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Introduction

Biological systems have a hierarchical organisation at different spatial and time scales, with multiple
levels of regulation both within and between layers (Figure . At the cell scale, genetic and epige-
netic mechanisms regulate the expression of genes, which code for enzymes, involved in the uptake
and synthesis of metabolites, and regulatory proteins. In turn, these proteins can affect the expression
of genes, giving rise to complex biochemical networks, with numerous feedback loops.

When moving to multicellular systems, the picture becomes even more complex, as additional regu-
latory mechanisms emerge at various spatial scales. In tissues, for instance, inter-cellular communi-
cation mechanisms exist via the diffusion of mechanical and chemical signals that are able to control
important morphogenetic processes [Coen et al., 2004]. At higher scales, transport through dedicated
vascular systems regulate the delivery and accumulation of nutrients, hormones and other signalling
molecules, coordinating developmental, physiological and stress-related processes at the scale of the
whole organism [Lucas et al., 2013].

The study of the mechanisms underpinning the regulation of biological system is the domain of

system biology. The field arose during late 90s in opposition to the conventional biology as the study
of large systems of interacting biological components. System biology, indeed, views biological pro-
cesses and functions as emerging properties of the system, that cannot be reduced to the biochemical
properties of the individual entities. Within this framework, system biologists initially focused on one
single regulatory level. Methods were conceived to describe gene, metabolic or signaling networks,
using adapted formalisms and approaches [Szallasi et al., 2006]. In parallel important advancements
in experimental, (bio)informatics and statistical tools considerably extended our capacity to quantify,
analyse and visualize a large number of components.
Since a few years, system biology reached a new turning point. The challenge is now to scale up to
multiple regulatory levels, understanding the way biological processes interact and coordinate across
different organizational scales. This objective is accompanied by an increased awareness of the intrin-
sic variability of biological systems. As far as more complex system are concerned, indeed, phenotypic
differences among cell types (gene expression, metabolic capacities, shape ..), tissues (mechanics..) and
organs (structure, function..) become more and more evident, giving rise to a collection of systems
within the system. Phenotypic (and genetic) variability has important consequences on the dynamics
of the system and can shape the way it responds to changes in both abiotic and biotic conditions
[Nicotra et al., 2010} Heil, 2010]. Within this framework, my research project aims to investigate the
interplay between different regulatory mechanisms [§], in relation to phenotypic diversity and envi-
ronmental conditions.

In the objective of modelling, this calls for a multi-scale perspective that focuses on the interplay
between molecular, cellular and macroscopic phenomena (Figure . From a theoretical point of view,
multi-scale modelling means to explicitly integrate mechanisms of different nature, e.g biochemical,
hydraulic, mechanical, that take place on distinct temporal or spatial scales [Southern et al., 2008].
Molecular processes (metabolism, gene expression, protein synthesis, etc.) for instance take place in
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Figure 1: Layers of biological organisation across different spatial and time scales. Arrows indicate
possible interactions between levels. Figure from [Marshall-Colon et al., 2017].

a time window ranging from the second to a few minutes, while the timescale of interest in agronomy
is of the order of the day or even the season. The challenge is then to select a reference timescale and
then correctly simplify the processes that occur at different velocities, keeping the relevant information
while reducing model complexity.

During my career, I had the opportunity to work on a variety of biological systems, using a panel of
model formalisms. Although this variety of topics makes the writing of an HdR thesis a bit more com-
plex, it offered me the possibility to explore different aspects of system biology and to make a "bridge"
between modelling approaches originally developed in separate contexts. Based on my experience, two
main approaches are possible for multi-scale integration. The first one relies on an intensive computa-
tional effort and is based on the numerical integration of multiple sub-models, each one describing a
well-defined physiological mechanism. This leads to models that can be hybrid, linking mathematical
formalisms and modelling strategies that differ both in their structure (1D, 2D vs. 3D, analytic vs
numerical) and in their approach (qualitative vs. quantitative, deterministic vs. stochastic). Model
reduction techniques may be used to simplify the mathematical structure of each sub-model, reducing
the system size or the number of parameters to be identified [Snowden et al., 2017]. This approach has
the advantage of a direct connection with experimental data and an easier molecular interpretation
that may facilitate the interaction with biologists and agronomic engineers. Indeed, within the plant
sciences community, this approach is currently valued as a promising tool to improve plant manage-
ment and breeding [Peng et al., 2020| [Benes et al., 2020]. In practice, a number of limitations arise
along with model complexity. Model parametrisation is often uncertain due to the large number of
parameters (typically from 50 to 200 in whole-plant ecophysiological models) and strongly depends
on the considered plant genotype. Moreover, an exhaustive analysis of possible model behaviours is
generally difficult to obtain, hindering the identification of generic and robust mechanisms.

A second possible strategy, coming from the microbial community, involves a "multi-model" approach
that aims at developing different models, at different levels of abstraction, for a same biological ques-
tion. The idea here is that, given the intrinsic complexity of biological systems, it may be difficult
for a single model to capture all the regulatory levels. In order to make the corresponding model
tractable, a number of simplifying hypotheses can be made, resulting in different viewpoints for a
same scientific question. A good example is offered by the study of microbial growth where a num-
ber of models have been developed at different degree of complexity, scaling from the description of
steady-state metabolic reactions over a realistic biological network, possibly including thermodynamic
or proteome allocation constraints, up to coarse-grained dynamical models, explicitly accounting for
the non-linear dependence between biomass synthesis and growth over a small set of macroreactions
[de Jong et al., 2017, |de Groot et al., 2020]. Thanks to their simplicity, coarse-grained models can
help to better understand fundamental principles of system functioning and are suitable to analyse
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Figure 2: Regulatory levels and construction of a multi-scale plant model: overview. Methods
from systems biology can be used to analyse and model cellular networks in order to get a simplified
description of cellular functioning (reduction step). Once built, the reduced cellular model can be
integrated into a higher-scale model (here exemplified by an organ model), following a multi-scale
modelling approaches (integration step). In order to scale up to the phenotype of a whole plant, multi-
scale modelling of selected processes can be combined into more macroscopic approaches, accounting
for resource uptake and allocation among different plant organs.

global shifts in growth control following a change in the environment [de Jong et al., 2017]. The
drawback, of course, relies in the risk of excessive simplification and in a reduced correspondence with
molecular data, both for parametrization and validation. In some cases, results obtained from simpler
models can help identify key regulatory mechanisms, that can then be integrated into larger models
[Cheng et al., 2019].
Ultimately, both the integrative and the multi-model approaches can provide interesting insights into
system functioning. The choice of the approach in not unique and strongly depends on the scien-
tific question and the objective of the study. System size and data availability are also important
determinants as integrative approaches usually require a lot of molecular information, which is not
always available. In this sense, the study of multi-cellular systems having a long-development time,
like plants, poses a number of technical constraints, reducing the quality and the quantity of available
molecular data with respect to simpler unicellular systems. In my works, I mostly followed a multi-
model approach, focusing on interactions between few (two, three at most) organizational layers at
time. Depending on the context and available data, interactions could be described mechanistically
or by means of data-derived inputs that acted as constraints on the possible dynamics of the model.
In the following I briefly present my past research activities, from my PhD thesis up to 2016, when
I moved to Sophia-Antipolis and joined the Institut Sophia Agrobiotech and the Inria project-team
Biocore. Current and future projects are detailed in the last chapter of this manuscript.



CHAPTER 1

Past research activities

This chapter is divided into two parts that roughly correspond to my Italian (2002-2007) and French
(2007-ongoing) research period. In the first one, partly as a consequence of my formation as a physicist,
the focus was set on individuals (either in isolation or as part of a larger system) and on how stochastic
effects may affect their behaviour. In the second, the emergence of a robust, average behaviour of
large biological systems was investigated as a consequence of the multiple interactions among their
components and as a function of environmental conditions.

