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1 Introduction

1.1 Role of cereal crops and food security, climate

change

Cereal crops are plants belonging to the family Poaceae (also known as Gramineae),
and are the most critical source of food for the world population (FAO 2002). They are
cultivated worldwide for their edible grains which have high nutritional content in terms
of energy, protein, carbohydrates, fiber as well as a variety of macronutrients
(McKevith 2004). The cereals thus make an important part of the human diet and
livestock feed. The most widely cultivated cereals are wheat, rice, maize, barley,
sorghum, millets, oats and rye with an all-time high total production of 2.742 billion
tones in 2019 (FAO 2020). However, the number of under-nourished people in the
world has increased in the recent years and it is projected to reach 841.4 million by
2030, not considering the impact of the Covid-19 pandemic (FAO et al. 2020). Even
though the total cereal yield is expected to increase by 1.1% per annum (OECD and
Food and Agriculture Organization of the United Nations 2020), it might not be
sufficient to achieve zero hunger and food security targeted for 2030 (FAO et al. 2020),
especially if we take into account the regional disparity regarding the yield. In addition,
the agriculture industry will be challenged by the following key factors in the coming
years —

e An increase in global food demand triggered by a growing population.

e Economic growth and increase in purchasing power of developing countries
which would hasten a dietary transition with higher consumption of meat, fish
and vegetables, adding pressure to natural resources (FAO 2017).

e Climate change studies indicate a reduction in crop yields due to extreme
weather conditions resulting in drought, floods, cyclones, intense pest attacks
which is expected to affect predominantly the tropical regions (FAO 2017;
Maggio, Van Criekinge, and Malingreau 2016; Rosenzweig et al. 2014;
Rosenzweig and Parry 1994).

e Shift towards sustainable and organic farming practices: the growing concerns
over global warming and environmental degradation from conventional
agriculture has led to the popularity of organic produce, with a doubling in the
area under organic farming in the last ten years (Lernoud and Willer 2019).
However, at present, the yield from sustainable farming practices is relatively
less than from conventional (Lal 2016; Muller et al. 2017).

e Depletion of natural resources and reduction in cultivable land area.

To sum up, the agricultural production systems need to reinvent themselves to produce
more in an economically, environmentally, and socially viable manner. The use of
technology is favored for tackling these challenges by adopting smart crop breeding
programs to develop resistant and appropriate cultivars (Parent et al. 2018); and
informed farm management practices to optimize the yield with minimal exploitation
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of the available natural resources (Basso and Antle 2020; Gebbers and Adamchuk
2010). In the next section we will see how the use of technology in agriculture can
help to overcome these challenges.

1.2 Plant Phenomics as a tool to support cereal breeding

programs
The recent advances in plant genomics have generated new opportunities to increase
plant genetic variability, with tremendous potentials for crop improvement. However,
the effective contribution of these advances to increase crop productivity depends on
how tightly genotypic traits can be linked with those eco-physiological mechanisms
that produce a distinguishable response of the genotype to the environment (Tardieu
et al. 2017). The result of that response is known as phenotype.

Plant phenomics —the observation of plant phenotypic traits— is the discipline that must
fill the gap between genotype and phenotype (Fiorani and Schurr 2013). Traditionally,
field phenotyping has relied on manual or destructive, low-throughput, observations
of phenotypic traits such as plant height, crop development stage, and yield
components. The development, in the recent years, of high-throughput field
phenotyping platforms (Figure 1) and instruments —capable of acquiring and
processing efficiently massive volumes of /n situ observations over field experiments—
has opened a new era of plant phenomics. This has an enormous potential impact on
the efficiency of breeding programs, as it would enable plant breeders to phenotype
large number of genotypes accurately, thus allowing them to evaluate and identify the
best ones (Araus and Cairns 2014).

Figure 1 Aerial view of wheat phenotyping platforms at Queensland, Australia and Gréoux les Bains, France used
in this study.

1.2.1 Vectors and sensors for field high-throughput phenotyping
Field trials for plant breeding require the monitoring of a large number of cultivars
under multiple environmental conditions. To satisfy this need, field phenotyping
platforms are designed to conduct factorial experiments—genotypes x treatments x
replicates— over thousands of microplots (with size usually between 10 and 20 m?). In
order to efficiently monitor such large-scale experiments, high-throughput methods
are required. The type of vectors used in phenotyping platforms are classified roughly
in two groups: ground level or /n situ vectors, and aerial vectors (Table 1).
6



Unmanned aerial vehicles (UAVs) are the most widely used aerial vector (Xie and Yang
2020; Yang et al. 2017), and have a higher throughput compared to the ground
vectors, requiring less than a second to acquire observations for a given microplot.
The main drawback of UAVs is the low autonomy of the batteries, which prevents their
use to cover very large areas.

Ground vectors, by contrast, have a higher autonomy but a lower throughput
compared to UAVs. In the last decade, within the group of ground vectors, the
development of autonomous ground-based robots (Deery et al. 2014; Madec et al.
2017; Quaglia et al. 2020; Ruckelshausen et al. 2009) have constituted a major
evolution in the field of plant phenotyping. This is mainly due to their ability to carry
multiple sensors (Table 1) and their relatively higher throughput. Handheld
instruments were developed as a cost-efficient alternative to autonomous ground
robots (Kaur, Donis-Gonzalez, and St. Clair 2020; Khanna et al. 2015; Reynolds, Baret,
et al. 2019), that integrate small-size and lightweight cameras or portable
spectrometers. With a throughput of about 1-2 minutes per microplot, handheld
sensors are a suitable option for small-size phenotyping platforms. Finally, fixed
systems —in most cases equipped with downward-looking RGB camera and/or a
portable spectrometer— can monitor a relatively small footprint (about 10 m?) with a
sub-daily frequency (Reynolds, Ball, et al. 2019; Velumani et al. 2020; Yalcin 2018),
which is especially useful for phenological traits among others. These fixed cameras
are a priorinot suitable for large phenotyping platforms, but they can be used to create
a network of sensors on distant experimental fields, as they can communicate by GSM
with a cloud storage infrastructure in real time. Sensor networks can be very useful to
provide specific phenotypic traits of certain genotypes over contrasted environments,

at a relatively low cost.
Table 1. Characteristics of the main phenotyping platforms and vectors.

instruments

Ground
Type Vector Sensors Autonomy Throughput Sampling
covered .
Distance
= Unmanned Multispectral camera
= . . P = RGB camera 15-30 min 3-5ha  0.7s/microplot  0.1-1cm
g Air Vehicle R\
(UAV) ~ N\ Thermal camera
Pt Multispectral camera
Autonomous "1 RGB camera _
ground-based - s a Thermal camera 7h 1.5-2 ha 30s/ microplot 0.1-1mm
-g robots AR TN LiDAR
o
G} %
Handheld i ‘ RGB camera 1-2min/
Portable 4h 0.2-0.4 ha 0.1-0.5mm

; microplot
Api S spectrometer




4 RGB camera

Fixed Portable 6 months 10 m? - 0.3-0.5 mm
instruments 3 spectrometer

Over the years, numerous works have been published using different sensors which
observe at different wavelengths of the electromagnetic spectrum to study specific
aspects of the plant physiology and canopy structure. Roughly, we can differentiate
five main groups:

e RGB cameras which are one of the most widely used instruments to access plant
physiological traits due their affordability (Araus and Kefauver 2018; L. Li,
Zhang, and Huang 2014). They are versatile, lightweight and they can be
mounted in any phenotyping vector, providing optical data at a very high spatial
resolution.

e Multispectral cameras, which provide information in different channels within
the visible, near infrared (NIR, from at 0.75 to 1.4 um) and short-wave infrared
(SWIR, 1.4 to 2.4 pm) domains of the electromagnetic spectrum. The
reflectance on different spectral bands allows a better characterization of crop
biophysical variables like green leaf area index (GAI), or leaf and canopy
chlorophyll content, (Blancon et al. 2019; Daughtry 2000; Hunt et al. 2010; Jay
et al. 2019; Laliberte et al. 2011; Verger et al. 2014).

e Portable spectrometers: Hyperspectral sensors are usually expensive systems
capable of observing across several hundred wavelengths with fine bandwidth
simultaneously. They are highly useful to characterize the crop biochemistry (F.
Li et al. 2014; Yendrek et al. 2017) and for disease identification and
quantification (Mahlein 2010; Mahlein et al. 2019; Nagasubramanian et al.
2019), similar to the applications of multi-spectral sensors.

o LiDAR (Light detection and ranging): LiDAR are active sensors initially developed
to measure distance, based on the phase delay between an emitted light beam
at a given trajectory and the reflected beam after hitting an object within the
trajectory. They have gained popularity for plant phenotyping as the 3D point
clouds generated by LiDAR provide access to canopy structure, height
estimations and individual plant detections (Lin 2015; Lumme et al. 2008;
Paproki et al. 2011; Paulus et al. 2014; Velumani et al. 2017). On field
phenotyping applications, LiDAR are often restricted to ground vehicles as the
range of the instrument is usually below 5 meters. In the recent years, UAV-
mounted LiDAR systems are gaining popularity due to the introduction of
advanced and light-weight systems (Lin and Habib 2021; Shendryk et al. 2020;
Zhou et al. 2020)

e Thermal sensors allow the measurement of canopy temperature. Observing the
dynamics of the canopy temperature allows to evaluate the altered rates of
photosynthesis and transpiration which could be indirectly linked to crop
responses to biotic and abiotic stresses (Alchanatis et al. 2010; Deery et al.
2016; Gémez-Candodn et al. 2016; Jones et al. 2009; Ludovisi et al. 2017).
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The choice of imaging system and the acquisition vector is highly dependent on the
spatial/temporal/spectral resolution required for the application, extent of the study
area, operational cost and acceptable error rate. In this study, we will exclusively work
with RGB cameras, that permit observations under the visible range, providing high
spatial resolution at an affordable cost. In the following section we will detail different
traits and the throughputs at which they are accessible.

1.2.2 Methods and algorithms to derive phenotypic traits from

RGB sensors
The advances in image analysis have made possible the estimation of a variety of plant
traits. These traits may be broadly grouped into two categories — a) traits that
characterize the canopy structure b) traits that are associated to the individual
plant/organ characteristics. In Table 2, we resume the traits accessible under field
conditions, the methods currently used and their TRL, technological readiness level
(Mankins 1995), which indicates the robustness and limitations of these methods.

Table 2 A summary of the canopy-level and organ-level traits accessible from RGB sensors along with their
technology level readiness.

. Technological
. Resolution .
Trait Method Readiness Level
Small (Wheat) | Small (Maize) |1(2(3[4|5|6(7(8|9
Vegetation Index Band comination 20cm 20cm
Canopy height Structure from motion lcm 2cm
Green fraction (GF) SVM 1 mm >mm
< CNN 0.2 mm 0.5mm
3 GAl 1D RTinversion (GF) 20cm 20cm
3 3D RTinversion (GF) 20cm 20cm
o . .
c . . RTinversion 1mm 5mm
8 Leaf orientation - -
3D inversion 1mm 5mm
Senescene SVM 1mm 5mm
Leaf rolling DHP X 5mm
Lodging Height / (SfM) lcm 2cm
Plant density at CNN 5mm
emergence Hand-crafted 0.2 mm
Stem density CNN (After harvest) 0.2mm 1mm
< Stem diameter CNN (After harvest) 0.2mm 2mm
3 Organ density CNN 0.5mm 0.5mm
gcun Organ size CNN 0.5mm 0.5mm
§ Phenological stage CNN 0.5mm 0.5mm
E Leaf size orientation Stereo 0.5mm 5mm
a | Leaf glaucousness Glaucousness 20cm 20cm
Weed infestation CNN 1-5mm
. Northern leaf blight 0.2-0.5mm
Disease - -
Jaunisse / Fusariose 0.1 mm




This table has been compiled by Dr Frederic Baret from the literature and the works
conducted within the CAPTE unit (refer to Madec (2019) for a summary extended to
all types of sensors). More details on traits extracted from images may be found in the
literature (Fiorani and Schurr 2013; Li et al. 2020; L. Li et al. 2014; Xie and Yang 2020).

Most of the canopy level traits are accessible at a relatively higher TLR. These traits
may be linked to the observed reflectance values via empirical methods and hence can
be easily accessed using model inversions, band ratioing or image segmentation. On
the other hand, for the plant/organ-level traits, the technological readiness is generally
low. This is because the state-of-the-art solutions to access these traits involve
convolutional neural networks (CNN) which outperform traditional hand-crafted
methods (Li et al. 2020). Unfortunately, the lack of large, diverse labelled datasets for
the CNN model training hinders the readiness of these traits. Besides, while some of
these methods (e.g., organ density) are at an already mature level, more work is
needed to increase their throughput.

Among the traits presented, those requiring a ground sampling distance (GSD) of more
than 2mm, such as canopy height, vegetation index, crop lodging, etc., are now
accessible at high throughput thanks to UAV observations. It should be noted that the
GSD requirements and acquisition procedures normally differ between small plants
(e.g., wheat, rice) and big plants (e.g., maize, sunflower). While the plant density at
emergence for big plants is accessible now from UAV images, the TLR of this trait for
small plants is not yet mature enough. Also, certain important traits such as
phenological stage, organ density and disease identification are not yet high
throughput for all crops and still require manual scoring in the field. The detection of
phenological stage and disease onset is important both for plant breeding and crop
management and requires frequent revisits to the field. Similarly, plant and plant organ
density are important indicators of emergence rate and crucial for yield prediction.

The estimation of these traits poses the following challenges which are difficult to
overcome using classical image analysis methods: a) tasks like phenology detection
and disease appearance and quantification require data with high spatial as well as
temporal resolution. b) even though a few methods have been proposed for specific
disease detection in certain crops and a few phenological stages, we lack
comprehensive pipelines covering all scenarios. c) The developed methods should be
robust with reproducible results to be made operational across different sites. Thus,
we require methods that can handle time series data and complexity of field conditions
— varied illumination and soil conditions, ever-growing and changing architecture of
crops and generalize over cultivars (Minervini, Scharr, and Tsaftaris 2015). On the
other hand, for precision farming, certain traits need to be computed across large
production farms to identify crop stress, disease and weed infestation at initial
appearance. This would require regular monitoring of the crops and near real-time
analysis of the data collected. For all of these reasons, it is important to develop
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automatic image processing pipelines that are accurate enough and cost-efficient
(Roitsch et al. 2019). This also explains why we will focus on the throughput of the
methodologies while describing the traits accessible from RGB images.

1.3 Phenotypic traits from visual identification of plants
and organs: potentials of deep learning methods for

plant phenomics

As mentioned, an important number of essential phenotypic traits related with plant
phenology, yield components or diseases are based on the visual identification of
plants and organs —e.g., fruits, anthers, spikes/heads, or infected leaves. During the
last decade, the development of pattern and object recognition algorithms from
computer vision has paved the way to retrieve such traits from optical images acquired
on high-throughput phenotyping platforms. Particularly, those methods based on
machine learning and, especially, on convolutional neural networks (CNN), also known
as deep learning methods, have garnered interest recently thanks to their versatility
to solve a wide variety of problems. Progressively, deep learning methods have
replaced hand-crafted methods —based on mathematical morphology (Jin et al. 2017)
or hand-crafted descriptors (Jin et al. 2017; Pan, Kudo, and Toyama 2009) and
conventional machine learning (Aydin and Ugur 2011; Niu et al. 2014) — providing
state-of-the-art results for several computer vision applications including image
classification, object detection and tracking, object counting, segmentation, image
enhancement, among others.

In the following section, we will see how the advances in computer vision and the
introduction of deep learning is transforming several traits previously accessible only
through manual sampling into high throughput ones.

1.3.1 A brief history of convolution neural networks

The potential of neural networks composed of convolutional layers for pattern
recognition was first showcased in LeNet (LeCun et al. 1989). Following this,
Krizhevsky, Sutskever, and Hinton (2012) developed AlexNet, a CNN-based image
classification model that achieved a remarkable 10% improvement in classification
accuracy on ImageNet, a popular benchmark dataset for real-world object classification
(Russakovsky et al. 2015). This was a significant event that led to an exponential
increase in the use of CNNs within the computer vision community. The availability of
large, annotated databases and the increase of the graphical processing units (GPUSs)
along with their affordability are the two main component that can explain this success.
Indeed to train their models, which was made of 62.3 million of parameters Krizhevsky,
Sutskever, and Hinton (2012) used two GPUs for 5 to 6 days on the 1.3 million images
of ImageNet .
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Figure 2 An example of a typical convolutional neural network architecture containing its three base components —
Convolutional layers, pooling layers and fully connected layers. (Guo et al. 2016)

Today, CNNs are the most widely used group of deep learning models and are
particularly suited for computer vision tasks. In general, a CNN is composed of three
main neural layers —

a)

b)

Convolutional Layers — These are the basic component of CNNs and are capable
of automatically abstracting low-level image features. Despite classical neurons,
a convolutional layer consists of a series of convolutional filters with varying
kernel sizes. Each neuron in the feature map is connected to a network of
neurons in the previous layer through a set of trainable weights. As a result,
the first convolutional layer convolves the input image into an intermediate
feature map which in turn is subject to consecutive convolutions by the deeper
layers producing various feature maps (Guo et al. 2016). Each feature map is
passed through a non-linear activation function which allows for the extraction
of non-linear features. One of the main advantages of convolutional operations
is that they retain the spatial connectivity by learning correlation among
neighboring pixels and are invariant to the location of the object within the
image. In addition, the number of parameters is lesser owing to the weight-
sharing mechanism within feature maps (Zeiler and Fergus 2012).

Pooling layers — A convolutional layer is usually followed by a pooling layer in
order to reduce the spatial resolution of the feature maps and the number of
trainable parameters. Like convolutional layers, pooling layers are also spatially
invariant since they aggregate the values over neighboring pixels. There exist
several strategies of aggregation during the pooling operations. The most
widely used ones are max pooling which takes the maximum value among the
neighboring pixels; and average pooling which takes the average value of the
neighborhood pixels (Boureau, Ponce, and Lecun 2010). The drawbacks of
these strategies have led to the development of other approaches such as:
spatial pyramid pooling (He et al. 2015) to handle objects of different scales,
sizes and aspect ratios; stochastic pooling (Zeiler and Fergus 2013) to overcome
overfitting to the training data by randomly selecting an activation within the
pooling regions and so on.
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c) Fully connected layers — The fully connected layers are placed at the bottom of
the network, following several stacks of convolutional and pooling layers. The
objective of this last part of the network is to interpret the features extracted
by the previous layers and convert them into high-level representations. These
layers are computationally intensive, containing almost 90% of the parameters
in @ CNN (Guo et al. 2016). Depending on the purpose of the network, an
appropriate activation is used before the last layer. For example, for a
classification task, a softmax function would be used to have a probability value
between 0 and 1.

Thus, the number of convolutional, pooling, fully connected layers and activation
functions are selected considering the type and complexity of the task and size of the
objects of interest. Another important factor to be considered while designing the
network architecture is the size of the labelled dataset available for model training.
Higher the number of network layers, higher are the number of network parameters
that need to be trained which makes the model convergence challenging.

In the case of traditional machine learning methods, the performance of the model
saturates when the size of the training data is increased beyond a certain point. On
the contrary, it has been showcased that the performance of deep learning methods
increases with respect to increments in the training data (Alom et al. 2019). This has
led to the enlargement of existing datasets such as ImageNet and collaborative efforts
among organizations to introduce new open datasets (Lin et al. 2014) in the last years.
Thus, the availability of large publicly annotated datasets and easy access to high-
power graphical processing units has accelerated the progress of deep learning
methods. In the recent years, several different architectures have been proposed
improving the state-of-the-art results on the ImageNet classification challenge. For a
detailed review on the state-of-the-art models in computer vision refer to (Alom et al.
2019; Guo et al. 2016; Khan et al. 2020; Voulodimos et al. 2018).

1.3.2 Deep learning for plant phenomics: a domain in expansion
Over the last few years, deep learning-based methods have been incorporated within
the data processing pipelines of plant phenotyping. The organization of challenges,
conferences, and availability of open labelled datasets under controlled conditions have
eased the initial transition from traditional machine learning approaches towards deep
learning methods. This would include the popular benchmark dataset of rosette plants
(Minervini et al. 2016) with successive challenges on leaf instance segmentation and
counting; the PlantVillage dataset (Hughes and Salathe 2015) to classify healthy and
infected leaves and characterize the type of stress. Not surprisingly, it was showcased
that deep learning methods outperformed previous state of the art methods on these
tasks with attempts to promote open-source codes and cross-domain applicability
(Dobrescu, Giuffrida, and Tsaftaris 2017; Praveen Kumar and Domnic 2020; Ubbens
et al. 2018).

13



The introduction of deep learning has been slower for phenotyping under field
conditions. An important reason would be the additional challenges of imaging under
field conditions, e.g., variation in illumination conditions, and complexities in data
processing, e.g., to differentiate between individual plants within the canopy and
assign organs to the respective plants to achieve phenotyping plant level (Kelly et al.
2016). One of the first applications of deep learning for field phenotyping was found
for the real-time identification of weed from farm robots (McCool, Perez, and Upcroft
2017). In their study, the images were acquired using a pulse lighting system, which
allowed the authors to control the illumination conditions. The authors present
impressive results for the task of differentiating between vegetation and weed against
soil background via image segmentation. Following this, other researches have been
conducted to tackle this problem (Fawakherji et al. 2019; Lottes, Behley, Milioto, et al.
2018; Olsen et al. 2019; Sa et al. 2018). Besides segmentation, the task of detection
and counting has also been widely applied in field crop environment. For example, the
detection of rice panicle (Xiong et al. 2017; Zhou et al. 2019) and fruits detection
(Hani, Roy, and Isler 2020; Sa et al. 2016). W. Guo et al. (2018) and Oh, Olsen, &
Ramamurthy (2019) show the possibility to detect sorghum heads from UAV imageries.
Lu and Cao (2020) and Madec et al. (2019) have addressed the task of wheat heads
and maize tassels counting using convolutional neural networks. Both highlight the
domain shift issues faced when the models were applied in the wild, due to differences
in phenological stages and growing conditions.

A general drawback of most of these studies is the lack of a benchmark dataset,
independent of the training dataset, to evaluate the generalization ability of the
models. This is crucial to understand the technological readiness of the developed
methods under operational conditions for agricultural missions. However, the
construction of such large, and diverse labelled datasets covering different field
scenarios is quite expensive. This has encouraged organizations to come forward and
publish open datasets such as CropDeep with around 20 species taken in greenhouse
conditions (Zheng et al. 2019), Sorghum-Head dataset (Guo et al. 2018), maize tassels
dataset (Lu et al. 2016), cauliflower and broccoli dataset (Bender, Whelan, and
Sukkarieh 2020). More recently, a collaboration across several research institutes led
to the constitution of the largest open wheat head dataset (David et al. 2020) of 4,700
RGB images acquired using hand-held poles and ground-based robots in the field. The
publication of such collaborative open datasets over a range of crop species is crucial
to promote deep learning for traits extraction within the field phenotyping community.
Other approaches such as the use of transfer learning and creation of synthetic
datasets are possible alternatives to consider tackling the challenge of constituting a
diverse dataset. Table 3 lists several open-access labelled datasets for field
phenotyping and precision agriculture applications.
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Table 3 A non-exhaustive list of open labelled datasets available for precision agriculture and field phenotyping.
Columns: Number of instances indicates the number of occurrences of the objects within the images; Label type
expresses if the labelling was done at the image-level (typically classification tasks), pixel-level (for segmentation
tasks) or as a bounding box or circles.

Label Type
Number | Number | Number | @ | 5 9
S ()] [=)] S
Type Dataset Name of of of 23 S =
images | instances | classes | 8 | 5 | § 2
o x| 2%
(=] o Q
CropDeep (Zheng et al. 2019) 31147 49765 31
DeepFruits (Sa et al. 2016) 587 6
Orchard Fruit (Bargoti and
Underwood 2017) 3704 3
Date Fruit (Altaheri et al. 2019) 8079 5 -
KFuji RGB-D (Gené-Mola et al.
_ 2019) 967 12,839 1
S MangoNet (Kestur, Meduri, and 49
E Narasipura 2019)
45 MangoYOLO (Koirala et al. 2019) 1730 1
o
§ WSU Apple Dataset (Bhusal, 2708 1
ﬁ Karkee, and Zhang 2019)
% Fuji-SFM (Gené-Mola et al. 2020) 288
>
2 981 41,325
o MinneApple (Hani et al. 2020)
= 70,865
C - — -
Capsy_:um_Annum Synthetic + 10,500 +
Empirical images (Barth et al. 750 8
2018)
Fruit Flower dataset (Dias, Tabb, 190 4
and Medeiros 2018)
Cauliflower/Brocolli dataset
(Bender et al. 2020) 1248 2030 2
Oil radish growth dataset 129 6
(Mortensen et al. 2016)
Sorghum Head Dataset (Guo et
) al. 2018) 92 18893 1
© Maize Tassel Dataset (Lu et al. 361 20000 1
g 2017)
Global Wheat Head Dataset
(David et al. 2020) 4698 188445 1
© Plant Village (Hughes and Salathe 54 309
@ | 2015) - 37
(]
(2]
S Maize disease (Wiesner-Hanks et
g al. 2018) 18,222 105,735 1
E Rice disease (Prajapati, Shah, and 120 3

Dabhi 2017)
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Apple foliar disease (Thapa et al.
2020)

Open Plant Phenotype Database
(Leminen Madsen et al. 2020)

P2S2 (Madec, Irfan, et al. 2019) 75 2

3651 4

7590 315,038 47

Sugar beet-weed dataset

IS (Chebrolu et al. 2017) 300 10
® Carrot-weed dataset (Lameski et 39 3
é al. 2017)
o Grass-broadleaf (dos Santos
% Ferreira et al. 2017) 15,336 4
-% DeepWeeds (Olsen et al. 2019) 17,509 8
% Joint Stem detection (Lottes, 1321 5
= | Behley, Chebrolu, et al. 2018)
o . "
= Plant seedlings (Giselsson et al.
@)
I 2017) 407 12
o} N
9 Sy!'ltr_\etlc Sugarbeet-weed dataset 8518 3
= (Di Cicco et al. 2016)
Early stage weed dataset (Espejo- 508 4
Garcia et al. 2020)
Weed growth stage dataset 9372
(Teimouri et al. 2018) 18

1.4 Open research questions in deep learning methods
for plant phenotyping

The popularity of deep learning algorithms and their expected role in traits estimation
in plant phenotyping was discussed in the previous section. Thanks to their impressive
performance, the rapid adoption of these techniques for field plant phenotyping has
progressed rapidly in the last five years. As mentioned above, the main challenge for
the use of deep learning in operational conditions are linked with the lack of
generalization where CNNs are applied over datasets that differ to some extent —i.e.
the belong to a different domain— from the dataset used for training them. Compared
to the identification of real-world objects, the implementation of deep learning in field
phenotyping still has some specific issues that have not been fully addressed by the
existing literature:

1. What is the impact of object size and image spatial resolution on the
generalization ability of deep learning methods, and how to optimize it? A
particular feature of phenotyping applications is that object size is often
restricted to a small site- or vector-specific interval. While in general real-world
detection applications the training data contains instances of the same object
at different sizes, in phenotyping applications the object size is heavily
determined by the vector used for data acquisition or the specific operation
model (e.g., flight or camera height). Moreover, while attempting to maximize
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the sampled area and throughput, the size of the objects observed is in general
rather small compared to the desired object size (for instance, plant or organ
counting). This constitutes an important challenge for deep neural networks
(Tong, Wu, and Zhou 2020) that usually perform better on large objects
(Kisantal et al. 2019). Consequently, CNNs trained on specific datasets may not
generalize well when they are applied to completely independent ones where
the object size differs from the latter. Different possibilities have been proposed
in real-world applications to overcome this problem, such as the use of data
augmentation strategies on the training set (Kisantal et al. 2019), multi-scale
network architecture (Hu et al. 2018) and image super-resolution using
generative adversarial networks (Gonzdlez et al. 2019; Magoulianitis et al.
2019). On phenotyping initiatives, like the Global Wheat Head Dataset (David
et al. 2020), the dataset from different sites were harmonized to a pre-
determined object size. The object size domain, however, remains an open
question in phenotyping applications that have not been fully addressed in the
current state of the art. A strategy to construct CNNs that generalize well across
object sizes is still needed to understand how to integrate images from different
vectors (e.g.; UAV and ground instruments, etc.) in the same pipeline.
Partially linked to the object size problem, understanding the potential impact
of image resolution on the performance of object detection/counting algorithms
is essential from the perspective of UAV observations. Due to the low autonomy
of UAV, increasing flight height is an important factor to increase throughput
and minimize the acquisition costs per sampled area. However, the number of
textural features contained in the images decreases with resolution, perhaps
impacting the ability of CNNs to correctly identify plants/organs. Currently, there
are only few studies who have addressed specifically the link between image
resolution/object size and CNN performance on plant phenotyping applications
(Kitano et al. 2019; Madec, Jin, et al. 2019).

