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1 Introduction 
1.1 Role of cereal crops and food security, climate 

change 
Cereal crops are plants belonging to the family Poaceae (also known as Gramineae), 

and are the most critical source of food for the world population (FAO 2002). They are 

cultivated worldwide for their edible grains which have high nutritional content in terms 

of energy, protein, carbohydrates, fiber as well as a variety of macronutrients 

(McKevith 2004). The cereals thus make an important part of the human diet and 

livestock feed. The most widely cultivated cereals are wheat, rice, maize, barley, 

sorghum, millets, oats and rye with an all-time high total production of 2.742 billion 

tones in 2019 (FAO 2020). However, the number of under-nourished people in the 

world has increased in the recent years and it is projected to reach 841.4 million by 

2030, not considering the impact of the Covid-19 pandemic (FAO et al. 2020). Even 

though the total cereal yield is expected to increase by 1.1% per annum (OECD and 

Food and Agriculture Organization of the United Nations 2020), it might not be 

sufficient to achieve zero hunger and food security targeted for 2030 (FAO et al. 2020), 

especially if we take into account the regional disparity regarding the yield. In addition, 

the agriculture industry will be challenged by the following key factors in the coming 

years –  

• An increase in global food demand triggered by a growing population. 

• Economic growth and increase in purchasing power of developing countries 

which would hasten a dietary transition with higher consumption of meat, fish 

and vegetables, adding pressure to natural resources (FAO 2017). 

• Climate change studies indicate a reduction in crop yields due to extreme 

weather conditions resulting in drought, floods, cyclones, intense pest attacks 

which is expected to affect predominantly the tropical regions (FAO 2017; 

Maggio, Van Criekinge, and Malingreau 2016; Rosenzweig et al. 2014; 

Rosenzweig and Parry 1994). 

• Shift towards sustainable and organic farming practices: the growing concerns 

over global warming and environmental degradation from conventional 

agriculture has led to the popularity of organic produce, with a doubling in the 

area under organic farming in the last ten years (Lernoud and Willer 2019). 

However, at present, the yield from sustainable farming practices is relatively 

less  than from conventional (Lal 2016; Muller et al. 2017).  

• Depletion of natural resources and reduction in cultivable land area. 

To sum up, the agricultural production systems need to reinvent themselves to produce 

more in an economically, environmentally, and socially viable manner. The use of 

technology is favored for tackling these challenges by adopting smart crop breeding 

programs to develop resistant and appropriate cultivars (Parent et al. 2018); and 

informed farm management practices to optimize the yield with minimal exploitation 
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of the available natural resources (Basso and Antle 2020; Gebbers and Adamchuk 

2010). In the next section we will see how the use of technology in agriculture can 

help to overcome these challenges. 

1.2 Plant Phenomics as a tool to support cereal breeding 

programs 
The recent advances in plant genomics have generated new opportunities to increase 

plant genetic variability, with tremendous potentials for crop improvement. However, 

the effective contribution of these advances to increase crop productivity depends on 

how tightly genotypic traits can be linked with those eco-physiological mechanisms 

that produce a distinguishable response of the genotype to the environment (Tardieu 

et al. 2017). The result of that response is known as phenotype. 

Plant phenomics –the observation of plant phenotypic traits– is the discipline that must 

fill the gap between genotype and phenotype (Fiorani and Schurr 2013). Traditionally, 

field phenotyping has relied on manual or destructive, low-throughput, observations 

of phenotypic traits such as plant height, crop development stage, and yield 

components. The development, in the recent years, of high-throughput field 

phenotyping platforms (Figure 1) and instruments –capable of acquiring and 

processing efficiently massive volumes of in situ observations over field experiments– 

has opened a new era of plant phenomics. This has an enormous potential impact on 

the efficiency of breeding programs, as it would enable plant breeders to phenotype 

large number of genotypes accurately, thus allowing them to evaluate and identify the 

best ones (Araus and Cairns 2014).  

 
Figure 1 Aerial view of wheat phenotyping platforms at Queensland, Australia and Gréoux les Bains, France used 

in this study. 

1.2.1  Vectors and sensors for field high-throughput phenotyping 

Field trials for plant breeding require the monitoring of a large number of cultivars 

under multiple environmental conditions. To satisfy this need, field phenotyping 

platforms are designed to conduct factorial experiments–genotypes x treatments x 

replicates– over thousands of microplots (with size usually between 10 and 20 m2). In 

order to efficiently monitor such large-scale experiments, high-throughput methods 

are required. The type of vectors used in phenotyping platforms are classified roughly 

in two groups: ground level or in situ vectors, and aerial vectors (Table 1).  



7 

 

Unmanned aerial vehicles (UAVs) are the most widely used aerial vector (Xie and Yang 

2020; Yang et al. 2017), and have a higher throughput compared to the ground 

vectors, requiring less than a second to acquire observations for a given microplot. 

The main drawback of UAVs is the low autonomy of the batteries, which prevents their 

use to cover very large areas.  

 

Ground vectors, by contrast, have a higher autonomy but a lower throughput 

compared to UAVs. In the last decade, within the group of ground vectors, the 

development of autonomous ground-based robots (Deery et al. 2014; Madec et al. 

2017; Quaglia et al. 2020; Ruckelshausen et al. 2009) have constituted a major 

evolution in the field of plant phenotyping. This is mainly due to their ability to carry 

multiple sensors (Table 1) and their relatively higher throughput. Handheld 

instruments were developed as a cost-efficient alternative to autonomous ground 

robots (Kaur, Donis‐Gonzalez, and St. Clair 2020; Khanna et al. 2015; Reynolds, Baret, 

et al. 2019), that integrate small-size and lightweight cameras or portable 

spectrometers. With a throughput of about 1-2 minutes per microplot, handheld 

sensors are a suitable option for small-size phenotyping platforms. Finally, fixed 

systems –in most cases equipped with downward-looking RGB camera and/or a 

portable spectrometer– can monitor a relatively small footprint (about 10 m2) with a 

sub-daily frequency (Reynolds, Ball, et al. 2019; Velumani et al. 2020; Yalcin 2018), 

which is especially useful for phenological traits among others. These fixed cameras 

are a priori not suitable for large phenotyping platforms, but they can be used to create 

a network of sensors on distant experimental fields, as they can communicate by GSM 

with a cloud storage infrastructure in real time. Sensor networks can be very useful to 

provide specific phenotypic traits of certain genotypes over contrasted environments, 

at a relatively low cost. 
Table 1. Characteristics of the main phenotyping platforms and vectors. 

Type Vector Sensors Autonomy 
Area 

covered 
Throughput 

Ground 
Sampling 
Distance 

A
e

ri
al

  
Unmanned 
Air Vehicle 
(UAV)  

Multispectral camera 

RGB camera 

Thermal camera 

15-30 min 3-5 ha 0.7 s / microplot 0.1 – 1 cm 

G
ro

u
n

d
 

 
Autonomous 
ground-based 
robots  

Multispectral camera 

RGB camera 

Thermal camera 

LiDAR 

7 h 1.5-2 ha 30 s / microplot 0.1 – 1 mm 

 
Handheld 
instruments 

RGB camera 

Portable 
spectrometer 

4 h 0.2-0.4 ha 
1 – 2 min / 
microplot 

0.1 – 0.5 mm 
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Fixed 
instruments  

RGB camera 

Portable 
spectrometer 

6 months 10 m2 - 0.3 – 0.5 mm 

Over the years, numerous works have been published using different sensors which 

observe at different wavelengths of the electromagnetic spectrum to study specific 

aspects of the plant physiology and canopy structure. Roughly, we can differentiate 

five main groups: 

• RGB cameras which are one of the most widely used instruments to access plant 

physiological traits due their affordability (Araus and Kefauver 2018; L. Li, 

Zhang, and Huang 2014). They are versatile, lightweight and they can be 

mounted in any phenotyping vector, providing optical data at a very high spatial 

resolution. 

