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Abstract

Ledéfides estimations robustes de trait parDeep Learningàpartird’imagerie haute
résolution RVB

Le phénotypage à haut débit des plantes, notamment dans le cadre d’acquisitions en plein
champ, repose sur l’interprétation de données issues de différents capteurs mis en œuvre sur
des vecteurs variés tels que des tracteurs, des robots ou des drones. Initialement, ces données
étaient interprétées à l’aide d’algorithmes de télédétection exploitant la résolution spectrale
du signal. Mais depuis 2015, les progrès du ”Deep Learning”, basé sur l’entrainement à partir
d’exemples, ont permis des résultats prometteurs pour mesurer des traits essentiels comme
le taux de couverture ou le comptage de plantes ou d’organes. Ces algorithmes utilisent des
couches de convolution apprises, permettant de tirer parti de l’organisation spatiale du signal.
L’avantage de cesméthodes est qu’elles sont basées sur des capteurs Rouge-Vert-Bleu (RVB),
qui sont beaucoup moins coûteux que les imageurs multi- ou hyperspectraux. Cependant,
les algorithmes de Deep Learning sont sensibles aux changements de la distribution entre
les données utilisées pour l’entrainement et les données prédites. En pratique, des erreurs de
prédiction variables et non prédictibles d’un site à l’autre peuvent être observées. L’objectif
de la thèse est de comprendre les causes de ces variations et de proposer des solutions pour
des estimations de traits phénotypiques fiables en utilisant le Deep Learning. L’étude porte
sur la détection de plantes et d’organes à partir d’images RVB haute résolution acquises sur
le terrain. Nos travaux ont d’abord porté sur la constitution de bases de données d’images
diversifiées provenant de différents lieux et stades de développement pour l’émergence de
plantes (maïs, betterave, tournesol) et les épis de blé, ce qui a permis la publication de deux
bases de données annotées, regroupant 27 sessions d’acquisition pour le drone et 47 pour
la détection d’épis. Ces jeux de données démontrent la différence de performances entre
les résultats publiés et les nôtres en raison du changement de distribution. Pour dépasser les
limites des méthodes habituelles, nous avons organisé deux concours de données, les Global
Wheat Challenges, en 2020 et 2021, qui nous ont permis d’obtenir des solutions entraînées
pour la robustesse sur un jeu de données différent de celui de l’entraînement. L’analyse
des solutions a montré l’importance des stratégies d’entraînement pour la robustesse au-
delà des architectures utilisées. Nous avons également montré que ces solutions peuvent
être déployées efficacement en remplacement du comptage manuel. Enfin, nous avons
démontré l’inefficacité des fonctions d’entraînement conçues pour l’entraînement robuste.
Notre travail ouvre la perspective d’une meilleure évaluation du Deep Learning dans le
contexte du phénotypage à haut débit et donc de la confiance dans son utilisation en
conditions réelles.

The challenge of robust trait estimates with DeepLearning on high resolution RGB
images

High throughput plant phenotyping, especially in the context of open field acquisitions, relies
on the interpretation of data from different sensors implemented on various vectors such
as tractors, robots or drones. Initially, these data were interpreted using remote sensing
algorithms that exploit the spatial resolution of the signal. Since 2015, however, progresses
of ”Deep Learning”, based on the training on examples, has already obtained promising
results for measuring the rate of cover, counting plants or organs. It uses learned convolution
layers, can take advantage of the spatial organization of the signal. The advantage of
these methods is that they are based on Red-Green-Blue (RGB) sensors, which are much
less expensive than multi- or hyperspectral imagers. However, these methods are sensitive
to changes in the distribution between the data used in training and the predicted data. In
practice, variable prediction errors from site to site can be observed using these methods.
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The objective of the thesis is to understand the causes of these variations and propose
solutions for reliable phenotypic trait estimates using Deep Learning. The study focuses on
detecting plants and organs from high-resolution RGB images acquired in the field. Our work
first focused on the constitution of diversified image databases from different locations and
stages of development for plant emergence (maize, beet, sunflower) and wheat ears, which
allowed the publication of two annotated databases, grouping 27 acquisition sessions for the
drone and 47 for the ear detection. The datasets demonstrate the performances difference
between the published results and ours due to the change in distribution. To go beyond
the limits of the usual methods, we organized two data competitions, the Global Wheat
Challenges, in 2020 and 2021, which allowed us to obtain solutions trained for robustness
on a different data set than the training one. The analysis of the solutions showed the
importance of the training strategies for robustness beyond the architectures used. We have
also shown that these solutions can be effectively deployed as a replacement for manual
counting. Finally, we have demonstrated the inefficiency of training functions designed for
robust training. Our work opens the prospect of a better evaluation of Deep Learning in
the context of high-throughput phenotyping and thus of confidence in its use in real-life
conditions.
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1 Introduction

1.1 Agriculture must adapt shortly to face the future challenges

1.1.1 Climatic, environmental, and anthropic constraints on the food system.

Our food system results from the interactions between food production and the consumers
[1]. It is challenged by its strong impact on the environment, including global warming: some
of the hottest years (2018, 2019,2020) recorded in the world (6th, 3rd and 1st) [2] and in France
(2nd, 4th and 1st) [3], happened during the writing of this thesis. Agriculture can also mitigate
climate change by sequestering carbon in the soil [4]. Despite the numerous political summits,
there is no indication that the trends will reverse in the future, and the average yield of major
crops will reduce by 3% to 6.0% for a one degree Celsius increase [5], [6]. The expected
increase of +4°C for 2100 is associated with a decrease of 22% for wheat, 12.1% for rice, 26.4%
for maize and 1.8% for soybean.
Further, extreme climatic events that can destroy all crops at a country scale are ex-

pected to become more frequent. Our food system faces additional challenges: the global
population is expected to jump from 7,8 billion people in 2020 to 11 billion in 2100. It requires an
increase of 40% of the land area to be cultivated at constant productivity, although cropland
represents already 38% of the land surface according to FAO [7]. The diet quality needs
to evolve: 39% of adults aged over 18 years old were considered as overweighed in 2016
according to WHO [8]. This phenomenon is described as a “nutrition transition” [9] resulting
from the larger quantity of food accessible to the population with more carbohydrates, fats
and oils, and combined with a lack of activity. The quality of the diet needs to be addressed
for all in the future. At the same time, hunger is still a main issue [10] with still 690 million
humans (8.9% of the global population) suffering from too limited access to food in 2016 [11].
At the same time, agriculture should reduce its environmental footprint with less use of

pesticides, herbicides or artificial fertilizers, not only in developed countries but also develop-
ing ones [12]. Current industrial agriculture practices harm biodiversity while agriculture can
adopt new practices emphasizing the role of biodiversity [13]. The extensive use of chemical
inputs impacts also human health [14]. Further, the use of genetic modified crop (GMO)
[15][16][17][18] is still questioned regarding possible negative impacts on human health and
the environment. GMOs are largely used in North America, while most of them are regulated
in the European Union.
To summarize, in the next decades, the global food system is required to produce more

or to keep the current productivity, with better and more nutritional diets, sequestrate CO2
with a changing climate, less agricultural inputs.

1.1.2 Productivity, potential yield and genetic gain

Food production increases during the 20th century were achieved mainly with a massive
rise in crop productivity while the cropland area remained mostly stable [19]. Therefore, the
production of food is primarily controlled by crop productivity, i.e. mass of harvested organs
per unit area, most often called yield. However, the harvested organs must have sufficient
quality to be transformed into food products: wheat requires a minimum protein content
to make bread and pasta. Yield results from the accumulation of plant carbohydrates
in the harvested organs generally corresponding to the reproductive organs or the root.
Photosynthesis processes capture the incoming light to convert water and CO2 into O2
released in the atmosphere and carbohydrates accumulated in the plant (Figure 1). Evans
defined the potential yield as “the yield of a cultivar when grown in environments to which it
is adapted, with nutrients and water non�limiting and with pests, diseases, weeds, lodging,
and other stresses effectively controlled” [20]. It corresponds to the maximum yield given a
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quantity of light, temperature for a shared genotype genetic.

Figure 1. Schematic presentation of the photosynthesis. Chloroplast are cells contains in
the leaves that are able to convert CO2 and water to 02 and carbohydrates, that are
accumulated in reproductive organs

To keep the yield close to its potential requires avoiding any nutrients and water limita-
tions. Nutrients such as nitrogen, phosphate, and potassium are essential to plant protein
production, including those involved in photosynthesis. They can be found in the soil and
supplemented by fertilization. Water is the primary source of protons for the Calvin cycle
that converts photons into chemical energy (ADP). Water is also necessary to transport nutri-
ents from the soil to the leaves. Diseases (bacterial, virus or fungi) may induce substantial
yield loss when they develop in the field and often require using fungicides or bactericides
when no natural alternatives can control diseases. Keeping crop yield high requires limiting
the competition for light, water and nutrients from the weeds and limiting damages from
insects and animals or extreme climatic events such as hail, heatwave or frost. Innovative
farming strategies attempt to address all these issues to keep the yield close to its potential.
However, the potential yield can also be increased by improving plant functions: a better
efficiency of the photosynthesis, better root efficiency in capturing nutrients in the soil, a
better leaf orientation to capture light or limit transpiration, high resistance to pests, an
increased fraction (harvest index) of the plant dry mass into the harvested organs. For a
given environment, most of these functions are governed by the plant genome. Gain of yield
potentials with genetic improvement is called genetic gain.

1.1.3 Crop domestication and Scientific revolutions: a brief history of yield improvement
science

Humans improved crop yield through several steps driven by key scientific breakthroughs.
The genome of modern crops results from these processes, summarized in Figure 2. The first
step was the crop domestication[21], which started at least 10.000 years ago for crops such
as wheat [22] , maize [23] , rice [24], [25], or sorghum [26][27][28]. This process happened
independently at different places such as northeastern America, Mesoamerica, central
mid-altitude Andes, West African sub-Sahara, east Sudanic Africa, Near East, northern
China, Yangtze China. Domestication is a long process that consists of random crosses
between races or close species. Domestication of wilds species is a spectacular example
of plant-animal co-evolution: it is even considered that wheat has domesticated humans
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[29]. Surprisingly, this process usually requires few chromosomic changes despite spectacular
changes in appearance and performance.

Figure 2. Milestones in crop breeding

The second stage started with the discovery and understanding of Mendel’s Laws of
genetic. The breakthrough has paved the way for more structured breeding that took into
account the parents’ characteristics and led to the development of a more formal science
of plant breeding which started to be popular during the end of the 19th century, using field
trials to select the best performing crosses. The first company, Gartons Agricultural Plant
Breeders, was the first to commercialize a new variety of plants thanks to cross-pollination.
From the start of scientific breeding to the end of the secondworldwar, several innovations

emerged: cross-breeding (crossing two different varieties), hybrid breeding, or mutation
breeding. The development of statistics to handle the effect of the environment during
trials was also a critical innovation, which gave birth to modern statistics with the work
of Ronald Fisher, in charge of the analysis of the Rothamsted Station [30], near London.
Varieties with better yield, disease resistance, and easier harvesting were created thanks to
these scientific revolutions. Cross-breeding helped to introduce genes from one cultivar to
another. Mutation breeding provokes mutation in plant cells to create new, possibly unusual
characters. During this period, the harvest index was improved by reducing the height of
stems thanks to cross-breeding. It allows more biomass to go in the grain, less lodging, and
easier harvesting. The differences between wheat anterior to this period that is still taller
and modern wheat cultivars are presented in Figure 3.
The “Green Revolution”, which started in Mexico in the 60s and then spread to other

places such as India and Pakistan, was based on creating new varieties of wheat, the most
consumed crop, thanks to crop breeding. It introduces genetic gain with new cultivars based
on a semi-dwarf gene and a rust-resistant gene. Rust was a significant disease that induced
hunger on a large scale. The Green Revolution also introduced more dense sowing density
combined with intensive use of fertilizer. Similar approaches were introduced for rice [31] and
maize [32]. Despite being already a combination of several innovations, the Green Revolution
faces limitations for the identified challenges that agriculture will face in the coming decades.
The next revolution would require better exploitation of the ecological services to reduce the
environmental impact and create resilient farming systems while producing healthier food.

1.1.4 A change in crop management and genetic improvement are required

With current technologies, reducing negative externalities, making our system more resilient
and producing enough food is probably not possible. Some crops rely on the use of few key
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Figure 3. Wheat varieties, 19th century to present, John Innes Centre

inputs that, if removed, call into question the system’s economic sustainability. The recent
sugar beet crisis in France, which took place in 2020, is a good example. Sugar beet is one
of the most productive plants with a potential of 24T of sugar per hectare [33], to compare
to bread wheat which has only a potential between 8-12T per hectare. It has been grown in
France since the 19th century as a replacement for sugar cane. This crop is sensitive to the
Beet Chlorosis Virus and Beet Mild Yellowing Virus, that are transmitted by insect and cause
a loss of chlorophyll, an essential pigment for the photosynthesis.
Neonicotinoids allowed to grow sugar beet without the viruses’ presence during the last

two decades, preventing spraying pesticides during the growing season. The pesticides
coat the sugar beet seed and spread during the season. In comparison to former solutions,
neonicotinoids seemed more reliable and less harmful to the environment. However, the
molecule is highly remanent and accumulates in the soil, affecting other micro-organisms
that the target pathogen insect. It has led to their ban in France in 2019. However, all
alternatives were less effective and more harmful. No alternative practices such as organic
farming provide a convicting alternative. Such limitations, called ”technical dead end”
since no proven solution providing similar productivity with less environmental impact is yet
available.
Complexity will be fundamental to increase resilience, mitigate negative impacts while

producing enough food. Such complexity will require many experiments to build sufficient
knowledge. In the case of sugar beet, scientists envision that the alternative will be a
combination of genetic and farm management to repel the aphid and attract him to
other parts of the field, to have a different crop that limits the spread of the pathogen,
have varieties which are resistant to the viruses. Strategies need to adapt since insects
and diseases will probably find ways to avoid too simple solutions. For instance, the rust
resistance that made the wheat cultivars successful for the Green Revolution was based on
two genes. At the end of the ’90s, new strains of rust have bypassed the defence mechanism,
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making the varieties less relevant. The pace of experiments for agriculture must increase to
find more complex and dynamic strategies. Experiments have always been key in agriculture,
but the dynamic nature of crops and the associated environment and the inherent difficulty
in evaluating outputs make progress slow.

1.1.5 Towards genomic selection

Since the 2000s, a new era of crop breeding has emerged thanks to a better description
and understanding of DNA. Instead of crossing two parents in the hope of adding few genes
of interest into the genes pool of a high yield cultivar, the genome is precisely characterized
with methods such as SNP (single-nucleotide polymorphism) or SSR (simple sequence repeat).
A SNP is ”a single base pair mutation at a specific locus” [34]. Genotyping is today cheap
and accessible. Such innovations are now accessible thanks to the low cost of sequencing
techniques that describe the genome : rice [35], barley [36], maize [37] , soybean ([38] and
more recently wheat [39]. Association between genome and phenotype can be measured
with ”Genomic Wide Association Study” (GWAS). The method finds ”Quantitative Trait Locus”,
a specific region of a chromosome responsible for the variation of a phenotypic trait by
observing the concurrent changes in SNP distribution and the phenome. Models that predict
phenotypic traits forgiven a genome are developed. The more scientists can understand
the genome’s role, and the faster new varieties can be created. The study of transcriptomics
is also of interest by understanding the expression of a gene through RNA sequencing. It has
already led to applications such as development stage control by silencing or overexpressing
some genes [40], [41]. As illustrated in Figure 4, the introduction of genomic variation can be
done not only by selection (Conventional plant breeding) but also with induced mutation
thanks to chemicals of radiation (plant mutation breeding). Foreign genes can directly be
introduced into a host (Plant transgenic breeding), with bacteria such as Agrobacterium
tumefaciens commonly used inbreeding. The introduction of faster, more precise techniques
known as genome editing enable precise modifications of few bases. The most known
strategy is the CRISPR/Cas9 [42] which allow determining specific targeting sequence for
the new DNA addition. It is a challenging exercise as genes can have interactive effects:
genes that induce a disease’s resistance can trigger a physiological process that can lead
to a loss of yield.

1.2 High-Throughput phenotyping is a key tool for this transition

1.2.1 The bottleneck of the digital and genomic revolution: the phenotyping problem for
agricultural experiments.

Experimenting in agriculture is central to improving knowledge, evaluating management
practices’ efficiency by comparing modalities, evaluating new accessions and cultivars, and
calibrating crop models. The field experiment is therefore usually positioned such as the
soil is homogeneous, the area around the trial is protected with a large buffer zone, and all
modalities or genotypes are tested on a small piece of land with a fixed number of rows
and a fixed length. Each modality is often replicated on several elementary experimental
units, which are called a ”microplot”. Conventional plant breeding takes 8 to 10 years. This
process is done in several steps: first individual plants are grown in-door to get as many
crosses as possible. Then, given a set of criteria, the best performing genotypes are kept
and used for a new test with more space. Finally, candidate genotypes are tested in a set of
different environments. This process is usually done by commercial companies, universities
or non-profit organizations such as CIMMYT. In France, the quality of a genotype is also
independently tested on a national network to provide independent feedback to farmers. At
this end of this process, the selected genotype can be registered as a variety, or cultivar, if it
demonstrates a significant improvement compared to a set of reference varieties. At each
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Figure 4. The different plant breeding strategies. Reproduction from [43] with author’s
authorization.

step of these experiments, many measurements are involved in assessing the performances.
The exact process is applied to agronomical experiments to evaluate the efficiency of inputs,
new cropping systems or other agricultural innovations.
Measuring the performances is still mostly done manually by field workers. Measurements

can be either destructive or non-destructive. Destructive measurements are made by gath-
ering the plants in a given sampling area and are used to quantify several traits, including
the dimensions of the organs, their dry biomass, or the nitrogen content. Destructive mea-
surements can be repeated only a few times during the season, considering the size of the
microplot and sampling area required each time. Conversely, non-destructive measurements
can be replicated multiple times during the season. It is used to measure the evolution of
architectural traits such as canopy height or plant and organ counting. Visual notations are
also used to evaluate some traits but are prone to variability among the different field workers.
When relying on the field workers, another challenge arises around critical development
stages: the number of activities is so high that not all needed measurements can be done,
leading to a long day of work for field workers and incomplete data for agronomists. These
methods were exploited during the Green Revolution for plant phenotyping. However, this
currently constitutes a substantial limitation for the current genetic revolution based on high-
throughput genotyping. Therefore, Plant phenotyping appears to be now the bottleneck of
genetic improvement.
High throughput plant phenotyping (HTPP) is a recent field of research exploiting the

most recent technological advances in vectors, sensors and interpretation algorithms to
estimate traits characterizing crop architecture, physiology or disease symptoms. Additionally
to its interest in plant breeding, the same technologies can be adapted to agronomical
experiments and for farmers’ decision-making. Before reviewing the current trends in HTPP,
we first define few critical terms following the glossary proposed by [44].

• Genotype: The genotype of an organism is a set of inherited instructions carried within
its genetic code.
• Trait: A trait is a quantitative or qualitative characteristic of an individual resulting from
the expression of its genome in a given environment. For plant phenotyping, it can be
determined at the plant scale or at population scale. The term “phene” is also used.
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• Variable: A variable is an estimate of the trait resulting from the application of an
interpretation method on sensor measurements.
• Phenotype: the phenotype is the set of observable traits of an organism. It covers
morphology, development, cellular, biochemical, or physiological properties.
• Phenome: the phenome is the set of all possible phenotypes for a plant or a population.
• Phenomics: The study of the phenome and its relationship with the genome, the
transcripts, the proteins or metabolites.
• Ideotype: A crop ideotype is an ideal collection of traits which optimize crop perfor-
mance to a specific end-use in a particular environment and crop management.

The role of HTTP in plant science is to develop automatic systems that measure traits.
The phenotyping systems are made of three main components: a vector that can move
the plants to the sensor or the sensor to the plants, a sensor that records a signal from the
plant, and an interpretation algorithm that transforms the signal into a trait estimate. These
systems are operated over experimental installations with a range of levels of control of the
environmental conditions.
A phenotyping process can be defined as ”high-throughput” if the acquisition for one mi-

croplot is a magnitude faster than a manual measurement [45]. However, the measurements’
cost efficiency and accuracy need also to be accounted for when compared with traditional
phenotyping methods. In the next section, different HTPP systems will be presented, the
produced traits will be analyzed, and finally, the current interpretation algorithms will be
discussed. While HTPP can be viewed as one engineering science, its multidisciplinary nature
(robotics, mechatronics, statistics, computer vision, machine learning, artificial intelligence,
modelling, agronomy, ecophysiology, botany) allows the emergence of ”Plant Phenomics”: a
science that relates the phenome with the genome, the transcripts, the proteins, and the
metabolites.

1.2.2 The several traits accessible from HTPP

The measurement of traits with HTPP produce variables: a discrete or continuous quantity
that quantifies the traits that can then be used to compare different individuals. Traits avail-
ability and the precision of the associated variables depend both on sensors’ technological
development and interpretation methods maturity. Four categories of traits are proposed
and summarized in Figure 5:

• State traits which are measured at a specific time and are intrinsic properties of the
crop/plant/organ
• Dynamic traits which are based on repeated estimates of state traits over a specific
period but do not need additional inputs except a time scale
• Radiative traits which are measuring the flux reflected or emitted by the plant that will
depend both on plant state and on the illumination and view conditions
• Functional traits that describe some processes and that need additional information
about the environmental conditions.

States traits
The states traits can be measured directly on the canopy and take exactly one value at

a precise time. They can be categorized into three groups:
• Biophysical traitsdescribe the structural andmorphological characteristics of canopies,
plants, or organs. The aerial parts of the plant that are more easily accessible are
often described: at the canopy level focus is generally on Green Fraction, Green Area
index, Leaf orientation, plant height, lodging, plant density, ear density.
• Biochemical traits provide information on the plant biochemistry. For instance, the
chlorophyll content of a leaf or a canopy is an important biochemical trait that deter-
mines the photosynthetic potential.
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Figure 5. The different traits in phenotyping

• Sanitary traits provide information on the plant health. For example, the detection of
disease symptoms, the determination of contaminated parts of the plant are sanitary
traits that are often derived from visual scoring of the symptoms severity made by
human experts.

Dynamic traits
Dynamic traits are based on repeated observations of state traits. Popular dynamic

traits among breeders are the early vigour or the stay-green. The early vigour is the plant or
canopy growth speed, while the stay green is the plant or senescent canopy rate. Specific
characteristics of the plant architecture plasticity are evaluated dynamically, such as the
leaf rolling. Phenological traits are also dynamic traits that are measured by detecting
qualitative changes in plant morphology. In wheat, tillering, stem elongation and heading or
flowering are evaluated by monitoring biophysical traits such as plant height or wheat head
density.

Radiative traits Radiative traits result from the interaction between light and canopies,
plants or organs. They thus depend both on the view and illumination conditions and canopy,
plants, or organ state. Canopy reflectance or organ radiance are low-level radiative traits
commonly measured and then transformed into higher-level traits such as vegetation indices.
The fraction of intercepted photosynthetically active radiation is one of the main radiative
traits computed from canopy structure and the illumination conditions. Brightness tempera-
ture is also a low-level radiative trait that depends both on canopy state and illumination
(and environmental) conditions. Chlorophyll fluorescence is related to photosynthesis activity
and depends on illumination (and environmental) conditions and canopy state.

Functional traits Several definitions of functional traits exist in the literature due to the con-
cept being explored in the context of plant phenotyping and ecology. Caruso [46] proposes
that “functional traits are generally considered aspects of plant phenotypes that influence
growth, survival, and reproduction by mediating interactions with the biotic and abiotic
environment”. We propose to define functional traits as traits describing canopy, plants,
or organ reactions to the environment. Since they account explicitly for the environmental
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conditions on some processes, they are expected to be less sensitive to some environmental
factors. They will therefore be more heritable than most of the other traits. Efficiency traits
are commonly used functional traits that evaluates the efficiency with which elements are
used by the plant to grow. They include the radiation (RUE), water (WUE) and nitrogen (NUE)
use efficiencies.
A more exploratory approach for functional phenotyping is to adjust the parameters of

crop growth models to match the dynamics of the state variables. Blancon [47] proposed to
calibrate a simple maize growth model [48], [49] using Leaf Area Index calculated from UAV
RGB imagery to retrieve parameters that were more heritable than the LAI itself. Recently,
Shouyang Liu [50] proposed to use a 3D model to retrieve few parameters of the ADEL-wheat
model. The advantage of HTPP phenotyping is also to propose traits that can be use more
frequently by crop models such as CHN [51], Apsim [52][53][54] or STICS [55][56][57], which
represent our current knowledge on plant physiology. Advanced functional traits are meant
to breed on specific processes that allow a better understanding of the reaction of the crop
under a wide range of environmental conditions. As a result, it is possible to find an optimal
set of functional traits that will define an ideotype for given environmental conditions [58].

1.2.3 Phenotyping installations to control/describe the environment and measure traits

The several types of installations
Experimental installations, also called field stations or platforms, are the facilities where

the experiments take place. One or more trials can be conducted in such installations. A
platform is equipped to describe the environmental growing conditions and the several
traits of interest. The environmental conditions can be fully controlled as in ecotrons [59], or
only some environmental factors are controlled/manipulated as in field conditions. HTPP
installations have a high degree of automatization both for measuring the environmental
conditions and the plant traits. Installations can be very diverse, and some examples are
shown in figure 6:

• Low control / Low detail The most basic installations, often used for the study of agri-
cultural practices (e.g. inputs, farm system etc…). It can be as simple as a farmer’s field
with few large microplots.
• Low control / High detail A high-cost installations which does not control the environ-
ment is used to study the performances in real conditions with high temporal and/or
spatial resolution and equipped with numerous instruments. The Arvalis station in
Gréoux Les Bains, or INRAe in Auzeville, both in France belong to this category since
they are equipped with a Phenomobile, an automatic rover system. Such installations
are used in the final stage of the crop selection and cultivar evaluation.
• High control / Low detail A low-cost installation that controls the environment is used
to measure few key traits of plants to determine the impact to specific environmental
conditions. It is still used to measure the plant transpiration for instance.
• High control / High detail An installation with high control and high throughput systems
to measure accurately many traits under a range of fully controlled environmental
conditions.

The phenotyping systems used to measure traits
Under field conditions, a vehicle, called the vector, moves the sensors that record the sig-

nals emitted or reflected by the plants. The combination of a vector and sensors determine
a specific temporal and spatial resolution and coverage, as presented in figure 7. Satellites
such as a Sentinel or Planet provide field data a few times per week everywhere globally, at
the expense of a metric to decametric spatial resolution. Gantries and Robots are the most
advanced vectors used for phenotyping purposes. These systems can be automatic (Phe-
nomobile [60], FIP[61], Rothamsted Field Scanalyzer[62]) or modified agricultural machinery
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Figure 6. : Classification of the experimental installations defined by the targeted levels
of trait details and control/description of the environmental conditions.

driven by a human such as a tractor [63]. An important feature is the presence of an active
illumination or not. These vectors can ”scan” the agricultural experiment every 3-7 days
with a very high spatial resolution and a flexible viewing geometry. A cheaper alternative
appeared: the UAV, which is an efficient solution for plant phenotyping, achieving very high
throughput with a high spatial resolution and numerous flights covering the whole crop cycle
and acquired traits such as the green fraction [64], plant counting [65], [66] or height [67].
Hand-held devices or smartphones can also be used for phenotyping in the field, allowing
some key traits to be measured. Such devices are attractive to conduct experimentation in
farmers’ fields and are already used for decision making for farmers: apps such as Xarvio
scouting or PlantVillage Nuru[68] provides automatic advice based on a smartphone photo.
Finally, field IoT (Internet of Things), which are connected cameras fixed on a boom, can
monitor daily the growing stages [69] and disease development [70]. However, the coverage
of a single system is minor, in the order of few square meters.

Figure 7. : Presentation of the different vectors.
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The choice of the sensors is constrained by the vector and is generally a trade-off
between cost, possible payload and energy consumption, spectral resolution, and spatial
resolution. RGB imagery is the cheapest way to acquire data, with an unmatched resolution
of millions of pixels and is widely used aboard all vectors. Recent drones can be equipped
with a 100Mpx camera. Multispectral and hyperspectral imaging systems are popular for
phenotyping applications, as these sensors can retrieve information on the biochemical
composition of plants. However, the gain in spectral richness is achieved at the expense of
spatial resolution. Vectors are also often equipped with a lidar system to reconstruct the 3D
structure of the canopy finely.
While the HTPP systems are designed to increase the throughput with the possibility

of monitoring crop growth with a high-revisit frequency, they also improve the accuracy
with which the traits are estimated and allow access to new traits not measurable with the
traditional techniques. However, the large volume of data generated and the complexity of
interpreting the recorded information currently constitute the bottleneck of phenotyping. In
the following, we will focus on this third component of HTPP systems: data interpretation.

1.2.4 From remote sensing interpretation methods to deep learning ones

Trait Description Category Unit Method

Phe-
nomo-
bile
(RGB)

Hand-
held
(RGB)

UAV
(RGB)

UAV
(Multi-
spec-
tral)

GreenFr Green Cover Fraction
State -
Biophysical

Unitless [0:1]
Segmentation
with DL or SVM

X X X X

GAI Green Area Index
State -
Biophysical

Unitless (%
of observed
area)

radiative trans-
fer model inver-
sion

X X X

ALA Average Leaf Angle
State -
Biophysical

deg
radiative trans-
fer model inver-
sion

X X X

FIPAR
Fraction of inter-
cepted PAR

Radiative Unitless [0:1]
radiative trans-
fer model inver-
sion

X X

CropFr Crop Cover Fraction
State -
Biophysical

Unitless [0:1]
Segmentation
with DL

X X

Senes-
centFr

Senescent Fraction
of the crop

State -
Biophysical

Unitless [0:1]
Segmentation
with DL

X X

Height-
Max

Maximum plant
height

State -
Biophysical

m
Photogramme-
try

X X X X

Spikes-
Density

Density of spikes
State -
Biophysical

number/m2
Detection with
DL

X X v

Plants-
Density

Density of plants
State -
Biophysical

number/m2
Detection with
DL

v

NDVI NDVI
State -
Biophysical

Unitless
Vegetation
Index

X

Clgr CI green @ nadir
State -
Biochemical

Unitless
Vegetation
Index

X

MTCI MTCI @nadir
State -
Biochemical

Unitless
Vegetation
Index

X

LCC
Leaf Chlorophyll Con-
tent

State -
Biochemical

microgram
of Chl/cm2
of leaf

radiative trans-
fer model inver-
sion

v X

CCC
Canopy Chlorophyll
Content

State -
Biochemical

g of Chl/m2
at ground
level

radiative trans-
fer model inver-
sion

v X

Lodg-
ingScore

Plant Lodging
State -
Biophysical

Unitless [0:1]
Photogramme-
try

X

Disease-
Fraction

Fraction of the crop
(or organ) affected by
a disease symptoms

State -Sanitary Unitless [0:1]
Segmentation
with DL

v v

Phenol-
ogy

Growth Stage Dynamic
Zadock
scale

Classification
with DL

v v

Table 1. Presentation of the available traits at Arvalis for production (X) or in development
(v)

High throughput plant phenotyping is today an independent field with its journals and
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methods, although it was created by an association of remote sensing scientists and ge-
neticists. It strongly influenced the first algorithms used to transform raw data acquired by
HTPP into valuable traits. The focus was first put on exploiting the spectral information with
the use of vegetation indices that are simple combinations of reflectance or radiance in few
spectral bands. For instance, NDVI that combines the red and near-infrared (NIR) bands is a
good proxy of green vegetation. Several vegetations indices were proposed in the literature
for hyperspectral, multispectral and even RGB sensors [71], [72]. Multispectral and hyper-
spectral cameras are popular to estimate the content of pigments used in photosynthesis,
such as chlorophyll. However, most of these simple interpretation methods are based on
empirical relationships with few traits. These relationships are generally established over a
limited dataset, and great caution should be paid when applying them under conditions
not represented in the training dataset.
Further, the simple vegetation indices may also lack causal relationships with the targeted

trait, resulting in poor accuracy and robustness. Alternatively, physically-based approaches
have been developed to get more robust estimates of a few critical structural and bio-
chemical traits. The PROSAIL model [73] is a popular radiative transfer model that combines
PROSPECT [74] that simulates leaf optical properties, and SAIL [75] that simulates bidirectional
canopy reflectance. PROSPECT was used to estimate GF from the multispectral reflectance.
When observing at 45° inclination, we can estimate the GAI (Green Area Index), the AIA
(Average Inclination Angle) when combined with nadir observations, which can finally be
used to compute FiPAR (Fraction Intercepted Photosynthetically Active Radiation), which
summarizes the biophysical capacity of a plant to capture solar radiation. The FIPAR can
then be used to calculate the light use efficiency if independent biomass measurements are
available. However, PROSAIL is based on simple assumptions on canopy architecture that
are well verified for crops such as wheat while being violated for other crops such as maize
or sunflower.
Other instruments complement the RGB, multispectral or hyperspectral cameras: Infrared

thermal cameras measure the surface temperature that indicates water stress under specific
conditions. Active and passive fluorescence cameras have also been used to access the
functioning of photosynthesis and other characteristics of the leaves. More recently, ap-
proaches based on exploiting the high-resolution imagery have been developed, especially
using RGB cameras. Computer vision techniques [76] based on geometrical rules have
successfully estimated several structural and morphological traits. Further structure-from-
motion (SfM) methods applied on UAV images allows generating the surface elevation model
from which the plant height can be derived [67]. Alternatively, stereoscopic and multi-vision
methods and LiDAR also provides a 3D description of the non-occluded parts of the plants
[77]. Such methods are widely used for in-door phenotyping to describe the architecture
of the aerial parts [78], and roots of the plants [79]. Vegetation indices, physically-based
methods, computer vision ones, or Deep Learning approaches are already able to produce
an extensive range of traits for HTPP. Table 1 presents an example of the traits that are
routinely produced at Arvalis.
High-resolution RGB imagery allows the exploitation of the texture and the shape of the

objects in the image to extract a range of traits. Compared to the multispectral and hyper-
spectral imagery where the lower spatial resolution forces to interpret the signal concurrently
for identifying the organs of interest and characterizing them to derive the targeted trait. It
results in possible confounding effects, leading to generally to lower performances of the es-
timation. The interpretation of high-resolution RGB imagery has benefited for approximately
five years from the advances in deep learning techniques. Several traits are now estimated
using DL, including plant segmentation ([80], [81] and plant and organ detection [82], [83],
disease classification and quantification ([84][85][86], biomass and yield prediction ( [87],
[88] ). Deep learning is now considered as the state-of-the-art approach that handles a
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large diversity of traits difficult or impossible to estimate with pixel-based classification and
computer vision techniques [89].