. What kind of deep learning algorithm is better suited for density estimations -
object counting or object detection methods? For applications such as
plant/plant-organ density estimations, different methods have been proposed:
object detection (Ghosal et al. 2019; Jin et al. 2019; Madec, Jin, et al. 2019);
counting by regression (Dobrescu et al. 2017; Liu et al. 2020; Xiong et al. 2019)
or instance segmentation (Kitano et al. 2019; Machefer et al. 2020). Among
these, the preparation of annotations for instance segmentation task is
extremely time consuming in comparison to the other approaches. This is the
main reason why the object-based detection and counting by regression
methods are, in general, more widely adopted. For wheat head counting from
ground-level images, Madec et al. (2019) compared the performance of an
object detection and counting by regression algorithm over a range of different
object sizes. They concluded that object detection provided the best results if
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object size is enough ( > 5000 pixels). Lu et al., (2017) indicated that for small
object sizes counting by regression method were better suited. Therefore,
counting by regression methods can be a priori better suited for density
estimations from UAV images, but further work is required to understand
whether data augmentation on the object size domain can help to overcome
the limitations of object detection algorithms.

. What is the contribution of temporal resolution and sampling area in the

performance of deep learning models to derive phenological traits? The use of
indirect methods to identify plant/organs based on deep learning techniques
may introduce some uncertainties in the targeted phenotypic traits. For specific
traits as those related with the estimation of phenological dates, requiring the
identification of specific plant organs, the acquisition of frequent observations
may help to solve partially this problem. The analysis, in relative terms, of the
dynamics of the number of plant organs identified can help to mitigate the
possible bias of object detection algorithms. However, vectors providing
frequent images, like the fixed sensors, sample relatively smaller areas (Table
1), which may not be representative of the whole microplot or plot studied.
What is the trade-off between the sampling area and temporal resolution for
retrieving phenological traits? Only few studies have addressed this problem of
estimating phenotyping traits (Wang et al. 2019; Yalcin 2018).

1.5 Objectives and organization of the study

The present thesis studied the use of deep learning techniques for the estimation of
three essential traits for plant phenotyping: plant density at early stages for maize,
wheat head density, and wheat heading date. The thesis is structured into three
chapters that take the form of scientific papers, each one dealing with a specific
phenotypic trait, and using a specific vector and detection/counting algorithm. Each
chapter answers one or more of the research questions enumerated in Section 1.4:

Velumani, K., Lopez-Lozano, R., Madec, S., Guo, W., Gillet, J., Comar, A.,
Baret, F., 2021. Estimates of maize plant density from UAV RGB images using
Faster-RCNN detection model: impact of the spatial resolution. Submitted
(under review).

o Maize plant counting at early stage is an important trait required for
crop breeding experiments and farm management. It is now possible to
access this plant density trait at high throughput owing to the rapid
popularity and affordability of UAV systems. In this study, Faster-RCNN,
an object detection method, is used for the estimation of plant density
from RGB imageries acquired from UAVs. We further analyze the
performance of the detection method for small object detection on low
resolution imageries, linked to research question #1. The study shows
how data augmentation, and the use of super resolution approaches

enables us to access plant density from low-resolution imageries.
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e Velumani, K., Lopez-Lozano, R., Lu, H., Madec, S., David, E., Li, W., Liu, S.,
Smith, D., Chapman, S., Comar, A., Baret, F., 2021. Wheat head density
estimation from UAVs: data augmentation and data preparation strategies to
exploit labelled ground-based imagery. Draft.

o Wheat head density is a crucial trait for plant breeders and precision
agriculture as it is an important component used in yield estimation. We
propose an automatic density estimation method from UAV which
promises high-throughput and overcomes the sampling issues faced by
the current state-of-the-art methods that use ground imageries. In this
study, we use an existing high-resolution annotated dataset acquired at
the ground-level to train deep learning to be applied to low-resolution
UAV imageries. The study also analyses the suitability of two approaches
of deep learning - object detection and regression-based object counting
methods to achieve wheat head counting on UAV images Further, a
comparison between the density estimated from the UAV images and the
in-situ manual density, along with their broad-sense heritability, is
presented. This paper addresses the research questions #1 and
#2

e Velumani, K., Madec, S., de Solan, B., Lopez-Lozano, R., Gillet, J., Labrosse,
J., Jezequel, S., Comar, A., Baret, F., 2020. An automatic method based on daily
in situ images and deep learning to date wheat heading stage. F. Crop. Res.
252, 107793. https://doi.org/10.1016/j.fcr.2020.107793

o Wheat heading date from daily RGB imageries: The development of
wireless IOT (internet of thing) fixed sensors now allows for continuous
monitoring of crops in the field using RGB cameras. In this chapter, we
propose an automatic method using CNNs to estimate wheat heading
date through daily time series images taken throughout the growing
cycle. We compare the performance of the method developed, relying
on frequent observations on a relatively low sampling area, with
reference heading date by manual scoring in the field and directly on the
images. The method proves to be robust —despite the relatively small
area observed— over an independent test dataset acquired during a
different growing cycle and over cultivars not used during the model
training. This paper addresses the research question #3.

References

Alchanatis, V., Y. Cohen, S. Cohen, M. Moller, M. Sprinstin, M. Meron, J. Tsipris, Y. Saranga, and E. Sela.
2010. “Evaluation of Different Approaches for Estimating and Mapping Crop Water Status in Cotton
with Thermal Imaging.” Precision Agriculture 11(1):27-41. doi: 10.1007/s11119-009-9111-7.

Alom, Md Zahangir, Tarek M. Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst Shamima
Nasrin, Mahmudul Hasan, Brian C. Van Essen, Abdul A. S. Awwal, and Vijayan K. Asari. 2019. “A
State-of-the-Art Survey on Deep Learning Theory and Architectures.” Electronics 8(3):292. doi:

19



10.3390/electronics8030292.

Altaheri, Hamdi, Mansour Alsulaiman, Ghulam Muhammad, Syed Umar Amin, Mohamed Bencherif, and
Mohamed Mekhtiche. 2019. “Date Fruit Dataset for Intelligent Harvesting.” Data in Brief
26:104514. doi: 10.1016/j.dib.2019.104514.

Araus, José L., and J. E. Cairns. 2014. “Field High-Throughput Phenotyping: The New Crop Breeding
Frontier.” Trends in Plant Science 19(1):52—61. doi: 10.1016/j.tplants.2013.09.008.

Araus, José L., and Shawn C. Kefauver. 2018. “Breeding to Adapt Agriculture to Climate Change:
Affordable Phenotyping Solutions.” Current Opinion in Plant Biology 45:237-47. doi:
10.1016/j.pbi.2018.05.003.

Aydin, Dogan, and Aybars Ugur. 2011. “Extraction of Flower Regions in Color Images Using Ant Colony
Optimization.” Procedia Computer Science 3:530-36. doi: 10.1016/j.procs.2010.12.088.

Bargoti, Suchet, and James Underwood. 2017. “"Deep Fruit Detection in Orchards.” Pp. 3626-33 in 2017
ITEEE International Conference on Robotics and Automation (ICRA). 1EEE.

Barth, R., J. IJsselmuiden, J. Hemming, and E. J. Van Henten. 2018. “"Data Synthesis Methods for
Semantic Segmentation in Agriculture: A Capsicum Annuum Dataset.” Computers and Electronics
in Agriculture 144:284-96. doi: 10.1016/j.compag.2017.12.001.

Basso, Bruno, and John Antle. 2020. “Digital Agriculture to Design Sustainable Agricultural Systems.”
Nature Sustainability 3(4):254-56. doi: 10.1038/s41893-020-0510-0.

Bender, Asher, Brett Whelan, and Salah Sukkarieh. 2020. “A High-resolution, Multimodal Data Set for
Agricultural Robotics: A Ladybird 's-eye View of Brassica.” Journal of Field Robotics 37(1):73-96.
doi: 10.1002/rob.21877.

Bhusal, Santosh, Manoj Karkee, and Qin Zhang. 2019. “Apple Dataset Benchmark from Orchard
Environment in Modern Fruiting Wall.” Retrieved February 10, 2021
(https://research.libraries.wsu.edu/xmlui/handle/2376/17721?show=full).

Blancon, Justin, Dan Dutartre, Marie-Héléne Tixier, Marie Weiss, Alexis Comar, Sébastien Praud, and
Frédéric Baret. 2019. “A High-Throughput Model-Assisted Method for Phenotyping Maize Green
Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery.” Frontiers in Plant Science
10:685. doi: 10.3389/fpls.2019.00685.

Boureau, Y. Lan, Jean Ponce, and Yann Lecun. 2010. “A Theoretical Analysis of Feature Pooling in Visual
Recognition.” Pp. 111-18 in Proceedings of the 27th international conference on machine learning
(ICML-10).

Chebrolu, Nived, Philipp Lottes, Alexander Schaefer, Wera Winterhalter, Wolfram Burgard, and Cyrill
Stachniss. 2017. “Agricultural Robot Dataset for Plant Classification, Localization and Mapping on
Sugar Beet Fields.” International Journal of Robotics Research 36(10):1045-52. doi:
10.1177/0278364917720510.

Di Cicco, Maurilio, Ciro Potena, Giorgio Grisetti, and Alberto Pretto. 2016. “Automatic Model Based
Dataset Generation for Fast and Accurate Crop and Weeds Detection.” IEEE International
Conference on Intelligent Robots and Systems 2017-September:5188-95. doi:
10.1109/IR0S.2017.8206408.

Daughtry, C. 2000. “Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance.”
Remote Sensing of Environment 74(2):229-39. doi: 10.1016/S0034-4257(00)00113-9.

David, Etienne, Simon Madec, Pouria Sadeghi-Tehran, Helge Aasen, Bangyou Zheng, Shouyang Liu,
Norbert Kirchgessner, Goro Ishikawa, Koichi Nagasawa, Minhajul A. Badhon, Curtis Pozniak, Benoit
de Solan, Andreas Hund, Scott C. Chapman, Frédéric Baret, Ian Stavness, and Wei Guo. 2020.
“Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse Dataset of High-Resolution
RGB-Labelled Images to Develop and Benchmark Wheat Head Detection Methods.” Plant
Phenomics 2020:1-12. doi: 10.34133/2020/3521852.

Deery, David, Jose Jimenez-Berni, Hamlyn Jones, Xavier Sirault, and Robert Furbank. 2014. “Proximal
Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping.” Agronomy
4(3):349-79. doi: 10.3390/agronomy4030349.

Deery, David M., Greg J. Rebetzke, Jose A. Jimenez-Berni, Richard A. James, Anthony G. Condon,
William D. Bovill, Paul Hutchinson, Jamie Scarrow, Robert Davy, and Robert T. Furbank. 2016.
“Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne
Thermography.” Frontiers n Plant Science 7(DECEMBER2016):1808. doi:
10.3389/fpls.2016.01808.

Dias, Philipe A., Amy Tabb, and Henry Medeiros. 2018. “Multispecies Fruit Flower Detection Using a

20



Refined Semantic Segmentation Network.” (1). doi: 10.1109/LRA.2018.2849498.

Dobrescu, Andrei, Mario Valerio Giuffrida, and Sotirios A. Tsaftaris. 2017. “Leveraging Multiple Datasets
for Deep Leaf Counting.” Pp. 2072-79 in Proceedings of the IEEE International Conference on
Computer Vision (ICCV).

Espejo-Garcia, Borja, Nikos Mylonas, Loukas Athanasakos, Spyros Fountas, and Ioannis Vasilakoglou.
2020. “Towards Weeds Identification Assistance through Transfer Learning.” Computers and
Electronics in Agriculture 171:105306. doi: 10.1016/j.compag.2020.105306.

FAO. 2002. World Agriculture: Towards 2015/2030: Summary Report. edited by J. Bruinsma. Rome:
Food and Agriculture Organization of the United Nations (FAO).

FAQ. 2017. The Future of Food and Agriculture - Trends and Challenges. Rome.
FAO. 2020. World Food and Agriculture - Statistical Yearbook 2020. Rome: FAQ.

FAO, IFAD, UNICEF, WFP, and WHO. 2020. The State of Food Security and Nutrition in the World 2020.
Rome: FAO, IFAD, UNICEF, WFP and WHO.

Fawakherji, Mulham, Ali Youssef, Domenico Bloisi, Alberto Pretto, and Daniele Nardi. 2019. “Crop and
Weeds Classification for Precision Agriculture Using Context-Independent Pixel-Wise
Segmentation.” Pp. 146-52 in 2019 Third IEEE International Conference on Robotic Computing
(IRC). 1EEE.

Fiorani, Fabio, and Ulrich Schurr. 2013. “Future Scenarios for Plant Phenotyping.” Annual Review of
Plant Biology 64(1):267-91. doi: 10.1146/annurev-arplant-050312-120137.

Gebbers, Robin, and Viacheslav I. Adamchuk. 2010. “Precision Agriculture and Food Security.” Science
327(5967):828-31. doi: 10.1126/science.1183899.

Gené-Mola, J., Verdnica Vilaplana, Joan R. Rosell-Polo, Josep Ramon Morros, Javier Ruiz-Hidalgo, and
Eduard Gregorio. 2019. “KFuji RGB-DS Database: Fuji Apple Multi-Modal Images for Fruit Detection
with Color, Depth and Range-Corrected IR Data.” Data in Brief 25:104289. doi:
10.1016/j.dib.2019.104289.

Gené-Mola, Jordi, Ricardo Sanz-Cortiella, Joan R. Rosell-Polo, Josep Ramon Morros, Javier Ruiz-Hidalgo,
Verdnica Vilaplana, and Eduard Gregorio. 2020. “Fruit Detection and 3D Location Using Instance
Segmentation Neural Networks and Structure-from-Motion Photogrammetry.” Computers and
Electronics in Agriculture 169:105165. doi: 10.1016/j.compag.2019.105165.

Ghosal, Sambuddha, Bangyou Zheng, Scott C. Chapman, Andries B. Potgieter, David R. Jordan, Xuemin
Wang, Asheesh K. Singh, Arti Singh, Masayuki Hirafuji, Seishi Ninomiya, Baskar
Ganapathysubramanian, Soumik Sarkar, and Wei Guo. 2019. “A Weakly Supervised Deep Learning
Framework for Sorghum Head Detection and Counting.” Plant Phenomics 2019:1525874. doi:
10.34133/2019/1525874.

Giselsson, Thomas Mosgaard, Rasmus Nyholm Jgrgensen, Peter Kryger Jensen, Mads Dyrmann, and
Henrik Skov Midtiby. 2017. “A Public Image Database for Benchmark of Plant Seedling
Classification Algorithms.” ArXiv Preprint ArXiv:1711.05458.

Goémez-Canddn, David, Nicolas Virlet, Sylvain Labbé, Audrey Jolivot, and Jean Luc Regnard. 2016. “Field
Phenotyping of Water Stress at Tree Scale by UAV-Sensed Imagery: New Insights for Thermal
Acquisition and Calibration.” Precision Agriculture 17(6):786—800. doi: 10.1007/s11119-016-9449-
6.

Gonzalez, Daniel, Miguel A. Patricio, Antonio Berlanga, and José M. Molina. 2019. “A Super-Resolution
Enhancement of UAV Images Based on a Convolutional Neural Network for Mobile Devices.”
Personal and Ubiguitous Computing. doi: 10.1007/s00779-019-01355-5.

Guo, Wei, Bangyou Zheng, Andries B. Potgieter, Julien Diot, Kakeru Watanabe, Koji Noshita, David R.
Jordan, Xuemin Wang, James Watson, Seishi Ninomiya, and Scott C. Chapman. 2018. “Aerial
Imagery Analysis — Quantifying Appearance and Number of Sorghum Heads for Applications in
Breeding and Agronomy.” Frontiers in Plant Science 9:1544. doi: 10.3389/fpls.2018.01544.

Guo, Yanming, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael S. Lew. 2016. “Deep
Learning for Visual Understanding: A Review.” Neurocomputing 187:27-48. doi:
10.1016/j.neucom.2015.09.116.

Hani, Nicolai, Pravakar Roy, and Volkan Isler. 2020. “"MinneApple: A Benchmark Dataset for Apple
Detection and Segmentation.” IEEE Robotics and Automation Letters 5(2):852-58. doi:
10.1109/LRA.2020.2965061.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. “Spatial Pyramid Pooling in Deep

21



Convolutional Networks for Visual Recognition.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 37(9):1904-16. doi: 10.1109/TPAMI.2015.2389824.

Hu, Guo X., Zhong Yang, Lei Hu, Li Huang, and Jia M. Han. 2018. “Small Object Detection with Multiscale
Features.” International Journal of Digital Multimedia Broadcasting 2018:1-10. doi:
10.1155/2018/4546896.

Hughes, David. P., and Marcel Salathe. 2015. “"An Open Access Repository of Images on Plant Health to
Enable the Development of Mobile Disease Diagnostics.” ArXiv Preprint ArXiv.:1511.08060.

Hunt, E. Raymond, W. Dean Hively, Stephen Fujikawa, David Linden, Craig S. Daughtry, and Greg
McCarty. 2010. “Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for
Crop Monitoring.” Remote Sensing 2(1):290-305. doi: 10.3390/rs2010290.

Jay, Sylvain, Frédéric Baret, Dan Dutartre, Ghislain Malatesta, Stéphanie Héno, Alexis Comar, Marie
Weiss, and Fabienne Maupas. 2019. “Exploiting the Centimeter Resolution of UAV Multispectral
Imagery to Improve Remote-Sensing Estimates of Canopy Structure and Biochemistry in Sugar
Beet Crops.” Remote Sensing of Environment 231:110898. doi: 10.1016/j.rse.2018.09.011.

Jin, Xiuliang, Shouyang Liu, Frédéric Baret, Matthieu Hemerlé, and Alexis Comar. 2017. “Estimates of
Plant Density of Wheat Crops at Emergence from Very Low Altitude UAV Imagery.” Remote
Sensing of Environment 198:105—14. doi: 10.1016/j.rse.2017.06.007.

Jin, Xiuliang, Simon Madec, Dan Dutartre, Benoit de Solan, Alexis Comar, and Frédéric Baret. 2019.
“High-Throughput Measurements of Stem Characteristics to Estimate Ear Density and Above-
Ground Biomass.” Plant Phenomics 2019:1-10. doi: 10.34133/2019/4820305.

Jones, Hamlyn G., Rachid Serraj, Brian R. Loveys, Lizhong Xiong, Ashley Wheaton, and Adam H. Price.
2009. “Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification
of Plant Responses to Water Stress in the Field.” doi: 10.1071/FP09123.

Kaur, Amanjot, Irwin R. Donis-Gonzalez, and Dina A. St. Clair. 2020. “Evaluation of a Hand-held
Spectrophotometer as an In-field Phenotyping Tool for Tomato and Pepper Fruit Quality.” The
Plant Phenome Journal 3(1):e20008. doi: 10.1002/ppj2.20008.

Kelly, Derek, Avimanyou Vatsa, Wade Mayham, Linh Ng6, Addie Thompson, and Toni Kazic. 2016. “An
Opinion on Imaging Challenges in Phenotyping Field Crops.” Machine Vision and Applications
27(5):681-94. doi: 10.1007/s00138-015-0728-4.

Kestur, Ramesh, Avadesh Meduri, and Omkar Narasipura. 2019. “MangoNet: A Deep Semantic
Segmentation Architecture for a Method to Detect and Count Mangoes in an Open Orchard.”
Engineering Applications of Artificial Intelligence 77:59-69. doi: 10.1016/j.engappai.2018.09.011.

Khan, Asifullah, Anabia Sohail, Umme Zahoora, and Agsa Saeed Qureshi. 2020. “A Survey of the Recent
Architectures of Deep Convolutional Neural Networks.” Artificial Intelligence Review 53(8):5455—
5516. doi: 10.1007/s10462-020-09825-6.

Khanna, Raghav, J. Rehder, M. Moeller, E. Galceran, and R. Siegwart. 2015. “Studying Phenotypic
Variability in Crops Using a Hand-Held Sensor Platform.” TROS Work, Agri-Food Robot.

Kisantal, Mate, Zbigniew Wojna, Jakub Murawski, Jacek Naruniec, and Kyunghyun Cho. 2019.
“Augmentation for Small Object Detection.” ArXiv Preprint ArXiv:1902.07296.

Kitano, Bruno T., Caio C. T. Mendes, Andre R. Geus, Henrique C. Oliveira, and Jefferson R. Souza. 2019.
“Corn Plant Counting Using Deep Learning and UAV Images.” IEEE Geoscience and Remote
Sensing Letters 1-5. doi: 10.1109/LGRS.2019.2930549.

Koirala, A., K. B. Walsh, Z. Wang, and C. McCarthy. 2019. "Deep Learning for Real-Time Fruit Detection
and Orchard Fruit Load Estimation: Benchmarking of ‘MangoYOLO.” Precision Agriculture
20(6):1107-35. doi: 10.1007/s11119-019-09642-0.

Krizhevsky, A., I. Sutskever, and GE Hinton. 2012. Imagenet Classification with Deep Convolutional
Neural Networks.

Lal, Rattan. 2016. “Feeding 11 Billion on 0.5 Billion Hectare of Area under Cereal Crops.” Food and
Energy Security 5(4):239-51. doi: 10.1002/fes3.99.

Laliberte, Andrea S., Mark A. Goforth, Caitriana M. Steele, and Albert Rango. 2011. “Multispectral
Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for
Rangeland Environments.” Remote Sensing 3(11):2529-51. doi: 10.3390/rs3112529.

Lameski, Petre, Eftim Zdravevski, Vladimir Trajkovik, and Andrea Kulakov. 2017. “Weed Detection
Dataset with RGB Images Taken Under Variable Light Conditions.” Pp. 112—-19 in Communications
in Computer and Information Science. Vol. 778. Springer Verlag.

22



LeCun, Y., B. Boser, 1. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1989.
“Backpropagation Applied to Handwritten Zip Code Recognition.” Neural Computation 1(4):541-
51. doi: 10.1162/neco.1989.1.4.541.

Leminen Madsen, Simon, Solvejg Kopp Mathiassen, Mads Dyrmann, Morten Stigaard Laursen, Laura-
Carlota Paz, and Rasmus Nyholm Jgrgensen. 2020. “Open Plant Phenotype Database of Common
Weeds in Denmark.” Remote Sensing 12(8):1246. doi: 10.3390/rs12081246.

Lernoud, Julia, and Helga Willer. 2019. “Current Statistics on Organic Agriculture Worldwide: Area,
Operators, and Market.” Pp. 35—-125 in The World of Organic Agriculture. Statistics and Emerging
Trends 2019, edited by H. Willer and J. Lernoud. Frick, Suisse: Research Institute of Organic
Agriculture FiBL and IFOAM Organics International.

Li, Fei, Bodo Mistele, Yuncai Hu, Xinping Chen, and Urs Schmidhalter. 2014. “Reflectance Estimation of
Canopy Nitrogen Content in Winter Wheat Using Optimised Hyperspectral Spectral Indices and
Partial Least Squares Regression.” European Journal of Agronomy 52:198-209. doi:
10.1016/j.eja.2013.09.006.

Li, Lei, Qin Zhang, and Danfeng Huang. 2014. “A Review of Imaging Techniques for Plant Phenotyping.”
Sensors (Switzerland) 14(11):20078-111. doi: 10.3390/s141120078.

Li, Zhenbo, Ruohao Guo, Meng Li, Yaru Chen, and Guangyao Li. 2020. “A Review of Computer Vision
Technologies for Plant Phenotyping.” Computers and Electronics in Agriculture 176(July):105672.
doi: 10.1016/j.compag.2020.105672.

Lin, Tsung Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C. Lawrence Zitnick. 2014. “Microsoft COCO: Common Objects in Context.” Pp. 740-55 in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 8693 LNCS. Springer Verlag.

Lin, Yi-Chun, and Ayman Habib. 2021. “Quality Control and Crop Characterization Framework for Multi-
Temporal UAV LiDAR Data over Mechanized Agricultural Fields.” Remote Sensing of Environment
256:112299. doi: 10.1016/j.rse.2021.112299.

Lin, Yi. 2015. “LiDAR: An Important Tool for next-Generation Phenotyping Technology of High Potential
for Plant Phenomics?” Computers and Electronics in Agriculture 119:61-73. doi:
10.1016/j.compag.2015.10.011.

Liu, Liang, Hao Lu, Yanan Li, and Zhiguo Cao. 2020. “High-Throughput Rice Density Estimation from
Transplantation to Tillering Stages Using Deep Networks.” Plant Phenomics 2020:1-14. doi:
10.34133/2020/1375957.