During my career, I had the chance to work with colleagues of many different backgrounds, including
mathematicians, computer scientists, biologists and agronomists. Each of them has brought knowl-
edge, data and a personal regard on the biological system under study. Indeed, although I may
sometimes use the "' form, all the results I will show in the following sections would not have been
possible outside such an inter-disciplinary environment and without the contribution of all the people
involved.

1.1 Italian period: stochastic, individual approaches

1.1.1 PhD: Mechanical statistics of DNA unzipping experiments

I made my PhD in the framework of a cotutelle project between the University of Rome "Tor Vergata'
and the University of Strasbourg "Louis Pasteur', under the joint supervision of Dr. L. Biferale
(University of Rome "Tor Vergata"), E. Marinari (University of Rome "La Sapienza') and Simona
Cocco (University of Strasbourg "Louis Pasteur" & ENS Paris). My work set in the research field
of theoretical biophysics and focused on the analysis of mechanical unzipping experiments in which
the two complementary strands of a DNA molecule were pulled apart by the application of a force
[Bockelmann et al., 1998, [Bockelmann et al., 2002, Danilowicz et al., 2003]. Experiments showed that
the unzipping dynamics was strongly correlated to the underlying DNA sequence. Remarkably, the
unzipping signal could be affected by the substitution of one single base pair, when adequately located
along the sequence [Bockelmann et al., 2002]. The aim of my thesis was to investigate the inverse
problem i.e. whether one could get informations on the DNA sequence from unzipping data. For this
aim, we proposed a method based on the use of statistical Bayesian inference and of Viterbi decoding
algorithm [Viterbi, 1967].

At first, the reconstruction ability was studied under the hypothesis of an infinite spatial and
temporal resolution. The effects of thermal fluctuations, intrinsic to any unzipping experiments, were
analysed, setting an upper bound to the achievable sequencing accuracy [I]. We showed that the
probability of misprediction decreases exponentially with the amount of collected data [1]. The decay
rate was calculated as a function of biochemical parameters (binding free energies), the sequence



content, the applied force, the elastic properties of a DNA single strand and time resolution [I]. We
then moved to a more realistic case where opening events were known to a very good, but not infinite,
time resolution. In this case, the dynamic information available for the reconstruction was reduced,
making the actual fork dynamics unknown. Numerical and theoretical analyses showed that DNA
sequencing was still possible. In particular, we showed that multiple unzippings of the same molecule
might be exploited to improve the quality of the prediction, and calculated analytically the number
of required unzippings to discriminate between strong (C/G) and weak (A/T) bases or for a complete
sequence recognition [3].

1.1.2 Post-doc: Computational immunology

After my PhD thesis, I was hired as a post-doc in the group led by M. Bernaschi and F. Castiglione,
at the Istituto Applicazioni del Calcolo (IAC), in Rome. The team was developing an immune system
simulator, called C-ImmSim, based on stochastic cellular automata. This was for me an opportunity
to improve my programming skills, that I started to acquire during my PhD, working on a large and
complex code. It also represented my first contact with the world of "system biology" i.e. the study of
complex system in which the emergence of a biological behaviour derives from the interaction among
many individual components.
At the time of my recruitment, the simulator included the description of different cells classes (T
and B lymphocytes, macrophages, dendritic cells..), all living in a discrete lattice space, in which
they randomly moved. Each cell class corresponded to a different automaton, with specific attributes.
When on the same lattice site (i.e., within the same unit of volume), cell entities could interact
according to a probabilistic affinity function that depended on the values of their attributes. In its
original formulation, the model used an homogeneous two-dimension triangular lattice with periodic
boundary conditions. However, lymphocytes motility plays a central role in determining the efficiency
of the immune response. In particular, within the lymphoid organs, diffusion and chemotaxis affect
the cellular organization and the dynamics of interactions among immune cells.

The aim of my post-doc was to improve the description of the cell motion, accounting for differences
in cell velocity and chemotactic response. To this purpose we first upgraded the simulator to a
three-dimensional mesh having the typical ellipsoid shape of a lymph node [2]. Internally, the mesh
was divided into 3 distinct regions, each one characterized by the secretion of specific chemotactic
molecules, able to attract cells expressing the corresponding receptor.
In order to account for chemotaxis and time-scale difference between cell and molecule mobility, I
developed a hybrid discrete/continuous approach, that combined a stochastic agent-based description
of cell interactions with a continuous model of chemokine diffusion described by partial differential
equations [4]. Once calibrated, the model reproduced the correct timing of an immune response,
including the observed time delay between the duplication of T helper cells and of B cells in response
to antigen exposure. Given its mechanistic nature, the model was then used to investigate the role of
specific biological mechanisms on the emergence of the resulting immune response [4].

1.2 French period: average behaviour and environmental response

My arrival in France marked the broadening of my research themes towards the intra-cellular scale.
During my post-doc at Inria, first, and then as a researcher at INRAE, I got interested on the molec-
ular, biophysical and genetic mechanisms that allow biological systems to adapt to changes in their
environment and that set the bases of the observed phenotypic differences. From the methodologi-
cal point of view, this transition was accompanied by a change in modelling formalism. Stochastic
approaches were replaced by an ODE formalism, more adapted to capture the average behaviour of
a system composed of a large number of components. Indeed, although stochasticity may play an
important role in several cellular and molecular processes, the experimental data I disposed of were
not accurate enough to capture its potential effects. Measurements over an ensemble of individuals
(plants, fruits, bacteria etc) were used instead, which made the ODE formalism more adapted. On
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Figure 1.1: Upper part of the carbon assimilation network in F. coli, consisting of the glycolysis and
gluconeogenesis pathways and their genetic and metabolic regulation [5]. On the left side, the red-
bounded part represents the global regulatory network considered in [6]. The graphical conventions
are explained in the legend.

the other hand, I had to face new kind of issues, related to the large number of variables, the absence
of precise quantitative information on kinetic parameters and the presence of multiple time-scales
that made these models difficult to handle both mathematically and computationally. Appropriate
model reduction strategies had to be found to reduce the size and complexity of the models and to
numerically estimate the parameter values needed to reproduce experimental observations.

1.2.1 The genetic control of metabolism
The carbon assimilation network in Escherichia coli

The biochemical network controlling the adaptation of the bacterium FE.coli to changes in nutrient
availability is a good example of a nonlinear, multi-scale system, that involves adjustments in the
expression of genes coding for enzymes, regulators, membrane transporters, signalling molecules etc.
When considering large biochemical networks, the interactions in the network may be direct, as in
the case of a gene coding for a transcription factor regulating the expression of another gene. Most
of the time, however, regulatory interactions are indirect, e.g. when a gene encodes an enzyme
producing a transcriptional effector [Brazhnik et al., 2002]. By ignoring indirect interactions mediated
by metabolic and signalling pathways we may miss crucial feedback loops in the system.

For this aim, we developed a method for the systematic derivation of direct and indirect interac-
tions in a gene regulatory network from the underlying biochemical reaction network, based on the
assumption that the metabolic and signaling processes are fast on the time-scale of gene expression
[5]. Briefly, we started from a kinetic model of the biochemical network of the form

&= Nuv(z), z(0) = xo. (1.1)

where € R’} denotes the vector of concentrations and v : R} — R? and N € Z"*9 is the stoi-
chiometry matrix of the system. We then introduced vectors of slow and fast variables, z* € R" and



zf € R™™, respectively (m < n), defined as linear combinations of the original variables x:

lif] =Tuz, (1.2)

with T € Z™*™. The slow variables typically corresponded to total protein concentrations, whereas the
fast variables included concentrations of metabolites and biochemical complexes. The QSS hypothesis
stated that at the time-scale of the slow processes, the fast part of the system could be assumed to
be at steady state, instantly adapting to the dynamics of the slow variables, i.e. N vf (2% 2f) =0,
where N/ is stoichiometry matrix for the fast part and v/ (:cf , %) the corresponding reaction rates .
The resulting system at the slow time-scale had the following form

% = N*v*(2%, g(2%)). (1.3)

By studying the sign of the elements of the Jacobian matrix J of the system in Eq.[I.3] we could get
information on the interaction structure of the gene regulatory network:
7 0x* _ Ne o (z*, zf) N ovs(2°, zf) dg(x®) (1.4)
oxs s oxt xS
The Jacobian matrix indeed accounted for direct regulation of gene expression by transcription factors
(first term) as well as indirect regulation through metabolism (second term).