1.3 Robust estimation of traits with deep learning

The development of DL models requires much human effort to prepare large datasets of
labelled images used both for training the model and its evaluation. It is due to the empirical
nature of the DL approach, inferring the predictions rules from a training dataset. It poses a
problem of reliability of the predictions when applied to an extensive range of HTPP data.
This section first presents the principles of Machine Learning and Deep Learning, emphasising
the robustness problem.

1.3.1 Basic of Deep Learning in computer vision

A brief history of recent progress in computer vision

Figure 8. Illustration of some of the most important breakthroughs made by Deep
Learning

Deep Learning is a subfield of Machine Learning (ML) and is based on multiple processing
layers to extract features and solve a large range of tasks. It achieves state-of-the-art
performances in a wide range of applications including speech recognition [90] , visual object
recognition [91][92][93][94], localization [95][96][97] , segmentation [98], language translation
[99], and plant phenotyping as previously described. A neural network is still the state of the
art of ML for relatively simple problems. It is based on the use of a network of neurons. A
neuron is an elementary processing unit that receives several inputs, which are transformed
into one output. The most simple form of a neural network is the perceptron [100] which is
made of one neuron. However, neural networks are generally organized in several layers of
neurons and are called Multi-layer perceptron (MLP) [101]. The neuron’s input can be the raw
input data or the outputs of the previous layer.
Although neural networks were already described in the ’60s, DL was discovered suppos-

edly in 1989 [102] or 1995 [103], during LeCun stay at the ATI&T labs. The first DL model was
able to recognize cursive letters on mails thanks to few layers of convolutions learned with
backpropagation [104]. DL was, however, not very popular at this period as compared to
other ML algorithms. The rise of DL started with the winning of AlexNet [94] on the ImageNet
[105] large scale visual competition: it beats XRCE ([106]) by almost 10 points (from an error of
26% to 16% as shown on figure 8). From this date, no alternative approaches to DL won any
major challenges in computer vision, almost ten years later.
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These successes have spread to other domains such as language processing which
also use DL intensively since the introduction of the attention mechanism by Bengio et
al. [107]. Figure 8B presents two unbelievable breakthroughs made by the DeepMind
company: Alphazero [108] which beats a human on the chess and go games without looking
at historical games, and AlphaFold [109] which converts the 3D structure of proteins from their
2D sequence. This problem previously required a lot of human inputs with the program FoldIt
[110]. From a theoretical point of view, the main breakthroughs were theorized well before
the emergence of AlexNet: convolution, backpropagation, neural networks were already
known but not widely used. Practical factors are contributed to the development of DL for
many applications:

• The release of CUDA [111] in 2007 by NVIDIA allowed researchers to use GPU with
languages such as C, C++ or Fortran. DL requires a lot of computer power, but most
of the operations can be parallelized. A GPU can be viewed as a set of thousands
of low-frequency CPUs. AlexNet was one of the first networks implemented on GPU,
allowing for more layers and training on more data.
• Large labelled datasets were available starting 2009, with ImageNet release [105].
It was on the first time that 100 million images were used to train a network. Later,
other datasets such as the MS COCO [112] were crucial to train detectors. Such bench-
marks helped researchers to focus on improving the architecture and increase the
performances of the DL models.
• The quality of DL libraries also has helped to democratize. Caffe, written in C++, was
one of the first libraries that could be leveraged to adapt DL networks for new domains,
alongside Torch, written in Lua. The emergence of Tensorflow, which had a python
API, also helped a lot. Today, multiple frameworks exist. Pytorch is popular among
researchers while more beginner-friendly yet powerful libraries exist, such as Keras.
Figure 9 presents few popular libraries, sorted by their level of ease.

Figure 9. History of the Deep Learning packages used to interact with the GPU

The combination of industrial innovations was possible thanks to large companies such
as Google, Facebook or Microsoft. This support materializes in different aspects: production
of essential open-source codes, including Plant Phenotyping and open-source publication.

Deep Learning is about learning a better representation
In the traditional ML approach, an algorithm extracts features from an object of interest

(image, text, audio file), and a classifier is trained to decide on these features. Choosing
the right set of features is then critical to get high performances. In DL, the representation,
i.e. features extraction, and the classification processes, are trained jointly, so no human
interactions are needed to find the best features for a given problem. It is illustrated in figure
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20 for image segmentation based on pixel colours. Instead of choosing a set of vegetation
indices or changing the colour space to train a Support Vector Machine (SVM), DL can
learn a directly used representation to segment an image. The change of representation
helps to simplify the problem as we show it in example A (Figure 10): in this example, the
better representation allowed by the simple rotation of the space reduces the complexity
of the classification that can be done only on the x-axis. It can be viewed as a big and
non-linear principal components analysis. DL methods are the most powerful way to learn a
representation, but such an approach is not new in ML. Mairal and Ponce introduced the
concept of “supervised dictionary learning “ [113] where a set of wavelets are learned to
compress the data.

Figure 10. Comparison of change of representation in machine learning and in Deep
Learning (Credit: François Chollet, Deep Learning with Python)

Fundamental blocks of convolutional networks
As described in 1.3.1, the popularity of DL is due to the emergence of convolutional neural

networks (CNN), which are only one subclass of possible DL algorithms. One CNN is made of
few key blocks that help to learn a better representation. In Figure 11, we can differentiate the
two components of a DL model: the encoder, or backbone, that extracts the features, and
the task solver, which is usually a stack of fully connected neurons. The encoder is made of
successive convolutional layers. Convolution is the multiplication of one part of the matrix (i.e.
one part of the image) by a weights matrix. All elements are then summed and affected to a
pixel of the output. Then the convolution works as a sliding window to get the value for the
other pixels. We present an example 11 of one convolution output (ResNet-50, first block) on
a wheat image. It shows that the role of the convolution is to activate or de-activate some
specific parts of the image. In our example, the leaves are activated in some dimensions but
not in others. This process is repeated several times: the number of dimensions increases at
each iteration while the spatial resolution decreases. The deeper we go, the more complex
the representation of the image is.
To reduce the spatial resolution without learning additional parameters, one can also use

a pooling layer, which sums or averages the values of a group of adjacent pixels to a unique
value. This operation does not change the dimension but reduces the spatial resolution.
The output is a unique features vector, usually between 1024 and 2048 dimensions, which
are then used by a classifier. The features vector is meant to discriminate specific parts of
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the image. A last important building block is the activation function, which is usually used
on the convolution output. The activation layer, which needs to be differentiable, helps the
gradient not to vanish and brings useful non-linearity to the network. Usual functions are
presented in figure 12, but it is a research area by itself! All CNN models such as AlexNet
[94], VGG-16 [114] , ResNet-50 [115], and EfficientNet [116] propose variations of the described
architecture. Some works are conducted with AutoML [117] to learn the optimal architecture
instead of handcrafting it.

Figure 11. Illustration of the processing of a RGB image by a CNN

Figure 12. Presentation of different activations functions

Training a Deep Learning network right
The architecture of CNN models is not the only reason for their success, but the learning

process, called training, is important to tune optimal weights for the convolution. It is done
by using a “loss function”. During the training process, presented in figure 13, each data
point (for instance, an image) is presented to the network, which will provide an output
(for instance, the class “wheat” or “maize”). This output is compared to the labelled target
(“Wheat”), and the loss function computes a penalty. The goal of the training is to minimize
this loss by changing weights values. The derivative of the loss function is used to update the
weights and minimize the loss. The backpropagation gradient, or “backward propagation of
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errors”, introduced by Rumelhart and Hinton [104], helps to efficiently evaluate the gradient
of error at each layer of the network. The optimizer is the algorithm that updates the weight
given the gradient value. A simple optimizer such as the stochastic gradient descent (SGD)
updates the weights by subtracting the gradient multiplied by a learning rate value. The
learning rate can be interpreted as the sensitivity to new data: a high learning rate will make
the network prone to overfit, while a low learning rate prevents the network from learning. The
loss function can be adapted to plant phenotyping scenarios to encode expert knowledge.
For instance, in the case of multi-species vegetation classification, one can set the model
to predict the class “vegetation” AND “wheat” or “maize” and set a penalty if the algorithm
attributes the class “background’ and “wheat” to the same pixel. It is an area of research
that is more probably accessible to the plant phenotyping community.

How bad is the error ?

How much should it impact the 
network ?

Our goal

Figure 13. Illustration of the optimization of a Deep Learning Network (credit: François
Chollet, Deep Learning with Python)

Training from scratch a DL model on a very large database is time consuming and costly.
The completion of 90-epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU
takes 14 days. [118]) and costs 1.2 M USD to train it in 24 minutes. However, it can be optimized
to 18 minutes with an associated cost of 40 USD [119]). It is then not always accessible for
everybody to train a state-of-the-art detector. Also, not everybody has access to large
datasets to train a network for their application. However, a popular technique called
transfer learning helps to solve this issue. The learned representation of models trained on
large datasets can be re-used for other problems, even with smaller datasets. The process
is described in figure 14: the classifier can be removed while keeping the encoder (trained
convolutional base), and one can append a new classifier on top of the representation. At
the beginning of the training process, the error (loss) will usually be high. Therefore, we freeze
the encoder so we do not lose the representation because of the first step, and we let the
classifier train on top of good features.

Few model architecture have allowed the large varieties of algorithms in 2.4
DL models can be designed to solve more complex tasks than classification: they can

use outputs larger than an n-dimension vector, and the loss function can be adapted. It
is important to underline that most traits in plant phenotyping will be based on classic
architecture and do not require designing a specific architecture. However, conferences
such as the Computer Vision Problems in Plant Phenotyping (CVPPP, CVPPA) promotes plant
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Figure 14. Presentation of a transfer learning process (Credit: François Chollet, Deep
Learning with Python)

phenotyping as an area of research for Computer Scientists. Despite the vast number of
models published every week, few stand above the crowd with time. Classification networks
(figure 15a) are widely explored with architecture such as AlexNet, VGG, GoogLeNet which is
very deep, ResNet [115], which introduces the concept of skip connection which concatenates
the output of the convolution with its input, so information is better kept within a very deep
network and does not vanish. Segmentation(figure 15b usually relies on the encoder-
decoder architecture, with model such as U-Net [98]. After compression of the information
to a very deep representation, up-convolution is used to restore the original resolution. Skip
connection between the encoder and decoder is essential to share information of layers
with the same resolution. The DeepLab [120] architecture relies on the “atrous convolution”
to capture multi-scale information for segmentation usage. Such convolution allows getting
a large field of view without increasing the number of parameters. Other encoder-decoder
architectures such as Feature Pyramidal Network have been proposed for the segmentation
process. A pre-trained classifier can use to initialize the weight of the encoder.
Encoders are also used for object detection, which can be separated into two families

(figure 15c. One-Stage encoder which regroups SSD [121], YOLO [122], Mobilenet [123] and
directly regresses the coordinates of the bounding boxes with their corresponding classes
based on the encoded representation. A two-stage object detector will use the encoder
to train a region proposal network (RPN) to propose possible objects. Then each object is
extracted with its features with the Region of Interest pooling layer (ROI) and will be finally
assigned to a class. One stage detector is usually faster to compute but less robust. Such
object detector can be applied to instance segmentation, which retrieves not only a box
around an object but also its mask (figure 16). Finding the best architecture can then be
a challenge when designing a method to evaluate a trait. Models such as ResNet, Faster-
RCNN or U-Net were designed between 2015 and 2017 and are still intensively used because
training tricks or new layers can improve their robustness. These models are readily available
in many DL libraries. The theory of DL is still moving, and cascades of new models are
proposed every week. Convolutional neural networks are starting to be less central in the
performance of DL.

An explosion of alternatives to CNN
Convolutional Neural Network made it possible to learn DL features with neural networks

by reducing the number of parameters compared to a multi-layer perceptron and is a
significant block of the algorithms used in this PhD which focus on RGB imagery. However,
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(a) Presentation of classification architectures

(b) Presentation of segmentation architectures

(c) Presentation of detection architectures

Figure 15. Example of common architures used for plant phenotyping traits
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Figure 16. Example of different detections modalities on wheat)

as illustrated in figure 17 alternatives are available for another type of data. For instance,
in Neural Language Processing, recurring neural networks (RNN) were used to process text
data. It includes as a basic bloc a gated recurring unit (GRU) instead of a convolutional layer.
GRU can process a data point with the information of previous data points: predicting the
next word or sentence or the next value in the case of temporal series. The NLP community
also developed Transformers, networks which are based on the attention mechanism. The
attention mechanism can learn the correlation between two variables for all inputs. The
attention mechanism can be applied in an unsupervised manner with encoder-decoder
architecture. It is then called self-attention. It has been critical to the performances of the
DeepMind solutions to solve the go game and protein folding. It is interesting to notice
that such a “Vision Transformer” can reach state-of-the-art performances without any
convolutional layer, despite being more sensitive to shapes than texture compared to CNN
networks [115]. It has already been extended for detection, and segmentation [114]. On top
of the new neural network architecture, progress has been achieved for non-grid structures
such as 3D meshes or protein structures usually represented as graphs. Graph Attention
Networks [124] extend the attention mechanism by taking as input the nodes features and
the adjacent matrix as input.

1.3.2 Training robust DL algorithm for plant phenotyping can be tricky

The bias problem
When DL algorithms are trained, it is assumed that both the training and test dataset are

independent and identically distributed (IID hypothesis). Creating such a dataset requires
capturing most of the ordinary conditions of variations of an object of interest. A consistent
distribution is called ”domain”. Defining the domain is entirely open depending on which
statistics we want to use to determine the distribution: is it a set of expert metadata? Or
statistics of the extracted features? Determining the exact distribution of a set of images,
which are high dimensional objects, is not as easy as describing the distribution of 2-D or
3-D vectors. Using metadata or expert information is the first step to describe a domain. For
instance, a set of images of cars in ”Los Angeles streets in summer” can form a domain defined
by specific weather or a specific architecture. Training an algorithm on such a dataset and
testing it in a set of images of cars from ”Minnesota in winter” could results in a dramatic
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Figure 17. Illustration of the diversity of Deep Learning methods)

drop in performances, as the weather, the illumination, the architecture was never shown to
the model previously. We call the ”domain shift”: the drop of performances on a new domain.
It is then critical to have a dataset that covers the whole distribution of the ”application
domain” as illustrated in figure 18: the expected distribution of the data to predict. Some
critical ethical issues were raised when using DL algorithms: Google’s algorithm deployed
for its photography application was mistaken ”black people” for ”gorilla” ??. It was due
to a wrong design of the training dataset that did not contain enough examples, and the
evaluation was not robust enough.

Training domain

Application domain

?

Figure 18. Illustration of the shift between application and train domain

It is crucial in plant phenotyping to control the IID hypothesis, mainly because we expect
the error computed on the evaluation dataset to be the lowest possible and randomly spread.
It is hence not acceptable to have a DL error that will vary with the domain. Many sources
of variation exist in plant phenotyping. The first strong one is the difference between indoor
and field conditions. Indoor images often correspond to individual plants, with controlled
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illumination and a uniform background: the only difference between two images is then the
expression of the genotype to the proposed environment and phenological stages. The
difficulty is high in field conditions due to multiple, overlapping plants, variable lighting, and
background. The environment influences more the characteristics of the acquired data.
Genetics and environment for in-field phenotyping are then sources of variations. Acquisition
conditions (flash use, RGB sensors quality and configuration) influence the image quality.
Usually, data in phenotyping are acquired during an “acquisition session”: a set of images
that are acquired on the same experiment field, during a short time window with the same
vector and sensors”. Such acquisition sessions are made of highly similar images. Only
the possible modalities within the experiment, and changes in illumination conditions, will
bring additional variability to the genetic one. Acquisition sessions correspond, therefore, to
very narrow distributions of images compared to the application domain, which generally
corresponds to other acquisition sessions. The DL models are expected to be robust to the
genetic, the environment and the sensor as described in figure 20. Training a DL model for
plant phenotyping on only a few acquisition sessions does not ensure robustness. It does not
prevent learning spurious correlation and uses features that are present only in the training
domain. The goal of DL for plant phenotyping is to learn generic features that can extend
to an “out-of-training domain” object.

Wheat head
detection

Robustness?

Training Dataset

New acquisition 1

New acquisition 2

New acquisition 3

Figure 19. Illustration of the possible factor of variations

Building a large and diverse dataset
A solution to represent a data distribution covering all applications cases is to have a

vast training dataset. A training dataset comprises data points, i.e. images, an audio file,
text, and a corresponding target. For classification, the target is a “label” (a category); in
semantic segmentation, it is a mask containing one or several labels per pixel; in object
detection, it is a set of bounding boxes that enclose the aimed objects. Targets are created
through a process called “annotation” or “labelling”, where a human generate the target
interactively. This process can be burdensome, depending on the interface used. The
computer vision community relies on few large key datasets to benchmark their approach.
As discussed in 1.3.1, ImageNet or MS COCO were key for DL development. In contrast,
the plant phenotyping community suffers from a lack of such tools. Initiatives like the Leaf
segmentation and counting datasets [125] exist but were limited to indoor phenotyping until
today. Datasets can be found on platforms such as www.quantitative-plant.org or on more
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general platforms such as Kaggle or AIcrowd that host several plant phenotyping datasets
linked to actual or past competitions. The PlantVillage dataset (disease classification) [126]
or PlantCLEF [127][128][129] are large datasets available on internet. Due to the diversity of
traits to evaluate, there is a strong need to label even more data, and the current shared
data is still not sufficient.
This issue can first be viewed as an engineering problem to solve. Several companies

built labelling tools that fulfil all DL needs, including plant phenotyping. Such interfaces are
progressing fast and have started to propose “smart tools” to accelerate the creation of
manual targets. Figure 20 presents an advanced labeling platform (Datatorch). DEXTER
(Deep Extreme Cut) [130] is an example of innovation for labelling, by allowing to create
masks of a single instance by indicating only a few points on the frontiers, by leveraging deep
learning features to find the contour of the object. Laboratories and institutes can develop
additional tools to enhance the labelling experience: the CAPTE team has developed a tool
that labels superpixels instead of single-pixel to create segmentation masks. In contrast
with DL models primarily shared in open-source, labelling innovations start to be proprietary
and less described; for example, the “smart tool” proposed by V7-Darwin can infer an object
mask from a loose box and interact with the user, but the technology behind is private.

Figure 20. Screenshot of a Deep Learning annotation platform

The tedious nature of the labelling process leads to creative developments to accelerate
the process. A direct way is to leverage the previously accumulated datasets to train the DL
model and propose possible targets that must be validated or corrected by a human. These
approaches have been tested in plant phenotyping by computing the outputs of a sorghum
head detector on new images and letting a human correcting the output [131]. It is claimed
to accelerate the process by a factor of 4. An alternative is to re-use “classic” computer
vision algorithms to generate the possible targets. The SNORKEL [132] algorithm combines
several heuristics to produce large training datasets for the DL algorithm. Recently, Liao et
al. [133] proposed a method to understand the strength and weaknesses of human labellers,
which have all different priors and exploit them for a more efficient process. Generating large
datasets to label is burdensome for small research teams, but more and more companies
propose to label images at a competitive price.

Data augmentation
Long training using the same data points can reduce results due to the overfitting

phenomena. More diversity can be achieved easily with the use of data augmentation when
loading the training data. Data augmentation is a process to generate a valid variation of
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the training data. It can be easily implemented for straightforward strategies that change
the image’s geometry with rotation, padding or shearing, for instance or the photogrammetry
with additional blur or change in the colour histogram. Simple perturbations such asGaussian
noise are also a form of Data Augmentation. The diversity introduced works better if the
resulting images still belong to the application domain. For example, a random variation
in the image’s contrast should result in a new image where the objects of interest are still
visible. Expert knowledge is then crucial to choose the proper data augmentation, though it
can also be determined with automatic approaches such as AutoAugment [134]. Most of
the usual Data Augmentations are included in python libraries such as albumentations [135]
which can be integrated into DL frameworks such as Pytorch [136], or Keras [137].

The challenge of overcoming bias without very large datasets
Even with improvements in labelling, and possible outsourcing, it is desirable to constrain

the learning process to get more robust networks. We can leverage three possible ideas:
transductive transfer learning, invariant features learning or modelling the diversity.

• Transductive transfer learning is close to the idea of active learning but without human
supervision. Its most simple form is pseudo-labelling[138], where we apply the model to
the new domain. However, suppose the performance is still acceptable, the predictions
can be used as labels, called “weak labels”, and re-train the model jointly on the clean
and weak labels, so the classifier is adapted to the aimed domain. It works when
the source and the target domain are close and can help to boost the performance.
However, while being an excellent solution to align the features from the source and
target domain, it is not explicitly doing it.
• Domain adversarial model [139], [140] propose to append a second classifier that tries
to predict the domain, but with aGradient Reversal Layer (GRU) that invert the gradients
to force the network not to discriminate the domain. The advantage of the method is
that it does not require any additional labels on the task for the target domain and can
be trained only on the source domain labels. Instead of using a classifier, DeepCORAL
[141] proposes to add a term on the loss function that constrains the cross-correlation
of the features network between the train and the source domain. These algorithms
can be extended to n domains. The domain adaptation can also be accomplished
during the training. The loss function is usually calculated without prior on the domain
and is an “Empirical Risk Minimization”. In contrast, the “Invariant Risk Minimization” (IRM)
[142] has been proposed to force the classifier to generalize over the distributions of
the train domains and is expected to work better on out-of-distribution objects. Other
algorithms such as GroupDRO [143] propose to minimize the worst performance case
to reach generalization.
• Generative Adversarial network: The third idea is to learn the model the diversity of
the dataset and generate more examples. A generative Adversarial Network learns
to generate a large diversity of images. Models such as CycleGAN [144] can model
the transformation required between images from two domains without any labels
or paired images. It is an appealing solution to model a domain. However, using
the output of a CycleGAN has not yet been demonstrated to solve the domain shift
problem.

1.3.3 How to evaluate the robustness of DL models ?

Pitfalls of the current Deep Learning evaluation benchmark
DL community often works on one or a few datasets such as MNIST, CIFAR-10, CIFAR-100,

CelebA, MS COCO, or ImageNet to benchmark the models. These datasets contain several
limits: a study in 2021 [145] have identified an average of 3.4% of error in the labels. Some
examples are shown in figure 21. After correcting the errors, the study demonstrates that
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shallower models such as ResNet 34 perform better than their deeper counterpart, ResNet-
50. Recht et al. [146] extended the ImageNet test set by proposing a similar yet different test
set and observe an averaged 11-14% increase of performances. It is difficult in this context to
conclude that a slight improvement (1-3%) on a benchmark dataset translates to an actual
improvement on any other independent dataset. It explains why some “old” models are
still popular despite the many new propositions published every year. The small number of
metrics used to evaluate the model performances is also problematic. Their usefulness for
benchmarking models is generally not discussed, but standard metrics are still widely used.
For instance, the popular intersection over union (IoU) measures how well two bounding
boxes match. However, when they do not overlap, the IoU is always equal to 0, whatever the
distance between the two boxes. Rezatofighi [147] proposed a new metric to correct this
weakness. Using a single metric is therefore not sufficient to thoroughly benchmark models.
Further, most of the mentioned datasets propose a train, validation, and test dataset part of
the same distribution and then respect the IID hypothesis. It is also valid for plant counting,
as shown in our work [148]. Work on domain shift was conducted on shifts that are not likely
to happen in real life: mixing drawings to images [149]; fake snow or flare, change of colour
of MNIST digits [142].

Figure 21. Visualization of label error in well-know datasets. reproduced from [145] with
authorization of the author

Assessing the robustness of traits estimated with Deep Learning
Assessing the robustness of a trait estimated with DL is necessary to ensure its quality

when deployed operationally. The dataset used for the evaluation needs to cover the range
of environmental variability, the genotypic diversity, the development stages, the sensors,
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and the different acquisition protocols used. Further, a part of the test dataset needs to
be labelled the same way as the training one. However, because of the effort required for
labelling, it is not always possible to represent the whole expected variability. Alternatives
exist, such as labelling the test dataset with easier labels that cannot be used for training
but still correlates with the measurement of the trait. The masks used for the segmentation
task can be replaced by a set of labelled pixels, or the set of boxes used for detection can be
replaced by a set of points on the objects of interest. Visual inspection is also helpful to find
meaningful types of errors. Tools can be used to interpret DL algorithm outputs to understand
how they took a decision. Visualizing intermediate outputs can also help to understand
possible mistakes. Algorithms such as GradCAM [150] are used to interpret outputs of CNN,
but new architectures such as transformer directly learn the correlation between pixels of
an image. Most networks also output a confidence score with their predictions, which can
indicate possible problems. However, high confidence scores are also observed on erroneous
predictions when the model is poorly calibrated [151].
The robustness of the DL method can be evaluated by comparison with independent

measurements of the trait. Traits measured destructively, such as the biomass or the chloro-
phyll content, can provide a solid reference. Manual measurements also produce useful
references, although they can vary between field workers and may depend on their fatigue.
A perfect match between the trait estimates and the independent measurement is therefore
not always desired. However, the error between the DL estimates and the independent
measurement needs to be as low as possible, especially the possible bias. For phenotyping
applications, the error should not depend on the genotype, and this should be systematically
checked, although it is rarely the case. Another difficulty arises from the difference in spatial
support used for the DL input measurements, i.e. the image footprint and the independent
measurement. For example, disease scoring is generally based on the inspection of the
whole microplot, while the images used as input to the DL model cover only a sample of the
microplot. Ideally, the spatial support should be the same for the DL trait estimates and
their independent measurement.
Additional consistency tests can be conducted, even when no reference method is

available. The broad-sense heritability [152], or reliability [153], can be used as a quality
indicator by describing how repeatable the measurement is when exploiting the repetitions
within a specifically designed experimental plan. The consistency between the trait estimated
and another one, such as the final yield or critical performance characteristics such as
lodging, disease resistance, or a particular yield component, can be a helpful indicator [45].
Finally, the quality of the possible association between a trait and markers of the genome,
as found in a genome-wide association study (GWAS), can indicate consistency. However,
these consistency checks are not sufficient since the estimated traits can be confounded
with other highly heritable traits and possibly associated with some genome markers.

1.4 Objectives and organization of the study

The study aims to investigate possible strategies to train deep learning models that can be
used operationally for high-throughput plant phenotyping experiments under field conditions.
Special attention will be brought to the robustness of the estimates. For this purpose, the
study relies on diverse and extended datasets collected over several partners and covers
several traits and several species. The study is organized into four main parts, the three first
ones corresponding to articles published, submitted, or to be submitted to international
journals:
1. The first chapter discusses the robustness of DL method to identify plants from high-
resolution RGB imagery against handcrafted methods that rely on expert knowledge.
This corresponds to an article submitted to European Journal of Agronomy.

2. The second chapter focuses on the building of a very large datasets of wheat head
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gathered from different institutions, and how it has been updated. It corresponds to
two articles that have been published in Plant Phenomics.

3. The third chapter explains how this dataset has been leveraged to train robust wheat
head detector thanks to the collaboration of competitors across the world for two
successive challenges. The corresponding article is to be submitted to Gigasciences

4. We finally discuss our results in a final chapter that determine the perspective of Deep
Learning for plants phenotyping. The chapter is based on an article published at ICML.
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2 Evaluation of the robustness of handcrafted and deep learning
methods for plant density estimation

2.1 Foreword

Before the emergence of DL for phenotyping applications, some traits were already op-
erationally extracted from high-resolution RGB imagery using computer vision classical
approaches. Such “handcrafted” methods are based on expert knowledge on the problem
from which features are identified and used to estimate the trait. The explicit use of well-
verified assumptions can help scale to unseen conditions and, therefore, obtain more robust
performances than DL methods that can be sensitive to domain shift. These handcrafted
methods can also be used to post-process DL results and correct possible inappropriate
ones. In this first chapter, we propose to compare a handcrafted approach with a DL ap-
proach for a plant detection problem. Plant detection is the mandatory first step before
accessing higher-order traits such as plant density and plant characteristics. As reviewed in
the introduction, we will focus on UAV observations that are a very efficient way to phenotype
extensive experiments. It is very popular among breeders. However, the spatial resolution
can be limited in case of too high altitude flights. We will consider in this chapter three
species with relatively big leaves and sown with relatively even distances between plants:
maize, sugar beet and sunflower.
Assessing the robustness of an approach is different from demonstrating the performance

of new detection methods. While demonstrating the effectiveness of a new approach on
a small dataset, evaluating its robustness needs to explore various possible conditions
of acquisitions. In the introduction of this chapter, we demonstrate that most studies on
plant counting or detection operate on a limited set of conditions, often with the validation
achieved over the dataset used for the training of the DLmodel. A diverse dataset composed
of UAV images from 27 flights (18 locations) covering three crops at different development
stages has been compiled to compare a handcrafted approach with a DL approach. We
further propose to combine both approaches into a hybrid one to beneficiate from their
respective advantages.