Lottes, Philipp, Jens Behley, Nived Chebrolu, Andres Milioto, and Cyrill Stachniss. 2018. “Joint Stem
Detection and Crop-Weed Classification for Plant-Specific Treatment in Precision Farming.” Pp.
8233-38 in JEEE International Conference on Intelligent Robots and Systems. Institute of Electrical
and Electronics Engineers Inc.

Lottes, Philipp, Jens Behley, Andres Milioto, and Cyrill Stachniss. 2018. “Fully Convolutional Networks
With Sequential Information for Robust Crop and Weed Detection in Precision Farming.” IEEE
Robotics and Automation Letters 3(4):2870-77. doi: 10.1109/LRA.2018.2846289.

Lu, Hao, and Zhiguo Cao. 2020. “TasselNetV2+: A Fast Implementation for High-Throughput Plant
Counting From High-Resolution RGB Imagery.” Frontiers in Plant Science 11:541960. doi:
10.3389/fpls.2020.541960.

Lu, Hao, Zhiguo Cao, Yang Xiao, Yanan Li, and Yanjun Zhu. 2016. “Joint Crop and Tassel Segmentation
in the Wild.” Pp. 474-79 in Proceedings - 2015 Chinese Automation Congress, CAC 2015. Institute
of Electrical and Electronics Engineers Inc.

Lu, Hao, Zhiguo Cao, Yang Xiao, Bohan Zhuang, and Chunhua Shen. 2017. “TasselNet: Counting Maize
Tassels in the Wild via Local Counts Regression Network.” Plant Methods 13(1):79. doi:
10.1186/s13007-017-0224-0.

Ludovisi, Riccardo, Flavia Tauro, Riccardo Salvati, Sacha Khoury, Giuseppe Mugnozza Scarascia, and
Antoine Harfouche. 2017. “UAV-Based Thermal Imaging for High-Throughput Field Phenotyping
of Black Poplar Response to Drought.” Frontiers in Plant Science 8:1681. doi:
10.3389/fpls.2017.01681.

Lumme, J., M. Karjalainen, H. Kaartinen, A. Kukko, J. Hyyppa, H. Hyyppd, A. Jaakkola, and J. Kleemola.
2008. “Terrestrial Laser Scanning of Agricultural Crops.” Pp. 563-566 in Int. Arch. Photogramm.
Remote Sens. Spatial Inf. Sciences. Vol. 37.

Machefer, Mélissande, Frangois Lemarchand, Virginie Bonnefond, Alasdair Hitchins, and Panagiotis

23



Sidiropoulos. 2020. "Mask R-CNN Refitting Strategy for Plant Counting and Sizing in Uav Imagery.”
Remote Sensing 12(18):3015. doi: 10.3390/RS12183015.

Madec, Simon. 2019. “Phenotyping Wheat Structural Traits from Millimetric Resolution RGB Imagery in
Field Conditions.” Université d’Avignon.

Madec, Simon, Fred Baret, Benoit de Solan, Samuel Thomas, Dan Dutartre, Stéphane Jezequel, Matthieu
Hemmerlé, Gallian Colombeau, and Alexis Comar. 2017. “High-Throughput Phenotyping of Plant
Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates.” Frontiers in Plant
Science 8(November):1-14. doi: 10.3389/fpls.2017.02002.

Madec, Simon, Kamran Irfan, Etienne David, Kaaviya Velumani, Gaetan Daubige, Jeremy Labrosse, Wei
Guo, Marie Weiss, Frederic Baret, and Kamran Ifran. 2019. "The P2S2 Segmentation Dataset:
Annotated in-Field Multi-Crop RGB Images Acquired under Various Conditions.” in /th International
Workshop on Image Analysis Methods in the Plant Sciences (IAMPS). Lyon.

Madec, Simon, Xiuliang Jin, Hao Lu, Benoit De Solan, Shouyang Liu, Florent Duyme, Emmanuelle
Heritier, and Frédéric Baret. 2019. “Ear Density Estimation from High Resolution RGB Imagery
Using Deep Learning Technique.” Agricultural and Forest Meteorology 264(May 2018):225-34.
doi: 10.1016/j.agrformet.2018.10.013.

Maggio, Albino, Tine Van Criekinge, and Jean-Paul Malingreau. 2016. “Global Food Security: Assessing
Trends in View of Guiding Future EU Policies.” Foresight 18(5):551-60. doi: 10.1108/FS-07-2015-
0040.

Magoulianitis, Vasileios, Dimitrios Ataloglou, Anastasios Dimou, Dimitrios Zarpalas, and Petros Daras.
2019. “"Does Deep Super-Resolution Enhance UAV Detection?” 2019 16th IEEE International
Conference on Advanced Video and Signal Based Surveillance, AVSS 2019 1-6. doi:
10.1109/AVSS.2019.8909865.

Mahlein, A. K. 2010. “Detection, Identification, and Quantification of Fungal Diseases of Sugar Beet
Leaves Using Imaging and Non-Imaging Hyperspectral Techniques.” Rheinischen Friedrich-
Wilhelms-Universitat, Bonn (Germany).

Mahlein, Anne-Katrin, Matheus Thomas Kuska, Stefan Thomas, Mirwaes Wahabzada, Jan Behmann,
Uwe Rascher, and Kristian Kersting. 2019. “Quantitative and Qualitative Phenotyping of Disease
Resistance of Crops by Hyperspectral Sensors: Seamless Interlocking of Phytopathology, Sensors,
and Machine Learning Is Needed!” Current Opinion in Plant Biology 50:156-62. doi:
10.1016/j.pbi.2019.06.007.

Mankins, John C. 1995. "TECHNOLOGY READINESS LEVELS.” A White Paper.

McCool, Chris, Tristan Perez, and Ben Upcroft. 2017. “Mixtures of Lightweight Deep Convolutional Neural
Networks: Applied to Agricultural Robotics.” IEEE Robotics and Automation Letters 2(3):1344-51.
doi: 10.1109/LRA.2017.2667039.

McKevith, Brigid. 2004. “Nutritional Aspects of Cereals.” Nutrition Bulletin 29(2):111-42. doi:
10.1111/j.1467-3010.2004.00418.x.

Minervini, Massimo, Andreas Fischbach, Hanno Scharr, and Sotirios A. Tsaftaris. 2016. “Finely-Grained
Annotated Datasets for Image-Based Plant Phenotyping.” Pattern Recognition Letters 81:80-89.
doi: 10.1016/j.patrec.2015.10.013.

Minervini, Massimo, Hanno Scharr, and Sotirios Tsaftaris. 2015. “Image Analysis: The New Bottleneck
in Plant Phenotyping [Applications Corner].” IEEE Signal Processing Magazine 32(4):126-31. doi:
10.1109/MSP.2015.2405111.

Mortensen, A. K., M. Dyrmann, H. Karstoft, R. N. Jgrgensen, and R. Gislum. 2016. “Semantic
Segmentation of Mixed Crops Using Deep Convolutional Neural Network.” Pp. 1-6 in CIGR-AgEng
Conference, 26-29 June 2016, Aarhus, Denmark. Abstracts and Full papers. Organising Committee,
CIGR 2016.

Muller, Adrian, Christian Schader, Nadia El-Hage Scialabba, Judith Briiggemann, Anne Isensee, Karl-
Heinz Erb, Pete Smith, Peter Klocke, Florian Leiber, Matthias Stolze, and Urs Niggli. 2017.
“Strategies for Feeding the World More Sustainably with Organic Agriculture.” Nature
Communications 8(1):1290. doi: 10.1038/s41467-017-01410-w.

Nagasubramanian, Koushik, Sarah Jones, Asheesh K. Singh, Soumik Sarkar, Arti Singh, and Baskar
Ganapathysubramanian. 2019. “Plant Disease Identification Using Explainable 3D Deep Learning
on Hyperspectral Images.” Plant Methods 15(1):98. doi: 10.1186/s13007-019-0479-8.

Niu, Xiaojing, Meili Wang, Xiangiang Chen, Shihui Guo, Hongming Zhang, and Dongjian He. 2014.
“Image Segmentation Algorithm for Disease Detection of Wheat Leaves.” Pp. 270-73 in

24



Proceedings of the 2014 International Conference on Advanced Mechatronic Systems. IEEE.

OECD, and Food and Agriculture Organization of the United Nations. 2020. OECD-FAO Agricultural
Outlook 2020-2029. FAO/Paris, Rome: OECD Publishing.

Oh, Min-hwan, Peder Olsen, and Karthikeyan Natesan Ramamurthy. 2019. “Counting and Segmenting
Sorghum Heads.” ArXiv.

Olsen, Alex, Dmitry A. Konovalov, Bronson Philippa, Peter Ridd, Jake C. Wood, Jamie Johns, Wesley
Banks, Benjamin Girgenti, Owen Kenny, James Whinney, Brendan Calvert, Mostafa Rahimi
Azghadi, and Ronald D. White. 2019. “"DeepWeeds: A Multiclass Weed Species Image Dataset for
Deep Learning.” Scientific Reports 9(1):2058. doi: 10.1038/s41598-018-38343-3.

Pan, Shen, Mineichi Kudo, and Jun Toyama. 2009. “Edge Detection of Tobacco Leaf Images Based on
Fuzzy Mathematical Morphology.” Pp. 1219-22 in 2009 First International Conference on
Information Science and Engineering. 1EEE.

Paproki, Anthony, Jurgen Fripp, Olivier Salvado, Xavier Sirault, Scott Berry, and Robert Furbank. 2011.
“Automated 3D Segmentation and Analysis of Cotton Plants.” Pp. 555-60 in 2011 International
Conference on Digital Image Computing: Techniques and Applications. Noosa, QLD: IEEE.

Parent, Boris, Margot Leclere, Sébastien Lacube, Mikhail A. Semenov, Claude Welcker, Pierre Martre,
and Francois Tardieu. 2018. “Maize Yields over Europe May Increase in Spite of Climate Change,
with an Appropriate Use of the Genetic Variability of Flowering Time.” Proceedings of the National
Academy of Sciences of the United States of America 115(42):10642—47. doi:
10.1073/pnas.1720716115.

Paulus, Stefan, Jan Behmann, Anne-Katrin Mahlein, Lutz Plimer, and Heiner Kuhlmann. 2014. “Low-
Cost 3D Systems: Suitable Tools for Plant Phenotyping.” Sensors (Basel, Switzeriand) 14(2):3001—
18. doi: 10.3390/5140203001.

Prajapati, Harshadkumar B., Jitesh P. Shah, and Vipul K. Dabhi. 2017. “Detection and Classification of
Rice Plant Diseases.” Intelligent Decision Technologies 11(3):357-73. doi: 10.3233/IDT-170301.

Praveen Kumar, J., and S. Domnic. 2020. “Rosette Plant Segmentation with Leaf Count Using Orthogonal
Transform and Deep Convolutional Neural Network.” Machine Vision and Applications 31(1-2):6.
doi: 10.1007/s00138-019-01056-2.

Quaglia, Giuseppe, Carmen Visconte, Leonardo Sabatino Scimmi, Matteo Melchiorre, Paride Cavallone,
and Stefano Pastorelli. 2020. “Design of a UGV Powered by Solar Energy for Precision Agriculture.”
Robotics 9(1):13. doi: 10.3390/robotics9010013.

Reynolds, Daniel, Joshua Ball, Alan Bauer, Robert Davey, Simon Griffiths, and Ji Zhou. 2019. “CropSight:
A Scalable and Open-Source Information Management System for Distributed Plant Phenotyping
and IoT-Based Crop Management.” GigaScience 8(3):1-11. doi: 10.1093/gigascience/giz009.

Reynolds, Daniel, Frederic Baret, Claude Welcker, Aaron Bostrom, Joshua Ball, Francesco Cellini, Argelia
Lorence, Aakash Chawade, Mehdi Khafif, Koji Noshita, Mark Mueller-Linow, Ji Zhou, and Frangois
Tardieu. 2019. “"What Is Cost-Efficient Phenotyping? Optimizing Costs for Different Scenarios.”
Plant Science 282(August):14-22. doi: 10.1016/j.plantsci.2018.06.015.

Roitsch, Thomas, Lloreng Cabrera-Bosquet, Antoine Fournier, Kioumars Ghamkhar, José Jiménez-Berni,
Francisco Pinto, and Eric S. Ober. 2019. “"Review: New Sensors and Data-Driven Approaches—A
Path to next Generation Phenomics.” Plant Science 282:2-10. doi: 10.1016/j.plantsci.2019.01.011.

Rosenzweig, Cynthia, Joshua Elliott, Delphine Deryng, Alex C. Ruane, Christoph Miiller, Almut Arneth,
Kenneth J. Boote, Christian Folberth, Michael Glotter, Nikolay Khabarov, Kathleen Neumann,
Franziska Piontek, Thomas A. M. Pugh, Erwin Schmid, Elke Stehfest, Hong Yang, and James W.
Jones. 2014. “Assessing Agricultural Risks of Climate Change in the 21st Century in a Global
Gridded Crop Model Intercomparison.” Proceedings of the National Academy of Sciences of the
United States of America 111(9):3268-73. doi: 10.1073/pnas.1222463110.

Rosenzweig, Cynthia, and Martin L. Parry. 1994. “Potential Impact of Climate Change on World Food
Supply.” Nature 367(6459):133-38. doi: 10.1038/367133a0.

Ruckelshausen, A., P. Biber, M. Dorna, H. Gremmes, R. Klose, A. Linz, R. Rahe, R. Resch, M. Thiel, D.
Trautz, and U. Weiss. 2009. “BoniRob—an Autonomous Field Robot Platform for Individual Plant
Phenotyping.” Precision Agriculture 9(841):1.

Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015.
“ImageNet Large Scale Visual Recognition Challenge.” International Journal of Computer Vision
115(3):211-52. doi: 10.1007/s11263-015-0816-y.

25



Sa, Inkyu, Zetao Chen, Marija Popovic, Raghav Khanna, Frank Liebisch, Juan Nieto, and Roland
Siegwart. 2018. "WeedNet: Dense Semantic Weed Classification Using Multispectral Images and
MAV for Smart Farming.” I[EEE Robotics and Automation Letters 3(1):588-95. doi:
10.1109/LRA.2017.2774979.

Sa, Inkyu, Zongyuan Ge, Feras Dayoub, Ben Upcroft, Tristan Perez, and Chris McCool. 2016.
“DeepFruits: A Fruit Detection System Using Deep Neural Networks.” Sensors 16(8):1222. doi:
10.3390/s16081222.

dos Santos Ferreira, Alessandro, Daniel Matte Freitas, Gercina Gongalves da Silva, Hemerson Pistori,
and Marcelo Theophilo Folhes. 2017. “Weed Detection in Soybean Crops Using ConvNets.”
Computers and Electronics in Agriculture 143:314-24. doi: 10.1016/j.compag.2017.10.027.

Shendryk, Yuri, Jeremy Sofonia, Robert Garrard, Yannik Rist, Danielle Skocaj, and Peter Thorburn. 2020.
“Fine-Scale Prediction of Biomass and Leaf Nitrogen Content in Sugarcane Using UAV LiDAR and
Multispectral Imaging.” International Journal of Applied Earth Observation and Geoinformation
92:102177. doi: 10.1016/j.jag.2020.102177.

Tardieu, Francois, Lloren¢ Cabrera-Bosquet, Tony Pridmore, and Malcolm Bennett. 2017. “Plant
Phenomics, From Sensors to Knowledge.” Current Biology 27(15):R770-83. doi:
10.1016/j.cub.2017.05.055.

Teimouri, Nima, Mads Dyrmann, Per Nielsen, Solvejg Mathiassen, Gayle Somerville, and Rasmus
Jgrgensen. 2018. “Weed Growth Stage Estimator Using Deep Convolutional Neural Networks.”
Sensors 18(5):1580. doi: 10.3390/s18051580.

Thapa, Ranjita, Kai Zhang, Noah Snavely, Serge Belongie, and Awais Khan. 2020. "The Plant Pathology
Challenge 2020 Data Set to Classify Foliar Disease of Apples.” Applications in Plant Sciences
8(9):e11390. doi: 10.1002/aps3.11390.

Tong, Kang, Yiquan Wu, and Fei Zhou. 2020. “"Recent Advances in Small Object Detection Based on
Deep Learning: A Review.” Image and Vision Computing 97:103910. doi:
10.1016/j.imavis.2020.103910.

Ubbens, Jordan, Mikolaj Cieslak, Przemyslaw Prusinkiewicz, and Ian Stavness. 2018. “The Use of Plant
Models in Deep Learning: An Application to Leaf Counting in Rosette Plants.” Plant Methods 14(1).
doi: 10.1186/s13007-018-0273-z.

Velumani, Kaaviya, Simon Madec, Benoit de Solan, Raul Lopez-Lozano, Jocelyn Gillet, Jeremy Labrosse,
Stephane Jezequel, Alexis Comar, and Frédéric Baret. 2020. “An Automatic Method Based on Daily
in Situ Images and Deep Learning to Date Wheat Heading Stage.” Field Crops Research
252(December 2019):107793. doi: 10.1016/j.fcr.2020.107793.

Velumani, Kaaviya, S. Oude Elberink, M. Y. Yang, and F. Baret. 2017. “"Wheat Ear Detection in Plots by
Segmenting Mobile Laser Scanner Data.” Pp. 149-56 in ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences. Vols. IV-2/W4. Wuhan, China.

Verger, Aleixandre, Nathalie Vigneau, Corentin Chéron, Jean Marc Gilliot, Alexis Comar, and Frédéric
Baret. 2014. “Green Area Index from an Unmanned Aerial System over Wheat and Rapeseed
Crops.” Remote Sensing of Environment 152:654-64. doi: 10.1016/j.rse.2014.06.006.

Voulodimos, Athanasios, Nikolaos Doulamis, Anastasios Doulamis, and Eftychios Protopapadakis. 2018.
“Deep Learning for Computer Vision: A Brief Review.” doi: 10.1155/2018/7068349.

Wang, Xu, Hong Xuan, Byron Evers, Sandesh Shrestha, Robert Pless, and Jesse Poland. 2019. “High-
Throughput Phenotyping with Deep Learning Gives Insight into the Genetic Architecture of
Flowering Time in Wheat.” GigaScience 8(11):1-11. doi: 10.1093/gigascience/giz120.

Wiesner-Hanks, Tyr, Ethan L. Stewart, Nicholas Kaczmar, Chad DeChant, Harvey Wu, Rebecca J. Nelson,
Hod Lipson, and Michael A. Gore. 2018. “Image Set for Deep Learning: Field Images of Maize
Annotated with Disease Symptoms.” BMC Research Notes 11(1):440. doi: 10.1186/s13104-018-
3548-6.

Xie, Chuangi, and Ce Yang. 2020. “A Review on Plant High-Throughput Phenotyping Traits Using UAV-
Based Sensors.” Computers and Electronics in Agriculture 178:105731.

Xiong, Haipeng, Zhiguo Cao, Hao Lu, Simon Madec, Liang Liu, and Chunhua Shen. 2019. “TasselNetv2:
In-Field Counting of Wheat Spikes with Context-Augmented Local Regression Networks.” Plant
Methods 15(1):150. doi: 10.1186/s13007-019-0537-2.

Xiong, Xiong, Lingfeng Duan, Lingbo Liu, Haifu Tu, Peng Yang, Dan Wu, Guoxing Chen, Lizhong Xiong,
Wanneng Yang, and Qian Liu. 2017. “Panicle-SEG: A Robust Image Segmentation Method for Rice
Panicles in the Field Based on Deep Learning and Superpixel Optimization.” Plant Methods

26



13(1):104. doi: 10.1186/s13007-017-0254-7.

Yalcin, Hulya. 2018. “Phenology Recognition Using Deep Learning: DeepPheno.” Pp. 14 in 2018 26th
Signal Processing and Communications Applications Conference (SIU). IEEE.

Yang, Guijun, Jiangang Liu, Chunjiang Zhao, Zhenhong Li, Yanbo Huang, Haiyang Yu, Bo Xu, Xiaodong
Yang, Dongmei Zhu, Xiaoyan Zhang, Ruyang Zhang, Haikuan Feng, Xiaoging Zhao, Zhenhai Li,
Heli Li, and Hao Yang. 2017. “Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop
Phenotyping: Current Status and Perspectives.” Frontiers in Plant Science 8:1111. doi:
10.3389/fpls.2017.01111.

Yendrek, Craig R., Tiago Tomaz, Christopher M. Montes, Youyuan Cao, Alison M. Morse, Patrick J.
Brown, Lauren M. Mclntyre, Andrew D. B. Leakey, and Elizabeth A. Ainsworth. 2017. “High-
Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral
Reflectance.” Plant Physiology 173(1):614-26. doi: 10.1104/pp.16.01447.

Zeiler, Matthew D., and Rob Fergus. 2012. “Differentiable Pooling for Hierarchical Feature Learning.”

Zeiler, Matthew D., and Rob Fergus. 2013. “Stochastic Pooling for Regularization of Deep Convolutional
Neural Networks.” in 1st International Conference on Learning Representations, ICLR 2013 -
Conference Track Proceedings. International Conference on Learning Representations, ICLR.

Zheng, Yang-Yang, Jian-Lei Kong, Xue-Bo Jin, Xiao-Yi Wang, and Min Zuo. 2019. “CropDeep: The Crop
Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture.”
Sensors 19(5):1058. doi: 10.3390/s19051058.

Zhou, Chengquan, Hongbao Ye, Jun Hu, Xiaoyan Shi, Shan Hua, Jibo Yue, Zhifu Xu, and Guijun Yang.
2019. “Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from
Unmanned Aerial Vehicle Platform.” Sensors (Switzerland) 19(14). doi: 10.3390/s19143106.

Zhou, Longfei, Xiaohe Gu, Shu Cheng, Guijun Yang, Meiyan Shu, and Qian Sun. 2020. “Analysis of Plant
Height Changes of Lodged Maize Using UAV-LIDAR Data.” Agriculture (Switzerland) 10(5). doi:
10.3390/agriculture10050146.

27



28



2. Estimates of maize plant density
from UAV RGB images using Faster-
RCNN detection model: impact of the
spatial resolution

Early-stage plant density is an important trait to discern the rate of seed emergence,
optimal sowing density, and potential yield. It is thus an attractive trait for plant
breeders as well as agriculture practitioners that was previously measured by visual
counting in the field. The affordability of UAVs and popularization of deep learning
methods now allow the accurate localization and counting of early-stage plants
through high-resolution RGB images. The study aims at understanding the spatial
resolution requirements of a commonly used object detection algorithm, Faster-
RCNN, and how the model is affected by differences in object sizes. In particular, the
efficiency of Faster-RCNN while handling small objects or low-resolution UAV images
is analyzed. Using lower resolution images would considerably increase the
acquisition and processing throughputs of this trait by reducing the cost and time
involved in data acquisition as well as for data processing. The study was conducted
on early-stage maize datasets, with a range of object sizes, acquired over eight sites
where the UAV was flying at different altitudes. This chapter corresponds to a journal
article currently under review.
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Abstract

Early-stage plant density is an essential trait that determines the fate of a genotype under
given  environmental conditions and management practices. The use
of RGB images taken from UAVs may replace the traditional visual counting in
fields with improved throughput, accuracy and access to plant localization.
However, high-resolution images are required to detect the small plants present at the
early stages. This study exploresthe impact of image ground sampling distance
(GSD) on the performances of maize plant detection at three-to-five leaves stage using
Faster-RCNN object detection algorithm. Data collected at high-
resolution (GSD~0.3cm) over six contrasted sites were used for model training. Two
additional sites with images acquired both at high and low (GSD=(0.6cm) resolution
were used to evaluate the model performances. Results show that Faster-RCNN
achieved very good plant detection and counting (rRMSE=0.08) performances
when native high-resolution images are used both for training and validation. Similarly,
good performances were observed (rRMSE=0.11) when the model is trained over
synthetic low-resolution images obtained by down-sampling the native training high-
resolution images, and applied to the synthetic low-resolution validation images.
Conversely, poor performances are obtained when the model is trained on a given
spatial resolution and applied to another spatial resolution. Training on a mix of high-
and low-resolution images allows to get very good performances on the native high-
resolution (rRMSE=0.06) and synthetic low-resolution (rRMSE=0.10) images.
However, very low performances are still observed over the native low-resolution
images (rRMSE=0.48), mainly due to the poor quality of the native low-
resolution images. Finally, an advanced  super-resolution method based on GAN
(generative adversarial network) that introduces additional textural information derived
from the native high-resolution images was applied to the native low-resolution
validation images. Results show some significant improvement (rRMSE=0.22)
compared to bicubic up-sampling approach, while still far below the performances
achieved over the native high-resolution images.
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1. Introduction

Plant density at emergence is an essential trait for crops since it is the first yield
component that determines the fate of a genotype under given environmental conditions and
management practices [1]-[5]. Competition between plants within the canopy depends on the
sowing pattern and its understanding requires reliable observations of the plant localization
and density [6]-[9]. An accurate estimation of actual plant density is also necessary to evaluate
the seed vigor by linking the emergence rate to the environmental factors [10]—[13].

Maize plant density was measured by visual counting in the field. However, this method
is labor-intensive, time consuming and prone to sampling errors. Several higher throughput
methods based on optical imagery have been developed in the last twenty years. This was
permitted by the technological advances with the increasing availability of small, light and
affordable high spatial resolution cameras and autonomous vehicles. Unmanned ground
vehicles (UGV) provide access to detailed phenotypic traits [14]-[16] while being generally
expensive and associated with throughputs of the order of few hundreds of microplots per hour.
Conversely, unmanned aerial vehicles (UAV) are very affordable with higher acquisition
throughput than UGVs. When carrying very high-resolution cameras, they can access
potentially several traits [17], [18] including plant density [19], [20].

Image interpretation methods used to estimate plant density can be classified into three
main categories. The first one is based on machine learning where the plant density measured
over a small set of sampling area is related to other canopy level descriptors including
vegetation indices derived from RGB and multispectral data [21]-[23]. However, this type of
method may lead to significant errors due to the lack of representativeness of the training data
set as well as the effect of possible confounding factors including changes in background
properties or plant architecture under genetic control. The second category of methods is based
on standard computer vision techniques, where the image is first binarized to identify the green
objects that are then classified into plants according to the geometrical features defined by the
operator (e.g. [24], [25]). The last category of methods is based on deep learning algorithms for
automatic object detection [26]-[28]. The main advantage of deep learning methods is their
ability to automatically extract low-level features from the images to identify the targeted
objects. While deep learning methods appear very promising, their generalization capacity is
determined by the volume and diversity of the training dataset [29]. While large collections of
images can now be easily acquired, labeling the images used to train the deep models represents
a significant effort that is the main limiting factor to build very large training datasets. Few
international initiatives have been proposed to share massive labelled datasets that will
contribute to maximize the performances of deep learning models [30]-[34], with however
questions regarding the consistency of the acquisition conditions and particularly the ground
sampling distance (GSD).

