − (νL(t) + µL(t))L

r(t) νL(t)L− (νF (t) + µA(t))F1

νF (t)F1 − µA(t)F2


,

where x = (E,L, F1, F2)
T . Obviously, F is continuously differentiable and T -periodic. According to

Cauchy-Lipschitz theorem, we have existence of a positive and bounded solution. Since all time-

dependent parameters are positive, we verify easily property (i) in Definition 1.9.

Let us compute the Jacobian

DxF (t, x) =



a 0 0 b(t)

(
1− E

KC(t) + C

)
νE(t) −(νL(t) + µL(t)) 0 0

0 r(t)νL(t) −(νF (t) + µA(t)) 0

0 0 νF (t) −µA(t)


with

a = −
(
νE(t) + µE(t) +

b(t)F2

KC(t) + C

)
It is straightforward to verify (ii) in Definition 1.9. In addition, DxF (t, x) is irreducible for each

(t, x) ∈ R × Rn+. Thus, Theorem 1.13 applies to system (??) and we deduce that every solution x,
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2.1 The ODE model with constant parameters

with x(t0) ≥ 0, can be continued in [t0,∞] with x(t) ≥ 0 for t ≥ t0.

Now, let us compute DxF (t, 0), that is

DxF (t, 0) =


− (νE(t) + µE(t)) 0 0 b(t)

νE(t) −(νL(t) + µL(t) 0 0

0 r(t)νL(t) −(νF (t) + µA(t)) 0

0 0 νF (t) −µA(t)


According to Theorem 1.13, if the Floquet multipliers of DxF (t, 0) lie inside or on the unit circle,

then limt→∞ x(t) = 0. In contrary, if any Floquet multiplier lies outside the unit circle, and according

to the fact that F (t, 0) ≡ 0 and x is a bounded solution, we deduce that system (??) has a unique

non-zero T -periodic solution xper(t).

In general, the determination of Floquet multipliers is extremely difficult. That is why, we will

now consider an additional result [64] recalled in Appendix B (see Theorem 1.14). This is an algebraic

criterion, related to the study of A(t) = DxF (t, 0).

Let us estimate A and A, lower and upper bounds of Matrix A(t). Using the fact that all time-

dependent parameters have positive lower and upper bounds, we deduce

A =


− (νE,max + µE,max) 0 0 bmin

νE,min −(νL,max + µL,max) 0 0

0 rminνL,min −(νF,max + µA,max) 0

0 0 νF,min −µA,max


and

A =


− (νE,min + µE,min) 0 0 bmax

νE,max (νE,min + µE,min) 0 0

0 rmaxνL,max −(νF,min + µA,min) 0

0 0 νF,max −µA,min

 .

Then according to Theorem 1.14, we have to study the principal minors of −A and −A. All

diagonal terms of −A and −A are positive. In fact it suffices to compute det(−A) and det(−A), that

is

det(−A) =− (νE,min + µE,min) (νL,min + µL,min)(νF,min + µA,min)µA,min

+ bmaxrmaxνE,maxνL,maxνF,max,

det(−A) = (νE,max + µE,max) (νL,max + µL,max)(νF,max + µA,max)µA,max

− bminrminνL,minνF,min.
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2.1 The ODE model with constant parameters

Thus det(−A) ≥ 0 if

bmaxrmaxνL,maxνF,max ≥ (νE,min + µE,min) (νL,min + µL,min)(νF,min + µA,min)µA,min,

and det(−A) < 0 if

(νE,max + µE,max) (νL,max + µL,max)(νF,max + µA,max)µA,max < bminrminνL,minνF,min.

In fact, the previous results are related to the time dependent basic offspring number

N0(t) =
r b(t)νE(t)νL(t)νF (t)

µA(t)(νE(t) + µE(t)) (νF (t) + µA(t)) (νL(t) + µL(t))
,

such that N0,min ≤ N0(t) ≤ N0,max, where

N0,min =
rmin bminνE,minνL,minνF,min

(νE,max + µE,max) (νmax + µmax) (νF,max + µA,max)µA,max
,

and

N 0,max =
rmax bmax νE,maxνL,maxνF,max

(νE,min + µE,min) (νmin + µmin) (νF,min + µA,min)µA,min
.

According to Theorem 1.14, we deduce

Theorem 2.3. :

(i) If N0,max ≤ 1, then the solution of system (2.10) converges to the trivial equilibrium X0.

(ii) If N0,min > 1, then system (2.10) admits a unique periodic solution that attracts all initial

condition in Ω.

According to the sensitivity analysis, an interesting and particular case is when we assume that all

parameters are constant, except KC . Then A = A, and thus N0,max = N0,min = N0. Thus, theorem

2.3 reduces to

Theorem 2.4. (i) If N0 ≤ 1, then the solution of system (2.10) converges to the trivial equilibrium

X0.

(ii) If N0 > 1, then system (2.10) admits a unique periodic solution which attracts all initial

condition in Ω.

In fact, we recover the same results than for the constant parameters problem, except that the

constant positive equilibrium is now periodic of period T .

It is important to notice that KC constant is relevant in the case where the cocoa production is

almost constant along the year. This is realistic in Central America where there is no real seasonality.

By contrast, in Cameroon, they are two rainy season: a long one, and a short one. There the seasonality

is clearly marked, which has an impact on cacao production. That is why we consider a periodic

function for KC .
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2.1 The ODE model with constant parameters

Numerical simulation

Now, we will illustrate our theoretical results. We will use the values of the monthly mean number

of pods using data extrapolated, obtained in Cameroon, from [73] to construct our periodic function

KC(t). According to the data from [73] and the knowledge about the mean number of pods over the

year, our daily estimated data are recapitulated in Table 2.3.

Table 2.3: Mean number of pods per days

Months June July August September October November

KC(t) 0
32000

31

160000

31

416000

30

544000

31

304000

31

Months December January February March April May June

KC(t)
416000

31

120000

31

8000

28
0 0 0 0

We suppose that the function KC(t) is periodic, of period T = 365 days. We use the cubic spline

interpolation to derive the time evolution of KC(t) along a year. Using cubic Hermite spline, we

obtain a polynomial interpolation (Daily estimation of KC(t)) given in Fig. 2.4, page 56. Figure 2.4,

page 56 represents the daily estimation of pods number in the plot. KC(t).

When the parameter KC is constant, we used a classical scheme already well implemented under

Matlab (ode23s) for numerical simulations and we consider that the number of pods KC is constant,

we evaluate the average daily value estimated with the data of Table 2.3, that is

KC =
1

365

∫ 365

1
KC(t)dt.

.

When KC is periodic, following [62], we consider a nonstandard numerical scheme to preserve

most of the qualitative properties of the continuous model, like positivity, equilibria, stability and

instability whatever the time step ∆t > 0. We consider the values of parameters given in Table 2.4.

In Cameroon, cacao is not cultivated alone. Cacaoculture is doing in agroforests which are sys-

tems of culture in which main culture (cacao) is associated with many other cultures. These culture

constitute alternative resource for mirids in the absence of pods. Since in our models, we consider

that the resource are the pods, alternative resource may always be the other parts of the tree: it is
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2.1 The ODE model with constant parameters

Figure 2.4: Daily estimation of KC(t) along a year

represented by the parameter C. We illustrate our numerical simulations for two values of C: C = 5

(alternative resource is not important) and C = 100 (alternative resource is important). All the given

values have been estimated thanks to [2, 44, 45, 11, 16].

Table 2.4: Values of constant parameters

Parameters Case N0 < 1 Case N0 > 1 Source

r 0.58 0.58 [11]

b 3.28 3.28 Estimated

νE 1/15 1/15 Estimated

νL 1/25 1/25 Estimated

νF 1/10 1/10 Estimated

µE 0.05 0.001 Estimated

µL 0.15 0.03 Estimated

µA 0.15 0.07 Estimated

N0 0.6103 9.0002 Equation (2.6)

Using Matlab, we have done numerical simulations in order to validate theoretical results obtained.

In Fig. 2.5, page 57, we illustrate the theoretical results when the carrying capacity KC is constant,

that is KC = 5482, with initial conditions (E,L, F1, F2,M) = (0, 0, 0, 10, 10). As expected, when
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N0 < 1, the population decays till extinction, while, when N0 > 1, the population reaches rapidly

the positive equilibrium. However, in Cameroon, having a constant number of pods along the year

is not realistic. That’s why in the next simulations, we consider a more realistic case, with the same

parameters values.

(a) (b)

Figure 2.5: Time Evolution of mirid population when KC = 5482; (a)N0 < 1; (b)N0 > 1.

(a) (b)

Figure 2.6: Time Evolution of mirid population when KC is periodic and C = 5; (a) N0 < 1;

(b) N0 > 1.

In Figs. 2.6 and 2.7, page 57, we illustrate the previous results when the carrying capacity KC

is periodic and alternative resource is C = 100. In the case where N0 > 1, the dynamic of mirids

follows the dynamic of pods, as expected. However, the size of the population seems to be large.

More alternative resource is important, more the size of the populations seems to be large. A way

to control mirid’s population may be to reduce alternative resource in the plots. However, it is not

realistic since agroforestery favour the culture of many things in the same plot at the same time.
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In the continuation of our work, we will build a new mathematical model in order to have a better

dynamic of mirid’s population.

(a) (b)

Figure 2.7: Time Evolution of mirid population when KC is periodic and C = 100; (a)

N0 < 1; (b) N0 > 1.

2.2 A model with delays

In the previous section, we studied the time evolution of mirid population as if the transition

to one stage of development to another is immediate. Biologically, this is not correct: let us return

on the biological life cycle of S. singularis given in Fig. 2.8, page 58. In fact, each individual needs

to stay a certain amount of time in each compartment to complete its stage, in particular in the

egg, nymph and non-mature female stages: there exists τ1 days between egg-laying and appearing of

new nymphs; τ2 days between nymphs and emergence to adults. In addition, female needs τ3 days to

become mature before being able to lay eggs. In this section, we will take into account some of these

previous times leading to time-delayed model with delays.

Eggs Nymphs Adults
τ1 = 15 days τ2 = 25 days

τ3 = 10 days

Figure 2.8: Life cycle of S. singularis

Doctorate Thesis 58



2.2 A model with delays

Now, it is possible to take into account different biological facts. In particular, based on the

literature, we know that after deposition, eggs need (in mean) τ1 = 15 days to hatch and enter the

nymphs compartment. b always represents the mean daily number of eggs laid by an adult female.

τ2 = 25 days represent the required time for nymphs to achieve their development and become adults.

So only a proportion e−τ2 µL of Nymphs will survive and become adults, . Thus νE e−τ2 µLE(t − τ2)

represents the transition rate from eggs to adults, after τ2 days in the Nymphs compartment. The term

r e−τ3 µA represents the proportion of immature adults that will deposit eggs, after τ3 of maturation.

Altogether, we obtain the following "two-delays" model:
dE

dt
= r b e−τ3µA A(t− τ3)

(
1− E

KC

)
− (νE + µE)E,

dA

dt
= νE e

−τ2µL E(t− τ2)− µAA
(2.11)

where initial conditions ϕ ∈ C([−τ ; 0],R2) with τ = max(τ2, τ3). C([−τ ; 0],R2) denote C([−τ ; 0],R2)

the Banach space of continuous functions mapping the interval [−τ ; 0] into R2 with the topology of

uniform convergence; i.e. for ϕ ∈ C([−τ ; 0],R2), the norm of ϕ is defined as ‖ϕ‖ = sup−τ≤θ≤0 |ϕ(θ)|

where |.| is a norm of R2. A = F1 + F2 +M and this is why the sex ratio r enters the E equation in

Eq. (2.11).

System (2.11) can be rewritten as follows:
dx1
dt

= αx2(t− τ3)
(

1− x1
KC

)
− βx1,

dx2
dt

= γ x1(t− τ2)− δx2,
(2.12)

where

α = r b e−τ3 µA , β = νE + µE , γ = νE e
−τ2 µL , δ = µA.

Theorem 2.5. The right-hand side of system (2.12) is continuous and Lipschitzian in x. Thus,

according to the standard theory of Delay Differential Equations [78], system (2.12) admits a unique

solution for each continuous initial condition ϕ ∈ C([−τ ; 0],R2) where τ = max(τ2, τ3).

Theorem 2.6. The domain

D =

{
x ∈ R2

+/x1 ≤ KC , x2 ≤
γKC

δ

}
is positively invariant for the model (2.12).

System (2.12) can be rewritten as follows

x′(t) = f(x(t), x(t− τ3), x(t− τ2)) = f(x, Y ), (2.13)
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where Y = (x(t− τ3), x(t− τ2)). Following [66], it is important to notice that system (2.10) without

delays reduces to a cooperative irreducible system. In fact the delayed system is cooperative too.

Indeed, according to [66, 67], we can show that f verifies the quasimonotone condition, defined as

follows in [66, 67]

φ, ψ ∈ D, φ ≤ ψ and φi(0) = ψi(0) implies fi(φ) ≤ fi(ψ). (2.14)

In fact, it suffices to use Theorem 4.5 [67], page 308, i.e. to show that f is cooperative to deduce that

(2.14) holds for f , that is

∂fi
∂xj

(x, Y ) ≥ 0, for i 6= j, (2.15)

∂fi

∂ykj
(x, Y ) ≥ 0, for all i, j, k. (2.16)

Obviously, since the non-delayed model is cooperative, condition (2.15) is verified. Let us now check

condition (2.16):

∂f1
∂y11

(x, Y ) = 0,
∂f1
∂y12

(x, Y ) = α(1− x1
KC

) ≥ 0, (2.17)

∂f2
∂y21

(x, Y ) = γ > 0,
∂f2
∂y22

(x, Y ) = 0. (2.18)

Since the previous conditions are verified we deduce that f is quasi-monotone, which implies that

if the initial condition is positive (with at most one zero component), then the solution x is still

non-negative, i.e. x(t) ≥ 0.

Similarly, using the fact that the initial condition φ ∈ D, we have x1 ≤ KC , and x2 ≤
γKC

δ
, for

t ∈ [−τ, 0]. Using these inequalities in (2.12), we infer that this is still true when t ∈ [0, τ ]. Iterating

this reasoning, we finally deduce that x(t) ∈ D for all t ≥ 0.

Proposition 2.2. A direct computation shows that system (2.12) admits two equilibria: the trivial

ones, 0 = (0, 0), and

x∗ =

((
1− βδ

αγ

)
KC ,

γ

δ

(
1− βδ

αγ

)
KC

)
=

((
1− 1

R

)
KC ,

γ

δ

(
1− 1

R

)
KC

)
,

when R > 1 where

R =
αγ

βδ
=
r b νE e

−τ2µL−τ3µA

µA (νE + µE)
. (2.19)

R represents the basic offspring number for the delayed model (2.12).

Note that

R =
αγ

βδ
=
r b νE e

−τ2µE−τ3µA

µA (νE + µE)
< N =

r b νE νL νF
µA (νE + µE) (νL + µL) (νF + µA)

.
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Thus, for some parameters values, we may have N > 1 and R < 1; the delayed model is more realistic

than the non-delayed model.

There is no need to study the stability/instability of the equilibria. Indeed, according to [66]

(Chapter 5), there is a nice property pointed out about cooperative irreducible time-delay systems:

the asymptotic stability of each equilibrium is preserved for the delay differential system (2.10),

whatever the values taken by the delays. In particular, when R ≤ 1 (R > 1), all orbits are attracted

by 0 (x∗). In other words, to study the long term behaviour of cooperative time-delay systems it

suffices to study the cooperative systems without delay(s).

This result implies that the use of delays does not change the long-time behaviour of the time-

dependent system (2.10). However, when the system is non-autonomous and periodic, its behaviour

may be different in the transient period from the non-delayed non-autonomous periodic system as it

is showed in the forthcoming simulations (see Fig. 2.11, page 64), and Fig.2.12, page 65).

Remark 2.1. The previous time-delayed system is considered with fixed delays. A possible extension,

for future work would be to consider time varying delays, τi(t), since it seems obvious to consider

that the developmental time in each stage may change according to environmental parameters, like

temperature, rainfall.... Finally, distributed delays could be considered. Unfortunately for both cases,

we do not have data.

2.2.1 Sensitivity analysis

Finally, like for the non-delayed model, it is interesting to provide a global sensitivity analysis at

different time T = 100 and T = 500: see Fig. 2.9, page 62.

Clearly, the parameters µL, and µA are the most sensitive parameters, and the delays play mainly

a role in the transient phase (T = 100) and no more at equilibrium, contrary to the carrying capacity

KC , even if this parameter is far less sensitive than in the previous non-delayed model. This clearly

shows the importance of estimating efficiently these parameters in different environmental or semi-

field conditions. It also very interesting to compare the sensitivity analysis between two models that

are supposed to model the same system.

2.2.2 Numerical simulation

Now, we illustrate all the different stability cases, i.e. when R < 1 and R > 1. The time-delayed

Model is solved using Matlab and the dde23 function. In Table 2.4, page 56 we summarize the

parameters values used in the next simulations but we attribute the new values of parameter µL.
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2.2 A model with delays

Figure 2.9: E-Fast Sensitivity analysis of the Time-Delay Model

Then, the values of parameters for those simulations are consigned in Table 2.5, page 63.

We now derive numerical simulations with KC = 5482 constant and KC periodic, like in the

previous section. We choose as initial conditions (E(0), A(0)) = (0, 50).

In Fig. 2.10, page 64, we illustrate the previous results when the carrying capacity KC is constant.

When R < 1, mirids population decays till extinction and when R > 1, mirids population converge

to a positive equilibrium.

As expected, when t goes to infinity, the time-delayed model with constant parameters responds

exactly like the non-delayed model, except that the threshold parameters is not exactly the same.

When R < 1 (> 1), the system converges to the trivial (positive) equilibrium. In fact, with the same

parameters, the deterministic model may converge to the positive equilibrium, while the time-delay

model converges to the trivial equilibrium.

Figs. 2.11, page 64 and 2.12, page 65 represent the time evolution of mirids with KC periodic and

for different values for C, namely C = 5 and C = 100. When R ≤ 1, mirid population decays rapidly

till extinction, whatever the values taken by C. In contrary, when R > 1, mirid population converges
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Table 2.5: Values of constant parameters for the time-delay model

Parameters Case R < 1 Case R > 1 Source

b 3.28 3.28 Estimated

τ2 25 25 Estimated

τ3 10 10 Estimated

µA 0.1 0.07 Estimated

r 0.58 0.58 [11]

µL 0.1 0.03 Estimated

νE 1/15 1/15 Estimated

µE 0.001 0.001 Estimated

R 0.566 6.28 Equation (2.19)

to a periodic solution, as expected, but with different amplitudes related ted to C, indicating the

importance of alternative resources in the maintenance and the size of the population. The simulations

seem to be in good agreement with field observations. It seems also to be obvious that the removal of

alternative resources should be part of control strategies to lower the impact of the mirids. Compared

to the time-delayed model, the non-delayed model overestimates the population. Thus, even if from

the mathematical point of view the long term behaviour is the same, the time-delayed model provides

better estimate of the population size along the year than the non-delayed model. We would like to

emphasize that our study was very difficult because of the lack of population data. Many parameters

values were estimated using raw data obtained in the field by Babin, in 2008, in Cameroon. We

use these data to estimate several parameters like mortality of eggs, nymphs and adults (µE , µL

and µA), fecundity of adults female (b), the mean duration of immature females stage (1/νF ) and

the mean necessary time for development of eggs. For some parameters (the sex-ratio r, the mean

duration of egg stage (1/νE) and the mean duration of nymph stage (1/νL)), we used data from [30]

because it was the last experiment on S. singularis life cycle, realized in Cameroon. The most difficult

data to obtain was the daily evolution of pods number in the plot. Using data from [73] and also

based on our knowledge about the mean pods density per hectare, we construct our periodic function

KC(t) which represent the daily appearance of pods and cherelle in the plot. However, mirids also

feed and lay eggs on young shoots that lead to important damage able to cause the destruction of

the tree over the years. It will be important to take into account this aspect and model the daily

appearance of young shoots in the plot by a function (S(t) for example). Then, it will be relevant

to know the mirid frequency of feeding on host plants to have a good idea about the parameter C
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(a) (b)

Figure 2.10: Time evolution of the Eggs and Adult Compartments for the time-delay model

with constant parameters, KC = 5482, with: (a) R < 1, (b) R > 1

(a) (b)

Figure 2.11: Time evolution of the Eggs and Adult Compartments for the time-delay model

with constant parameters, KC periodic, such that R < 1, with: (a) C = 5 (b)

C = 100.

because the time-evolution of mirids also depends on it considering that if C is large, the level of

mirid population increase. In our numerical simulations, we attributed to this parameter two values

C = 5 and C = 100. According to these results, we suggest that it will be important to have several

experiences in the field: to better estimate the daily appearance on pods and shoots in the plot, to

have a good idea about the parameters of development of mirids and also to better estimate the

parameter C.
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Figure 2.12: Time evolution of the Eggs and Adult Compartments for the time-delay model

with constant parameters, KC periodic, such that R > 1, with: (a) C = 5 (b)

C = 100.

2.3 Application to control strategies

Understanding the population dynamic of S. singularis is crucial for monitoring, forecasting and,

then, controlling this pest population. Recent work in Ghana indicates (using the visual hand-height

assessment method) that mirid populations (predominately nymphs) began to increase rapidly in

April with an initial peak in May, followed by a rapid build-up in June [20]. In Cameroon, mirid

/population is low on cacao from February to March. From June to July, the populations start to

grow more or less rapidly depending on external conditions like weather and fruits production on

the trees. The peak of the population appears between September and November when the pods are

almost mature [30].

Even if the chemical control remains inevitable in many agrosystems, cultural methods, varietal

characters of tolerance to insects, action of auxiliaries entomophages and entomopathogenic agents,

as well as the prospects offered by mediators chemicals are to be taken into account to reduce the

dependency of the pesticide culture.

Several methods are developed in order to control mirid population among which cultural man-

agement, varietal management, chemical management and semio-chemical management:

• Cultural management, based on managing the system structure and composition to create

unfavourable conditions for the development of mirids populations. All agronomic practices

entering into the conduct of culture are concerned: sowing, associated crops, the density of

populations, weeding, control of plant growth and fertilization.
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• Varietal management, which consists in replacing the cacao varieties traditionally cultivated

with more resistant and/or tolerant varieties to mirid attacks.

• Chemical management, based on chemical insecticide used. This is the most widespread and

efficient strategy to control mirid population in Cameroon. The chemical insecticides are applied

twice to three times a year [9] (see also the CIRAD report published for cocoa producers.)

• Semio-chemical management which consists of using synthetic sexual pheromone traps [26]

which increases adult mortality (trapping), and prevents male insects finding females and mat-

ing (mating-disruption), and thus reduces the fecundity of female.

• last but not least, as showed in the previous simulations, a reduction of mirids alternative host

(resources), i.e. decrease C, is also essential to have an efficient control.

In Cameroon context, chemical management is the main way to control mirids population. In the

following section, using the precedent delayed model, we will show the impact of chemical applications

on the level of mirid population. We will successively the case of one, two and three applications per

year (as recommended by CIRAD).

2.3.1 Chemical control

In Cameroon, mirids populations are mainly controlled by chemical insecticides. Three treatments

are recommended per year: in June/July and August/September (propagation of mirids population);

in November/December [79]. We will consider the impact of one treatment, two treatments and,

finally three treatments. We will make a comparative study of treatments applied in systems with

cacao only, C = 5, and in agroforestry systems composed of cacao and associated trees that could be

secondary resource for mirids, C = 100.

According to the expert’s knowledge and field observations, the insecticide has a decaying death

rate over 8 weeks, that is summarized in Table 2.6: .

Table 2.6: Time dependent death-rate of chemical treatment

Time (in days) after the release 1 3 8 16 24 32 40 48 56 60

Insecticide death rate 1 1 0.9 0.2 0.1 0.05 0.025 0.01 0 0

Using cubic Hermite spline, we obtain a polynomial interpolation (Daily estimation of efficiency

of treatment) given in Fig. 2.13, page 67. Figure 2.13, page 67 represents the daily estimation of pods

number in the plot.

Doctorate Thesis 66



2.3 Application to control strategies

Figure 2.13: Efficiency of chemical treatment in the plot.

Remark 2.2. Synthetic insecticides like λ-cyhalothrine and Imidacloprid have a long residual effect,

but it depends on several environmental factors, like rainfall. That is why Table 2.6 provides only a

feedback from field experts according to the locations in Cameroon where these treatments have been

studied and are already used.

We start our numerical simulations at the end of June, a period where the number of pods is

increasing in the plot. We treat the plot respectively one, two, or three time(s) per year, as rec-

ommended to Cacao producers. We compare the efficacy between each treatment. The periods of

treatment are given as follows:

• Treatment One: with only one application per year

(beginning of) July (t = 395, 760, 1125, 1490, 1855).

• Treatment Two: with two applications per year

July (t = 395, 760, 1125, 1490, 1855) and September (t = 457, 822, 1187, 1552, 1917) (see [?

], page 20).

• Treatments Three: with three applications per year

July (t = 395, 760, 1125, 1490, 1855), September (t = 457, 822, 1187, 1552, 1917), and Novem-

ber (t = 518, 883, 1248, 1613, 1978) (see [? ], page 20).