2.2 Plant detection and counting from high-resolution RGB images acquired from
UAVs

The following manuscript has been submitted at European Journal of Agronomy and is
currently under revision.
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1 Abstract 13 

Measurement of the plant density is required for a number of applications since it drives part of the 14 

crop fate. The standard manual measurements in the field could be efficiently replaced by high-15 

throughput techniques based on high-spatial resolution images taken from UAVs. This study compares 16 

several automated detection of individual plants in the images from which the plant density can be 17 

estimated. It is based on a large dataset of high resolution Red/Green/Blue (RGB) images acquired 18 

from Unmanned Aerial Vehicules (UAVs) during several years and experiments over maize, sugar 19 

beet and sunflower crops at early stages. A total of 16247 plants have been labelled interactively on 20 

the images. Performances of handcrafted method (HC) were compared to those of deep learning (DL). 21 

The HC method consists in segmenting the image into green and background pixels, identifying rows, 22 

then objects corresponding to plants thanks to knowledge of the sowing pattern as prior information. 23 

The DL method is based on the Faster Region with Convolutional Neural Network (Faster RCNN) 24 

model trained over 2/3 of the images selected to represent a good balance between plant development 25 

stage and sessions. One model is trained for each crop. 26 

Results show that DL generally outperforms HC, particularly for maize and sunflower crops. A 27 

significant level of variability of plant detection performances is observed between the several 28 

experiments. This was explained by the variability of image acquisition conditions including 29 

illumination, plant development stage, background complexity and weed infestation. The image quality 30 

determines part of the performances for HC methods which makes the segmentation step more difficult. 31 

Performances of DL methods are limited mainly by the presence of weeds. A hybrid method (HY) was 32 

proposed to eliminate weeds between the rows using the rules developed for the HC method. HY 33 

improves slightly DL performances in the case of high weed infestation. When few images 34 

corresponding to the conditions of the testing dataset were complementing the training dataset for DL, 35 
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a drastic increase of performances for all the crops is observed, with relative RMSE below 5% for the 36 

estimation of the plant density.  37 

2 Introduction 38 

Plant density at emergence is a main yield component particularly for plants with reduced tillering or 39 

branching capacities such as maize, sugar beet and sunflower. The plant density at emergence is 40 

controlled by the seeding density and the emergence rate. Further, the seeding pattern defined by the 41 

distance between row and between plants influences the competition between plants and possibly with 42 

weeds. In addition to the estimation of plant density, the position of each plant can be documented to 43 

describe the local competitive environment [1]. For agronomical or phenotyping experiments, the plant 44 

density is mainly used to evaluate the quality of each microplot with consequences on the whole trial. 45 

It is also used by farmers to decide to stop spending resources to grow the crop in case of too low 46 

density or too much heterogeneity. While plant density is not directly governed by the genotype, but 47 

results from the seeding density, seed vigor and the emergence conditions, it is considered as an 48 

agronomical trait in some widely used ontology [2].  49 

Plant density is currently mostly evaluated manually in breeding programs. Operators count plants in 50 

the field over a limited sampling area since this process is tedious, time-consuming, and therefore 51 

expensive. Consequently, this traditional method can lead to significant uncertainties due to the limited 52 

representativeness of the sampled area and possible human errors. Further, the position of plants is 53 

generally not documented because it would be even more tedious to measure each plant location.  54 

# Study UAV Crop Object Sessions Localiz
ation  

Method Test 
independency 

1 [3] Yes Sorghum Head 1 Yes ML No1 

2 [4] yes Wheat Plant 5 yes ML No1 

3 [5] no Wheat Plant several yes HC Yes2 

4 [6] yes Maize Plant 1 yes HC yes2 

5 [7] yes Sunflower Plant 1 yes HC Yes3 

6 [8] yes Agave Plant 3 yes HC No 

7 [9] yes 
Maize 

Sunflower 
wheat 

Plant 6 no HC (OBIA) Yes2 

8 [10] yes Thuja Plant 3 yes HC (OBIA) Yes2 

9 [11] yes Maize Plant 2 yes HC (OBIA) No1 

10 [12] yes Rapeseed Plant 2 yes HC (OBIA) No1 

11 [13] Yes Safflower Plant 2 Yes HC (OBIA) No4 

12 [14] No Wheat Head 2 yes DL Yes 

13 [15] No Maize Plant 10 yes DL No1 

14 [16] Yes Sorhgum Plant 2 no DL No1 

15 [17] Yes Wheat Head several no DL Yes 

16 [18] Yes Spinach Plant 1 no DL No1 

17 [19] Yes Maize Head 2 yes DL No1 

18 [20] Yes Sorghum Head 2 yes DL No1 

 This study 
Yes 

Maize 
Sugar beet 
Sunflower 

Plant 27 yes HC / DL Yes 

Table 1: Comparison of the different approaches used for plant and organ counting referenced in the literature. 1 55 
random selection of samples for training and testing; 2No proper calibration; 3Calibrated with synthetic data; 56 
4Testing is made on two sessions, one session being already used for training  57 

The recent technological advances of plant phenotyping solutions including Unmanned Aerial Vehicles 58 

(UAV), sensors, computers, and image processing algorithms, offer potentials to develop alternative 59 

methods to the manual counting. Several authors already reported accurate estimates of plant or organ 60 

counting and density from RGB images (Table 1). Plants or organ can be characterized either with 61 
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machine learning (ML) algorithms where standard local image features are extracted and a used in a 62 

supervised classification to identify the objects of interest (Guo et al., 2018; Fernandez-Gallego et al., 63 

2019). Handcrafted (HC) methods rely on expert knowledge to compute the pertinent features and use 64 

them to identify the objects of interest. Most of them belong to the Object Based Image Analysis [9]–65 

[13]. The identification process can be done based also on the expert knowledge [5]–[7]  or by 66 

calibrating a statistical model over a training dataset [8]. More recently, approaches based on deep-67 

learning (DL) have been proposed. The features are automatically extracted from the image and then 68 

used to identify and localize the individual objects of interest ([14], [15], [19], [20]). However, these 69 

features can also be used to estimate directly the density of objects through a regression [16]–[18]. 70 

Localization, is more popular (78% of the studies in Table 1) in plant phenotyping as it documents the 71 

sowing heterogeneity including missing plants, allowing to explore the competition between plants as 72 

outlined earlier. DL based methods are being common now to detect plant and organ and represent 73 

almost 30% of the localization studies (Table 1). Madec et al. [14] demonstrated that the Faster RCNN 74 

DL model [21] provides accurate localization of wheat ears with higher robustness than previous 75 

methods, including direct regression method. A higher heritability than that of manual counting was 76 

also reported. More recently, [19], [20] applied similar strategies to locate plant and organ from UAV 77 

images. DL applications to plant phenotyping are supervised learning methods, requiring large and 78 

diverse labelled datasets to converge to a generic solution. The recent progress in DL applied to 79 

detection/localization tasks beneficiated from the availability of large image collections such as 80 

ImageNet [22] and COCO Dataset [23] that are used to pre-train the DL model. 81 

However, Geiros et al. [24] raised the overfitting risk and the resulting lack of robustness associated 82 

with most DL algorithms. They can reach excellent performances for datasets like those used for their 83 

calibration, while often failing when applied to cases different from the training dataset. In comparison, 84 

HC methods are based on expert knowledge which select the main features to identify the target objects. 85 

This reduces the risk of overfitting but can hardly account for all the specific cases. On the 11 methods 86 

listed (Table 1) that require a training dataset, only 3 [13], [14], [17] proposed a proper evaluation 87 

framework where the training and the test datasets do not come from the same acquisition sessions. 88 

This questions the accuracy, scalability and robustness of HC and DL methods that was investigated 89 

in the case of liver disease [25], but not for the plant detection problem within phenotyping applications. 90 

The objective of this study is to compare a HC approach based on the knowledge of the sowing and 91 

plant patterns and a DL approach based on object detection to localize plants and count them. This 92 

study includes three species (maize, sugar beet and sunflower) observed with a RGB (Red Green Blue) 93 

camera aboard a UAV during 27 acquisition sessions with plants at different development stages few 94 

weeks after emergence. This study appears therefore to be the most comprehensive one on the subject 95 

(Table 1), while keeping always the training and test datasets as independent as possible. Further, we 96 

will also propose to combine the DL approach with expert knowledge from the HC one. 97 

3 Materials and methods 98 

3.1 Dataset 99 

3.1.1 Experiments 100 

The dataset used was acquired over maize, sugar beet and sunflower experiments from 2016 to 2019 101 

in several experimental sites in France (Table 2). The sites cover a large diversity of agronomic 102 

modalities while managed with conventional tillage practices. However, some crop residues from the 103 

previous season can be observed on few microplots. Generally, few weeds were present in the 104 

microplots, except for some of them (Table 3). The sites include clay, brunisolic and limestone soil 105 
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types (Table 2) with a variety of surface roughness and moisture. The soil color varies from gray to 106 

brown due to soil type, surface aspect and illumination conditions. Each site included an ensemble of 107 

microplots corresponding to many genotypes from which 3 to 12 were selected to get approximately 108 

600 plants (Table 3). Some sites were flown several times (Table 2), corresponding to several 109 

acquisition sessions. This allows to get a larger variation in the crop development stage during image 110 

acquisition (Table 3). For maize, a total of 51 microplots was available from 9 acquisition sessions 111 

(Table 3) with contrasted microplot size, row spacing (0.3-1.1m), and plant density (5.1-11.2 plt.m-2). 112 

For sugar beet, a total number of 60 microplots was available from 9 acquisition sessions with 113 

microplot size, row spacing and plant density varying within a small range (Table 2). For sunflower, a 114 

total of 78 microplots was available from 9 acquisition sessions with a large variability of microplot 115 

size, row spacing, and plant density.  116 

Crop Site Name Lat (°) Long 

(°) 

Year Nb. 

sessions 

Nb. 

microplots 

Microplot 

width  (m) 

Microplot 

length (m) 

Row 

spacing 

(m) 

Plant density 

(plt.m-2) 

Soil type 

M
ai

ze
 

Menainville 47.9 1.4 2016 1 6 2.2 7.0 1.10 5.1 Clay 

Nerac 44.1 0.3 2016 1 8 1.6 7.0 0.80 8.5 Clay 

Villedieu 47.8 1.5 2016 1 6 0.9 11.0 0.30 19.9 Clay 

Thenay 47.3 1.2 2017 1 6 4.4 6.0 0.63 7.3 Clay / Flint 

Blois 47.7 1.2 2019 1 7 1.7 7.0 0.83 9.5 Brunisolic 

Castetis 43.4 -0.7 2019 1 5 2.8 4.0 0.70 11.2 Brunisolic 

Ermine 46.5 -1.0 2019 1 4 3.2 5.5 0.80 8.6 Limestone 

Selommes 47.7 1.2 2019 1 7 1.8 5.3 0.88 9.5 Brunisolic 

Pleinefougeres 48.5 -1.5 2020 1 2 3.2 11.0 0.80 7.7 Brunisolic 

S
u

g
ar

 b
ee

t 

Bucy 49.6 3.9 2017 2 7 1.4 6.2 0.45 11.1 Loam 

Charmont 48.3 4.1 2017 1 7 1.4 5.5 0.45 11.1 Limestone 

Etienne 49.2 4.3 2017 1 6 1.2 7.6 0.40 15.6 Limestone 

Memmie 48.9 4.3 2017 2 6 1.4 7.6 0.48 10.8 Limestone 

Charmont 48.3 4.1 2018 2 8* 1.4 5.5 0.45 11.4 Limestone 

Memmie 48.9 4.3 2018 1 6 1.4 7.6 0.45 11.4 Limestone 

S
u

n
fl

o
w

er
 Rivière 43.5 1.5 2017 1 8 3.0 4.1 0.50 7.1 Clay 

Auzeville 43.5 1.5 2018 2 3 3.3 9.5 0.55 6.1 Clay 

Auzeville 43.5 1.5 2019 5 12 2.9 9.0 0.96 3.7 Clay 

Epoisses 47.2 5.1 2019 1 4 2.4 10.0 0.60 5.1 Limestone 

Table 2. Characteristics of the crops for the several sites considered.  117 

3.1.2 Acquisition and labelling details 118 

Image acquisition was carried out by UAVs embarking three different RGB cameras including the 119 

Sony Alpha 5100, Sony Alpha 6000, both with a resolution of 6024x4024 pixel, and the Zenmuse X7 120 

(DJI) in the case of Epoisses site in 2019 with a resolution of 6016 x 4008 pixels. The cameras were 121 

fixed on a two axes gimbal to maintain the nadir view direction during the flight. The camera was set 122 

to speed priority of 1/1250 s to limit motion blur. The aperture and ISO were automatically adjusted 123 

by the camera. The camera was triggered by an intervalometer set at 1Hz frequency corresponding to 124 

the maximum value allowed to record the RGB images in JPG format on the memory card of the 125 

camera. Flight altitude above ground varied between 20 to 50m to get a ground sampling distance 126 

(GSD) between 2 mm and 5 mm per pixel (Table 3). The flight trajectory was designed to ensure more 127 

than 70% overlap between images across and along tracks. Ground control points were placed in the 128 
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field and their coordinates were measured with a real-time kinetic GPS device ensuring an absolute 129 

centimetric accuracy of their position. 130 

 
Session_name 

plant 

number 

plot 

number 
Stage 

GSD 

(mm) 

typical BB 

size (cm) 

typical BB 

size (pixel) 

Weed 

infestation 
Blur 

M
A

IZ
E

 

Selommes_2019_1 510 7 1 3.5 6.5 26 2 233 

Hermine_2019_1 542 4 1 3.5 7.8 31 1 79 

Thenay_2017_1 617 6 1 2.5 8.5 34 1 1149 

Castetis_2019_1 575 5 2 3.3 10.0 40 1 121 

Pleinefougeres_2019_1 504 2 2 3.5 11.5 46 0 39 

Blois_2019_1 579 7 2 3.3 12.3 49 1 346 

Menainville_2016_1 620 6 3 3.4 12.3 49 1 78 

Villedieu_2016_1 629 6 3 2.7 13.3 53 0 261 

Nerac_2016_1 594 8 3 4.0 15.0 60 0 37 

Total 5170 51       

S
U

G
A

R
 B

E
E

T
 

Memmie_2017_1 667 6 1 4.5 8.0 32 0 26 

Charmont_2018_1 556 7 1 4.2 11.5 46 0 93 

Memmie_2018_1 602 6 1 4.3 11.5 46 0 77 

Bucy_2017_1 634 7 2 5.3 12.8 51 0 25 

Memmie_2017_2 679 6 2 5.7 14.8 57 0 72 

Etienne_2017_1 635 6 2 4.5 16.0 64 0 27 

Charmont_2017_1 669 8 3 3.4 20.5 82 0 191 

Charmont_2018_2 647 8 3 4.1 20.5 82 0 102 

Bucy_2017_2 558 6 3 4.5 23.0 92 0 31 

Total  5647 60       

S
U

N
F

L
O

W
E

R
 

Auzeville_2019_1 579 12 1 5.0 8.5 34 1 28 

Auzeville_2019_2 640 12 1 5.0 13.5 54 1 510 

Epoisses_2019_1 596 4 1 2.5 14.3 57 1 10 

Auzeville_2018_1 596 3 2 2.3 14.3 57 1 488 

Auzeville_2019_3 657 12 2 5.0 19.3 77 0 350 

Auzeville_2019_4 603 12 2 5.0 24.5 98 0 221 

Rivière_2017_1 634 8 3 5.2 25.0 100 2 42 

Auzeville_2018_2 560 3 3 2.6 27.5 110 1 1286 

Auzeville_2019_5 565 12 3 5 27.5 110 2 176 

Total 5430 78       

Table 3. Characteristics of each measurement sessions. For sugar beet, microplots from one 131 

session to another are the same. For sunflower the microplots considered change between 132 

sessions. The typical size of the BB for one session is computed as the square root of the mean 133 

area of all the BBs. The typical bounding box (BB) size in pixels is computed after up sampling 134 

the images at 2.5 mm resolution. The plant stage at the time of the session is quantified as: 1: 135 

early, 2: intermediate, 3: late. The correspondence with BBCH scale is provided as a table in the 136 

supplementary material section. The weed infestation is scored from 0 (no weed), from 0 (no 137 

weeds), 1 (less than 5% coverage), 2 (more than 5% coverage). The image blur is quantified by 138 

the average variance of the Laplacian: high blur results in low value of the variance of the 139 

Laplacian. 140 

Agisoft Photoscan Professional software was used to align the images. The high overlap between the 141 

images and structure from motion algorithm permits to compute the position and orientation of the 142 

cameras. The pipeline described in Jin et al. [26] was then run to extract from each image the portion 143 
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corresponding to the contained microplots. Using the original images avoids the possible distortions 144 

and artefacts observed in the orthomosaïque. Several extracts may represent the same microplot viewed 145 

from different positions of the UAV [27]. For each microplot, the sharpest extract that contained the 146 

whole microplot is selected. For each session, a few microplots were selected for labelling (Table 2). 147 

Approximately 600 plants per session were labelled to ensure consistency across sessions which 148 

resulted in a total of 16247 labelled plants. Images were rescaled to match the best available GSD (2.5 149 

mm, Table 3). This was necessary to control the apparent size of object, which can make the Deep 150 

Learning methods fail. Then all images were labelled using the coco-annotator tool [28] The labelling 151 

consisted in drawing a bounding box (BB) around each plant. Six different operators contributed to the 152 

labelling. The labelling from one operator was always reviewed at least once by a different operator. 153 

The typical size of the BB for one session (Table 3) was computed as the square root of the mean area 154 

of all the BBs.  155 

The plant development stage during the acquisition sessions was scored into three relative levels, where 156 

stages 1 ,2 and 3 correspond respectively to early (few days after emergence), intermediate, and late 157 

stages (leaves start to fill the gap between plants). The correspondence between the stages for each 158 

crop, and their BBCH scale is presented in Table S1. The level of weed infestation (Table 3) was also 159 

visually evaluated from 0 (no weeds), 1 (sparse presence of weeds), 2 (infestation). The level of 160 

blurriness for each session (Table 3) was evaluated by calculating the average variance of the Laplacian 161 

[29]. 162 

 163 

Figure 1: Samples of images for the three-development stage. All images were resampled to 164 

0.25mm.px-1. The bounding boxes were drawn interactively around the plants. 165 

3.2 Plant detection methods 166 
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3.2.1 Handcrafted method 167 

The method developed here is based on several assumptions: (1) the plants are green and can be 168 

accurately separated from the background; (2) plants are sown in rows relatively evenly spaced and 169 

parallel; (3) the weeds are mainly located in between the rows and are not too dominant; (4) plants are 170 

relatively evenly spaced on the row and are not too variable in shape and size. The method first extracts 171 

each single row and then identifies each individual plant on the row. All the parameters of our HC 172 

method are expressed in relative value to the row or plant spacing, to allow adaptation to a larger 173 

number of sowing patterns. This makes our method scalable to all our experimental conditions across 174 

the three species (Table 2 and table 3). The values of the parameters were set based on reasonable 175 

assumptions and were not calibrated on a dataset. 176 

3.2.1.1 Row extraction 177 

The original RGB images are first transformed into a black and white one (BW) using the excess green 178 

index (ExG =(2G-B-R)/G) where R, G, B correspond respectively to the red, green and blue colours 179 

of the original image [30]. Pixels are then assigned to the green (1) or background (0) classes using the 180 

ExG threshold value defined with the Otsu algorithm for each session [31]. 181 

The Hough transform [32] is used to identify the main alignments corresponding to the rows and find 182 

their orientation. The image is then rotated to display the rows horizontally (Figure 2). The number of 183 

green pixels in each line is computed to obtain a profile of green pixels across the rows. The peaks of 184 

the green pixel profiles are localized using the prior knowledge on row spacing (Row_spacing_prior) 185 

to prevent finding unexpected peaks between rows. The prior knowledge of the number of rows per 186 

microplot (Row_number_prior) is also used when identifying the peaks. The prior values of row and 187 

plant spacing are not always known precisely. Therefore, the row extraction pipeline (Figure 2) 188 

provides also updated and more accurate values of Row_spacing_prior for each session. Finally, each 189 

row is extracted using the fine-tuned value of the row width. 190 

 191 

Figure 2. Flowchart of the rows extraction process from the original RGB image.  192 

3.2.1.2 Plant identification with an object-based method 193 

After the row extraction, the algorithm individualizes the objects (groups of connected pixels) in the 194 

image and classifies them as plants or weeds. Weeds are eliminated based on the distance to the row 195 

center. If the centroid of an object is located at a distance larger than a threshold value 196 

(Minimum_distance_to_row), it is considered as a weed. The threshold value is expressed in relative 197 

value to the row spacing and set to 0.25 (Table S2). Objects with dimensions along the row direction 198 

larger than the Plant_spacing_prior value (Table 2) are expected to include several plants. The number 199 

of plants contained in these big objects is derived from the number of peaks observed when summing 200 
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the green pixels along the row direction, where a peak may correspond to a plant position. Further, the 201 

number of plants found by the number of peaks is crosschecked with the expected number of plants 202 

computed by dividing the extension of the object by the Plant_spacing_prior value. Results are 203 

illustrated in Figure 3 for the two objects on the right of the bottom row.  204 

Finally, some objects may be located too close together to be considered as separate plants because 205 

these objects correspond to several parts of the same plant. Figure 3 illustrates it with the second plant 206 

starting from the left on the top row, where a leaf and the main plant are separated. If the distance 207 

between the centroids of the closest object is smaller than the maximum acceptable distance, 208 

Big_plants_tolerance x Plant_spacing_prior, the two objects are merged as a single plant. Table S2 in 209 

the supplementary materials presents the value used for each parameter. The centroid (center of mass 210 

of the object), and the bounding box (smallest rectangle that contains all object’s pixels) of the objects 211 

are finally computed. 212 

 213 

Figure 3. Typical output of the HC algorithm illustrated for two sugar beet rows. The dashed 214 

white line indicates the row. The white curve represents the profile of number of green pixels 215 

perpendicular to the row, with peaks identified by a circle. The object-based method is illustrated 216 

by the colors assigned to each identified plant. Note that big objects have been split into 217 

individual plants (bottom row, the four last plants) and isolated plant parts have been 218 

reconnected to form a single plant (top row, fourth plant starting from the left). The white 219 

squares correspond to the position of missing plants. 220 

3.2.2 Deep-learning method 221 

3.2.2.1 Model architecture  222 

An object detection method was selected to predict the bounding box around each plant. This 223 

information can then be used to derive more traits to characterize every individual plant. Object 224 

detection is a fast-growing area within DL techniques since the emergence of networks such as R-CNN 225 

(Regions with Convolutional Neural Network , [33] ) or SSD (Single Shot Detector, [34] ). Most DL 226 

object detection models fall into one-stage or two-stage models. In the one-stage model, the object is 227 

localized and categorized in a single step. In the two-stage model, a first stage detects possible objects, 228 

and a second stage categorizes them. The Faster-RCNN two-stage model [21] is used because it 229 

performs well in the context of plant phenotyping. Madec et al. [14] used it successfully for counting 230 

wheat heads. It allows also to analyze the nature of the possible errors by visualizing them. 231 

Faster-RCNN can be implemented in many forms which can influence the final results. We use the 232 

implementation made by the mmdetection library [35] .It contains many detectors, and is written upon 233 

PyTorch [36]. The default implementation of the library is used and contains a Feature Pyramidal 234 

Network (FPN) [37], which differs from the original paper [21]. It is used to provide object proposition 235 

at different scales. A ResNet-34 model [38] was used as the backbone network because it offers a good 236 

compromise between accuracy and speed of training. The backbone extracts the deep features which 237 

are used by the Region Proposal Network (RPN) to detect potential objects which are then classified 238 
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as crop or background. All other architectural details are given in the code 239 

(https://github.com/EtienneDavid/plants-counting-detection) . We also choose to train one model by 240 

crop as preliminary tests show lower performances when mixing the three crops. 241 

3.2.2.2 Pre-processing and data augmentation 242 

The input image size of the network is set to 512 x 512 pixels to match memory constraints during 243 

training. However, images from the microplots are larger. A preprocessing step first splits them 244 

randomly into patches of 512 x 512 pixels. For each session in the training dataset, 100 patches were 245 

randomly selected which results in a total of 900 patches to train the model for each crop over the nine 246 

available sessions. Randomly sampled patches provide more diversity than evenly sampled ones. 247 

During the training process, data augmentation is applied to extend the diversity of images. The 248 

complete data augmentation pipeline is a set of geometric distortions (Random rotation, Random 249 

Translation, Random Shear), blur (Gaussian Blur), noise (Gaussian noise) and colorimetric 250 

augmentation (Random hue value, Random contrast). All data augmentation details are given in the 251 

code. Once trained, the model is applied to all the patches. Predictions from the overlapping patches 252 

are finally merged together by using the Non-Max-Suppression algorithm [39] with an Intersection 253 

over Union (IoU) threshold of 0.70. 254 

3.2.3 Hybrid method 255 

DL methods detect individual plants based on many features automatically extracted while HC 256 

methods exploit expert prior knowledge on the sowing pattern to eliminate plants located at a non-257 

expected position between rows. We propose therefore a hybrid method that combines the benefits of 258 

both HC and DL ones. The DL method is first applied to detect plants. Then, the HC method presented 259 

earlier is used to identify the row position and eliminate all remaining weeds corresponding to plants 260 

with centroids located at a larger distance to the row than a threshold value distance_to_row (Table 261 

S2). 262 

3.3 Evaluation strategy for plant detection 263 

3.3.1 Strategies for training and evaluation 264 

Detection models were developed and evaluated independently for each crop. DL method requires an 265 

extensive training dataset that should represent the expected diversity of situations. Due to the limited 266 

number of labelled images, two strategies are defined: “Out-Domain” and “In-Domain”. “Out-267 

Domain” is the more rigorous strategy where the performances of the DL method are evaluated over 268 

sessions not used during the training process. For each crop and each stage, two sessions were used for 269 

training and the remaining one for testing. This allows to balance the stages between the training and 270 

testing datasets. A three-fold cross-validation strategy that exploits all sessions while providing 271 

relatively independent test cases is used. Three different models were trained for each crop using six 272 

sessions, representing about 3800 plants, and tested on the remaining three sessions representing 273 

around 1900 plants. The “In-Domain” strategy is based on adding few images randomly selected in the 274 

testing datasets to the training dataset. It aims at reducing possible lack of representativeness in the 275 

training dataset. The same three-fold cross-validation process was used for each crop, except that 1/3 276 

of the 600 plants used previously as testing datasets were added to the training dataset. The remaining 277 

2/3 images (400 plants) are used to evaluate the performances of the models for each crop. The same 278 

test dataset (1200 plants corresponding to the 400 test plants for each of the three test sessions) is finally 279 

used to compare the Out-domain and In-domain approaches. 280 
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3.3.2 Evaluation metrics 281 

Detection 282 

The “Centroid matching strategy” (C_MS ) is used to evaluate whether a plant was correctly detected. 283 

The C_MS is based on the distance between the centroids of the plants. If the distance between 284 

centroids of a detected plant and the closest labelled one is smaller than Plant_distance_prior / 2 it is 285 

considered as true positive (TP). Otherwise, it is a false positive (FP). If a labelled plant has no detected 286 

plant within a distance smaller than Plant_distance_prior / 2, it is a false negative (FN).  287 

The plant detection performance was quantified per session with the terms of the confusion matrix 288 

normalized by the number of labelled plants (TP+FN) for easier comparison between crops and stages, 289 

which correspond to rates of TP (TPR), FP (FPR) and FN (FNR). The accuracy is also used, defined 290 

as TP/(TP+FN+FP). DL method produces a confidence score for each predicted BB. A box is 291 

considered as a prediction for the DL and HY methods if its score is above 0.5. 292 

Plant density 293 

Plant density (PD) was calculated by dividing the number of plants in the microplot by its area. The 294 

area is computed as the number of rows multiplied by the row spacing and the row length. The relative 295 

root mean square error (rRMSE) is used to compare the estimated and the reference PD values and 296 

assess the accuracy of the method. The accuracy levels were split into four classes to better assess the 297 

robustness of the method. A rRMSE<5% was considered as good, between 5%<rRMSE<10% as 298 

satisfactory, between 10%<rRMSE< 20% as poor, and rRMSE>20% as very poor. The percentile of 299 

microplots belonging to each class was therefore used to evaluate the robustness of the methods.  300 

4 Results and discussion 301 

4.1 DL and HY methods detect better plants than the HC one 302 

Detection performances are very different depending on the crops (Table 4 and Figure 4). Detection of 303 

maize plants appears difficult for the three methods and particularly for HC with a low TPR and a high 304 

FNR (Table 4). This is mostly explained by the small size of the plants that overlap, resulting into 305 

groups of overlapping plants that are interpreted as a single plant (Figure 5b), or to poor threshold 306 

values determined by the Otsu method for the green segmentation used in the first step to identity 307 

objects (Figure 5a). However, a high FNR is also observed for the first development stage with the HC 308 

method, due to the poor quality of the green segmentation where background artifacts such as small 309 

rocks or crop residues were interpreted as plants (Figure 5g). A large variability between the three 310 

instances of the three-fold cross validation is observed for this early stage (Figure 4) due to the 311 

variability in image quality. Marginal differences are observed between DL and HY methods. They 312 

both show relatively balanced FPR and FNR. FPR is mostly explained by possible confusion between 313 

plants and their shadows or soil artifacts (Figure 5c) while FNR is explained by the small size of the 314 

plants that are difficult to detect (Figure 5d). This results into accuracy values between 0.77 to 0.80 315 

with little variation between stages (Table 4). However, a larger variability across the three instances 316 

of the three-fold cross validation is observed for the late stage (Figure 4). 317 

Crop Stages N 
TPR FPR FNR Accuracy 

HC DL HY HC DL HY HC DL HY HC DL HY 

Maize 
1 1669 0.61 0.88 0.86 0.27 0.12 0.07 0.39 0.12 0.14 0.56 0.79 0.80 

2 1658 0.70 0.92 0.92 0.03 0.18 0.16 0.30 0.08 0.08 0.68 0.78 0.79 
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3 1930 0.70 0.88 0.86 0.05 0.15 0.14 0.30 0.12 0.14 0.68 0.77 0.77 

Sugar 

beet 

1 1825 0.95 0.98 0.98 0.04 0.01 0.01 0.05 0.02 0.02 0.93 0.97 0.97 

2 1948 0.95 0.99 0.99 0.01 0.03 0.03 0.05 0.01 0.01 0.93 0.97 0.97 

3 1874 0.94 0.99 0.99 0.06 0.04 0.04 0.06 0.01 0.01 0.88 0.95 0.95 

Sunflower 

1 1603 0.80 0.87 0.86 0.17 0.06 0.04 0.20 0.13 0.14 0.75 0.80 0.81 

2 1856 0.82 0.94 0.94 0.15 0.08 0.07 0.18 0.06 0.06 0.72 0.87 0.88 

3 1759 0.86 0.97 0.97 0.42 0.43 0.21 0.14 0.03 0.03 0.61 0.74 0.81 

Table 4: Terms of the confusion matrix for the three methods the three crops, and the three 318 

stages. True Positive Rate (TPR), False Positive Rate (FPR), and False Negative Rate (FNR) are 319 

displayed. N is the true number of plants (N=TP+FN). Green color corresponds to good metrics 320 

values (high for TPR, low for FPR and FNR), and red for poor metrics values (low for TPR, high 321 

for FPR and FNR). 322 

Detection of sugar beet plants appears to be much easier, with performances similar between the three 323 

methods. The sugar beet crops better verify the assumptions described in 3.2.1. The plots were not 324 

infested by weeds (Table 4), which seems to be an important explanation for the success of all methods. 325 

A small FPR is observed for the three methods, particularly for the latest stage, which explains the 326 

decrease in accuracy (Table 4). This is due to difficulties when plants are overlapping (Figure 5e). 327 

Slightly higher FNR is observed for HC corresponding to non-detected plants in the case of small 328 

plants and image of poor quality. This is also observed with DL for the very early stages (Figure 5f). 329 

The variability across the three instances of the three-fold cross validation is also small (Figure 4). 330 

Marginal differences are observed between DL and HY methods mostly because of the good control 331 

of weeds. 332 

 333 

Figure 4: Accuracy for all methods and crops. For each crop and method, the stages are 334 

represented by a specific color. Each point corresponds to a test session used in the three-fold 335 

validation process. The squares represent the average of the three points.  336 

Detection of sunflower plants shows accuracy values intermediate between maize and sugar beet 337 

(Table 4 and Figure 4). The HC shows lower TPR and higher FPR and FNR as compared to DL and 338 