The use of UAV images for plant detection at early stages introduces important
requirements on image resolution, as deep learning algorithms are sensitive to object scales
with the identification of small objects being very challenging [35], [36]. For a given camera,
low altitude flights are therefore preferred to get the desired GSD. However, low altitude flights
decrease the acquisition throughput because of a reduced camera swath forcing to complete
more tracks to cover the same experiment, and requires additionally to slow down the flying
speed to reduce motion blur. An optimal altitude should therefore be selected to compromise
between the acquisition throughput and the image GSD. Previous studies reporting early-stage
maize plant detection from UAVs from deep learning methods did not addressed specifically
this important scaling issue [20], [26], [27]. One way to address this scaling issue is to transform
the low-resolution images into higher resolution ones using super-resolution techniques. Dai
[37] have demonstrated the efficiency of super-resolution techniques to enhance segmentation
and edge detection. Later, Fromm [38] and Magoulianitis [39] showed improvements in object
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detection performances when using the super-resolution methods. The more advanced super-
resolution techniques use deep convolutional networks trained over paired high- and low-
resolution images [40]-{42]. Since the construction of a real-world paired high- and low-
resolution dataset is a complicated task, the high-resolution images are often degraded using a
bicubic kernel or less frequently using gaussian noise to constitute the low-resolution images
[43]. However more recent studies have shown the drawbacks of the bicubic down-sampling
approaches as it smoothens sensor noise and other compression artifacts, thus failing to
generalize while applied to real world images [41]. More recent studies propose the use of
unsupervised domain translation techniques to generate realistic paired datasets for training the
super-resolution networks [44].

We propose here to explore the impact of image GSD on the performances of maize
plant detection at stages from three to five leaves using deep learning methods. More
specifically, three specific objectives are targeted: (1) to assess the accuracy and robustness of
deep learning algorithms for detecting maize plants with high-resolution images used both, in
the training and validation datasets; (2) to study the ability of these algorithms to generalize in
the resolution domain, i.e. when applied to images with higher and lower resolution compared
to the training dataset; and (3) to evaluate the efficiency of data augmentation and preparation
techniques in the resolution domain to improve the detection performances. Special emphasis
was put here on assessing the contribution of two contrasting methods to up-sample low-
resolution images: a simple bicubic up-sampling algorithm, and a more advanced super-
resolution model based on GAN (generative adversarial network) that introduces additional
textural information. Data collected over several sites across France with UAV flights
completed at several altitudes providing a range of GSDs were used.

2. Materials and Methods
2.1 Study sites

This study was conducted over 8 sites corresponding to different field phenotyping
platforms distributed across the west of France and sampled from 2016 to 2019 (Figure 3). The
list of sites and their geographic coordinates are given in Table 4. Each platform included
different maize microplots with size 20 to 40 square meters. Depending on the experimental
design of the platform, the microplots were sown with two to seven rows of maize of different
cultivars and row spacing varying from 30 to 110 cm. The sowing dates were always between
mid-April and mid-May.

United
Kingdom

Maize sites
@ Train
® Validation

Figure 3 Location of the study sites with example extracts of the maize microplots acquired from UAV (A)
A map displaying the location of the eight maize phenotyping platforms located in the west of France used in this
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study. (B) An illustration of the bounding boxes drawn around the maize plants. The examples shown are from the
Tartas site (GSD=0.27cm) on the left and Tartas site (GSD=0.63cm) on the right.

Table 4 The dataset used for the training and validation of the object detection models are listed here. TH,

is the training high-resolution dataset, V" is the validation high-resolution dataset and V'is the validation low-
resolution dataset. * For this site, the microplot extracts were resampled to GSD=0.25 cm before annotating.
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n [ 3 | Nerac |44.16 | 03 | 01-06-2017 [ILCE-6000] 25 | 30 |032] 44 | 3338 | 2253
T "4 | Thenay | 47.38 | 128 | 18052018 [ILCE-6000] 22 | 30 |025| 72 | 7454 | 1505
5 | Villedieu | 47.88 | 1.53 | 28-06-2016 | w/a na | wa |027] 26 | 2390 | 2159
6 | Blois | 47.56 | 1.32 | 18-05-2018 [ILCE-6000] 25 | 30 [033 | 20 | 1746 | 1419
pr |7_| Tartas | 4380 [ -0.79 [ 08-06-2019 | FC6540 | 20 [ 24 [032] 22 | 2151 | 1336
8 |Selommes| 47.76 | 1.19 | 17-05-2019 | LID-20c | 16.2 | 10.26 | 027 | 14 | 1105 891
;i [ 9 | Tartas | 43.80 [ -0.79 [ 08-06-2019 | FC6540 | 40 [ 24 [063] 24 [ 2151 437
10 | Selommes| 47.76 | 1.19 | 17-05-2019 | L1D-20c | 30 | 10.26 | 0.66 | 14 | 1105 156

2.2 Data acquisition and processing

UAV flights were carried out on the eight sites approximately one month after the sowing

date, between mid-May and mid-June (Table 4). Maize plants were in between three to five
leaves stage, ensuring that there is almost no overlap among individual plants from near nadir
viewing. Three different RGB cameras were used for the data acquisition: Sony Alpha (ILCE-
6000) with a focal length of 30 mm, DJI X7 (FC6540) with focal lengths of 24 mm and 30 mm
and the default camera with DJI Mavic 2 pro (L1D-20c) with a focal length of 10.26 mm
mounted on AltiGator Mikrokopter (Belgium) and DJI Mavic 2 pro (China). To geo-reference
the images, ground control points (GCPs) were evenly distributed around the sites and their
geographic coordinates were registered using a Real Time Kinematic GPS.
The flights were conducted at an altitude above the ground ranging between 15 and 22 meters,
providing a ground sampling distance (GSD) between 0.27 and 0.35 cm (Table 4). For Tartas
and Selommes sites, an additional flight was done at a higher altitude on the same day providing
a GSD between 0.63 and 0.66 cm.

The flights were planned with a lateral and front overlap of 60/ 80% between individual
images. Each dataset was processed using Photoscan Professional (Agisoft LLC, Russia) to
align the overlapping images by automatic tie point matching, optimize the aligned camera
positions and finally geo-reference the results using the GCPs. The steps followed are similar
to the data processing detailed by Madec [15]. Once ortho-rectified, the multiple instances of
the microplot present in the overlapping images were extracted using Phenoscript, a software
developed within the CAPTE research unit. Phenoscript allows to select, among the individual
images available for each microplots, those with full coverage of the microplot, minimum blur
and view direction closer to the nadir one. Only these images were used in this study.

2.3 Manual labelling of individual plants

From each site, the microplots were labelled with an offline tool, Labellmg [45]: bounding
boxes around each maize plant were interactively drawn (Figure 3B). The available sites (Table
4) were divided into three groups: (1) the first group (T™) composed of six sites was used to
train the plant detection models. It includes a total of 202 microplots corresponding to 19,841
plants. (2) The second group (V") corresponding to the Tartas and Selommes with low altitude
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flights was used to evaluate the model performance at high-resolution. It includes a total of 36
microplots corresponding to 3256 plants. (3) The third group (V') corresponds to the high-
altitude flights in Tartas and Selommes was used to evaluate the model performance at low-
resolution. It includes a total of 36 microplots corresponding to 3256 plants. An example of
images extracted from the three groups is shown in Figure 4.

Th

Castetis Nerac Thenay Villedieu Saint Hermine
0.35cm 0.32cm 0.25cm 0.27 cm 0.33cm

Selommes Selommes Tartas
0.27 cm . 0.66 cm 0.63cm

Figure 4 Examples of maize plants extracted from the in the eight sites used in this study. The image titles

R . . h vl 4 .. . . R . .
indicate the location of the sites. 7, ¥ "and V" are the training high-resolution dataset, validation high-resolution
dataset and the validation low-resolution dataset, respectively.

2.4 The Faster RCNN object detection model

Faster-RCNN [46], a convolutional neural network designed for object detection was
selected to identify maize plants in the image. Besides its wide popularity outside the plant
phenotyping community, Faster-RCNN has also been proved to be suitable for various plant
and plant-organ detection tasks [47]-[49]. We used the implementation of Faster RCNN in the
open-source MMDetection Toolbox [50], written in PyTorch, with pre-trained weights on
ImageNet. The Faster-RCNN model with a ResNet50 backbone was trained for 12 epochs with
a batch size of 2. The weights were optimized using an SGD optimizer (Stochastic Gradient
Descent) with a learning rate of 0.02. For the model training, ten patches of 512 x 512 pixels
were randomly extracted from each microplot in the training sites. Standard data augmentation
strategies such as rotate, flip, scale, brightness/contrast and jpeg compression were applied.

2.5 Experimental Plan

To evaluate the effect of the resolution on the reliability of maize plant detection, we
compared Faster RCNN performances over training and validation datasets made of images of
high (GSD=0.30 cm) and low (GSD=~0.60 cm) resolution. Three training datasets built from Th
(Table 4) were considered: (1) the original Th dataset with around 0.32 cm GSD; (2) A dataset,
Tgﬁ;‘ where the images from T" were down-sampled to 0.64 cm GSD using a gaussian filter
and motion blur that mimics the actual low-resolution imagery acquired at higher altitude as
described later (section 2.6.1); (3) A dataset, where the original Th high-resolution dataset was
merged with its low-resolution transform, Tgh,,,? . This Th + Tghn? L is expected to provide
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robustness of the model towards changes in GSD. Note that we did not investigated the training
with the native low-resolution images because the labeling of low-resolution images is often
difficult because plants are not easy to identify visually and to draw accurately the
corresponding bounding box. Further, only two flights were available at the high altitudes
(Table 4) that were reserved for the validation. A specific model was trained over each of the
three training datasets considered (Table 5) and then evaluated over independent high- and low-
resolution validation datasets.

We considered three validation datasets for the high-resolution images: (1) the native high-
resolution validation dataset, V" acquired at low altitude with GSD around 0.30 cm (Table 4).
(2) a synthetic high-resolution dataset of GSD around 0.30 cm obtained by up-sampling the
native low-resolution dataset, acquired at high altitude, using a bicubic interpolation algorithm
as described in section 2.6.2. It will be called V™. (3) A synthetic high-resolution dataset,
VLR, obtained by applying a super-resolution algorithm (see Section 2.6.3) to the native low-
resolution dataset V! and resulting in images with a GSD around 0.30 cm. Finally two low-
resolution datasets will be also considered: (1) The native low-resolution validation dataset, V'
(Table 4), with a GSD around 0.60 cm. (2) A synthetic low-resolution dataset, I@’,ﬂ;’[, obtained
by applying a Gaussian filter to down-sample (see Section 2.6.1) the original high-resolution
dataset, V", and get a GSD around 0.60 cm.

Table 5 Description of the training and validation datasets.

Dataset Nb. Nb. Comment
name microplots | plants
Th 202 19,841 Native high-resolution training dataset
Training TE;:E 202 19,841 Down-sampling T with gaussian filter and motion blur

T* + Tgm 404 39,682 | Merging T" and T"~!
Ve 36 3256 Native high-resolution validation dataset
Vish 36 3256 | Up-sampling V' with bi-cubic algorithm

Validation Ver® 36 3256 Up-sampling V! with Cycle-ESRGAN super-resolution
v 36 3256 Native low-resolution validation dataset
VEEE 36 3256 Down-sampling v with gaussian filter and motion blur

2.6 Methods for image up- and down-sampling

2.6.1 Gaussian filter down-sampling

To create the synthetic low-resolution datasets Tghnj’l and Vg’,ln_’[, a Gaussian filter with a

sigma=0.63 and a window size=9 followed by a motion blur with a kernel size=3 and angle=45
were applied to down-sample the native high-resolution datasets T* and V" by a factor of 2.
This solution was preferred to the commonly used bicubic down-sampling method because it
provides low-resolution images more similar to the native low-resolution UAV images (Figure
5). This was confirmed by comparing the image variance over the Selommes and Tartas sites
where both native high and low-resolution images were available: the variance of the Ig}; Lwas
closer to that of V! whereas the bicubic down-sampled dataset had a larger variance
corresponding to sharper images. This is consistent with [38] and [51] who used the same
method to realistically downsample high-resolution images.
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Figure 5 Visual comparison of the extract of the same plant from the Tartas site between different
versions of low-resolution. Native low-resolution, synthetic low-resolution from bicubic down-sampling, and
synthetic low-resolution from Gaussian down-sampling (sigma=0.63, window=9) followed by a motion blur
(kernel size=3 and angle=45).

2.6.2 Bicubic up-sampling

The bicubic interpolation algorithm was used to generate Vi " by up-sampling the native

low-resolution UAV images, V' The bicubic interpolation available within Pillow, the Python
Imaging Library [52] was used to resample the images.

2.6.3 Super-resolution images derived from Cycle-ESRGAN

The super-resolution (SR) is an advanced technique that artificially enhances the textural
information while up-sampling images. We used a SR model inspired from [53]. It is a two-
stage network composed of a CycleGAN network that generates synthetic paired data and a
ESRGAN network capable of image upsampling. The CycleGAN [54] performs unsupervised
domain mapping between the native low-resolution and bicubic downsampled low-resolution
domains. Thus, for any given input image, CycleGAN is trained to add realistic image noise
typical of low-resolution images. The ESRGAN-type super-resolution network [42] up-samples
by a factor of two the low-resolution images.

The paired high-resolution and “realistic” low-resolution dataset generated by the
CycleGAN was used in the simultaneous training of the ESRGAN-stage of the network. The
CycleGAN stage of the network was initially trained for a few epochs following which the two
stages (CycleGAN + ESRGAN) were trained together simultaneously. It should be noted that
during inference, only the ESRGAN stage of the network would be activated. The training
parameters and losses reported by Han [53] were used for the model training. The model
weights were initialized over the Div2k dataset [S5] and finetuned on the UAV dataset detailed
below. The Cycle-ESRGAN network was implemented using Keras [56] deep learning library
in Python. The codes will be made available on Github at the following link:
https://github.com/kaaviyave/Cycle-ESRGAN

A dedicated training dataset for the super-resolution network was prepared using UAV

imagery belonging to the following two domains:

o Native high-resolution domain: 2234 microplot extractions from four sites with an
average GSD of less than 0.33 cm. Some of the sites belonging to the T"dataset was
used as a part of the training.

e Native low-resolution domain: 1713 microplot extractions from three sites with an
average GSD of 0.46 cm per site.

None of the validation sites (V! and V" in Table 4) were used in the training of the super

resolution model. The synthetic downsampled dataset used to train the CycleGAN was
prepared by bicubic downsampling the native high-resolution domain by a factor of 2. The
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1mages were split into patches of size 256 x 256 pixels for the high-resolution domain and
into 128 x 128 pixels for the low-resolution domain.

2.7 Evaluation metrics

In this study, the Average Precision (AP), Root Mean Squared Error (RMSE) and Accuracy
will be utilized for the evaluation of the Faster-RCNN models for the purpose of maize plant
detection and counting.

AP: The AP is a frequently used metric for the evaluation of object detection models and can
be considered as the area under the precision-recall curve.

TP TP
Precision = ——— Recall =

TP + FP TP+ FN

Where TP is the number of True Positive, FP is the number of False Positive and the FN is the
number of False Negative. For the calculation of AP, a predicted bounding box is considered
True Positive (TP) if its intersection area over union area (IoU) with the corresponding labelled
bounding box is larger than a given threshold. Depending on the objective of the study, different
variations exist in the AP metric calculation and the choice of IOU threshold used to qualify a
predicted bounding box as TP. After considering several IoU threshold values, we decided to
use an IoU threshold of 0.25 to compute AP. This will be later justified. The Python COCO
API was used for the calculation of the AP metric [57].

Accuracy evaluates the model’s performance by calculating the ratio of correctly identified
plants to all the predictions made by the model. A predicted bounding box is considered true
positive if it has a confidence score of more than 0.5 and an IoU threshold of 0.25. Accuracy is
then calculated as:

TP

A= TP FPLEN

The relative root mean square error (rRMSE) between the number of labeled and detected
plants across all images belonging to the same dataset:
s
|E=J[P|:-i - Ppi}
\| n

BMSE =—————
' 2

where Pos is the number of plants labeled on image ¥ and Py is the number of images predicted

by the CNN (confidence score > 0.5 and an IoU > 0.25) and Foz.is the average number of labeled
plants per image.

3. Results and Discussion
3.1 Faster RCNN detects plants with high accuracy at high spatial resolution

Very good performances (rRMSE=0.08; Ac=0.88, AP=0.95) are achieved when the model
is trained over the high-resolution images (T") and applied on high-resolution images taken on
independent sites (V). The good performances are explained by the high rate of true positives
(Figure 6a). However, the detector performs slightly differently on the two sites used for the
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validation: in Selommes, an over-detection (false positives, FP) is observed for a small number
of plants, when the detector splits a plant into two different objects (Figure 6b). Conversely, in
the Tartas site, some under-detection (false negatives, FN) is observed, with a small number of
undetected plants (Figure 6).
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Elements of Confusion Matrix per Validation site and ground-truth boxes

Figure 6 Results of the model trained on the native HR dataset, Tﬁ, and applied to the HR validation dataset,

Fh. A) Elements of the confusion matrix - True Positives (TP), False Negatives (FN) and False Positives (FP) for
Selommes and Tartas sites. B) An example of false positive and false negative observed in the two validation
sites. The ground truth bounding boxes are shown in green and the predicted bounding boxes are shown in blue.
The green text indicates the IoU of the predicted bounding box with the ground truth and the blue text indicates
the confidence score of the predictions.

A detailed analysis of the Precision-Recall curves for the configuration [T", V"] at
different IoU (Figure 7) shows a drastic degradation of the detector performances when the IoU
is higher than 0.3. This indicates that the model is not accurate when determining the exact
dimensions of maize plants. This is partly explained by the difficulty of separating the green
from the ground in the shadowed parts of the images. As a consequence, some shaded leaves
are excluded from the bounding boxes proposed by the detector and, conversely, some
shadowed ground are wrongly included in the bounding boxes proposed (Figure 6b). Further,
when a single plant is split into two separate objects by the detector, the resulting bounding
boxes are obviously smaller than the corresponding plant (Figure 6b). As a consequence, we
proposed to use an loU threshold of 0.25 to evaluate the model performance to better account
for the smaller size of the detected bounding boxes. This contrasts from most object detection
applications where an IoU threshold of 0.5 or 0.75 is commonly used to evaluate the
performance of the methods [58], [59]. The observed degradation of the model performance for
IoU above 0.3 indicates that the method presented provides less accurate localization than in
other object detection studies, including both, real world objects and phenotyping applications
[49], [60], [61]. An inaccurate estimation of plant dimensions is not critical for those
applications assessing germination or emergence rates and uniformity, where plant density is
the targeted phenotypic trait. If the focus is to additionally assess the plant size in early
developmental stages as well, mask-based RCNN [62], [63] could be used instead. In contrast
to algorithms trained on rectangular regions like Faster-RCNN, mask-based algorithms have
the potentials to more efficiently manage the shadow projected on the ground by plants, limiting
therefore the possible confusion between shaded leaves and ground during the training.
However, generating mask annotations is time-consuming, increasing the effort needed to
generate a diverse training dataset.
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Figure 7 Precision-Recall curve at different IoU thresholds for the plant detection model trained and applied

with high-resolution images (Th- Vﬁ).

These results provide slightly better performances as those reported by David [20] with
Ac~0.8 and rRMSE~0.1 when using the “out-domain” approach as the one used in this study,
i.e. when the training and validation sites are completely independent. They used images with
a spatial resolution around 0.3cm as in our study. This is also consistent with the results of
Karami [26] who obtained an accuracy of 0.82 with a spatial resolution of around lcm. They
used the anchor-free Few Shot Leaning (FSL) method which identifies and localizes the maize
plants by estimating the central position. They claim that their method is little sensitive to object
size and thus to the spatial resolution of the images. The accuracy increases up to 0.89 when
introducing few images from the validation sites in the training dataset. Kitano [27] proposed a
two-step method: they first, segment the images using a CNN-based method and then count the
segmented objects. They report an average TRMSE of 0.24 over a test dataset where many
factors including image resolution vary (ranging from GSD=0.3cm to 0.56 cm). They report
that their method is sensitive to the size and density of the objects. In the following, we will
further investigate the dependency of the performances to image resolution.

3.2 The Faster-RCNN model is sensitive to image resolution and apparent plant size

The performances of the model were evaluated when it is trained and validated over images
with different resolution. When Faster-RCNN is trained on the high-resolution domain (T")
and applied to a dataset with low-resolution (V!), both AP and Ac decrease almost by 30%
(Table 6) compared to the results where the model is trained and applied over high-resolution
images. The rate of true positive drops because of the drastic increase of false negatives
indicating a high rate of misdetection (Figure 8, [T™, V!]). This degradation of the detection
performances impacts highly the rRMSE that increases up to 0.48. This indicates that the model
is sensitive to the resolution of the images. We further investigated if this was linked to the
apparent size of the plants and therefore up-sampled the validation low-resolution images with
a bicubic interpolation method (V2™) to get plants with the same size as in the native high-
resolution images (V™). Results show that Ac increases from 0.54 to 0.63 and AP from 0.64 to
0.77. However, because of the high imbalance between FN and FP (Figure 8, [T”, Vg;’h]), the
counting performances remains poor with rRMSE=0.49.
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Table 6 Comparison of the performance of the Faster-RCNN models trained and validated over datasets
with different resolution. The colors indicate the goodness of the performances for the three metrics (green:
best; red: worst).
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Figure 8 Results of maize plant detection when trained and evaluated across different resolution domains. T pative
h=1 h
high-resolution training dataset; Tgm Jow-resolution training dataset by down-sampling r using gaussian motion
h I I=h
blur; ¥ native high-resolution validation dataset; V" native low-resolution validation dataset; ¥ br high-resolution

dataset by up-sampling v using bicubic interpolation.

When the model is trained over simulated low-resolution images (Tgh,,;’ 1), the detection

and counting performances evaluated on high-resolution images (V") also degrades drastically
(Table 6). The rate of true positive is relatively high, but the rate of false positive increases
drastically (Figure S[Tghn_,’ L Vh]). We observe that the average number of predicted bounding
boxes overlapping each labelled box increases linearly with its size (Figure 9). For example,
the model identifies on average two plants inside plants larger than 4000 pixels. The imbalance
between FN and FP explains the very poor counting performances with rRMSE=0.52 (Table
6). This result confirms the importance to keep consistent the resolution and plant size between
the training and the application datasets since Faster-RCNN tends to identify objects that have
a similar size to the objects used during the training.
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Figure 9 Effects of the hyper-specialization of Faster-RCNN trained with synthetic low-resolution images

{Tg;t] and applied to a high-resolution datatset (FE)? A) Relationship between the size of the ground—truth
bounding boxes and the average number of predicted bounding boxes intersecting with them; B) Example of over-
detection of maize plants due to different object size. The ground truth bounding boxes are shown in green and the
predicted boxes are shown in blue. The green text indicates the IoU of the predicted boxes with the ground truth
and the blue text indicates the confidence score of the predictions.

We thus evaluated whether data-augmentation may improve the performances on the
low-resolution images (V!): the Faster-RCNN model trained on the simulated low-resolution
images (T;n;’ 1) shows improved detection performances as compared to the training over the
native high-resolution images (Table 6) with a decrease of the rRMSE down to 0.29 (Table 6).
When this model trained with synthetic low-resolution images (Tgh,; 1) is applied to a dataset

downscaled to a similar resolution (Vg'},f l), the performances improve dramatically with Ac
increasing from .56 to 0.89 and AP from 0.71 to 0.90 while the rRMSE drops to 0.10. However,
when this model trained with synthetic low-resolution images (T,,,,") is applied to the native

low-resolution images (V'), moderate detection performances are observed which degrades the
counting estimates with rRMSE=0.29 (Table 6).

The performances of the model trained over the synthetic low-resolution images (Tg@,‘; L
are quite different when evaluated over the native images (V') or the synthetic ones (I@’}; b with
the latter yielding results almost comparable to the high-resolution configurations with AP=0.90
(Table 6). This indicates that the low-resolution synthetic images contain enough information
to detect accurately the maize plants. Conversely, the native low-resolution image, V!, have
probably lost part of the textural information. In addition, the model trained on the synthetic
low-resolution images is not able to extract the remaining pertinent plant descriptors from the
native low-resolution images. We can observe that the native low-resolution images contain
less details as compared to the synthetic ones (Figure 10): some plants are almost not visible in
the V! images, as the textural information vanishes and even the color of maize leaves cannot
be clearly distinguished from the soil background. This explains why the model was not able to
detect the plants, even when it is trained with the synthetic low-resolution images (Tghn? h.
Contrary to vectors that operate at an almost constant height like ground vehicles [16], [64]-
[66] or fixed cameras [67]-[70], camera settings (aperture, focus and integration time) in UAVs
need to be adapted to the flight conditions, especially flight altitude, to maximize image quality.
Further, the jpg recording format of the images may also significantly impact image quality.
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Recording the images in raw format would thus improve the detection capability at the expense
of increased data volume and sometimes image acquisition frequency.

Model trained on T'>! evaluated on I Model trained on T?-!: evaluated on V!
g gm gm

Selommes

Tartas

Figure 10 An example showing the same plants extracted from the exact same locations in two versions of

the validation dataset: native LR (['d) and the synthetic LR obtained from gaussian downsampling (WH; I).
The first and third column show the raw images while the second and fourth column shows the detector predictions.
The ground truth bounding boxes are shown in green and the predicted bounding boxes are shown in blue. The
green text indicates the IoU of the predicted box with the ground truth and the blue text indicates the confidence
score of the predictions.

3.3 Data Augmentation makes the model more resistant to changes in image
resolution

We finally investigated whether mixing high and low-resolution images in the training
dataset would make the model more resistant to changes in the image resolution. Results show
that merging native high-resolution with synthetic low-resolution images (T" + Tg@;_’ by provides
(Table 7) performances similar to those observed when the model is trained only over high (T")
or synthetic low (Tgf‘n‘{ 1y and validated on the same resolution (V" or ngﬁ,{’ Iy (Table 6). This
proves that data augmentation could be a very efficient way to deal with images having different
resolution. Further, this model trained on augmented data (T" + Tgh,,? ') (Table 7) surprisingly
beats the performances of the model trained only on the high-resolution images (T") as
displayed in Table 6. This is probably a side effect of the increase of the size of the training
dataset (Table 5). Nevertheless, when validating on the native low-resolution images (V')
(Table 7) the performances are relatively poor as compared to the model trained only on the
synthetic low-resolution images (Tghn]’ 1). This is explained by the lower quality of the native
low-resolution images as already described in the previous section.

