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Résumé de la thèse 
 

Cette thèse analyse les conséquences d'une transition de la production et de la consommation vers des 

produits alimentaires de qualité. Nous évaluons les performances économiques et environnementales 

des exploitations agricoles labellisées (bio et AOP). Nous étudions aussi le comportement des 

consommateurs vis-à-vis des produits sous signe de qualité, en mettant l'accent sur la régularité des 

achats et leurs élasticités-prix. 

Dans le premier chapitre, nous nous concentrons sur les exploitations laitières AOP et développons un 

modèle incluant l’impact des changements directs d’usage des sols et de plusieurs pratiques agricoles 

sur la séquestration de carbone dans l'estimation des émissions de GES (gaz à effets de serre). Bien que 

nous n'ayons pas pu trouver de synergies entre les performances économiques (marge brute) et 

environnementales (GES) des fermes AOP, nous avons identifié des leviers qui améliorent l'une des 

performances sans compromettre l'autre. Investir dans des équipements pour sécher le foin ou traire les 

vaches, limiter le chargement ou réduire la consommation de carburant augmentent la performance 

environnementale de 5 à 13 % sans nuire à la marge brute. L’intensification du travail ou la réduction 

de la part de protéines dans l'alimentation améliorent la performance économique de 7 à 21% sans 

augmenter les GES. 

Dans le deuxième chapitre, nous poursuivons notre analyse des performances économiques et 

environnementales des systèmes d'élevage par une comparaison des exploitations laitières bios et 

conventionnelles en France. Nous développons notre modèle théorique de changement d’usage des 

terres pour intégrer l’impact des changements indirects sur les émissions de GES. De plus, nous mettons 

en place une pondération par score de propension pour contrôler les différences structurelles et 

pédoclimatiques entre les fermes biologiques et conventionnelles. Ainsi, nous constatons que le lait 

biologique a une empreinte carbone de 8,6 à 29 % inférieure à celle du lait conventionnel, selon si les 

changements indirects d’usage des terres sont pris en compte. Par ailleurs, nous n'avons pas trouvé de 

différence significative entre la marge brute des exploitations biologiques et conventionnelles. 

Dans le troisième chapitre, nous analysons le comportement des consommateurs d'aliments sous signe 

de qualité. Nous montrons que ce comportement vis-à-vis des aliments bio est souvent régulier : pour 

un produit donné, les consommateurs ont tendance à toujours acheter la même version, soit bio soit 

conventionnelle mais rarement un mix des deux (occasionnel). Plus précisément, nous exposons que 29 

% des ménages sont des réguliers d'au moins un produit bio mais que très peu de ménages sont des 

réguliers bio pour l'ensemble de leur panier. Cependant, ces consommateurs bios réguliers sont des 

acteurs clés puisqu'ils sont à l'origine de 28 % des achats du marché bio et jusqu'à 50 % dans le cas de 

certains fruits et légumes, des œufs ou du lait. À l'aide d'une modélisation à utilité aléatoire, nous 
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montrons que le comportement régulier envers les produits bio est plus important pour les produits 

davantage disponibles en magasin mais n’est pas influencé par le prix relatif du bio et du conventionnel. 

Dans le dernier chapitre, nous estimons les élasticités de prix et dépenses des aliments bios et 

conventionnels en France de 2011 à 2018 en appliquant un système de demande censurée. Nous 

constatons que les élasticités-prix des produits bios sont considérablement plus élevées que celles des 

produits conventionnels et que les produits bios sont majoritairement des biens de luxe. De plus, les 

produits biologiques sont des compléments entre eux (élasticités-prix croisées négatives) et des 

substituts aux produits conventionnels (élasticités-prix croisées positives). La demande d'aliments bio 

est donc réactive aux changements de prix et une exemption de TVA pour l’alimentation bio 

augmenterait de 40% leur consommation. 

 

Mots-Clés : bio ; signes de qualité ; exploitation laitière ; gaz à effets de serre ; comportement du 

consommateur. 

  



Thesis’ Abstract 
 

This thesis analyses the consequences of a production and consumption shifts toward quality food. We 

have assessed the economic and environmental performances of quality-labelled farms, especially in 

comparison to their conventional alternatives. We have also analyzed consumers’ behavior toward 

quality food, with a focus on the regularity of quality food purchases and price elasticities.  

In the first chapter, we focus on PDO dairy farms and develop a model including the impact of direct 

land use changes and of several management practices on carbon sequestration in the estimation of 

farms’ greenhouse gases emissions (GHGE). We uncovered several levers that improve one of the 

above-cited performance without compromising the other. Investing in equipment to more efficiently 

dry the hay or milk the cows, limiting livestock density, or reducing fuel use increase the environmental 

performance by 5 to 13% without impairing gross margin. Increasing labor use or reducing the amount 

of protein in the diet enhance the economic performance by 7 to 21% without deteriorating the 

environmental performance.  

In the second chapter, we continue our analysis of the economic and environmental performances of 

quality-labelled farming systems with a comparison of organic and conventional dairy farms in France. 

We develop our model of theoretical land use change to integrate the estimation of indirect land use 

changes in addition to direct LUC and the impact of management practices on carbon sequestration. 

Moreover, we perform propensity score weighting to robustly control for the structural and pedo-

climatic differences between organic and conventional farms. Doing so, we find that organic milk has a 

8.6 – 29% lower carbon footprint than conventional milk, depending on whether indirect land use 

changes are accounted for. In addition, we could not find a significant difference between the gross 

margin per labor unit of organic and conventional farms.  

In the third chapter we analyze purchase behavior of quality food consumers. We uncover that consumer 

attitude towards organic food is often regular: for a given product, consumers tend to either purchase it 

always organic or always conventional but not often a mix of both (occasional). More precisely, we 

uncover that 29% of the households are regular for at least one organic product although very few 

households are organic regulars for their entire basket. However, these regular organic consumers are 

key actors for marketing strategies or public policies as they are responsible for 28% of the purchases 

of the organic market and up to 50% for some fruits and vegetables, eggs or milk. Using a random utility 

modelling, we show that regular organic consumers are in general wealthier, urban, have a higher 

professional status, are more likely in couple and have relatively less children. Regular organic behavior 

is more prominent in products categories that are more widely available in all types of shops but does 

not seem influenced by the relative price of organic products compared to their conventional 

alternatives.  
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In the fourth and last chapter, we estimate price and expenditures elasticities of organic and conventional 

food in France from 2011 to 2018 using the same scanner data and applying a censored demand system. 

We uncover that own-price elasticities of organic products are considerably larger than conventional 

products and that organic products mostly are luxury goods (expenditures elasticities are more than 

unity). Moreover, organic products are complements among themselves (negative cross-price 

elasticities) and substitutes of conventional products (positive cross-price elasticities). Organic food 

demand is thus reactive to price changes and an exemption of VAT for organic products could increase 

their market share by 40%. 

Keywords: organic; quality food; dairy farms; greenhouse gases; consumer behavior. 
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General Introduction 
 

Motivation 

 

Agriculture and environment nexus  

Agriculture is a complex interaction of human, environmental and technological elements: labor and 

capital are mobilized to convert natural resources (water, soil, solar energy…) into food, fiber or fuel, 

in conjunction with a more or less intensive technology. As such, agriculture is a nature-based activity 

in a managed ecosystem: natural resources are used as inputs in the production process, and natural 

components are also produced as environmental externalities, in addition to food. The quantity of natural 

elements used and generated during agricultural activities varies greatly depending on the technology 

used and the activity. Intensive poultry farming, in batteries, uses very little land – at least directly – 

whereas maize production involves a large quantity of local water and land. Similarly, some agricultural 

activities create positive environmental externalities, such as landscape and species diversities in highly 

diversified farming systems, while all generate negative externalities, albeit in variable quantities, like 

greenhouse gases emissions (GHGE) in livestock farming or water and soil pollution with fertilizers and 

pesticides.  

 

Agriculture and negative environmental externalities  

The majority of modern agricultural systems and production techniques create negative environmental 

externalities. Indeed, since the 1950s agriculture activities have been intensifying worldwide due to the 

development of mechanization and chemical fertilization. With these innovations, agricultural systems 

have been deeply transformed to be able to feed a fast growing population. However, chemical fertilizers 

and pesticides have profoundly altered ecosystems and the environment. At the same time, dairy and 

meat products’ consumption has increased worldwide, due to revenue increase and the associated diet 

changes in most regions. 

Around 62% of European rivers are in poor chemical status, mainly because of fertilizers and pesticides’ 

pollution by agricultural activities (European Environment Agency, 2018). 21% of the threatened or 

near-threatened species of the International Union for the Conservation of Nature (IUCN) Red List are 

in danger because of agricultural activities (Maxwell et al., 2016). Moreover, the agricultural sector is 

responsible for 25 – 30% of global GHGE (Steinfeld et al., 2006), the main driver of climate change. 

Climate specialists established that a 2°Celcius raise of global temperature would greatly endanger 

current and future humans’ generations as well as other living species on Earth. To limit climate change 

to a 1.5°C average warming by 2100, GHGE should decline by 45% before 2030 and reach net zero 



around 2050 (Masson-Delmotte et al., 2018). To reach this goal the agricultural sector and especially 

the livestock sector, contributing to 80% of the agricultural GHGE (Gerber et al., 2013), should be 

mobilized. 

 

Greening of conventional agriculture and its limits  

For a long time, the international politic arena and to a lesser extent, the scientific one, have believed 

that technology, science and rationalization would allow environmental efficiency improvements of 

conventional agriculture large enough to achieve the GHGE’ reductions planned for 2050. However, 

this technicist vision has been shown to be too optimistic, as only a 20% reduction of GHGE is believed 

to be achievable by technical means in the conventional agricultural sector, including mitigation 

possibilities through waste and food loss reductions, lower use of fossil energy or improved management 

of fertilization and manure (Röös et al., 2015; Tukker et al., 2011; Weidema et al., 2008). These limited 

possibilities are due to the fact that most of the GHGE are intrinsic to conventional agricultural 

production, as nitrous oxide emissions through on-field mineral fertilization or methane emissions from 

the ruminants’ enteric fermentation (Edjabou and Smed, 2013; Wirsenius et al., 2011). In the case of 

France, no more than a 10 - 20% decrease in GHGE can be achieved without decreasing the number of 

cows and livestock production (Pellerin, S. et al., 2013). A straightforward conclusion is that in order to 

reach adequate GHGE reductions, not only conventional agriculture should be rethought, but also the 

wider food system, including consumption choices.  

 

Quality-labelled farming as a mitigation policy  

In parallel with the raising awareness of climate change consequences and the central role of modern 

agriculture in global GHGE, alternative agricultural production techniques, such as organic farming, 

have received a growing attention. Indeed, developing organic food and other quality labels (Protected 

Designation of Origin, “Label Rouge”,…) has been advocated as a way to reduce the GHGE of the 

agricultural sector (Bellassen et al., 2021; European Commission, 2020). Organic farming uses less 

fertilizers and pesticides which reduces nitrogen emissions and water pollution and enhances soil 

fertility and biodiversity (Mäder et al., 2002).  Moreover, organic and other quality-labelled livestock 

farming is more extensive and stores more carbon in the soil, which contribute to mitigate global GHGE 

(Reganold and Wachter, 2016). The organic farming regulations in dairy farming also limits the use of 

imported feed and concentrates and imposes that a majority of the cows’ feed is produced on-farm and 

based on grass and hay (European Commission, 2008). Reinforcing the autonomy of dairy farms and 

reducing feed imports, notably soy bean cakes – which have a heavy carbon footprint because they are 

mainly produced in South American at the expense of crucial carbon sinks (savannah and tropical forest 

(Overmars et al., 2015)) – contributes to mitigate GHGE from the livestock sector. PDO dairy farming 
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regulations (cahiers des charges) are also limiting the use of concentrate feed and imposing pasturing 

as soon as climatic conditions allow it. 

An avenue worth exploring to reduce GHGE would thus be a shift in the quality of food produced and 

consumed, from a low quality food with heavy environmental externalities (conventional farming, 

especially animal products) to a higher quality (organic, designation of origins products) of food, with 

a lower share of animal products in the diet. From the farmers’ side, quality-labelled production 

generally implies lower productivity due to the restrictions in the use of fertilizers, pesticides or feed 

concentrates for example. However, as quality-labelled products sell at a higher price, the farmers’ 

profitability may be maintained or even increased. In parallel, certified food consumption has been 

strengthening in France, with an annual growth of the organic market of 15% (Agence bio, 2019), 

reaching 5% of the food market in 2018, while PDO, PGI and “Label Rouge” products represent 2.3%, 

1.8% and 1.5% respectively (INAO, 2019). This durable increase in certified food consumption 

indicates that demand for such products has the potential to be strong enough to maintain high prices 

for farmers. Moreover, from the consumers’ side, purchasing certified products is costly and a durable 

transition to certified food diets without increasing food expenditures would only be possible if the 

consumed quantity of animal products -especially beef meat - is reduced. This indirect effect, observed 

in the literature (Baudry et al., 2019; Boizot-Szantai et al., 2017; Lacour et al., 2018a), has a strong 

climate change mitigation potential, as reducing animal products is the main lever to reduce GHGE in 

the food sector.  

 

Lower yields of quality-labelled farming and land use changes  

However, as quality-labelled production suffers from overall lower yields (Seufert et al., 2012), 

developing such farming systems to a large scale would imply the intensification of agricultural 

activities elsewhere and/or the extension of agricultural land (Smith et al., 2019). This is problematic, 

especially as most existing comparisons of GHGE from quality-labelled and conventional farms, based 

on Life Cycle Analysis, do not integrate precise measures of the carbon released from such direct and 

indirect land use changes.  

In addition, global food demand is expected to grow by 59-98% between 2005 and 2050, driven by 

demographic growth and steady income increase (Valin et al., 2014). During the same period, animal 

products’ demand, driven by meat demand, could increase as much as 144%. These dynamics will also 

pressure land use changes and deforestation worldwide, independently of the development of quality-

labelled farming. 

Thus, promoting organic agriculture to a larger scale would only be possible if agricultural area 

increases, at the expense of existing forests and savannahs and/or if large structural changes affect food 

demand, especially a decrease in animal products’ consumption. Indeed, reaching the GHGE reductions 

targets by 2050 would necessitate both less emitting agricultural production systems - such as organic 



and other quality-labelled farming - and shifts in consumers’ diets, replacing animal products by vegetal 

sources of proteins. Fortunately, several studies show that consumers who purchase organic food also 

develop more sustainable diets and reduce their consumption of animal products, especially meat, which 

reduces the carbon footprint of their diets (Baudry et al., 2019; Boizot-Szantai et al., 2017; Lacour et al., 

2018a). However, to the author’s knowledge, a causal relationship between such a transition from 

carbon-intensive diets to less animal-based ones and the increase of certified food consumption has not 

yet been formally demonstrated. Although establishing such causal relationship is out of the scope of 

this thesis, we intend to provide new elements on consumer behavior toward certified products and the 

role such products may have in shifting toward less carbon-intensive diets. 
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Approach 

 

Research Questions 

This thesis clarifies the role quality food production and consumption may have in reducing GHGE and 

mitigating climate change. We analyze the environmental performance of French Protected Designation 

of Origin (PDO) and organic dairy farms to uncover if these production systems have lower GHGE than 

conventional systems. We improve the existing literature by including the GHGE from direct and 

indirect land use changes in the LCA of dairy farms. Moreover, we assess the economic performance of 

PDO and organic production systems, as such systems can be developed only if they offer an economic 

viable alternative to farmers. We also study extensive farms’ characteristics and practices to uncover 

which ones could act as levers to increase environmental or economic performances. Studying the 

environmental and economic performances of certified agricultural production systems allows us to 

assert to which extent developing organic and PDO dairy farming may be sustainable and effective 

public actions in climate change mitigation? 

However, encouraging the production of quality food would not have a strong impact if consumers are 

not appealed to such products. Indeed, farmers are not only sensible to public policies, such as schemes 

promoting PDO and organic production, but also to market prices and demand. Thus, this thesis also 

studies to which extent PDO and organic food may durably integrate consumers’ diets. Particularly, we 

analyze two key elements of consumers’ behavior toward quality food: the regularity of quality food 

consumption and the price elasticities of organic products. Indeed, we distinguish two types of quality 

food consumers, the regular and the occasional ones. Regular consumers of a quality food product 

purchase only organic or quality-labelled version of this product and are not strongly motivated by price 

incentives, but rather by environmental or health convictions. Occasional consumers purchase food 

products in both quality and conventional versions, and are more responsive to price changes. Thus, we 

examine to which extent regular consumption weights in quality food consumption and how prices, 

expenditures and products’ availability influence organic food consumption. By doing so, we intend to 

uncover how public policies may sustainably increase certified food consumption, would a subvention 

of all certified food be effective? Or would policies targeted on products for which people are more 

likely to become regular consumers be more successful in achieving transitions to certified products-

based diets? 

  



Organization  

 

As explained above, this thesis studies both the production and consumption of quality food products. 

As such, its organization follows two axes, one on the production of certified food and one on its 

consumption. In a first part, Chapter I and Chapter II focus on the environmental and economic 

performances of quality milk production in France. In a second part, Chapter III and IV analyze 

consumers’ behavior towards organic food.  

 

More precisely, Chapter I proposes an in-depth assessment of 95 PDO dairy farms in Franche-Comté 

and Savoy, estimating both their GHGE using Life Cycle Assessment and their gross margin. We assess 

whether quality food farming systems such as PDO dairy farming might be sustainable alternative to 

conventional farming. Specifically, we analyze several farming practices or farms’ characteristics that 

are related to a better environmental and/or economic performances. We could not observe farming 

practices that create synergies between the economic and environmental performances but several 

practices are identified as levers that can improve either the economic or environmental performances 

of PDO farms without depressing the other performance. This chapter pays special attention to the 

functional units used in evaluating farms’ performances and shows that harmonizing the carbon footprint 

or gross margin of farms by either their milk production or the agricultural area used yields sensibly 

different results, especially when the effects of direct land use changes (LUC) on soil carbon 

sequestration are included. The most intensive farms among the sample are considered to have 

undergone land use changes from pasture to cropland and so to have lost carbon sequestration potential 

compared to more extensive farms. 

 

Chapter II broadens the scale of the previous analysis to 3,054 dairy farms in France, and focuses on 

organic and conventional farms, comparing the economic and environmental performances of both 

farming systems. We demonstrate the existence of a lower carbon footprint for organic milk and a similar 

profitability. This chapter develops a complex estimation of the effects of indirect land use changes on 

GHGE, accounting for the fact that organic farms are more extensive and produce less milk per cow or 

land use. Thus, the existence of extensive and organic farms implies that other farms need to intensify 

their production in a context of rapid world population growth, using soybean cakes in our mode. We 

allocate the soybean cakes production and the associated extension of agricultural area in South America 

to the organic farms’ carbon footprint. The use of a large sample, in addition to the complete estimation 

of the farms’ GHGE, including direct and indirect land use changes, allow us to a thorough comparison 

of organic and conventional dairy systems, using propensity score weighting to select proper 

counterfactuals for organic farms. We also show that organic and conventional farms, when properly 

compared, have similar gross GHGE but that including carbon sequestration and LUC in the GHGE’ 

estimation concludes to a lower carbon footprint for organic milk. 
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Chapter III deepens the understanding of consumers’ behavior toward quality food by questioning the 

existence of regular consumption behavior. Indeed, using large datasets of consumers’ purchases 

(Kantar®’s scanner data), we develop a methodology to identify certified food regulars. We consider 

that regulars are consumers that once they purchase a product in a given quality (organic, conventional, 

Label Rouge…), always purchase this version of the product. We show that regularity plays a key role 

in organic consumption as 28% of the organic market is purchased by regular consumers, even if most 

organic consumers are regular for only a few key products (milk, egg, fruits and vegetables). 

Furthermore, we uncover the household characteristics and the products’ attributes that influence such 

regular consumption behavior using logistic regressions and a random utility model. Products’ 

availability and family (vegetables, eggs, milk etc.) play a key role in relation with regular organic 

behavior whereas prices or household characteristics do not strongly influence regular consumption. 

 

Lastly, Chapter IV implements a censored demand system (Exact Affine Stone Index demand system) 

to estimate the price elasticities of food products in France, using again Kantar®’s scanner datasets. In 

continuity with our previous work, we focus on organic products and their own-price elasticities as well 

as their cross-price elasticities with both other organic and conventional products. As we show in 

Chapter III that regular consuming behavior is not the main factor explaining the dynamism of the 

organic market, we investigate the occasional behavior and more specifically the role of prices in 

influencing consumers’ trade-offs between food of different quality, here conventional and organic 

qualities. We also incorporate information in the availability of organic products and on household 

socio-demographics in the estimation of these elasticities in the hope of deepening our understanding of 

consumers’ behavior toward certified food. Using the estimated price elasticities, we simulate the impact 

a VAT exemption would have in rising organic food demand. 
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Chapter 1 

 

Carbon footprint and economic 

performance of dairy farms: the case of 

Protected Designation of Origin farms 

in France 
 

 

 

 

 

 

 

Note: This chapter is based on a paper published under the same title, coauthored with 

Stéphane De Cara, Catherine Brocas and Valentin Bellassen.   



 

1.0. Abstract 

 

This paper assesses the drivers of greenhouse gas emissions and economic performances for a sample 

of dairy farms Protected Designation of Origin dairy farms in France. Investigating caeteris paribus 

drivers of performance, we conclude that synergies are rare. Investing in farming equipment, optimizing 

fuel use or suppressing manure composting can however improve environmental performance by 5 to 

13% without impairing profits. In parallel, increasing labor productivity and reducing the share of 

protein in the diet enhances the economic performance by 7 to 21% without increasing GHG emissions. 

On the debated merit of intensiveness, our analysis leans towards a negative influence of concentrates, 

especially protein-rich ones such as soybean cakes, both on economic and environmental performances. 

This result, consistent with previous studies on extensive systems, could be conditioned by a good know-

how and management of grass. 

 

Keywords: Protected Designation of Origin; greenhouse gas emissions; gross margin; dairy farms. 
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1.1. Introduction 

 

With livestock supply chains accounting for 14.5% of global anthropogenic greenhouse gas (GHG) 

emissions (Gerber et al., 2013), the role of the animal sector is under increasing scrutiny in the climate 

change debate (M. Herrero et al., 2013). In France, meeting the ambitious GHG mitigation targets set 

by National Low Carbon Strategy – a reduction of its agricultural GHG emissions by 46% before 2050 

(Ministère de la Transition Ecologique et Solidaire, 2018) – will require mitigation strategies in the 

livestock sector.   

One major difficulty in reducing livestock-related emissions is that it may severely affect farm income 

(e.g. Pellerin et al, 2017). This is particularly true in the EU dairy sector, since the abolishment of milk 

quotas in 2015 has driven milk prices down which threatens the least productive farming systems (Salou 

et al., 2017b). Moreover, most farmers will only adopt greener farming practices if they do not threaten 

their profitability (Kiefer et al., 2014). While the classical economic response to this conundrum would 

be a tax on GHG emissions, the gilet jaune (Yellow Vests) uprising renders any new environmental tax 

very unlikely in the near future, which also pleads for addressing the environmental and economic 

performances simultaneously. 

 

An interrogation that policy makers face and that we analyse is: can dairy farmers reduce GHG 

emissions while at the same time maintaining profits?  

 

To approach this question in the case of extensive dairy farms, a rich and original dataset is mobilized 

(more than a thousand technical variables, used for life cycle inventories), with a relatively large sample 

size (n=95). Moreover, the farms observed in the dataset are all producing under a Protected Designation 

of Origin (PDO) label, with specific production constraints, in mountainous areas in eastern France. 

Thus, they share a homogeneously extensive “production situation”, where the bio-physical and socio-

economical drivers of the environmental and economic performances are common to all farms (Lechenet 

et al., 2016). In a specific production situation, as the external setting of the farms is homogenous, an 

analysis of the drivers of the performances will isolate the managerial and agricultural practices that 

explain the difference in performances among the farms, limiting endogeneity issues. Moreover, in 

French dairy systems, the variability in GHG emissions within each production system – intensive or 

extensive - is greater than the variations between production systems (Gac et al., 2014). Thus, there 

exists a knowledge gap in explaining the variability of the performances of farms sharing the same 

production conditions. 

PDO farmers receive a “quality” premium (around 30%) on their milk selling price which enhances their 

profitability. To receive this premium, they must comply with specific requirements which limit both 



their production capacity and intensity, to enhance milk quality. These requirements are specifically 

related to extensive farming practices and could increase the environmental performance of PDO 

farming: low livestock density, lots of pastures, low use of concentrates, restricted use of fertilizers and 

so on (Hocquette and Gigli, 2005; Kop et al., 2006).  

In this sense, the French government has pointed out the development of PDO farming as a way to 

achieve a low carbon agriculture while maintaining farmers’ profitability (Ministère de la Transition 

Ecologique et Solidaire, 2018). 

Despite large market share of the PDO quality sign in the dairy sector (e.g. 10% in the EU for cheese 

(Chever et al., 2012) compared with around 3%  for the organic sign in France (Augere-Granier, 2018)), 

the economic and environmental performances of the PDO dairy sector have never been studied jointly. 

In the European dairy sector, this joint performance has only been investigated, to the authors’ 

knowledge, in extensive Irish systems (O’Brien et al., 2015) and intensive Dutch systems (Thomassen 

et al., 2009). The question of the relationship between economic and environmental performances has 

also drawn a lot of interest with the assessment of the cost-effectiveness of mitigation measures, such as 

reducing stocking rates, nitrogen (N) fertilizers application or imported concentrates (Beukes et al., 

2010; Doole, 2014). Moreover, whether extensive or intensive dairy systems pollute more is still debated 

and our study sheds some light on this issue, within PDO farms, which are mostly towards the 

“extensive” end of the spectrum (Dollé et al., 2013).   

Thus, in this paper, we analyze the link between economic performance – gross profit per liter of milk 

produced and per hectare – and environmental performance – GHG emissions – including or not carbon 

sequestration, also per liter and per hectare. We go beyond existing literature by: 

 Quantifying the impact of farms’ characteristics or practices on the environmental & 

economic performances of PDO farms simultaneously. 

 Using a large sample size within a homogeneous production situation (PDO farms in 

mountainous Eastern France) which allows us to focus on the role of management 

practices. 

 Designing and implementing a novel and simple approach to account for carbon 

sequestration related to land-use and land management changes in a net GHG emissions 

indicator for environmental performance. 

 

 Outlining a lead that may reconcile the contradictory results on the relative merit of 

extensive and intensive systems with regards to climate mitigation: we confirm that 

more extensive systems perform better with a higher share of grass, possibly because 

grass is more expertly managed in extensive systems (e.g. through proper drying) than 

at the intensive end of the spectrum. 
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1.2. Methodology and Data 

 

1.2.1. Population characterization and notation 

 

Our main data source is the field survey of 95 PDO farms in the Franche-Comté and Savoy regions, 

financed by the PDO consortia between 2013 and 2015 (Michaud, 2016; Perrard, 2016). These surveys 

gather all the necessary technical and managerial information that is used to compute GHG emissions 

via the CAP’2ER Life Cycle Analysis (LCA) tool. These surveys also provide detailed information on 

farmers’ practices and farms’ characteristics, such as the farm and herd sizes, the amount of concentrate 

feed used, the cereals produced and used on farm, the fertilizer use or the labor use. The average farm 

of our sample has 125 (σ (standard deviation) = 79) ha and 92 (σ = 51) cows, produces 348,158 (σ = 

231,096) liters of milk per year, which amount to a productivity of 3,792 (σ = 758) liters per cow and 

2,773 (σ = 1,205) liters per ha. The detailed descriptive statistics of our sample are provided in SM 2. In 

addition, PDO farms generally have Montbéliarde cows, fed mostly with grass and hay from set stocked 

pastures. The cows spend on average 208 days per year on pastures and otherwise are kept in barns with 

free stalls. The manure is usually not composted and stored in manure pit at least a week before being 

spread on the fields using a liquid manure tank. The farms are located in mountainous areas and do not 

use irrigation.  

Consider a population of 𝑁𝑖 farms (indexed by 𝑖 = 1…𝑁). Each farm is characterized by a matrix of 

outputs 𝑂𝑖 (e.g. liters of milk produced (𝑀𝑖), cereals and cows sold…) produced by combining two 

quasi-fixed inputs (land (𝐴𝑖) and herd size) and a matrix of variable inputs 𝑋𝑖  (e.g. fertilizer, 

concentrates, fuel…). 

Denote by Π𝑖 the gross profit, defined as Π𝑖 = 𝑝𝑖
𝑂 ∗ 𝑂𝑖 − 𝑝𝑖

𝑋 ∗ 𝑋𝑖  where 𝑝𝑖
𝑂 is a matrix of output prices 

and 𝑝𝑖
𝑋 a matrix of input prices. 

Moreover, each farm emits an amount 𝐸𝑖 of GHG as a negative externality of its production activity. As 

cropland and pastures can also sequester carbon in the soils, each farm sequesters an amount 𝐶𝑖 of 

carbon. Thus, each farm has a gross GHG emission amount 𝐸𝑖 and a net one, 𝐸𝑖 + 𝐶𝑖.  

To measure the economic performance, we consider two indicators, the gross profit per liter of milk 

(fat-and-protein corrected, with 40g/kg and 33g/kg respectively) produced (variable output),
Π𝑖

𝑀𝑖
 and per 

hectare (fixed input), 
Π𝑖

𝐴𝑖
.  

As indicators of the environmental performance we use the opposite of gross and net GHG emission per 

liter (fat-and-protein corrected) and per hectare,  −
𝐸𝑖

𝑀𝑖
, −

𝐸𝑖+𝐶𝑖

𝑀𝑖
,  −

𝐸𝑖

𝐴𝑖
, −

𝐸𝑖+𝐶𝑖

𝐴𝑖
  respectively. We use both 



a product-based and an area-based indicator to account for two diverging hypotheses on demand. Indeed, 

if demand is infinitely elastic or if there is no substitute for PDO products, consumers will fully adjust 

to any change in the quantity produced and the product-based indicators are irrelevant. To the contrary, 

if demand is inelastic or if standard products are perfect substitutes for PDO products, a reduced 

production in the PDO area will be offset by an increase in production elsewhere, diminishing the 

relevance of area-based indicators. 

In sum, the variables of interest are Π𝑖 , 𝐸𝑖  𝑎𝑛𝑑 𝐸𝑖 + 𝐶𝑖 and the set of indicators 

 �̅�𝑖 =

{
 
 

 
 

Π𝑖

𝑀𝑖
,
Π𝑖

𝐴𝑖

−
𝐸𝑖

𝑀𝑖
, −

𝐸𝑖

𝐴𝑖

−
𝐸𝑖+𝐶𝑖

𝑀𝑖
, −

𝐸𝑖+𝐶𝑖

𝐴𝑖

. 

 

1.2.2. Economic performance estimation 

 

The gross margin Π𝑖 is defined in this study as the difference between the farm’s revenue and its costs, 

without accounting for taxes or subventions. The former includes the revenues from the sale of the 

farm’s outputs 𝑂𝑖 : PDO milk, animals, cereals and roughage. Factor costs include the buying costs of 

the farm’s inputs 𝐼𝑖: forage, concentrates, fertilizer, electricity and fuel, contracted work and animals for 

the renewal of the herd. Family labor costs are valued at the average wage of paid labor (€20,965 per 

year). 

To estimate the gross margin 𝛱𝑖 of each farm, these physical flows need to be multiplied by prices. The 

prices of most inputs and outputs are estimated using the FADN (Farm Accounting Data Network) 

average for the corresponding year and the corresponding NUTS2 region, with the following exceptions: 

 Since the FADN does not identify whether a farm is PDO certified, the price of PDO 

milk for each year and each PDO area comes from the PDO unions (Agreste Bourgogne-France 

Comté, 2015; les fromages de Savoie, 2017). 

 The prices of fertilizers and concentrates, which cannot be derived directly from the 

FADN, are obtained from Eurostat (2018). 

 The buying and selling prices of dairy cows, cull cows and heifers is gathered from the 

Ministère de l’Agriculture et de l’Alimentation. 

To test the robustness of this estimation, the average estimated profit is compared to the average reported 

profit for dairy farms in the Franche-Comté and Rhône-Alpes NUTS2 regions from FADN.  

 

 

1.2.3. Estimation of the environmental performance 
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To assess the environmental performance, we focus on GHG emissions for two reasons: first because 

climate change is arguably one of the most pressing environmental challenge of the 21st century and 

second because GHG emissions are correlated with environmental impacts such as eutrophication, 

acidification and energy use (Guerci et al., 2013). Gross GHG emissions 𝐸𝑖  - without carbon 

emissions/sequestrations related to land use and management - are computed using CAP’2ER, a GHG 

emissions calculator developed by the Institut de l’Elevage and following Life Cycle Assessment (LCA) 

guidelines (Institut de L’Elevage, 2013). The system boundaries are therefore “cradle-to-farm gate”, 

including enteric fermentation, manure management, fertilizers, fuel and energy use, but also the GHG 

emissions due to the production of concentrate feed and fertilizers. Contrary to the default “energetic 

allocation” of CAP’2ER, these emissions are then allocated to the three products of farms – milk, meat 

and crops – in proportion of the share of each product type in the farm revenue (Baldini et al., 2017). 

