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RESUME 

L'objectif principal de la thèse était d'étudier comment les informations génomiques de 

l'animal et de son microbiote peuvent contribuer à améliorer la sélection pour l'efficacité 

alimentaire chez le porc. La thèse s'est appuyée sur les données de deux lignées de 

porcs issues de 10 générations de sélection divergente pour l'efficacité alimentaire. En 

plus de phénotypes enregistrés pour environ 200 porcs par lignée et par génération, 588 

échantillons de fèces ont été collectés en générations 9 et 10. De plus, des génotypes 

pour environ 1000 animaux par lignée étaient disponibles. Cinq caractères ont été étudiés 

: la consommation moyenne journalière résiduelle, l’indice de consommation, la 

consommation moyenne journalière, le gain moyen quotidien et l'épaisseur de lard dorsal. 

Dans cette thèse, nous avons montré que les informations moléculaires sur les porcs ou 

leur microbiote peuvent améliorer la sélection pour l'efficacité alimentaire. Ce caractère 

est coûteux à enregistrer, alors que les informations moléculaires pourraient être plus 

faciles à obtenir sur un grand nombre de porcs. Dans ce projet, le potentiel du génotypage 

des animaux a été examiné dans le premier chapitre, et celui du microbiote intestinal a 

été exploré dans les deux suivants. Nous avons d'abord montré que lorsque la 

disponibilité des données est limitée, la prédiction génomique avec une population de 

référence combinant des animaux de lignées génétiquement liées peut être aussi précise 

qu’une prédiction génomique utilisant une population de référence de la lignée cible 

uniquement. Comparant de nombreux scénarios, nos résultats ont fourni des repères 

pour la construction de populations de référence pour initier la sélection génomique dans 

des lignées petites, qui ne disposent pas d'un grand nombre d'échantillons ou de données 

historiques et sont développées simultanément. Cette situation peut être rencontrée en 

volaille et en porc ainsi que dans d'autres populations en croisement. Des études 

complémentaires seront nécessaires pour quantifier le potentiel économique de cette 

approche et clarifier l'équilibre optimal entre génotypage et de phénotypage. Dans les 

chapitres suivants, nous avons montré que la variabilité du microbiote intestinal, captée 

par séquençage partiel du gène de l'ARNr 16S, contribue à la variabilité des caractères 

de production, en particulier de l'efficacité alimentaire. Dans un premier temps, nous 

avons identifié des composantes du microbiote (genres, OTU, indices de -diversité) 

héritables (48 genres sur les 75 analysés, plus deux indices de -diversité). Vingt et un 
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de ces genres, appartenant aux familles Lachnospiraceae, Ruminococcaceae, 

Prevotellaceae, Lactobacillaceae, Streptococcaceae, Rikenellaceae et 

Desulfovibrionaceae, et les deux indices de -diversité étaient génétiquement corrélés à 

certains caractères. Deuxièmement, l'étude de la microbiabilité a montré une contribution 

substantielle des effets microbiote à la variabilité de l'efficacité alimentaire (> 10%) et une 

contribution négligeable pour les autres caractères (< 5%). De plus, cette étude a révélé 

que la génétique de l'hôte avait une contribution plus élevée que le microbiote à la 

variance des caractères étudiés (héritabilité plus élevée que les valeurs de microbiabilité). 

Cette dernière étude a également montré des associations significatives de certains 

taxons microbiens avec les performances. Ces résultats ont souligné la possibilité 

d'utiliser certains caractères microbiens comme marqueurs pour la sélection de l'efficacité 

alimentaire chez les porcs. Des études complémentaires seront nécessaires pour évaluer 

comment les informations génomiques de l'hôte et du microbiote peuvent être combinées 

dans des modèles de prédiction pour soit mieux prédire les valeurs génétiques elles-

mêmes, soit même obtenir des prédictions conjointes des valeurs génétiques et 

microbiote, qui conduiraient à la sélection de l'hologénome pour une efficacité de 

production améliorée. 

 

  



III 
 

ABSTRACT 

The main objective of the thesis was to investigate how genomic tools applied to the 

animal and its microbiota can contribute to improving selection for feed efficiency in pigs. 

The thesis relied on data from two pig lines from 10 generations of divergent selection for 

feed efficiency. Together with phenotypic records for about 200 pigs per line in all 

generations, 588 feces samples from generations 9 and 10 were collected. In addition, 

SNP genotyping data for about 1000 animals per line were available. Five traits were 

investigated: residual feed intake, feed conversion ratio, daily feed intake, average daily 

gain and backfat thickness. Throughout the thesis, we showed that molecular information 

acquired on the pigs or their microbiota could improve selection for feed efficiency. This 

trait is costly to record, whereas molecular information could be easier to obtain on a large 

number of pigs. In this project, the potential of genomic tools applied to pigs was 

examined in the second chapter, and it was explored in the two subsequent ones for the 

gut microbiota. We then first showed that when data availability is limited, genomic 

prediction using a training set combining animals from genetically related lines can be as 

accurate as genomic prediction using a training set from the target population only. Based 

on numerous scenario comparisons, our results provided insights into the design of 

reference populations to initiate genomic selection in livestock lines with small population 

size, do not have a large number of historical samples or data, and are developed 

simultaneously, as can be encountered in poultry and pig breeding, as well as in other 

crossbreeding schemes. Further studies would be needed to assess the economic 

potential of this approach and clarify the optimum balance between genotyping and 

phenotyping efforts. In the following chapters, we showed that the gut microbiota 

variability, captured via partial 16S rRNA gene sequencing, contributes to the variability 

of production traits, in particular feed efficiency traits. First, we identified microbiota 

components (genera, OTU, α-diversity indexes) with significant heritability (48 genera out 

of the 75 analysed, plus two α-diversity indexes). Twenty-one of these genera, belonging 

to the Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Lactobacillaceae, 

Streptococcaceae, Rikenellaceae and Desulfovibrionaceae families, and the two α-

diversity indexes were genetically correlated with some of the traits. Second, the study of 

the microbiability showed a substantial contribution of the microbial effects on the 
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variability of feed efficiency traits (> 10%) and negligible contribution for other traits (<5%). 

In addition, this study revealed that host genetics had a higher contribution than the 

microbial community to the variance of the studied traits (higher heritability than 

microbiability values). This last study also showed significant associations of some 

microbial taxa with feed efficiency and performance traits. These results pointed out the 

possibility of using some microbial traits as markers for the selection of feed efficiency in 

pigs. Further studies will be needed to evaluate how genomic information of the host and 

the microbiota can finally be combined in prediction models to either better predict the 

breeding values themselves, or even obtain joint predictions of breeding and microbiota 

values, that would lead to the selection of the hologenome for improved production 

efficiency.  
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1.1. Importance of feed in the pig industry 

Changes in human population growth, income, lifestyle and eating habits have caused 

considerable rise in consumption of livestock products (FAO, 2013). Therefore, demand 

for livestock products has an increasing trend. Pig meat is one the most widely consumed 

sources of meat derived from domesticated animal species in the world and its production 

had a continuous increase from 1961 to 2018 (Figure 1-1). 

 

 

Figure 1-1. Meat production by type of livestock, World, 1961 to 2018 

Source: UN Food and Agricultural Organization 

 

Animal nutrition is one of the most important issues in animal husbandry. In other words, 

animal husbandry is based on proper nutrition of animals and the search for suitable feed. 

Proper nutrition is the feeding of livestock in a scientific manner so that besides the 

hygiene and housing costs, the maximum benefit can be obtained. Specifically, livestock 

nutrition accounts for more than half of the total production costs in industrialized 

countries. Therefore, by recognizing the feeding costs and having control on them with 
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considering the nutritional composition of the diet, more, faster and better livestock 

products can be achieved, and livestock can express their production potential.  

 

1.1.1. Feeding costs in the pig industry 

In an international comparison of conventional pig production costs conducted by the 

Wageningen Economic Research in 2018 (Hoste, 2017), total costs per kg carcass weight 

in some selected European countries ranged between €1.38 in Denmark to €1.88 in Italy, 

from which the feeding cost were €0.81 and €1.21, respectively. As the Figure 1-2 shows, 

the feeding costs per kg carcass weight in France and Netherland were equal to €0.85, 

which ranked second after Denmark. As this comparison confirmed, feeding costs in the 

European countries accounts for more than 50 % of the total production cost, and in 

France feeding costs reach to more than 59%. Therefore, decreasing the feeding costs 

is an outstanding challenge of the commercial pig production and would have a promising 

economic impact to improve the profit margins. 
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Figure 1-2. Cost of production (€/kg hot carcass weight), split into cost categories in 
selected EU countries on a closed cycle pig farm 

Source: InterPIG/Wageningen Economic Research, year 2018. 
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1.1.2. Environmental impacts of nutrient excretion 

Based on the estimates of the FAO, about one-third of total food supply of human is 

wasted or lost each year (FAO, 2013). This wastage mainly arises from opportunity 

missing and consequently imposes environmental impacts from food chains. It is also a 

relevant issue for the food consumption of farm animals, as reduced nutrient excretion 

would lead to less environmental impacts. According to the concept of sustainable 

production, environmental protection is an inevitable necessity for current and future 

generations, which is why today the environmental pollution crisis has become a global 

challenge and issue (Kupusovic et al., 2007). This challenge has had adverse 

environmental effects and consequences, such as pollution of water, air, soil, as well as 

endangering the health of humans and other living organisms. One of the most important 

of these problems is the increase in greenhouse gases (GHG) such as methane and 

carbon dioxide, which causes the continuous warming of the earth. Therefore, the 

production of environmentally friendly products and the processing of animal waste and 

scrap, including animal manure, can deal with the environmental problems caused by the 

release of these materials into the environment. Based on a global life cycle assessment 

conducted by FAO in 2013, the main GHG emissions source in the pig supply chains 

arise from feed production, that is contributing about 60 % of the total emission (MacLeod 

et al., 2013), whilst manure processing accounts for 27 % and the rest is related to post-

farm processing and transportation of meat, direct and indirect energy use and enteric 

fermentation. The intensity of GHG emission has a strong relationship with the amount of 

natural resources used per unit of product (Fischedick et al., 2014). From the livestock 

breeding perspective, the efficiency of the use of feed by animals is a key controller of 

GHG emission (Herrero et al., 2013). Thus, improving the feed efficiency is an 

intervention to reduce emission of GHG at the animal and herd levels. 

 

1.2. Definitions of feed efficiency and indicator traits 

Feed efficiency is defined as the ratio of growth to feed consumption over a given period 

(Gaillard et al., 2020). Feed efficiency in terms of animal breeding quantifies how much 

an animal gains body weight with a given amount of feed, or its inverse, how much feed 
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it intakes for a given amount of body weight. Therefore, being more feed efficient means 

growing more or eating less compared to the other contemporary animals. In spite of its 

simplicity in calculation, feed efficiency has a complex nature, which involves variability 

in feed intake level, digestion and absorption of nutrients, metabolism and nutrient 

utilization, growth rate, body composition, physiological status of animals and many other 

environmental factors (Brito et al., 2020; Herd & Arthur, 2009; Li et al., 2016; Patience et 

al., 2015). The difficulties in measuring feed efficiency makes it necessary to use some 

indicator traits that are simultaneously accounting for feed intake and maintenance and 

growth requirements of animals. The first indicator trait used in livestock is feed 

conversion ratio (FCR), which is the traditional expression of feed efficiency and is defined 

as the ratio of average daily consumed feed (DFI: daily feed intake) to the average daily 

gain (ADG). Feed conversion ratio has been widely used to evaluate and improve feed 

efficiency for decades (Losinger, 1998; Pierozan et al., 2016). Nevertheless, improving 

feed efficiency through the direct selection for FCR is faced with difficulties because it is 

a ratio trait, which causes disproportional selection pressure on either DFI or ADG and 

difficulties in the prediction of response to selection (Gunsett, 1984). The other problem 

of FCR is that its distribution tends not to be normal, and can depend on the coefficient 

of variation of ADG, which also arises from the ratio nature of this trait (Aggrey & Rekaya, 

2013; Atchley & Anderson, 1978; Yi et al., 2018). As an alternative indicator trait of feed 

efficiency, Koch et al. (1963) proposed residual feed intake (RFI) and applied it to beef 

cattle. Residual feed intake is defined as the difference between the observed average 

daily feed intake and that predicted from the average requirements for growth and 

maintenance of the animal, which is usually obtained using a multiple phenotypic 

regression model of DFI on metabolic body weight (for maintenance requirements), ADG 

and a backfat measurement (for production requirements), with fixed coefficients across 

animals. Because of its phenotypic independence from metabolic body weight and 

production traits, selection based on RFI would lead to better feed efficiency via 

decreased feed intakes while growth rate would be maintained or slightly reduced, 

whereas FCR  leads to better efficiency via increased growth rates and slight decrease 

of feed intake, as shown in poultry by (Aggrey & Rekaya, 2013). Based on these 

outcomes, FCR is often qualified as “gross feed efficiency”, where RFI would indicate “net 
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feed efficiency” (Knap, 2009). In pigs, which differ more than poultry in the protein/lipid 

ratio of the body weight gain, leanness could also be differently affected by the choice of 

criteria (Saintilan et al., 2013). A common selection difficulty based on FCR is the ranking 

of two animals with same ratios (e.g., 2/1 and 4/2), whereas RFI, with taking into account 

of linear relationships between the components related to maintenance and production 

requirements, can deal with this issue (Aggrey & Rekaya, 2013).  

Other feed efficiency metrics have been proposed, that are less known and used 

in practice to improve the feed efficiency. An instance is the residual daily gain (RDG) 

proposed by Koch et al. (1963). The RDG of a growing animal is defined as the residuals 

of the regression of ADG on FI. In contrast to RFI, the higher values of RDG are desirable, 

which indicate animals are gaining more weight than expected given their observed daily 

intake. The main disadvantage of RDG is its high dependence to ADG, which could 

confound associations with other performance traits (Ahola & Hill, 2012). Some of other 

metrics that are discussed by Calderón Díaz et al. (2017) are including ratio metrics such 

as energy conversion ratio (ECR), Kleiber ratio (KR) and relative growth rate (RGR) and 

residual metrics such as residual energy intake (REI), residual mid-test metabolic weight 

(RMW) and residual intake and gain (RIG).  

 

1.3. Biological basis of feed efficiency  

As mentioned above, numerous processes are involved in the variability of feed 

efficiency. They can be examined from the distribution of energy intake in different 

functions as represented in Figure 1-3. In pigs fed conventional diets, the main factors 

affecting the variation of feed efficiency have been identified after the digestion step 

(Noblet et al., 2013), despite the fact that digestive energy and nutrient losses represent 

15 to 25% of the feed intake (Le Goff & Noblet, 2001) . The three main factors described 

in the literature are presented in more details in this section.    

 Heat dissipation: there are three components in heat dissipation: from basal 

metabolism (fasting heat production and maintenance processes), from feeding, and from 

activity. The digestive process produces additional natural heat known as the heat 

increment of feeding (HIF). The heat increment of feeding can be deduced from the 
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metabolisable energy (ME) to get the net energy (NE), which is the utilizable energy by 

the animal for maintenance and growth (Figure 1-3). Therefore, HIF is usually considered 

as an energetic loss and more feed efficient animals that are consuming less feed would 

have less energy expended as HIF (Herd & Arthur, 2009).  

 

Figure 1-3. Dietary energy sources and energy use in the pig 

Source: Euken (2012) 

 

Activity: The physical activity of pigs is not part of the maintenance or growth 

requirements, and is another source of energy loss in the form of heat production. A study 

on growing pigs lines divergently selected for RFI showed that 14% of the feed intake 

difference between the lines is due to differences in activity level after 6 generations of 

selection (Meunier-Salaun et al., 2014). Some feeding behaviour traits, such as daily 

feeding time and daily number of visits to the feeder or feeding frequency, contribute to 

physical activity and have been shown to be significantly associated with the feed intake 

in pigs (Rauw et al., 2006) and in other species (poultry: Yan et al. (2019), sheep: Marie-

Etancelin et al. (2019), cattle: Llonch et al. (2018)). 

Composition of weight gain: More feed efficient animals are leaner and have 

less fat deposition than less feed efficient animals, which corresponds to negative 

correlations between FCR and leanness . A study on the effect of dietary energy on feed 

efficiency in pigs revealed that about 30 % to 35 % of the NE of diets is used for 

maintenance, 20 % to 25 % for protein gain, and the remaining 45 % to 50 % is used for 

lipid gain (Euken, 2012). This higher energy cost of fat deposition (~ 50 kJ of ME/g) than 

lean deposition (~ 40 kJ of ME/g) is due to the lower water content of fat tissue than lean 
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tissue (Rauw et al., 2017; van Milgen & Noblet, 2003). Nevertheless, higher lean tissue 

content is accompanied with higher maintenance requirements, because of the energy 

cost of protein turnover, and it has also been shown that fatter pigs produce less heat per 

unit of metabolic size than leaner pigs (Rauw et al., 2017; Sundstøl et al., 1979; Tess et 

al., 1984). Therefore, changing the body composition of animals toward more leanness 

would eventually lead to less demand for energy and reduced feed intake for the same 

amount of body mass. Nonetheless, feed efficient and lean animals can benefit more from 

the higher temperature of the environment than fat animals for maintenance and growth 

(Rauw et al., 2017), which can be considered in the management programs of the farms 

that feed efficiency is a goal trait. In addition, faster growth is also related with better feed 

efficiency, via a reduction of overall maintenance requirements to reach a given body 

weight, and increased protein deposition in earlier stages of growth. 

 Overall, under the concept of feed efficiency, animals that are able to direct a 

higher proportion of the net energy toward production are potentially more feed efficient 

(Brito et al., 2020). Therefore, any biological or environmental factor motivating this 

direction of energy would increase the feed efficiency of animals.     

 

1.4. Means to improve the feed efficiency of pigs 

1.4.1. Nutritional strategies 

It is worth noting that improving feed efficiency is not simply formulating a diet with 

increasing energy concentration, as there is a low correlation between dietary energy 

concentration and feed efficiency if other nutrients are not accounted for (Patience et al., 

2015). Thus, different nutritional strategies can be implemented to improve feed 

efficiency.  

Energy and nutrient density: It has been proved that the energy level of the diet 

influences DFI and feeding time (Fracaroli et al., 2017; Patience, 2012). Increasing 

nutrient density of the diet relatively to the energy content is another nutritional strategy 

that can be adopted to improve feed efficiency. Since the energy and protein contents of 

the diet have high contribution to the carcass composition and quality, and account for 
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most of the diet cost, an optimized formulation of the diet in terms of energy and amino 

acids can help to improve feed efficiency (De Lange et al., 2001). In general, lysine is the 

main limiting amino acid in pig diets, and usually formulated diets should contain a specific 

level of lysine and crude protein (CP) to ensure an adequate supply of other amino acids. 

Such formulation may lead to an oversupply of CP in the diets, resulting in unnecessary 

excretion of nitrogen to the environment (Ball et al., 2013). Diets with reduced CP 

supplemented with crystalline amino acids are suggested to better deal with amino acids 

requirements of the animals, which can also control excessive protein intake and reduce 

nitrogen excretion (Ball et al., 2013; Le Bellego et al., 2001; Madrid et al., 2013; Tuitoek 

et al., 1997). Furthermore, reduction of nitrogen excretion means saving energy intake 

used to metabolize the excess protein, which can therefore be used for growth (Fracaroli 

et al., 2017). However, this energy might be used for fat deposition too, which needs more 

advanced formulation of the energy level of the diet (Fracaroli et al., 2017; Le Bellego et 

al., 2001; Madrid et al., 2013). 

Diet form: several studies have shown that pelleted diets in comparison to mash 

or meal diets can significantly influence the improvement of the feed efficiency in pigs 

(Medel et al., 2004; Stark et al., 1993; Wondra et al., 1995). The reason of such 

improvement is the better digestibility of the pellet form as a result of processing steps, 

mainly temperature, heat and pressure, which provides more chemical and physical 

(particle size) availability of the nutrients (Noblet & van Milgen, 2004). Even the quality of 

the pellet is an important factor that affects the ratio of growth to feed intake (Stark et al., 

1993). In addition, the type of feeder has a substantial role in the variation of ADG and 

DFI. Myers et al. (2013) in an investigation on the effects of feeder design on the growth 

performance of finishing pigs concluded that feeding pigs via feeders that allow the pigs 

to combine feed and water if they prefer (wet/dry Crystal Springs feeders) increase ADFI 

and ADG compared to conventional dry feeders. This increase was attributed to the fewer 

visits of the pigs with higher eating speed with wet/dry feeders (Bergstrom et al., 2012). 

Regarding the feeders type, feed spillage is a practical factor that can decrease feed 

efficiency. Gaillard et al. (2020) included the feed spillage in the equation of FCR as FCR 

= (feed intake + spillage) / pig growth. Conical semiautomatic feeders are suggested by 
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Pierozan et al. (2016) to reduce feed waste during feeding. Feeding pellets have also the 

advantage of less spillage (Vukmirović et al., 2017).  

Diet digestibility: digestibility of the diet is associated with the fiber content, which 

usually is not digestible by endogenous digestive enzymes. Characterization of the fiber 

fraction in the livestock diets is usually based on content of crude fiber (CF), neutral 

detergent fiber (NDF) and acid detergent fiber (ADF). The traditional and still frequently 

applied measure is CF. However, it is less practical in the formulation of diets. NDF is 

indicator of plant’s structural components such as cell walls, and more matured forages 

contain higher NDF. The ADF is an indicator of the least digestible components of plants 

and forages with low ADF values are desired. A fibrous diet usually enhances satiety and 

is related to lower NE values (Meunier-Salaun et al., 2001). However, since some 

indigestible fiber components are the main substrates for bacterial fermentation in the 

distal part of the gut, including some resources with dietary fibers in the diets is essential 

for the maintenance of the physiological functions in the gut (Wenk, 2001). The 

digestibility of the fibers differs between fiber sources and age of animals. In general, pigs 

can somewhat digest the dietary fibers, and this ability increases as they become more 

mature (Noblet & Le Goff, 2001). Noblet and Le Goff (2001) mentioned that the heat 

increment of dietary fiber could be used for thermoregulation or change the behaviour of 

pigs, as pigs fed with a fibrous diet tend to have less physical activity. In conclusion, a 

producer depending on the breeding goals and physiological status of the animals can 

consider all the properties of the fiber in the diet to improve the feed efficiency.  

 

1.4.2. Genetic improvement of feed efficiency 

1.4.2.1. Aspects of selection for feed efficiency 

Genetic selection strategies to improve feed efficiency might be different when based on 

FCR or RFI, and depend on the breeding goals. Both traits require individual feed intake 

measurement, which can be costly. Even though FCR and RFI have high genetic and 

phenotypic correlations with each other (Table 1), in selection based on FCR, the 

economic aspect of feed would be more directly considered than in selection based on 
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RFI. In a selection program only based on FCR, the first focus would be to decrease the 

amount of feed intake per unit of body weight gain or vice versa, whereas a selection 

program based on RFI would only decrease feed intake while maintaining production and 

maintenance at the population average level. In theory, selection for RFI would be 

independent of production traits that are used to predict feed intake. For instance, it has 

been shown that after 9 generations of divergent selection for RFI, the two traits of ADG 

and BFT did not show significant changes (Gilbert et al., 2017). Therefore, the choice 

between selection based on FCR and RFI can be highly dependent on the source of 

variation of the feed intake of animals. A pig producer intending to select for the body 

composition of the animals while maintaining the growth rate level can adopt diverse 

strategy to improve the feed efficiency. Two main selection experiments on feed efficiency 

in Large White and Yorkshire growing pigs at INRAE and Iowa State University, 

respectively, have been shown successful development of two divergent lines that 

highlighted the biological responses of the selection for RFI (Cai et al., 2008; Gilbert et 

al., 2007). Some attributes of the LRFI animals resulting from several generations of 

divergent selection for RFI in the experiment conducted at INRAE were as in the following 

(Gilbert et al., 2007; Gilbert et al., 2017):  

 Decreased technological meat quality,  

 Increased nutritional requirements (g/MJ NE) and sensitivity to the density of diet 

nutrients / MJ NE 

 Reduction in nitrogen and phosphorus excretion  

 Reduced total amount of heat produced by unit of ME intake  

 Reduced physical activity  

 Non-significant changes in digestibility and robustness 

Several studies on feed efficiency traits in different breeds (Table 1) have shown 

moderate heritability of FCR (ranged from 0.27 ± 0.05 to 0.45 ± 0.07) and low to moderate 

heritability for RFI (ranged from 0.12 ± 0.05 to 0.40 ± 0.04). The genetic correlation 

between the two traits are usually moderate to high, and ranges from 0.53 ± 0.07 to 0.88 

± 0.02.  
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Selection programs in commercial populations also showed improvement in feed 

efficiency of pig. For instance, a genetic progress evaluation of a selection program based 

on US terminal sire index showed −0.06 kg/kg genetic gain per year for FCR and 0.02 

kg/d genetic gain per year for DFI in Duroc pigs with a generation interval of 1.5 year 

(Cheng et al., 2019). The genetic gains obtained from selection for FCR in commercial 

populations in France
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Table 1-1. Heritability (h2) and genetic correlations (rG) of FCR and RFI in different pig breeds 

Breed 
h2 

rG 
 

FCR RFI 

Duroc 0.39 ± 0.19 0.12 ± 0.05 0.75 ± 0.26 Sanchez et al. (2017) 

Duroc 0.30 ± 0.04 0.38 ± 0.04 0.87 ± 0.04 Do et al. (2013) 

Landrace 0.32 ± 0.05 0.36 ± 0.05 0.88 ± 0.02 Do et al. (2013) 

Yorkshire 0.32 ± 0.05 0.40 ± 0.04 0.87 ± 0.03 Do et al. (2013) 

French Landrace dam breed 0.35 ± 0.04 0.23 ± 0.03 0.53 ± 0.07 Saintilan et al. (2013) 

Large White dam breed 0.30 ± 0.03 0.21 ± 0.03 0.52 ± 0.05 Saintilan et al. (2013) 

Large White sire breed 0.30 ± 0.06 0.26 ± 0.06 0.69 ± 0.08 Saintilan et al. (2013) 

Piétrain sire breed 0.40 ± 0.06 0.33 ± 0.06 0.85 ± 0.04 Saintilan et al. (2013) 

Duroc 0.27 ± 0.05 0.38 ± 0.05 0.85 ± 0.13 Hoque et al. (2007) 

Large White 0.45 ± 0.07 0.24 ± 0.03 0.71 ± 0.12 Gilbert et al. (2007) 
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1.4.2.2. Genomic selection in pig breeding programs 

Recent theoretical and technological advances in using genomic information for the 

prediction of breeding values (BV) have provided means for more precise and feasible 

evaluation and selection of the animals for different traits. Prediction of BVs using 

genomic information (GBV) requires genotyping potential animals to be selected 

(candidates to selection), and genotyping training animals with performance traits from 

which the SNP effects are estimated (reference population). Based on the concept of the 

genetic progress (ΔG), the expected progress of a breeding program depends on the four 

factors of selection intensity (i), prediction accuracy (r), genetic variability (σg) and 

generation interval (L) as follows: 

𝛥𝐺 =
𝑖. 𝑟. 𝜎𝑔

𝐿
 

Given this formula, the advantage of using genomic selection is related to the possible 

increase of prediction accuracy r and selection intensity i, and shortening of generation 

interval L, if it can allow selecting animals at younger stages than pedigree selection. 

However, unlike dairy cattle, the early use of young pigs as reproducers, the fact that 

most animals of a generation are candidates to selection and the short generation interval 

in pigs (maximum 2 years) limits the practical advantage of using genomic selection in 

pigs to the improvement of prediction accuracy (Tribout et al., 2011).  

Besides the conventional factors affecting the BVs like heritability of traits, the 

accuracy of genomic predictions depends on the following specific factors (Clark et al., 

2011; Daetwyler et al., 2012; Daetwyler et al., 2010; Druet et al., 2014; Habier et al., 

2007; Meuwissen & Goddard, 2010): 

 Number of animals in the training population 

 Marker density  

 Linkage disequilibrium (LD) between QTL and SNPs  

 Effective population size  

 Relatedness of selection candidates with individuals in the training dataset  
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 Genetic architecture of the traits: the distribution of QTLs effects and effective 

number of segments  

 Imputation accuracy of marker genotypes 

 Variance of relationships within the reference population. 

Some of these factors interact with each other. For instance, the reason of using higher 

marker density panels is to better capture the extent of LD between markers and QTLs 

(Brito et al., 2011). The level LD can be affected by selection and effective population 

size, that result in higher levels of LD in livestock populations than in human (Khatkar et 

al., 2008). Even between livestock populations, it has been shown that the level of LD in 

pig populations is higher than in cattle populations (Veroneze et al., 2013).  

The most outstanding advantage of genomic prediction is that with an adequate 

training set the prediction accuracy of BVs can be higher than traditional prediction 

methods (VanRaden et al., 2009). From an economic point of view, the gain in accuracy 

with the genomic prediction should be large enough to justify the expense of genotyping 

that is necessary for genomic evaluation (Abell et al., 2014). One of reasons of the lower 

field application of genomic selection in the pig industry, as compared to dairy cattle, is 

the low phenotyping cost of routine traits, even for later traits like reproduction traits, in 

comparison with the genotyping cost. In dairy cattle, pedigree selection was traditionally 

based to progeny testing, which generated very high selection accuracies at the expense 

of long generation intervals (~7 years) that corresponds to huge phenotyping costs. 

However, this statement in pigs is less relevant for the feed efficiency traits, as the cost 

of phenotyping is the main restricting factor of improvement programs for these traits, and 

often limits phenotyping to a sub-sample of the candidates to selection, thus reducing 

prediction accuracies.  

The trait heritability is a determiner for the size of the training set as for traits with 

low heritability, larger training sets are required. In general, feed efficiency traits are 

moderately heritable (Table 1), which would help to optimize the number of animals in the 

training set. Therefore, genomic selection seems to be a promising strategy to achieve 

the desired prediction accuracy for feed efficiency traits. 
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Using imputation techniques to enhance the number of markers from a low-density 

panel to a high-density is a potential solution to deal with the high cost of genotyping 

(Dekkers et al., 2011; Habier et al., 2009). Depending on the species, genotyping with 

low-density panels can have  lower cost than medium or high-density panels, and enables 

to increase the number of genotyped animals (Huang et al., 2012). An imputation with 

high accuracy can then provide accurate prediction of GBVs (Badke et al., 2014). 

 Pooling animals from different populations to construct the training set is another 

solution to reach high accuracy of genomic predictions. Building a pooled training set has 

substantial challenges, like LD differences and lack of strong relationships between sub-

populations (Lund et al., 2014; Rezende et al., 2020). This strategy can however be 

considered for sub-populations across-countries, different breeds and different lines of 

limited size to achieve better prediction accuracies than with single populations alone (de 

Roos et al., 2009; Lund et al., 2014).  