T;lble '}Ii(%omparison of the performance of the Faster-RCNN models trained over the augmented data (
™+ T.E';'l) and validated over datasets with different resolution. The colors indicate the goodness of the

performances for the three metrics (green: best; red: worst).

rRMSE Ac AP
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3.4 Up-sampling with the super-resolution method improves the performances of
plant detection on the native low-resolution images

If the training 1s difficult with the native low-resolution images because plants are visually
difficult to identify and label, the training should be done over low-resolution images derived
from the high-resolution images using a more realistic up-sampling method than the standard
bicubic interpolation one. Alternatively, the training could be done using the high-resolution
images and the low-resolution dataset may be up-sampled to a synthetic high-resolution domain

using bicubic interpolation or super-resolution techniques.

Results show that the super-resolution technique improved plant detection very

significantly as compared to the native low-resolution (V') and bi-cubic up-sampled (V};

—

")

images (Table 8). This impacts positively the counting performances while not reaching the
performances obtained with the high-resolution images (V™). The super-resolution reduces
drastically the under-detection of maize plants particularly on the Tartas site (Figure 11) where,
as mentioned in Section 3.2, these native low-resolution images have lower textural information

and green fraction per plant.

Table 8 Comparison of the performance of the Faster-RCNN models trained over high-resolution images
and applied to the native low-resolution images (V!), the synthetic high-resolution images that is up-
sampled/transformed using either bi-cubic (V4.") or super-resolution (V1) techniques. The colors indicate
the goodness of the performances for the three metrics (green: best; red: worst).

Model trained on T"; Validated on V! *"

rRMSE Ac AP
Fi
Wih 0.43 0.63 0.77
Pk 0.22 0.80 0.85
A B
Model trained on T"; Validated on V[ "
1.0 1.0
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08 - P 08 1
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= =
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0.0- 0.0-
Selommes Tartas Selommes

Elements of Confusion Matrix per Validation site

Tartas

TP
FN
FP

Elements of Confusion Matrix per Validation site

Figure 11 A comparison between the performance of the Faster-RCNN model trained on the HR dataset,
Th, and applied to the synthetic high-resolution datasets. A) Model trained on ™ and evaluated on the
synthetic HR dataset [,di;h from the bicubic up-sampling; B) Model trained on ™ applied to the synthetic HR

—h . .
dataset [".!:r , from the super-resolution technique.
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The super resolution approach enhances the features used to identify maize plants, with
colors and edges more pronounced than in the corresponding native LR images (Figure 12).
Maize plants are visually easier to recognize in the super-resolved images as compared to both
the native low-resolution and the bicubically up-sampled images.

v [ [T", Vi)

r

(A)

Site Tartas

Site Selommes

Figure 12 Illustration of the performance of the Faster-RCNN model on the synthetic high-resolution and
native low-resolution datasets. (A) and (C): Images belonging to three datasets - native low-resolution V!,
bicubically up-sampled V!l: . and finally the up-sampling by super-resolution technique V.fr;'h. (B) and (D): The
™

=1
results predicted by the model trained on * gm applied to v (first column) and the model trained on 7 applied to
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the synthetic high-resolution datasets th: n and V?z;h (second and third column). The ground truth bounding boxes
are shown in green and the predicted bounding boxes are shown in blue. The green text indicates the IoU of the
predicted bounding box with the ground truth and the blue text indicates the confidence score of the predictions.

Nevertheless, although easier to interpret, the images generated by super-resolution do not
appear natural with some exaggerated textural features of the soil background (Figure 12 c, d).
In few cases, super-resolution images show new features — e.g. coloring some pixels in green—
in leaf-shaped shadows or tractor tracks in the background leading to an increase in the
proportion of false positives in certain microplots of the Tartas site (Figure 11b). Training the
super-resolution model with a larger dataset might help the generator network to limit those
artifacts. Alternatively, some studies [39], [71], [72] have proposed to integrate the training of
the super-resolution model with the training of the Faster-RCNN. The use of a combined
detection loss would provide additional information on the location of the plants, thus forcing
the super-resolution network to differentiate between plants and background while up-sampling
the images.

4. Conclusion

We evaluated the performances of automatic maize plant detection from UAV images using
deep learning methods. Our results show that the Faster-RCNN model achieved very good plant
detection and counting (rRMSE=0.08) performances when high-resolution images
(GSD=~0.3cm) are used both for training and validation. However, when this model is applied
to the low-resolution images acquired at higher altitudes, the detection and counting
performances degrade drastically with IRMSE=0.48. We demonstrated that this was mostly due
to the hyper-specialization of Faster-RCNN that is expecting plants of similar size as in the
training dataset. The sensitivity of the detection method to the object size is a critical issue for
plant phenotyping applications, where datasets can be generated from different platforms
(UAVs, ground vehicles, portable imaging systems, etc.) each one of them providing images
within at a specific ground resolution. Concurrently, it would be optimal to share labeled images
to get a wide training dataset. Data augmentation techniques where high and low-resolution
images populate the training dataset were proved to be efficient and provides performances
similar to the ones achieved when the model is trained and validated over the same image
resolution. However, the native low-resolution images acquired from the UAV have significant
low quality that prevents accurate plant detection. In some cases, the images are difficult to
visually interpret which poses a problem both for their labeling and for the detector to localize
plants due to the lack of pertinent information. These low-quality images were characterized by
a loss of image texture that could come from camera intrinsic performances, inadequate settings
and the jpg recording format. It is thus recommended to pay a great attention to the camera
choice, settings and recording format when the UAV is flying at altitudes that provides
resolution coarser than 0.3 cm for maize plant counting.

Finally, we evaluated a super-resolution Cycle-ESRGAN based method to partially
overcome the problem of sub-optimal image quality. The super-resolution method significantly
improved the results on the native low-resolution dataset compared to the classic bicubic up-
sampling strategies. However, the performances when applied to the native low-resolution
images were moderate and far poorer than those obtained with the native high-resolution images
with simulated super-resolved images showing sometimes artifacts. A future direction to reduce
the artifacts of such super-resolution algorithms can be to integrate the GAN training along with
the training of the plant detection network. Another direction would be to introduce some
labeled low-resolution images in the training dataset to possibly integrate their features in
model.

45



Acknowledgments

General: We would like to thank the CAPTE team for contributing to the construction
of the labelled dataset used in this study.

Author contributions: KV, RL, SM and FB designed the study. KV implemented the
super-resolution pipeline and conducted the analysis. KV and RL contributed
extensively to the writing of the article. RL and FB supervised the study. AC and WG
participated in discussions and in writing the manuscript. All authors read, revised and
approved the final manuscript.

Funding: We received support from ANRT for the CIFRE grant of KV, co-funded by
Hiphen.

Competing interests: The authors declare that there is no conflict of interest
regarding the publication of this article.

References

[1]

(2]
(3]

[4]
(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]

R. F. Holt and D. R. Timmons, “Influence of Precipitation, Soil Water, and Plant
Population Interactions on Corn Grain Yields,” Agron. J., vol. 60, no. 4, pp. 379-381,
Jul. 1968.

W. Xu et al., “Adjusting maize plant density to different climatic conditions across a
large longitudinal distance in China,” F. Crop. Res., vol. 212, pp. 126134, Oct. 2017.
Y. Zhao, S. Xing, Q. Zhang, F. Zhang, and W. Ma, “Causes of maize density loss in
farmers’ fields in Northeast China,” J. Integr. Agric., vol. 18, no. 8, pp. 1680-1689,
Aug. 2019.

Y. Gan, E. H. Stobbe, and J. Moes, “Relative Date of Wheat Seedling Emergence and
Its Impact on Grain Yield,” Crop Sci., vol. 32, no. 5, pp. 1275-1281, Sep. 1992.

J. S. Graybill, W. J. Cox, and D. J. Otis, “Yield and Quality of Forage Maize as
Influenced by Hybrid, Planting Date, and Plant Density,” Agron. J., vol. 83, no. 3, pp.
559-564, May 1991.

R. A. Fischer, O. H. Moreno Ramos, 1. Ortiz Monasterio, and K. D. Sayre, “Yield
response to plant density, row spacing and raised beds in low latitude spring wheat with
ample soil resources: An update,” F. Crop. Res., vol. 232, pp. 95-105, Feb. 2019.

G. . Maddonni, M. . Otegui, and A. . Cirilo, “Plant population density, row spacing and
hybrid effects on maize canopy architecture and light attenuation,” F. Crop. Res., vol.
71, no. 3, pp. 183-193, Jul. 2001.

L. Li, J. Sun, F. Zhang, X. Li, S. Yang, and Z. Rengel, “Wheat/maize or wheat/soybean
strip intercropping I. Yield advantage and interspecific interactions on nutrients,” F.
Crop. Res., vol. 71, no. 2, pp. 123—-137, Jun. 2001.

J. Olsen, L. Kristensen, and J. Weiner, “Influence of sowing density and spatial pattern
of spring wheat (Triticum aestivum) on the suppression of different weed species,”
Weed Biol. Manag., vol. 6, no. 3, pp. 165-173, Sep. 2006.

D. B. Egli and M. Rucker, “Seed Vigor and the Uniformity of Emergence of Corn
Seedlings,” Crop Sci., vol. 52, no. 6, pp. 2774-2782, Nov. 2012.

N. W. Hopper, J. R. Overholt, and J. R. Martin, “Effect of Cultivar, Temperature and
Seed Size on the Germination and Emergence of Soya Beans (Glycine max (L.)
Merr.),” Ann. Bot., vol. 44, no. 3, pp. 301-308, Sep. 1979.

P. V. V. Prasad, K. J. Boote, J. M. G. Thomas, L. H. Allen, and D. W. Gorbet,
“Influence of Soil Temperature on Seedling Emergence and Early Growth of Peanut
Cultivars in Field Conditions,” J. Agron. Crop Sci., vol. 192, no. 3, pp. 168-177, Jun.

46



[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

2006.

Z. Berzsenyi and 1. S. Tokatlidis, “Density Dependence Rather Than Maturity
Determines Hybrid Selection in Dryland Maize Production,” Agron. J., vol. 104, no. 2,
pp- 331-336, Mar. 2012.

D. Deery, J. Jimenez-Berni, H. Jones, X. Sirault, and R. Furbank, “Proximal Remote
Sensing Buggies and Potential Applications for Field-Based Phenotyping,” Agronomy,
vol. 4, no. 3, pp. 349-379, 2014.

S. Madec er al., “High-Throughput Phenotyping of Plant Height: Comparing
Unmanned Aerial Vehicles and Ground LiDAR Estimates,” Front. Plant Sci., vol. 8,
no. November, pp. 1-14, Nov. 2017.

A. Ruckelshausen et al., “BoniRob—an autonomous field robot platform for individual
plant phenotyping,” Precis. Agric., vol. 9, no. 841, p. 1, 20009.

Y. Shi et al., “Unmanned Aerial Vehicles for High-Throughput Phenotyping and
Agronomic Research,” PLoS One, vol. 11, no. 7, p. e0159781, Jul. 2016.

G. Yang et al., “Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop
Phenotyping: Current Status and Perspectives,” Front. Plant Sci., vol. 8, p. 1111, Jun.
2017.

X. Jin, S. Liu, F. Baret, M. Hemerlé, and A. Comar, “Estimates of plant density of
wheat crops at emergence from very low altitude UAV imagery,” Remote Sens.
Environ., vol. 198, pp. 105-114, Sep. 2017.

E. David et al., “Plant detection and counting from high-resolution RGB images
acquired from UAVs: comparison between deep-learning and handcrafted methods
with application to maize, sugar beet, and sunflower crops,” Submitt. to Front. Plant
Sci., 2021.

D. Stroppiana et al., “ESTIMATING CROP DENSITY FROM MULTI-SPECTRAL
UAV IMAGERY IN MAIZE CROP,” ISPRS - Int. Arch. Photogramm. Remote Sens.
Spat. Inf. Sci., vol. XLII-2/W13, pp. 619-624, Jun. 2019.

P. Randelovi¢ et al., “Prediction of Soybean Plant Density Using a Machine Learning
Model and Vegetation Indices Extracted from RGB Images Taken with a UAV,”
Agronomy, vol. 10, no. 8, p. 1108, Jul. 2020.

B. Li et al., “The estimation of crop emergence in potatoes by UAV RGB imagery,”
Plant Methods, vol. 15, no. 1, p. 15, Feb. 2019.

D. S. Shrestha and B. L. Steward, “Shape and size analysis of corn plant canopies for
plant population and spacing sensing,” Appl. Eng. Agric., vol. 21, no. 2, pp. 295-303,
2005.

S. Liu, F. Baret, B. Andrieu, P. Burger, and M. Hemmerl¢, “Estimation of Wheat Plant
Density at Early Stages Using High Resolution Imagery,” Front. Plant Sci., vol. 8, p.
739, May 2017.

A. Karami, M. Crawford, and E. J. Delp, “Automatic Plant Counting and Location
Based on a Few-Shot Learning Technique,” IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens., vol. 13, pp. 58725886, 2020.

B. T. Kitano, C. C. T. Mendes, A. R. Geus, H. C. Oliveira, and J. R. Souza, “Corn
Plant Counting Using Deep Learning and UAV Images,” IEEE Geosci. Remote Sens.
Lett., pp. 1-5, Aug. 2019.

J. Ribera, Y. Chen, C. Boomsma, and E. J. Delp, “Counting plants using deep
learning,” in 2017 IEEE Global Conference on Signal and Information Processing,
GlobalSIP 2017 - Proceedings, 2018, vol. 2018-January, pp. 1344—1348.

M. Z. Alom et al., “A State-of-the-Art Survey on Deep Learning Theory and
Architectures,” Electronics, vol. 8, no. 3, p. 292, Mar. 2019.

E. David et al., “Global Wheat Head Detection (GWHD) Dataset: A Large and Diverse
Dataset of High-Resolution RGB-Labelled Images to Develop and Benchmark Wheat

47



[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Head Detection Methods,” Plant Phenomics, vol. 2020, pp. 1-12, Aug. 2020.

A. Dobrescu, M. V. Giuffrida, and S. A. Tsaftaris, “Leveraging Multiple Datasets for
Deep Leaf Counting,” in Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2017, pp. 2072-2079.

S. Ghosal et al., “A Weakly Supervised Deep Learning Framework for Sorghum Head
Detection and Counting,” Plant Phenomics, vol. 2019, p. 1525874, Jun. 2019.

D. P. Hughes and M. Salathe, “An open access repository of images on plant health to
enable the development of mobile disease diagnostics,” arXiv Prepr. arXivi511.08060,
Nov. 2015.

M. Minervini, A. Fischbach, H. Scharr, and S. A. Tsaftaris, “Finely-grained annotated
datasets for image-based plant phenotyping,” Pattern Recognit. Lett., vol. 81, pp. 80—
89, Oct. 2016.

M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, and K. Cho, “Augmentation for small
object detection,” arXiv Prepr. arXivi902.07296, Feb. 2019.

K. Tong, Y. Wu, and F. Zhou, “Recent advances in small object detection based on
deep learning: A review,” Image Vis. Comput., vol. 97, p. 103910, May 2020.

D. Dai, Y. Wang, Y. Chen, and L. Van Gool, “Is Image Super-resolution Helpful for
Other Vision Tasks?,” Sep. 2015.

M. Fromm, M. Berrendorf, E. Faerman, Y. Chen, and B. Sch, “XD-STOD : Cross-
Domain Superresolution for Tiny Object Detection,” pp. 142—-148, 2019.

V. Magoulianitis, D. Ataloglou, A. Dimou, D. Zarpalas, and P. Daras, “Does deep
super-resolution enhance UAV detection?,” 2019 16th IEEE Int. Conf. Adv. Video
Signal Based Surveillance, AVSS 2019, pp. 1-6, 2019.

C. Dong, C. C. Loy, K. He, and X. Tang, “Image Super-Resolution Using Deep
Convolutional Networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp.
295-307, Feb. 2016.

A. Lugmayr, M. Danelljan, and R. Timofte, “Unsupervised Learning for Real-World
Super-Resolution,” Sep. 2019.

X. Wang et al., “ESRGAN: Enhanced super-resolution generative adversarial
networks,” in Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, vol. 11133 LNCS,
pp- 63-79.

K. Zhang, W. Zuo, and L. Zhang, “Learning a Single Convolutional Super-Resolution
Network for Multiple Degradations,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., pp. 3262-3271, Dec. 2017.

M. Fritsche, S. Gu, and R. Timofte, “Frequency Separation for Real-World Super-
Resolution,” in IEEE/CVF International Conference on Computer Vision Workshop
(ICCVW), 2019, pp. 3599-3608.

Tzutalin, “Labellmg,” Git code, 2015. [Online]. Available:
https://github.com/tzutalin/labellmg.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

X. Jin, S. Madec, D. Dutartre, B. de Solan, A. Comar, and F. Baret, “High-Throughput
Measurements of Stem Characteristics to Estimate Ear Density and Above-Ground
Biomass,” Plant Phenomics, vol. 2019, p. 4820305, May 2019.

Y. Liu, C. Cen, Y. Che, R. Ke, Y. Ma, and Y. Ma, “Detection of Maize Tassels from
UAV RGB Imagery with Faster R-CNN,” Remote Sens., vol. 12, no. 2, p. 338, Jan.
2020.

S. Madec et al., “Ear density estimation from high resolution RGB imagery using deep
learning technique,” Agric. For. Meteorol., vol. 264, no. May 2018, pp. 225-234, Jan.

48



[50]
[51]
[52]
[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]
[68]

[69]

2019.

K. Chen et al., “MMDetection: Open MMLab Detection Toolbox and Benchmark,”
arXiv, Jun. 2019,

J. Shermeyer and A. Van Etten, “The Effects of Super-Resolution on Object Detection
Performance in Satellite Imagery,” 2018.

A. Clark, “Pillow (PIL Fork) Documentation.”
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf, 2015.

Z. Han et al., “Unsupervised Image Super-Resolution with an Indirect Supervised
Path,” Oct. 2019.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks,” Proc. IEEE Int. Conf. Comput. Vis.,
vol. 2017-October, pp. 2242-2251, Mar. 2017.

R. Timofte Eirikur et al., “NTIRE 2017 Challenge on Single Image Super-Resolution:
Methods and Results,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2017, pp. 126-135.

F. Chollet, “Keras,” https://keras.io. GitHub, 2015.

T. Y. Lin et al., “Microsoft COCO: Common objects in context,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 2014, vol. 8693 LNCS, no. PART 5, pp. 740-755.
R. Padilla, S. L. Netto, and E. A. B. da Silva, “A Survey on Performance Metrics for
Object-Detection Algorithms,” in 2020 International Conference on Systems, Signals
and Image Processing (IWSSIP), 2020, vol. 2020-July, pp. 237-242.

T. Kong, A. Yao, Y. Chen, and F. Sun, “HyperNet: Towards Accurate Region Proposal
Generation and Joint Object Detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 845-853.

H. Jiang and E. Learned-Miller, “Face Detection with the Faster R-CNN,” in
Proceedings - 12th IEEFE International Conference on Automatic Face and Gesture
Recognition, FG 2017 - Ist International Workshop on Adaptive Shot Learning for
Gesture Understanding and Production, ASLAGUP 2017, Biometrics in the Wild,
Bwild 2017, Heteroge, 2017, pp. 650—657.

S. Zhang, R. Wu, K. Xu, J. Wang, and W. Sun, “R-CNN-Based Ship Detection from
High Resolution Remote Sensing Imagery,” Remote Sens., vol. 11, no. 6, p. 631, Mar.
2019.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 42, no. 2, pp. 386-397, Feb. 2020.

M. Machefer, F. Lemarchand, V. Bonnefond, A. Hitchins, and P. Sidiropoulos, “Mask
R-CNN refitting strategy for plant counting and sizing in uav imagery,” Remote Sens.,
vol. 12, no. 18, p. 3015, Sep. 2020.

A. Comar, P. Burger, B. de Solan, F. Baret, F. Daumard, and J.-F. Hanocq, “A semi-
automatic system for high throughput phenotyping wheat cultivars in-field conditions:
description and first results,” Funct. Plant Biol., vol. 39, no. 11, p. 914, Nov. 2012.

J. W. White and M. M. Conley, “A Flexible, Low-Cost Cart for Proximal Sensing,”
Crop Sci., vol. 53, no. 4, p. 1646, 2013.

G. Quaglia, C. Visconte, L. S. Scimmi, M. Melchiorre, P. Cavallone, and S. Pastorelli,
“Design of a UGV Powered by Solar Energy for Precision Agriculture,” Robotics, vol.
9, no. 1, p. 13, Mar. 2020.

R. Khanna, J. Rehder, M. Moeller, E. Galceran, and R. Siegwart, “Studying Phenotypi
Variability in Crops using a Hand-held Sensor Platform,” 2015.

J. L. Crain et al., “Development and Deployment of a Portable Field Phenotyping
Platform,” Crop Sci., vol. 56, no. 3, pp. 965-975, May 2016.

S. Wu et al., “MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize

(¢}

49



Shoots Using Multiview Stereo 3D Reconstruction,” Plant Phenomics, vol. 2020, pp.
1-17, Mar. 2020.

[70] N. Virlet, K. Sabermanesh, P. Sadeghi-Tehran, and M. J. Hawkesford, “Field
Scanalyzer: An automated robotic field phenotyping platform for detailed crop
monitoring,” Funct. Plant Biol., vol. 44, no. 1, p. 143, Jan. 2017.

[711 M. Haris, G. Shakhnarovich, and N. Ukita, “Task-Driven Super Resolution: Object
Detection in Low-resolution Images,” Mar. 2018.

[72] H.Ji, Z. Gao, T. Mei, and B. Ramesh, “Vehicle Detection in Remote Sensing Images
Leveraging on Simultaneous Super-Resolution,” IEEE Geosci. Remote Sens. Lett., pp.
1-5, Aug. 2019.

50



51



3. Wheat head density estimation
from UAVs: data augmentation and
data preparation strategies to exploit
labelled ground-based imagery

Wheat head density is a direct indicator of yield and hence is extremely useful for plant
breeders to evaluate the performance of cultivars under different environmental
conditions and management practices. The possibility to access this trait from RGB
images acquired in-situ, at 1 or 2 meters above the canopy using object detection
methods has already been well established. This had also led to the creation of a large,
diverse labelled dataset of wheat heads in the field, covering different stages of
maturity and illumination conditions. However, these in-situ image-based methods, are
still low throughput and suffer from sampling issues. This study aims to overcome this
problem by developing a methodology to estimate wheat head density from UAV
images by exploiting the existing high-resolution ground annotations. Since the wheat
canopy observed from UAV is characterized by small, overlapping objects with high
density per image, the suitability of an object detection method, Faster-RCNN
previously used for maize plant counting, and a regression-based object counting
method, SFC2Net, was investigated. The models were evaluated on three ground and
UAV datasets acquired during the 2020 growing campaign over three sites (two in
France and one in Australia). This chapter corresponds to a draft article.
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Exploiting ground-level images for training
deep models to estimate wheat head density
from UAV images

Kaaviya Velumani, Raul Lopez Lozano, Hao Lu, Simon Madec, Etienne David, Wenjuan Li, Shouyang
Liu, Daniel Smith, Scott Chapman, Alexis Comar, Frederic Baret

Abstract

Wheat is one of the most widely cultivated cereal crops in the world. The wheat head density is an
important indicator of yield and a trait of interest for plant breeders as well as farmers. The recent
advances in low-cost data acquisition platforms, deep learning algorithms and publication of diverse,
open datasets now allows for automated wheat head density estimation from high resolution RGB
images acquired from ground-based platforms. Unmanned aerial vehicles (UAV) show great potential
to replace these ground-based platforms, providing a higher throughput at a lower cost per m?. This
study evaluates the suitability of Global Wheat Head Dataset, a labelled dataset acquired from ground-
level platforms, for the estimation of wheat head density from UAV imageries on three new sites. The
study also compares the suitability of two deep learning approaches for wheat head density estimation
—object detection using Faster-RCNN and regression-based object counting method using SFC*Net. For
images taken at the ground level, the GWHD was demonstrated to provide an efficient training
database allowing to get performances comparable to those of other studies (9%<rRMSE<16%). We
found that the SFC’Net outperforms Faster-RCNN for both ground level and UAV images, with
unbiased estimates (rRMSE =14% and rBias = +2%) over the three study sites. We further compared
the image-based SFC*Net predicted density estimated from the UAV images with the in-situ manual
density collected in the fields. We observed a trend of under-estimation, with an overall rRMSE=23.2%
and rBias=-16.3% averaged on the three sites. Particularly higher rates of under-estimation were
noted in the site with a heterogenous canopy development, causing the smaller wheat heads to be
unseen from UAV images. In addition, it was found that the wheat head density estimates from the
UAV images were more repeatable than the in-situ ground density.

1 Introduction

Wheat is the third most cultivated crop in the world and is grown under a wide range of climate, soil
and management conditions (FAO, 2002). The wheat head density is directly related to the plant
population and the number of tillers per plant which in turn are important sub-components of the
grain yield (Slafer, Calderini, & Miralles, 1996). It is hence an appealing trait for plant breeders to assess
the genetic gains within a target environment (Reynolds, Manes, Izanloo, & Langridge, 2009). However,
itis currently a trait tedious to measure by manual counting which is also prone to human and sampling
errors.

In the recent years, the advances in low-cost data acquisition platforms and computer vision
algorithms have paved the way for automated wheat head density estimation from high resolution
RGB images, slowly replacing manual counting in the field. The state-of-the-art results for plant/organ
density estimations are currently being reported using deep learning algorithms that promise robust
results under operational conditions (Chandra, Desai, Guo, & Balasubramanian, 2020). For the task of
wheat head density estimations, there are two main categories of deep learning approaches applicable
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— object detection and regression-based object counting. The object detection methods provide
localization and identification of all the instances of an object type within the image via bounding
boxes. These methods perform well on large-scale objects and are frequently used for wheat head
detection from ground images (Gong, Ergu, Cai, & Ma, 2020; Hasan, Chopin, Laga, & Miklavcic, 2018;
Khaki, Safaei, Pham, & Wang, 2021; Madec et al., 2019). However, most of these detection-based
methods have problems adapting to small abjects and are penalized by occlusions and crowded scenes
(Gomez, Aptoula, Parsons, & Bosilj, 2021; Tong, Wu, & Zhou, 2020; Zhao, Zheng, Xu, & Wu, 2019) which
are typical within a field phenotyping scenario. The regression-based object methods, on the other
hand are reportedly robust towards crowded and occluded small objects (Lempitsky & Zisserman,
2010) since they were specifically developed for crowd counting tasks. However, they provide only an
approximate localization of objects without their actual sizes and are more susceptible to changes in
source-target domain shift (Wang, Han, Gao, & Yuan, 2021).