• Multispectral cameras, which provide information in different channels within 

the visible, near infrared (NIR, from at 0.75 to 1.4 µm) and short-wave infrared 

(SWIR, 1.4 to 2.4 µm) domains of the electromagnetic spectrum. The 

reflectance on different spectral bands allows a better characterization of crop 

biophysical variables like green leaf area index (GAI), or leaf and canopy 

chlorophyll content, (Blancon et al. 2019; Daughtry 2000; Hunt et al. 2010; Jay 

et al. 2019; Laliberte et al. 2011; Verger et al. 2014). 

• Portable spectrometers: Hyperspectral sensors are usually expensive systems 

capable of observing across several hundred wavelengths with fine bandwidth 

simultaneously. They are highly useful to characterize the crop biochemistry (F. 

Li et al. 2014; Yendrek et al. 2017) and for disease identification and 

quantification (Mahlein 2010; Mahlein et al. 2019; Nagasubramanian et al. 

2019), similar to the applications of multi-spectral sensors. 

• LiDAR (Light detection and ranging): LiDAR are active sensors initially developed 

to measure distance, based on the phase delay between an emitted light beam 

at a given trajectory and the reflected beam after hitting an object within the 

trajectory. They have gained popularity for plant phenotyping as the 3D point 

clouds generated by LiDAR provide access to canopy structure, height 

estimations and individual plant detections (Lin 2015; Lumme et al. 2008; 

Paproki et al. 2011; Paulus et al. 2014; Velumani et al. 2017). On field 

phenotyping applications, LiDAR are often restricted to ground vehicles as the 

range of the instrument is usually below 5 meters. In the recent years, UAV-

mounted LiDAR systems are gaining popularity due to the introduction of 

advanced and light-weight systems (Lin and Habib 2021; Shendryk et al. 2020; 

Zhou et al. 2020) 

• Thermal sensors allow the measurement of canopy temperature. Observing the 

dynamics of the canopy temperature allows to evaluate the altered rates of 

photosynthesis and transpiration which could be indirectly linked to crop 

responses to biotic and abiotic stresses (Alchanatis et al. 2010; Deery et al. 

2016; Gómez-Candón et al. 2016; Jones et al. 2009; Ludovisi et al. 2017). 
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The choice of imaging system and the acquisition vector is highly dependent on the 

spatial/temporal/spectral resolution required for the application, extent of the study 

area, operational cost and acceptable error rate. In this study, we will exclusively work 

with RGB cameras, that permit observations under the visible range, providing high 

spatial resolution at an affordable cost. In the following section we will detail different 

traits and the throughputs at which they are accessible.  

 

1.2.2  Methods and algorithms to derive phenotypic traits from 

RGB sensors 

The advances in image analysis have made possible the estimation of a variety of plant 

traits. These traits may be broadly grouped into two categories – a) traits that 

characterize the canopy structure b) traits that are associated to the individual 

plant/organ characteristics. In Table 2, we resume the traits accessible under field 

conditions, the methods currently used and their TRL, technological readiness level 

(Mankins 1995), which indicates the robustness and limitations of these methods.  

 
Table 2 A summary of the canopy-level and organ-level traits accessible from RGB sensors along with their 

technology level readiness.  

 
 

Small (Wheat) Small (Maize) 1 2 3 4 5 6 7 8 9

Vegetation Index Band comination 20 cm 20 cm

Canopy height Structure from motion 1 cm 2 cm

SVM 1 mm 5 mm

CNN 0.2 mm 0.5 mm

1D RT inversion (GF) 20 cm 20 cm

3D RT inversion (GF) 20 cm 20 cm

RT inversion 1 mm 5 mm

3D inversion 1 mm 5 mm

Senescene SVM 1 mm 5 mm

Leaf rolling DHP x 5 mm

Lodging Height / (SfM) 1 cm 2 cm

CNN 5 mm

Hand-crafted 0.2 mm

Stem density CNN (After harvest) 0.2 mm 1 mm

Stem diameter CNN (After harvest) 0.2 mm 2 mm

Organ density CNN 0.5 mm 0.5 mm

Organ size CNN 0.5 mm 0.5 mm

Phenological stage CNN 0.5 mm 0.5 mm

Leaf size orientation Stereo 0.5 mm 5 mm

Leaf glaucousness Glaucousness 20 cm 20 cm

Weed infestation CNN 1-5 mm

Northern leaf blight 0.2-0.5 mm

Jaunisse / Fusariose 0.1 mm

Technological 

Readiness Level

P
la

n
t\

O
rg

an
 le

ve
l

Green fraction (GF)

Resolution

Leaf orientation

Plant density at 

emergence

GAI

Disease

C
an

o
p

y-
le

ve
l

Trait Method
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This table has been compiled by Dr Frederic Baret from the literature and the works 

conducted within the CAPTE unit (refer to Madec (2019) for a summary extended to 

all types of sensors). More details on traits extracted from images may be found in the 

literature (Fiorani and Schurr 2013; Li et al. 2020; L. Li et al. 2014; Xie and Yang 2020).  

 

Most of the canopy level traits are accessible at a relatively higher TLR. These traits 

may be linked to the observed reflectance values via empirical methods and hence can 

be easily accessed using model inversions, band ratioing or image segmentation.  On 

the other hand, for the plant/organ-level traits, the technological readiness is generally 

low. This is because the state-of-the-art solutions to access these traits involve 

convolutional neural networks (CNN) which outperform traditional hand-crafted 

methods (Li et al. 2020). Unfortunately, the lack of large, diverse labelled datasets for 

the CNN model training hinders the readiness of these traits. Besides, while some of 

these methods (e.g., organ density) are at an already mature level, more work is 

needed to increase their throughput.   

 

Among the traits presented, those requiring a ground sampling distance (GSD) of more 

than 2mm, such as canopy height, vegetation index, crop lodging, etc., are now 

accessible at high throughput thanks to UAV observations. It should be noted that the 

GSD requirements and acquisition procedures normally differ between small plants 

(e.g., wheat, rice) and big plants (e.g., maize, sunflower). While the plant density at 

emergence for big plants is accessible now from UAV images, the TLR of this trait for 

small plants is not yet mature enough. Also, certain important traits such as 

phenological stage, organ density and disease identification are not yet high 

throughput for all crops and still require manual scoring in the field. The detection of 

phenological stage and disease onset is important both for plant breeding and crop 

management and requires frequent revisits to the field. Similarly, plant and plant organ 

density are important indicators of emergence rate and crucial for yield prediction. 