Depending on the prior assumption for the distribution of SNP effects, several 

statistical methods are available to obtain predictions of GBVs using SNP markers. 

Methods that are assuming a normal distribution and equal variances for all markers 

include snpBLUP or ridge regression BLUP (rrBLUP), genomic BLUP (GBLUP) and 

single step GBLUP (ssGBLUP) (Legarra et al., 2009; Meuwissen et al., 2001; VanRaden, 

2008). The snpBLUP or rrBLUP method is based on the estimation of allelic effect of 

markers in the training set, followed by summing of these effects for the genotypes of the 

selection candidates. The GBLUP method is based on the use of mixed model equations 

with a genomic relationship matrix (𝐆). According to VanRaden (2008) the G matrix can 

be defined as following: 

𝐆 =
𝐙𝐙′

2∑ pi(1 − pi)
 

The 𝐙 matrix is an n x m centralized matrix of genomic markers after deducting of 

2(pi − 0.5), where pi is the frequency of the major allele at locus i. 

The ssGBLUP method incorporates the 𝐆 matrix into the pedigree relationship 

matrix (𝐀) based on the decomposition of the A matrix into non-genotyped (𝐀𝟏𝟏) and 
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genotyped (𝐀𝟐𝟐) animals, so that it makes it possible to use all available phenotypic and 

pedigree information (𝐇 matrix) and to obtain GBVs for non-genotyped animals, which is 

not possible with the previous methods. The equation of the 𝐇 matrix is written as: 

𝐇 = [
𝐀𝟏𝟏 − 𝐀𝟏𝟐𝐀𝟐𝟐

−𝟏𝐀𝟐𝟏 + 𝐀𝟏𝟐𝐀𝟐𝟐
−𝟏𝐆𝐀𝟐𝟐

−𝟏𝐀𝟐𝟏 𝐀𝟏𝟐𝐀𝟐𝟐
−𝟏𝐆

𝐆𝐀𝟐𝟐
−𝟏𝐀𝟐𝟏 𝐆

] 

The inverse of this matrix is easily obtained as: 

𝐇−𝟏 = 𝐀−𝟏 + [
𝟎 𝟎
𝟎 𝐆−𝟏−𝐀𝟐𝟐

−𝟏] 

The ssGBLUP is a promising way to improve the prediction accuracy of GBVs for 

feed efficiency traits that usually have limited phenotypic records. Finally, methods based 

on Bayesian approaches allow fitting different distributions of the SNP effects such as 

Bayes-A and Bayes-B, Bayes Cpi, Bayesian-Lasso and etc. (Calus, 2010; Gianola et al., 

2009; Habier et al., 2011; Yi & Xu, 2008). 

Altogether, in pig studies, prediction accuracies for growth and body composition 

traits are higher than feed efficiency traits (see Table 2 for examples of estimates from 

the literature), but the quantity of data available can differ between studies.  

 

Table 1-2. Genomic prediction accuracy of growth and feed efficiency traits in some studies on 
pigs 

Reference Trait Criterion Breed Accuracy 

Guo et al. (2016) ADG r(GEBV, y∗) √h2⁄  Duroc 0.41 

Guo et al. (2016) BFT r(GEBV, y∗) √h2⁄  Duroc 0.55 

de Campos et al. (2015) BFT r(GEBV, y∗) √h2⁄  Duroc 0.61 

Zhang et al. (2018) DFI r(GEBV, y∗) √h2⁄  Duroc 0.38 to 0.45 

Christensen et al. (2012) FCR r(GEBV, y∗) √h2⁄  Duroc 0.16 

Jiao et al. (2014) RFI r(GEBV, y∗) √h2⁄  Duroc 0.09 

y∗: adjusted phenotypes for fixed effects 
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In conclusion, increasing the number of animals in the training set has always been 

a challenge for genomic prediction. Therefore, any possibility to benefit from all available 

animals in the training set would provide higher prediction accuracy of GBVs and a more 

precise selection of animals.  

 

1.4.3. Improving feed efficiency through digestion efficiency 

The recent development of technologies in profiling the gastrointestinal tract (GIT) 

microbial communities have opened new opportunities for improving quantitative traits, 

specifically for feed related researches.  This information is most often derived from partial 

sequencing of the bacterial 16S ribosomal RNA (rRNA) gene, a housekeeping gene in all 

bacteria (Woese, 1987). Sequencing the 16S rRNA gene has become a standard 

approach in bacterial taxonomic classification, due to its ease to generate phylogenetic 

information at high throughput (Wang et al., 2015). For this purpose, nine hypervariable 

regions (V1-V9) of the 16S rRNA gene can be targeted for sequencing. Sequences can 

then be clustered into ‘Operational Taxonomic Units’ (OTUs) based on their similarities, 

or each Amplicon Sequence Variant (ASV) can be analysed individually, which  enables 

easy comparison between studies (Callahan et al., 2017). The OTUs (or ASV) are in fact 

the units that allow inferring the taxonomy of species present in the targeted biological 

samples. Identifying the taxonomy is facilitated by several reference databases, and can 

be used to propose hypotheses about the functionalities of the OTU. The counts of each 

OTU throughout the samples form a matrix called abundance table that is the basis of 

downstream analyses.  

 

1.4.3.1. Influence of gut microbiome on feed efficiency 

The interaction between a host animal and its GIT microbial community plays an essential 

dynamic role in the animal’s vital processes including health status, physiological, 

immunological, nutritional and production processes (Mach et al., 2015). The microbiota 

is present throughout all parts of the GIT where bacteria are the predominant colonizing 

microorganisms in pigs (Stensland & Pluske, 2018). Numerous bacteria present in the 



1. General introduction 

 

19 
 

GIT of the pig are usually grouped into limited number of phyla, and mainly belong to the 

Lactobacillus, Streptococcus, Peptococcus, Eubacterium, Clostridium, Bifidobacterium 

and Bacteroides genera (Stensland & Pluske, 2018). The interaction between gut 

microbiota and host animal is mainly set via the degradation of fibrous resources, and 

production of substrate metabolites for the energy chain such as short, medium and long 

chain fatty acids, vitamins, biogenic amines and antimicrobials, through the fermentation 

of the nutrients by the bacteria (Broom & Kogut, 2018).  

A healthy microbial composition, in addition to providing more resistance of the 

host to infectious diseases by stimulating the immune system and inhibiting pathogens, 

enables the host to effectively digest and absorb nutrients throughout the GIT (Backhed 

et al., 2005; Ducatelle et al., 2015; Stensland & Pluske, 2018). A healthy microbiota is 

generally characterised by high levels of diversity, as animals with a more diverse 

microbiota composition have more adaptability to the environmental changes and are 

more capable to deal with stressful periods in life, such as weaning (Stensland & Pluske, 

2018). Commonness of the gut disorders in newly weaned pigs have directed the 

attention of researchers to this field in the last decades (Lalles et al., 2004). The link 

between microbiome and economic traits, and the improvement of its functions got 

increasing importance after the setting of new restrictive rules in European countries for 

using antibiotics and Zinc oxide (ZnO) as growth motivators in post-weaning diets (van 

Barneveld et al., 2018).   

Several previous studies on pigs have investigated the link between the intestinal 

microbiota with growth, body composition and feed efficiency. Some important genera, 

such as Bacteroides, Lactobacillus, Prevotella, Clostridium, Streptococcus, Roseburia, 

Coprococcus and Faecalibacterium, have been reported to have association with ADG, 

BW, back fat, leanness and FE (Bergamaschi, Maltecca, et al., 2020; Han et al., 2017; 

Yang et al., 2016). However, there is not a full agreement about their effect on the 

performance traits, and conflicts on the reported associations do not allow getting a clear 

conclusion about important contributors. In fact, a large part of gut microbiota variation 

arises from differences in breeds, environmental conditions, diets, ages of pigs and the 

location of gut from which the samples are taken (Gardiner et al., 2020), and also 

heterogeneity of bioinformatics tools recruited for the analyses.  
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The association of different bacterial genera with feed efficiency in pigs is mainly 

described by their role in the degradation of carbohydrates and breaking down of plant-

derived polysaccharides, which results in availability of short chain fatty acids (SCFA) as 

an energy source (Gardiner et al., 2020). Some of the genera that are reported to be more 

abundant in either ileum, faeces or caecum of the more feed-efficient pigs include 

Christensenellaceae, a polysaccharide degrader, Treponema, correlated with crude fibre 

digestibility, Methanobrevibacter, correlated with fibre digestibility, and Actinobacillus, a 

carbohydrate degrader and polysaccharide fermenter (McCormack et al., 2017; 

McCormack et al., 2019; Niu et al., 2015; Yang et al., 2017). The genera Bacteroides and 

Clostridium, by breaking down of N-glycan and degradation of polysaccharides, have 

been proposed as specifically associated with feed efficiency (McCormack et al., 2017; 

Yang et al., 2017). However, both genera have some pathogenic species that could cause 

the diversion of energy and nutrients towards the immune response rather than growth, 

resulting in negative correlation with feed efficiency (Songer & Uzal, 2005). Finally, he 

effect of some genera including Ruminococcus, Butyricicoccus, Roseburia, and 

Lachnospiraceae on feed efficiency is mores specifically described via the production of 

butyrate, which is one type of SCFA (McCormack et al., 2019; Quan et al., 2018; Quan 

et al., 2020; Tan et al., 2017; Vigors et al., 2020).  

Another aspect of the effect of microbial bacteria on the feed efficiency could come 

from providing gut health and disease prevention by producing anti-inflammatory 

metabolites , which is proposed to explain some involvements of Oscillibacter, 

Akkermansia and Lactobacillus genera (McCormack et al., 2017; Quan et al., 2020; 

Valeriano et al., 2017; Vigors et al., 2020; Yang et al., 2017).  

Finally, some negative effects of microbial bacteria on feed efficiency could be 

driven by the competing features of genera for nutrients with the host animal, as it has 

been mentioned for Prevotella and Ruminococcus genera that were mainly described as 

more abundant in less feed-efficient pigs (McCormack et al., 2019; Quan et al., 2020; Tan 

et al., 2017; Yang et al., 2017).  

The reviewed literatures mostly focused on phenotypically contrasted groups of 

pigs for feed efficiency, that is an ideal to seek phenotypic relationships between feed 
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efficiency and GIT microbial community. The studies also subjected to heterogeneity in 

the microbiota objects studied, from the OTUs, which is the more complete data set, to 

families or genera that are restricted to the properly assigned OTUs. Nevertheless, 

biological interpretations at the family or genera levels are more sensible than at the OTU 

level. Overall, it seems that microbial components that are involved in the processing of 

nutrients, harvesting energy and those providing gut health and anti-inflammatory effects 

have positive associations with feed efficiency, and are enriched in the GIT of more feed-

efficient animals, whereas pathogenic bacteria would be less abundant with negative 

effects. Based on this type of results, some authors have proposed phenotypic prediction 

of production traits using microbiota information (Mach et al, 2015), including feed 

efficiency (Le Sciellour et al., 2019; Verschuren et al., 2020), but with limited success.  

 

1.4.3.2. Effect of host genetic on gut microbiome composition 

Some studies revealed a substantial effect of the host genetic variance on the GIT 

microbiota composition of pigs, as in other species. Two main approaches are used, 

either by estimating heritability for different microbial taxa using classical animal mixed 

models (Camarinha-Silva et al., 2017), or by running genome-wide association studies, 

to identify genomic regions showing covariation with some microbiota components 

(Crespo-Piazuelo et al., 2019). Chen et al. (2018) reported 81 and 67 microbial taxa with 

heritability higher than 0.15 in fecal and cecum luminal samples, respectively, and 

identified candidate genes in genome wide association study (GWAS) that were mainly 

associated with metabolism, immunity functions and signal transduction. Similarly, 

Bergamaschi, Maltecca, et al. (2020) estimated non-zero heritabilities for OTUs of 

microbiome samples from faecal samples at weaning, at mid-test during the growth trial, 

and at the end of the growth trial. Therefore, part of the variation in GIT microbiome arises 

from genetic variation of the host, which could potentially be beneficial for future selection 

programs of feed efficiency if they also influence production traits. However, only few 

studies investigated the genetic relationships between feed efficiency and microbiome 

information in pigs (Bergamaschi, Tiezzi, et al., 2020; Camarinha-Silva et al., 2017). 

Besides GWAS and estimation of variance components for OTUs, estimating the 

microbiability m², which is the proportion of phenotypic variance explained by microbiota 
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information (Camarinha-Silva et al., 2017), can be beneficial to dissect this relationship 

and better understand the interplay between genetics and microbiota in the variability of 

production traits. As proposed by Camarinha-Silva et al. (2017), the microbiability can be 

obtained by computing a microbial relationship matrix 𝐌 that structures the covariance 

between individuals due to the microbiota information. 𝐌 is defined as 𝐌 =
𝐙𝟑𝐙𝟑

′

k
, where 

𝐙𝟑 is a matrix with dimension of n x k, where n is the number of animals with microbiome 

information and m is the number of OTUs. Elements of the 𝐙𝟑 matrix are the standardized 

individual abundances of each OTU j for individual i, according to the following equation: 

z3ij
=

log(Pij)−log(Pj)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

sd(log(Pj))
, where Pij is the abundance of OTU j for individual i, and Pj is the vector 

of abundances of the jth OTU. Different formulas have been proposed for M, including the 

use of a 1-Jensen-Shannon distance between pairs of samples (Maltecca et al., 2019), 

Bray-Curtis distance matrix, or gene counts from metagenomics information rather than 

OTU abundances (in cattle: Difford et al, 2018, Ross et al, 2013). However, the 

Camarinha-Silva et al. (2017) computation is the most widely used in pig studies. With 

such approach, few estimates of microbiability for feed efficiency traits have been 

reported in the literature: 0.21 ± 0.14 from Camarinha-Silva et al. (2017) and 0.13 ±  0.10 

from Weishaar et al. (2020) for FCR, and 0.45 ± 0.15 for RFI (Weishaar et al. (2020). 

Interestingly, some authors (Khanal et al., 2019) showed on backfat thickness that m² can 

be affected by age at sampling for some traits. Altogether, following the initial study by 

Camarinha-Silva et al. (2017) on 217 pigs, only very recent studies explored in a genetic 

framework the contribution of gut microbiota variability to feed efficiency traits in pigs. 
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1.5. Objectives 

The main objective of the thesis was to investigate how genomic tools applied to the 

animal and its microbiota can contribute to improve selection for feed efficiency in pigs. 

The thesis relied on data collected in two pig lines during 10 generations of divergent 

selection for residual feed intake. Together with records on daily feed intake, growth, 

carcass composition and meat quality traits from at least two parities in all generations, 

tissue for pig DNA analyses were collected in every generation, and feces samples were 

collected from generations 9 and 10. Throughout the thesis, five production traits, 

including RFI, FCR, DFI, ADG and BFT, available on more than 1800 animals per line 

were investigated. Details on the population structure and development of the divergent 

lines are given in chapter 2.  

To respond to the general objective of the thesis, the thesis was conducted in three 

chapters with the following specific objectives: 

 In the second chapter, the main question was about the possible gains of accuracy 

for feed efficiency using genomic information: the focus will be on testing different 

genomic prediction scenarios that comprised animals from two different related 

lines. Such scenarios, because of the pedigree links between animals and 

consistent LD between sub-populations, could be more efficient than using across 

breeds or multi-breed genomic prediction to enhance prediction accuracy for this 

costly trait.   

 

 In the third chapter, the genetic relationships between gut microbiota genera and 

feed efficiency and production traits were explored, with the objective to decipher 

whether the relationships between feed efficiency and gut microbiota had a genetic 

basis. Therefore, beside descriptive analyses of gut microbiota and comparisons 

between the two divergent lines, the heritability of genera and their genetic 

correlations with the five production traits will be presented and the possible 

biological bases discussed.  

 



1. General introduction 

 

24 
 

 In the fourth chapter, the objective was to decipher how microbiota globally 

contributes to variations of the production traits. To achieve this objective, the 

estimates of the microbiability were obtained for all traits, including or not the 

genetic relationship matrix in the models, and microbiome-wide association 

studies were run to find out which microbiome taxa have significant associations 

with the traits.  

 

Following to the objectives of the MICROFEED project funded by the French National 

Research Agency that supported the thesis (ANR-16-CE20-0003), results of this study 

will be used to propose new genomic tools to jointly pilot the gut microbiota composition 

and the host genetic in terms of genetic selection for pig breeders, and in terms of nutrition 

and feeding for the feeding industry. 
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2.1. Introduction 

This chapter deals with the potential of the genomic information collected on the animals 

to improve selection for feed efficiency, with the hypothesis that information for this trait 

is usually scarcer than for other traits and FE could particularly benefit from genomic 

prediction technics. Most genomic predictions use a unique population that is split into a 

training and a validation set. However, how to enlarge the size or diversity of the training 

set, because of its potential high impact on prediction accuracy of GBVs, has always been 

a challenge for genomic prediction scenarios. Therefore, any possibility to benefit from 

more (diverse) animals in a training set could provide higher prediction accuracies of 

GBVs, and a more precise selection of animals. Besides, genomic prediction using 

genetically heterogeneous training sets could provide more flexibility when constructing 

the training sets for small populations. However, the literature shows quite heterogeneous 

results when combining populations for genomic prediction, and the aim of this chapter 

was to investigate the potential of genomic prediction for feed efficiency traits using 

training sets comprising animals from two related genetic lines. The GBVs were predicted 

using the single-step genomic best linear unbiased prediction method for six scenarios 

applied iteratively to the two genetically related lines (i.e. 12 scenarios) introduced before. 

The objective for all scenarios was to predict GEBV of pigs in the last three generations 

(~ 400 pigs, G7 to G9) of a given line. For each line, a control scenario was set up with a 

training set that included only animals from that line (target line).  

For all traits, adding numerous animals from the other line, including early 

generations of selection, to the training set did not increase prediction accuracy compared 

to the control scenario. However, overall results showed that genomic prediction using a 

training set that included animals from genetically related lines can be as accurate as 

genomic prediction using a training set from the target population, depending on the 

relationship between the subsets. With combined reference sets, prediction accuracy 

increased for traits that were highly affected by selection, but biases also. These results 

provide insights into the design of reference populations, especially to initiate genomic 

selection in lines that are small, do not have a large number of historical samples and are 

developed simultaneously.  
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This chapter was published as a journal paper in Genetics, Selection, Evolution 

(DOI: 10.1186/s12711-020-00576-0). The supplementary material can be found in 

Appendix 2.1 (at the end of this chapter). In addition, early developments of the work were 

presented as a poster in the Gordon conference on Quantitative Genetics and Genomics 

in February 2019 in Luca, Italy (Appendix 2.2) and as an oral presentation at EAAP-2019 

(Appendix 2.3).  
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2.2. Article I: The impact of training on data from genetically-related lines on the 
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2.2.1. Abstract 

2.2.1.1. Background 

Most genomic predictions use a unique population that is split into a training and a 

validation set. However, genomic prediction using genetically heterogeneous training sets 

could provide more flexibility when constructing the training sets in small populations. The 

aim of our study was to investigate the potential of genomic prediction of feed efficiency 

related traits using training sets that combine animals from two different, but genetically 

related lines. We compared realized prediction accuracy and prediction bias for different 

training set compositions for five production traits. 

2.2.1.2. Results 

Genomic breeding values (GEBV) were predicted using the single-step genomic best 

linear unbiased prediction method in six scenarios applied iteratively to two genetically 

related lines (i.e. 12 scenarios). The objective for all scenarios was to predict GEBV of 

pigs in the last three generations (~ 400 pigs, G7 to G9) of a given line. For each line, a 

control scenario was set up with a training set that included only animals from that line 

(target line). For all traits, adding more animals from the other line to the training set did 

not increase prediction accuracy compared to the control scenario. A small decrease in 

prediction accuracies was found for average daily gain, backfat thickness, and daily feed 

intake as the number of animals from the target line decreased in the training set. 

Including more animals from the other line did not decrease prediction accuracy for feed 

conversion ratio and residual feed intake, which were both highly affected by selection 

within lines. However, prediction biases were systematic for these cases and might be 

reduced with bivariate analyses. 

2.2.1.3. Conclusions 

Our results show that genomic prediction using a training set that includes animals from 

genetically related lines can be as accurate as genomic prediction using a training set 

from the target population. With combined reference sets, accuracy increased for traits 
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that were highly affected by selection. Our results provide insights into the design of 

reference populations, especially to initiate genomic selection in lines that are small, do 

not have a large number of historical samples and are developed simultaneously. This 

especially applies to poultry and pig breeding, as well as other crossbreeding schemes. 

2.2.2. Background 

Given the large economic impact of feed efficiency in the swine industry, its evaluation 

requires accurate estimation of breeding values (BV) and selection of animals (Patience 

et al., 2015). The most commonly used criterion to measure feed efficiency in livestock 

species is Feed Conversion Ratio (FCR) and is defined as feed intake per unit of live 

weight gain (Gaines et al., 2012). However, in 1963, residual feed intake (RFI) was 

introduced in cattle as an alternative criterion for feed efficiency (Koch et al., 1963). In 

general, FCR and RFI are highly genetically correlated (Hoque et al., 2007). 

Nevertheless, selection of animals based on FCR can be accompanied by undesirable 

correlated responses in other traits such as appetite (Ollivier et al., 1990; Pym & Nicholls, 

1979), whereas selection for RFI is almost independent of these traits since RFI is feed 

intake adjusted for production trait by linear regression. Due to the high cost of measuring 

daily feed intake, and thus RFI and FCR [7], fewer phenotypic records are available, which 

reduces the accuracy of selection. Genomic selection has the potential to improve pig 

feed efficiency in some populations (Christensen et al., 2012; C. Y. Zhang et al., 2018). 

Recent advances in genomic evaluation methodologies, such as single-step genomic 

best linear unbiased prediction (ssGBLUP), enable more accurate evaluations in small 

populations. The ssGBLUP combines phenotypic, genotypic, and pedigree information in 

a single genomic evaluation of animals (Aguilar et al., 2010; Christensen & Lund, 2010; 

Legarra et al., 2009; Misztal et al., 2009). The number of animals in the reference 

population has been shown to affect the accuracy of genomic predictions (VanRaden et 

al., 2011). Multi-breed or admixed genomic evaluations have been proposed to increase 

the number of animals in reference sets for small populations (Carillier et al., 2014), 

resulting in increases in prediction accuracy in some cases (Lund et al., 2014). A study 

on multi-breed genomic evaluation using real data from Holstein and Jersey bulls showed 

that using a combined reference population resulted in comparable accuracies of 
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genomic estimated breeding values (GEBV) in purebred validation sets, or exceeded that 

achieved with a purebred reference population of the same breed (Ben J Hayes et al., 

2009). Adding a smaller population, i.e. Brown Swiss, to a reference population of 

Holstein and Jersey bulls resulted in slight increases in accuracy of predictions when 

breeds were considered as a single, joint population, while slight increases in accuracy 

were also observed if the breeds were treated as genetically related traits (Olson et al., 

2012). Simulation studies with mixed reference populations also showed increases in 

prediction accuracy. A simulation study on genomic prediction across multiple populations 

in cattle showed that adding relatively few individuals from another population to a training 

set substantially increased the accuracy of predictions in the first population, regardless 

of the heritability (h2) or marker density (de Roos et al., 2009). Another simulation study 

reported that genomic predictions using a combined versus a single reference population 

increased the accuracy of genomic predictions by 25%, with traits with a lower heritability 

benefiting more from the combination of populations (S.-Y. Zhang et al., 2018). However, 

using a combined reference population can be challenging if relationships between 

populations are absent: allele frequencies at the marker and/or causal loci, or causal 

variants themselves, can differ between populations, (Carillier et al., 2014; Lund et al., 

2014). Another limitation for across-breed genomic prediction is the inconsistency of 

linkage disequilibrium (LD) between markers and quantitative trait loci (QTL) between 

breeds, which is one of the assumptions of most genomic prediction models (Ben J Hayes 

et al., 2009). 

Given the presence of (ancestral) relationships between animals and the greater 

consistency of LD between genetically related lines within a breed than between breeds 

that have been separated for decades, using a multi-line reference population may be 

more beneficial than using a multi-breed reference population (Lund et al., 2014). 

However, the changes in allele frequency since separation of the lines may still represent 

a challenge for using a multi-line reference population (Fangmann et al., 2015). To the 

best of our knowledge, the use of a multi-line genomic evaluation strategy in small, related 

lines using real data has not been studied, despite the existence of numerous related 

lines worldwide. Our hypothesis was that, in small porcine populations with few available 

ancestral samples, i.e. cannot build large reference populations, including information 
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from a genetically related line in the training population could provide similar prediction 

accuracy as a within-line training population. Therefore, we explored reference 

populations with different structures that combined data from two lines that descended 

from a common origin, and compared the prediction accuracy obtained with that obtained 

when only information from the target line was used for training. 

2.2.3. Methods 

2.2.3.1. Population and data structure 

The data were collected during a selection experiment that was conducted at INRAE (UE 

GenESI, Surgères, France, https://doi.org/10.15454/1.5572415481185847E12) on 

French Large White pigs. Two lines were established by nine generations of divergent 

selection for RFI from 2000 to 2015 (Gilbert et al., 2017). The G0 generation resulted 

from the mating of 30 boars and 30 gilts from generation F0 using artificial insemination. 

Among the G0 animals, 116 boar candidates for selection from all 30 litters were tested 

for RFI to select six extreme founder boars for each line (LRFI: low RFI, and HRFI: high 

RFI). The two lines were initiated by mating the selected boars to about 35 random G0 

gilts per line. Inbreeding was minimized at each generation. The development of each 

line continued with the selection of six boars out of 96 tested candidates in each 

generation from G1 to G9. In each generation, at least one additional parity was produced 

to evaluate correlated responses to selection for production traits on both females and 

castrated males (henceforth referred to as response animals). Selection candidates were 

evaluated for RFI from 35 to 95 kg of body weight (BW), and response animals were 

evaluated from 10 weeks of age until slaughter (105 kg BW until G5 and 115 kg BW from 

G6 onwards). Animals were raised in four pens per batch and at least four batches per 

generation. Test pens were equipped with single-place electronic feeders ACEMA64 

(ACEMO, France). Animals were offered ad libitum access to a pelleted diet based on 

cereals and soya bean meal containing 10 MJ net energy (NE)/kg and 160 g CP/kg, with 

a minimum of 0.80 g digestible Lys/MJ NE. In each generation, boars were selected 

based on a fixed RFI selection index that was established from pre-computed phenotypic 

correlations between daily feed intake (DFI, g/d) and average daily gain (ADG, g/d) 

https://doi.org/10.15454/1.5572415481185847E12
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between 35 and 95 kg BW, and live backfat thickness (BFT, mm) at 95 kg BW (Gilbert et 

al., 2007), as RFI = DFI − 1.06 × ADG − 37 × BFT. The average metabolic BW (AMBW) 

was the same for all selection candidates and therefore excluded from the selection index 

equation. Selection candidates had records for feed intake, body weight, and live body 

composition traits. In addition to these phenotypes, gilts and castrated males had records 

for carcass composition traits (Gilbert et al., 2007). For the present study, RFI, FCR, DFI, 

ADG and BFT were analyzed. These traits were available for both selection candidates 

and response animals. The number of observations for the five traits for each line are in 

Table 1. RFI of selection candidates was computed between 35 and 95 kg BW as the 

residual of a multiple linear regression of DFI on the traits included in the selection index. 

For gilts and castrated males from the correlated response batches, RFI was estimated 

from 10 weeks of age to slaughter as the residual of a multiple linear regression of DFI 

on AMBW, ADG from 10 weeks of age to slaughter, carcass BFT (carcBFT), and lean 

meat content (LMC; computed from cut weights) at slaughter. AMBW was included to 

account for maintenance requirements and the other traits were included to account for 

production requirements. (Gilbert et al., 2017). Fixed effects included in the regression 

model to compute RFI of response animals were sex, pen size, contemporary group and 

BW at the beginning of the test. Complete pedigree information was collected from F0 to 

G9, plus up to 10 generations of ancestors, and contained 7046 animals (Table 1).
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Table 2-1. Numbers of animals in the pedigree and data structure 

 Ancestors F0 G0 HRFI  

   G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Total 

Pedigree 159 67 104 48 216 297 277 260 270 795 474 292 280 3209 

Pedigree only    1 2 89 78 62 68 352 149 5 0 806 

Pedigree and genotype only    41 41 42 44 36 47 40 35 42 91 459 

ADG               

Phenotype only    0 167 160 149 156 149 304 194 148 93 1520 

Phenotype and genotype    6 6 6 6 6 6 71 73 66 92 338 

Missing    0 0 0 0 0 0 28 23 31 4 86 

BFT               

Phenotype only 0 167 160 149 156 149 237 176 62 84 1340 

Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338 

Missing 0 0 0 0 0 0 95 41 117 13 266 

DFI               

Phenotype only 0 166 160 149 156 149 263 182 138 93 1456 

Phenotype and genotype 6 6 6 6 6 6 71 73 66 92 338 

Missing 0 1 0 0 0 0 69 35 41 4 150 

FCR               

Phenotype only 0 166 160 148 156 149 263 182 138 93 1455 

Phenotype and genotype 4 6 6 6 6 6 71 73 66 92 336 

Missing 2 1 0 1 0 0 69 35 41 4 153 

RFI               

Phenotype only 
   

0 164 159 146 156 143 185 147 56 80 1236 

Phenotype and genotype    6 6 6 6 6 6 71 73 66 92 338 

Missing    0 3 1 3 0 6 147 70 123 17 370 

 Ancestors F0 G0 LRFI           

    G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 Total 

Pedigree 159 67 104 46 203 303 314 327 357 826 481 344 280 3481 

Pedigree only   0 1 98 100 107 130 337 132 8 0 913 

Pedigree and genotype only   40 35 40 41 43 43 48 55 48 93 486 

ADG 
              

Phenotype only    0 161 159 167 171 178 359 211 203 95 1704 

Phenotype and genotype    6 6 6 6 6 6 74 73 74 90 347 

Missing    0 0 0 0 0 0 8 10 11 2 31 

BFT               

Phenotype only 0 161 159 167 171 178 284 206 105 86 1517 

Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347 

Missing 0 0 0 0 0 83 15 109 1 1 218 

DFI               

Phenotype only 0 160 159 167 171 178 316 206 194 95 1646 

Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347 

Missing 0 1 0 0 0 0 51 15 20 2 89 

FCR               

Phenotype only 0 159 159 167 171 178 316 208 195 95 1648 

Phenotype and genotype 6 6 6 6 6 74 73 74 90  347 

Missing 0 2 0 0 0 0 51 13 19 2 87 

RFI               

Phenotype only 0 160 158 161 171 173 230 165 101 80 1399 

Phenotype and genotype 6 6 6 6 6 6 74 73 74 90 347 

Missing 0 1 1 6 0 5 137 56 113 17 336 

HRFI high RFI line, LRFI low RFI line, Ancestors animals before the base generation, F0 base generation, G0 to G9 

generations of selection 0 to 9, RFI residual feed intake, ADG average daily gain, FCR feed conversion ratio, DFI 

daily feed intake, BFT backfat thickness 
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2.2.3.2. Combining and standardizing traits 

Preliminary analyses on the five traits showed high genetic correlations between similar 

traits measured in selection candidate and response animals (> 0.80 ± 0.11, except 0.75 

± 0.08 between live BFT and carcass BFT). Therefore, to increase the amount of 

information, corresponding traits in selection candidate and response animals were 

combined for further analyses. Animals differed in age and BW when measurements were 

taken. Therefore, for each trait, records from selection candidates were standardized to 

the variance of the corresponding trait in the response animals as: 

𝑦𝑅𝑖𝑗 =  
𝑦𝑠𝑖𝑗

𝜎𝑠𝑖
𝜎𝑅𝑖, 

where 𝑦𝑅𝑖𝑗 is the standardized trait 𝑖 (𝑖 = 1 … 5) for selection candidate 𝑗, 𝑦𝑠𝑖𝑗 is the record 

of trait 𝑖 measured on animal 𝑗, 𝜎𝑠𝑖 is the phenotypic standard deviation of trait 𝑖 measured 

on selection candidates, and 𝜎𝑅𝑖 is the phenotypic standard deviation of trait 𝑖 measured 

on females and castrated males in the response batches. Descriptive statistics of these 

traits are in Table 2. 