It is worth to mention that the periodicity of the two last treatments coïncides with the duration

of the chemical treatment after spreading. In Figs. 2.14, page 68, Fig. 2.15, page 68, and Fig. 2.16,page
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69, we present the results obtained with the different treatments in two cases: C = 5 and C = 100.

The case C = 5 represents a full cacao crops, while C = 100 may represent a cacao crop in an

agro-forestry system, where additional resources (host trees) are available for mirids.

We show that 2 treatments are sufficient (more than 90% reduction of the population) when C

is small. An additional (third) treatment is particularly recommended when C is large, i.e. C = 100.

These results are relevant with real observations in different type of plots, at least in Cameroon.

Figure 2.14: Time evolution of Mirids using only one treatment in the plot per year: (a)

C = 5, (b) C = 100.

Figure 2.15: Time evolution of Mirids using two treatments per year in the plot: (a) C = 5,

(b) C = 100.

Numerical simulations proves that more alternative resource is great, more the mirid population
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Figure 2.16: Time evolution of Mirids using three treatments per year in the plot: (a) C = 5,

(b) C = 100.

increase even if there is not pods (main resource) in the plot. In Cameroonian’s context where

cacaoculture is done in agroforesteries systems, it will be good or beneficial to improve the control in

these such systems.

Although chemical insecticides are very efficient to control mirids, their recurrent use is widely

questioned due to the immediate adverse effects that they cause in ecosystems via environmental

pollution (impact non targeted species), induce resistance in the mirid population, and to the toxic

effects on human health. In addition, these chemical products are very expensive. That is why, it could

be more advantageous to consider sustainable control strategies, like for instance, mating disruption

and trapping [26, 80].

2.3.2 Semio-chemical control

Mating disruption consists of introducing an artificial stimuli, like pheromones or para-pheromones,

to confuse individuals, and, thus, disrupt mate localization, leading to long-term reduction of the pop-

ulation. In our case, we roughly assume that this implies a decrease of the female fecundity. Thus,

for instance, if we reduce the daily female fecundity from 3.28 to 2, the mirid population decreases:

see Fig.2.17, page 70. Another way to control mirids is the use of traps. Traps increase the adult

mortality rate, µA. For instance, if we increase the mortality µA from 0.07 to 0.1, we observe a great

reduction of the level of mirid population (see the time evolution of mirids in Fig. 2.18, page 70).

According to the sensitivity analysis, the adult mortality µA is a sensitive parameter for the delayed

model such that any increase may have a strong negative impact on the population.
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Figure 2.17: Time evolution of Mirids with control using mating disruption: (a) C = 5, (b)

C = 100.

Figure 2.18: Time evolution of Mirids with control using trapping: (a) C = 5, (b) C = 100.

In general, combining the two previous methods of control (mating disruption and trapping),

improve the previous results (see Fig. 2.19, page 71). This combination allows to reach a low level of

population, right after the first year.

2.3.3 Comparative study between chemical control and semio-chemical

control

We summarize in Table 2.7, page 71 the impact of each treatment in the reduction of the wild
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Figure 2.19: Time evolution of Mirids with control combining trapping and mating disruption;

(a) C = 5, (b) C = 100.

population.

Table 2.7: Efficacy of each treatment - Percentage of reduction of the wild population

Treatment 1 Treatment 2 Treatment 3

C = 5 74.8% 92.9% 97.8%

C = 100 58.7% 84.8% 94.1%

.

We summarize in table Table 2.8, page 71, the efficiency of each control methods. According to

the given results, it seems possible to have a very efficient control of mirids without using chemical

control. Clearly the combination of Mating and Trapping gives the best results whatever the values

taken by C. This is in good agreement with recent field experiments [80]. .

Table 2.8: Efficacy of Trapping, Matting, and Trapping-Mating - Percentage of reduction of

the wild population

Mating Trapping Trapping& Mating

C = 5 70.5% 85.5% 96.5%

C = 100 49.4% 71.0% 90.1%

In this chapter, we studied the dynamics of a cocoa pest, mirids. From the best of our knowledge it

is the first time that mathematical models are developed to study mirid pest. We first build a generic
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stage-structured ODE model to simulate the dynamic of the pest population considering the resource

(available cocoa pods and additional tree hosts) as constant or as a periodic function. Our model

enters the family of cooperative system, which facilitates its study. Thus, we show that there exists

a threshold parameters, N0, also called the basic offspring number, that summarizes the dynamics

of the system: when it is less than one, then the mirid population decreases till extinction; when it

is greater than one, then mirids population persists. Then, based on the mirid’s development stages

and times, we also develop a cooperative delay model with two delays. We derive a theoretical study

and estimate the related basic offspring number, R. We illustrate the theoretical results through

numerical simulations. We show that the outputs of the delayed system are more realistic than the

non-delayed ODE model. We also highlighted that the presence of additional hosts can help the

capsid population to maintain when pods are not available. Last but not least, for both models, we

derive a sensitivity analysis that shows that the carrying capacity and the mortality rates are the

most sensitive parameters.

In the previous simulations, we showed that a biological control strategy (using Mating and

Trapping) can be a very good alternative to the use of insecticides. Last but not least, if it is possible,

the reduction of alternative hosts in the plots is also an additional way to improve the efficacy of

both controls.

Thus in the following chapter, we will develop a generic mirid model which take into account the

semio-chemical control using mating-disruption and trapping.
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3
Miridae control using sex-pheromones,

trapping. Modeling, analysis and

simulations.

The focus of this chapter is to study a mathematical model to get a better understanding on the

dynamics of the mirid population under mating disruption and trapping. Based on [4] and [81], we

built a generic mathematical delayed model of mirid population, modelling mating and trapping in

order to study the effort required in terms of traps or sex-pheromone, to reduce the population size

below harmful level. We obtain a piecewise smooth (PWS) systems of delayed differential equations.

We analyse this model and provide numerical simulations to highlight the theoretical results. This

chapter has been submitted for publication at the revue "Nonlinear analysis: Application to real

world".

In fact mirids are responsible of several damages on cocoa in Africa especially in Cameroon. Their

presence leads to the enormous losses of production difficult to estimate, but can reach 30 − 40%

of potential production. Mirids are very harmful and lead to the destruction of the plot over the

time. They also have a capacity to develop resistance on treatments and to adapt to wide range

of hosts and/or climate conditions. However, pest management is essential to prevent devastating

impact on economy, food security, social life, health and biodiversity. Nowadays, in Cameroon, it

is proved that chemical control is the best ways to control mirid population. However, although

chemical insecticides are very efficient to control mirids, their recurrent use is widely questioned due

to the immediate adverse effects on the environment such as reduction the mirid natural enemies and

production that they cause in ecosystems via environmental pollution (impact non targeted species),

induce resistance on the mirid population, and to the toxic effects on human health. In addition,

these chemical products are very expensive.

In the previous chapter, we built and study several models (with and without delays) of mirids
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population and also several control strategies, including chemical treatment, mating disruption and

trapping. We showed that the use of three applications of chemical treatment is equivalent to the

combination of mating disruption and trapping. These two methods are less expensive and less toxic

than chemical management and respect specific ecological and toxicological environmentally friendly

requirements. In this paper, we will model more specifically the use of sex pheromones to trap males

and thus disturb matings, in order to eliminate or decay the population. In Cameroon, we used

different blends of the two components hexyl (R)-3-((E)-2- butenoyloxy)-butyrate and hexyl (R)-

3-hydroxybutyrate) of the S. singularis female sex pheromone for tests. Traps used are delta or

rectangular white-coloured traps, made out of recycled polyethylene and cardboard. In the two years

experiment, conducted by [26], a total of 361 adults of S. singularis (359 males and two females) were

caught. The highest numbers of mirids were found in traps with pheromone blends that combined a

monoester and a diester, compared with traps with the diester or the mono-ester individually and

control traps with no pheromone. Rectangular traps also caught significantly more mirids compared

with delta traps. Finally, in a recent work [80], the authors studied the impact of pheromone trap

density (per ha) for mass trapping cacao mirids. It is clearly stated that this is a Male Annihilation

technique, with the objective of reducing the male population in order to lower the mirid population

under an economical threshold.

3.1 A sex-structured model of mirid population

In this section, we consider a generic delayed model to describe the dynamics of S. singularis. The

flow diagram is represented in Fig. 3.2, page 76. Based on biological and behavioural assumptions,

we consider two main developments stages: eggs (E) and adults (females F and A and male M).

Indeed, after being laid, the eggs need, on average, τ1 = 15 days to become nymphs. These nymphs

need τ2 = 25 days to complete the nymph’s development and become adult males or females. After

emergence, sexual immature female mate with males (attracted by sex pheromones released by the

females) and then they need approximately τ3 = 10 days before being able to deposit eggs (in fact

this is the time needed for the appearance of mature eggs in the ovarioles [82]). This is summarized

in Fig. 3.1, page 75.

We denote by e−τ2 µL the proportion of nymphs respectively which survive the nymph stage.

After mating, F becomes mated females A that need an additional period of maturation, τ3, in order

to lay eggs [82]. However, only a proportion, e−τ3 µA of A females will deposit eggs. Thus, we have

four compartments for our delayed model: E which represent egg’s compartment, F which represent
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females which need mating to lay eggs; A which represent females after mating andM which represent

the males.

Females release pheromone in order to attract males for mating. The mating between males and

females is modelled as in [80]: as long as the male density is such that γM ≥ F , then all Females F

will be inseminated and move to the compartment A, at rate νF . In contrary, if, for any reason, the

male density is scarce, i.e. γM ≤ F then the number of females F that will move to the compartment

A is related to the number of Males,M . The other parts of the compartmental model follow the model

developed in [4].

The biological parameters are described as follows: r is the sex ratio; b is the mean number of eggs

laid by an adult female mirid per day that have emerged as nymphs, KC is the maximal carrying

capacity related to the mean daily number of pods per area (ha), µE , µM , µF and µA represents

respectively the eggs, male, females daily mortality rate, νE is the transition rate from the egg to the

next stage; 1/(νE + µE) is the mean time a mirid stays in the egg stage (measured in days); νF is

the transition rate from the sex-immature female stage to mature female stage.

As already explained in [4], the non linear term r b F2 (1− E/KC) is related to a skip-oviposition

behaviour. Indeed, according to expert’s knowledge, mirids (S. singularis) are able to select their

breeding sites according to their level of occupation.

Eggs Nymphs Adults
τ1 = 15 days τ2 = 25 days

τ3 = 10 days

Figure 3.1: Life cycle of S. singularis

According to the diagram given in Fig. 3.2, we derive the delay differential system (3.1):

Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)
− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(
γM(t)

F (t)
, 1

)
F (t)− µF F (t),

Ȧ(t) = νF min

(
γM(t)

F (t)
, 1

)
F (t)− µAA(t),

Ṁ(t) = (1− r) νE e−τ2 µL E(t− τ2)− µM M(t).

(3.1)

Parameters of model (3.1) are recapitulated in Table 3.1.
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E F

M

A

min

(
νF

γ M

F
, 1

)
r νE

(1− r)νE

b

(
1− E

KC

)

µE µA

µM

µA

Figure 3.2: Sahlbergella singularis control model using mating disruption and trapping.

3.2 Control using mating disruption and trapping

In order to maintain a low level a mirid population, we consider a control using sex pheromone

traps. The objective is to perturb the mating but also to reduce the number of males in order to reduce

the overall population. More precisely, we take into account two aspects for the control. The first

consists of disturbing the mating between males and females to reduce the fertilisation opportunities,

which in turn, reduces the number of offspring. This is done using traps that are releasing a female

pheromone lure to which males are attracted. This leads to a reduction in the number of males

available for mating near the females, and decreases the opportunity for fertilisation. The efficiency

of mating disruption depends on the strength of the lure or on the number of traps in an area. The

second aspect of the control is the trapping potential of the trap. We assume that the lure traps also

contain an insecticide which can kill the captured insects.

In order to take in account the effect of the lures, we consider the approach proposed by Barclay

and Van den Driessche ([83, 84]). That is, the strength of the lure is represented as the quantity of

pheromones released by an equivalent number of wild females. Thus, in the model the effect of the

lure corresponds to the attraction of YP additional females. In such a setting, the total number of

"females" attracting males is F + Fp [83]. Then, males have a probability
F

F + Fp
to be attracted to

wild females and a probability
Fp

F + Fp
to be attracted to the pheromone traps. Let γ be the number

of females that can be inseminated by a single male, then the transfer rate from F to A does not

exceed νF
γM

F + Fp
. When νF

γM

F + Fp
> 1, the population is in male abundance state and the transfer
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Table 3.1: Parameters of model (2.1).

Parameters Biological significance Unit

b Mean number of eggs laid by a mature female female−1days−1

r sex ratio

K Maximal carrying capacity related to the mean

daily number of pods per ha

1/νL Duration of the development of nymphs days

1/νF Time necessary for an immature female

to become mature days

µL Mortality of nymphs days−1

µA Mortality of adults females days−1

µM Mortality of adults males days−1

µF Mortality of immature females days−1

µE Mortality of eggs days−1

1/νE Time necessary for an egg to become nymph days

γ The number of females that can be inseminated

by a single male

rate is νF and when νF
γM

F + Fp
< 1, the population is in a male scarcity state and the transfer rate

is νF
γM

F + Fp
. Altogether, the transfer rate is min

(
νF

γM

F + Fp
, 1

)
.

Parameter α represents the maximum capture rate by trapping, the ratio
Fp

F + Fp
represents the

attractiveness of the traps. The new flow diagram is represented in Fig. 3.3, page 78. According to

the flow diagram, and taking into account the life cycle of S. singularis, we obtain a new mating

disruption and trapping control model is given by model (3.2).



Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)
− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(
γM(t)

F (t) + Fp
, 1

)
F (t)− µF F (t),

Ȧ(t) = νF min

(
γM(t)

F (t) + Fp
, 1

)
F (t)− µAA(t),

Ṁ(t) = (1− r) νE e−τ2 µL E(t− τ2)−
(
µM + α

Fp
F (t) + Fp

)
M(t).

(3.2)

Model (3.2), like model (3.1), enters the family of piece-wise dynamical systems with delay differential
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E F

M

A
min

(
νF

γM
F+Fp

, 1
)

r νE

(1− r)νE

b

(
1− E

KC

)

µE µA

µA + α
Fp

F + Fp

µA

Figure 3.3: Sahlbergella singularis control model using mating disruption and trapping.

equations (shortly, PWS-DDE) (See Chapter 1, Section 1.3). The switching manifold is defined as

follows ∑
:=
{
x ∈ R4

+, F + Fp = γM
}

Model (3.1) can be rewritten in the form:

dx

dt
= f(x) :=

 f1(x, xτ2 , xτ3) if F + Fp ≤ γM

f2(x, xτ2 , xτ3) if F + Fp ≥ γM
(3.3)

where

x = (E,F,A,M)t

,

f1(x, xτ2 , xτ3) =



b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− (νF + µF )F (t)

νF F (t)− µAA(t)

(1− r) νE e−τ2 µL E(t− τ2)−
(
µA + α

Fp
F (t) + Fp

)
M(t)


(3.4)

and

f2(x, xτ2 , xτ3) =



b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νF

γM(t)

F (t) + Fp
F (t)− µF F (t)

νF
γM(t)

F (t) + Fp
F (t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(
µA + α

Fp
F (t) + Fp

)
M(t)


(3.5)
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When τ2 = τ3 = 0, system (3.3) is exactly the same system studied in [81]. We will use the related

results in our study.

The aim of this chapter is to investigate the existence of equilibria of model (3.2) and their

asymptotic properties. Like in [81], the theoretical analysis of the model is carried out for two cases:

male abundance and male scarcity. These two cases are separated by the hyperplane
∑

. The analysis

of the two systems can be carried out independently on the orthant R4
+. The obtained results will be

merged into a general theorem for the system (3.2).

3.2.1 Case with Male abundance: γ M > F + Fp

In this case, the system can be written in the vector form

dx

dt
= f1(x, xτ ), (3.6)

with x = (E,F,A,M)T and f1 is given by the equation (3.4).

Theorem 3.1. The right hand side of system (3.6), f1, is continuous and Lipschitzian in x. Thus,

according to the standard theory of delay differential equations [78], for each continuous initial con-

dition ψ ∈ C([−τ, 0],R4), where τ = max(τ2, τ3), uniqueness and local existence of the solution are

guaranteed.

Note also, that, without delay, we recover the cooperative system studied in [81]. As explained

in [4], some cooperative systems with delay can enjoy some nice properties such that their long

term behaviour is similar to the cooperative system without delay. Let Y = (x(t − τ3), x(t − τ2)),

x = (E,F,A,M)T . System (3.6) verifies the, so-called, quasimonotone (QM) condition if

(a)
∂f1,i
∂xj

≥ 0 for i 6= j

(b)
∂f1,i

∂Y k
j

≥ 0 for all i, k.

Condition (a) is verified since the non delayed model is a cooperative system. Let us verify condition

(b):
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One has:
∂f1,1
∂Y 1

3

= b e−τ3 µF
(

1− E(t)

KC

)
≥ 0,

∂f1,1
∂Y 1

j

= 0 ∀ j = 1, 2, 4,
∂f1,1
∂Y 2

j

= 0 ∀ j = 1, 2, 3, 4

∂f1,2
∂Y 2

1

= r νE e
−τ2 µL ,

∂f1,2
∂Y 2

j

=
∂f1,2
∂Y 1

k

= 0 ∀ j = 2, 3, 4 ∀ k = 1, 2, 3, 4,

∂f1,3
∂Y 1

j

=
∂f1,3
∂Y 1

j

= 0, ∀ j = 1, 2, 3, 4

∂f1,4
∂Y 2

1

= (1− r) νE e−τ2 µL ≥ 0,
∂f1,4
∂Y 2

j

=
∂f1,4
∂Y 1

k

= 0 ∀ j ∈ {2, 3, 4} ∀ k ∈ {1, 2, 3, 4}.

Then the (QM) condition is verified. This implies that if the initial condition is non negative

(with at most one zero component) then the solution of system (6) is still non negative i.e x(t) ≥ 0.

Moreover, the (QM) condition guarantees the stability of each equilibrium of the non delayed system

is preserved for the delayed system. In other words, it suffices to study the following non delayed

system
dx

dt
= f1(x) (3.7)

to deduce the behaviour of the time delayed system (3.6). As already emphasized, system (3.7) has

already been studied in [81], using [85, 86].

Theorem 3.2. The basic offspring number for the model (3.6) is

R =
r b νE νF e

−τ2 µL e−τ3 µA

µA (νE + µE) (νF + µF )
(3.8)

and applying Theorem 9 [81] we deduce:

(i) The system (3.6) defines a positive dynamical system on R4
+.

(ii) Model (3.6) always has a trivial equilibrium 0 = (0, 0, 0, 0) which is globally asymptotically

stable when R ≤ 1.

(iii) If R > 1, model (3.6) has two equilibria: a trivial equilibrium 0 and a unique positive equilibrium

X∗ = (E∗, F ∗, A∗,M∗) where

E∗ =

(
1− 1

R

)
K, F ∗ =

r νE e
−τ2 µL

(µF + µF )
E∗, A∗ =

νF
µA

F ∗,

M∗ =
M0

µM + α
Fp

F ∗ + Fp

E∗ with M0 = (1− r) νE e−τ2 µL E∗.

Positive equilibrium is globally asymptotically stable if R > 1 on

R4
+ \ {0} = {x ∈ R4

+, E = F = A = M = 0}.

Doctorate Thesis 80



3.2 Control using mating disruption and trapping

Remark 3.1. When α = 0, we recover the positive equilibrium when no control occurs. It is important

to notice that the effect on the control only impact the value of the Male equilibrium.

The positive equilibrium X∗ is called a regular (virtual) equilibrium of model (3.6) if and only if

F ∗ + Fp < (>)γM∗ which is equivalent to Fp < F ∗p where

F ∗p =
1

α+ µM

(
γM0 − µM F ∗

)
=
νE e

−τ2 µL

µM + α

[
γ (1− r)− r µM

(νF + µF )

]
E∗ (3.9)

Therefore, we deduce that

• If Fp < F ∗p , positive equilibrium X∗ is a regular equilibrium of (3.6).

• If Fp > F ∗p , positive equilibrium X∗ is a virtual equilibrium of (3.6).

The threshold F ∗p determines the maximum level of control below which the control has essentially

no effect on an established mirid population. More precisely, as stated in the previous remark, the

effect of pheromone releases is only limited to the males compartment, all other compartments remain

at their natural equilibrium. Thus females will continue to deposit as many eggs (inside fruits) as

before the control.

Thus, thanks to the (QM) condition, and, using Theorem 3.2, we deduce the following results in

the DDE "male abundance" case:

Theorem 3.3. (i) The system (3.6) defines a positive dynamical system on R4
+.

(ii) System (3.6) always has one equilibrium, 0 = (0, 0, 0, 0), which is globally asymptotically stable

when R ≤ 1.

(iii) When R > 1, model (3.6) has an additional (unique) positive equilibrium X∗, which is globally

asymptotically stable on R4
+ \ {0}

The positive equilibrium is a regular equilibrium if Fp < F ∗p and it is a virtual equilibrium if

Fp > F ∗p .

Remark 3.2. As already highlighted for the non-delayed system, the threshold F ∗p determines the

maximum level of control below which the control has essentially no effect on an established pest

population for the delayed model.

3.2.2 Case with male scarcity: γ M < F + Fp

In this case, the system can be written in the vector form

dx

dt
= f2(x, xτ ), (3.10)
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with x = (E,F,A,M)T and f2 is given by the equation (3.5).

Theorem 3.4. : Existence and uniqueness of solutions

The right hand side of system (3.10) is continuous and Lipschitzian in x. Thus, according to the stan-

dard theory od Delay Differential Equations [78], system admits a unique solution for each continuous

initial condition ϕ ∈ C([−τ, 0],R2
+) where τ = max(τ2, τ3). The domain

Ω := {x ∈ R4 : E ≤ K, F <
r νE e

−τ2µL K

µF
, A ≤ (1− r) γ νF νE e−τ2µL K

µA µM
,

M ≤ (1− r) νE e−τ2µL K
µM

} (3.11)

is positively invariant for system (3.10).

Proof :

Let (t0, X0) = (E0, F 0, A0,M0) ∈ R+×R4
+) and ([t0, T [, X = (L,F1, F2,M)) be the maximal solution

of the delayed equation (3.10) with initial condition (t0, X0); T ∈]t0,+∞].

Let us prove that E(t) ≤ K for al t ≥ 0.

Let us suppose that there exists ε > 0 such that

t1 ≤ t1 + ε < T and L(t1 + ε) > K.

Let us define

t∗1 = inf{t ≥ t1, E(t) ≥ K} then E(t∗1) = K.

Thus,

E(t) = E(t∗1) + Ė(t∗1)(t− t∗1) + o(t− t∗1) and Ė(t∗1) = −(νL + µL)E(t∗1) < 0.

So, there exists ε1 > 0 such that

t∗1 ≤ t < t∗1 + ε1 and E(t∗1) < K.

This is absurd because t∗1 = inf{t ≥ t1, E(t) ≥ K}. Consequently, E(t) ≤ K for all t ≥ 0. Moreover,

we have:

Ḟ (t) = r νE e
−τ2µL E(t− τ2)−

νF γM(t)F (t)

F (t) + Fp
− µF F (t)

≤ r νE e−τ2µL E(t− τ2)− µF F (t)

Ȧ(t) =
νF γM(t)F (t)

F (t) + Fp
− µAA(t) ≤ νF γM(t)− µAA(t)

Ṁ(t) = (1− r)νEe−τ2µLE(t− τ2)−
(
µA + α

Fp
F (t) + Fp

)
M(t) (3.12)

≤ 1− r) νE e−τ2 µL E(t− τ2)− µM M(t).
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Solving Eq. (3.12), we have

F (t) ≤ r νE e
−τ2µL K

µF
; M(t) ≤ (1− r) νE e−τ2µL K

µM
; A(t) ≤ (1− r) νE νF γ e−τ2µL K

µA µM
(3.13)

The local existence and uniqueness of solutions follows from the standard DDE theory (since f is

Lipschitz, which is the minimum required). Further, system (3.10) is dissipative. This provides the

global existence of solutions on the interval [0,+∞).

2

Proposition 3.1. There exists a threshold F ∗∗p > 0 of Fp such that

• If Fp > F ∗∗p the only equilibrium os system (3.10) on R4
+ is 0.

• If 0 < Fp < F ∗∗p , system (3.10) has three equilibria on R4
+, 0 and two positive equilibria.

In addition, 0 is absolutely stable equilibrium.