HY. In the late stage, the HC shows very high FPR corresponding to problems of plant separation when 339 

they are overlapping. Further, the weeds close to the row line are not well eliminated and confounded 340 

with plants (Figure 5g). Similar problems are observed for the DL method, with weeds confounded 341 
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with the crop. However, the HY methods allows to eliminate part of the weeds that are located in 342 

between rows (Figure 5h). and HY shows high and similar TPR (Table 4). However, a high FPR is 343 

also observed for the first stage with the HC method, due to the poor quality of the green segmentation 344 

where background artifacts, such as small rocks or crop residues, were interpreted as plants (Figure 345 

4g). Conversely, high FPR are observed for the late stage where DL shows difficulty to detect plants 346 

in a group of overlapping ones and confounds weeds with the crop. A large variability between the 347 

three instances of the three-fold cross validation is observed for sunflower (Figure 4). It is explained 348 

by a high degree of heterogenety in the microplots and between them, as well as between sessions.  349 

 350 

Figure 5: Possible detection errors for HC and DL methods. The green BBs correspond to the 351 

labelled plants. The red BBs correspond to the detected plants and yellow boxes correspond to 352 

weeds detected as crop. RGB images are displayed for the DL method. BW images are displayed 353 

for the HC method. a, b, c, d corresponds to maize, e, f, to sugar beet and g, h to sunflower. 354 

Image quality appears therefore mandatory for HC methods to get a good segmentation. The HC 355 

methods appears also limited to eliminate weeds on the rows and to separate efficiently the overlapping 356 

plants. DL methods are similarly limited in separating crops from weeds, with confusions made mostly 357 

on unseen type of weeds (Figure 5h). However, the HY methods allows to eliminate part of the weeds. 358 

The DL methods also show some difficulties in detecting plants when they are small or when their 359 

shadows or other soil artifacts such as cracks are present. Nevertheless, the DL methods outperform 360 

the HC ones in most cases.  361 

 362 

Tests were further conducted to evaluate the impact of the four qualitative factors (crop type, 363 

development stages, weeds, and soil type) using the p-value computed from a variance analysis. Results 364 

show (Table 5) that crop-type is an important factor (p_value smaller than 0.05) for HC and HY, while 365 

weeds are important for HC and DL, and soil-type for HC. However, the low number of examples (27 366 

sessions in total), and the non-evenly distribution of the several factors (for instance most examples of 367 
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high levels of weed infestation are found in sunflower sessions only) prevents from drawing final 368 

conclusions. The impact of the four quantitative factors (sowing density, plant size, original resolution, 369 

and blurriness) were also evaluated using a Pearson test. It reveals (Table 5) that no factors appear 370 

significant (p-value smaller than 0.05), while the lowest p-values are observed for the sowing density 371 

and plant size that are closely related to the crop type. 372 

 373 

Table 5: p-values computed from an ANOVA for the qualitative factors and Pearson test for the 374 

quantitative factors. 375 

 376 

Factors Type HC DL HY 

Crop type qualitative 0.009130** 0.127550 0.032050** 

Development stage qualitative 0.857810 0.479530 0.643620 

Weed infestation  qualitative 0.032610** 0.001600** 0.074540 

Soil type qualitative 0.026430** 0.781090 0.830650 

Sowing density quantitative 0.067379 0.076542 0.091679 

Original resolution quantitative 0.905626 0.572383 0.616534 

Plant size quantitative 0.791437 0.064765 0.211019 

Blurriness quantitative 0.111743 0.562775 0.501980 

4.2 Plant density is better estimated with DL and HY methods 377 

The HC method provides the poorest performances for maize plant density estimation, with rRMSE 378 

generally higher than 0.2 (Figure 6), which is consistent with the poorer detection performances (Figure 379 

4). Image acquisition during the early stages tends to degrade the performances conversely to what was 380 

observed for the detection (Figure 5). This may be explained by the unbalance between false positives 381 

and negatives observed for the early stages (Table 4). Marginal differences are observed between DL 382 

and HY methods for maize where weeds were not the main issue.  383 

 384 

Figure 6: rRMSE for plant density estimation for all methods crops, and stages. Results obtained 385 

over the testing dataset. For each crop, method and stage, the three instances (corresponding to 386 

three testing sessions) of the three-fold cross validation process are displayed as colored dio sks, 387 
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while the corresponding average is represented by a colored square. Colors correspond to stages. 388 

The rRMSE threshold values to  389 

All the methods reach good performances (rRMSE<0.05) for sugar beet, with even better performances 390 

for the two first stages when plants are easily identified and weeds not too developed (Figure 6). The 391 

poorer detection performances noticed earlier for HC (Figure 4) do not impact the density estimation 392 

because the FPR is well compensated by the FNR.  393 

Sunflower shows more variability between sessions and stages, with rRMSE around 0.1 for the 394 

intermediate development stage showing better performances than the early one and moreover than the 395 

late one (Figure 6). The models for sunflower are very poor for the session 3_auzeville_2019_5 (Figure 396 

6), mainly because of weed infestation. DL performs better than HC while HY improves marginally 397 

the performances for the two early stages, but significantly for the late stage where significant weed 398 

infestation was observed.  399 

Overall, our results show lower performances than those of the studies where the training and testing 400 

datasets were not independent. For maize detection accuracy between 0.93 and 0.96, and relative 401 

counting error around 1.5%, were reported [11], [15] while none of our methods achieve such 402 

performances. Similar range of results are obtained on rapeseed (counting error of 6.83%) [12], or 403 

safflower with rRMSE approximately under 5% [13]. However, our results with DL and HY are 404 

comparable to studies keeping the training and test datasets independent; on maize Gnädinger and 405 

Schmidthalter [6] reports a counting error of +/- 15%. The HC approach applied when its main 406 

assumptions are verified performs well and comparably to DL.  407 

4.3 Adding few images from the test domain improves drastically the DL performances 408 

The performances of DL methods are closely related to the number of images used in the training 409 

dataset and their representativity of the possible situations [24]. DL method works very well for 410 

sugarbeet where all the images were relatively similar across sessions for each development stage. 411 

However, the acquisition conditions were quite different from the ones experienced in the other 412 

sessions for the sunflower on Epoisses_2019_1, explaining why the DL models had more difficulties 413 

to detect plants for this session. The “Out-domain” strategy used previously was compared here to the 414 

“In-domain” one where 1/3 of the images of the initial testing sessions were used to finetune the model. 415 

Performances are evaluated on the remaining 2/3 images of the initial testing sessions to keep some 416 

independence between the training and test datasets. 417 

Note first that the plant density estimation performances (Figure 7) evaluated on a limited test data set 418 

(1200 images) are very consistent with the ones presented previously over the full test dataset including 419 

1800 images (Figure 6). Results show that the additional images used in the training process and having 420 

similar characteristics as those in the testing dataset decreased significantly the rRMSE for all crops 421 

(Figure 7). This outperforms the marginal gain observed with the HY method on few sessions. Training 422 

with the In-domain strategy reduces the variability of performances across sessions. The 5% rRMSE 423 

value is reached for all crops except maize, where performances are anyway close to this target. Plant 424 

overlapping and the small leaf size makes the DL method for maize more challenging. However, there 425 

are still some outliers for Maize and Sunflower, corresponding to Pleinefougeres_2019_1 and 426 

Epoisses_2019_1 sessions. The images of these two sessions are highly blurred (Table 3) explaining 427 

most of their poor detection performances. A large part of this performance can be attributed to the 428 

elimination of almost all weeds by the DL methods, without the need of the HY correction, which have 429 

learned the pattern of the weeds, instead of relying on the location, and a better recognition of the 430 

plants. 431 
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 432 

Figure 7:  Distribution of relative absolute error for each microplots for the Out-Domain and In-433 

Domain approaches for DL. Box-plot representation where the black horizontal bar represents 434 

the median, the box represents ±25%, the whiskers while the whiskers extend to the the lowest 435 

(highest) data point still within 1.5 interquantile range of the lower (upper) quartile. Diamonds 436 

are outliers. 1 outlier for Out-domain Maize and 3 outliers for Out-Domain Sunflower are above 437 

0.5 and are not presented on the graph. 438 

Our results demonstrate that active learning techniques [39] could greatly improve DL model 439 

performances for these new sessions. A small sample of images coming from the new sessions to be 440 

processed have to be labelled to complement the training dataset, but more than quantity, it is uniquely 441 

due to the diversity: only 40m² of maize or sugarbeet, and between 50 and 100m² of sunflower have 442 

been added to the training dataset, leading to a dramatic increase of the performances which cannot be 443 

attributed only to the dataset size increase. These results demonstrate the importance of having a proper 444 

design of DL training dataset when proposing a new trait to get robust estimates as required by 445 

agronomists, breeders, and farmers.  446 

 447 

Our results are consistent with those of previous studies: detection and density estimation performances 448 

are generally lower when the training and the test datasets are independent, i.e not coming from the 449 

same measurement sessions. Fernandez-Gallo [ref] report a rRMSE below 5%, Madec et al. [ref] report 450 

a rRMSE of 15% on an independent test set. Similar drop in performances seems to happen in maize 451 

when comparing the results of Varela et al. (counting error of 1.5%) to those of Gnädinger and 452 

Schmidhalter (counting error of +/- 15%). The generalization potential of DL methods is high, 453 

requiring including more diverse situations in the training dataset at the expense of the tedious and 454 

expensive interactive labelling process. However, alternative techniques could be used to bypass this 455 

limitation, including data sharing between several organizations as this was done for the head counting 456 

problem (David et al., 2020). Data augmentation [40] could also improve greatly the generalization 457 

performances of DL methods. It would consist in manipulating the quality of the images, while creating 458 

synthetic images where a wide diversity of plants and weeds would be placed over different 459 

backgrounds with variation in the development stages and sowing pattern.  460 

5 Conclusion 461 

This study was based on a comprehensive dataset covering three main crops, several growth stages and 462 

acquisition conditions. It will be open to the community on Zenodo 463 

63



 

 
16 

(https://zenodo.org/record/4890370) to be possibly used as a benchmark for plant counting and 464 

detection from RGB images acquired from UAVs. Our results show that when the main assumptions 465 

on the sowing patterns are verified, simple HC methods can reach good enough performances to be 466 

used for applications as it was observed here for sugar beet. However, state-of-the art Deep Learning 467 

methods generally outperform the HC ones. Nevertheless, due to the large heterogeneity in terms of 468 

background, plant shape and phenological stages encountered across the wide collection of images 469 

considered, we demonstrated that the performances of the DL methods largely depend on the training 470 

and test datasets used. When the training domains used for the DL method are fully independent from 471 

the testing ones, the overall performances are reduced due to the failure of the model in a number of 472 

test cases poorly represented in the training dataset. Conversely, when adding few examples of images 473 

representative of the test domain, the performances increase drastically to reach those reported in most 474 

studies where training and test domains are not differentiated. Important gain in robustness could 475 

therefore be reached by including in the training dataset few images coming from the inference 476 

domains. Alternatively, a better understanding of the factors of variability between domains could 477 

constitute the basis to generate efficient data augmentation techniques that may even include synthetic 478 

images. An extended version of the dataset is needed to conclude on the main factors of error on plant 479 

counting with UAV. The hybrid method proposed to better eliminate weeds could be replaced 480 

efficiently by including images of the canopy where weeds were artificially incrusted. 481 
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 607 

Crop Maize Sugarbeet Sunflower 

Early (1) 12 14-15 
14-16 or germination 

not over 

Intermediate 13 16 17-18 

Late 14-15 17-19 19 

 608 

Table S1. Correspondance between the “Early”, “Intermediate” and “Late stage” and the 609 

BBCH scale for each crop 610 

 611 

Rules 
Parameter 

name 
Operations Definition 

values 

Get BW 

mask 

Excess 

Green 

threshold 

Segmentation 
The threshold used to transform the image into a 

vegetation mask 

Determined by the otsu method 

Find 

row 

Row 

number 

spacing 

Row 

detection 
Expected number of rows 

Determined in Table 1 
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Row 

spacing 

prior 

Row 

detection 

Prior value of the row spacing as defined in Table 

1 

Determined in Table 1 

 

Peak prior 
Row 

detection 

The fraction of the maximum height of the peaks 

used to consider a peak as corresponding to a row 

0.5 

Plant 

spacing 

prior 

Split object 
Prior value of the plant spacing as defined in Table 

1 

Determined in Table 1 

 

Find 

plant 

Minimum 

distance to 

row 

Weed 

elimination 

Minimum distance from the row centre (expressed 

relatively to Row spacing prior) to consider the 

objects as weeds 

0.25 

Remove 

false 

positives 

Big Plants 

Tolerance 

Leaves 

detection 

All centroids under Big Plants Tolerance x Plant 

spacing prior are considered to belong to the same 

plant 

0.9 

Table S2. List of parameters used for row extraction and plant identification 612 

Figure S3: Justification of a centroid matching strategy Centroid matching strategy (C_MS) is preferred 613 

to the IoU one (IoU_MS) 614 

The C_MS was initially compared with an intersection over union matching strategy (IoU_MS), which 615 

is more commin The IoU_MS is based on the Intersection over Union between the detected and labelled 616 

BB with a standard threshold of 0.5. A detected plant is considered true positive (TP) if its IoU is larger 617 

than 0.5. Otherwise, it is a false positive (FP). If a labeled BB has no overlap with any detected BB,  it 618 

is classified as false negative (FN).  619 

The size of BB of plants detected by the HC method have different dimensions as compared to the 620 

labelled BB (Figure 4, left): The distribution of the size of BB for HC is gaussian, while that of labelled, 621 

DL and HY are very similar and skewed with significantly smaller BBs as well as larger ones. That 622 

means that the HC is missing small object with the IoU_MS. This resulted into lower values of accuracy 623 

computed with IoU_MS (Figure 4, right) because of a significant amount of mismatch between the 624 

predicted and reference BBs at IoU=0.5. Rather than adapting the IoU threshold level, the distance 625 

between centroids is preferred to evaluate the match between predicted and interactively labeled plants. 626 

The accuracy computed with C_MS (Figure 4, right) is significantly larger than that computed with 627 

IoU_MS, particularly for the low accuracy values as well as for the HC method for the reasons exposed 628 

above. Therefore, in the following, the centroid distance is used to compute the terms of the confusion 629 

matrix and the accuracy. Detailed metrics can be found in Table S2. 630 
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 631 

Figure S3: Left: distribution of the typical size of BB annotated and those defined around the 632 

plants identified by the HC method. Right: comparison of Accuracy computed either with 633 

IoU_MS, and with C_MS for HC (green discs), and DL methods (blue squares). 634 

 635 

Table S4. Complete results for the three methods on all sessions. Accuracy, precision and recall 636 

are presented with the IoU matching strategy. 637 

 638 

 639 

 640 

 641 
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2.3 Conclusion

Chapter 1 demonstrated that with the correct training information, DL is generally more
accurate than handcrafted methods. However, the possible domain shift prevents to use
of DL for breeding applications without any human supervision. The hybrid method can
slightly improve the robustness capacity of DL methods, but additional data is essential.
While the diversity of the proposed dataset was high, the still limited size of the training and
testing datasets prevents us from drawing firm conclusions on the factors that degrade
performances, including image blurriness, soil type or the presence of artefacts such as rocks.
Our dataset is available on Zenodo https://zenodo.org/record/4890370#.YTm7sBnityw,
and we hope it can help the community to benchmark their solutions.
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3 Design of a large and diverse dataset for training and evaluating
deep learning models: application to wheat head detection

3.1 Foreword

Chapter 1 demonstrated the need for a large and diverse dataset to analyze the robustness
of the Deep Learning method. Building such datasets for plant phenotyping is rare and
mainly dedicated to the controlled conditions installations. For field conditions, it is almost
inexistent because up to very recently, acquiring data from HTPP platforms was not as
mature as today. Further, the limited labelling capacity of research institutions prevented to
build of large datasets. Chapter 2 explores how to re-use the datasets from several sources
with different acquisition and labelling protocols. It aims at harmonizing the datasets by
applying specific processing of the images and labels. The resulting dataset can then be
used to develop robust models to detect wheat heads. Head detection in wheat is essential
for estimating the head density and exploring their spatial distribution and the mandatory
pre-processing step before characterizing wheat heads. Wheat is also a crop well studied
globally, making it possible to cover use cases across contrasted situations globally.
Labelled wheat head datasets were already existing, as the one compiled by Madec

et al. [1]. However, they were not always readily available on the internet and were not
always well documented. The challenge of chapter 2 is to build a large dataset used to
train and evaluate models for head detection. For this purpose, we propose solutions for the
labelling issue, harmonising the observations and documenting the diversity of the dataset
and the possible confounding factors. This dataset will be later used for crowdsourcing
models through open challenges. This chapter is made of two successive papers. The first
one presents the dataset used for the first wheat head detection challenge. Based on the
results of this first challenge, the original dataset was revised, extended and re-organized to
serve a second wheat head detection challenge. The second paper describes this improved
Global Whead Head Detection dataset.

3.2 Global Wheat Head Detection 2020
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The detection of wheat heads in plant images is an important task for estimating pertinent wheat traits including head population
density and head characteristics such as health, size, maturity stage, and the presence of awns. Several studies have developed
methods for wheat head detection from high-resolution RGB imagery based on machine learning algorithms. However, these
methods have generally been calibrated and validated on limited datasets. High variability in observational conditions, genotypic
differences, development stages, and head orientation makes wheat head detection a challenge for computer vision. Further,
possible blurring due to motion or wind and overlap between heads for dense populations make this task even more complex.
Through a joint international collaborative effort, we have built a large, diverse, and well-labelled dataset of wheat images, called
the Global Wheat Head Detection (GWHD) dataset. It contains 4700 high-resolution RGB images and 190000 labelled wheat
heads collected from several countries around the world at different growth stages with a wide range of genotypes. Guidelines
for image acquisition, associating minimum metadata to respect FAIR principles, and consistent head labelling methods are
proposed when developing new head detection datasets. The GWHD dataset is publicly available at http://www.global-wheat
.com/and aimed at developing and benchmarking methods for wheat head detection.
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1. Introduction

Wheat is the most cultivated cereal crop in the world, along
with rice and maize. Wheat breeding progress in the 1950s
was vital for food security of emerging countries when Nor-
man Borlaug developed semidwarf kinds of wheat and a com-
plementary agronomy system (the Doubly Green Revolution),
saving 300 million people from starvation [1]. However, after
increasing rapidly for decades, the rate of increase in wheat
yields has slowed down since the early 1990s [2, 3]. Tradi-
tional breeding still relies to a large degree on manual obser-
vation. Innovations that increase genetic gain may come
from genomic selection, new high-throughput phenotyping
techniques, or a combination of both [4–7]. These tech-
niques are essential to select important wheat traits linked
to yield potential, disease resistance, or adaptation to abiotic
stress. Even though high-throughput phenotypic data acqui-
sition is already a reality, developing efficient and robust
models to extract traits from raw data remains a significant
challenge. Among all traits, wheat head density (the number
of wheat heads per unit ground area) is a major yield com-
ponent and is still manually evaluated in breeding trials,
which is labour intensive and leads to measurement errors
of around 10% [8, 9]. Thus, developing image-based
methods to increase the throughput and accuracy of count-
ing wheat heads in the field is needed to help breeders
manipulate the balance between yield components (plant
number, head density, grains per head, grain weight) in their
breeding selections.

Thanks to increases in GPU performance and the emer-
gence of large-scale datasets [10, 11], deep learning has
become the state of the art approach for many computer
vision tasks, including object detection [12], instance seg-
mentation [13], semantic segmentation [14], and image
regression [15, 16]. Recently, several authors have proposed
deep learning methods tailored to image-based plant pheno-
typing [17–19]. Several methods have been proposed for
wheat head quantification from high-resolution RGB images.
In [8, 9], the authors demonstrated the potential to detect
wheat heads with a Faster-RCNN object detection network.
They estimated in [8] a relative counting error of around
10% for such methods when the image resolution is con-
trolled. In [20], the authors developed an encoder-decoder
CNNmodel for semantic segmentation of wheat heads which
outperformed traditional handcrafted computer vision tech-
niques. Gibbs et al. [21] developed a wheat head detection
and probabilistic tracking model to characterize the motion
of wheat plants grown in the field.

While previous studies have tested wheat head detection
methods on individual datasets, in practice, these deep learn-
ing models are difficult to scale to real-life phenotyping plat-
forms, since they are trained on limited datasets, with
expected difficulties when extrapolating to new situations
[8, 22, 23]. Most training datasets are limited in terms of
genotypes, geographic areas, and observational conditions.
Wheat head morphology may significantly differ between
genotypes with notable variation in head morphology,
including size, inclination, colour, and the presence of awns.
The appearance of heads and the background canopy also

change significantly from emergence to maturation due to
ripening and senescence [24]. Further, planting densities
and patterns vary globally across different cropping systems
and environments, and wheat heads often overlap and
occlude each other in fields with higher planting densities.

A common strategy for handling limited datasets is to
train a CNN model on a portion of a phenotyping trial field
and test it on the remaining portion of the field [25]. This
is a fundamental flaw of empirical approaches against causal
models: there is no theoretical guarantee that a CNNmodel is
robust on new acquisitions. In addition, a comparison
between methods from different authors requires large data-
sets. Unfortunately, such large and diverse phenotyping head
counting datasets do not exist today because they are mainly
acquired independently by single institutions, limiting the
number of genotypes, the environmental and the observa-
tional conditions used to train and test the models. Further,
because the labelling process is burdensome and tedious,
only a small fraction of the acquired images are processed.
Finally, labelling protocols may be different between institu-
tions, which will limit model performance when trained over
shared labelled datasets.

To fill the need for a large and diverse wheat head dataset
with consistent labelling, we developed the Global Wheat
Head Detection (GWHD) dataset that can be used to bench-
mark methods proposed in the computer vision community.
The GWHD dataset results from the harmonization of sev-
eral datasets coming from nine different institutions across
seven countries and three continents. This paper details the
data collection, the harmonization process across image
characteristics and labelling, and the organization of a wheat
head detection challenge. Finally, we discuss the issues raised
while generating the dataset and propose guidelines for
future contributors who wish to expand the GWHD dataset
with their labelled images.

2. Dataset Composition

2.1. Experiments. The labelled images comprising the
GWHD dataset come from datasets collected between 2016
and 2019 by nine institutions at ten different locations
(Table 1) covering genotypes from Europe, North America,
Australia, and Asia. These individual datasets are called
“sub-datasets.” They were acquired over experiments follow-
ing different growing practices, with row spacing varying
from 12.5 cm (ETHZ_1) to 30.5 cm (USask_1). The charac-
teristics of the experiments are presented in Table 1. They
include low sowing density (UQ_1, UTokyo_1, UTokyo_2),
normal sowing density (Arvalis_1, Arvalis_2, Arvalis_3,
INRAE_1, part of NAU_1), and high sowing density
(RRes_1, ETHZ_1, part of NAU_1). The GWHD dataset
covers a range of pedoclimatic conditions including very pro-
ductive context such as the loamy soil of the Picardy area in
France (Arvalis_3), silt-clay soil in mountainous conditions
like the Swiss Plateau (ETHZ_1), or Alpes de Haute Provence
(Arvalis_1, Arvalis_2). In the case of Arvalis_1, Arvalis_2,
UQ_1, and NAU_1, the experiments were designed to com-
pare irrigated and water-stressed environments.
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2.2. Image Acquisition. The GWHD dataset contains RGB
images captured with a wide range of ground-based pheno-
typing platforms and cameras (Table 2). The height of the
image acquisition ranges between 1.8m and 3m above the
ground. The camera focal length varies from 10 to 50mm
with a range of sensor sizes. The differences in camera setup
lead to a range of Ground Sampling Distance (GSD) ranging

from 0.10 to 0.62mm with the half field of view along the
image diagonal varying from 10° to 46°. Assuming that wheat
heads are 1.5 cm in diameter, the acquired GSDs are high
enough to detect heads and even awns visually. Although
all images were acquired at the nadir-viewing direction, some
geometric distortion may be observed for a few sub-datasets
due to the different lens characteristics of the cameras used.

Table 1: Characteristics of the experiments used to acquire images for GWHD dataset.

Sub-
dataset
name

Institution Country Lat (°)
Long
(°)

Year
No. of
dates

Targeted
stages

Row
spacing
(cm)

Sowing density
(seeds·m2)

No. of
genotypes

UTokyo_1
NARO &
UTokyo

Japan 36.0N 140.0 E 2018 3 Postflowering 15 186 66

UTokyo_2
NARO &
UTokyo

Japan 42.8N 143.0 E 2016 6 Flowering∗ 12.5 200 1

Arvalis_1 Arvalis France 43.7N 5.8 E 2017 3
Postflowering-

ripening
17.5 300 20

Arvalis_2 Arvalis France 43.7N 5.8 E 2019 1 Postflowering 17.5 300 20

Arvalis_3 Arvalis France 49.7N 3.0 E 2019 3
Postflowering-

ripening
17.5 300 4

INRAE_1 INRAE France 43.5N 1.5 E 2019 1 Postflowering 16 300 7

USask_1
University of
Saskatchewan

Canada 52.1N 106W 2019 1 n.a 30.5 250 16

RRes_1
Rothamsted
research

UK 51.8N 0.36W 2016 1 n.a n.a 350 6

ETHZ_1 ETHZ Switzerland 47.4N 8.6 E 2018 1 n.a 12.5 400 354

NAU_1
Nanjing Agric.
University

China 31.6N 119.4 E 2018 1 Flowering∗ 20 300 or 450 5

UQ_1 UQueensland Australia 27.5 S 152.3 E 2016 1
Flowering
-ripening

22 150 8

∗Images were checked carefully to ensure that heads have fully developed and flowered.

Table 2: Image characteristics of the sub-datasets comprising the GWHD dataset. All cameras looked vertically downward.

Sub-dataset
name

Vector Camera
Focal length

(mm)
Field of
view (°)∗

Shooting
mode

Image size
(pixels)

Distance to
ground (m)

GSD
(mm/px)

UTokyo_1 Cart
Canon PowerShot G9 X

mark II
10 38.15 Automatic 5472 × 3648 1.8 0.43

UTokyo_2 Handheld
Olympus μ850 & Sony

DSC-HX90V
7/4 45.5 Automatic

3264 × 2488 &
4608 × 3456 1.7 0.6

Arvalis_1 Handheld Sony alpha ILCE-6000 50 & 60 7.1 Automatic 6000 × 4000 2.9 0.10-0.16

Arvalis_2 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

Arvalis_3 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

INRAE_1 Handheld Sony RX0 7.7 9.99 Automatic 800 × 800† 1.8 0.56

USask_1 Minivehicle FLIR Chameleon3 USB3 16 19.8 Fixed 2448 × 2048 2 0.45

RRes_1 Gantry
Prosilica GT 3300 Allied

Vision
50 12.8 Automatic 3296 × 2472 3-3.5§

0.33-
0.385

ETHZ_1 Gantry Canon EOS 5D mark II 35 32.2 Fixed 5616 × 3744 3 0.55

NAU_1 Handheld Sony RX0 24 16.9 Automatic 4800 × 3200 2 0.21

UQ_1 Handheld Canon 550D 55 17.3 Automatic 5184 × 3456 2 0.2
∗The field of view is measured diagonally. The reported measure is the half-angle. †Original images were cropped, and a subimage of size 800 × 800 was
extracted from the central area. §The camera was positioned perpendicular to the ground and automatically adjusted to ensure a 2.2 m distance was
maintained between the camera and canopy.
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Datasets UTokyo_1 and ETHZ_1 are particularly affected by
this issue. Each institution acquired images from different
platforms, including handheld, cart, minivehicle, and gantry
systems. The diversity of camera sensors and acquisition con-
figurations resulted in a wide range of image properties,
which will assist in training deep learning models to better
generalize across different image acquisition conditions.

2.3. Data Harmonization. An important aspect of assembling
the GWHD dataset was harmonizing the various sub-
datasets (Figure 1). A manual inspection of images was first
conducted to ensure that they could be well interpreted.
Images acquired at too early of a growth stage were removed
when heads were not clearly visible (Figure 2(d)). Most of the
images were also acquired before the appearance of head
senescence since heads tend to overlap when the stems start
to bend at this stage.

Object scale, i.e., the size of the object in pixels, is an
important factor in the design of object detection methods
[8]. Object scale depends on the size (mm) of the object
and on the resolution of the image. Wheat head dimensions
may vary across genotypes and growth conditions, but are
generally around 1.5 cm in diameter and 10 cm in length.
The actual image resolution, at the level of wheat heads, var-
ied significantly between sub-datasets: the GSD varies by a
factor of 5 (Table 1) while the actual resolution at the head
level also depends on canopy height and the panoramic effect
of the camera. The panoramic effect will be much larger
when images were acquired too close to the canopy. Images
were therefore rescaled to keep more similar resolution at
the head level. Bilinear interpolation was used to up- or
downsample the original images. The scaling factor applied
to each sub-dataset is displayed in Table 3.

Most deep learning algorithms are trained with square-
sized image patches. When the original images were cropped

into square patches, the size of the patches was selected to
reduce the chance that heads would cross the edges of the
patches and be partly cut off. Images were therefore split
into 1024 × 1024 squared patches containing roughly 20
to 60 heads each, with only a few heads crossing the patch
edges. The number of patches per original image varied
from 1 to 6 depending on the sub-dataset (Table 3). These
squared patches will be termed “images” for the remainder
of the paper.

2.4. Labelling. A web-based labelling platform was developed
to handle the evaluation and labelling of the shared sub-
datasets using the coco annotator (https://github.com/
jsbroks/coco-annotator; [26]). The platform hosts all the
tools required to label objects. In addition, it also grants
simultaneous access to different users, thus allowing contri-
butions from all institutions. Wheat heads were interactively
labelled by drawing bounding boxes that contained all the
pixels of the head. Labelling is difficult if heads are not clearly
visible, i.e., if they are masked by leaves or other heads. We
did not label partly hidden heads unless at least one spikelet
was visible. This was mostly the case for images acquired at
an early stage when heads were not fully emerged. Overlap
among heads was more frequently observed when the images
were acquired using a camera with a wide field of view as in
UTokyo_2 or ETHZ_1. These overlaps occurred mainly
towards the borders of the images with a more oblique view
angle. When the bounding box was too large to include the
awns, it was restricted to the head only (Figure 2(a)). Further,
heads cropped at the image edges were labelled only if more
than 30% of their basal part was visible (Figure 2(e)).

Several institutions had already labelled their sub-
datasets. For the datasets not labelled, we used a “weakly
supervised deep learning framework” [27] to label images
efficiently for these sub-datasets. A YoloV3 model [28] was

Steps

1. Acquired images

2. Up- or down-
sampling of acquired

images

3. Selection of patches
for each subdatasets

4. Crop acquired
images to a set

of patches

Arvalis_1 Arvalis_2 RRes_1 UQ_1

Figure 1: Overview of the harmonization process conducted. Images were first rescaled using bilinear interpolation up- or downsampling
techniques. Then, the rescaled images were split into 1024 × 1024 squared patches.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Examples of wheat heads difficult to label. These examples are zoomed-in views from images contained in the dataset, with different
zoom factors. It includes overlapping heads (a–c), heads at emergence (d), heads that are partly cut at the border of the image (e), and images
with a low illumination (f). Note that image (d) was removed from the dataset because of the ambiguity of heads at emergence. Wheat heads
in the image (e) were not labelled because less than 30% of their basal part is visible, as defined in Section 2.4.

Table 3: Statistics for each component of the Global Wheat Head Detection.

Sub-dataset
name

No. of acquired
images

No. of patch
per image

Original
GSD (mm)

Sampling
factor

Used GSD
(mm)

No. of labelled
images

No. of
labelled
heads

Average no. of
heads/images

UTokyo_1 994 1 0.43 1 0.43 994 29174 29

UTokyo_2 30 4 0.6 2 0.3 120 3263 27

Arvalis_1 239 6 0.23 0.5 0.46 1055∗ 45716 43

Arvalis_2 51 4 0.56 2 0.28 204 4179 20

Arvalis_3 152 4 0.56 2 0.28 608 16665 27

INRAE_1 44 4 0.56 2 0.28 176 3701 21

USask_1 100 2 0.45 1 0.45 200 5737 29

RRes_1 72 6 0.33 1 0.33 432 20236 47

ETHZ_1 375 2 0.55 1 0.55 747∗ 51489 69

NAU_1 20 1 0.21 1 0.21 20 1250 63

UQ_1 142 1 0.2 0.5 0.4 142 7035 50

Total 2219 — — — — 4698 188445 —
∗Some labelled images have been removed during the labelling process.
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trained over UTokyo_1 and Arvalis_1 sub-datasets and then
applied to the unlabelled sub-datasets. Boxes with an associ-
ated confidence score greater than and equal to 0.5 were
retained and proposed to the user for correction. This semi-
automatic active learning increased the throughput of the
labelling process by a factor of four as compared to a fully
manual process. The process is detailed in Figure S1.