Applied to the upper part of the carbon assimilation network in E. coli (Figure , this method
leaded to three major insights. First, contrary to what was often assumed, the derived gene regulatory
network was densely connected due to numerous feedback loops resulting from indirect interactions.
Second, we found that the signs of the indirect interactions were largely fixed by weak information on
flux directions of biochemical reactions, without explicit specification of kinetic rate laws or parameter
values. Third, a change in environmental conditions might invert fluxes, and thus the signs of indirect
interactions, resulting in a dynamic rewiring of the regulatory network. This leaded to a feedback
structure that was at the same time robust to changes in the kinetic properties of enzymes and that
had the flexibility to accommodate radical changes in the environment.

It remained an open question, however, to which extent the indirect interactions induced by
metabolic coupling influenced the dynamics of the system. To address this issue, we used the topol-
ogy obtained in [5] to build a piecewise-linear (PL) dynamic model of the gene regulatory network
controlling carbon assimilation in E. coli, and used this model to study the changes in gene expression
following a diauxic shift from glucose to acetate (see figure [1.2)). Piecewise-linear (PL) differential
equations encode the regulatory logic of the system by means of positive (s7) or negative (s7) step
functions that abruptly change their value at a threshold value §; of the protein concentration x; [26]:

1 if x; > 0;
8+(xj70j) — ) 1L xj > J
0, if z; < 9]'

S_(.Z‘j,ej) =1- S+(.7}j,€9j)

By means of the threshold values, the phase space can be partitioned into hyper-rectangular regions
in which the system behaves in an qualitatively homogeneous manner. As a result, the qualitative
dynamics of the systems is much simpler to analyse as it depends only on the ordering of threshold
parameters rather than exact numerical values, an information that can generally be inferred from
experimental literature or by intuitive reasoning, even in the absence of quantitative information
on parameter values. Moreover, we previously proved that PL-approximation were able to preserve
the qualitative dynamics of the corresponding non-linear system, under a wide range of parameter
values [6]. Qualitative models were therefore an appropriate tool for analysing if metabolic coupling
could induce major changes in the gene expression dynamics, i.e. if they had an effect on both
the quantitative and qualitative properties of the system dynamics. We built several qualitative
models, corresponding to a network topology including all, some, or none of the indirect interactions
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Figure 1.2: Left: Derived gene regulatory network for the glycolytic case [5]. The boxes represent fast
coupling species, mediating the influence of metabolism and signal transduction on gene expression.
The influence of the enzymes and other slow species on the concentration of the fast coupling species
are represented by +/ signs. Right: Example of a qualitative simulation of the glucose—acetate diauxie
[7]. The vertical axis shows the symbolic values of concentration variables, the horizontal axis indicates
the qualitative states of the system (note that time is implicit in a qualitative model, given by the
ordering of qualitative states). Transitions between qualitative states correspond to qualitative events,
notably threshold crossings of the variables.

and compared their dynamics with available experimental data [7]. We found significant differences
between the dynamics of the system in the absence and presence of metabolic coupling, confirming
that indirect interactions were essential for driving the adaptation of gene expression to a change in
carbon source.

Collaborations:

H. de Jong, Inria, Grenoble

« D. Ropers, Inria, Grenoble

e H. Geiselmann, UGA, Grenoble
o D. Kahn, INRAE, Lyon

Associated projects:
e ANR project, MetaGenoReg
e EU project, EC-MOAN

Fruit sugar metabolism : intra-specific genetic variability

Sugar content is an important agronomic criterium for fruits. A strong diversity in sugar composition
exists among fruit species but also within different accessions of a same species. Knowledge of the
mechanisms involved in sugar metabolism is essential for the creation of fruit varieties that can meet
consumer expectations.

In collaboration with Bénedicte Quilot-Turion (INRAE, GAFL, Avignon) we tried to decipher the
molecular mechanisms underlying differences in sugar composition observed in a large peach progeny,
obtained by backcross between a wild and a commercial variety. Within the large phenotypic diver-
sity displayed by our population, 77 out of the 106 individuals under study exhibited a ‘standard’

10



fructose-to-glucose ratio i.e. an equivalent concentration of glucose and fructose at maturity, whereas
the remaining ones presented a ’low fructose’ phenotype. We started by performing an exhaustive
phenotyping of the underlying sugar metabolic network by assaying four metabolites and twelve enzy-
matic capacities at different stages of fruit development, using high-throughput methods (PhD thesis
of E. Desnoues). Our results revealed a remarkable robustness of enzymatic capacities across geno-
types and years despite strong variations in the sugar composition, discarding the hypothesis of a
straightforward enzymatic control of sugar concentration in the fruit [I1].

To better understand the origin of the observed phenotypic differences, we thus decided to build

F16
F17 HexP

F18
Other compounds

Respiration

Figure 1.3: Schematic network of the peach fruit sugar accumulation model [20]. Arrows represent
carbon flows. Abbreviations: Al, acid invertase; cyt, cytosol; FK, fructokinase; Fru, fructose; Glu,
glucose; HexP, hexose-phosphate; HK, hexokinase; NI, neutral invertase; SDH, sorbitol dehydrogenase;
SO, sorbitol oxidase; Sor, sorbitol; SPP, sucrose-phosphate phosphatase; SPS, sucrose phosphate
synthase; Suc, sucrose; SuSy, sucrose synthase; Vac, vacuole.

a kinetic model of sugar metabolism in peach fruit [I8] 20]. The model described carbon pathways
through different metabolites and cell compartments during fruit development (Figure , as a set
of ordinary differential equations. Cell compartmentalization (cytosol and vacuole) was described ex-
plicitly. Measured fruit mass growth (dry and fresh components) and enzyme activities were used to
parametrize equations, leading to a system of equation of the form:

B P10 00.0), (o) = w0 (15)
where = € R}ro is the concentration vector of metabolites in the corresponding intra-cellular compart-
ment, I € R, is the time-dependent input of carbon from the plant and v € RZF is the vector of
time-dependent measured enzymatic activities; p = (p1,...,pes) is the vector of parameters defining
the reaction rates. Dilution due to fruit expansion was accounted for, via its impact on metabolite
concentrations and on the dynamical patterns of enzymes activities [I2]. The model was calibrated
on ten contrasted genotypes (five having a standard fructose-to-glucose ratio and five having a low-
fructose phenotype) using literature information and numerical estimation of 14 parameters. The
model correctly accounted for the observed annual and genotypic variations in sugar concentrations
and provided important information on the mechanisms underlying the specification of phenotypic
differences. In particular, the model supported the hypothesis that a difference in fructokinase affinity
could be responsible for the low fructose phenotype, observed in the studied population. By modify-
ing the value for the fructokinase affinity parameter (Kfk), indeed, fruits having a standard fructose
content could be virtually transformed into low-fructose fruits, and conversely (Figure [L.4).