To estimate land-use related carbon sequestration (Ci), we also deviate from CAP’2ER for two main 

reasons. Firstly, CAP’2ER attributes carbon sequestration to static land management – such as 

permanent pasture – whereas the only stabilized results for cropland and grassland related carbon fluxes 

in the literature concern land-use changes (LUC). Indeed, the latest IPCC guidelines (IPCC, 2019) 

estimate carbon fluxes to be null for croplands and grasslands which did not undergo recent land use or 

management changes. Secondly because the sequestration factor used by CAP’2ER for permanent 

grassland derived from (Soussana et al., 2010) – 2.09 t CO2eq ha-1 yr-1 – has been criticized as being too 

large to be consistent with the current knowledge about carbon fluxes and stocks in grassland (Smith, 

2014). 

In order to bridge this pitfall and provide a more robust estimate of land-related GHG emissions, we 

develop an innovative methodology based on land use and land management changes. The land use and 

land management of each farm in our sample is compared to a reference, average farm. We then estimate 

the carbon fluxes which are being avoided by the choice of each farm to maintain its observed land use 

rather than transitioning towards the land use of the reference farm. 

The share of land uses (cropland vs permanent grassland) in our reference farm is set to the sample 

average (82% permanent pasture, 18% temporary pasture and cropland). Note that the choice of the 

reference farm does not impact our results on the differences in environmental performance within the 

sample. Carbon fluxes (sequestration or emission) associated to each type of land-use changes include 

both the actual flux resulting from the change and the alteration of future carbon fluxes implied by the 

change. For example, a farm which has 100% of pasture on 100 ha of total land is estimated to sequester 

3.72 t CO2eq. ha-1.yr-1 on the 18 hectares which could have been converted to cropland to match the 

reference farm. The actual values and their sources are detailed in section 4. 

Such an estimate is akin to direct LUC (dLUC) as defined by M. Herrero et al. (2013). Indirect LUC 

(iLUC) is a more controversial topic and its estimates are laden with high uncertainties. Nevertheless, 

we attempt to provide an upper estimate of it in the context of French PDO farms. In our case, iLUC 



could occur because one hectare of cropland (maize in our model) generally has higher yields than 

grassland in our sample and thus a larger nutritive capacity. Thus, assuming a constant demand, a farmer 

who converted some cropland into grassland would have to import feed to continue feeding the same 

herd. To produce this additional feed, either non-agricultural land is put into production (extensive 

margin) or the current production processes are intensified (intensive margin). We retain the extensive 

margin effect, and our study area being located in the Jura and Alps, non-agricultural land is most likely 

forest land. The combination of these two key hypothesizes – constant demand and extensive margin – 

yields an upper bound for the area estimate of iLUC. As such, they are not included in the indicator 

retained for “net environmental performance” and are only used as a robustness check (SM 10). 

Using the formalization of Plevin et al. (2010), our reduced-form models of carbon sequestration for 

dLUC and iLUC are therefore expressed in equations 1 and 2. 

𝑑𝐿𝑈𝐶𝑠𝑒𝑞𝑖 = −𝐿𝑈𝐶𝑖 ∗
𝑑𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟

𝑃𝑒𝑟𝑖𝑜𝑑
                                              (1) 

 𝑖𝐿𝑈𝐶𝑠𝑒𝑞𝑖 = −𝐿𝑈𝐶𝑖 ∗ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟𝑖 ∗
𝑖𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟

𝑃𝑒𝑟𝑖𝑜𝑑
                   (2) 

Where 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟𝑖 =
 
NutriG
NutriC

∗Ydi
G− Ydi

C

YdPDO
C   (see SM 1 for demonstration). 

To compute the land-use related emissions (𝐶𝑖), we use the parameters presented in Table 1. 
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Table 1. Specification of the carbon sequestration methods 

Emission factor 

cropland to grassland 

(dEmissionFactor) 

-74.3 

t CO2eq.ha-1 

Source: (EFESE, 

2019). 

Emission factor forest 

to cropland 

(iEmissionFactor) 

749.4 

t CO2eq.ha-1 

Source: (EFESE, 

2019). 

Nutritious content 

(Nutri) 

NutriC = 3840 kcal.kg−1 

NutriG = 4010 kcal. kg−1 

feedtables.com, NutriC 

being the value for 

maize. 

Yield (Yd, t.ha-1) 

𝑌𝑑𝐶= 10.43 on average (min = 4.5, 

max =16), 𝑌𝑑𝐺= 5.5 on average 

(min = 0.3, max =7.9) 

Source : surveys by 

Michaud (2016) et 

Perrard (2016), 𝑌𝑑𝐶  

being the value for 

maize. 

Displacement Factor 

(DisplacementFactor) 

0.55 on average (min = 0.10, max 

= 1.04) 

Authors’ calculation 

based on equation 3 

Production Period 

(Period) 
20 year 

Default transition 

period in IPCC (2019). 

 

In addition to the estimation of carbon sequestration from dLUC and iLUC, our method allows the 

estimation of the impacts of some management practices on biomass and soil carbon. Based on a recent 

review in France (Pellerin et al., 2019), we identify three practices that are relevant in PDO dairy farming 

and that change biomass and soil carbon stocks: the share of temporary grasslands in crops rotation, the 

amount of nitrogen (mineral or organic) fertilization in pastures and the amount of hedges. The carbon 

impact of these practices follows a temporal pattern similar to the carbon impact of LUC: a change in 

practice leads to carbon sequestration or emissions which saturate over time as soil and biomass carbon 

reach a new steady-state equilibrium. Similar to our LUC model, only the differences from the reference 

farm are therefore considered. Pellerin et al (2019) estimates that on average 63.7 linear meters of hedges 

sequesters 259 kg C.ha-1.yr-1 in the soil and biomass on cropland and 242 kg C.ha-1.yr-1 on pasture. Here, 

a linear meters of hedge is associated to 2 square meters of hedge and 1.5 square meters of uncultivated 

area both side of the hedge. As our dataset only contains the cumulative length of hedges for each farm, 

we allocate these hedges proportionally to grassland and cropland, based on the land-use of each farm. 

Emissions or sequestration are then added to the carbon budget of each farm based on the difference 

with the reference farm for both the amount of hedges in grassland and the amount of hedges in cropland. 

Nitrogen fertilisation on pasture stimulates the biomass growth and thus soil carbon sequestration. 

Several reviews conclude an almost linear relationship between nitrogen and carbon sequestration in 



grasslands, with an average ratio of 1.2 kg C per kg N (Eze et al., 2018; Fornara et al., 2012; Pellerin et 

al., 2019). Here again, differences in nitrogen fertilization – both mineral and organic – with the 

reference farm are translated into carbon emissions or sequestration, using the average ratio above. 

The share of temporary pasture in rotation with crops also improves carbon sequestration in soil. For 

France, Pellerin et al. (2019) estimate that including 50% of temporary pasture in rotation with crops, 

compared to crops only, sequesters an additional 466 kgC.ha-1.yr-1. More generally, the relationship 

between the annual increase of SOC and the share of temporary pasture in the rotation follow a linear 

pattern from rotations dominated by crop (0% of grass) to rotation dominated by grassland (100% of 

grass) (Vertès and Mary, 2007). Accordingly, we assume that soil carbon sequestration and the share of 

temporary pasture in the rotation are positively and linearly correlated. To be consistent with our LUC 

estimates, temporary grassland is therefore assumed to increase carbon sequestration by 37.15 

kgCO2e/% of temporary grassland/year. For example, as temporary grasslands represent 71% of the 

UAA (excluding permanent grassland) in the reference farm, a farm with no temporary grassland would 

be estimated to be emitting 2.6 tCO2e.yr-1.ha-1 of UUA excluding permanent pasture.  

The results based on this estimation of GHGE including impacts of management practices on carbon 

sequestration are however only used as robustness check because of multicollinearity issues (SM 9).  
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1.2.4. Econometric analysis on the whole sample 

 

We aim at identifying the practices which create synergies between economic and environmental 

performances i.e. that influence in the same direction both performances. The annual variation of 

weather, production or prices, that can impact the environmental or economic performances, is 

accounted for by using year dummies and pedo-climatic variables (slope, temperature, rainfall, type of 

soil). 

We use six separate Ordinary Least Squares (OLS) regression models (Model 1 to 6), with each of the 

indicators in the set �̅�𝑖  being the dependent variable of a model. As independent variables, we use farms’ 

characteristics and practices, described in SM 2. The 6 separate regression equations follow the classical 

linear form: 

 𝑌 = 𝛽𝑋 + 휀                                                            (3) 

where Y is a [𝑛 ∗ 1] matrix of one of the above 6 measures of performance for each farm, 𝛽 is a [𝑘 ∗ 1] 

matrix of regression coefficients, different for each of the 6 models, 𝑋 is a [𝑛 ∗ 𝑘] matrix, similar for 

each equation (SM 2) and 휀 is a [𝑛 ∗ 1] matrix of error terms, with 𝑛 being the sample size and 𝑘 the 

number of parameters. 

The regression coefficients are compared to detect the explanatory variables that affect in the same 

direction both the environmental and economic performances (synergies). To identify practices which 

have an important effect on the performances, we calculate the effect size as the product of the difference 

between the first and third quartiles in X – to capture the actual variability in the sample – with the 

associated regression coefficients. Then, we divide these effect sizes by the average performance in the 

sample to obtain a relative effect size. For a given practice, this quantifies by how much the 

environmental or economic performance – per liter or hectare – could be increased if the median farm 

in the worst half of the sample would adopt the same practice as the median farm in the best half. All 

the statistical analysis is performed using R language (R Core Team, 2020) and the data visualization is 

done with the ggplot2 (Wickham, 2016) and corrplot (Wei and Simko, 2017) packages. 

  



1.3. Results 

 

1.3.1. Economic and environmental performances of PDO farms 

 

Economic performance of PDO farms  

The average estimated farm revenue in our sample is €210,813 and the average total factor cost amounts 

to €83,538. The average gross margin is thus €127,274. The averaged reconstituted revenue, cost and 

profit per liter are comparable to FADN averages for PDO farms in the same regions (Figure 1). 

 

Figure 1. Comparison of the distribution of the estimated economic performance per liter and the FADN value 

(2013-2015) 

 

The whisker boxes represent the average, first and third quartiles, and minimum and maximum. 

Gross profit per liter averages at €0.34 per liter and is higher than the FADN average for PDO, primarily 

because of lower costs. Indeed, concentrates costs may be underestimated in our estimation: it is one of 

the few cost categories for which we use prices from Eurostats (2018), as the FADN does not provide 

detailed prices for the concentrates purchased. These national prices underestimate this type of costs for 

PDO farms which are subject to specific constraints (many feed types are forbidden, local production of 

concentrates is mandatory …). Otherwise, the higher revenues and profits of PDO farms is confirmed.   

Note that the standard deviation of our two economic indicators, profit per liter and per hectare, is large: 

32% and 49% respectively (SM 2). This important variability is promising for the econometrical 

analysis.  
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Impacts of stocking rate and system boundaries on GHGE 

To illustrate the results of the theoretical LUC model, the GHGE are computed for each indicator, both 

harmonized per liter and hectare, and presented depending of the quartile of stocking rates, to represent 

the variation of farming intensity in the sample. When the GHGE are measured per hectare, the most 

extensive farms emit less, except when iLUC are accounted for. The difference of GHGE between the 

most extensive and intensive farms becomes larger with the increasing comprehensiveness of the LCA 

perimeter, until iLUC are included (Figure 2). Indeed, when iLUC are accounted for in the LCA, the 

GHGE of extensive farms is higher than intensive farms’ ones, because the difference in nutritive 

capacity between maize and grass is high in PDO farms and thus the iLUC effects attributed to extensive 

farms are large.  

Figure 2. Carbon footprint of indicators per hectare– with different LCA perimeters – per stocking rate quartile 

 

The results are similar when the environmental performance is measured per liter, except that gross 

GHGE does not vary strongly with farming intensity (Figure 3). 



Figure 3. Carbon footprint of indicators per liter– with different LCA perimeters – per stocking rate quartile 
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1.3.2. Relationships between the environmental and economic performances 

 

Correlations between the environmental and economic performances  

Analysing directly the correlation between the environmental and economic performances of the farms 

shows that environmental performance is mostly antagonistic to economic performance, with the 

exception of the gross environmental performance per liter (Figure 4).  

Figure 4. Correlation of environmental and economic performances 

 

The numbers in the cells indicates the p-values of the correlation tests. 

 

No synergetic practice but many levers on either the economic or environmental 

performance. 

No synergetic farming practice could be identified for the economic nor environmental performances: 

no variable with a significant regression coefficient for economic performance has a significant effect 

of the same sign on environmental performance and vice-versa (Figure 5,   



Table 2). Trade-offs are also scarce: only the organic and mineral N spread on pastures improve 

environmental performance per hectare at the expense of economic performance per hectare. Several 

levers are however identified, which may improve either the environmental or economic performances 

by 7 to 21% without deteriorating the other.  

Figure 5. Synergies, levers and antagonisms in economic and environmental performance 

 Indicators per liter Indicators per Ha 

Synergy   

Lever on the environmental 

performance 

Electricity per cow 

Organic N on pasture 

Manure composting 

Fuel per ha 

Share manure in organic 

fertilizers 

Lever on the economic 

performance 

Labor use per cow 

Share protein in the diet 

Ecological Focus Area  

Labor use per cow 

Share protein in the diet 

Ecological Focus Area 

Trade-off  
Mineral N on pasture 

Organic N on pasture  

A greenup arrow indicates an improvement of the indicator whereas a reddown arrow indicates a 

deterioration of the indicator. Only variables which have a significant and large impact on indicators are 

represented (p.value <5% and relative effect size > 5%). In the case of trade-offs, the first arrow always 

represent the impact on the environmental performances. 
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Table 2. Selected results of the OLS models 

 

 

 

 

Net 

Environmental 

performance 

per L (1) 

Gross 

Environmental 

performance 

per L (2) 

Economic 

performance 

per L (3) 

Net 

Environmental 

performance 

per Ha (4) 

Gross 

Environmental 

performance 

per Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 
-5.00 -1.04 -6.08*** 1,745.81 6,819.09 -15,319.7*** 

(3.38) (2.24) (0.70) (11,773.86) (5,484.13) (2,878.36) 

Fuel per Ha 
-0.002* -0.001 0.0002 -4.31 -5.22*** 0.61 

(0.001) (0.001) (0.0002) (4.15) (1.93) (1.01) 

Electricity per cow 
0.0004** 0.0003** -0.0000 -0.03 -0.54* 0.17 

(0.0002) (0.0001) (0.0000) (0.67) (0.31) (0.16) 

Concentrate per 

cow 

-0.0000 0.0000 -0.0000 -0.14 -0.42* 0.02 

(0.0001) (0.0001) (0.0000) (0.46) (0.21) (0.11) 

Share protein in 

the diet 

3.50 -1.91 -2.91*** 2,058.35 -5,106.24 -8,415.21** 

(3.99) (2.64) (0.83) (13,888.51) (6,469.11) (3,395.33) 

Ecological Focus 

Area 

-0.0001 -0.0002 -0.0001** 0.69 -0.17 -0.43** 

(0.0002) (0.0001) (0.0000) (0.69) (0.32) (0.17) 

Mineral N spread 

on pasture 

0.003 -0.0002 0.0001 -14.56 -19.47*** 6.68*** 

(0.003) (0.002) (0.001) (9.10) (4.24) (2.23) 

Organic N on 

pasture 

-0.004** 0.0005 0.0000 -38.55*** -32.19*** 7.57*** 

(0.002) (0.001) (0.0003) (5.81) (2.71) (1.42) 

Manure 

composting 

-0.14** -0.09** -0.01 -306.13 -84.75 -97.04* 

(0.07) (0.04) (0.01) (235.60) (109.74) (57.60) 

Share of manure in 

organic fertilisers 

-0.69 -0.08 0.01 -3,593.83** -305.90 222.04 

(0.49) (0.32) (0.10) (1,705.98) (794.63) (417.06) 

Constant 
1.01 -0.53 0.81*** 2,645.66 -43.49 2,579.30** 

(1.23) (0.81) (0.25) (4,267.82) (1,987.90) (1,043.36) 

Observations 95 95 95 95 95 95 

R2 0.75 0.35 0.82 0.87 0.94 0.86 

Adjusted R2 0.65 0.09 0.75 0.81 0.91 0.80 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05, standard deviations of the coefficients are included 

between brackets. Only variables which have a significant and large impact on indicators are 

represented (p.value <5% and relative effect size > 5%) The full table, including pedo-climatic 

variables and year dummies is provided in SM 4. 

 

The independent variables retained in our models explain most of the variance of the indicators 

expressed on a per hectare basis, but a smaller share of per liter indicators (  



Table 2, SM 4). This could be expected as more independent variables are expressed on a per hectare 

basis. Residuals vs fitted values plots do not indicate heteroscedasticity of the residuals or non-linear 

relationships between the variables, even if some outliers can be detected (SM 6). Shapiro-Wilk tests 

successfully assert the normality of the distribution of the residuals. To further assess the linearity of the 

relationships between the indicators of performances and the farms’ inputs, a general additive model 

specification was tested but produced lower R² (coefficient of determination). With the exception of 

organic N spread on pastures, whose positive coefficients for models 1,2 and 6 saturate after 120 N unit 

per ha, no other input shows nonlinear effects (labor per cow, concentrates, N, P and K spread on cereals 

or pastures). 

Several alternative indicators have been attempted to test the robustness of these results such as 

allocating all GHG emissions to milk production or restricting the perimeter of GHG emissions to the 

farms by ignoring emissions from the production and transportation of concentrates and fertilizers (SM 

7 & SM 8). Indicators including the impacts of several management practices on carbon sequestration 

in the farms’ GHGE have been estimated (SM9). Similarly, indicators including an upper bound estimate 

of indirect land-use changes are summarized in SM 10. Alternative specifications, with interaction 

effects (SM 11) or variable selection (SM 12) have also been tested. 

Although these alternative specifications are sometimes useful in interpreting the results, none of them 

trigger major changes in the estimators or their significance. A notable exception is the inclusion of our 

higher-end estimate of iLUC which turns the amount of organic N on pasture into a significant positive 

lever on net environmental performance per liter. Another exception is the inclusion of the impacts of 

management practices on carbon sequestration, which turns the labor use per cow into a significant and 

Figure 6. Relative effect sizes of selected practices on the net environmental and economic performances per liter 
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negative lever of the net environmental performance per liter and the age of first calving into a significant 

and negative lever of the net environmental performance per hectare.  

The colored bars represent the relative effect sizes on the performance and the black lines the relative confidence intervals of the 

coefficients.  

 

 

 

The colored bars represent the relative effect sizes on the performance and the black lines the relative confidence intervals of the 

coefficients.  

 

Impacts of levers on the environmental performance per liter 

If the farmers of the quartile using the least electricity per cow could upgrade their hay drying equipment 

and reach the environmental performance of the upper quartile on electricity consumption, they would 

decrease their net GHG emissions by 0.08±0.07kg CO2eq.L-1 (net environmental performance increased 

by 7.1% of total sample average) without any significant profitability change (Figure 6). 

Similarly, farmers at the upper quartile of organic N on pasture would decrease their gross GHG 

emissions by 0.14±0.12 kg CO2eq.L-1 (12.3% of total sample average) if they could move down to the 

lower quartile (Figure 6). 

Figure 7. Relative effect sizes of selected practices on the net environmental and economic performances per hectare 



If farmers would stop the practice of manure composting, they would decrease their net GHG emissions 

by 0.14±0.13 kg CO2eq.L-1 (13% of total sample average) (Figure 6). 

Impacts of levers on the economic performance per liter 

Reducing the labor use per cow, the share of protein in cows’ diet and the ecological focus area could 

increase the economic performance of the highest half of the sample by €0.07±€0.02. L-1, €0.03±€0.02. 

L-1 and €0.02±€0.02. L-1 respectively (21%, 9.2% and 7.2% of total sample average), all without any 

significant environmental damage (Figure 6). 

Impacts of levers on the environmental performance per hectare 

As expected, reducing fuel use per hectare could increase the gross environmental performance of the 

highest half of the sample by 208±153 kg CO2eq.ha-1 (5.9% of total sample average) (Figure 7).  

More interestingly, reducing the share of manure in organic fertilizers could increase the gross 

environmental performance of the highest half of the sample by 262±248 kg CO2eq.ha-1 (7.4% of total 

sample average) (Figure 7).  

Impacts of levers on the economic performance per hectare 

Reducing labor use per cow, the share of protein in cows’ diet and the Ecological Focus Area of the 

highest half of the sample could increase their economic performance by €174±€65.ha-1, €86±€68.ha-1 

and €120±€95.ha-1 respectively (17.5%, 8.6% and 12% of total sample average) (Figure 7). 

Impacts of trade-offs on the performances per hectare 

Reducing mineral and organic N spread on pastures in the highest half of the sample would increase 

their gross environmental performance by 419±182 kg CO2eq.ha-1 and 1178±198 kg CO2eq.ha-1 

respectively (11.8% and 33.3% of total sample average) but decrease their economic performance by 

€143±€96.ha-1 and €277±104.ha-1 respectively (14.4% and 27.8% of total sample average) (Figure 7). 
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1.4. Discussion 

 

1.4.1. Possible levers for performance improvement: tillage, logistics, milking equipment and 

labor efficiency 

 

The econometric analysis shows that 6% can be gained on the environmental side by reducing fuel use 

without impairing economic performance. This possibility likely emerges from the potential to increase 

the share of grazed pasture (rather than mowed pasture): the share of grazing in the diet is negatively 

correlated with fuel use and when an interaction between the two is added in the regression model, its 

estimator is negative (although not significant, see SM 11). Another possible practice allowing the 

reduction of fuel use is the optimization of logistics, although this possibility may be constrained by the 

spatial distribution of fields and their distance from stables. 

Conversely, a higher electricity use per cow increases the environmental performance per liter by 7% 

without decreasing the economic one. Indeed, electricity production results in little emissions in France 

(nuclear energy). Moreover, electricity use is mainly linked to milking equipment and the drying of hay, 

both of which increase milk production. Indeed, the share of hay is positively correlated to the electricity 

use and the estimate of the interaction is positive although not significant (SM 11). 

Manure composting deteriorates the environmental performances per liter by 13%: most farm 

composters are not equipped to capture or flare methane, thus releasing considerable amounts of it 

during composting (Hao et al., 2004).  

The share of protein in the diet largely reduces the economic performance, both per liter (21%) and per 

hectare (9%). Soy-based concentrates are indeed costlier and therefore do not seem to proportionally 

increase cow productivity. This practice is positively correlated with the amount of concentrates fed to 

the cows and thus decreases the environmental performance per ha, as the GHG emissions from the 

production and transportation costs of the concentrates are accounted for in our analysis. 

Labor efficiency is also an avenue worth exploring to substantially improve economic performances per 

liter and per hectare without impairing environmental performance. Indeed, labor costs weight 53% of 

total costs, as PDO dairy farming is a labor-intensive technology (Bouamra-Mechemache and Chaaban, 

2010). This lever seems partly related to economies of scale as our alternative models with variable 

selection mostly remove farm size from the set of dependent variables (SM 12). Natural constraints also 

play a role: labor intensity is correlated with steeper slope, scarcer rainfall and lower temperature.  

Lastly, the positive influence of nitrogen on profit shows that PDO farms are not wasting nitrogen on 

pasture. However, the use of mineral and organic nitrogen on pasture is detrimental to environmental 

performance. Moreover, testing for an interaction between the amount of mineral and organic N spread 

on pasture reveals a negative and significant interaction effect on the environmental and economic 



performances. This indicates a potential synergy: where organic N fertilization is already high, reducing 

mineral fertilization would simultaneously increase both performances. 

The share of grass in the diet, and in particular of grazing, is paramount in the technical specifications 

of these PDOs, but also in other quality signs such as organic farming. Here we do not identify these as 

important levers, neither for economic performance nor for environmental performance. This may be 

due to a rather small variance in these variables because all our farms follow the PDO specifications or 

to their correlation with fuel and electricity uses: the share of grass and hay in the diet are mostly 

excluded from the variables selection procedure, while the fuel and electricity uses are kept (SM 11). 

 

 

1.4.2. Correlation between environmental and economic performances 

 

The negative correlation between the environmental and economic performances per hectare is partly 

due to the intensification of farming practices: when production is intensified per unit of land, more 

feed, enteric fermentation and manure are taking place in the same area. 

When the performances are measured per liter, we find a weak positive correlation between gross 

environmental and economic performances (ρ = 0.18) but a strong and negative correlation between the 

net environmental and economic performances (ρ = -0.33). O’Brien et al. (2015), who only use per liter 

indicators, find a positive correlation between economic and gross/net environmental performances (ρ 

= 0.3 to 0.5). This may be explained by the difference in carbon sequestration estimation method. Indeed, 

O’Brien et al. (2015) use a sequestration factor of 1.36 t of CO2eq per ha of grassland and per year based 

on (Soussana et al., 2010), which overestimates carbon sequestration as discussed in section 1.2.3.  

Thomassen et al. (2009) however find a negative correlation between the gross environmental and 

economic performances per liter (ρ = -0.31), in the case of intensive farms.  

In Italy, Fiore et al., (2018) choose to cluster farms by their environmental performance (GHG 

emissions) and finds 3 clusters, with an antagonism between environmental and economic performances 

in each cluster.  

 

1.4.3. Diverging results on the effects of farms’ characteristics and practices on the 

performances 

 

In the case of extensive Irish farms (O’Brien et al. (2015)), the length of the grazing season is the most 

important lever on both the environmental and economic performances, i.e. creates a synergy. The 

conclusions drawn are that extensive livestock farming, limiting concentrate feed (which has a negative 
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influence on both performances in their study) and better valorizing pastures and meadows can 

outperform more intensive systems (Ledgard et al., 2020), mainly because pastures imply carbon 

sequestration in soils. We verify these results, even when carbon sequestration is not accounted for (gross 

vs net GHG emissions), or integrates indirect land use changes (SM 9). Moreover, because both the 

length of the grazing season and the yield of milk per hectare or per cow are negatively correlated with 

GHG emissions per liter, O’Brien et al. (2015) show that extensive diets can also result in low carbon 

footprints. At the same time, by reducing feed costs, extensive grazing can reduce the farms’ costs and 

thus extend their margins. 

In the case of intensive Dutch farms, Thomassen et al. (2009) show that a high share of concentrate feed 

in cows’ diet results in lower GHG emissions per liter thanks to higher milk productivity and lower 

emissions per unit of feed (Liang and Cabrera, 2015; Lovett et al., 2006). However, gross margin per 

liter is also reduced because of feed costs. Hence its conclusion is that environmental performance 

cannot be enhanced without decreasing farms’ profitability.  

Our results lie somewhat in between: similarly to O’Brien (2015), we find that concentrates may be 

overused in the sense that their reduction improves the economic performance in our sample of extensive 

farms. However, the environmental benefit is not sufficient to suggest a synergy when economic and 

environmental performances are expressed per liter. 

We think that farmers’ know-how in the grass management may provide the key to reconcile these 

contradictory results. Indeed, mowed grass tends to lose rapidly its nutritious content. The antagonism 

identified in Thomassen et al. (2009) may be explained by the limited presence of grazing in their sample 

farms, associated with a limited farmer know-how on grass management. In this context, a higher use 

of concentrates can be an effective way to reduce GHG emissions by lowering enteric fermentation 

(Lovett et al., 2008) and to increase profitability by rising the cows’ productivity (Thomassen et al., 

2009). But, as our study and the Irish case demonstrate, farms with high shares of pastures tend to create 

a synergy between environmental and economic performances as increasing the grass in the cows’ diet 

can improve the digestibility of the forage and thus reduce the enteric fermentation and the CH4 

emission (Dillon et al., 2002), especially if the cut grass is harvested in an early maturity stage (Van 

Middelaar et al., 2014). The positive influence of hay drying equipment and positive – although not 

significant – effect of the square of the share of grass on the gross environmental performance per liter 

are consistent with this interpretation (SM 10): the grass management know-hows of extensive farmers 

allow them to increase their environmental performance with a higher share of grassland while intensive 

farmers would suffer from a degraded digestibility of grass when their share of grassland increases. 

Ultimately however, all these results rely on parameters choices for the digestibility of feed which are 

known to be very uncertain (IPCC, 2019). 



Kiefer, Menzel and Bahrs (2014) compare organic and conventional dairy farms in Germany and also 

find that limiting concentrates use reduces GHG emissions and increases profitability. Similarly, 

Thomassen et al. (2008) recommend to decrease concentrate use per kilogram of milk, especially 

concentrates with a high environmental impacts (soy bean cakes). Moreover, Arsenault, Tyedmers and 

Fredeen (2009) find that the high concentrates use, fuel use and N fertilizers are the main drivers of 

environmental impacts in Canadian dairy farms. In their study, electricity is also an important 

contributor to GHG emissions, but our diverging results are straightforwardly explained by the sources 

of electricity: mainly nuclear energy in our French, context versus 75% of coal in Nova Scotia (Canada). 

Producing electricity with nuclear energy does not emit GHG whereas coal does, even if nuclear energy 

creates wastes that impact the environment but not through global warming. 

In this debate, the originality of our study is to propose another statistical approach to this question and 

another method for the carbon sequestration, as well as using both product-based and area-based 

indicators. We find that the amount of concentrate only has a significant negative influence on the gross 

environmental performance per hectare. It also decreases net environmental performance per liter, but 

not significantly. As explained above, product-based indicators strongly respond to practices influencing 

cows’ productivity. Thus, the non-significant effect of the concentrate use on the environmental 

performance may be explained by its limited effect on cows’ productivity in our sample. Indeed, in our 

PDO sample, the capacity of the farmers to buy fodder crops and feed from the outside the PDO area is 

limited by the label’s constraints, which forces them to develop other feeding practices, such as grazing 

and mowing.  

 

1.4.4. Methodological advantages of the study 

 

We find that using two indicators for performances, per liter and per hectare, is helpful in providing 

meaningful interpretations. Indeed, reasoning with product-based indicators presents the risk of 

underestimating the environmental impact of intensive practices (Salou et al., 2017a). As the per liter 

measure of the environmental performance is defined as the ratio between GHG emissions and milk 

production, if a practice increases the cows’ productivity more than the GHG emissions, it will rise the 

environmental performance per liter. However, such practices would increase the absolute farm’s GHG 

emissions, as well as GHG emissions per cow or per hectare. For example, in our study, only half of the 

significant practices impact both performances per liter and hectare (fuel per ha, share of protein in the 

diet and labor use per cow). The other identified levers are less robust and the recommendations to the 

farmers thus depend on the choice of the indicator. Note that the indicator selected for economic 

performance are correlated with other possible choices such as gross margin per labor unit. 

Moreover, proposing several indicator of the environmental performances (gross GHGE, net GHGE and 

iLUC GHGE) increases the validity of the results, as including carbon sequestration and how 
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management practices impact it as well as indirect land-use changes can by itself give the advantage to 

either intensive or extensive dairy farming as the most environmentally performant system (Meier et al., 

2015). 

 

1.4.5. Omitted variables bias 

 

The main methodological limit in this study is related to the econometric models. Some important 

variables are likely to have been omitted, at least in the models with low adjusted r-square. Classical 

omitted variables, such as farmer’s dynamism or competence, could be correlated with both the 

dependent variables and the practices, biasing the estimators (endogeneity). However, such omitted 

variable bias is limited: the heterogeneity of these classical omitted variables is likely to be limited in 

our sample (same production situation, same region, all PDO farms included in the same kind of farmers’ 

association …). However, we cannot fully rule endoigeneity out and the causality of the relationships 

we identify must be carefully pondered. Other methods, such as farm system modelling or Data 

Envelopment Analysis can also successfully identify mitigation practices that increase the economic or 

environmental performances of dairy farms and that are similar to the levers discussed above (Beukes 

et al., 2010; Doole, 2014; Iribarren et al., 2011). 

On a different note, our model of LUC and carbon sequestration does not account directly for farms’ 

heterogeneity in pedo-climatic conditions (slope, temperature, sunlight, altitude, …) which affect soil 

carbon sequestration. However, we include these pedo-climatic conditions in the final-stage regressions 

to control for this heterogeneity.  



1.5. Conclusion 

 

Our regression models question the possibility of synergies between drivers of economic and 

environmental performance, but also the existence of necessary trade-offs. We identify however several 

levers: investing in milking equipment and hay drying equipment, reducing the livestock density, 

abandoning manure composting or optimizing fuel use increase the environmental performance by 5 to 

13% without impairing gross margins, while increasing labor productivity and reducing the share of 

protein in the diet enhance the economic performance by 7 to 21% without increasing GHG emissions.  

Our results also bring new insights on the debated merits of extensive milk farming, suggesting that 

concentrate use is detrimental to both economic and environmental performance as long as grass retains 

its nutritious content, for example via grazing. This would be worth confirming with a similar analysis 

on a sample containing both extensive and intensive dairy farms. 

We also develop a novel and simple methodology for the estimation of land-use related emissions and 

sequestration based on potential land-use changes compared with a reference farm. By doing so, we 

provide new information on the sustainability of specific practices and a complete methodology that 

could be used in further studies on environmental and economic performances. 