The estimation of these traits poses the following challenges which are difficult to 

overcome using classical image analysis methods: a) tasks like phenology detection 

and disease appearance and quantification require data with high spatial as well as 

temporal resolution. b) even though a few methods have been proposed for specific 

disease detection in certain crops and a few phenological stages, we lack 

comprehensive pipelines covering all scenarios. c) The developed methods should be 

robust with reproducible results to be made operational across different sites. Thus, 

we require methods that can handle time series data and complexity of field conditions 

– varied illumination and soil conditions, ever-growing and changing architecture of 

crops and generalize over cultivars (Minervini, Scharr, and Tsaftaris 2015). On the 

other hand, for precision farming, certain traits need to be computed across large 

production farms to identify crop stress, disease and weed infestation at initial 

appearance. This would require regular monitoring of the crops and near real-time 

analysis of the data collected. For all of these reasons, it is important to develop 
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automatic image processing pipelines that are accurate enough and cost-efficient 

(Roitsch et al. 2019). This also explains why we will focus on the throughput of the 

methodologies while describing the traits accessible from RGB images.  

 

1.3 Phenotypic traits from visual identification of plants 

and organs: potentials of deep learning methods for 

plant phenomics 
As mentioned, an important number of essential phenotypic traits related with plant 

phenology, yield components or diseases are based on the visual identification of 

plants and organs –e.g., fruits, anthers, spikes/heads, or infected leaves. During the 

last decade, the development of pattern and object recognition algorithms from 

computer vision has paved the way to retrieve such traits from optical images acquired 

on high-throughput phenotyping platforms. Particularly, those methods based on 

machine learning and, especially, on convolutional neural networks (CNN), also known 

as deep learning methods, have garnered interest recently thanks to their versatility 

to solve a wide variety of problems. Progressively, deep learning methods have 

replaced hand-crafted methods –based on mathematical morphology (Jin et al. 2017) 

or hand-crafted descriptors (Jin et al. 2017; Pan, Kudo, and Toyama 2009) and 

conventional machine learning (Aydın and Uğur 2011; Niu et al. 2014) – providing 

state-of-the-art results for several computer vision applications including image 

classification, object detection and tracking, object counting, segmentation, image 

enhancement, among others.  

In the following section, we will see how the advances in computer vision and the 

introduction of deep learning is transforming several traits previously accessible only 

through manual sampling into high throughput ones.   

 

1.3.1  A brief history of convolution neural networks 

The potential of neural networks composed of convolutional layers for pattern 

recognition was first showcased in LeNet (LeCun et al. 1989). Following this, 

Krizhevsky, Sutskever, and Hinton (2012) developed AlexNet, a CNN-based image 

classification model that achieved a remarkable 10% improvement in classification 

accuracy on ImageNet, a popular benchmark dataset for real-world object classification 

(Russakovsky et al. 2015). This was a significant event that led to an exponential 

increase in the use of CNNs within the computer vision community. The availability of 

large, annotated databases and the increase of the graphical processing units (GPUs) 

along with their affordability are the two main component that can explain this success.  

Indeed to train their models, which was made of 62.3 million of parameters Krizhevsky, 

Sutskever, and Hinton (2012) used two GPUs for 5 to 6 days on the 1.3 million images 

of ImageNet . 
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Figure 2 An example of a typical convolutional neural network architecture containing its three base components – 

Convolutional layers, pooling layers and fully connected layers.  (Guo et al. 2016) 

Today, CNNs are the most widely used group of deep learning models and are 

particularly suited for computer vision tasks. In general, a CNN is composed of three 

main neural layers –  

a) Convolutional Layers – These are the basic component of CNNs and are capable 

of automatically abstracting low-level image features. Despite classical neurons, 

a convolutional layer consists of a series of convolutional filters with varying 

kernel sizes. Each neuron in the feature map is connected to a network of 

neurons in the previous layer through a set of trainable weights. As a result, 

the first convolutional layer convolves the input image into an intermediate 

feature map which in turn is subject to consecutive convolutions by the deeper 

layers producing various feature maps (Guo et al. 2016). Each feature map is 

passed through a non-linear activation function which allows for the extraction 

of non-linear features. One of the main advantages of convolutional operations 

is that they retain the spatial connectivity by learning correlation among 

neighboring pixels and are invariant to the location of the object within the 

image. In addition, the number of parameters is lesser owing to the weight-

sharing mechanism within feature maps (Zeiler and Fergus 2012).  

b) Pooling layers – A convolutional layer is usually followed by a pooling layer in 

order to reduce the spatial resolution of the feature maps and the number of 

trainable parameters. Like convolutional layers, pooling layers are also spatially 

invariant since they aggregate the values over neighboring pixels. There exist 

several strategies of aggregation during the pooling operations. The most 

widely used ones are max pooling which takes the maximum value among the 

neighboring pixels; and average pooling which takes the average value of the 

neighborhood pixels (Boureau, Ponce, and Lecun 2010). The drawbacks of 

these strategies have led to the development of other approaches such as: 

spatial pyramid pooling (He et al. 2015) to handle objects of different scales, 

sizes and aspect ratios; stochastic pooling (Zeiler and Fergus 2013) to overcome 

overfitting to the training data by randomly selecting an activation within the 

pooling regions and so on.  
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c) Fully connected layers – The fully connected layers are placed at the bottom of 

the network, following several stacks of convolutional and pooling layers. The 

objective of this last part of the network is to interpret the features extracted 

by the previous layers and convert them into high-level representations. These 

layers are computationally intensive, containing almost 90% of the parameters 

in a CNN (Guo et al. 2016).  Depending on the purpose of the network, an 

appropriate activation is used before the last layer. For example, for a 

classification task, a softmax function would be used to have a probability value 

between 0 and 1.  

Thus, the number of convolutional, pooling, fully connected layers and activation 

functions are selected considering the type and complexity of the task and size of the 

objects of interest. Another important factor to be considered while designing the 

network architecture is the size of the labelled dataset available for model training. 

Higher the number of network layers, higher are the number of network parameters 

that need to be trained which makes the model convergence challenging. 

In the case of traditional machine learning methods, the performance of the model 

saturates when the size of the training data is increased beyond a certain point. On 

the contrary, it has been showcased that the performance of deep learning methods 

increases with respect to increments in the training data (Alom et al. 2019). This has 

led to the enlargement of existing datasets such as ImageNet and collaborative efforts 

among organizations to introduce new open datasets (Lin et al. 2014) in the last years. 

Thus, the availability of large publicly annotated datasets and easy access to high-

power graphical processing units has accelerated the progress of deep learning 

methods. In the recent years, several different architectures have been proposed 

improving the state-of-the-art results on the ImageNet classification challenge. For a 

detailed review on the state-of-the-art models in computer vision refer to (Alom et al. 

2019; Guo et al. 2016; Khan et al. 2020; Voulodimos et al. 2018).  

1.3.2  Deep learning for plant phenomics: a domain in expansion 

Over the last few years, deep learning-based methods have been incorporated within 

the data processing pipelines of plant phenotyping. The organization of challenges, 

conferences, and availability of open labelled datasets under controlled conditions have 

eased the initial transition from traditional machine learning approaches towards deep 

learning methods. This would include the popular benchmark dataset of rosette plants 

(Minervini et al. 2016) with successive challenges on leaf instance segmentation and 

counting; the PlantVillage dataset (Hughes and Salathe 2015) to classify healthy and 

infected leaves and characterize the type of stress. Not surprisingly, it was showcased 

that deep learning methods outperformed previous state of the art methods on these 

tasks with attempts to promote open-source codes and cross-domain applicability 

(Dobrescu, Giuffrida, and Tsaftaris 2017; Praveen Kumar and Domnic 2020; Ubbens 

et al. 2018).  
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The introduction of deep learning has been slower for phenotyping under field 

conditions. An important reason would be the additional challenges of imaging under 

field conditions, e.g., variation in illumination conditions, and complexities in data 

processing, e.g., to differentiate between individual plants within the canopy and 

assign organs to the respective plants to achieve phenotyping plant level (Kelly et al. 

