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Cereal crops are plants belonging to the family Poaceae (also known as Gramineae), and are the most critical source of food for the world population (FAO 2002). They are cultivated worldwide for their edible grains which have high nutritional content in terms of energy, protein, carbohydrates, fiber as well as a variety of macronutrients [START_REF] Mckevith | Nutritional Aspects of Cereals[END_REF]. The cereals thus make an important part of the human diet and livestock feed. The most widely cultivated cereals are wheat, rice, maize, barley, sorghum, millets, oats and rye with an all-time high total production of 2.742 billion tones in 2019 [START_REF] Fao | The State of Food Security and Nutrition in the World[END_REF]. However, the number of under-nourished people in the world has increased in the recent years and it is projected to reach 841.4 million by 2030, not considering the impact of the Covid-19 pandemic [START_REF] Fao | The State of Food Security and Nutrition in the World[END_REF]. Even though the total cereal yield is expected to increase by 1.1% per annum (OECD and Food and Agriculture Organization of the United Nations 2020), it might not be sufficient to achieve zero hunger and food security targeted for 2030 [START_REF] Fao | The State of Food Security and Nutrition in the World[END_REF], especially if we take into account the regional disparity regarding the yield. In addition, the agriculture industry will be challenged by the following key factors in the coming years -• An increase in global food demand triggered by a growing population.

• Economic growth and increase in purchasing power of developing countries which would hasten a dietary transition with higher consumption of meat, fish and vegetables, adding pressure to natural resources (FAO 2017). • Climate change studies indicate a reduction in crop yields due to extreme weather conditions resulting in drought, floods, cyclones, intense pest attacks which is expected to affect predominantly the tropical regions (FAO 2017;[START_REF] Maggio | Global Food Security: Assessing Trends in View of Guiding Future EU Policies[END_REF][START_REF] Rosenzweig | Assessing Agricultural Risks of Climate Change in the 21st Century in a Global Gridded Crop Model Intercomparison[END_REF][START_REF] Rosenzweig | Potential Impact of Climate Change on World Food Supply[END_REF]. • Shift towards sustainable and organic farming practices: the growing concerns over global warming and environmental degradation from conventional agriculture has led to the popularity of organic produce, with a doubling in the area under organic farming in the last ten years [START_REF] Lernoud | Current Statistics on Organic Agriculture Worldwide: Area, Operators, and Market[END_REF]. However, at present, the yield from sustainable farming practices is relatively less than from conventional [START_REF] Lal | Feeding 11 Billion on 0.5 Billion Hectare of Area under Cereal Crops[END_REF][START_REF] Muller | Strategies for Feeding the World More Sustainably with Organic Agriculture[END_REF]). • Depletion of natural resources and reduction in cultivable land area.

To sum up, the agricultural production systems need to reinvent themselves to produce more in an economically, environmentally, and socially viable manner. The use of technology is favored for tackling these challenges by adopting smart crop breeding programs to develop resistant and appropriate cultivars [START_REF] Parent | Maize Yields over Europe May Increase in Spite of Climate Change, with an Appropriate Use of the Genetic Variability of Flowering Time[END_REF]; and informed farm management practices to optimize the yield with minimal exploitation of the available natural resources [START_REF] Basso | Digital Agriculture to Design Sustainable Agricultural Systems[END_REF][START_REF] Gebbers | Precision Agriculture and Food Security[END_REF]. In the next section we will see how the use of technology in agriculture can help to overcome these challenges.

Plant Phenomics as a tool to support cereal breeding programs

The recent advances in plant genomics have generated new opportunities to increase plant genetic variability, with tremendous potentials for crop improvement. However, the effective contribution of these advances to increase crop productivity depends on how tightly genotypic traits can be linked with those eco-physiological mechanisms that produce a distinguishable response of the genotype to the environment [START_REF] Tardieu | Plant Phenomics, From Sensors to Knowledge[END_REF]. The result of that response is known as phenotype.

Plant phenomics -the observation of plant phenotypic traits-is the discipline that must fill the gap between genotype and phenotype [START_REF] Fiorani | Future Scenarios for Plant Phenotyping[END_REF]. Traditionally, field phenotyping has relied on manual or destructive, low-throughput, observations of phenotypic traits such as plant height, crop development stage, and yield components. The development, in the recent years, of high-throughput field phenotyping platforms (Figure 1) and instruments -capable of acquiring and processing efficiently massive volumes of in situ observations over field experimentshas opened a new era of plant phenomics. This has an enormous potential impact on the efficiency of breeding programs, as it would enable plant breeders to phenotype large number of genotypes accurately, thus allowing them to evaluate and identify the best ones [START_REF] Araus | Field High-Throughput Phenotyping: The New Crop Breeding Frontier[END_REF].

Figure 1 Aerial view of wheat phenotyping platforms at Queensland, Australia and Gréoux les Bains, France used in this study.

Vectors and sensors for field high-throughput phenotyping

Field trials for plant breeding require the monitoring of a large number of cultivars under multiple environmental conditions. To satisfy this need, field phenotyping platforms are designed to conduct factorial experiments-genotypes x treatments x replicates-over thousands of microplots (with size usually between 10 and 20 m 2 ). In order to efficiently monitor such large-scale experiments, high-throughput methods are required. The type of vectors used in phenotyping platforms are classified roughly in two groups: ground level or in situ vectors, and aerial vectors (Table 1).

Unmanned aerial vehicles (UAVs) are the most widely used aerial vector [START_REF] Xie | A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors[END_REF][START_REF] Yang | Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives[END_REF], and have a higher throughput compared to the ground vectors, requiring less than a second to acquire observations for a given microplot.

The main drawback of UAVs is the low autonomy of the batteries, which prevents their use to cover very large areas.

Ground vectors, by contrast, have a higher autonomy but a lower throughput compared to UAVs. In the last decade, within the group of ground vectors, the development of autonomous ground-based robots [START_REF] Deery | Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping[END_REF][START_REF] Madec | High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates[END_REF][START_REF] Quaglia | Design of a UGV Powered by Solar Energy for Precision Agriculture[END_REF][START_REF] Ruckelshausen | BoniRob-an Autonomous Field Robot Platform for Individual Plant Phenotyping[END_REF]) have constituted a major evolution in the field of plant phenotyping. This is mainly due to their ability to carry multiple sensors (Table 1) and their relatively higher throughput. Handheld instruments were developed as a cost-efficient alternative to autonomous ground robots [START_REF] Kaur | Evaluation of a Hand-held Spectrophotometer as an In-field Phenotyping Tool for Tomato and Pepper Fruit Quality[END_REF][START_REF] Khanna | Studying Phenotypic Variability in Crops Using a Hand-Held Sensor Platform[END_REF][START_REF] Reynolds | What Is Cost-Efficient Phenotyping? Optimizing Costs for Different Scenarios[END_REF], that integrate small-size and lightweight cameras or portable spectrometers. With a throughput of about 1-2 minutes per microplot, handheld sensors are a suitable option for small-size phenotyping platforms. Finally, fixed systems -in most cases equipped with downward-looking RGB camera and/or a portable spectrometer-can monitor a relatively small footprint (about 10 m 2 ) with a sub-daily frequency (Reynolds, Ball, et al. 2019;[START_REF] Velumani | An Automatic Method Based on Daily in Situ Images and Deep Learning to Date Wheat Heading Stage[END_REF][START_REF] Yalcin | Phenology Recognition Using Deep Learning: DeepPheno[END_REF], which is especially useful for phenological traits among others. These fixed cameras are a priori not suitable for large phenotyping platforms, but they can be used to create a network of sensors on distant experimental fields, as they can communicate by GSM with a cloud storage infrastructure in real time. Sensor networks can be very useful to provide specific phenotypic traits of certain genotypes over contrasted environments, at a relatively low cost. Over the years, numerous works have been published using different sensors which observe at different wavelengths of the electromagnetic spectrum to study specific aspects of the plant physiology and canopy structure. Roughly, we can differentiate five main groups:

• RGB cameras which are one of the most widely used instruments to access plant physiological traits due their affordability [START_REF] Araus | Breeding to Adapt Agriculture to Climate Change: Affordable Phenotyping Solutions[END_REF]L. Li, Zhang, and Huang 2014). They are versatile, lightweight and they can be mounted in any phenotyping vector, providing optical data at a very high spatial resolution. • Multispectral cameras, which provide information in different channels within the visible, near infrared (NIR, from at 0.75 to 1.4 µm) and short-wave infrared (SWIR, 1.4 to 2.4 µm) domains of the electromagnetic spectrum. The reflectance on different spectral bands allows a better characterization of crop biophysical variables like green leaf area index (GAI), or leaf and canopy chlorophyll content, [START_REF] Blancon | A High-Throughput Model-Assisted Method for Phenotyping Maize Green Leaf Area Index Dynamics Using Unmanned Aerial Vehicle Imagery[END_REF][START_REF] Daughtry | Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance[END_REF][START_REF] Hunt | Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring[END_REF][START_REF] Jay | Exploiting the Centimeter Resolution of UAV Multispectral Imagery to Improve Remote-Sensing Estimates of Canopy Structure and Biochemistry in Sugar Beet Crops[END_REF][START_REF] Laliberte | Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments[END_REF][START_REF] Verger | Green Area Index from an Unmanned Aerial System over Wheat and Rapeseed Crops[END_REF]). • Portable spectrometers: Hyperspectral sensors are usually expensive systems capable of observing across several hundred wavelengths with fine bandwidth simultaneously. They are highly useful to characterize the crop biochemistry (F. Li et al. 2014;[START_REF] Yendrek | High-Throughput Phenotyping of Maize Leaf Physiological and Biochemical Traits Using Hyperspectral Reflectance[END_REF]) and for disease identification and quantification [START_REF] Mahlein | Detection, Identification, and Quantification of Fungal Diseases of Sugar Beet Leaves Using Imaging and Non-Imaging Hyperspectral Techniques[END_REF][START_REF] Mahlein | Quantitative and Qualitative Phenotyping of Disease Resistance of Crops by Hyperspectral Sensors: Seamless Interlocking of Phytopathology, Sensors, and Machine Learning Is Needed![END_REF][START_REF] Nagasubramanian | Plant Disease Identification Using Explainable 3D Deep Learning on Hyperspectral Images[END_REF], similar to the applications of multi-spectral sensors. • LiDAR (Light detection and ranging): LiDAR are active sensors initially developed to measure distance, based on the phase delay between an emitted light beam at a given trajectory and the reflected beam after hitting an object within the trajectory. They have gained popularity for plant phenotyping as the 3D point clouds generated by LiDAR provide access to canopy structure, height estimations and individual plant detections [START_REF] Lin | LiDAR: An Important Tool for next-Generation Phenotyping Technology of High Potential for Plant Phenomics?[END_REF][START_REF] Lumme | Mask R-CNN Refitting Strategy for Plant Counting and Sizing in Uav Imagery[END_REF][START_REF] Paproki | Automated 3D Segmentation and Analysis of Cotton Plants[END_REF][START_REF] Paulus | Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping[END_REF][START_REF] Velumani | Wheat Ear Detection in Plots by Segmenting Mobile Laser Scanner Data[END_REF]). On field phenotyping applications, LiDAR are often restricted to ground vehicles as the range of the instrument is usually below 5 meters. In the recent years, UAVmounted LiDAR systems are gaining popularity due to the introduction of advanced and light-weight systems [START_REF] Lin | Quality Control and Crop Characterization Framework for Multi-Temporal UAV LiDAR Data over Mechanized Agricultural Fields[END_REF][START_REF] Shendryk | Fine-Scale Prediction of Biomass and Leaf Nitrogen Content in Sugarcane Using UAV LiDAR and Multispectral Imaging[END_REF][START_REF] Zhou | Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR Data[END_REF]) • Thermal sensors allow the measurement of canopy temperature. Observing the dynamics of the canopy temperature allows to evaluate the altered rates of photosynthesis and transpiration which could be indirectly linked to crop responses to biotic and abiotic stresses [START_REF] Alchanatis | Evaluation of Different Approaches for Estimating and Mapping Crop Water Status in Cotton with Thermal Imaging[END_REF][START_REF] Deery | Methodology for High-Throughput Field Phenotyping of Canopy Temperature Using Airborne Thermography[END_REF][START_REF] Gómez-Candón | Field Phenotyping of Water Stress at Tree Scale by UAV-Sensed Imagery: New Insights for Thermal Acquisition and Calibration[END_REF][START_REF] Jones | Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field[END_REF][START_REF] Ludovisi | UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought[END_REF].

The choice of imaging system and the acquisition vector is highly dependent on the spatial/temporal/spectral resolution required for the application, extent of the study area, operational cost and acceptable error rate. In this study, we will exclusively work with RGB cameras, that permit observations under the visible range, providing high spatial resolution at an affordable cost. In the following section we will detail different traits and the throughputs at which they are accessible.

Methods and algorithms to derive phenotypic traits from RGB sensors

The advances in image analysis have made possible the estimation of a variety of plant traits. These traits may be broadly grouped into two categories -a) traits that characterize the canopy structure b) traits that are associated to the individual plant/organ characteristics. In Table 2, we resume the traits accessible under field conditions, the methods currently used and their TRL, technological readiness level [START_REF] Mankins | TECHNOLOGY READINESS LEVELS[END_REF], which indicates the robustness and limitations of these methods. This table has been compiled by Dr Frederic Baret from the literature and the works conducted within the CAPTE unit (refer to [START_REF] Madec | Phenotyping Wheat Structural Traits from Millimetric Resolution RGB Imagery in Field Conditions[END_REF] for a summary extended to all types of sensors). More details on traits extracted from images may be found in the literature [START_REF] Fiorani | Future Scenarios for Plant Phenotyping[END_REF]Li et al. 2020;L. Li et al. 2014;[START_REF] Xie | A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors[END_REF].

Most of the canopy level traits are accessible at a relatively higher TLR. These traits may be linked to the observed reflectance values via empirical methods and hence can be easily accessed using model inversions, band ratioing or image segmentation. On the other hand, for the plant/organ-level traits, the technological readiness is generally low. This is because the state-of-the-art solutions to access these traits involve convolutional neural networks (CNN) which outperform traditional hand-crafted methods (Li et al. 2020). Unfortunately, the lack of large, diverse labelled datasets for the CNN model training hinders the readiness of these traits. Besides, while some of these methods (e.g., organ density) are at an already mature level, more work is needed to increase their throughput.