Proof:

The proof follows the proof in [81], page 447. Setting the right-hand side of system (3.10) equal to

zero, and after some straightforward calculations, we get the following equation in E to solve:

ψ(E) := E ξ(E)φ(E) = η(Fp, E) (3.14)

where

ξ(E) = γ (1− r) e−τ2 µL νE νF e−τ3 µA b
(

1− E

K

)
− µA(α+ µM )(νE + µE), (3.15)

η(Fp, E) = µA µF µM (νE + µE) b e−τ3 µA
(

1− E

K

)
Fp (3.16)

and

φ(E) = b e−τ3 µA r νE e
−τ2 µL

(
1− E

K

)
− µA (νE + µE). (3.17)

Therefore, assuming that Eeq is a positive root of (3.14), the other components of the non trivial

equilibria of (3.10) are:

Feq =
φ(Eeq)

µF b e−τ3 µA
(

1− E

K

) Eeq (3.18)

Aeq =
(νE + µE)

b e−τ3 µA
(

1− E

K

) Eeq (3.19)

Meq =
(1− r) νE e−τ2 µL

µM + α
Fp

Feq + Fp

Eeq. (3.20)
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Further, to ensure Feq > 0, we need to have φ(Eeq) > 0, that is Eeq must satisfy the condition:

Eeq < K

(
1− µA (νE + µE)

r b νE e−τ2 µL e−τ3 µF

)
(3.21)

In fact, according to the definition of ψ(E), it is straightforward to check that psi admits two

real positive roots on [0, K],

E1 =

(
1− µA (νE + µE)

r b e−τ2 µL e−τ3 µA

)
K and E2 =

(
1− µA (νE + µE)(α+ µM )

γ (1− r) b νE νF e−τ2 µL e−τ3 µA

)
K

provided that

µA (νE + µE)

r b e−τ2 µL e−τ3 µA
< 1 and

µA (νE + µE)(α+ µM )

γ (1− r) b νE νF e−τ2 µL e−τ3 µA
< 1.

Thus, only the points of intersection between the straight line η(Fp, E) and the cubic ψ(E) that

belong to [0, min{E1, E2}] are intersect for us: see Fig 3.4, 84. We denote by F ∗∗p the value of Fp

Figure 3.4: Intersection between ψ(E) (in blue) and η(Fp, E) (in red) for three values of Fp

such that the line η(Fp, E) is tangent to the indicated section of the graph φ. Then, it is clear that

for Fp > F ∗∗p there is no intersection between η(Fp, E) and ψ (no positive equilibrium) while if

0 < Fp < F ∗∗p , there are two such points of intersection (2 positive equilibria).

Finally, straightforward calculations shows that trivial equilibrium 0 is an absolutely stable equi-

librium of system (3.10)

2
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3.2.3 Study of the bifurcation for the threshold F ∗p and F ∗∗p

Assume 0 < Fp < F ∗∗p . Let E(1)
eq and E(2)

eq , E
(1)
eq < E

(2)
eq be the roots of (3.14) when 0 < Fp < F ∗∗p

and denote the respective equilibria by X(1) and X(2). To show that any equilibrium of (3.10) is a

regular equilibrium of 3.1, we need to show that it belongs to the male scarcity region. Using the

previous relationships, it suffices to study the sign of Feq + Fp − γMeq.

In fact,

Feq + Fp − γMeq =
1

µM + α
Fp

Feq + Fp

(µM (Feq + Fp) + αFp − γ (1− r) νE e−τ2 µL Eeq)

Thus, studying the sign of Feq + Fp − γMeq is equivalent to study the sign of

Γ = µM Feq − γ (1− r) νE e−τ2 µL Eeq) + (α+ µM )Fp.

In fact we have

Γ =

µM φ(Eeq)

µF b e−τ3 µA
(

1− Eeq
K

) − γ (1− r) νE e−τ2 µL

 Eeq + (α+ µM )Fp

= r νE e
−τ2 µL

r µMµF − µM µA (νE + µE)

µF b e−τ3 µA
(

1− Eeq
K

) − γ (1− r)

 Eeq + (α+ µM )Fp

Using the inequality E(1)
eq < E

(2)
eq < E∗, we have:

Γ ≥ r νE e−τ2 µL

r µMµF − µM µA (νE + µE)

µF b e−τ3 µA
(

1− E∗

K

) − γ (1− r)

 Eeq + (α+ µM )Fp

= r νE e
−τ2 µL

(
r µM
µF

− µM µA (νE + µE)R
µF b e−τ3 µA

− γ (1− r)
)
Eeq + (α+ µM )Fp

= r νE e
−τ2 µL

(
r µM

νF + µF
− γ (1− r)

)
+ (α+ µM )Fp

Using (3.9), page 81, we deduce

(µM Feq − γ (1− r) νE e−τ2 µL Eeq) + (α+ µM )Fp =
(α+ µM )

E∗
(FpE

∗ − Eeq F ∗p ).

Since E(1)
eq < E

(2)
eq < E∗, then FpE∗−Eeq F ∗p > (Fp−F ∗p )Eeq. Using the fact that F ∗p < Fp, then

FpE
∗ −Eeq F ∗p > 0, such that Feq + Fp − γMeq > 0. Therefore, in this case, X(1) and X(2) are both

in the male scarcity region. Hence, they are also equilibria of (3.2).

If Fp < F ∗p and Eeq > E∗, considering the fact that for 0 < Fp < F ∗p , we have E(1)
eq < E∗ < E

(2)
eq

and using the same method as previously, we obtain Fp + Feq − γMeq < 0. Therefore, X(2) is not in
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the male scarcity region. Hence, it is not an equilibrium of (3.2). Taking into consideration the above

results regarding X(1) and X(2), we obtain the following theorem for the model (3.2).

Theorem 3.5. Let Fp > 0. The following holds for model (3.2):

(a) Trivial equilibrium 0 is an asymptotically stable equilibrium.

(b) If 0 < Fp < F ∗p , there are two positive equilibria X(1) and x∗, where x∗ is asymptotically stable.

• If F ∗p < Fp < F ∗∗p , there are two positive equilibria X(1) and X(2).

• If Fp > F ∗∗p , there is no positive equilibrium

3.2.4 Long term behaviour of system (3.2) when Fp > 0

The previous theorem shows us that the dynamics of the system may vary according to the level

of control. In particular, as long as 0 < Fp < F ∗p , the control has essentially no effect on an established

population. Even if F ∗p < Fp < F ∗∗p , the effect are negligible (on an established population). here, we

intend to derive results that may help us to define appropriate control strategies.

Due to the term −νF
γM(t)

F (t) + Fp
F (t) in the equation for the F compartment, the right hand side

of (3.10) is not quasi-monotone. By removing this non-linear term, we obtain an upper DDE system,

that admits a unique positive equilibrium x that is an upper solution of (3.10). Since f2(x, y) is non

decreasing in y, according to Theorem 3.6 in [87], we deduce x ≤ x.

Thus, following [81], we consider the following upper system, as an auxiliary system of sys-

tem (3.10):
dx

dt
= g2(x, xτ ), (3.22)

with x = (E,F,A,M)T and

g2(x) =



b e−τ3 µA A(t− τ3)
(

1− E(t)

K

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− µF F (t)

νF
γM(t)

F (t) + Fp
F (t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(
µA + α

Fp
F (t) + Fp

)
M(t)


(3.23)

System (3.22) is cooperative time delayed system: The QM condition is verified. Hence, the

stability of each equilibrium for the non delayed model is preserved for the delayed system. It suffices

to study the non delayed system
dx

dt
= g(x) (3.24)
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to deduce the long term behaviour of the time delayed system.

Let us first set

RM =
(1− r) b νE γ nuF e−τ2 µL e−τ3 µA

µA µM (νE + µE)
(3.25)

While R, the basic offspring number, represents the number of offsprings produced by one single

female during its mean lifespan, RM represents the number of offsprings produced by one male

during its mean lifespan.

We have the following result:

Theorem 3.6. 1. The non delayed system (3.24) defines a positive dynamical system on R4
+.

2. There exists a threshold value F ∗∗p such that

(i) if Fp > F
∗∗
p , trivial equilibrium 0 is GAS on R4

+

(ii) If Fp = F
∗∗
p and RM > 1, then system (3.24) has two equilibria: 0 and one positive

equilibrium X̄1. The basin of attraction of trivial equilibrium contains the set {x ∈ R4
+ :

0 ≤ x ≤ X̄1}. The basin of attraction of X̄1 contains the set {x ∈ R4
+ : x ≥ X̄1, E ≤ K}.

• if 0 < Fp < F
∗∗
p and RM > 1, then system (3.24)

The first assertion is obvious. Setting the first, second, and fourth terms in (3.23) equal to zero,

we derive

F̄ =
r νE e

−τ2µL

µF
Ē, Ā =

(νE + µE)

b e−τ3 µA
(

1− Ē

K

)Ē, M̄ =
((1− r) νE e−τ2 µL) (F̄ + Fp)

µM F̄ + (µM + α)Fp
Ē

Solving the third equation equal to zero and substituting the expressions for F̄ , Ā and M̄ above, we

obtain an equation for Ē in the form

Eφ(E) = η(Fp, E), (3.26)

with

η(Fp, E) = µMrνEe
−τ2µLE + µF (α+ µM )FP

φ(E) = (µF + νF )(1− r)νEe−τ2µLγR
(

1− E

K

)
(3.27)

In other words, if (3.26) admits roots, they are intersection between a parabola and a straight line:

see Fig. 3.5, page 88.

In fact, solving (3.26) is equivalent to solve the following quadratic equation

R(1− r)νEe−τ2µL (νF + µF ) γ

K
E2 + νEe

−τ2µL (µMr −R(1− r) (νF + µF ) γ)E+

+µF (α+ µM )Fp = 0.
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Figure 3.5: Intersections between the graphs of Eφ(E) (in blue) and η(Fp, E) (in red) for

different values of Fp. The black dots represent the intersection points on the interval [0, K].

Then, we estimate the discriminant

∆ =
(
νEe

−τ2µL (µMr −R(1− r) (νF + µF ) γ)
)2 − 4

R(1− r)νEe−τ2µL (νF + µF ) γ

K
µF (α+ µM )Fp

or equivalently

∆ =
(
νEe

−τ2µLµMr (1−RM )
)2 − 4

R(1− r)νEe−τ2µL (νF + µF ) γ

K
µF (α+ µM )Fp

Clearly, if Fp > F
∗∗
p , with

F
∗∗
p =

(νEe
−τ2µLµMr (1−RM ))

2

4R(1− r) (νF + µF ) γµF (α+ µM )
K,

then ∆ < 0, and no positive real roots exist. Otherwise, when F < F
∗∗
p , two real roots exist. If in

addition, we assume that

RM > 1,

then, we obtain the following positive real roots Ē1 < Ē2:

Ē1 =
1

2

(
νEe

−τ2µLR(1− r) (νF + µF ) γ − µMr −
√

∆

R(1− r)νEe−τ2µL (νF + µF ) γ

)
K

Ē2 =
1

2

(
νEe

−τ2µLR(1− r) (νF + µF ) γ − µMr +
√

∆

R(1− r)νEe−τ2µL (νF + µF ) γ

)
K.

Using (3.26) and (3.27), it is straightforward to show that Ē1 < Ē2 < K. Assume Fp > F
∗∗
p , then
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setting

ȳq =



K

r νE e
−τ2µL

µF
q

γνF (1− r) νE e−τ2 µL
µM

(1− r) νE e−τ2 µL
µM


,

where q is any real number, such that q ≥ K. We check that g2(ȳq, ȳq) ≤ 0. Thus, by Theorem 7 [81],

0 is GAS on ΩK =
⋃
q≥K [0, ȳq], which implies that 0 is GAS on R4

+ since ΩK is an absorbing set.

2

Using the previous results, and assuming R > 1 and RM > 1, we can deduce the following results

for the delayed system (3.22)

Theorem 3.7. There exists a threshold value F ∗∗p such that

(i) if Fp > F
∗∗
p , 0 is the only equilibrium for the system (3.22)

(ii) if 0 < Fp < F
∗∗
p , R > 1, and R >

µMr

(1− r) (νF + µF ) γ
, we have Ē1, Ē2 ∈ [0,K].the system has

three equilibria: trivial equilibrium 0 and two positive equilibria X̄1 and X̄2 such that X̄1 < X̄2.

Since model (3.22) is a delayed cooperative model, we can deduce from [81] the following result

about the stability of equilibria:

Theorem 3.8. Let Fp > 0. Then, the following holds for the model (3.22):

• If 0 < Fp ≤ F
∗∗
p , then the basin of attraction of the trivial equilibrium contains {x ∈ R4

+ : x ≤

X̄1,Fp}.

• If Fp ≥ F
∗∗
p , then trivial equilibrium is GAS on R4

+.

Finally we can deduce the following GAS result for the PWS-DDE system (3.1).

Theorem 3.9. Let Fp > 0 then the following hold for the model (2.1):

• If 0 < Fp ≤ F
∗∗
p , then the basin of attraction of 0 contains {x ∈ R4

+ : x ≤ X̄1,Fp}.

• If Fp ≥ F
∗∗
p , then 0 is GAS on R4

+.

In fact, the last theorem is very useful to derive a long term control strategy. Indeed, if the control

stops, the system will automatically recover. In the other hand, using only long time massive releases

of pheromones is not a sustainable option. However, we know that once the non-massive control starts,

i.e. 0 < Fp < F ∗∗p , the system become bistable, such that locally, at least in {x ∈ R4
+ : x ≤ X̄1,Fp}, 0

is stable and attractive, for a given (small) amount of pheromones, Fp.
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3.2 Control using mating disruption and trapping

3.2.5 Control strategy related to the level of infestation of Mirids

The previous theoretical results highlighted two strategies

• When the mirid population is small or at an invading stage (not established in the field,

but starting to settle), thanks to the size of the plot, a limited number of traps (small of

pheromones) can be sufficient to control it. In other words, knowing the the population size,

it could be possible to estimate Fp such that the mirid population belongs to the basin of

attraction of 0 for a certain amount of Pheromone, 0 < Fp < F
∗∗
P .

• When the population is large, at equilibrium for instance, then, to reduce the population, we

need to increase the number of traps in order to release enough pheromones/Fake females to use

the GAS property of 0 when FP > F
∗∗
P . This is what we called the "maximal treatment". Thus,

according to the GAS of 0, there exists t∗ > 0, such that for t > t∗, the mirid population become

small enough such that a small amount of pheromones is sufficient to maintain the population

under a given threshold, X(1), the lowest equilibrium for a given (low preferably) amount of

pheromones F (1)
p << F

∗∗
p . This is what we called the "minimal treatment". Altogether, when

the population is large, the best way to control it is to consider a maximal treatment, followed

by a minimal treatment.

To summarize the "maximal-minimal treatment" strategy: for a given amount of pheromones,

Fp > F
∗∗
P , it suffices to estimates the time, t∗, necessary to enter [0, X(1[ for a given amount

F
(1)
p << F

∗∗
P . Since X(1) cannot be estimated analytically, we can only estimate the minimum time,

t∗, numerically. This is what is illustrated in the next subsection.

3.2.6 Applications - Numerical simulations

In this section, we will prove numerically the theoretical results obtained. The values used for the

next simulations are given in Table 3.2, page 90 (taken from [4]), leading to the case R = 4.5547 > 1

and RM = 7.4211.

b r K 1/νL 1/νF µL µA µM µF µE 1/νE α γ

3.28 0.58 5000 25 10 0.01 0.08 0.08 0.08 0.001 15 0.1 1

Table 3.2: Values used for simulations of model (2.1) with R > 1 [4] and RM > 1

According to the theoretical part and the parameters values, for a maximal control, we need

to release more than F
∗∗
p ≈ 1162 fake females (per ha), in other words for any value of Fp larger
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3.2 Control using mating disruption and trapping

than F ∗∗p , the system will converge to 0 for t sufficiently large. However, as explained above, we are

not interested in a permanent maximal treatment, but we only want to reach (rapidly) a level of

population where the damages can be acceptable and where the population can be controlled with a

small amount of pheromones. That is why we choose F (1)
p to estimate X(1) and thus target the box

[0, X(1)−ε], for a given 0 < ε << 1. In the sequel, we initiate the simulations at the wild equilibrium.

We choose Fp = 100 such that we estimate numerically X(1) = (95.1836, 35.8291, 4.4550, 13.5112)

(the red dot in Fig. 3.7, page 92). Hence, in the next simulations, for a given Fp > F
∗∗
p , we estimate

the minimum time necessary to enter [0, X(1)−ε]. In Figs. 3.6 and 3.7, page 91, we present an example

Figure 3.6: Mating disruption and Trapping Control with, first Fp = 2000, then Fp = 100 once

the system has reach the basin of attraction of 0 for Fp = 100.

of the control strategy described above: first, we consider a large amount of pheromones traps, such

that Fp = 2000, to use the GAS property of 0, in order to reach the box [0, X(1)[, where X(1) is

estimated based on the targeted level of control, i.e. F (1)
p = 100. Numerically, we estimate that 440

days of maximum treatment are necessary to enter the basin [0, X(1)[. Then, for all t > 440 days,

we remove some pheromones traps in order to reach the value F (1)
p = 100: the system continues to

converge to 0, thanks to the LAS property of 0 in [0, X(1)[, when F (1)
p = 100.

Note, that the previous results correspond to the case when male trapping occurs, α = 0.1. If

we assume that there is no trapping, i.e. α = 0, then the MT1 ≈ 3576, and also the minimal time

necessary to enter the basin [0, X(1)[ increases to 536 days but we have to use the double amount

of pheromones (fake females) MT = 4000. That is why the combination of mating disruption and
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3.2 Control using mating disruption and trapping

trapping is of utmost importance, not only to minimize the duration of the treatment but also to

minimize the release of pheromones.

Fig. 3.7(a) shows different phase of the control: a first phase, where only the male population is

reducing, then the eggs population, before the whole system (E + F +A+M) starts to decay. This

shows that in constant environmental conditions (constant parameters) the duration of the control

is crucial. In Fig. 3.7(b), the green box represents the basin [0, X(1)]: the red trajectory represents

the trajectory when the control is defined by Fp = 100. Of course, in that case, since 0 is LAS in

[0, X(1)], the system continues to decay (slowly) to 0.

Figure 3.7: Control with first Fp = 2000, then Fp = 100 once the system has reach the basin

of attraction of 0 for Fp = 100.

Of course, the time necessary to enter the basin [0, X(1)] depends on the initial maximum control,

the larger, the shorter the time needed. However, as showed in Fig. 3.8, page 93, it seems that choosing

Fp between 2000 and 4000 provides the more interesting results. However, the cost of pheromones

need to be taken into account in order to derive the best strategies. The previous strategy is based on

two given values for Fp. Other strategies based on the use of several values for Fp could be chosen in

order to reduce progressively the amount of pheromones and to use the LAS of 0 in the box [0, X
(1)
Fp

],

for a given Fp. However, from a practical point of view, reducing Fp, while convenient on the paper,

seems to be more difficult from a practical point of view.

Doctorate Thesis 92



3.3 About mating disruption strategy when the pods carrying capacity is
periodic

Figure 3.8: Time needed to enter the basin [0, X(1)] for a given Fp > F ∗∗p .

3.3 About mating disruption strategy when the pods car-

rying capacity is periodic

Like in [4], we have to consider that the mirid population dynamics is mainly related to the pres-

ence/absence of pods, but not only. Indeed, the cacao production in Cameroon is seasonal, which is

not the case, for instance, in Central America. Thus, in Cameroon, the pods carrying capacity, K,

is not constant but has to be approximated by a yearly periodic function. Last but not least, we

know that, in the absence of pods, mirids can maintain in the area using secondary host plants, like

Cola nitida, or Ceiba pentandra [1]. Thus finally, we consider the following pods carrying capacity

K(t) + C, where C > 0 is a given constant, equal to 100 [4], and K(t) is defined as in [4] (see Table

1.2, page 10).

In that case, the control strategy is rather different than in the constant coefficients case. Here,

knowing the inter-period (from March to June), when no cocoa pods are available, is rather crucial:

it seems obvious to start the control at the beginning of this period , i.e. in March, in order to use

the LAS property of model (3.3), when K(t) ≡ 0, to avoid the establishment of the mirid population

within the cocoa plantation when K(t) rises again (in July).
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3.3 About mating disruption strategy when the pods carrying capacity is
periodic

We thus consider the following non-autonomous periodic DDE-PWS system

dx

dt
= f(x, xτ , t) :=

 f1(x, xτ2 , xτ3 , t) if F + Fp ≤ γM

f2(x, xτ2 , xτ3 , t) if F + Fp ≥ γM
(3.28)

where x = (E,F,A,M)t,

f1,per(x, xτ , t) =



b e−τ3 µA A(t− τ3)
(

1− E(t)

C +K(t)

)
− (νE + µE)E(t)

r νE e
−τ2 µL , E(t− τ2)− (νF + µF )F (t)

νF F (t)− µAA(t)

(1− r) νE e−τ2 µL E(t− τ2)−
(
µM + α

Fp
F (t) + Fp

)
M(t)


(3.29)

and

f2,per(x, xτ , t) =



b e−τ3 µA A(t− τ3)
(

1− E(t)

C +K(t)

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νFγ

M(t)

F (t) + Fp
F (t)− µF F (t)

νF γ
F (t)

F (t) + Fp
M(t)− µAA(t)

1− r) νE e−τ2 µL E(t− τ2)−
(
µM + α

Fp
F (t) + Fp

)
M(t)


(3.30)

The methodology to study the periodic PWS-DDE (3.28) follows the methodology of the previous

sections, thanks to the fact that 0 < C ≤ K(t) ≤ Kmax +C. Indeed, for i = 1, 2, it is straightforward

to check that

fi,C(x, xτ ) ≤ fi,per(x, xτ , t) ≤ fi,C+Kmax(x, xτ ), for all t > 0. (3.31)

1. In the male abundance case, f1,C and f1,C+Kmax are delayed system that verify the (QM)

condition. Thus, using (3.31), and applying Theorem 5.1.1 [66], we deduce that

x1,C(t) ≤ x1,per(t) ≤ x1,C+Kmax(t), for all t > 0.

where x1,per is the solution of the periodic male abundance equation, x1,C and x1,C+Kmax

are respectively solutions of the autonomous male abundance system (3.6), with K ≡ C and

K ≡ C +Kmax respectively. Thus, using Theorem 3.3, page 81, we can deduce

Theorem 3.10. • Assume R0 < 1, then x1,per converges to 0.

• Assume R0 > 1, then the male abundance system is permanent, i.e. x1,per > 0 for all

t > 0.

where R0 is defined in (3.8).
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periodic

Remark 3.3. Following [4], when R0 > 1, it is possible to show that the male abundance

system converges to a unique periodic solution, x∗per(t), defined as follows:

E∗per(t) =

(
1− 1

R

)
(C +K(t)) , F ∗per(t) =

r νE e
−τ2 µL

µF + νF
E∗per(t),

A∗per(t) =
νF
µA

F ∗per(t), M∗per(t) =
(1− r) νE e−τ2 µL

µM + α
Fp

F ∗per(t) + Fp

E∗per(t).

2. The male scarcity case is rather more difficult to study. However, we can use the second in-

equality (3.31): f2,per(t, x, y) is nondecreasing in y; thus, according to Theorem 3.6 in [87], page

29, we deduce that x2,per ≤ x2,C+Kmax , such that the methodology developed in section 3.2.2,

page 81, can be applied to the system

dx

dt
= f2,C+Kmax(x, xτ ).

Hence, we deduce that there exists F ∗∗p,C+Kmax
> 0 such that 0 is GAS when Fp > F

∗∗
p,C+Kmax

>

0, i.e. x2,C+Kmax converges to 0 and so is x2,per as t goes to +∞.

However, for a practical application, this result is not interesting since the amount of pheromones

to release can be very large.

Another possibility is to focus on the case where K ≡ 0 from March to June, such that we

know that periodic system reduces to the autonomous system with carrying capacity C, in other

word: fi,per(x, xτ ) = fi,C(x, xτ ). In that case, we are able to estimate F ∗∗p,C . When C = 100, then

F
∗∗
p,C ≈ 23.23

3.3.1 Periodic case - Simulations

As explained above we focus on the period from March to June, i.e, we adapt the starting time

of our control: either a the end of Period or at the beginning. Then, we consider two starting times:

t = 390 (beginning of July), see Fig. 3.10; and t = 300 (beginning of March), see Fig. 3.11. When

choosing Fp = 20 as the targeted amount of pheromones, we are looking at the time t∗ necessary to

enter [0, X(1)[, with X(1) = (27.11, 10.20, 1.70, 4.04).

As illustrated in Fig. 3.10, starting lately within the no-production period, at t = 390, will have

an effect during the production period, with a population fourth times less than without control, and

it is only after 470 days of Fp = 100 treatment that the trajectory enter the box [0, X(1)[ and then

continues to decay to zero with Fp = 20.

In contrary, starting the treatment early, at t = 300, within the no-production period, the pop-

ulation decreases rapidly, and in 217 days, the trajectory enter the box [0, X(1)[ and then continues
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periodic

Figure 3.9: Time evolution of the periodic system, without control

to decay to zero with Fp = 20. In addition, the population has become so small, that even when the

pods are back, the mirid population stay within [0, X(1)[, event with a small amount of pheromones,

Fp = 20.

Figure 3.10: Control with first Fp = 100, then Fp = 20 once the system has reach the basin

of attraction of 0 (dotted lines) for a control starting at tstart = 390: (a) trajectories of the

system (b) Zoom of the trajectory near [0, X(1)[.