Beyond the methodological limit posed by a possible, although likely moderate, omitted variable bias, 

the main limit of this paper comes from the restricted study region and the possible sample selection. 

Indeed, we study the performances of the PDO farms among the same region and using only PDO farms 

in our statistical sample. While this can be beneficial to limit endogeneity, as we can compare farms that 

share a similar production situation, it limits the validity of any comparison with conventional dairy 

farming or PDO farming in other areas. Thus, the research on PDO farming and sustainable practices in 

agriculture could be improved by an analysis that would compare PDO farming in different countries or 

production situations. Reproducing our analysis for the conventional dairy sector in France and 

comparing the results could help determine if PDO dairy farming is more economically and 

environmentally performant, so more sustainable, than the conventional one. Furthermore, the levers of 

the performances that we uncover in this paper could be compared to the ones in the conventional dairy 

sector. 
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1.6. Supplementary Materials 

 

SM 1. Details of Displacement Factor derivation 
 

Nutritive capacity balance under a LUC: 

𝐿𝑈𝐶𝑖 ∗ (1000 ∗ 𝑁𝑢𝑡𝑟𝑖𝐶) ∗ 𝑌𝑑𝑖
𝐶 = 𝐿𝑈𝐶𝑖 ∗ (1000 ∗ 𝑁𝑢𝑡𝑟𝑖𝐺) ∗ 𝑌𝑑𝑖

𝐺 + 𝛼 ∗ (1000 ∗ 𝑁𝑢𝑡𝑟𝑖𝐶) ∗ 𝑌𝑑𝑃𝐷𝑂
𝐶  

where 𝑌𝑑𝑃𝐷𝑂
𝐶  is the average yield of maize in the PDO area, 𝑌𝑑𝑖

𝐺  is the average yield of grassland in the ith farm, 

𝑁𝑢𝑡𝑟𝑖𝐶 is the gross energy (kcal/kg) for maize and 𝑁𝑢𝑡𝑟𝑖𝐺  for grass. 

We can derive that Ydi
C = 

NutriG

NutriC
∗ Ydi

G +
α

𝐿𝑈𝐶𝑖
∗ YdPDO

C  

Thus, 
α

𝐿𝑈𝐶𝑖
∗ YdPDO

C = Ydi
C −

NutriG

NutriC
∗ Ydi

G 

And 𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑖 =
α

𝐿𝑈𝐶𝑖
= 

 Ydi
C−

NutriG
NutriC

∗Ydi
G

YdPDO
C   

 

 

 

  



SM 2. Descriptive Statistics of the farms’ characteristics and practices. 

 
Variables  Description Mean St. Dev. Min Max 

Net Environmental Performance per 

L 

 Net environmental performance per liter, in kg CO2eq  

(opposite of net GHG emissions per liter).a, c 
-1.12 0.43 -2.16 -0.26 

Gross Environmental Performance 

per L 

 Gross environmental performance per liter, in kg CO2eq  

(opposite of gross GHG emissions per liter).a, c 
-1.20 0.18 -1.65 -0.75 

Economic Performance per L 
 Economic performance per liter, in €  

(gross profit per liter).b 
0.32 0.11 -0.10 0.49 

Net Environmental Performance per 

Ha 

 Net environmental performance per hectare, in kg CO2eq  

(Opposite of net GHG emissions per ha). a, c  
-3,554.76 2,060.45 -5,149.29 -222.33 

Gross Environmental Performance 

per Ha 

 Gross environmental performance per hectare, in kg CO2eq  

(Opposite of gross GHG emissions per ha). a, c 
-3,539.75 1,386.20 -6,479.32 -945.42 

Economic Performance per Ha 
 Economic Performance per hectare, in €  

(Gross profit per ha). b 
997.15 488.60 -119.23 2,080.15 

Labor Use per cow 
 Number of persons working on the farm, owner included, 

divided by the herd size. a 
0.03 0.01 0.01 0.11 

Fuel per Ha  Fuel consumption per hectare per year in liter.a 67.50 35.28 9.91 185.24 

Electricity per cow  Electricity consumption per cow per year in Kwh.a 366.10 179.49 84.88 1,030.07 

Concentrate per cow  Concentrate feed bought per year in kg.a 988.23 360.33 0.00 2,081.81 

Share protein in the diet  Share of protein matter in cows’ diet.a 0.14 0.01 0.12 0.18 

Share grass in the diet  Share of grass in the diet.a 0.01 0.02 0.00 0.09 

Share hay in the diet  Share of hay in the diet.a 0.96 0.06 0.78 1.00  

Age first calving 
 Age of the cows when they give birth to their first calf and start 

producing milk, in months.a 
32.13 2.96 26 36 

Stocking rate  Number of cow per hectare.a 0.81 0.26 0.31 1.41 

Herd Renewal Rate 
 Ratio of the number of cows on the number of heifer, proxy for 

the renewal rate of the herd.a 
0.31 0.09 0.00 0.60 

Ecological Focus Area  Amount of Ecological Focus Area a, d 3.24 2.02 0.19 10.17 

Farm size  Number of cows. a 91.81 50.93 18.61 249.00 

Mineral N spread on pasture 
 Amount of mineral Nitrogen spread per ha and per year on 

pastures, in N unit.a 
13.89 15.28 0.00 65.25 

Mineral N spread on cereals 
 Amount of mineral Nitrogen spread per ha and per year on 

cropland, in N unit.a 
38.91 59.61 0.00 224.00 

Organic N on pasture 
 Amount of organic fertilizers (manure, slurry) per ha and per 

year on pastures in N unit.a 
73.68 26.50 23.99 156.74 

Organic N spread on cereals 
 Amount of organic fertilizers (manure, slurry) spread per ha and 

per year on cropland, in N unit.a 
3.93 7.14 0.00 29.05 

Mineral P spread on pasture 
 Amount of mineral Phosphorus spread per ha and per year on 

pastures, in N unit.a 
5.16 8.60 0.00 44.00 
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Mineral P spread on cereals 
 Amount of mineral Phosphorus spread per ha and per year on 

cropland, in N unit.a 
7.65 20.86 0.00 110.00 

Mineral K spread on pasture 
 Amount of mineral Potassium spread per ha and per year on 

pastures, in N unit.a 
6.60 10.96 0.00 62.60 

Mineral K spread on cereals 
 Amount of mineral Potassium spread per ha and per year on 

cropland, in N unit.a 
8.83 25.14 0.00 119.00 

Share manure in organic fertilizers  Share on manure over the total organic fertilizers spread.a 0.47 0.08 0.23 0.68 

Manure Composing  The farm practices manure composting or not. a 0.32 0.47 0 1 

Yields of grass  Yields of grass, ton per hectare. a 4.42 1.63 0.93 8.92 

Yields of forrage  Yields of forrage, ton per hectare. a 2.85 3.38 1.54 16.00 

Yields of cereals  Yields of cereals, ton per hectare. a 2.28 2.87 0.00 7.90 

Share of Cambisol  Share of Cambisol, communal level. 0.49 0.27 0.01 1.00 

Share of Podzoluvisol  Share of Podzoluvisol, communal level. 0.00 0.00 0 0 

Share of Luvisol  Share of Luvisol, communal level, % 0.19 0.25 0.00 0.70 

Average Slope  Average slope, communal level, % 20.30 14.56 0.41 58.75 

Rainfall  Annual precipitation, communal level, mm 1,136.75 207.05 418 1,569 

Temperature  Annual temperature, communal level, °C 8.38 2.13 0 12 

 

Sources: a. (Institut de L’Elevage, 2013; Michaud, 2016; Perrard, 2016). 

   b. FADN; (Ministère de l’Agriculture et de l’Alimentation, 2015a, 2017); (Eurostat, 2017). 

   c. CAP’2ER (Institut de l’Elevage, 2013). 

   d. The Ecological Focus Area is computed by aggregating all natural elements creating biodiversity 

(trees, hedge, terraces, and ponds) after applying a biodiversity coefficient to each type. For example, 1 linear 

meter of hedge corresponds to 10m² of Ecological Focus Area, while 1m² of pond correspond to 1m² of 

Ecological Focus Area (Ministère de l’Agriculture et de l’Alimentation, 2015b).  



SM 3. Detailed revenue and cost reconstitution
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SM 4. Complete OLS results 
 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

-5.00 -1.04 -6.08*** 1,745.81 6,819.09 -15,319.7*** 

(3.38) (2.24) (0.70) (11,773.86) (5,484.13) (2,878.36) 

Fuel per Ha 

 

-0.002* -0.001 0.0002 -4.31 -5.22*** 0.61 

(0.001) (0.001) (0.0002) (4.15) (1.93) (1.01) 

Electricity per cow 

 

0.0004** 0.0003** -0.0000 -0.03 -0.54* 0.17 

(0.0002) (0.0001) (0.0000) (0.67) (0.31) (0.16) 

Concentrate per cow 

 

-0.0000 0.0000 -0.0000 -0.14 -0.42* 0.02 

(0.0001) (0.0001) (0.0000) (0.46) (0.21) (0.11) 

Share protein in the 

diet 

 

3.50 -1.91 -2.91*** 2,058.35 -5,106.24 -8,415.21** 

(3.99) (2.64) (0.83) (13,888.51) (6,469.11) (3,395.33) 

Share grass in the 

diet 

 

-0.004 -0.002 0.0002 8.48 12.12 -7.58 

(0.01) (0.01) (0.002) (28.57) (13.31) (6.98) 

Share hay in the diet 

 

-0.002 -0.002 -0.001 10.87 6.35 -8.58 

(0.01) (0.01) (0.002) (27.10) (12.62) (6.63) 

Age first calving 

 

-0.01 0.01 0.003 -22.89 -1.11 8.17 

(0.01) (0.01) (0.003) (42.06) (19.59) (10.28) 

Herd Renewal Rate 

 

-0.26 -0.30 0.003 338.87 -241.20 58.94 

(0.36) (0.24) (0.07) (1,254.81) (584.48) (306.76) 

Ecological Focus 

Area 

 

-0.0001 -0.0002 -0.0001** 0.69 -0.17 -0.43** 

(0.0002) (0.0001) (0.0000) (0.69) (0.32) (0.17) 

Farm size 

 

-0.001 -0.0001 0.0001 -1.64 0.78 0.29 

(0.001) (0.001) (0.0002) (2.96) (1.38) (0.72) 

Mineral N spread on 

pasture 

 

0.003 -0.0002 0.0001 -14.56 -19.47*** 6.68*** 

(0.003) (0.002) (0.001) (9.10) (4.24) (2.23) 

Mineral N spread on 

cereals 

 

-0.001 -0.0001 -0.0001 -1.89 -0.45 -0.40 

(0.001) (0.0005) (0.0001) (2.49) (1.16) (0.61) 

Organic N on pasture 

 

-0.004** 0.0005 0.0000 -38.55*** -32.19*** 7.57*** 

(0.002) (0.001) (0.0003) (5.81) (2.71) (1.42) 

Organic N spread on 

cereals 

 

-0.003 0.001 0.001 -1.28 14.40 1.59 

(0.01) (0.005) (0.001) (24.51) (11.42) (5.99) 

Mineral P spread on 

pasture 

 

-0.003 0.004 0.001 -15.15 1.86 3.70 

(0.005) (0.003) (0.001) (16.25) (7.57) (3.97) 

Mineral K spread on 

pasture 

 

-0.001 -0.002 -0.001 -4.31 -1.82 -4.56 

(0.004) (0.002) (0.001) (13.03) (6.07) (3.19) 

Mineral K spread on 

cereals 

 

0.001 0.0004 0.0002 0.79 -1.22 1.76 

(0.001) (0.001) (0.0003) (4.59) (2.14) (1.12) 

Share manure in 

organic fertilizers 

 

-0.69 -0.08 0.01 -3,593.83** -305.90 222.04 

(0.49) (0.32) (0.10) (1,705.98) (794.63) (417.06) 

Manure Composting 

 

-0.14** -0.09** -0.01 -306.13 -84.75 -97.04* 

(0.07) (0.04) (0.01) (235.60) (109.74) (57.60) 

Share of Cambisol -0.28** -0.05 -0.01 -837.91* -76.30 -138.32 



 (0.14) (0.09) (0.03) (476.74) (222.06) (116.55) 

Share of Luvisol 

 

0.31 0.05 -0.004 -197.33 -347.88 94.57 

(0.21) (0.14) (0.04) (721.91) (336.26) (176.49) 

Average Slope 

 

-0.002 -0.002 -0.001 1.65 6.38 -6.09** 

(0.004) (0.002) (0.001) (12.25) (5.71) (3.00) 

Year 2014 

 

0.25* 0.05 0.07** 466.74 -216.89 265.60** 

(0.15) (0.10) (0.03) (519.56) (242.01) (127.02) 

Year 2015 

 

0.23** 0.03 0.08*** 385.91 -123.96 334.65*** 

(0.10) (0.07) (0.02) (364.97) (170.00) (89.23) 

Rainfall 

 

0.0001 -0.0001 0.0000 0.93* -0.35 -0.17 

(0.0002) (0.0001) (0.0000) (0.55) (0.26) (0.14) 

Temperature 

 

-0.14*** -0.01 0.001 -286.19*** 49.36 -16.25 

(0.03) (0.02) (0.01) (101.57) (47.31) (24.83) 

Constant 

 

1.01 -0.53 0.81*** 2,645.66 -43.49 2,579.30** 

(1.23) (0.81) (0.25) (4,267.82) (1,987.90) (1,043.36) 

Observations 95 95 95 95 95 95 

R2 0.75 0.35 0.82 0.87 0.94 0.86 

Adjusted R2 0.65 0.09 0.75 0.81 0.91 0.80 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 5. Correlation Matrix of the explanatory variables 

 

Correlation Matrix of the explanatory variables 

 

 

 

 

  



SM 6. Heteroscedasticity correction Check of the OLS model 

 

 

Residual vs fitted values’ plot for Model 1                                                      Residual vs fitted values’ plot for Model 4 

 

Residual vs fitted values’ plot for Model 2               Residual vs fitted values’ plot for Model 5 

 

Residual vs fitted values’ plot for Model 3                Residual vs fitted values’ plot for Model 6 
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SM 7. Sensibility Analysis: GHG emissions without allocation to milk 
 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

-7.21 -2.47 -6.08*** -42.63 6,518.86 -15,319.70*** 

(4.41) (2.99) (0.70) (13,602.61) (5,457.78) (2,878.36) 

Fuel per Ha 

 

-0.003* -0.001 0.0002 -6.02 -6.79*** 0.61 

(0.002) (0.001) (0.0002) (4.79) (1.92) (1.01) 

Electricity per cow 

 

0.001** 0.0004** -0.0000 0.10 -0.62** 0.17 

(0.0002) (0.0002) (0.0000) (0.77) (0.31) (0.16) 

Concentrate per cow 

 

0.0000 0.0001 -0.0000 0.02 -0.35 0.02 

(0.0002) (0.0001) (0.0000) (0.53) (0.21) (0.11) 

Share protein in the 

diet 

 

5.95 -0.59 -2.91*** 6,254.37 -4,081.04 -8,415.21** 

(5.20) (3.53) (0.83) (16,045.71) (6,438.03) (3,395.33) 

Share grass in the 

diet 

 

-0.004 -0.0005 0.0002 4.44 10.27 -7.58 

(0.01) (0.01) (0.002) (33.00) (13.24) (6.98) 

Share hay in the diet 

 

-0.003 -0.002 -0.001 5.39 1.68 -8.58 

(0.01) (0.01) (0.002) (31.31) (12.56) (6.63) 

Age first calving 

 

-0.02 0.005 0.003 -40.69 -12.71 8.17 

(0.02) (0.01) (0.003) (48.59) (19.50) (10.28) 

Herd Renewal Rate 

 

-0.60 -0.56* 0.003 -266.71 -806.63 58.94 

(0.47) (0.32) (0.07) (1,449.71) (581.67) (306.76) 

Ecological Focus 

Area 

 

-0.0001 -0.0002 -0.0001** 0.88 -0.13 -0.43** 

(0.0003) (0.0002) (0.0000) (0.80) (0.32) (0.17) 

Farm size 

 

-0.001 -0.0003 0.0001 -1.76 0.97 0.29 

(0.001) (0.001) (0.0002) (3.42) (1.37) (0.72) 

Mineral N spread on 

pasture 

 

0.004 0.0002 0.0001 -15.95 -22.43*** 6.68*** 

(0.003) (0.002) (0.001) (10.52) (4.22) (2.23) 

Mineral N spread on 

cereals 

 

-0.0000 0.0004 -0.0001 -0.79 0.64 -0.40 

(0.001) (0.001) (0.0001) (2.88) (1.16) (0.61) 

Organic N on pasture 

 

-0.005** 0.0003 0.0000 -48.76*** -40.88*** 7.57*** 

(0.002) (0.001) (0.0003) (6.72) (2.69) (1.42) 

Organic N spread on 

cereals 

 

-0.01 -0.002 0.001 -8.81 12.19 1.59 

(0.01) (0.01) (0.001) (28.32) (11.36) (5.99) 

Mineral P spread on 

pasture 

 

-0.005 0.004 0.001 -20.52 0.65 3.70 

(0.01) (0.004) (0.001) (18.78) (7.53) (3.97) 

Mineral K spread on 

pasture 

 

-0.001 -0.002 -0.001 -6.56 -2.67 -4.56 

(0.005) (0.003) (0.001) (15.06) (6.04) (3.19) 

Mineral K spread on 

cereals 

 

0.001 0.0003 0.0002 0.02 -2.36 1.76 

(0.002) (0.001) (0.0003) (5.30) (2.13) (1.12) 

Share manure in 

organic fertilizers 

 

-0.54 0.39 0.01 -3,881.26* 384.25 222.04 

(0.64) (0.43) (0.10) (1,970.96) (790.81) (417.06) 

Manure composting 

 

-0.16* -0.10* -0.01 -318.37 -75.90 -97.04* 

(0.09) (0.06) (0.01) (272.19) (109.21) (57.60) 

Share of Cambisol -0.33* -0.07 -0.01 -971.54* -114.34 -138.32 



 (0.18) (0.12) (0.03) (550.79) (220.99) (116.55) 

Share of Luvisol 

 

0.34 0.05 -0.004 -483.26 -678.24** 94.57 

(0.27) (0.18) (0.04) (834.04) (334.64) (176.49) 

Average Slope 

 

-0.004 -0.01* -0.001 -5.36 -0.93 -6.09** 

(0.005) (0.003) (0.001) (14.16) (5.68) (3.00) 

Year 2014 

 

0.29 0.10 0.07** 434.54 -298.46 265.60** 

(0.19) (0.13) (0.03) (600.26) (240.84) (127.02) 

Year 2015 

 

0.34** 0.14 0.08*** 540.41 -49.06 334.65*** 

(0.14) (0.09) (0.02) (421.66) (169.18) (89.23) 

Rainfall 

 

0.0002 0.0001 0.0000 1.16* -0.22 -0.17 

(0.0002) (0.0001) (0.0000) (0.64) (0.26) (0.14) 

Temperature 

 

-0.19*** -0.02 0.001 -388.64*** 25.89 -16.25 

(0.04) (0.03) (0.01) (117.35) (47.08) (24.83) 

Constant 

 

1.01 -1.34 0.81*** 4,129.21 504.55 2,579.30** 

(1.60) (1.09) (0.25) (4,930.71) (1,978.35) (1,043.36) 

Observations 

R2 

95 95 95 95 95 95 

0.71 0.35 0.82 0.88 0.95 0.86 

Adjusted R2 0.60 0.09 0.75 0.83 0.93 0.80 

 Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 8. Sensitivity Analysis: changing the LCA perimeter 
 Regression output without accounting for GHG emission from the production and transportation off-farm 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

-7.08** -3.12 -6.08*** -1,428.72 3,644.56 -15,319.70*** 

(3.34) (2.49) (0.70) (11,738.04) (6,336.61) (2,878.36) 

Fuel per Ha 

 

-0.002 -0.001 0.0002 -4.47 -5.39** 0.61 

(0.001) (0.001) (0.0002) (4.13) (2.23) (1.01) 

Electricity per cow 

 

0.0004** 0.0002 -0.0000 -0.54 -1.05*** 0.17 

(0.0002) (0.0001) (0.0000) (0.67) (0.36) (0.16) 

Concentrate per cow 

 

-0.0001 -0.0001 -0.0000 -0.51 -0.79*** 0.02 

(0.0001) (0.0001) (0.0000) (0.46) (0.25) (0.11) 

Share protein in the 

diet 

 

-2.50 -7.90*** -2.91*** -12,795.90 -19,960.49*** -8,415.21** 

(3.94) (2.94) (0.83) (13,846.26) (7,474.70) (3,395.33) 

Share grass in the 

diet 

 

-0.001 0.001 0.0002 22.00 25.64* -7.58 

(0.01) (0.01) (0.002) (28.48) (15.37) (6.98) 

Share hay in the diet 

 

-0.0003 -0.0003 -0.001 19.89 15.37 -8.58 

(0.01) (0.01) (0.002) (27.02) (14.58) (6.63) 

Age first calving 

 

-0.01 0.004 0.003 -28.97 -7.19 8.17 

(0.01) (0.01) (0.003) (41.93) (22.64) (10.28) 

Herd Renewal Rate 

 

-0.48 -0.51* 0.003 295.07 -285.00 58.94 

(0.36) (0.27) (0.07) (1,250.99) (675.33) (306.76) 

Ecological Focus 

Area 

 

-0.0001 -0.0002 -0.0001** 0.57 -0.29 -0.43** 

(0.0002) (0.0001) (0.0000) (0.69) (0.37) (0.17) 

Farm size 

 

-0.0004 0.0002 0.0001 -0.33 2.09 0.29 

(0.001) (0.001) (0.0002) (2.95) (1.59) (0.72) 

Mineral N spread on 

pasture 

 

0.002 -0.002 0.0001 -21.76** -26.66*** 6.68*** 

(0.003) (0.002) (0.001) (9.08) (4.90) (2.23) 

Mineral N spread on 

cereals 

 

-0.0001 0.0003 -0.0001 -0.64 0.80 -0.40 

(0.001) (0.001) (0.0001) (2.49) (1.34) (0.61) 

Organic N on pasture 

 

-0.003** 0.001 0.0000 -45.00*** -38.65*** 7.57*** 

(0.002) (0.001) (0.0003) (5.80) (3.13) (1.42) 

Organic N spread on 

cereals 

 

0.0002 0.004 0.001 9.17 24.86* 1.59 

(0.01) (0.01) (0.001) (24.44) (13.19) (5.99) 

Mineral P spread on 

pasture 

 

-0.002 0.005 0.001 -12.19 4.82 3.70 

(0.005) (0.003) (0.001) (16.20) (8.75) (3.97) 

Mineral K spread on 

pasture 

 

-0.001 -0.001 -0.001 -3.89 -1.40 -4.56 

(0.004) (0.003) (0.001) (12.99) (7.01) (3.19) 

Mineral K spread on 

cereals 

 

0.001 0.0004 0.0002 -0.33 -2.35 1.76 

(0.001) (0.001) (0.0003) (4.57) (2.47) (1.12) 

Share manure in 

organic fertilizers 

 

-0.59 0.02 0.01 -3,006.53* 281.41 222.04 

(0.48) (0.36) (0.10) (1,700.79) (918.15) (417.06) 

Manure Composting 

 

-0.15** -0.10* -0.01 -306.01 -84.62 -97.04* 

(0.07) (0.05) (0.01) (234.88) (126.80) (57.60) 



Share of Cambisol 

 

-0.34** -0.12 -0.01 -919.79* -158.18 -138.32 

(0.14) (0.10) (0.03) (475.29) (256.58) (116.55) 

Share of Luvisol 

 

0.24 -0.01 -0.004 -458.03 -608.58 94.57 

(0.20) (0.15) (0.04) (719.72) (388.53) (176.49) 

Average Slope 

 

-0.004 -0.004 -0.001 -1.15 3.58 -6.09** 

(0.003) (0.003) (0.001) (12.22) (6.59) (3.00) 

Year 2014 

 

0.25* 0.05 0.07** 419.99 -263.65 265.60** 

(0.15) (0.11) (0.03) (517.98) (279.63) (127.02) 

Year 2015 

 

0.28*** 0.08 0.08*** 399.49 -110.38 334.65*** 

(0.10) (0.08) (0.02) (363.86) (196.43) (89.23) 

Rainfall 

 

0.0003 0.0000 0.0000 1.08* -0.20 -0.17 

(0.0002) (0.0001) (0.0000) (0.55) (0.30) (0.14) 

Temperature 

 

-0.14*** -0.01 0.001 -268.17** 67.38 -16.25 

(0.03) (0.02) (0.01) (101.26) (54.67) (24.83) 

Constant 

 

1.43 -0.11 0.81*** 3,728.14 1,038.99 2,579.30** 

(1.21) (0.90) (0.25) (4,254.84) (2,296.91) (1,043.36) 

Observations 

R2 

95 95 95 95 95 95 

0.72 0.47 0.82 0.89 0.94 0.86 

Adjusted R2 0.61 0.26 0.75 0.85 0.92 0.80 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 9. Sensitivity Analysis: accounting for the impact of management practices on carbon 

sequestration 

  

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

-8.22** -1.04 -6.08*** -4,422.44 6,819.09 -15,319.70*** 

(3.82) (2.24) (0.70) (11,278.95) (5,484.13) (2,878.36) 

Fuel per Ha 

 

-0.001 -0.001 0.0002 -4.50 -5.22*** 0.61 

(0.001) (0.001) (0.0002) (3.97) (1.93) (1.01) 

Electricity per cow 

 

0.001** 0.0003** -0.0000 0.18 -0.54* 0.17 

(0.0002) (0.0001) (0.0000) (0.64) (0.31) (0.16) 

Concentrate per cow 

 

-0.0000 0.0000 -0.0000 -0.46 -0.42* 0.02 

(0.0001) (0.0001) (0.0000) (0.44) (0.21) (0.11) 

Share protein in the 

diet 

 

7.54* -1.91 -2.91*** 12,473.64 -5,106.24 -8,415.21** 

(4.50) (2.64) (0.83) (13,304.71) (6,469.11) (3,395.33) 

Share grass in the 

diet 

 

0.005 -0.002 0.0002 39.48 12.12 -7.58 

(0.01) (0.01) (0.002) (27.37) (13.31) (6.98) 

Share hay in the diet 

 

-0.001 -0.002 -0.001 14.87 6.35 -8.58 

(0.01) (0.01) (0.002) (25.96) (12.62) (6.63) 

Age first calving 

 

-0.02* 0.01 0.003 -83.01** -1.11 8.17 

(0.01) (0.01) (0.003) (40.29) (19.59) (10.28) 

Herd Renewal Rate 

 

-0.38 -0.30 0.003 -312.01 -241.20 58.94 

(0.41) (0.24) (0.07) (1,202.07) (584.48) (306.76) 

Ecological Focus 

Area 

 

0.0001 -0.0002 -0.0001** 1.23* -0.17 -0.43** 

(0.0002) (0.0001) (0.0000) (0.66) (0.32) (0.17) 

Farm size 

 

-0.0003 -0.0001 0.0001 0.35 0.78 0.29 

(0.001) (0.001) (0.0002) (2.84) (1.38) (0.72) 

Mineral N spread on 

pasture 

 

0.01* -0.0002 0.0001 -2.81 -19.47*** 6.68*** 

(0.003) (0.002) (0.001) (8.72) (4.24) (2.23) 

Mineral N spread on 

cereals 

 

-0.0003 -0.0001 -0.0001 -0.61 -0.45 -0.40 

(0.001) (0.0005) (0.0001) (2.39) (1.16) (0.61) 

Organic N on pasture 

 

-0.003 0.0005 0.0000 -41.49*** -32.19*** 7.57*** 

(0.002) (0.001) (0.0003) (5.57) (2.71) (1.42) 

Organic N spread on 

cereals 

 

-0.01 0.001 0.001 -19.38 14.40 1.59 

(0.01) (0.005) (0.001) (23.48) (11.42) (5.99) 

Mineral P spread on 

pasture 

 

-0.004 0.004 0.001 -21.30 1.86 3.70 

(0.01) (0.003) (0.001) (15.57) (7.57) (3.97) 

Mineral K spread on 

pasture 

 

-0.001 -0.002 -0.001 0.69 -1.82 -4.56 

(0.004) (0.002) (0.001) (12.48) (6.07) (3.19) 

Mineral K spread on 

cereals 

 

0.0003 0.0004 0.0002 -1.31 -1.22 1.76 

(0.001) (0.001) (0.0003) (4.39) (2.14) (1.12) 

Share manure in 

organic fertilizers 

 

-0.52 -0.08 0.01 -2,737.76* -305.90 222.04 

(0.55) (0.32) (0.10) (1,634.27) (794.63) (417.06) 

Manure Composting -0.07 -0.09** -0.01 -97.83 -84.75 -97.04* 



 (0.08) (0.04) (0.01) (225.69) (109.74) (57.60) 

Share of Cambisol 

 

-0.14 -0.05 -0.01 -665.29 -76.30 -138.32 

(0.15) (0.09) (0.03) (456.70) (222.06) (116.55) 

Share of Luvisol 

 

0.50** 0.05 -0.004 370.53 -347.88 94.57 

(0.23) (0.14) (0.04) (691.57) (336.26) (176.49) 

Average Slope 

 

-0.004 -0.002 -0.001 -4.04 6.38 -6.09** 

(0.004) (0.002) (0.001) (11.74) (5.71) (3.00) 

Year 2014 

 

0.25 0.05 0.07** 258.25 -216.89 265.60** 

(0.17) (0.10) (0.03) (497.72) (242.01) (127.02) 

Year 2015 

 

0.16 0.03 0.08*** 45.04 -123.96 334.65*** 

(0.12) (0.07) (0.02) (349.63) (170.00) (89.23) 

Rainfall 

 

0.0001 -0.0001 0.0000 0.43 -0.35 -0.17 

(0.0002) (0.0001) (0.0000) (0.53) (0.26) (0.14) 

Temperature 

 

-0.10*** -0.01 0.001 -221.89** 49.36 -16.25 

(0.03) (0.02) (0.01) (97.30) (47.31) (24.83) 

Constant 

 

-0.22 -0.53 0.81*** 1,453.74 -43.49 2,579.30** 

(1.38) (0.81) (0.25) (4,088.43) (1,987.90) (1,043.36) 

Observations 

R2 

95 95 95 95 95 95 

0.50 0.35 0.82 0.85 0.94 0.86 

Adjusted R2 0.30 0.09 0.75 0.79 0.91 0.80 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 10. Sensibility Analysis: accounting for indirect land-use changes (upper-bound estimate 

of iLUC effect) 

 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

25.08 -1.04 -6.08*** 24,218.63 6,819.09 -15,319.70*** 

(23.31) (2.24) (0.70) (44,896.55) (5,484.13) (2,878.36) 

Fuel per Ha 

 

0.01 -0.001 0.0002 -2.44 -5.22*** 0.61 

(0.01) (0.001) (0.0002) (15.81) (1.93) (1.01) 

Electricity per cow 

 

-0.0000 0.0003** -0.0000 -1.41 -0.54* 0.17 

(0.001) (0.0001) (0.0000) (2.54) (0.31) (0.16) 

Concentrate per cow 

 

0.001 0.0000 -0.0000 -1.01 -0.42* 0.02 

(0.001) (0.0001) (0.0000) (1.74) (0.21) (0.11) 

Share protein in the 

diet 

 

-37.39 -1.91 -2.91*** -36,921.72 -5,106.24 -8,415.21** 

(27.50) (2.64) (0.83) (52,960.21) (6,469.11) (3,395.33) 

Share grass in the 

diet 

 

-0.01 -0.002 0.0002 -31.26 12.12 -7.58 

(0.06) (0.01) (0.002) (108.93) (13.31) (6.98) 

Share hay in the diet 

 

-0.02 -0.002 -0.001 -73.91 6.35 -8.58 

(0.05) (0.01) (0.002) (103.34) (12.62) (6.63) 

Age first calving 

 

0.09 0.01 0.003 12.79 -1.11 8.17 

(0.08) (0.01) (0.003) (160.39) (19.59) (10.28) 

Herd Renewal Rate 

 

-0.66 -0.30 0.003 -5,490.30 -241.20 58.94 

(2.48) (0.24) (0.07) (4,784.90) (584.48) (306.76) 

Ecological Focus 

Area 

 

0.0005 -0.0002 -0.0001** -2.85 -0.17 -0.43** 

(0.001) (0.0001) (0.0000) (2.64) (0.32) (0.17) 

Farm size 

 

0.002 -0.0001 0.0001 11.79 0.78 0.29 

(0.01) (0.001) (0.0002) (11.29) (1.38) (0.72) 

Mineral N spread on 

pasture 

 

-0.02 -0.0002 0.0001 -45.80 -19.47*** 6.68*** 

(0.02) (0.002) (0.001) (34.72) (4.24) (2.23) 

Mineral N spread on 

cereals 

 

0.002 -0.0001 -0.0001 8.81 -0.45 -0.40 

(0.005) (0.0005) (0.0001) (9.51) (1.16) (0.61) 

Organic N on pasture 

 