2016). One of the first applications of deep learning for field phenotyping was found 

for the real-time identification of weed from farm robots (McCool, Perez, and Upcroft 

2017). In their study, the images were acquired using a pulse lighting system, which 

allowed the authors to control the illumination conditions. The authors present 

impressive results for the task of differentiating between vegetation and weed against 

soil background via image segmentation. Following this, other researches have been 

conducted to tackle this problem (Fawakherji et al. 2019; Lottes, Behley, Milioto, et al. 

2018; Olsen et al. 2019; Sa et al. 2018). Besides segmentation, the task of detection 

and counting has also been widely applied in field crop environment. For example, the 

detection of rice panicle (Xiong et al. 2017; Zhou et al. 2019) and fruits detection 

(Hani, Roy, and Isler 2020; Sa et al. 2016). W. Guo et al. (2018) and Oh, Olsen, & 

Ramamurthy (2019) show the possibility to detect sorghum heads from UAV imageries. 

Lu and Cao (2020) and Madec et al. (2019) have addressed the task of wheat heads 

and maize tassels counting using convolutional neural networks. Both highlight the 

domain shift issues faced when the models were applied in the wild, due to differences 

in phenological stages and growing conditions.  

 

A general drawback of most of these studies is the lack of a benchmark dataset, 

independent of the training dataset, to evaluate the generalization ability of the 

models. This is crucial to understand the technological readiness of the developed 

methods under operational conditions for agricultural missions. However, the 

construction of such large, and diverse labelled datasets covering different field 

scenarios is quite expensive. This has encouraged organizations to come forward and 

publish open datasets such as CropDeep with around 20 species taken in greenhouse 

conditions (Zheng et al. 2019), Sorghum-Head dataset (Guo et al. 2018),  maize tassels 

dataset (Lu et al. 2016), cauliflower and broccoli dataset (Bender, Whelan, and 

Sukkarieh 2020). More recently, a collaboration across several research institutes led 

to the constitution of the largest open wheat head dataset (David et al. 2020) of 4,700 

RGB images acquired using hand-held poles and ground-based robots in the field. The 

publication of such collaborative open datasets over a range of crop species is crucial 

to promote deep learning for traits extraction within the field phenotyping community. 

Other approaches such as the use of transfer learning and creation of synthetic 

datasets are possible alternatives to consider tackling the challenge of constituting a 

diverse dataset. Table 3 lists several open-access labelled datasets for field 

phenotyping and precision agriculture applications. 
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Table 3 A non-exhaustive list of open labelled datasets available for precision agriculture and field phenotyping. 
Columns: Number of instances indicates the number of occurrences of the objects within the images; Label type 
expresses if the labelling was done at the image-level (typically classification tasks), pixel-level (for segmentation 
tasks) or as a bounding box or circles.  

Type Dataset Name 

Number 

of 

images 

Number 

of 

instances 

Number 

of 

classes 

Label Type  

Im
a

g
e

-l
e

v
e

l 

P
ix

e
l-

le
v
e

l 

B
o

u
n

d
in

g
 

b
o

x
/
 C

ir
c
le

 

F
ru

it
s 

a
n
d
 V

e
g
e
ta

b
le

 i
d
e
n
ti
fi
ca

ti
o
n
 

CropDeep (Zheng et al. 2019) 31147 49765 31    

DeepFruits (Sa et al. 2016) 587  6    

Orchard Fruit (Bargoti and 

Underwood 2017) 
3704  3    

Date Fruit (Altaheri et al. 2019) 8079  5    

KFuji RGB-D (Gené-Mola et al. 

2019) 
967 12,839 1    

MangoNet (Kestur, Meduri, and 

Narasipura 2019) 
49      

MangoYOLO (Koirala et al. 2019) 1730  1    

WSU Apple Dataset (Bhusal, 

Karkee, and Zhang 2019) 
2298  1    

Fuji-SFM (Gené-Mola et al. 2020) 288      

MinneApple (Hani et al. 2020) 
981 41,325     

70,865      

Capsicum Annum – Synthetic + 

Empirical images (Barth et al. 

2018) 

10,500 + 

750 
 8    

Fruit Flower dataset (Dias, Tabb, 

and Medeiros 2018) 
190  4    

Cauliflower/Brocolli dataset 

(Bender et al. 2020) 
1 248 2030 2    

Oil radish growth dataset 

(Mortensen et al. 2016) 
129  6    

C
e
re

a
ls

 

Sorghum Head Dataset (Guo et 

al. 2018) 
92 18893 1    

Maize Tassel Dataset (Lu et al. 

2017) 
361 20000 1    

Global Wheat Head Dataset 

(David et al. 2020) 
4698 188445 1    

S
tr

e
ss

/ 
d
is

e
a
se

 Plant Village (Hughes and Salathe 

2015) 
54 309 

 
- 37    

Maize disease (Wiesner-Hanks et 

al. 2018) 
18,222 105,735 1    

Rice disease (Prajapati, Shah, and 

Dabhi 2017) 
120  3    
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Apple foliar disease (Thapa et al. 

2020) 
3651   4    

W
e
e
d
 –

 C
ro

p
 d

e
te

ct
io

n
/s

e
g
m

e
n
ta

ti
o
n
 

Open Plant Phenotype Database 

(Leminen Madsen et al. 2020) 
7590 315,038 47    

P2S2 (Madec, Irfan, et al. 2019) 75  2    

Sugar beet-weed dataset 

(Chebrolu et al. 2017) 
300  10    

Carrot-weed dataset (Lameski et 

al. 2017) 
39  3    

Grass-broadleaf (dos Santos 

Ferreira et al. 2017) 
15,336  4    

DeepWeeds (Olsen et al. 2019) 17,509  8    

Joint Stem detection (Lottes, 

Behley, Chebrolu, et al. 2018) 
1321  5    

Plant seedlings (Giselsson et al. 

2017) 
407  12    

Synthetic Sugarbeet-weed dataset 

(Di Cicco et al. 2016) 
8518  3    

Early stage weed dataset (Espejo-

Garcia et al. 2020) 
508  4    

Weed growth stage dataset 

(Teimouri et al. 2018) 
9372 
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1.4 Open research questions in deep learning methods 

for plant phenotyping 
The popularity of deep learning algorithms and their expected role in traits estimation 

in plant phenotyping was discussed in the previous section. Thanks to their impressive 

performance, the rapid adoption of these techniques for field plant phenotyping has 

progressed rapidly in the last five years. As mentioned above, the main challenge for 

the use of deep learning in operational conditions are linked with the lack of 

generalization where CNNs are applied over datasets that differ to some extent –i.e. 

the belong to a different domain– from the dataset used for training them. Compared 

to the identification of real-world objects, the implementation of deep learning in field 

phenotyping still has some specific issues that have not been fully addressed by the 

existing literature: 

 

1. What is the impact of object size and image spatial resolution on the 

generalization ability of deep learning methods, and how to optimize it? A 

particular feature of phenotyping applications is that object size is often 

restricted to a small site- or vector-specific interval. While in general real-world 

detection applications the training data contains instances of the same object 

at different sizes, in phenotyping applications the object size is heavily 

determined by the vector used for data acquisition or the specific operation 

model (e.g., flight or camera height). Moreover, while attempting to maximize 
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the sampled area and throughput, the size of the objects observed is in general 

rather small compared to the desired object size (for instance, plant or organ 

counting). This constitutes an important challenge for deep neural networks 

(Tong, Wu, and Zhou 2020) that usually perform better on large objects 

(Kisantal et al. 2019). Consequently, CNNs trained on specific datasets may not 

generalize well when they are applied to completely independent ones where 

the object size differs from the latter. Different possibilities have been proposed 

in real-world applications to overcome this problem, such as the use of data 

augmentation strategies on the training set (Kisantal et al. 2019), multi-scale 

network architecture (Hu et al. 2018) and image super-resolution using 

generative adversarial networks (González et al. 2019; Magoulianitis et al. 