Among the traits presented, those requiring a ground sampling distance (GSD) of more than 2mm, such as canopy height, vegetation index, crop lodging, etc., are now accessible at high throughput thanks to UAV observations. It should be noted that the GSD requirements and acquisition procedures normally differ between small plants (e.g., wheat, rice) and big plants (e.g., maize, sunflower). While the plant density at emergence for big plants is accessible now from UAV images, the TLR of this trait for small plants is not yet mature enough. Also, certain important traits such as phenological stage, organ density and disease identification are not yet high throughput for all crops and still require manual scoring in the field. The detection of phenological stage and disease onset is important both for plant breeding and crop management and requires frequent revisits to the field. Similarly, plant and plant organ density are important indicators of emergence rate and crucial for yield prediction. The estimation of these traits poses the following challenges which are difficult to overcome using classical image analysis methods: a) tasks like phenology detection and disease appearance and quantification require data with high spatial as well as temporal resolution. b) even though a few methods have been proposed for specific disease detection in certain crops and a few phenological stages, we lack comprehensive pipelines covering all scenarios. c) The developed methods should be robust with reproducible results to be made operational across different sites. Thus, we require methods that can handle time series data and complexity of field conditions -varied illumination and soil conditions, ever-growing and changing architecture of crops and generalize over cultivars [START_REF] Minervini | Image Analysis: The New Bottleneck in Plant Phenotyping [Applications Corner[END_REF]. On the other hand, for precision farming, certain traits need to be computed across large production farms to identify crop stress, disease and weed infestation at initial appearance. This would require regular monitoring of the crops and near real-time analysis of the data collected. For all of these reasons, it is important to develop automatic image processing pipelines that are accurate enough and cost-efficient [START_REF] Roitsch | Review: New Sensors and Data-Driven Approaches-A Path to next Generation Phenomics[END_REF]. This also explains why we will focus on the throughput of the methodologies while describing the traits accessible from RGB images.

Phenotypic traits from visual identification of plants and organs: potentials of deep learning methods for plant phenomics

As mentioned, an important number of essential phenotypic traits related with plant phenology, yield components or diseases are based on the visual identification of plants and organs -e.g., fruits, anthers, spikes/heads, or infected leaves. During the last decade, the development of pattern and object recognition algorithms from computer vision has paved the way to retrieve such traits from optical images acquired on high-throughput phenotyping platforms. Particularly, those methods based on machine learning and, especially, on convolutional neural networks (CNN), also known as deep learning methods, have garnered interest recently thanks to their versatility to solve a wide variety of problems. Progressively, deep learning methods have replaced hand-crafted methods -based on mathematical morphology [START_REF] Jin | Estimates of Plant Density of Wheat Crops at Emergence from Very Low Altitude UAV Imagery[END_REF] or hand-crafted descriptors [START_REF] Jin | Estimates of Plant Density of Wheat Crops at Emergence from Very Low Altitude UAV Imagery[END_REF][START_REF] Pan | Edge Detection of Tobacco Leaf Images Based on Fuzzy Mathematical Morphology[END_REF] and conventional machine learning [START_REF] Aydın | Extraction of Flower Regions in Color Images Using Ant Colony Optimization[END_REF][START_REF] Niu | Image Segmentation Algorithm for Disease Detection of Wheat Leaves[END_REF]) -providing state-of-the-art results for several computer vision applications including image classification, object detection and tracking, object counting, segmentation, image enhancement, among others.

In the following section, we will see how the advances in computer vision and the introduction of deep learning is transforming several traits previously accessible only through manual sampling into high throughput ones.

A brief history of convolution neural networks

The potential of neural networks composed of convolutional layers for pattern recognition was first showcased in LeNet (LeCun et al. 1989). Following this, [START_REF] Krizhevsky | Imagenet Classification with Deep Convolutional Neural Networks[END_REF] developed AlexNet, a CNN-based image classification model that achieved a remarkable 10% improvement in classification accuracy on ImageNet, a popular benchmark dataset for real-world object classification (Russakovsky et al. 2015). This was a significant event that led to an exponential increase in the use of CNNs within the computer vision community. The availability of large, annotated databases and the increase of the graphical processing units (GPUs) along with their affordability are the two main component that can explain this success. Indeed to train their models, which was made of 62.3 million of parameters [START_REF] Krizhevsky | Imagenet Classification with Deep Convolutional Neural Networks[END_REF] used two GPUs for 5 to 6 days on the 1.3 million images of ImageNet . [START_REF] Guo | Deep Learning for Visual Understanding: A Review[END_REF]. Each feature map is passed through a non-linear activation function which allows for the extraction of non-linear features. One of the main advantages of convolutional operations is that they retain the spatial connectivity by learning correlation among neighboring pixels and are invariant to the location of the object within the image. In addition, the number of parameters is lesser owing to the weightsharing mechanism within feature maps [START_REF] Zeiler | Stochastic Pooling for Regularization of Deep Convolutional Neural Networks[END_REF]. b) Pooling layers -A convolutional layer is usually followed by a pooling layer in order to reduce the spatial resolution of the feature maps and the number of trainable parameters. Like convolutional layers, pooling layers are also spatially invariant since they aggregate the values over neighboring pixels. There exist several strategies of aggregation during the pooling operations. The most widely used ones are max pooling which takes the maximum value among the neighboring pixels; and average pooling which takes the average value of the neighborhood pixels [START_REF] Boureau | A Theoretical Analysis of Feature Pooling in Visual Recognition[END_REF]. The drawbacks of these strategies have led to the development of other approaches such as: spatial pyramid pooling [START_REF] He | Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[END_REF] to handle objects of different scales, sizes and aspect ratios; stochastic pooling [START_REF] Zeiler | Stochastic Pooling for Regularization of Deep Convolutional Neural Networks[END_REF] to overcome overfitting to the training data by randomly selecting an activation within the pooling regions and so on.

c) Fully connected layers -The fully connected layers are placed at the bottom of the network, following several stacks of convolutional and pooling layers. The objective of this last part of the network is to interpret the features extracted by the previous layers and convert them into high-level representations. These layers are computationally intensive, containing almost 90% of the parameters in a CNN [START_REF] Guo | Deep Learning for Visual Understanding: A Review[END_REF]. Depending on the purpose of the network, an appropriate activation is used before the last layer. For example, for a classification task, a softmax function would be used to have a probability value between 0 and 1.

Thus, the number of convolutional, pooling, fully connected layers and activation functions are selected considering the type and complexity of the task and size of the objects of interest. Another important factor to be considered while designing the network architecture is the size of the labelled dataset available for model training.

Higher the number of network layers, higher are the number of network parameters that need to be trained which makes the model convergence challenging.

In the case of traditional machine learning methods, the performance of the model saturates when the size of the training data is increased beyond a certain point. On the contrary, it has been showcased that the performance of deep learning methods increases with respect to increments in the training data [START_REF] Alom | A State-of-the-Art Survey on Deep Learning Theory and Architectures[END_REF]). This has led to the enlargement of existing datasets such as ImageNet and collaborative efforts among organizations to introduce new open datasets (Lin et al. 2014) in the last years. Thus, the availability of large publicly annotated datasets and easy access to highpower graphical processing units has accelerated the progress of deep learning methods. In the recent years, several different architectures have been proposed improving the state-of-the-art results on the ImageNet classification challenge. For a detailed review on the state-of-the-art models in computer vision refer to [START_REF] Alom | A State-of-the-Art Survey on Deep Learning Theory and Architectures[END_REF][START_REF] Guo | Deep Learning for Visual Understanding: A Review[END_REF][START_REF] Khan | A Survey of the Recent Architectures of Deep Convolutional Neural Networks[END_REF][START_REF] Voulodimos | Deep Learning for Computer Vision: A Brief Review[END_REF].