0.03** 0.0005 0.0000 -0.89 -32.19*** 7.57*** 

(0.01) (0.001) (0.0003) (22.17) (2.71) (1.42) 

Organic N spread on 

cereals 

 

0.02 0.001 0.001 123.63 14.40 1.59 

(0.05) (0.005) (0.001) (93.46) (11.42) (5.99) 

Mineral P spread on 

pasture 

 

0.05 0.004 0.001 110.32* 1.86 3.70 

(0.03) (0.003) (0.001) (61.98) (7.57) (3.97) 

Mineral K spread on 

pasture 

 

-0.03 -0.002 -0.001 -63.91 -1.82 -4.56 

(0.03) (0.002) (0.001) (49.69) (6.07) (3.19) 

Mineral K spread on 

cereals 

 

-0.001 0.0004 0.0002 -2.14 -1.22 1.76 

(0.01) (0.001) (0.0003) (17.49) (2.14) (1.12) 

Share manure in 

organic fertilizers 

 

-0.13 -0.08 0.01 6,831.58 -305.90 222.04 

(3.38) (0.32) (0.10) (6,505.31) (794.63) (417.06) 

Manure Composting 0.19 -0.09** -0.01 1,070.51 -84.75 -97.04* 



 (0.47) (0.04) (0.01) (898.38) (109.74) (57.60) 

Share of Cambisol 

 

1.09 -0.05 -0.01 3,691.97** -76.30 -138.32 

(0.94) (0.09) (0.03) (1,817.92) (222.06) (116.55) 

Share of Luvisol 

 

-2.04 0.05 -0.004 -2,770.03 -347.88 94.57 

(1.43) (0.14) (0.04) (2,752.83) (336.26) (176.49) 

Average Slope 

 

-0.01 -0.002 -0.001 6.75 6.38 -6.09** 

(0.02) (0.002) (0.001) (46.72) (5.71) (3.00) 

Year 2014 

 

-0.77 0.05 0.07** -2,828.05 -216.89 265.60** 

(1.03) (0.10) (0.03) (1,981.22) (242.01) (127.02) 

Year 2015 

 

-0.97 0.03 0.08*** -2,393.36* -123.96 334.65*** 

(0.72) (0.07) (0.02) (1,391.73) (170.00) (89.23) 

Rainfall 

 

-0.001 -0.0001 0.0000 -5.66*** -0.35 -0.17 

(0.001) (0.0001) (0.0000) (2.11) (0.26) (0.14) 

Temperature 

 

0.70*** -0.01 0.001 1,437.10*** 49.36 -16.25 

(0.20) (0.02) (0.01) (387.33) (47.31) (24.83) 

Constant 

 

-7.57 -0.53 0.81*** -1,108.96 -43.49 2,579.30** 

(8.45) (0.81) (0.25) (16,274.23) (1,987.90) (1,043.36) 

Observations 

R2 

95 95 95 95 95 95 

0.67 0.35 0.82 0.58 0.94 0.86 

Adjusted R2 0.53 0.09 0.75 0.41 0.91 0.80 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 11. Interaction effects 
 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Electricity per cow 
-0.001 -0.001 -0.0003 -2.68 -1.43 0.04 

(0.001) (0.001) (0.0002) (3.87) (1.81) (0.92) 

Share hay in the diet 
-0.01 -0.01 -0.003 -16.56 -2.59 -11.93 

(0.01) (0.01) (0.003) (43.77) (20.43) (10.42) 

Fuel per ha 
0.001 -0.001 0.002 6.15 -0.96 -0.05 

(0.01) (0.004) (0.001) (23.13) (10.80) (5.51) 

Share grass in the 

diet 

0.06 -0.04 0.001 394.16** 151.98* -63.65 

(0.05) (0.03) (0.01) (179.97) (84.02) (42.85) 

Concentrates 
0.0001 -0.0003 -0.0001 1.43 0.43 -0.48 

(0.001) (0.0004) (0.0001) (1.94) (0.91) (0.46) 

Labor Use per cow 
-4.43 -2.12 -6.43*** 1,415.10 5,683.35 -17,635.98*** 

(3.64) (2.33) (0.72) (12,341.19) (5,761.38) (2,938.55) 

Share protein in the 

diet 

3.25 -1.10 -2.74*** 2,826.73 -3,911.25 -7,089.72** 

(4.18) (2.68) (0.82) (14,191.77) (6,625.30) (3,379.19) 

Age first calving 
-0.02 0.01 0.004 -58.13 -10.62 16.61 

(0.01) (0.01) (0.003) (46.25) (21.59) (11.01) 

Herd Renewal Rate 
-0.20 -0.22 0.02 388.22 -302.58 75.16 

(0.38) (0.24) (0.07) (1,286.06) (600.39) (306.22) 

Ecological Focus 

Area 

-0.0002 -0.0001 -0.0001 0.30 -0.17 -0.32* 

(0.0002) (0.0001) (0.0000) (0.78) (0.36) (0.19) 

Farm size 
-0.0005 -0.0004 0.0000 0.18 1.09 -0.13 

(0.001) (0.001) (0.0002) (3.27) (1.52) (0.78) 

Mineral N spread on 

pasture 

0.001 0.01* 0.01** 8.16 5.72 29.66*** 

(0.01) (0.01) (0.002) (36.23) (16.92) (8.63) 

Mineral N spread on 

cereals 

-0.001 -0.0001 -0.0001 -1.95 -0.25 -0.32 

(0.001) (0.0005) (0.0001) (2.55) (1.19) (0.61) 

Organic N on pasture 
-0.005** 0.001 0.0003 -40.09*** -31.26*** 9.50*** 

(0.002) (0.001) (0.0004) (6.51) (3.04) (1.55) 

Organic N spread on 

cereals 

-0.0002 0.001 0.002 16.44 22.11* 1.87 

(0.01) (0.005) (0.002) (25.97) (12.12) (6.18) 

Mineral P spread on 

pasture 

-0.002 0.003 0.0002 -11.86 1.54 1.81 

(0.005) (0.003) (0.001) (16.66) (7.78) (3.97) 

Mineral K spread on 

pasture 

-0.002 -0.001 -0.001 -11.29 -3.93 -3.78 

(0.004) (0.003) (0.001) (13.46) (6.29) (3.21) 

Mineral K spread on 

cereals 

0.001 0.001 0.0005 3.21 0.77 2.95** 

(0.001) (0.001) (0.0003) (5.07) (2.36) (1.21) 

Share manure in 

organic fertilizers 

-0.67 0.05 0.05 -3,877.95** -342.16 329.02 

(0.52) (0.33) (0.10) (1,747.42) (815.77) (416.08) 

Manure Composting 
-0.17** -0.09** -0.02 -390.50 -109.48 -79.66 

(0.07) (0.05) (0.01) (249.88) (116.66) (59.50) 

Share of Cambisol 
-0.26* -0.04 -0.02 -758.66 -71.84 -151.14 

(0.15) (0.09) (0.03) (501.37) (234.06) (119.38) 

Share of Luvisol 
0.27 0.11 0.02 -227.83 -280.80 213.23 

(0.22) (0.14) (0.04) (737.92) (344.49) (175.71) 

Average Slope 
-0.002 -0.002 -0.001 -1.24 5.94 -5.43* 

(0.004) (0.002) (0.001) (12.37) (5.78) (2.95) 



Year dummy 2015 
0.26 -0.003 0.04 385.26 -349.35 167.88 

(0.16) (0.10) (0.03) (551.91) (257.65) (131.41) 

Year dummy 2014 
0.24** 0.05 0.08*** 336.80 -173.07 342.95*** 

(0.11) (0.07) (0.02) (381.09) (177.91) (90.74) 

Rainfall 
0.0001 -0.0001 0.0000 0.93 -0.30 -0.14 

(0.0002) (0.0001) (0.0000) (0.58) (0.27) (0.14) 

Temperature 
-0.13*** -0.02 -0.001 -267.05** 45.59 -31.96 

(0.03) (0.02) (0.01) (103.69) (48.41) (24.69) 

Electricity: Share hay 

in the diet 

0.0000 0.0000 0.0000 0.05 0.02 0.003 

(0.0000) (0.0000) (0.0000) (0.07) (0.03) (0.02) 

Fuel: Share grass in 

the diet 

-0.0001 -0.0000 -0.0000 -0.21 -0.10 -0.003 

(0.0001) (0.0001) (0.0000) (0.48) (0.22) (0.11) 

Share grass diet: 

Concentrates 

-0.0000 0.0000 0.0000 -0.03 -0.02 0.01 

(0.0000) (0.0000) (0.0000) (0.04) (0.02) (0.01) 

Mineral N pasture: 

Organic N pasture 

0.0000 -0.0001* -0.0001** -0.30 -0.29 -0.25*** 

(0.0001) (0.0001) (0.0000) (0.39) (0.18) (0.09) 

Share grass diet2 
-0.001 0.0003 0.0000 -3.68** -1.21 0.49 

(0.0005) (0.0003) (0.0001) (1.65) (0.77) (0.39) 

Constant 
0.13 0.58 0.80** -4,699.65 -3,326.82 3,823.52** 

(1.93) (1.24) (0.38) (6,558.34) (3,061.71) (1,561.60) 

Observation 95 95 95 95 95 95 

R² 0.76 0.41 0.85 0.88 0.94 0.88 

Adjusted R² 0.63 0.11 0.77 0.82 0.91 0.81 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 
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SM 12. Variables Selection via LASSO 
 

 

 

 

 

Net Environmental 

performance per L 

(1) 

Gross 

Environmental 

performance per L 

(2) 

Economic 

performance 

per L (3) 

Net Environmental 

performance per 

Ha (4) 

Gross 

Environmental 

performance per 

Ha (5) 

Economic 

performance 

per Ha (6) 

Labor Use per cow 

 

-0.002** -0.001**  -13.87 -4.08***  

(0.001) (0.001)  (16.82) (1.47)  

Fuel per Ha 

 

0.0004** 0.0003***   -0.49* 0.21 

(0.0002) (0.0001)   (0.25) (0.14) 

Electricity per cow 

 

    -0.41***  

    (0.15)  

Concentrate per cow 

 

  -6.05***  4,109.13 -14,379.54*** 

  (0.56)  (3,951.77) (2,436.57) 

Share protein in the 

diet 

 

-0.004  0.0001  8.99  

(0.004)  (0.001)  (5.84)  

Share grass in the 

diet 

 

  -0.001    

  (0.001)    

Share hay in the diet 

 

 -1.64 -2.65***   -7,963.99*** 

 (1.88) (0.61)   (2,786.09) 

Age first calving 

 

 0.003 0.003    

 (0.01) (0.002)    

Herd Renewal Rate 

 

-0.19 -0.30     

(0.33) (0.19)     

Biodiversity 

 

-0.001      

(0.001)      

Farm size 

 

-0.0003   -12.49   

(0.001)   (9.84)   

Mineral N spread on 

pasture 

 

    -20.33*** 7.81*** 

    (3.36) (1.80) 

Mineral N spread on 

cereals 

 

-0.002   -64.08*** -33.05*** 7.45*** 

(0.001)   (23.42) (2.21) (1.15) 

Organic N on pasture 

 

-0.003   -163.28*  1.08 

(0.01)   (94.57)  (4.05) 

Organic N spread on 

cereals 

 

-0.58   -5,952.18  260.84 

(0.43)   (6,297.74)  (337.23) 

Mineral P spread on 

pasture 

 

 -0.0001 -0.0001**   -0.29** 

 (0.0001) (0.0000)   (0.11) 

Mineral K spread on 

pasture 

 

 0.003  -81.24   

 (0.002)  (59.05)   

Mineral K spread on 

cereals 

 

 0.0005    1.36 

 (0.001)    (0.99) 

Share manure in 

organic fertilizers 

 

-0.15** -0.08**  -1,687.80  -56.43 

(0.06) (0.04)  (1,025.86)  (49.84) 

Manure Composting 

 

-0.32***   -4,475.44***   

(0.11)   (1,683.44)   

Share of Cambisol   -0.0005    



   (0.001)    

Share of Luvisol 

 

0.15  0.07**   203.80* 

(0.13)  (0.03)   (108.74) 

Average Slope 

 

0.17**  0.08***   282.21*** 

(0.08)  (0.02)   (62.01) 

Year 2014 

 

-0.10***  0.001 -1,119.65***   

(0.02)  (0.005) (287.85)   

Year 2015 

 

 0.11 0.02   248.34** 

 (0.08) (0.03)   (118.40) 

Rainfall 

 

 -0.0001  5.14** -0.29 -0.16 

 (0.0001)  (2.22) (0.20) (0.12) 

Temperature 

 

  -0.001  6.42* -2.33 

  (0.001)  (3.55) (2.27) 

Constant 

 

0.62* -0.85** 0.77*** 13,482.89*** -319.73 1,679.41*** 

(0.35) (0.36) (0.18) (4,177.03) (486.53) (448.22) 

Observations 95 95 95 95 95 95 

R2 0.70 0.33 0.81 0.68 0.93 0.84 

Adjusted R2 0.65 0.24 0.79 0.64 0.92 0.81 

 

Note: ***p < 0.001, **p < 0.01, *p < 0.05 

 

 

 

  



67 

 

Chapter 2 

 

Organic farming offers promising 

mitigation potential in dairy systems 

without compromising economic 

performances 
 

 

 

 

 

 

Note: This chapter is based on paper currently submitted to the Environmental and Resources 

Economics under the same title, coauthored with Stéphane De Cara, Catherine Brocas and 

Valentin Bellassen. 

  



2.0. Abstract 

 

There is a lack of clear empirical evidence towards the lower carbon footprint of organic products, in 

particular in the dairy sector. Until now, comparisons of organic and conventional food have been 

hindered by small sample sizes, lack of properly defined counterfactual and the omission of land-use 

related emissions. Here we bridge these gaps by mobilizing a uniquely large dataset of 3,191 French 

dairy farms. We find that the carbon footprint of organic milk is 29% (95%CI = [16% - 41%]) lower 

than its conventional counterpart without indirect land-use change and 8.6% (95%CI = [0.02% - 15%]) 

lower with indirect land use changes, without compromising economic performance. In both production 

systems, farms’ profitability is similar and associated with a higher carbon footprint. These findings are 

robust to a variety of assumptions and are likely to hold for meat production. They support the inclusion 

of organic farming in climate mitigation levers.  

 

Keywords:  Organic; greenhouse gas emissions; gross margin; dairy farms; land use changes. 
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 2.1. Introduction 

Promoting extensive farming systems, and in particular organic ones, has been presented as a sustainable 

direction to limit greenhouse gases emissions (GHGE) and other environmental externalities in recent 

public policies, such as the European Union’s “Farm to Fork Strategy” (European Commission, 2020). 

Indeed, organic farming systems do not use chemical inputs (fertilizers, pesticides, …) which are 

responsible for biodiversity loss, water eutrophication and nitrous oxide emissions (Mäder et al., 2002; 

Reganold and Wachter, 2016). However, lower average yields in organic systems (Seufert et al., 2012) 

tend to offset the climate benefits of lower inputs use when they are expressed on per-unit-of-product 

basis (Bellassen et al., 2021). Moreover, lower productivity in such systems can lead to indirect land-

use changes through agricultural intensification elsewhere and/or expansion of agricultural land with 

negative consequences on emissions (Smith et al., 2019). Clear and thorough assessments of the 

environmental performances of organic farming - especially in comparison to conventional farming 

systems - are thus needed to determine whether organic farming is actually a way to mitigate climate 

change. The stakes are particularly high for the livestock sector which accounts for 14-24% of global 

GHGE and 80% of the GHGE of the agricultural sector (Rogissart et al., 2019). In France, farm 

emissions (including land-use changes) from the livestock sector are estimated at around 19% of the 

territorial GHGE emissions (Ministère de la Transition Ecologique et Solidaire, 2018). 

 

Two strands of the scientific literature have been attempting to assess the environmental performance of 

organic farming. Firstly, bottom-up life cycle assessments (LCA) have been used to compare the carbon 

footprint of actual farms, both organic and conventional, with conflicting results (Bellassen et al., 2021; 

Cederberg and Mattsson, 2000; Haas et al., 2001; Kristensen et al., 2011; Stonehouse et al., 2001; 

Thomassen et al., 2008; van der Werf et al., 2009). Three important pitfalls hinder the formulation of a 

clear conclusion from LCAs: 

 they rely on small sample sizes, ranging from 2 to 81 farms for those involving dairy 

farms. Meta-analyses, the typical tools to overcome small sample sizes in individual 

studies, also came up with conflicting results (Clark and Tilman, 2017; Mondelaers et 

al., 2009; Tuomisto et al., 2012) or refuse to conclude due to the heterogeneity in 

methods and perimeter between LCA studies (Meier et al., 2015); 

 the choice of counterfactual conventional farms is usually not explicit in existing 

studies. This is likely to result in misleading comparisons of organic vs. conventional 

farms’ performances, as the influence of organic practices is mixed with differences in 

farms’ structure and pedo-climatic conditions (Froehlich et al., 2018); 

 they do not account for emissions from direct and indirect land-use and management 

changes, which are estimated at 11-34% of the carbon footprint of livestock (Rogissart 

et al., 2019). 



Secondly, top-down large-scale modelling of the agricultural sector, such as computable general 

equilibrium or global land use models, have shown that developing organic farming to a large scale 

would increase global GHGE due to indirect land-use changes (Bellora and Bureau, 2016; Muller et al., 

2017; Smith et al., 2019). However, these approaches have neglected direct land-use and management 

changes – such as conversion of cropland into grassland or hedges – which may offset indirect land-use 

changes. Moreover, these models rely on many assumptions and interactions which are difficult to 

validate and cannot integrate the heterogeneity of farming practices and the specificities of key 

agricultural products. 

Here we address the three important pitfalls of existing LCAs. Our dataset reaches 3,191 LCAs of dairy 

farms in France, among which 72 are organic, that is almost 40 times more the largest dataset used in 

past studies. Such a large sample size in conventional farms allows to properly and objectively select 

conventional counterfactuals for organic farms through propensity score weighting and thereby 

strengthen the causal inference on the differences found between organic and conventional farms. 

GHGE originating from direct and indirect land use and management changes are estimated through a 

model of land use and management at the farm scale, inspired by Searchinger et al. (2018) and Lambotte 

et al. (2021). Ultimately, the difference in milk’s carbon footprint between organic and conventional 

farms is assessed with average treatment effects on the treated (ATTs) of several GHGE estimates. We 

demonstrate that the carbon footprint of organic milk is 29% (95%CI = [16% - 41%]) lower than its 

conventional counterpart without indirect land-use change and 8.6% (95%CI = [0.02% - 15%]) lower 

with indirect land use changes. 

 

In addition, we estimate the difference in economic performance between organic and conventional 

farms, using their gross operating margin. Adding an economic dimension to the comparison of the 

environmental performances of organic and conventional farming systems is essential as such changes 

in farming practices will not be adopted if they threaten the economic viability of the farms (Dessart et 

al., 2019).  

The literature on the economic performances of organic and conventional farms is also substantial but 

suffers from the same pitfalls as LCAs, i.e. small sample sizes and lack of robust selection of 

counterfactuals. Crowder and Reganold (2015) review 129 studies that compare the economic 

performance of organic and conventional farming, and find that, thanks to the price premium, organic 

farms were 22% to 35% more profitable. More specific to dairy farming, the Farm Accountancy Data 

Network (FADN) has been mobilized to prove that organic dairy farming yields higher revenue per liter 

of milk produced as well as lower production costs (European Commission, 2013; Sanders et al., 2016).  

In this study, using propensity score weighting and a large dataset, we uncover that gross margin are not 

significantly different between organic and conventional farms and thus that organic dairy farming 

reduces the carbon footprint without compromising farms’ economic performances. 
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 2.2. Methodology 

 

2.2.1. Population characterization and notations.  

 

Consider a population of 𝑁𝑖 farms (indexed by 𝑖 = 1…𝑁). Each farm is characterized by a matrix of 

outputs 𝑂𝑖 (e.g. liters of milk produced (𝑀𝑖), cereals and cows sold,…) produced by combining two 

quasi-fixed inputs (land (𝐴𝑖) and herd size) and a matrix of variable inputs 𝑋𝑖  (e.g. fertilizer, 

concentrates, fuel, labor units (LU)…). 

Denote by Π𝑖 the gross margin, defined as Π𝑖 = 𝑝𝑖
𝑂 ∗ 𝑂𝑖 − 𝑝𝑖

𝑋 ∗ 𝑋𝑖  where 𝑝𝑖
𝑂 is a vector of output prices 

and 𝑝𝑖
𝑋 a vector of input prices (see SI 1 for more details). 

Moreover, each farm emits an amount 𝐸𝑖 of GHG as a co-product of its production activity. As 

conversions of cropland <=> pastures results in soil carbon changes, and thereby GHGE or carbon 

storage, each farm is considered to emit or store an amount 𝐶𝑖
𝑑𝐿𝑈𝐶 of carbon based on its share of 

permanent grassland compared to a reference farm (set at the average share of permanent grassland in 

the dataset without loss of generality). Similarly, three farming practices relevant to dairy farms have 

been shown to store carbon: planting hedges, increasing the share of temporary grassland in crop 

rotations and increasing the total nitrogen fertilization – mineral and organic – of grasslands. Thus, each 

farm is considered to emit or store an amount 𝐶𝑖
𝑃𝑟 based on its implementation of these practices 

compared to a reference farm. Finally, most extensive farms have a deficit in productivity which we 

account for by considering these farms would have to import feed from other farms or countries, which 

involves indirect land use changes (iLUC, see 2.2.). In this case, we obtain a new component of farm 

emissions, 𝐶𝑖
𝑖𝐿𝑈𝐶. As a results, the net carbon footprint of farms and their products,  𝐸𝑖 + 𝐶𝑖

𝑑𝐿𝑈𝐶 + 𝐶𝑖
𝑃𝑟 +

𝐶𝑖
𝑖𝐿𝑈𝐶 , can be decomposed between their gross carbon footprint 𝐸𝑖 and the land-use and management 

related emissions or storage, 𝐶𝑖
𝑑𝐿𝑈𝐶 + 𝐶𝑖

𝑃𝑟or 𝐶𝑖
𝑑𝐿𝑈𝐶 + 𝐶𝑖

𝑃𝑟 + 𝐶𝑖
𝑖𝐿𝑈𝐶, depending on whether one deems 

that it is legitimate to account for indirect land-use changes.  

To measure the economic performance, we consider the gross margin per labor unit  
Π𝑖

𝐿𝑈𝑖
, that we simply 

name Gross Margin. As indicators of the environmental performance we use the 4 GHG emission 

estimates, harmonized per liter (fat-and-protein corrected) of milk produced, 

𝐸𝑖

𝑀𝑖
, 
𝐸𝑖+𝐶𝑖

𝑑𝐿𝑈𝐶

𝑀𝑖
, 
𝐸𝑖+𝐶𝑖

𝑑𝐿𝑈𝐶+𝐶𝑖
𝑃𝑟.

𝑀𝑖
,
𝐸𝑖+𝐶𝑖

𝑑𝐿𝑈𝐶+𝐶𝑖
𝑖𝐿𝑈𝐶+𝐶𝑖

𝑃𝑟.

𝑀𝑖
, which we name Gross GHGE, dLUC GHGE, dLUC + 

Practices GHGE and dLUC + iLUC + Practices GHGE respectively. 

 

 

 



2.2.2. Estimation of the environmental performance.  

 

Gross GHGE. To assess the environmental performance of farms, we focus on GHGE for two reasons: 

first because climate change is arguably the most pressing environmental challenge of the 21st century 

and second because GHGE are correlated with many other environmental impacts such as 

eutrophication, acidification and energy use (Guerci et al., 2013). Gross GHG emissions 𝐸𝑖  – without 

carbon emissions/sequestration related to land use and management – are computed using CAP’2ER, a 

GHGE calculator developed by the Institut de l’Elevage and following LCA guidelines (Institut de 

L’Elevage, 2013). However, contrary to the energetic allocation of CAP’2ER, we implemented a more 

conventional economic allocation whereby the GHG balance of the farm is allocated to the three outputs 

of farms – milk, meat and cash crops – in proportion of the share of each product type in farm revenues 

(Baldini et al., 2017). The system boundaries are “cradle-to-farm gate”, including enteric digestion, 

manure management, fertilizers, fuel and energy use, but also the GHG emissions due to the production 

and transportation of concentrate feed and fertilizers. Details on the estimation of gross and LUC-related 

GHGE are given in SI 2 but a summary of the model is presented below. 

 

Direct LUC. The land use of each farm in our dataset is compared to a reference farm. We then estimate 

the carbon fluxes which are being avoided by the choice of each farm to maintain its observed land use 

rather than transitioning towards the land use of the reference farm. The land use in our reference farm 

is set to the sample average (18% permanent pastures, 82% of cropland and temporary grassland). The 

above estimate is akin to direct LUC (dLUC) as defined by (Mario Herrero et al., 2013). Note that the 

choice of the reference farm does impact our results on the relative difference in GHGE between farms 

within the sample. Carbon fluxes (sequestration or emission) associated to each type of land-use changes 

include both the actual flux resulting from the change and the alteration of future carbon fluxes implied 

by the change. For example, a farm which has 100% of pasture on 100 ha of total land is estimated to 

sequester 3.72 tCO2e ha-1 yr-1 on the 82 ha which could have been converted to cropland to match the 

reference farm. The impact of temporary grassland on soil carbon is considered within farming practices 

(see below). The actual values and their sources are detailed in SI 4. 

 

The impacts of key farming practices on biomass and soil carbon are also estimated in a similar 

fashion. Based on a recent review in France (Pellerin et al., 2019), we identify three key practices that 

are relevant in dairy farming and that change biomass and soil carbon stocks: the share of temporary 

grasslands in crops rotation, the amount of nitrogen (mineral or organic) fertilization in pastures and the 

surface of hedges. The carbon impact of these practices follows a temporal pattern similar to the carbon 

impact of dLUC: a change in practice leads to carbon sequestration or emissions which saturate over 

time as soil and biomass carbon reach a new steady-state equilibrium. Similar to our dLUC model, only 

the differences from the reference farm are therefore considered.  
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Indirect LUC (iLUC) is a more controversial topic and its estimates are laden with high uncertainties. 

As 82 ha of pasture do not yield as much nutritious capacity for cows as 82 ha of cropland, if feed 

demand is assumed to be inelastic, a transition from 82 ha of feed crops to 82 ha of pasture will require 

a complement in concentrates. This rationale is the basis of our method to estimate iLUC: a virtual 

quantity of concentrates is assumed to be added or subtracted to the actual quantity of concentrates fed 

to the cows in order to reach the productivity that the observed farm would have had if its share of 

permanent grassland was the same as the reference farm. In the case of organic farms, which tend to 

have has less crop area than the reference farm, the iLUC represents the GHGE this farm is responsible 

for, as it has a lower on-farm nutritional capacity and would need additional concentrates to be as 

productive as more intensive (conventional) farms. Thus, we include as iLUC the area that is deforested 

in Brazil to meet the demand of soybean cakes of the observed farm. This iLUC estimation is akin to 

the index of the efficiency of land use changes developed by Searchinger et al. (2018), which accounts 

for the global efficiency of food production and carbon storage of each hectare of land, comparing its 

nutritive capacity and its carbon storage capacity to other land uses.  

 

2.2.3. Propensity score weighting and average treatment effect  

 

The proper counter-factual environmental and economic performances of the organic farms in our 

dataset is selected through a propensity score weighting using the package “twang” in R software 

(Ridgeway et al., 2017). This method proceeds in three steps: firstly, the probability of receiving a 

treatment, i.e. the propensity score, is estimated using the covariates. Then, weights are computed based 

on the propensity score and assigned to each individual: the treated individuals have a weight of one, 

and the control individuals with higher propensity scores have weights closer to one than the control 

farms with low propensity scores. Finally, a weighted t-test determines the average treatment effect on 

the treated (ATT). We estimate generalized boosted regression instead of the classical logit regression 

to compute the propensity score as it handles better non-linearity, skewed distribution and outliers. This 

is highly relevant in our case as the size of our treatment groups strongly differs and the farms, sampled 

from the whole of France, are very diverse, with implies possible non-linearity and outliers. In addition, 

generalized boosted models are machine-learning algorithms, which stimulate a large number of 

decision trees (3,000 trees were used in our estimations) using a random sample of the data for each 

tree. The data that was poorly modeled in a given tree has a higher probability of being selected by the 

following tree, which uses the information from the previous trees to increase the accuracy of the 

estimation, until a maximal accuracy is achieved (Ridgeway, 2020). 

As the treatment we are interested in is being part of an organic farming scheme, we estimate the average 

treatment effect on the treated (ATT) on the GHGE and gross margin of organic farms compared to their 



conventional counterparts. The propensity score is based on the number and breed of the cows, the 

acreage of the farm, the administrative region of the farms, the specialization of the farms (dairy, crops, 

diversified), the slope, the rainfall, the temperature and soil composition as control variables and the set 

of GHGE and gross margin indicators as variables of interest.  

 2.3. Data 

Our main data source are the field surveys of 3,054 dairy farms in France, once misreported values have 

been filtered out (SI 4). These surveys gather all the necessary technical and managerial information 

that is used to compute GHGE via CAP’2ER. They also provide detailed information on farmers’ 

practices and farms’ characteristics, such as farm and herd sizes, the amount of concentrate feed used, 

the cereals produced and used on-farm, the fertilizers or labor uses. A summary description of the dataset 

is provided in Table 1, while the descriptive statistics and the definition of the variables used in the 

propensity score weighting model are available in SI 5.  

 

Table 1. Summary description of the data 

Production Mode 
Productivity per cow 

(L lactating cow-1 yr-1) 

Productivity 

per ha (L ha-1) 

Herd size 

(livestock 

unit) 

Farm 

acreage 

(ha) 

Milk 

Production 

(L yr-1) 

Farms 

in the 

sample 

Conventional 7,039 7,607 87 62 439,686 2,982 

Organic 5,069 3,650 93 95 330,046 72 

Agricultural Census 

– Conventional 
/ / 119 81 / 47,344 

Agricultural Census 

– Organic 
/ / 103 85 / 1,452 

 

To estimate the gross margin 𝛱𝑖 of each farm, the physical flows gathered from the LCAs are multiplied 

by prices (see SI 1). The prices of most inputs and outputs are estimated using the FADN average for 

the corresponding year and NUTS2 region, with the following exceptions: 

 The prices of fertilizers and concentrates, which cannot be derived directly from the 

FADN, are obtained from Eurostat (Eurostat, 2018). 

 The buying and selling prices of dairy cows, reformed cows and heifers is gathered from 

the Cotation des gros bovins entrée abattoir (1993 - 2017)  of the French Ministry for Agriculture and 

Food. 

To compute the GHGE related to land-use changes (𝐶𝑖
𝑑𝐿𝑈𝐶 , 𝐶𝑖

𝑃𝑟 & 𝐶𝑖
𝑖𝐿𝑈𝐶), we use the model introduced 

in section 2.2. and further detailed in SI 2, with the parameters presented in SI 4. 
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 2.4. Results and discussion 

 

2.4.1. The carbon footprint of organic vs conventional farms 

 

In our preferred definition of carbon footprint - including emissions from inputs, production and direct 

land use and management - the carbon footprint of organic milk is 29% (95%CI = [16% - 41%]) lower 

than its conventional counterparts (Figure 1). Including an estimated of indirect land-use change effects 

reduces the benefits of organic milk to 8.6% (95%CI = [0.02% - 15%]). The results are not dependent 

on the covariates used in the propensity score estimation as results are similar when farm area and herd 

size are excluded from the propensity score (Table SI 7a). They are also largely unaffected by the 

exclusion of outliers in terms of labor units (Table SI 7b) and by controlling for the remaining matching 

biases (Table SI 6b and SI 3). As expected however, increasing the transition period over which the 

carbon storage and emissions from land-use changes are supposed to happen from the IPCC default of 

20 years (IPCC, 2019) to an upper bound of 50 years (Poeplau and Don, 2013) substantially attenuates 

the benefits of organic milk to 8% (95%CI = [3% - 13%]) and 3% (95%CI = [-3% - 0.8%]) with indirect 

LUC (Table SI 7c.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1. Decomposition and ATT of carbon footprint and gross margin. 

Whiskers indicate standard deviation in frames a, b, c and d and the 95% confidence interval of the ATT in frames e. and f. Direct land-use changes (dLUC) cover permanent grassland <-> 

cropland conversions within the farms, practices cover the changes in the share of temporary grassland in crop rotations, the cumulated length of hedges and the amount of nitrogen fertilization 

on pastures. Indirect land-use changes (iLUC) cover forest <-> cropland conversions overseas as a result of changes in domestic feed supply. All representations are based of the weighted 

data. 
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The most common indicator of environmental performance - gross GHGE without accounting for land 

use and management - is not significantly different between organic farms and their conventional 

counterparts (3%, p-value = 0.328, Figure 1e. & Table SI 7a). Half of the GHGE of dairy farms stem 

from enteric fermentation, which is decreasing in the cows productivity and in the share of concentrates 

in cows diet (Zehetmeier et al., 2012). As conventional farms are more productive, mostly because they 

use more concentrates, their cows emit less methane per unit of product than their organic counterparts 

which are mostly fed with grass and hay. However, these higher methane emissions for organic farms 

are offset by lower emissions from feed and mineral fertilizers. A similar trade-off is identified in a 

study of 47 French dairy farms (41 conventional and 6 organic) where the difference in gross GHGE is 

not statistically significant: 1.04 and 1.08 kgCO2e per kg FPCM of milk for conventional and organic 

farms respectively (van der Werf et al., 2009). More generally, studies in different countries highlight 

this trade-off, usually resulting in a non-significant differences on the gross carbon footprint of milk 

(Cederberg and Mattsson, 2000; Haas et al., 2001; Kristensen et al., 2011; Thomassen et al., 2008). 