2019). On phenotyping initiatives, like the Global Wheat Head Dataset (David 

et al. 2020), the dataset from different sites were harmonized to a pre-

determined object size. The object size domain, however, remains an open 

question in phenotyping applications that have not been fully addressed in the 

current state of the art. A strategy to construct CNNs that generalize well across 

object sizes is still needed to understand how to integrate images from different 

vectors (e.g.; UAV and ground instruments, etc.) in the same pipeline. 

Partially linked to the object size problem, understanding the potential impact 

of image resolution on the performance of object detection/counting algorithms 

is essential from the perspective of UAV observations. Due to the low autonomy 

of UAV, increasing flight height is an important factor to increase throughput 

and minimize the acquisition costs per sampled area. However, the number of 

textural features contained in the images decreases with resolution, perhaps 

impacting the ability of CNNs to correctly identify plants/organs. Currently, there 

are only few studies who have addressed specifically the link between image 

resolution/object size and CNN performance on plant phenotyping applications 

(Kitano et al. 2019; Madec, Jin, et al. 2019). 

 

2. What kind of deep learning algorithm is better suited for density estimations - 

object counting or object detection methods? For applications such as 

plant/plant-organ density estimations, different methods have been proposed: 

object detection (Ghosal et al. 2019; Jin et al. 2019; Madec, Jin, et al. 2019); 

counting by regression (Dobrescu et al. 2017; Liu et al. 2020; Xiong et al. 2019) 

or instance segmentation (Kitano et al. 2019; Machefer et al. 2020). Among 

these, the preparation of annotations for instance segmentation task is 

extremely time consuming in comparison to the other approaches. This is the 

main reason why the object-based detection and counting by regression 

methods are, in general, more widely adopted. For wheat head counting from 

ground-level images, Madec et al. (2019) compared the performance of an 

object detection and counting by regression algorithm over a range of different 

object sizes. They concluded that object detection provided the best results if 
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object size is enough ( > 5000 pixels). Lu et al., (2017) indicated that for small 

object sizes counting by regression method were better suited. Therefore, 

counting by regression methods can be a priori better suited for density 

estimations from UAV images, but further work is required to understand 

whether data augmentation on the object size domain can help to overcome 

the limitations of object detection algorithms. 

 

3. What is the contribution of temporal resolution and sampling area in the 

performance of deep learning models to derive phenological traits? The use of 

indirect methods to identify plant/organs based on deep learning techniques 

may introduce some uncertainties in the targeted phenotypic traits. For specific 

traits as those related with the estimation of phenological dates, requiring the 

identification of specific plant organs, the acquisition of frequent observations 

may help to solve partially this problem. The analysis, in relative terms, of the 

dynamics of the number of plant organs identified can help to mitigate the 

possible bias of object detection algorithms. However, vectors providing 

frequent images, like the fixed sensors, sample relatively smaller areas (Table 

1), which may not be representative of the whole microplot or plot studied. 

What is the trade-off between the sampling area and temporal resolution for 

retrieving phenological traits? Only few studies have addressed this problem of 

estimating phenotyping traits (Wang et al. 2019; Yalcin 2018). 

1.5 Objectives and organization of the study 
The present thesis studied the use of deep learning techniques for the estimation of 

three essential traits for plant phenotyping: plant density at early stages for maize, 

wheat head density, and wheat heading date. The thesis is structured into three 

chapters that take the form of scientific papers, each one dealing with a specific 

phenotypic trait, and using a specific vector and detection/counting algorithm. Each 

chapter answers one or more of the research questions enumerated in Section 1.4:  

• Velumani, K., Lopez-Lozano, R., Madec, S., Guo, W., Gillet, J., Comar, A., 

Baret, F., 2021. Estimates of maize plant density from UAV RGB images using 

Faster-RCNN detection model: impact of the spatial resolution. Submitted 

(under review).   

o Maize plant counting at early stage is an important trait required for 

crop breeding experiments and farm management. It is now possible to 

access this plant density trait at high throughput owing to the rapid 

popularity and affordability of UAV systems. In this study, Faster-RCNN, 

an object detection method, is used for the estimation of plant density 

from RGB imageries acquired from UAVs. We further analyze the 

performance of the detection method for small object detection on low 

resolution imageries, linked to research question #1. The study shows 

how data augmentation, and the use of super resolution approaches 

enables us to access plant density from low-resolution imageries. 



19 

 

 

• Velumani, K., Lopez-Lozano, R., Lu, H., Madec, S., David, E., Li, W., Liu, S., 

Smith, D., Chapman, S., Comar, A., Baret, F., 2021. Wheat head density 

estimation from UAVs: data augmentation and data preparation strategies to 

exploit labelled ground-based imagery. Draft.   

o Wheat head density is a crucial trait for plant breeders and precision 

agriculture as it is an important component used in yield estimation. We 

propose an automatic density estimation method from UAV which 

promises high-throughput and overcomes the sampling issues faced by 

the current state-of-the-art methods that use ground imageries. In this 

study, we use an existing high-resolution annotated dataset acquired at 

the ground-level to train deep learning to be applied to low-resolution 

UAV imageries. The study also analyses the suitability of two approaches 

of deep learning - object detection  and regression-based object counting 

methods to achieve wheat head counting on UAV images Further, a 

comparison between the density estimated from the UAV images and the 

in-situ manual density, along with their broad-sense heritability, is 

presented. This paper addresses the research questions #1 and 

#2 

 

• Velumani, K., Madec, S., de Solan, B., Lopez-Lozano, R., Gillet, J., Labrosse, 

J., Jezequel, S., Comar, A., Baret, F., 2020. An automatic method based on daily 

in situ images and deep learning to date wheat heading stage. F. Crop. Res. 