In order to validate this hypothesis and get further insights into the genetic control of sugar
metabolism, it was necessary to calibrate the model over the whole progeny of 106 genotypes and
to perform a QTL-analysis over the estimated parameters values [2§]. Unfortunately, the size of the
parameter space and the non-linearity of the reaction rates made the calibration of the original model
difficult and extremely time-consuming. To overcome this problem, in collaboration with JL Gouzé
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Figure 1.4: Simulated dynamics of fructose concentration during peach fruit development. (a) Black
lines correspond to simulations of five genotypes with ‘standard fructose-to-glucose ratio’ phenotypes
using average values of Kfk parameter estimated from genotypes with ‘low fructose-to-glucose ratio’
phenotype; (b) simulations of the five genotypes with ‘low fructose-to-glucose ratio’ phenotype with
average values of Kfk parameters estimated from genotypes with ‘standard fructose-to-glucose ratio’
phenotype. Grey dotted lines correspond with original fructose concentration simulations.

et O. Bernard (Inria, BIOCORE, Sophia-Antipolis), the PhD thesis of H. Kanso (2017-2021) aimed
at developing a reduction method that was adapted to the specificity of our objectives in that: i) it
yielded a unique reduced model for whole population ii) it maintained network structure and variable
identity, in order to facilitate the biological interpretation of the subsequent genetic analysis [24]. The
retained reduction strategy was based on the systematic test of different methods in several parallel
steps that, if retained, were combined together into a final reduced model. Three main criteria were
used to asses the interest of each reduction method: i) the AIC value, evaluating the relative gain be-
tween model simplification and loss of accuracy over an experimental dataset, ii) the calibration time,
as a measure of model efficiency, iii) the expected error between the original and the reduced model
over a population of virtual genotypes, as a measure of the reliability of the simplification scheme over
a large genetic diversity. Applied to the model of sugar metabolism by Desnoues et al.(2018), this
procedure yielded a reduced model having linear reaction rates, a reduced size and only 9 unknown
parameters (out of 14 in the original model). The model was shown to correctly reproduced data on
the original ten genotypes with a gain in calibration time over 40%.

The reduced model was then calibrated on the whole inter-specific peach progeny of 106 genotypes.
Two strategies for parameter estimation were tested, namely the estimation of each genotype indepen-
dently and the estimation of all genotypes simultaneously, by means of non-linear mixed effect models
[Baey et al., 201§|. The two methods were compared based on goodness-of-fit criteria as well as on
the robustness of the estimated parameters values, following multiple repetitions of the calibration
algorithms. In spite of a satisfactory agreement between predictions and data, results showed that the
genotype-by-genotype strategy suffered from a lack of reproducibility, with several parameters sets giv-
ing an equivalent agreement with data. The simultaneous estimation of all genotypes instead provided
robust and accurate parameter estimates, thanks to the joint analysis of multiple datasets that further
constrained the estimation process. Estimations obtained using a population-based scheme ultimately
allowed for the analysis the genetic architecture of fruit sugar metabolism, and the identification of
several genomic regions (Quantitative-Trait Locus, QTL) of interest. Two articles are currently in
preparation on these topics. At term, the integration of genetic control into the model, using a QTL-
based approach [28], will permit the design of new plant cultivars (’ideotypes’) expressing an optimal
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phenotype, adapted to a particular biophysical environment, crop management, and end-use.
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Fruit sugar metabolism : inter-specific variability

In the works on peach fruit, we showed how phenotypic differences can arise within a same fruit
species, following differences at the molecular level. In the case of different species, variations can
be even stronger: fruit species can differ in the mechanisms of sugar import, in the accumulated
metabolites as well as in the structure and regulation of the underlying metabolic network. Despite
theses divergences, soluble sugar (S) accumulation in fruits can be resumed to three main processes:
sugar import (u), sugar metabolism (m), and water dilution (d), due to fruit volume increase. Using
a coarse-grained model of the form

% = u(t) +m(t) — d(t) (1.6)
is thus possible to identify the relative contribution of each individual processes all along fruit de-
velopment, across different species. This can help to understand whether the main control levers of
soluble sugar concentration are species-specific or follow a species-overarching manner.

In a first work, in collaboration with Zhanwu Dai (INRAE, Bordeaux, now at the Chinese Academy
of Sciences), the accumulation of soluble sugars in the fruit has been compared among 3 fruit species:
peach, tomato and grape [I7]. Developmental profiles of fruit flesh fresh weight, dry weight, and solu-
ble sugar concentration were collected from both published and unpublished data, including different
genotypes and growing conditions. Data were used to estimate the dynamics of the three considered
processes and to compare their relative contribution to soluble sugar concentration, along fruit de-
velopment. Our analysis showed the existence of different patterns for the control of soluble sugar
concentration, either import-based, dilution-based, or import-dilution coupled. On the other hand,
a conserved metabolic rate was observed among the three fruit species for the synthesis of cellular
compounds other than sugars (e.g. starch, organic acids, structural carbohydrates, and proteins). The
different modes of control appeared to be quite species-specific, but the intensity of the effect could
significantly vary depending on the genotype and management practices.

Given the strong differences observed among species concerning their starch content, the thesis of
C.B. Cakpo (2015-2019) aimed at extending the work of Dai et al. (2016) to a larger panel of species
and to account for the role of starch metabolism and recycling in the dynamics of sugar accumulation.
For this aim, we proposed a dynamical model explicitly describing the variation in sugar and starch
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Figure 1.5: Schematic representation of the results obtained during the PhD thesis the C.B. Cakpo [25]
on the comparison of sugar metabolism across 10 fruit species. A diagram of the model is reported at
the center of the figure. Herbaceous species were characterized by a high synthesis rate of compounds
other than sugar and starch (eg organic acids, structural compounds..), compared to woody species,
and by a remarkable synchronization of sugar uptake, metabolism and dilution processes. In woody
species starch metabolism was temporally separated from other processes.

concentrations during fruit development, based on generic reaction rates (Figure [25]. The model
was successfully calibrated on 10 contrasting species of fleshy fruits, including both starch-free and
starch-rich species, and used to investigate the coordination and contribution of the different process
(sugar import, sugar and starch metabolism, water dilution) to the accumulation of soluble sugars
during fruit development. Results showed that species could be separated into six groups accordingly
to the rate of synthesis of compounds other than sugar and starch (eg organic acids, structural com-
pounds..). In particular, herbaceous species (cucumber, tomato, eggplant, pepper and strawberry)
were characterized by a higher synthesis rate than woody species (apple, nectarine, clementine, grape
and kiwi). Inspection of the dynamics of the processes involved in sugar accumulation revealed that
net sugar importation, metabolism and dilution processes were remarkable synchronous in most herba-
ceous plants, whereas in kiwifruit, apple and nectarine, processes related to starch metabolism were
temporally separated from other processes (Fig. .
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1.2.2 The control of fruit growth

Fruit growth results from the interplay of several processes, of different nature, implying metabolic,
biophysical, genetic and environmental factors. Nutrients and water needed for organ growth are
assimilated at the plant scale, depending on environmental conditions, and then distributed through
a network of specific vessels to the different organs. A panel of transport mechanisms allow for the
unloading of assimilates into the developing organ, where they are metabolized into structural and
soluble compounds, following a complex genetic and hormonal regulation. At last, cell expansion is
the result of the interplay between cell mechanical properties and the turgor pressure, generated by
the accumulation of water and solutes inside the cells.

In the following I will try to illustrate my contribution to this topic on the basis of the factors
and the scale of interest that the models accounted for. Of course, this classification is motivated
by presentation purposes, but in reality all scales contribute to the resulting phenotype, with many
interactions and feedback loops between different organisational levels.

T
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Endoreduplicating cells

Active transport
(+mass flow)

fresh matter: 7
T

Water
. Dllutlnnﬁ Soluble S (sugars)
« Extensi 1

T

iration
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Figure 1.6: Structure of the integrated model of fruit development. The fruit is described as a
collection of cell populations, each one having a specific age, ploidy and volume. Cell populations
are indicated with different colors. Proliferating cells are lumped in a single population and assumed
to have a constant volume, ploidy (2C) and age. Expanding cells grow according to a biophysical
model describing the main processes involved in carbon and water accumulation. Two timescales are
recognizable in the model: the organ age i.e. the time since the beginning of the simulation, and the
cell age i.e. the time since the cell left the mitotic cycle and entered the expansion-endoreduplication
phase.