 

When the carbon consequences of land use changes within the farms (dLUC) are introduced, the carbon 

footprint of organic milk the turns out to be 21% lower than its conventional counterpart (p-value = 

0.0347, Figure 1e. & Table SI 7a). Indeed, organic farms have a much higher share of permanent 

grassland than their conventional counterpart, and each additional hectare of permanent grassland lowers 

farm emissions by 3.7 tCO2e yr-1 (SM 2). This higher share of permanent grassland – an average 45% 

of AAU versus 36% for the conventional weighted counterparts – is partly mandated by the technical 

specifications, which require a minimal 60% of grass or hay in the feed mix and at least 60% of this feed 

mix must be produced on-farm (European Commission, 2008), and partly incentivized by the high prices 

of organic feed. 

The difference in carbon footprint is even higher when the impact of key management practices on 

carbon sequestration is accounted for (29% lower GHGE, p-value = 6.1e-06, Figure 1e. & Table SI 7a). 

This is largely driven by a higher share of temporary grassland in crop rotation – an average 71% versus 

46% for the conventional weighted counterparts – although total nitrogen fertilization of permanent 

grassland is lower – 92 kgN ha-1 versus 183 kgN ha-1 for the conventional weighted counterparts – and 

density of hedges is comparable – 83 m ha-1 versus 108 m ha-1 for the conventional weighted 

counterparts. 

 

Whether and how to include estimates of GHGE from indirect land-use change (iLUC) in LCAs is 

heavily debated. On the one hand, basic economic theory predicts that lower yields somewhere generate 

higher production elsewhere. On the other hand, estimating this elasticity and to which extent higher 

production occurs at the extensive margin is challenging, notwithstanding the moral dilemma of 

attributing this effect between importing countries which could reign in consumption and exporting 



countries which could regulate production practices (eg. stringent land-use regulations can force growth 

to take place at the intensive margin). Including iLUC in the ATT estimates can thus be considered as 

conservative, especially here where we implicitly assume that demand is fully inelastic. It narrows down 

the difference in carbon footprint between organic and conventional milk to 8.6% (p- value = 0.0115, 

Figure 1e. & Table SI 7a). Indeed, the feed yields are lower in organic farms, thus virtually requiring – 

in our iLUC estimates – an average 6.9 tons.ha-1 of concentrates to bridge the yield gap with their 

conventional counterparts, 13% of which are assumed to be grown at the expense of South American 

forests (see SI 2&4 for further details). 

As expected, the uncertainty associated with this iLUC estimate is substantial: when GHGE are 

estimated using the lower and higher bounds of the bootstrapped confidence interval for the 

displacement factor (see SI 2), the carbon footprint of organic farms can turn out to be either 

substantially higher than or equal to their conventional counterparts (-34%1, p-value = 3.69e-05 and -

0.04%, p-value = 0.325 respectively, Table SI 7a). 

Our iLUC results differ from other LCA analyses which only include iLUC from soybean cakes’ 

production, as in (Flysjö et al., 2012), (Guerci et al., 2013) or (Hörtenhuber et al., 2010). Indeed, our 

scope for iLUC is larger as we also include the difference in productivity of organic farming, whose 

existence implies the intensification of other dairy farms or the extension of agricultural area (Schmidt 

et al., 2015; Searchinger et al., 2018). Smith et al. (2019) shows that shifting a whole national agricultural 

sector to organic production has a similar impact when LUC are included: considering only local LUC 

and carbon sequestration yields a lower carbon footprint for organic farms, while including the 

international LUC to compensate for the lower productivity of organic farming cancels out this effect. 

Without the proper selection of counterfactuals (t-test without matching, Table SI 7a.), the estimated 

difference in carbon footprint with iLUC is slightly lower (-0.06 vs -0.1 kgCO2e.L-1) and no longer 

significantly different from zero (p-value = 0.16). 

  

                                                           
1 At the extreme ends of the confidence intervals of the nutritive capacity of maize and grass, grass can turn out 

to be more nutritive than maize, resulting in an iLUC effect which is favourable to organic milk. 
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2.4.2. The economic performance of organic vs conventional farms 

 

The economic performance of organic farms - measured as their gross operating margin per labor unit - 

is not significantly different from their conventional counterparts (-0.08%, p-value = 0.258, Table SI 

7a). However, decomposing the gross margin shows that both revenues and inputs costs per labor unit 

in organic farms are significantly lower than their conventional counterparts (Figure 1c., Figure 1d. & 

Table SI 7a). Indeed, the 43% smaller production volume of organic farms is not compensated by the 

23% average organic price premium and the gross margin of organic farms without the price premium 

is significantly lower than their conventional counterparts (30%, p-value = 2.73e-07, Table SI 7a). These 

lower revenues are however offset by lower costs, thanks to a cheaper feeding strategy which mostly 

relies on grass and on-farm feed, as mandated by the European organic farming rules (European 

Commission, 2008). Ultimately, organic farms do not purchase any mineral fertilizers and less off-farm 

feed, the two main farming expenses of conventional farms (Stonehouse et al., 2001). 

This result is somewhat sensitive to the denominator of the economic indicator. Although labor unit is 

the most common one, economic performance can also be expressed per hectare or per unit of product. 

Here, the ATT is also not significant for the gross margin per hectare (-0.08%, p-value = 0.186, Table 

SI 7a), but the gross margin per liter of milk produced is significantly higher for organic farms (48%, p-

value = 6.37e-14, Table SI 7a). This highlights a key difference in marketing strategy: organic farms aim 

for high margins per liter and produce smaller quantities while conventional farms offset smaller 

margins per liter with higher volumes.  

Froehlich et al. (2018) compares the overall profitability of a large sample of Brazilian family farms, 

using similar robust matching methods and finds that organic farms have a 7-10% smaller overall profit 

than their conventional counterparts, which could be explained by an average low price premium as only 

5% of Brazilian organic farms are certified. Crowder and Reganold (2015) reviews 129 studies that 

compare the economic performance of organic and conventional crop farming, and finds that organic 

farms reach a 21% higher gross margin per hectare thanks to the price premium. Their total costs are 

similar to conventional farms, as higher labor costs are compensated by lower variable costs (fertilizers, 

pesticides). However, without the price premium, the gross margin per hectare of organic farms is 10% 

lower. A report on EU crops and animal farming from the European Commission (European 

Commission, 2013) shows similar descriptive results. Monier-Dilhan et al. (2020) analyze 8 case studies 

in the EU and conclude that organic products have a median gross operating margin per unit of product 

54% higher than their conventional counterparts. Our analysis shows similar results as the gross margin 

per liter of organic milk is 50% larger than for conventional milk (Table SI 7a.). We also show, as in 

Crowder and Reganold (2015), that without the organic price premium organic farms would have 

significantly lower gross margin per labor unit than their conventional counterparts (Table SI 7a.). 



2.4.3. Economic vs environmental performances

Figure 2a. Gross margin and Gross GHGE Figure 2b. Gross margin and dLUC GHGE 

 
Figure 2c. Gross margin and dLUC GHGE with the impact of practices Figure 2d. Gross margin and dLUC + iLUC GHGE with the impact of practices 
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The most reliable estimate of carbon footprint – gross GHGE + dLUC + practices – is antagonistic to 

economic performance. In conventional farms, a 1% increase from the average gross margin of 66,398 

€ LU-1 is associated with a 0.2% increase of the carbon footprint (Figure 4c. and SI 8a.). The antagonism 

is 56% more acute within organic farms and is likely related to the negative correlation (-0.26, p-value 

< 2.2e-16) between cow productivity and grassland area, thus carbon sequestration.  

However, economic and environmental performances become slightly synergetic when indirect land-

use changes are accounted for (Figure 4d.). Accounting for indirect land-use changes penalizes the less 

intensive farms, which also tend to be less profitable: the gross margin per labor unit is significantly and 

positively correlated with all indicators of productivity (Figure SI 8a. and b.). Economic and 

environmental performances are also synergetic when only gross GHGE are accounted for. Indeed, 

farms with a larger gross margin per labor unit tend to more efficiently convert feed into milk 

(Thomassen et al., 2009), resulting in higher cow and acreage productivities (Figure SI 8b.). They also 

tend to use more concentrates. When carbon sequestration is not accounted for, using a lot of 

concentrates in feeding strategies also reduces GHGE because of the lower enteric fermentation per liter 

of milk produced (Lovett et al., 2006). This finding shows that the relationships between economic and 

environmental performances depends heavily on whether land-use related emissions are accounted for, 

which confirms similar results obtained in several European countries, although on much smaller sample 

sizes (Lambotte et al., 2021; O’Brien et al., 2015; Thomassen et al., 2009).



2.4.4. Literature review on the carbon footprint of dairy farms 

Table 2. Literature review of relevant articles on the GHGE of dairy farms 

Study Country 
Sample 

Size 

Conventional - 

GHGE per liter 

Organic - 

GHGE per 

liter 

Difference Organic/ 

Conventional 
dLUC 

iLU

C 

Sequestration 

Practices 

(Bonesmo et al., 2013) Norway 30 1.02     X2 

(Cederberg and Flysjo, 2004)  Sweden 23 1.04a 0.94 -0.1    

(Cederberg and Mattsson, 1999) Sweden 2 1.1 0.95 -0.15    

(Flysjö et al., 2012) Sweden 23 1.42 1.23 -0.19 X2 (Gerber et al. 2010)   

(Flysjö et al., 2012) Sweden 23 1.21 1.17 -0.04 X1 (Leip et al. 2010 - medium case)   

(Flysjö et al., 2012) Sweden 23 1.52 1.26 -0.26 X1 (Leip et al. 2010 - worst case)   

(Flysjö et al., 2012) Sweden 23 1.32 1.60 0.28 X (Audsley et al. 2009)   

(Flysjö et al., 2012) Sweden 23 2.07 2.91 0.86 X (Schmidt et al. 2011)   

(Guerci et al., 2013) 

Germany 

Italy, 

Denmark 

12 1.34b 1.26b -0.8 X1 (Leip et al. 2010 - worst case)   

(Guerci et al., 2013) Italy 32 1.66   X1 (Ecoinvent database v.2.0)   

(Guerci et al., 2013) Italy 32 2.12   X1 (Gerber et al. 2010)   

(Guerci et al., 2013) Italy 32 2.58   X1 (Leip et al. 2010 - worst case)   

(Haas et al., 2001) Germany 18 1.3 1.3 0    

(Hörtenhuber et al., 2010) 
Autria -

Alpine 
2c 1.17 1.02 -0.15 

X1 (only for conventional farms): 

conversion of savannah to soybean fields 
  

(Hörtenhuber et al., 2010) 

Austria – 

Upland 

(pasture) 

2c 1.03 0.95 -0.08 Same as above   

(Hörtenhuber et al., 2010) 
Austria - 

Upland 
2c 1.03 0.91 -0.12 Same as above   

(Hörtenhuber et al., 2010) 
Austria - 

lowland 
2c 0.90 0.81 -0.09 Same as above   

(Kiefer et al., 2014) Germany 81 1.45 1.61 0.16    

(Kristensen et al., 2011) Denmark 67 1.20 1.27 0.07    

(O’Brien et al., 2014) 
Ireland 

(pasture) 
1c 0.84   X1  X2 

                                                           
1 All these studies take into account the deforestation associated with soy meals, but neither grassland-related dLUC nor the iLUC associated with differences in feed nutritious content.  
2 All these studies estimate carbon sequestration for stabilized land use, accounting only for the impact of sequestration practices, a method that has been criticized for overestimating real 
carbon fluxes. 
a High input farms. 
b Averaged by the authors. 
c The farms in each production system are reconstituted from national databases. 
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(Olesen et al., 2006) EU 15c 1.43 1.57 0.14    

(Schader et al., 2014) Switzerland 2  0.91     

(Thomassen et al., 2008) Netherlands 2 1.4 1.5 0.1    

(van der Werf et al., 2009) France 47 1.04 1.08 0.04    

(Williams et al., 2006) 
England & 

Wales 
1c 1.06 1.23 0.17    

Total (mean or count)  20.8 1.34 1.27 -0.01 4 0 2 

 

 

  



In the literature, organic dairy farms tend to have a higher GHGE than conventional farms when neither 

LUC or carbon sequestration are accounted for (Table 2), although as mentioned earlier, this evidence 

cannot be considered as conclusive due to small sample sizes and the lack of an objective counterfactual. 

Let us note that in these studies, the carbon footprint of organic milk becomes lower than its conventional 

counterpart when the dLUC associated with soy meals are considered.  

The average gross GHGE in our study is within the range in the literature (1.21 and 1.24 kgCO2e.L-1 for 

conventional and organic farms respectively, Table SI 7a., column 1), and particularly close to the 

findings of Haas et al. (2001) and Kristensen et al. (2011). 

We could not find a study comparing conventional and organic dairy system that included an estimate 

of on-farm carbon sequestration, but O’Brien et al. (2014) in a study of extensive farming use a fixed 

value of 1.19 tCO2eq.yr-1.ha-1 of grassland which, although very different in principle from our method, 

ends up conferring a similar relative benefit to organic farms compared with our 3.72 tCO2eq.yr-1.ha-1 

of additional grassland. O’Brien et al. (2014) conclude that intensive systems have higher GHGE than 

extensive ones when carbon sequestration is accounted for, which is consistent with our results with 

dLUC (Table SI 7a.).  

A few studies include the LUC associated with soy meals in Brazil (Flysjö et al., 2012; Guerci et al., 

2014; Hörtenhuber et al., 2010). As expected, they find that when the LUC from soy production is 

accounted for in the LCA of dairy farms, the farms using the most soy meals (conventional farms in 

those articles, in comparison to organic ones), have a higher carbon footprint. This is again consistent 

with our dLUC findings. However, our results strongly differ from this conclusion when iLUC are 

estimated: the farms that use less concentrates and soy meals are less productive and have a higher land 

occupation, which results in the intensification of other dairy farms and/or the conversion of forest and 

savannahs in grasslands in our modelling framework. Thus, the lower use of concentrates and lower 

productivity of organic farms drives up their GHGE through iLUC, offsetting the dLUC benefits from 

their higher share of grassland in our central estimate (Table SI 7a.).  
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 2.5. Conclusion 

 

Comparisons of the environmental and economic performances of organic versus conventional farms 

must be undertaken carefully. Here we demonstrate that organic milk has a 9-29% lower carbon footprint 

than its conventional counterpart, depending on whether indirect land-use change is accounted for. In 

addition, we show that economic performance is similar between organic and conventional farms. 

Without addressing the three common pitfalls of LCAs, results would have been drastically different. 

Without the proper and objective selection of counterfactual farms allowed by our extraordinary large 

sample size, the estimated difference in carbon footprint between organic and conventional farms 

amounts to -39% instead of -29% and the lower end including indirect land-use change is no longer 

significant (p-value > 0.158). Similarly, a t-test based on simple averages would have led to the 

erroneous conclusion that conventional farms are significantly more profitable, both in terms of gross 

margin per hectare and per labor unit. Without accounting for GHGE related to land use and 

management, we would have misleadingly concluded to a similar carbon footprint between organic and 

conventional milk. 

The latter effect is however very sensitive to modeling assumptions: extending the transition period from 

20 to 50 years removes the significant effects of organic farming on all GHGE estimates except our 

central one (including dLUC and farming practices but not iLUC). Similarly, taking the lower bound of 

the bootstrapped displacement factor for iLUC triples the difference of carbon footprints between 

organic and conventional farming, while taking the higher bound halves it, even though the overall effect 

remains, organic milk has a lower carbon footprint that its conventional counterpart. This uncertainty is 

one of the arguments against the inclusion biogenic carbon in LCAs. While there is little ground for 

neglecting direct land use and management changes as long as the sensitivity to the transition period is 

properly presented, there are stronger, more theoretical arguments to be cautious when considering 

indirect land-use changes. Our iLUC estimates, as many others (e.g. Searchinger et al. (2018)), assume 

that demand is constant. The amount of produce forgone in less productive organic farms must be 

compensated by an increased production elsewhere. This seems contradictory with the observation that 

the diet of people consuming more organic products is much more oriented towards vegetal products 

(Boizot-Szantai et al., 2017; Lacour et al., 2018b), so much that these diets can also have a lower land 

footprint (Baudry et al., 2019).  

Finally, despite the matching procedure, our results may still be biased by a selection process, as efficient 

farms are more likely to convert to organic farming (Lansink, 2002; Latruffe and Nauges, 2014). This 

limit could be overcome with a panel data of farms’ LCAs, correcting for the selection bias and 

furthermore allowing the assessment of GHGE and economic performances before and after the 

conversion to organic farming. Unfortunately, to the best of our knowledge, this kind of dataset does 

not exist.   



 2.6. Supplementary Information 

 

SI 1. Economic performance reconstitution 

 
The gross margin Π𝑖 is defined in this study as the difference between the farm’s revenue and its costs, 

without accounting for taxes or subventions. The former includes the revenues from the sale of the 

farm’s outputs 𝑂𝑖 : milk, animals (including meat), cereals and roughage. Factor costs include the buying 

costs of the farm’s inputs 𝐼𝑖: forage, concentrates, fertilizer, electricity and fuel, contracted work and 

animals for the renewal of the herd. Family labor costs are valued at the average wage of paid labor. 

Gross operating profit (including land leasing charges, taxes and subventions) or current result 

(including land leasing charges, taxes and subventions, amortization and interests on loans) could not 

be estimating with our survey data, but in the Farm Accountancy Data Network (FADN) both are 

significantly correlated with our measure of the gross operating margin (73% and 39% respectively). 

 

Figure SI 1a. Reconstitution of cost, revenue and gross margin (in € per labor unit) 
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The cost, revenue and gross operating margin of the farms in the dataset are well reconstituted when 

compared with the FADN sample. Overall, organic farms are less profitable than conventional farms 

(Figure SI 1a). Indeed, even if the price of organic milk is on average 22% higher than the price of 

conventional milk, organic farms produce less milk. However, the production costs of organic farms are 

lower, as most of the feed they use is produced on-farm and they do not use fertilizers (Figure SI 1b). 

  

Figure SI 1b. Detailed comparison of revenues and costs (in € per labor unit) 



SI 2. Estimation of the environmental performance 

 
Direct LUC 

To estimate land-use related emissions and sequestration (Ci), we deviate from CAP’2ER and classical 

LCAs methodologies. Indeed, CAP’2ER attributes carbon sequestration to static land-uses (acreage of 

grassland times a fixed carbon sequestration factor) whereas the only stabilized results for cropland and 

grassland related carbon fluxes in the literature concern land-use changes (LUC). Indeed, the latest IPCC 

guidelines (IPCC, 2019) estimate carbon fluxes to be null for croplands and grasslands which did not 

undergo recent land use or management changes. Moreover, the sequestration factor used by CAP’2ER 

for permanent grassland – 2.09 tCO2 ha-1 yr-1 –  is derived from Soussana et al. (2010) which has been 

criticized for using a flawed averaging method and for concluding to an average value too large to be 

consistent with the current knowledge about carbon fluxes and stocks in grassland (Smith, 2014). 

 

Farming practices influencing on-farm carbon sequestration 

The share of temporary grasslands in crops rotation, the amount of nitrogen (mineral or organic) 

fertilization in pastures and the surface of hedges influence significantly the biomass and soil carbon 

sequestration of dairy farms (Pellerin et al., 2019) and are thus included in our model of dairy farms’ 

GHGE. 

Pellerin et al (2019) estimates that 63.7 linear meters of hedges sequesters 29.9 kgCO2e ha-1 yr-1 in the 

soil and biomass on cropland and 28 kgCO2e ha-1 yr-1 on pasture, during 50 years. Here, a linear meter 

of hedge is associated to 2 m² of hedge and 1.5 m² of uncultivated area both side of the hedge. As our 

dataset only contains the cumulative length of hedges for each farm, we allocate these hedges 

proportionally to grassland and cropland, based on the land-use of each farm. Emissions or sequestration 

are then added to the carbon budget of each farm based on the difference with the reference farm for 

both the amount of hedges in grassland and the amount of hedges in cropland.  

Nitrogen fertilization on pasture stimulates the biomass growth and thus soil carbon sequestration. 

Several reviews conclude that an almost linear relationship exists between nitrogen and carbon 

sequestration in grasslands, with an average ratio of 1.2 kgC.kgN-1.yr-1 for a 20-year horizon (Eze et al., 

2018; Fornara et al., 2012; Pellerin et al., 2019). Here again, differences in nitrogen fertilization – both 

mineral and organic – with the reference farm are translated into carbon emissions or sequestration, 

using the average ratio above. 

The share of temporary pasture in rotation with crops also increases carbon sequestration in soil. For 

France, Pellerin et al. (2019) estimates that including 50% of temporary pasture in rotation with crops, 

compared to crops only, sequesters an additional 466 kgC.ha-1.yr-1. More generally, the relationship 

between the annual increase of SOC and the share of temporary pasture in the rotation follows a linear 

pattern from rotations dominated by cropland (0% of grass) to rotation dominated by grassland (Vertès 

and Mary, 2007). Accordingly, we assume that soil carbon sequestration and the share of temporary 
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pasture in the rotation are positively and linearly correlated. To be consistent with our LUC estimates, 

temporary grassland is therefore assumed to increase carbon sequestration by 3.72 tCO2e/% of 

temporary grassland in the rotation/year during 20 years. For example, as temporary grasslands represent 

71% of the UAA (excluding permanent grassland) in the reference farm, a farm with no temporary 

grassland would be estimated to be emitting 2.6 tCO2e.yr-1.ha-1 of UUA excluding permanent pasture, 

for a 20-year horizon. 

 

Indirect LUC  

The quantity of concentrates needed for a given farm to achieve the same nutritious capacity as the 

reference farm is assumed to stimulate or mitigate deforestation in Brazil as more or less soybeans cake 

are needed. Indeed, Overmars et al. (2015) shows that 30% of the annual increase of soybean production 

is meet by the expansion of the area dedicated to soy at the expense of forests and savannas, while the 

rest is met by yield increases.  

Using the formalization of Plevin et al. (2010), our reduced-form models of carbon sequestration or 

emission from dLUC and iLUC are therefore expressed in equations (1) to (4). 

𝐿𝑈𝐶𝑖 = (𝑠ℎ𝑎𝑟𝑒𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑖
− 𝑠ℎ𝑎𝑟𝑒𝑔𝑟𝑎𝑠𝑠𝑙𝑎𝑛𝑑𝑟𝑒𝑓

) ∗ 𝑎𝑟𝑒𝑎𝑖            (1) 

𝐶𝑖
𝑑𝐿𝑈𝐶 = 𝐿𝑈𝐶𝑖 ∗

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑐→𝑔
𝐹𝑟

𝑃𝑒𝑟𝑖𝑜𝑑
                                          (2) 

 𝐶𝑖
𝑖𝐿𝑈𝐶 = 𝐿𝑈𝐶𝑖 ∗ 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 ∗

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑓→𝑐
𝐵𝑟

𝑃𝑒𝑟𝑖𝑜𝑑
                        (3) 

where 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 =
(𝑁𝑢𝑡𝑟𝑖𝐶∗𝑌𝑑

𝐶−𝑁𝑢𝑡𝑟𝑖𝐺∗𝑌𝑑
𝐺)∗𝑠ℎ𝑎𝑟𝑒𝑠𝑜𝑦

𝑌𝑑𝐵𝑟
𝑠𝑜𝑦

∗𝑎𝑙𝑙𝑜𝑐_𝑠𝑜𝑦∗𝑁𝑢𝑡𝑟𝑖𝑠𝑜𝑦
∗ 𝑎𝑟𝑒𝑎_𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑜𝑛          (4) 

𝐿𝑈𝐶𝑖 is the difference in grassland are in farm i compared to the reference farm in hectares. If a farm is 

more extensive than the reference farm, 𝐿𝑈𝐶𝑖 is positive. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑐→𝑔
𝐹𝑟  being negative (Table 

SI 4b), then 𝐶𝑖
𝑑𝐿𝑈𝐶  is also negative, and the farm is considered to store carbon from dLUC. The 

displacement factor (Eq. (4)) is generally positive for extensive farms as the nutritive capacity of one 

hectare of cropland (𝑁𝑢𝑡𝑟𝑖𝐶, the nutritive value of crops in kcal.kg-1 multiplied by 𝑌𝑑𝑖
𝐶 the yield of 

crops in ton.ha-1) is higher than the one of one hectare of grassland (𝑁𝑢𝑡𝑟𝑖𝐺 ∗ 𝑌𝑑𝑖
𝐺). 𝑠ℎ𝑎𝑟𝑒𝑠𝑜𝑦 is the 

average share of soybean cakes in the cows’ diet, as we consider that only soybean cakes’ additional 

production generates LUC, other additional concentrates and feed entering in the cows’ diet in French 

dairy systems would be produced in France or neighbor countries at the intensive margin, as these 

countries have stable land use (Taheripour et al., 2017). The nutritional difference between crop and 

grass x 𝑠ℎ𝑎𝑟𝑒𝑠𝑜𝑦  gives the amount of calories that as to be furnished by soy bean cakes. We divide these 

calories by the 𝑁𝑢𝑡𝑟𝑖𝑠𝑜𝑦 (the nutritive values of soy in kcal.kg-1) multiplies by 𝑌𝑑𝐵𝑟
𝑠𝑜𝑦

, the yield of soy 

in Brazil in ton.ha-1, and 𝑎𝑙𝑙𝑜𝑐_𝑠𝑜𝑦, which economically allocates the LUC between soy oil and cakes, 

both by-products of soybean production. Lastly, we multiply this ratio by 𝑎𝑟𝑒𝑎_𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑜𝑛, the area of 

Brazilian forest and savanna deforested for each addition hectare of soy required. This yields the 



𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 which indicates how many hectares of forest and savanna are transformed into 

agricultural land for each hectare of LUC in the French dairy farms. As the 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 is 

generally positive, an extensive farm, with a positive 𝐿𝑈𝐶𝑖 is responsible for a positive amount of LUC 

in Brazil. This area of LUC in Brazil is associated with the emission of GHGE, the carbon released from 

forest soils, such as 
𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝐹𝑎𝑐𝑡𝑜𝑟𝑓→𝑐

𝐵𝑟

𝑃𝑒𝑟𝑖𝑜𝑑
 is also positive. Thus, an extensive farm has a positive 𝐶𝑖

𝑖𝐿𝑈𝐶.  

Yields of crops and grassland are obtained from the sample mean in our dataset and the other parameters 

are derived from the literature (Table SI 4b). To assess the robustness of our results for different values 

of the displacement factor, which varies considerably depending on the yields and the values selected 

for the economic allocation to soybean cakes (𝑎𝑙𝑙𝑜𝑐_𝑠𝑜𝑦) and the area expansion due to increasing soy 

cultivation, we also compute the bootstrapped 95% confidence interval of the displacement factor based 

on 95% confidence interval of each parameter (Table SI 4b) and assuming a normal distribution. The 

95% confidence interval for the displacement factor is [0.0476; 0.3278] and we use both the inferior and 

superior bounds of this interval in the estimation of iLUC GHGE as robustness tests. In addition, we 

compute the different estimates of dLUC, iLUC and the GHGE’ impact of sequestration practices with 

a 50-year period instead of the generic 20-year period.  
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SI 3. Propensity score weighting and treatment effect  

 
The classic set-up for matching theory, embracing propensity score weighting, referred as Rubin Causal 

Model (Rubin D. B, 1974), is a sample of N individuals, indexed by 𝑖 = 1,… , 𝑛, and each individual 

has two possible outcomes, 𝑌𝑖(1) and 𝑌𝑖(0), with or without treatment respectively. The treatment is 

represented by a dummy 𝑡𝑖, which take the value 1 if the individual received the treatment and 0 

otherwise. However, in the sample, each individual only receives the treatment or do not receive it, i.e., 

we observe only 𝑌𝑖
𝑜𝑏𝑠 = {

𝑌𝑖(1)   𝑖𝑓 𝑡𝑖 = 1 

𝑌𝑖(0)   𝑖𝑓 𝑡𝑖 = 0
. 

Moreover, for each individual, a matrix 𝑋𝑖, composed of a set of covariates that are not affected by the 

treatment, is used. Then, the average treatment effect of the population, conditional on the covariates is: 

𝜏(𝑥) = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥],                         (4) 

and the average treatment effect on the treated (ATT) of the population is: 

𝜏𝑡𝑟𝑒𝑎𝑡(𝑥) = 𝔼[𝑌𝑖(1) − 𝑌𝑖(0)|𝑋𝑖 = 𝑥, 𝑡𝑖 = 1].                                                    (5)  

As we only observe a sample of the population, the average treatment effect of the sample, conditional 

on the covariates is: 

𝜏𝑠𝑎𝑚𝑝𝑙𝑒(𝑥) =
1

𝑁
∑ 𝜏(𝑋𝑖)
𝑁
𝑖=1  and the ATT of the sample is 𝜏𝑡𝑟𝑒𝑎𝑡,𝑠𝑎𝑚𝑝𝑙𝑒(𝑥) =

1

𝑁𝑡
∑ 𝜏(𝑋𝑖)
𝑁𝑡
𝑖:𝑊𝑖=1

       (6) 

Furthermore, two key assumptions are needed to be able to make causal inferences about the ATT, 

conditional independence of the treatment assignment and common support. Conditional independence 

is defined as 𝑡𝑖 ⊥ (𝑌𝑖(0), 𝑌𝑖(1)) | 𝑋𝑖 , i.e., for individuals with the same given covariates’ values, the 

potential outcomes are independent of treatment assignment. This can be assessed after the weighting 

procedure by checking that weighting efficiently balanced the covariates between the individuals who 

received the treatment and the others. Common support is assumed to forbid perfect predictability of  𝑡𝑖 

given the covariates 𝑋𝑖, 0 <  𝔼[𝑡𝑖| 𝑋𝑖 = 𝑥] < 1, where the propensity score is 

 𝑒𝑖( 𝑋𝑖) = 𝔼[𝑡𝑖| 𝑋𝑖 = 𝑥] = 𝑃𝑟(𝑡𝑖  =  1| 𝑋𝑖  =  𝑥).                          (7) 

Using the propensity scores, weights can be created for each observed individuals, so that the control 

individuals that have the most similar features with the treated individuals are assigned the largest 

weights. Let’s call 𝑓(𝑋|𝑡 = 1) the distribution of the covariates in the treated individuals and 𝑓(𝑋|𝑡 =

0) in the control individuals. Then, the weights 𝑤(𝑋) are constructed such that  

𝑓(𝑋|𝑡 = 1) =  𝑤(𝑋)𝑓(𝑋|𝑡 = 0)                                (8) 

Solving (8) for 𝑤(𝑋) and applying the Bayes theorem yields  

𝑤(𝑋) = 𝐾
𝑓(𝑡 = 1|𝑋) 
𝑓(𝑡 = 0|𝑋)

= 𝐾
𝑃𝑟(𝑡 = 1|𝑋) 
1−𝑃𝑟(𝑡 = 1|𝑋)

               (9) 

where K is a normalization constant that cancels out in the estimation of the ATT. 

To ensure that as much bias as possible is eliminated by the weighting procedure, we also provide bias-

corrected ATT estimates (Abadie et al., 2002), which adjust the ATT estimation by accounting for the 

remaining differences of covariates between the two groups. Propensity score weighting thus corrects 



the bias created by variables influencing both the probability of being treated and the ATT (Rosenbaum 

and Rubin, 1983). 

Bias-corrected ATT estimates and other sensitivity tests are provided in the Supplementary Information 

6 (Tables SI 6a. & 6b.), evaluating the presence of hidden bias in the propensity score estimation 

(McCaffrey et al., 2004; Ridgeway, 2006). Hidden bias arises when an unobserved variable (not 

included in the propensity score estimation) influences the probability of being treated 𝑒𝑖(𝑥𝑖). The 

method proposed here is akin to the Rosenbaum bounds (Rosenbaum, 2002) and estimates by how much 

the treatment effect would change if we account for an unobservable variable z, so that the new weights 

assigned to individuals based on the propensity score are 𝑤𝑖(𝑥𝑖 , 𝑧𝑖). By setting  𝑎𝑖 =
𝑤𝑖(𝑥𝑖,𝑧𝑖) 

𝑤𝑖(𝑥𝑖)
, we can 

choose any value of 𝑎𝑖 to simulate different strength of hidden bias.  If 𝑎𝑖is correlated with the outcome 

of interest, the ATT estimates will vary, and this variation will increase as the correlation is stronger. 