252, 107793. https://doi.org/10.1016/j.fcr.2020.107793 

o Wheat heading date from daily RGB imageries: The development of 

wireless IOT (internet of thing) fixed sensors now allows for continuous 

monitoring of crops in the field using RGB cameras. In this chapter, we 

propose an automatic method using CNNs to estimate wheat heading 

date through daily time series images taken throughout the growing 

cycle. We compare the performance of the method developed, relying 

on frequent observations on a relatively low sampling area, with 

reference heading date by manual scoring in the field and directly on the 

images. The method proves to be robust –despite the relatively small 

area observed– over an independent test dataset acquired during a 

different growing cycle and over cultivars not used during the model 

training. This paper addresses the research question #3. 
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2. Estimates of maize plant density 

from UAV RGB images using Faster-

RCNN detection model: impact of the 

spatial resolution 
 

 

 

Early-stage plant density is an important trait to discern the rate of seed emergence, 
optimal sowing density, and potential yield. It is thus an attractive trait for plant 
breeders as well as agriculture practitioners that was previously measured by visual 
counting in the field. The affordability of UAVs and popularization of deep learning 
methods now allow the accurate localization and counting of early-stage plants 
through high-resolution RGB images. The study aims at understanding the spatial 
resolution requirements of a commonly used object detection algorithm, Faster-
RCNN, and how the model is affected by differences in object sizes. In particular, the 
efficiency of Faster-RCNN while handling small objects or low-resolution UAV images 
is analyzed. Using lower resolution images would considerably increase the 
acquisition and processing throughputs of this trait by reducing the cost and time 
involved in data acquisition as well as for data processing. The study was conducted 
on early-stage maize datasets, with a range of object sizes, acquired over eight sites 
where the UAV was flying at different altitudes. This chapter corresponds to a journal 
article currently under review. 
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3. Wheat head density estimation 
from UAVs: data augmentation and 
data preparation strategies to exploit 
labelled ground-based imagery 

 

 

 

Wheat head density is a direct indicator of yield and hence is extremely useful for plant 

breeders to evaluate the performance of cultivars under different environmental 

conditions and management practices. The possibility to access this trait from RGB 

images acquired in-situ, at 1 or 2 meters above the canopy using object detection 

methods has already been well established. This had also led to the creation of a large, 

diverse labelled dataset of wheat heads in the field, covering different stages of 

maturity and illumination conditions. However, these in-situ image-based methods, are 

still low throughput and suffer from sampling issues. This study aims to overcome this 

problem by developing a methodology to estimate wheat head density from UAV 

images by exploiting the existing high-resolution ground annotations. Since the wheat 

canopy observed from UAV is characterized by small, overlapping objects with high 

density per image, the suitability of an object detection method, Faster-RCNN 

previously used for maize plant counting, and a regression-based object counting 

method, SFC2Net, was investigated. The models were evaluated on three ground and 

UAV datasets acquired during the 2020 growing campaign over three sites (two in 

France and one in Australia). This chapter corresponds to a draft article.  
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4. An automatic method based on 
daily in situ images and deep learning 
to date wheat heading stage  

 

 

 

The monitoring of crop phenology, which is essential for various stakeholders in 

agriculture, is a labor-intensive task requiring frequent revisits to the field. The rapid 

development in IoT (internet of things) sensors now permits to continuously monitor 

the field, providing image, weather and soil data in near real-time. This study evaluates 

the potential of such IoT sensors to facilitate phenology monitoring. We focus on the 

onset of wheat heading date, an important developmental stage to understand the 

genotype’s reaction to seasonal changes which is also important to maximize the yield. 

Owing to the generalization ability of deep-learning algorithms, their suitability to 

identify wheat heads within the IoT time-series images covering a range of cultivars, 

crop maturity and diverse illumination conditions is tested. The heading dates 

estimated by the proposed methodology were then compared to reference heading 

dates from visual scoring by experts. Due to the lower resolution and more occlusions 

between heads induced by the 45° view orientation, an image classification method 

was applied over small patches of the image to decide whether they had at least one 

visible head. The dynamics of this simplified head counts was then exploited to 

estimate the heading date. The study was conducted on daily images collected over 

three growing campaigns in a total of 47 sites sown with winter wheat spread across 

France. This chapter corresponds to an article published in the July 2020 issue of Field 

Crop Research (https://doi.org/10.1016/j.fcr.2020.107793).   

 

https://doi.org/10.1016/j.fcr.2020.107793
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5. Conclusion 
 

This PhD, structured in three scientific papers, investigated the use of deep learning 

methods applied on RGB images to estimate three phenotypic traits – early-stage plant 

counting, head density, and heading date – that, traditionally, were determined in situ 

from visual notation. This PhD was developed thanks to a CIFRE convention with the 

private company HIPHEN that specializes in the development of high-throughput 

phenotyping services. Therefore, the three studies presented in this dissertation were 

also designed to produce operational and transferable solutions that can be of direct 

benefit of HIPHEN to produce reliable phenotypic traits estimations, with accuracy 

comparable or better than the visual notations. In this context, special attention was 

paid to solutions maximizing the observation throughput, and particularly to UAV 

images for the estimation of plant and head density. Compared to ground vectors, the 

use of UAV introduces scaling issues that need to be addressed in the application and 

evaluation of deep learning methods. The main conclusions of the work conducted in 

this PhD are detailed hereafter. 

 

5.1 Can deep learning methods replace in-situ 
measurements for estimating maize plant density, 
wheat head density and heading date? 

 

The observed accuracy in the estimation of the three phenotypic traits studied in this 

dissertation from deep learning methods can be considered close to manual in situ 

determinations. For early-stage maize plant counting (Chapter 2) the two-stage object 

detection network, Faster-RCNN, applied to UAV images provided a relative error of 

6% compared to the ground truth, which is considered highly satisfactory. Therefore, 

the deep learning algorithms could very well replace manual counting in the field. In 

this study, the ground-truth was generated by manual plant counting on the UAV 

images. Given the minimum overlap observed between maize plants at the early 

stages, manual annotations on high-resolution images can be safely used as a 

reference ground truth equivalent to in situ counting, since all instances of the plants 

are clearly distinguishable on the images.  

For wheat head density estimation (Chapter 3) the regression-based object counting 

method based on SFC2Net (L. Liu et al. 2020) yielded an average error of 14% against 

annotations, which can be considered satisfactory. Nevertheless, when comparing 

against in-situ head density observations, both image annotations and estimations 

from deep learning presented a moderate underestimation. This systematic bias is 

inherent of the use of RGB images in crowded canopy with a high overlap between 

objects: not all wheat heads were visible within the images. Theoretically, this 

moderate bias could be a priori mitigated in regression-based methods as SFC2Net by 

training the model with in-situ observations of the actual plant density for the same 
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training images. Nevertheless, the broad-sense heritability of the model-estimated 

wheat head density was higher compared to that of the in-situ measurements. The 

lower heritability of the latter could be partly explained by the limited 

representativeness of the sampling area and human errors. The deep learning 

estimations are, therefore, more repeatable than human measurements and could be 

useful to understand the genotype interaction within a target environment. However, 

it should be kept in mind that deep learning algorithms could possibly exhibit bias over 

cultivars not well-characterized within the training dataset. This learning bias is a 

recurrent problem actively investigated under the ethics of artificial intelligence (Müller 

2020) for a range of applications including facial recognition (Raji et al. 2020) or gender 

classification (Buolamwini and Gebru 2018). Under the field phenotyping context, the 

broad-sense heritability could be artificially boosted when the models exhibit a bias 

towards certain cultivars. Further investigations should be directed to quantify this 

possible problem. 