Table 2-2. Descriptive statistics of the data for the studied traits in the HRFI and LRFI lines 

 

Line Trait Number of records Minimum Maximum Average 
Coefficient 
of variation 

HRFI ADG 1868 0.44 1.07 0.76 11.03 

 BFT 1687 9.67 49.27 27.33 26.62 

 DFI 1802 1.37 3.20 2.18 12.54 

 FCR 1799 2.13 3.81 2.8 9.26 

 RFI 1581 - 0.29 0.86 0.05 – 

LRFI ADG 2053 0.45 1.06 0.76 10.69 

 BFT 1866 10.00 44.63 26.45 24.60 

 DFI 1995 1.05 2.92 2.01 12.91 

 FCR 1997 1.72 3.70 2.60 9.11 

 RFI 1748 -  0.56 0.46 -  0.04 – 

HRFI high RFI line, LRFI low RFI line, ADG average daily gain (kg/day), BFT backfat thickness (mm), DFI 

daily feed intake (kg/day), FCR feed conversion ratio (kg/kg), RFI residual feed intake (kg/day) 
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2.2.3.3. Single nucleotide polymorphism (SNP) genotyping data and imputation 

SNP genotyping data were available for all selected boars and their mates from G0 to 

G9, additional pigs from response batches of G6 to G8, and all selection candidates in 

G9. In total, 1647 animals had SNP genotypes, of which 286 animals were genotyped 

with the Porcine SNP60v2 BeadChip (Illumina) (64,232 SNPs) and 1361 animals with the 

GGP Porcine HD Array (Illumina) (68,516 SNPs). Genotype quality control excluded 

SNPs with a call rate lower than 95%, individuals with a call rate lower than 90%, SNPs 

that were not in Hardy-Weinberg equilibrium (p < 10−10), SNPs with minor allele frequency 

lower than 0.01, and individuals with parent-offspring incompatibility (e.g., opposite 

homozygotes) with at least one parent. The PLINK software was used for SNP and 

individual genotype quality control (Purcell et al., 2007). SNPs on the sex chromosomes 

were removed. After quality control of each SNP chip dataset, the SNPs present in each 

panel were imputed to the alternative panel using the FImpute software (Sargolzaei et al., 

2014) in a single step. The two SNP chips shared 42,800 SNPs. The number of 

genotyped animals retained after imputation was 1643, and the final genotype dataset 

contained 64,233 informative SNPs. Thus, all animals had equal genotypic information. 

Genotypes were coded as 0, 1, or 2 for later calculation of the genomic relationship matrix. 

The number of animals with genotype data per generation and line is in Table 2-1. 

2.2.3.4. Model and analyses 

Predictions obtained with BLUP are based on the assumption of no genetic differences 

between subpopulations (Careau et al., 2013; Hadfield et al., 2010). Therefore, to account 

for selection in our dataset, all genetic and genomic analyses were carried out with 

bivariate approaches. All other five traits were individually paired with the selection index 

in two-trait model analyses. By including the selection criterion, the analyses of other traits 

are conditioned based on all the information that was used for selection (Fernando & 

Gianola, 1990; Henderson, 1990; Sorensen et al., 2001). 

Preliminary analyses were carried out using a general linear model in R (glm 

procedure) to evaluate the significance (p < 0.05) of fixed environmental sources of 

variation. The significant fixed factors included pen size (5 levels: 8, 9, 10, 11, 12 pigs per 
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pen), herd of birth (2 levels), sex (3 levels), and contemporary groups (CG, 99 levels). 

BW at slaughter was fitted in the model as a covariate only for BFT. CG were defined as 

animals born in the same week and raised in the same enclosure. Litter was fitted as a 

random environmental source of variation and its significance at the 5% level was 

determined using a likelihood ratio test. 

The genetic analyses were performed using the AIREMLF90 and BLUPF90 

software (Misztal et al., 2018) for the BLUP and ssGBLUP methods, respectively. Prior 

to ssGBLUP evaluations, the variance components of the traits were obtained using the 

restricted maximum likelihood algorithm implemented in AIREMLF90. These analyses 

were performed using all available data and only the full pedigree relationship matrix (𝐀). 

Variance components were estimated with the bivariate animal mixed model as follows: 

𝐲 =  𝐗𝐛 +  𝐙𝟏𝐚 +  𝐙𝟐𝐥 +  𝐞, 

where 𝐲 is the vector of observations for the index and one of the five studied traits, 𝐛 is 

the vector of fixed effects (described above), 𝐚 is the vector of additive genetic effects, 𝐥 

is the vector of litter effects, and 𝐞 is the vector of random residuals. 𝐗, 𝐙𝟏 and 𝐙𝟐 are the 

incidence matrices for 𝐛, 𝐚, and 𝐥, respectively. Distributions assumed for the random 

terms are 𝐚~𝑁 (𝟎, 𝐆𝟎 ⊗ 𝐀), 𝐥~𝑁(𝟎, 𝐑𝐥 ⊗ 𝐈), and 𝐞~𝑁(𝟎, 𝐑𝐞 ⊗ 𝐈), where 𝐆𝟎 is a 2 × 2 

symmetric (co)variance matrix of direct additive genetic effects, and 𝐑𝐥 and 𝐑𝐞 are 2 × 2 

symmetric (co)variances matrices of litter and residual effects, respectively. 𝐈 denotes the 

identity matrix. 

Genomic breeding values were estimated using ssGBLUP with the same models 

in the BLUPF90 software, with the previously estimated (co)variances and using the 𝐇 

matrix, which is a combined relationship matrix of the 𝐀 matrix and marker-based 

relationship matrix (𝐆) of genotyped animals (Aguilar et al., 2010; Legarra et al., 2009). 

The 𝐆 matrix was constructed and scaled by 2∑{𝑝𝑖(1 − 𝑝𝑖)}, where 𝑝𝑖 is the frequency of 

the second allele at locus 𝑖, following VanRaden (2008). Computation of the 𝐇 matrices 

used outputs of BLUPF90 (𝐆) and the full 𝐀 matrix, which was obtained using the 

AGHmatrix R package (Amadeu et al., 2016). In all scenarios, 𝐆 had similar average 

diagonal elements as the pedigree relationship matrix for the genotyped animals (𝐀𝟐𝟐). 



2. Potential of the genomic information to improve selection for feed efficiency 

52 
 

2.2.3.5. Scenarios 

Two symmetric series of six scenarios, one for each line, were defined for genomic 

prediction. An overview of the scenarios is shown in Figure 2-1. In all scenarios, 

genotyped animals of the last three generations (G7 to G9, 433 pigs for the LRFI and 399 

pigs for the HRFI line) were considered for validation in a given line (target line), and their 

information was removed from the training dataset. 

 

Figure 2-1. Design of scenarios to predict validation animals in HRFI (a) and LRFI (b) lines 
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The training sets were structured based on which generations and line were used. 

Scenario 1 comprised only animals from the target line and was the control scenario since 

it represented a routine genomic prediction design where all data would be available from 

the same line. All other scenarios were compared to this control scenario to evaluate 

which combination of training populations from the two lines achieved a prediction 

accuracy similar to the control scenario. Scenarios 2 and 3 included the training set of 

scenario 1 and additionally, either the animals from G4 to G9 (scenario 2), or G7 to G9 

(scenario 3) of the other line. 

For scenarios 4 to 6, animals from the target line in the training set were limited to 

the three generations nearest to the validation set (G4 to G6). In scenarios 4 and 5, the 

contribution to the training set of the animals from the other line was as in scenario 2 (G4 

to G9) and scenario 3 (G7 to G9), respectively. For scenario 6, the number of animals in 

the training set was equal to that of scenario 1 and only animals from the G9 generation 

of the other line. Performance data of animals from the generation and line combinations 

that did not contribute to the training or validation sets were removed from the analysis, 

but their pedigree information was kept in order to trace relationships back to the founding 

generation. For example, phenotypes and genotypes of animals from G0 to G3 of both 

lines were removed for scenario 4, since they were not part of the training or validation 

sets. The number of genotyped animals in the training and validation sets for the 12 

scenarios are in Table 2-3. 

Table 2-3. Number of genotyped animals in the training and validation sets for the six scenarios 

for the HRFI and LRFI validation sets 

  HRFI  LRFI 

  Training Validation  Training Validation 

Scenario 1  398 399  400 433 

Scenario 2  1051 399  1005 433 

Scenario 3  831 399  799 433 

Scenario 4  859 399  825 433 

Scenario 5  639 399  619 433 

Scenario 6  389 399  403 433 

HRFI high RFI line, LRFI low RFI line 
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2.2.3.6. Accuracy and bias of genomic predictions 

Usually the correlation between the vector of estimated breeding values (𝐄𝐁𝐕) to be 

evaluated and the vector of true breeding values (𝐓𝐁𝐕), r(𝐓𝐁𝐕, 𝐄𝐁𝐕), cannot be 

computed. In the literature, multiple criteria have been proposed to quantify and compare 

prediction accuracies of genomic predictions between training and validation set 

structures and between prediction methods. Cross-validation approaches are often 

conducted based on r(𝐄𝐁𝐕, 𝐲∗), where 𝐲∗ is either the vector of phenotypes adjusted for 

fixed effects or the vector of deregressed EBV of the validation set. Thus, a widely used 

criterion is r(𝐄𝐁𝐕, 𝐲∗) √h2⁄ , where h2 is the heritability of the trait. However, this criterion 

requires all the genotyped animals to have a sufficiently accurate 𝐲∗ value (Legarra & 

Reverter, 2018). When 𝐲∗ is an adjusted phenotype of the animal’s own measurement, it 

suffers from the inability to adjust for the random residual effects. In the optimum situation, 

the expected value of the correlation would then be the square root of heritability (Gunia 

et al., 2014). Alternatively, using an EBV obtained from a complete dataset as the best 

predictor of TBV would cause autocorrelation between the reference and evaluated EBV 

when the training and validation sets are closely related through the pedigree, leading to 

greater correlations (Gunia et al., 2014). Legarra and Reverter (2018) proposed to 

complement the cross-validation approach with a semi-parametric approach that can be 

used in a large number of cases, with the advantage of not requiring knowledge of the 

TBV or adjustment of phenotypes. The underlying assumptions of this approach are (1) 

the variance components are similar in the training and validation datasets, and (2) the 

validation set is sufficiently diverse and large (i.e. composed of various families). In brief, 

with their approach, the correlation between EBV using part of the dataset (partial) and 

EBV obtained using the whole dataset results in an estimator of the ratio of the accuracies 

of the EBV from these two datasets. We followed this approach to evaluate the potential 

for genomic prediction when including data from a related line compared to genomic 

prediction using all data from the target line, which will be referred to as GEBVw (GEBV 

obtained using the whole dataset). I.e., to obtain GEBVw for the validation set of each line, 

two separate ssGBLUP analyses were performed (one per line). GEBVp (GEBV obtained 

using partial dataset) were the GEBV obtained from the six scenarios for the validation 
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sets in each target line. The criterion for prediction accuracy for each trait and each 

scenario was then the correlation between GEBVp and GEBVw, r(GEBVp, GEBVw). Bias of 

the genomic predictions was computed as the deviation of the regression coefficient of 

GEBVw on GEBVp from 1, as also proposed in (Legarra & Reverter, 2018). Standard errors 

of the prediction accuracy correlations, r, were obtained as √[(1 − r2) (𝑛 − 2)⁄ ], where 𝑛 

is the number of animals used to obtain correlations in the validation sets. Differences 

between correlations in different scenarios were tested using the Williams t-test in the 

psych R package (Revelle, 2019; Steiger, 1980; Williams, 1959). Significant differences 

between each scenario and the control scenario (scenario 1) are reported to identify the 

scenarios that provide prediction accuracies similar to the control scenario. 

2.2.3.7. Relationships between training and validation sets 

For each scenario, the maximum, average, and minimum relationship coefficients 

between training and validation sets in the 𝐇 matrix were computed. To distinguish the 

strength of relationships originating from the two lines, all three measurements were 

computed separately for pigs of the validation set with the subset of the training set that 

belonged to 1) the target line and 2) the other line. The average relationships were 

calculated as the mean of the off-diagonal elements of the corresponding relationship 

matrices for the genotyped individuals. 

2.2.4. Results 

2.2.4.1. Variance components 

The five studied traits showed low to moderate heritabilities that ranged from 0.12 ± 0.02 

(RFI) to 0.36 ± 0.05 (BFT) (Table 2-4). The ratio of litter effect variance to phenotypic 

variance (l2) was lower than the heritability for all traits, ranging from 0.07 ± 0.02 (FCR) 

to 0.12 ± 0.02 (BFT). 
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Table 2-4. Estimates of variance components (SE) of the studied traits 

Trait Phenotypic variance Heritability Litter effectsa 

ADG 5811.70 (164.75) 0.25 (0.04) 0.10 (0.02) 

BFT 14.37 (0.47) 0.36 (0.05) 0.12 (0.02) 

DFI 0.04 (0.001) 0.24 (0.04) 0.09 (0.02) 

FCR 0.04 (0.001) 0.24 (0.04) 0.07 (0.02) 

RFI 0.01 (0.004) 0.12 (0.02) 0.08 (0.02) 

ADG average daily gain (g/day), BFT backfat thickness (mm), DFI daily feed intake (kg/day), FCR feed 

conversion ratio (kg/kg), RFI residual feed intake (kg/day), a As a proportion of phenotypic variance 

2.2.4.2. Prediction accuracies 

Prediction accuracies, r(GEBVp, GEBVw), for the different scenarios are shown in Figure 

2-2 for the two lines. Accuracies ranged from 0.07 to 0.73, depending on the validation 

line, trait, and scenario. The tested scenarios could be classified into two groups based 

on their design and how it affected the prediction accuracy of each trait. Removing the 

earlier generations of the target line from the training set (from scenarios 1, 2, 3 to 

scenarios 4, 5, 6) tended to decrease the prediction accuracy for ADG, BFT, and DFI, 

while FCR and RFI showed different patterns in response to changes in the structure of 

the training set. 

The differences in prediction accuracies for ADG, BFT and DFI from scenario 1 to 

scenario 2 and 3 showed that the inclusion of different generations of the other line in the 

training set led to marginal changes in accuracy, with decreased correlations in most 

cases (BFT in the HRFI line and DFI). In scenarios 4, 5, and 6, the proportion of animals 

from the target line was low in the training set compared to scenarios 1, 2, and 3. This 

reduction generally led to a decrease in the prediction accuracies for ADG, BFT, and DFI 

compared to scenario 1. However, these differences in accuracy were only significant for 

ADG and BFT in the HRFI line and for DFI in the LRFI line. 

Scenarios for FCR and RFI showed different patterns compared to the previous 

traits. Prediction accuracies for FCR followed a pattern similar to those of the other traits 

for all scenarios, except for scenario 3, which showed a 17 to 21% greater accuracy 
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compared to scenario 1. Prediction accuracies for RFI decreased from scenario 1 to 

scenario 2, and scenario 1 to scenario 4 for the LRFI target line, which were the scenarios 

with the maximum number of individuals from the other line in the training set. In the other 

scenarios, the prediction accuracies for RFI were similar or higher than for scenario 1. 

The prediction accuracies for FCR in all scenarios, except scenario 6, were higher 

for validation animals in the HRFI line than in the LRFI line. The average differences in 

accuracy by trait ranged from +0.07 for ADG to +0.40 for RFI. (Figure 2-2). 

 

Figure 2-2. Correlations between GEBVp and GEBVw, and their SE as error bars for the HRFI 

(a) and LRFI (b) lines.  

*Significant difference with scenarios 1 (control) based on the Williams t-test at a 0.05 level. RFI 

residual feed intake, ADG average daily gain, FCR feed conversion ratio, DFI daily feed intake, 

BFT backfat thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Potential of the genomic information to improve selection for feed efficiency 

58 
 

2.2.4.3. Prediction biases 

Overall, regression coefficients of GEBVw on GEBVp were consistently below 1 for FCR 

and RFI for both validation sets (Figure 2-3). Regression coefficients for these two traits 

also showed more variation across the scenarios compared to ADG, BFT and DFI. 

Bias for GEBV in the HRFI validation set followed the same trend, but at different 

magnitudes, for all traits, except ADG (Figure 2-3a). On average, scenarios 1, 2, and 3 

showed less biases than scenario 4, 5, and 6 for BFT, DFI, and FCR. The regression 

coefficient in scenario 1 was equal to 0.98 for RFI, slightly over 1 for BFT (1.08) and DFI 

(1.19), and below 1 for ADG (0.83) and FCR (0.74).  

Prediction of GEBV for the LRFI validation set did not follow the same pattern of 

change across scenarios between the traits. Regression coefficients of all scenarios 

showed biases lower than 1 for BFT, FCR, and RFI (Figure 2-3b). Biases were smallest 

for DFI (scenario 6) and ADG (scenarios 1, 5 and 6). Overall, biases of GEBV for this line 

were moderate for scenario 6 compared to the other scenarios, except for BFT (0.53). 

Biases were larger for scenarios 2 and 4, compared to scenarios 5 and 6, for all traits 

except for BFT. 

2.2.4.4. Relationships between and within training and validation sets 

Relationships between the validation set and the training individuals from the target line 

were on average higher in scenarios 4 to 6 than in scenarios 1 to 3 (Figs. 4a and 4c). The 

highest average was obtained for scenario 4 (around 0.25) and the smallest average for 

scenarios 1 and 3 (around 0.16 and 0.17). The maximum relationship coefficient between 

these two cohorts was greater than 0.66 for all scenarios, with the smallest maximum 

found for scenario 1 when the training set included only individuals from the target line, 

and the highest maximum for scenario 4 (around 0.78), when the relative number of 

animals from the other line in the training set was larger. 

Relationship coefficients between the validation set and the training individuals of 

the other line were lower than those with the training individuals of the target line, but the 
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maximum values were reached for scenario 6, i.e. equal to 0.18 and 0.20 for the HRFI 

and LRFI target lines, respectively (Figs. 4b and 4d). All other scenarios had lower 

maximum relationships, ranging from 0.12 to 0.15. 

 

Figure 2-3. Bias (regression coefficients of GEBVw on GEBVp) for the HRFI (a) and LRFI (b) 

lines.  

RFI residual feed intake, ADG average daily gain, FCR feed conversion ratio, DFI daily feed 

intake, BFT backfat thickness 
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Figure 2-4. Average, minimum and maximum relationship coefficients in the H matrix between 

individuals of the validation set, and individuals of the training set from the target line and from 

the reverse line, for a and b the HRFI target line, for c and d the LRFI target line 
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2.2.5. Discussion 

The aim of our study was to investigate different combinations of two lines derived from 

a common origin to evaluate the potential of building a training set for the genomic 

prediction of feed efficiency related traits in lines that are small or do not have much data 

available. Multiplying by ~ 2.5 (scenario 2), ~ 2 (scenarios 3 and 4), and ~ 1.5 times 

(scenario 5) the number of genotyped individuals in the training set by recruiting animals 

from the other line show no or little increase of prediction accuracy. This would probably 

not justify the additional genotyping costs involved. However, they can be considered for 

practical implementation of combined training sets since, in most cases, the prediction 

accuracies obtained in scenarios 5 and 6 were similar to those of the control scenario 1. 

These scenarios reflect most of the practical situations targeted in our study. Indeed, for 

breeding programs in small populations, phenotypic or genotypic information of 

individuals from earlier generations might not be available, and the sampling size in recent 

generations might be limited to a few hundred. Our results show that, a training population 

that includes recent generations of one population and data from a more distant 

subpopulation, could be a solution to achieve prediction accuracies similar to what would 

be achieved if data were available for individuals of the same population. This could even 

improve the prediction accuracies for traits under selection.  

2.2.5.1. Computation of prediction accuracies and biases 

Variance components of the evaluated traits were estimated using the A matrix on the full 

dataset with both lines combined. All estimated heritabilities were in the range of values 

reported in the literature for these traits (Christensen et al., 2012; de Campos et al., 2015; 

Do et al., 2014; Guo et al., 2016; Jiao et al., 2014). Using these variance components, 

the accuracy of GEBV was computed for the six scenarios to predict validation animals 

from each line using ssGBLUP. Prediction accuracies were computed using a cross-

validation method combined with a semi-parametric approach [30]. Indeed, in our case, 

accuracies of the adjusted phenotypes or of deregressed EBV were too low to be used in 

a criterion such as r(GEBVp, y∗) √h2⁄ , since only two thirds of the individuals had their own 

phenotype. This would result in larger standard errors of the correlations and, thus, less 
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power to test differences between scenarios, as shown in Figures S1 and S2 [see 

Additional file 1 Figures S1 and S2]. The underlying assumptions of the semi-parametric 

approach are that (1) the validation set is sufficiently diverse and large (i.e. composed of 

various families), and (2) variance components are similar in the training and validation 

datasets. The first assumption was well covered in our study, since all breeding 

individuals, plus some progeny of each family, were phenotyped and genotyped. The 

second assumption was potentially less covered, which could explain some of the biases 

in prediction observed. Indeed, when estimating variance components separately in the 

two lines, different residual variances were estimated for some traits, resulting in lower 

heritability estimates for DFI (24%), FCR (43%), and RFI (22%) in the LRFI line than in 

the HRFI line. Legarra and Reverter [30] indicated that inflation of predictions in one or 

the other dataset due to changes in variances can cause biased GEBV. Thus, we also 

tested the use of estimates of variance components from the target line for the GEBV 

predictions, but this resulted in increases in biases by 0.016 to 0.121 in all situations but 

one (results not shown). In practice, scaling the observations by the residual or 

phenotypic standard deviations, or accounting for the heterogeneity of residual variance 

across lines, could be considered to account for such differences, as proposed by 

Reverter et al. (1997) for heterogeneous variances across herds. An alternative could be 

to run bivariate analyses to consider correlated traits in the two lines, instead of a single 

trait across the two lines. Nevertheless, in our populations, estimates of the genetic 

variance of RFI as the trait under selection were consistent over the nine generations in 

each line. Therefore, differences in observed accuracy and bias between lines could not 

be explained by the heterogeneity of the genetic variance over the nine generations for 

the trait under selection.  

2.2.5.2. Prediction accuracies for production traits 

Although production traits and ssGBLUP have been discussed in the literature, few 

investigations have analyzed such traits in pigs with this method. Therefore, in the 

discussion that follows, we refer to published genomic prediction studies on these traits 

that often use other methods. Our objective in this part is to validate the prediction 

accuracies obtained with scenario 1, in which the structure of the training population is 
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close to those of previous studies. When comparing studies, it is worth noting that 

ssGBLUP generally has a higher accuracy than the usual GBLUP or Bayesian 

approaches that use only data of genotyped animals. Thus in theory, the comparisons 

should favor ssGBLUP approaches. However, most previous studies were based on 

prediction to a single generation of candidates, which could favor higher prediction 

accuracies. Despite these differences, overall, our estimates were within the range of 

accuracies reported in the literature, except for FCR and RFI, for which accuracies were 

higher in the HRFI validation set and lower in the LRFI line than those reported in the 

literature. In an investigation on 8113 Danish Duroc pigs with 60K imputed SNP 

genotyping information, an r(GEBVp, y∗) √h2⁄  of 0.41 was reported for ADG (Guo et al., 

2016). In a study with 620 commercial boars, an r(GEBVp, y∗) √h2⁄  of 0.61 was reported 

for BFT with ridge regression BLUP (RR-BLUP) and of 0.56 with Bayesian LASSO (de 

Campos et al., 2015). A similar value of 0.55 was reported for Danish Duroc pigs (Guo et 

al., 2016). Zhang et al. (C. Y. Zhang et al., 2018) reported an r(GEBVp, y∗) √h2⁄  of 0.38 

for DFI in a Duroc population using a 80K SNP chip and the GBLUP method in a design 

with 1167 training animals and 196 validation animals. They reported a higher accuracy 

(0.45) when using a 650k SNP chip and the BayesB method. Prediction accuracies of 

GEBV for FCR and RFI are rarely reported in the literature. Christensen et al. (2012) 

reported a prediction accuracy of 0.16 for FCR using a bivariate ssGBLUP model. Jiao et 

al. (2014) obtained a low prediction accuracy of 0.09 for RFI (measured as 

r(GEBVp, y∗) √h2⁄  )  using the BayesA method with 1047 training animals and 516 

validation animals for the Duroc boars. Altogether, in pig studies, prediction accuracies 

are thus low to moderate for ADG and BFT, and low for feed efficiency traits. 

2.2.5.3. Prediction accuracies depending on the training set composition 

Compared to FCR and RFI, ADG, BFT, and DFI showed different prediction accuracy 

changes compared to the scenario 1 when the structure of the training set was changed. 

For ADG, BFT, and DFI, removing the earlier generations of the target line from the 

training set (from scenarios 2 and 3 to scenarios 4, 5 and 6) generally decreased 

prediction accuracy to a lesser extent. The average and maximum relationships between 
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the validation set and the training subsets were higher in scenarios 4, 5, and 6 than in 

scenario 1. The maximum relationship between the validation set and the training 

subsets, previously recommended as an indicator of potential accuracies (Clark et al., 

2012), was lowest in scenario 1 and highest in scenario 4, likely due to changes in allele 

frequencies between the early and late generations within a line. This implies that the 

general decrease in accuracy in the scenarios 4, 5, and 6 could neither be attributed to 

these changes in relationships between sets, nor to the differences in prediction 

accuracies between lines. Moreover, the accuracy of GEBV resulting from ssGBLUP 

analyses should be less sensitive to the structure of the set of genotyped animals, and 

accordingly, to the strength of relationships between and within training and validation 

sets (Lourenco et al., 2015) because the 𝐇 matrix aggregates information from both 𝐀 

and 𝐀𝟐𝟐. This structure of the H matrix has two major effects on the GEBV of a given 

animal: first, it contributes the parent average EBV of the animal using the 𝐀 matrix, and 

second, it adjusts for the different levels of relationships of the animal with other 

genotyped animals using the 𝐀𝟐𝟐 matrix (Lourenco et al., 2015; Misztal et al., 2013). de 

Roos et al. (2009) reported that the benefits of combining populations in a training set are 

greatest when the populations have diverged for only a few generations and when the 

heritability of the trait is low. They also showed that increasing the number of animals 

from a given population in the training set increased prediction accuracy in that 

population. Considering that de Roos et al. (2009) did not include the effect of selection 

in their simulations, this could partly explain our results for ADG, BFT, and DFI. 

2.2.5.4. Impact of selection on accuracy and bias of predictions 

The changes of accuracy across the scenarios were more diverse for RFI and FCR, with 

either increases or relatively similar accuracies compared to scenario 1. In some cases, 

the accuracy even increased as genotypes of closer generations were eliminated from 

the training set, which could be regarded as an effect of the different relationships 

between training and validation sets in these scenarios. Regarding the low prediction 

accuracy reported for FCR and RFI in our results and in the literature, denser SNP 

genotyping could probably increase the accuracy of predictions by better capturing the 

differences in LD between the lines. In addition, for low heritability traits, such as RFI in 



2. Potential of the genomic information to improve selection for feed efficiency 

65 
 

our study, large training populations have been reported to increase the accuracy of 

GEBV (Goddard, 2009; B Jꎬ Hayes et al., 2009; Hoze et al., 2014). However, given that 

scenarios 5 and 6 resulted in accuracies that were comparable to that of the control 

scenario for FCR and in greater accuracies for RFI, they can be considered as optimum 

scenarios for an across-line genomic prediction program. Based on results from 

simulation, Pszczola et al. (2012) declared that minimizing relationships within the 

reference population and maximizing them between training and validation sets 

maximizes the accuracy of genomic predictions. This means that including a diverse set 

of animals in the training set is desirable to some extent. This is consistent with our results 

for FCR and RFI, for which selection created two diverse sets of animals. For example, 

in scenario 6, including animals from G4 to G6 of the target line in the training set provided 

sufficient genetic links between training and validation sets, and animals from the G9 

generation of the other line provided additional diversity to the training set. Overall, it 

seems that including animals from later generations of both lines (more diverse animals) 

in the training set contributed to greater accuracies of GEBV in the validation set for FCR 

and RFI. This might be because the SNP effects segregating in the validation set were 

better estimated with such a training set. 

Overall, the comparison of accuracies between scenarios 4 to 6 and scenario 1 did 

not show an obvious effect of the removal of data of earlier generations from the training 

dataset. In a study using six levels of truncated data of past generations, accuracies of 

GEBV of young genotyped pigs were very similar for various reproductive traits (Lourenco 

et al., 2014). 

2.2.5.5. Bias of genomic predictions 

Our results showed that GEBV were more biased for traits that were more affected by 

selection, especially when early generations of the target line were not included in the 

training set. The scenarios that yielded better accuracies were not those with the smaller 

biases, except for FCR and RFI, for which predictions were low and their regression 

coefficients were systematically below 1. The average and maximum relationships 

between training and validation sets did not affect the prediction biases in the same way 
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for all traits, which could be due to the effect of selection. Selection in historical 

generations has been shown to result in considerable biases in EBV or GEBV (Bijma, 

2012; Legarra & Reverter, 2018). Tonussi et al. (2017) emphasized that, to have accurate 

and unbiased GEBV with the ssGBLUP method, the 𝐆 matrix should be compatible with 

the 𝐀𝟐𝟐. Inappropriate merging of these matrices can originate from ignoring inbreeding 

in the structure of 𝐀 and from changes in allele frequencies at QTL for the traits under 

selection. In our scenarios, the effect of selection in the last three generations of the 

validation sets was not explicitly accounted for. However, changes in marker allele 

frequencies in those generations were accounted for through the 𝐆 matrix. Furthermore, 

the (co)variances used for genomic predictions were obtained from bivariate analyses 

including selection criterion using the whole dataset (including validation generations). 