Thus, the sensibility test gives information on the maximum correlation we could allow between the 

effect of an unoversable variable on the propensity score weighting, 𝑎𝑖, and the outcome of interest, 

before the ATT estimate changes. More precisely, we compute “break even” correlations,  the value of 

the correlation between 𝑎𝑖 and the outcome of interest that would cancel the ATT. If such break even 

correlation is low, it would indicate that our propensity score model may be easily biased by any omitted 

variable slightly correlated with the outcome of interest.  
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SI 4. Data 

 
Table SI 4. Specification of the carbon sequestration models 

 

Emission factor cropland to grassland 

in France 

(𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝑭𝒂𝒄𝒕𝒐𝒓𝒄→𝒈
𝑭𝒓 ) 

-74.3 tCO2eq.ha-1 

(negative emissions correspond to net 

carbon storage) 

(EFESE, 2019) 

Emission factor of LUC in Brazil for 

soy production 

(𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝑭𝒂𝒄𝒕𝒐𝒓𝒔𝒐𝒚
𝑩𝒓 ) 

297 tCO2eq.ha-1 

(Overmars et al., 2015) using the 

Cropland Spatial Allocation Model 

(Hiederer et al., 2010). 

Nutritious content (Nutri) 

NutriC = 3840 kcal.kg−1 

NutriG = 4010 kcal. kg−1 

Nutrisoy. = 4090 kcal. kg−1 

feedtables.com 

Yield (Yd, t.ha-1) 𝑌𝑑𝐶=13.77 , 𝑌𝑑𝐺=  6.1, 𝑌𝑑𝐵𝑟
𝑠𝑜𝑦

= 2.45 

Own data (sample average of forrage 

corn for 𝑌𝑑𝐶  and grazed grass for 𝑌𝑑𝐺) 

and Overmars et al. (2015) for 𝑌𝑑𝐵𝑟
𝑠𝑜𝑦

.  

Share soy cake in concentrates 

(share_soy) 

0.29*0.45 (share cakes in concentrates * 

share soy in cakes) = 0.13 

(Ministère de l’Agriculture et de 

l’Alimentation, 2017) 

Economic allocation for soy cakes 0.57 (Overmars et al., 2015) 

Area expansion for increasing soy 

demand (area_expansion) 
0.3 (Overmars et al., 2015) 

Displacement Factor 

(DisplacementFactor) 
0.194 [-0.04; 0.25] 

Authors’ calculation based on 

equation 3 

Production Period 

(Period) 
20 year 

Default transition period in (IPCC, 

2019). 



As any field survey, our data suffers from misreporting, especially for labor which is reputedly subject 

to misreporting in the agricultural sector (Midler et al., 2019). Indeed, some farms declare a low number 

of labor units, relatively to their milk production. To determine which farms are actual cases of 

misreporting, we use the 2013 FADN sample and extract the minimum and maximum labor productivity 

(milk production in liter divided by labor units used). We excluded the extreme maximum visible in 

Figure SI 4, such that the minimum and maximum labor productivities reach 14,354 and 638,471 L.LU-

1 respectively. We remove from our dataset the farms for which the labor productivity falls outside this 

range, i.e. 137 conventional farms for the rest of the analysis.   

Figure SI 4. Distribution of the labor productivity from the 2013 FADN  
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SI 5. Summary statistics and description of the variables 

 

Variables  Description Mean St. Dev. Min Max 

Gross margin per L  Gross margin per liter of FPCM milk, in €.  0.237 0.062 -0.354 0.627 

Gross margin per LU  Gross margin per labor units in €.  75,698 37,650 -104,191 216,520 

Gross margin per Ha  Gross margin per hectare in €.  1,783 707.3 -2,780 5,142 

Gross GHGE  Gross GHGE per liter of FPCM milk, in kg CO2eq.  1.161 0.164 0.678 2.403 

dLUC GHGE  Gross GHGE + dLUC GHGE per liter of FPCM milk, in kg CO2eq.  1.127 0.257 -1.915 2.205 

dLUC + Practices 

GHGE 

 Gross GHGE + dLUC GHGE + impacts of practices on on-farm carbon 

sequestration per liter of FPCM milk, in kg CO2eq. 
1.116 0.218 -1.102 2.059 

iLUC GHGE 
 Gross GHGE + dLUC GHGE + iLUC GHGE per liter of FPCM milk, in kg 

CO2eq.  
1.154 0.158 0.53 2.184 

iLUC + Practices 

GHGE 

 Gross GHGE + dLUC GHGE + iLUC GHGE + impacts of practices on on-

farm. carbon sequestration per liter of FPCM milk, in kg CO2eq. 
1.142 0.188 0.439 2.491 

Herd size  Number of milking cows. 87.583 35.182 20.7 368.7 

Surface  Acreage of the farm in hectare. 62.890 30.7 15 337 

Slope  Average slope, communal level, %.b 5.156 3.386 0.242 44.461 

Rainfall  Annual precipitation, communal level, mm.a 973.805 165.692 547 1,609 

Temperature  Annual temperature, communal level, °C.a 11.079 0.907 7 13 

Soil depth  Soil depth in cm.b 128.813 32.511 26.509 433.364 

Silt  Share of silt in the soil in cm.b 46.446 13.14 5.804 66.7 

Clay  Share of clay in the soil in cm.b 22.087 4.486 3.072 44.5 

Sand  Share of sand in the soil in cm.b 27.777 15.316 1.584 80.3 

Region  Administrative region of France, dummy.     

Calcareous soil  Calcaerous soil, dummy (yes/no).b 0.081 0.204 0.000 1.000 

Water regime  Water regime:b 1.246 0.215 0 4 



 

 

1 : Not wet* within 80 cm for over 3 months, nor wet within 40 cm for over 1 month 

2 : Wet within 80 cm for 3 to 6 months, but not wet within 40 cm for over 1 month 

3 : Wet within 80 cm for over 6 months, but not wet within 40 cm for over 11 months 

4 : Wet within 40 cm depth for over 11 months 
 

   

Ph  Ph of the soil:b 6.039 0.58 5.107 8.000 

  5 : Very acid     

  5.5 : Acid     

  6.5 : Neutral     

  6.5 : Slightly alkaline     

  8 : Alkaline     

Breed  Main breed of cow in the farm.     

Farming System  Type of farming specialization (dairy, dairy and crops, highly diversified)     

a. These data were made available by Météo France through the Observatoire du Developpement Rural (ODR, INRAE). 

b. These data were provided by Christine Le Bas through the UMR INFOSOL (INRAE). 
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SI 6. Sensitivity analysis of the propensity score estimation 

 

 

 

Figure SI 6. Covariate balance and common support check for organic and conventional farms’ propensity score 

weighting 



Before the propensity score weighting procedure, we can observe strong differences between organic 

and conventional farms in size, pedo-climatic conditions, location and breed, all of which are resorbed 

after the weighting procedure (Covariate balance graph in Figure SI 6). Thus, we can assess that the 

weighted organic and conventional farms have similar covariates, and that what explains the difference 

in outcomes between the farming systems is the treatment and not pedo-climatic variables (conditional 

independence assumption in SI 3). Similarly, after weighting the farms, the common support assumption 

is confirmed, as there is a sufficient overlap of the propensity score of organic and conventional farms 

(Distributional balance for prop.score (propensity score) graph in Figure SI 6). The sensibility analysis 

of the propensity score estimation (see SI 3and Table SI 6a) shows that the ATT estimates do not likely 

suffer from strong hidden bias as the correlation between the omitted variable and would need to be the 

probability of being treated would have to be higher than 0.29 for the ATT estimates (Gross GHGE 

here) to become insignificant.  

 

Table SI 6a. Break-even correlation 

Variable 
Relative 

Influence 

Correlation between 

𝑎𝑖 and the outcome 

Break even 

correlation 

Soil depth 23% -0.138 0.678 

Silt 15% 0.008 0.714 

Surface 15% 0.041 0.286 

Clay 9% 0.029 Does not exist 

Slope 8% -0.003 0.766 

Sand 7% -0.092 Does not exist 

Rainfall 5% -0.150 0.693 

Herd Size 4% -0.170 Does not exist 

Region 4% 0.169 Does not exist 

Calcareous soil 4% -0.110 Does not exist 

Ph 2% 0.090 0.719 

Water regime 2% 0.018 Does not exist 

Breed 2% -0.041 Does not exist 

Farming System 1% 0.013 Does not exist 

Temperature 0% -0.162 Does not exist 
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Table SI 6b. Propensity score weighting and bias-adjusted ATT estimation 

 
Gross 

GHGE 

dLUC 

GHGE 

dLUC + 

Seq. 

Practices 

GHGE 

dLUC + 

iLUC + Seq. 

Practices 

GHGE 

iLUC 

GHGE 

2.5% 

iLUC 

GHGE 

97.5% 

Gross 

margin  

Gross 

margin 
Gross margin 

 
kgCO2e.

L-1 

kgCO2e.

L-1 

kgCO2e.

L-1 
kgCO2e.L-1 

kgCO2e.

L-1 

kgCO2e.L-

1 
€.L-1 €.Ha-1 €.LU-1 

Treatment - Organic 0.01 -0.07 -0.20*** -0.13*** -0.21*** -0.12*** 0.17*** 273.57*** 11,853.57*** 

 (0.03) (0.06) (0.05) (0.03) (0.05) (0.04) (0.01) (60.51) (3,583.55) 

Slope 0.002 -0.02** -0.01** 0.002 -0.01*** 0.01 -0.0004 -14.73** -1,098.32*** 

 (0.003) (0.01) (0.005) (0.003) (0.01) (0.004) (0.001) (5.83) (342.34) 

Rainfall -0.0002** 0.0002 0.0001 -0.0002** 0.0002 -0.0003** -0.0000 -0.05 -13.05 

 (0.0001) (0.0002) (0.0001) (0.0001) (0.0002) (0.0001) (0.0000) (0.21) (10.89) 

Temperature -0.04** 0.15*** 0.06*** -0.08*** 0.09*** -0.12*** 0.01** 76.10** 4,658.56** 

 (0.02) (0.03) (0.02) (0.02) (0.03) (0.02) (0.01) (37.93) (1,924.30) 

Soil.depth -0.0000 0.001 0.001 0.0000 0.001 -0.0001 -0.0002 -0.89 -111.40 

 (0.001) (0.001) (0.0005) (0.001) (0.001) (0.001) (0.0002) (1.15) (71.91) 

Water.regime -0.05 -0.14 -0.10 -0.03 -0.12 -0.01 0.03 -2.22 9,841.41 

 (0.08) (0.16) (0.10) (0.09) (0.13) (0.11) (0.03) (173.50) (10,216.72) 

Calcareous.soil -0.01 -0.17 -0.05 0.07 -0.08 0.11 0.04 -66.54 -8,415.72 

 (0.10) (0.21) (0.15) (0.12) (0.18) (0.15) (0.05) (270.15) (13,487.27) 

Ph 0.04 -0.12 -0.09 0.03 -0.12 0.07 -0.01 -59.93 -1,774.32 

 (0.04) (0.10) (0.07) (0.05) (0.08) (0.06) (0.02) (107.57) (4,962.97) 

Clay 0.0004 0.02** 0.01* -0.003 0.01** -0.01 0.001 -6.04 -106.88 

 (0.004) (0.01) (0.01) (0.004) (0.01) (0.01) (0.002) (9.62) (447.43) 

Silt -0.01** 0.0001 0.001 -0.004 0.002 -0.01 0.002 15.46*** 640.01** 

 (0.003) (0.01) (0.004) (0.003) (0.005) (0.004) (0.001) (5.49) (280.41) 

Sand -0.003* 0.004 0.002 -0.004 0.004 -0.01* 0.0001 2.35 194.60 

 (0.002) (0.005) (0.003) (0.002) (0.004) (0.003) (0.001) (4.84) (201.98) 

Specialized dairy 

farm 
0.07* -0.22** -0.16** 0.07 -0.20*** 0.13** -0.01 -127.51 -11,967.34** 

 (0.04) (0.10) (0.06) (0.05) (0.08) (0.06) (0.01) (78.30) (5,949.39) 

Crop and Dairy farm -0.08 -0.22* -0.22* -0.11 -0.24* -0.08 -0.02 -177.25 -13,264.95 

 (0.06) (0.12) (0.12) (0.09) (0.13) (0.11) (0.02) (124.72) (10,306.10) 

Diverse farming 0.03 -0.24*** -0.19*** 0.02 -0.24*** 0.07 -0.02 -140.47 -13,239.96* 

 (0.05) (0.09) (0.07) (0.06) (0.08) (0.07) (0.03) (112.46) (7,462.56) 

Breed_Abondance -0.04 -0.19 -0.04 0.08 -0.07 0.11 -0.07* 27.44 -27,817.72** 

 (0.09) (0.17) (0.11) (0.10) (0.13) (0.12) (0.04) (237.39) (12,974.83) 

Breed_Other 0.19* -0.15 0.05 0.31*** -0.01 0.38*** -0.12*** -547.70** -47,605.78*** 

 (0.10) (0.23) (0.16) (0.10) (0.19) (0.12) (0.04) (225.25) (12,168.22) 

Breed_Bleue du Nord -0.08 -0.33 -0.19 0.01 -0.23 0.06 -0.02 122.89 -16,068.23 

 (0.10) (0.20) (0.13) (0.14) (0.15) (0.17) (0.04) (217.89) (10,672.69) 

Breed_Brune -0.19** -0.31* -0.13 -0.03 -0.15 -0.005 -0.03 305.43 -4,689.53 

 (0.09) (0.19) (0.14) (0.09) (0.16) (0.11) (0.04) (228.26) (11,960.05) 

Breed_Croisé -0.06 -0.30* -0.09 0.09 -0.13 0.14 -0.07** 39.79 -28,555.07*** 

 (0.08) (0.15) (0.10) (0.08) (0.12) (0.10) (0.03) (196.09) (9,961.37) 

Breed_Jersiaise -0.08 -0.33* -0.10 0.09 -0.14 0.14 -0.06 150.72 -18,422.16 

 (0.09) (0.17) (0.11) (0.09) (0.13) (0.11) (0.04) (273.38) (14,540.54) 



Breed_Montbéliard 0.29*** 0.09 0.35*** 0.50*** 0.31** 0.55*** -0.09** -434.16* -52,477.75*** 

 (0.10) (0.18) (0.12) (0.10) (0.14) (0.12) (0.04) (234.58) (12,067.69) 

Breed_Normande -0.04 -0.24 -0.07 0.09 -0.10 0.13 -0.06* -8.17 -28,479.70*** 

 (0.08) (0.15) (0.10) (0.08) (0.12) (0.10) (0.03) (190.22) (9,660.42) 

Breed_Pie rouge des 

plains 
-0.10 -0.15 0.18 0.22* 0.18 0.23 -0.04 56.03 -9,508.74 

 (0.15) (0.18) (0.14) (0.13) (0.17) (0.16) (0.04) (266.60) (22,183.79) 

Breed_Prim' Holstein 0.24 -0.20 0.03 0.37 -0.04 0.46 -0.12 -213.20 -34,177.55** 

 (0.41) (0.20) (0.21) (0.49) (0.18) (0.58) (0.08) (280.58) (16,248.82) 

Breed_Simmental 

française 
-0.38*** 0.24 0.01 -0.47** 0.11 -0.60** 0.04 467.66* 1,212.82 

 (0.15) (0.20) (0.12) (0.19) (0.15) (0.24) (0.04) (273.99) (15,339.27) 

Breed_Tarentaise 0.08 -0.54** -0.30* 0.18 -0.40** 0.31 -0.08 -315.34 -27,768.38* 

 (0.14) (0.25) (0.16) (0.19) (0.19) (0.23) (0.06) (254.02) (14,374.42) 

Breed_Vosgienne -0.17 -0.32 -0.42*** -0.30** -0.44** -0.27* -0.02 302.33 -39,514.31** 

 (0.12) (0.22) (0.16) (0.13) (0.18) (0.16) (0.05) (305.00) (15,877.06) 

Region_Auvergne -0.04 0.04 0.05 -0.01 0.06 -0.03 0.06*** 558.48* 15,659.30 

 (0.07) (0.10) (0.08) (0.07) (0.09) (0.09) (0.02) (298.56) (32,079.47) 

Region_Basse-

Normandie 
0.25*** -0.32* -0.16 0.28*** -0.25* 0.40*** -0.02 -552.33*** -51,453.56*** 

 (0.08) (0.18) (0.12) (0.09) (0.15) (0.12) (0.02) (183.32) (9,275.87) 

Region_Bourgogne 0.23** -0.07 0.16* 0.39*** 0.11 0.46*** -0.05** -393.83*** -64,047.37*** 

 (0.09) (0.15) (0.09) (0.13) (0.11) (0.16) (0.03) (135.70) (7,461.63) 

Region_Bretagne 0.21*** 0.02 0.02 0.16** -0.01 0.20** 0.001 -286.74** -36,645.13*** 

 (0.07) (0.12) (0.09) (0.08) (0.10) (0.09) (0.02) (143.34) (7,181.95) 

Region_Franche-

Comté 
0.20* -0.20 -0.01 0.29* -0.08 0.37* 0.01 -335.74** -33,271.94*** 

 (0.10) (0.19) (0.11) (0.16) (0.13) (0.20) (0.04) (160.11) (11,278.32) 

Region_Haute-

Normandie 
0.18* -0.10 -0.13 0.09 -0.18 0.15 0.06* 105.03 -26,798.40** 

 (0.10) (0.19) (0.15) (0.11) (0.17) (0.13) (0.03) (206.10) (10,897.82) 

Region_Lorraine 0.21*** 0.08 0.20* 0.30*** 0.19 0.33*** 0.01 -278.06* -19,426.82* 

 (0.07) (0.16) (0.11) (0.09) (0.13) (0.11) (0.03) (153.97) (10,862.93) 

Region_Nord-Pas-de-

Calais 
0.23*** -0.03 0.07 0.27*** 0.03 0.32*** -0.08*** -450.75*** -47,946.33*** 

 (0.04) (0.15) (0.09) (0.05) (0.11) (0.08) (0.03) (131.67) (4,856.05) 

Region_Pays-de-la-

Loire 
0.30*** -0.03 0.06 0.32*** 0.01 0.39*** -0.04 -410.20** -53,189.36*** 

 (0.09) (0.12) (0.09) (0.10) (0.10) (0.12) (0.03) (189.76) (7,535.73) 

Region_Rhône-Alpes 0.27*** -0.21 -0.01 0.36** -0.09 0.46** -0.04 -413.96*** -49,430.22*** 

 (0.10) (0.14) (0.08) (0.15) (0.10) (0.19) (0.03) (140.35) (9,581.19) 

Herd.Size -0.001 0.01*** 0.004*** -0.0004 0.01*** -0.002*** 0.0005*** 11.60*** 421.63*** 

 (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.0002) (1.29) (67.57) 

Surface 0.001* -0.01*** -0.004*** 0.001 -0.01*** 0.002*** -0.0001 -11.87*** -202.94*** 

 (0.001) (0.002) (0.001) (0.001) (0.002) (0.001) (0.0002) (1.37) (64.80) 

Constant 1.75*** -0.03 0.72* 2.09*** 0.44 2.45*** 0.11 988.78 75,013.07** 

 (0.31) (0.53) (0.43) (0.32) (0.50) (0.39) (0.13) (732.95) (32,352.84) 

Note: * p<0.1; ** p<0.05; *** p<0.01 
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Due to the presence of dummy variables, the treatment effect for organic farms cannot be directly compared to the 

constant. dLUC GHGE corresponds to Gross GHGE and on-farm carbon sequestration, while dLUC + iLUC 

account for carbon fluxes related to indirect LUC. dLUC + iLUC + Seq. Practices 2.5% and 97.5% are the lower 

and upper bounds of the bootstrapped estimation of the displacement factor used in the computation of the GHGE 

from iLUC. 

 



SI 7. ATT estimation   

 
Table SI 7a. Propensity score weighting and ATT. 

 
Gross 

GHGE 

dLUC 

GHGE 

dLUC + 

Seq. 

Practices 

GHGE 

dLUC + 

iLUC + Seq. 

Practices 

GHGE 

dLUC + 

iLUC + Seq. 

Practices 

2.5% 

dLUC + 

iLUC + Seq. 

Practices 

97.5% 

Gross 

Margin  

Gross 

Margin  

Gross 

Margin  

Gross 

Margin 

without 

price 

premium 

Total 

Revenue 

Value 

Added 

 
kgCO2e.L-

1 

kgCO2e.L-

1 
kgCO2e.L-1 kgCO2e.L-1 kgCO2e.L-1 kgCO2e.L-1 €.L-1 €.Ha-1 €.LU-1 €.LU-1 €.LU-1 €.LU-1 

 (1) (2) (3) (5) (6) (7) (8) (9) (10) (12) (11) (13) 

Treatment Effet 

- Organic 

0.03 

(0.03) 

-0.20** 

(0.09) 

-0.28*** 

(0.06) 

-0.10** 

(0.04) 

-0.31*** 

(0.08) 

-0.06 

(0.06) 

0.11*** 

(0.01) 

-117.2 

(88.57) 

-5,114.1 

(4,524) 

-19,937*** 

(3,869) 

-32,344*** 

(5,471) 

-5,717 

(3,907) 

Constant 
1.21*** 0.92*** 0.97*** 1.19*** 0.92*** 1.25*** 0.22*** 1,378.6*** 66,398*** 66,398*** 125,996*** 87,639*** 

(0.01) (0.06) (0.04) (0.01) (0.05) (0.03) (0.005) (40.95) (1,833) (1,833) (2,713) (1,882) 

Robustness – 

without farms’ 

surface 

0.04 

(0.03) 

-0.23*** 

(0.09) 

-0.31*** 

(0.06) 

-0.10** 

(0.04) 

-0.35*** 

(0.07) 

-0.05 

(0.05) 

0.11*** 

(0.01) 

-179.12** 

(87.37) 

-4,435.1 

(4,459) 

-19,719***  

(3,793) 

-31,648*** 

(5,325) 

-5,044 

(4,506) 

Robustness – 

without herds’ 

size 

0.03 

(0.03) 

-0.22*** 

(0.08) 

-0.30*** 

(0.05) 

-0.10** 

(0.04) 

-0.34*** 

(0.07) 

-0.05 

(0.05) 

0.11*** 

(0.01) 

-122.5 

(86.78) 

-6,052.1 

(4,529.) 

-20,875*** 

(3,876) 

-34,029***  

(5,422) 

-6,657 

(4,578) 

Robustness –    

t-tests 

0.08** 

(0.03) 

-0.41*** 

(0.07) 

-0.44*** 

(0.04) 
-0.06   (0.04) 

-0.51*** 

(0.05) 
0.04    (0.05) 

0.09*** 

(0.01) 

-534.7*** 

(80.1) 

-14,762*** 

(4,200) 

-29,584***        

(3,399) 

-43,666*** 

(4,866) 

16,223*** 

(4,257) 

Note: * p<0.1; ** p<0.05; *** p<0.01    

The constant corresponds to the weighted average of counterfactual conventional farms. The ATT reported in the manuscript, expressed in percentage points this weighted 

average and correspond to the Treatment Effect to Constant ratio. dLUC GHGE corresponds to Gross GHGE and on-farm carbon sequestration, while dLUC + iLUC account 

for carbon fluxes related to indirect LUC. dLUC + iLUC + Seq. Practices 2.5% and 97.5% are the lower and upper bounds of the bootstrapped estimation of the displacement 

factor used in the computation of the GHGE from iLUC. Value added is Total revenue minus inputs costs while Gross Margin corresponds to Value added minus labor costs.
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Table SI 7b. Propensity score weighting and ATT without excluding farms misreporting labor use.  

The constant corresponds to the weighted average of counterfactual conventional farms. The ATT reported in the 

manuscript, expressed in percentage points this weighted average and correspond to the Treatment Effect to 

Constant ratio. dLUC GHGE is Gross GHGE and on-farm carbon sequestration, while dLUC + iLUC account 

for carbon fluxes related to indirect LUC. dLUC + iLUC + Seq. Practices 2.5% and 97.5% are the lower and 

upper bounds of the bootstrapped estimation of the displacement factor used in the computation of the GHGE from 

iLUC. Value added is Total revenue minus inputs costs while Gross Margin corresponds to Value added minus 

labor costs. 

 
Table SI 7c. Propensity score weighting and ATT with a 50 years’ horizon for carbon sequestration and 

emission 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The constant corresponds to the weighted average of counterfactual conventional farms. The ATT reported in the 

manuscript, expressed in percentage points this weighted average and correspond to the Treatment Effect to 

Constant ratio. dLUC GHGE is Gross GHGE and on-farm carbon sequestration, while dLUC + iLUC account 

for carbon fluxes related to indirect LUC. dLUC + iLUC + Seq. Practices 2.5% and 97.5% are the lower and 

upper bounds of the bootstrapped estimation of the displacement factor used in the computation of the GHGE from 

iLUC. 

  

 
Gross 

GHGE 

dLUC 

GHGE 

dLUC 

+ Seq. 

Practice

s 

GHGE 

iLUC + 

dLUC 

Seq. 

Practices 

GHGE 

dLUC + 

iLUC + 

Seq. 

Practices 

2.5% 

dLUC + 

iLUC + 

Seq. 

Practices 

97.5% 

Gross 

Margin  

Gross 

Margin  

Gross 

Margin  

Gross 

Margin 

without 

price 

premium 

Total 

Revenue 

Value 

Added 

 
kgCO2

e.L-1 

kgCO2

e.L-1 

kgCO2

e.L-1 

kgCO2e.

L-1 

kgCO2e.

L-1 

kgCO2e.

L-1 
€.L-1 €.Ha-1 €.LU-1 €.LU-1 €.LU-1 €.LU-1 

Treatment 

Effet - 

Organic 

0.03 

(0.03) 

-0.19** 

(0.09) 

-0.28*** 

(0.06) 

-0.10** 

(0.04) 

-0.31*** 

(0.08) 

-0.06 

(0.06) 

0.15*** 

(0.01) 

38.2 

(96.1) 

-2,016 

(5,059) 

-9,195** 

(4,745) 

-38,636*** 

(5,802) 

-9,817*** 

(4,801) 

Constant 1.21*** 0.92*** 0.97*** 1.19*** 0.97*** 1.31*** 0.23*** 1041*** 71,765*** 71,765*** 133,574*** 93,026*** 

 (0.01) (0.06) (0.05) (0.01) (0.05) (0.03) (0.005) (42.2) (2,215) (2,215) (3,236) (2,268) 

Note: * p<0.1; ** p<0.05; *** p<0.01      

 
Gross 

GHGE 

dLUC 

GHGE 

dLUC + 

Seq. 

Practices 

GHGE 

dLUC 

+iLUC + 

Seq. 

Practices 

GHGE 

dLUC 

+iLUC + 

Seq. 

Practices 

2.5% 

dLUC 

+iLUC + 

Seq. 

Practices 

97.5% 

 
kgCO2e.L-

1 

kgCO2e.L-

1 

kgCO2e.L-

1 

kgCO2e.L-

1 

kgCO2e.L-

1 
kgCO2e.L-1 

Treatment 

Effet - 

Organic 

0.03 

(0.03) 

-0.06 

(0.04) 

-0.09*** 

(0.03) 

-0.03 

(0.03) 

-0.10* 

(0.03) 

0.01 

(0.05) 

Constant 1.21*** 1.09*** 1.12*** 1.19*** 1.10*** 1.21*** 

 (0.01) (0.02) (0.02) (0.03) (0.02) (0.01) 

Note:  * p<0.1; ** p<0.05; *** p<0.01 



SI 8. Correlation plots of key farms’ indicators   

 

Figure SI 8a. Correlation plot for the performances’ indicators of organic farms  

The numbers in each cells represent the p.value of the correlation. The strength and direction of the 

correlation is given by the colour of the cells.  
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Figure SI 8b. Correlation plot for the performances’ indicators conventional farms 

The numbers in each cells represent the p.value of the correlation. The strength and direction of the 

correlation is given by the colour of the cells. 
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Chapter 3 

 

Once a quality-food consumer, always a 

quality-food consumer? Consumption 

patterns of organic, label rouge and 

geographical indications in French 

scanner data 
 

 

 

 

 

Note: This chapter is based on a published paper under the same title, coauthored with 

Stéphane De Cara and Valentin Bellassen. 

 

 

  



3.0. Abstract 

 

The aim of this study is to analyze the behavior of French consumers with respect to food products under 

various quality labels (organic, label rouge, and geographical indications). In particular, we investigate 

if consumers who once purchase a product under a given label tend to purchase a large fraction of this 

product (and other products) under the same label.  

Using a large scanner database, the regularity of quality-food consumption is analyzed through the 

relative frequency of conventional and quality purchases. The respective roles in regular consumption 

of product attributes, availability and household characteristics are then examined using a random utility 

model. 

Regular organic consumers purchase around 28% of the organic market value, with variations depending 

on products. We find that product attributes are more related to regular organic behavior than household 

characteristics. In particular, product availability and product family (vegetables, eggs, milk, etc.) play 

a key role whereas low-price organic products are not associated with more regular consumption. 

Acknowledging the existence of regularity in organic consumption and understanding its variation 

between product categories should lead public policies to more often target specific products in order to 

develop quality-food consumption.  

 

Keywords: quality food, consumption behavior, organic, regularity, Lancaster.  
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 3.1. Introduction 

 

Over the last few years, the consumption of organic food has experienced a rapid and steady growth. In 

France, its value rose from € 5.9 billion in 2015 to € 9.7 billion—i.e., 5% of food expenditures—in 2018 

(Agence Bio, 2019a). In a recent French survey, about one in eight respondents declares eating at least 

one organic product a day (Agence Bio, 2019b). Other quality labels—such as Protected Designation of 

Origin (PDO), Protected Geographical Indication (PGI) or label rouge—also represent a substantial and 

increasing share in food consumption. For some products, these labels dominate organic ones as a 

quality sign. This is notably the case for cheese, for which geographical indications represent 11% of 

the French market, a much higher share than that of organic cheese (2%).   

The rising demand for quality-food products—defined here as products certified as organic, PDO, PGI 

or label rouge—impacts farming practices, land use, and value chains. As an illustration, the area 

devoted to organic agriculture in France has increased by 48.3% from 2015 to 2018, reaching 7.5% of 

the total agricultural area. As for other quality signs, between 2015 and 2019, the volume of meat and 

dairy products, fish, and eggs produced under these labels has increased from 602 to 665 thousand tons, 

reaching 1.5% to 1.8% of market share in these categories (INAO, 2019).   

Providing consumers with healthier and higher-quality food while leveraging the potential health and 

environmental benefits from less intensive agricultural practices without affecting too negatively 

farmers’ income has attracted renewed interest from policy makers. The development of the production 

and consumption of quality-food products (organic food, but also other quality signs) has become a 

central objective in agricultural and food policies. EGalim, a French law on food and agriculture passed 

in 2018, provides a good illustration of this trend in public policies.  

An adequate understanding of the demand-side determinants of quality-food consumption is thus critical 

to assess the potential impacts of such policies. In particular, it is important to determine whether the 

demand for these products comes primarily from a large base of occasional consumers or a small base 

of ‘regular’ ones. The recent increase in quality-food consumption is consistent with both a larger 

consumer base and an increasing share of quality-food in individual purchases. Which explanation 

dominates remains however an open question. This raises further questions regarding consumers’ 

behavior with respect to quality-food products. Do consumers tend to routinely and systematically 

purchase a product under the same label? If so, is this behavior restricted to some products, or consistent 

across the food basket? The answers to these questions may have strong implications for the design and 

targeting of the policies aiming to develop quality-food consumption. 

In this article, we define a ‘regular’ consumer—as opposed to an ‘occasional’ one—as a consumer who 

predominantly buys a given product with a consistent quality. Regularity in quality-food consumption 

is thus related to how consumers perceive and value quality labels. In this regard, previous research has 

shown that credence attributes—i.e., attributes that the consumer cannot identify through search nor 



experience—play a major role in the decision to buy quality-food products (Massey et al., 2018; Rana 

and Paul, 2017). If the demand for quality-food products is primarily driven by credence attributes, one 

may expect that regularity should be the rule rather than the exception.  

Yet, this intuition is at odds with recent evidence. In a study of organic food purchasing behaviors in 

France, Boizot-Szantai et al., (2017) find that organic food represents only 8.1% of total food 

expenditures of the consumers whose organic budget share is above the top quintile. This suggests that, 

even for the consumers who value organic food the most, a large share of their purchases goes to non-

organic products. That is not to say, however, that regularity is necessarily absent from consumers’ 

behavior. A consumer may well always choose to buy the organic version of some products, and 

systematically prefer the conventional version (or another quality label) of other products. The 

aggregation of all food expenditures at the food-basket level therefore may thus mask regularity patterns 

that occur at the product level.  

Our main objective is to identify and document regularity patterns in food purchasing behaviors at 

various levels of aggregation and for various quality labels, and to study the interplay with other drivers 

of quality-food consumption such as price, availability and socio-demographic characteristics of quality-

food consumers.  

Our study thus contributes to the large body of literature—in economics, but also in sociology and 

marketing science—that has examined consumers’ behavior and attitude towards quality-food products. 

The vast majority of this literature is focused on organic consumption, which covers a wider range of 

food products than other quality signs. This literature has investigated the effects of price, income, and 

socio-demographic variables on organic food consumption, as well as the role of the relative preferences 

for products objective characteristics (taste, color, etc.) and considerations regarding health, the 

environment, ethics, or animal welfare.  