Cell scale: process interactions in the early phase of fruit development

The development of a fruit, from its early stages, is the result of coordinated events of cell division,
setting the total number of cells, cell expansion, setting the final cell sizes, and endoreduplication i.e.
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Figure 1.7: Left: Experimental design showing the characteristics of the 10 model versions tested
in Baldazzi et al. (2019). Right: Schematic representation of the three hypothetical mechanisms of
interaction between cell ploidy and cell expansion: 1. cell ploidy may affect the carbon uptake rate,
2. ploidy may increase the fraction of soluble components in the cell, thus increasing cell osmotic
pressure, 3. ploidy may affect cell wall extensibility.

a modified cell cycle without mitosis, resulting into an increase of DNA copies per cell. The way these
processes interact and coordinate at the organ scale remains elusive.The current view is that, although
cells are the units of plant morphology, their behavior (division, expansion) is not autonomous, but
coordinated at the organ level by cell-to-cell communication mechanisms [Van Norman et al., 2011,
Sablowski & Carnier Dornelas, 2014]. Moreover, a significant correlation between cell ploidy (i.e.
number of DNA copies) and cell size has been observed in different species, suggesting a potential
role of endoreduplication into the control of organ growth [Breuer et al., 2010} |(Chevalier et al., 2011},
Lang & Schnittger, 2020].

In order to answer some of these questions, I built an integrated model of tomato fruit development

coupling cell division, expansion and endoreduplication, based on previous works. Briefly, the fruit
was described as a collection of cell populations, each one having a specific age, ploidy and volume,
which evolve and grow over time during fruit development (Fig. . A cell division-endoreduplication
module [Bertin et al., 2007] governed the evolution of the number of cells in each population, their age
(initiation date) and ploidy level, based on genotype-specific parameters. Cell expansion was described
by means of a biophysical model [Fishman & Génard, 1998, [Liu et al., 2007] and depended on both
cell’s characteristics (age, ploidy) and on available resources from the mother plant. Moreover, a
number of time-dependent functions accounted for developmental regulations of cell metabolism and
physical properties. Depending on the definition of the reference time-scale (individual cell age vs
organ age), different cellular processes could be put under cell-autonomous or non-cell autonomous
control.
The model was used to investigate different hypotheses concerning the regulation and the interaction
among cellular processes, with special attention to 1) the importance of a non cell-autonomous (organ-
level) regulation of cell growth and 2) the potential effect of endoreduplication on cell expansion. For
this aim, different control schemes (either cell-autonomous or organ-controlled, with or without ploidy
effect on cell expansion) were tested in silico by means of specific model variants (see Fig [1.7]). The
model showed that a pure cell-autonomous control could not reproduce the experimental cell size
distribution in tomato fruit, and organ-wide and ploidy-dependent controls were required in order to
get realistic cell sizes. In particular, our simulation suggested that a direct effect of endoreduplication
on cell expansion was needed in order to obtain a significant correlation between size and ploidy, as
observed in real data [23].
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Figure 1.8: Comparison of the effects of fruit shape on water distribution as predicted by [14]. A:
Fruit vasculature and relative water mass variation in 24-hours. B: Total water mass as a function of
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Fruit scale: resources transport and metabolism

Vascular structure and spatial heterogeneities. The architectural properties of a fruit, such as its size,
shape, internal structure (number of carpels, pericarp thickness, etc.) and pattern of vasculature can
be remarkably diverse. These architectural traits may have a significant impact on the distribution of
water and carbohydrates inside the fruit, and thus, ultimately, on its quality. In collaboration with
the team of C. Godin (Inria, Montpellier), we developed a generic 3D functional-structural model
of the fruit that combined selected biophysical functions with an accurate description of fruit shape,
tissue compartmentalization, and vascular networks [I4]. The model was used to examine the impact
of fruit structure on water and dry matter distribution in two species: tomato, as representative
of berries, and nectarine, representative of drupes. The key difference was that tomato fruit had a
heterogeneous internal structure with regular skin, whereas nectarine fruit had a homogeneous interior
with microcracking on its skin. Moreover, tomato had a much lower fruit conductance to water and
thus it had a lower transpiration rate compared to nectarine.

We showed that fruit shape affected vascular patterns and induced, independently of size, an im-
portant and contrasted gradient of water supply from the pedicel to the blossom end of the fruit. In
particular, the model predicted lower water supply to the tip end of elongated fruits, which is con-
sistent with the sensitivity of elongated tomatoes to blossom-end-rot disorder. We also demonstrated
how skin morphology related to microcracking distribution affected the distribution of water and sug-
ars inside nectarine fruit.

Inter-specific variability. As a natural follow-up of the PhD thesis of C.B. Cakpo, we continued
our inter-species comparison by looking at the processes involved in fruit expansion. To this aim, the
biophysical growth model originally developed by Fishman and Génard [Fishman & Génard, 1998]
was improved and coupled to the model of sugar metabolism [25] in order to simulate the development
of our ten fruit species, from the flowering stage until the maturity. The resulting model is able to
account for three mechanisms that are reported to vary considerably among species: (1) the dynamics
of water import to the fruit, via the variation of the xylem hydraulic conductivity, (2) the dynamics
of carbon unloading, via the balance between apoplastic and symplastic transport mechanisms and
(3) the differences in carbon allocation to non-soluble carbon components, like starch and structural
tissues, that do not contribute to the internal turgor pressure.

Preliminary results confirmed a separation between herbaceous and woody species. Herbaceous,
short-growing species were characterized by high hydraulic conductivities during the early phase of
fruit development, resulting in a high turgor pressure and a low sugar content in the fruit. Woody
species, instead, were associated with a strong plasticity of the tissues, which compensated for the
lower turgor pressure, and with a more regular, apoplastic, sugar unloading over time.
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Notice that these differences do not only affect the final fruit quality but can directly impact the ability
of the fruit to develop under limiting environmental conditions. A previous work on a panel of tomato
varieties [I5] showed indeed that hydraulic conductivities and apoplasmic unloading mechanisms were
important determinants of the fruit sensitivity to water deficit. It would be interesting to extend this
work to different environmental conditions, in order to identify those traits and mechanisms that may
most limit fruit growth, and to a panel of different genotypes, in order to decipher possible correlations
among traits due to their genetic architecture.

Plant scale: Spatial and environmental control

Plant architecture plays an important role in organ development as it affects both resources acquisition
(light interception for photosynthesis, soil exploration and hydraulics for water and mineral uptake)
and transport. As a consequence, the position of the organ is strongly related to its final size and may
have an effect on its ability to respond to environmental stresses.

In a first work, the variability of organ growth was investigated in silico by connecting our fruit

division-expansion model to an architectural model of tomato plant [I0]. Plant architecture was
used to estimate resource acquisition (carbon) and water transpiration distribution under different
environments. The resulting fruit growth, in both dry and fresh mass, was then evaluated as a
function of fruit position, developmental stage and nutrient availability.
Results showed that, independently of the environment, fruits on the the 1st trusses were always
smaller compared to later in the season because the leaf area was not totally developed, inducing
a shortage in carbon supply. The application of a stress had a considerable impact on the relation
between fruit growth and truss rank, with different outcomes depending on the affected resource
(carbon vs water stress), the timing and the duration of the stress. Moreover, within a single truss,
fruits in the early expansion phase were the most affected by stress, due to the mechanical and
hydraulic properties of young cells.