In fact, the periodic case, for mating disruption and trapping control, is the most favorable case,
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3.4 Conclusion

Figure 3.11: Control with first Fp = 100, then Fp = 20 once the system has reach the basin

of attraction of 0 (dotted lines) for a control starting at tstart = 300: (a) trajectories of the

system (b) Zoom of the trajectory near [0, X(1)[.

as we can use the no-production period, and thus when the mirid population is at its lowest, to be

very efficient, especially if the treatment starts early (beginning of March, for instance).

3.4 Conclusion

We have considered a mating disruption and trapping model to study the opportunity of using sex-

pheromones to control a mirid population. We obtain a PWS-DDE model, a kind of model that is

not so common in Mathematical Biology. Thanks to the previous works by some of the authors and a

suitable use of the Monotone System theory, we were able to provide theoretical results that helped

us to provide interesting strategies that could be used in the field.

Of course, this work provides only partial inside on this complex system. Using a temporal ap-

proach, we implicitly assume that mirids and pheromones are homogeneously distributed, which is

not the case in the field. A next step would be to take into account the spatial component, like in

[88]. Last, but not least, it is well known that mirids aggregate on some particular trees, such that

aggregation and dispersion processes should be taken into account, and also the impact of these be-

haviors in terms of the distribution and the density of the pheromone traps. This may require another

modeling approach, thanks to the fact that very few knowledge are available thanks to pheromone

spreading, mirid sensitivity to pheromone, etc.
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GENERAL CONCLUSION

This thesis focused on the mathematical modelling and simulation of the time evolution of miridae

in the plots in Cameroon with application to control. The main objective was to better estimate the

level of miridae in the plot. We propose the models based on the life-cycle of the mirids taking

into account the delays in the maturation processes at different stages of the life-cycle of the mirid.

The main contribution of the work are found in chapter 2 and 3. These chapters are related to the

publication and the submission of the paper [4] and [89] respectively.

The chapter 1 is devoted to the literature review on cacao, miridae and interaction between cacao

and miridae. We present the main bug of cacao S. singularis, we described its life cycle, its biology

and ecology. After this, we present the main mathematical tools especially the theory of monotone

systems, the theory of delay differential equations and the theory of piecewise smooths systems which

help us for the analysis of our models.

The first contribution presented in Chapter 2 is a deterministic model to describe the time evo-

lution of miridae and its application to control. We first build a generic stage-structured cooperative

ODE model to simulate the dynamic of the pest population considering the resource (available cocoa

pods and additional tree hosts) as constant or as a periodic function. We also develop a cooperative

delay model with two delays. We also highlighted that the presence of additional hosts can help the

capsid population to maintain when resource (pods) are not available. We apply the control (bio-

logical, chemical and semio-chemical) to reduce the level of miridae in the plot. The main control

strategy is the use of insecticide, but since chemical products are very expensive and harmful for the

health of farmers, we propose a biological control. Through simulations, we showed that a biological

control strategy (using Mating disruption and Trapping) can be a very good alternative to the use of

insecticides. Last but not least, if it is possible, the reduction of alternative hosts in the plots is also

an additional way to improve the efficacy of both controls.

The second contribution of this work has been displayed in Chapter 3. We focus more specially

on one of te control methods studied in chapter 2. We develop a generic mirid model which take into

account the semio-chemical control using mating-disruption and trapping. We consider an additional

number of females named "fake females" to disturb the mating and accrue the male’s mortality.
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3.4 Conclusion

Models enter the theory of piecewise dynamical system. We studied the delayed model and we obtained

a good dynamic. We exhibit two levels of control F ∗p and F ∗∗p which corresponds to "minimal and

maximal treatment" respectively: this is the main result of this chapter. These two threshold are

indicators to better control Miridae. For an efficient control, it is likely to set up new experiments in

order to have many knowledge about pheromone spreading and mirid sensitivity to pheromone.

A possible extension of this work consists in explicitly taking into account the spatial dispersion

of Miridae in mathematical model. Two possible approaches can be done: a meta-population model

which takes into account the migration to one plot to another or the dispersion of Miridae modelled

using Partial Differential Equations (PDE). Another extension of this work consists in evaluation

of damages caused by mirids in terms of losses of production in mathematical model. An approach

consists in formulation of a mathematical model taking into account the time evolution of mirids

and the pods on different stages of development (cherelle, young pod and ripe pods). This study will

intend to improve te estimation of losses of production, to prevent and avoid the destruction of the

plants. The main objective is to develop mathematical models that answer the following questions:

What is the real impact of the interaction between Miridae and cacao in the plot in Cameroon? After

how long, a plot left under the influence of mirids can be completely destroyed?.

All these preliminary results obtained in this thesis encourage us to go further, that is to set up

new experiments in the field in order to obtain additional data, the appearance of shoots on cacao

which can be consider as an additional resource of mirids (in this thesis, we only consider pods as

main resource of mirids). In the third chapter in this thesis, we consider an additional number of

females namely "fake females". This number is evaluated by the quantity of sex pheromone. We

suggest to set up new experiments in the field in order to estimate the quantity of sex pheromone

which is equivalent to one female. So that, with the two thresholds obtained in the third chapter (F ∗p

and F ∗∗p ), an effective control can be applied in the plot.
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A
Appendix

We introduces some of the key mathematical theories and methodologies relevant to the thesis

(the material presented in this chapter are mostly standard definitions and results obtained from the

literature).

A.1 Equilibria of Linear and Non-linear Systems

Consider the system of ordinary differential equation (ODEs) below (where a dot represents

differentiation with respect to time
(
d
dt

)
):

ẋ = f(x, t, µ), x ∈ U ⊂ Rn, t ∈ R and µ ∈ V ⊂ Rp, (A.1)

where, U and V are open sets in Rn and Rp, respectively, and µ is a parameter. The right-hand side

function, f(x, t, µ), of equation (32) is called a vector field. ODEs which explicitly depend on time

are called non-autonomous, while those that are independent of time are called autonomous.

Consider the following general autonomous system:

ẋ = f(x), x ∈ Ω ⊂ Rn. (A.2)

Definition A.1. [90]: An equilibrium solution of the system (33) is given by x = x̄ ∈ Rn; where

f(x̄) = 0. The vector or point x̄ is called an equilibrium point.

Theorem A.1. (Fundamental Existence-Uniqueness Theorem [91]): Let Ω be an open subset of Rn

containing x0 and assume that f ∈ C1(Ω). Then, there exists an a > 0 such that the initial value

problem (IVP):

ẋ = f(x), x(0) = x0. (A.3)

has a unique solution x(t) on the interval [−a, a]

Theorem A.2. [92]: Let z(t) satisfy

z
′ ≤ az + b, z(0) = z0,
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A.2 Stability of solutions and bifurcations

for constants a, b. Then for t ≥ 0

z(t) ≤ eatz0 +
b

a

(
eat − 1

)
, a 6= 0,

and

z(t) ≤ z0 + bt, a = 0.

Definition A.2. [92]: System (33) is said to define a dynamical system on a set Ω ⊂ Rn if, for every

x0 ∈ Ω there exists a unique solution of (33) which is defined for all t ∈ [0,∞) and remaining in Ω

for all t ∈ [0,∞)

Definition A.3. [92]: The Jacobian matrix of f at the equilibrium point x̄ denoted by Df(x̄), is the

matrix of partial derivatives of f evaluated at x̄. It is given by:

J(x̄) =


∂f1
∂x1

(x̄) · · · ∂f1
∂xn

(x̄)
...

...
...

∂fn
∂x1

(x̄) · · · ∂fn
∂xn

(x̄)


Definition A.4. [92]: Let x = x̄ be an equilibrium solution of (33). Then x̄ is called hyperbolic if

none of the eigenvalues of Df(x̄) has zero real part. An equilibrium point that is not hyperbolic is

called non-hyperbolic.

A.2 Stability of solutions and bifurcations

Definition A.5. (Evolution Semi-group) : For an autonomous dynamical systems on Ω, we define

its evolution semi-group operator (solution map or flow map) to be the map Φt : Ω −→ Ω such that

the solution of system (33) u(t) = Φtu0 or Φt(u0) = x(t;u0). That is, Φt maps the initial data u0 to

the solution at time t.

The terminology semi-group for the evolution operator Φ is motivated by the following properties

(a) For any s, t > 0, Φ(t+ s) = ΦtΦs = ΦsΦt,

(b) For t = 0, Φ(0) = I, the identity operator.

Definition A.6. [90]: An equilibrium point x̄ of the autonomous dynamical systems (33) is said to

be

(1.) Stable if for any ε > 0 there exists δ = δ(ε) > 0 such that if x(0) ∈ Ω(x̄, δ) then x(t) ∈ ω(x̄, ε)

for all t ≥ 0. Equivalently, for all x(0) ∈ Rn if ||x(0)− x̄|| ≤ δ then ||x(t)− x̄|| ≤ ε for all t ≥ 0.
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(2.) Locally attractive if ||x(t)− x̄|| −→ 0 as t −→∞ for all ||x(0)− x̄|| sufficiently small.

(3.) Locally asymptotically stable if x̄ is stable and locally attractive. For an asymptotically stable

equilibrium point x̄ of system (33), the set of all initial data x(0) = x0 such that

lim
t−→∞

Φt(x0) = x̄

is said to be the basin of attraction of x̄.

(4.) Globally attractive if (2) holds for any x(0) ∈ Ω i.e. the basin of attraction of x̄ is Ω.

(5.) Globally asymptotically stable if (1) and (4) hold.

(6.) Unstable if it is not stable, i.e., (1) fails to hold.

Interpretation of stability is given below

Remark A.1. : An equilibrium point x̄ is stable if the autonomous dynamical systems can be forced

to remain in any neighbourhood of x̄ by appropriate choice of initial condition. It is asymptotically

stable if, in addition, any solution starting near the steady state approaches it as t −→ ∞. Thus,

the basin of attraction of an asymptotically stable equilibrium point includes a neighbourhood of the

equilibrium.

Theorem A.3. [90]: Consider the differential equation

ẋ = Ax, (A.4)

where A is a n× n matrix and dot, represents differentiation with respect to time. Let A have eigen-

values {λi}li=1, l ≤ n. Then

(i) The origin is asymptotically stable if and only if Re(λi) < 0 for all i.

(ii) If Re(λi) ≤ 0 for all i, and those eigenvalues with Re(λi) = 0 are non-defective (λ has multiplicity

k ≤ 1, k = 0, 1, ...), then the origin is stable.

Definitions .6 cannot easily be used in practice. Fortunately, the method of linearisation permits

to reduce the analysis to the user-friendly Theorem .13. The simplest natural way to proceed would

have been to replace system (33) by its linearised system . The starting point is the following:

The linearised form of (33), near x̄, is given by

u
′

= Ju, (A.5)

where f is assumed to be of class C1.
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Theorem A.4. (Hartman-Grobman Theorem [92]): Assume that f in (33) is of class C1 and con-

sider a hyperbolic equilibrium point x̄ of the dynamical system defined by (33). Then, there ex-

ist δ > 0, a neighbourhood N ⊂ Rn of the origin and a homeomorphism h from the ball B =

{x ∈ Rn : ||x− x̄|| < δ} onto N such that

u(t) := h(x(t)) solves (36) if and only if x(t) solves system (33).

A direct implication of the Hartman-Grobman Theorem is that an orbit structure near a hyper-

bolic equilibrium solution is (topologically) qualitatively-equivalent to the orbit structure given by

the associated linearised (around the equilibrium) dynamical system.

A.2.1 Basic offspring number

In ecology, there exists a threshold from an underlying concept in determining the spread or

a decline of a population of bugs. The basic offspring number N0 is the average number of adults

females generate by one adult female during all its lifespan. Its equivalent in epidemiology is the basic

reproduction number, denoted by R0, which is the average number of secondary cases generated by a

single infected individual during its entire period of infectiousness when introduced into a completely

susceptible population [93, 94].

The threshold quantity N0 typically determine whether pest population persist in the plot (N0 >

1) or decay still to extinction (N0 ≤ 1): this is the stability of trivial equilibrium. If N0 > 1, the

usual situation is that there is a positive equilibrium which is asymptotically stable. This exchange

of stability between the trivial and positive equilibrium occurs at N0 = 1, and is referred as forward

bifurcation (or transcritical bifurcation).

For simple models, the basic reproduction number or the basic offspring number is the product of

the infection rate and the duration of infectiousness. But usually the next generation operator method

is used to computeN0 and permits to establish the local asymptotic stability of the associated disease-

free equilibrium. The method is described below using the formulation and notations in [95].

Let x = (x1, ..., xn), be the number of individuals in each compartment with each xi ≥ 0 and the

first m compartments correspond to infected individuals. Define Xs to be the set of all disease-free

states, that is,

Xs = {x ≥ 0 | xi = 0, i = 1, ...,m} .

The disease transmission model consists of nonnegative initial conditions together with the following

system of equations:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, ..., n, (A.6)
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where Vi(x) = V−i (x)− V+i (x), Fi(x) be the rate of appearance of new infections in compartment i,

V+i (x) be the rate of transfer of individuals into compartment i by all other means and V−i (x) be the

rate of transfer of individuals out of compartment i. The functions are differentiable at least twice

and satisfy assumptions (A1)-(A5) described below

(A1) if x ≥ 0, then Fi, V+i (x), V−i (x) ≥ 0 for i = 1, ..., n.

(A2) if xi = 0 then V+i = 0. In particular, if x ∈ Xs then V+i = 0 for i = 1, ...,m.

(A3) Fi = 0 if i > m.

(A4) if x ∈ Xs then Fi(x) = 0 and V+i (x) = 0 for i = 1, ...,m.

(A5) If F(x) = 0 is set to zero, then all eigenvalues ofDf(x0) have negative real parts, whereDf(x0)

is the derivative evaluated at the Disease Free Equilibrium, x0 (i.e., the Jacobian matrix).

Let A be a square matrix with non-positive off-diagonal and non-negative diagonal entries as

shown below

A =


a11 −a12 −a13 · · ·

−a21 a22 −a23 · · ·

−a31 −a32 a33 · · ·
...

...
...

. . .


where the aij are nonnegative. Furthermore, let A be expressed as

A = sI −B, s > 0, B ≥ 0. (A.7)

Definition A.7. (M-Matrix [96]): Any matrix A of the form (38) for which s ≥ ρ(B), (where ρ(B)

is the spectral radius of B), is called an M-matrix.

Lemma A.1. (Van den Driessche and Watmough [95]) If x0 is a DFE of (37) and fi(x) satisfies

(A1)-(A5), then the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =

 F 0

0 0

 and DV(x0) =

 V 0

J3 J4

 ,
where F and V are the m × m matrices defined by F =

[
∂Fi
∂xj

(x0)

]
and V =

[
∂Vi
∂xj

(x0)

]
with

1 ≤ i, j ≤ m. Further, F is non-negative, V is a non-singular M-matrix and J3, J4 are matrices

associated with the transition terms of the model, and all eigenvalues of J4 have positive real part.

The following theorem states that R0 is a threshold quantity that govern the persistence or

effective control (elimination of the disease)
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Theorem A.5. (Van den Driessche and Watmough [95]): Consider the disease transmission model

given by (37) with f(x) satisfying conditions (A1)-(A5). If x0 is a DFE of the model, then x0 is

locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is defined by R0 = ρ(FV −1)

The formulation above has been extended by Wang and Zhao [97] to compute the reproduction

ratio for disease transmission models in a periodic environment.

Local stability stated by Theorem .15 mean that a sufficiently small flow of infectious individuals

will not generate outbreak of the disease unless R0 > 1.

A.2.2 Bifurcation

A dynamical system typically involves a number of parameter values, in addition to the state vari-

ables. Bifurcation is a point in parameter space where equilibrium appear, disappear, or change

stability [98]. Typically, in epidemic modeling, bifurcation occurs when the associated reproduction

number equals unity. There are different types of bifurcations, such as saddle-node, transcritical,

pitchfork, Hopf bifurcations and backward. The centre manifold theorem (in particular, Theorem 4.1

in [98] reproduced below for convenience) is used to establish the presence of backward or fordward

bifurcation phenomenon.

Theorem A.6. (Castillo-Chavez and Song [98]): Consider the following general system of ordinary

differential equations with a parameter Φ:

dz

dt
= f(x,Φ) , f : Rn × R and f ∈ C2(Rn,R), (A.8)

where 0 is an equilibrium point of the system (that is, f(0,Φ) ≡ 0 for all Φ) and assume

1. A = Dzf(0, 0) =
(
∂fi
∂zj

(0, 0)
)
is the linearization matrix of system (39) around the equilibrium

0 with Φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A have

negative real parts;

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the zero

eigenvalue ). Let fk be the kth component of f and

a =

n∑
k,i,j=1

vkuiuj
∂2fk
∂xi∂xj

(0, 0) and b =

n∑
k,i=1

vkui
∂2fk
∂xi∂Φ

(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is totally determined by

the signs of a and b.
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(1) a > 0, b > 0. When Φ < 0 with |Φ| � 1, 0 is locally asymptotically stable and there exists a

positive unstable equilibrium; when 0 < Φ� 1, 0 is unstable and there exists a negative, locally

asymptotically stable equilibrium;

(2) a < 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable; when 0 < Φ � 1, 0, is locally

asymptotically stable equilibrium, and there exists a positive unstable equilibrium;

(3) a > 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable and there exists a locally asymptotically

stable negative equilibrium; when 0 < Φ � 1, 0 is stable, and a positive unstable equilibrium

appears;

(4) a < 0, b > 0. When Φ changes from negative to positive, 0 changes its stability from stable to

unstable. Correspondingly a negative unstable equilibrium becomes positive and locally asymp-

totically stable.

In particular, a backward bifurcation occurs at Φ = 0 when condition (1) holds.

A.3 Irreducible Cooperative Systems

Consider the autonomous system (33), where f is continuously differentiable on an open subset

D ⊂ Rn. Let Φt(x) denote the solution of system (33) with initial value x.

Definition A.8. ([99]): f is said to be of Type K in D if for each i; fi(a) ≤ fi(b) for any two points

a, b ∈ D satisfying a ≤ b.

The Type K Condition can easily be identified from the sign structure of the Jacobian matrix of

the system (33). The following definition describes this structure.

Definition A.9. ([99]): D is p-convex if tx + (1 − t)y ∈ D for all t ∈ [0, 1] whenever x, y ∈ D and

x ≤ y

It is clear that if D is a convex set, then it is also p-convex. Furthermore, if D is a p-convex subset

of Rn and
∂fi
∂xj
≥ 0, i 6= j, x ∈ D, (A.9)

then f is of type K in D.

Definition A.10. ([99]): System (33) is said to be a cooperative system if (40) holds on the p-convex

domain D: It is called a competitive system on D if D is p-convex and the inequalities (40) are

reversed:
∂fi
∂xj
≤ 0, i 6= j, x ∈ D. (A.10)
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Definition A.11. ([99]): An n × n matrix A = (ai,j) is irreducible if for every nonempty, proper

subset I of the set N = {1, 2, · · · , n}; there is an i ∈ I and j ∈ D \ I such that ai,j 6= 0.

Definition A.12. ([99]): System (33) is called irreducible in D if the Jacobian matrix of the system

(33) is an irreducible matrix for every x ∈ D.

Theorem A.7. : Suppose system (33) is irreducible and cooperative in D. Then

∂Φt

∂x
� 0, t > 0.

Furthermore, if x0, y0 ∈ D satisfy x0 < y0; t > 0 and if Φt(x0), Φt(y0) are defined, then

Φt(x0)� Φt(y0), t > 0.

A.4 Uniform persistence theory

Suppose X is a metric space with a metric d: Let P : X −→ X be a continuous map and X0 ⊂ X

is an open set. Define ∂X0 = X \ X0, and M∂ = {x ∈ ∂X0 : Pm(x) ∈ ∂X0,∀ ≥ 0}, which may be

empty.

Definition A.13. (Periodic Solution): A solution x(t) is said to be periodic if x(t + T ) = x(t) for

all t, for some T > 0.

Proposition A.1. (Properties of Poincaré Map)

1. P 0 := I, where I is the identity operator;

2. Pn+1 := P ◦ Pn

3. P−n−1 := P−1 ◦ P−n.

Definition A.14. ([100]): A bounded set A is said to attract a bounded set B in X if

lim sup
m−→∞,x∈B

d(Pm(x), A) = 0.

• A subset A ⊂ X is said to be an attractor for f if A is nonempty, compact and invariant

(P (A) = A), and A attracts some open neighborhood of itself.

• A global attractor for P : X −→ X is an attractor that attracts every point in X.

• For a nonempty invariant set M , the set W s(M) :=
{
x ∈ X : lim

m→∞
d(Pm(x), A) = 0

}
is called

the stable set of M .
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It should be recalled that a continuous mapping P : X −→ X is said to be point-dissipative if there is

a bounded set B0 in X such that B0 attracts each point in X.

Definition A.15. ([100]): P is said to be uniformly-persistent with respect to (X0, ∂X0) if there

exists an υ > 0 such that lim inf
m−→∞

d(Pm(x), ∂X0) ≥ υ for all x ∈ X0.

Definition A.16. ([100]): P is said to be weakly uniformly-persistent with respect to (X0, ∂X0) if

there exists an υ > 0 such that lim sup
m−→∞

d(Pm(x), ∂X0) ≥ υ for all x ∈ X0.

Theorem A.8. ([100]): Assume that

1. P (X0) ⊂ X0 and P has a global attractor A.

2. There exists a finite sequenceM = {M1,M2, ...,Mk} of disjoint, compact, and isolated invariant

sets in ∂X0 such that

• Ω(M∂) = ∪x∈M∂
ω(x) ⊂ ∪ki=1Mi;

•• no subset ofM forms a cycle in ∂X0;

• Mi is isolated in X;

• W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k

Then, there exists η > 0 such that lim inf
n→∞

d (Pn(x), ∂X0) ≥ η for all x ∈ X0.

Theorem A.9. ([100]): Let P : X −→ X be a continuous map with P (X0) ⊂ X0. Assume P has a

global attractor A. Then weak uniform-persistence implies uniform-persistence

Theorem A.10. ([100]): Let T (t) be an ω-periodic semiflow on X with T (t)(X0) ⊂ X0; for all t ≥ 0:

Assume that S = T (ω) satisfies the following:

1. S : X −→ X is dissipative;

2. S is compact.

Then, uniform-persistence of S with respect to (X0; ∂X0) implies that of T (t).

Theorem A.11. ([100]): Let S : X −→ X be a continuous map with S(X0) ⊂ X0. Assume

1. S : X −→ X is dissipative;

2. S is compact;

3. S is uniformly-persistent with respect to (X0, ∂X0).

Then, there exists a global attractor A0 for S in X0, and S has a coexistence state x0 ∈ A0.
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Cocoa mirid, Sahlbergella singularis, is one of the major pests of cocoa in West

Africa. It is responsible of several damages in plots. In this paper, we study the

dynamics of this pest. Based on biological and ecological partial knowledge, we

develop 2 cooperative mathematical models that aim to describe the time

dynamics of the cocoa mirids. We first develop a cooperative stage‐structured

model, derived some qualitative results, and a sensitivity analysis study in

order to determine the most important parameters. Assuming that all parame-

ters are or not periodic, we obtain conditions that allow the persistence or not

of the population. We highlight the influence of cocoa pods variation along the

year on the time evolution of the population. Then, we derive a 2‐stage cooper-

ative time‐delay model, with 2 delays, that takes into account the eggs' develop-

ment time and the females' maturation time. We illustrate our theoretical

results with some simulations and show that the delayed system provides the

best results compared with real observations. Finally, we focus on chemical

control that is commonly used in Cameroon and compare it to a new biological

control, mixing mating disrupting and trapping. We discuss the results and

provide future perspectives based on this work.