Therefore, there should be no effect of selection on the estimations of the variance 

components, and the prediction bias of the GEBVs should not be due to biased variance 

components. Computing separate accuracies and biases for sires (heavily selected) 

versus dams (not directly selected), could enable quantifying the effect of selection on the 

prediction biases. However, on the one hand, the dams had lower individual accuracies 

(no own phenotype), and on the other hand, only 18 sires were selected per line in these 

generations. Therefore, the resulting prediction accuracies and biases differed between 

sires and dams due to factors other than just the effect of selection and no clear 

conclusion could be reached. Finally, it should be mentioned that these three generations 

were combined into the validation set in our study to have enough individuals, but in 

practice, new candidates to be predicted pertain to a single unselected cohort, therefore 

this selection effect would be low and likely negligible. 

Heritability, marker density and size of the training population have been shown to 

be important factors to control biases of prediction (Karimi et al., 2019). Therefore, the 

biases for some scenarios in this study could be explained by the low to medium 

heritability of the traits, the medium marker density information, and the low number of 

individuals in the training population. Testing similar prediction scenarios while ignoring 

pedigree relationships in the non-genotyped generations would lead to substantially 

biased predictions, especially for traits affected by selection (for instance, 1.61 for RFI 
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predictions in the HRFI line for scenario 6). Combining full pedigree and genomic 

information appeared to limit bias, which is consistent with Tonussi et al. (2017). 

2.2.6. Conclusions 

The results of our study show that genomic prediction using a training set that includes 

animals from related lines selected in different directions could be as accurate as genomic 

prediction using a within-line training set. Thus, this can be a solution to create a reference 

set in the case of small populations, or when ancestral samples are not available at low 

additional costs. Combined reference sets had better prediction accuracies for traits that 

were highly affected by selection, which can be attributed to the inclusion of more diverse 

animals in the training set. Overall, among all evaluated scenarios, scenarios 5 and 6 

showed optimal accuracies in most cases, consistent with our hypothesis that data from 

a related line can be used in a combined training population for genomic predictions 

without losing prediction accuracy. Our results also proved that absence of phenotypic 

records from past generations did not affect prediction accuracy but increased bias of 

predictions. Some of these issues could be solved by using bivariate analyses or models 

with heterogeneous variances to better account for changes in variances with selection 

in different lines. Altogether, the results of our study provide insights into the design of 

reference populations for small populations, particularly when lines are being developed 

simultaneously, which is common in poultry and pig industries, as well as some plant 

breeding plans. This strategy can be recommended to initiate a genomic selection 

program when historical samples are not available, or when two lines are considered and 

genotyping costs need to be limited. 
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2.2.8. Appendix 2.1 

 

  
 

Figure S1. Correlation between GEBVp and y∗ and their SE as bars for the HRFI (a) and 

LRFI (b) lines. No scenario resulted in correlations that differed from those with scenario 

1 based on a Williams t-test at 5%. RFI residual feed intake, ADG average daily gain, 

FCR feed conversion ratio, DFI daily feed intake, BFT backfat thickness. 
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Figure S2. Correlation between GEBVp and y∗ divided by the square root of the 

heritability of corresponding traits for the HRFI (a) and LRFI (b) lines.  

RFI residual feed intake, ADG average daily gain, FCR feed conversion ratio, DFI daily 

feed intake, BFT backfat thickness. 
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2.2.9. Appendix 2.2 

 

Gordon Research conference: Quantitative genetics and genomics, Feb 2019, Barga, 

Italy. 2019 

 

Reliability of the genomic predictions for the feed efficiency related trait based on 

different pig lines 

 

Amir Aliakbari, Emilie Delpuech, Yann Labrune, Juliette Riquet, and Hélène Gilbert 

 

GenPhySE, INRA, 31320 Castanet-Tolosan, FRANCE 

 

The majority of genomic evaluations of feed efficiency have been studied on a unique 

population, divided in a reference and a validation set. However, genomic evaluations 

using genetically different reference and validation sets like divergently developed lines 

can provide a wider insight into the flexibility in size and structure of the reference 

population for genomic evaluations of feed efficiency in limited size swine populations. 

Therefore, the aim of our study was to investigate the possibility of genomic evaluation 

for feed efficiency related traits based on a reference population that comprised different 

combinations of animals from two different lines. The two pig lines have been established 

during 9 generations of divergent selection for the residual feed intake (RFI). We 

evaluated the accuracy of the predicted genomic breeding values (GBVs) using a single-

step genomic BLUP (ssGBLUP) method through the eight different scenarios. All 

scenarios had the same validation set (last generations of a given line), but they differed 

in structure of the reference population. We found that some combinations of generations 

from the two lines provided acceptable accuracies of the GBVs, which could be beneficial 

for breeding plans of swine lines of limited size that are based on the genomic selection.  
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2.2.10. Appendix 2.3 

 

70. Annual meeting of the European Federation of Animal Science (EAAP), Aug 2019, 

Ghent, Belgium. 717p. 

 

Reliability of genomic predictions for feed efficiency traits based on different pig 

lines 

 

Amir Aliakbari, Emilie Delpuech, Yann Labrune, Juliette Riquet, and Hélène Gilbert 

 

GenPhySE, INRA, 31320 Castanet-Tolosan, FRANCE 

 

The majority of genomic predictions use a unique population split between a reference 

and a validation set. However, a genomic evaluation using genetically different reference 

and validation sets could provide more flexibility for the choice of reference sets in small 

populations. The aim of our study was to investigate the potential of genomic evaluation 

for feed efficiency related traits using a reference set that combines two different lines. 

Data came from two lines divergently selected for residual feed intake during 9 

generations. Genomic breeding values (GBVs) of animals for five production traits were 

predicted using the single-step genomic BLUP method with six scenarios. All scenarios 

aimed to predict GBVs of pigs of the three last generations (~ 400 pigs, G7 to G9) in one 

or in the other line (validation line). To compare the scenarios prediction accuracy, a first 

scenario (control) had a reference set with animals from G1 to G6 (~ 400 pigs) of the 

validation line. In scenario 2, in addition to those of the control scenario, the reference set 

included about 600 pigs from G4 to G9 of the alternate line. Scenario 3 had ~ 800 pigs in 

the reference set, by excluding animals from G4 to G6 of the alternate line from the 

reference set compared to scenario 2. For the last three scenarios, fewer animals from 

the validation line were included in the reference set (~200 pigs from G4 to G6). In 
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scenario 4, G4 to G9 animals from the alternate line (~600 pigs, as in scenario 2) were 

included in the reference set. In scenario 5, only ~400 pigs from G7 to G9, and in scenario 

6 ~200 pigs from G9, were used. In scenarios 2, 3 and 4, genotyping 400 to 600 additional 

individuals from the alternate line provided on average limited improvement the prediction 

accuracies for the five traits (<14%, except in 3 cases), and sometimes led to reduced 

accuracies. Scenarios 5 and 6 had similar accuracies as the control scenario, with less 

genotyping in scenario 6. It indicates that if samples from earlier generations are missing 

in a line, part of them can be replaced by recent samples from a related different line, 

giving more flexibility to design training populations in small lines. 

Keywords: divergent lines, feed efficiency, genomic prediction, prediction accuracy, 

swine 
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3.1. Introduction 

Recent advances in obtaining microbiota information enable surveying the interplay 

between complex traits and the microbial community of the gastrointestinal tract (GIT). 

To initiate the evaluation of the potential of gut microbiota to selection for feed efficiency, 

this chapter aimed to evaluate the genetic relationship between faecal microbial 

composition and five feed efficiency and production traits. A total of 588 samples from 

two experimental lines were sequenced for the 16 rRNA hypervariable V3-V4 region. 

First, the microbial communities were compared between genetic lines and then genera 

abundances and two α-diversity indexes were analysed using bivariate and three-variate 

animal linear mixed models to estimate the heritability (h2) of the microbiota traits, and 

their genetic correlations (rg) with the phenotypic traits.  

In the first step, a non-metric multidimensional scaling showed line differences 

between genera, with significantly different loadings of the genera along the second axis 

of the analysis. In addition, the α-diversity indexes were higher in the LRFI line than in the 

HRFI line. With the genetic analyses, the h2
 estimates of these α-diversity indexes were 

0.19 ± 0.08 (Shannon) and 0.12 ± 0.06 (Simpson). Among the 75 genera kept in the 

analyses, 48 genera had a significant h2 (> 0.125, threshold obtained by bootstrapping 

the abundances across individuals). The rg of the α-diversities indexes with production 

traits were negative and significantly different from zero. Some genera belonging to the 

Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Lactobacillaceae, 

Streptococcaceae, Rikenellaceae and Desulfovibrionaceae families had rg significantly 

different from zero with the three of the studied traits, RFI, DFI and BFT, suggesting a 

stronger genetic link between gut microbiota components and these traits than with FCR 

and ADG. These results showed that the gut microbial community and α-diversity 

indicators are partly heritable and have genetic relationships with FE, that offer promising 

perspectives for selection for feed efficiency using gut microbiome composition in pigs. 

This chapter was published as a journal paper in Journal of Animal Breeding and 

Genetics (DOI: 10.1111/jbg.12539). The supplementary material of this paper is provided 

in the Appendix 3.1. Preliminary analyses on OTU were presented in an oral presentation 

at EAAP-2020 (Appendix 3.2). 
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3.2.1. Abstract 

This study aimed to evaluate the genetic relationship between faecal microbial 

composition and five feed efficiency and production traits, residual feed intake (RFI), feed 

conversion ratio (FCR), daily feed intake (DFI), average daily gain (ADG) and backfat 

thickness (BFT). A total of 588 samples from two experimental pig lines developed by 

divergent selection for RFI were sequenced for the 16 rRNA hypervariable V3-V4 region. 

The 75 genera with less than 20% zero values (97% of the counts) and two α-diversity 

indexes were analysed. Line comparison of the microbiota traits and estimations of 

heritability (h2) and genetic correlations (rg) were analysed. A non-metric multidimensional 

scaling showed line differences between genera. The α-diversity indexes were higher in 

the LRFI line than in the HRFI line (P < 0.01), with h2
 estimates of 0.19 ± 0.08 (Shannon) 

and 0.12 ± 0.06 (Simpson). Forty-eight genera had a significant h2 (> 0.125). The rg of the 

α-diversities indexes with production traits were negative. Some rg of genera belonging 

to the Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Lactobacillaceae, 

Streptococcaceae, Rikenellaceae and Desulfovibrionaceae families significantly differed 

from zero (P < 0.05) with FE traits, RFI (3), DFI (7), and BFT (11). These results suggest 

that a sizable part of the variability of the gut microbial community is under genetic control 

and has genetic relationships with FE, including diversity indicators. It offers promising 

perspectives for selection for feed efficiency using gut microbiome composition in pigs. 

 

Keywords 

Feed efficiency, genetic, gut microbiome, heritability, pigs 
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3.2.2. Introduction 

Recent advances in bioinformatics and sequencing technologies have made it possible 

to obtain individual microbiome information for humans, animals, and plants. The 

fundamental role of gut microbiota in essential biological processes such as physiological 

aging in humans (Muscogiuri et al., 2019), methane emission in dairy cows, and nutrient 

digestion, absorption, and metabolism of pigs (Q. Niu et al., 2019) makes it a key field of 

research to counteract major physiological defaults such as obesity in human, and to 

improve quantitative production traits in livestock. In this regard, measuring the magnitude 

of genetic control on gut microbiota composition is fundamental to enlighten its potential 

use in animal selection programs. From a quantitative genetics perspective, estimating 

heritability (h2) quantifies the magnitude of genetic control of a trait. Heritability is a 

population-specific parameter that estimates the proportion of additive genetic variance 

to the phenotypic variance of the trait. Besides the heritability, another essential genetic 

parameter is the additive genetic correlation (rg). These two parameters are crucial to 

predict direct and correlated responses to selection, which are other parameters to 

evaluate if and how a trait would be affected by selection (Brenner et al., 2002).     

In pig breeding, production and feed efficiency (FE) traits, because of their key 

economic and environmental importance, have a high impact on the sustainability of this 

industry (Ottosen et al., 2020). Therefore, research around FE cover a wide range of 

studies, from traditional statistical methods to recent advances in benefiting from 

biological data like metabolomics, including few with microbiome information (Maltecca 

et al., 2020). Several previous studies attempted to discover the link between host 

genetics, microbiota data, and feed efficiency (Bergamaschi, Maltecca, et al., 2020; 

Bergamaschi, Tiezzi, et al., 2020a; Camarinha-Silva et al., 2017; U. M. McCormack et al., 

2017). A study on low and high residual feed intake (RFI) pigs showed a slight difference 

between the intestinal microbiota of two groups of animals chosen for their phenotypic 

RFI, and suggested a link between microbial community and FE at the phenotypic level 

(U. M. McCormack et al., 2017). However, direction of correlated responses between RFI 

and microbiota composition are still unknown. In the present study, we aimed to seek the 

genetic relationships between five production and FE traits and faecal microbial 
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composition, using data from two experimental pig lines developed by divergent selection 

for RFI. Statistical analyses were applied to microbiota genera, microbial diversity and 

performance traits to compare faecal microbiota composition between lines, and h2 and 

rg were obtained to describe the transmissible relationships between these traits and 

microbial traits. 

3.2.3. Materials and Methods 

3.2.3.1. Data structure 

The data were collected from two experimental French Large White pig lines developed 

during 10 generations of divergent selection for RFI between 2000 to 2017 at INRAE (UE 

GenESI, Surgères, France, https://doi.org/10.15454/1.5572415481185847E12). The 

selection process and structure of the data from the two divergent lines has been 

described in Gilbert et al. (2017) and Aliakbari et al. (2020). Briefly, the G0 individuals 

were obtained from artificial insemination of 30 sows with 30 boars in generation F0. From 

the G0 litters, 116 boars were tested for RFI as candidates for selection. Among them 6 

extreme low RFI (LRFI) and 6 extreme high RFI (HRFI) boars were selected to be the 

founders of each line. The selected founder boars were randomly mated with about 70 

G0 gilts to initiate the two divergent lines. From generations G1 to G10, the same 

procedure was implemented within each line, with 96 tested boars per line to produce the 

next generation. There was no selection on the female side, and sows from both lines 

were distributed in two farms in equal proportions, which corresponds to two herds of birth 

for the tested pigs. After weaning, all pigs were gathered on the same farm for testing. In 

each generation, at least one additional parity was produced to evaluate the correlated 

responses to selection of growth, feed intake and efficiency and carcass composition 

traits on females and castrated males (response animals). Candidates to selection were 

tested from 35 to 95 kg of body weight (BW), whereas for response animals the test ran 

from 10 weeks of age until slaughter (105 kg BW until G5 and 115 kg BW afterward). 

Testing was organised in four pens per contemporary group (CG), and there were at least 

four CG tested per generation, systematically including both lines. Pigs were penned in 

groups of 12, per line, and sex when multiple sexes were tested. Pens were equipped 

with single-place electronic feeders ACEMA64 (ACEMO, France) to record individual feed 
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intake. A pelleted diet based on cereals and soya bean meal was available ad libitum, 

and contained 10 MJ net energy (NE)/kg and 160 g CP/kg, with a minimum of 0.80 g 

digestible Lys/MJ NE. Complete pedigree information was registered, starting at least one 

generation before F0 ancestors, to G10. 

Selection candidates had records for feed intake and feed efficiency traits, growth 

traits, and live body composition traits. Response animals had records for the same traits 

recorded from 10 weeks of age until slaughter weight, plus carcass composition traits. In 

all generations boars were selected based on a phenotypic index combining daily feed 

intake (DFI) and average daily gain (ADG) between 35 and 95 kg BW, and backfat 

thickness (BFT) at 95 kg BW (Gilbert et al., 2007), as DFI (g/d) − (1.06 × ADG (g/d)) − 

(37 × BFT (mm)).  

For the candidates to selection and the response animals, an RFI was computed 

as the residual of a multiple linear regression applied to DFI, using realized phenotypic 

correlations with traits accounting for production requirements (growth rate and body 

composition) and maintenance requirements (average metabolic BW (AMBW)), and the 

fixed effects of sex, pen size, CG, and the covariate of BW at the beginning of the test for 

response animals (Gilbert et al., 2017).  Different equations were used for the two groups 

of animals, to account for the test differences. The RFI equation for selection candidates 

included ADG and BFT (measured by ultrasound), but because the test was run between 

fixed BW, AMBW would be equal for all animals and therefore was skipped from the 

equation. For response animals, the RFI equation included AMBW, ADG, carcass BFT 

(carcBFT) and lean meat content (LMC; computed from cut weights). Feed conversion 

ratio (FCR) was computed based on the corresponding test period of the two groups of 

animals.  

In this study, five phenotypic traits available in both types of animals were studied: 

RFI, FCR, DFI, ADG, and BFT. To increase the statistical power, given the high rg 

estimated in preliminary analyses between the traits measured in candidate and response 

animals, the phenotypic records were combined for both cohorts, after standardization of 

the records from candidates to selection to the variance of the corresponding trait of the 
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response animals, as describe Aliakbari et al. (2020). Descriptive information of the five 

traits from G0 to G10 are given in Table 3-1. 

Table 3-1. Number (N), minimum (Min), maximum (Max), mean and standard deviation (SD) of 

the studied traits† in the low residual feed intake (LRFI) and high RFI (HRFI) lines 

    N Min Max Mean SD P-value‡ 

RFI LRFI 1901 -0.38 0.37 -0.04 0.12  *** 

 HRFI 1748 -0.33 0.39 0.05 0.11  

FCR LRFI 2190 1.60 3.88 2.61 0.25  *** 

 HRFI 1981 2.13 3.93 2.82 0.27  

DFI LRFI 2172 1.25 2.92 2.02 0.25  *** 

 HRFI 1974 1.37 2.97 2.19 0.27  

BFT LRFI 2058 9.82 44.63 25.44 7.01  *** 

 HRFI 1863 9.67 46.76 26.45 7.44  

ADG LRFI 2251 0.51 1.02 0.76 0.08  * 

 HRFI 2060 0.50 1.01 0.76 0.08  

†ADG average daily gain (kg/day), BFT backfat thickness (mm), DFI daily feed intake (kg/day), 

FCR feed conversion ratio (kg/kg), RFI residual feed intake (kg/day) 

‡P-value of the effect of line in a linear model  

3.2.3.2. Faeces sampling, microbial DNA extraction, 16S rRNA gene sequencing 

and sequence pre-processing 

The microbiota information is most often derived from partial sequencing of the bacterial 

16S ribosomal RNA (rRNA) gene, a housekeeping gene in all bacteria (Woese, 1987). 

Sequencing the 16S rRNA gene has become a standard approach in bacterial taxonomic 

classification, due to its ease to generate phylogenetic information at high throughput 

(Wang et al., 2015). For this purpose, nine hypervariable regions (V1-V9) of the 16S rRNA 
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gene can be targeted for sequencing. Sequences can then be analysed as separate 

Amplicon Sequence Variant (ASV), or clustered into ‘Operational Taxonomic Units’ 

(OTUs) based on their similarities. The ASV approach enables easier comparison 

between studies (Callahan et al., 2017). These units allow inferring the taxonomy of 

species present in the targeted biological samples using several reference databases. 

The counts of each OTU or ASV throughout the samples form a matrix called abundance 

table that is the basis of downstream analyses. Faecal sampling is a convenient and non-

invasive sampling method that provides a reasonably good representation of the gut 

microbial communities (Ingala et al., 2018). It is now more common than other sampling 

locations for profiling of microbial communities in large mammalian animal populations.  

For our study, faecal samples of 604 animals from G9 and G10 of the LRFI and 

HRFI lines were collected at 15 weeks of age, homogenized and placed immediately in 

dry ice, before storage at -80° C. The animals collected in G9 were the boars candidate 

to selection, and the pigs in G10 were females and castrated males response to selection. 

Microbial profiling was done as described previously (Achard et al., 2020). Briefly, the 

microbial DNA was extracted using the Quick-DNA™ Faecal Microbe Miniprep Kit™ 

(Zymo Research, Freiburg, Germany) and a 15 min bead-beating step at 30 Hz was 

applied. The V3-V4 region was then amplified from diluted genomic DNA with the primers 

F343 (CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG) and R784 

(GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT) using 30 

amplification cycles with an annealing temperature of 65 °C. This V3-V4 region has 

proved useful to study the variability of the pig microbiota in previous studies (Le Floc'h 

et al., 2014; L. M. G. Verschuren et al., 2018). The ends of each read overlap and can be 

stitched. In a single run, it generates extremely high quality, full-length reads of the full V3 

and V4 region. The Flash software v1.2.6 (Magoc & Salzberg, 2011) was used to 

assemble each pair-end sequence, with at least a 10-bp overlap between the forward and 

reverse sequences, allowing 10% mismatch. Single multiplexing was performed using an 

in-house 6 bp index, which was added to R784 during a second PCR with 12 cycles using 

forward primer (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC) 

and reverse primer (CAAGCAGAAGACGGCATACGAGAT-index-

GTGACTGGAGTTCAGACGTGT). The resulting PCR products were purified and loaded 
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to the Illumina MiSeq cartridge following the manufacturer’s instructions. Run quality were 

internally checked using PhiX, and each pair-end sequence was assigned to its sample 

using the integrated index, with the bcl2fastq Illumina software. The sequences were 

submitted to the Short-Read Archive with accession number SRP124929. Filtering and 

trimming of sequences of high quality was applied to the reads with the DADA2 package 

in the R software (Callahan et al., 2016) with the following parameters: maxN=0, 

maxEE=2, truncQ=2, trimleft=17. Chimera were removed with the consensus method to 

obtain the final OTU abundance table. No further clustering was applied, so OTU were 

equivalent to ASV in this study. This step was followed by taxonomic annotation using the 

assignTaxonomy function of dada2 with the Silva Dataset v132 (Quast et al., 2013).  

The final abundance table was rarefied to 9000 counts per sample, and contained 

6792 OTUs or 298 genera across 604 samples. The 16 samples that contained fewer 

reads than 9000 were discarded, resulting in 588 samples in the final abundance table, 

295 LRFI and 293 HRFI pigs. The microbiota analyses were then run at the genus level. 

The OTU relative abundances with the same taxonomic path until an identical genus were 

thus aggregated in a single count. Counts belonging to unclassified genera of a family 

were systematically gathered into a pseudo genus named NA_Family. 

Finally, to limit the deviations of the genera distribution from the Gaussian 

distribution assumption used in linear mixed models (see next section), the genera table 

was filtered for a maximum proportion of 20% zero abundancy for each genus, and the 

resulting abundancies were log-transformed after adding a constant value of 1 to all 

counts. After this filtration step, 75 genera remained for the downstream analyses.  

3.2.3.3. Statistical analyses 

The beta-diversity is usually used to demonstrate the community differentiation between 

cohorts (Whittaker, 1960). To represent the beta-diversity between the faecal microbial 

genera communities of both lines, a non-metric multidimensional scaling (NMDS) based 

on the Bray-Curtis dissimilarity distance matrix was applied to the abundance table. This 

analysis was done using the R software and package “vegan” (Oksanen et al., 2013). The 

individual loadings were retrieved for each sample for the two first dimensions of the 
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NMDS. Then, the line effect was tested with a generalized linear model (GLM) on the 

loadings of the first two dimensions of the NMDS, the α-diversity metrics, the genera 

abundances, and the production traits. In addition, contributions of the genera to each 

axis, and to the plan defined by the two first axes, were computed as the squares of the 

loadings and sum of squares of the loadings, respectively. Before tests for line 

differences, variables with positive values (counts and diversity indexes) were log-

transformed, whereas the loadings of the NMDS that contained negative values were 

submitted to a Johnson transformation (Johnson, 1949). These analyses were performed 

using package “car” in the R software (Fox et al., 2012) and the line effect was declared 

significant for p < 0.05 for the corresponding F-test. 

To better understand how the genera are distributed, two α-diversity metrics, the 

Shannon (Shannon, 1948) and Simpson (Simpson, 1949) metrics, were calculated from 

the filtered table with 75 genera, and analysed as additional individual microbial traits. 

Following the main objective of the study, searching for the genetic relationships between 

microbiota traits and FE traits required the estimations of (co)variance components. The 

best linear unbiased prediction (BLUP) method was applied to the filtered genera and the 

two α-diversity metrics to obtain the (co)variance components. To follow the assumption 

of the BLUP method, which should be applied to a non-selected base population, all 

analyses were done in bivariate models including the selection index as the first trait. The 

second trait was the microbiota observation vector (abundance of each genus or α-

diversity metric). To compute genetic correlations between the performance traits and 

microbiota observations, each of the production traits was added in three-variate 

analyses. 

The significance of fixed environmental factors (p < 0.05) on all response variables 

was tested in preliminary GLM analyses. Significant fixed factors, including pen size (5 

levels), herd of birth (two levels), sex (three levels), and contemporary groups (CG, 109 

levels) for performance traits, microbiota data and α-diversity metrics, were systematically 

fitted. The fitted covariates were slaughter body weight (BW) for BFT and BW at test for 

genera abundancies and α-diversity metrics. The significance of all fitted fixed factors on 

the 75 genera are given in Table S1. The litter effect was fitted as a random environmental 
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source of variation for performance traits, and for microbiota data whenever it was 

significant (p < 0.05 for a Chi² test applied to the likelihood ratio test comparing the models 

with and without this term). 

The following bivariate and three-variate animal models were used to estimate the 

variance components: 

y = Xb + Z1a + Z2l + e 

where y is the vector of observations for the index and the abundance of each genus or 

an α-diversity metric, and one of five performance traits (in three-variate analyses), b is 

the vector of fixed effects (described above), a is the vector of additive genetic effects, l 

is the vector of litter effects, and e is the vector of random residuals. X, Z1 and Z2 are the 

incidence matrices for b, a and l. The distributions assumed for the random terms were 

a ~ N (0, G0 ⊗ A), l ~ N (0, Rl ⊗ I), and e ~ N (0, Re ⊗ I), where G0 is a 2 × 2 or 3 × 3 

symmetrical direct additive genetic effect (co)variance matrix, and Rl and Re are 2 × 2 or 

3 × 3 symmetrical litter effect and residual effect (co)variance matrices, respectively. I 

denoted the identity matrix of adequate dimension. The pedigree relationship matrix (A) 

included 10 generations of pedigree information plus ancestors, and contained 7293 

animals. The analyses were performed using AIREMLF90 software (Misztal et al., 2018) 

for the BLUP method. 

To test the significance of h2 of the 75 genera, an empirical significance threshold 

equal to 0.125 was considered. The threshold was obtained after running 10000 

univariate analyses using the above described genetic model applied to microbiota 

abundancies, based on a null hypothesis of no genetic control on the abundancies. The 

null hypothesis was obtained by shuffling the abundances across individuals for two 

arbitrary genera. The minimum value of the top 5% of the estimated h2 was considered 

as the threshold to decide that a genus was heritable. Thereafter, the three-variate 

analyses were conducted for genera with h2 significantly different from zero. The deviation 

from zero of the additive rg of genera and α-diversity metrics with the production traits 

were tested using a Z-test. 
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3.2.4. Results  

3.2.4.1. Gut microbiome differences between lines 

The 75 filtered genera represented on average 97% of the sample counts of the rarefied 

table. Among these genera, 42 had significantly higher abundances in the LRFI line than 

in the HRFI line, and 10 were more abundant in the HRFI line (Figure 3-1 and Table S2).  

 

Figure 3-1. Abundance percentage of the 75 genera in the LRFI and HRFI lines.  

Others = differentially abundant genera between lines with abundances lower than 2%, ND = 

genera with non-significant abundance difference between the two lines 
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Of the differentially abundant genera between lines (P-value < 0.05 for a Student test 

applied to the log-transformed abundances), the genera Lactobacillus (~10.1% in the 

LRFI line and ~20.9% in the HRFI line of the 75 genera counts, P-value < 0.0001), 

Prevotella_9 (~12.2% and ~14.8% in the LRFI and HRFI lines, respectively, P-value < 

0.03), and Streptococcus (~5.6% in the LRFI line vs ~8.5% in the HRFI line, P-value < 

0.0001) were the more abundant genera in both lines, and they were all more abundant 

in the HRFI line. The three genera Clostridium_sensu_stricto_1 (P-value < 0.0001), 

Prevotella_7 (P-value < 0.004), and Terrisporobacter (P-value < 0.0001) were more 

abundant in the LRFI line (~7.2%, ~5.7% and ~4.1%, respectively) than in the HRFI line 

(~4.0%, ~4.4% and ~2.3%, respectively). The four genera Dialister (P-value < 0.05), 

NA_Prevotellaceae (P-value < 0.0001), NA_Lachnospiraceae (more abundant in the 

LRFI line, P-value < 0.0001), and Blautia (more abundant in the HRFI line, P-value < 

0.0001) represented on average ~2.2% of the counts.  The other 42 differentially 

abundant genera had abundances lower than 2% in the two lines, and represented a total 

of 25.9% and 18.6% of the abundances in the LRFI and HRFI lines, respectively. The 

remaining 23 genera that were not significantly different (P-value > 0.05) between the 

lines had total abundance of ~16.2% in the LRFI and ~14.6% in the HRFI lines. 

The NMDS showed differences between the genera communities of the LRFI and 

HRFI lines (Figure 3-2). The two lines were significantly differentially distributed only 

along the second (p < 0.01) dimension. Among the 75 genera included in the NMDS, the 

genus Rikenellaceae_RC9_gut_group had the highest (2.9%) contribution to the plan 

defined by dimensions 1 and 2, and the genus Succinivibrio had the lowest (0.03%) 

contribution (Table S2 and Figure 3-3). In details, on the first axis 25 genera had a 

contribution larger than the expected contribution if all genera contributed equally 1.33% 

(100/75), including 15 differentially abundant between the lines. It was mainly driven 

(contributions larger than 3.2%) by the opposition of the genera Prevotella_7 (5.2%), 

Syntrophococcus (5.0%), NA_Family_XIII (5.0%), Lachnospiraceae_NK3A20_group 

(4.7%), Olsenella (4.6%), Dialister (4.5%), Mitsuokella (4.5%), and Shuttleworthia (4.3%) 

in one direction, and the genera Lachnospiraceae_ND3007_group (4.0%), 

Ruminococcaceae_UCG-008 (3.9%), and Marvinbryantia (3.4%) in the other direction. 

On the second axis, 25 genera had contributions larger than 1.33%, including 22 genera 
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differentially abundant between the lines. The genera Prevotella_9 (4.3%) drove the 

direction towards more HRFI samples, whereas the genera 

Ruminococcaceae_NK4A214_group (5.7%), Rikenellaceae_RC9_gut_group (5.6%), 

Ruminococcaceae_UCG-002 (5.1%), Family_XIII_AD3011_group (4.5%), 

NA_Ruminococcaceae (4.4%), Christensenellaceae_R-7_group (4.2%), 

NA_Muribaculaceae (4.0%), Ruminococcaceae_UCG-005 (3.6%), 

Prevotellaceae_UCG-001 (3.3%) and Ruminococcaceae_UCG-010 (3.2%) were the 

main contributors to the opposite direction, toward the LRFI line (contributions higher than 

3.2%).  