The results obtained from the studies were compared, in all cases, to reference 

measurements, in each case performing well with minimal errors. Depending on the 

study, the reference measurements used were collected in-situ by manual intervention 

or from image annotations or a combination of the two. The trueness of the reference 

measurements was also analyzed and questioned. For phenological traits like wheat 

heading date estimation the proposed method based on ResNet50 to detect wheat 

heads in daily RGB images, yielded an average error of 2 days when compared to 

visual scoring from experts. The uncertainties of this method are lower compared to 

those introduced by human subjectivity, as discovered during the experiments 

conducted with a panel of wheat experts. In fact, the standard deviation of the heading 

dates provided by several experts that were observing the same canopy was above 

the error associated with the proposed method, indicating that this automatic method 

could replace in situ annotations of the heading date. 

 

5.2 Data augmentation and data preparation strategies 
are efficient to minimize scaling issues 

 

Two recurrent issues were faced while estimating wheat head and maize plant density 

from UAV using deep learning methods: the hyper-specialization of the deep learning 

algorithms to the object scale and the degradation of performances for detecting small 

objects.  

As shown in Chapter 2, a systematic overfit of Faster-RCNN to the training dataset was 

observed, leading to a drastic decrease in performance when the GSD varied 

significantly in the inference dataset. Applying a CNN trained with low-resolution 

images (GSD≈0.63cm) to detect plants on high-resolution ones (GSD≈0.3cm) led to a 

systematic over-detection: the CNN proposed multiple small boxes to cover the image 

area occupied by single plants. Conversely, when detecting maize plants on low-

resolution images with a CNN exclusively trained on high resolution, an important 
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under-detection was observed. The most efficient strategy to overcome this problem 

was data augmentation in the scale domain, down-sampling the training dataset at 

different resolutions to enable Faster-RCNN to recognize plants with different sizes. 

This data augmentation strategy provided even better results than CNN predictions on 

the same native resolutions. It is therefore recommended to use it for any UAV-based 

object detection and counting application.  

Further, it should be noted that object detection networks, like the Faster-RCNN used 

in this study, were designed and built to achieve the best performances on datasets 

with large-scale objects such as COCO (Lin et al. 2014) or ImageNet (Russakovsky et 

al. 2015). Hence, when these networks are used to detect objects smaller than 20 x 

20 pixels, the object information is reduced to a few bytes during the convolutional 

operations, thus failing on small objects. If objects are below this size, they have to 

be up-sampled to prevent a systematic under-detection. 

The algorithm used to down-sample images as part of a data augmentation or data 

preparation strategy is also an important factor determining the accuracy of CNN 

detections. In Chapter 3, the use of images acquired from ground sensors were used 

to train deep learning methods applied to detect and count wheat heads on UAV 

images at 4-7 times lower resolution. Down-sampling images of the training dataset 

was thus necessary and two different methods were used: bicubic down-sampling and 

Gaussian filter followed by motion blur. The results indicated important differences in 

the performance which resulted from the down-sampling method, particularly for the 

SFC2Net regression-based algorithm: 14% error on total number of heads per scene 

with Gaussian blur against 35% error with bicubic down-sampling. For the same GSD, 

the down-sampling method determines the amount of textural information contained 

in the image. Therefore, when re-sampling the images in the training dataset as part 

of a data augmentation or data preparation strategy, the realism of the method used 

is essential to avoid possible biases. Gaussian filter was therefore found to be a more 

realistic method when resampling UAV images. In fact, the relative error of 14% 

achieved by down-scaling the training dataset using the Gaussian filter was very similar 

to the uncertainties observed when training and applying SFC2Net with images from 

ground sensors at their full resolution, which demonstrates the suitability of the down-

sampling method. 

Lastly, inadequate UAV camera settings may degrade image quality and impact 

negatively the performances of the object detection algorithm. In Chapter 2, the UAV 

was flying at two different altitudes with the same camera settings. A visual inspection 

of the images revealed that those settings were not optimal for the flight taken at a 

higher altitude, and the large uncertainties in plant detection observed from faster-

RCNN confirmed it (rRMSE=0.48). This problem was partially mitigated using 

an advanced CNN-based super-resolution method (Z. Han et al. 2019; Xintao Wang et 

al. 2019) to up-sample the UAV images taken at a higher altitude, as part of a data 

preparation strategy. This super-resolution model was trained jointly with a CycleGAN 

module (Zhu et al. 2017) that allows the generation of a paired high-and-low resolution 
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training dataset in an unsupervised manner, thanks to a cyclic adversarial loss. While 

this strategy has the drawback of manipulating several losses, which complicates the 

model convergence and sometimes adds artifacts to the images, a significant 

improvement in plant counting was observed (rRMSE=0.22). 

 

5.3 Object detection versus object counting algorithms 
for plant/organ density estimations 

 

In Chapter 3, two types of deep learning algorithms were compared to estimate wheat 

head density: Faster-RCNN object detection algorithm; and the regression-based 

SFC2Net algorithm. SFC2Net provided systematically better results than Faster-RCNN. 

Whilst Faster-RCNN exhibited a slight negative bias against visual notations –taken 

from both, ground and from UAV– SFC2Net estimations showed no systematic bias. 

The advantage of regression-based methods against object detection are summarized 

in Table 1. The most important factor in favor of regression-based methods is that the 

algorithm output is the object count or object density. When the training dataset 

contains a realistic object count, the algorithm can implicitly handle possible biases 

between the actual number of objects present in the scene and the number of visible 

objects. This is an important advantage for traits like wheat head counting, as canopies 

are dense and substantial overlap exist among wheat heads, but also between heads 

and other plant organs.  

Object detection algorithms, by contrast, do not directly provide an object count, but 

rather a proposal of regions that may contain an object with a confidence score 

associated. The number of objects will result from the choice of a confidence score 

threshold to select actual objects –which is not straightforward in networks that are 

not calibrated– and therefore, in case of overlapping objects, the actual object density 

will be underestimated. The main advantage of object detection methods is that they 

provide additional information on the objects such as size and location, which may be 

necessary in some phenotyping applications. Faster-RCNN performed satisfactorily for 

maize plant counting at early stages (Chapter 2) as the scenes were relatively simple 

and overlap between small maize plants was not frequent. In these types of 

applications, the performance of object detection methods is expected to be 

comparable to the regression-based algorithms.  

 
Table 4 Summary of advantages of regression-based methods and object detection methods for object counting. 

 CNN 
approach 

Required 
object 
scale 

Advantages Throughput/Processing 
speed 

Object 
detection 

> 20 x 20 
pixels 

- Exact localization  
- Object size 

- 2-stage networks are 
relatively slow.  

- Possibility to use one 
stage networks with a 
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trade-off between 
accuracy and speed.  

Regression-
based Object 
Counting 

> a few 
pixels 

- The algorithm output is 
object count 

- Approximate localization of 
objects 

- Can handle densely 
packed, overlapping 
scenes 

- Relatively faster, may 
support real-time 
applications 

 

Regarding computing resources, regression-based methods are more computationally 

efficient, enabling them to be used for real-time applications. Object detection 

algorithms, by contrast, often requires training 2-stage networks (region proposal and 

classification) that increases computation time. Furthermore, the need of a minimum 

size for object detection algorithms may require an image pre-processing of large 

datasets, whereas regression methods are more versatile. 

 

5.4 Temporal resolution requirements for the 
estimation of phenological dates 

 

The satisfactory results obtained in the automatic estimation of the heading date relied 

strongly on the availability of daily images from fixed sensors (IoTA). As opposed to 

other approaches where the CNN outputs directly the percentage of crop maturity (X. 