KEYWORDS

cocoa pest, delays, mathematical models, pest control, Sahlbergella singularis, simulation
1 | INTRODUCTION

Cacao is a cash crop mainly cultivated in African countries (Ivory Coast, Ghana, Nigeria, and Cameroon) that ensures
around 72% of the world production [ICCO 2016]. Cocoa (Theobroma cacao) is essential for the livelihood of millions of
small producers in Africa especially in Cameroon.1 African production of cocoa is seriously impacted by 2 important
diseases the Cocoa Swollen Shoot Virus (CSSV) and the black pod rot (up to 80%‐90% losses2) and by the damage caused
by 2 pests: Sahlbergella singularis and Distantiella theobroma known as mirid bugs or cacao capsids.3,4 These species,
which originate from the forests of central Africa, have very similar life histories and regularly live together in cacao‐
based agroforestry systems.5 In Cameroon, S. singularis is nowadays the most common and the most harmful species
for the production. Mirid bugs feed preferentially on Theobroma cacao, but other species like Cola nitida and Ceiba
Copyright © 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/mma 1
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pentandra are known to be alternative hosts when cacao resource is unavailable. The immature (5 instars) and adult
stages of these sucking insects used to feed on the sap of young semi‐lignified branches, on plant tissues by injecting
a digestive saliva, on buds and on fruits.6-9 Mirid damage on the pod is relatively superficial since the pods cortex is very
thick. In general, mirids attacks on the pods are characterized by black dots (feeding lesion) around the peduncle of
mature pods. Indeed, there is no obvious link between the intensity of feeding lesions on mature pods and an impact
on beans quality.10 Very few losses are noted at this stage. However, lesion caused to young fruit (less than 10 cm and
less than 2 months old), called cherelle, increase fruit abortion and impact directly the ongoing production.10 This
fruit stage is vulnerable to mirids attacks. Indeed, the most harmful damage that is also the less obvious to quantify
is the damage caused to cocoa vegetative growth parts. Those lesions prevent sap circulation favoring leaves fall and
branches death that is characteristic of mirids attacks. Extensive feeding by mirids on branches results in the degra-
dation of the canopy of discrete groups of trees, which can be up to 100 and are referred as mirid pockets. Mirid
pockets are generally located in the sunniest areas of plantations.8 The impact of mirids on cacao tree is a long‐term
impact as cacao is a perennial plant, which can produce for more than 20 years. Damage of mirid bugs on the cocoa
tree are cumulated over time and can lead to premature aging of plantations and to the rapid death of the most
severely damaged trees.6,11,12 Losses due to mirids are difficult to estimate but can reach 30% to 40% of potential
production13,14 depending on the system management strategy. In fact, mirids attacks are known to be the most
harmful in full sun plantations. In multi‐strata and highly diversified15-17 cacao‐based agroforestry system as the
one that is widespread in Cameroon, shade management is a relevant option to control mirid population.8 But shade
management is a long‐term process that is sometimes difficult to set up for the farmers given antagonistic effects on
black pod disease. Whatever the type of system considered, synthetic insecticides of the neonicotinoid family, such as λ‐
cyhalothrine and imidacloprid,3,18 are still themain input used to control these pests.19 Since 1970, the economic threshold
for phytosanitary intervention has been fixed at 0.7 mirids/tree in Cameroon8 and 0.6 mirids/tree in Ghana.20 These indi-
cators based on mirid populations are however difficult to evaluate regarding the ecology of the species. In fact, it is chal-
lenging to count mirids individuals (immatures and adults) on the field since they used to hide during the day to avoid
direct light. It is likely a relatively low level of mirid population can cause important damage in the plantation. Mirids
do not pullulate in the plantations even during the peak period. Due to controversial effects of chemical insecticide use,
alternative cocoa pest control methods have been developed including cultural management, varietal management,21 as
well as semio‐chemical management, using synthetic sexual pheromone traps,22 or the use of plant extracts as pesticides.3

Considering the difficulty to estimate mirid population and to obtain long‐term data on the field, the mathematical
approach appears as the most relevant option to forecast the efficiency of control strategy. In that sense, the aim of this
work is to develop some (generic) mathematical models of mirid population to better predict its time evolution in a plot
under different management strategies. A first compartmental model, with constant or periodic parameters, is developed
based on the mirid life cycle. We make some theoretical analysis, a sensitivity analysis and provide some numerical sim-
ulations. Then, we develop a second model, time‐delayed model, based on the previous ones, in order to better take into
account the developmental time at different stage. After a brief theoretical analysis, we provide some numerical simula-
tions without and with control efforts, and we discuss the results.

The paper is organized as follows. In Section 2, we formulate a first ODE model: for this model, we make a theoretical
study, a sensitivity analysis, and some numerical simulations. In Section 3, we formulate a delaymodel. After a brief study,
we do some numerical simulations, and we compare with the previous model without delay. In Section 4, we compare
chemical and biological controls and discuss their efficiency. Finally, in Section 5, we conclude and propose several exper-
imental and theoretical studies in order to improve our knowledge and extend our work.
2 | MIRIDS ODES MODELS

To build the models, we recall here what we know about the biology and ecology of Mirids. The life cycle of S.
singularis is composed of 3 stages: egg stage, nymph stage, and adult stage that develop mainly on pods either on
shoots. The eggs are individually inserted into the host plant tissues23 principally in the cortex of pods and sometimes
under the bark of young shoots.24 The incubation period of eggs is on average 15 days with a minimum of 9 days25 and
a maximum of 21 days26 before reaching nymph stage. Mirid S. singularis has a very long life cycle (eggs to adults). It is
on average 40 days with a minimum of 36 days27 and a maximum of 50 days.5 The percentage of hatching eggs is
globally 96.53% as the eggs are protected in the pods cortex. During the 5 nymph instars, the individuals move within
a cacao tree by walk to feed on the pods and shoots. The nymphs are able to feed just after the eggs hatching.
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Twenty‐five days are needed to complete the nymph development considering 5 days in average per instar.5 Globally, the
total nymph survivorship is around 68%.28 The average daily rate of survival of the nymphs (considering all the 5 instars)
was estimated around 98.5% (estimated using biological data). At the emergence, there is on average one female for 0.71
male5 (this gives a sex ratio r = 1/1.71≈ 0.58; in fact, sex ratio varies between 0.5 and 0.6). Females S. singularis mate with
one male 6 to 10 days after their emergence. The first eggs are observed in average 10 days after emergence, so 4 to 8 days
after mating (estimated using biological data). Indeed, after this mating period females are considered as mature. On aver-
age 72.1% of immature females become mature females.27 After the emergence, adults (males and females) fly from one
cocoa tree to another ensuring the spatial dispersion of the individuals and causing the spatial distribution of the damage
in the plots. It is likely the females do not lay all their eggs on the same pod. The average fecundity per female is around
50.7 larvae or 52.5 eggs, and the fecundity period lasts on average 16 days.6,12,25,29,30 The daily survival of mirids adult is
around respectively 98.14% for immature females, 92.8% for mature females, and 93% for males (estimated thanks to other
works5,6,25,26,29). On average, 50 to 60 days are needed to obtain a new generation of mirids.5 This long life period for an
insect to grow is a key factor for the dynamic of mirid populations.

Mirids population dynamics varied greatly during the year. Density of population is likely to be influenced by pods
availability on the trees and by external conditions like weather.8 The mirid population is low on cocoa during the
period from February to March. From June to July, the populations start to grow more or less rapidly. The peak of
the population appears between September and November when the pods are almost mature.5,29,31,32 It is also assumed
that unfavorable climatic conditions (high temperature and low pluviometry) can cause declining fertility of females
and increased mortality of individuals8 that lead to lower mirid populations observed in plantations from November
to December to June.

We now formulate a model based on the life cycle of S. singularis that is summarized in Figure 1. We use a stage‐
structured model. We consider 3 main stages in the development of the mirid: the egg stage (E), the nymph stage (L)
(nymphs and pupae), and the adult stage. The adult stage is subdivided into immature female (F1), mature female
(F2), and male (M). According to Figure 1, we derive the following ODES model:

_E ¼ bF2 1−
E
KC

� �
−ðνE þ μEÞE;

_L ¼ νE E−ðνL þ μLÞL;
_F1 ¼ r νL L−ðνF þ μAÞF1;

_F2 ¼ νFF1−μAF2;

_M ¼ ð1−rÞνLL−μAM;

8>>>>>>>><
>>>>>>>>:

(1)
FIGURE 1 Life cycle of Sahlbergella

singularis [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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with nonnegative initial conditions:

Eð0Þ ¼ E0; Lð0Þ ¼ L0; F1ð0Þ ¼ F0
1;

F2ð0Þ ¼ F0
2; Mð0Þ ¼ M0:

(
(2)

The biological parameters are described as follows: r is the sex ratio; b is the mean number of eggs laid by an adult
female mirid per day that have emerged as larvae; KC is the maximal carrying capacity related to the mean daily number
of pods per area (ha); μE, μL, and μA represent respectively the eggs, nymphs, and adults daily mortality rate; νE and νL are
respectively the transition rate from the egg to nymph stage and the nymph to adult stage; (1/(νE+μE) and (1/(νL+μL) are
respectively the mean time a mirid stays in the egg and nymph stage (measured in days); νF is the transition rate from the
immature female stage to mature female stage; and 1/(νF+μA) is the mean life span of an immature female mirid,
measured in days.

The nonlinear term r bF2 1−
E
KC

� �
is related to a specific behavior of some insects species, like Aedes mosquito33,34

and also mirids, known as skip‐oviposition behavior. Indeed, according to expert's knowledge, mirids (S. singularis) are
able to select their breeding sites. Some cocoa trees, particularly suitable for development larvae, show greater damage,
which leads to the degradation of the foliage and the formation of orthotropic (or greedy) shoots.28 Thus, if breeding
sites, in a given area, already contain a lot of eggs, then females will not deposit eggs or only very few. That is why,

the oviposition rate rbF2 is limited by the available space in breeding sites, 1−
E
KC

� �
, which implies that the birth rate

in the eggs compartment is modeled by the nonlinear term r bF2 1−
E
KC

� �
. Table 1, page 4, summarizes the parameters

and their biological meaning.
The right‐hand side of system (1) is continuously differentiable (C1). Then, using the Cauchy‐Lipschitz theorem,

system (1) has a unique maximal solution. If the initial data are in R5
þ, the solutions stay in R5

þ: E = 0, L = 0,
F1 = 0, F2 = 0 andM = 0 are vertical and horizontal null lines, respectively. Thus, the trajectories can not cut these axes:
so model system (1) is biologically well posed. It is straightforward to show that the compact

Ω ¼ ðE;L;F1;F2;MÞ∈R5
þ;EðtÞ≤ KC; LðtÞ≤ νE KC

νL þ μL
F1ðtÞ≤ r νL νE KC

ðνL þ μLÞðμA þ νFÞ;
�

F2ðtÞ≤ r νL νF νE KC

μAðνL þ μLÞðνF þ μAÞ
andMðtÞ≤ ð1−rÞνL νE KC

μAðνL þ μLÞ
� (3)

is positively invariant by (1). Now, we will derive some quantitative analysis of system (1). Let us consider the following
threshold:

N0 ¼ r bνL νF νE
μAðνE þ μEÞðνF þ μAÞðνL þ μLÞ

: (4)
TABLE 1 Parameters of model (1)

Parameters Biological significance Unit

b Mean number of eggs laid by a mature female days−1

KC Maximal carrying capacity related to the mean

daily number of pods per ha

1/νL Duration of the development of nymphs days

1/νF Time necessary for an immature female to become mature days

μL Mortality of nymphs days−1

μA Mortality of adults days−1

μE Mortality of eggs days−1

1/νE Time necessary for an egg to become nymph days
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N0 represents the mean number of adults female produced by one adult female over its life span. It is sometimes called
the basic offspring number.
Lemma 2.1. System (1) has 2 possible equilibria:

(1) a trivial equilibrium X0 = (0, 0, 0, 0, 0), which always exists
(2) a positive equilibrium X∗ ¼ ðE∗; L∗; F∗

1;F
∗
2 ;M

∗Þ defined as follows:

E∗ ¼ ðN0−1Þ
N0

KC; L
∗ ¼ νE

νL þ μL
E∗; F∗

1 ¼
r νE νL

ðνL þ μLÞðνF þ μAÞ
E∗;

F∗
2 ¼

r νE νL νF
μAðνL þ μLÞðνF þ μAÞ

E∗ and M∗ ¼ ð1−rÞνE νL
μAðνL þ μLÞ

E∗;

(5)

which exists when N0 > 1.
It is straightforward to verify that system (1) is a cooperative system.35 We briefly recall its definition. Let us consider
an n‐dimensional autonomous differential system:

_x ¼ f ðxÞ; xð0Þ ¼ x0; (6)

where f is a given vector function, ie, f = ( f )i, with f i:R
n→R. System (6) is called cooperative if for every i, j ∈ {1,2,… ,n}

such that i ≠ j, the function fi (x1,… , xn) is monotone increasing with respect to xj. For cooperative system, the global
asymptotic stability of an equilibrium can be studied by the following theorem:
Theorem 2.1. System (6) is a cooperative system. Let a, b ∈ Ω such that a< b; ½a; b�⊂Ω and f(b) ≤ 0 ≤ f(a);
where ½a; b� ¼ fx ∈R5; a≤ x ≤ bg. 36 Then (6) defines a (positive) dynamical system on [a,b]. Moreover, if [a,b]
contains a unique equilibrium p then p is globally asymptotically stable on [a,b].
The dynamic of system (1) is summarized in the following theorem:

Theorem 2.2. Assume that ðE0; L0;F0;F0;M0Þ∈Ω.
1 2

(1) When N0 ≤ 1, the trivial equilibrium X0 is globally asymptotically stable, which means that the mirid
population will dwindle until extinction, whatever the initial population.

(2) WhenN0 > 1, the trivial equilibrium is unstable and the positive equilibrium X∗ is globally asymptotically
stable, which means that the mirid population persists.
36
Proof. It suffices to verify the assumptions of theorem.

(1) When N0 ≤ 1, model system (1) has only the trivial equilibrium X0. By taking a = 0 and

b ¼ KC;
2νE KC

νL þ μL

3r νL νE KC

ðνL þ μLÞðνF þ μAÞ
;

4r νE νL νF KC

μAðνL þ μLÞðνF þ μAÞ
;
2ð1−rÞνE νLKC

μAðνL þ μLÞ
� �

, we have f (a) = 0 and

f (b) ≤ 0. Using theorem 6,36 the trivial equilibrium X0 is globally asymptotically stable on [0,b]; hence,
on Ω when N0 ≤ 1.

(2) When N0 > 1, there exists ε > 0 such that N0 > 1þ ε. Let Eε sufficiently small such that

Eε ≤ ε; Lε ¼ νEð1þ εÞ
ðνL þ μLÞN0

Eε; F1ε ¼ r νL ð1þ εÞ
ðνF þ μAÞN0

Lε;

F2ε ¼ ðνE þ μEÞð1þ εÞ2
bN2

0

Eε; Mε ¼ ð1−rÞνL ð1þ εÞ
μAN0

Lε:

Let bε = (Eε,Lε,F1ε,F2ε,Mε). Then, from the right‐hand side of (1) and the fact that N0 > 1þ ε and
KC ≫ 1, we deduce
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f ðbεÞ≥

ε ðνE þ μEÞð1þ εÞ2 1−
1þ ε
KC

� �
Eε

νE 1−
1þ ε
N0

� �
Eε

r νL 1−
1þ ε
N0

� �
Lε

νF 1−
1þ ε
N0

� �
F1ε

ð1−rÞνL 1−
1þ ε
N0

� �
Lε

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

> 0:

Hence, it follows36 from theorem 6 that equilibrium X∗ is globally asymptotically stable on [bε,b]. Since
bε can be selected to be smaller than any x>0, we have that X∗ is asymptotically stable on Ω with basin

of attraction ~Ω ¼ Ω∖fð0; 0; 0; 0; 0Þg. This also implies that X0 is unstable.
2.1 | Sensitivity analysis

It is important to know the relative importance of some factors that maintain or not a mirid population. We may
estimate the sensitivity index of N0 with respect to a parameter p, as follows:

γN0
p ¼ ∂N0

∂p
:
p
N0

: (7)

Straightforward calculation leads to the following result:

γN0
r ¼ γN0

b ¼ 1; γN0
νE ¼ μE

νEðνE þ μEÞ
;

γN0
νL ¼ μL

νLðνL þ μLÞ
; γN0

νF ¼ μF
νFðνF þ μAÞ

;

γN0
μE

¼ −
1

νE þ μE
; γN0

μL
¼ −

1
νL þ μL

; γN0
μA

¼ −
νF

μAðνF þ μAÞ
:

Clearly, r and b have the strongest impact onN0. However, this gives us only partial informations. In particular, we will
now focus on the variables E, L, F1, F2, and M. That is why, we derive some global sensitivity analysis using 2
well‐known methods: the eFast and the LHS‐PRCC methods. The eFast method given in Figure 2, page 8, highlights
first‐order effects (main effects) and total effects (main and all interaction effects) of the parameters on the model
outputs. Complementary to the eFast method, we derived an LHS‐PRCC sensitivity analysis given in Figure 3, page
9. LHS stands for Latin hypercube sampling and PRCC for partial rank correlation coefficient. These 2 methods give
complementary information. Indeed, the PRCC method provides mainly information about how the outputs is impacted
if we increase (or decrease) the inputs a specific parameter while the eFast indicates which parameter uncertainty has
the greatest impact on the output variability (see, for instance, Marino et al37 for further explanations).

In Table 2, page 7, we provide ranges of values for the model parameters. These ranges were estimated based on the
data obtained by Babin and collaborators.

As expected, variation of the carrying capacity KC has a strong impact on all variables, and also μA. For the transition
rates νL, νE, νF, and the mortality rate μL, their impact is weaker, but according to the LHS‐PRCC analysis is not neg-
ligible. Thus obviously, among all parameters, the parameters KC, μA, νL, νE, νF, and μL are the most important param-
eters to estimate. Finally, according to the sensitivity analysis method that is considered b does not have the same
impact. However, we think that this is an important parameter too.
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FIGURE 2 eFAST sensitivity analysis at T=500. White bar: first‐order effects; sum of white and gray bars: total effect
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2.2 | Mirid system with periodic coefficients

In this section, we consider the previous model, but with periodic time‐dependent parameters, since we know that most
of the parameters may depend on the environment. In fact, mirids dynamics vary greatly during the year; density of
populations is likely to be influenced by pods avail ability on the trees. In Babin et al,27 it is admitted that lower mirid
populations observed in the plots during a certain period of the year is due to the declining fertility of females and
increasing mortality of individuals. Thus, it seems that development parameters (longevity, fecundity, and mortality)
of mirids vary depending on season. We assume that all those parameters are T‐periodic functions and are bounded:
below, by a nonnegative minimal value, and above by a positive maximal value, that is, pmin ≤ p(t) ≤ pmax for all
t ≥ 0, and p = r, b, μL, μA, μE, νL, νF, νE, or KC. We also split the carrying capacity in 2 parts, KC (t)+C: KC (t), the mean
number of pods available for breeding, and C, the alternative breeding sites including new shoots and other tree hosts,
like Cola nitida, Ceiba pentandra. 28 Thus, Model (1) becomes

_E ¼ bðtÞF2 1−
E

C þ KCðtÞ
� �

−ðνEðtÞ þ μEðtÞÞE;
_L ¼ νEðtÞE − ðνLðtÞ þ μLðtÞÞL;
_F1 ¼ rðtÞνLðtÞL− ðνFðtÞ þ μAðtÞÞF1;

_F2 ¼ νFðtÞF1 − μAðtÞF2;

Eð0Þ ¼ E 0; Lð0Þ ¼ L0; F1ð0Þ ¼ F 0
1 ; F2ð0Þ ¼ F 0

2 :

8>>>>>>>>><
>>>>>>>>>:

(8)

In fact, system (8) enters the family of periodic concave cooperative system with a concave nonlinearity. 38,39
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FIGURE 3 Latin hypercube sampling (LHS)–partial rank correlation coefficient (PRCC) sensitivity analysis at T=500
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Definition 2.1. Let us consider a n‐dimensional autonomous differential system:

_x ¼ Fðt; xÞ; x∈Rn: (9)

The system of differential Equations 9 is called cooperative with concave nonlinearities if

( i)
∂Fi

∂xj
≥ 0; i≠ j for each ðt; xÞ∈ Rþ ×Rn

þ:

(ii) x > y > 0 implies DxF(t,y) > DxF(t, x).
TABLE 2 Range of values for the parameters of system (1)

Parameters Range Source

r [0.5,0.6] estimated

b [1.5;4] estimated

KC [1,10000] estimated

νL [1/35,1/10] estimated

νF [1/10,1/6] estimated

μL [1/100,1/10] estimated

μA [1/100,1/10] estimated

μE [1/100,1/10] estimated

νE [1/10,1/20] estimated
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We will use a theorem (Theorem 2.5, in appendix A) proved in Smith.39 We have

Fðt; xÞ ¼

bðtÞF2 1−
E

C þ KCðtÞ
� �

−ðνEðtÞ þ μEðtÞÞE
νEðtÞE−ðνLðtÞ þ μLðtÞÞL

rðtÞνLðtÞL−ðνFðtÞ þ μAðtÞÞF1

νFðtÞF1−μAðtÞF2

0
BBBBB@

1
CCCCCA;

where x = (E,L,F1,F2)
T. Obviously, F is continuously differentiable and T‐periodic. According to Cauchy‐Lipschitz

theorem, we have existence of a positive and bounded solution. Since all time‐dependent parameters are positive, we
verify easily property (1) in Definition 2.1.
Let us compute the Jacobian

DxFðt; xÞ ¼

− νEðtÞ þ μEðtÞ þ
bðtÞF2

KCðtÞ þ C

� �
0 0 bðtÞ 1−

E
KCðtÞ þ C

� �
νEðtÞ −ðνLðtÞ þ μLðtÞÞ 0 0

0 rðtÞνLðtÞ −ðνFðtÞ þ μAðtÞÞ 0

0 0 νFðtÞ −μAðtÞ

0
BBBBB@

1
CCCCCA:

It is straightforward to verify (2) in Definition 2.1. In addition, DxF(t,x) is irreducible for each ðt; xÞ∈R ×Rn
þ. Thus,

Theorem 2.5 applies to system (9), and we deduce that every solution x, with x(t0) ≥ 0, can be continued in [t0,∞] with
x(t) ≥ 0 for t ≥ t0. Now, let us compute DxF(t, 0), that is,

DxFðt; 0Þ ¼

− νEðtÞ þ μEðtÞð Þ 0 0 bðtÞ
νEðtÞ −ðνLðtÞ þ μLðtÞ 0 0

0 rðtÞνLðtÞ −ðνFðtÞ þ μAðtÞÞ 0

0 0 νFðtÞ −μAðtÞ

0
BBB@

1
CCCA:

According to Theorem 2.5, if the Floquet multipliers of DxF(t, 0) lie inside or on the unit circle, then limt→∞xðtÞ ¼ 0. In
contrary, if any Floquet multiplier lies outside the unit circle, and according to the fact that F(t, 0) ≡ 0 and x is a
bounded solution, we deduce that system (9) has a unique nonzero T‐periodic solution xper(t).

In general, the determination of Floquet multipliers is extremely difficult. That is why, we will now consider an
additional result38 recalled in appendix A (see Theorem 2.6). This is an algebraic criterion, related to the study of
A(t) = DxF(t, 0). Let us estimate A_ and �A, lower and upper bounds of matrix A(t). Using the fact that all time‐dependent
parameters have positive lower and upper bounds, we deduce

A
¼

− νE;max þ μE;max

� �
0 0 bmin

νE;min −ðνL;max þ μL;maxÞ 0 0

0 rminνL;min −ðνF;max þ μA;maxÞ 0

0 0 νF;min −μA;max

0
BBBB@

1
CCCCA;

and

�A ¼

− νE;min þ μE;min

� �
0 0 bmax

νE;max ðνE;min þ μE;minÞ 0 0

0 rmaxνL;max −ðνF;min þ μA;minÞ 0

0 0 νF;max −μA;min

0
BBBB@

1
CCCCA:

Then according to Theorem 2.6, we have to study the principal minors of −A_ and −A. All diagonal terms of −A_ and −A

are positive. In fact, it suffices to compute detð−AÞ and detð−AÞ, that is,
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detð−AÞ ¼ − νE;min þ μE;min

� �ðνL;min þ μL;minÞðνF;min þ μA;minÞμA;min þ bmaxrmaxνE;maxνL;maxνF;max ;

detð−AÞ ¼ νE;max þ μE;max

� �ðνL;max þ μL;maxÞðνF;max þ μA;maxÞμA;max−bminrminνL;minνF;min:

Thus, detð−�AÞ≥ 0 if

bmaxrmaxνL;maxνF;max≥ νE;min þ μE;min

� �ðνL;min þ μL;minÞðνF;min þ μA;minÞμA;min;

and detð−AÞ< 0 if

νE;max þ μE;max

� �ðνL;max þ μL;maxÞðνF;max þ μA;maxÞμA;max < bminrminνL;minνF;min:

In fact, the previous results are related to the time dependent basic offspring number

N0ðtÞ ¼ r bðtÞνEðtÞνLðtÞνFðtÞ
μAðtÞðνEðtÞ þ μEðtÞÞ νFðtÞ þ μAðtÞð Þ νLðtÞ þ μLðtÞð Þ;

such that N0;min ≤N0ðtÞ≤N0;max , where

N0;min ¼ rmin bminνE;minνL;minνF;min

ðνE;max þ μE;maxÞ νmax þ μmaxð ÞðνF;max þ μA;maxÞμA;max
;

and

N0;max ¼ rmax bmax νE;maxνL;maxνF;max

ðνE;min þ μE;minÞ νmin þ μminð ÞðνF;min þ μA;minÞμA;min
:

According to Theorem 2.6, we deduce
Theorem 2.3.
( i) If N0;max ≤ 1, then the solution of system (8) converges to the trivial equilibrium X0.
(ii) IfN0;min > 1, then system (8) admits a unique periodic solution, which attracts all initial condition in Ω.
According to the sensitivity analysis, an interesting and particular case is when we assume that all parameters are

constant, except K. Then A ¼ A, and thus, N0;max ¼ N0;min ¼ N0. Thus, Theorem 2.3 reduces to

Theorem 2.4.

( i) If N0 ≤ 1, then the solution of system (8) converges to the trivial equilibrium X0.
(ii) If N0 > 1, then system (8) admits a unique periodic solution, which attracts all initial condition in Ω.
In fact, we recover the same results than for the constant parameters problem, except that the constant positive
equilibrium is now periodic of period T.