 

Figure 3-2. Non-metric multidimensional scaling (NMDS) based on the Bray-Curtis dissimilarity 

matrix of the genera community (a) and box plots of the individual coordinates per line on the 

two first axes of the NMDS (LRFI=low residual feed intake; HRFI= high residual feed intake), 

with P-value of the ANOVA test of the line differences (b) 

The Shannon and Simpson α-diversities indexes showed significantly higher 

microbial diversity in the LRFI line than in the HRFI line (p < 0.01, Figure 3-4).  
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Figure 3-3. Projection of the genera on the first and second dimensions in a non-metric 

multidimensional scaling (NMDS) applied to the Bray-Curtis matrix of the genera abundances. 

The arrows are colored based on the contribution of each genus to the plan. 
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Figure 3-4. Box plots of Shannon and Simpson α-diversity indexes per line  

(LRFI=low residual feed intake (n=295); HRFI= high residual feed intake (n=293)) and P-value of 

ANOVA test of the line differences 

3.2.4.2. Heritability estimates of microbiota traits 

The gut microbiota composition can be highly heritable in pigs, but not for all genera. The 

h2
 estimates for the Shannon and Simpson α-diversities indexes were 0.19 ± 0.08 and 

0.12 ± 0.06, respectively (Table 3-2). The estimated h2 of the genera ranged from null to 

0.50 ± 0.12 for Clostridium_sensu_stricto_1. Forty-eight genera had a h2 higher than 

0.125, and therefore were considered as heritable, including 34 genera with h2 larger than 

0.20. The majority of the genera that were differentially abundant between lines were 

heritable (33/52). Out of the 23 genera that did not differ between lines, 15 had significant 

h². For the 48 heritable genera, the abundances per line are shown in Table S2 and Figure 

3-5.  

Heritable genera were also more abundant genera, while non-heritable genera 

tended to be at lower abundance (P-value < 0.05 for a Student test applied to the average 

of log-transformed abundances). A Spearman correlation of 0.26 (P-value < 0.05) was 
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estimated between the h² estimates and the average of log-transformed abundances, 

while a correlation of 0.10 (P-value > 0.05) was obtained with the raw averages.  

Comparison of the contributions of the heritable and non-heritable genera to the 

axes of NMDS showed a significant difference (P-value < 0.05) of contribution to the first 

axis between the two groups of genera: the average contribution of the heritable genera 

to axis 1 was 1.8%, whereas the non-heritable genera had an average contribution of 

0.5%. The two groups of genera similarly contributed to the second axis (P-value = 0.08): 

the average contribution of the heritable and non-heritable genera to the second axis 

were 1.1% and 1.8%, respectively.  

3.2.4.3. Genetic correlations of microbiota traits with production traits 

The two α-diversities indexes and 48 genera with significant h² were included in three-

variate analyses to estimate genetic correlations with production traits. The rg of the α-

diversities indexes with production traits were negative and similar for the two metrics 

(Table 3-2). With ADG, DFI, and RFI rg estimates were lower than 0.27, and did not differ 

from zero. The highest rg were obtained with BFT (rg < -0.89 ± 0.04) and FCR (-0.61 ± 

0.52). 

Table 3-2. Estimated heritability (h²) and standard errors (SE) and descriptive statistics (minimum 

(Min), maximum (Max), mean and standard deviation (SD)) of α-diversity indexes and genera 

abundances 

 h2
 ± SE† % Zeros Min Max Mean SD 

α-diversity index       

Shannon 0.19 ± 0.08 0 2.1 3.6 3.1 0.3 

Simpson 0.12 ± 0.06 0 0.6 1.0 0.9 0.05 

Genus       

Clostridium_sensu_stricto_1 0.50 ± 0.12 0 2 2574 488.6 442.9 

Prevotella_1 0.44 ± 0.11 14 0 306 35.3 45.5 

Blautia 0.39 ± 0.11 0 14 571 241.5 99.9 

Prevotellaceae_NK3B31_group 0.36 ± 0.10 2 0 1216 84.6 131.1 

Lachnospiraceae_NK3A20_group 0.36 ± 0.10 2 0 1663 77.7 186.8 

Ruminococcaceae_UCG-008 0.35 ± 0.11 2 0 307 89.1 58.7 
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Lachnospiraceae_ND3007_group 0.35 ± 0.11 3 0 109 24.4 17.0 

Coprococcus_3 0.35 ± 0.10 1 0 432 48.4 37.1 

Butyricicoccus 0.34 ± 0.11 4 0 68 18.2 12.4 

Terrisporobacter 0.34 ± 0.11 0 13 1070 279 193.7 

Syntrophococcus 0.34 ± 0.10 6 0 1480 74.4 119.9 

Faecalibacterium 0.33 ± 0.11 0 1 527 169.1 98.3 

Coprococcus_1 0.32 ± 0.10 13 0 257 14.7 24.4 

Marvinbryantia 0.30 ± 0.10 5 0 141 20.7 17.9 

Mitsuokella 0.30 ± 0.09 1 0 1083 93.6 110.7 

NA_Family_XIII 0.29 ± 0.09 5 0 285 24.1 36.2 

Prevotella_7 0.28 ± 0.10 0 12 2583 441.7 335.5 

Prevotellaceae_UCG-003 0.28 ± 0.10 3 0 240 18.9 24.4 

Romboutsia 0.28 ± 0.10 4 0 235 36 39.9 

Fusicatenibacter 0.27 ± 0.10 3 0 117 24.8 16.8 

Campylobacter 0.27 ± 0.10 4 0 266 23.6 26.9 

Olsenella 0.27 ± 0.09 8 0 735 42.6 87.5 

Oscillospira 0.25 ± 0.09 14 0 85 9.7 10.6 

Lactobacillus 0.24 ± 0.09 0 17 5034 1353.5 1148.3 

Roseburia 0.23 ± 0.10 2 0 346 79.5 64.2 

Succinivibrionaceae_UCG-001 0.23 ± 0.09 13 0 1153 94.5 161.2 

NA_Muribaculaceae 0.23 ± 0.08 0 0 727 68 73.1 

Dorea 0.22 ± 0.09 1 0 648 67.8 47.8 

Subdoligranulum 0.22 ± 0.09 0 11 583 175.2 93.2 

Alloprevotella 0.22 ± 0.09 0 3 389 86.1 54.8 

Ruminococcaceae_UCG-014 0.22 ± 0.09 0 3 505 108.9 71.9 

Dialister 0.20 ± 0.08 0 3 844 213 135.5 

Shuttleworthia 0.20 ± 0.09 0 1 1543 280.7 250.3 

Streptococcus 0.20 ± 0.10 0 20 2526 613.1 446.4 

NA_Prevotellaceae 0.20 ± 0.09 0 2 817 233.6 102.9 

Rikenellaceae_RC9_gut_group 0.20 ± 0.09 0 0 862 118.3 116.0 

Lachnospiraceae_NK4A136_group 0.19 ± 0.08 5 0 253 21.6 23.0 

Desulfovibrio 0.18 ± 0.09 1 0 192 21.5 20.8 

Lachnospiraceae_UCG-001 0.18 ± 0.08 14 0 83 12 12.7 

Ruminococcus_2 0.17 ± 0.09 6 0 168 31.1 26.8 

NA_Ruminococcaceae 0.16 ± 0.08 0 19 749 135.5 89.3 

Treponema_2 0.16 ± 0.08 7 0 761 58.4 98.2 

Fournierella 0.14 ± 0.08 13 0 66 9 9.1 
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Prevotella_2 0.14 ± 0.08 0 0 340 75 56.0 

Agathobacter 0.14 ± 0.07 0 5 823 253.7 148.1 

Lachnospira 0.13 ± 0.07 1 0 263 44 33.0 

Ruminococcaceae_UCG-005 0.13 ± 0.07 0 0 665 72.6 73.2 

Lachnospiraceae_UCG-004 0.13 ± 0.07 16 0 25 5.3 4.6 

Ruminococcaceae_UCG-013 0.12 ± 0.07 14 0 73 7.8 8.6 

Intestinimonas 0.10 ± 0.06 5 0 38 7.5 5.5 

Turicibacter 0.10 ± 0.03 6 0 246 31.7 37.2 

Intestinibacter 0.09 ± 0.08 0 1 258 39.5 24.3 

Oribacterium 0.09 ± 0.06 1 0 151 42.9 24.5 

Ruminiclostridium_5 0.08 ± 0.07 6 0 47 8.1 6.4 

Family_XIII_AD3011_group 0.08 ± 0.06 1 0 303 37 33.7 

Christensenellaceae_R-7_group 0.07 ± 0.06 1 0 933 52.3 99.8 

Lachnospiraceae_FCS020_group 0.07 ± 0.06 2 0 43 11.1 6.8 

NA_NA_Bradymonadales 0.06 ± 0.06 19 0 356 23.1 37.6 

Family_XIII_UCG-001 0.06 ± 0.06 2 0 45 15.2 8.9 

Mogibacterium 0.06 ± NE‡ 5 0 130 12.9 12.6 

Succinivibrio 0.05 ± 0.05 5 0 501 29.6 46.1 

NA_Eggerthellaceae 0.05 ± 0.06 10 0 30 6.2 5.0 

Ruminiclostridium_9 0.04 ± 0.05 7 0 36 7.3 5.8 

Lachnoclostridium 0.04 ± 0.05 7 0 140 11.8 11.7 

Ruminococcaceae_NK4A214_group 0.03 ± 0.01 1 0 244 36.4 35.2 

Ruminococcaceae_UCG-002 0.02 ± 0.01 0 1 584 69.4 67.5 

NA_Lachnospiraceae 0.02 ± 0.01 0 62 661 226 76.3 

Ruminococcaceae_UCG-010 0.02 ± 0.01 2 0 970 40.9 76.1 

Prevotellaceae_UCG-001 0.01 ± NE 19 0 128 8 14.5 

Prevotella_9 0.01 ± NE 0 34 2935 1180.6 561.1 

NA_NA_Bacteroidales 0.01 ± NE 5 0 204 15.9 24.1 

Coprococcus_2 0 ± NE 7 0 81 15.4 12.9 

Peptococcus 0 ± NE 2 0 62 14 8.0 

Ruminococcus_1 0 ± NE 0 27 408 143.1 51.9 

Parabacteroides 0 ± NE 12 0 247 12.8 21.6 

†h2 were obtained after log transformation, ‡NE: not estimable 

With the genera, rg ranged from -0.36 ± 0.24 (Romboutsia) to 0.32 ± 0.12 

(Streptococcus) with RFI, from -0.38 ± 0.55 (Ruminococcaceae_UCG-005) to 0.51 ± 0.31 

(Fusicatenibacter) with FCR, from -0.63 ± 0.45 (Desulfovibrio) to 0.60 ± 0.12 
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(Faecalibacterium) with DFI, -0.98 ± NE (NA_Ruminococcaceae) to 0.86 ± 0.05 

(Lactobacillus) with BFT, and from -0.48 ± 0.56 (NA_Ruminococcaceae) to 0.73 ± 0.76 

(Lachnospiraceae_UCG-001) with ADG. In Table 3-3, the rg of the 22 genera that had at 

least one significant genetic correlation with the performance traits are presented. The 

production trait with the highest number of significant rg with genera was BFT (11 

significant correlations with genera). In addition, three genera had rg estimates close to -

1 with this trait (Desulfovibrio, NA_Ruminococcacaea, Lachnospira), but Z-tests could not 

be applied for these cases, as standard errors were not estimable at the borders of the 

parameter space. The DFI and RFI showed significant rg with 7 and 3 genera, 

respectively, and there were no genera with significant rg with ADG and FCR. The genus 

Shuttleworthia had significant genetic correlations with two traits (DFI and BFT), and the 

genus Desulfovibrio had a significant rg with RFI and close to -1 with BFT.  

From the 10 genera more abundant in the HRFI line, 6 had significant rg with at 

least one production trait, and out of the 42 genera more abundant in the LRFI line, only 

7 had significant correlations with the production traits. The other 9 genera with significant 

genetic correlations with at least one trait were from the 23 genera that had similar 

abundances between the lines. Distribution between the LRFI and HRFI lines of the 

abundance of the 22 genera with significant rg are presented in Figure 3-5. The three 

genera with significant rg with RFI (Streptococcus, Desulfovibrio, and Prevotella_2) had 

significant line abundance differences that were consistent with the sign of the rg. The 

genera Streptococcus and Prevotella_2 were more abundant in the HRFI line and had a 

positive rg with RFI, whereas the genus Desulfovibrio was more abundant in the LRFI line, 

and had a negative rg with RFI. Out of the 14 genera with significant or very negative 

genetic correlations with BFT, genera Blautia, Lactobacillus, and Dorea were significantly 

more abundant in the HRFI line, and had positive rg with BFT, and the 5 genera 

Prevotella_7, Rikenellaceae_RC9_gut_group, Desulfovibrio, NA_Ruminococcaceae, 

and Lachnospira were more abundant in the LRFI line, and had negative rg with BFT. Of 

the 7 genera that had significant rg with DFI, only the genus Roseburia (more abundant 

in the LRFI line) had significant abundance difference between the two lines, and the sign 

of the rg was not consistent with the line differences.  
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Box plots showing genera abundances between the LRFI and HRFI lines for the 

other 53 genera are given in supplementary Figure S1.  

Table 3-3. Genetic correlations† (SE) of α-diversity indexes and genera with production traits‡ 

 RFI FCR DFI BFT ADG 

 α-diversity index      

Shannon -0.26 ± 0.29 -0.61 ± 0.52 -0.30 ± 0.29 -0.89 ± 0.04* -0.21 ± 0.32 

Simpson -0.27 ± 0.34 -0.93 ± NE§ -0.42 ± 0.34 -0.94 ± NE -0.31 ± 0.48 

      

Genus      

Blautia 0.20 ± 0.12 0.32 ± 0.23 0.33 ± 0.25 0.50 ± 0.22* 0.02 ± 0.26 

Ruminococcaceae_UCG-008 0.05 ± 0.23 0.26 ± 0.23 0.32 ± 0.23 0.54 ± 0.22* -0.01 ± 0.28 

Coprococcus_3 -0.03 ± 0.24 0.27 ± 0.22 0.25 ± 0.21 0.56 ± 0.21* -0.12 ± 0.27 

Syntrophococcus -0.04 ± 0.25 -0.18 ± 0.26 -0.29 ± 0.23 -0.60 ± 0.23* -0.03 ± 0.28 

Faecalibacterium 0.20 ± 0.12 0.26 ± 0.30 0.60 ± 0.12* 0.41 ± 0.33 0.18 ± 0.32 

Coprococcus_1 -0.09 ± 0.25 0.18 ± 0.25 0.30 ± 0.23 0.54 ± 0.24* 0.12 ± 0.29 

Marvinbryantia 0.10 ± 0.24 0.19 ± 0.25 0.29 ± 0.28 0.47 ± 0.24* -0.04 ± 0.29 

Prevotella_7 -0.19 ± 0.13 -0.11 ± 0.27 -0.28 ± 0.32 -0.71 ± 0.28* -0.08 ± 0.31 

Lactobacillus 0.29 ± 0.24 -0.05 ± 0.19 0.51 ± 0.34 0.86 ± 0.05* 0.30 ± 0.35 

Roseburia 0.01 ± 0.14 -0.05 ± 0.32 0.35 ± 0.12* 0.16 ± 0.50 0.31 ± 0.65 

Dorea 0.14 ± 0.16 0.05 ± 0.47 0.33 ± 0.43 0.66 ± 0.29* 0.10 ± 0.40 

Shuttleworthia -0.13 ± 0.14 -0.05 ± 0.34 -0.51 ± 0.10* -0.76 ± 0.36* -0.28 ± 0.40 

Streptococcus 0.32 ± 0.13* -0.24 ± 0.31 -0.17 ± 0.13 -0.49 ± 0.39 -0.38 ± 0.57 

Rikenellaceae_RC9_gut_group -0.14 ± 0.29 -0.12 ± 0.37 -0.43 ± 0.38 -0.86 ± 0.06* -0.45 ± 0.44 

Desulfovibrio -0.30 ± 0.13* -0.35 ± 0.65 -0.63 ± 0.45 -0.97 ± 0.01NE  -0.30 ± 0.52 

Lachnospiraceae_UCG-001 -0.01 ± 0.33 -0.03 ± 0.36 0.55 ± 0.12* 0.39 ± 0.42 0.73 ± 0.76 

Ruminococcus_2 0.08 ± 0.14 -0.14 ± 0.48 0.44 ± 0.12* 0.14 ± 0.49 0.18 ± 0.58 

NA_Ruminococcaceae -0.16 ± 0.66 -0.18 ± 0.40 -0.54 ± 0.49 -0.98 ± 0.01 NE  -0.48 ± 0.56 

Prevotella_2 0.30 ± 0.13* 0.49 ± 0.52 0.33 ± 0.64 0.59 ± 0.57 -0.09 ± 0.49 

Agathobacter 0.24 ± 0.13 0.19 ± 0.37 0.59 ± 0.12* 0.16 ± 0.66 0.53 ± 0.65 

Lachnospira -0.03 ± 0.36 -0.15 ± 0.49 0.04 ± 0.34 -0.95 ± 0.02 NE  0.38 ± 0.45 

Lachnospiraceae_UCG-004 0.09 ± 0.15 0.42 ± 0.44 0.47 ± 0.12* 0.14 ± 0.49 0.22 ± 0.66 

†* indicate genetic correlations different from zero with a Z test (P < 0.05) 

‡†ADG average daily gain, BFT backfat thickness, DFI daily feed intake, FCR feed conversion ratio, RFI 

residual feed intake, §NE: not estimable 
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Figure 3-5. Box plots of genera abundances per line (LRFI, low residual feed intake; HRFI, high 

residual feed intake) and p-value of ANOVA test of the line differences 
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3.2.5. Discussion 

The objective of the present study was to clarify if some components of pig faecal 

microbiota have genetic relationships with production and FE traits, taking advantage of 

data collected in two experimental pig lines divergent for RFI. The approach combined a 

comparison of the microbiota composition between the genetic lines, and quantitative 

genetic models to quantify the genetic control on the microbiota components and estimate 

genetic correlations with traits of interest. These approaches were applied to the subset 

of genera counts that presented reasonably good properties (number of zeros and 

Gaussian distribution) to be submitted to linear mixed models. A substantial genetic 

control for these genera abundances was evidenced with the two approaches, and 

interesting genetic relationships with the traits of interest were pointed out. 

3.2.5.1. Some genera are under genetic control 

Most studies that compared microbiome data of pigs between low and high RFI groups 

are based on a phenotypic selection of extreme pigs in a population, so most of the 

reported differences would be driven by phenotypic relationships. In our study differences 

between animals were established by at least 9 generations of selection, therefore a large 

proportion of the line differences would result from genetic differences between pigs. 

Because of the limited size of the lines, the differences can result from an association 

with the selected trait, or from genetic differences arising by chance (i.e. drift; Hill (1972)). 

The quantitative models that combine microbiota and production traits thus provide a 

complementary approach to evidence genetic relationships between FE and gut 

microbiota, but its power is more limited than line comparisons.  

Some genera differentially abundant between lines pointed out to genera 

previously reported as associated with feed intake or feed efficiency. Among the most 

abundant genera that differed between lines, the genus Lactobacillus was one the more 

abundant ones, with higher abundance associated with high RFI. This genus is well 

described for its commonness and its important functions in gut health in animals 

(Dowarah et al., 2017; V. D. Valeriano et al., 2017). Lactobacillus is the most abundant 

member of the lactic acid producer bacteria, and is routinely used as a probiotic 
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supplement in the swine nutrition because of its enzymatic activities in the digestion and 

absorption process of the nutrients in the gut (Kim et al., 2007). Several species of this 

genus have been reported to have effects on the studied traits (Giang et al., 2011; Shon 

et al., 2005; Yu et al., 2008). Lactobacillus has been reported to be enriched in the faeces 

of more healthy pigs and positively correlated with feed efficient animals (Bergamaschi, 

Tiezzi, et al., 2020a; H. Yang et al., 2017). Considering the better health of the LRFI pigs 

(Chatelet et al., 2018), the lower abundance of Lactobacillus in this line was surprising. 

Conversely, in a study on the faecal microbiota at 80 days of age in Duroc pigs, the genus 

Lactobacillus was reported as one of the four dominant genera in pigs with high RFI from 

90 to 160 days of age and not in their low RFI counterparts (Si et al., 2020), which is 

consistent with the lower abundance of this genus in the LRFI line in our study. Similarly, 

L. M. G. Verschuren et al. (2018) reported a lower abundance of some OTUs belonging 

to the Lactobacillus genus in low FE than high FE gilts, but the reverse for boars. Overall, 

the favourable functions of the Lactobacillus genus could be partially covered by other 

genera in the LRFI pigs that showed more diversity than the HRFI animals. Prevotella, 

including Prevotella_9 and Prevotella_7, was the second genus differentially abundant 

between lines. Si et al. (2020) reported a slightly higher abundance for this genus in 

animals with low RFI (16.25%) in comparison to animals with high RFI (12.48%), which 

is in contrast with the higher abundance of the genus Prevotella_9 in HRFI pigs in our 

study, but is consistent with the more abundant Prevotella_7 found in the LRFI line. 

However, He et al. (2019) also reported a lower abundance of Prevotella_9 in more feed 

efficient (15.07%) compared to less feed efficient (17.85%) pigs. The prevalence of 

members of the Prevotella genera is related to their enhancer role in the digestion ability 

and extracting nutrients from high fiber plants (Plummer et al., 2020). This complex and 

relatively diverse genus seems to contain multiple functions related to the sub-genera 

reported in the more recent studies that are not yet clearly identified. The genus 

Streptococcus, more prevalent in the HRFI line, is another member of the lactic acid 

producer bacteria (du Toit et al., 2014). U. M. McCormack et al. (2017) reported a 2-fold 

lower abundance of the genus Clostridium_sensu_stricto_1 in low RFI pigs than high RFI 

pigs, which is in contrast with our observed higher abundance in the LRFI line.  
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The results of NMDS confirmed the hypothesis of changes in the intestinal 

microbial community as a result of selection for feed efficiency. Even though the genera 

contributions were consistent with their prevalence in the lines (for instance, the genera 

Lactobacillus and Prevotella_9 had negative loadings on the second axis, which 

corresponded to the direction of the HRFI line), the extent of the contributions was not 

related to the abundance in the two lines. For instance, genera from the 

Ruminococcaceae family had an abundance lower than 2% in the LRFI line, but they 

were among the highest positive contributors to the second axis.  

Our results showed significant additive genetic variance for 61% of the analysed 

genera. Overall, observing significant heritabilities for more than half of the analysed 

genera, which represented about 97% of the gut microbial communities, suggests that a 

considerable part of variability of the gut microbial community is under genetic control. 

However, some heritable genera were shown to differ between lines, but some 

differentially abundant genera were not heritable, and some heritable genera did not differ 

between the lines. This last situation could correspond to genera with limited genetic 

relationship with the selection criterion that would thus not respond to selection and be 

differentially abundant. The situation of genera that were differentially abundant between 

lines and not heritable in our study can be related to a limited power of our experimental 

design to estimate accurately the variance components: only h² estimates higher than 

0.12 could be declared significant, so all genera with low heritability would be ignored in 

our results. Besides, the slight correlation between h² estimates and the average genera 

abundances found in our study is usually not expected and is assumed to be due to the 

dataset truncation (genera with more than 20% of zero were not analysed, which tend to 

be the lowest abundant) and consequently missing heritable genera with low 

abundances. Limited sequencing depth of the microbiota data would cause less precise 

quantification and the high proportion of zeros that result in imperfect analyses of genera 

with low abundancies.  

Except in few cases, our h² estimates were in the range of previously published 

values for these genera (Camarinha-Silva et al., 2017; Chen et al., 2018). For instance, 

Chen et al. (2018) reported an h2 of 0.26 for genus Turicibacter, that is higher than our 
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estimate (0.10 ± 0.03). Among the genera that now have sub-types (Prevotella, 

Coprococcus and Ruminococcus), we have obtained different h2 values for the different 

types. For Prevotella, h2 ranged from 0.44 ± 0.11 for Prevotella_1 to 0.01 ± NE 

(Prevotella_9). Chen et al. (2018) have been reported an h2 of 0.23 for the genus 

Prevotella and 0.22 for the genus Coprococcus that are in agreement with our estimations 

for the Prevotella_7 (0.28 ± 0.10) and Coprococcus_1 (0.32 ± 0.10). The estimated h2 for 

genus Lactobacillus (0.24 ± 0.09) was higher than reported value (0.08) by Chen et al. 

(2018) and lower than the value (0.34) reported by Camarinha-Silva et al. (2017). We 

obtained same h2 for the genus Blautia (0.39 ± 0.11) as Camarinha-Silva et al. (2017) 

(0.33 ± 0.14), and a slightly lower h2 for the genus Alloprevotella (0.22 ± 0.09) than their 

report (0.34 ± 0.16). Some discrepancies with previously reported estimates could 

indicate that the genetic determinism of some genera is affected by the study conditions, 

either animal dependent (breed, age at sampling, etc.) or related to external conditions 

(feeding, antibiotic distributions, other management choices, etc.), and would need 

validation in larger and more diverse conditions.  

3.2.5.2. Some genera are genetically correlated with production and FE traits 

Obtaining rg between genera and performance traits lightens the genetic-based 

interaction between feed efficiency components and gut microbiota composition. About 

30% of the studied genera had a significant genetic correlation with a studied trait. 

However, the number of significant rg and their magnitudes differed between the five traits. 

For instance, we could not observe any significant rg with FCR and ADG, which might be 

due to the limited power of the analyses. However, this indicates that in our study, the 

strength of the genetic links between genera and ADG or FCR were lower than with the 

three other traits.  

The negative rg of the Streptococcus genus with RFI and its higher abundance in 

the HRFI pigs in our study is in agreement with the report of J. Quan et al. (2018). 

Similarly, our rg estimate with RFI for the genus Prevotella_7, and its lower abundance in 

LRFI pigs, was consistent with the prevalence of the Prevotellaceae family in low versus 

high FCR pigs reported by J. Quan et al. (2018). Finally, the genus Desulfovibrio, that 

had a negative rg with RFI and higher abundance in the LRFI pigs, is known as a sulfate-
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reducing bacteria that metabolizing sulfites and sulfates of the diet (Gibson, 1990; Kerr et 

al., 2011). The genus Desulfovibrio was also reported with a negative correlation with 

feed efficiency traits at the phenotypic level in Large White pigs by Bergamaschi, Tiezzi, 

et al. (2020a). Identifying only three significant rg with RFI, and none with FCR, seemed 

very low given the biological assumptions of the key role of gut microbiota on nutrient 

availability of the host. However, previous studies also showed limited associations 

between feed efficiency and single microbiota components (H. Yang et al., 2017). Besides 

biological mechanisms, this could be related to maternal genetic and litter effects involved 

in the variability of the microbial community that could not be fully accounted for in this 

analysis. When considering DFI, only the genus Roseburia showed significant rg. The 

positive rg with DFI was not in accordance with its higher abundance in the LRFI line, but 

He et al. (2019) also reported a higher abundance of this Roseburia in low FI pigs. Conflict 

in the line abundances and rg also suggests that other factors might be driving this genus 

abundance at the line level (maternal effects, litter effects), that would deserve further 

analysis.  

The higher number of significant rg between genera and BFT could be partly due 

to the higher h2 of BFT, in comparison to the other traits, that could give more power to 

these estimations. The general composition of backfat in pigs includes water, collagen, 

and lipids (mainly triacylglycerols) (Wood et al., 1989). Therefore, BFT can be directly 

affected by the metabolic functions of the microbial composition of the gut. He et al. (2016) 

have found an association between fatness and OTUs annotated to the genera Blautia, 

Coprococcus, and Ruminococcus in the cecum samples of pigs. The considerable rg of 

the genera Blautia, Coprococcus_3, Coprococcus_1, and Ruminococcaceae_UCG_008 

with BFT in our result is confirming the results of He et al. (2016). Of the 14 genera with 

significant rg with BFT, 8 genera (Blautia, Coprococcus_3, Syntrophococcus, 

Coprococcus_1, Marvinbryantia, Dorea, Shuttleworthia, and Lachnospira) belonged to 

the Lachnospiraceae family. Biddle et al. (2013) argued that Lachnospiraceae and 

Ruminococcaceae families have a role of decomposing substrates from indigestible plant 

materials of the diet (e.g. cellulose and hemicellulose) in the gut. Compounds resulting 

from such decomposition would be fermented and converted into the acetate, butyrate, 

and propionate (short-chain fatty acids - SCFAs) that are absorbable and useable as 
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energy sources by the host (Biddle et al., 2013). The SCFAs also have essential roles in 

the composition of the gut environment, maintaining electrolyte balance, and providing 

energy for host cells as well as gut microbiota (Rios-Covian et al., 2016). Therefore, more 

availability of SCFAs in the gut environment by the activity of bacteria belonging to the 

Lachnospiraceae and Ruminococcaceae families, which have systematic impacts on lipid 

metabolism and fat storage could justify the chained relationship of these genera with 

BFT. Given the importance of the BFT as an indicator for carcass payment and 

reproductive traits of pigs (Roongsitthichai & Tummaruk, 2014), the genetic control of the 

Lachnospiraceae and Ruminococcaceae families and the genera belonging to them can 

have major economic importance in the pig breeding. 

3.2.5.3. α-diversity indexes are under genetic control and are related to FE traits 

Higher microbial diversity is often considered as an attribute of gut health, as animals with 

the more diverse microbial community are potentially more capable to better deal with 

pathogenic microbes (J. M. Fouhse et al., 2016). It has been more generally linked to 

increased functional redundancies among the microbial community, which can contribute 

to a more stable metabolic state and better resilience to face larger variability of feeding 

resources (Moya & Ferrer, 2016). Therefore, microbial diversity is beneficial for the growth 

performance and productivity of animals (J. M. Fouhse et al., 2016; Hildebrand et al., 

2013). This relationship with feed efficiency was confirmed by the negative rg between 

the α-diversity metrics and the five traits. Negative correlations imply that selecting 

animals for improved feed efficiency (lower RFI or FCR) will result in increased intestinal 

microbial community diversity. In the literature, genetic parameters for α-diversity metrics 

are rarely reported. Lu et al. (2018), in a study on longitudinal diversity of faecal microbiota 

in swine, found an h2 estimate of 0.04 ± 0.04 for the Shannon index at weaning and 0.18 

± 0.08 at week 15 of age. In another study on rumen microbial features in cattle, an h2 of 

0.23 ± 0.09 for the Shannon index and 0.19 ± 0.08 for the Simpson index have been 

reported (Li et al., 2019). Our estimates of h2 for both metrics fell into the range of those 

values. The obtained genetic correlation between the Shannon index and ADG in the 

present study was lower than -0.53 ± 0.29 reported by Lu et al. (2018). Nevertheless, we 

have found a stronger rg between the Shannon index and BFT than their reports (-0.53 ± 
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0.23 and -0.45 ± 0.25), but given the standard errors in both studies, our estimates are 

not statistically different from theirs. Given the genetic properties found in our study and 

the links reported with gut health and immunity, those synthetic descriptors of gut 

microbiota composition could be promising traits for selection  

3.2.5.4. Potential for selection and management in pig production 

Our results clearly indicate a genetic basis for part of the gut microbiota composition 

involved in the variation of feed efficiency (Streptococcus, Prevotella_7, Desulfovibrio) 

and body composition traits (Lachnospiraceae family). However, selection to change 

single microbiota components in order to improve performance traits seems contradictory 

with the beneficial relationships found between performance traits and microbiota 

diversity. In that respect, selecting for indicators of microbiota diversity, such as the 

Shannon index, could be a more generic option. This could also be less dependent on 

the microbiota specificities due to breeding conditions and sampling characteristics. 