In [10], cell division was assumed to be independent from environment, so that differences in fruit
sizes were only due to cell expansion. In reality, cell cycle progression may be modified by environmen-
tal and develpmental signals [Komaki & Sugimoto, 2012], adding a further degree of freedom to organ
plasticity. In order to quantify these effects, we performed a comprehensive phenotyping of the main
cellular processes (cell division, endoreduplication and expansion) in both tomato leaves and fruits, as
a function of their position on the plant and for different water regimes (PhD thesis of G. Koch). On
leaves, data showed that leaf area, leaflet area and cell number increased with leaf rank until reaching
a plateau [2I]. The application of a water deficit leaded to similar cellular responses in both vegeta-
tive and reproductive organs: cell number and division rate were reduced but the duration of the cell
division phase increased [22]. Cell expansion rate was also lowered by stress, earlier in the leaf than in
the fruit, resulting in a overall reduction of organ and cell sizes, whereas endoreduplication was only
slightly affected. In perspective, these results could be integrated into the model of fruit development
(section "Cell scale") in order to refine our prediction of fruit growth (including its cellular phenotype)
under different environmental conditions.
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CHAPTER 2

On-going work and Scientific perspectives

My move to the Sophia Agrobiotech Institut (ISA) in March 2016 and the collaboration with the Inria
Biocore team brought about the appearance of new research themes and methods. My current work
and my scientific perspectives reflect this new environment.

On a one side, I would like to pursue the study of the mechanisms underlying cell growth using
a more theoretical approach based on coarse-grained models of cell functioning.This should allow a
more comprehensive analysis of possible growth patterns, as a function of the environment and the
phenotypic differences among cell types. On the other side, my integration to ISA introduced a novel
ecological perspective to some pre-existing themes related to plant growth and yield. In addition to
abiotic factors, indeed, plant are subjected to interaction with other organisms, with which they share
available nutrients. The question of resource allocation therefore scales from the cell to the whole
plant, with important consequences on the dynamics of the coupled plant-biome system.

2.1 Cell economy and control of cell growth

The most fundamental feature of living systems is self-replication. Whenever the organisms and
cell type, cells have to sustain their own growth and functions by continuously absorbing available
external substrates and transforming them into useful compounds. This includes the synthesis of
different classes of macromolecules that ensure (proteins) most cellular functions, including signalling,
regulatory and catalytic functions, as well as the storage of essential genetic information (nucleic acids
as DNA and RNAs). Proteins in particular are necessary for the uptake and metabolism of external
substrates (enzymes) as well as for the synthesis of proteins themselves via the action of ribosomes.
Given the intrinsic cost of maintaining such a internal machinery, cells are constantly obliged to
modulate their functions to better fit their current needs. In response to changing environmental
conditions, in particular, the cell modifies the expression of specific genes allowing for a re-allocation
of available resources to different biological processes. Notice that proteome allocation defines the
demand of the cell but also the attainable growth rate, in turn affecting the concentration of proteins
and metabolites within the cell. This gives rise to a highly non-linear system in which proteome and
biomass composition both determine and depend on the growth rate [de Groot et al., 2020].

In the last few years, coarse-grained models of the cell (also called self-replicator models) have
been developed specifically focusing on the auto-catalytic nature of cell growth. Instead of ac-
counting for individual molecular reactions, cell components are lumped together into a few classes,
with macro-reactions describing their conversion rates. In its simplest form, a self-replicator model
can include only two macroreactions (Figure , describing the conversion of external substrate
into metabolic precursors (Vjs) and their subsequent consumption for the synthesis of ribosomes
and enzymes via the macroreaction Vi [Giordano et al., 2016]. By defining cell biomass in terms
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Figure 2.1: Exemple of self-replicator model, based on the work by de Jong and coworkers
|Giordano et al., 2016). The model includes two macroreactions, describing the conversion (Vj) of
external substrate S into metabolic precursors P and their subsequent consumption for protein syn-
thesis, via macroreaction Vg. Proteins are subdivided into two classes, enzymes (M), needed for
substrate uptake and metabolism, and ribosomes (R) responsible for the production of M and R itself,
according to the allocation parameter a.. (p, m,r) design the concentrations of P,M and R, respectively.

of cellular components, cell growth rate p can be explicitly calculated as a function of cellular
fluxes, making the intrinsic non-linearity of the system apparent. Starting from this basic pic-
ture, more complex models can be constructed by considering additional proteome classes for spe-
cific cellular functions, including transport, energy metabolism or house-keeping cellular processes
[Molenaar et al., 2009, |Scott et al., 2014, Weille et al., 2015].

2.1.1 Energy constraints in microbial growth

Bacterial growth involves the conversion of nutrients to biomass (proteins and other macromolecules)
and to small energy-carrier molecules (ATP, NADP, NADPH, ...) driving the synthesis of biomass.
Coarse-grained models have provided insights in the resource allocation principles underlying mi-
crobial growth. In unicellular systems, indeed, partitioning between ribosome and protein synthesis
has been shown to control cell growth rate as a function of carbon availability [Scott et al., 2014
|Giordano et al., 2016]. Moreover, models have shown how protein synthesis costs clarify the role of
alternative ATP-production pathways [Molenaar et al., 2009 Basan et al., 2015].

In collaboration with H. de Jong (Inria, Grenoble), we developed a coarse-grained dynamical model
of coupled energy and mass fluxes in microorganisms, based on minimal assumptions, and calibrated
the model using data for E. coli. The model is based on the partition of the proteome into differ-
ent functional classes, each one catalysing a specific macro-reaction. In particular, a class of energy
proteins works to transfer the energy contained in carbohydrate substrates to small energy-carrying
metabolites, like ATP, whereas biomass synthesis consume that energy. A perfect balance between
these two processes is needed to ensure a fast cell growth, but possibly at the expense of growth
efficiency. Calling B the total cell biomass [gDW], we define the growth rate of the cell u [h~!] as the
relative biomass increase over time, as

b=—=—-: (2.1)
The growth yield Y, defined as the fraction of biomass produced per unit of carbon uptake (vypr),
measures the efficiency growth and is given by

1
y=-H

/8 Vupk

(2.2)

where (3 is the biomass carbon content [gDW/Cmmol], assumed constant. According to the above
definition, yields are dimensionless and vary between 0 and 1, which allows for a direct comparison of
different resource allocation strategies.

By sampling the whole space of possible protein allocation schemes, the intrinsic connection between
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Figure 2.2: Predicted combinations of steady-state growth rate and growth yield for batch growth of
E. coli in minimal medium with glucose.

growth and yield can be brought to light. Preliminary simulations showed indeed that the model is
able to capture the expected relationship between growth rate and yield (Fig. [2.2)): for low growth
rates, the maximum growth yield increases with the rate, whereas it decreases for high growth rates
[Lipson, 2015]. The initial yield increase can be attributed to the proportionally lower burden of the
non-growth-associated maintenance costs when the growth rate increases. The subsequent decrease
of the maximum yield with a further increase of the growth rate reflects a rate-yield tradeoff experi-
mentally observed in unicellular systems [Beardmore et al., 2011]. Analysis of the model revealed that
the trade-off at the level of rate and yield translated to different trade-offs on the level of fluxes and
enzyme and metabolite concentrations, following a hierarchy of internal constraints. Interestingly,
the model even predicted that the availability of two alternative ATP production pathways is not
necessary for occurrence of rate-yield trade-off, suggesting that, within the context of the core depen-
dencies between resource allocation parameters modelled here, the choice between fermentation and
respiration is secondary. Further work is needed in order to verify the robustness of the above conclu-
sions to more realistic model assumptions. Recent works on large genome scale metabolic models are
encouraging though, showing similar shapes for the rate-yield solution space over different datasets
[Cheng et al., 2019).

On the longer term, perspectives of this work include the transition from the steady-state to a dy-
namical perspective. Given its ode formalism, the developed model can be used to investigate the
adaptation of cell allocation scheme following a change in environmental conditions. With respect to
previous work in which a single allocation choice was considered [Giordano et al., 2016], the task is
harder here as multiple allocation parameters are concerned, each one related to a different cellular
process. Moreover, when looking at single strain, the space of admissible allocation solutions could
be reduced with respect to Fig. due to the specificity of its own regulatory network. Interac-
tions among cellular processes may in fact create dependencies among allocation parameters, acting
as inherent constraints to cell admissible control strategies, that have to be accounted for.