Nevertheless, the robustness and generalization of these deep learning algorithms is highly dependent
on the availability of large and diverse labelled datasets. This has led to the construction of public
dataset such as the Global Wheat Head Detection dataset (David et al., 2020) that compiled 11 datasets
acquired using different ground-acquisition platforms over different places of the world. This Global
Wheat Head Detection (GWHD) dataset contains roughly 4700 images and approximately 190,000
labelled wheat heads with a wide range of genotypes and growth stages from seven countries and has
been doubled in 2021%. This project had attracted the participation of several researchers and teams
worldwide to develop and test their algorithms on the benchmark dataset. The results suggest that
deep learning can now reasonably identify wheat heads within high-resolution ground-level images
considering that the domain shift between the training and testing domains are not significant (Fourati,
Mseddi, & Attia, 2021; Gong et al., 2020; Khaki et al., 2021; Wu, Hu, & Li, 2020). The appearance
variation due to illumination conditions, phenological and genotypic differences, presence/absence of
awns can be exploited by deep learning networks which when trained over large and diverse datasets
such as the GWHD dataset, can extract and combine high- and low-level image features.

The ground-acquisition platforms such as autonomous robots (Deery, Jimenez-Berni, Jones, Sirault, &
Furbank, 2014; Quaglia et al., 2020), hand-held poles and carts (Khanna, Rehder, Moeller, Galceran, &
Siegwart, 2015; Mahlein, 2010) have lower throughput and could constitute a bottleneck over large
phenotyping experiments. Conversely, the introduction of easy-to-use and affordable unmanned
aerial vehicles (UAVs) allows image acquisition at a considerably higher throughput and lower cost per
microplot. Thus, UAVs show great potential to replace ground-acquisition platforms for several
phenotyping traits like height (Holman et al., 2016; Madec et al., 2017), NDVI (Assmann, Kerby,
Cunliffe, & Myers-Smith, 2019; W. Liet al., 2021), green area index (Jay, Maupas, Bendoula, & Gorretta,
2017), plant counting (David, Daubige, Joudelat, Burger, Comar, De Solan, et al., 2021; lJin, Liu, Baret,
Hemerlé, & Comar, 2017; Karami, Crawford, & Delp, 2020) including wheat head density estimation
(Fernandez-Gallego et al., 2020). However, the spatial resolution achievable using standard UAVs with
low-cost RGB sensors is significantly lower than that of the ground-based acquisitions. It is thus quite
challenging to identify and label the individual wheat heads considering the relatively small size of the
wheat spike in the images, occlusions, and the appearance variation. It is thus important to study if
and how the existing labelled ground datasets such as the GWHD dataset could be exploited to
estimate wheat head density from UAV imagery rather than constructing a new labelled UAV dataset
from scratch.

L https://www.aicrowd.com/challenges/global-wheat-challenge-2021
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It is well known that deep learning algorithms are sensitive to variations in object scale and hence to
the image spatial resolution (Fan, Brown, & Smith, 2016; Velumani et al., 2021). Thus, a model trained
directly on the native spatial resolution of GWHD would fail when applied to UAV images. It would thus
be important to downscale the GWHD dataset using an appropriate downsampling strategy to
successfully bridge the source-target domain shift and detect the wheat heads present in the lower
resolution UAV images. Thus, the purpose of this paper is to investigate if an algorithm trained on
ground datasets could be used to detect and count wheat heads from UAV images. It is based on three
new datasets where both ground and UAV level images were concurrently acquired. We will address
four main questions: (1) are the models trained on the original GWHD labelled images performing
equally on the ground level images of our three new sites? (2) How to transform the high-resolution
images for training a deep learning model dedicated to estimate wheat head density from UAV
images? (3) Are the performances obtained from UAV comparable to those associated to the high-
resolution ground images? (4) How regression methods perform as compared to object identification
ones? (5) How UAV derived head density agrees with visual counting in the field and what is the
associated heritability?

2 Materials and Methods

2.1 Dataset Acquisition and Processing

The dataset used in this study was collected from three wheat phenotyping experiments —two of them
located in France (Gréoux and Estrées) and one in Australia (Gatton) during the 2020 growing
campaign. The experiments included a few hundred of microplots measuring from 12 to 20 square
meters and were sown with different cultivars of winter wheat. In each of these sites, RGB images
were collected from the ground with hand-held system and from a UAV (Figure 1). Both systems were
operated within less than two days on each site, when the wheat was between stage Z75 (milk/dough)
and Z88 (maturity) according to Zadok’s scale (Zadoks, Chang, & Konzak, 1974).

Estrées Gréoux
GS: 2.1 mm

.\
4
UAV Platform

\

t:‘:\ e
Ground Platform

Figure 1 Extracts from the ground-level and aerial datasets acquired in our three study sites.
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The ground acquisition system (Figure 2) is composed of a hand-held pole equipped with nadir-looking
Sony RX0 cameras (https://electronics.sony.com/imaging/compact-cameras/p/dscrxOm2-b) with a
one-inch CMOS sensor providing 4800 x 3200 pixels and a field of view of 84° in the diagonal. The
operator passed through each microplot to acquire 3 to 4 images from 2.0 to 2.2 m above the ground.
Only the center of the image was used, corresponding approximately to a 0.6 m? footprint and an
approximate ground sampling distance (GSD) ranging between 0.58 mm and 0.72 mm. It should be
noted that this approximate GSD was computed using the height of the camera. Since the height of
the canopies within the microplot was not measured, an accurate GSD at the canopy level could not
be computed. Hence, the wheat head density from the ground-images could not be accessed since the
accurate footprint of these images was not available.

Figure 2 An operator acquiring images using the ground system consisting in a hand-held pole on the extremity of which the
camera was fixed.

Table 1 Characteristics of the experiments and UAV image acquisition.

Site name Estrées Gréoux Gatton
Latitude (°N) 50.29 43.77 27.55
Longitude (°E) 3.07 5.85 152.27
Acquisition date 10/06/2020 16/06/2020 08/10/2020
Zadoks stage Z275-80 Z75-80 Z77-88
Number of microplots 218 120 606
UAV platform DJI-Mavic 2 Pro DJI-Matrix 600 DJI-Phantom4
Camera model on UAV DJI-L1D-20c Sony-ILCE-6000 DJI-FC6310S
Image size 5472 x 3648 6000 x 4000 5472 x 3648
focal length (mm) 10.26 60 3.8
Flight altitude (m) 8 8 20
GSD (mm) 2.1 13 1.9

The UAV flights were carried out with different UAV platforms and cameras (Table 1), while the image
size was kept about the same. The flight plan was designed to provide a GSD between 1.3 to 2.1 mm
with a side and front overlap of 70 to 80%. Gray plastic disks of 60cm diameter were evenly distributed
in the field to serve as ground control points (GCP) used to precisely geo-reference the images. The
coordinates of the GCPs were measured with a RTK GPS. The microplots were extracted from the UAV
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images following the procedure described in Madec et al., (2017) using Agisoft MetaShape Professional
(Agisoft LLC, Russia).

2.2 In-situ Manual Counting

Wheat head density was measured in the field using standard manual counting protocols. In Gatton,
an area of 0.25 m? was sampled in 18 microplots by placing a frame in the middle of these microplots
and counting the number of wheat heads within the frame. In Estrées, the heads were counted in 148
microplots along 2 rows of 1m, which were averaged to represent an area of 0.25 m? per microplot.
Among these 148 microplots sampled, 78 belonged to two repetitions of 8 modalities (3 cultivars x 3
modalities of sowing densities and 6 cultivars x 5 modalities of sowing densities). In Gréoux, 36
microplots (6 cultivars x 3 repetitions x 2 modalities of irrigation management) were sampled using
three rows of 1m representing a 0.5 m? area.

2.3 Dataset Labelling

In each of the three experiments, about 30 microplots (Table 2) were randomly selected for labelling
both the ground level and UAV images, representing 68 different cultivars. Ground level and UAV
images were then prepared differently (Table 2). For each microplot, one of the available ground level
images was randomly selected and resized by a factor of 1.5 to get approximately 5700 pixels per head
as it was done for the GWHD (David et al., 2020). The center 1024 x 1024 pixels of the rescaled image
was then extracted for drawing bounding boxes around each head using Datatorch, an online labelling
platform (Brooks, 2020). Within the 92 microplots selected, 4 937 heads with a size between 3 500 and
6 500 pixels were labelled (Table 2). For the UAV, the image with the maximum coverage of the
microplot, minimum blur and closest to the nadir direction was selected over each of the 92
microplots. A 620 x 620 pixels patch located in the center of the microplot was cropped for labelling.
A total of 36 044 heads with a mean area of 224 pixels to 400 pixels were labelled (Table 2).

Table 2 Characteristics of the labelled dataset available. The GWHD dataset is described in detail in David et al., (2020)

Ground-level UAV

Dataset GWHD | Estrées | Gréoux | Gatton | Estrées | Gréoux | Gatton
GSD (mm) 0.43 =0.38 =0.38 =0.48 2.1 13 1.9
Number of images 4 698 33 29 30 33 29 30
Number of heads 184 034 1614 1277 2046 20671 6049 9324
Footprint (m?) 0.19 0.15 0.15 0.24 1.57 0.65 1.33
Mean size of heads (pixels) 80x80 | 65x65 | 62x62 | 80x80 | 12x12 | 18x18 | 20x 20
Mean number of heads per image 40 50 44 68 626 209 311
Image size (pixels) 1024 x 1024 620 x 620

2.4 Downsampling GWHD images to UAVs resolution

We downsampled the GWHD images by a factor randomly varying between four to six to prepare a
low-resolution dataset to train a deep model for application to the UAV images. This factor was
computed from the size of the heads in the GWHD and that of the UAV images (Table 2). Two
downsampling techniques were used: the standard bicubic interpolation and a gaussian filter followed
by motion blur. This later simulates in a more realistic way the degradation of image quality when the
camera is flying with the UAV. The characteristics of the Gaussian filter (sigma=2, window size=15) and
the motion blur (degree=2, angle=45) were selected after trials and error to get similar visual
impression as that provided by the actual UAV images. Thus, during the training phase, a part of the
training dataset was randomly selected and downsampled using the above described gaussian-motion
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blur filter while the rest were downsampled using the classic bicubic interpolation. Given the large size
of the training dataset (approx. 4700 images) and iterative nature of the training phase, this random
selection ensures that each image is seen several times by the model under different scaling and
downsampling strategy.

Native Bicubic interpolation Gaussian Motion Blur
, 1 TH

Figure 3 Example of the native resolution, downsampling using bicubic interpolation and downsampling Gaussian filter
followed by motion blur applied to an image from the GWHD dataset.

2.5 The deep models

2.5.1 Object detection using Faster-RCNN model

Faster-RCNN (Ren, He, Girshick, & Sun, 2017) is a two-stage object-detection network that detects and
localizes multiple instances of objects of interest within an image. The effectiveness of the Faster-RCNN
method to successfully localize and count plants and organs (David, Daubige, Joudelat, Burger, Comar,
Solan, et al., 2021; Jin et al., 2019) and more specifically for wheat heads (Gomez et al., 2021; Hasan
et al., 2018; Madec et al., 2019; Wu et al., 2020) has already been demonstrated. Hence, we selected
this method for our comparison study to serve as a benchmark for object-detection methods. A
PyTorch implementation of Faster-RCNN available in the open-source MMDetection Toolbox (Chen et
al.,, 2019) was used. We trained the Faster-RCNN model with ResNet50 backbone pretrained on
ImageNet (Russakovsky et al., 2015) for 60 epochs, with a batch size of 4. The model was optimized
using stochastic gradient descent (SGD) with a learning rate of 0.02 and momentum of 0.9. Data
augmentation on brightness, contrast, jpeg compression along with random flip and rotate from the
Albumentations library (Buslaev et al., 2020) was used.

The input images were 1024 x 1024 in size when Faster-RCNN was used for the ground level images,
with head size in the range of 3500-6500 pixels. Conversely, when the Faster-RCNN was used for the
UAV images, the head size in the range of 224-400 pixels (Table 2) was too small for extracting
pertinent features required for object detection (Hu, Yang, Hu, Huang, & Han, 2018; Le, Zheng, Zhu,
Luu, & Savvides, 2016). For this reason, we rescaled the input images to the UAV model using bicubic
interpolation to ensure an average head size in the range of 1600 pixels, with a rescale factor adapted
for each site. Finally, the downsampled GWHD images were upsampled to a standard 512 x 512 size.
During the test phase, the upscaled UAV images were split into patches of 512 x 512 to be input to the
model.

2.5.2 Object counting using SFC?Net model

The Scale-Fusion Counting Classification Network, SFC*Net (Liu, Lu, Li, & Cao, 2020), integrates various
state-of-the-art computer vision ideas to estimate the number of objects present within an image by
splitting it into patches. The network utilizes a multi-layer fusion module accounting for the low-level
features and a block-wise classification module to achieve the patch-level counting. Liu et al., (2020)
have shown that this method outperforms the recent state-of-the-art counting approaches for the
estimation of in-field rice seedlings density. We used the original PyTorch implementation of the model
(https://github.com/poppinace/sfc2net). The density maps required for training the SFC2Net model
were generated by fitting a 2-dimensional Gaussian function along the height and width of each
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annotated bounding box. Around 20% of the training dataset was reserved for train-time validation.
We trained the SFC?Net with a MixNet-L backbone with weights pre-trained on ImageNet, for 900
epochs. The model was optimized using stochastic gradient descent (SGD) with an initial learning rate
of 0.01, which was decayed by a factor of 0.1 at epochs 250 and 600.

For the ground-level images, patches of 512 x 512 pixels were extracted from the 1024x1024 pixels
images and used as input to SFC2Net with a batch size of 8. Conversely, for the UAV images, the training
dataset was prepared by downscaling the GWHD dataset by random factors within [4, 6], resulting in
an average head size around 256 pixels. The model was trained with a batch size of 16 and by randomly
cropping patches of 256 x 256 pixels from the downsampled image. In cases where the downsampled
image was smaller than 256 x 256 pixels, the image size was increased by tiling i.e., by repeating the
image across the two dimensions. For application to the actual UAV images, the 620 x 620 pixel images
were rescaled to get an average head size close to 256 pixels as those in the training dataset and split
into patches of 256 x 256 to be input to the model.

2.6 Evaluation Metrics

The performances of the methods considered to estimate the head number per image are computed
over each of the three sites and evaluated based on the relative root mean square error (rRMSE),
relative bias (rBias) and the coefficient of determination, R>.

SMN-N ) (F-Ny) . ]
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! n ! THN=N)?
where N; is the number of heads labelled on image i, ﬁ; is the number of heads predicted by the
model on the same image, and N is the average number of labelled heads per image for the considered
site. Using the relative values for rRMSE and rBias was preferred to limit the possible scaling impact.
For the Faster-RCNN model, the number of predicted heads was computed by considering a confidence
score > 0.5 as commonly used for large object detection (Kong, Yao, Chen, & Sun, 2016; Padilla, Netto,
& da Silva, 2020). For the SFC?Net, the number of predicted heads was calculated by summing up all
the pixels within the count map output by the model.

The predicted head density values were used for comparisons with the head density measured in the
field by the operators. The same metrics (rRMSE, rBias and R?) adapted to the head density were used
in this case. The head density values, D;, were computed from the number of ears per image according
to:

D, = —
“TGSDZ S,

where N; is the number of heads in image i, S; is the size of image i in pixels, and GSD, is the ground
sampling distance at the canopy-level. GSD. was derived from the distance between the camera and
the height of the canopy as described by Madec et al., (2017). Finally, the broad-sense heritability, H?,
was computed using the wheat-head density estimates as follows:
2 _ Vg
H=7£, whereV, = V, + I, +

where Vj is the genetic variance, V; is the total variance, I%, is the environmental or phenotypic variance
which could be attributed to the modalities and the repetitions and V. is the residual variance. This H>
value will hence allow to quantify the repeatability of the proposed image-based head density
estimates for the various trials where several replicates of a genotype are available.
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3 Results and Discussion

3.1 Robust training with the GWHD dataset is achieved for the ground-level images
We first verified that the GWHD provides a robust training dataset for wheat head counting at the
ground-level. The Faster-RCNN and SFC*Net models trained on the native resolution of the GWHD
dataset were therefore evaluated over the corresponding ground-level labelled images available for
the three sites. Results show that the performances vary strongly between sites and models. On the
Estrées site, good performances are observed for both models, with slightly lower rRMSE for Faster-
RCNN (Table 3) and a slight negative bias (Figure 4). The highest errors are observed on the Gatton site
(Table 3) particularly with the Faster-RCNN model that shows a noticeable underestimation (Figure 4).
This could be attributed to the advanced growth stage at the time of image acquisition (Table 2) with
a possible higher rate of overlap because of the more inclined orientation of the heads as compared
to the GWHD dataset situation. Further, the Gatton site shows also a significantly higher number of
heads per image (Table 2) which was less frequently represented in the GWHD dataset. However,
additional observations should be required to verify these possible explanations.

The errors obtained on the ground-level images acquired in the three new sites are slightly higher than
in other works reported over the GWHD benchmark test dataset with an rRMSE=13% (Gomez et al.,
2021; Khaki et al., 2021) for object detection methods and an rRMSE=8% (Gomez et al., 2021) using
regression methods. Since the results here are reported over a wild dataset, further tests on the GWHD
benchmark dataset are required to validate the performances of the two methods.

Table 3 Performances (rRMSE, Bias) of the Faster-RCNN and the SFC2Net models over the ground-level dataset acquired in
the 2020 campaign. The models were trained over the GWHD dataset. The metrics were computed over the three test sites
along with their mean values. The color indicates the goodness of the metrics (dark green very good; dark red, very poor).

. Faster-RCNN SFC2Net
Sites - -
rRMSE | rBias R? rRMSE rBias R?
Estrées 9.61 -6.53 0.78 10.54 0.59 0.72
Gréoux 19.24 -15.56 -0.13 12.75 1.88 0.56
Gatton -16.10 0.71 15.78 491 0.86
Overall 19.66 -12.50 0.78 14.52 241 0.89
Faster RCNN SFCZNet
1201 Estrées e Estrées
o Gréoux o Gréoux

o  Gatton o Gatton

100 4 100

B8O 80

60 60

rRMSE: 19.67 % rRMSE: 14.562 %

20 4

Estimated wheat head count from Literal
Estimated wheat head count from Literal

rBias: -12.50 % 20 rBias: 241 %
R2-078 R?: 0.89
0+ o
0 20 40 60 80 100 120 0 20 0 60 80 100 120
Reference wheat head count from annotations Reference wheat head count from annotations

Figure 4 Comparison between wheat head count estimated by Faster-RCNN (left) and SFC?-Net (right) trained with the GWHD
dataset with the counts of the labeled ground-level images from the three test sites represented by a distinct color. The solid
line is the 1:1 line.
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3.2 The Gaussian-Motion Blur is an efficient data augmentation strategy for UAV
images

The performances of bicubic and gaussian filter followed by motion blur (called Gaussian-blur in the
following) data augmentation techniques allowing to transform the ground level images into UAV level
ones were evaluated for the Faster-RCNN and SFC’Net deep models. We compare the model
performances when trained on two versions of low-resolution dataset — one prepared by using only
bicubic interpolation and the second prepared by using a combination of Gaussian-blur and bicubic
interpolation as explained in Section 2.4. The models were trained using the training configurations
mentioned in Sections 2.5.1 and 2.5.2. The performance was evaluated over the UAV images as
summarized in Table 4.

Table 4 Impact of the downsampling technique (bicubic interpolation or Gaussion filter and motion blur (Gaussian blur) on
the performances (rRMSE, rBias and R?) of Faster-RCNN and SFC2Net models to estimate the number of heads per image in
the three sites.

Faster-RCNN SFC’Net

Bicubic Gaussian Blur Bicubic Gaussian Blur

rRMSE | rBias| R? |rRMSE | rBias| R? |rRMSE |rBias| R? |rRMSE |rBias| R?

Estrées | 18.9 |-16.5| -0.33 13.6 |-10.5| 0.31 24.4 |-20.3| -1.02 108 | -14 | 0.60

Gréoux | 10.0 | -6.4 | 0.47 73 |-0.89| 0.72 269 (-248| -2.7 10.1 4.5 0.48

Gatton | 325 |-27.0| -0.83 | 27.2 | -20.5| -0.29 | 46.5 ﬁ -2.49 | 215 |-11.0| 0.25
-29.3

Sites

Overall| 23.6 |-16.7| 0.79 18.0 | -10.7 | 0.88 | 324 0.59 144 | -1.7 | 0.92

We observe that using a combination of the gaussian-motion blur and bicubic interpolation improves
the overall generalization ability of the models to the UAV dataset, achieving significantly better results
with consistent performances over the three sites. Especially, in the case of SFC*Net, the gaussian-blur
strategy improves the average error rates (both rRMSE and rBias) by =20% compared to using only
the bicubic downsampling approach. From this, we may infer that the SFC?Net is more sensitive
towards the domain shift between the training and the inference datasets. On the other hand, the
Faster-RCNN model shows an overall improvement of 6% (rRMSE and rBias) on using the gaussian-
motion blur data augmentation strategy. This is in line with the observations of Jiang & Wang, (2016)
on improving the performance of object-detection models to low quality video frames. However,
Faster-RCNN’s performances without the addition of gaussian-blur is significantly better compared to
those of SFC?Net, suggesting that the former is more robust towards domain shift.

Hence, it was decided to include the gaussian-blur downsampling within the data augmentation
strategy to downsample the GWHD dataset to the spatial resolution of the UAV dataset. Moreover,
this experiment highlights the importance of appropriate data augmentation strategies to bridge the
domain shift between the ground-level training images and the inference images from aerial platforms
to achieve optimal model performances.

3.3 SFC?Net performs better than Faster-RCNN both for ground-level and UAV
images

The performances of the object detection and object counting models trained on the downsampled

GWHD dataset were evaluated on the annotated UAV images from 92 microplots in the three test

sites. SFC2Net provides more robust and generally lower rRMSE and rBias as compared to the Faster-

RCNN model (Table 5 Table 3and Figure 5). However, poorer performances are observed for the

Gréoux site (Table 5 Table 3and Figure 5). Table 3Table 3The general superiority of regression methods
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for head counting problem may be partly explained by the presence of heads fully or partly masked by
other ones, making the identification more complex, while the regression-based methods may partly
learn to account for these artefacts. A study comparing the performances of object-detection and
regression-based counting methods for phenotyping activities reported a similar drop in performances
of object-detection based methods when the number of objects per image increases (Gomez et al.,
2021).

Faster RCNN SFC?Net
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Figure 5. Comparison between wheat head count estimated by Faster-RCNN (left) and SFC?-Net (right) trained with the
downsampled GWHD images with the counts of the labeled UAV-level images from the three test sites represented by a
distinct color. The solid line is the 1:1 line.

Table 5 Performance (rRMSE and Bias) of the Faster-RCNN and the SFC2Net models over the UAV dataset

Faster-RCNN SFC’Net
Sites Gaussian Blur Gaussian Blur
rRMSE rBias R? | rRMSE | rBias | R?
Estrées 13.6 -105 [ 031 | 108 1.4 |0.60
Gréoux 7.3 -0.89 | 072 | 10.1 45 |0.48
Gatton 27.2 -205 [-0.29| 215 |-11.0|0.25
Overall 18.10 -10.7 [ 0.88 | 144 | -1.7 |0.92

We then evaluated if the above reported results obtained over the UAV dataset is comparable to the
ground level results.

The performance of the Faster-RCNN and SFC2Net models are consistent over the UAV and the ground-
level datasets acquired in the 2020 campaign, with the SFC2Net outperforming the Faster-RCNN model
in both the scenarios. In addition, it is observed that the Faster-RCNN tends to systematically under-
estimate the number of wheat heads in both the UAV and the ground-level images. We may hence
infer that the diversity of the GWHD dataset, combined with the right data augmentation strategy,
allows the models to generalize considerably well to the domains of the new sites. Further, the
estimations from the SFC?Net are unbiased, with an overall FRMSE=14% in both scenarios. Hence, we
may conclude that it is possible to acquire wheat head counts from UAV images, with almost the same
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accuracy as from the ground-level images. This would substantially increase the throughput and lower
the cost per microplot involved with accessing wheat head density trait.

3.4 Comparing the wheat head density estimated from UAV images to reference

density from in-situ manual counting

We used here the SFC?Net model that was demonstrated to perform better than Faster-RCNN. The
estimated density was compared with the in-situ density obtained from manual counting over the
three sites. Results show that the agreement is loose with an overall rRMSE=23.1% (Table 6). These
poor performances are mainly explained by a large scatter of the points and a negative bias that is
particularly high for Gréoux (Figure 6a and Table 6). The bias is not expected to come from the SFC2Net
model since this was verified previously (Table 5 and Figure 5). This is further confirmed in Table 6 and
Figure 6b where a similar underestimation of the measured in-situ head density is observed with the
labeled UAV images. However, the reduced object size and image quality leads to wheat heads not
visible or identifiable in the UAV images owing to occlusion, shadow, and small size (smaller wheat
heads represented by fewer pixels, resulting in their poor visibility). This was confirmed by our
observations in Gatton where the in-situ sampling was done within frames positioned in the middle of
the microplots, which were also visible in the UAV images. On comparing the wheat heads counted
within the frame directly in the field with that of the annotations made on the UAV images, we found
a negative bias of approximately 12.5% due to wheat heads not clearly visible in the UAV images.
Moreover, in Gréoux, due to heavy rains during the sowing season and subsequent delay in sowing,
the crop development was heterogenous. It was noted during the in-situ counting that there were two
strata within the canopy with small, under-developed wheat heads on the shorter plants. Such wheat
heads would typically be occluded by the taller plants and would not be visible in the UAV images, thus
being missed by the models and the human labelers. This would explain the higher rate of under-
estimations in Gréoux in the order of =-30% (Table 6).

Finally, the variability associated with the representativeness of the samples used for the in-situ
density measurement as compared to the exhaustive UAV spatial sampling may also explain the scatter
observed in Figure 6. To better understand the influence of the spatial heterogeneity on the in-situ
sampling, we replicated the in-situ sampling protocols using the full-microplot density map predicted
by SFC?Net on the UAV images. Random sub-samples were extracted from this density map and a
corresponding density was computed from these sample counts. While repeating this exercise, we
observed that such computed densities varied with a relative standard deviation of up to 8% among
the different samples. This indicates that the in-situ density estimations would in fact be affected by
their limited sampling (0.5 m? in Gréoux and 0.25 m? in Estrées and Gatton) and the choice of the
sampling location. This might explain a part of the deviation observed between the image-based
densities and the in-situ manual density (Figure 6 a and b).

Table 6 Comparison of the image-based densities against the in-situ density: the SFC2Net predictions were evaluated over
202 microplots whereas the image-based annotations were evaluated on 48 microplots.