Indeed, in addition to the genetic, multiple factors can affect the relative abundance of 

microbiota components and their relationships with traits, including breed and age at 

sampling (Bergamaschi, Tiezzi, et al., 2020a), breeding environment (Mathilde Le 

Sciellour et al., 2019), and of course diets (L. M. G. Verschuren et al., 2018). Therefore, 

more generic indicators of microbiota composition, such as diversity indexes, or mixed 

models including a microbiability component (Weishaar et al., 2020), might be more 

relevant for selection. Finally, for some genera (e.g. Roseburia) the genetic relationships 

seemed to be also depend on other factors that could not be accounted for in the present 

analysis. Deciphering the role of these different factors (genetics, litter and maternal for 

instance) would clarify the potential for use of these microbiota components to orientate 

pig performances via different levers of management, including the use of pro and pre-

biotics, as proposed by Maltecca et al. (2020). 

3.2.6. Conclusion 

Our results showed substantial effects of genetics on the variability of gut genera 

community and their relationship with the feed efficiency in pigs. Both analyses of line 

effect and genetic correlations with production traits revealed a substantial genetic basis 
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for the links between feed efficiency traits and genera and individual diversity of the gut 

microbial community. The higher diversity in more feed efficient pigs might be related to 

better gut health and resilience to feed changes. Genera annotated to the 

Lachnospiraceae family had more significant correlations with the studied traits than 

genera from other families. Functional analyses will be needed to validate the underlying 

mechanisms. The robustness of these findings requires further validations in different 

breeding conditions. However, they offer promising perspectives for selection for feed 

efficiency using gut microbiome composition in pigs. 
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3.2.8. Appendix 3.1 

Table S1 P-values of the fixed effects† tested with linear models on α-diversity indexes and 

the 75 genera 

 BW at Test CG Sex Herd Pen size 

 α-diversity index      

Shannon 0.2109 0.0004 0.2340 0.3416 <0.0001 

Simpson 0.2197 0.0343 0.6425 0.3446 0.0006 

      

Genus      

Clostridium_sensu_stricto_1 0.0368 <0.0001 0.8528 0.1755 0.0056 

Prevotella_1 0.7835 <0.0001 0.2644 0.0579 0.0018 

Blautia 0.0341 <0.0001 0.0202 0.4815 0.0005 

Prevotellaceae_NK3B31_group 0.4067 <0.0001 0.0901 0.2988 0.012 

Lachnospiraceae_NK3A20_group 0.599 0.0004 0.3593 0.9592 0.002 

Ruminococcaceae_UCG-008 0.001 <0.0001 0.2229 0.8803 0.6962 

Lachnospiraceae_ND3007_group 0.0217 0.0026 0.1102 0.8725 0.2676 

Coprococcus_3 0.1679 <0.0001 0.166 0.8281 0.9912 

Butyricicoccus 0.0211 0.0002 0.0099 0.5954 0.001 

Terrisporobacter 0.0309 <0.0001 0.6791 0.3966 0.0001 

Syntrophococcus 0.321 <0.0001 0.5874 0.28 0.1499 

Faecalibacterium 0.0247 <0.0001 0.0003 0.2983 <0.0001 

Coprococcus_1 0.6799 <0.0001 0.4349 0.8021 0.5994 

Marvinbryantia 0.4238 <0.0001 0.086 0.3768 0.6486 

Mitsuokella 0.2467 <0.0001 0.0811 0.0459 0.113 

NA_Family_XIII 0.3531 <0.0001 0.6175 0.9327 0.1163 

Prevotella_7 0.8175 <0.0001 0.3251 0.8211 0.3179 

Prevotellaceae_UCG-003 0.9624 <0.0001 0.2044 0.1044 0.0659 

Romboutsia 0.4618 <0.0001 0.8058 0.0629 <0.0001 

Fusicatenibacter 0.0106 0.0006 0.0107 0.1828 0.0001 

Campylobacter 0.4882 <0.0001 0.0164 0.9164 0.0258 

Olsenella 0.6392 <0.0001 0.3613 0.1878 0.2266 

Oscillospira 0.6924 <0.0001 0.022 0.232 0.0007 

Lactobacillus  0.911 <0.0001 0.6363 0.6634 <0.0001 

Roseburia <0.0001 <0.0001 0.109 0.0453 0.0312 

Succinivibrionaceae_UCG-001 0.7886 <0.0001 0.6601 0.2291 0.0832 

NA_Muribaculaceae 0.3327 <0.0001 0.6308 0.3702 <0.0001 
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Dorea 0.0015 0.0229 0.3121 0.7921 0.0461 

Subdoligranulum 0.0446 <0.0001 0.0034 0.1668 0.0021 

Alloprevotella 0.4935 <0.0001 0.606 0.4329 0.0065 

Ruminococcaceae_UCG-014 0.2208 <0.0001 0.0059 0.0882 0.0002 

Dialister 0.7177 <0.0001 0.0477 0.0896 0.0725 

Shuttleworthia 0.7231 <0.0001 0.4121 0.9095 0.664 

Streptococcus 0.7774 <0.0001 0.0003 0.5731 0.0002 

NA_Prevotellaceae 0.6695 0.0099 0.0223 0.26 0.0003 

Rikenellaceae_RC9_gut_group 0.5099 <0.0001 0.7212 0.4198 <0.0001 

Lachnospiraceae_NK4A136_group 0.7686 <0.0001 0.0497 0.3305 0.1102 

Desulfovibrio 0.4229 <0.0001 0.652 0.017 0.0004 

Lachnospiraceae_UCG-001 0.0103 <0.0001 0.58 0.2758 0.9719 

Ruminococcus_2 0.0342 <0.0001 0.0003 0.5176 0.0084 

NA_Ruminococcaceae 0.2133 <0.0001 0.6919 0.5629 <0.0001 

Treponema_2 0.8724 <0.0001 0.1673 0.1082 0.004 

Fournierella 0.0172 0.0027 0.19 0.3109 0.0105 

Prevotella_2 0.0452 <0.0001 0.1835 0.511 0.0637 

Agathobacter 0.0014 <0.0001 0.0044 0.8655 0.0003 

Lachnospira 0.1553 <0.0001 0.0036 0.0591 <0.0001 

Ruminococcaceae_UCG-005 0.9505 <0.0001 0.3494 0.3662 0.0001 

Lachnospiraceae_UCG-004 0.2141 0.001 0.004 0.3512 0.0003 

Oribacterium 0.1649 <0.0001 <0.0001 0.2102 <0.0001 

Ruminiclostridium_5 0.2015 0.0001 0.398 0.6998 <0.0001 

Family_XIII_AD3011_group 0.2655 <0.0001 0.3105 0.8536 0.0001 

Christensenellaceae_R-7_group 0.2423 <0.0001 0.0837 0.9878 0.0057 

Lachnospiraceae_FCS020_group 0.425 <0.0001 0.0378 0.7094 0.2284 

NA_NA_Bradymonadales 0.671 <0.0001 0.4284 0.4882 0.0083 

Family_XIII_UCG-001 0.541 <0.0001 0.005 0.6487 0.2152 

Mogibacterium 0.8338 <0.0001 0.6873 0.6786 0.0148 

Succinivibrio 0.3089 0.0003 0.1552 0.9261 0.2504 

Ruminococcaceae_UCG-013 0.26 <0.0001 0.8237 0.0299 <0.0001 

Intestinimonas 0.6018 0.1622 0.9774 0.6654 0.2347 

Turicibacter 0.2598 <0.0001 0.8787 0.0582 <0.0001 

Intestinibacter 0.0947 0.0001 0.8015 0.9285 0.6409 

Ruminococcaceae_UCG-002 0.0772 <0.0001 0.967 0.7606 <0.0001 

NA_Lachnospiraceae 0.299 <0.0001 0.0009 0.2538 0.0001 

Ruminococcaceae_UCG-010 0.7855 <0.0001 0.1223 0.3466 0.0011 
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Prevotellaceae_UCG-001 0.3501 <0.0001 0.1161 0.9331 0.0002 

Prevotella_9 0.0006 <0.0001 0.0142 0.9962 0.0002 

NA_NA_Bacteroidales 0.4936 <0.0001 <0.0001 0.8061 0.0007 

Coprococcus_2 0.0083 <0.0001 0.0002 0.0376 <0.0001 

Peptococcus 0.0353 0.0048 0.161 0.3722 0.5593 

Ruminococcus_1 0.7002 <0.0001 0.4908 0.5111 0.276 

NA_Eggerthellaceae 0.5374 0.0007 0.1811 0.4583 0.0245 

Ruminiclostridium_9 0.8487 0.0426 0.0031 0.6418 0.012 

Lachnoclostridium 0.6725 <0.0001 0.1285 0.1093 0.0614 

Ruminococcaceae_NK4A214_group 0.1475 <0.0001 0.9606 0.1203 <0.0001 

Parabacteroides 0.2206 <0.0001 0.7058 0.0308 0.3969 

†BW = body weight, CG = contemporary group. Coloured cells show significant effects (P-value < 0.05
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Figure S1. Box plots showing genera abundances between the LRFI and HRFI lines for the other 53 genera 
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3.2.9. Appendix 3.2 
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Summary 

Recent advances in bioinformatics and sequencing technologies have made it possible 

to obtain individual microbiome information for human, animals and plants. In pigs, as in 

humans, gut microbiota is an important contributor to the nutrient availability at the gut 

level. In the present study we aimed to quantify the genetic relationships between two 

main feed efficiency traits, feed conversion ratio (FCR) and residual feed intake (RFI), 

and fecal microbial composition in two experimental pig lines divergently selected for RFI 

(HRFI and LRFI lines). Multivariate linear mixed models of OTUs relative abundancies 

and performance traits provided heritability (h2) and additive genetic correlation (rA) for all 

traits. Fecal samples were collected at 15 weeks of age in 604 pigs from the G9 and G10 

generations of the RFI lines, and about 4000 FCR and RFI records were available for all 

generations. From sequencing of the V3-V4 regions of the16S rRNA gene, a total of 6792 

Operational Taxonomic Units (OTU) were identified in the samples. The 137 OTUs with 

less than 20% zero abundancies were kept for genetic analyses after log-transformation. 
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A total of 65 OTUs showed a rh² different from zero (P<0.05), with estimates ranging from 

0.13 ± 0.07 to 0.52 ± 0.12. In total, OTUs with significant h2 were annotated to 13 families 

and 34 genera. Among those 65 OTUs with genetic background, 10 OTUs had a genetic 

correlation with FCR different from zero, and 14 OTUs had a significant genetic 

correlation with RFI. The OTUs with significant correlations with FCR belonged to six 

families. The OTUs with significant rA with RFI belonged to four families. Only one OTU, 

belonging to the Prevotella_9 genus from the Prevotellaceae family, had commonly 

significant correlation with both traits. Our results showed that some OTU abundancies 

have a genetic background and significant genetic correlation with feed efficiency traits. 

These results beside the host genetic effect could deserve more consideration in breeding 

programs to improve the feed efficiency in pigs. 

Key words: divergent lines, feed efficiency, genetics, gut microbiota, swine 

 

Introduction 

Recent advances in bioinformatics and sequencing technologies have made it possible 

to obtain individual microbiome information for human, animals and plants. In pig 

breeding, feed efficiency (FE), because of its contributions to economic and 

environmental pillars of the production, has a high impact on the sustainability of this 

industry. The gut microbial composition, besides the effects on physiological health of the 

pigs, has a main role in nutrient digestibility (J. Fouhse et al., 2016; Qing Niu et al., 2019). 

Therefore, measuring the magnitude of the genetic control on gut microbiota information 

and its genetic correlation with feed efficiency and production traits can provide insights 

into potential benefits from this new information  in animal breeding. In the present study 

we aimed to quantify the genetic relationships between two main FE traits, feed 

conversion ratio (FCR) and residual feed intake (RFI), and fecal microbial composition in 

two experimental pig lines developed by divergent selection for RFI (HRFI and LRFI 

lines).  

 

 

 



3. Genetic basis of the gut microbiota and their relationships with production trait 

 

123 
 

Methods 

Population and dataset 

The data were collected from a selection experiment conducted at INRAE (UE GenESI, 

Surgères, France) in the French Large White pig breed. The two lines were established 

by 10 generations of divergent selection for RFI (based on an RFI index) from 2000 to 

2015 (Gilbert et al., 2007). The initial matings (F0) were conducted by artificial 

insemination between 30 boars and 30 gilts. From resulted G0 population, 116 boar were 

tested for RFI as candidates for selection. Among tested animals six founder boars for 

the low RFI (LRFI) line and six founder boars for high RFI (HRFI) line were selected. The 

two lines were then initiated by mating these boars to about 35 G0 gilts per line. From G1 

to G10, six boars were selected from 96 candidates in each generation. At least one 

additional parity was produced in each generation to evaluate the correlated responses 

to selection on production traits on both females and castrated males (response animals) 

leading to a total of 3802 records for RFI and 4282 records for FCR. 

 

Microbial DNA extraction and 16S rRNA gene sequencing 

Fecal samples of 604 animals from G9 and G10 pigs of both lines were sampled at 15 

weeks of age and stored at -80°C until being used for ribosomal 16S DNA gene 

sequencing and analysis. Microbial profiling was done by amplification of the V3-V4 

region of the 16S rRNA gene extracted from purified DNA. Amplification was done in 30 

cycles with annealing temperature of 65°C. The purified PCR products were sequenced 

using Illumina MiSeq cartridge according to the manufacturer instructions at the GetPlaGe 

platform. After high-throughput sequencing, filtered and trimmed sequences of high 

quality were clustered into OTUs based on 97% identity of the reads with DADA2 

(Callahan et al., 2016). The clustering step was followed by species annotation and 

indication of OTU phylogeny based on Silva Dataset v132. The final OTU table contained 

6792 OTUs for 604 individuals. Rarefaction (with sample size equal to 9000) was applied 

to the OTU table to correct for differences in sampling efforts (McMurdie & Holmes, 2014). 

Finally, the log-transformed table of OTU counts was filtered for a maximum of 20 % zero 

values per OTU. After the filtration, 137 OTUs remained for the downstream analyses. 
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Model and analyses 

Variance components and genetic parameters were estimated for OTUs using the 

following animal mixed model in bivariate (selection index and one OTU) and three-

variate (selection index, one OTU and FCR or RFI) approaches: y = Xb + Z1a + Z2l + e, 

where y is the vector of observations, b is the vector of fixed effects, a is the vector of 

additive genetic effects, l is the vector of litter effects and e is the vector of random 

residuals. X, Z1 and Z2 are the incidence matrices for b, a and l. The distributions assumed 

for the random terms were a ~ N (0, G0 ⊗ A), l ~ N (0, Rl ⊗ I) and e ~ N (0, Re ⊗ I), 

where A was the pedigree relationship matrix, G0 was (co)variance matrix of direct 

additive genetic effect, and Rl and Re were (co)variance matrices of litter effect and 

residual effect, respectively. I denoted the identity matrix. The A included 10 generations 

of pedigree information plus ancestors, and contained 7293 animals. The analyses were 

performed using AIREMLF90 software (Misztal et al., 2018) for BLUP method. The litter 

effect was significant (P < 0.05) for 11 OTUs only. 

Significance tests 

A significance threshold for the estimated heritabilities was estimated to 0.125. This 

threshold was obtained after running 10000 univariate analyses under the null hypothesis 

of no genetic control on the OTU, for two OTUs (OTUs with lowest and highest h2 with 

the bivariate analyses). The null hypothesis was obtained by shuffling the OTUs counts. 

The minimum value of the 5 % highest estimated h2 was considered as the threshold to 

decide that an OTU was heritable. Thereafter, the three-variate analyses were conducted 

for OTUs with heritabilities significantly different from zero. The deviation from zero of the 

additive genetic correlations between OTUs and the two studied traits were tested using 

the Z-test. 

Results and discussion  

The estimated heritabilities of OTUs with the bivariate analyses are given in Figure 1. 

From 137 OTUs, 65 OTUs showed a significant h2, ranging from 0.13 ± 0.07 to 0.52 ± 

0.12. In total, OTUs with significant h2 were annotated to 13 families and 34 genera, out 

of an initial distribution among 88 families and 260 genera. The lowest h2 was observed 
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for an OTU annotated to the Ruminococcaceae family and the highest h2 was annotated 

to the Clostridiaceae_1 family. 

Figure 1. Heritability of OTUs by family designation obtained using bivariate linear 

mixed models  

 

 

Few studies have implemented mixed models equations to assess the variance 

components and genetic relationships between gut microbiota information and feed 

efficiency in pigs. A study on pigs using colon digesta samples, a h2 of 0.33 for the Blautia 

and 0.34 for the Lactobacillus genera have been reported (Camarinha-Silva et al., 2017). 

Even though that in the present study we have not reported results of analyses at genus 

level, we observed a similar average h2 of OTUs annotated to these genera. The genetic 

correlations of OTUs with FCR and RFI are shown in Figure 2. From the 65 OTUs with 

significant genetic background, 10 OTUs had genetic correlations different from zero with 

FCR, ranging from -0.91 ± 0.04 to 0.54 ± 0.16, and 14 OTUs had significant genetic 

correlations with RFI, ranging from 0.25 ± 0.12 to 0.53 ± 0.11. 
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Figure 2. Genetic correlations between OTUs and FCR and RFI  

 

 

The OTUs with significant correlation with FCR belonged to the Lactobacillaceae, 

Rikenellaceae, Lachnospiraceae, Ruminococcaceae, Prevotellaceae and 

Peptostreptococcaceae families and those with significant correlation with RFI belonged 

to the Lachnospiraceae, Prevotellaceae, Streptococcaceae and Ruminococcaceae 

families. At the genus level, two OTUs annotated to Lactobacillus and Prevotella_2 had 

positive genetic correlations with FCR and the other 8 OTUs annotated to 

Rikenellaceae_RC9_gut_group, Subdoligranulum, Prevotella_9, Romboutsia, 

Prevotella_7 and Agathobacter had negative genetic correlations with FCR. Only one 

OTU belonging to the Prevotella_9 genus from the Prevotellaceae family had commonly 

significant correlation with both traits. The other seven genera related to RFI included 

Blautia, Prevotellaceae_NK3B31_group, Streptococcus, Faecalibacterium, 

Subdoligranulum, Fusicatenibacter, and Dorea. Altogether, we observed 10 OTUs that 

had opposite direction of significant genetic correlation with FCR and RFI, which can be 
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considered as a set of OTUs that are affecting the feed efficiency. At the phenotypic level, 

Hui Yang et al. (2017) showed positive associations between Lachnospiraceae and 

Ruminococcaceae and porcine feed efficiency. In our study, both families had negative 

genetic correlations with feed efficiency. 

In conclusion, our results showed that the abundance of some OTUs has a genetic 

background and can be inherited from one generation to the next. In addition, we have 

seen interesting genetic correlations between some fecal microbiota information and feed 

efficiency traits that will need to be confirmed in external datasets. Altogether, having a 

prior knowledge about the genetic variance components of OTUs abundances that are 

related to some key microbial genera and families could provide insights to a joint 

selection of pigs based on fecal microbiota information and performances.  
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4.1. Introduction 

Recent advances in obtaining microbiota information enable surveying the interplay 

between complex traits and the microbial community of the gastrointestinal tract (GIT). 

After testing the genetic background of microbiota genera and α-diversity indexes, and 

their genetic relationships with feed efficiency traits in chapter 3, the objective of the 

present chapter was to decipher how microbiota contributes to the variability of the 

production traits. This was examined in two steps: 

1- By investigating the contribution of faecal microbial variants to the variance of the 

five studied traits including ADG, BFT, DFI, FCR, and RFI. 

2- By performing microbiome-wide association studies (MWAS) based on two 

methods, single-OTU regressions and back solving of solutions of best linear 

unbiased prediction (BLUP) using microbiome relationship matrix.  

Results showed substantial contribution of the microbial variance (microbiability) 

on the feed efficiency related traits, and negligible effects on other performance traits, 

especially when the additive genetic effect was included in the linear mixed models. The 

microbiability estimates were lower than heritability values for all traits. Bivariate analyses 

showed a high microbial correlation between the feed efficiency traits. The MWAS using 

single-OTU regression method and back solving of BLUP solutions had high consistency, 

however, the detection powers were lower with the joint MWAS estimations resulting from 

back solving of the BLUP solutions. Poor values of the microbiability for performance traits 

did not seem to affect the detection power. The OTUs associated with the studied traits 

were annotated to the Lachnospiraceae, Ruminococcaceae, Prevotellaceae and 

Streptococcaceae families that are mainly involved in producing short-chain fatty acids 

and digestive enzymes. These detected taxonomic levels can be considered as future 

biomarkers in the improvement programs of feed efficiency of pigs. 

This chapter is presented as a journal paper to be submitted to the GSE journal. 

In addition, the content of the chapter has been submitted for an oral presentation to the 

EAAP-2021 (Appendix 4.1).  
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4.2.1. Abstract 

Recent advances in obtaining microbiota information enable surveying the interplay 

between complex traits and the microbial community of the gastrointestinal tract (GIT). 

The objective of the present study was to investigate the contribution of faecal microbial 

variants to feed efficiency and other performance traits including average daily gain 

(ADG), back fat thickness (BFT), daily feed intake (DFI), feed conversion ratio (FCR), and 

residual feed intake (RFI) using data from two experimental pig lines that were divergent 

for feed efficiency. Microbiome wide association analyses (MWAS) were also run using 

two methods of single-OTU regression and back solving of solutions of best linear 

unbiased prediction using microbiome relationship matrix. The microbiabilities (m2) 

obtained from linear animal models accounting for the genetic background of the hosts 

using the Bayesian approach. The h2 posterior means were moderate for all traits and 

ranged from 0.31 ± 0.13 for FCR to 0.51 ± 0.10 for BFT. The m2 posterior means of 0.11 

± 0.09 for RFI, and 0.20 ± 0.11 for FCR, 0.04 ± 0.03 for DFI, 0.03 ± 0.03 for ADG and 

0.02 ± 0.03 for BFT were obtained. All traits showed lower m2 than h2 values and omitting 

the additive genetic effect resulted in higher residual variances. Bivariate analyses 

showed a high microbial correlation between the feed efficiency traits (0.70 ± 0.34). The 

two approaches used for MWAS showed similar results. However, significance levels of 

OTUs estimates were slightly different between the two methods, and the single-

regression method showed higher significance. For RFI, the single-OTU regression 

showed three suggestive OTUs, whereas the back solving method showed one significant 

and one suggestive OTU. Both approaches showed one significant OTU for FCR and 

BFT. For DFI, the single-OTU regression showed two significant and one suggestive 

OTU, whereas with the back solving method one significant and one suggestive were 

found. Finally, for ADG, none of the methods pointed out significant or suggestive tests. 

The 8 OTUs with significant or suggestive effects on the five traits belonged to the 

Streptococcaceae, Prevotellaceae, Ruminococcaceae, and Lachnospiraceae families 

that are mainly involved in producing short-chain fatty acids and digestive enzymes. Our 

results showed substantial effects of the microbial variance on the feed efficiency related 

traits and negligible effects on performance traits. These results are confirmed the 

association between microbial community and complex phenotypes and detected 
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taxonomies can be considered as future biomarkers in the improvement programs of feed 

efficiency of pigs.  

4.2.2. Introduction 

Recent advances in obtaining microbiota information enable surveying the interplay 

between complex traits and the microbial community of the gastrointestinal tract (GIT) in 

animals and humans. This is especially essential in the pig industry where previous 

studies wildly revealed substantial contribution of the gut microbiome to the variability of 

feed efficiency in pigs (Bergamaschi et al., 2020; Camarinha-Silva et al., 2017). From the 

quantitative genetics perspective, the effect of the microbiome on a trait can be quantified 

by the microbiability, which is the proportion of phenotypic variance of the traits explained 

by the entire microbial community. Estimating the microbiability requires a microbial 

relationship matrix between different host animals (Difford et al., 2016). With such 

approach, Camarinha-Silva et al. (2017) reported higher microbiability for feed conversion 

ratio (FCR) (0.21 ± 0.14) and feed intake (0.16 ± 0.10) than the heritability of these traits. 

Similarly, a recent study revealed variation in the contribution of the microbiome to the 

meat quality and carcass composition traits in crossbred pigs over time, with increased 

contribution of microbiota to trait variability from weaning to off-test for the majority of the 

traits (Khanal et al., 2019), and higher microbiability than heritability for some traits, 

particularly at the off-test stage. In contrast, Tang et al. (2020) obtained a lower 

microbiability than the heritability for body weight (BW), average daily gain (ADG), backfat 

thickness (BFT), and intramuscular fatness using samples taken from five different points 

of the gut. Overall, these studies highlighted the importance and the high impact of 

variation derived from gut microbiome composition on the variation of different 

performance traits. Similar to the genome-wide association studies, microbiome variants 

can be considered as potential markers of the desired complex traits, and their 

associations can be identified through the microbiome-wide association studies (MWAS) 

(Difford et al., 2018). In an early MWAS investigation in the Piétrain pig breed, few outliers 

of marginal OTU effects were detected for ADG, FCR, and feed intake, and the authors 

concluded that these traits could have a polymicrobial nature (Camarinha-Silva et al., 

2017). To the best of our knowledge, except the MWAS conducted by Camarinha-Silva 
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et al. (2017) there is no other published literature on this topic in swine, despite numerous 

examples in human, and few in other livestock species (Difford et al., 2018; Vollmar et 

al., 2020). The main objective of the present study was to investigate the contribution of 

faecal microbial variants to feed efficiency and other performance traits including ADG, 

BFT, daily feed intake (DFI), FCR, and residual feed intake (RFI) using data from two 

experimental pig lines that were divergent for feed efficiency. Before running association 

analyses, microbiabilities of traits were obtained using animal models that accounted for 

the genetic background of the hosts.   

4.2.3. Materials and Methods 

4.2.3.1. Population structure, studied traits and sampling 

Phenotypic records were collected from two experimental French Large White pig lines. 

The lines were developed over 10 generations of divergent selection for RFI during 18 

years at INRAE (UE GenESI, Surgères, France, 1999 to 2017, 

https://doi.org/10.15454/1.5572415481185847E12). The structure of the data and 

selection process of the lines has been described in Gilbert et al. (2017) and Aliakbari et 

al. (2020). Artificial insemination was used to obtain the G0 individuals from 60 F0 sows 

and boars. In G0, among the 116 candidates tested for RFI, 6 extreme low RFI (LRFI) 

and 6 extreme high RFI (HRFI) boars were selected as founder animals of each line. 

Random matings were implemented between the selected animals and 70 G0 gilts 

(equally distributed between the two lines) to produce generation G1. The same 

procedure with 96 tested boars per line was repeated to produce G1 to G10. Selection 

candidates had records for feed intake and feed efficiency traits, growth rate, and live 

body composition traits from 35 to 95 kg of body weight (BW). Additional females and 

castrated males had records to evaluate correlated responses to selection for growth rate, 

feed efficiency and carcass composition traits at each generation (response animals), 

with records from 10 weeks of age until slaughter (105 kg BW until G5 and 115 kg BW 

afterward). In all generations boars were selected based on a phenotypic index combining 

daily feed intake (DFI) and average daily gain (ADG) between 35 and 95 kg BW, and 

backfat thickness (BFT) at 95 kg BW (Gilbert et al., 2007), as DFI (g/d) − (1.06 × ADG 

(g/d)) − (37 × BFT (mm)). There was no selection on the sows, which were distributed in 

https://doi.org/10.15454/1.5572415481185847E12
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two herds of birth with equal numbers of LRFI and HRFI sows in the two herds. After 

weaning (28 days of age), all pigs were penned in the same herd, in groups of 24, per 

line and sex. At 10 weeks of age, pigs from each pen were distributed in two growing-

finishing pens (n=12 per pen). There were four pens per contemporary group (CG) and 

at least eight CG tested per generation over both lines (4 CG of candidates to selection 

and 4 CG of response animals). Growing-finishing pens were equipped with single-place 

electronic feeders ACEMA64 (ACEMO, France) to record individual feed intake. A 

pelleted diet based on cereals and soya bean meal was available ad libitum, and 

contained 10 MJ net energy (NE)/kg and 160 g CP/kg, with a minimum of 0.80 g digestible 

Lys/MJ NE. Animals had free access to water at all stages. Complete pedigree 

information was registered, starting at least one generation before F0 ancestors until G10. 

Two different multiple linear regression equations, considering the test differences 

in candidates to selection and response animals, were used to compute realized RFI 

(Gilbert et al., 2007). The RFI for selection candidates was defined as the residuals of the 

regression of DFI on ADG and BFT (measured by ultrasounds). For response animals, 

the RFI equation included AMBW, ADG, carcass BFT (carcBFT) and lean meat content 

(LMC; computed from cut weights). In both models fixed effects of pen size and CG were 

fitted, and the fixed effect of sex and covariate of BW at the beginning of the test were 

added for response animals. Feed conversion ratio (FCR) was computed based on the 

corresponding test period of the two groups of animals. In this study, standardized 

phenotypes of RFI, FCR, DFI, ADG, and BFT were computed for both selection 

candidates and response animals and were analysed, as previously proposed in Aliakbari 

et al. (2020). 

Faecal samples of 604 animals from G9 and G10 of the LRFI and HRFI lines were 

collected to obtain the gut microbial information. The samples collected in G9 were from 

selection candidates (boars) and the samples collected in G10 were from response 

animals (females and castrated males). Samplings were done at 15 weeks of age. 