It is important to notice that KC constant is relevant in the case where the cocoa production is almost constant along
the year. This is realistic in Central America where there is no real seasonality. By contrast, in Cameroon, they are 2
rainy season: a long one and a short one. There, the seasonality is clearly marked, which has an impact on cacao
production. That is why we consider a periodic function for KC.
2.3 | Numerical simulations

Now, we will illustrate our theoretical results. We will use the values of the monthly mean number of pods using data
extrapolated, obtained in Cameroon, from Bisselua et al30 to construct our periodic function KC (t). According to the
data from Bisselua et al30 and the knowledge about the mean number of pods over the year, our daily estimated data
are recapitulated in Table 3.

We suppose that the function KC(t) is periodic, of period T = 365 days. We use the cubic spline interpolation to
derive the time evolution of KC (t) along a year. Using cubic Hermite spline, we obtain a polynomial interpolation (daily
estimation of KC (t)) given in Figure 4, page 11. Figure 4, page 11, represents the daily estimation of pods number in the
plot. KC (t).
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FIGURE 4 Daily estimation of KC(t) along a year [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Mean number of pods per days

Mo Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

KC (t) 0 32 000
31

160 000
31

416 000
30

544 000
31

304 000
31

416 000
31

120 000
31

8000
28

0 0 0 0
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When the parameter KC is constant, we used a classical scheme already well implemented under matlab (ode23s) for
numerical simulations, and we consider that the number of pods KC is constant; we evaluate the average daily value
estimated with the data of Table 3, that is,

KC ¼ 1
365

Z365
1

KCðtÞdt:

When KC is periodic, following Anguelov et al,40 we consider a nonstandard numerical scheme to preserve most of the
qualitative properties of the continuous model, like positivity, equilibria, stability, and instability whatever the time
step Δt > 0. We consider the values of parameters given in Table 4. We illustrate our numerical simulations for 2 values
of C: C = 5, and C = 100. All the given values have been estimated thanks to other works.5,6,25,26,29

In Figure 5, page 12, we illustrate the theoretical results when the carrying capacity KC is constant, that is,KC ¼ 5482,
with initial conditions (E,L,F1,F2,M)=(0,0,0,10,10). As expected, when N0<1, the population decays till extinction,
TABLE 4 Values of constant parameters

Parameters Case N0<1 Case N0>1 Source

r 0.58 0.58 5

b 3.28 3.28 Estimated

νE 1/15 1/15 Estimated

νL 1/25 1/25 Estimated

νF 1/10 1/10 Estimated

μE 0.05 0.001 Estimated

μL 0.15 0.03 Estimated

μA 0.15 0.07 Estimated

N0 0.6103 9.0002 Equation 4

http://wileyonlinelibrary.com
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FIGURE 5 Time evolution of mirid population when KC = 5482. A, N0<1. B, N0>1 [Colour figure can be viewed at wileyonlinelibrary.

com]
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while, when N0>1, the population reaches rapidly the positive equilibrium. However, in Cameroon, having a constant
number of pods along the year is not realistic. That is why in the next simulations, we consider a more realistic case, with
the same parameters values. In Figures 6 and 7, page 13, we illustrate the previous results when the carrying capacity KC
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FIGURE 6 Time evolution of mirid population when KC is periodic and C=5. A, N0<1. B, N0>1 [Colour figure can be viewed at
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is periodic. However, in the case where N0 > 1, the dynamic of mirids follows the dynamic of pods, as expected. How-
ever, the size of the population seems to be large compared with real observations (see, for instance, Bisselua et al 30).
3 | A MODEL WITH DELAYS

In the previous section, we studied the time evolution of mirid population as if the transition to one stage of develop-
ment to another is immediate. Biologically, this is not correct: let us return on the biological life cycle of S. singularis
given in Figure 8, page 14. In fact, each individual needs to stay a certain amount of time in each compartment to com-
plete its stage, in particular in the egg, nymph, and nonmature female stages: there exists τ1 days between egg‐laying
and appearing of new nymphs; τ2 days between nymphs and emergence to adults. In addition, female needs τ3 days
to become mature before being able to lay eggs. In this section, we will take into account some of these previous times
leading to time‐delayed model with delays.

Now, it is possible to take into account different biological facts. In particular, based on the literature, we know that
after deposition, eggs need (in mean) τ1=15 days to hatch and enter the nymphs compartment. b always represents the
mean daily number of eggs laid by an adult female. τ2=25 days represent the required time for nymphs to achieve their
development and become adults. So only a proportion e−τ2 μL of nymphs will survive and become adults. Thus,
νE e−τ2 μLEðt−τ2Þ represents the transition rate from eggs to adults, after τ2 days in the nymphs compartment. The term
re−τ3 μA represents the proportion of immature adults that will deposit eggs, after τ3 of maturation.

Altogether, we obtain the following "two‐delays" model:

dE
dt

¼ r be−τ3μA Aðt−τ3Þ 1−
E
KC

� �
− νE þ μEð ÞE;

dA
dt

¼ νE e−τ2μL Eðt−τ2Þ−μAA:

8>><
>>: (10)

It can be rewritten as follows:

dx1
dt

¼ αx2ðt−τ3Þ 1−
x1
KC

� �
−βx1;

dx2
dt

¼ γ x1ðt−τ2Þ−δx2;

8>><
>>: (11)

where

α ¼ r be−τ3 μA ; β ¼ νE þ μE; γ ¼ νE e−τ2 μL ; δ ¼ μA:

The right‐hand side of system (11) is continuous and Lipschitzian in x. Thus, according to the standard theory of delay
differential equations,41 system (11) admits a unique solution for each continuous initial condition φ∈Cð½−τ; 0�;R2Þ
where τ ¼ maxðτ3; τ2Þ. We denote Cð½−τ; 0�;R2Þ the Banach space of continuous functions mapping the interval
[−τ; 0] into R2 with the topology of uniform convergence; ie, for φ∈Cð½−τ; 0�;R2Þ, the norm of φ is defined as
‖φ‖ ¼ sup−τ≤θ≤0jφðθÞj where |.| is a norm of R2.
Let

D ¼ x∈R2
þ=x1 ≤ KC; x2 ≤

γKC

δ

� �
:

FIGURE 8 Life cycle of Sahlbergella singularis with maturation times [Colour figure can be viewed at wileyonlinelibrary.com]
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System (11) can be rewritten as follows:

x′ðtÞ ¼ f ðxðtÞ; xðt−τ3Þ; xðt−τ2ÞÞ ¼ f ðx;YÞ; (12)

where Y=(x(t−τ3), x(t−τ2)). Following Smith,35 it is important to notice that system (8) without delays reduces to a
cooperative irreducible system. In fact, the delayed system is cooperative too. Indeed, according to Smith35 and Smith
and Hirsch,42 we can show that f verifies the quasimonotone condition, defined as follows in Smith35 and Smith and
Hirsch42:

ϕ;ψ∈D;ϕ≤ ψ and ϕið0Þ ¼ ψið0Þ implies f iðϕÞ≤ f iðψÞ: (13)

In fact, it suffices to use theorem 4.5,42 page 308, ie, to show that f is cooperative to deduce that (13) holds for f, that is,

∂f i
∂xj

ðx;YÞ≥ 0; for i≠ j; (14)

∂f i
∂ykj

ðx;Y Þ≥ 0; for all i; j; k: (15)

Obviously, since the nondelayed model is cooperative, condition (14) is verified. Let us now check condition (15):

∂f 1
∂y11

ðx;Y Þ ¼ 0;
∂f 1
∂y12

ðx;Y Þ ¼ αð1− x1
KC

Þ≥ 0; (16)

∂f 2
∂y21

ðx;Y Þ ¼ γ > 0;
∂f 2
∂y22

ðx;YÞ ¼ 0: (17)

Since the previous conditions are verified, we deduce that f is quasimonotone, which implies that if the initial condition
is positive (with at most one zero component), then the solution x is still nonnegative, ie, x(t)≥ 0. Similarly, using the

fact that the initial condition ϕ∈D, we have x1≤KC, and x2≤
γKC

δ
, for t∈[−τ, 0]. Using these inequalities in (11), we

infer that this is still true when t∈ [0, τ]. Iterating this reasoning, we finally deduce that xðtÞ∈D for all t≥ 0. A direct
computation shows that system (11) admits 2 equilibria: the trivial ones, 0 = (0,0), and

x∗ ¼ 1−
βδ
αγ

� �
KC;

γ
δ

1−
βδ
αγ

� �
KC

� �
¼ 1−

1
R

� �
KC;

γ
δ

1−
1
R

� �
KC

� �
;

when R>1 where

R ¼ αγ
βδ

¼ r bνE e−τ2μL−τ3μA

μA νE þ μEð Þ : (18)

Note that

R ¼ αγ
βδ

¼ r bνE e−τ2μE−τ3μA

μA νE þ μEð Þ <N ¼ r bνE νL νF
μA ðνE þ μEÞðνL þ μLÞðνF þ μAÞ

:

Thus, for some parameters values, we may have N>1 and R<1.
There is no need to study the stability/instability of the equilibria. Indeed, according to Smith35 (chapter 5), there is a

nice property pointed out about cooperative irreducible time‐delay systems: the asymptotic stability of each
equilibrium is preserved for the delay differential system (8), whatever the values taken by the delays. In particular,
when R≤1 (R>1), all orbits are attracted by 0 (x∗). In other words, to study the long‐term behavior of cooperative
time‐delay systems, it suffices to study the cooperative systems without delay(s).
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This result implies that the use of delays does not change the long‐time behavior of the time‐dependent system (8).
However, when the system is nonautonomous and periodic, its behavior may be different in the transient period from
the nondelayed nonautonomous periodic system as it is showed in the forthcoming simulations (see Figure 11, page 18,
and Figure 12, page 18).
FIGUR
Remark 3.1. The previous time‐delayed system is considered with fixed delays. A possible extension, for
future work would be to consider time varying delays, τi(t), since it seems obvious to consider that the
developmental time in each stage may change according to environmental parameters, like temperature
and rainfall. Finally, distributed delays could be considered. Unfortunately for both cases, we do not have
data.
Finally, like for the nondelayed model, it is interesting to provide a global sensitivity analysis at different time
T=100 and T=500 (see Figure 9, page 16). Clearly, the parameters μL and μA are the most sensitive parameters, and
the delays play mainly a role in the transient phase (T=100) and no more at equilibrium, contrary to the carrying
capacity, KC, even if this parameter is far less sensitive than in the previous nondelayed model. This clearly shows
the importance of estimating efficiently these parameters in different environmental or semifield conditions. It also very
interesting to compare the sensitivity analysis between 2 models that are supposed to model the same system.
3.1 | Numerical simulation

Now, we illustrate all the different stability cases, ie, when R<1 and R>1. The time‐delayed Model is solved using
matlab and the dde23 function. In Table 4, page 12, we summarize the parameters values used in the next simulations,
but we attribute the new values of parameter μL. Then, the values of parameters for those simulations are consigned in
Table 5, page 17.

We now derive numerical simulations with KC=5482 constant and KC periodic, like in the previous section. We
choose as initial conditions (E(0),A(0))=(0,50).

In Figure 10, page 17, we illustrate the previous results when the carrying capacity KC is constant. WhenR<1, mirids
population decays till extinction and when R>1, mirids population converge to a positive equilibrium.
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E 9 eFast sensitivity analysis of the time‐delay model
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FIGURE 10 Time evolution of the eggs and adult compartments for the time‐delay model with constant parameters, KC = 5482, with A,

R<1; B, R>1 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Values of constant parameters for the time‐delay model

Parameters Case R<1 Case R>1 Source

b 3.28 3.28 Estimated

τ2 25 25 Estimated

τ3 10 10 Estimated

μA 0.1 0.07 Estimated

r 0.58 0.58 Babin et al5

μL 0.1 0.03 Estimated

νE 1/15 1/15 Estimated

μE 0.001 0.001 Estimated

R 0.566 6.28 Equation 18
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As expected, when t goes to infinity, the time‐delayed model with constant parameters responds exactly like the
nondelayed model, except that the threshold parameters is not exactly the same. WhenR<1 (>1), the system converges
to the trivial (positive) equilibrium. In fact, with the same parameters, the deterministic model may converge to the pos-
itive equilibrium, while the time‐delay model converges to the trivial equilibrium.

Figures 11, page 18, and 12, page 18, represent the time evolution of mirids with KC periodic and for different values
for C, namely, C=5 and C=100. When R≤1, mirid population decays rapidly till extinction, whatever the values taken
by C. In contrary, when R>1, mirid population converges to a periodic solution, as expected, but with different ampli-
tudes related to C, indicating the importance of alternative resources in the maintenance and the size of the population.
The simulations seem to be in good agreement with field observations. It seems also to be obvious that the removal of
alternative resources should be part of control strategies to lower the impact of the mirids. Compared with the time‐
delayed model, the nondelayed model overestimates the population. Thus, even if from the mathematical point of view
the long‐term behavior is the same, the time‐delayed model provides better estimate of the population size along the
year than the nondelayed model.

We would like to emphasize that our study was very difficult because of the lack of population data. Many param-
eters values were estimated using raw data obtained in the field by Babin, in 2008, in Cameroon. We use these data to
estimate several parameters like mortality of eggs, nymphs, and adults (μE, μL, and μA), fecundity of adults female (b),
the mean duration of immature females stage (1/νF) and the mean necessary time for development of eggs. For some
parameters (the sex ratio r, the mean duration of egg stage (1/νE) and the mean duration of nymph stage (1/νL)), we
used data from Babin et al27 because it was the last experiment on S. singularis life cycle realized in Cameroon. The
most difficult data to obtain were the daily evolution of pods number in the plot. Using data from Bisselua et al30

and also based on our knowledge about the mean pods density per hectare, we construct our periodic function KC(t),

http://wileyonlinelibrary.com
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which represent the daily appearance of pods and cherelle in the plot. However, mirids also feed and lay eggs on young
shoots that lead to important damage able to cause the destruction of the tree over the years. It will be important to take
into account this aspect and model the daily appearance of young shoots in the plot by a function (S(t) for example).
Then, it will be relevant to know the mirid frequency of feeding on host plants to have a good idea about the parameter
C because the time evolution of mirids also depends on it considering that if C is large, the level of mirid population
increase. In our numerical simulations, we attributed to this parameter 2 values C=1 and C=100. According to these
results, we suggest that it will be important to have several experiences in the field: to better estimate the daily appear-
ance on pods and shoots in the plot, to have a good idea about the parameters of development of mirids and also to
better estimate the parameter C.
4 | ABOUT MIRID CONTROLS

Several methods are used to control mirid population among which:

• cultural management, based on managing the system structure and composition to create unfavorable conditions for
the development of mirids populations.

• varietal management, which consists in replacing the cacao varieties traditionally cultivated with more resistant
and/or tolerant varieties to mirid attacks.

http://wileyonlinelibrary.com
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• chemical management, based on chemical insecticide used. This is the most widespread and efficient strategy to
control mirid population in Cameroon. The chemical insecticides are applied 2 to 3 times a year3 (see also page
20 in [18])

• semio‐chemical management, which consists of using synthetic sexual pheromone traps22 which increases adult
mortality (trapping) and prevents male insects finding females and mating (mating disruption) and thus reduces
the fecundity of female.

• last but not least, as shown in the previous simulations, a reduction of mirids alternative host (resources), ie,
decrease C, is also essential to have an efficient control.

Understanding the population dynamic of S. singularis is crucial for monitoring, forecasting and, then, controlling
this pest population. Recent work in Ghana indicates (using the visual hand‐height assessment method) that mirid pop-
ulations (predominately nymphs) began to increase rapidly in April with an initial peak in May, followed by a rapid
buildup in June.43 In Cameroon, mirid/population is low on cacao from February to March. From June to July, the pop-
ulations start to grow more or less rapidly depending on external conditions like weather and fruits production on the
trees. The peak of the population appears between September and November when the pods are almost mature.27

In Cameroon, mirids populations are mainly controlled by chemical insecticides. Three treatments are recom-
mended per year: in June/July and August/September (propagation of mirids population); in November/December.18

We will consider the impact of one treatment, 2 treatments, and, finally, 3 treatments. We will make a comparative
study of treatments applied in systems with cacao only, C=5, and in agroforestry systems composed of cacao and asso-
ciated trees that could be secondary resource for mirids, C=100. According to the expert's knowledge and field observa-
tions, the insecticide has a decaying death rate over 8 weeks that is summarized in Table 6.
TABL

Time

Insect
Remark 1. Synthetic insecticides like λ‐cyhalothrine and imidacloprid have a long residual effect, but it
depends on several environmental factors, like rainfall. That is why Table 6 provides only a feedback from
field experts according to the locations in Cameroon where these treatments have been studied and are
already used.
We start our numerical simulations at the end of June, a period where the number of pods is increasing in the plot.
We treat the plot respectively 1, 2, or 3 time(s) per year, as recommended to cacao producers. We compare the efficacy
between each treatment. The periods of treatment are given as follows:

• Treatment 1, with only one application per year: (beginning of) July (t=395,760,1125,1490,1855).
• Treatment 2, with 2 applications per year: July (t=395,760,1125,1490,1855) and September (t = 457,822,1187,1552,1917)

(see Edoh Adabe and Ngo‐Samnick,18 page 20).
• Treatments 3, with 3 applications per year: July (t = 395,760,1125,1490,1855), September (t = 457,822,1187,1552,1917),

and November (t = 518,883,1248,1613,1978)(see Edoh Adabe and Ngo‐Samnick,18 page 20).

It is worth to mention that the periodicity of the 2 last treatments coincides with the duration of the chemical treat-
ment after spreading. In Figures 13, page 20, 14, page 20, and 15,page 21, we present the results obtained with the dif-
ferent treatments in 2 cases: C=5 and C=100. The case C=5 represents a full cacao crops, while C=100 may represent a
cacao crop in an agroforestry system, where additional resources (host trees) are available for mirids.

We summarize in Table 7, page 19, the impact of each treatment in the reduction of the wild population.
As expected, 2 treatments are sufficient (more than 90% reduction of the population) when C is small. An additional

(third) treatment is particularly recommended when C is large, ie, C=100. These results are relevant with real observa-
tions in different type of plots, at least in Cameroon.

Although chemical insecticides are very efficient to control mirids, their recurrent use is widely questioned because
of the immediate adverse effects that they cause in ecosystems via environmental pollution (impact nontargeted spe-
cies), the induced resistance in the mirid population, and to the toxic effects on human health. In addition, these chem-
ical products are very expensive. That is why, it could be more advantageous to consider sustainable control strategies,
E 6 Time‐dependent death rate of chemical treatment

(d) After the Release 1 3 8 16 24 32 40 48 56 60

icide death rate 1 1 0.9 0.2 0.1 0.05 0.025 0.01 0 0
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TABLE 7 Efficacy of each treatment—percentage reduction of the wild population

Treatment 1 Treatment 2 Treatment 3

C=5 74.8% 92.9% 97.8%

C=100 58.7% 84.8% 94.1%
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http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


20 TAPI ET AL.
like for instance, mating disruption and trapping. 22,44 Mating disruption consists in introducing an artificial stimulus,
like pheromones or para‐pheromones, to confuse individuals and, thus, to disrupt mate localization, leading to long‐
term reduction of the population. In our case, we roughly assume that this implies a decrease of the female
fecundity. Thus, for instance, if we reduce the daily female fecundity from 3.28 to 2, the mirid population decreases
(see Figure 16, page 21).

Another way to control mirids is the use of traps. Traps increase the adult mortality rate, μA. For instance, if we
increase the mortality μA from 0.07 to 0.1, we observe a great reduction of the level of mirid population (see the time
evolution of mirids in Figure 17, page 22). According to the sensitivity analysis, the adult mortality μA is a sensitive
parameter for the delayed model such that any increase may have a strong negative impact on the population.

In general, combining the 2 previous methods of control (mating disruption and trapping), improve the previous
results (see Figure 18, page 22). This combination allows to reach a low level of population, right after the first year.

We summarize in Table 8, page 21, the efficiency of each control methods. According to the given results, it seems
possible to have a very efficient control of mirids without using chemical control. Clearly the combination of mating and
trapping gives the best results whatever the values taken by C. This is in good agreement with recent field
experiments.44

In the previous simulations, we showed that a biological control strategy (using mating and trapping) can be a very
good alternative to the use of insecticides. Last but not least, if it is possible, the reduction of alternative hosts in the
plots is also an additional way to improve the efficacy of both controls.
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TABLE 8 Efficacy of trapping, mating, and trapping‐mating‐percentage reduction of the wild population

Mating Trapping Trapping&Mating

C=5 70.5% 85.5% 96.5%

C=100 49.4% 71.0% 90.1%
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5 | CONCLUSION

In this paper, we studied the dynamics of a cocoa pest, mirids. From the best of our knowledge, it is the first time that
mathematical models are developed to study mirid pest. We first build a generic stage‐structured ODE model to simu-
late the dynamic of the pest population considering the resource (available cocoa pods and additional tree hosts) as con-
stant or as a periodic function. Our model enters the family of cooperative system, which facilitates its study. Thus, we
show that there exists a threshold parameters, N0, also called the basic offspring number, that summarizes the dynam-
ics of the system: if it is less than one, then the mirid population decreases till whatever the availability of resources;
when it is great than one, then mirids population persists. We also derive a sensitivity analysis that highlights that most
of the parameters values are important to estimate. Then, based on the mirid's development stages and times, we also
developed a delayed model. We derive a basic offspring number R and, since our system is a cooperative system, the
study of the nondelayed model is sufficient to derive the long‐term dynamics of the delayed system. We illustrate the
theoretical results through numerical simulations. We show that the outputs of the delayed system seem to be more
realistic than the nondelayed ODE model. We also highlighted that the presence of additional hosts can help the capsid
population to maintain when pods are not available.

As an application, another objective of our work was to study ongoing mirid control strategies in Cameroon. We
evaluated the impacts of chemical control and biological control (using mating disruption and trapping). Chemical con-
trol is used since a long time in Cameroon. It is very efficient when, at least, 2 treatments per year are applied. Our
numerical simulations are in good agreement with the phytosanitary recommendations. However, we show that mating
disrupting and trapping can be as efficient as chemical control, while being less detrimental to the environment. Of
course, the reduction of additional hosts will improve the efficacy of the control.

These preliminary results encourage us to go further, that is, (1) to develop a model where mating disrupting and
trapping are modeled, like in Anguelov et al,45,46 (2) to couple our models to a pod growth model in order to take into
account the impact of mirids on cocoa pods, (3) to take into account the spatial distribution of mirids using a metapop-
ulation approach or a partial differential equation approach like in Dufourd and Dumont,47 and (4) to set up new expe-
riences in the field in order to obtain additional and new data in order to improve our knowledge, to estimate some
biological and ecological parameters in different environmental conditions, in order to better model the time dynamic
of the mirids, and thus to improve their control.

http://wileyonlinelibrary.com
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APPENDIX A: MAIN RESULTS OF COOPERATIVE SYSTEMS

Here, we recall useful theorems (theorem 3.1 in Smith39 and theorem 5.5 in Jifa38).
39 n
Theorem 2.5. (Smith, theorem 3.1, page 1045) Let F(t, x) be continuous in R×Rþ, T‐periodic in t for fixed

x and assume DxF(t, x) exists and is continuous in R×Rn
þ. Assume that if x ≥ 0, with xi = 0, then Fi(t,x)≥0,

1≤ i≤n, t∈R. Assume

ðMÞ ∂Fi

∂xj
≥0; i≠ j; ðt; xÞ∈R×Rn

þ;

and
DxFðt; xÞis irreducible for eachðt; xÞR×Rn

þ;

ðCÞ if0<x<y; thenDxFðt; xÞ≥DxFðt; yÞ:
Then every solution of (9) with x(t0)≥0 can be continued to [t0,∞] with x(t)≥ 0 for t ≥ t0.
If F(t,0)≡0 and

z′ ¼ DxFðt; 0Þz (A1)

is the variational equation about x≡0, then limt→∞xðtÞ ¼ 0 for every solution of (9) with x(t0)≥ 0 provided all
Floquet multipliers of (A1) lie inside or on the unit circle in the complex plane. If any multiplier of (A1) lies
outside the unit circle, then one of the following holds: (a) every solution x(t) of (9) with x(t0)≥ 0 satisfies
limt→∞xðtÞ ¼ ∞, or (b) (9) possess a unique nonzero T‐periodic solution q(t). In the latter case, q(t)> 0 for
all t and limt→∞xðtÞ ¼ qðtÞ for every solution of (9) with x(t0)>0.
If F(t,0)≡0, then exactly one of the alternatives (a) or (b) occurs, except that x(t0)> 0 is replaced by x(t0)≥ 0
above.
Let A(t) be a n×n continuous matrix in R τ‐periodic in t, denote

aij ¼ max
0≤t≤τ

aijðtÞ; aij ¼ min
0≤t≤τ

aijðtÞ;
A ¼ ðaijÞ; A ¼ ðaijÞ:

Thus,

A≤AðtÞ≤A; f or 0≤ t≤ τ:

Let p be a positive real number. To study system (8), we will use the following theorem:
38 n
Theorem 2.6. (Jifa, Theorem 5.5, page 203) Let F(t, x) be continuous inR×Rþ, T‐periodic in t for a fixed x,

and assume DxF(t, x) exists and is continuous in R×Rn
þ. Assume that all solutions are bounded in Rn

þ and
F(t,0)=0. Assume

•

∂Fi

∂xj
≥0; ðt; xÞ∈R×Rn

þ,

• A(t)=DxFt,0) are irreducible for any t∈R.
• If 0< x< y, then DxF(t,x)>DxF(t,y).