Deep learning for plant phenomics: a domain in expansion

Over the last few years, deep learning-based methods have been incorporated within the data processing pipelines of plant phenotyping. The introduction of deep learning has been slower for phenotyping under field conditions. An important reason would be the additional challenges of imaging under field conditions, e.g., variation in illumination conditions, and complexities in data processing, e.g., to differentiate between individual plants within the canopy and assign organs to the respective plants to achieve phenotyping plant level [START_REF] Kelly | An Opinion on Imaging Challenges in Phenotyping Field Crops[END_REF]. One of the first applications of deep learning for field phenotyping was found for the real-time identification of weed from farm robots [START_REF] Mccool | Mixtures of Lightweight Deep Convolutional Neural Networks: Applied to Agricultural Robotics[END_REF]. In their study, the images were acquired using a pulse lighting system, which allowed the authors to control the illumination conditions. The authors present impressive results for the task of differentiating between vegetation and weed against soil background via image segmentation. Following this, other researches have been conducted to tackle this problem [START_REF] Fawakherji | Crop and Weeds Classification for Precision Agriculture Using Context-Independent Pixel-Wise Segmentation[END_REF]Lottes, Behley, Milioto, et al. 2018;[START_REF] Olsen | DeepWeeds: A Multiclass Weed Species Image Dataset for Deep Learning[END_REF][START_REF] Sa | WeedNet: Dense Semantic Weed Classification Using Multispectral Images and MAV for Smart Farming[END_REF]. Besides segmentation, the task of detection and counting has also been widely applied in field crop environment. For example, the detection of rice panicle [START_REF] Xiong | Panicle-SEG: A Robust Image Segmentation Method for Rice Panicles in the Field Based on Deep Learning and Superpixel Optimization[END_REF][START_REF] Zhou | Automated Counting of Rice Panicle by Applying Deep Learning Model to Images from Unmanned Aerial Vehicle Platform[END_REF]) and fruits detection [START_REF] Hani | MinneApple: A Benchmark Dataset for Apple Detection and Segmentation[END_REF][START_REF] Sa | DeepFruits: A Fruit Detection System Using Deep Neural Networks[END_REF]. W. [START_REF] Guo | Aerial Imagery Analysis -Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy[END_REF] and [START_REF] Oh | Counting and Segmenting Sorghum Heads[END_REF] show the possibility to detect sorghum heads from UAV imageries. [START_REF] Lu | TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery[END_REF] and Madec et al. (2019) have addressed the task of wheat heads and maize tassels counting using convolutional neural networks. Both highlight the domain shift issues faced when the models were applied in the wild, due to differences in phenological stages and growing conditions.

A general drawback of most of these studies is the lack of a benchmark dataset, independent of the training dataset, to evaluate the generalization ability of the models. This is crucial to understand the technological readiness of the developed methods under operational conditions for agricultural missions. However, the construction of such large, and diverse labelled datasets covering different field scenarios is quite expensive. This has encouraged organizations to come forward and publish open datasets such as CropDeep with around 20 species taken in greenhouse conditions [START_REF] Zheng | CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture[END_REF], Sorghum-Head dataset [START_REF] Guo | Aerial Imagery Analysis -Quantifying Appearance and Number of Sorghum Heads for Applications in Breeding and Agronomy[END_REF], maize tassels dataset [START_REF] Lu | Joint Crop and Tassel Segmentation in the Wild[END_REF] 

Open research questions in deep learning methods for plant phenotyping

The popularity of deep learning algorithms and their expected role in traits estimation in plant phenotyping was discussed in the previous section. Thanks to their impressive performance, the rapid adoption of these techniques for field plant phenotyping has progressed rapidly in the last five years. As mentioned above, the main challenge for the use of deep learning in operational conditions are linked with the lack of generalization where CNNs are applied over datasets that differ to some extent -i.e. the belong to a different domain-from the dataset used for training them. Compared to the identification of real-world objects, the implementation of deep learning in field phenotyping still has some specific issues that have not been fully addressed by the existing literature:

1. What is the impact of object size and image spatial resolution on the generalization ability of deep learning methods, and how to optimize it? A particular feature of phenotyping applications is that object size is often restricted to a small site-or vector-specific interval. While in general real-world detection applications the training data contains instances of the same object at different sizes, in phenotyping applications the object size is heavily determined by the vector used for data acquisition or the specific operation model (e.g., flight or camera height). Moreover, while attempting to maximize the sampled area and throughput, the size of the objects observed is in general rather small compared to the desired object size (for instance, plant or organ counting). This constitutes an important challenge for deep neural networks [START_REF] Tong | Recent Advances in Small Object Detection Based on Deep Learning: A Review[END_REF]) that usually perform better on large objects [START_REF] Kisantal | Augmentation for Small Object Detection[END_REF]. Consequently, CNNs trained on specific datasets may not generalize well when they are applied to completely independent ones where the object size differs from the latter. Different possibilities have been proposed in real-world applications to overcome this problem, such as the use of data augmentation strategies on the training set [START_REF] Kisantal | Augmentation for Small Object Detection[END_REF], multi-scale network architecture [START_REF] Hu | Small Object Detection with Multiscale Features[END_REF]) and image super-resolution using generative adversarial networks [START_REF] González | A Super-Resolution Enhancement of UAV Images Based on a Convolutional Neural Network for Mobile Devices[END_REF][START_REF] Magoulianitis | Does Deep Super-Resolution Enhance UAV Detection?[END_REF]). On phenotyping initiatives, like the Global Wheat Head Dataset (David et al. 2020), the dataset from different sites were harmonized to a predetermined object size. The object size domain, however, remains an open question in phenotyping applications that have not been fully addressed in the current state of the art. A strategy to construct CNNs that generalize well across object sizes is still needed to understand how to integrate images from different vectors (e.g.; UAV and ground instruments, etc.) in the same pipeline.

Partially linked to the object size problem, understanding the potential impact of image resolution on the performance of object detection/counting algorithms is essential from the perspective of UAV observations. Due to the low autonomy of UAV, increasing flight height is an important factor to increase throughput and minimize the acquisition costs per sampled area. However, the number of textural features contained in the images decreases with resolution, perhaps impacting the ability of CNNs to correctly identify plants/organs. Currently, there are only few studies who have addressed specifically the link between image resolution/object size and CNN performance on plant phenotyping applications [START_REF] Kitano | Corn Plant Counting Using Deep Learning and UAV Images[END_REF][START_REF] Madec | Ear Density Estimation from High Resolution RGB Imagery Using Deep Learning Technique[END_REF]).

2. What kind of deep learning algorithm is better suited for density estimationsobject counting or object detection methods? For applications such as plant/plant-organ density estimations, different methods have been proposed: object detection [START_REF] Ghosal | A Weakly Supervised Deep Learning Framework for Sorghum Head Detection and Counting[END_REF][START_REF] Jin | High-Throughput Measurements of Stem Characteristics to Estimate Ear Density and Above-Ground Biomass[END_REF][START_REF] Madec | Ear Density Estimation from High Resolution RGB Imagery Using Deep Learning Technique[END_REF]; counting by regression [START_REF] Dobrescu | Leveraging Multiple Datasets for Deep Leaf Counting[END_REF]Liu et al. 2020;[START_REF] Xiong | TasselNetv2: In-Field Counting of Wheat Spikes with Context-Augmented Local Regression Networks[END_REF] or instance segmentation [START_REF] Kitano | Corn Plant Counting Using Deep Learning and UAV Images[END_REF]Machefer et al. 2020). Among these, the preparation of annotations for instance segmentation task is extremely time consuming in comparison to the other approaches. This is the main reason why the object-based detection and counting by regression methods are, in general, more widely adopted. For wheat head counting from ground-level images, Madec et al. (2019) compared the performance of an object detection and counting by regression algorithm over a range of different object sizes. They concluded that object detection provided the best results if object size is enough ( > 5000 pixels). [START_REF] Lu | TasselNet: Counting Maize Tassels in the Wild via Local Counts Regression Network[END_REF] indicated that for small object sizes counting by regression method were better suited. Therefore, counting by regression methods can be a priori better suited for density estimations from UAV images, but further work is required to understand whether data augmentation on the object size domain can help to overcome the limitations of object detection algorithms.