Immediately after collection, the samples were homogenized and placed in dry ice, before 

storage at -80° C until DNA extraction (see next section). The descriptive information of 

the five traits from these individuals are given in Table 4-1. 
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Table 4-1. Descriptive statistics of data structure for the studied traits 

Trait Number Min Max Average SD 

RFI 522 -0.38 0.39 0.00 0.15 

FCR 548 1.604 3.928 2.779 0.333 

DFI 542 1.37 2.95 2.20 0.29 

ADG 575 0.514 1.011 0.776 0.079 

BFT 541 9.82 46.56 23.28 10.02 

ADG average daily gain (kg/day), BFT backfat thickness (mm), DFI daily feed intake (kg/day), FCR feed 

conversion ratio (kg/kg), RFI residual feed intake (kg/day) 

4.2.3.2. Microbial information 

The Quick-DNA™ Faecal Microbe Miniprep Kit™ (Zymo Research, Freiburg, Germany) 

was used to extract microbial DNA based on a 15 min bead-beating step at 30 hertz. 

Amplification of the V3-V4 region of the 16S rRNA gene obtained from diluted genomic 

DNA was done using two primers of F343 

(CTTTCCCTACACGACGCTCTTCCGATCTTACGGRAGGCAGCAG) and R784 

(GGAGTTCAGACGTGTGCTCTTCCGATCTTACCAGGGTATCTAATCCT) in 30 cycles 

and annealing temperature of 65 °C. To assemble pair-end sequences the Flash software 

v1.2.6 (Magoc & Salzberg, 2011) was used with at least 10-bp overlap between the 

forward and reverse sequences and allowing 10% mismatch. Single multiplexing was 

performed using an in-house 6 bp index, which was added to R784 during a second PCR 

with 12 cycles using forward primer 

(AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC) and reverse 

primer (CAAGCAGAAGACGGCATACGAGAT-index-GTGACTGGAGTTCAGACGTGT). 

The resulted PCR products were then purified and loaded to the Illumina MiSeq cartridge 

based on the instructions of manufacturer. Quality of runs were internally checked using 

PhiX, and each pair-end sequence was assigned to its sample using the integrated index, 

with the bcl2fastq Illumina software. The sequences were submitted to the Short-Read 

Archive with accession number SRP124929. Filtering and trimming of sequences of high 

quality was applied to the reads with the DADA2 package in the R software (Callahan et 

al., 2016) with the following parameters: maxN=0, maxEE=2, truncQ=2, trimleft=17. 

Chimera were removed with the consensus method to obtain the final OTU abundance 
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table. No further clustering was applied, therefore operational taxonomic units (OTUs) 

were equivalent to amplicon sequence variants in this study. This step was followed by 

taxonomic annotation using the assignTaxonomy function of dada2 with the Silva Dataset 

v132 (Quast et al., 2013).  

After rarefication of the abundance table to 9000 counts per sample and discarding 

16 samples that contained fewer reads than the indicated counts, the final table contained 

5689 OTUs for 588 samples (295 LRFI and 293 HRFI pigs). Finally, following Rothschild 

et al. (2018), OTUs in the rarefied table were filtered for more than 1% non-zero values 

across sampled animals, which diminished the number of OTUs to 2630.  

4.2.3.3. Statistical analyses 

4.2.3.3.1. Estimation of variance components 

For all traits, four univariate linear models were applied to evaluate their goodness of fit 

regarding the microbiome effect. Therefore, the comparisons were between the models 

with and without the microbiome effect with degree of freedom equal to one, i.e. model 1 

with 2, and model 3 with 4. The models were run in the Bayesian framework, so 

comparisons were based on the deviance information criterion (DIC; Spiegelhalter et al. 

(2002)) and estimations of variance components were obtained from Bayesian inference. 

The models were as in the following: 

1) 𝐲 = 𝐗𝐛 + 𝐞 

2) 𝐲 = 𝐗𝐛 + 𝐙𝟐𝐦 + 𝐞 

3) 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐞 

4) 𝐲 = 𝐗𝐛 + 𝐙𝟏𝐚 + 𝐙𝟐𝐦 + 𝐞 

where 𝐲 is the vector of observations of the each of the five traits, 𝐛 is the vector of fixed 

effects, 𝐚 is the vector of random additive genetic effects, 𝐦 is the vector of random 

microbiome effects, and 𝐞 is the vector of random residuals. 𝐗, 𝐙𝟏 and 𝐙𝟐 are the incidence 

matrices for 𝐛, 𝐚 and 𝐦. The distributions assumed for the random terms 

are 𝐚~𝑁 (0, 𝐀σ𝑎
2), 𝐦~𝑁 (0, 𝐌σ𝑚

2 ) and 𝐞~𝑁 (0, 𝐈σ𝑒
2), and σ𝑎

2 , σ𝑚
2  and σ𝑚

2  are the variances 

of direct additive genetic effect, microbiome effect and residual effect, respectively. 
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𝐈 denoted the identity matrix. The pedigree relationship matrix (𝐀) contained the 588 

animals with microbiota data, plus 6705 ancestors (parents from generations G0 to G8 of 

the lines, plus their ancestors in common original population). 𝐌 is the microbial 

relationship matrix (Camarinha-Silva et al., 2017) and is defined as 𝐌 =
𝐙𝟑𝐙𝟑

′

k
, where 𝐙𝟑 

is a matrix with dimension of n x k, where n is the number of animals with microbiome 

information and k is the number of OTUs. Elements of the 𝐙𝟑 matrix are the standardized 

individual abundance of each OTU j for individual i, according to the following equation: 

z3ij
=

log(Pij)−log(Pj)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

sd(log(Pj))
         (1) 

Where Pij is the abundance of OTU j for individual i, and Pj is the vector of abundances of 

the jth OTU.  

The fixed environmental factors fitted in the model were the pen size (5 levels), 

herd of birth (two levels), sex (three levels), and contemporary groups (CG, 109 levels). 

Their significance (p < 0.05) on the five traits was tested in preliminary linear models.  

In addition, in order to assess the microbial correlations (rm) between the traits with 

consideration of additive genetic effect, bivariate analyses with model 4 were run. In this 

case, the distributions assumed for the random terms were 𝐚~𝑁 (0, 𝐆𝟎 ⊗

𝐀), 𝐦~𝑁 (0, 𝐑𝐦 ⊗ 𝐈) and 𝐞~𝑁 (0, 𝐑𝐞 ⊗ 𝐈), where 𝐆𝟎 = [
σai

2 σaij

σaji
σaj

2 ] is a 2 × 2 symmetric 

(co)variance matrix of direct additive genetic effects including the previously defined 

genetic variances and the genetic correlation rgij
=

σaij

σai
σaj

  between each pair of traits i and 

j, and similarly 𝐑𝐦 = [
σmi

2 σmij

σmji
σmj

2 ], with r𝐦𝐢𝐣
=

σmij

σmi
σmj

,  and 𝐑𝐞 = [
σei

2 σeij

σeji
σej

2 ] are 2 × 2 

symmetric (co)variances matrices of microbiome and residual effects, respectively. 

The analyses were performed using the GIBBSF90 software (Misztal et al., 2018). 

In total, 100,000 samples were generated to obtain the posterior distributions of the 

parameters of the model, and a burn-in period of 15,000 samples and thinning interval of 
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10 were considered. The convergence was verified through visual inspection of trace 

sample plots. 

4.2.3.3.2. Microbiome wide association studies 

The objective in this step was to identify OTUs that have significant associations with the 

studied traits. Two separate approaches were used. 

a) Using single-OTU regressions: first, single-OTU regression analyses were applied 

to test the effect of the 2630 OTUs one at a time and obtain associated p-value, which is 

the most common approach (Difford et al., 2018). The model defined for these analyses 

was same as model (3) except that OTUs were fitted as fixed covariates in addition to the 

other fixed effects. The AIREMLF90 software (Misztal et al., 2018) was used to run the 

BLUP method. The p-values of resulted regression coefficients were obtained by 

converting coefficient estimates and their standard error into corresponding Z-scores and 

applying a chi² test.  

b) Using back solving of BLUP solutions: in an alternative approach, contributions of 

microbiota to the variance of each OTU were retrieved from the microbiability model 

similar to what explained by Stranden and Garrick (2009) and Gualdron Duarte et al. 

(2014) to obtain solutions and prediction error variances for SNP markers from genomic-

BLUP solutions. Such back solving is often used in the SNP GWAS literature, but 

appeared only recently for microbiota analyses (Vollmar et al., 2020). 

 Solutions for OTUs (𝐎𝐓𝐔)̂  can be obtained if the assumptions of σOTU
2 = σm

2 /k 

and 𝐃 = 𝐈σm
2 /k hold and thus: 

𝐙𝟑𝐃𝐙𝟑′ = 𝐌σm
2          (2) 

Therefore, solutions for OTUs effects given the microbiome solutions can be achieved as 

in the following (Stranden & Garrick, 2009):  

𝐄(𝐎𝐓𝐔|𝐲) = 𝐎𝐓𝐔̂|𝐦̂ = 𝐃𝐙𝟑
′(𝐙𝟑𝐃𝐙𝟑

′)−𝟏𝐦̂ =
1

k
𝐙𝟑′𝐌−1𝐦̂   (3)  

And the variance of OTUs solutions is defined as (Gualdron Duarte et al., 2014): 

𝐯𝐚𝐫(𝐎𝐓𝐔̂) = 𝐯𝐚𝐫 (
𝟏

𝐤
𝐙𝟑′𝐌−𝟏𝐦̂) =

𝟏

𝐤
𝐙𝟑′𝐌−𝟏𝐯𝐚𝐫(𝐦̂) 𝐌−𝟏′𝐙𝟑

𝟏

𝐤
    (4) 
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The predictor error variance (PEV) of 𝐦̂ is equal to: 

𝐏𝐄𝐕(𝐦̂) = 𝐯𝐚𝐫(𝐦 − 𝐦̂) = 𝐯𝐚𝐫(𝐦) − 𝐯𝐚𝐫(𝐦̂) =  𝐂𝐦𝐦𝛔𝐞
𝟐    (5) 

Therefore 

𝐯𝐚𝐫(𝐦̂) = 𝐯𝐚𝐫(𝐦) − 𝐂𝐦𝐦𝛔𝐞
𝟐 = 𝐌𝛔𝐦

𝟐 − 𝐂𝐦𝐦𝛔𝐞
𝟐     (6) 

where 𝐂𝐦𝐦 are the diagonal elements of the sub-matrix corresponding to the microbiome 

random effect from the inverse of coefficient matrix of the mixed model equations. 

Finally: 

𝐯𝐚𝐫(𝐎𝐓𝐔̂) =
𝟏

𝐤
𝐙𝟑′ 𝐌−𝟏(𝐌𝛔𝐦

𝟐 − 𝐂𝐦𝐦𝛔𝐞
𝟐) 𝐌−𝟏𝐙𝟑

𝟏

𝐤
     (7) 

 

Then, the Z-score for each OTUs solution j can be obtained as: 

Z_score𝑗 =
OTÛj

√var(OTÛ)
j

         (8)  

The corresponding p-values can then be calculated by applying a Chi² test to these Z-

scores.  

The back solving method was run using a local script for construction and solving 

of the mixed model equations based on the variance component estimates of the model 

4 for each trait.  

4.2.3.3.3. Significance threshold for MWAS 

To estimate the number of independent tests and calculate the significance thresholds 

for the MWAS, a principal component analysis (PCA) was applied to the correlation matrix 

of OTUs (𝐙𝟑′𝐙𝟑𝟐𝟔𝟑𝟎×𝟐𝟔𝟑𝟎
) to control the family-wise type I error rate of 5% while 

accounting for multiple testing, as proposed by Gao et al. (2008). The PCA showed that 

428 eigenvalues captured 99.5% of the variability in the correlation matrix. Based on this, 

to test the significance of OTUs effects, two cut-off points for a significance 5% threshold 

(–log10(0.05/428)) and for a suggestive 10% threshold –log10(0.10/428) were utilized.  
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4.2.4. Results 

4.2.4.1. Estimation of variance components 

The results of univariate analyses of the five studied traits with models including the 

microbiome effect are presented in Table 4-2, as posterior means ± posterior 95% 

confidence intervals of each variance component. The comparisons of the DIC values 

showed a consistent improvement of models from model 1 to model 4, which had the 

smallest DIC for all traits. The h2 posterior means were moderate for all traits and ranged 

from 0.31 ± 0.13 for FCR to 0.51 ± 0.10 for BFT, with no difference between estimates 

from models 3 and 4. The microbiome variance obtained with models 2 and 4 showed 

substantial contribution to the phenotypic variance of feed efficiency related traits, with 

m2 of 0.22 ± 0.11 to 0.20 ± 0.11 for FCR, and 0.12 ± 0.09 and 0.11 ± 0.09 for RFI, 

respectively. In contrast, phenotypic variances of DFI, BFT and ADG showed less 

influence of the microbiome variance, with posterior means lower than 0.06 ± 0.06 for DFI 

and ADG with the two models, and a change from 0.11 ± 0.06 (model 2) to 0.02 ± 0.03 

(model 4) for BFT, i.e. mainly not differing from zero. All traits showed m2 posterior means 

lower than h2 posterior means, and omitting the additive genetic effect in the models 1 

and 2 resulted in higher residual variances in comparison to models 3 and 4 for all traits. 

 The results of bivariate analyses between the traits with model 4 are given in Table 

4-3. The h2 and m2 estimates of the traits in these analyses were similar to estimates 

obtained from univariate analyses. The rm estimates between the traits ranged from -0.37 

± 0.56 for DFI and ADG to 0.96 ± 0.11 for ADG and BFT. Except the rm estimate between 

RFI and FCR (0.70 ± 0.34), other estimates, given the low microbiability estimates of the 

traits, were estimated with very low reliabilities.  
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Table 4-2. Posterior means (± posterior standard deviation) of variance components, heritability and microbiability values of 

production traits using the four models, and corresponding deviance information criterion (DIC) of each model 

Trait Model σ2
g σ2

m σ2
e σ2

p h2 m2 DIC 

RFI (1) - - 0.020 ± 0.001 0.020 ± 0.001 - - -343032380251 

 (2) - 0.002 ± 0.002 0.017 ± 0.002 0.020 ± 0.001 - 0.12 ± 0.09 -376715009798 

 (3) 0.006 ± 0.002 - 0.014 ± 0.002 0.020 ± 0.001 0.32 ± 0.10 - -481592517646 

 (4) 0.006 ± 0.002 0.002 ± 0.002 0.012 ± 0.002 0.020 ± 0.001 0.30 ± 0.10 0.11 ± 0.09 -540693245186 

  

FCR (1) - - 0.062 ± 0.004 0.062 ± 0.004 - - -64257520104 

 (2) - 0.014 ± 0.008 0.051 ± 0.007 0.065 ± 0.005 - 0.22 ± 0.11 -78170373902 

 (3) 0.024 ± 0.010 - 0.043 ± 0.007 0.067 ± 0.005 0.35 ± 0.13 - -93388582161 

 (4) 0.022 ± 0.010 0.014 ± 0.008 0.032 ± 0.009 0.070 ± 0.006 0.31 ± 0.13 0.20 ± 0.11 -122763803675 

  

DFI (1) - - 0.051 ± 0.003 0.051 ± 0.003 - - -89420640342 

 (2) - 0.003 ± 0.003 0.050 ± 0.004 0.052 ± 0.003 - 0.06 ± 0.06 -93351683359 

 (3) 0.030 ± 0.010 - 0.030 ± 0.006 0.056 ± 0.005 0.50 ± 0.13 - -167531111339 

 (4) 0.030 ± 0.010 0.002 ± 0.002 0.030 ± 0.007 0.060 ± 0.005 0.48 ± 0.14 0.04 ± 0.03 -173089799612 

  

ADG (1) - - 0.0051 ± 0.0003 0.0051 ± 0.0003 - - -255536305168 

 (2) - 0.0002 ± 0.0003 0.0050 ± 0.0004 0.0051 ± 0.0003 - 0.05 ± 0.05 -265759148148 

 (3) 0.0024 ± 0.0009 - 0.0030 ± 0.0006 0.0054 ± 0.0005 0.45 ± 0.13 - -440920106295 

 (4) 0.0030 ± 0.0008 0.0001 ± 0.0002 0.0030 ± 0.0006 0.0055 ± 0.0005 0.47 ± 0.12 0.03 ± 0.03 -471061077561 

  

BFT (1) - - 8.854 ± 0.570 8.854 ± 0.570 - - -525486682 

 (2) - 0.100 ± 0.610 8.057 ± 0.680 9.055 ± 0.604 - 0.11 ± 0.06 -575243859 

 (3) 4.754 ± 1.301 - 4.695 ± 0.872 9.450 ± 0.750 0.50 ± 0.11 - -999015096 

 (4) 4.980 ± 1.280 0.228 ± 0.314 4.424 ± 0.878 9.636 ± 0.760 0.51 ± 0.10 0.02 ± 0.03 -1071710845 

σ2
g: genetic variance, σ2

m: microbiome variance, σ2
e: residual variance, σ2

p: phenotypic variance, h2: heritability, m2: microbiability 
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Table 4-3. Posterior means (± posterior standard deviation) of the main parameters obtained from 

bivariate analyses between traits with model 4 

Trait 1 Trait 2 h2
T1 h2

T2 m2
T1 m2

T2 rg12 rm12 

RFI FCR 0.35 ± 0.11 0.38 ± 0.13 0.16 ± 0.10 0.23 ± 0.10 0.66 ± 0.16 0.70 ± 0.34 

 DFI 0.29 ± 0.09 0.54 ± 0.13 0.18 ± 0.12 0.06 ± 0.04 0.63 ± 0.17 0.71 ± 0.47 

 ADG 0.33 ± 0.10 0.51 ± 0.13 0.09 ± 0.08 0.10 ± 0.05 0.00 ± 0.27 -0.54 ± 0.60 

 BFT 0.29 ± 0.10 0.52 ± 0.11 0.17 ± 0.08 0.05 ± 0.03 0.02 ± 0.27 -1.00 ± NE 

        

FCR DFI 0.32 ± 0.12 0.52 ± 0.12 0.28 ± 0.10 0.08 ± 0.03 0.44 ± 0.25 0.99 ± NE 

 ADG 0.38 ± 0.13 0.51 ± 0.13 0.22 ± 0.10 0.11 ± 0.05 -0.25 ± 0.21 -0.91 ± 0.18 

 BFT 0.34 ± 0.11 0.49 ± 0.10 0.23 ± 0.09 0.05 ± 0.04 0.52 ± 0.20 0.40 ± 0.64 

        

DFI ADG 0.48 ± 0.13 0.49 ± 0.12 0.04 ± 0.04 0.12 ± 0.06 0.62 ± 0.16 -0.37 ± 0.56 

 BFT 0.50 ± 0.13 0.51 ± 0.10 0.04 ± 0.04 0.06 ± 0.04 0.61 ± 0.15 0.50 ± 0.58 

        

ADG BFT 0.49 ± 0.14 0.50 ± 0.11 0.04 ± 0.05 0.06 ± 0.05 0.30 ± 0.20 0.96 ± 0.11 

h2
T1: heritability of first trait, h2

T2: heritability of second trait, m2
T1: microbiability of first trait, m2

T2: microbiability 

of second trait, rg12: genetic correlation, rm12: microbial correlation, NE: not estimable 

4.2.4.2. Microbiome wide association studies (MWAS) 

The two approaches used for MWAS, i.e. single OTU regression and back solving of 

BLUP solutions, showed similar results. However, significance levels of OTUs estimates 

were slightly different between the two methods where the single-regression method 

showed higher significance. Results of MWAS with single OTU regression are shown in 

Figure 4-1 and Figure 4-2, and those from the back solving approach are given in Figure 

S1. There was no common significant or suggestive OTU between the traits. For RFI, the 

single-OTU regression showed three suggestive OTUs (OTU391, OTU1749 and 

OTU2280), whereas the back solving method showed one significant (OTU391), and one 

suggestive OTU (OTU1749). Both approaches showed one significant OTU for FCR 

(OTU1768) and BFT (OTU2934). For DFI, the single-OTU regression showed two 

significant (OTU694, OTU1619) and one suggestive OTU (OTU2678), whereas with the 

back solving method one significant (OTU694) and one suggestive (OTU1619) were 

found. Finally, for ADG, none of the methods pointed out significant or suggestive tests.  
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 The 8 OTUs with significant or suggestive effects on the five traits belonged to the 

Streptococcaceae (1 OTU), Prevotellaceae (3), Ruminococcaceae (3) and 

Lachnospiraceae (1) families (Table 4-4). From these, the 6 OTUs with identified genus 

belonged to different genera.  All these genera had more than 85% of zeros. 

 

Figure 4-1. Results of microbiome wide association between operational taxonomic units and 

residual feed intake (a) and feed conversion ratio (b) 
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Figure 4-2. Results of microbiome wide association study between operational taxonomic units 

and daily feed intake (a), average daily gain (b) and back fat thickness (c) 
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Table 4-4. Taxonomy and descriptive statistics (minimum (Min), maximum (Max), mean and standard deviation (SD)) of the OTUs with 

significant/suggestive associations with the five studied traits 

Trait OTU Kingdom Phylum Class Order Family Genus %Zero Min Max Average SD 

RFI OTU391 Bacteria Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 92.69 0 113 2.33 11.37 

OTU1749 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella_9 98.81 0 32 0.11 1.46 

OTU2280 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae unknown 97.79 0 9 0.06 0.53 

FCR OTU1768 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus_1 98.47 0 62 0.14 2.59 

DFI 
OTU694 Bacteria Firmicutes Clostridia Clostridiales Ruminococcaceae 

Ruminococcacea

e_UCG-014 
85.03 0 65 1.00 4.32 

OTU1619 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Alloprevotella 94.90 0 17 0.19 1.17 

OTU2678 Bacteria Firmicutes Clostridia Clostridiales Lachnospiraceae XBB1006 98.30 0 4 0.03 0.28 

BFT OTU2934 Bacteria Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae unknown 98.64 0 3 0.02 0.19 
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4.2.5. Discussion 

4.2.5.1. Estimation of variance components 

Previous studies in pigs revealed that part of the microbial community are heritable 

(Camarinha-Silva et al., 2017; Difford et al., 2018; Mach et al., 2015), which would provide 

a stability of microbial components presence in gastrointestinal tract (GIT) across 

generations. Such stability of the microbial community could favor their contribution to the 

variability of the phenotypes of the host animals. Therefore, in the present study, gut 

microbial information of two divergent pig lines was fitted into the linear animal mixed 

models to predict its contribution to the phenotypic variance of feed efficiency and other 

performance traits. The analyses showed substantial effects of the microbial variance on 

the feed efficiency related traits. The m2 obtained for RFI in our study was lower than the 

reported value (0.45 ± 0.15) by Weishaar et al. (2020). For FCR, m2 values were in the 

range of the reports of 0.21 ± 0.14 from Camarinha-Silva et al. (2017) and 0.13 ±  0.10 

from Weishaar et al. (2020).  

For other performance traits, low estimates of m2 were obtained, despite the lower 

DIC obtained with models 2 and 4 compared to models 1 and 3, respectively. In the study 

conducted by Camarinha-Silva et al. (2017) a non-significant m2 of 0.16 ± 0.10 for feed 

intake was reported. This estimate was higher than our estimated m2 with models 2 and 

4 for DFI, but the confidence intervals would overlap. Camarinha-Silva et al. (2017) and 

Weishaar et al. (2020) reported moderate m2 of 0.28 ± 0.13 and 0.24 ± 0.11, respectively, 

for daily gain, which were higher than our posteriori mean values for ADG. Khanal et al. 

(2019) in a study on the microbiability of meat quality and carcass composition traits in 

swine found an increasing m2 of back fat depth by increasing age at sampling and 

reported m2 of 0.01 ± 0.02 at weaning, 0.12 + 0.04 at mid-test and 0.25 ± 0.04 at off-test. 

Our estimates of m2 for BFT with the full model is comparable with their report at weaning, 

whereas the sampling time of our study would be equivalent to their mid-test sampling. 

The three previous studies had different genetic types (Piétrain or commercial 

crossbreds), sample sizes and time of collection that could explain part of the difference 

between the studies. In addition, differences in the bioinformatics processing of the 

sequences to obtain OTU tables remain a factor of heterogeneity between studies. 
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To our knowledge, except one study on meat quality and carcass composition 

traits (Khanal et al., 2019), there is no study in pigs reporting microbial correlations 

between the studied traits. The positive high estimated rm between the RFI and FCR 

suggests that a common microbial community have influence on both traits. Khanal et al. 

(2019) observed a decrease in genomic correlations between traits with higher microbial 

correlation and they argued that genomic correlations among traits are partially due to the 

correlations among the gut microbiota composition. However, given that we have already 

observed significant genetic correlations between the microbial components and the 

studied traits (Aliakbari et al., 2021), a reverse hypothesis can be also relevant, such that 

part of the rm between the traits could be due to the high genetic correlations between the 

traits. The change of genetic correlation from model 3 to model 4 was not available yet 

from our analysis, and a more complete dataset and a higher sequencing depth for the 

genetic and microbial analyses will be needed to clarify this issue.  

4.2.5.2. Microbiome wide association results 

As could be expected, the results of the two approaches used to detect the association 

between OTUs and the phenotypic traits had high consistency, with different powers. As 

a result, the single-OTU regression showed two more suggestive OTUs than the back 

solving method (8 versus 6). This difference could be due to the properties of the BLUP 

method, which tends to shrink the effect solutions toward the mean of the population. This 

shrinkage can potentially be passed to the OTU effect estimates after the back solving. 

Therefore, single marker regression is more powerful than BLUP based methods for 

association studies, as was already shown for SNP analyses. However, the number of 

computations in this approach is equal to the number of OTU being tested, which could 

be limiting for a vast number of OTU.  

 The consistency between the MWA results of the single-OTU regression and back 

solving approaches can be considered as a confirmation of the estimated microbiome 

variance with the full model. For example, the single-OTU regression approach did not 

point out different associations as compared to the back solving method using the low 

values of the microbiome variance from model 4 for DFI, ADG and BFT. 



4. How microbiota contributes to the variability of the production traits 

 

149 
 

 The significant tests suggest that the some OTUs and phenotypic traits are 

associated. These associations, in fact, indicates that phenotype observations differ 

among those OTUs. Even though we did not conduct separate analyses for each line, as 

they would have a limited power, the differing abundance of the significant OTUs together 

with phenotype could be a result of divergent selection, as some of these components 

were shown previously to differ at the genera level (Aliakbari et al., 2021). Further 

investigations would be needed to prove this assumption.  

 In our previous study at the genera level, using the same microbiome dataset, we 

showed significant genetic correlations between genera from the Lachnospiraceae, 

Ruminococcaceae, Prevotellaceae and Streptococcaceae families with RFI, DFI, and 

BFT (Aliakbari et al., 2021). Therefore, finding significant OTUs associated to the 

phenotypic traits from these families is consistent with our previous results and probably 

part of their association contributes to the genetic correlation of these families with the 

studied traits. Weishaar et al. (2020) also reported OTUs from Lachnospiraceae and 

Prevotellaceae families that showed strong effect on FCR and RFI. The Prevotellaceae, 

Lachnospiraceae and Ruminococcaceae families are involved in the digestion of fibrous 

material of the nutrients and finally provide short-chain fatty acids for the host (Biddle et 

al., 2013; Gardiner et al., 2020). Bacteria from the Streptococcaceae family are known as 

lactic acid producer bacteria (du Toit et al., 2014) that has an important role in the 

production of dietary enzymes, such as amylase, lipase, phytase, and protease (Kim et 

al., 2007). Therefore, the identified OTUs could have meaningful biological links for feed 

efficiency and other performance traits. If confirmed in more diverse conditions, these 

OTUs could be used as potential biomarkers in selection programs to improve the feed 

efficiency of pigs. In addition, how the use of microbiability in linear mixed models improve 

the prediction accuracies for selection remains to be assess for these traits. Finally, the 

genetic background of the identified OTUs should be studied to indicate the magnitude of 

their genetic control, so that distinction between microbial and genetic effects could be 

achieved.   
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4.2.6. Conclusion 

Our results showed substantial effects of the microbial variance on the feed efficiency 

related traits and negligible effects on performance traits, especially when the genetic 

effects were included in the models. The microbiability values were lower than heritability 

values for all traits. A high microbial correlation between the feed efficiency traits was 

observed. Our results also showed that MWAS using single-OTU regression method and 

back solving of BLUP solutions have high consistency, but detection power was lower 

with the later approach. However, low values of microbiability did not seem to affect the 

detection power. The OTUs associated with the traits were annotated to the 

Lachnospiraceae, Ruminococcaceae, Prevotellaceae and Streptococcaceae families that 

are mainly involved in producing short-chain fatty acids and digestive enzymes. Finally, 

these results confirmed the existence of associations between microbial community and 

complex phenotypes, and the detected taxons could be considered as future biomarkers 

in improvement programs of feed efficiency of pigs. 
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4.2.8. Appendix 4.1 
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Microbiability and microbiome-wide associations with feed efficiency and 

performance traits in pigs 

 

Amir Aliakbari1, Olivier Zemb1, Céline Barilly1, Yvon Billon2, Hélène Gilbert1 

 

1GenPhySE, Université de Toulouse, INRAE, ENVT, 31320 Castanet-Tolosan, France 

2GenESI, INRAE, 17700 Surgères, France 

 

The present study aimed at investigating in pigs the contribution of faecal microbial 

composition (microbiability) to feed efficiency and other performance traits including 

average daily gain (ADG), back fat thickness (BFT), daily feed intake (DFI), feed 

conversion ratio (FCR), and residual feed (RFI). The operational taxonomic units (OTU) 

abundances were obtained from 16S rRNA sequencing of fecal samples from about 550 

pigs from two lines divergently selected for RFI. The microbiabilities (m2) were obtained 

from mixed linear animal models accounting for the additive genetic background of the 

pigs using a Bayesian approach. Microbiome-wide association studies (MWAS) were run 

using single-OTU regressions or back solving the solutions of best linear unbiased 

predictions from the microbiome relationship matrix. The heritability posterior means (h²) 

were moderate for all traits, ranging from 0.31 ± 0.13 for FCR to 0.51 ± 0.10 for BFT. The 

m2 posterior means were 0.11 ± 0.09 for RFI, 0.20 ± 0.11 for FCR, 0.04 ± 0.03 for DFI, 

0.03 ± 0.03 for ADG and 0.02 ± 0.03 for BFT. All traits showed lower m2 than h2 values. 

Omitting the additive genetic effect resulted in higher residual variances, and higher m² 

for BFT only (0.11 ± 0.06). The two approaches used for MWAS showed similar results, 

but the single-regression method had higher detection power. With this approach, three 
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suggestive OTUs were found for RFI, one significant OTU was found for FCR and BFT. 