SFC2Net (UAV) Image annotations (UAV)
Sample Sample
Sites areapat Nb. areapat Nb.
canopy micro | rRMSE | rBias R? canopy micro | rRMSE | rBias R?
lots lots
(m?) | P (m?3) | P
Estrées 6.4 148 19.4 -13.5 -0.37 1.6 22 14.1 -3.9 -2.37
Gréoux 8.1 36 34.4 -29.7 -4.01 0.6 9 36.3 -31.9 -6.51
Gatton 4.5 18 22.4 -16.2 0.15 1.3 17 23.7 -7.4 0.09
Overall - 202 23.19 -16.34 -0.30 - 48 23.11 -10.39 0.18
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Thus, we conclude that the under-estimations in the model predicted densities is mainly due to the
reduced visibility of heads in the UAV images, with a lower but still significant contribution to the
scatter from the limited sampling of the in-situ densities.

3.5 Image-based estimates are more heritable than the ground-based ones

The broad sense heritability of the wheat head density was then computed for the Gréoux and the
Estrées sites, where we had in-situ manual counting over all the repetitions in the modalities. Gatton
was not included because we had in-situ sampling on only one of the repetitions. It was found that the
wheat head density estimated from the UAV had significantly higher heritability,
than the in-situ density measurements for both the sites (Table 7). This indicates that the wheat head
density derived from UAV images is more repeatable than manual measurements and might have
higher potential to interpret the interaction of a genotype to the environment.

Table 7 Comparison of the broad-sense heritability of the wheat head density derived from the in-situ manual counting and
the UAV images using SFC2Net, in two sites.

Site # Reps H? H?
Modalities PS | Manual | UAV-SFC2Net
Estrées 39 2 0.62 0.91
Gréoux 10 3 0.45 0.53

4 Conclusion

This study evaluated the suitability of Global Wheat Head Dataset, a labelled dataset acquired from
ground-level platforms, for the estimation of wheat head density from UAV imageries on three new
sites. For images taken at the ground level, the GWHD was demaonstrated to provide an efficient
training database allowing to get performances comparable to those of other studies
(9%<rRMSE<16%). We found that the SFC®*Net outperforms Faster-RCNN for both ground level and
UAV images, with unbiased estimates (rRMSE =14% and rBias = +2%) over the three study sites.
This suggests that object counting algorithms might be more robust for wheat head counting since this
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method directly estimates the count whereas, in case of the detection methods, the count is derived
from the identified objects. It was also found to be significantly faster than the Faster-RCNN in terms
of inference time. However, the SFC?’Net model trained without data augmentation strategies tended
to have poor performances over the low-resolution UAV dataset whereas there were no significant
differences for Faster-RCNN. This suggests that counting by regression and density-based approaches
is more sensitive to domain shift. Appropriate domain adaptation/data augmentation strategies, such
as the Gaussian-motion blur used in this study should then be employed to ensure optimal
performance of the object-counting methods. More advanced domain adaptation strategies can also
be explored (Zhuang et al., 2019).

However, one drawback of such density-map based object counting approaches is that they do not
allow to access the size of the identified objects. For applications where the accurate localization of
the object and its size are important, a possible alternative would be to explore techniques that allow
a guided object detection through a predicted density map (C. Li, Yang, Zhu, Chen, & Guan, 2020; Lian,
Li, Zheng, Luo, & Gao, 2019). This would ensure optimal performances of the detection model by
splitting a high-density image into equal density sub-patches and rescaling the patches containing
small objects.

We further compared the image-based SFC?Net predicted density estimated from the UAV images with
the in-situ manual density collected in the fields. We observed a trend of under-estimation, with an
overall FRMSE=23.2% and rBias=-16.3% averaged on the three sites. Particularly higher rates of under-
estimation were noted in the site with a heterogenous canopy development, causing the smaller wheat
heads to be unseen from UAV images. In addition, it was found that the wheat head density estimates
from the UAV images were more repeatable than the in-situ ground density estimated.

The continuous increase in the availability of labelled dataset, the advancements in low-cost high-
resolution sensors offering higher spatial resolution, with in-built GPS RTK offer a good avenue for
wheat head counting by UAV. They are able to successfully leverage the trade-off between the spatial
resolution and sampling area, by acquiring multiple overlapping images at high throughput. It was
demonstrated that the performances of the wheat head counting methods on the UAV dataset is
comparable to that on the ground-level dataset. Even though, the wheat head density estimated from
the UAV images suffer from an under-estimation, they were found to be more heritable than the in-
situ density measurements. We also show an efficient strategy to leverage on existing ground-image
annotations which could open the door to other such applications of bridging existing multi-platform
and multi-scale datasets, thus saving a considerable amount of labelling time and cost.
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4. An automatic method based on
daily in situ images and deep learning
to date wheat heading stage

The monitoring of crop phenology, which is essential for various stakeholders in
agriculture, is a labor-intensive task requiring frequent revisits to the field. The rapid
development in IoT (internet of things) sensors now permits to continuously monitor
the field, providing image, weather and soil data in near real-time. This study evaluates
the potential of such IoT sensors to facilitate phenology monitoring. We focus on the
onset of wheat heading date, an important developmental stage to understand the
genotype’s reaction to seasonal changes which is also important to maximize the yield.
Owing to the generalization ability of deep-learning algorithms, their suitability to
identify wheat heads within the IoT time-series images covering a range of cultivars,
crop maturity and diverse illumination conditions is tested. The heading dates
estimated by the proposed methodology were then compared to reference heading
dates from visual scoring by experts. Due to the lower resolution and more occlusions
between heads induced by the 45° view orientation, an image classification method
was applied over small patches of the image to decide whether they had at least one
visible head. The dynamics of this simplified head counts was then exploited to
estimate the heading date. The study was conducted on daily images collected over
three growing campaigns in a total of 47 sites sown with winter wheat spread across
France. This chapter corresponds to an article published in the July 2020 issue of Field
Crop Research (https://doi.org/10.1016/].fcr.2020.107793).
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ARTICLE INFO ABSTRACT

Accurate and timely observations of wheat phenology and, particularly, of heading date are instrumental for
many scientific and technical domains such as wheat ecophysiology, crop breeding, crop management or pre-
cision agriculture. Visual annotation of the heading date in situ is a labour-intensive task that may become
prohibitive in scientific and technical activities where high-throughput is needed. This study presents an au-
tomatic method to estimate wheat heading date from a series of daily images acquired by a fixed RGB camera in
the field. A convolutional neural network (CNN) is trained to identify the presence of spikes in small patches. The
heading date is then estimated from the dynamics of the spike presence in the patches over time. The method is
applied and validated over a large set of 47 experimental sites located in different regions in France, covering
three years with nine wheat cultivars. Results show that our method provides good estimates of the heading
dates with a root mean square error close to 2 days when compared to the visual scoring from experts. It
outperforms the predictions of a phenological model based on the ARCWHEAT crop model calibrated for our
local conditions. The potentials and limits of the proposed methodology towards a possible operational im-

Keywords:
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Convolutional neural networks
Field sensors

Phenology modelling

plementation in agronomic applications and decision support systems are finally further discussed.

1. Introduction

Phenological observations are essential in agronomy, as crop man-
agement strategies (irrigation, fertilizing or crop protection) are
planned considering plant development (Brown et al., 2005;
Chmielewski, 2013). In wheat, the heading stage is one of the critical
developmental phases as the plant becomes highly sensitive to abiotic
stress — heat stress, frost, water constraints — with a strong impact on
yield components (Slafer and Rawson, 1994). Several studies have
quantified the effect of post-heading abiotic stress on yield (Ferris et al.,
1998; Gooding et al., 2003; Wheeler et al., 1996) due to a significant
decrease in the grain weight, along with a fall in the number of grains
per plant. More recently, Balla et al. (2019) analysed the possible im-
pact of temperature on yield components at different development
stages over a large wheat genotype panel, highlighting the high sensi-
tivity of grain number to heat stress episodes around heading. Also,
Garcia et al. (2015) and Lobell and Ortiz-Monasterio (2007) have
shown that the increase in minimum temperature during nights owing
to changing climatic conditions accelerates the rate of crop

development and reduces yield.

The timing and duration of stress through wheat developmental
phases are thus essential to understand the impact of environmental
factors on yield (Sadras and Slafer, 2012). Wheat phenology is driven
by several eco-physiological mechanisms involving the response to
temperature, photoperiod and vernalization (Gate, 1995) that are
regulated by complex genetic pathways (Guedira et al., 2016; Whittal
et al., 2018). Phenology has been traditionally one of the most im-
portant traits used to genetically improve wheat adaptation, matching
crop development — particularly reproductive and grain-filling phases —
to the optimal growing conditions of a target environment (Foulkes
et al., 2011; Slafer, 2012). Indeed, phenology constitutes, in wheat
breeding programs, one of the main levers enabling to optimize as-
similates partitioning while reducing the impact of adverse weather
events such as heat stress and frost during the grain-filling stage
(Camargo et al., 2016; Chapman et al., 2012; Reynolds et al., 2009).

Accurate and timely observations of wheat phenology and, parti-
cularly, of heading date are, therefore, instrumental for many scientific
and technical domains such as wheat ecophysiology, crop breeding,
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crop management or precision agriculture. Heading date is commonly
scored visually in situ by operators that are frequently surveying the
crops. It constitutes a labour-intensive task that requires skilled experts.
For certain applications like high-throughput phenotyping in crop
breeding programs on large genotype panels (Araus and Cairns, 2014;
Cabrera-Bosquet et al., 2012) an accurate visual annotation of the
heading date —with experts frequently visiting the field— can be difficult
to achieve as the number of microplots increase geometrically. In other
applications oriented towards crop management, phenological models
may represent a valid alternative to in situ phenology observations
(Bogard et al., 2014; White et al., 2008; Zheng et al., 2012), provided
that those models are calibrated for each specific genotypes. However,
such genotype-specific calibration necessitates extensive phenology
observations from field experiments (Wallach et al., 2019).

The recent development of field sensors and unmanned platforms
with imaging capabilities —including aerial (UAVs) and ground vehicles
(UGVs)- have opened new avenues to monitor automatically crops in
near-real time (Baret et al., 2018; Comar et al., 2012; Jay et al., 2017;
Madec et al.,, 2017; White and Conley, 2013; Yang et al., 2017). In
parallel, the advances in computational resources and data science
achieved in the last years have fostered a significant breakthrough in
computer vision and has paved the way to implement advanced algo-
rithms to extract relevant information from high spatial resolution
imagery. Deep learning algorithms including convolutional neural
network (CNN), have shown excellent performances for object re-
cognition (LeCun et al., 2015). These capabilities have favoured their
progressive adoption in the fields of agronomy and phenomics
(Kamilaris and Prenafeta-Boldd, 2018; Singh et al., 2018). For instance,
they have been successfully used to detect and count individual cereal
heads from RGB images (Hasan et al., 2018; Lu et al., 2017; Madec
et al., 2019) and LiDAR data (Malambo et al., 2019). Nevertheless, the
potential of such algorithms to provide accurate, automatic in situ es-
timations of crop phenology remains, up to now, underexploited. The
use of well-known capabilities of CNNs to detect plant organs on in-
dividual images to derive crop phenology from image series needs to be
further explored. At the time of writing this article, only very few stu-
dies have attempted to do that. The work of Yalcin (2018) proposing a
CNN-based method for the discrimination of phenological stages for
several crops, including wheat, seems promising, but no results on the
absolute accuracy of the method have been provided. More recently
Desai et al. (2019) have developed a deep learning approach to estimate
the heading date on rice, but it was only tested over a small number of
situations, preventing from drawing general conclusions about its
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performance under operational conditions.

The development of operational methods for automatic heading
date detection using in situ images would enable to increase enormously
the acquisition throughput at a reasonable cost. This would represent
an important contribution to the afore-mentioned scientific and tech-
nical domains, where frequent phenology observations are critical.

In that context, the objective of this study is to present an automatic
method to estimate wheat heading date from daily high-resolution
images taken in the field from fixed cameras. The method developed
rely on deep learning techniques: daily images are interpreted using a
CNN classifier that detects the presence of wheat spikes in the image,
and the dynamics of the presence of spikes along the season permits to
determine the heading date. A major aspect that differentiates this
study against the existing works on this subject is the use of an ex-
tensive dataset of observations used to validate the method proposed,
which enables to discuss its possible implementation under operational
conditions. The dataset comprises 47 field plots sown with several soft
and durum wheat cultivars in different regions of France, where fixed
cameras were installed, and actual heading dates were annotated by
experts, The performance of our CNN-based method to estimate the
actual heading date are also concurrently compared with those of a
phenology model based on ARCWHEAT (Weir et al., 1984) and cali-
brated for local conditions. The robustness of our method and its po-
tential operational implementation are discussed with emphasis on
possible limitations—e.g. image quality issues, environmental conditions
during image acquisition— that may impact the performances.

2. Materials and methods
2.1. Study sites

This study was conducted during the years 2017-2019 in different
commercial and experimental fields belonging to four contrasted agro-
climatic regions around the following cities: Gréoux-les-Bains (43.8 °N,
5.9 °E) in the south-east of France, Boigneville (48.3 ‘N 2.4 °E) in the
center of France; Chalons-en-Champagne (49.0 °N, 4.4 °E) and Saint-
Hilaire-en-Woévre (49.1 °N, 5.7 °E) in the north-east of France (Fig. 1).

The climate in Greoux-les-Bains is Mediterranean (Kottek et al.,
2006), with a maximum average temperature of 20°C, 690 mm of
rainfall. In Boigneville, the climate is temperate and humid, with a
maximum average temperature of 15.3 °C over the year and rainfall of
677 mm (Meteo France). The climate in Chalons-en-Champagne is si-
milar to that of Boigneville, whereas in Saint Hilaire-en-Wovre
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Table 1

Description of the distribution of the 47 sites across years and regions. The
number of sites available each year per region and year is indicated along with
the corresponding number of cultivars.

Locations 2017 2018 2019

Sites  Cultivars  Sites Cultivars Sites Cultivars
Gréoux-les-Bains - - 7 3 2
Boigneville 8 1 12 3 12 3
Chalons en Champagne - - - - 1
Saint_Hilaire en Woévre - - - - 3 1

conditions are slightly colder, especially during winter (Fig. 1), and
more humid (average precipitation close to 1000 mm/year).

Among these four sites, 24 field sensors equipped with RGB cameras
(see 2.2) were installed in microplots with a size of 10 X 2m belonging
to larger experimental fields. The remaining 23 sensors were installed
in production plots, with a size similar to a commercial field (around
800 x 200 m). Often, the production plots are subdivided in homo-
geneous units with different cultivars or agro management. In the sites
at the north of France, production plots and microplots are sown with
winter soft wheat (Triticum aestivum) cultivars Descartes, Oregrain,
Fructidor, RGT Sacramento, Matheo and Rebelde. In Greoux-les-Bains,
the winter durum wheat (Triticum durum) cultivars RGT Voilur, An-
vergur and Toscadou were grown. A summary of the 47 sites considered
is given in Table 1. Please refer to Table Al in Appendix A for a detailed
description of the sites, their location and average temperature over the
growing season. The field sensors were installed in relatively homo-
genous areas of the fields which provided daily information over a
footprint of about 10 m? (see 2.2). During the installation, special at-
tention was paid to orientate the camera field-of-view towards the
centre of the microplot to prevent possible border effects.

2.2, Acquisition of daily images of the canopy with IoTA systems

The field observation systems installed in the 47 sites were devel-
oped by Bosch and Hiphen (www.hiphen-plant.com/our-solutions/iot-
field-sensor) and are named IoTA (Internet of Things for Agriculture).
They consist of a telescopic pole placed vertically and equipped with an
RGB camera as well as meteorological sensors (Fig. 2a). The RGB
camera takes one image (Fig. 2b) each day at solar noon, and auto-
matically uploads it to a cloud storage system through a GSM network.

Field Crops Research 252 (2020) 107793

The image dimensions are 1024 x 768 pixels and is recorded in PNG
format. The camera was set up at a height of approximately 1 m above
the top of the crop (installed after emergence), with a 45° inclination
angle oriented in a compass direction perpendicular to the row. In some
of the fields of 2017 and 2018, the length of the pole was adjusted mid-
growing campaign to ensure that the camera was always well above the
plant canopy. In the 2019 campaign, the height of the pole was fixed at
1.5m to avoid this mid-campaign intervention. It has a field of view
(FOV) of 55° x 41" providing a footprint of 10.8 m® Because of the
relatively large FOV, the ground resolution is non-uniform throughout
the image, particularly in the vertical direction (Fig. 2b).

2.3. Heading date determined by experts

The heading stage corresponds to the emergence of the developing
spike from the flag leaf sheath (Bonnett, 1936; Zadoks et al., 1974). In
the field, the heading stage is identified according to the definition
given by Zadoks et al. (1974): 50 % stems with spikes, at least, half-
emerged, corresponding to the phase code 54 of the Zadoks scale. For
the 27 sites monitored in 2017 and 2018 (Table 1), an online ques-
tionnaire was prepared with IoTA images covering a 9-13 consecutive
days period approximately centered on the heading date. A panel of 14
experts was asked to identify the reference heading date for all the sites
by applying the definition of Zadoks et al. (1974) for heading stage: 50
% stems with spikes at least half-emerged. The experts could view the
images at their full resolution. Eight of the experts had more than 10
years of experience in working with wheat phenology and only four of
them had less than two years of experience. The reference heading date
for each of the 27 sites was considered as the average date of all the 14
experts. The standard deviation of the heading dates for each site was
also calculated to quantify the variability of the expert replies.

In 2019, the actual heading dates were determined in situ by experts
on all the 20 available sites (Table 1). They followed the definition by
Zadoks et al. (1974) and visited the fields every two or three days. Note
that this reference heading date might be different from the one derived
from the 2017 to 2018 questionnaire since experts were scoring the
heading date from images, not from direct observation of the crop in the
field.

2.4, Heading date estimation from IoTA images and CNN

2.4.1. Image preparation
To get a more uniform ground pixel size, each image was first

Fig. 2. a) The IoTA systems installed in a field. The top part inclined at 45° hosts the RGB camera. The cylinder attached to the vertical pole includes sensors to

monitor the local air temperature and moisture. b) An example of a raw image.
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cropped into 1024 x 384 pixels by removing the top region of the
image where the crop-sensor distance is too large, resulting in blurred
objects (Fig. 2b). Then 14 overlapping patches of size 256 x 256 pixels
were extracted from the cropped image. The overlap between patches
was 50 % in either vertical or horizontal directions to minimize possible
border effects. Working with patches permits to benefit from the full
resolution of the IoTA image while avoiding memory issues.

2.4.2. Spikes labelling

The patches from the 27 sites observed during the 2017 and 2018
growing seasons were labelled into two classes: “spikes present” or
“spikes absent”. This represents a total of 40,500 patches out of which
17,000 were labelled as “spikes present” and 23,500 as “spikes absent”.
All the patches belonging to images acquired until five days before the
actual heading date determined by experts were automatically assigned
to the “spikes absent” class. Similarly, the patches from the images
acquired from five days after the actual heading date onwards were
assigned to the “spikes present” class. Therefore, only those patches
within a window of + 5 days around the actual heading date were vi-
sually attributed to their respective classes. Few patches with unclear
assignation, such as emerging and sparse spikes were excluded from the
training dataset. A few examples belonging to the two classes can be
found in Fig. 3.

2.4.3. Identifying the presence of wheat spikes with the ResNet50

Wheat spikes were identified in the images using the ResNet50 (He
et al., 2016), which obtained the best results in object detection at the
ImageNet Large Scale Visual Recognition Challenge 2015 (Russakovsky
et al., 2015). This network has a depth of 50 layers and uses residual
blocks with identity mappings. The ResNet50 pre-trained on the Im-
ageNet dataset which is available in the Keras Python deep learning
library (Chollet, 2015) was used.

We replaced the original top layers of the pre-trained ResNet50 by
two fully connected layers with dimensions, respectively of 512 and 1
to build a binary classifier (spikes present/absent). The network was re-
trained with the labelled image patches by fine-tuning the weights of
the entire network with a low learning rate to identify only the high-
level features which were relevant to detect spikes and classify the
patches as “spikes present” or “spikes absent”. This strategy, called
transfer learning, performs generally better than training the full net-
work from scratch (Lee et al., 2015; Tajbakhsh et al., 2016). The
training dataset comprises the 27 sites available in 2017 and 2018.
First-order data augmentation was applied to the patches: translation,
rotation, zoom, flip and changes in brightness levels. This improves the
generalization capacity of the neural network and increases the size of
the training set at marginal cost. Two different training and validation
schemes were followed:

RGT Voilur Toscadou

Fructidor Oregrain

RGT
Sacramento
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e Twofold-cross validation on 2017 and 2018 sites: the 27 sites
available in 2017 and 2018 were divided randomly into folds of 13
and 14 sites with approximately 19,500 and 21,000 labelled patches
in each fold. ResNet50 was re-trained on each of the two folds in-
dependently and validated with the other one.

Independent validation on 2019 sites: In this second scheme, a
unique set of the 27 sites corresponding to 40,500 patches from the
2017 and 2018 sites is used for fine-tuning ResNet50. The purpose
of this scheme is to mimic the operational conditions when CNNs are
trained with data from the previous years: the CNN is trained on
data acquired in years different from those used for the validation.

In both schemes, 20 % of the data were held back for performance
testing at the end of each epoch of the ResNet50 re-training. The
“binary cross entropy loss” available in the Keras library was used as
the loss function. To avoid over-fitting, we reduced the learning rate by
a factor of 0.5 when the validation mean absolute error did not improve
after three consecutive epochs and stopped the training when the va-
lidation mean absolute error did not improve after five consecutive
epochs. The pertinence of the ResNet50 network was further evaluated
using Gradient-weighted Class Activation Maps (Grad-CAM, developed
by Selvaraju et al., 2017). These maps highlight the regions that con-
tribute to the output score using the gradient values input to the final
convolutional layer (shown in Figs. 6 and 8).

2.4.4. Heading date estimation

The heading date is determined from the dynamics of the presence
of spikes in the images. For each day, d, the fraction of patches per
image classified by the CNN as ‘spikes present’, f,,, (d), is calculated
along the growing season (Fig. 4). It provides a fair approximation of
the Zadoks definition followed by the experts: the proportion of patches
with emerged spikes in an image is a reasonable proxy to the proportion
of stems with spikes emerged in the image. Then, a three-parameter
logistic function is fitted to the time-series of f,, , (d) for every site:

L
1 + e(d—do)

f.;mad (d) = (1)
where L is the maximum value of f,,(d), fixed by construction to
L = 1.0 (Fig. 4). The maximum growth rate, k, and d, are estimated
using the Scipy Python package (Jones et al., 2001). Parameter d, re-
presents the date when 50 % of the patches have spikes.

2.5. Heading date from ARCWHEAT model

A version of the phenology module of ARCWHEAT (Weir et al.,
1984) adapted to the French local conditions by Gate (1995) was used.
It is based on cumulated temperature with the effects of vernalization
and photoperiod (Gouache et al., 2012). The model was run with actual

Rebelde Matheo

Anvergur Descartes

Fig. 3. Samples extracted from patches belonging to the 9 wheat varieties monitored in our study. The patches were classified as ‘spikes present’ (top row) and ‘spikes

absent’ (bottom row).
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daily temperatures collected by the Meteo France weather stations that
are the closest to the sites in the period 2016-2019. Cultivar-specific
parameters for vernalization and photoperiod corresponding to the nine
cultivars observed in this study were adjusted using optimization al-
gorithms based on independent field experiments (Thépot, 2014).

2.6. Performance metrics

The accuracy of the CNN classification was evaluated based on the
overall accuracy (OA):
L+ T
N

0A @
where T, and T, are, respectively, the number of patches correctly
classified as “spikes present” (true positive) and “spikes absent” (true
negative); and N is the total number of patches in the test dataset.

The root mean squared error (RMSE) was computed to quantify the
errors between estimated and observed heading dates:

|SY (HD, — HD,)
N

RMSE =
(3
where HD, is the reference heading date obtained from experts, HD, is
the heading date estimated by the indirect method (CNNs or phenology
model) and N is the number of sites used.

3. Results
3.1. Accuracy of heading date estimates from the CNN model

The automatic method proposed estimated the heading date with a
RMSE close to 2.0 days (Fig. 5), as compared to the reference dates
given by the experts. Moreover, the errors when the CNN is trained and
validated with images from years 2017 and 2018 using a twofold cross-
validation (Fig. 5a) are similar to those obtained when validating the
method against a completely independent set of images from year 2019
(Fig. 5b). Moreover, the coefficient of determination R? is very close to
1 especially in 2019, where the variability in the time to heading among
the plots monitored is large. In that year, heading was observed about
180 days after sowing for two durum wheat plots (varieties Anvergur
and RGT Voilur) at Greoux-les-Bains, more than 20 days earlier than
both varieties in 2018. This is explained by higher seasonal tempera-
tures in the 2019 season compared to the 2018 season (seasonal
average of 13.3°C in 2019, against 10.1°C in 2018, see details in the
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Appendix Table Al).

For two sites at Boigneville monitored in 2018 (Fig. 5a), the CNN
estimations show discrepancies reaching up to 6 days with the reference
dates from the experts. The dynamics of spike appearance for these two
sites are shown in Fig. 6 along with the GradCAM (Gradient Class Ac-
tivation Maps) which highlights the regions that influence the CNN
prediction. In one of the sites (Fig. 6a) the misclassification was due to
the poor quality of the images: leaf blades appear bluish because of a
poor white balance camera setup that was fixed only after day 203
(Fig. 6a). These quality issues introduced substantial artifacts in the
time-series that impacted the logistic curve fit. In the second site
(Fig. 6b), the water droplets on leaves observed on days 195 and 196
after sowing were wrongly identified by the CNN as spikes. Although
the CNN seems to slightly over-detect the presence of spikes in this site
(Fig. 6b) even when no droplets were observed, the errors due to pre-
sence of droplets contributed to increase substantially the discrepancies
against observed dates. Besides these two specific cases, the issues of
CNN misclassification were marginal over the whole dataset. The cross-
validation conducted with images from 2017 and 2018 revealed an
overall accuracy of 98.45 % for classifying individual patches as spikes
present/absent. Moreover, the classification errors observed did not
exhibit any systematic bias.

3.2. Accuracy of heading date prediction by the ARCWHEAT phenology
model

The ARCWHEAT crop model, adapted to French conditions had an
RMSE of 4.1 days to predict the heading date for the 47 sites monitored
from 2017 to 2019 (Fig. 7). This represents twice the error yielded by
our CNN based method. A similar study conducted by Bogard et al.
(2014), which evaluated the use of phenology models specifically ca-
librated for different cultivars to predict heading dates, reported errors
comparable to those given by ARCWHEAT in this study. Other works
where phenology models are applied at the regional or continental scale
with no cultivar-specific calibration show even larger discrepancies
reaching up to 20 days (McMaster and Smika, 1988; Ceglar et al.,
2019).