3. What is the contribution of temporal resolution and sampling area in the performance of deep learning models to derive phenological traits? The use of indirect methods to identify plant/organs based on deep learning techniques may introduce some uncertainties in the targeted phenotypic traits. For specific traits as those related with the estimation of phenological dates, requiring the identification of specific plant organs, the acquisition of frequent observations may help to solve partially this problem. The analysis, in relative terms, of the dynamics of the number of plant organs identified can help to mitigate the possible bias of object detection algorithms. However, vectors providing frequent images, like the fixed sensors, sample relatively smaller areas (Table 1), which may not be representative of the whole microplot or plot studied. What is the trade-off between the sampling area and temporal resolution for retrieving phenological traits? Only few studies have addressed this problem of estimating phenotyping traits (Wang et al. 2019;[START_REF] Yalcin | Phenology Recognition Using Deep Learning: DeepPheno[END_REF]).

Objectives and organization of the study

The present thesis studied the use of deep learning techniques for the estimation of three essential traits for plant phenotyping: plant density at early stages for maize, wheat head density, and wheat heading date. The thesis is structured into three chapters that take the form of scientific papers, each one dealing with a specific phenotypic trait, and using a specific vector and detection/counting algorithm. Each chapter answers one or more of the research questions enumerated in Section 1.4:

• Velumani, K., Lopez-Lozano, R., Madec, S., Guo, W., Gillet, J., Comar, A., Baret, F., 2021. Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: impact of the spatial resolution. Submitted (under review).

o Maize plant counting at early stage is an important trait required for crop breeding experiments and farm management. It is now possible to access this plant density trait at high throughput owing to the rapid popularity and affordability of UAV systems. In this study, Faster-RCNN, an object detection method, is used for the estimation of plant density from RGB imageries acquired from UAVs. We further analyze the performance of the detection method for small object detection on low resolution imageries, linked to research question #1. The study shows how data augmentation, and the use of super resolution approaches enables us to access plant density from low-resolution imageries.

• Velumani, K., Lopez-Lozano, R., Lu, H., Madec, S., David, E., Li, W., Liu, S., Smith, D., Chapman, S., Comar, A., Baret, F., 2021. Wheat head density estimation from UAVs: data augmentation and data preparation strategies to exploit labelled ground-based imagery. Draft.

o Wheat head density is a crucial trait for plant breeders and precision agriculture as it is an important component used in yield estimation. We propose an automatic density estimation method from UAV which promises high-throughput and overcomes the sampling issues faced by the current state-of-the-art methods that use ground imageries. In this study, we use an existing high-resolution annotated dataset acquired at the ground-level to train deep learning to be applied to low-resolution UAV imageries. The study also analyses the suitability of two approaches of deep learning -object detection and regression-based object counting methods to achieve wheat head counting on UAV images Further, a comparison between the density estimated from the UAV images and the in-situ manual density, along with their broad-sense heritability, is presented. This paper addresses the research questions #1 and #2

• Velumani, K., Madec, S., de Solan, B., Lopez-Lozano, R., Gillet, J., Labrosse, J., Jezequel, S., Comar, A., Baret, F., 2020. An automatic method based on daily in situ images and deep learning to date wheat heading stage. F. Crop. Res. 252, 107793. https://doi.org/10.1016/j.fcr.2020.107793

o Wheat heading date from daily RGB imageries: The development of wireless IOT (internet of thing) fixed sensors now allows for continuous monitoring of crops in the field using RGB cameras. In this chapter, we propose an automatic method using CNNs to estimate wheat heading date through daily time series images taken throughout the growing cycle. We compare the performance of the method developed, relying on frequent observations on a relatively low sampling area, with reference heading date by manual scoring in the field and directly on the images. The method proves to be robust -despite the relatively small area observed-over an independent test dataset acquired during a different growing cycle and over cultivars not used during the model training. This paper addresses the research question #3.

Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: impact of the spatial resolution

Early-stage plant density is an important trait to discern the rate of seed emergence, optimal sowing density, and potential yield. It is thus an attractive trait for plant breeders as well as agriculture practitioners that was previously measured by visual counting in the field. The affordability of UAVs and popularization of deep learning methods now allow the accurate localization and counting of early-stage plants through high-resolution RGB images. The study aims at understanding the spatial resolution requirements of a commonly used object detection algorithm, Faster-RCNN, and how the model is affected by differences in object sizes. In particular, the efficiency of Faster-RCNN while handling small objects or low-resolution UAV images is analyzed. Using lower resolution images would considerably increase the acquisition and processing throughputs of this trait by reducing the cost and time involved in data acquisition as well as for data processing. The study was conducted on early-stage maize datasets, with a range of object sizes, acquired over eight sites where the UAV was flying at different altitudes. This chapter corresponds to a journal article currently under review.

Wheat head density estimation from UAVs: data augmentation and data preparation strategies to exploit labelled ground-based imagery

Wheat head density is a direct indicator of yield and hence is extremely useful for plant breeders to evaluate the performance of cultivars under different environmental conditions and management practices. The possibility to access this trait from RGB images acquired in-situ, at 1 or 2 meters above the canopy using object detection methods has already been well established. This had also led to the creation of a large, diverse labelled dataset of wheat heads in the field, covering different stages of maturity and illumination conditions. However, these in-situ image-based methods, are still low throughput and suffer from sampling issues. This study aims to overcome this problem by developing a methodology to estimate wheat head density from UAV images by exploiting the existing high-resolution ground annotations. Since the wheat canopy observed from UAV is characterized by small, overlapping objects with high density per image, the suitability of an object detection method, Faster-RCNN previously used for maize plant counting, and a regression-based object counting method, SFC 2 Net, was investigated. The models were evaluated on three ground and UAV datasets acquired during the 2020 growing campaign over three sites (two in France and one in Australia). This chapter corresponds to a draft article.

An automatic method based on daily in situ images and deep learning to date wheat heading stage

The monitoring of crop phenology, which is essential for various stakeholders in agriculture, is a labor-intensive task requiring frequent revisits to the field. The rapid development in IoT (internet of things) sensors now permits to continuously monitor the field, providing image, weather and soil data in near real-time. This study evaluates the potential of such IoT sensors to facilitate phenology monitoring. We focus on the onset of wheat heading date, an important developmental stage to understand the genotype's reaction to seasonal changes which is also important to maximize the yield.

Owing to the generalization ability of deep-learning algorithms, their suitability to identify wheat heads within the IoT time-series images covering a range of cultivars, crop maturity and diverse illumination conditions is tested. The heading dates estimated by the proposed methodology were then compared to reference heading dates from visual scoring by experts. Due to the lower resolution and more occlusions between heads induced by the 45° view orientation, an image classification method was applied over small patches of the image to decide whether they had at least one visible head. The dynamics of this simplified head counts was then exploited to estimate the heading date. The study was conducted on daily images collected over three growing campaigns in a total of 47 sites sown with winter wheat spread across France. This chapter corresponds to an article published in the July 2020 issue of Field Crop Research (https://doi.org/10.1016/j.fcr.2020.107793).

Conclusion

This PhD, structured in three scientific papers, investigated the use of deep learning methods applied on RGB images to estimate three phenotypic traits -early-stage plant counting, head density, and heading date -that, traditionally, were determined in situ from visual notation. This PhD was developed thanks to a CIFRE convention with the private company HIPHEN that specializes in the development of high-throughput phenotyping services. Therefore, the three studies presented in this dissertation were also designed to produce operational and transferable solutions that can be of direct benefit of HIPHEN to produce reliable phenotypic traits estimations, with accuracy comparable or better than the visual notations. In this context, special attention was paid to solutions maximizing the observation throughput, and particularly to UAV images for the estimation of plant and head density. Compared to ground vectors, the use of UAV introduces scaling issues that need to be addressed in the application and evaluation of deep learning methods. The main conclusions of the work conducted in this PhD are detailed hereafter.