Quantitative studies in this literature are based on two broad types of approaches. First, a number of 

studies use surveys or controlled experiments. These studies rely on stated preferences to elicit 

consumers’ preferences or willingness to pay for various goods with different characteristics or 

attributes. The experimental design makes it possible to disentangle potential confounding factors. 

However, they often rely on small sample sizes and/or may be subject to sampling biases. Furthermore, 

stated intentions to buy quality food may overestimate actual purchases (Sun and Morwitz, 2010). 

Studies in the second category are based on observational data. Those relying on scanner data are 

particularly relevant for the present study. By using detailed records of actual and repeated purchases 

by a large and representative sample of consumers, such studies allow to overcome some of the 

limitations faced by survey-based and experimental approaches.  Observed purchases do not, however, 

directly inform on consumers’ preferences. In addition, such data mostly pertain to purchases for food-

at-home consumption at the household level, which may differ from actual consumption at the individual 

level. 
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This literature has shed interesting light on the socio-demographic profile of quality-food consumers, as 

well as on the influence of product attributes on consumption behavior. For example, findings suggest 

that organic food consumers tend to be more educated and have higher income than conventional food 

consumers. They are more likely to be female and to have children, especially newborns (Gracia and de 

Magistris, 2008; Hughner et al., 2007). They also spend more on food and have a healthier diet (Boizot-

Szantai et al., 2017). Several studies underline the key importance of credence attributes in attitudes 

toward organic food. Consumers tend to place more value on credence attributes of organic products 

than on their search and experience attributes (Massey et al., 2018; Rana and Paul, 2017). The influence 

of credence attributes on the probability of purchasing organic products has been found to be larger than 

that of education, marital status, and income (Padilla Bravo et al., 2013). The review by Rödiger and 

Hamm (2015) shows inconclusive evidence with respect to the effect of price on organic consumption. 

Results from observational studies indicate that the effect of economic determinants of organic 

consumption, most notably price and availability, varies across products and types of retail stores (Buder 

et al., 2014; Dimitri and Dettmann, 2012; Padel and Foster, 2005). 

Regularity in organic food consumption has been much less studied than the influence of the socio-

demographics variables, price, income, or product attributes. Some survey-based studies have examined 

the factors influencing the probability that a consumer defines himself or herself as a regular organic 

consumer (Barrena and Sánchez, 2010; Baudry et al., 2019; Kesse-Guyot et al., 2013; Oates et al., 2012; 

Onyango et al., 2007; Pearson et al., 2013; Treu et al., 2017). However, as these studies are based on 

stated consumption averaged at the whole food basket level, it is difficult to draw robust conclusions on 

actual purchases at finer aggregation levels. Observational studies based on scanner data (Boizot-Szantai 

et al., 2017; Lacour et al., 2018a) provide some interesting findings about purchasing patterns, but, the 

focus in these studies is on the share of organic food in total food expenditures. Considering all food 

products together may mask regularity patterns at a more disaggregated level. 

Although expectedly important, the availability of quality-food products has also received less attention 

than other potential determinants (Dimitri and Dettmann, 2012). One reason lies in the difficulty to 

accurately quantify availability. As a consequence, availability has been overlooked in most survey-

based and observational studies of organic consumption.  

In this paper, we use a large scanner dataset of food purchases in France, provided by Kantar®, which 

provides detailed records (quantities, price, type of retail store, etc.) of purchases of 237 food products 

by an unbalanced panel of 12,453 French households between 2011 and 2016, along with socio-

demographic information about households (age, income, département of residence, household size, 

etc.). This dataset enables to decompose household food purchases at a fine level of disaggregation in 

terms of products. Importantly, it informs about the labels (organic, PDO, PGI, label rouge), if any, 

attached to each purchased product.  



In order to identify regularity, we use two complementary approaches. For a given product or category 

of products, we first examine whether the distribution of purchases under a given label is compatible 

with a large base of occasional consumers, or a small base of quality regulars. In a second step, we then 

investigate the influence of various determinants of the probability that a consumer is regular for a given 

product and label. The variables accounted for in this analysis include various characteristics of products 

(price, retailer brand, and availability), retail stores, and households (socio-demographic variables, 

income, city size, etc.). 

We take advantage of the richness of this information to address four main questions. First, can the 

consumption of a given (set of) product(s) be characterized as ‘regular’? In other words, do consumers 

purchase mostly one version of the product (conventional, organic, PDO, PGI, or label rouge) or do 

they buy a mix of various versions? Second, is regularity consistent across the food basket? Put 

differently, are quality regulars for a given product also regular for most of all other products they 

purchase? Third, how much of the total demand for quality-food products comes from regular 

consumers? Fourth, how do product attributes and household characteristics interplay in the probability 

that a given household is a quality regular for a given food product?  

Our contribution is threefold. First, we address these questions for a wide range of products sold under 

various labels. Contrary to most of the literature, which is predominantly focused on organic products, 

we extend the scope of the analysis to other quality labels such as PDO, PGI, or label rouge. Products 

under these labels have several important features in common with organic products. In particular, their 

production is often based on extensive farming practices with a potential to improve the sustainability 

of food systems (Arfini and Bellassen, 2020) and credence attributes play a major role in consumers’ 

decision to buy these products. They do however differ from organic products in a number of 

dimensions, such as the range of products covered by the label, availability, price, perception of 

environmental and health benefits, organoleptic characteristics, aspect, etc. We investigate whether 

different labels can be associated with different purchasing behaviors in terms of regularity. Besides, 

previous studies were often focused on only one or a few products. The large number of products (237) 

examined in this article allows us to further study how consumers’ behaviors varies with the type of 

products (Buder et al., 2014; Chekima et al., 2017; Padel and Foster, 2005).  

Second, we identify regularity patterns in quality-food consumption, but not for all products nor all 

labels. Such findings would not have been possible with the level of aggregation and coverage used in 

previous studies (Boizot-Szantai et al., 2017; Lacour et al., 2018a). 

Third, we propose a new indicator of availability of quality-food products. The main difficulty is that, 

availability of products that are not bought by consumers in the sample cannot be directly observed. We 

circumvent this difficulty by constructing a novel indicator based on web-scrapping techniques applied 

to online catalogues of retail stores. This indicator allows us to determine the share of retail stores where 

any given product can be found within a given region in the total number of stores visited by a given 



113 

 

consumer. This indicator is found to be strongly and positively correlated to the probability that a 

consumer is an organic regular.  

In sum, after detailing our methodology, we present the results organized in two axis, the first one on 

the identification of quality-food regular consumption and the second on its determinants, then discuss 

them and conclude.  



 3.2. Methodology 

 

3.2.1. Theoretical framework 

 

Consumers often have the choice between several versions of the same food product, e.g. between 

conventional, organic, PDO, PGI, or label rouge. Although different versions of the same product share 

some common characteristics, they may also differ along various attributes. Some of these attributes are 

specific to the product itself, whereas others are attached to the perceptions of the label by the consumers. 

Some can be observable through search and experience. Others remain unobservable and are therefore 

akin to credence attributes.   

Previous research has shown that credence attributes are major drivers of organic and other quality-food 

purchases (Barrena and Sánchez, 2010; Gracia and de Magistris, 2008; Massey et al., 2018; Rana and 

Paul, 2017). Most of the attributes that define a product—regardless of the presence of a label—can be 

identified by search and/or experience. In contrast, most of the distinctive attributes of quality-food 

items are credence attributes. Note that some of the credence attributes associated with a given label 

may be shared by all products under the same label. It is thus important to disentangle consumers’ 

preferences towards (i) food products regardless of their quality label and (ii) credence attributes 

associated with quality labels (or absence thereof) across all products. Note also that preferences for a 

quality label may vary from one product to the other.  

It is useful to illustrate the consumer problem by a simple theoretical framework inspired by Lancaster’s 

approach to consumer demand (Lancaster, 1966) and akin to the individual utility model of the BLP 

model (Berry et al., 1995). This simple model accounts for search and experience as well as credence 

attributes. Consider the choice faced by consumer i over a set J of food products (indexed by 𝑗). Food 

products are available in various qualities indexed by 𝑙 in 𝐿, including a conventional version (indexed 

by 𝑙 = 𝑐) and different quality labels. Assume that the consumer preferences can be represented by a 

utility function 𝑈𝑖 (𝑞𝑖0;  {𝑢𝑖𝑗𝑙(𝑞𝑖𝑗𝑙)}𝑗∈𝐽,𝑙∈𝐿), where 𝑞𝑖0 is the quantity of a composite non-food item, 𝑞𝑖𝑗𝑙 

is the quantity of j-th product of quality l, and 𝑢𝑖𝑗𝑙(. ) is the respective subutility function. For simplicity, 

assume that 𝑢𝑖𝑗𝑙(𝑞𝑖𝑗𝑙) takes the following simple Cobb-Douglas form: 

 

𝑢𝑖𝑗𝑙(𝑞𝑖𝑗𝑙) = 𝑎𝑖𝑗𝑙 ln(q𝑖𝑗𝑙) = 𝑎𝑖𝑗
𝑠𝑒 ln(q𝑖𝑗𝑙) + 𝑎𝑖𝑙

𝑐𝑟 ln(q𝑖𝑗𝑙) + 𝑎𝑖𝑗𝑙
𝑠𝑒×𝑐𝑟 ln(q𝑖𝑗𝑙)                    (1) 

 

The formulation in Eq. (1) characterizes the consumer utility with respect to product j of quality l. It is 

parameterized by 𝑎𝑖𝑗𝑙 > 0, which can be decomposed into three terms capturing the utility derived from 

search and experience attributes (se), credence attributes (cr), and an interaction term (𝑠𝑒 × 𝑐𝑟). The 

parameter 𝑎𝑖𝑗
𝑠𝑒 parametrizes the utility for the j-th product regardless of its quality. It captures how much 
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the consumer values product-specific attributes that can be apprehended by search and experience (e.g., 

in the case of an apple, characteristics such as the fact that it is a rather small, round, acid and sweet 

fruit). 𝑎𝑖𝑙
𝑐𝑟 parameterizes the utility for quality l across all products. This parameter is thus label-specific 

and captures how consumer i values the credence attributes attached to label l (e.g., in the case of organic 

products, the implications that farming practices do not rely on pesticides nor synthetic fertilizers). The 

third term 𝑎𝑖𝑗𝑙
𝑠𝑒×𝑐𝑟 captures the interaction between the search and experience attributes of product j with 

the credence attributes associated with quality l. This reflects that the credence attributes attached to a 

specific label may vary from one product to the other (e.g., the consumer may value more organically-

produced apples than organically-produced eggs). Further assume that the price of the conventional 

version of the product (𝑙 = 𝑐) is lower than the price of all other quality versions of the product. For 

simplicity, we normalize the parameters in Eq. (1) so that 𝑎𝑖𝑐
𝑐𝑟 = 𝑎𝑖𝑗𝑐

𝑠𝑒×𝑐𝑟 = 0 for all j. 

The quantities 𝑞𝑖𝑗𝑙 that maximize the consumer utility subject to the budget constraint depend on prices 

and income, as well as on the elasticities of substitution between products and qualities implied by the 

form of 𝑈𝑖(. ). One expects that the demand in product j of quality 𝑙 ≠ 𝑐 to be close to 0 if 𝑎𝑖𝑙
𝑐𝑟 and 

𝑎𝑖𝑗𝑙
𝑠𝑒×𝑐𝑟 are both close to 0—i.e., if the credence attributes attached to the label l are perceived as 

unimportant by the consumer relative to the search and experience attributes of the product. If this 

condition holds for all 𝑙 ≠ 𝑐, the product is predominantly purchased in its conventional version and the 

consumer is said to be a conventional regular. Conversely, if  𝑎𝑖𝑙
𝑐𝑟 + 𝑎𝑖𝑗𝑙

𝑠𝑒×𝑐𝑟 is sufficiently large relative 

to 𝑎𝑖𝑗
𝑠𝑒, the consumer is a quality l regular for product j. 

Moreover, if 𝑎𝑖𝑙
𝑐𝑟 is sufficiently large relatively to 𝑎𝑖𝑗𝑙

𝑠𝑒×𝑐𝑟 for all j—that is, if the consumer mostly values 

the credence attributes associated with the quality label l—and 𝑈𝑖(. ) is such that the consumer 

preferences exhibit some taste for product variety, one should expect the quantities of purchased food 

items of quality l to be positively correlated across products. If, to the contrary, the consumer mostly 

values the credence attributes when they are associated with a specific subset of search and experience 

attributes–corresponding to 𝑎𝑖𝑗𝑙
𝑠𝑒×𝑐𝑟 being much larger than 𝑎𝑖𝑙

𝑐𝑟  for a few values of j, one should expect 

little correlation between the purchased quantities of products of quality l. 

 

3.2.2. Distribution of quality-food consumption 

 

We first investigate regularity by analyzing the distribution of the quality consumption rate of a given 

product, i.e. the ratio of purchases of the quality version of the product over the total number of purchases 

during the time span the household remains observed in our dataset. Individuals who almost never buy 

the quality version of the product are characterized by a quality consumption rate close to 0. They are 

said to be ‘conventional regulars’; those who mostly purchase the quality version (i.e., quality 

consumption rate close to 1) are said to be ‘quality regulars’.  



The first part of our investigation is organized around the three following hypotheses: 

- For a given product, consumers are regulars: they either purchase mostly its conventional 

version or its quality version, but not a mix of both (H1); 

- Quality regular consumption is consistent across the food basket: a consumer who is a quality 

regular for a product is a quality regular for an important part of his food basket (H2); 

- The total turnover of quality products purchased by regulars is substantial (H3). 

If H1 holds true, the distribution of the quality consumption rate among the sample should be bimodal, 

with a mode around 0 (conventional regulars) and another around 1 (quality regulars). Figure 1 illustrates 

such a case. The dashed lines represent the two thresholds under and above which a consumer is 

considered as a conventional or organic regular, respectively.  

 

Figure 4. Bimodal distribution and classification of quality-food consumers  

 

Following (Silverman, 1981), it is possible to test if the density of a distribution has more than k modes 

using kernel density estimation. Indeed, the kernel density estimate for window width h based on the 

observations X1,...,Xn is defined by  

𝑓(𝑡, ℎ) = 𝑛−1ℎ−1∑ 𝐾{ℎ−1(𝑡 − 𝑋𝑖)}
𝑛
𝑖=1 ,                                              (2) 

where 𝐾 is the normal density function in our case. The window width h is a parameter controlling to 

which extent the observations are smoothed in order to obtain the kernel estimate and t is the 

endogenously estimated mean of the kernel. If the data is multimodal, a large value of h will be needed 

to obtain a unimodal kernel estimate.  

The test relies on the comparison between the estimated h for a unimodal distribution and hcrit, the k-

critical window width, defined as:  

ℎ𝑐𝑟𝑖𝑡 = 𝑚𝑖𝑛{ℎ, 𝑓(. , ℎ) ℎ𝑎𝑠 𝑎𝑡 𝑚𝑜𝑠𝑡 𝑘 𝑚𝑜𝑑𝑒𝑠}. 
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The lowest hcrit gives the most likely number of modes for the distribution. Using the Silverman test, we 

can thus test whether the distribution of quality-food consumption is bimodal for each product and 

product family.  

To test H2, we define three types of behavior toward quality and organic food, illustrated in Figure 1: 

- conventional regulars, who are almost never buying the quality version of a product (0-20% of 

quality purchases for a given product); 

- quality-food regulars, who are almost always buying the quality version (more than 80% of 

quality purchases for a given product); 

- and occasional quality-food consumers (20-80% of quality purchases for a given product). 

The 20% and 80% thresholds are partly arbitrary. However, when a beta distribution is fitted to the 

organic consumption rate of products with a bimodal distribution, around 90% of the values are either 

above or below these thresholds (see Supplementary Materials (SM) 1 for the detailed procedure). 

Through this typology, we also assess the duplication of quality consumption behavior across different 

products (H2): if I am an organic regular for eggs, am I likely to be an organic regular for milk? (see 

(Monier et al., 2009) for an example of this question in a two-products case). 

 

3.2.3. Determinants of the probability to be a regular organic consumer 

 

In a second step, we assess which product attributes or household characteristics influence whether a 

quality-food consumption (ith consumer x jth product) is regular. Because no regular behavior is 

identified for geographical indications and label rouge products (see section 4.1.1), this second step is 

restricted to organic products. We use the random utility discrete choice framework (McFadden, 2001) 

as an application of the theoretical model. In this model, the utility function is assumed to be well-

behaved (preferences are complete, reflexive and transitive) and known by the consumer. Thus, the 

consumer can compare the organic and conventional alternatives of a product and rank them in order to 

purchase the product that maximizes his utility. However, some parts of the utility function, essentially 

the preference for the credence attributes per se, cannot be separated from other elements in scanner 

data. This is why the random utility model is used here to identify which product attributes or household 

characteristics influence quality-food regularity rather than a structural estimate of the coefficients in 

equation (1) of our theoretical framework. The random utility model describes the utility (𝑈𝑖𝑗𝑜) of the 

ith consumer purchasing the jth product in its organic version as the sum of the observed attributes (𝑉𝑖𝑗) 

and a random component (휀𝑖𝑗): 

 𝑈𝑖𝑗𝑜 = 𝑉𝑖𝑗𝑜 + 휀𝑖𝑗𝑜                                     (3) 

 

 

 



Similarly, the utility (𝑈𝑖𝑗𝑐) of the conventional product j’s choice is described as: 

𝑈𝑖𝑗𝑐 = 𝑉𝑖𝑗𝑐 + 휀𝑖𝑗𝑐                                                (4)         

The ith consumer will be an organic regular for the jth product at time t if 𝑈𝑖𝑗𝑜 > 𝑈𝑖𝑗𝑐  and the probability 

that this consumer will be an organic regular can be written as: 

𝑃(𝑌𝑖𝑗𝑡 = 1) = 𝑃(𝑈𝑖𝑗𝑡𝑜 > 𝑈𝑖𝑗𝑡𝑐) = 𝑃(휀𝑖𝑗𝑡𝑐 − 휀𝑖𝑗𝑡𝑜 < 𝑉𝑖𝑗𝑡𝑜 − 𝑉𝑖𝑗𝑡𝑐) = 𝑃(휀𝑖𝑗𝑡 < 𝑉𝑖𝑗𝑡𝑜 − 𝑉𝑖𝑗𝑡𝑐)              (5) 

where  𝑌𝑖𝑗𝑡 is a binary choice variable: 

𝑌𝑖𝑗𝑡 = {
1 if the 𝑖th consumer is an organic regular for the 𝑗th product at time 𝑡

0 otherwise
 .  

Defining 𝑓(휀𝑖) as the density function of 휀𝑖, (3) becomes: 

𝑃(𝑌𝑖𝑗𝑡 = 1) = ∫ 𝑍𝑖𝑗𝑡(
 

𝜀
휀𝑖𝑗𝑡 < 𝑉𝑖𝑗𝑡𝑜 − 𝑉𝑖𝑗𝑡𝑐)𝑔(휀𝑖𝑗𝑡)𝑑휀𝑖𝑗𝑡,                       (6) 

where 𝑍𝑖𝑗𝑡 is a binary variable indicating if the term inside the parenthesis is true (𝑍𝑖𝑗𝑡 = 1) or false 

(𝑍𝑖𝑗𝑡 = 0), i.e. if the utility derived from the regular organic choice exceeds the one from the 

conventional choice. Furthermore, 𝑍𝑖𝑗𝑡 can be empirically described as depending on the ith consumer 

characteristics and the jth product attributes at time t. Because most households remain in the panel for 

several years – on average 5 years – a random household effect is introduced to correct for the within-

household correlation in the error terms: 

𝑍𝑖𝑗𝑡 = 𝛽𝑋𝑖𝑗𝑡 + 𝑢𝑖 + 휀𝑖𝑗𝑡                             (7) 

where 𝑋𝑖𝑗𝑡 = (𝑥𝑖𝑗𝑡1, … , 𝑥𝑖𝑗𝑡𝑘) is a matrix of variables explaining the choice of being a regular organic 

consumer, i.e. they represent the jth product attributes (price ratio between the organic and the 

conventional version, a binomial variable indicating if the product is processed or not, the type of shop 

where the product is bought…) or the ith consumer characteristics (age of children, income, size of the 

city in which they live, their socio-professional category…), 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑘) is a vector of 

parameters to be estimated, 휀𝑖𝑗𝑡 captures the idiosyncratic residuals and 𝑢𝑖 is a random effect related to 

the ith household, accounting for the unobserved heterogeneity of the households and the correlation 

among the 휀𝑖𝑗𝑡. 

To estimate Eq. (7) with scanner data, we assume that 휀𝑖𝑖𝑡 follow a logistic distribution and thus that 

휀𝑖𝑗𝑡𝑐 and 휀𝑖𝑗𝑡𝑜 are identically and independently distributed as type I extreme value (Onyango et al., 

2007). This hypothesis on the distribution of the errors terms may sometimes be violated in empirical 

analysis, as the unobserved portion of utility, captured by the errors terms, can be correlated among the 

different consumer x product couples, but the potential induced bias is limited (Train, 2003). Under this 

assumption, 𝑃(𝑌𝑖𝑗 = 1), the probability that the consumer i is an organic regular for the product j is 

given by the following logit model: 

𝑃(𝑌𝑖𝑗 = 1) = 𝐹(𝑍𝑖𝑗) = 𝐹(𝛽𝑋𝑖𝑗𝑡 + 𝑢𝑖) =
1

1+exp(−𝛽𝑋𝑖𝑗𝑡+𝑢𝑖)
.                                     (8) 

Furthermore, we construct two other logit models, one—Logit Product—using only the information on 

the product attributes and the other—Logit Household—using only the variables describing the 
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consumers’ characteristics. Using a likelihood ratio test, we then compare the goodness of fit of these 

two models, in order to assess which set of characteristics—products’ vs households’—is the most 

important driver of regular organic behavior. 

We repeat the analysis on a restricted sample containing only households who purchased at least 20% 

the product of interest as organic. This allows to examine whether the same variables are correlated to 

the probability of being a regular organic consumer for a product, compared to being either a 

conventional or occasional consumer (called thereafter “full sample logits”) or to the probability of being 

a regular organic consumer compared to being an occasional consumer only (“restricted sample logits”). 

 

3.3. Data 

 

This paper uses French data from Kantar WorldPanel which contains food-at-home purchases of French 

households. For the analysis, we use the number of organic, quality and conventional products 

purchased, filtering out households who bought less than three times the considered products. To define 

the product families (level 1, 23 families), the classification from (Boizot-Szantai et al., 2017) is reused, 

with more detailed groups for fruits and vegetables. We also created a more in-depth classification (level 

2, with 237 categories/products), which differentiate each fruit and vegetable (carrots, potatoes…) and 

types of meat (pork, beef…). In this panel data, we also have socio-economic information on 12,453 

yearly active households, surveyed one or several years from 2011 to 2016 (5 years on average) whose 

descriptive statistics are presented below (Table 1). In addition, a map of the spatial distribution of our 

sample in France is available in SM 3. 

  



Table 3. Descriptive statistics of the households in the sample (relative frequencies) 

 

As shown in the introduction, the organic products’ availability and their price differences compared to 

conventional versions are presented as key drivers of organic consumption. 

However, in the recent literature on organic consumption, availability is most often neglected. In order 

to assess the role of product availability on consumption behavior, an indicator of the availability of 

quality-food—organic, Label Rouge or geographical indications—is developed for each consumer. This 

indicator is the share of shops which offer the quality food of interest out of all shops where the 

household is usually shopping and the exhaustive results are available in the Supplementary Data 

(available online in the published version of the paper). It is computed after the following steps: 

For each household, we define the set of shops where it is usually shopping as the shops where the 

household went at least three times. 

For each shop, we estimate that a given quality product is available if it has been purchased by at least 

one household in a shop of the same retail chain, same size (hypermarket/supermarket) and in the same 

region. These three variables are indeed the most important in predicting the availability of organic 

products: together, they explain 68% of the variance in the number of organic items available for online 

purchase in the Burgundy region (see SM 2 for details on data collection and regression). 

At shops where there are few purchases for a given product, the absence of organic purchases may be 

an artefact caused by data scarcity rather than actual unavailability. These shop x product combinations 

are filtered out as “no data” to avoid false negatives. For this purpose, the act of buying an organic 

Years Children 
Professions and socio-

professional categories 
City Family status Income category 

2011 15.0% No children                                     67.7% Managers, 

shopkeepers and heads 

of companies 

34.3% City of less than 

2000 inhabitants                                                   

27.7% Couple 61.8% Superior 

middle 

income 

39.9% 

2012 14.9% Youngest child 

<25 month 

5.5% Farmers 0.8% City of 2000-4999 

inhabitants 

6.9% Single 38.2% High income            48.5% 

2013 15.3% Youngest child 

>25 months and 

<5 years 

7.9% Managers and superior 

professions 

9.1% City of 5000-9999 

inhabitants 

6.0%   Inferior 

middle 

income 

9.3% 

2014 17.8% Youngest child >6 

years and <10 

years 

10.3% Employes                                    20.9% City of 10 000-19 

999 inhabitants 

5.5%   Low income             2.3% 

2015 16.5% Youngest child 

>11 years and <15 

years 

8.7% Manual occupations 16.2% City of 20 000-49 

999 inhabitants 

6.7%     

2016 20.5%   Intermediate 

professions 

15.2% City of 50 000-99 

999 inhabitants 

6.6%     

    Retired 1.8% City of 100 000-199 

999 inhabitants 

4.7%     

    Unemployed, student 1.6% City of more than 

200 000 inhabitants 

20.2%     

      Paris agglomeration 15.7%     
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product in a given shop is assumed to follow a binomial law using the nationwide average share of 

organic purchases for this product as its probability of success. We determine the critical (minimal) 

sample size, for a given significance level of 0.05 and a power level of 0.8, for which the hypothesis 

that the product is available but has not been purchased can be rejected.  

Then, if the observed number of purchases of a product is above the critical sample size and if the 

organic version has never been purchased, we can assert that the organic version of the product is not 

available. However, if the organic version has been purchased at least one time, we directly assess that 

it is available in the shop considered. 

The indicator of availability for each household is then defined as the proportion of shops offering the 

organic product among all shops in which the household purchases food. The indicator ranges between 

0—the organic version of the product is never available to the household, and 1—the organic version of 

the product is available in all the shops the household attends to.  

 

Similarly, we develop a price ratio indicator (organic price per kg divided by conventional price per kg) 

between organic and conventional versions of a same product, which varies depending on the region, 

the shop and the product considered. In addition, we create an absolute price difference indicator 

(organic price per calorie – conventional price per calorie, the harmonization per calorie making it 

comparable across product families). 

  



3.4. Results 

 

3.4.1. Bimodality of quality-food consumption at different aggregation levels 

 

3.4.1.1. Consumption behavior of geographical indications and label rouge  products is 

occasional  

For the few products for which information on quality purchases other than organic is available (labelled 

meat, fish, eggs, processed meat and cheese), these quality purchases are not bimodally distributed, with 

the exception of processed meat (label rouge and PDO matured ham) which has a mode above 80% of 

quality purchases (Table 2). It must be noted that label rouge and PDO/PGI information are lacking for 

some products (i.e. meat, where certification information is available for chicken only). Consumers thus 

buy these products as exceptional purchases, possibly for special occasions. H1 is therefore invalidated 

for geographical indications and label rouge, and so is H2. Moreover, only 3% of the market value of 

these certified products is purchased by regular consumers, which invalidate H3 (for an example, see 

Table 4). As geographical indication and label rouge products are not subject to regular consumption, 

we do not perform the second part of the analysis (estimation of the determinants of regular 

consumption) for them. 

 

Table 4. Distribution of the quality labels (PDO, PGI, label rouge) consumption per product family 

 

Nb of bimodal 

categories 

Nb of unimodal 

categories 

Nb of multimodal 

regular categories 

Nb of multimodal not 

regular categories 

Meat (Chicken only) 2   

Processed Meat 2 3 2 2 

Seafood  2   

Eggs  1   

Cheese  1   

Unimodal = single mode (no regular behavior or only conventional regulars) / Bimodal = two modes with one 

lower than 20% and the second higher than 80% (regularity, either conventional or quality-food) / Multimodal 

regular = at least three modes, including one higher than 80% (existence of all consumer types: conventional 

regulars, occasional and quality regulars) / Multimodal not regular = at least three modes, none higher than 80% 

(no quality regulars). 

 

3.4.1.2. Organic regulars are consistent for a given product, but not among product 

families 

56% of the 23 families of products are subject to regular behavior from a significant share of consumers 

(Table 3): 35% of distributions are bimodal and 21% are multimodal with one mode in the 80-100% 

range). However, the rationale for agglomerating products into families is not necessarily suited to assess 

the consistency of consumer behavior. Indeed, consumers are more consistent at the product level (for 

exhaustive results see the SD 2 and 3): 80% of products are subject to regular behavior from a significant 
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share of consumers (bimodal (44%) or multimodal with a mode in the 80-100% range (36%)). For 

example, the distribution of the organic fat product family is not bimodal while a deeper look at the 

distribution of the 5 products categories composing this family shows that 3 fat products categories have 

a bimodal organic consumption distribution (Figure 5). H1 is therefore validated for organic products. 

 

Table 5. Distribution of the organic consumption per product family 

 

Nb of 

bimodal 

distributions 

at product 

level 

Nb of 

unimodal 

distributions 

at product 

level 

Nb of multimodal 

distributions with 

one mode higher 

than 80% 

Nb of multimodal 

distributions 

without mode 

higher than 80% Family distribution 

Alcoholic beverages 1 1 3 3 Multimodal regular 

Appetizers 0 0 3 0 Multimodal regular 

Baby foods 4 0 2 0 Bimodal 

Biscuits, cakes and pastry 1 0 3 0 Unimodal 

Bread, flour 1 0 1 1 Bimodal 

Cheese 1 1 1 0 Unimodal 

Confectionary products 2 1 2 2 Unimodal 

Culinary ingredients 11 2 11 2 Unimodal 

Desserts 0 0 1 0 Bimodal 

Eggs 1 0 0 0 Bimodal 

Fat 3 0 1 1 Unimodal 

Fresh F&V 45 3 20 6 Unimodal 

Hot drinks 1 0 2 1 Unimodal 

Prepared Meal 2 1 3 0 Multimodal regular 

Meal substitutes 2 0 0 0 Bimodal 

Meat 0 0 3 2 Unimodal 

Milk 1 0 1 0 Bimodal 

Non-Alcoholic beverages 0 1 2 0 Unimodal 

Processed F&V 24 1 7 8 Unimodal 

Processed Meat 3 1 10 5 Bimodal 

Seafood 0 0 4 2 Multimodal regular 

Starchy foods 0 1 3 1 Unimodal 

Sweeteners 1 0 3 0 Multimodal regular 

Unimodal = single mode (no regular behavior or only conventional regulars) / Bimodal = two modes with one 

lower than 20% and the second higher than 80% (regularity, either conventional or quality-food) / Multimodal 

regular = at least three modes, including one higher than 80% (existence of all consumer types: conventional 

regulars, occasional and quality regulars) / Multimodal not regular = at least three modes, none higher than 

80% (no quality regulars). 



Figure 5. Distribution of the organic consumption of fat products 

 

3.4.1.3. The basket of organic regulars remains dominated by conventional products  

Even if the existence of organic regulars can be observed for 80% of food products, the consumers that 

purchase several products as organic regulars are scarce. More than 71% of our sample does not buy 

any product as organic regulars and only 6% purchase more than 5 products as organic regulars (see SD 

4 for exhaustive results). The consumers in our sample purchase on average 80 different products. This 

shows that most consumers have a regular organic behavior for only a few products (Figure 3). Thus, 

regular organic behavior is not very consistent across products and H2 is invalidated (Marian et al., 

2014). 

In our theoretical framework, this indicates strong interaction effects in the consumer utility function 

(Eq. (1)) between the organic (credence) attribute of a product and the search and experience attributes 

(roots vegetables, fruits growing in a tree …). In product families compounded of many categories such 

as fresh Fruits and Vegetables (F&V), the regular organic behavior seems coherent among very similar 

products (quasi-substitutes, e.g. lemons and oranges), but not among modestly close products (e.g. 

carrots and onions). The interaction effect could therefore reveal itself for search and experience 

attributes slightly more generic than the product level, but certainly more specific than the product 

family level. 

There is however a non-negligible category of consistent regulars: 0.8% of consumers are organic 

regulars for more than 40 products, that is half of the average basket, noting that many minor products 

are often not available at all under the organic label. For this consumer category, the appetence for the 
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credence attribute per se is strong (𝑎𝑖𝑙
𝑐𝑟 >> 𝑎𝑖𝑗𝑙

𝑠𝑒×𝑐𝑟) in our theoretical framework). This consumer 

category represents 3% of all regulars for at least one product. 

 

Figure 6. Distribution of the number of categories for which consumers are organic regulars 

 

The number of categories is log-transformed and bound at 40 to increase the visibility of the plot. 