Although the ARCWHEAT model is capable to simulate the varia-
bility of the heading date among sites and years (R* = 0.92), it clearly
underperformed when compared to the automatic method based on
CNN. Only 37 % of the sites were within the + 1.5 days interval that
represent the variability of the heading dates determined by the ex-
perts. Moreover the discrepancies between the model predictions and
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the observed heading dates were above 10 days for two sites (Fig. 7),
which is not acceptable for precision agriculture or phenotyping ap-
plications.

4. Discussion

4.1. Suitability of the automatic CNN-based methodology to estimate wheat
heading date in operational applications

Our proposed CNN based method estimated heading dates with
about 2 days uncertainties as evaluated over the 47 sites spanning
across several regions, years and cultivars. The performances of the
method proposed are considered satisfactory since the errors are close
to the standard deviation of the expert panel replies provided for years
2017 and 2018. Moreover, this is close to the expected accuracy of an
expert visiting the fields every two or three days to annotate crop

OBSERVED: 209.00

ESTIMATED: 203.46

180 185 190 195 200 205 210 215 220 225
Days after Sowing

development stage. The recent study of Desai et al. (2019) reported
estimation errors between one and two days using also a CNN-based
approach for paddy rice heading date, but the number of observations
and sites were substantially smaller than in our study. Further, among
the 20 sites monitored in the 2019 validation dataset, 6 of them were
sown with cultivars that were not included in the training set of the
CNN, indicating that the method is resistant to possible morphological
differences among spikes between cultivars. The robustness of our
method is essentially due to three factors: the reliability of the Re-
sNet50 CNN to identify the presence of spikes in the patches; the sta-
tistics computed across patches within each image that smooth out
individual errors; and the use of a logistic fit to determine the heading
date from the daily statistics.

The ResNet50 CNN was used here to classify the patches with
spikes. This approach was preferred to directly identifying spikes in the
image and counting them (Madec et al., 2019). Using CNN for image

b)

T

10 { — Fitted logistic {urve
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Fig. 6. Dynamics of f,,,, for two sites in Boigneville in 2018 where large errors on heading date estimations by the CNN method were observed due to non-optimal
image quality (a); image misclassification due to the presence of water droplets (b).
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day after (bottom) with their corresponding class activation
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presence of spikes is shown along with the Grad-CAM heat map
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classification increases the efficiency with which the training dataset is
generated. Indeed, assigning individual images to the spikes present/
absent classes is relatively straightforward: it permitted to generate a
training dataset of more than 40,000 patches that contributed to im-
prove the robustness of ResNet50. By contrast, annotating images for
spikes identification or spikes counting is time-consuming. Although
CNN-based classification provides much less information than object
counting/detection algorithms, the results indicate that this approach is
sufficient for heading date estimation. In Fig. 8, the first image (top
row) spikes are not yet emerged and the Grad-CAM heat map shows low
confidence, whereas in the second one (bottom row) the presence of
emerged spikes is obvious, and the probability increases up to 0.82.
ResNet50 may only detect the presence of a proportion of the spikes
present in the patch, but this appears sufficient to correctly classify it.
This makes the classification approach more robust for phenology
identification as compared to the approaches based on object detection
or counting by regression, where the variability of spike size and shape
among cultivars or environmental conditions during image acquisition
may severely affect the performances (Park et al., 2010). The presence
of water droplets induced only a moderate bias in heading date esti-
mation in two of the sites (Fig. 6b). Images with droplets represent less
than 1% of the training dataset cases. That was probably not sufficient
to teach the CNN to distinguish between droplets and spikes. These
issues can only be solved by increasing the variability by including
more images taken under diverse environmental conditions.

The logistic function smooths the daily values of f,,, (d), and re-
duces the influence of possible unsystematic classification errors on the
heading date estimation. Furthermore, to minimize the possible impact
of classification errors, in operational conditions it would be possible to
prevent unrealistic estimations by imposing some constraints on the
logistic model based on prior knowledge of the heading date:
Sreag (@) = 0.00f d < dpio — &
fhmd (d) =10 lf d> dpriar +3 ()]

With dp, being the prior value of the heading date derived from
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previous years observations or from phenological models, and & being
the associated maximum error. Anyhow, the use of a logistic function fit
makes difficult to estimate the heading date in real time. The correct
function fit is only possible a posteriori, i.e. when some images where
freaq (@) = 1.0 have been already observed, which may only happen
5-10 days after the actual heading date. This may limit the use of the
method proposed on operational applications of crop management re-
quiring a rapid assessment of the heading date.

Compared to a phenological model calibrated under local condi-
tions, our CNN-based method provides better accuracy while not re-
quiring ancillary information (e.g. sowing dates, variety-specific model
parameters) or daily weather data. This is an important advantage,
since the accuracy achieved by ARCWHEAT over the 47 sites monitored
in this study (RMSE = 4 days) was mainly due to the cultivar-specific
calibration of model parameters. However, such a cultivar-specific ca-
libration is time-consuming and requires frequent observations
throughout the crop cycle, repeated over several locations and years
(Cabelguenne et al., 1990; Jégo et al., 2010). Moreover, phenological
models largely rely on the quality of meteorological variables, which
sometimes are interpolated from weather stations that are far from the
sites to be monitored without accounting for possible microclimatic
effects (Joly et al.,, 2011; Monestiez et al., 2001). In any case, me-
chanistic modelling of plant phenology remains always necessary on
prospective studies and to predict cultivar performance under a range
of climatic scenarios. It also constitutes an attractive alternative for
heading date estimation for some applications where the acquisition of
high-throughput canopy images is not feasible. Phenological models
can also largely benefit from the method developed in this paper: the
use of IoTA field systems and deep learning approaches would sub-
stantially reduce the cost of calibration experiments and would permit
also to increase the environmental variability of the field trials giving
access to frequent observations from remote locations.

Our CNN based method constitutes a robust and cost-efficient ap-
proach for heading date estimation for operational applications when
daily images of the canopy are available, as it is the case for some high-
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throughput phenotyping platforms. In those platforms, vectors such as
unmanned ground vehicles and hand-pushed carts are often used to
frequently monitor the plant development and characterize biophysical
traits of the different cultivars using optical images (Deery et al., 2014;
Mueller-Sim et al., 2017; White and Conley, 2013). In such applica-
tions, the proposed automatic method showcased in this study could be
directly integrated into other data processing pipelines at almost no
cost to estimate heading date from the existing RGB images.

In agronomic or breeding applications where the phenology on
distant fields need to be monitored —e.g. regional or national networks
of agricultural fields— the whole system presented, including the fixed
camera and the CNN-based method to estimate heading dates, may
present important advantages in terms of costs compared to in situ vi-
sual annotation. The initial investment in each camera (including the
pole, batteries and the hardware for data transmission) raises up to,
approximately, 650 €; and the yearly costs of system maintenance and
real-time data transmission by GSM is about 150 € per camera. The
cost-efficiency —and the benefits in terms of environmental impact- of a
system based on network of cameras compared to expert visits has to be
determined case by case, and will largely depend on the distance be-
tween the fields to be monitored: the larger the network is, the more
efficient remote observations are compared to field visits.

4.2. Subjectivity of visual annotations of the heading date from experts
using RGB images

The visual determination of heading date is a task that includes
some degree of subjectivity. For the 27 sites monitored in 2017 and
2018, the panel of 14 experts provided different estimates of the
heading dates after inspecting visually the IoTA images. In most of the
cases, the panel members selected 5-7 different dates per site out of
those proposed in the questionnaire, although they were asked to follow
the same definition of the heading date (Zadoks et al., 1974). The
distribution of the deviations between individual replies and the
average date for each site was roughly Gaussian with a standard de-
viation of 1.5 days (Fig. 9), very close to the RMSE of our CNN based
method proposed in this paper.

The subjectivity when determining visually heading date from
images is obviously higher compared to in situ scoring. Issues regarding
the image quality exacerbated the discrepancies among experts.
According to the feedback provided by the panel, image saturation and
blur due to a suboptimal camera setup made difficult to see the emer-
gence of spikes in some of the images. Further, spikes were harder to
identify in images taken under direct illumination conditions due to low
image contrast, as well as for cultivars with awns.

The variability of expert replies evaluated in the 27 sites constitutes
a good benchmark for our CNN based method, as image quality issues
may also affect the identification of spikes by ResNet50 when classi-
fying patches. The similarity between the 2 days RMSE associated to
our CNN based method with the 1.5 days confidence interval of the
expert date demonstrates that the performances of our CNN based
method can be considered comparable to the expert reply when ob-
serving the same images.

5. Conclusion

In this study, we propose a CNN based method to estimate the
heading date from daily images acquired over wheat crops using an
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RGB camera fixed in the field. Images are processed per patch based on
a binary CNN-classifier to construct the dynamies of spikes appearance.
Our method is easy to implement since the labelling of patches is not
time-consuming as compared to individual object annotation required
for other CNN models used for object identification or counting. The
reliability of the CNN-classifier to identify the presence of emerged
spikes was marginally affected by the illumination conditions and cul-
tivar diversity, since the training dataset included images acquired
under diverse environmental conditions. Our method achieved sa-
tisfactory performances with RMSE=2.0 days, which is close to the
uncertainties of expert annotations, and substantially better than phe-
nological models specifically calibrated for the cultivars monitored.

The proven robustness of the proposed method suggests a strong
potential for cost-efficient operational applications in the field of phe-
notyping and agronomic applications. However, our method is limited
by the image footprint close to 5 m? if only the bottom half of the image
is used, as done in our study. However, the good consistency with ex-
pert observations taken over a larger sampling area demonstrates that
our restricted sampling was sufficient. Nevertheless, the representa-
tiveness of such small footprint estimations to characterize phenology
over large and heterogenous fields remains an open question for future
works.

This method has been developed using a camera looking to the crop
in a fixed position, but a similar approach could be transposed to time
series of images from other vectors used in phenotyping experiments,
such as unmanned ground and aerial vehicles, providing that the revisit
time and resolution are sufficient. Further, the method could be
adapted to identify other crop development stages associated with the
identification of certain organs, such as the appearance of anthers for
wheat to date flowering, or the appearance of tassels for the male
flowering in maize.
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5. Conclusion

This PhD, structured in three scientific papers, investigated the use of deep learning
methods applied on RGB images to estimate three phenotypic traits — early-stage plant
counting, head density, and heading date — that, traditionally, were determined /in situ
from visual notation. This PhD was developed thanks to a CIFRE convention with the
private company HIPHEN that specializes in the development of high-throughput
phenotyping services. Therefore, the three studies presented in this dissertation were
also designed to produce operational and transferable solutions that can be of direct
benefit of HIPHEN to produce reliable phenotypic traits estimations, with accuracy
comparable or better than the visual notations. In this context, special attention was
paid to solutions maximizing the observation throughput, and particularly to UAV
images for the estimation of plant and head density. Compared to ground vectors, the
use of UAV introduces scaling issues that need to be addressed in the application and
evaluation of deep learning methods. The main conclusions of the work conducted in
this PhD are detailed hereafter.

5.1 Can deep Ilearning methods replace in-situ
measurements for estimating maize plant density,
wheat head density and heading date?

The observed accuracy in the estimation of the three phenotypic traits studied in this
dissertation from deep learning methods can be considered close to manual in situ
determinations. For early-stage maize plant counting (Chapter 2) the two-stage object
detection network, Faster-RCNN, applied to UAV images provided a relative error of
6% compared to the ground truth, which is considered highly satisfactory. Therefore,
the deep learning algorithms could very well replace manual counting in the field. In
this study, the ground-truth was generated by manual plant counting on the UAV
images. Given the minimum overlap observed between maize plants at the early
stages, manual annotations on high-resolution images can be safely used as a
reference ground truth equivalent to in situ counting, since all instances of the plants
are clearly distinguishable on the images.

For wheat head density estimation (Chapter 3) the regression-based object counting
method based on SFC2Net (L. Liu et al. 2020) yielded an average error of 14% against
annotations, which can be considered satisfactory. Nevertheless, when comparing
against in-situ head density observations, both image annotations and estimations
from deep learning presented a moderate underestimation. This systematic bias is
inherent of the use of RGB images in crowded canopy with a high overlap between
objects: not all wheat heads were visible within the images. Theoretically, this
moderate bias could be a priori mitigated in regression-based methods as SFC?Net by
training the model with in-situ observations of the actual plant density for the same
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training images. Nevertheless, the broad-sense heritability of the model-estimated
wheat head density was higher compared to that of the in-situ measurements. The
lower heritability of the Ilatter could be partly explained by the limited
representativeness of the sampling area and human errors. The deep learning
estimations are, therefore, more repeatable than human measurements and could be
useful to understand the genotype interaction within a target environment. However,
it should be kept in mind that deep learning algorithms could possibly exhibit bias over
cultivars not well-characterized within the training dataset. This learning bias is a
recurrent problem actively investigated under the ethics of artificial intelligence (Miller
2020) for a range of applications including facial recognition (Raji et al. 2020) or gender
classification (Buolamwini and Gebru 2018). Under the field phenotyping context, the
broad-sense heritability could be artificially boosted when the models exhibit a bias
towards certain cultivars. Further investigations should be directed to quantify this
possible problem.

The results obtained from the studies were compared, in all cases, to reference
measurements, in each case performing well with minimal errors. Depending on the
study, the reference measurements used were collected in-situ by manual intervention
or from image annotations or a combination of the two. The trueness of the reference
measurements was also analyzed and questioned. For phenological traits like wheat
heading date estimation the proposed method based on ResNet50 to detect wheat
heads in daily RGB images, yielded an average error of 2 days when compared to
visual scoring from experts. The uncertainties of this method are lower compared to
those introduced by human subjectivity, as discovered during the experiments
conducted with a panel of wheat experts. In fact, the standard deviation of the heading
dates provided by several experts that were observing the same canopy was above
the error associated with the proposed method, indicating that this automatic method
could replace in situ annotations of the heading date.

5.2 Data augmentation and data preparation strategies
are efficient to minimize scaling issues

Two recurrent issues were faced while estimating wheat head and maize plant density
from UAV using deep learning methods: the hyper-specialization of the deep learning
algorithms to the object scale and the degradation of performances for detecting small
objects.

As shown in Chapter 2, a systematic overfit of Faster-RCNN to the training dataset was
observed, leading to a drastic decrease in performance when the GSD varied
significantly in the inference dataset. Applying a CNN trained with low-resolution
images (GSD=0.63cm) to detect plants on high-resolution ones (GSD=0.3cm) led to a
systematic over-detection: the CNN proposed multiple small boxes to cover the image
area occupied by single plants. Conversely, when detecting maize plants on low-
resolution images with a CNN exclusively trained on high resolution, an important
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under-detection was observed. The most efficient strategy to overcome this problem
was data augmentation in the scale domain, down-sampling the training dataset at
different resolutions to enable Faster-RCNN to recognize plants with different sizes.
This data augmentation strategy provided even better results than CNN predictions on
the same native resolutions. It is therefore recommended to use it for any UAV-based
object detection and counting application.

Further, it should be noted that object detection networks, like the Faster-RCNN used
in this study, were designed and built to achieve the best performances on datasets
with large-scale objects such as COCO (Lin et al. 2014) or ImageNet (Russakovsky et
al. 2015). Hence, when these networks are used to detect objects smaller than 20 x
20 pixels, the object information is reduced to a few bytes during the convolutional
operations, thus failing on small objects. If objects are below this size, they have to
be up-sampled to prevent a systematic under-detection.

The algorithm used to down-sample images as part of a data augmentation or data
preparation strategy is also an important factor determining the accuracy of CNN
detections. In Chapter 3, the use of images acquired from ground sensors were used
to train deep learning methods applied to detect and count wheat heads on UAV
images at 4-7 times lower resolution. Down-sampling images of the training dataset
was thus necessary and two different methods were used: bicubic down-sampling and
Gaussian filter followed by motion blur. The results indicated important differences in
the performance which resulted from the down-sampling method, particularly for the
SFC2Net regression-based algorithm: 14% error on total number of heads per scene
with Gaussian blur against 35% error with bicubic down-sampling. For the same GSD,
the down-sampling method determines the amount of textural information contained
in the image. Therefore, when re-sampling the images in the training dataset as part
of a data augmentation or data preparation strategy, the realism of the method used
is essential to avoid possible biases. Gaussian filter was therefore found to be a more
realistic method when resampling UAV images. In fact, the relative error of 14%
achieved by down-scaling the training dataset using the Gaussian filter was very similar
to the uncertainties observed when training and applying SFC2Net with images from
ground sensors at their full resolution, which demonstrates the suitability of the down-
sampling method.

Lastly, inadequate UAV camera settings may degrade image quality and impact
negatively the performances of the object detection algorithm. In Chapter 2, the UAV
was flying at two different altitudes with the same camera settings. A visual inspection
of the images revealed that those settings were not optimal for the flight taken at a
higher altitude, and the large uncertainties in plant detection observed from faster-
RCNN confirmed it (rRMSE=0.48). This problem was partially mitigated using
an advanced CNN-based super-resolution method (Z. Han et al. 2019; Xintao Wang et
al. 2019) to up-sample the UAV images taken at a higher altitude, as part of a data
preparation strategy. This super-resolution model was trained jointly with a CycleGAN
module (Zhu et al. 2017) that allows the generation of a paired high-and-low resolution
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training dataset in an unsupervised manner, thanks to a cyclic adversarial loss. While
this strategy has the drawback of manipulating several losses, which complicates the
model convergence and sometimes adds artifacts to the images, a significant
improvement in plant counting was observed (rRMSE=0.22).

5.3 Object detection versus object counting algorithms
for plant/organ density estimations

In Chapter 3, two types of deep learning algorithms were compared to estimate wheat
head density: Faster-RCNN object detection algorithm; and the regression-based
SFC2Net algorithm. SFC2Net provided systematically better results than Faster-RCNN.
Whilst Faster-RCNN exhibited a slight negative bias against visual notations —taken
from both, ground and from UAV- SFC2Net estimations showed no systematic bias.
The advantage of regression-based methods against object detection are summarized
in Table 1. The most important factor in favor of regression-based methods is that the
algorithm output is the object count or object density. When the training dataset
contains a realistic object count, the algorithm can implicitly handle possible biases
between the actual number of objects present in the scene and the number of visible
objects. This is an important advantage for traits like wheat head counting, as canopies
are dense and substantial overlap exist among wheat heads, but also between heads
and other plant organs.

Object detection algorithms, by contrast, do not directly provide an object count, but
rather a proposal of regions that may contain an object with a confidence score
associated. The number of objects will result from the choice of a confidence score
threshold to select actual objects —which is not straightforward in networks that are
not calibrated— and therefore, in case of overlapping objects, the actual object density
will be underestimated. The main advantage of object detection methods is that they
provide additional information on the objects such as size and location, which may be
necessary in some phenotyping applications. Faster-RCNN performed satisfactorily for
maize plant counting at early stages (Chapter 2) as the scenes were relatively simple
and overlap between small maize plants was not frequent. In these types of
applications, the performance of object detection methods is expected to be
comparable to the regression-based algorithms.

Table 4 Summary of advantages of regression-based methods and object detection methods for object counting.

CNN Required | Advantages Throughput/Processing
approach object speed
scale
Object > 20 x 20 | - Exact localization - 2-stage networks are
detection pixels - Object size relatively slow.
- Possibility to wuse one
stage networks with a
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trade-off between
accuracy and speed.

Regression- | > a few |- The algorithm output is |- Relatively faster, may
based Object | pixels object count support real-time
Counting - Approximate localization of applications
objects
- Can handle  densely
packed, overlapping
scenes

Regarding computing resources, regression-based methods are more computationally
efficient, enabling them to be used for real-time applications. Object detection
algorithms, by contrast, often requires training 2-stage networks (region proposal and
classification) that increases computation time. Furthermore, the need of a minimum
size for object detection algorithms may require an image pre-processing of large
datasets, whereas regression methods are more versatile.

5.4 Temporal resolution requirements for the
estimation of phenological dates

The satisfactory results obtained in the automatic estimation of the heading date relied
strongly on the availability of daily images from fixed sensors (IoTA). As opposed to
other approaches where the CNN outputs directly the percentage of crop maturity (X.
Wang et al. 2019), the methodology implemented in Chapter 4 to estimate the heading
date focused on the dynamics rather than on the number of objects in the image. The
estimation of the heading date was based on the temporal dynamics of the presence
of heads in small patches of the scene, which allowed to simplify the problem into a
binary classification (ears present/absent). This allowed to build a large and diverse
set of training images, only using the reference heading dates, without requiring image
labels from experts. On each plot observed, fitting the temporal dynamics in the
presence of wheat heads with a logistic curve permitted to minimize the possible
effects of uncertainties in the classification of specific daily images, increasing the
robustness of the estimation.

Therefore, the temporal resolution of the observations is the main factor determining
the accuracy of phenological dates estimation. Observations every day or every two
days are necessary to retrieve specific phenological appearances. This temporal
resolution is difficult to achieve, for instance with some unmanned ground vehicles, as
the costs of running a Phenomobile-like vehicle daily would be very high, and probably
a human operator can be more efficient. The use of UAV could be better suited, but
the image resolution may not be sufficient for some developmental stages like
anthesis, that requires very high resolution. Therefore, fixed cameras are the most
suitable vectors for phenological traits, but the cost of installing such cameras on large
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phenotyping experiments with thousands of microplots is still high. Fixed sensors and
cameras are better tailored to create regional/national networks of sensors with
frequent observations over distant fields, thanks to their connectivity. The impact of
temporal resolution in the accuracy of the wheat heading date was not evaluated in
Chapter 4, and further works will be needed to investigate the best strategies to use
other phenotyping vectors (UAV, ground vehicles, portable sensors) to retrieve reliable
phenological dates.

5.5 Perspectives

5.5.1 Deep learning approaches
Based on the results obtained during this study, the following avenues could be
explored to encourage the adoption of deep learning algorithms under operational field
conditions for plant phenotyping:

A) Domain Shift may be defined as the shift in distribution between the source
domain (of the training dataset) and the target domain. It negatively impacts the
model performances over the target domains. This was sometimes encountered in
our studies, especially in the scenarios where the phenological stages of the crops
and the image quality differed across the training and target dataset. This is a
recurring problem in applying deep learning models to a new dataset since the
models are trained under the assumption that the training and the target datasets
are independently and identically distributed, which is always not the case (Zhu
2005). Domain adaptation, an actively studied branch of transfer learning, thus
attempts to improve the model performance over the target domain using different
strategies (Farahani et al. 2020). For example, by minimizing the distance between
the target/source distributions computed in terms of Wasserstein metric, KL
divergence etc. (Shen et al. 2017; Sun, Feng, and Saenko 2016), taking into
consideration the intra-class and inter-class divergence in the source domain (Kang
et al. 2019), generating pseudo labels on the target domain either from multiple
learners (Lee et al. 2018; Mendel et al. 2020) or denoising them while model
training using per class representative prototypes (Han, Luo, and Wang 2019;
Zhang et al. 2021). Other techniques such as lifelong learning attempt to improve
model generalization over new targets without forgetting the learnings from the
source domain (Wu et al. 2019; Yoon et al. 2017). This is often addressed by adding
a new loss using a domain classifier and a gradient reversal layer (Ganin and
Lempitsky 2015) which forces the top layers of the network (feature extractor) to
be domain invariant. These techniques could be of great utility to improve model
performances covering the diversity due to genotypes, sowing densities, and soil
conditions (Ayalew, Ubbens, and Stavness 2020).

B) Dataset bottleneck: It has been well established that the generalization
capability of deep learning algorithms improves when increasing the size and
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diversity of the training dataset (Alom et al. 2019). This has accelerated the
publication of open datasets with collaboration between institutes such as the
GWHD dataset (David et al. 2020) used in this study. However, the annotation of
such a diverse dataset is a time-consuming and expensive task. In such situations
where only limited labeled data is available, the use of semi-supervised approaches
could be explored: the top-layers of the models are first trained on a large sample
of the unlabeled dataset to learn the image representations in an unsupervised
manner. Following this, the full model is finetuned in a task-specific manner using
the limited labels available (Chen et al. 2020; Y. Liu et al. 2020; Siddharth et al.
2017). The generation of synthetic datasets provides another promising alternative
to overcome limited labels. This strategy is already widely applied to urban scene
segmentation for autonomous car driving (Richter et al. 2016; Ros et al. 2016;
Wrenninge and Unger 2018), crowd counting (Q. Wang et al. 2019) or crop
phenotyping under controlled conditions (Toda et al. 2020; Ward, Moghadam, and
Hudson 2018). The approaches presented by Barth et al. (2018) and Liu et al.
(2019) could be good starting points to capture the complexity of canopy structure
under field conditions. Once again, the use of domain adaptation strategies
(Zhuang et al. 2019) would be required to improve the generalization of the models
trained on the synthetic dataset to the real-world datasets. Another alternative,
outside deep learning, would be the use of agent-based methods which do not
require labelled datasets, such as proposed by Jacopin et al. (2021) for plant
counting. These methods exploit the spatial organization of the objects within the
image and hence their suitability for complex scenes such as wheat canopy may be
a limitation and needs to be tested.

Scale sensitivity: In this thesis, the object scale was treated as a domain problem
and we proposed solutions to overcome this through data augmentation and
appropriate image rescaling strategies. But it is also possible to address this at the
network level using scale aware networks that employ the recent attention
mechanisms (Dong et al. 2020; Hossain et al. 2019; Jiang et al. 2020). Attention
mechanisms, first popularized for applications involving natural language
processing, attempt to imitate the human cognitive system by focusing on the most
important parts of the sentences or phrases to process the information (Galassi,
Lippi, and Torroni 2020). Similarly, in the case of image processing, this approach
focuses on the most important features output by the convolutional neural network
to successfully accomplish the task and has been proved to provide state of the art
results for small object detection and counting, where context of the objects is
extremely important (Lim et al. 2021; Zhou et al. 2021). In this way, we would not
need to resample the target dataset, which requires a priori knowledge on the
object scale, which is not always correlated to the GSD owing to variations among
genotypes and crop maturity.
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5.5.2 In terms of methodologies developed

The methodologies developed in this study could be improved or extended in the
following ways:

e All the three methodologies could be transposed to other crops, provided the
occurrence of the phenological stages or plant/organ density can be visually
discerned. In addition, unsupervised domain adaptation approaches based on
open-set transfer learning to exploit the existing annotations to perform cross
species detection/counting could be experimented to minimize labelling effort
(Ayalew et al. 2020; Gebru, Hoffman, and Fei-Fei 2017).

e The wheat heading date estimation method, demonstrated over the daily RGB
images from fixed sensors, could be transposed to other higher throughput data
acquisition vectors like unmanned aerial or ground vehicles. In this case, the
appropriate revisit period should be defined to ensure that the occurrence of
the phenological stage can be detected without significant delay.

e The regression-based methodologies for organ counting may be combined with
an object detection approach to facilitate a density-map guided detection (Li et
al. 2020; Lian et al. 2019). This would allow accurate localization, access to the
object size and region-specific upscaling to improve detection of small objects.
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