This first labelling result was then reviewed by two indi-
viduals independent from the sub-datasets institution. When
large discrepancies between reviewers were observed, another
labelling and reviewing round was initiated. Approximately 20
individuals contributed to this labelling effort. This collabora-
tive process and repeated reviews ensure a high level of accu-
racy and consistency across the sub-datasets.

3. Description of the Dataset

3.1. General Statistics. The GWHD dataset represents 4698
squared patches extracted from the 2219 original high-
resolution RGB images acquired across the 11 sub-datasets
(Table 3). It represents 188445 labelled heads which average
40 heads per image in good agreement with the 20 to 60 tar-
geted heads per image. However, the distribution among and
within sub-datasets is relatively broad (Figure 3(a)). We
included about 100 images that contain no heads to represent
in-field capturing conditions and add difficulty for bench-
marking. Few images contain more than 100 heads with a
maximum of 120 heads. Multiple peaks corresponding to
the several sub-datasets (Figure 3(b)) can be observed due
mainly to variations in head density that depends on geno-
types and environmental conditions. The size of the bound-
ing boxes around the heads shows a slightly skewed
Gaussian distribution with a median typical dimension of
77 pixels (Figure 3(b)). The typical dimension is computed
as the square root of the area. It corresponds well to the tar-
geted scale, i.e., 1:5 cm × 10 cm approximate head size with
an average resolution close to 0.4mm/pixel which represents
a typical dimension of 97 pixels per head, although the simple

horizontal area projected does not correspond exactly to the
viewing geometry of the RGB cameras. The harmonization of
object scale across sub-datasets can be further confirmed
visually in Figure 4.

3.2. Diversity of Sampled Genotypes, Environments, and
Developmental Stages. The diversity of acquisition conditions
sampled by the GWHD dataset is well illustrated in Figure 4:
illumination conditions are variable, with a wide range of
heads and background appearance. Further, we observe var-
iability in head orientation and view directions, from an
almost nadir direction up to a mostly oblique direction as
in the case of ETHZ_1 (Figure 4). A selection of bounding
boxes extracted from the several sub-datasets (Figure 5)
shows a variation of bounding-box area and aspect ratio,
depending on the head orientation and viewing direction. A
large diversity of head appearance is observed, with variation
in the presence of awns and awn size, head colour, and blur-
riness. In addition, a few heads were cut off when the bound-
ing box crossed the edge of the image.

3.3. Comparison to Other Datasets. Several open-source data-
sets have already been proposed in the plant phenotyping
community. The CVPPP datasets [29] have been widely used
for rosette leaf counting and instance segmentation. The
KOMATSUNA dataset also includes segmented rosette
leaves, but in time-lapse videos [30]. The Nottingham ACID
Wheat dataset includes wheat head images captured in a con-
trolled environment with individual spikelets annotated [17].
However, comparatively few open-source datasets include
images from outdoor field contexts, which are critical for
the practical application of phenotyping in crop breeding
and farming. A few datasets have been published for weed
classification [31, 32]. The GrassClover dataset includes
images of forage fields and semantic segmentation labels for
grass, clover, and weed vegetation types [33]. Datasets for
counting sorghum [27, 34] and wheat heads [35] have also
been published with dot annotations.
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Figure 3: Distribution of the number of bounding boxes per image (a) and bounding boxes size∗ (b) in the GWHD dataset. ∗The bounding
box size is defined as the square root of the bounding box area in pixel.
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In terms of phenotyping datasets for object detection, our
GWHD dataset is currently the largest open labelled dataset
freely available for object detection for field plant phenotyp-
ing. MinneApple [36] is the only comparable dataset in terms
of diversity in the field of phenotyping but proposes fewer

images and less diversity in terms of location. Other datasets
like MS COCO [37] or Open Images V4 [38] are much larger
and sample many more object types for a wide range of other
applications. The corresponding images usually contain
fewer objects, typically less than ten per image (Figure 6).

UTokyo_1 UTokyo_2 Arvalis_1 Arvalis_2 INRAE_1

USask_1 RRes_1 ETHZ_1 NAU_1 UQ_1

Figure 4: Example of images from different acquisition sites after cropping and rescaling.

UQ_1

NAU_1

ETHZ_1

RRes_1

USask_1

INRAE_1

Arvalis_3

Arvalis_2

Arvalis_1

UTokyo_2

UTokyo_1

Figure 5: A selection of bounding boxes for each sub-dataset. The same size of pixels is used across all the bounding boxes displayed.
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However, some specific datasets like PUCPR [39], CARPK
[40], and SKU-110K [41] are tailored to the problem of
detecting objects (e.g., cars, products) in dense contexts. They
have a much higher object density than the GWHD dataset,
but with fewer images for PUCPR and CARPK, while SKU-
110 contains more images than our GWHD dataset
(Figure 6). The high occurrence of overlapping and occluded
objects is unique to the GWHD dataset. This makes labelling
and detection more challenging, especially compared to
SKU-110K, which does not seem to present any occlusion.
Finally, wheat heads are complex objects that have a wide
variability of appearance as demonstrated previously, sur-
rounded by a very diverse background which would consti-
tute a more difficult problem than detecting cars or densely
packed products on store shelves.

4. Target Use Case: Wheat Head
Detection Challenge

The main goal of the dataset is to contribute to solving the
challenging problem of wheat head detection from high-
resolution RGB images. An open machine learning competi-
tion will be held from May to August 2020 to benchmark
wheat head detection methods using the GWHD dataset for
training and testing (http://www.global-wheat.com/2020-
challenge/).

4.1. Split between Training and Testing Datasets. In machine
learning studies, it is common to randomly split a dataset
into training and testing samples. However, for the GWHD
competition, we specifically aim to test the performance of
the method for unseen genotypes, environments, and obser-
vational conditions. Therefore, we grouped all images from

Europe and North America as the training dataset, which
covers enough diversity to train a generic wheat head detec-
tion model. This training dataset corresponds to 3422
images representing 73% of the whole GWHD dataset
images. The test dataset includes all the images from Aus-
tralia, Japan, and China, representing 1276 images to eval-
uate model performance, including robustness against
unseen images.

4.2. Evaluation Metrics. The choice of bounding boxes as
labels in the GWHD dataset allows it to be used for object
detection. The mean average precision computed from the
true and false positives is usually used to quantify perfor-
mance in object detection tasks. A true positive corresponds
to a predicted bounding box with an intersection over union
(IoU) greater than and equal to 0.5 with the closest labelled
bounding box. A false positive corresponds to a predicted
bounding box with an IoU strictly lower than 0.5 with the
closest labelled bounding box. In the case of two predicted
boxes with an IoU greater than or equal to 0.5 on the same
bounding box, the most confident one is considered as a true
positive and the other as a false positive. The mean Average
Precision noted as mAP@0.5 is the considered metric for
evaluating the localization performance. Detection of indi-
vidual wheat heads is required for characterizing their size,
inclination, colour, or health. However, the number of wheat
heads per image is also a highly desired trait. Future compe-
titions using the GWHD dataset could focus on wheat
head counting with metrics such as the Root Mean Square
Error (RMSE), relative RMSE (rRMSE), and Coefficient of
Determination (R2) to quantify the performance of object
counting methods.

4.3. Baseline Method. To set a baseline detection accuracy for
the GWHD dataset, we provide results based on a standard
object detection method. We trained a two-stage detector,
Faster-RCNN [12], with a ResNet34 and ResNet50 as the
backbone. Faster-RCNN is one of the most popular object
detection models and used in Madec et al. [8]. ResNet34 is
used along with ResNet50 because it is less prone to overfit-
ting and faster to train. Due to memory constraints, the input
size was set to 512 × 512 pixels. We randomly sampled ten
patches of size 512 × 512 pixels for each image in the training
dataset resulting in a training dataset composed of 34220
patches. We predicted on a set of overlapping patches of size
512 × 512 pixels regularly extracted from the test images of
size 1024 × 1024 pixels and then merged the results. After
10 epochs, representing 342200 iterations in total, the best
model is obtained at epoch 3 for both backbones. It yielded
a mAP@0.5 of 0.77 and a mean RMSE of 12.63 wheat heads
per image which corresponds to rRMSE = 39%. The coeffi-
cient of regression is 0.57. All results are provided in
Figure S2. The relatively poor performance of a standard
object detection network on the GWHD dataset provides
an opportunity for substantial future improvement with
novel methods. The GWHD competition is expected to
instigate new wheat head detection approaches that will
provide more accurate results.
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Figure 6: Comparison of GWHD dataset with other object
detection datasets. Both axes are in log-scale.
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5. Discussion

5.1. Image Acquisition Recommendations. To successfully
detect wheat heads, they should be fully emerged and clearly
visible within the images, with minimum overlap among
heads and leaves. For some genotypes and environmental
conditions, we observed that the wheat stems tend to bend
for the latest grain filling stages, which increases the overlap
between heads. Conversely, for the stages between heading
and flowering, some heads are not yet fully emerged and
are therefore difficult to see. Therefore, we recommend
acquiring images immediately after flowering when the
wheat heads have fully emerged and are still upright in
the field.

For image acquisition, a near nadir viewing direction is
recommended to limit the overlap between heads, especially
in the case of populations with high head density. Likewise,
a narrow field of view is preferred. However, a narrow field
of view may result in a small image footprint when the cam-
era is positioned at a height close to the top of the canopy.
Therefore, we recommend increasing the camera height to
get a larger sampled area and reduce the number of heads
that will be cropped at the edge of the image. The size of
the sampled area is important when head identification is
used for estimating the head population density. The mini-
mum sampled area should be that of our squared patch, i.e.,
1024 × 1024 pixels of 0.4mm/pixel which corresponds to an
area of about 40 cm2. To achieve this sampled area, while
maintaining a narrow field of view of ±15°, the distance
between the camera and the top of the canopy should be

around 1.0m. However, a larger sampling area is preferable
for head population density estimation, where at least
100 cm2 should be sampled to account for possible heteroge-
neity across rows. This would be achieved with a 2.5m dis-
tance between the camera and the top of the canopy.

When estimating wheat head density, i.e., the number of
heads per unit ground area, accurate knowledge of the sam-
pled area is critical. The nonparallel geometry of image
acquisition, with significative “fisheye” lens distortion effects,
induces uncertainty about the sampled area. Even for our
typical case with limited distortion effects (±15° field of view),
for an image acquired at 2.5m from the top of the canopy, an
error of 10 cm in canopy height estimation induces 8% error
in the sampled area, which directly transfers to the head den-
sity measurement. Further, the definition of the reference
height at which to compute the sampled area is still an open
question, because within a population of wheat plants, the
heights of the heads can vary by more than 25 cm, which
induces a 21% difference in the sampled area between the
lowest and highest head. Further work should investigate this
important question.

Finally, our experience suggests that using a sub-
millimetre resolution at the top of the canopy is required
for efficient head detection. However, the optimal resolution
is yet to be defined. Previous work [8] recommended 0.3mm
GSD, while the GWHD dataset includes GSD ranging from
0.28 to 0.55mm. Further work should investigate this impor-
tant aspect of wheat imaging, particularly regarding the pos-
sibility to use UAV observations for head density estimation
in large wheat breeding experiments.

Table 4: The minimum metadata that should be associated with images of wheat heads.

Session level Image level

Experiment metadata

Name of the experiment (PUID)† Microplot id

Name of institution Row spacing

GPS coordinates (°) Sowing density

Email address of the contact person Name of the genotype (or any identifier)†

Date of the session (yyyymmdd)

Presence or not of awnsWheat species (durum, aestivum …)∗

Development stage/ripening stage∗

Acquisition metadata

Vector characteristics: Camera aperture

Name Shutter speed

Type (handheld, cart, phenomobile, gantry, UAV) ISO

Sampling procedure Distance from camera to canopy (m)‡

Distance to the ground (m)∗

Position of the image in the microplot§

Camera characteristics:

Model

Focal length of the lens (mm)

Size of the pixel at the sensor matrix (μm)

Sensor dimensions (pixels × pixels)
∗This may be alternatively reported at the image level if it is variable within a session. †Persistent unique identifier (PUID). This may be a DOI as for genetic
resources regulated under the on Plant Genetic Resources for Food and Agriculture (https://ssl.fao.org/glis) or any other identifier including the information of
the maintainer of the genetic material, ripening stage. ‡The distance between camera and canopy is an essential piece of information to harmonize dataset and
calculate the density and should be carefully monitored during an acquisition. §In case of multiple images over the same microplot.
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5.2. Minimum Information Associated with the Sub-datasets
and FAIR Principles. The FAIR principles (Findable, Accessi-
ble, Interoperable, and Reusable [42]) should be applied to
the images that populate the GWHD dataset. A minimum
set of metadata should be associated with each image as pro-
posed in [43] to verify the FAIR principles. The lack of meta-
data was an issue for precise data harmonization and is
limiting factor for further data interpretation [44] and possible
meta-analysis. Therefore, we recommend attaching a mini-
mum set of information to each image and sub-dataset. In
our case, a sub-dataset generally corresponds to an image
acquisition session, i.e., a series of images acquired over the
same experiment on the same date and with the same camera.
The experiment metadata are all the metadata related to agro-
nomic characteristics of the session; the acquisition metadata
are all themetadata related to the camera and acquisition vehi-
cle used. Both can be defined at the session level and the image
level. Our recommendations are summarized in Table 4. We
encourage attaching more metadata such as camera settings
(model, white balance correction, et al.) when possible because
it adds context for further data reuse.

5.3. Need for GWHD Expansion. The innovative and unique
aspect of the GWHD dataset is the significant number of
contributors from around the world, resulting in a large
diversity across images. However, the diversity within each
continent and environmental conditions is not well covered
by the current dataset: more than 68% of the images within
the GWHD dataset come from Europe and 43% from France.
Further, some regions are currently missing, including
Africa, Latin America, and the Middle East. As future work,
we hope to expand the GWHD dataset in order to get a more
comprehensive dataset. Therefore, we invite potential con-
tributors to complement the GWHD dataset with their sub-
datasets. The proposed guidelines for image acquisition and
the associated metadata should be followed to keep a high
level of consistency and respect the FAIR principles. We
encourage potential contributors to contact the correspond-
ing authors through http://www.global-wheat.com. We also
plan to extend the GWHD dataset in the future for classifica-
tion and segmentation tasks at the wheat head level, for
instance, the size of the wheat head or flowering state. This
expansion would require an update of the current labels.

6. Conclusion

Object detection methods for localizing and identifying
wheat heads in images are useful for estimating head density
in wheat populations. Head detection may also be considered
as a first step in the search for additional wheat traits, includ-
ing the spatial distribution between rows, the presence of
awns, size, inclination, colour, grain filling stage, and health.
These traits may prove useful for wheat breeders and some
may help farmers to better manage their crops.

In order to improve the accuracy and reliability of wheat
head detection and localization, we have assembled the
Global Wheat Head Detection dataset—an extensive and
diverse dataset of wheat head images. It is designed to
develop and benchmark head detection methods proposed

by the community. It represents a large collaborative interna-
tional effort. An important contribution gained through the
compilation of diverse sub-datasets was to propose guide-
lines for image acquisition, minimum metadata to respect
the FAIR principles and guidelines, and tools for labelling
wheat heads. We hope that these guidelines will enable prac-
titioners to expand the GWHD dataset in the future with
additional sub-datasets that represent even more genotypic
and environmental diversity. The GWHD dataset has been
proposed together with an open research competition to
find more accurate and robust methods for wheat head
detection across the wide range of wheat growing regions
around the world. The solutions proposed in the competi-
tion will be made open-source and shared with the plant
phenotyping community.
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The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads
from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated
competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and
agricultural science communities. From this first experience, a few avenues for improvements have been identified
regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined,
relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat
heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse,
and less noisy than the GWHD_2020 version.

1. Introduction

Quality training data is essential for the deployment of
deep learning (DL) techniques to get a general model that
can scale on all the possible cases. Increasing dataset size,
diversity, and quality is expected to be more efficient than
increasing network complexity and depth [1]. Datasets like
ImageNet [2] for classification or MS COCO [3] for
instance detection are crucial for researchers to develop
and rigorously benchmark new DL methods. Similarly,
the importance of getting plant- or crop-specific datasets
is recognized within the plant phenotyping community
([4–10], p. 2, [11–13]). These datasets allow benchmarking
the algorithm performances used to estimate phenotyping
traits while encouraging computer vision experts to further
improvement ([10], p. 2, [14–17]). The emergence of
affordable RGB cameras and platforms, including UAVs
and smartphones, makes in-field image acquisition easily
accessible. These high-throughput methods are progressively
replacing manual measurement of important traits such as
wheat head density. Wheat is a crop grown worldwide, and
the number of heads per unit area is one of the main compo-
nents of yield potential. Creating a robust deep learning
model performing over all the situations requires a dataset
of images covering a wide range of genotypes, sowing density
and pattern, plant state and stage, and acquisition conditions.
To answer this need for a large and diverse wheat head data-
set with consistent and quality labeling, we developed in 2020
the Global Wheat Head Detection (GWHD_2020) [18] that
was used to benchmark methods proposed in the computer
vision community and recommend best practices to acquire
images and keep track of the metadata.

The GWHD_2020 dataset results from the harmoniza-
tion of several datasets coming from nine different institu-
tions across seven countries and three continents. There
are already 27 publications [19–45] (accessed July 2021) that
have reported their wheat head detection model using the
GWHD_2020 dataset as the standard for training/testing
data. A “Global Wheat Detection” competition hosted by
Kaggle was also organized, attracting 2245 teams across the
world [14], leading to improvements in wheat head detec-
tion models [23, 25, 31, 41]. However, issues with the
GWHD_2020 dataset were detected during the competition,
including labeling noise and an unbalanced test dataset.

To provide a better benchmark dataset for the commu-
nity, the GWHD_2021 dataset was organized with the fol-
lowing improvements: (1) the GWHD_2020 dataset was
checked again to eliminate few poor-quality images, (2)
images were re-labeled to avoid consistency issues, (3) a

wider range of developmental stages from the GWHD_
2020 sites was included, and (4) datasets from 5 new coun-
tries (the USA, Mexico, Republic of Sudan, Norway, and
Belgium) were added. The resulting GWHD_2021 dataset
contains 275,187 wheat heads from 16 institutions distrib-
uted across 12 countries.

2. Materials and Methods

The first version of GWHD_2020, used for the Kaggle com-
petition, was divided into several subdatasets. Each subdata-
set represented all images from one location, acquired with
one sensor while mixing several stages. However, wheat head
detection models may be sensitive to the developmental
stage and acquisition conditions: at the beginning of head
emergence, a part of the head is barely visible because it is
still not fully out from the last leaf sheath and possibly
masked by the awns. Further, during ripening, wheat heads
tend to bend and overlap, leading to more erratic labeling.
A redefinition of the subdataset was hence necessary to help
investigate the effect of the developmental stage on model
performances. The new definition of a subdataset was then
formulated as “a consistent set of images acquired over the
same experimental unit, during the same acquisition session
with the same vector and sensor.” A subdataset defines
therefore a domain. This new definition forced to split the
original GWHD_2020 subdatasets into several smaller ones.
The UQ_1 was split into 6 much smaller subdatasets,
Arvalis_1 was split into 3 subdatasets, Arvalis_3 into 2 sub-
datasets, and utokyo_1 into 2 subdatasets. However, in the
case of utokyo_2 which was a collection of images taken by
farmers at different stages and in different fields, the original
subdataset was kept. Overall, the 11 original subdatasets in
GWHD_2020 were distributed into 19 subdatasets for
GWHD_2021.

Almost 2000 new images were added to GWHD_2020,
constituting a major improvement. A part of the new images
comes from the institutions already contributing to
GWHD_2020 and was collected during a different year
and/or at a different location. This was the case for Arvalis
(Arvalis_7 to Arvalis_12), University of Queensland (UQ_7
to UQ_11), Nanjing Agricultural University (NAU_2 and
NAU_3), and University of Tokyo (Utokyo_1). In addition,
14 new subdatasets were included, coming from 5 new coun-
tries: Norway (NMBU), Belgium (Université of Liège [46]),
United States of America (Kansas State University [47],
TERRA-REF [7]), Mexico (CIMMYT), and Republic of
Sudan (Agricultural Research Council). All these images
were acquired at a ground sampling distance between 0.2
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and 0.4mm, i.e., similar to that of the images in GWHD_
2020. Because none of them was already labeled, a sample
was selected by taking no more than one image per micro-
plot, which was randomly cropped to 1024 × 1024px patches
that will be called images in the following for the sake of
simplicity.

With the addition of 1722 images and 86,000 wheat
heads, the GWHD_2021 dataset contains 6500 images and
275,000 wheat heads. The increase in the number of subda-
tasets from 18 to 47 leads to a larger diversity between them
which can be observed on Figure 1. The subdatasets are
described in Table 1. However, the new definition of a sub-
dataset led also to more unbalanced subdatasets: the smallest
(Arvalis_8) contains only 20 images, while the biggest
(ETHZ_1) contains 747 images. This provides the opportu-
nity to possibly take advantage of the data distribution to
improve model training. Each subdataset has been visually
assigned to several development stage classes depending on
the respective color of leaves and heads (Figure 2): postflow-
ering, filling, filling-ripening, and ripening. Examples of the
different stages are presented in Figure 2. While being
approximative, this metadata is expected to improve model
training.

3. Dataset Diversity Analysis

In comparison to GWHD_2020, the GWHD_2021 dataset
puts emphasis on metadata documentation of the different
subdatasets, as described in the discussion section of David
et al. [18]. Alongside the acquisition platform, each subdata-
set has been reviewed and a development stage was assigned
to each, except for Utokyo_3 (formerly utokyo_2) as it is a

collection of images from various farmer fields and develop-
ment stages. Globally, the GWHD_2021 dataset covers well
all development stages ranging from postanthesis to ripen-
ing (Figure 2).

The diversity between images within the GWHD_2021
dataset was documented using the method proposed by
Tolias et al. [48]. The deep learning image features were first
extracted from the VGG-16 deep network pretrained on the
ImageNet dataset that is considered representing well the
general features of RGB images. We then selected the last
layer which has a size of 14 × 14 × 512 and summed it into
a unique vector of 512 channels, which is then normalized.
Then, the UMAP dimentionality reduction algorithm [49]
was used to project representations into a 2D space. The
UMAP algorithm is used to keep the existing clusters during
the projection to a low-dimension space. This 2D space is
expected to capture the main features of the images. Results
(Figure 3) demonstrate that the test dataset used for
GWHD_2020 was biased in comparison to the training
dataset. The subdatasets added in 2021 populate more
evenly the 2D space which is expected to improve the
robustness of the models.

4. Presentation of Global Wheat Challenge 2021
(GWC 2021)

The results from the Kaggle challenge based on GWHD_
2020 have been analyzed by the authors [14]. The findings
emphasize that the design of a competition is critical to
enable solutions that improve the robustness of the wheat
head detection models. The Kaggle competition was based
on a metric that was averaged across all test images, without

Figure 1: Sample images of the Global Wheat Head Detection 2021. The blue boxes correspond to the interactively labeled heads.
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Table 1: The subdatasets for GWHD_2020 and GWHD_2021. The column “2020 name” indicates the name given to the subdatasets for
GWHD_2020, which were split into several new subdatasets.

GWHD_2021
subdataset name

GWHD_2020
subdataset name

Owner Country Location
Acquisition

date
Platform

Development
stage

Number
of images

Number of
wheat head

Ethz_1 ethz_1 ETHZ Switzerland Usask 06/06/2018 Spidercam Filling 747 49603

Rres_1 rres_1 Rothamsted UK Rothamsted 13/07/2015 Gantry
Filling-
ripening

432 19210

ULiège-GxABT_1
Uliège/

Gembloux
Belgium Gembloux 28/07/2020 Cart Ripening 30 1847

NMBU_1 NMBU Norway NMBU 24/07/2020 Cart Filling 82 7345

NMBU_2 NMBU Norway NMBU 07/08/2020 Cart Ripening 98 5211

Arvalis_1 arvalis_1 Arvalis France Gréoux 02/06/2018 Handheld Postflowering 66 2935

Arvalis_2 arvalis_1 Arvalis France Gréoux 16/06/2018 Handheld Filling 401 21003

Arvalis_3 arvalis_1 Arvalis France Gréoux 07/2018 Handheld
Filling-
ripening

588 21893

Arvalis_4 arvalis_2 Arvalis France Gréoux 27/05/2019 Handheld Filling 204 4270

Arvalis_5 arvalis_3 Arvalis France VLB ∗ 06/06/2019 Handheld Filling 448 8180

Arvalis_6 arvalis_3 Arvalis France VSC ∗ 26/06/2019 Handheld
Filling-
ripening

160 8698

Arvalis_7 Arvalis France VLB ∗ 06/2019 Handheld
Filling-
ripening

24 1247

Arvalis_8 Arvalis France VLB ∗ 06/2019 Handheld
Filling-
ripening

20 1062

Arvalis_9 Arvalis France VLB ∗ 06/2020 Handheld Ripening 32 1894

Arvalis_10 Arvalis France Mons 10/06/2020 Handheld Filling 60 1563

Arvalis_11 Arvalis France VLB ∗ 18/06/2020 Handheld Filling 60 2818

Arvalis_12 Arvalis France Gréoux 15/06/2020 Handheld Filling 29 1277

Inrae_1 inrae_1 INRAe France Toulouse 28/05/2019 Handheld
Filling-
ripening

176 3634

Usask_1 usask_1 USaskatchewan Canada Saskatchewan 06/06/2018 Tractor
Filling-
ripening

200 5985

KSU_1
Kansas State
University

US KSU 19/05/2016 Tractor Postflowering 100 6435

KSU_2
Kansas State
University

US KSU 12/05/2017 Tractor Postflowering 100 5302

KSU_3
Kansas State
University

US KSU 25/05/2017 Tractor Filling 95 5217

KSU_4
Kansas State
University

US KSU 25/05/2017 Tractor Ripening 60 3285

Terraref_1
TERRA-REF

project
US

Maricopa,
AZ

02/04/2020 Gantry Ripening 144 3360

Terraref_2
TERRA-REF

project
US

Maricopa,
AZ

20/03/2020 Gantry Filling 106 1274

CIMMYT_1 CIMMYT Mexico
Ciudad
Obregon

24/03/2020 Cart Postflowering 69 2843

CIMMYT_2 CIMMYT Mexico
Ciudad
Obregon

19/03/2020 Cart Postflowering 77 2771

CIMMYT_3 CIMMYT Mexico
Ciudad
Obregon

23/03/2020 Cart Postflowering 60 1561

Utokyo_1 utokyo_1 UTokyo Japan
NARO-
Tsukuba

22/05/2018 Cart
∗∗
̲ Ripening 538 14185

Utokyo_2 utokyo_1 UTokyo Japan
NARO-
Tsukuba

22/05/2018 Cart
∗∗
̲ Ripening 456 13010

Utokyo_3 utokyo_2 UTokyo Japan
NARO-
Hokkaido

Multi-

years
∗∗∗

̲ Handheld Multiple 120 3085

Ukyoto_1 UKyoto Japan Kyoto 30/04/2020 Handheld Postflowering 60 2670

NAU_1 NAU_1 NAU China Baima n.a Handheld Postflowering 20 1240

NAU_2 NAU China Baima 02/05/2020 Cart Postflowering 100 4918
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distinction for the subdatasets, and it was biased toward a
strict match of the labelling. This artificially enhances the
influence on the global score of the largest datasets such as
utokyo_1 (now split into Utokyo_1 and Utokyo_2). Further,
the metrics used to score the agreement with the labeled

heads and largely used for big datasets, such as MS COCO,
appear to be less efficient when some heads are labeled in a
more uncertain way as it was the case in several situations
depending on the development stage, illumination condi-
tions, and head density. As a result, the weighted domain

Table 1: Continued.

GWHD_2021
subdataset name

GWHD_2020
subdataset name

Owner Country Location
Acquisition

date
Platform

Development
stage

Number
of images

Number of
wheat head

NAU_3 NAU China Baima 09/05/2020 Cart Filling 100 4596

UQ_1 uq_1 UQueensland Australia Gatton 12/08/2015 Tractor Postflowering 22 640

UQ_2 uq_1 UQueensland Australia Gatton 08/09/2015 Tractor Postflowering 16 39

UQ_3 uq_1 UQueensland Australia Gatton 15/09/2015 Tractor Filling 14 297

UQ_4 uq_1 UQueensland Australia Gatton 01/10/2015 Tractor Filling 30 1039

UQ_5 uq_1 UQueensland Australia Gatton 09/10/2015 Tractor
Filling-
ripening

30 3680

UQ_6 uq_1 UQueensland Australia Gatton 14/10/2015 Tractor
Filling-
ripening

30 1147

UQ_7 UQueensland Australia Gatton 06/10/2020 Handheld Ripening 17 1335

UQ_8 UQueensland Australia McAllister 09/10/2020 Handheld Ripening 41 4835

UQ_9 UQueensland Australia Brookstead 16/10/2020 Handheld
Filling-
ripening

33 2886

UQ_10 UQueensland Australia Gatton 22/09/2020 Handheld
Filling-
ripening

53 8629

UQ_11 UQueensland Australia Gatton 31/08/2020 Handheld Postflowering 42 4345

ARC_1 ARC Sudan Wad Medani 03/2021 Handheld Filling 30 888

Total 6515 275187

∗VLB: Villiers le Bâcle; VSC: Villers-Saint-Christophe. ∗∗Utokyo_1 and Utokyo_2 were taken at the same location with different sensors. ∗∗∗Utokyo_3 is a
special subdataset made from images coming from a large variety of farmers in Hokaido between 2016 and 2019. Italic: Europe: bold: North America;
underline: Asia; bold italic: Oceania; bold underline: Africa.
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Figure 2: Distribution of the development stage. The x-axis presents the number of subdataset per development stage.
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accuracy is proposed as a new metric [14]. The accuracy
computed over image i belonging to domain d, AIdðiÞ, is
classically defined as

AId ið Þ = TP
TP + FN + FP

, ð1Þ

where TP, FN, and FP are, respectively, the number of true
positive, false negative, and false positive found in image i.
The weighted domain accuracy (WDA) is the weighted aver-
age of all domain accuracies:

WDA=
1
D
〠
D

d=1

1
nd

∗ 〠
nd

i=1
AIdi, ð2Þ

where D is the number of domains (subdatasets) and nd is
the number of images in domain d. The training, validation,
and test datasets used are presented in Section 5.

The results of the Global Wheat Challenge 2021 are
summarized in Table 2. The reference method is a
faster-RCN with the same parameters than in the research
paper GWHD_2020 [18] and trained on the GWHD_2021
(Global Wheat Challenge 2021 split) training dataset. The

full leaderboard can be found at https://www.aicrowd.com/
challenges/global-wheat-challenge-2021/leaderboards.

5. How to Use/FAQ

(i) How to download? The dataset can be download on
Zenodo: https://zenodo.org/record/5092309

(ii) What is the license of the dataset? The dataset is
under the MIT license, allowing for reuse without
restriction

(iii) How to cite the dataset? The present paper can be
cited when using the GWHD_2021 dataset. How-
ever, cite preferentially [18] for wheat head detec-
tion challenges or when discussing the difficulty to
constitute a large datasets

(iv) How to benchmark? Depending on the objectives of
the study, we recommend two sets of training, vali-
dation, and test (Table 3):

(a) The Global Wheat Challenge 2021 split when the
dataset is used for phenotyping purpose, to allow
direct comparison with the winning solutions

(b) The “GlobalWheat-WILDS” split is the one used for
the WILDS paper [50]. We recommand to use the
GlobalWheat-WILDS split when working on out-
of-domain distribution shift problems

It is further recommended to keep the weighted domain
accuracy for comparison with previous works.
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Figure 3: Distribution of the images in the two first dimensions defined by the UMAP algorithm for the GWHD 2021 dataset. The
additional subdatasets as well as the training and test datasets from GWHD_2020 are represented by colors.