Can deep learning methods replace in-situ measurements for estimating maize plant density, wheat head density and heading date?

The observed accuracy in the estimation of the three phenotypic traits studied in this dissertation from deep learning methods can be considered close to manual in situ determinations. For early-stage maize plant counting (Chapter 2) the two-stage object detection network, Faster-RCNN, applied to UAV images provided a relative error of 6% compared to the ground truth, which is considered highly satisfactory. Therefore, the deep learning algorithms could very well replace manual counting in the field. In this study, the ground-truth was generated by manual plant counting on the UAV images. Given the minimum overlap observed between maize plants at the early stages, manual annotations on high-resolution images can be safely used as a reference ground truth equivalent to in situ counting, since all instances of the plants are clearly distinguishable on the images. For wheat head density estimation (Chapter 3) the regression-based object counting method based on SFC 2 Net (L. Liu et al. 2020) yielded an average error of 14% against annotations, which can be considered satisfactory. Nevertheless, when comparing against in-situ head density observations, both image annotations and estimations from deep learning presented a moderate underestimation. This systematic bias is inherent of the use of RGB images in crowded canopy with a high overlap between objects: not all wheat heads were visible within the images. Theoretically, this moderate bias could be a priori mitigated in regression-based methods as SFC 2 Net by training the model with in-situ observations of the actual plant density for the same training images. Nevertheless, the broad-sense heritability of the model-estimated wheat head density was higher compared to that of the in-situ measurements. The lower heritability of the latter could be partly explained by the limited representativeness of the sampling area and human errors. The deep learning estimations are, therefore, more repeatable than human measurements and could be useful to understand the genotype interaction within a target environment. However, it should be kept in mind that deep learning algorithms could possibly exhibit bias over cultivars not well-characterized within the training dataset. This learning bias is a recurrent problem actively investigated under the ethics of artificial intelligence [START_REF] Müller | Ethics of Artificial Intelligence and Robotics[END_REF]) for a range of applications including facial recognition [START_REF] Raji | Saving Face[END_REF] or gender classification [START_REF] Buolamwini | Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification[END_REF]. Under the field phenotyping context, the broad-sense heritability could be artificially boosted when the models exhibit a bias towards certain cultivars. Further investigations should be directed to quantify this possible problem. The results obtained from the studies were compared, in all cases, to reference measurements, in each case performing well with minimal errors. Depending on the study, the reference measurements used were collected in-situ by manual intervention or from image annotations or a combination of the two. The trueness of the reference measurements was also analyzed and questioned. For phenological traits like wheat heading date estimation the proposed method based on ResNet50 to detect wheat heads in daily RGB images, yielded an average error of 2 days when compared to visual scoring from experts. The uncertainties of this method are lower compared to those introduced by human subjectivity, as discovered during the experiments conducted with a panel of wheat experts. In fact, the standard deviation of the heading dates provided by several experts that were observing the same canopy was above the error associated with the proposed method, indicating that this automatic method could replace in situ annotations of the heading date.

Data augmentation and data preparation strategies are efficient to minimize scaling issues

Two recurrent issues were faced while estimating wheat head and maize plant density from UAV using deep learning methods: the hyper-specialization of the deep learning algorithms to the object scale and the degradation of performances for detecting small objects.

As shown in Chapter 2, a systematic overfit of Faster-RCNN to the training dataset was observed, leading to a drastic decrease in performance when the GSD varied significantly in the inference dataset. Applying a CNN trained with low-resolution images (GSD≈0.63cm) to detect plants on high-resolution ones (GSD≈0.3cm) led to a systematic over-detection: the CNN proposed multiple small boxes to cover the image area occupied by single plants. Conversely, when detecting maize plants on lowresolution images with a CNN exclusively trained on high resolution, an important under-detection was observed. The most efficient strategy to overcome this problem was data augmentation in the scale domain, down-sampling the training dataset at different resolutions to enable Faster-RCNN to recognize plants with different sizes. This data augmentation strategy provided even better results than CNN predictions on the same native resolutions. It is therefore recommended to use it for any UAV-based object detection and counting application. Further, it should be noted that object detection networks, like the Faster-RCNN used in this study, were designed and built to achieve the best performances on datasets with large-scale objects such as COCO (Lin et al. 2014) or ImageNet (Russakovsky et al. 2015). Hence, when these networks are used to detect objects smaller than 20 x 20 pixels, the object information is reduced to a few bytes during the convolutional operations, thus failing on small objects. If objects are below this size, they have to be up-sampled to prevent a systematic under-detection.

The algorithm used to down-sample images as part of a data augmentation or data preparation strategy is also an important factor determining the accuracy of CNN detections. In Chapter 3, the use of images acquired from ground sensors were used to train deep learning methods applied to detect and count wheat heads on UAV images at 4-7 times lower resolution. Down-sampling images of the training dataset was thus necessary and two different methods were used: bicubic down-sampling and Gaussian filter followed by motion blur. The results indicated important differences in the performance which resulted from the down-sampling method, particularly for the SFC 2 Net regression-based algorithm: 14% error on total number of heads per scene with Gaussian blur against 35% error with bicubic down-sampling. For the same GSD, the down-sampling method determines the amount of textural information contained in the image. Therefore, when re-sampling the images in the training dataset as part of a data augmentation or data preparation strategy, the realism of the method used is essential to avoid possible biases. Gaussian filter was therefore found to be a more realistic method when resampling UAV images. In fact, the relative error of 14% achieved by down-scaling the training dataset using the Gaussian filter was very similar to the uncertainties observed when training and applying SFC 2 Net with images from ground sensors at their full resolution, which demonstrates the suitability of the downsampling method. Lastly, inadequate UAV camera settings may degrade image quality and impact negatively the performances of the object detection algorithm. In Chapter 2, the UAV was flying at two different altitudes with the same camera settings. A visual inspection of the images revealed that those settings were not optimal for the flight taken at a higher altitude, and the large uncertainties in plant detection observed from faster-RCNN confirmed it (rRMSE=0.48). This problem was partially mitigated using an advanced CNN-based super-resolution method (Z. [START_REF] Han | Deep Self-Learning From Noisy Labels[END_REF]Xintao Wang et al. 2019) to up-sample the UAV images taken at a higher altitude, as part of a data preparation strategy. This super-resolution model was trained jointly with a CycleGAN module [START_REF] Yang | Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives[END_REF]) that allows the generation of a paired high-and-low resolution training dataset in an unsupervised manner, thanks to a cyclic adversarial loss. While this strategy has the drawback of manipulating several losses, which complicates the model convergence and sometimes adds artifacts to the images, a significant improvement in plant counting was observed (rRMSE=0.22).

Object detection versus object counting algorithms for plant/organ density estimations

In Chapter 3, two types of deep learning algorithms were compared to estimate wheat head density: Faster-RCNN object detection algorithm; and the regression-based SFC 2 Net algorithm. SFC 2 Net provided systematically better results than Faster-RCNN. Whilst Faster-RCNN exhibited a slight negative bias against visual notations -taken from both, ground and from UAV-SFC 2 Net estimations showed no systematic bias. The advantage of regression-based methods against object detection are summarized in Table 1. The most important factor in favor of regression-based methods is that the algorithm output is the object count or object density. When the training dataset contains a realistic object count, the algorithm can implicitly handle possible biases between the actual number of objects present in the scene and the number of visible objects. This is an important advantage for traits like wheat head counting, as canopies are dense and substantial overlap exist among wheat heads, but also between heads and other plant organs. Object detection algorithms, by contrast, do not directly provide an object count, but rather a proposal of regions that may contain an object with a confidence score associated. The number of objects will result from the choice of a confidence score threshold to select actual objects -which is not straightforward in networks that are not calibrated-and therefore, in case of overlapping objects, the actual object density will be underestimated. The main advantage of object detection methods is that they provide additional information on the objects such as size and location, which may be necessary in some phenotyping applications. Faster-RCNN performed satisfactorily for maize plant counting at early stages (Chapter 2) as the scenes were relatively simple and overlap between small maize plants was not frequent. In these types of applications, the performance of object detection methods is expected to be comparable to the regression-based algorithms. Regarding computing resources, regression-based methods are more computationally efficient, enabling them to be used for real-time applications. Object detection algorithms, by contrast, often requires training 2-stage networks (region proposal and classification) that increases computation time. Furthermore, the need of a minimum size for object detection algorithms may require an image pre-processing of large datasets, whereas regression methods are more versatile.