Wang et al. 2019), the methodology implemented in Chapter 4 to estimate the heading 

date focused on the dynamics rather than on the number of objects in the image. The 

estimation of the heading date was based on the temporal dynamics of the presence 

of heads in small patches of the scene, which allowed to simplify the problem into a 

binary classification (ears present/absent). This allowed to build a large and diverse 

set of training images, only using the reference heading dates, without requiring image 

labels from experts. On each plot observed, fitting the temporal dynamics in the 

presence of wheat heads with a logistic curve permitted to minimize the possible 

effects of uncertainties in the classification of specific daily images, increasing the 

robustness of the estimation.  

Therefore, the temporal resolution of the observations is the main factor determining 

the accuracy of phenological dates estimation. Observations every day or every two 

days are necessary to retrieve specific phenological appearances. This temporal 

resolution is difficult to achieve, for instance with some unmanned ground vehicles, as 

the costs of running a Phenomobile-like vehicle daily would be very high, and probably 

a human operator can be more efficient. The use of UAV could be better suited, but 

the image resolution may not be sufficient for some developmental stages like 

anthesis, that requires very high resolution. Therefore, fixed cameras are the most 

suitable vectors for phenological traits, but the cost of installing such cameras on large 
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phenotyping experiments with thousands of microplots is still high. Fixed sensors and 

cameras are better tailored to create regional/national networks of sensors with 

frequent observations over distant fields, thanks to their connectivity. The impact of 

temporal resolution in the accuracy of the wheat heading date was not evaluated in 

Chapter 4, and further works will be needed to investigate the best strategies to use 

other phenotyping vectors (UAV, ground vehicles, portable sensors) to retrieve reliable 

phenological dates. 

 

5.5 Perspectives 

5.5.1 Deep learning approaches 
Based on the results obtained during this study, the following avenues could be 

explored to encourage the adoption of deep learning algorithms under operational field 

conditions for plant phenotyping: 

A) Domain Shift may be defined as the shift in distribution between the source 

domain (of the training dataset) and the target domain. It negatively impacts the 

model performances over the target domains. This was sometimes encountered in 

our studies, especially in the scenarios where the phenological stages of the crops 

and the image quality differed across the training and target dataset. This is a 

recurring problem in applying deep learning models to a new dataset since the 

models are trained under the assumption that the training and the target datasets 

are independently and identically distributed, which is always not the case (Zhu 

2005). Domain adaptation, an actively studied branch of transfer learning, thus 

attempts to improve the model performance over the target domain using different 

strategies (Farahani et al. 2020). For example, by minimizing the distance between 

the target/source distributions computed in terms of Wasserstein metric, KL 

divergence etc. (Shen et al. 2017; Sun, Feng, and Saenko 2016), taking into 

consideration the intra-class and inter-class divergence in the source domain (Kang 

et al. 2019), generating pseudo labels on the target domain either from multiple 

learners (Lee et al. 2018; Mendel et al. 2020) or denoising them while model 

training using per class representative prototypes (Han, Luo, and Wang 2019; 

Zhang et al. 2021). Other techniques such as lifelong learning attempt to improve 

model generalization over new targets without forgetting the learnings from the 

source domain (Wu et al. 2019; Yoon et al. 2017). This is often addressed by adding 

a new loss using a domain classifier and a gradient reversal layer (Ganin and 

Lempitsky 2015) which forces the top layers of the network (feature extractor) to 

be domain invariant.  These techniques could be of great utility to improve model 

performances covering the diversity due to genotypes, sowing densities, and soil 

conditions (Ayalew, Ubbens, and Stavness 2020). 

 

B) Dataset bottleneck: It has been well established that the generalization 

capability of deep learning algorithms improves when increasing the size and 
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diversity of the training dataset (Alom et al. 2019). This has accelerated the 

publication of open datasets with collaboration between institutes such as the 

GWHD dataset (David et al. 2020) used in this study. However, the annotation of 

such a diverse dataset is a time-consuming and expensive task. In such situations 

where only limited labeled data is available, the use of semi-supervised approaches 

could be explored: the top-layers of the models are first trained on a large sample 

of the unlabeled dataset to learn the image representations in an unsupervised 

manner. Following this, the full model is finetuned in a task-specific manner using 

the limited labels available (Chen et al. 2020; Y. Liu et al. 2020; Siddharth et al. 

2017). The generation of synthetic datasets provides another promising alternative 

to overcome limited labels. This strategy is already widely applied to urban scene 

segmentation for autonomous car driving (Richter et al. 2016; Ros et al. 2016; 

Wrenninge and Unger 2018), crowd counting (Q. Wang et al. 2019) or crop 

phenotyping under controlled conditions (Toda et al. 2020; Ward, Moghadam, and 

Hudson 2018). The approaches presented by Barth et al. (2018) and Liu et al. 

(2019) could be good starting points to capture the complexity of canopy structure 

under field conditions. Once again, the use of domain adaptation strategies 

(Zhuang et al. 2019) would be required to improve the generalization of the models 

trained on the synthetic dataset to the real-world datasets. Another alternative, 

outside deep learning, would be the use of agent-based methods which do not 

require labelled datasets, such as proposed by Jacopin et al. (2021) for plant 

counting. These methods exploit the spatial organization of the objects within the 

image and hence their suitability for complex scenes such as wheat canopy may be 

a limitation and needs to be tested. 

 

C) Scale sensitivity: In this thesis, the object scale was treated as a domain problem 

and we proposed solutions to overcome this through data augmentation and 

appropriate image rescaling strategies. But it is also possible to address this at the 

network level using scale aware networks that employ the recent attention 

mechanisms (Dong et al. 2020; Hossain et al. 2019; Jiang et al. 2020). Attention 

mechanisms, first popularized for applications involving natural language 

processing, attempt to imitate the human cognitive system by focusing on the most 

important parts of the sentences or phrases to process the information (Galassi, 

Lippi, and Torroni 2020). Similarly, in the case of image processing, this approach 

focuses on the most important features output by the convolutional neural network 

to successfully accomplish the task and has been proved to provide state of the art 

results for small object detection and counting, where context of the objects is 

extremely important (Lim et al. 2021; Zhou et al. 2021). In this way, we would not 

need to resample the target dataset, which requires a priori knowledge on the 

object scale, which is not always correlated to the GSD owing to variations among 

genotypes and crop maturity. 
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5.5.2 In terms of methodologies developed 

 
The methodologies developed in this study could be improved or extended in the 

following ways: 

• All the three methodologies could be transposed to other crops, provided the 

occurrence of the phenological stages or plant/organ density can be visually 

discerned. In addition, unsupervised domain adaptation approaches based on 

open-set transfer learning to exploit the existing annotations to perform cross 

species detection/counting could be experimented to minimize labelling effort 

(Ayalew et al. 2020; Gebru, Hoffman, and Fei-Fei 2017).  

• The wheat heading date estimation method, demonstrated over the daily RGB 

images from fixed sensors, could be transposed to other higher throughput data 

acquisition vectors like unmanned aerial or ground vehicles. In this case, the 

appropriate revisit period should be defined to ensure that the occurrence of 

the phenological stage can be detected without significant delay.  

• The regression-based methodologies for organ counting may be combined with 

an object detection approach to facilitate a density-map guided detection (Li et 

al. 2020; Lian et al. 2019). This would allow accurate localization, access to the 

object size and region-specific upscaling to improve detection of small objects. 
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