At term, the analysis of allocation-derived constraints could have important implications for the
correct prediction of cell growth and metabolic fluxes, both for fundamental research and biotechno-
logical applications [Hartline et al., 2021]. From an ecological perspective, the growth-yield properties
of microbial cells are also important for communities assembly [Beardmore et al., 2011}, Lipson, 2015]
and may play a role in the the functioning of both artificial and natural ecosystems.
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2.1.2 Biophysical constraints in plant cell growth

In plant cells, growth is the result of two distinct but intertwined processes: a cytoplasmic growth,
driven by macromolecular synthesis, and an expansive growth resulting in vacuole enlargement and
water uptake. In most plant cell models, only the expansive growth is described, usually by means
of the Lockhart equation, as resulting from the balance between the mechanical properties of the cell
wall and the internal turgor pressure, generated by the accumulation of water and solutes inside the
cell [Lockhart, 1965]. The role of macromolecular synthesis and proteome allocation has been rarely
account for.

Based on the experience gained with the FE.coli model, my long-term project is to combine models
of protein allocation, originally developed for unicellular systems to a biophysical model of cell ex-
pansion, based on the Lockhart equation. In a first internship on this topic (L. Guitou 2018-2019),
the choice between ribosome (R) and enzyme synthesis has been investigated assuming that enzymes
acted on the uptake and synthesis of soluble compounds, whereas ribosomes assured the synthesis
of proteins, including enzymes and ribosome themselves ( see [Giordano et al., 2016]). Contrary to
classical microbial models, cell growth rate was described in term of volume instead than biomass
and depended on solute concentration, via the osmotic pressure. Analysis of the model showed that
the viscoelastic properties of the cell naturally translated into an allocation constraint, resulting in
a minimal proportion of enzymes (and thus a minimal concentration of solutes) in order to sustain
growth.

A number of improvements are needed to correctly account for the complexity of plant cell growth.
First, plant cells have a large vacuole that allows for an increased storage of soluble osmolites and
water, independently from protein synthesis. This could partially release the above-mentioned allo-
cation constraints, allowing for a further decoupling of macromolecular and volume growth. Second,
cell mechanical properties are not static but tightly controlled by the expression of specific proteins
that regulate the both the synthesis and the dynamics of wall compounds. To address this point, en-
zymes could be subdivided into two distinct pools: primary metabolic enzymes (Es), driving central
metabolism and cell osmotic pressure, and cell wall enzymes (Eyy), controlling the deposition of wall
materials and the resulting wall stiffness (Figure [2.3). Last but not least, mechanosensing can feed
back on gene expression, dynamically regulating the allocation scheme of the cell depending on the
environment or on developmental signals. In a full integrated model, the allocation parameters i.e. the
fraction of proteome allocated to different proteins classes, would be dynamically adjusted by specific
feedback control functions [Giordano et al., 2016]).

The model will be initially used to analyse the mechanisms controlling plant cell growth, in both
biomass and volume, over a range of possible parameterisation ( mechanical-hydraulic balance, surface-
to-volume ratio ) and (fixed) allocation schemes, and progressively adding further layers of complexity.
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Figure 2.3: Schematic view of a possible biophysical-allocation model of plant cell growth. Enzymes
FEg convert external carbon substrates into precursors for the synthesis of proteins, via the action of
ribosomes (R), and structural compounds, via the action of enzymes Eyy . Soluble metabolites can be
transported into the vacuole, where they accumulate and generate an osmotic pressure 7, inducing
a water inflow towards the interior of the cell. Cell growth is described by means of the Lockhart
equation, u = ¢(P —Y), and depends on the hydrostatic pressure P and on the mechanical properties
of the cell wall, via the extensibility ¢ and the critical turgor threshold P..
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On a longer perspective, the addition of these mechanisms to multicellular models [Cheddadi et al., 2019]
could provide new insights into the complex control of tissue growth by mechanical, hydraulic and
osmotic processes. Possible founding may be provided by Inria through their "Action exploratoire"
program or by INRAE DIGIT-BIO program.

Collaborations:

e [. Cheddadi, University Grenoble-Alpes
e J.L. Gouzé, Inria, Sophia-Antipolis

e A. Singh, University of Delaware, USA
Students:

e L. Guitou, internship 2018-2019

2.2 Eco-physiological modelling of plant-biome interactions

During their life, plants experience a wide range of biotic interactions. Some are beneficial to plant
health, as in the case of pollinators or symbiotic organisms, whereas others are negative, as in the case
of pathogens or herbivores. The dynamics and outcome of these interactions depend on the ecolog-
ical conditions, including the phenotypes of the interacting species, their physiology and the abiotic
environment in which the interaction takes place. Phenotypic differences and plant plasticity i.e. the
capacity of the plant to modify specific functional or phenotypic traits in response to environmental
conditions, can shape the dynamics of the plant-biome system and is important to understand ob-
served trade-offs between complex traits, like growth and defence.

In this context, my long-term project builds on the ecophysiological knowledge acquired during my
past work and aims to better analyse the (eco)physiology of the plant, with respect to resources parti-
tioning between the plant and its biotic partners and between growth and defence-related metabolism.

2.2.1 Plant-Root-knot nematodes and role of root system architecture

Root-knot nematodes (RKN) are microscopic worms that cause considerable yield losses in many crop
plants [Jones et al., 2013]. The reaction of a plant to parasitism by RKN depends on the plant species
and cultivar. Typical symptoms include stunted growth, wilting and deformation of the roots, but
strong differences in the extent of damages are observed both intra- and inter-species. For instance,
cucurbits generally show high nematode infections in comparison to Solanaceous crops but they are
able to preserve a good fruit production. In spite of their economic importance, nematode infestation
has been rarely modelled and their consequences on plant’s physiology were not accounted for. In
collaboration with some ISA colleagues, we aim at developing an integrated model of the plant-
nematode system, explicitly coupling the description of plant eco-physiology to a dynamic model of
nematode population. In a previous internship on the topic (T. Breniére, 2017-2018), a first model
of plant growth has been developed based on the works of Thornley [Thornley, 1998] and Dewar
[Dewar, 1993]. Accordingly, the plant was divided into shoots, source of carbon for the plant, and
roots, source of water. Carbon uptake and transport between shoots and roots was described explicitly,
so that any diversion of substrate induced by the pest could be modelled and the feedback on plant
physiology taken into account. Based on literature information, nematodes were supposed to induce
a) a decrease in plant’s hydraulic conductivity, and b) the appearance of an additional carbon sink
at the roots level. Current step includes the coupling of the plant growth model to a demographic
model describing the changes of pest population over time (internship C. Bourgade). Specificity of
the nematode life-cycle are included at this stage, as well as the effect plant physiological status on
pest multiplication and survival.
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Figure 2.4: Schematic representation of the integrated plant-nematode model, explicitly connecting
an ecophysiological plant model to a demographic model of the pest. Red arrows indicate interactions
between plant and nematode models. Nematode J2 larvae infect plant roots and establish their feeding
site, inducing the appearance of a gall. Developing nematodes feed on carbon diverted from plant roots
but plant status can affect their life cycle. The presence of galls impairs plant water uptake, inducing
an increase in plant hydraulic resistance.
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At term, the integrated plant-pest model will allow to simulate the effect of nematodes over the
plant but also the effect of the plant over the pest. In addition, a particular attention will be devoted
to the role of root system architecture (RSA) both from a plant’s functional point of view and from an
epidemiological perspective, as an important modulator of the probability of infection by nematodes.
In collaboration with L. Pages and C. Daussan (INRAE, Avignon), dedicated experiments are cur-
rently conducted to assess the architecture (branching, root diameters) and hydraulic properties of the
root system on the three contrasted species, in both infected and healthy plants. Collected data will
be used to parameterize existing root architectural models [Pages et al., 2014, [Doussan et al., 1998] in
order to investigate i) the evolution of root hydraulic conductance during plant development, over et
large variety of RSA, ii) the impact of nematodes on hydraulic properties of the root system and iii)
the probability of encounters between roots and nematodes (supposed static and uniformly distributed
in the soil), as a function of RSA. In addition, architectural models will be used to establish simple
relations between the observable descriptors (number of galls, number of infested root roots, etc.) of
infestation and the global root system conductance, which directly influences the hydraulic functioning
of the whole plant. These relations will be then included into the integrated plant-pest model in order
to investigate the effect of RSA on the dynamics of nematode population as well as on the expected
damage at the plant scale. Potential trade-off between physiological vs epidemiological consequences
of the architecture of root systems could be pointed out at this stage. At term, the model could be
used to define optimal root architectures with respect to a specific agronomic target (e.g. maximum
yield), under different infection and environmental scenarii.