Then
(1) if all principal minors of −�A are nonnegative, then limt→þ∞xðtÞ ¼ 0 for every solution of (9) in Rn
þ;

(2) if −A has at least one negative principal minor, then (9) possesses a unique positive T‐periodic solution,
which attracts all initial conditions in Rn

þ.
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a b s t r a c t

Cocoa mirid, Sahlbergella singularis, is known to be one of the major pests of
cocoa in West Africa. In this paper, we consider a biological control method, based
on mating disrupting, using artificial sex pheromones, and trapping, to limit the
impact of mirids in plots. We develop and study a piece-wise smooth delayed
dynamical system. Based on previous results, a theoretical analysis is provided
in order to derive all possible dynamics of the system. We show that two main
threshold parameters exist that will be useful to derive long term successful control
strategies for different level of infestation. We illustrate and discuss our results
when cacao pods production is either constant along the year or seasonal. To
conclude, we provide future perspectives based on this work.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mirid pests, like Sahlbergella singularis, are responsible of several damages on cocoa in Africa, especially
in Cameroon. Their presence leads to enormous losses of production and, thus, have an impact on trading
and export. Losses due to mirids are difficult to estimate, but can reach 30–40% of the potential production.
Mirids are very harmful and can lead to the destruction of cocoa trees over the time. Development of pest
management strategies is essential to prevent devastating impact on economy, food security, and biodiversity.
Nowadays, in Cameroon, it is known that chemical control is the best way to control mirid population.
However, although chemical insecticides are very efficient to control mirids, their recurrent use is widely
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questioned due to their immediate adverse effects on the environment such as reduction of mirid natural
enemies (impact on non targeted species), environmental pollution in ecosystems, resistance induction in
the mirid population, and toxic effects on human health. In addition, these chemical products are very
expensive. That is why the reduction of pesticides in cocoa production is becoming an important issue. In [1],
we build and studied several models (with and without delays) of mirids population and also several control
strategies, including chemical treatment, mating disruption and trapping. We showed that the use of three
applications of chemical treatment is equivalent to the combination of mating disruption and trapping. These
two methods are less expensive and less toxic than chemical management and respect specific ecological and
toxicological environmentally friendly requirements. In this paper, we will model more specifically the use
of sex-pheromones to trap males and thus disturb matings, in order to eliminate or decay the population.

In Cameroon, different blends of the two components hexyl (R)-3-((E)-2-butenoyloxy)-butyrate and hexyl
(R)-3-hydroxybutyrate) of the Sahlbergella singularis female sex pheromone are used for tests. Traps used
are delta or rectangular white-colored traps, made out of recycled polyethylene and cardboard. In a two years
experiments [2], a total of 361 adults of S. singularis (359 males and two females) were caught. The highest
numbers of mirids were found in traps with pheromone blends that combined a monoester and a diester.
Rectangular traps also capture significantly more mirids than delta traps. Finally, in a recent work [3], the
authors studied the impact of pheromone trap density (per ha) for cacao mirids mass trapping. It is clearly
stated that this approach is a Male Annihilation Technique (MAT), with the objective of reducing the male
population in order to lower the mirid population under an economical threshold.

In [1], the authors developed and studied several mirids population models, including a model with two
delays. In [4], YD and co-authors developed and studied a piecewise smooth (PWS) system to model mating
disrupting and trapping. Here, we propose to combine both approaches to develop and study a mathematical
model to get a better understanding on the dynamics of the mirid population, under mating disruption and
trapping. Then, the main objective of this work is to study the effort required in terms of sex-pheromone
and trapping, to reduce the population size below harmful level. We obtain a piecewise smooth system of
delayed differential equations. Using [1] and [4], we derive a system’s analysis in order to provide a reliable
and tractable strategy for a long time control. Since cocoa pods production in Cameroon is seasonal we also
consider a periodic version of the delay PWS system. Finally, we provide numerical simulations to highlight
the theoretical results and our reliable strategy.

The paper is organized as follows: in Section 2, a sex-structured mirid model is built, based on [1] and [4].
In Section 3, like in [4], mating disruption and trapping are included in the sex-structured model; an analysis
is provided that allows to build a useful control strategy, that is also illustrated by numerical simulations.
Finally, in Section 4, we consider the periodic case. The paper ends with a conclusion where we discuss
possible extensions of this work.

2. A sex-structured model of mirid population

We consider a generic delayed model to describe the dynamics of S. singularis. The flow diagram is
represented in Fig. 2. Based on biological and behavioral assumptions, we consider two main developments
stages: eggs (E) and adults (females F and A, and male M). Indeed, after being laid, the eggs need, on
average, τ1 = 15 days to become nymphs. These nymphs need τ2 = 25 days to complete the nymph’s
development and become adult males or females. After emergence, sexually mature female mate with males
(attracted by sex pheromones released by the females) and then they need approximately τ3 = 10 days
before being able to deposit eggs (in fact this is the time needed for the appearance of mature eggs in the
ovarioles [5]). This is summarized in Fig. 1.

We denote by e−τ2 µL the proportion of nymphs respectively which survive the nymph stage. After mating,
F becomes mated females, A, that need an additional period of maturation, τ3, in order to lay eggs [5].



M. Djoukwe Tapi, L. Bagny-Beilhe and Y. Dumont / Nonlinear Analysis: Real World Applications 54 (2020) 103082 3

Fig. 1. Life cycle of S. singularis.

Fig. 2. Sahlbergella singularis flow diagram with mating.

However, only a proportion, e−τ3 µA , of females A will deposit eggs. Thus, we have four compartments for
our delayed model: E, the eggs’ compartment, F , the sex-immature females compartment, A, the mated
females compartment, and M , the males compartment.

Females release pheromone in order to attract males for mating. The mating between males and females
is modeled as in [4]: as long as the male density is such that γM ≥ F , then all females F will be inseminated
and move to the compartment A, at rate νF . In contrary, if, for any reason, the male density is scarce,
i.e. γM < F then the number of females F that will move to the compartment A is related to the number
of Males, M . The other parts of the compartmental model follow the model developed in [1].

The biological parameters are described as follows: r is the sex ratio; b is the mean number of eggs laid
by an adult female mirid per day, KC is the maximal carrying capacity related to the mean daily number of
pods per area (ha), µE , µM , µF and µA represent respectively the eggs, male, females daily mortality rate,
νE is the transition rate from the egg to the next stage; 1/(νE + µE) is the mean time a mirid stays in the
egg stage (measured in days); νF is the transition rate from the sex-immature female stage to mature female
stage.

As already explained in [1], the non linear term r bA
(

1− E
KC

)
is related to a skip-oviposition behavior.

Indeed, according to expert’s knowledge, mirids (S. singularis) are able to select their breeding sites
according to their level of occupation.

According to the diagram given in Fig. 2, we derive the following Delay Differential system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)
KC

)
− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(
γM(t)
F (t) , 1

)
F (t)− µF F (t),

Ȧ(t) = νF min
(
γM(t)
F (t) , 1

)
F (t)− µA A(t),

Ṁ(t) = (1− r) νE e
−τ2 µL E(t− τ2)− µM M(t).

(1)

The parameters of model (1) are summarized in Table 1.
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Table 1
Parameters of model (1).

Parameters Biological significance Unit

b Mean daily number of eggs laid by a mature female days−1

r Sex ratio –
KC Maximal carrying capacity related to the mean

Daily number of pods per ha eggs−1

νF Daily rate from F to A days−1

µA Death rate of adults females days−1

µM Death of adults males days−1

µF Death of sexual immature females days−1

µE Death rate of eggs days−1

1/νE Time necessary for an egg to change its stage days
α The maximal death rate by sex-pheromone trap days−1

γ Daily number of females that can be inseminated by a single male –

τ1 =
1
νE

Average time needed for eggs to become nymphs days

τ2 Average time needed for nymphs to become adults days
τ3 Average maturation time needed by mated females to deposit eggs days

3. Control using mating disruption and trapping

In order to maintain a low level a mirid population, we consider a control using sex pheromone traps.
The objective is to disrupt the mating by the use of female pheromones, but also to reduce the number of
males, by trapping, in order to reduce the overall population. However, to model the pheromones, like in [4],
we assume that the release of pheromones is equivalent to the releases of “Fake Females”, Fp, such that our
approach can be somehow linked to the Sterile Insect Technique (SIT) approach, where sterile males are
released to disrupt the mating between wild males and females in order to reduce the number of offsprings
and so on (see for instance [6–8] for an overview and results on SIT).

Because of the release of Fake female, Fp, the mating term in the previous system becomes

min
(

γM(t)
F (t) + Fp

, 1
)

, such that if the number of Fake females is large enough then γM(t)
F (t) + Fp

< 1. Clearly
when the mirid population is large, a large number of Fake females is necessary to impact the mating. When
Fake females are not released in sufficient numbers, then, the control will have no effect on an established
(and large) mirid population. The parameter α represents the maximum capture rate by trapping, the ratio
Fp

F + Fp
represents the attractiveness of the traps. The new flow diagram is represented in Fig. 3. According

to the flow diagram given in Fig. 3, and taking into account the life cycle of S. singularis, we obtain a new
mating disruption and trapping control model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė(t) = b e−τ3 µA A(t− τ3)
(

1− E(t)
KC

)
− (νE + µE)E(t),

Ḟ (t) = r νE e
−τ2 µL E(t− τ2)− νF min

(
γM(t)
F (t) + Fp

, 1
)
F (t)− µF F (t),

Ȧ(t) = νF min
(

γM(t)
F (t) + Fp

, 1
)
F (t)− µA A(t),

Ṁ(t) = (1− r) νE e
−τ2 µL E(t− τ2)−

(
µM + α

Fp

F (t) + Fp

)
M(t).

(2)

Model (2), like model (1), enters the family of piece-wise dynamical systems with delay differential equations
(shortly, PWS-DDE) (see Appendix A).

The switching manifold is defined as follows∑
:=
{

(E,F,A,M) ∈ R4
+, F + Fp = γM

}
Model (2) can be rewritten in the form:

dx

dt
= f(x, xτ ) :=

{
f1(x, xτ2 , xτ3) if F + Fp ≤ γM
f2(x, xτ2 , xτ3) if F + Fp ≥ γM

(3)
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Fig. 3. Sahlbergella singularis control model using sex pheromone traps.

where x = (E,F,A,M)t, xτ2 = x(t− τ2), xτ3 = x(t− τ3),

f1(x, xτ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b e−τ3 µA A(t− τ3)
(

1− E(t)
KC

)
− (νE + µE)E(t)

r νE e
−τ2 µL , E(t− τ2)− (νF + µF )F (t)

νF F (t)− µA A(t)

(1− r) νE e
−τ2 µL E(t− τ2)−

(
µM + α

Fp

F (t) + Fp

)
M(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

and

f2(x, xτ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b e−τ3 µA A(t− τ3)
(

1− E(t)
KC

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νF γ

M(t)
F (t) + Fp

F (t)− µF F (t)

νF γ
F (t)

F (t) + Fp
M(t)− µA A(t)

(1− r) νE e
−τ2 µL E(t− τ2)−

(
µM + α

Fp

F (t) + Fp

)
M(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5)

When τ2 = τ3 = 0, system (3) is exactly the same system studied in [4]. We will now consider the
methodologies developed in [4] and [1] to study system (3).

Like in [4], the theoretical analysis of the model is carried out for two cases: male abundance and male
scarcity. These two cases are separated by the hyperplane Σ . The analysis of the two systems can be carried
out independently on the orthant R4

+. The obtained results will be merged into a general theorem for system
(3) (or (2)).

3.1. Case with male abundance: γM > F + Fp

In this case, system (3) becomes
dx

dt
= f1(x, xτ ). (6)

Note that the right hand side of system (6), f1, is continuous and Lipschitzian in x. Thus, according to the
standard theory of delay differential equations [9], for each continuous initial condition ψ ∈ C

(
[−τ, 0],R4),
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where τ = max{τ2, τ3}, uniqueness and local existence of the solution are guaranteed. Note also, that,
without delay, we recover the cooperative system studied in [4].

As explained in [1], some cooperative systems with delay can enjoy some nice properties such that their
long term behavior is similar to the cooperative system without delay. Let Y = (x(t − τ3), x(t − τ2)),
x = (E,F,A,M)T . System (6) verifies the, so-called, quasimonotone (QM) condition [10], if

(a) ∂f1,i

∂xj
≥ 0 for i ̸= j

(b) ∂f1,i

∂Y k
j

≥ 0 for all i, j, k.

Condition (a) is verified since the non delayed model is a cooperative system. Let us verify condition (b):

∂f1,1

∂Y 1
3

= b e−τ3 µA

(
1− E(t)

KC

)
≥ 0, ∂f1,j

∂Y 1
j

= 0 ∀ j = 1, 2, 4.

∂f1,2

∂Y 1
2

= r νE e
−τ2 νL e−τ3 µF ≥ 0, ∂f2,j

∂Y 1
j

= 0 ∀ j = 2, 3, 4,

∂f3,j

∂Y 1
j

= 0 ∀ j = 1, 2, 3, 4,

∂f1,4

∂Y 1
1

= (1− r) νE e
−τ2 νL ≥ 0, ∂f4,j

∂Y 1
j

= 0 ∀ j = 2, 3, 4.

Then the (QM) condition is verified. This implies that if the initial condition is non negative (with at most
one zero component) then the solution of system (6) is still non negative i.e x(t) ≥ 0. Moreover, the (QM)
condition guarantees the stability of each equilibrium of the non delayed system is preserved for the delayed
system. In other words, it suffices to study the following non delayed system

dx

dt
= f1(x), (7)

to deduce the behavior of the time delayed system (6). As already emphasized, system (7) has already been
studied in [4], using [10,11].

Setting
R = r b νE νF e

−τ2 µL e−τ3 µA

µA (νE + µE) (νF + µF ) (8)

the so-called basic offspring number, and applying Theorem 9 [4] we deduce

Theorem 3.1.

(i) System (7) defines a positive dynamical system on R4
+.

(ii) System (7) always has a trivial equilibrium, 0 = (0, 0, 0, 0), which is globally asymptotically stable when
R ≤ 1.

(iii) When R > 1, system has an additional positive equilibrium X∗ = (E∗, F ∗, A∗,M∗) where

E∗ =
(

1− 1
R

)
KC , F ∗ = r νE e

−τ2µL

(νF + µF )

(
1− 1
R

)
KC ,

A∗ = r νEe
−τ2µL νF

µA (νF + µF )

(
1− 1
R

)
KC , M∗ = M0

µM + αFp

F ∗ + Fp

with
M0 = (1− r) νEe

−τ2µL

(
1− 1
R

)
KC .
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Moreover, X∗, is also globally asymptotically stable when R > 1 on

R4
+ \ {0} = R4

+ \ {x ∈ R4
+ : E = F = A = M = 0}.

Remark 3.1. When α = 0, we recover the positive equilibrium when no control occurs. It is important to
notice that the effect on the control only impact the value of the Male equilibrium.

The positive equilibrium X∗ is called a regular (virtual) equilibrium of model (7) if and only if F ∗ +Fp <

(>)γM∗ which is equivalent to Fp < F ∗
p , where

F ∗
p = 1

µM + α

(
γM0 − µMF ∗) = νEe

−µLτ2

(α+ µM )

[
γ(1− r)− r µM

(νF + µF )

]
E∗. (9)

Therefore, we deduce that

• If Fp < F ∗
p , the positive equilibrium X∗ is a regular equilibrium of (7).

• If Fp > F ∗
p , the positive equilibrium X∗ is a virtual equilibrium of (7).

The threshold F ∗
p determines the minimum level of control, i.e. the number of Fake females and thus,

indirectly, the number of pheromones traps, below which the control has essentially no effect on an
established mirid population. More precisely, as stated in the previous remark, the effect of pheromone traps
is only limited to the males compartment (male trapping), all other compartments remain at their natural
equilibrium. Thus females will continue to deposit as many eggs (inside pods) as before the control.

Thus, thanks to the (QM) condition, and, using Theorem 3.1, we deduce the following results in the DDE
“male abundance” case:

Theorem 3.2.

(i) System (6) defines a positive dynamical system on R4
+.

(ii) System (6) always has one equilibrium, 0, that is globally asymptotically stable when R ≤ 1.
(iii) When R > 1, system (6) has an additional (unique) positive equilibrium, X∗, that is globally asymptoti-

cally stable on R4
+ \ {0}.

The positive equilibrium is a regular equilibrium if Fp < F ∗
p and it is a virtual equilibrium if Fp > F ∗

p .

Remark 3.2. As already highlighted for the non-delayed system, the threshold F ∗
p determines the minimum

level of control below which the control has essentially no effect on an established pest population for the
delayed model.

3.2. Case with male scarcity: γM < F + Fp

In this case, system (3) becomes
dx

dt
= f2(x, xτ ), (10)

The right hand side of system (10) is Lipschitz continuous. Thus, according to the standard theory of Delay
Differential Equations [9], system (10) admits a unique local solution for each continuous initial condition
ψ ∈ C([−τ2, 0],R2

+). In addition, the following domain

Ω := { x ∈ R4
+ : E ≤ KC , F <

r νE e
−τ2µL e−τ3µF KC

µF
, A ≤ (1− r) γ νF νE e

−τ2µL KC

µA µM
,

M ≤ (1− r) νE e
−τ2µL KC

µM
} (11)
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is positively invariant for system (10). Global existence on [0,+∞) of the solution follows by dissipativity of
(10). Then, we derive

Proposition 3.1. There exists a threshold F ∗∗
p > 0 of Fp such that

• If Fp > F ∗∗
p the only equilibrium of system (10) on R4

+ is 0.
• If 0 < Fp < F ∗∗

p , system (10) has three equilibria on R4
+, 0 and two positive equilibria.

In addition, 0 is an absolutely stable equilibrium.

Proof. The proof follows the proof of Theorem 4 [4], page 446. However, for reader’s convenience we provide
it in Appendix B, with additional explanations. □

Similarly, we show

Theorem 3.3 (Bifurcation Study of F ∗
p and F ∗∗

p ). Let Fp > 0. The following holds for system (2):

• 0 is an absolutely stable equilibrium.
• If 0 < Fp < F ∗

p , there are two positive equilibria X(1) and X∗, where X∗ is asymptotically stable.
• If F ∗

p < Fp < F ∗∗
p , there are two positive equilibria X(1) and X(2).

• If Fp > F ∗∗
p , there is no positive equilibrium

Proof. The proof follows the proof of Theorem 15 [4], page 449. However, for reader’s convenience we
provide it in Appendix C. □

The stability properties of X(1) and X(2) are not easy to obtain theoretically. However, numerical
simulations show that X(1) is unstable while X(2) is stable. Also, when Fp > F ∗∗

p , 0 is Globally
Asymptotically Stable. As Fp increases and passes through F ∗

p the regular equilibrium X∗ collides with the
virtual equilibrium X(2), such that X∗ becomes virtual and X(2) becomes regular. The bifurcation diagram
in Fig. 4, summarizes the previous properties, where the equilibrium values of F + A are given as function
of the bifurcation parameter Fp. The blue (red) solid line represents locally (globally) asymptotically stable
equilibria, while the blue dotted line represents unstable equilibria.

About the long term behavior of system (2) when Fp > 0
The previous Theorem shows us that the dynamics of the system may vary according to the level of

control. In particular, as long as 0 < Fp < F ∗
p , the control has essentially no effect on an established

population. Even if F ∗
p < Fp < F ∗∗

p , the effect are negligible (on an established population). Here, we
intend to derive results that may help us to define appropriate control strategies.

Due to the term −νF
γM(t)
F (t) + Fp

F (t) in (5), the right hand side of (10) is not quasi-monotone. By removing
this nonlinear term, we obtain an upper DDE system, that admits a unique positive solution x that is an
upper solution of system (10). Since f2(x, y) is nondecreasing in y, according to Theorem 3.6 in [12], page
29, we deduce that x ≤ x̄.

Thus, following [4], we consider the following upper system, as an auxiliary system of system (10):

dx

dt
= g2(x, xτ ), (12)
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Fig. 4. Bifurcation diagram of the values of F + A at equilibrium with respect to the values of Fp for system (2).

with x = (E,F,A,M)T and

g2(x, xτ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b e−τ3 µAA(t− τ3)
(

1− E(t)
KC

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− µF F (t)

νF
γM(t)
F (t) + Fp

F (t)− µA A(t)

(1− r) νE e
−τ2 µL E(t− τ2)−

(
µA + α

Fp

F (t) + Fp

)
M(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

System (12) is a cooperative time delayed system: the (QM) condition is verified. Hence, the stability of
each equilibrium for the non delayed system is preserved for the delayed system. It suffices to study the non
delayed system to deduce the long term behavior of the time delayed system:

dx

dt
= g2(x, x0). (14)

Let us first set
RM = (1− r) b νE γνF e

−τ2 µL e−τ3 µA

µA (νE + µE)µM
(15)

While R, the basic offspring number, represents the number of offsprings produced by one single female
during its mean lifespan, RM represents the number of offsprings produced by one male during its mean
lifespan.
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We show the following

Theorem 3.4.

(1) The non delayed system (14) defines a positive dynamical system on R4
+.

(2) There exists a threshold value F̄ ∗∗
p such that

(i) if Fp > F̄ ∗∗
p , 0 is GAS on R4

+.
(ii) if Fp = F̄ ∗∗

p , and RM > 1, then system (14) has two equilibria: 0 and one positive equilibria X̄1.
The basin of attraction of trivial equilibrium contains the set {x ∈ R4

+ : 0 ≤ x < X̄1}. The basin of
attraction of X̄1 contains the set {x ∈ R4

+ : x ≥ X̄1, E ≤ KC}.
(iii) if 0 < Fp < F̄ ∗∗

p , and RM > 1, then system (14) has three equilibria: 0 and two positive equilibria X̄1
and X̄2 such that X̄1 < X̄2. The basin of attraction of 0 contains the set {x ∈ R4

+ : 0 ≤ x < X̄1}.
The basin of attraction of X̄2 contains the set {x ∈ R4

+ : x ≥ X̄2, E ≤ KC}.

Proof. See Appendix D. □

Using the previous results, and assuming R > 1 and RM > 1, we can deduce the following results for the
delayed system (12).

Theorem 3.5. There exists a threshold value F ∗∗
p such that

(i) if Fp > F
∗∗
p , 0 is the only equilibrium for the system (12)

(ii) if 0 < Fp < F
∗∗
p , R > 1, and R >

µMr

(1− r) (νF + µF ) γ , we have Ē1, Ē2 ∈ [0,K]. The system has three

equilibria: trivial equilibrium 0 and two positive equilibria X̄1 and X̄2 such that X̄1 < X̄2.

Since model (12) is a delayed cooperative model, we can deduce from [4] the following result about the
stability of equilibria:

Theorem 3.6. Let Fp > 0. Then, the following holds for the model (12):

• If 0 < Fp ≤ F
∗∗
p , then the basin of attraction of the trivial equilibrium contains {x ∈ R4

+ : x ≤ X̄1,Fp}.
• If Fp ≥ F

∗∗
p , then trivial equilibrium is GAS on R4

+.

Finally we can deduce the following GAS result for the PWS-DDE system (3) (or system (2)).

Theorem 3.7. Let Fp > 0 then the following holds for the model (2):

• If 0 < Fp ≤ F
∗∗
p , then the basin of attraction of 0 contains {x ∈ R4

+ : x ≤ X̄1,Fp}.
• If Fp ≥ F

∗∗
p , then 0 is GAS on R4

+.

In fact, the last theorem is very useful to derive a long term control strategy. Indeed, if the control stops,
the system will automatically recover. In the other hand, using only long time massive releases of pheromones
is not a sustainable option. However, we know that once the non-massive control starts, i.e. 0 < Fp < F

∗∗
p ,

the system become bistable, such that locally, at least in {x ∈ R4
+ : x ≤ X̄1,Fp}, 0 is stable and attractive,

for a given (small) amount of pheromones, Fp.