Table 2: Presentation of the Global Wheat Challenge 2021 results.

Solution name WDA

randomTeamName (1st place) 0.700

David_jeon (2nd place) 0.695

SMART (2nd place) 0.695

Reference (faster-RCNN) 0.492
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6. Conclusion

The second edition of the Global Wheat Head Detection,
GWHD_2021, alongside the organization of a second Global
Wheat Challenge is an important step for illustrating the
usefulness of open and shared data across organizations
to further improve high-throughput phenotyping methods.
In comparison to the GWHD_2020 dataset, it represents
five new countries, 22 new subdatasets, 1200 new images,
and 120,000 new-labeled wheat heads. Its revised organiza-
tion and additional diversity are more representative of the
type of images researchers and agronomists can acquire
across the world. The revised metrics used to evaluate the
models during the Global Wheat Challenge 2021 can help
researchers to benchmark one-class localization models on
a large range of acquisition conditions. GWHD_2021 is
expected to accelerate the building of robust solutions. How-
ever, progress on the representation of developing countries
is still expected and we are open to new contributions from
South America, Africa, and South Asia. We started to include
nadir view photos from smartphones, to get a more compre-
hensive dataset and train reliable models for such affordable
devices. Additional works are required to adapt such an
approach to other vectors such as a camera mounted on
unmanned aerial vehicle, or other high-resolution cameras
working in other spectral domains. Further, it is planned to
release wheat head masks alongside the bounding box given
the very large number of boxes that already exists and pro-
vides more associated metadata.

Data Availability

The dataset is available on Zenodo (https://zenodo.org/
record/5092309).
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3.4 Conclusion

Chapter 2 demonstrated how to build process and organize a valuable dataset for crowd-
sourcing wheat head detection models. The resulting dataset is one of the largest and
diverse acquisition protocols, genotype, location for field phenotyping. Even for a structure
such as CAPTE (INRAe / Arvalis / Hiphen), one of the main contributors of the Global Wheat
Head Dataset, the gain in diversity is expected to increase the accuracy and robustness of
the wheat head density models. The next step is to analyze the winning solutions provided
by the two challenges, emphasising the domain shift problem.

3.5 References
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density estimation from high resolution rgb imagery using deep learning technique,”
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0168-1923. DOI: 10.1016/j.agrformet.2018.10.013.
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4 Competition design to train robust Deep Learn model: the exam-
ple of the Global Wheat Challenges

4.1 Foreword

As presented in the introduction, several techniques, including data augmentation, model
architecture and choice of the hyper-parameters, can affect the final robustness of a DL
model. Rather than relying on a local team to experiment with each modality to get the best
model, we organized open challenges to crowdsource the best solutions. Two competitions
based on the Global Wheat Head Challenge 2020 and 2021 have been organized to gather
the best strategies to tackle the domain shift problem. Chapter 3 explores the output of the
two Global Wheat Challenges.
Challenges are conducted on platforms that link Data scientists, people with a solid

Deep Learning background, with significant problems. As the competitors are expected
to focus on the DL training and optimize a single metric, the design of the competition
should incentivize them to solve the domain shift problem with a meticulously designed
metric. Moreover, the data split should reflect the expected domain shift. In chapter 3, the
performance of the winning solutions of two challenges and the impact of the competition
design are analyzed.

4.2 Global Wheat Challenge 2020 and 2021: Analysis of the competition design
and winning models

The following manuscript will be submitted the ”GigaSciences” journal.
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Global Wheat Challenge 2020 and 2021: Analysis of the competition 1 

design and winning models 2 
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3Department of Computer Science, University of Saskatchewan, Saskatoon, Canada 8 
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1 Abstract 11 

Data competitions have become a popular approach to crowdsource new data analysis methods for general 12 

and specialised data science problems. Data competitions have a rich history in plant phenotyping, and new 13 

outdoor field datasets have the potential for recent data competitions. We developed the Global Wheat 14 

Challenge as a generalisation competition in 2020 and 2021 to see if solutions for wheat head detection 15 

from field images would work in different regions around the world. In this paper, we analyse the winning 16 

challenge solutions in terms of their robustness when applied to new datasets. We found that the design of 17 

the competition influences the selection of winning solutions and provide recommendations for future 18 

competitions focusing on the more robust solutions.  19 

2 Introduction 20 

Crowdsourcing is an increasingly popular approach for scientists to make advances in their field by 21 

collecting diverse raw or labelled data [1]–[4], solving problems that are difficult for algorithms but easy 22 

for humans, such as protein folding [5], or accessing large-scale distributed computing power [6]. 23 

Crowdsourcing of data analysis has increased rapidly in recent years due to the popularity of Big Data 24 

challenges [7] on web platforms such as Kaggle or Codalab. In particular, problems that are amenable to 25 

machine learning approaches, such as computer vision problems, have been promoted and popularised 26 

through open competitions such as ImageNet or COCO [8], [9].  27 

Crowdsourcing of data and analysis have also expanded to specific application areas, such as image-based 28 

plant phenotyping, where deep learning methods have been employed for plant disease classification 29 

(Albetis et al., 2017; Fuentes et al., 2017; Toda and Okura, 2019), plant and organ detection and counting 30 

(Madec et al., 2019; David et al., 2020; Ayalew, Ubbens and Stavness, no date), vegetation segmentation 31 

(Mortensen et al., 2016). In this context, crowdsourcing of data and analysis helps to connect domain 32 

experts, e.g. plant scientists, with computer and data scientists. Such collaboration with data scientists 33 

outside the traditional scope of plant phenotyping is essential to solve fundamental data science problems 34 

within the domain.  35 
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Early computer vision competitions for plant phenotyping problems [10], [11] such as leaf counting [12] 1 

and leaf segmentation [10] were highly successful. Plant phenotyping competitions have typically focused 2 

on indoor, controlled single plant images although a few recent competition have included outdoor field 3 

data such as CVPR Agriculture-Vision competition [13] or the GrassClover competition [14]. Expanding 4 

data competition to agricultural applications are crucial for facing the new challenges of global food 5 

production in the context of global change. The availability of sensors, vectors, and data for agriculture 6 

applications is rapidly expanding, while effective data interpretation pipelines are still limited. Therefore, 7 

crowdsourcing new approaches could help addressing the data interpretation challenge in plant phenotyping 8 

and agriculture.  9 

Despite the use of deep learning in recent plant phenotyping studies, the robustness and generalizability of 10 

these methods remains an open question, particularly for small plant datasets. The issue of robustness in 11 

trained plant phenotyping models has been difficult to study due to a lack of real-world datasets (Geirhos 12 

et al., 2020; David et al., 2021). A large and diverse dataset is required to study the robustness problem. 13 

Most of the Deep Learning algorithms require a large set of labelled images to be trained on, such as 14 

ImageNet [8] or MS COCO [9]. The process of labelling such images is long and tedious, limiting the 15 

availability of large training datasets. The presence of diversity in the datasets is also important to study the 16 

robustness of the models. While large datasets in plant phenotyping are already available for in-door 17 

conditions [12], [17], only few comprehensive ones exist for field conditions. 18 

Detecting wheat head under field conditions is highly desired by breeders and agronomists: it allows 19 

estimating the head density, one of the main yield components for wheat; it allows also localising plants 20 

and describing the emergence pattern with consequences on plant competition and microplot heterogeneity; 21 

it is finally the first step before further characterisation of the heads. Several studies proposed successful 22 

methods from high resolution RGB images and deep learning methods [18], [19]. However, the training 23 

and testing datasets were limited, and it is unclear if their results apply to new datasets because of the 24 

possible variation of sensors, illumination conditions, development stages and genotypes could impact the 25 

performance as described in [16].  26 

We compiled the Global Wheat Head Dataset (GWHD) [20], [21] to study the robustness problem in plant 27 

phenotyping. The GWHD is a large and comprehensive labelled dataset for wheat head localisation. Based 28 

on the GHWD, we organised two challenges to attract a large cohort of ML practitioners to solve the wheat 29 

head detection problem: the Global Wheat Challenge 2020 (GWC_2020) on Kaggle, which took place from 30 

4th May to 4th August 2020 and attracted up to 2245 competitors and the Global Wheat Challenge 2021 31 

(GWC_2021) on AIcrowd, which took place from 4th May to 4th July and attracted up to 432 competitors. 32 

This paper summarises the competitions, including a description of the most successful approaches 33 

employed. We further evaluate their robustness on two additional test datasets. Finally, we discuss lessons 34 

learned from this competition and provide recommendations for future ones. 35 

3 Material and Methods 36 

3.1 Datasets 37 

Three datasets are used in the study: The Global Wheat Head Dataset, the Wheat Head Frame Dataset, and 38 

the Arvalis LITERAL dataset (table 1). Only the UQ frame dataset includes both annotated images and in-39 

field ground counting achieved over the same 0.25 x 0.25 m sampling area. The GWHD-2021 dataset have 40 
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no in-field counting, while the Arvalis-LITERAL have no image annotation. More details on the three 1 

datasets are provided below. 2 

Table 1: Summary of the different datasets used in the study 3 

DATASETS USE IMAGE 

ANNOTATION 

IN-FIELD 

COUNTING 

COMMENTS 

GLOBAL WHEAT HEAD  Training / Validation / Test Yes No Described in [21] 

UQ FRAME  Test Yes Yes In-field count are 

made on the 

same sampling 

area than the 

digital images 

ARVALIS LITERAL  Test No Yes In-field density is 

manually 

evaluated on 

other parts of the 

microplots 

 4 

3.1.1 Global Wheat Head Dataset 5 

The Global Wheat Head Detection dataset used for the competition was extensively presented in [20], [21]. 6 

It contains 6515 high-resolution RGB images representing 275.187 wheat heads from 16 institutions across 7 

5 continents and 12 countries (Table 2). It contains 47 sub-datasets corresponding to an image acquisition 8 

session where images are acquired at a single date over a single site with a single camera system. The 9 

images were taken from one to two meters from the soil, with different high-resolution RGB cameras 10 

providing a ground sampling distance between 0.1 to 0.43 mm. The images were carefully labelled by 11 

several operators to ensure consistency and reliability. The latest version is openly available on Zenodo 12 

(Global Wheat Head Dataset 2021 | Zenodo).  13 

 14 
Table 2: The sub-datasets for GWHD_2020 and GWHD_2021. The column “2020 name” indicates the name given to the sub-15 
datasets for GWHD_ 2020, which were split into several new sub-datasets. Red = Europe, Blue = North America, Yellow = Asia, 16 
Green= Oceania, Orange. The table is a reproduction from the original paper. 17 

GWHD_2021 

sub-dataset 

name 

GWHD_2020  

sub-dataset 

name  

owner country location 
Acquisition 

date 
Platform 

Development 

stage 

Number 

of 

images 

Number of 

wheat head 

Ethz_1 ethz_1 ETHZ Switzerland Usask 06/06/2018 Spidercam Filling 747 49603 

Rres_1 rres_1 Rothamsted UK Rothamsted 13/07/2015 Gantry 

Filling - 

Ripening 432 19210 

ULiège-

GxABT_1  Uliège/Gembloux 
Belgium Gembloux 28/07/2020 

Cart Ripening 30 1847 

NMBU_1  NMBU Norway NMBU 24/07/2020 Cart Filling 82 7345 

NMBU_2  NMBU Norway NMBU 07/08/2020 Cart Ripening 98 5211 

Arvalis_1 arvalis_1 Arvalis France Gréoux 02/06/2018 handheld Post-flowering 66 2935 

Arvalis_2 arvalis_1 Arvalis France Gréoux 16/06/2018 handheld Filling 401 21003 
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Arvalis_3 arvalis_1 Arvalis 
France Gréoux 07/2018 

handheld 

Filling - 

Ripening 588 21893 

Arvalis_4 arvalis_2 Arvalis France Gréoux 27/05/2019 handheld Filling 204 4270 

Arvalis_5 arvalis_3 Arvalis France VLB* 06/06/2019 handheld Filling 448 8180 

Arvalis_6 arvalis_3 Arvalis France VSC* 26/06/2019 handheld 

Filling - 

Ripening 160 8698 

Arvalis_7  Arvalis France VLB* 06/2019 handheld 

Filling - 

Ripening 24 1247 

Arvalis_8  Arvalis France VLB* 06/2019 handheld 

Filling - 

Ripening 20 1062 

Arvalis_9  Arvalis France VLB* 06/2020 handheld Ripening 32 1894 

Arvalis_10  Arvalis France Mons 10/06/2020 handheld Filling 60 1563 

Arvalis_11  Arvalis France VLB* 18/06/2020 handheld Filling 60 2818 

Arvalis_12  Arvalis France Gréoux 15/06/2020 handheld Filling 29 1277 

Inrae_1 inrae_1 INRAe France Toulouse 28/05/2019 handheld 

Filling - 

Ripening 176 3634 

Usask_1 usask_1 USaskatchewan Canada Saskatchewan 06/06/2018 Tractor 

Filling - 

Ripening 200 5985 

KSU_1  

Kansas State 

university US KSU 19/05/2016 Tractor Post-flowering 100 6435 

KSU_2  

 Kansas State 

university US KSU 12/05/2017 Tractor Post-flowering 100 5302 

KSU_3  

 Kansas State 

university US KSU 25/05/2017 Tractor Filling 95 5217 

KSU_4  

 Kansas State 

university US KSU 25/05/2017 Tractor Ripening 60 3285 

Terraref_1  

 TERRA-REF 

project US Maricopa, AZ 02/04/2020 Gantry Ripening 144 3360 

Terraref_2  

TERRA-REF 

project US 

 Maricopa, 

AZ 20/03/2020 Gantry Filling 106 1274 

CIMMYT_1  CIMMYT Mexico 

Ciudad 

Obregon 24/03/2020 Cart Post-flowering 69 2843 

CIMMYT_2  CIMMYT Mexico 

Ciudad 

Obregon 19/03/2020 Cart Post-flowering 77 2771 

CIMMYT_3  CIMMYT Mexico 

Ciudad 

Obregon 23/03/2020 Cart Post-flowering 60 1561 

Utokyo_1 utokyo_1 UTokyo Japan 

NARO-

Tsukuba 22/05/2018 Cart ** Ripening 538 14185 

Utokyo_2 utokyo_1 UTokyo Japan 

NARO-

Tsukuba 22/05/2018 Cart** Ripening 456 13010 

Utokyo_3 utokyo_2 UTokyo Japan 

NARO-

Hokkaido 

Multi-

years***  handheld multiple 120 3085 

Ukyoto_1  UKyoto Japan Kyoto 30/04/2020 handheld 

Post-

Flowering 60 2670 

NAU_1 NAU_1 NAU China Baima n.a handheld Post-flowering 20 1240 

NAU_2  NAU China Baima 02/05/2020 cart Post-flowering 100 4918 

NAU_3  NAU China Baima 09/05/2020 cart Filling 100 4596 

UQ_1 uq_1 UQueensland Australia Gatton 12/08/2015 Tractor Post-flowering 22 640 

UQ_2 uq_1 UQueensland Australia Gatton 08/09/2015 Tractor Post-flowering 16 39 

UQ_3 uq_1 UQueensland Australia Gatton 15/09/2015 Tractor Filling 14 297 
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UQ_4 uq_1 UQueensland Australia Gatton 01/10/2015 Tractor Filling 30 1039 

UQ_5 uq_1 UQueensland Australia Gatton 09/10/2015 Tractor 

Filling - 

Ripening 30 3680 

UQ_6 uq_1 UQueensland Australia Gatton 14/10/2015 Tractor 

Filling - 

Ripening 30 1147 

UQ_7  UQueensland Australia Gatton 06/10/2020 handheld Ripening 17 1335 

UQ_8  UQueensland Australia McAllister 09/10/2020 handheld Ripening 41 4835 

UQ_9  UQueensland Australia Brookstead 16/10/2020 handheld 

Filling - 

Ripening 33 2886 

UQ_10  UQueensland Australia Gatton 22/09/2020 handheld 

Filling - 

Ripening 53 8629 

UQ_11  UQueensland Australia Gatton 31/08/2020 handheld Post-flowering 42 4345 

ARC_1  ARC Sudan Wad Medani 03/2021 handheld Filling 30 888 

       Total 6515 275187 

 1 

3.1.2 UQ Frame Dataset 2 

The UQ frame dataset is a collection of images acquired on three locations for a total of five dates across 3 

Australia from august to October 2020 (Table 3). For each experiment, a frame was placed in a wheat 4 

microplot and a RGB image was taken from nadir view with a Sony RX0 camera. It provides a ground 5 

sampling distance around 0.3 mm/px. Each image is rotated and cropped to the limit of the frame. Different 6 

frames were used and presented in table 2. A human operator counted the number of wheat head in-field, 7 

and each processed images were also manually labelled with bounding boxes with the same methodology 8 

as described in DAVID et al., 2020. These images belong to the UQ_7 to UQ_11 sub-datasets 9 

corresponding to single acquisition sessions used in the test dataset during the 2021 competition. A sample 10 

of the dataset is shown in figure 1. 11 

Table 3: Description of the different sub-datasets of UQ Frame dataset 12 

Sub-dataset 

name 

Date of 

acquisition 

Location Lat (°) Long (°) Sowing date Frame 

number 

Frame 

size 

Frame_UQ_7 31/08/2020 Gatton -27.55 152.27 12/05/2020 42 500mm x 

1000mm 

Frame_UQ_8 22/09/2020 Gatton -27.55 152.27 06/06/2020 53 500mm x 

1000mm 

Frame_UQ_9 06/10/2020 Gatton -27.55 152.27 06/06/2020 17 500mm 

*500mm 

Frame_UQ_10 09/10/2020 McAlister -33.98 116.40 10/06/2020 40 515mm x 

515mm 

Frame_UQ_11 16/10/2020 Brookstead -27.75 151.44 12/06/2020 33 515mm x 

515 mm 

 13 
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Figure 1: Sample from UQ frame dataset 2 

3.1.3 Arvalis LITERAL Dataset 3 

The Arvalis LITERAL Dataset is a collection of RGB images collected on five locations for a total of 6 4 

different sessions of measurement in France from May to June 2021 (Table 4). A set of 4 images per 5 

microplot was acquired with a Sony RX0 with a resolution of 1424px x 1424 px, and an estimated canopy 6 

sampling distance (CSD) of 0.3mm. The distance between the sensor and the canopy was estimated with a 7 

stereovision algorithm and was provided with the dataset. A sample of the dataset is shown in figure 2. The 8 

head density for each image was computed as the number of heads in the image divided by the 9 

corresponding footprint area derived from the distance to the canopy and the focal length. Finally, the head 10 

density per microplot was averaged over the four images. Reference in-field head density was measured by 11 

counting the heads over two adjacent rows of 1 m length segment corresponding to a 0.35 m² sampling 12 

area.  13 

Table 4: Presentation of the different sub-datasets of Arvalis LITERAL Dataset 14 

Sub-dataset 

name 

Date of 

acquisition 

Lat(°) Long 

(°) 

Sowing date Number of 

microplots 

in field counting 

date and stage 

Greoux 18/06/2021 43.75 5.85 28/10/2020 21 31/05/2021 (Z69) 

OLM_phenohd 24/06/2021 47.90 1.52 26/10/2020 6 n.a 

OLM_tpgen 17/06/2021 47.86 1.28 30/10/2020 4 23/06/2021 (Z69) 

Bignan 17/06/2021 47.88 -2.75 12/11/2020 36 02/06/2021 (Z85) 

Clermont 15/06/2021 45.67 2.86 30/10/2020 24 26/5/2021 (Z55) 

Encrambade 04/06/2021 43.40 1.64 5/11/2020 80 01/06/2021 (Z71) 

  15 
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 1 

Figure 2: Sample from the Arvalis LITERAL Dataset 2 

3.2 The Global Wheat Challenge 2020 and 2021 3 

Despite progress in wheat head detection thanks to deep learning algorithms [18], [19], no large and diverse 4 

dataset was available to study the robustness of their solutions. The Global Wheat Head Detection 2020 5 

[20] and 2021 [21] were the first datasets designed to match the need for more variety. The two challenges 6 

organised in 2020 and 2021 were designed to crowdsource the best solutions for wheat head detection. The 7 

experience gained with the 2020 challenge was crucial in improving both the dataset and the metrics used 8 

to compare the proposed solutions. The first challenge took place on Kaggle from 4th May to 4th August 9 

2020 and gathered 2235 competitors with a cash prize of 15.000 USD using the GWHD_2020. The second 10 

challenge was held on AIcrowd from 4th May to the 4th of July 2021 and drew 432 contestants with a cash 11 

prize of 4.000 USD using GWHD_2021. Different aspects of a challenge organisation impact the output 12 

solutions: the cash prize, the platform and the easiness to onboard the competition greatly influence the 13 

total number of participants.  14 

Most of the rules applied for both challenges: the competitors could access a training dataset composed of 15 

images from Europe and submit their predictions on a separate dataset consisting of images from North 16 

America, Africa, Asia and Oceania. This set was blindly split into a public test and a private test. For each 17 

submission during the competitor, the competitor could obtain a score on the public test set, but the final 18 

ranking was made once on the private test set, later called test dataset. Competitors could get their score on 19 

the public test set up to 50 times to optimize few hyperparameters, later called for this reason validation 20 

dataset. The winning solutions were expected to be opensource, with a MIT licence for the GWC_2020 and 21 

any open source licence allowing unrestricted reuse for the GWC_2021. The labels were a set of boxes 22 

around all wheat heads that can be used to train Deep Learning detection algorithms such as Faster-RCNN 23 

[22].  24 

Two main changes occurred between the GWC_2020 and the GWC_2021 regarding the measure of 25 

robustness: the data volume and split and the metric evolved to match the original purpose of the 26 

competition.  27 

• Data volume and split. The dataset used increased from 4700 images to 6515 and from 18 to 47 28 

sub-datasets. It represents an addition of 9 sub-datasets for training and 6 for the private test set. 29 

Further, the public and private test sets are entirely disjoint in GWC_2021, while public and private 30 

test sets were randomly drawn from the same sub-datasets. The European sub-datasets cover all 31 

necessary development stages. The diversity in terms of data owner on both test set in GWC_2021 32 
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help to avoid overfitting on specific conditions. The notion of sub-datasets, as defined in [21], was 1 

introduced to understand better the factors controlling the model robustness: a subdataset is 2 

composed of a unique acquisition session, i.e. images acquired on a single site, at a single date, 3 

with specific illumination conditions, and with the same system. However, for the Kaggle 4 

competition, the sub-datasets were not as clearly defined. 5 

• The metrics used. The Intersection over Union (IoU) ratio is used to define the confusion matrix 6 

terms. A true positive (TP) is a labelled bounding box that matches a predicted one with an IoU 7 

ratio larger than the threshold value. A false positive (FP) is a predicted bounding box having an 8 

IoU ratio lower than the threshold with any labelled bounding box. A false negative (FN) is a 9 

labelled bounding box having an IoU ratio lower than the threshold with any predicted bounding 10 

box. In the case of GWC_2020; the accuracy at the image level, 𝐴𝑖, is the average of the accuracy 11 

across IoU values ranging from 0.5 to 0.75 with 0.05 steps.  12 

𝐴𝑖 = 1/6 ∑
𝑇𝑃(𝐼𝑜𝑈)

𝑇𝑃(𝐼𝑜𝑈)+𝐹𝑃(𝐼𝑜𝑈)+𝐹𝑁(𝐼𝑜𝑈)
𝐼𝑜𝑈=0.75
𝐼𝑜𝑈=0.5   13 

Note that the accuracy is also the true positive rate (TPR). Then the accuracy at the image level 14 

was averaged over all the images of the test dataset to get the metric used in the GWC_2020, 15 

𝐴𝐴2020;  16 

𝐴𝐴2020 =
1

𝑛
∗ ∑ 𝐴𝑖

𝑛
𝑖=1 , 17 

For GWC_2021, the accuracy is calculated for a unique IoU threshold of 0.5 to favor detection over 18 

overfitting on a particular labelling style. Further, because the test dataset was composed of several sub-19 

datasets having very different sizes (Table 1 and Table 2), we proposed to use an average domain accuracy, 20 

𝐴𝐴2021: during GWC_2021 competition, based on the analysis of the GWC_2020 metric (Supplementary 21 

material 1).  22 

𝐴𝐴2021 =
1

𝐷
∑

1

𝑛𝑑

𝐷
𝑑=1 ∗ ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑑𝑖

𝑛𝑑
𝑖=1   23 

Images from the UQ frame dataset and Arvalis LITERAL dataset are larger than the 1024px X 1024 px 24 

image size used during the challenge. Two strategies are used to handle such use cases. The baseline and 25 

GWC_2020 required a specific adaptation where the large image is split into a set of 1024px patches with 26 

a stride of 800px, representing an overlap of 22%. Models are then applied on each patch and predictions 27 

are merged with a Non-Max Suppression algorithm, using the same Intersection over Union value than used 28 

within the model (0.92 for GWC_2020 and 0.7 for Faster-RCNN). The solution GWC_2021 can 29 

automatically adapt to images with higher resolution thanks to the use of adaptive pooling layer and 30 

adaptive convolution layer.  31 

 32 

Table 5: Summary of the different challenges 33 

* in 2020, the public and private test set were randomly sampled from the same subdatasets 34 

 Platform Number of 

participants 

Train Validation  

(Public test) 

Test  

(Private Test) 
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GWC 

2020 

Kaggle 2235 Ethz_1 ; Rres_1; 

Arvalis_1 to 

Arvalis_6 , 

Inrae_1 ; 

Usask_1 

UQ_1 to UQ_6 *;  

Utokyo_1 to Utokyo_3*; 

NAU_1* 

UQ_1 to UQ_6* ;  

Utokyo_1 to Utokyo_3*; 

NAU_1* 

GWC 

2021 

AIcrowd 427 Ethz_1; Rres_1; 

ULiège-

GxABT_1 ; 

NMBU_1 ; 

NMBU_2 ; 

Arvalis_1 to 

Arvalis_12; 

Inrae_1 

UQ_1 to UQ_6 ;  

Utokyo_1 to Utokyo_3; 

NAU_1; Usask_1 

UQ_7 to UQ_11;  

ARC_1;  

Ukyoto_1;  

KSU_1 to KSU_4; 

Terraref_1 and 

Terraref_2;  

CIMMYT_1 to CIMMYT_3. 

 1 

3.3 The models to be compared 2 

We considered the best solutions as ranked using the average domain accuracy defined previously, and not 3 

strictly the winning models: for GWC_2020, the “Praxis” solution was selected although it was ranked 4 

second according to the GWC_2020 metrics (see Supplementary material S1); for GWC_2021 the 5 

“RandomTeamName” solution was selected and was consistently ranked first in 2021. Further, we use 6 

Faster RCNN as described in [18], [20] with an input size of 512px as the baseline solution. All solutions 7 

were trained on the GWC_2021 splits which means that the GWC_2020 was retrained from scratch from 8 

the provided code. The Faster-RCNN was trained during 30 epochs on a Nvidia geforce 3090 RTX with 9 

24Go of RAM. 10 

3.4 Metrics used to evaluate the winning solutions 11 

In addition to the metrics presented above for GWC_2021, other metrics were used to compare the solutions 12 

better: the rates of false positive (FPR=FP/(TP+FP+FN)) and false negative (FNR=FN/(TP+FP+FN) to 13 

better quantify possible detection problems. Further, the Root Mean Square Error (RMSE), the relative 14 

RMSE (rRMSE), the bias andthe determination coefficient (r2) were used to quantify the head count and 15 

head density performances. 16 

4 Results and Discussion 17 

4.1 The GWC_2020 and GWC_2021 winning solutions 18 

The three best solutions of the GWCs are open-source models in the form of Jupyter notebooks (Kaggle for 19 

GWC_2020) or python code (AIcrowd for GWC_2021) to reproduce the inference process. During the 20 

competition design, we expected candidates to propose domain-adaptation approaches with advanced data 21 

augmentation strategies, domain-adversarial training, along with new model architectures that could solve 22 

the difficulty of overlapping heads and small heads. Surprisingly, all winners used standard existing open-23 

source architectures such as EfficientDet, Faster-RCNN, Yolo-v5 and Yolo-v3, without any specific 24 

domain adaptation module. The use of different architectures indicates that more than one architecture can 25 

generalise to unseen datasets. However, Yolo-v5 seems was most frequently used during GWC_2021 while 26 

it was forbidden during GWC_2020. 27 
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Part of the improved performances comes from test-time augmentation combined with the weighted boxes 1 

fusion (Solovyev, Wang and Gabruseva, 2019) that was used on the six winning solutions. Winners used 2 

several data augmentation techniques such as Mixup (Zhang et al., 2018) and Mosaic augmentation, 3 

described in YoloV4 (Bochkovskiy, Wang and Liao, 2020). It is, however, difficult to assess the effect of 4 

the specific data augmentation strategies on robustness. We identified this particular topic as a question to 5 

investigate to find a better baseline strategy than the proposed Faster-RCNN. Winners all used pseudo-6 

labelling. Pseudo-labelling (Lee, 2013) is the practice of converting predictions to labels over the test set 7 

called “pseudo-labelled” data and then fine-tuning the model with a mix of training data and pseudo-8 

labelled data. Further, an ensemble approach was proposed by five winners over six, where several models 9 

were trained on different subsampling of the training dataset, and their solutions were fused into a single 10 

solution. Despite being widely used for data competition, these techniques are not standard in plant 11 

phenotyping.  12 

Additional strategies were developed during the competition. First, the participants optimized few 13 

hyperparameters including the score threshold, the IoU threshold, and the image size. None of the winning 14 

solutions used the same set of hyperparameters as the proposed baseline solution. For instance, the second 15 

winner of GWC_2021 (david_jeon) upsampled the images to 1600px before prediction, which could help 16 

detect small wheat heads. Another popular approach during GWC_2020 was to generate more diversity 17 

from the training dataset based on “jigsaw puzzle” techniques. Given that some images were cropped from 18 

an original larger one, competitors have recreated images by re-cropping new patches randomly instead of 19 

applying a regular grid as in the baseline solution preprocessing step (David et al., 2020). 20 

 21 

Table 6: Summary of the winning solutions 22 

*The score was not obtained during a competition 23 

 Rank 
Solution 

name 

Domain Data 

Augmentation 
Architecture 

Ensemble 

approach 

Challenge 

score 
Comments 

Baseline  Madec No Faster-RCNN No 
𝑨𝑨𝟐𝟎𝟐𝟏

= 𝟎. 𝟒𝟕𝟒 ∗ 
 

GWC_2020 

1 DungNB 
Mixup ; Custom 

mosaic 

EfficientDet; 

FasterRCNN 

Random 

subsampling 

𝐴𝐴2020 =0.69

0 
 

2 OverFeat Mixup, Cutmix Efficentdet 
Random 

subsampling 

𝑨𝑨𝟐𝟎𝟐𝟎 =0.68

8 
Rank first with AA2021 

3 Javu Mixup YoloV3 No 
𝐴𝐴2020 =0.68

4 
 

GWC_2021 

1 

Random

TeamNa

me 

Mosaic Yolov5 
Domain 

subsampling 

𝑨𝑨𝟐𝟎𝟐𝟏 =0.70

0 
 

2 
David_jeo

n 
Mosaic; CutMix Yolov5 No 

𝐴𝐴2021 =0.69

5 

Model is applied on 1600 

px images 

3 SMART CutMix Yolov4 Yes 
𝐴𝐴2021 =0.69

5 

A network is jointly trained 

to improve image quality 

 24 

4.2 Challenges solved most of the false positives, but still miss small wheat heads 25 

The performances measured with the average accuracy (AA2021) are very heterogeneous between domains 26 

while the ranking of AA2021 across domains is similar for all the three approaches considered here (Figure 27 
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3). It appears that the level of complexity of an acquisition domain depends on its inner characteristics and 1 

all the solutions considered experienced difficulties in such situations. However, the GWC_2021 always 2 

beats the other solutions except for Terraref_2 and NAU_3 domains. Conversely, the baseline solution has 3 

always lower AA2021 values than the two winning solutions. The GWC_2020 solution show generally 4 

intermediate AA2021 except for few domains with values close to that of GWC_2021, and even better for 5 