Temporal resolution requirements for the estimation of phenological dates

The satisfactory results obtained in the automatic estimation of the heading date relied strongly on the availability of daily images from fixed sensors (IoTA). As opposed to other approaches where the CNN outputs directly the percentage of crop maturity (X. Wang et al. 2019), the methodology implemented in Chapter 4 to estimate the heading date focused on the dynamics rather than on the number of objects in the image. The estimation of the heading date was based on the temporal dynamics of the presence of heads in small patches of the scene, which allowed to simplify the problem into a binary classification (ears present/absent). This allowed to build a large and diverse set of training images, only using the reference heading dates, without requiring image labels from experts. On each plot observed, fitting the temporal dynamics in the presence of wheat heads with a logistic curve permitted to minimize the possible effects of uncertainties in the classification of specific daily images, increasing the robustness of the estimation. Therefore, the temporal resolution of the observations is the main factor determining the accuracy of phenological dates estimation. Observations every day or every two days are necessary to retrieve specific phenological appearances. This temporal resolution is difficult to achieve, for instance with some unmanned ground vehicles, as the costs of running a Phenomobile-like vehicle daily would be very high, and probably a human operator can be more efficient. The use of UAV could be better suited, but the image resolution may not be sufficient for some developmental stages like anthesis, that requires very high resolution. Therefore, fixed cameras are the most suitable vectors for phenological traits, but the cost of installing such cameras on large phenotyping experiments with thousands of microplots is still high. Fixed sensors and cameras are better tailored to create regional/national networks of sensors with frequent observations over distant fields, thanks to their connectivity. The impact of temporal resolution in the accuracy of the wheat heading date was not evaluated in Chapter 4, and further works will be needed to investigate the best strategies to use other phenotyping vectors (UAV, ground vehicles, portable sensors) to retrieve reliable phenological dates.

Perspectives

Deep learning approaches

Based on the results obtained during this study, the following avenues could be explored to encourage the adoption of deep learning algorithms under operational field conditions for plant phenotyping:

A) Domain Shift may be defined as the shift in distribution between the source domain (of the training dataset) and the target domain. It negatively impacts the model performances over the target domains. This was sometimes encountered in our studies, especially in the scenarios where the phenological stages of the crops and the image quality differed across the training and target dataset. This is a recurring problem in applying deep learning models to a new dataset since the models are trained under the assumption that the training and the target datasets are independently and identically distributed, which is always not the case [START_REF] Zhu | Semi-Supervised Learning Literature Survey[END_REF]. Domain adaptation, an actively studied branch of transfer learning, thus attempts to improve the model performance over the target domain using different strategies [START_REF] Farahani | A Brief Review of Domain Adaptation[END_REF]. For example, by minimizing the distance between the target/source distributions computed in terms of Wasserstein metric, KL divergence etc. [START_REF] Shen | Wasserstein Distance Guided Representation Learning for Domain Adaptation[END_REF][START_REF] Sun | Correlation Alignment for Unsupervised Domain Adaptation[END_REF], taking into consideration the intra-class and inter-class divergence in the source domain [START_REF] Kang | Contrastive Adaptation Network for Unsupervised Domain Adaptation[END_REF], generating pseudo labels on the target domain either from multiple learners [START_REF] Lee | CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise[END_REF][START_REF] Mendel | Semi-Supervised Segmentation Based on Error-Correcting Supervision[END_REF] or denoising them while model training using per class representative prototypes [START_REF] Han | Deep Self-Learning From Noisy Labels[END_REF][START_REF] Zhang | Prototypical Pseudo Label Denoising and Target Structure Learning for Domain Adaptive Semantic Segmentation[END_REF]. Other techniques such as lifelong learning attempt to improve model generalization over new targets without forgetting the learnings from the source domain [START_REF] Wu | ACE: Adapting to Changing Environments for Semantic Segmentation[END_REF][START_REF] Yoon | Lifelong Learning with Dynamically Expandable Networks[END_REF]. This is often addressed by adding a new loss using a domain classifier and a gradient reversal layer [START_REF] Ganin | Unsupervised Domain Adaptation by Backpropagation[END_REF] which forces the top layers of the network (feature extractor) to be domain invariant. These techniques could be of great utility to improve model performances covering the diversity due to genotypes, sowing densities, and soil conditions [START_REF] Ayalew | Unsupervised Domain Adaptation for Plant Organ Counting[END_REF].

B) Dataset bottleneck: It has been well established that the generalization capability of deep learning algorithms improves when increasing the size and diversity of the training dataset [START_REF] Alom | A State-of-the-Art Survey on Deep Learning Theory and Architectures[END_REF]). This has accelerated the publication of open datasets with collaboration between institutes such as the GWHD dataset (David et al. 2020) used in this study. However, the annotation of such a diverse dataset is a time-consuming and expensive task. In such situations where only limited labeled data is available, the use of semi-supervised approaches could be explored: the top-layers of the models are first trained on a large sample of the unlabeled dataset to learn the image representations in an unsupervised manner. Following this, the full model is finetuned in a task-specific manner using the limited labels available [START_REF] Chen | Big Self-Supervised Models Are Strong Semi-Supervised Learners[END_REF]Y. Liu et al. 2020;[START_REF] Siddharth | Learning Disentangled Representations with Semi-Supervised Deep Generative Models[END_REF]. The generation of synthetic datasets provides another promising alternative to overcome limited labels. This strategy is already widely applied to urban scene segmentation for autonomous car driving [START_REF] Richter | Playing for Data: Ground Truth from Computer Games[END_REF][START_REF] Ros | The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes[END_REF][START_REF] Wrenninge | Synscapes: A Photorealistic Synthetic Dataset for Street Scene Parsing[END_REF], crowd counting (Q. Wang et al. 2019) or crop phenotyping under controlled conditions [START_REF] Toda | Training Instance Segmentation Neural Network with Synthetic Datasets for Crop Seed Phenotyping[END_REF][START_REF] Ward | Deep Leaf Segmentation Using Synthetic Data[END_REF]. The approaches presented by Barth et al. (2018) and [START_REF] Liu | Estimation of Plant and Canopy Architectural Traits Using the Digital Plant Phenotyping Platform[END_REF] could be good starting points to capture the complexity of canopy structure under field conditions. Once again, the use of domain adaptation strategies [START_REF] Zhuang | A Comprehensive Survey on Transfer Learning[END_REF]) would be required to improve the generalization of the models trained on the synthetic dataset to the real-world datasets. Another alternative, outside deep learning, would be the use of agent-based methods which do not require labelled datasets, such as proposed by [START_REF] Jacopin | Using Agents and Unsupervised Learning for Counting Objects in Images with Spatial Organization[END_REF] for plant counting. These methods exploit the spatial organization of the objects within the image and hence their suitability for complex scenes such as wheat canopy may be a limitation and needs to be tested.