For DFI two significant and one suggestive OTU were found. For ADG, no association 

was found. These 8 OTUs belonged to the Streptococcaceae, Prevotellaceae, 

Ruminococcaceae, and Lachnospiraceae families, mainly involved in producing short-

chain fatty acids and digestive enzymes. Therefore, our results showed a substantial 

contribution of the microbial effects to the variability of feed efficiency traits and negligible 

effects for other performance traits. However, associations between microbial community 

and complex phenotypes could be identified for almost all traits. These could be 

considered as future biomarkers for genetic improvement of feed efficiency in pigs. 
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5.1. Overview of the thesis 

The main objective of the thesis presented in this document was to investigate how 

genomic tools applied to the animal and its microbiota can contribute to improve selection 

for feed efficiency. Using phenotypic and molecular data collected in divergent lines after 

10 generations of selection for RFI, we showed through the three result chapters that 

molecular information acquired on the pigs or their microbiota could be used to 

complement the existing information and improve selection for feed efficiency. Indeed, as 

shown in the general introduction of the thesis, feed efficiency is a trait costly to record 

on all candidates to selection, and highly affected by the production conditions, whereas 

molecular information could be easier to obtain and could provide complementary 

information for the selection. Specifically, in the first result chapter we showed that 

combining phenotypic and molecular information from different related populations can 

provide a sufficient selection accuracy for such traits, while limiting the genotyping and 

phenotyping efforts. In the second results chapter, we showed via two complementary 

approaches, comparing divergent lines and estimating genetic parameters, that the 

statistical links between feed efficiency and gut microbiota, previously mainly described 

in phenotypic studies, have some genetic bases that could be exploited for selection. 

Finally, in the third results chapter, we showed that for feed efficiency traits, the microbiota 

information can explain a sizable proportion of the trait variance, with limited confounding 

with the genetic information, and we could identify some of the microbiota components 

that drive these relationships. Altogether, we can then propose that both pig and 

microbiota DNA information can provide new information to be used for the genetic 

improvement of feed efficiency in pigs.  

In the following section, we will discuss in more details some of these outcomes, 

their main limits and potential for application, and then conclude the thesis. 
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5.2. Efficiency of genomic evaluation using multi-population training sets 

As discussed in the introduction section, in pigs, because of the high selection intensities 

and short generation intervals, the advantage of genomic selection over the traditional 

pedigreed-based BLUP evaluation in terms of genetic progress essentially depends on 

an improvement of the accuracy of prediction of the animals BV (Tribout et al., 2013). 

Achieving a high prediction accuracy with the traditional evaluation is possible by 

increasing the number of phenotyped animals for the breeding goal and with genomic 

evaluation by increasing the number of genotyped animals. Therefore, before 

implementing the genomic selection, expenditures related to the two options should be 

considered. Nevertheless, the number of affordable phenotypic records in general is 

highly dependent on the nature of the breeding goal, and is more critical for traits that are 

sex-limited, late-recorded or expensive to measure. For these types of traits, genomic 

selection is more promising than selection based on traditional evaluation, because the 

potential to gain in prediction accuracy is higher (Samore & Fontanesi, 2016). Genomic 

selection in pigs, unlike in dairy cattle, did not generate structural changes in the selection 

designs (Tribout et al., 2013) for the moment. The reason is that the selection process in 

pigs is not based on progeny testing, because most of the economic goal traits are 

measurable on both male and female animals during their growth, i.e. before selection 

happens. Therefore, selection candidates mainly have to be reared until the age of 

realizing their own performances, which is potentially neutralizing the concerns about the 

breeding costs of the selection candidates. The other reasons concerning the reduced 

gains of genomic selection efficiency in pigs compared to other species include the lower 

cost of phenotyping of pig traits compared to the genotyping costs, and the necessity with 

genomic prediction to maintain continuous phenotyping for traits that are expensive or 

difficult to measure, for updating the training population for LD changes with time. Thus, 

the economic benefits of the genomic selection in pigs should be high enough to justify 

its practical implementation and investing in genotyping. Using low-density marker panels 

for genotyping and implementing imputation techniques can considerably decrease the 

total cost of the genomic selection. However, loss of prediction accuracy due to the 

imputation errors can finally result in loss of genomic selection efficiency. Nevertheless, 

high accuracy of imputation can be achieved if parent animals are genotyped with the 



5. General discussion 

160 
 

higher density tool and pedigree information is accurate (Samore & Fontanesi, 2016). In 

this regard, Carillier-Jacquin et al. (2018) have found sufficient imputation accuracy of low 

density to medium density SNP panels to use in genomic evaluations in pigs. Another 

important way to increase the cost efficiency of genomic selection is reducing the number 

of genotyped animals. This later solution is highly dependent on the heritability of the trait 

in the breeding goal, as for traits with moderate to high heritability a decrease of the 

number of animals in the training population would not have a profound effect on the 

prediction accuracy. In fact, a simulation study conducted by Tribout et al. (2013) showed 

limited loss of prediction accuracy with 20% or 40% reduction in size of the training 

population for a trait with heritability of 0.4. Therefore, optimizing the design of training 

population is an important step that empowers the efficiency of the genomic selection, but 

should be considered for the different types of traits of the breeding goal. To evaluate the 

possibility to reduce genotyping costs, and considering that feed efficiency traits are 

expensive to measure and have moderate heritabilities, in the second chapter we tested 

12 scenarios that differed in the design of training populations and comprised animals 

from 2 related lines. In small size populations, genotypic information for animals from the 

earlier generations might not be available, which would leave too few animals for 

constructing a training population allowing high prediction accuracies. Therefore, tested 

scenarios were set up with consideration of practical aspects of the genomic evaluation 

when two related lines are available. Results of genomic predictions with these scenarios 

showed that including a small proportion of animals from a genetically different sub-

population in the training set could maintain the prediction accuracy in a standard level, 

i.e. similar to prediction accuracy based on a homogeneous training population of the 

same size. Performing genomic selection using across-lines training sets is potentially 

more feasible than across-breeds training sets, given the presence of pedigree 

relationships between lines and persistence of similar LD between the sub-populations. 

In our study, similar accuracy of the scenario comprising animals from the extreme 

generation of the opposite line in the training set (scenario 6) with the prediction accuracy 

the routine training set (scenario 1) was mainly due the remaining genomic relationships 

between animals from the opposite line with the validation population. The other 

scenarios also had these relationships but maximum, average and minimum values in all 
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of them were lower than in scenario 6. From a practical point of view, the last scenario 

was the most economic genomic prediction design for a between-line prediction, as 

genotypes would benefit for the genomic predictions in both lines. In conclusion, taking 

advantage of different allelic frequency of a related sub-population to construct the 

training population is a compromising practical strategy to control the cost of genomic 

information when initiating genomic prediction. A complete evaluation of the relative costs 

of phenotyping and genotyping would be needed to better calibrate such strategies, 

including different types of genotyping tools.   

5.3. Dependency of feed efficiency variation to the intestinal microbial composition 

As proposed at the beginning of this thesis, a better understanding of the relationships 

between gut microbiome composition and feed efficiency in pigs could clarify the factors 

that drive the variability of feed efficiency between animals with respect to the composition 

of gut microbiome. Indeed, part of the energy produced by gut bacteria is used for their 

own growth and part becomes available to the host animal (Figure 5-1) (Fetissov, 2017). 

Interestingly, the indirect energy coming from the bacteria is more efficiently used by the 

animal than the direct energy extraction from nutrients by the host digestive system 

(Fetissov, 2017).  
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Figure 5-1. Distribution of feed-derived energy between the host and gut bacteria 

Source: Fetissov (2017) 

In addition to energy, enzymes and metabolites released by bacteria facilitate the 

digestion of nutrients and fibrous material. Microbiota has also an essential contribution 

to the appetite and body weight of host animals (Fetissov, 2017; Yang et al., 2018). A 

study showed that transplantation of gut microbiota from malnourished donor children 

impaired normal weight gain in recipient mice without causing significant change in food 

consumption (Blanton et al., 2016). In pigs, Yang et al. (2018) in an investigation on the 

effect of gut microbiome on host appetite in pigs have found that out of 34 OTUs, 12 

OTUs annotated to the Prevotellaceae family had positive association with DFI. In their 

study, some OTUs annotated to the Ruminococcaceae and Lactobacillaceae families, 

that are involved in the production of SCFAs and lactic acid, tended to have negative 

correlations with DFI (Yang et al., 2018). In our study, some genera annotated to the 

Ruminococcaceae and Lachnospiraceae families showed significant, and mostly positive, 

genetic correlations with DFI. The genetic correlations of these genera with RFI and FCR 

were considerably lower than the corresponding correlation values with DFI. It has been 

shown that selection for feed efficiency results in reduced appetite in pigs (Eissen et al., 

2003; Gilbert et al., 2012). Given these results, reduction of the appetite and increase of 
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satiety might be favorable in terms of feed efficiency and a selection toward reduction of 

the genera associated with DFI would not have negative effect on the feed efficiency. 

Nevertheless, in maternal lines consideration about the milking sows should be taken into 

account because reduction in the feed intake due to the reduction of appetite may impair 

the sows metabolism and increase the use of their own body resources during lactation 

(Gilbert et al., 2012).  

In chapter 4, our microbiome-wide association studies showed significant 

association of few OTUs with feed efficiency and performance traits. These OTUs 

belonged to the same families in which we found genera with significant genetic 

correlations with the same traits in chapter 3. Such MWAS approaches, even if not very 

popular yet in animal studies, seems to be an interesting and complementary tool to target 

the microbiota components involved in the variability of production traits. If our design had 

limited power for such analyses, we could consistently point out some OTUs with the two 

approaches that contribute to the traits variability. These OTUs could actually not be 

included in earlier variance components estimations with linear mixed models, due to their 

large number of zeros, so these approaches could be considered as complementary and 

more exhaustive than those proposed in chapter 3. However, in chapter 4 the main 

analyses presented corresponded to single-OTU regressions, to overcome the lack of 

power of simultaneous microbiome-wide estimations. Inspired from the Bayesian 

alphabet framework developed for genomic predictions, mixture models combining 

distributions of large and small effects could further contribute to surpass these power 

limits of the straight microbiome BLUP (M-BLUP) models, and identify the main OTUs 

contributors to the trait variability. Finally, in addition to the identification to specific OTU 

or genera related to some traits, the diversity of microbial communities in the 

gastrointestinal tract of pigs is an indicator of the overall gut health status of animals, and 

stressful situations can decrease the diversity (Knecht et al., 2020). A lower diversity can 

cause digestive and finally growth disorders. The alpha-diversity indicators capture the 

diversity of species within a given sample. The two common alpha diversity metrics used 

in our study in chapter 3 (i.e. Shannon and Simpson) differed between animals of the 

LRFI and HRFI lines, and more feed efficient animals had higher gut microbial diversity. 

This finding not only provides an opportunity for selection programs, but also indicates a 
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dependency of feed efficiency to the intestinal microbial composition, its diversity and 

related gut health status. 

5.4. Selection of host animals based on microbiome evaluations 

Given the relevance of gut microbiome composition to feed efficiency, taking advantage 

of microbial traits can provide genetic tools to improve feed efficiency. As shown in the 

previous section, some microbiota components are heritable and genetically associated 

with production traits, and specifically feed efficiency traits. A first option to use microbiota 

information for selection for feed efficiency could be to target some few of these 

components. However, selection for a single microbiota component can cause undesired 

responses such as decreasing the diversity of microbial communities. Besides, even 

though we have found moderated heritability for the microbial taxa in the sampling 

conditions of our design, their abundance may vary in response to changes in age, diet 

and stressful conditions, which could potentially reduce their robustness as tools for 

selection proposes. An alternative could be to use more complex profiles associated to 

traits, such as enterotypes (Mach et al., 2015), but their stability has also been questioned 

with age and breeding conditions (Le Sciellour et al., 2019). A stronger selection criterion, 

mentioned in the previous section, could be found in the alpha-diversity metrics, which 

have moderate heritability and genetic correlations with the studied traits. From a 

quantitative point of view, because alpha-diversity is a composite measurement, such 

selection decision could be more robust than a selection based on few selected microbial 

species or genera. It could capture the ability to maintain functional redundancy in the gut 

microbiota, rather than to favor some specific components that could disappear in 

different conditions (Moya & Ferrer, 2016). The diversity and number of microbial 

communities in the gastrointestinal tract of pigs can also be affected by the destabilization 

of the intestinal microbiota in early stage of life (Knecht et al., 2020), so it could be 

recommended to sample pigs after gut microbiota stabilizes when transition occurs (e.g. 

weaning, dietary changes). However, heritability estimates for the microbial communities 

indicates a promising stability of the microbial diversity throughout generations. 

In addition, special care should be taken to homogenize the overall procedure if 

microbiota information was used for selection, about the number of samples to initiate it, 
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but also about the sampling conditions and storage, DBA extraction, sequencing depth 

and pipeline treatments, and nutritional programs and environmental conditions such as 

sanitary treatments offered to the pigs. At present, most studies rely on different pipelines 

and OTU tables can strongly differ in their contents due to post sampling differences in 

treatments. As a first step, in the present studies OTU were defined for amplicon 

sequence variants, so any new dataset can be easily combined or compared to ours. 

However, the taxonomy assignation is itself a field in progress and the difficulty to stabilize 

long-term options for selection could be an additional constraint for the selection of 

targeted microbiota components. 

As a new field in animal breeding and genetics, results of evaluations based on 

microbiome data can be used for selection purposes. Thus, another option to use 

microbiota information for selection is to include it in animal mixed models applied to 

production traits, as proposed in chapter 4. However, prediction of future phenotypes 

using microbiome information, relying on microbiability estimations might not be as strong 

as a genomic prediction because of the GIT location-dependency of the microbiome 

composition and changes happening with age, diet, and sex (Verschuren et al., 2018; 

Weishaar et al., 2020). Indeed, the best, i.e. more predictive, microbiome information 

would certainly result from (combined) samplings at specific GIT locations and at 

particular age, but this is clearly not affordable for animal selection, for both ethical and 

economic reasons. Thus, even though selection programs incorporating microbiome 

information could induce an additional evaluation cost, combined with genetic or genomic 

evaluations such programs could provide more accuracy for selection for feed efficiency. 

Careful evaluations of the genetic gains and costs would be needed to decide about these 

options.  

Finally, recent studies proposed to develop the concept of holobiont, that was 

initially introduced by Margulis and Fester (1991), for selection purposes. A holobiont can 

be defined as a host animal and all its associated microbiota communities (Simon et al., 

2019). Therefore, a selection based on the holobiont concept would involve part of the 

genome of the host animal that controls a given trait and part of the host genome that 

control microbiome communities, the so-called “hologenome” (van Vliet & Doebeli, 2019; 
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Weishaar et al., 2020). The idea of selection based on the hologenome for feed efficiency 

arises from the partially heritable microbial components that have a substantial effect on 

feed efficiency, as shown in chapters 3 and 4, and the most recent literature (Weishaar 

et al., 2020). A selection index using the hologenome would combine a direct genetic 

effect and a genetic microbial effect in an index. This tends to be similar to the selection 

of animals based on combinations of their direct genetic value and their maternal genetic 

value as applied to some economic traits, which incorporates the two different aspects in 

a selection index. Therefore, a selection index for the hologenome is a host-level 

selection, organized to improve the host performance traits by retaining both the direct 

genetic effect and the microbiota effect under genetic control, as proposed by Weishaar 

et al. (2020) in a two-step strategy. As discussed before, the selection at the microbiome 

level only can also be considered. However, unlike the hologenome selection that can be 

optimized for several traits at once, the selection response of a single trait at the 

microbiome level only would be limited to the improvement of the microbiota composition 

for the corresponding trait (Weishaar et al., 2020). Our first estimations (chapter 4), as 

those provided by Khanal et al. (2019), clearly show that genetic and microbiota 

correlations can differ widely depending on the traits. Here again, a careful evaluation of 

the improvement of the genetic gains should be run before deciding about the best options 

for selection.  
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5.5. Conclusion 

In this thesis, the potential of genomic tools applied to the pig and its microbiota to improve 

selection for feed efficiency has been clarified. We first showed that genomic predictions 

are feasible for feed efficiency, even when populations are of limited sizes. The next step 

would be to run an economic assessment to clarify the actual economic potential of this 

approach. We then showed that the gut microbiota variability contributes to the variability 

of the production traits, in particular the feed efficiency traits. We identified microbiota 

components (genera, OTU, α-diversity indexes) which have a genetic background and 

are associated to different trait levels. Besides, we suggested that accounting for the 

microbiota information in prediction models could contribute to better prediction accuracy 

than predictions from the genetic information alone, especially for feed efficiency traits, 

given the magnitude of the microbiota effects in mixed models. Further studies will be 

needed to evaluate how genomic information of the host and the microbiota can actually 

be combined in prediction models to either better predict the breeding values themselves, 

or even obtain joint predictions of breeding and microbiota values, that would lead to the 

selection of the hologenome for improved production efficiency.  

 

 

  



5. General discussion 

168 
 

5.6. References 

Blanton, L. V., Charbonneau, M. R., Salih, T., Barratt, M. J., Venkatesh, S., Ilkaveya, O., 

Subramanian, S., Manary, M. J., Trehan, I., Jorgensen, J. M., Fan, Y. M., 

Henrissat, B., Leyn, S. A., Rodionov, D. A., Osterman, A. L., Maleta, K. M., 

Newgard, C. B., Ashorn, P., Dewey, K. G., & Gordon, J. I. (2016). Gut bacteria that 

prevent growth impairments transmitted by microbiota from malnourished children. 

science, 351(6275). https://doi.org/10.1126/science.aad3311  

Carillier-Jacquin, C., Bouquet, A., Labrune, Y., Brenaut, P., Riquet, J., & Larzul, C. (2018). 

Using 1K panel in 3 French pig breeds for genomic selection: Accuracy of 

Imputation and estimation of genomic breeding values using 1K SNP panel, 

designed for several breeds in French pig populations. 11. World Congress on 

Genetics Applied to Livestock Production (WCGALP),  

Eissen, J. J., Apeldoorn, E. J., Kanis, E., Verstegen, M. W., & de Greef, K. H. (2003). The 

importance of a high feed intake during lactation of primiparous sows nursing large 

litters. Journal of Animal Science, 81(3), 594-603. 

https://doi.org/10.2527/2003.813594x  

Fetissov, S. O. (2017). Role of the gut microbiota in host appetite control: bacterial growth 

to animal feeding behaviour. Nat Rev Endocrinol, 13(1), 11-25. 

https://doi.org/10.1038/nrendo.2016.150  

Gilbert, H., Bidanel, J. P., Billon, Y., Lagant, H., Guillouet, P., Sellier, P., Noblet, J., & 

Hermesch, S. (2012). Correlated responses in sow appetite, residual feed intake, 

body composition, and reproduction after divergent selection for residual feed 

intake in the growing pig. Journal of Animal Science, 90(4), 1097-1108. 

https://doi.org/10.2527/jas.2011-4515  

Khanal, P., Maltecca, C., Schwab, C., Fix, J., & Tiezzi, F. (2019). Microbiability of meat 

quality and carcass composition traits in swine. bioRxiv, 833731.  

Knecht, D., Cholewińska, P., Jankowska-Mąkosa, A., & Czyż, K. (2020). Development of 

swine’s digestive tract microbiota and its relation to production indices—a review. 

Animals, 10(3), 527.  

Le Sciellour, M., Zemb, O., Hochu, I., Riquet, J., Gilbert, H., Giorgi, M., Billon, Y., 

Gourdine, J. L., & Renaudeau, D. (2019). Effect of chronic and acute heat 

https://doi.org/10.1126/science.aad3311
https://doi.org/10.2527/2003.813594x
https://doi.org/10.1038/nrendo.2016.150
https://doi.org/10.2527/jas.2011-4515


5. General discussion 

169 
 

challenges on fecal microbiota composition, production, and thermoregulation 

traits in growing pigs1,2. Journal of Animal Science, 97(9), 3845-3858. 

https://doi.org/10.1093/jas/skz222  

Mach, N., Berri, M., Estelle, J., Levenez, F., Lemonnier, G., Denis, C., Leplat, J. J., 

Chevaleyre, C., Billon, Y., Dore, J., Rogel-Gaillard, C., & Lepage, P. (2015). Early-

life establishment of the swine gut microbiome and impact on host phenotypes. 

Environ Microbiol Rep, 7(3), 554-569. https://doi.org/10.1111/1758-2229.12285  

Margulis, L., & Fester, R. (1991). Symbiosis as a source of evolutionary innovation: 

speciation and morphogenesis. Mit Press.  

Moya, A., & Ferrer, M. (2016). Functional Redundancy-Induced Stability of Gut Microbiota 

Subjected to Disturbance. Trends in Microbiology, 24(5), 402-413. 

https://doi.org/10.1016/j.tim.2016.02.002  

Samore, A. B., & Fontanesi, L. (2016). Genomic selection in pigs: state of the art and 

perspectives. Italian Journal of Animal Science, 15(2), 211-232. 

https://doi.org/10.1080/1828051x.2016.1172034  

Simon, J.-C., Marchesi, J. R., Mougel, C., & Selosse, M.-A. (2019). Host-microbiota 

interactions: from holobiont theory to analysis. Microbiome, 7(1), 5. 

https://doi.org/10.1186/s40168-019-0619-4  

Tribout, T., Larzul, C., & Phocas, F. (2013). Economic aspects of implementing genomic 

evaluations in a pig sire line breeding scheme. Genetics Selection Evolution, 45(1), 

40. https://doi.org/10.1186/1297-9686-45-40  

van Vliet, S., & Doebeli, M. (2019). The role of multilevel selection in host microbiome 

evolution. Proc Natl Acad Sci U S A, 116(41), 20591-20597. 

https://doi.org/10.1073/pnas.1909790116  

Verschuren, L. M., Calus, M. P., Jansman, A. J., Bergsma, R., Knol, E. F., Gilbert, H., & 

Zemb, O. (2018). Fecal microbial composition associated with variation in feed 

efficiency in pigs depends on diet and sex. Journal of Animal Science, 96(4), 1405-

1418.  

Weishaar, R., Wellmann, R., Camarinha‐Silva, A., Rodehutscord, M., & Bennewitz, J. 

(2020). Selecting the hologenome to breed for an improved feed efficiency in 

https://doi.org/10.1093/jas/skz222
https://doi.org/10.1111/1758-2229.12285
https://doi.org/10.1016/j.tim.2016.02.002
https://doi.org/10.1080/1828051x.2016.1172034
https://doi.org/10.1186/s40168-019-0619-4
https://doi.org/10.1186/1297-9686-45-40
https://doi.org/10.1073/pnas.1909790116


5. General discussion 

170 
 

pigs—A novel selection index. Journal of Animal Breeding and Genetics, 137(1), 

14-22.  

Yang, H., Yang, M., Fang, S., Huang, X., He, M., Ke, S., Gao, J., Wu, J., Zhou, Y., Fu, 

H., Chen, C., & Huang, L. (2018). Evaluating the profound effect of gut microbiome 

on host appetite in pigs. BMC Microbiology, 18(1), 215. 

https://doi.org/10.1186/s12866-018-1364-8  

https://doi.org/10.1186/s12866-018-1364-8


Curriculum Vitae/Resume 

 

Amir Aliakbari 

           

PhD student 

National Research Institute for Agriculture, Food 

and the Environment (INRAE) 

Génétique Physiologie et Systèmes d'Elevage 

(GenPhySE) 

Address: 24, chemin de Borde-Rouge - 

Auzeville Tolosane F-31326 Castanet Tolosan 

Phone: +33783352983 

E-mail: amir.aliakbari@inrae.fr 

 

 

 

Education PhD student in Animal Breeding and Genetics, National Research Institute for Agriculture, Food and 

the Environment (INRAE), Toulouse-France, Since 2018. 

MSc in Animal Breeding and Genetics, Islamic Azad University, Karaj-Iran, 2011- 2013. 

BSc in Agricultural Engineering, Animal Science, Islamic Azad University, Maragheh-Iran, 2007 - 

2011. 

  

Publications Journal Papers 

 

Aliakbari, A., Zemb, O., Billon, Y., Barilly, C., Ahn, I., Riquet, J. and H., Gilbert (2021) Genetic 

relationships between feed efficiency and gut microbiome in pig lines selected for residual 

feed intake. Journal of Animal Breeding and Genetics. 

Delpuech, E., Aliakbari, A., Labrune, Y., Fève, K., Billon, Y., Gilbert, H. and J., Riquet (2020) 

Identification of genomic regions affecting various production traits in pigs divergently 

selected for feed efficiency, under review in the Genetics Selection Evolution. 

Aliakbari, A., Delpuech, E., Labrune, Y., Riquet, J. and H., Gilbert (2020) The impact of training 

on data from genetically related lines on the accuracy of genomic predictions for feed 

efficiency traits in pigs, Genetics Selection Evolution, 52, 57. 

David, I., Aliakbari, A., Deru, V., Garreau, H., Gilbert, H., and A., Ricard (2020) Inclusive 

inheritance for residual feed intake in pigs and rabbits. Journal of Animal Breeding and 

Genetics, 137, 535-544. 

Aliakbari, A., Ehsani, A., Vaez Torshizi, R., Løvendahl, P., Esfandyari, H., Jensen, J and P., Sarup 

(2019) Genetic variance of metabolomic features and their relationship with body weight and 

body weight gain in Holstein cattle, J. Anim. Sci, 97, 3832-3844. 

Aliakbari, A., Abbasi, M.A and A., Lavvaf (2015) Study on the influence of genetic and 

environmental maternal effects on body weight traits in Ghezel sheep breed in rural breeding 

system, Animal Science Journal (Pajouhesh & Sazandegi), 107, 75-86. 

Aliakbari, A., Abbasi, M.A and A., Lavvaf (2014) Maternal effects on average daily gain and 

Kleiber ratio of Ghezel sheep in rural breeding systems, Journal of Animal Science 

Researches (Agricultural Science), 25, 109-121. 

 

 

Conference 

Presentations 

Oral Presentation 

 

Aliakbari, A., Zemb, O., Billon, Y., Barilly, C., Ahn, I., Riquet, J. and H., Gilbert (2020) Genetic 

relationships between feed efficiency and fecal microbiome in pig lines selected for residual 

feed intake, 71th Annual meeting of the European Federation of Animal Science (EAAP), 

online congress. 

Aliakbari, A., Delpuech, E., Labrune, Y., Riquet, J. and H., Gilbert (2019) Reliability of genomic 

predictions for feed efficiency traits based on different pig lines. 70th Annual meeting of the 

European Federation of Animal Science (EAAP), No. 666, Ghent-Belgium. 

 

mailto:amir.aliakbari@inrae.fr


Curriculum Vitae/Resume 

 

Amir Aliakbari 

           

PhD student 

National Research Institute for Agriculture, Food 

and the Environment (INRAE) 

Génétique Physiologie et Systèmes d'Elevage 

(GenPhySE) 

Address: 24, chemin de Borde-Rouge - 

Auzeville Tolosane F-31326 Castanet Tolosan 

Phone: +33783352983 

E-mail: amir.aliakbari@inrae.fr 

 

 

 

Poster Presentation 

 

David, I., Aliakbari, A., Canario, L., Combes, S., Demars, J., Deru, V., Garreau, H., Gilbert, H., and 

A., Ricard, (2020). Inclusive inheritance for residual feed intake in pigs and rabbits, 71th 

Annual meeting of the European Federation of Animal Science (EAAP), online congress. 

Aliakbari, A., Delpuech, E., Labrune, Y., Riquet, J. and H., Gilbert (2019) Reliability of the genomic 

predictions for the feed efficiency related trait based on different pig lines. Gordon Research 

Conference, Lucca (Barga)-Italy. 

Aliakbari, A., Abbasi, M.A and A., Lavvaf, (2014) Estimations of genetic parameters of Average 

Daily Gain and Kleiber Ratio at weaning in Ghezel sheep breed by fitting different animal 

models, The 6th Congress on Animal Science of Iran, No. 47, Tabriz, Iran. 

Abbasi, M.A., Aliakbari, A., Maghsoudi, A., Pahlavan, R. and F., Gafoori-Kesbi, (2014) Estimates 

of genetic parameters for early reproductive and composite reproductive traits in Ghezel 

sheep breed under rural breeding systems, The 6th Congress on Animal Science of Iran, No. 

48, Tabriz, Iran. 

 

Honors & 

Awards 

Winner of an EAAP scholarship 2020. 

Research Grant award of science ministry of Iran as financial support for stay in Denmark (2018) 

Student Research Grant award of Division of Animal Sciences, Islamic Azad University of Karaj 

(2013) 

Young Scientist Award by the Iranian Society of Animal Science (2012)  

Outstanding Achievement in Research Award, Faculty of Agriculture, Karaj University (2011) 

Department of Animal Science Excellent student Award (2010) 

The Exceptional talents of Islamic Azad University of Maragheh grant Award (2009) 

 

Work 

Experience 

Guest researcher at the department of QGG, Aarhus University, 2017 – present. 

Research Assistant, Tarbiat Modares University (TMU), Iran, 2014 – 2016. 

 

Teaching 

Experience 

Lecturer, Mixed linear models in animal breeding, 2016, Islamic Azad University of Abhar, Iran. 

 

Computer 

Skills 

R  

Batch programming 

Fortran 

Advanced general skills in genomic prediction software (e.g., DMU, WOMBAT, GS3, TM, ASReml, 

BLUPF90 programs) 

General skills in breeding programs software (e.g. QMSim) 

General skills in statistical packages (e.g., SAS, SPSS, Minitab) 

 

 

mailto:amir.aliakbari@inrae.fr


Curriculum Vitae/Resume 

 

Amir Aliakbari 

           

PhD student 

National Research Institute for Agriculture, Food 

and the Environment (INRAE) 

Génétique Physiologie et Systèmes d'Elevage 

(GenPhySE) 

Address: 24, chemin de Borde-Rouge - 

Auzeville Tolosane F-31326 Castanet Tolosan 

Phone: +33783352983 

E-mail: amir.aliakbari@inrae.fr 

 

 

 

 

Fields of 

Interest 

Genomic selection, Quantitative genetics and animal breeding, Mixed models in animal breeding, 

Whole genome evaluation, Stochastic simulation, Breeding plans for improvement of livestock, 

Microbiome studies  

  

Attendants 

Programs 

Introduction to graphical models with applications to quantitative genetics and genomics, University 

of Padova, 2019, (With Guilherme J. M. Rosa and Francisco Peñagaricano). 

System biology and gen network inference: application in livestock breeding and genetics, INRAE, 

2018, (With Antonio Reverter). 

Techniques for Writing and Presenting a Scientific Paper, Aarhus University, 2017, (With Mike 

Grossman). 

Design of Genetic Improvement Programs Course, Aarhus University, 2017, (With Christian 

Sørensen and Theo Meuwissen). 

Workshop on “Reliability and its application”. Islamic Azad University of Abhar, 2014. 

 

Languages Azeri (mother tongue) 

Turkish (Proficient) 

Persian (Proficient) 

  

mailto:amir.aliakbari@inrae.fr

	Cover
	RESUME
	ABSTRACT
	Table of contents
	List of figures
	List of tables
	List of abbreviations
	1. General introduction
	2. Potential of the genomic information toimprove selection for feed efficiency
	3. Genetic basis of the gut microbiotaand their relationships with productiontrait
	4. How microbiota contributes to thevariability of the production traits
	5. General discussion