Terraref 2 and NAU 3 domains.  6 

While the results just discussed correspond to those obtained over the test dataset, it is interesting to 7 

compare them to those of the training and validation datasets: it provides some insight on the possible 8 

domain shifts and the robustness. The AA2021 values of the training dataset always get the best accuracy as 9 

expected. This is also observed for the false positive and false negative rates that are lower than those of 10 

the training and test datasets (Figure 3). The validation dataset used for hyperparameter optimization and 11 

pseudo-labelling has AA2021 values in between the training and the test datasets. The domain shift evaluated 12 

by the difference in AA2021 between the training and test datasets is reduced for GWC_2021, but significant 13 

for the two other solutions. The GWC_2021 solution appears more robust than the baseline and GWC_2020 14 

models. 15 

 16 

Figure 3: Detailed performance of the best solutions against the baseline. Top: Accuracy per domain; center: False positive rate 17 
(FPR); Bottom: False negative rate (FNR) 18 
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The better AA2021 obtained for GWC_2021 is mostly coming from a reduction of the false negatives (Figure 1 

3 bottom): GWC_2021 gets always the lower FNR values across all the domains. The GWC_2020 and 2 

baseline solutions show similar FNRs. Conversely, the GWC_2020 gets always the smallest false positive 3 

rates, while the baseline solution shows the higher values of FPR (Figure 3, middle). The GWC_2021 4 

solution shows intermediate, but significant values of FPRs. Combining the GWC_2021 and GWC_2020 5 

solutions could be a possible pertinent solution when selecting the bounding boxes to be kept. This will be 6 

investigated in a future work. 7 

Part of the low performance comes from the specificity of certain subdatasets, which are more complex 8 

than others. Some common patterns can be found: first, low resolution is a factor in the difficulty of 9 

Arvalis_4. Some subdatasets such as UQ_1 and UQ_2 contain many empty images, which lower or increase 10 

enormously the accuracy on the subdataset. The combination of wheat head bending and awns explain 11 

Arvalis_11, UQ_5 and UQ_7. Additionally to these difficulties, Terraref_1 and Terraref_2 suffer from 12 

intense illumination resulting in stark contrasts in the images. Finally, for some subdatasets (Terraref_1, 13 

Terraref_2, UQ_1, Ukyoto_1), a part of the wheat heads are not out of the stalk, despite the majority of the 14 

wheat heads being out.  15 

The false negative rates indicate the number of heads that were not detected by the model. Even with the 16 

best model represented by GWC_2021, all the FNRs are larger than 0.10, except on four sessions. This is 17 

still a strong limitation for an accurate detection of the heads, explaining why AA2021 reaches values ranging 18 

from 0.2 to 0.8, with an average close to 0.7. The distribution of the size of the missing boxes (Figure 4) 19 

for all the solutions show that they generally correspond to smaller heads that are more difficult to detect. 20 

The missed heads are about 35% smaller than all the heads. If the GWC_2021 detects twice more small 21 

wheat heads, it is still missing some of the smaller heads. 22 

 23 

Figure 4: cumulated frequency of the size of the missing bounding boxes compared to the distribution of the size of all bounding 24 
boxes from the test set (GT). 25 
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The missing heads are often underdeveloped wheat heads or hidden wheat heads (Figure 5 top line). The 1 

difficulty of this class of small objects is the uncertainty attach to the labeling itself. Some of the labeled 2 

heads could be considered as non-wheat heads for some observer. Playing with the IoU threshold may 3 

partly contribute to improve the solution for the missed heads. However, improving the detection of the 4 

smaller wheat heads may increase the false positive rates, i.e. detecting heads that do not exist. The false 5 

positive are generally small bounding boxes that contain features close to those of actual heads (Figure5, 6 

bottom line), for instance in FP-A, a curved wheat head is detected twice. In FP-B and FP-C, a leaf part is 7 

mistaken for a wheat head.  The balance between false positive and false negative is difficult to get as 8 

illustrated by the GWC_2021 that reduces the number of FNR at the expense of an increase of FPR. 9 

Conversely, GWC_2020 have low FPR at the expense of an increase of FNR. A solution that would reduce 10 

both FNR and FPR is still expected, while the balance between both terms is critical when counting heads 11 

for wheat head density estimation. 12 

 13 

Figure 5: False negatives (FN) and positives (FP) from GWC_2021 illustrated over a random sample images of the test dataset. 14 
False negatives and positives are indicated by red bounding-boxes 15 

 16 

GWC_2020 and GWC_2021 are very similar and use several common ideas: for the data augmentation, a 17 

mosaic augmentation, described in supplementary material S2, is applied; A pseudo-labelling procedure is 18 

applied during inference test time augmentation; Weighted boxes fusion is used. It also relies on more than 19 

one model to make the prediction. The differences are the architecture, with Yolov5 (GWC_21) instead of 20 

EfficientDet and the sampling to train the several sub-models. In GWC_2021, the selection is made at the 21 

domain level instead of the image level, explaining why the various networks used during inference have 22 

more contrasted performances. Interpreting carefully which part of the approach makes the GWC_2021 23 

solution more robust is difficult as the hazard plays probably a significant role. However, regarding the 24 
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much lower number of competitors for GWC_2021 compared to GWC_2020, the quality of the solution is 1 

much satisfactory. 2 

4.3 Performances for head counting 3 

The rRMSE for each domain were calculated on all splits, including the training and validation splits (Table 4 

7). The rRMSE varies widely across domains, from 0.66 to 2.15.  5 

Table 7: rRMSE for the three algorithms on all domains. Colors indicate the rRMSE value: green is the lowest and red the largest 6 

Split 
Domain 

rRMSE 

Baseline GWC_2020 GWC_2021 

Training Arvalis_1 0.23 0.153 0.215 

Arvalis_10 0.371 0.164 0.268 

Arvalis_11 0.254 0.42 0.168 

Arvalis_12 0.395 0.181 0.247 

Arvalis_2 0.139 0.144 0.152 

Arvalis_3 0.123 0.114 0.125 

Arvalis_4 0.421 0.123 0.339 

Arvalis_5 0.217 0.097 0.251 

Arvalis_6 0.084 0.155 0.129 

Arvalis_7 0.204 0.206 0.12 

Arvalis_8 0.172 0.179 0.093 

Arvalis_9 0.154 0.189 0.062 

ETHZ_1 0.073 0.164 0.134 

Inrae_1 0.145 0.083 0.185 

NMBU_1 0.079 0.313 0.097 

NMBU_2 0.241 0.224 0.124 

Rres_1 0.091 0.067 0.146 

ULiÃ¨ge-GxABT_1 0.091 0.341 0.097 

Validation NAU_1 0.239 0.291 0.472 

UQ_1 0.319 0.443 0.235 

UQ_2 2.015 0.271 1.128 

UQ_3 0.245 0.333 0.21 

UQ_4 0.264 0.275 0.122 

UQ_5 0.351 0.563 0.141 

UQ_6 0.18 0.288 0.224 

Usask_1 0.248 0.103 0.252 

Utokyo_1 0.193 0.068 0.146 

Utokyo_2 0.233 0.07 0.156 

Utokyo_3 0.511 0.246 0.308 

Test ARC_1 0.485 0.253 0.111 

CIMMYT_1 0.176 0.372 0.123 

CIMMYT_2 0.141 0.24 0.101 

CIMMYT_3 0.224 0.27 0.094 

KSU_1 0.266 0.364 0.074 

KSU_2 0.185 0.34 0.101 

KSU_3 0.177 0.323 0.173 

KSU_4 0.2 0.346 0.103 

NAU_2 0.286 0.191 0.202 

NAU_3 0.257 0.187 0.237 

Terraref_1 0.895 0.56 0.281 
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Terraref_2 1.053 0.873 0.548 

UQ_10 0.166 0.462 0.157 

UQ_11 0.35 0.497 0.235 

UQ_7 0.108 0.335 0.236 

UQ_8 0.231 0.516 0.095 

UQ_9 0.212 0.532 0.102 

Ukyoto_1 0.236 0.49 0.13 

 1 

A more detailed inspection of the rRMSE as a function of the model and the dataset split (Figure 6) shows 2 

as expected that the training dataset gets always the lower rRMSE values with no outliers except for 3 

GWC_2020: all the models are capable to learn the specificities of the several training domains with only 4 

small differences across the three models. The performances on the validation dataset used for 5 

hyperparameter tuning and pseudo-labeling degrade significantly, with very large outliers for the baseline 6 

and GWC_2021 models. Some domains appear difficult since they are probably too different from those 7 

of the training dataset: UQ_2 in the validation dataset shows the largest outliers for the baseline and 8 

GWC_2021 models. For the test dataset, the variability between models and domains is still large (Figure 9 

6). The GWC_2021 model presents the lower rRMSE values and a moderate dispersion between domains. 10 

It seems the more robust solution in agreement with the detection performances presented earlier. The 11 

baseline model shows also relatively good performances except for three outliers including Terraref_2 12 

that gets also large rRMSE for the two other models. The GWC_2020 solution presents the worst 13 

performances on the test dataset. The outliers are similar to the ones reported in 4.2. 14 

 15 

Figure 6 : Boxplot representation of the rRMSE grouped per dataset split (Train, Validation, Test) and models (Baseline, 16 
GWC2020, GWC_2021). The red line indicates the median and the blue box the 25%-75% quantiles. The whiskers extend to the 17 
most extreme (1%-99% assuming a normal distribution), while the red cross correspond to outliers. The black cross at the top 18 
indicates outliers larger than rRMSE=1, with the value on top. 19 

The accuracy for plant detection appears not to be a good indicator of the counting performances of a 20 

model. While very poor accuracy corresponds also to high rRMSE for head counting (Figure 7), when the 21 
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accuracy is higher than 0.5, there is no relationship with the rRMSE (Figure 7). For few domains such as 1 

NAU_2 and NAU_3, the rRMSE is above 0.2 despite excellent accuracy. This is mostly due to the false 2 

negative and false positive that are strongly imbalanced (Figure 3).  3 

 4 

Figure 7 Relationship between accuracy and rRMSE for the test dataset and GWC_2021 model. Each of the 18 points corresponds 5 
to a specific domain. 6 

The counting performances achieved with GWC_2021 over the test dataset are not as good as reported 7 

in other studies such as Faster-RCNN (Madec et al. [18]: rRMSE=0.06) or DeepCount (Sadeghi-Tehran et 8 

al. [23]: rRMSE=0.11). However, similar performances are observed for some domains for CIMMYT, ARC, 9 

KSU and UQ test datasets. The complexity of generalization over a wide range of conditions corresponding 10 

to the several sessions considered in the test dataset makes the detection problem much harder to solve. 11 

4.4 Comparison with head density measurements in the field 12 

The standard low throughput method for head density measurements is based on head counting over 13 

relatively small sampling area as described earlier in the dataset section. Two datasets, UQ frame dataset 14 

that includes images from UQ_7 to UQ_11 (Table 3) used in the validation dataset, and Literal handheld 15 

system dataset, acquired concurrently to Arvalis_1 to Arvalis_12 (used for training) but with a different 16 

RGB camera. Only the GWC_2021 model is presented here since we already demonstrated that it 17 

outperformed the baseline and GWC_2020 solutions. The performances are evaluated at the level of the 18 

microplots sampled within UQ and Literal datasets. 19 
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 1 

Figure 8 : Comparison between the head density measured in the field and that estimated with the three models from RGB 2 
images aggregated at the plot level. The black line is the 1:1 line. Each point corresponds to a microplot. Blue and red dts 3 

correspond respectively to UQ and Literal sessions. 4 

Table 8 : Performances of head density estimation obtained with the GWC_2021 model. 5 

Datasets n R² RMSE rRMSE Bias slope 

UQ 185 0.7323 56.58 0.2054 19.82 0.8941 

Literal 163 0.633 77.14 0.1669 -9.3249 1.011 

All 348 0.8135 67.00 0.1846 6.1752 0.975 

 6 

There is a good agreement with the head density measured in the field at the plot level (Figure 8 and Table 7 

8). The discrepancies seem to increase with the head density. Detecting all the heads in the image and in 8 

the field is more difficult because of possible occlusions in dense crops. The discrepancies may come from 9 

five main factors:  10 

1. The spatial sampling: for Literal dataset, images and ground samples are not located at the same 11 

place, with images covering a larger area (1.4 m²) as compared to that sampled for ground-level 12 

head counting (0.7 m²). 13 

112



2. Uncertainties in the area used to compute the density. For the UQ dataset, this uncertainty does 1 

not exist since the same frame was used to count heads in the field and to crop the images for head 2 

labeling and head prediction. For the Literal dataset, the area sampled by the image was computed 3 

from the focal length and size of the CMOS matrix that are well known and the knowledge of the 4 

distance between the top of the canopy and the camera. This distance was estimated from the 5 

distance between the camera and the canopy measured with few cm accuracy. Therefore, the error 6 

induced on the area computation should be small, on the order of few percent.  7 

3. Uncertainties in the model to detect heads as seen in the previous section. 8 

4. Differences between heads visible in the RGB image and heads counted in the field. The 9 

occluded heads are expected to be more frequent in dense crops (and high head density) as well as 10 

when the heads are bending as observed for many genotypes and conditions for the later maturity 11 

stages. 12 

5. Errors in head counting by operators in the field. This may increase with the head density with 13 

the fatigue of operators as well as possible occlusions of heads. 14 

 15 

Figure 9 Comparison between the head density measured in the field and that measured on the RGB images by human 16 
operators over the same sampling area delimited by a frame. Data coming from the UQ frame dataset (n=185). 17 

When the head density measured by an operator in the field is compared to that derived from the RGB 18 

images labelled by another operator over the same area delimited by the frame used for the UQ dataset, the 19 
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agreement is only approximative with rRMSE=21.5%. and a slight overestimation of the head density on 1 

the images (Figure 9). Although an underestimation was expected due to the occluded heads in the images 2 

as compared to what an operator can see in the field with the possibility to change the point of view and 3 

even to penetrate in the canopy, the overestimation is surprising. It may be explained by heads missed by 4 

the operator in a systematic way. When counting in the field, the operator must identify each head that are 5 

placed approximately randomly in the horizontal plane (see figures 1 and 2). It is therefore not an easy task 6 

to avoid double counting and not miss any head. Comparatively to counting on the images where the 7 

operator identifies heads incrementally with a bounding box or any other marker. This prevents double 8 

counting and limits the risk to miss heads visible on the image. 9 

 10 

Figure 10 : Comparison of the rRMSE obtained on the UQ dataset from different ways of counting heads 11 

A comparison between the rRMSE obtained over the UQ dataset for head counting in the frames (Figure 12 

1) shows that the best match is observed between the head counting estimated by the GWC_2021 solution 13 

and the head counting by the operator on the images in term of correlation. Although some occluded heads 14 

may not be included in the head counting on the images, this way seems to be a better reference as compared 15 

to counting in the field where the errors made by the operator appears relatively high. Further, counting in 16 

the field is tedious and is generally done once by an operator on a limited sampling area. Conversely, 17 

counting on images can be repeated by several operators, which should improve the reliability of the result. 18 

Therefore, counting on images appears more reliable, and the confidence that we could have on counting 19 

in the field considered a reference must be altered. However, the bias between prediction and head counting 20 

in images is more significant than between the head counting in the field and the head counting on images. 21 

It means that detecting small wheat heads is a common problem for humans and the DL method. Further 22 

works are required to improve the relationship between counting in the field and counting on images by 23 

replicating on earlier stages: three dates on five were acquired during the ripping stage. 24 

 25 

5 Conclusion 26 

The Global Wheat Challenge 2020 and 2021 were important steps toward a robust solution to wheat head 27 

detection from high resolution RGB imagery. It complements similar initiatives focusing on plant seedling 28 

classification [11], plant pathology classification [24] , Agriculture-vision challenge [13], or plant species 29 

Head counting 
in the field 

Head counting 
on images 

Head counting 
GWC_2021 
estimated  

rRMSE=0.215 

bias = -/+ 33 

r2 = 0.74 

rRMSE=0.205 

bias = +/- 19 

r2=0.73 

rRMSE=0.207  

bias = +/- 52  

r2 = 0.88 
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recognition [25], [26]. The Global Wheat Challenge 2020 and 2021 attracted a lot of attention to a central 1 

problem in Plant Phenotyping and contributed to expose the question to a broader community, including 2 

that specialized in image processing based on artificial intelligence algorithms. It is unique in terms of the 3 

diversity of in-field situations.  4 

The design of the competition has evolved between the two editions. Additional datasets were used in the 5 

GWC_2021, creating more diversity and more images for training. The session, i.e., images acquired with 6 

the same system at the same date and location, was recognized as a key structuring factor that defines 7 

domains. Greater attention was therefore paid on the balance between sessions in terms of the number of 8 

available images. Conversely, in the GWC_20 edition, Utokyo_1 and Utokyo_2 that contained most of the 9 

images in 2020 created an “overfit” artifact. The metrics and the split were also improved to better tackle 10 

the robustness of the models.  11 

The three winning models of both editions were made open-source and can therefore be used by the 12 

community. The corresponding solution and weights are available on Github 13 

(https://github.com/ksnxr/GWC_solution). The proposed solutions are not very innovative in terms of 14 

model architecture, based on standard one step model such as Yolo and EfficientDet. They use specific data 15 

augmentation techniques to increase robustness, including mixup, cutmix and mosaic. Pseudo-labeling was 16 

also used to increase the diversity and size of the training dataset. Ensemble approaches were also part of 17 

the winning solutions, where several models are fused to get a more robust solution. These several elements 18 

of the winning solutions can be applied for other problems including additional traits and crops. It however 19 

requires to access to a minimal set of metadata used to define the domains [20], [21] 20 

Solutions based on new architectures focusing on small objects that are more difficult to detect, still need 21 

to be explored. Similarly, robust algorithms such as GDRO [27] , Deep CORAL [28] should also be 22 

investigated. Further, the information of the domains/sessions was not intensively exploited during the two 23 

competitions, although it is expected to increase the robustness of the algorithms. However, the format of 24 

a challenge is perhaps not optimal for such approaches where an ensemble approach could be developed 25 

based on a series of models trained, validated, and tested on several splits using a multi-fold cross validation 26 

approach. In this case, keeping a private split for the competition will reduce the size of the training and 27 

validation datasets. Nevertheless, the Global Wheat Head Detection 2021 used for the GWC_2021 is 28 

available on the toolbox WILDS [29] to explore more advanced algorithms. 29 

Some progress was observed on robustness in the GWC_2021 winning solution as compared to the baseline 30 

and GWC_2020 solutions both for head detection and counting. Further we demonstrated that these 31 

techniques based on high-resolution imagery were more reliable than the standard low-throughput head 32 

counting in the field by an operator: it prevents from systematic errors made by the operator and allows to 33 

increase the size of the sample used to compute the average head density at the microplot level. Further, the 34 

use of images makes the counting process more traceable as compared to counting directly in the field. 35 

Nonetheless, our study demonstrates that for well-defined conditions of acquisition, GWC_21 can be used 36 

as a replacement of manual measurement and is already used operationally both at INRAe and Arvalis. The 37 

GWC_21 solution is 14 times faster to compute compared to GWC_20 with less than one second per image 38 

on computers equipped with a Geforce 1080 GTX or a Geforce 3090 RTX Graphical processing unit board. 39 

However, the performances on the training dataset with accuracy lower than 0.8 for detection and rRMSE 40 

larger than 0.10 for counting still needs significant improvement for the models to be used operationally 41 
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and allow deciphering small differences between genotypes or modalities. Better understanding of the 1 

impact of the acquisition system, i.e., camera type, setting, resolution is required to develop both image 2 

normalization pre-processing and efficient data augmentation techniques. Further, using bounding boxes to 3 

identify the heads may be also replaced efficiently by point identification that presents the advantage to 4 

take less time for the labeling. Further, the problems related to the score threshold and IoU are simplified 5 

in this case. Finally, at least for head counting, regression models similar to Tasselnetv2 [19] and its 6 

extension Tassenetv3 [30] or the ones used for ACID [31] may be also an interesting approach, as previous 7 

studies [32] already demonstrate superiority of regression for GWHD 2020.  8 
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8 Supplementary material 23 

8.1 Limits of GWC_2020 competition design 24 

 25 

Figure 3: Presentation of the limit of the ranking used during the competition. The x-axis of Part A 26 

represents the actual ranking in the Kaggle competition while the y-axis shows the score. The scores 27 

with our re-implementation of the metric are shown in orange and the proposed simplified metric are 28 

shown in blue. Both are evaluated on the corrected private test set. Part B the score for each solution 29 
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with metric used during Kaggle against the ADA. Part C presents a simulation of the new ranking based 1 

on the new score and limited to the solutions sampled for the analysis. 2 

The design of a competition is critical to obtain solutions that satisfy its objective. The metric proposed 3 

during the Kaggle competition presents the drawback of not having an open implementation. Our open 4 

re-implementation from scratch reaches similar but unidentical scores.  These small changes can lead to 5 

severe changes in ranking. The results presented in figure 3-A reflect how the corrections and the re-6 

implementation could have drastically changed the ranking on the Kaggle annotations. 7 

Domain generalisation is a core problem that the dataset aims to solve but the metric chosen for the 8 

Kaggle challenge was too heavily influenced by the performance on the largest domain – utokyo_1.  The 9 

use of weighted accuracy promotes solutions that have more balanced performance. Figure 3-B displays 10 

how the weighted accuracy is less saturated than the original metric with performance varying between 11 

0.3 and 0.6 while the AA varies between 0.65 and 0.7.  12 

Applying these results would have strongly influenced the final ranking. [Praxis](Overfeat), which has 13 

ranked 2nd and VinBigDataMedical (DungNB) which has ranked 1st would have ranked 1st and 3rd, 14 

respectively. Peculiarly, the solution that was ranked 9th would be 2nd, and the 3rd place solution would 15 

have dropped below a rank of 100. These results demonstrate the robustness of the solutions by Praxis 16 

and VinBigDataMedical despite the original metric. However, the former metric could have discouraged 17 

even more robust solutions from rising to the top. The solution by Praxis will be studied closely in the rest 18 

of the paper because it scored significantly higher (+0.03) than the second solution on the weighted 19 

accuracy. It will be called the “Kaggle solution” in the rest of the study. Henceforth, the score will be 20 

computed with the weighted accuracy on the whole public and private test set. 21 

 22 

8.2 Impact of data augmentation: ablation study 23 

The 20 solutions getting the highest AGWC_2020 were reviewed to evaluate the impact of the data 24 

augmentation strategies on the model detection performances. About 40 types of augmentation techniques 25 

were used, most of them being applied to single images, while three others require a several images to be 26 

exploited concurrently. The three multi-image augmentation techniques were selected for further analysis. 27 

About 15 single-image augmentation techniques were selected to represent the main types of techniques 28 

used, while eliminating those that were a priori not pertinent in our context such as RandomSnow or 29 

RandomSunFlare. The single-image data augmentation techniques were implemented using a popular 30 

image processing library known as Albumentations.  31 

The multi-image augmentation techniques (Mixup, Cutmix) were used for Overfeat solution (Table 3, 32 

Figure 2). Mixup (Zhang et al., 2018) and Cutmix (Yun et al., 2019) both mix 2 images to form an 33 

augmented image. While Mixup uses a weighted sum of the pixels from the two images, Cutmix replaces 34 

a patch in one image with a randomly cut patch from another image. In this study the weights for the Mixup 35 

operation were set to a constant, 0.5, although it could also be drawn from a random distribution for each 36 

image. The Mosaic augmentation technique is an extension of Cutmix and takes a batch of 4 images, 37 

randomly scales each image and patches them together into a single image. Because of its close nature to 38 
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cutmix, it has not been included in the ablation study. The annotations for each image are proportionately 1 

scaled and stacked together to form the augmented annotations.  2 

The EfficientDet-D4 [35] object detection model, pretrained on the Microsoft Common Objects in Context 3 

(MS-COCO) dataset [9] was selected as the baseline model for evaluating the effects of these data 4 

augmentation techniques on the wheat detection task using the GWHD dataset. All data augmentation 5 

strategies used in this study were applied only to the training dataset, with a probability of 0.5. Only one 6 

augmentation per group of similar operations is selected randomly for each batch. 7 

   
Figure 2: Presentation of Mixup, Cutmix and Mosaic strategy 8 

 9 

8.3 Analysis of Data Augmentation and pseudo-labelling performance 10 

 11 

Modality Aw AGWC_2020 

Baseline 0.452787 0.654569 

Baseline + Cutmix 0.476214 0.659364 

Baseline + Mixup 0.367481 0.553144 

Data Augmentation (DA) 0.498065 0.704271 

DA + Cutmix 0.501241 0.685546 

DA + Mixup 0.437714 0.686517 

DA + Cutmix + Mixup 0.358226 0.508334 

Table 3: Ablation study different Data Augmentation strategies 12 

The impact of Data augmentation is important to improve the quality of the robustness. The classic data 13 

augmentation increases the weighted accuracy by 0.045, almost 10% of the baseline score. Advanced data 14 

augmentation techniques such as Cutmix [34] or Mixup [33] do not seem beneficial for the training – while 15 

Cutmix alone improves performance by 0.023, it does not add any performance compared to classic data 16 

augmentation techniques. An interesting finding is that some data augmentation can decrease the robustness 17 

– the use of Mixup always decreases the performance compared to the baseline data. Our results suggest 18 

that while the use of Cutmix or Mixup theoretically increases robustness in the use case of classification, it 19 

does not seem to translate for detection; it yields marginal gains. Conclusions are similar when using the 20 

same accuracy as in the Kaggle challenge. The result is contradictory to the popularity of such approaches 21 

during the Kaggle competition.  22 
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In our experiment, Mixup could be drawn with a probability of 0.5, while it’s reduced to 0.165 in the case 1 

of the winning solution. The quality of our classic data augmentation pipeline, which is inspired by the 2 

strongest solutions could also explain the results. Our results confirm the importance of Data Augmentation 3 

for robustness but call for more careful exploration when applying usual, typically multi-image, Data 4 

Augmentation techniques. It is particularly important to remember that results on classification tasks may 5 

not translate well on detection. The use of bounding boxes may also limit the use of strategies such as Cut, 6 

Paste and Mix to increase the diversity of the data. A potential axis of research would be to generate 7 

synthetic wheat heads to increase the diversity of the data. The use of GAN or Style Transfer may be a 8 

promising solution.    9 

 10 
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4.3 Conclusion

The challenges’ approach is an empirical tentative at obtaining robust models. We demon-
strated the importance of the competition design on the question. The results also show the
need for more in-field validation data to measure the actual error between the DL prediction
and the effective number of wheat heads. Our approach on the database constitution
and challenges’ organization can be scaled for more traits than wheat head counting. It
is, however, not tackling more conservative strategies to train robust algorithms for plant
phenotyping. Data challenges’ are time-consuming but rewarding in terms of optimization
with a high return on value. In the chapter, we will try to tackle the problem more directly by
optimizing the training for robustness.
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5 GlobalWheat-Wilds: Global Wheat Head Dataset as a bench-
mark of in-the-wild distribution shifts

This chapter corresponds to my participation to the article “WILDS: A Benchmark of in-the-
Wild Distribution Shifts”, published in at ICML [1]. It focuses on the contribution of the Global
Wheat Dataset to study the robustness of deep learning algorithms. Etienne David, Ian
Stavness and Wei Guo are the main investigators for the contribution of Global Wheat Head
Dataset 2021 (GWHD_2021) to WILDS. GWHD_2021 is the only agriculture dataset of WILDS
and the only detection dataset. Therefore, it forces me to implement several changes in the
WILDS codebase.

Figure 22. Illustration of the WILDS paper

5.1 Introduction

5.1.1 The out-of-distribution problem

Distribution shifts—where the training distribution differs from the test distribution—can sig-
nificantly degrade the accuracy of machine learning (ML) systems deployed in the wild, i.e.
deployed operationally over a large diversity of situations. In this work, we consider two
types of distribution shifts that are ubiquitous in real-world settings: domain generalization
and subpopulation shift.

• In domain generalization: the training and test distributions include data from related
but distinct domains. This problemarises naturally inmany applications, as it is generally
not possible to collect a training set that covers equally all domains of interest. For
example, in medical applications, it is common to train a model on patients from few
hospitals, and then deploy it more broadly to hospitals outside the training set [2]; in
wildlife monitoring, an animal recognition model is trained on images from one set of
camera traps to be then applied to new camera traps [3]. The wheat head detection
falls into the first category of subpopulation shift.
• In subpopulation shift: we consider test distributions that are subpopulations of the
training distribution, with the goal of keeping good performances for the worst-case
subpopulation. For example, it is well-documented that standardmodels often perform
poorly on under-represented demographics [4]; [5], and so we might seek models that
can perform well on all demographic subpopulations

5.1.2 Existing ML benchmarks for domain shifts

Domain shifts have been a longstanding problem in the ML research community [6]; [7]. Earlier
work studied shifts in datasets for tasks including part-of-speech tagging
citemarcus93treebank, sentiment analysis [8], land cover classification [9], object recognition
[10], and flow cytometry [11]. However, these datasets are not as widely used today, in part
because they tend to be much smaller than modern datasets.
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Despite their ubiquity in real-world deployments, these types of distribution shifts are
currently underrepresented in the datasets widely used in the ML community today [12].
Recent papers have focused on object recognition datasets with shifts induced by synthetic
transformations, such as ImageNet-C [13], which corrupts images with noise; the Backgrounds
Challenge [14] and Waterbirds ([15], which alter image backgrounds; or Colored MNIST
[16], which changes the 6 colors of MNIST digits. It is also common to use data splits or
combinations of disparate datasets to induce shifts, such as generalizing to photos solely
from cartoons and other stylized images in PACS [17]; generalizing to objects at different
scales solely from a single scale in DeepFashion Remixed [18]; or using training and test sets
with disjoint subclasses in BREEDS [19] and similar datasets [13] These existing benchmarks
are useful and important testbeds for method development. As they typically target well-
defined and isolated shifts, they facilitate clean analysis and controlled experimentation,
e.g., studying the effect of backgrounds on image classification [14], or showing that training
with added Gaussian blur improves performance on real-world blurry images [18]. Moreover,
by studying how off-the-shelf models trained on standard datasets like ImageNet perform
on different test datasets, we can better understand the robustness of these widely-used
models [13], [18], [20]–[23]. However, as we discussed in the introduction, robustness to these
synthetic shifts need not transfer to the kinds of shifts that arise in real-world deployments
[22]–[24], and it is thus challenging to develop and evaluate methods for training models
that are robust to real-world shifts on these datasets alone.

5.1.3 Study objectives of WILDS

In the proposed WILDS initiative, a curated benchmark of 10 datasets is compiled with
evaluationmetrics and train/test splits representing a broadarray of distribution shifts thatML
models face in the wild (Figure 23). With WILDS, we seek to complement existing benchmarks
by focusing on datasets with realistic shifts across a diverse set of data modalities and
applications: animal species categorization [25], tumor identification [26], bioassay prediction
[27], [28], genetic perturbation classification [29], wheat head detection [30], text toxicity
classification [31], land use classification [32], poverty mapping [33], sentiment analysis [34],
and code completion [35], [36].
These datasets reflect natural distribution shifts arising from different cameras, hospi-

tals, molecular scaffolds, experiments, demographics, countries, time periods, users, and
codebases.
WILDS builds on extensive data-collection efforts by domain experts, who are often

forced to grapple with distribution shifts to make progress in their applications. To design
WILDS, we worked with the WILDS team to identify, select, and adapt datasets that fulfilled
the following criteria:

• Distribution shifts with performance drops. The train/test splits reflect shifts that sub-
stantially degrade model performance, i.e., with a large gap between in-distribution
(ID) and out-of-distribution (OOD) performances.
• Real-world relevance. The training/test splits and evaluation metrics are designed in
conjunction with domain experts to reflect real-world scenarios. In Appendix A, we
further discuss the framework we use to assess the realism of a dataset.
• Potential leverage. Domain shift benchmarks must be non-trivial but also possible to
solve, as models cannot be expected to generalize to arbitrary distribution shifts. We
constructed each WILDS dataset to have training data from multiple domains, with
domain annotations and other metadata available at training time. We hope that
these can be used to learn robust models: e.g., for domain generalization, one could
use these annotations to learn models that are invariant to domain-specific features
[37], [38], while for subpopulation shift, one could learn models that perform uniformly
well across each subpopulation [15], [39].
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Domain generalization Subpopulation 
shift Domain generalization + subpopulation shift

Train example

What do Black 
and LGBT 
people have to 
do with bicycle 
licensing? 

import 
numpy as np

…

norm=np.___

Overall a solid 
package that 
has a good 
quality of 
construction 
for the price.