C) Scale sensitivity: In this thesis, the object scale was treated as a domain problem and we proposed solutions to overcome this through data augmentation and appropriate image rescaling strategies. But it is also possible to address this at the network level using scale aware networks that employ the recent attention mechanisms [START_REF] Dong | Crowd Counting by Using Multi-Level Density-Based Spatial Information: A Multi-Scale CNN Framework[END_REF][START_REF] Hossain | Crowd Counting Using Scale-Aware Attention Networks[END_REF][START_REF] Jiang | Attention Scaling for Crowd Counting[END_REF]. Attention mechanisms, first popularized for applications involving natural language processing, attempt to imitate the human cognitive system by focusing on the most important parts of the sentences or phrases to process the information [START_REF] Galassi | Attention in Natural Language Processing[END_REF]. Similarly, in the case of image processing, this approach focuses on the most important features output by the convolutional neural network to successfully accomplish the task and has been proved to provide state of the art results for small object detection and counting, where context of the objects is extremely important [START_REF] Lim | Small Object Detection Using Context and Attention[END_REF][START_REF] Zhou | Locality-Aware Crowd Counting[END_REF]. In this way, we would not need to resample the target dataset, which requires a priori knowledge on the object scale, which is not always correlated to the GSD owing to variations among genotypes and crop maturity.

In terms of methodologies developed

The methodologies developed in this study could be improved or extended in the following ways:

• All the three methodologies could be transposed to other crops, provided the occurrence of the phenological stages or plant/organ density can be visually discerned. In addition, unsupervised domain adaptation approaches based on open-set transfer learning to exploit the existing annotations to perform cross species detection/counting could be experimented to minimize labelling effort [START_REF] Ayalew | Unsupervised Domain Adaptation for Plant Organ Counting[END_REF][START_REF] Gebru | Fine-Grained Recognition in the Wild: A Multi-Task Domain Adaptation Approach[END_REF]). • The wheat heading date estimation method, demonstrated over the daily RGB images from fixed sensors, could be transposed to other higher throughput data acquisition vectors like unmanned aerial or ground vehicles. In this case, the appropriate revisit period should be defined to ensure that the occurrence of the phenological stage can be detected without significant delay.

• The regression-based methodologies for organ counting may be combined with an object detection approach to facilitate a density-map guided detection (Li et al. 2020;[START_REF] Lian | Density Map Regression Guided Detection Network for RGB-D Crowd Counting and Localization[END_REF]. This would allow accurate localization, access to the object size and region-specific upscaling to improve detection of small objects.

Figure 2

 2 Figure2An example of a typical convolutional neural network architecture containing its three base components -Convolutional layers, pooling layers and fully connected layers.[START_REF] Guo | Deep Learning for Visual Understanding: A Review[END_REF] Today, CNNs are the most widely used group of deep learning models and are particularly suited for computer vision tasks. In general, a CNN is composed of three main neural layersa) Convolutional Layers -These are the basic component of CNNs and are capable of automatically abstracting low-level image features. Despite classical neurons, a convolutional layer consists of a series of convolutional filters with varying kernel sizes. Each neuron in the feature map is connected to a network of neurons in the previous layer through a set of trainable weights. As a result, the first convolutional layer convolves the input image into an intermediate feature map which in turn is subject to consecutive convolutions by the deeper layers producing various feature maps[START_REF] Guo | Deep Learning for Visual Understanding: A Review[END_REF]. Each feature map is passed through a non-linear activation function which allows for the extraction of non-linear features. One of the main advantages of convolutional operations is that they retain the spatial connectivity by learning correlation among neighboring pixels and are invariant to the location of the object within the image. In addition, the number of parameters is lesser owing to the weightsharing mechanism within feature maps[START_REF] Zeiler | Stochastic Pooling for Regularization of Deep Convolutional Neural Networks[END_REF]. b) Pooling layers -A convolutional layer is usually followed by a pooling layer in order to reduce the spatial resolution of the feature maps and the number of trainable parameters. Like convolutional layers, pooling layers are also spatially invariant since they aggregate the values over neighboring pixels. There exist several strategies of aggregation during the pooling operations. The most widely used ones are max pooling which takes the maximum value among the neighboring pixels; and average pooling which takes the average value of the neighborhood pixels[START_REF] Boureau | A Theoretical Analysis of Feature Pooling in Visual Recognition[END_REF]. The drawbacks of these strategies have led to the development of other approaches such as: spatial pyramid pooling[START_REF] He | Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[END_REF] to handle objects of different scales, sizes and aspect ratios; stochastic pooling[START_REF] Zeiler | Stochastic Pooling for Regularization of Deep Convolutional Neural Networks[END_REF] to overcome overfitting to the training data by randomly selecting an activation within the pooling regions and so on.

  , cauliflower and broccoli dataset[START_REF] Bender | A High-resolution, Multimodal Data Set for Agricultural Robotics: A Ladybird 's-eye View of Brassica[END_REF]. More recently, a collaboration across several research institutes led to the constitution of the largest open wheat head dataset(David et al. 2020) of 4,700 RGB images acquired using hand-held poles and ground-based robots in the field. The publication of such collaborative open datasets over a range of crop species is crucial to promote deep learning for traits extraction within the field phenotyping community. Other approaches such as the use of transfer learning and creation of synthetic datasets are possible alternatives to consider tackling the challenge of constituting a diverse dataset.
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Table 1 .

 1 Characteristics of the main phenotyping platforms and vectors.

Type Vector Sensors Autonomy Area covered Throughput Ground Sampling Distance Aerial

  

	Unmanned (UAV) Air Vehicle	Multispectral camera Thermal camera RGB camera	15-30 min	3-5 ha	0.7 s / microplot	0.1 -1 cm

Table 2 A

 2 summary of the canopy-level and organ-level traits accessible from RGB sensors along with their technology level readiness.

	Small (Wheat) Small (Maize) 1 2 3 4 5 6 7 8 9

  The organization of challenges, conferences, and availability of open labelled datasets under controlled conditions have eased the initial transition from traditional machine learning approaches towards deep learning methods. This would include the popular benchmark dataset of rosette plants[START_REF] Minervini | Finely-Grained Annotated Datasets for Image-Based Plant Phenotyping[END_REF] with successive challenges on leaf instance segmentation and counting; the PlantVillage dataset[START_REF] Hughes | An Open Access Repository of Images on Plant Health to Enable the Development of Mobile Disease Diagnostics[END_REF] to classify healthy and infected leaves and characterize the type of stress. Not surprisingly, it was showcased that deep learning methods outperformed previous state of the art methods on these

tasks with attempts to promote open-source codes and cross-domain applicability

[START_REF] Dobrescu | Leveraging Multiple Datasets for Deep Leaf Counting[END_REF][START_REF] Kumar | Rosette Plant Segmentation with Leaf Count Using Orthogonal Transform and Deep Convolutional Neural Network[END_REF][START_REF] Ubbens | The Use of Plant Models in Deep Learning: An Application to Leaf Counting in Rosette Plants[END_REF]

).

Table 3 A

 3 non-exhaustive list of open labelled datasets available for precision agriculture and field phenotyping. Columns: Number of instances indicates the number of occurrences of the objects within the images; Label type expresses if the labelling was done at the image-level (typically classification tasks), pixel-level (for segmentation tasks) or as a bounding box or circles.

						Label Type	
	Type	Dataset Name	Number of images	Number of instances	Number of classes	Image-level	Pixel-level	Bounding	box/ Circle

Table 4

 4 Summary of advantages of regression-based methods and object detection methods for object counting.

	CNN	Required	Advantages	Throughput/Processing
	approach	object		speed
		scale		
	Object	> 20 x 20	-Exact localization	-2-stage networks are
	detection	pixels	-Object size	relatively slow.
				-Possibility to use one
				stage networks with a
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