In the near future, in collaboration with the collegues of the inria project-team Biocore, a reduced
version of the plant-nematode model could be proposed, based on the work by Lebon et al. (2014)
[Lebon et al., 2014], in which relevant properties identified on the complete model will be included.
The mathematical analysis of its properties will indicate conditions for the different outcomes of the
infestation over the year: death of the plant, tolerance with over-compensation, nematodes exclu-
sion,... These conditions will then be used to determine which control actions can ensure limited yield
loss. This same model could also be put in a hybrid seasonal framework, where the hybrid component
will represent the overwintering of the nematodes in absence of its host in order to analyse the scale
of the epidemic, and whether and how it develops in the longer term.

In the objective of control, this work could also be extended to resistant plants, as a part of promis-
ing agroecological strategies [Nilusmas et al., 2020, [Clin et al., 2020]. This project has received the
support of Idex UCA JEDI via the founding of T. Breniére’s internship and of INRAE AgroEcoSyst
Department via the founding of the ArchiNem project (2020-2021). Applications for a PhD founding
are currently under submission to the EUR LIFE of the University Céte d’Azur and to the Inria-
INRAE fellowship program. The possibility of a CIFRE PhD thesis is also under discussion with
Limagrain.

In perspective, the model could be used to investigate more complex situations, as a tripartite
interaction including two pests or plant-symbiote partnership.
Most of modelling works on pathosystems refer to one crop and its main pest, possibly including
the main antagonist of the pest. However real crops are subject to multiple pest attacks. Fol-
lowing a biotic interaction, systemic changes in plant traits, like architecture, nutritional status or
induced defence compounds can considerably modify the dynamics and outcome of plant response to
further attacks. It is therefore evident that separately considering the consequences of different pests
might not be adequate to describe real crop systems. In collaboration with D. Bevacqua (INRAE,
Avignon), we plan to couple the plant-nematode model to an existing model of aphid infestation
[Zaffaroni et al., 2020]. This will allow to evaluate the importance of plant-mediated interactions be-
tween below-ground and above-ground pest, and their modulation by plant architectural features and
cultural practices [Kaplan et al., 2008, [Kutyniok et al., 2014].

Plant fitness and growth can also be affected by the interaction with symbiotic partners. Evi-
dences show that symbiosis can shape plant response to both abiotic and biotic stresses [Kumar & Verma, 2018].
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The modelling framework already developed for the plant-pest system could be adapted to describe
resources sharing between plant and symbiote, based on similar models and literature information
[Umbanhowar & McCann, 2005 [Thornley & Parsons, 2014]. Assuming the existence of an established
symbiotic relation, my objective will be then to investigate and quantify the effect of the symbiosis on
the dynamics of plant-pest interactions, with particular attention to strength symbiotic link (resource
payback among symbiotic partners) and with regard to environmental conditions (resource availabil-
ity, abiotic stress.. ) and plant phenotype. Two possible applications are foreseeable at this stage:
i) the effect of mycorrhiza fungi on plant-root-knot nematodes interactions [Schouteden et al., 2015],
in the framework of our ongoing collaboration with the ISA-IPN team, ii) the study of the rhizobia
bacteria-legume-aphids system in collaboration with the ISA-Symbiosis team, for which preliminary
data have already been acquired [Pandharikar et al., 2020]. Possible sources of funding for these topics
include INRAE Departments SPE and AgroEcoSystems, and the National Research Agency (ANR).

Collaborations:

e C. Caporalino, ISA, INRAE, Sophia-Antipolis
e S. Touzeau, ISA, INRAE, Sophia-Antipolis

e L. Mailleret, ISA, INRAE, Sophia-Antipolis

e L. Pages, PSH, INRAE, Avignon

e D. Bevacqua, PSH, INRAE, Avignon

e C. Daussan, EMMAH, INRAE, Avignon

e F. Grognard, Inria, Sophia-Antipolis

Students:
e T. Breniere, internship 2017-2018
e N. Jauzion-Graverolle, internship 2019-20, 2020-21

e C. Bourgade, internship 2020-2021

Associated projects:

e ArchiNem, INRAE project
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CHAPTER 3

Conclusions and acknowledgments

Trained as a physicist, my approach to biology has been gradual. I started from the behaviour of
a single molecule and I progressively discovered the complexity of living systems, through the many
research themes I had the luck to participate to. My career indeed has been marked by multiple
shifts in research topics as well as in the biological systems under study. This thematic "mobility" also
affects my future research project, in which applied and fundamental research questions, at different
scales, coexist. I am fully aware of the potential risk of dispersion that this choice implies as well as
the difficulty of constantly moving from one topic to another. In spite of this, I find the combination
of fundamental and applied topics, on multiple biological systems, both inspiring and healthy. On
one side, it allows to step back from the system-specific mechanisms, get a wider view of biological
processes, promoting connections between different domains. On the other side, applied research
topics are essential to stay grounded on biological reality, restraining dangerous generalizations. They
help recognizing that biological systems are indeed different and that sometimes the kinetics of a few
interactions can be important.

Since my PhD, I had the luck to work with people of great human values and endowed with a
undeniable passion for science. Among them, I owe a special gratitude to Hidde de Jong who, by
his own example and his advices, really learnt me what being a good researcher means. I would also
like to thank Michel Genard who introduced me to the biology of plants and with whom I shared a
number of interesting discussion on the right way to model them.

It now comes my turn to guide students to become young mindful researchers. When building a
model many criteria come into play, including the the purpose of the model (either for understanding,
prediction or control), the available information, technical and computational costs but also intuition
and personal preferences concerning the mathematical formalisms to be adopted. As supervisor, I feel
that my role is mostly to transmit and support good research practices and only secondly to provide
tools and methods to solve problems. I feel crucial to keep trace of the motivations and hypotheses that
led us to build a particular mathematical model. The choice of a mathematical formalism, in particular,
is always accompanied by some underlying hypotheses that can have important consequences on the
dynamical behaviours we can observe. In this perspective, I try to learn students to always keep a
critical regard on their results and not be afraid to verify scripts, find errors or come back their original
hypotheses. I learnt by experience the importance of fully understanding model results and carefully
verifying whenever a small doubt appears in the behaviour of numerical simulations. Methods exist
indeed to test numerical scripts, evaluate the importance of selected parameters values, or to compare
alternative model formulations. Based on my personal experience, combining approaches at different
levels of description on a same biological system, is also very instructive. It offers the possibility to
change perspective, explore different facets of the same problem and, in the case of simpler small-
size model, give access to mathematical tools that are unavailable when dealing with large numerical
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models. In this perspective, I encourage students to be curious, discuss together and with other
colleagues and to read about models and approaches developed for other systems. Whenever possible,
the participation to local seminars or international congress is always a source of inspiration. Last but
not least, I will try to educate students to the importance of well presenting their ideas and projects,
both in oral and written forms. With the generalization of project-based research, telling a good story
indeed has become an essential skill not only for result dissemination but also for founding and career
progress. Precisely defining the research question, its motivation and the reasoning that lies behind
the work can make a difference for an effective communication.
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