Train Val (OOD) Test (OOD)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

siRNA A

siRNA B

Test example

As a Christian, 
I will not be 
patronizing 
any of those 
businesses.

import 
subprocess 
as sp

p=sp.Popen()
stdout=p.___

I *loved* my 
French press, 
it’s so perfect 
and came with 
all this fun 
stuff!

Train Val (OOD) Test (OOD)

Experiment 1 Experiment 2 Experiment 3 Experiment 4

siRNA A

siRNA B

Domain (d) hospitalcamera country, rural-urbandemographicscaffold time, region git repositoryuserlocation, timebatch

Adapted from Bandi et al.
2018

Beery et al.
2020

Yeh et al.
2020

Borkan et al.
2019

Hu et al.
2020

Christie et al.
2018

Raychev et al.
2016

Ni et al.
2019

David et al.
2021

Taylor et al.
2019

Dataset Camelyon17iWildCam PovertyMapCivilCommentsOGB-MolPCBA FMoW Py150AmazonGlobalWheatRxRx1

Prediction (y) tumoranimal species asset wealthtoxicitybioassays land use autocompletesentimentwheat head bboxperturbed gene

Input (x) tissue slidecamera trap photo satellite imageonline commentmolecular graph satellite image codeproduct reviewwheat imagecell image

# examples 455,954203,029 448,000437,929 539,502523,846 19,669 150,0006,515125,510

# domains 5323 16120,084 2,58616 x 5 23 x 2 8,4214751

Figure 23. The Wilds benchmark contains 10 datasets across a diverse set of application
areas, data modalities, and dataset sizes. Each dataset comprises data from different
domains, and the benchmark is set up to evaluate models on distribution shifts across
these domains.

The GlobalWheat-WILDS corresponds to the domain generalization type of domain shift:
we aim to generalize to test domains that are disjoint from the training domains. However,
to make this problem tractable, the training and test domains are expected to be similar. A
robust model should minimize the average error on the test distribution.
The aim of the study is to construct train, validation and test splits allowing to demonstrate

the existence of a significant performance drops in standard models trained via empirical
risk minimization (ERM) loss function. In a second step, two alternatives loss functions are
tested on GlobalWheat-WILDS, to improve the robustness of the models.

5.2 Materials and methods

In this section, we detailed the contribution of the GlobalWheat-WILDS to investigate the
domain shift problem.

5.2.1 The GlobalWheat-WILDS dataset

The GlobalWheat-WILDS dataset comprises 6,515 images containing 275,187 wheat heads.
Most of the dataset is coming from the GWHD_2021 dataset described in chapter 2. The
main difference is the repartition of the different domains in the training, validation, and
test datasets. In total, 47 acquisition sessions coming from 16 research institutes across 12
countries are available. We describe the metadata and statistics of each acquisition session
in Table 11. Many factors contribute to the variation in wheat appearance across acquisition
sessions with substantial variation due to differences in wheat genotypes, growing conditions
(e.g., planting density), illumination conditions, sensors, and measurement protocols.
We consider the domain generalization setting, where the goal is to learn models that

generalize to images taken from new acquisition sessions. The task is wheat head detection,
which is a single-class object detection task. Concretely, the input is an overhead outdoor
image of wheat plants, with labels corresponding to bounding box coordinates that enclose
the wheat heads (the spike at the top of the wheat plant containing grain), excluding
the hair-like awns that may extend from the head. The domain specifies an acquisition
session, which corresponds to a specific location, time, and sensor for which a set of images
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were collected. Our goal is to generalize to new acquisition sessions that are unseen during
training. In particular, the dataset split should capture a shift in location, with training domain
made with images from countries different from those used to build the test domain.

5.2.2 The data splits used for GlobalWheat-WILDS

The goal of the GlobalWheat-WILDS, as part of the WILDS collection, is to provide a training,
validation and test splits that present significant domain shifts to quantify the possible
performance drop. Two main domains were defined:

• The in domain (ID) mages from 18 acquisition sessions in Europe (France ×13, Norway ×2,
Switzerland, United Kingdom, Belgium), containing 147 957 wheat heads across 3 300
images. The ID was then split into two subdatasets by randomly drawing images from
the 18 sessions:
– ID1: used for training the models. This is the largest dataset.
– ID2: used as a test dataset for testing the intrinsic performances in the case of
Train to train setting.

• The out of domain (OOD). Two subdomains were identified:
– OOD1: used for the validation, i.e. optimization of the hyperparameters. It contains
Images from 7 acquisition sessions in Asia (Japan × 4, China × 3) and 1 acquisition
session in Africa (Sudan), containing 44,873 wheat heads across 1,424 images.

– OOD2: used for the test, i.e. performance evaluation. It contains Images from 11
acquisition sessions in Australia and 10 acquisition sessions in America (USA × 6,
Mexico × 3, Canada), containing 66,905 wheat heads across 1,434 images.

The several splits were differently used to serve the two main objectives targeted:
• Evaluating the performance drop. In this case, two models were compared:

– Train to test: the model is trained over ID1, validated on OOD1, and tested on
OOD2. The separation between OD1 and OD2 was preferred to provide more
robustness of the model by allowing optimizing the hyperparameters on an OOD
dataset not used for testing the performances.

– Mixed to test: the model is trained over a mix of ID1 and OOD2, validated on OOD1,
and tested on OOD2. The hyperparameters used as the same than train to test.

• Evaluating algorithms expected to improve robustness. The model is trained on ID1
with validation on OOD1 and tested on ID2 (Train to train) and OOD2 (Train to test).

The following table 2 describes the details of the splits.

5.2.3 The detection model and hyperparameters

For the GlobalWheat-WILDS, we use the Faster-RCNN detection model [40], which has been
successfully applied to the wheat head localization problem [30], [41] To train, we fine-tune
a model pre-trained with ImageNet, using a batch size of 4, a learning rate of 10−5 , and
weight decay of 10−3 for 10 epochs with early stopping. The hyperparameters were chosen
from a grid search over learning rates 10−6 , 10−5 , 10−4 and weight decays 0, 10−4 , 10−3. We
report results aggregated over 3 random seeds.

5.2.4 Training algorithms used

Additionally to the study of the performance drop, we compared several training algorithms
used during the learning process, some being designed to get a more robust model.

• Empirical Risk Minimization (Equation 1) is the classic training algorithm. The loss
calculated to train a model is minimized equally for all examples (i.e. images in the
case of GlobalWheat-wilds) of one batch. h(xi) represents the prediction of the DL
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Domain ID OOD
Split # ID1 ID2 OOD1 OOD2
# sessions 18 8 21
# images 2943 357 1424 1434
# labels 131864 16093 44873 66905

Performance drop

Train to Test
Train 100%
Validation 100%
Test 50%

Mixed to Test
Train 76% 50%
Validation ∗
Test 50%

Algorithm evaluation
Train 100%
Validation 100%
Test 100% 100%

Table 2. The splits used for the performance drop and robustness experiments. (*) the
hyperparameters used for theMixed to Test experiment were the sameas those optimized
for the Train to Test experiment.

algorithm h on xi, yi is the corresponding label and L is the loss function.

Remp(h) = 1
n

n∑
i=1

L(h(xi),yi) (1)

• Group Distributional Robustness Optimization (Group DRO) algorithm (Equation 2) is
proposed by Sagawa [42] as an alternative to ERM to minimize the loss on the worst
group for each batch in contrast to the ERM algorithm. It is equivalent to calculate the
empirical risk for each group (g1,...,gn) and minimize the maximum.

RGDRO(h) = max(Remp(hg1), ..., Remp(hgn)) (2)

• Deep CORAL [43] proposes to train Deep Learning model by adding a second loss
term which forces to harmonize the features statistics of different domains. In practice,
it minimizes the difference between the covariance matrices of two different groups in
each batch. It has not been used in a detection use case to our knowledge. To adapt
the algorithm, we propose to use the features of the encoder part of Faster-RCNN, used
by the RPN, to calculate the Deep CORAL objective. Our framework is summarized on
figure 24. Note that the encoder used for Deep CORAL was applied here on dimensions
superior to 10.000, while Deep CORAL was designed for classification use case with a
limited dimensionality, between 512 and 4096.

5.2.5 Metrics used to evaluate the performances

We used the average accuracy similarly to what was proposed previously for the Global
Wheat Challenges with the dataset [44] . The accuracy of a bounding box detection
is measured at a fixed Intersection over Union (IoU ) threshold of 0.5. This permissive IoU
threshold of 0.5 was selected because of the uncertainties regarding the precise outline of
wheat head instances due to the stem and awns extending from the head. The accuracy of
an image is computed as T P

T P +F N+F P , where TP is the number of true positives, which are
ground-truth bounding boxes that have and IoU > 0.5 with some predicted bounding box;
FN is the number of false negatives, which are ground-truth bounding boxes that have an
IoU < 0.5 with any predicted bounding box; FP is the number of false positives, which are
predicted bounding boxes that have an IoU < 0.5 with any ground-truth bounding box. We
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Figure 24. Deep CORAL loss objective

first computed the accuracy within each image. We then computed the average accuracy
for each acquisition session by averaging the per-image accuracy, and finally averaged the
accuracies of each acquisition session. Such average accuracy presents the advantage
to get a more even contribution from the several sessions that show a large variability in
their number of images (from 17 to 200 images in the test set). The average accuracy was
preferred to the worst-case accuracy because few acquisition sessions were more difficult
and yielded a poor representation of the actual model performances.

5.3 Results and Discussion

5.3.1 The performance drop is large in plant phenotyping

The per domain average accuracy of the models is very variable, with larger dispersion for
the Train to test setting (Figure 25, left). The average accuracy of the mixed-to-test setting
is significantly higher (Ac=63.3) than that obtained with the train to test setting (Ac=49.6).
The mixed-to-test setting allows the model to learn both on ID and OOD, even if the OOD
images of the train dataset represent only 24% of the total training images (but 50% of the
OOD2 dataset, the other 50% being used for test, Table 2). The hyperparameters were
optimized on the OOD1 dataset for the Train to test setting. The same hyperparameters
were used for the Mixed to train setting. Consequently, the performances of the Mixed to
train setting could have been improved if the hyperparameters were retuned on OOD1.
The performances for the two settings are very correlated (Figure 25, right). There are

easy domains where the accuracy is high for both settings, with only small performance
drop. Conversely, there are difficult domains for the two settings such as Terraref, because
of the strong contrast in its images and the presence of partly occluded heads. The KSU
sessions have also relatively poor accuracy with a large performance drop, may be due
to differences in the development stage when the images were acquired. However, it is
difficult to assign the performance drop to a particular factor including genotype, sensor
and acquisition protocol used. Some artifacts may also contribute to make the performance
drop more variable: some domains in OOD2 have a relatively small number of images which
may contribute to some unbalanced distribution of the image features between the 50%
OOD2 used for training the Mixed to test setting and the 50% other images used though
some of the domains to compute the average accuracy. Further, a high variance across
images is observed for UQ_2 and UQ_3 belonging to OOD2. It is due to the high proportion
of empty images (88% for UQ_2 and 57% for UQ_3) that are accuracy scored either 0% or
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Figure 25. On the left, distribution of the average accuracy evaluated on the test (OOD)
dataset when the model is trained over the mixed to train (ID+OOD) and train to test
(ID) dataset. Box plot representation with the median indicated by the red line. The
box contains the percentiles between 25% and 75%, while the whiskers extend to the
1%-99% percentiles. On the right, relationships between the average accuracy for each
domain of the model trained on ID+OOD dataset and that trained on the ID dataset.
The dashed line is the 1:1 line.

Loss function ID2 OOD1 OOD2
ERM 77.1 68.6 51.2
Group DRO 76.2 66.2 47.9
CORAL 75.4 64.9 47.2

Table 3. Average accuracy computed over several domains (ID1, OOD1, OOD2) for the
model trained on ID1 and validated on OOD1 with different loss functions (ERM, Group
DRO, CORAL).

100% depending on the presence or not of false positives and negatives.

5.3.2 Alternative training algorithms do not improve robustness

The several training algorithms and loss functions tested provide relatively similar average
accuracy over the three test domains considered. Further, the ERM shows always slightly
higher performances as compared to Group DRO and CORAL. As expected, the average
accuracy with ERM loss function evaluated on 100% of OOD2 (Ac=51.2) is consistent with the
value reported for the same model over 50% of OOD2 (Ac=49.6, Figure 25). The performance
drop is significant when comparing the average accuracy obtained over ID2, and in a
lesser way on OOD1. However, both the group DRO and CORAL models do not reduce this
performance drop despite their promises claimed by their authors. This results obtained over
GlobalWheat-WILDS is consistent with those reported for most of the other WILDS datasets
as demonstrated in table 3. Additionally, to the empirical results, theorical arguments are
made against the IRM loss function not adapted for GlobalWheat-WILDS, but used for the
other WILDS [1]. We hope that the WILDS benchmark can provide a clear framework to
measure gain of robust training algorithm.
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5.4 Conclusion

The inclusion of the wheat head detection problem within the WILDS initiative was an
opportunity to investigate the robustness problem of deep learning approaches within
a wider scientific community and to benefit from their theoretical advances. Our results
demonstrate the existence of the domain shift with performance drop, which reinforces our
previous conclusions on plant detection and counting from UAV observations [45]. More
work is however needed to better understand the possible causes of the performance drop,
either by the image features extracted by deep learning approaches or using the known
metainformation that document factors such as the illumination conditions, image quality,
development stage, genotype features. While this issue is not well covered in the other
detection problems considered in WILDS, it appears to be also the case for the classification
and segmentation problems investigated in WILDS. The domain shift and corresponding
performance drop is therefore expected to impact any traits derived from amachine learning
approach.
Our results also demonstrate the lack of effectiveness of some training algorithms claimed

to improve the robustness of the model. The robustness seems to be better improved using
ensemble approaches where several models trained differently are combined to provide a
consensus solution as demonstrated in the Global Wheat Challenge [44]. Some questions
are also still open: how to optimize the selection of the training, validation and test datasets?
How to define in-domain (ID) and out of domain (OOD) datasets?
The use of Generative Adversarial Networks [46]–[48] could be also a solution to transfer

the conditions of a domain to standard ones. Data pre-processing could also contribute to
this standardization, particularly regarding the illumination conditions and color distributions.
Finally, data augmentation that was not considered in WILDS may contribute to create some
additional diversity and improve the robustness of the models as demonstrated in the Global
Wheat Challenges. However, the growth in size and diversity of the available datasets with
images labeled or not appears to be still a safe way for solving collectively a given problem
and get robust models that can scale operationally over most of the situations encountered.
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6 Conclusion and perspectives

This work focuses on the interpretation of phenotyping measurements to extract pertinent
traits for breeders, ecophysiologists, and agronomists. While data acquisition currently
reached a high level of maturity, the estimation of traits from the row measurements is still
recognized as a bottleneck before within the high-throughput phenotyping systems. The
recent emergence of deep learning (DL) methods was a breakthrough in data interpretation.
It allows not only to improve the traitestimation performances, but also to extract traits which
were impossible to access with standard computer vision and machine learning techniques
. Our study focused on plants and organ identification and counting that are the main
components of the yield and therefore highly desired within the set of high-throughput
phenotyping traits. Identifying plants is not only a way to count them but also to localize
them and describe their local environment while allowing further characterization of these
individual objects. For plant counting, we demonstrated that DL techniques generally
outperform more standard computer vision techniques at least over maize, sunflower, and
sugar beet. However, as with any interpretation technique, DL should reach a given level of
accuracy, precision, and robustness to satisfy the users’ requirements fully.

6.1 Accuracy, precision, and robustness of the models are desired for plant pheno-
typing

Accuracy is the closeness of the estimated values with the true value. Accuracy is mandatory
when estimates are being compared with reference values. It is also desired by breeders
if the trait considered is combined with other information or models to get higher-order
traits. For example, plant count needs to be accurate if the yield is computed from each
plant’s grain production. However, when ranking genotypes, precision is mandatory, while
accuracy is not. Precision is the closeness between repeated measurements/estimates.
Precision quantifies the repeatability, which is essential when identifying differences between
genotypes/treatments. Robustness is defined by keeping performances under an extensive
range of situations. If estimates of traits need to be precise, robust, and generally accurate,
the actual values required by breeders, ecophysiologists and agronomists for these properties
are rarely available. The most accepted requirement is to beat a reference method. However,
this is difficult to demonstrate in most cases.

Accuracy If the reference method is associated with marginal uncertainties, the reference is
good, and any method should be as close as possible to the reference one. It was the case
for the plant counting since counting visually on the rows from the images is non-ambiguous
and straightforward. However, this was not the case for head counting, where the considered
reference is head counting by operators in the field. We demonstrated that the uncertainties
associated with this reference method are significant and probably higher than counting
on images. In this case, uncertainties of the reference method are due to counting errors
in the field by the operator, as well as to the limited spatial representativeness if the whole
microplot needs to be characterized. However, if another method is available in addition to
the reference and the DL ones, the triple collocation error measurement (TCEM) technique
[1] could be used to evaluate the intrinsic accuracy of each method regarding the actual
value that is unknown. Further work is to be developed in this direction to quantify better the
intrinsic performances of traits estimation techniques

Precision Precision is much easier to quantify using repeatability or broad sense heritability
metrics. However, this requires replicates, which was not available in a systematic way in
the datasets that we compiled. More attention should be paid to this critical metric, with
consequences on selecting the datasets used at least to test the proposed DL models.

Robustness Robustness was the main focus of this work since any machine learning solution
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can fail outside its definition domain, i.e. the training domain or “in the domain” (ID). Initial
work not reported in this manuscript was trying to characterize the definition domain by
describing the space of features extracted from the images of the training dataset. Some
results are given in chapter 2 to characterize the datasets added to the Global Wheat Head
dataset. However, the results were not as interesting as expected, and the several attempts
to optimize the selection of examples to represent the diversity better were deceiving. These
techniques were generally describing the distribution of trivial factors associated with the
acquisition sessions. However, there were efficient to automatically identify outliers such
as blurred images or images corresponding to other scenes than those targeted, such as
images of the sky!
One result of our study is that the acquisition session defines well a domain. This is a

serious conclusion that implies that most of the literature reported that training and testing
over the same acquisition sessions are likely to be not robust. Robustness for phenotyping
problems could be defined as the capacity to generalize over all possible sessions. It is
measured by the performance drop as proposed in theWILDS study in chapter 4: the change
in performances (generally a decrease) when measured over the training domain (ID) and
that measured on the test domain (OOD) when the test domain corresponds to acquisition
sessions not used for the training. Our work highlights the difficulty to build robust models.
This was the case for plant counting: when adding few examples of the test domains, plant
identification and counting performances increase drastically. Similar results were reported
over the head identification and counting when the “Mixed to Train” setting showed much
improved performances compared to the “Train to test setting”. It may advocates for active
learning, i.e. systematic inclusion of examples from the inference dataset into the training
one. However, it is not straightforward to implement for operational applications. Alternative
techniques may be implemented to improve model robustness as well as accuracy and
precision.

6.2 Possible improvements in the accuracy, precision and robustness of DL ap-
proaches

The constitution of large, diverse, and consistent datasets is the necessary first step. Then,
data preparation and augmentation, learning strategy, and model design are critical to
yield a solution that could be exploited operationally.

6.2.1 Large, diverse and consistent datasets preparation is a crucial first step.

In chapter 1, a dataset composed of 15.000 plants from 3 crops, 18 locations and 27 UAV
flights has been gathered across different locations in France. The Global Wheat Head
Dataset, described in chapter 2, comprises 6,515 images containing 275,187 wheat heads.
These images were collected over 47 acquisition sessions in 16 research institutes across
12 countries. Chapter 2 presented the challenge of building such datasets and how to
expose them to the community. The quality and the consistency of the dataset appear
very important. The quality is mainly defined by the diversity of the examples, the balance
between the several sessions, the quality of the labelling that was reviewed several times
in our case, and the quality of the images, avoiding blurriness and under or overexposed
images. The consistency across examples is also critical to avoid complexifying the problem
for the DL model. The consistency includes a limited range of spatial resolution and view
directions and labels clearly defined. The protocol used for image acquisition appears,
therefore, mandatory to ensure both quality of images and consistency across sessions.
Metainformation is also required to select the images/sessions better and try to understand
problems when the model fails on some images/sessions. However, the constitution of large
and diverse datasets for training and evaluating robust DL models requires a significant
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effort to get images and the associated labels and metainformation from many institutions,
check and organize the database, and make it open to the scientific community. This is
generally at the initiative of one or a small group of institutions. These databases need to be
lively, i.e., to grow and eventually evolve to accept additional traits of interest. For example,
after head identification, some characteristics of the heads could be of interest, such as the
length, diameter, and a number of spikelets’ ranks. This needs to be organized and requires
dedicated resources.
Labelling is tedious work to accomplish, although critical and mandatory. It has evolved

these last years/months rapidly, with the availability of dedicated ergonomic platforms.
Further, the emergence of companies that can be contracted for labelling images for a
reasonable price and good quality has changed the paradigm: the remaining tasks to
accomplish locally is mostly to precisely define the objects to be labelled and to review the
labels proposed by the labelling companies.

6.2.2 Data preparation and augmentation

Data preparation • Illumination is an essential source of variability for RGB imagery as it is
often not controlled in a field experiment. Advanced preprocessing techniques can help
to mitigate the environmental effect. Relighting of an image from multi-view [2], [3], videos
[4] or even single view image [5] has been made possible by recent development in Deep
Learning, which could open an avenue to control the illumination. Shadow removal technics
are also a possibility to remove illumination [6][7][8][9]. An example of how such technics can
perform directly on plant phenotyping imagery is presented in figure 26. Normalization of
the pixel values across different RGB cameras can also prevent unexpected behaviour of
the Deep Learning algorithms on new cameras or particular illumination conditions.

Figure 26. Presentation of a shadow removal GAN network [7] on wheat head canopy
(left: original ; center: GAN ; right : CLAHE).

Data augmentation Before the training, data augmentation generates new examples that
provide more diversity. Most studies used such techniques but were limited to geometric (ro-
tation, shear, translation, zoom in and out) that have been exploited to generate new images
for seed detections by randomly rearranged individuals who were already labelled [10], [11]
with success. However, we demonstrated in chapter 3 that CutMix [12] has a limited impact on
the performances, and MixUp[13] may even lower the results. Photometric transforms (random
noise, random blur, change of histogram color) may widen the illumination conditions for more
comprehensive training of the models. Generating more complex transformations require to
use advanced techniques such as plant 3D model [14]–[16] or GAN generated images [2], [3].
As compared to a 2D approach, the 3D one provides more consistent scenes, with realistic
interactions between the background and the canopy. Progress on GAN performances
with StyleGAN-V2 [17] have been leveraging a new large and fully labelled dataset with
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approaches such as [18], allowing to label much more precisely the images – 42 labels for
one human face. The recent graphical processing unit also proposes a core dedicated to
ray tracing that can generate photo-realistic illuminations, shadows and reflection on a
dedicated 3D engine such as Unity. Combining these approaches seems to be interesting for
high-resolution synthetic data generation. In the context of plant phenotyping, advanced
data augmentation strategies should combine two characteristics:

• take full advantage of the handmade labels, as they are costly and tedious to obtain,
and
• include as much expert knowledge as possible to model the diversity of the data.
Geometric transformation and 3D models generate realistic scenes in terms of structure,

but the result generally is not photorealistic. In contrast, GAN model can achieve photoreal-
istic texture at the expense of possible alteration of the scene composition structure, which
prevents using them directly for a task other than classification. Geometric transformations
are easy to implement with no background. Still, when there is a background, some mis-
matches, such as differences in the illumination of the plants and the soil, result in unrealistic
scenes, which cannot be used for training. GAN’s success has almost always been achieved
for tasks that did not require conserving the structure or only one central object in the image,
such as Arabidopsis thaliana in a single pot [16]. Controlling the scene’s structure seems
essential to include expert knowledge such as the sowing pattern, covering the whole range
of the expected phenotype. Generating realistic sets for Deep Learning, as presented in
figure 27, would require:

• A process to generate a new and realistic structure of the countable objects on an
image.
• A process to generate unique background.
• A process to generate new objects.
• A process to make the background and the objects coherent
The objects in the scene do not need to be generated with a 3D model: actual 3D

RGB plants captured in controlled conditions could be used to create a synthetic canopy.
The labelling can then be done precisely at the object scale and not at the canopy scale.
Synthetic scenes generation pipeline can be re-used for new traits on the same crop. It
would access more detailed traits associated to smaller organs such as spikelets and flowers
or allow to separate leaves from tillers. Such approaches is likely to increase the number
of traits and the level of details that DL can access. The same database of 3D scenes
could therefore be re-used to estimate new traits. Such synthetic scenes allow exploring the
occlusion problem: the organ can be partially hidden under a leaf, making the measurement
difficult. The synthetic scene is crucial for a full perception model that can pre-process RGB
images and calculate many measures used to calculate structural traits. It is also a field
that will not be explored by another community other than the plant community.

6.2.3 Training

Split of the dataset between training, validation, and test First, the question of “in domain”
(ID) and “out of domain” (OOD) is complex and was discussed within the WILDS investigation
over several problems, including wheat head detection. For phenotyping applications, a do-
main may be generally associated with an acquisition session where the sensors, acquisition
protocol, illumination conditions, and growth stages are well defined, while genotypes and
cultural practices vary. However, a possible bias of our work was the use of data generated
from different acquisitions protocols. We expect to be able in the future to define domains
beyond the acquisition session, at least when the protocol is controlled. The question of the
validation dataset is exciting and was not explicitly discussed in this work. The validation
dataset is part of the training process: it is used both for finetuning hyperparameters and
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Figure 27. Example of a simple pipeline to generate new UAV microplot from RGB images
and previous labels. Expert knowledge can be used to conditioned the generation of
new scenes. Objects and background can be retrieve from a bank of image, generate
with a 3D model or a GAN

possibly for pseudo-labelling. More emphasis should be put on this vital question: should
it be ID or OOD? We recommand for papers presenting DL strategies for traits evaluation,
especially for field plant phenotyping, to systematically discuss the domain bias between
their train, validation and test splits.

Training algorithm Several algorithms were proposed to improve the robustness of models
by playing on the way the coefficients of the network are optimized. In chapter 4, we
compared the traditional ERM loss function with more sophisticated algorithms. However,
results consistently indicated over the problems and datasets considered in WILDS, that the
standard ERM was outperforming these training algorithms. However, their implementation
is not trivial, and more work is needed to refine these first results.
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Semi-supervision learning In our studies, the dataset used for training always was labelled
entirely. However, unlabelled data can help the model generalize over distributions without
any labels. This strategy, when a mix of labelled and unlabelled is used to train a DL model, is
called semi-supervised learning or sometimes Weakly supervised learning. A straightforward
semi-supervision learning strategy is pseudo-labelling which was successfully used by most
high-scoring submissions to the Global Wheat Challenges: a model is used to predict labels
on a set of unlabelled images. Usually, an ensemble of models is used for more robustness [19],
and during training, each batch contains more than 50% of real labelled data. An extension
of the GlobalWheat-Wilds is expected to study how to improve robustness with unlabelled
data.

Self-supervision learning Self-supervision learning is a branch of Deep Learning which
allows training encoders on a large set of unlabeled data points thanks to a surrogate task.
These encoders are can directly used for other tasks with transfer learning. The quantity of
acquired data is vast within high-throughput phenotyping installations with terabytes of RGB
imagery acquired during a growing season. Two families of self-supervised algorithms can
be distinguished: (1) contrastive learning aimed at aligning the features of two similar images
or two variations of the same images [20], [21]; (2) predictive approach, for instance, with
solving a jigsaw [22] or by predicting a class determined with a simple clustering approach
on the deep features (DeepCluster V2 [23], Swav [24]). Self-supervision learning is also
becoming more accessible thanks to open-source libraries such as Facebook VISSL [25].
Another specific aspect of the phenotyping platform is to have a fixed set of sensors that
make simultaneous observations of the same scene portion. Multimodal Deep Learning
aims at learning a representation not only for RGB images but also for Lidar or multispectral
images and is already used for autonomous driving [26]. Self-supervision learning is also
applied to the multimodal model: OpenAI recently proposed CLIP [27], a model trained jointly
on text and images. A consequence of Selfsupervision Learning is the emergence of huge
models with billions of parameters such as GPT-3 [28], also called “foundation models” [29].
A characteristic of these very large models is the ability to execute new tasks without any
training (zero-shot learning). However, they are challenging to train as it requires massive
computing power and can be viewed as an infrastructure more than an algorithm.

Multitask learning
One DL algorithm is generally designed to access one trait or provide a pre-processing

of the raw image. With a growing number of traits to measure from the same images, running
multiples DL models in parallel can be burdensome in practice. Additionally, each new trait
will generate a different annotated dataset that is not used for another task, which can be
seen as underuse of the data. As described in the introduction, most DL models will learn to
extract meaningful features from the data before solving the problem. The same features
could be learned from more extensive datasets for multiple tasks. Multitask models can
learn better representation from several data sources and have already been explored for
wheat phenotyping [30] and Arabidopsis phenotyping [31]. It was shown that it requires fewer
labels for underrepresented tasks and reduces overfitting [32], while improving adversarial
robustness [33]. A comparison of both approaches is presented in figure 28. Learning an
encoder for all tasks of one platform instead of having different models allows one to use all
the available data and avoid overfitting if only small datasets are available. The learned
representation can also be used for other purposes than estimating traits. It could be used
to monitor outliers or discover subgroups.

6.2.4 Model selection

The baseline model was selected after the pioneering study of Madec et al. 2019 [34]. It
is based on the Faster-RCNN [35] that first detect potential objects of interest and then
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Figure 28. Comparison of a system based on multiple networks with separated encoder
(“one task network”) and tasks networks sharing the same encoder which is improved
with all labels (“Multitask network”).

find out which should be considered the actual ones. The challenges organized offered the
opportunity to evaluate the diversity of models used and their associated performances.
Results demonstrated that the standard one-step models such as YoloV3 [36] and V5 and
[37] were part of the winning solutions proposed. However, it is not easy to evaluate the
contribution of the architecture of the model used to the observed performances of the
solution. More investigation is needed to quantify the contribution of each element of the
solution.

6.3 The integration of Deep Learning to estimate plant traits at Arvalis

The doctoral thesis results were obtained in the context of a collaboration between the
National Research Institute for Agriculture and Environment (Institut National de Recherche
en Agronomie et Environnement – INRAE), and Arvalis a private research institute funded
by the French farmers. Its mission is to disseminate innovations in agriculture to farmers by
conducting research and evaluating novelties for more than 60 years. Arvalis is deploying its
high-throughput phenotyping technologies for its use on various trial stations throughout
France, ranging from affordable and low-techmachines like LITERAL to high-tech, automated
systems like Phenomobile and UAVs. Robust estimates of plant traits are then a requirement
to put in production technologies based on Deep Learning. More challenges arise with
production problems: the code needs to be fast enough to process several sessions of
acquisitions for one night, and the results need to be appropriately tested against manual
baseline. Arvalis provided all the required manual and automatic data during three cam-
paigns for the study. In return, the codes developed for the papers were rewritten adequately
for production usage, with a specific focus on the clarity of code and the execution speed
and tested within the phenotyping team. I also work a lot on the new architecture of the
whole processing chain and the processing code of several other Deep Learning modules,
such as semantic segmentation. For instance, the plant counting pipeline developed for
Chapter 1 and the wheat head counting pipeline for Chapter 3 are today used. In 2021,
Arvalis conducted several non-methodological trials without manual measurements of the
wheat head density, relying on the Deep Learning wheat head density estimation module.
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