3.3. On a long term control strategy related to the level of infestation of mirids

The previous theoretical results lead to two strategies for long term control
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Table 2
Values used for simulations of model (2) with R > 1 [1] and RM > 1.

b r KC 1/νL 1/νF µL µA µM µF µE

3.28 0.58 5000 25 10 0.01 0.08 0.08 0.08 0.001

α γ 1/νE = τ1 τ2 τ3

0.1 1 15 25 10

• When the mirid population is small or at an invading stage (not established in the field, but starting to
settle), thanks to the size of the plot, a limited number of traps (releasing a small amount of pheromones)
can be sufficient to control it. In other words, knowing the population size, it could be possible to estimate
Fp, with 0 < Fp < F

∗∗
p , such that the mirid population stays in [0, X1,Fp [, i.e. inside the basin of

attraction of 0.
• When the population is large, at equilibrium for instance, then, to reduce sharply the population, we

need to increase the number of traps in order to release enough pheromones/Fake females, using the
GAS property of 0 when Fp > F

∗∗
p . This is what we called the “maximal treatment”. Thus, according to

the GAS of 0, there exists t∗ > 0, such that for t > t∗, the mirid population becomes small enough that a
small amount of pheromones is sufficient to maintain the population under a given threshold, here X(1),
the lowest equilibrium for a given (small preferably) amount of pheromones Fp ≪ F

∗∗
p . This is what we

called the “minimal treatment”. Altogether, when the population is large, the best way to control it is
to first start the control with the “maximal treatment”, followed by the “minimal treatment”.
To summarize the “maximal–minimal treatment” strategy: for a given large amount of pheromones,
Fp > F

∗∗
p , it suffices to estimate the time, t∗, necessary to enter [0, X(1)[, where X(1) is estimated for

a given small amount of pheromones, F (1)
p ≪ F

∗∗
p . Since X(1) cannot be estimated analytically, we can

only estimate the minimum time, t∗, numerically. This is what is illustrated in the next subsection.

3.4. Applications — numerical simulations

In this section, we illustrate the previous results. The values used for the next simulations are given in
Table 2, (taken from [1]), leading to the case R = 4.5547 > 1 and RM = 7.4211.

According to the theoretical part and the parameters values, for a maximal control, we need to release
more than F ∗∗

p ≈ 1162 fake females (per ha), in other words for any value of Fp larger than F ∗∗
p , the system

will converge to 0 for t sufficiently large. However, as explained above, we are not interested in a permanent
maximal treatment, but we only want to reach (rapidly) a level of population where the damages can be
acceptable and where the population can be controlled with a small amount of pheromones. That is why we
choose F (1)

p to estimate X(1) and thus target the box [0,X(1) − ϵ], for a given 0 < ϵ≪ 1.
In the sequel, we initiate the simulations at the wild equilibrium. We choose Fp = 100 such that we

estimate numerically X(1) = (95.1836, 35.8291, 4.4550, 13.5112) (the red dot in Fig. 6(b)). Hence, in the
next simulations, for a given Fp > F

∗∗
p , we estimate the minimum time necessary to enter [0, X(1) − ϵ].

In Figs. 5 and 6, we present an example of the control strategy described above: first, we consider a large
amount of pheromones traps, such that Fp = 2000, to use the GAS property of 0, in order to reach the
box [0,X(1)[, where X(1) is estimated based on the targeted level of control, i.e. F (1)

p = 100. Numerically,
we estimate that 440 days of maximum treatment are necessary to enter the basin [0,X(1)[. Then, for all
t > 440 days, we remove some pheromones traps in order to reach the value F (1)

p = 100: the system continues
to converge to 0, thanks to the LAS property of 0 in [0,X(1)[, when F

(1)
p = 100.

Note, that the previous results correspond to the case when male trapping occurs, α = 0.1. If we assume
that there is no trapping, i.e. α = 0, then the MT1 ≈ 3576, and also the minimal time necessary to enter
the basin [0,X(1)[ increases to 536 days but we have to use the double amount of pheromones (fake females)



12 M. Djoukwe Tapi, L. Bagny-Beilhe and Y. Dumont / Nonlinear Analysis: Real World Applications 54 (2020) 103082

Fig. 5. Mating disruption and Trapping Control with, first Fp = 2000 (solid lines), then Fp = 100 (dotted lines) once the system has
reach [0,X(1)[.

Fig. 6. Maximal Control with, first, Fp = 2000 (blue solid line), then, once the system has reached [0,X(1)[, the minimal control
starts with Fp = 100. The system continues to converge to 0 (red solid line), but slowly. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

MT = 4000. That is why the combination of mating disruption and trapping is of utmost importance, not
only to minimize the duration of the treatment but also to minimize the release of pheromones.

Fig. 6(a), shows different phase of the control: a first phase, where only the male population is reducing,
then the eggs population, before the whole system (E+F+A+M) starts to decay. This shows that in constant
environmental conditions (constant parameters) the duration of the control is crucial. In Fig. 6(b), the green
box represents the basin [0,X(1)]: the red trajectory represents the trajectory when the control is defined
by Fp = 100. Of course, in that case, since 0 is LAS in [0,X(1)], the system continues to decay (slowly)
to 0. Of course, the time necessary to enter the basin [0,X(1)] depends on the initial maximum control,
the larger, the shorter the time needed. However, as showed in Fig. 7, it seems that choosing Fp between
2000 and 4000 provides the more interesting results. However, the cost of pheromones need to be taken into
account in order to derive the best strategies. The previous strategy is based on two given values for Fp.
Other strategies based on the use of several values for Fp could be chosen in order to reduce progressively the
amount of pheromones and to use the LAS of 0 in the box [0,X(1)

Fp
], for a given Fp. However, from a practical
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Fig. 7. Time needed to enter the basin [0,X(1)
Fp

] for a given Fp > F ∗∗
p .

point of view, reducing Fp, while convenient on the paper, seems to be more difficult from a practical point
of view.

4. About mating disruption strategy when the pods carrying capacity is periodic

Like in [1], we have to consider that the mirid population dynamics is mainly related to the pres-
ence/absence of pods, but not only. Indeed, the cacao production in Cameroon is seasonal, which is not the
case, for instance, in Central America. Thus, in Cameroon, the pods carrying capacity, KC , is not constant
but has to be approximated by a yearly periodic function. Last but not least, we know that, in the absence
of pods, mirids can maintain in the area using secondary host plants, like Cola nitida, or Ceiba pentandra [1].
That is why we consider the following pods carrying capacity KC(t) = K(t) + C, where C > 0 is a given
constant, equal to 100 [1], and K(t) is defined as in [1] (see Table E.3): see Fig. 8.

In that case, the control strategy is rather different than in the constant coefficients case. Here, knowing
the inter-period (from March to June), when no cocoa pods are available, is rather crucial: it seems obvious
to start the control at the beginning of this period , i.e. in March, in order to use the LAS property of model
(3), when K(t) ≡ 0, to avoid the establishment of the mirid population within the cocoa plantation when
K(t) rises again (in July).

We thus consider the following non-autonomous periodic DDE-PWS system

dx

dt
= f(x, xτ , t) :=

{
f1(x, xτ2 , xτ3 , t) if F + Fp ≤ γM
f2(x, xτ2 , xτ3 , t) if F + Fp ≥ γM

(16)

where x = (E,F,A,M)t,

f1,per(x, xτ , t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b e−τ3 µA A(t− τ3)
(

1− E(t)
C +K(t)

)
− (νE + µE)E(t)

r νE e
−τ2 µL , E(t− τ2)− (νF + µF )F (t)

νF F (t)− µA A(t)

(1− r) νE e
−τ2 µL E(t− τ2)−

(
µM + α

Fp

F (t) + Fp

)
M(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(17)
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and

f2,per(x, xτ , t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b e−τ3 µA A(t− τ3)
(

1− E(t)
C +K(t)

)
− (νE + µE)E(t)

r νE e
−τ2 µL E(t− τ2)− νF γ

M(t)
F (t) + Fp

F (t)− µF F (t)

νF γ
F (t)

F (t) + Fp
M(t)− µA A(t)

(1− r) νE e
−τ2 µL E(t− τ2)−

(
µM + α

Fp

F (t) + Fp

)
M(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

The methodology to study the periodic PWS-DDE (16) follows the methodology of the previous sections,
thanks to the fact that 0 < C ≤ K(t) + C ≤ Kmax + C. Indeed, for i = 1, 2, it is straightforward to check
that

fi,C(x, xτ ) ≤ fi,per(x, xτ , t) ≤ fi,C+Kmax(x, xτ ), for all t > 0. (19)

1. In the male abundance case, f1,C and f1,C+Kmax are delayed system that verify the (QM) condition.
Thus, using (19), and applying Theorem 5.1.1 [10], we deduce that

x1,C(t) ≤ x1,per(t) ≤ x1,C+Kmax(t), for all t > 0.

where x1,per is the solution of the periodic male abundance equation, x1,C and x1,C+Kmax are
respectively solutions of the autonomous male abundance system (6), with K ≡ C and K ≡ C +Kmax
respectively. Thus, using Theorem 3.2, we can deduce

Theorem 4.1

• Assume R0 < 1, then x1,per converges to 0.
• Assume R0 > 1, then the male abundance system is permanent, i.e. x1,per > 0 for all t > 0.

where R0 is defined in (8).

Remark 4.1 Following [1], when R0 > 1, it is possible to show that the male abundance system
converges to a unique periodic solution, x∗

per(t), defined as follows:

E∗
per(t) =

(
1− 1
R

)
(C +K(t)) , F ∗

per(t) = r νE e
−τ2 µL

µF + νF
E∗

per(t),

A∗
per(t) = νF

µA
F ∗

per(t), M∗
per(t) = (1− r) νE e

−τ2 µL

µM + α
Fp

F ∗
per(t) + Fp

E∗
per(t).

2. The male scarcity case is rather more difficult to study. However, we can use the second inequality in
(19): f2,per(t, x, y) is nondecreasing in y; thus, according to Theorem 3.6 in [12], page 29, we deduce
that x2,per ≤ x2,C+Kmax , such that the methodology developed in Section 3.2, can be applied to the
system

dx

dt
= f2,C+Kmax(x, xτ ).

Hence, we deduce that there exists F ∗∗
p,C+Kmax > 0 such that 0 is GAS when Fp > F

∗∗
p,C+Kmax > 0,

i.e. x2,C+Kmax converges to 0 and so is x2,per as t goes to +∞.
However, for a practical application, this result is not interesting since the amount of pheromones to
release can be very large.
Another possibility is to focus on the case where K ≡ 0 from March to June, such that we know
that periodic system reduces to the autonomous system with carrying capacity C, in other word:
fi,per(x, xτ ) = fi,C(x, xτ ). In that case, we are able to estimate F ∗∗

p,C . When C = 100, then F
∗∗
p,C ≈

23.23.
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Fig. 8. Time evolution of the periodic system, without control.

4.1. Periodic case — simulations

As explained above we focus on the period from March to June, i.e, we adapt the starting time of our
control: either at the end or at the beginning of that period.

Thus, we consider two starting times: t = 390 (beginning of July), see Fig. 9, and t = 300 (beginning of
March), see Fig. 10. When choosing Fp = 20 as the targeted amount of pheromones, we are looking at the
time t∗ necessary to enter and also stay inside [0,X(1)[, with X(1) = (27.11, 10.20, 1.70, 4.04) (the red dot in
Fig. 9(b) and Fig. 10(b)).

As illustrated in Fig. 9, starting lately within the no-production period, at tstart = 390, will have an effect
during the production period, with a population fourth times less than without control, and it is only after
470 days of Fp = 100 treatment that the trajectory enter the box [0,X(1)[ and then continues to decay to
zero with Fp = 20.

In contrary, starting the treatment early, at tstart = 300, within the no-production period, the population
decreases rapidly, and in 217 days, the trajectory enter the box [0,X(1)[ and then continues to decay to zero
with Fp = 20. In addition, the population has become so small, that even when the pods are back, the mirid
population stay within [0,X(1)[, event with a small amount of pheromones, Fp = 20.

In fact, the periodic case, for mating disruption and trapping control, is the most favorable case, as we
can use the no-production period, and thus when the mirid population is at its lowest, to be very efficient,
especially if the treatment starts early (beginning of March, for instance).

5. Conclusion

We have considered a mating disruption and trapping model to study the opportunity of using sex-
pheromones to control a mirid population. We obtain a PWS-DDE model, a kind of model that is not so
common in Mathematical Biology. Thanks to the previous works done by some of the authors and a suitable
use of the Monotone System theory, we were able to provide theoretical results that helped us to provide
interesting strategies that could be used in the field for long term control.

Of course, this work provides only partial insight of this complex system. Using a temporal approach, we
implicitly assume that mirids and pheromones are homogeneously distributed, which is not the case in the
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Fig. 9. Maximal Control, with Fp = 100, then, once the system has reached [0,X(1)[ at time tmax = 860, the minimal control starts
(dotted lines), with Fp = 20: (a) trajectories of the system (b) Zoom of the trajectory near [0,X(1)[ (blue solid line: maximal control;
red solid line: minimal control. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Maximal Control, with Fp = 100, then, once the system has reached [0,X(1)[ at time tmax = 517, the minimal control starts
(dotted lines), with Fp = 20, : (a) trajectories of the system (b) Zoom of the trajectory near [0,X(1)[ (blue solid line: maximal control;
red solid line: minimal control. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

field. A next step would be to take into account the spatial component, like in [13]. Last, but not least, it is
well known that mirids aggregate on some particular trees, such that aggregation and dispersion processes
should be taken into account, and also the impact of these behaviors in terms of the distribution and the
density of the pheromone traps. This may require another modeling approach, thanks to the fact that very
few knowledge is available about pheromone spreading, mirid’s sensitivity to pheromone, etc.
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Appendix A. Piecewise smooth (PWS) dynamical systems

We just provide some definitions related to PWS dynamical systems, given in [14]. For a general
presentation, the interested readers are referred to [15] or [4].

Definition A.1. A piecewise-smooth flow is given by a finite set of ODEs ẋi(t) = Fi(x, µ), x ∈ Si; where
∪iSi = D is a domain, each Si has a non-empty interior.

The intersection
∑

ij := Si ∩ Sj is either an Rn−1-dimensional manifold included in the boundaries ∂Sj

and ∂Si, or is the empty set. Each vector field Fi is smooth in both state x and parameter µ, and defines a
smooth flow ϕi(x, t) within any open set U ⊇ Si.

A non-empty border between two regions
∑

ij will be called a discontinuity set, discontinuity boundary,
or a switching manifold.

Definition A.2 ([14]). Let ẋ(t) = f(x(t), x(t − τ)) be a delay dynamical system. A simple example of a
PWS-DDE composed of two smooth vector fields is

ẋ(t) =
{
f1(x(t), x(t− τ)) if f(x(t), x(t− τ)) ≤ 0
f2(x(t), x(t− τ)) if f(x(t), x(t− τ)) ≥ 0. (A.1)

where x(t) ∈ Rn, and f1, f2, f are sufficiently smooth functions. Transitions between the different vector
fields occur on the switching surface defined by f = 0.

Definition A.3 ([14]). We define a PWS-DDE to be a collection of smooth vector fields

ẋ(t) = fm(xt) (A.2)

indexed by a mode variable m ∈M where xt ∈ C([−τ, 0],Rn) is the solution segment x(t+s) for −τ ≤ s ≤ 0
andM is a finite set. (Eq. (A.2) encompasses distributed delays as well as discrete delays; however, we deal
here with discrete delays only.) Associated with this is a collection of events e ∈ E where E is a finite set and
e consists of a pair πe = (min,mout), a smooth event function he(xt) : C([−τ, 0],Rn) ←→ R and a smooth
jump function ge(xt) : C([−τ, 0],Rn)←→ C([−τ, 0],Rn).

The event function he = 0 implicitly defines a switching manifold marking the transition point between
the (potentially) different vector fields (fmin

, fmout) and the jump function ge determines the instantaneous
change of state that occurs upon impact with the switching manifold. The minimal state needed to uniquely
identify a particular trajectory of the system starting at time t0 is thus xt0 along with the mode m at time t0.

Definition A.4. Following [15], the degree of smoothness at a point x0 in a switching set
∑

ij of a piecewise-
smooth ODE is the highest order r such the Taylor series expansions of ϕi(x0, t) and ϕj(x0, t) with respect
to t, evaluated at t = 0, agree up to terms of O(tr−1). That is, the first non-zero partial derivative with
respect to t of the difference [ϕi(x0, t)− ϕj(x0, t)]|t=0 is of order r.
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Appendix B. Proof of Proposition 3.1

Setting the left-hand side of system (10) to zero, and after some straightforward calculations, we get the
following equation in E to solve:

ψ(E) := E ξ(E)ϕ(E) = η(Fp, E). (B.1)

where

ξ(E) = γ (1− r) e−τ2 µLνE νF e
−τ3 µA b

(
1− E

KC

)
− µA (α+ µM ) (νE + µE), (B.2)

η(Fp, E) = µA µF µM (νE + µE) be−τ3 µA

(
1− E

KC

)
Fp. (B.3)

and

ϕ(E) = b e−τ3 µA r νE e
−τ2 µL

(
1− E

KC

)
− µA (νE + µE).

Therefore, assuming that Eeq is a positive root of (B.1), the other components of the non trivial equilibria
of (10) are:

Feq = ϕ(Eeq)

µF be−µAτ3

(
1− Eeq

KC

)Eeq, (B.4)

Aeq = (νE + µE)

e−τ3 µAb

(
1− Eeq

KC

) Eeq, (B.5)

Meq = (1− r) νE e
−τ2 µL

µM + α
Fp

Feq + Fp

Eeq. (B.6)

Further, to ensure Feq > 0, we need to have ϕ(Eeq) > 0, that is Eeq must satisfy the condition:

Eeq < KC

(
1− µA (νE + µE)

r b νE e−τ2 µL e−τ3 µF

)
(B.7)

In fact, according to the definition of ψ(E), it is straightforward to check that ψ admits two real positive
roots in [0,K],

E1 =
(

1− µA (νE + µE)
b e−τ3 µA r νE e−τ2 µL

)
KC , and E2 =

(
1− µA (α+ µM ) (νE + µE)

γ (1− r) e−τ2 µLνE νF e−τ3 µAb

)
KC ,

provided that µA (νE + µE)
b e−τ3 µA r νE e−τ2 µL

< 1 and µA (α+ µM ) (νE + µE)
γ (1− r) e−τ2 µLνE νF e−τ3 µAb

< 1.
Thus, only the points of intersection between the straight line η(Fp, E) and the cubic ψ(E) that belong to

[0,min{E1, E2}] are of interest for us: see Fig. B.11. We denote by F ∗∗
p the value of Fp such that the straight

line η(Fp, E) is tangent to the indicated section of the graph ψ(E). Then, it is clear that for Fp > F ∗∗
p there

is no intersection between η(Fp, E) and Ψ (no positive equilibrium) while for 0 < Fp < F ∗∗
p , there are two

points of intersection (2 positive equilibria).
Finally, straightforward computations show that 0 is an absolutely stable equilibrium of system (10).
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Fig. B.11. Intersection between ψ(E) (in blue) and η(Fp, E) (in red) for three values of Fp. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Appendix C. Proof of Theorem 3.3

Assume 0 < Fp < F ∗∗
p . Then, let E(1)

eq and E
(2)
eq , E(1)

eq < E
(2)
eq be the roots of (B.1). We denote the

respective equilibria by X(1) and X(2). To show that any equilibrium of (10) is a regular equilibrium of (2),
we need to show that it belongs to the male scarcity region. Using the previous relationships, it suffices to
study the sign of Feq + Fp − γMeq. In fact, we can show that

Feq + Fp − γMeq = 1

µM + α
Fp

Feq + Fp

(
µM (Feq + Fp) + αFp − γ(1− r)νEe

−τ2µLEq

)
Thus, studying the sign of Feq + Fp − γMeq is equivalent to study the sign of(

µMFeq − γ(1− r)νEe
−τ2µLEq

)
+ (α+ µM )Fp.

In fact we have(
µMFeq − γ(1− r)νEe

−τ2µLEq

)
+ (α+ µM )Fp = (C.1)

=

⎛⎜⎜⎝µM
ϕ(Eeq)

µF be−µAτ3

(
1− Eeq

KC

) − γ(1− r)νEe
−τ2µL

⎞⎟⎟⎠Eq + (α+ µM )Fp (C.2)

= r νE e
−τ2 µL

⎛⎜⎜⎝rµM

µF
− µMµA (νE + µE)

µF be−µAτ3

(
1− Eeq

KC

) − γ(1− r)

⎞⎟⎟⎠Eq + (α+ µM )Fp (C.3)
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using the inequality E(1)
eq < E

(2)
eq < E∗, we have:

≥ r νE e
−τ2 µL

⎛⎜⎜⎝rµM

µF
− µMµA (νE + µE)

µF be−µAτ3

(
1− E∗

KC

) − γ(1− r)

⎞⎟⎟⎠Eq + (α+ µM )Fp

= r νE e
−τ2 µL

(
rµM

µF
− µMµA (νE + µE)R

µF be−µAτ3
− γ(1− r)

)
Eq + (α+ µM )Fp

and after some simplifications

= r νE e
−τ2 µL

(
rµM

µF + νF
− γ(1− r)

)
Eq + (α+ µM )Fp.

Using (9), we deduce

(
µMFeq − γ(1− r)νEe

−τ2µLEq

)
+ (α+ µM )Fp = (α+ µM )

E∗

(
FpE

∗ − EqF
∗
p

)
.

Since E
(1)
eq < E

(2)
eq < E∗, then FpE

∗ − EqF
∗
p >

(
Fp − F ∗

p

)
Eq. Using the fact that F ∗

p < Fp, then
FpE

∗ − EqF
∗
p > 0, such that Feq + Fp − γMeq > 0. Therefore, in this case, X(1) and X(2) are both in

the male scarcity region. Hence, they are also equilibria of (2).
If Fp < F ∗

p and Eeq > E∗, considering the fact that for 0 < Fp < F ∗
p , we have E(1)

eq < E∗ < E
(2)
eq and

using the same method as previously, we obtain Fp + F
(2)
eq − γM (2)

eq < 0.
Therefore, X(2) is not in the male scarcity region. Hence, it is not an equilibrium of (2). Taking into

consideration the previous results regarding X(1) and X(2), the theorem is proved.

Appendix D. Proof of Theorem 3.4

The first assertion is obvious. Setting the first, second, and fourth terms in (13) equal to zero, we derive

F̄ = r νE e
−τ2µL

µF
Ē, Ā = (νE + µE)

b e−τ3 µA

(
1− Ē

KC

) Ē, M̄ = ((1− r) νE e
−τ2 µL) (F̄ + Fp)

µM F̄ + (µM + α)Fp

Ē

Solving the third equation equal to zero and substituting the expressions for F̄ , Ā and M̄ above, we obtain
an equation for Ē in the form

Eϕ(E) = η(Fp, E), (D.1)

with

η(Fp, E) = µMrνEe
−τ2µLE + µF (α+ µM )FP

ϕ(E) = (µF + νF )(1− r)νEe
−τ2µLγR

(
1− E

KC

)
(D.2)

In other words, if (D.1) admits roots, they is intersection between a parabola and a straight line: see
Fig. D.12.

In fact, solving (D.1) is equivalent to solve the following quadratic equation

R(1− r)νEe
−τ2µL (νF + µF ) γ
KC

E2 + νEe
−τ2µL (µMr −R(1− r) (νF + µF ) γ)E+

+µF (α+ µM )Fp = 0.
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Fig. D.12. Intersections between the graphs of Eϕ(E) (in blue) and η(Fp, E) (in red) for different values of Fp. The black dots
represent the intersection points on the interval [0, K] (K = KC ). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Then, we estimate the discriminant

∆ =
(
νEe

−τ2µL (µMr −R(1− r) (νF + µF ) γ)
)2 − 4R(1− r)νEe

−τ2µL (νF + µF ) γ
KC

µF (α+ µM )Fp

or equivalently

∆ =
(
νEe

−τ2µLµMr (1−RM )
)2 − 4R(1− r)νEe

−τ2µL (νF + µF ) γ
KC

µF (α+ µM )Fp

Clearly, if Fp > F
∗∗
p , with

F
∗∗
p = (νEe

−τ2µLµMr (1−RM ))2

4R(1− r) (νF + µF ) γµF (α+ µM )KC ,

then ∆ < 0, and no positive real roots exist. Otherwise, when F < F
∗∗
p , two real roots exist. If in addition,

we assume that
RM > 1,

then, we obtain the following positive real roots Ē1 < Ē2:

Ē1 = 1
2

(
νEe

−τ2µLR(1− r) (νF + µF ) γ − µMr −
√
∆

R(1− r)νEe−τ2µL (νF + µF ) γ

)
KC

Ē2 = 1
2

(
νEe

−τ2µLR(1− r) (νF + µF ) γ − µMr +
√
∆

R(1− r)νEe−τ2µL (νF + µF ) γ

)
KC .

Using (D.1) and (D.2), it is straightforward to show that Ē1 < Ē2 < KC . Assume Fp > F
∗∗
p , then setting

ȳq =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

KC

r νE e
−τ2µL

µF
q

γνF (1− r) νE e
−τ2 µL

µM
(1− r) νE e

−τ2 µL

µM

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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Table E.3
Daily mean number of cocoa pods.

Months Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun

KC (t) 0
32000

31
160000

31
416000

30
544000

31
304000

31
416000

31
120000

31
8000

28
0 0 0 0

where q is any real number, such that q ≥ K. We check that g2(ȳq, ȳq) ≤ 0. Thus, by Theorem 7 [4], 0 is
GAS on ΩK =

⋃
q≥K [0, ȳq], which implies that 0 is GAS on R4

+ since ΩK is an absorbing set.

Appendix E. Biological data

Following [1], we consider the data issued from [16] for the time evolution of the pods carrying capacity
along the year.
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