 

3.4.1.4. 28% of the organic market is purchased by regular consumers 

The share of the organic market in France purchased by organic regulars averages at 28%, which tends 

to validate H3. However, this average is heavily influenced by the market values of the products, which 

strongly differs between product families. For example, the market for organic wine is five times larger 

than the one of organic broccolis, but the share of the organic market purchased by regulars is only 8% 

for wine compared to 75% for broccolis. Thus, the size of the market and the unit values of products 

strongly drive down the average share of the organic market purchased by regulars. Among the detailed 

results, 40%, 33% and 43% of the organic eggs, organic F&V and the organic milk markets are 

purchased by regulars, respectively (Table 4). 

  



Table 6. Examples of the organic market share represented by regular consumers (exhaustive results are 

available in SD 2) 

  Share of the 

consumers 

Share of organic 

market 

Average frequency of 

organic purchases 

Eggs Conventional regulars 85% 10% 2% 

Occasional consumers 11% 50% 44% 

Organic regulars 4% 40% 92% 

Milk Conventional regulars 90% 11% 2% 

Occasional consumers 7% 46% 43% 

Organic regulars 3% 43% 92% 

Label 

rouge raw 

ham 

Conventional regulars 63% 20% 0.6% 

Occasional consumers 35% 72% 38% 

Quality regulars 2% 8% 90% 
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3.4.2. Determinants of regular organic consumer behavior 

 

3.4.2.1. Product availability and product family are key determinants  

Table 7. Selected results of the Logit models 

 Full Logit 
Full Logit 

Household 

Full Logit 

Products 

Restricted 

Logit 

Restricted 

Logit 

Household 

Restricted 

Logit 

Products 

 (1) (2) (3) (1) (2) (3) 

Hard-discount 0.453***  0.427*** -0.097  -0.104 

 (0.063)  (0.063) (0.064)  (0.064) 

Hypermarket 0.557***  0.548*** 0.197***  0.203*** 

 (0.044)  (0.044) (0.046)  (0.046) 

Organic Shop 3.360***  3.357*** 1.809***  1.813*** 

 (0.052)  (0.052) (0.051)  (0.051) 

Retailer brand 0.817***  0.815*** 0.704***  0.705*** 

 (0.024)  (0.024) (0.027)  (0.027) 

Price ratio between organic & 

conventional 

0.018  0.017 0.181***  0.182*** 

(0.015)  (0.015) (0.033)  (0.033) 

Absolute price difference 

between organic & 

conventional 

0.031* 

(0.016) 

 
0.031* 

(0.016) 

-0.101 

(0.079) 

 
-0.101 

(0.079)   

Youngest child <25 month 
0.065 

(0.078) 

0.232*** 

(0.076) 
 

0.030 

(0.074) 

0.094 

(0.072) 
 

Youngest child >11 years and 

<15 years 

-0.072 

(0.071) 

-0.128* 

(0.069) 
 

0.015 

(0.070) 

-0.022 

(0.068) 
 

Managers and superior 

professions 

0.325*** 

(0.086) 

0.315*** 

(0.085) 
 

0.153** 

(0.074) 

0.205*** 

(0.073) 
 

Manual professions -0.326*** -0.267***  0.035 -0.052  

 (0.077) (0.077)  (0.069) (0.068)  

Retired -0.241 -0.223  -0.246 -0.203  

 (0.192) (0.195)  (0.166) (0.168)  

City of 5000-9999 inhabitants 
0.081 

(0.119) 

0.113 

(0.121) 
 

-0.012 

(0.099) 

0.012 

(0.099) 
 

City of more than 200 000 

inhabitants 

0.330*** 

(0.078) 

0.335*** 

(0.079) 
 

0.066 

(0.063) 

0.158** 

(0.064) 
 

Paris agglomeration 
0.191** 

(0.088) 

0.180** 

(0.089) 
 

-0.066 

(0.071) 

0.065 

(0.070) 
 

Single -0.170*** -0.109**  -0.100** -0.130***  

 (0.053) (0.051)  (0.050) (0.049)  

High income household 0.109** 0.090*  -0.052 -0.027  

Low income household 
-0.183 

(0.172) 

-0.170 

(0.174) 
 

-0.155 

(0.148) 

-0.111 

(0.146) 
 

BMI -0.198*** -0.216***  -0.020*** -0.031***  

 (0.028) (0.028)  (0.006) (0.006)  

Availability 0.335***  0.340*** 0.574***  0.576*** 

 (0.016)  (0.016) (0.069)  (0.069) 

Baby foods 0.884***  0.911*** 0.610**  0.634** 

 (0.266)  (0.266) (0.287)  (0.286) 



Bread, flour 0.826***  0.826*** 0.547**  0.547** 

 (0.255)  (0.255) (0.274)  (0.274) 

Eggs 2.283***  2.284*** 1.992***  1.998*** 

 (0.052)  (0.052) (0.058)  (0.058) 

Meat 0.101  0.103 0.198  0.202 

 (0.128)  (0.128) (0.129)  (0.129) 

Milk 2.496***  2.496*** 2.321***  2.327*** 

 (0.053)  (0.053) (0.060)  (0.060) 

Processed F&V 0.159  0.161 0.381  0.380 

 (0.256)  (0.256) (0.277)  (0.277) 

Starchy foods 0.283  0.283 0.186  0.186 

 (0.256)  (0.256) (0.275)  (0.276) 

Processed Product 
0.318 

(0.250) 
 

0.317 

(0.250) 

0.257 

(0.269) 
 

0.260 

(0.269) 

Constant -8.753*** -6.666*** -8.276*** -3.569*** -2.223*** -3.397*** 

 (0.174) (0.077) (0.062) (0.161) (0.065) (0.060) 

Number of households 12453 12453 12453 8854 8854 8854 

Household random effect’s 

standard deviation 
2.162 2.222 2.228 1.162 1.174 1.207 

Observations 1,221,430 1,221,430 1,221,430 70,549 70,549 70,549 

Log Likelihood -47,362 -53,323 -47,493 -31,058 -33,801 -31,084 

Akaike Inf. Crit. 94,858 106,714 95,071 62,251 67,670 62,255 

Notes: 
***, **, *, Significant at the 1, 5, 10 percent levels respectively. The values between brackets refer to the 
standard deviation of the coefficients. This table presents a selection of the variables used in the models 

based on their interests for the discussion. The exhaustive results are available in SM 4. 

Retailer brand is a dummy that takes the value 1 if more than 50% of the purchases of a product where 
from the retailer brand. 

A household of 4 members is considered of low income if its monthly income in under 2094€ and of 

high income if its monthly income is above 5808€. 

 Dummy variables Reference level  

 Shop type Open-air market  

 Youngest child No children  

 Working occupation Artisan and craftsman  

 Size of City <2000 inhabitants  

 Economic status Superior middle income  

 Product family Fresh F&V  

 

The logit model on the whole sample (Table 5, model 1) shows that regular organic behavior is more 

likely to occur when a consumer makes most of its purchases for a given product at a specialized organic 

store and if he purchases the organic product from the retailer brand. The price ratio between the organic 

and conventional versions of product is not significantly correlated with the probability of being a 

regular organic consumer while the absolute price difference between the two versions is positively 

correlated with it: a higher the price difference is associated with a higher share of organic regulars. 

The typical organic regulars are single, without children and have a lower Body Mass Index (BMI), 

indicating that they have a healthier diet or practice more physical activities. They usually also have a 

high income, a managerial or superior professions or are own-account workers and live in large cities. 

However, consumers living in rural areas (reference level) are more likely to be organic regulars than 

the ones livings in small cities. 
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The logit regressions reveal that some product families are more likely to be purchased by organic 

regulars than others: baby foods, biscuits, cakes and pastry, bread and flour, confectionary products, 

desserts, eggs, fat, beverages, meal substitutes, milk, sweeteners, processed F&V and starchy food. The 

availability of the organic version of a product in the shops the consumers usually visit appears as a 

significant driver of regular behavior. 

When using a smaller sample, compound of occasional and regular organic consumers only, the results 

are similar (Table 5, model 4). Nevertheless, in these restricted logit models, the role of prices differs: 

when comparing occasional and regular organic consumers, a higher price ratio between organic and 

conventional products is associated with a higher probability of being a regular consumer whereas the 

correlation with the absolute price difference becomes non-significant. In addition, in all logit models, 

the standard deviation of the households’ random effect is high, of comparable size with the largest 

treatment effect (eggs family), which show an important household-related variability of the probability 

of being an organic regular. 

 

3.4.2.2. Products’ attributes matter more than households’ characteristics  

Two other logit models are also computed, one using as predictor variables the information related to 

the products only (price ratio, frequency, processed or not…) and the other using the information on the 

household only (number of children, wealth, professional status…). Performing a Likelihood Ratio test, 

we conclude that the model using product informations predicts better the regular consumer behavior 

(Table 6). These results still stand when using the restricted sample of occasional and regular organic 

consumers.  

 

Table 8. Likelihood Ratio tests between the models of product attributes and household characteristics, whole 

sample 

Model 
Numbers of 

Variables 

LogLikelihood 

Value 

Logit prediction 

accuracy 

Sensitivity Specificity 

Logit Full 60 -47,362*** 98.9% 69% 99% 

Logit Products 36 -47,493*** 98.9% 69% 99% 

Logit Household 24 -53,323*** 98.7% 60% 99% 

Restricted Logit Full 60 -31,058*** 82.3% 72% 84% 

Restricted Logit Products 36 -31,084*** 82.1% 72% 84% 

Restricted Logit Household 24 -33,801*** 79.6% 67% 82% 
***Likelihood ratio test significant at the 1 percent level. 

 

   

 

 

 

3.5. Discussion 

 



3.5.1. Strong interrelation between credence and search & experience attributes in 

determining regular organic consumption. 

 

The first part of this paper, focusing on the bimodality of organic consumption, outlines the product 

families for which regular consumer behaviors can be found: hot drinks, milk, eggs, baby foods, meal 

substitutes, desserts (which include dairy products) and bread and flour (Table 5). The results are 

confirmed by the logits on regular organic behavior, in which these products families have positive 

regression coefficients (Table 7). Except F&V and starchy food, these product families are the most 

purchased ones in the organic market (Agence Bio, 2019b; Hill and Lynchehaun, 2002). Clearly, product 

availability plays a role: product families that are difficult to find organically in conventional 

supermarkets (meat or seafood for example) are not dominantly subject to regular consumption 

behavior: their share of organic purchases is unimodal. Also, the fact that some product families are 

compound of more products than others (for example, fresh F&V family has 71 products while milk has 

only two) influence the distribution of organic consumption, as shown in Figure 2. Moreover, the 

characteristics of organic products (price, quality, availability) likely vary between outlets. Consumers 

are likely to be influenced by the choice offered at the outlet where they shop most often, which may 

explain why consumers who mostly shop at specialized organic shops are more likely to be regulars 

than those shopping mostly in hard discounts. Moreover, all consumers do not have access to all outlet 

brands, depending on where they live. The availability indicator that we develop captures this disparity 

and appears as a key variable in the logit regressions on regular organic behavior (Table 5). Indeed, a 

lower availability of organic products compared to conventional ones is correlated with a lower organic 

consumption (Buder et al., 2014; Dimitri and Dettmann, 2012; Massey et al., 2018). 

In the same sense, very few consumers are organic regulars for a large number of product categories, as 

only 6% of them purchase as regular more than 5 product categories and only 0.7% of them have a 

regular behavior on more than 50% of the products they purchase (Figure 3). 

Following our theoretical framework, the most likely interpretation of this result is a strong interaction 

effect between the credence attribute (the product is organic) and the search and experience attributes 

(the product is an apple) in the consumer utility. Most consumer do not value much the organic sign per 

se, but they value it strongly for a few specific products. Relating that to the dominant health driver of 

organic consumption (Buder et al., 2014; Padel and Foster, 2005), a possible explanation is that 

consumers are mostly concerned about the healthiness of a few specific products, e.g. because they have 

seen a documentary on the amount of pesticides in lemon or read a newspaper article on the amount of 

antibiotics in milk. Accordingly, they may become organic regulars for these specific products, for 

which they received health information, but this change may not spillover on their broader feeding 

routines. 

However, at least two other reasons can explain this weak consistency of regular behavior across 

products. The first is again availability, as some products can only be found in specialized shops, but 



131 

 

most of the consumers purchase food in several types of shops (conventional supermarket, open air 

market, specialized shops…). As the logit results show, if a product is mainly purchased at a specialized 

shop, the probability that the consumers will follow a regular behavior increases drastically. So, as 

consumers shop in different outlets, even if they choose to be regulars on some products that they usually 

purchase at their main shopping source, they may have to buy these products in others shops 

(supplemental purchases, oblivion, unexpected meal to prepare…) but the organic versions of these 

products may be unavailable, more expensive or of a lesser quality and they will not purchase it. This 

interpretation is supported by the lower numbers of regulars found when the analysis is based on 

frequency (number of purchases) rather than volumes (liters or kilograms). Indeed, supplemental 

purchases weigh more on the shares of organic purchases when computed with frequencies. For the 

F&V family for example, we find that more households following a regular organic behavior for at least 

one product when the shares are computed with quantities (1548 households) than in frequencies (1303 

households). Similarly, the number of F&V categories purchased by regular organic households is larger 

when they are computed in quantities (3317) than frequencies (2614).  

The second reason is that the data we use is collected at the household level, and even if the main shopper 

is identified, there can be another shopper (husband/wife, teenagers…) that also sometimes purchases 

food. This occasional shopper may not have the same purchasing behavior or may not go to the same 

shopping source, and thus the household may not be regular even though each of its members are 

regulars of different styles. This effect seems weak however: couples are more likely to be organic 

regulars than singles (Table 5).  

Finally, consumers are more likely to be organic regulars if they purchase products from retailer brands, 

which are generally cheaper than other organic brands (Ngobo, 2011). However, the price ratio between 

the organic and conventional version of a product is not significantly correlated with regular behavior, 

only the absolute difference in prices is significantly, and positively, associated with regular organic 

consumption. This surprising result—i.e., the more expensive the organic version of a product is, 

compared to the conventional version, the more likely the consumer will be an organic regular—can be 

understood as a weak price-elasticity of regular consumers to organic products prices. Indeed, if a 

consumer is an organic regular, most likely for health consideration, he will not be as reactive to the 

relative price of organic products as occasional or conventional consumers. This result is strengthened 

by the restricted logit models, in which the regression coefficient of the relative price of organic is 

positive and significant.   

 

3.5.2. The characteristics of actual organic regulars are similar to those of “declared” pro-

organic consumers 

 



The description of regular organic consumers which can be drawn from the logit models is comparable 

with the main findings of the literature on the socio-economic characteristics of organic consumers 

(Kesse-Guyot et al., 2013). Indeed, we corroborate that regular organic consumers have a higher income, 

are more urban and have a higher profession position than non-regular organic consumers (Table 5). 

Comparing regular consumers with occasional consumers only, we uncover that regular consumers are 

more represented in the upper-middle class and high professional status (Table 5). 

Nevertheless, the comparison of the logit models with product attributes to the logit models with 

household characteristics only demonstrates that product attributes explain better regular organic 

behavior than the household characteristics (Table 6). 

 

3.5.3. Public Policy implications: product-specific targets 

 

Of course, what matters most to policy makers is the total amount of organic production produced and 

sold, relatively to conventional production and the negative health and environmental externalities 

associated with it. However, an increase of organic production can be reached by sustaining organic 

consumption, which is currently done by French policies (“Ambition Bio 2022”, “Egalim” law in 2018). 

Our results from the analysis of organic consumers and their regular behavior advocate for more 

product-specific policies. Indeed, as much as 28% of organic value is purchased by households with a 

regular consumption pattern for a few specific products. Accordingly, public initiatives aiming at 

increasing organic consumption should focus both on promoting the organic label per se and on 

promoting specific organic products. They may also promote a “regular” attitude towards some organic 

products—e.g. “remove pesticides from your morning orange juice: buy organic oranges”. Targeting 

product families for which a regular consumption behavior is already frequent may be particularly 

promising, as regular organic consumption exists (H1 is validated) but is not yet very consistent across 

the food basket (H2 is invalidated). This is supported by our finding that product characteristics explain 

better the regular organic behavior than the household characteristics (Table 6). If there is a choice to be 

made between targeting specific products or specific consumers, one should go for specific products 

although some consumer segments—higher income, higher professional status and more urban—are 

likely to be more receptive (Apostolidis and McLeay, 2016).  

Geographical indications and label rouge products on the other hand are purchased occasionally, making 

them somewhat comparable to luxury products. Marketing and promotion actions for these products 

may therefore want to get inspiration from non-food luxury products.  
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3.6. Conclusion 

 

This paper demonstrates that quality-food with similar market shares can be subject to widely different 

consumption behaviors. Consumption of geographical indications and label rouge is always occasional 

while consumer attitude towards organic food is often regular: for a given product, some consumers 

tend to either purchase it always organic or always conventional. Indeed, conversely to previous studies 

using scanner data or surveys, we use observable information, the distribution of quality purchases, to 

categorize regular and occasional quality consumers. Doing so leads to a better comprehension of quality 

consumers’ behavior, i.e. that an important part (29% of our sample) is regular for at least one organic 

product, but that regular organic consumers for their whole food basket are scarce. Moreover, regular 

organic consumers purchase 28% of the total value of the organic market and up to 50% for some F&V, 

eggs or milk. In this sense, public policies should target product categories instead of the whole food 

basket and develop organic regular behavior, using as levers the product attributes and household 

characteristics our analysis revealed as strongly related with regular organic consumption. However, 

other quality products, such as Geographical Indications, are purchased as extraordinary goods and so 

policies aiming at increasing their consumption should relate to those on luxury goods. 

More precisely, we illustrate that the main product families for which organic consumption distributions 

are bimodal, i.e. for which regular consumer behaviors can be found, are eggs, milk, baby food, meal 

substitutes, desserts, bread and flour. When organic consumption is analyzed at product level, one sees 

that its distribution is bimodal also for most fruits and vegetables (processed or raw). 

Besides, households which exhibit regular organic consuming behavior are richer, more urban, have a 

higher professional status than the others. These organic regulars also have a higher propensity to be in 

couples and to have fewer children. 

The products categories that are consumed by organic regulars are more available and organic regulars 

do not seem to be influenced by the price of organic products. To the contrary, a higher price difference 

between an organic product and its conventional counterpart is associated with a higher share of organic 

regulars, possibly because organic regulars are willing to buy the organic alternative at all costs. 

Moreover, product attributes explain better organic regular behavior than household characteristics. 

Further research may explore the interaction effects in the consumer utility function between the organic 

attribute and other product attributes (thickness of skin for fruits, roots vegetables…). Computing price 

and income elasticities of quality-food products would also shed light on consumer behavior, especially 

in defining which products are luxury goods. Lastly, bridging the gap between organic production and 

consumption may help designing efficient policies: in light of our work, policies could focus on securing 

the regular consumption of products whose production in organic systems has high environmental or 

health value-added (production nearby water catchments for example). 

 



3.7. Supplementary Materials 

 

SM 1. Statistical determination of the regular behavior thresholds 
 

In our empirical analysis of regular consumption behavior, a key step is to determine the thresholds 

(dash lines in Figure SM 7) under and above which a consumer can be categorize as conventional or 

quality regular, respectively. To do so, for each product’s organic distribution, we fit a beta distribution, 

the only statistically function with a known density and cumulative distribution function that can easily 

account for bimodality. Using the quantile function of the fitted beta distribution, we assess the values 

of each pair of centiles which a 0.1 (10%) difference. In this sense, we evaluate two values, between 

which only 10% of the theoretical beta distribution lies. To assure that these two values are 

symmetrically delimiting the two regular behaviors (conventional and quality regularity): noting 

threshold1 the threshold for the conventional regularity, and threshold2 for the organic regularity, we set 

the constraint as 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑11 = 1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2. 

 

Figure SM 7. Density and quantile function of the Beta function

 

We compute theses thresholds values for 5 key products and use 20% and 80% of quality consumption 

as the thresholds of conventional regularity and quality regularity respectively (Table SM 9). 

Table SM 9. Estimated thresholds of conventional and quality regularities 

Product Threshold conventional regularity Threshold quality regularity 

Milk 0.14 0.86 

Egg 0.21 0.79 

Oil 0.24 0.76 

Lemon 0.20 0.80 

Baby Food 0.17 0.83 

 

 

SM 2. Identification of the variables influencing availability 
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To construct the indicator of organic products’ availability, we collected data on which organic products 

were available in 10 shops of each of the 5 biggest supermarket brands in France in a region (Burgundy) 

based on their websites. The shops are of different sizes (supermarkets, hypermarkets), are located in 4 

different “départements” and in different city sizes. However, they all offer the possibility to purchase 

food online and pick it up at the shop (“Drive in”). We then run LASSO regression using the number of 

organic products available in each shop as the dependent variables. We find that supermarkets’ brands 

and size are the only variables that influence the availability of organic products once penalized. When 

all the variables are included, an ordinary least squares regression explains 86% of the variance of the 

number of organic products available and when only the supermarkets’ brands and size are selected, the 

R² still amounts to 68%. 

 

Table SM 10. LASSO regression results on the availibility of organic products 

Variables Penalized coefficients 

Département1 0.00 

Département2 0.00 

Département3 0.00 

Brand1 449.9 

Brand2 -201.2 

Brand3 0.00 

Brand4 0.00 

City Inhabitants : 20k-50k 0.00 

City Inhabitants : 50k-100k 0.00 

City Inhabitants : 5k-10k 0.00 

City Inhabitants : 10k-20k 0.00 

City Inhabitants : Smaller than 2k 0.00 

City Inhabitants : 2k-5k 0.00 

Shop Size : Small  -66.6 

 

  



SM 3. Map of the spatial distribution of the sample 
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SM 4. Detailed results of the logit 
    

 Full Logit 
Full Logit 

Household 

Full Logit 

Products 

Restricted 

Logit 

Restricted 

Logit 

Household 

Restricted 

Logit 

Products 

 (1) (2) (3) (1) (2) (3) 

Year 2012 0.119*** 0.167*** 0.116*** 0.085* 0.097** 0.080* 

 (0.042) (0.040) (0.042) (0.044) (0.042) (0.044) 

Year 2013 0.233*** 0.299*** 0.225*** 0.117*** 0.146*** 0.107** 

 (0.041) (0.039) (0.041) (0.044) (0.042) (0.044) 

Year 2014 0.281*** 0.350*** 0.276*** 0.188*** 0.220*** 0.179*** 

 (0.041) (0.038) (0.040) (0.043) (0.041) (0.043) 

Year 2015 0.360*** 0.425*** 0.354*** 0.193*** 0.235*** 0.184*** 

 (0.041) (0.039) (0.041) (0.043) (0.041) (0.043) 

Year 2016 0.450*** 0.585*** 0.440*** 0.197*** 0.274*** 0.186*** 

 (0.040) (0.038) (0.040) (0.043) (0.040) (0.042) 

Number of purchases 
-0.248*** 

(0.019) 

-0.250*** 

(0.016) 

-0.247*** 

(0.019) 

-0.008*** 

(0.001) 

-0.009*** 

(0.001) 

-0.008*** 

(0.001) 

Hard-discount 0.453***  0.427*** -0.097  -0.104 

 (0.063)  (0.063) (0.064)  (0.064) 

Home delivery 0.323***  0.336*** 0.012  0.017 

 (0.119)  (0.118) (0.123)  (0.123) 

HyperMarket 0.557***  0.548*** 0.197***  0.203*** 

 (0.044)  (0.044) (0.046)  (0.046) 

Organic Shop 3.360***  3.357*** 1.809***  1.813*** 

 (0.052)  (0.052) (0.051)  (0.051) 

Small Supermarket 0.507***  0.501*** 0.201***  0.198*** 

 (0.060)  (0.060) (0.063)  (0.063) 

SuperMarket 0.527***  0.522*** 0.218***  0.216*** 

 (0.040)  (0.040) (0.042)  (0.042) 

Retailer brand 
0.817*** 

(0.024) 
 

0.815*** 

(0.024) 

0.704*** 

(0.027) 
 

0.705*** 

(0.027) 

Price ratio between organic & 

conventional 

0.018 

(0.015) 
 

0.017 

(0.015) 

0.181*** 

(0.033) 
 

0.182*** 

(0.033) 

Average share of organic 

purchases  

0.540*** 

(0.008) 

0.525*** 

(0.005) 

0.539*** 

(0.008) 

0.054*** 

(0.003) 

0.033*** 

(0.002) 

0.053*** 

(0.003) 

Number of times purchased -0.647*** -0.215*** -0.648*** -0.000*** -0.000*** -0.000*** 

 (0.015) (0.009) (0.015) (0.000) (0.000) (0.000) 

Youngest child <25 month 
0.065 

(0.078) 

0.232*** 

(0.076) 
 

0.030 

(0.074) 

0.094 

(0.072) 
 

Youngest child >25 months and 

<5 years 

-0.062 

(0.075) 

0.035 

(0.074) 
 

-0.028 

(0.070) 

0.014 

(0.069) 
 

Youngest child >6 years and <10 

years 

-0.077 

(0.074) 

-0.053 

(0.072) 
 

0.000 

(0.069) 

0.012 

(0.068) 
 

Youngest child >11 years and 

<15 years 

-0.072 

(0.071) 

-0.128* 

(0.069) 
 

0.015 

(0.070) 

-0.022 

(0.068) 
 

Farmers -0.648* -0.604*  -0.343 -0.386  

 (0.346) (0.355)  (0.302) (0.299)  

Managers and superior 

professions 

0.325*** 

(0.086) 

0.315*** 

(0.085) 
 

0.153** 

(0.074) 

0.205*** 

(0.073) 
 

Employees -0.063 -0.012  0.034 0.027  

 (0.069) (0.068)  (0.060) (0.060)  

Manual occupations -0.326*** -0.267***  0.035 -0.052  

 (0.077) (0.077)  (0.069) (0.068)  



Intermediate professions 
0.039 

(0.074) 

0.105 

(0.075) 
 

0.107* 

(0.064) 

0.145** 

(0.064) 
 

Retired -0.241 -0.223  -0.246 -0.203  

 (0.192) (0.195)  (0.166) (0.168)  

Unemployed, student 
-0.215 

(0.192) 

-0.159 

(0.186) 
 

-0.083 

(0.170) 

-0.064 

(0.167) 
 

City of 2000-4999 inhabitants 
0.151 

(0.112) 

0.192* 

(0.113) 
 

-0.048 

(0.093) 

0.012 

(0.094) 
 

City of 5000-9999 inhabitants 
0.081 

(0.119) 

0.113 

(0.121) 
 

-0.012 

(0.099) 

0.012 

(0.099) 
 

City of 10 000-19 999 inhabitants 
0.284** 

(0.121) 

0.334*** 

(0.121) 
 

0.110 

(0.098) 

0.181* 

(0.098) 
 

City of 20 000-49 999 inhabitants 
0.230** 

(0.116) 

0.238** 

(0.117) 
 

0.130 

(0.093) 

0.193** 

(0.093) 
 

City of 50 000-99 999 inhabitants 
0.036 

(0.115) 

0.060 

(0.116) 
 

0.013 

(0.094) 

0.053 

(0.094) 
 

City of 100 000-199 999 

inhabitants 

0.339** 

(0.134) 

0.356*** 

(0.137) 
 

0.068 

(0.106) 

0.180* 

(0.107) 
 

City of more than 200 000 

inhabitants 

0.330*** 

(0.078) 

0.335*** 

(0.079) 
 

0.066 

(0.063) 

0.158** 

(0.064) 
 

Paris agglomeration 
0.191** 

(0.088) 

0.180** 

(0.089) 
 

-0.066 

(0.071) 

0.065 

(0.070) 
 

Single -0.170*** -0.109**  -0.100** -0.130***  

 (0.053) (0.051)  (0.050) (0.049)  

High income household 
0.109** 

(0.050) 

0.090* 

(0.049) 
 

-0.052 

(0.044) 

-0.027 

(0.044) 
 

Inferior middle income household 
-0.140* 

(0.085) 

-0.115 

(0.085) 
 

-0.031 

(0.075) 

-0.021 

(0.074) 
 

Low income household 
-0.206 

(0.170) 

-0.192 

(0.173) 
 

-0.163 

(0.148) 

-0.136 

(0.149) 
 

BMI -0.198*** -0.216***  -0.020*** -0.031***  

 (0.028) (0.028)  (0.006) (0.006)  

Absolute price difference 
0.031* 

(0.016) 
 

0.031* 

(0.016) 

-0.101 

(0.079) 
 

-0.101 

(0.079) 

Availibility 0.335***  0.340*** 0.574***  0.576*** 

 (0.016)  (0.016) (0.069)  (0.069) 

Alcoholic beverages 
-0.628** 

(0.273) 
 

-0.629** 

(0.273) 

-0.233 

(0.293) 
 

-0.236 

(0.294) 

Appetizers -0.615**  -0.613** -0.281  -0.283 

 (0.240)  (0.240) (0.258)  (0.259) 

Baby foods 0.884***  0.911*** 0.610**  0.634** 

 (0.266)  (0.266) (0.287)  (0.286) 

Biscuits, cakes and pastry 
0.592** 

(0.255) 
 

0.591** 

(0.255) 

0.612** 

(0.274) 
 

0.614** 

(0.275) 

Bread, flour 0.826***  0.826*** 0.547**  0.547** 

 (0.255)  (0.255) (0.274)  (0.274) 

Cheese -0.138  -0.140 -0.069  -0.076 

 (0.268)  (0.268) (0.289)  (0.289) 

Confectionary products 
0.618** 

(0.257) 
 

0.617** 

(0.257) 

0.677** 

(0.277) 
 

0.677** 

(0.277) 

Culinary ingredients 
0.184 

(0.253) 
 

0.184 

(0.253) 

0.486* 

(0.273) 
 

0.486* 

(0.273) 

Desserts 0.674***  0.672*** 0.615**  0.615** 

 (0.257)  (0.258) (0.277)  (0.277) 

Eggs 2.283***  2.284*** 1.992***  1.998*** 

 (0.052)  (0.052) (0.058)  (0.058) 
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Fat 1.078***  1.077*** 0.941***  0.941*** 

 (0.253)  (0.253) (0.272)  (0.272) 

Hot drinks 2.345***  2.325*** 15.389  15.302 

 (0.545)  (0.545) (105.970)  (106.791) 

Meal 0.670***  0.669*** 0.931***  0.933*** 

 (0.256)  (0.256) (0.276)  (0.277) 

Meal subsitutes 0.165  0.163 1.712***  1.705*** 

 (0.411)  (0.411) (0.589)  (0.588) 

Meat 0.101  0.103 0.198  0.202 

 (0.128)  (0.128) (0.129)  (0.129) 

Milk 2.496***  2.496*** 2.321***  2.327*** 

 (0.053)  (0.053) (0.060)  (0.060) 

Non Alcoholic beverages 
0.648** 

(0.259) 
 

0.645** 

(0.259) 

0.573** 

(0.279) 
 

0.571** 

(0.279) 

Processed F&V 0.159  0.161 0.381  0.380 

 (0.256)  (0.256) (0.277)  (0.277) 

Processed Meat 0.164  0.167 0.372  0.366 

 (0.259)  (0.259) (0.280)  (0.280) 

Seafood -0.837***  -0.834*** -0.358  -0.376 

 (0.282)  (0.282) (0.328)  (0.328) 

Starchy foods 0.283  0.283 0.186  0.186 

 (0.256)  (0.256) (0.275)  (0.276) 

Sweeteners 0.491  0.162 0.474  0.228 

 (0.621)  (0.259) (0.578)  (0.303) 

Processed Product 
0.318 

(0.250) 
 

0.317 

(0.250) 

0.257 

(0.269) 
 

0.260 

(0.269) 

Constant -8.406*** -6.662*** -8.319*** -2.567*** -0.972*** -3.059*** 

 (0.090) (0.077) (0.061) (0.178) (0.161) (0.089) 

Number of households 12453 12453 12453 8854 8854 8854 

Household random effect 

standard deviation 
2.162 2.222 2.228 1.162 1.174 1.207 

Observations 1,221,430 1,221,430 1,221,430 70,549 70,549 70,549 

Log Likelihood -47,361.98 -53,322.82 -47,492.58 -31,058.4 -33,801.1 -31,084.5 

Akaike Inf. Crit. 94,857.95 106,713.6 95,071.16 62,250.99 67,670.07 62,254.9 

Notes: ***, **, *, Significant at the 1, 5, 10 percent levels respectively. The values between brackets 

refer to the standard deviation of the coefficients. 

Retailer brand is a dummy that takes the value 1 if more than 50% of the purchases of a 

product where from the retailer brand. 

A household of 4 members is considered of low income if its monthly income in under 

2094€ and of high income if its monthly income is above 5808€. 

 Dummy variables Reference level  

 Shop type Open-air market  

 Youngest child No children  

 Working occupation Artisan and craftsman  

 Size of City <500 inhabitants  

 Economic status 
Superior middle 

income 
 

 Product family Fresh F&V  
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Chapter 4  

 

Price elasticity of organic and 

conventional food in France: a censored 

EASI demand system. 
 

 

 

 

Note: This chapter is based on work-in-progress at the time of this thesis’ redaction. The 

results from this chapter are not definitive, please do not cite them.  



4.0. Abstract 

 

From 2011 to 2018, the French organic market has increased by 149%, accounting eventually for almost 

5% of French households’ food expenditures. Such an increase might have various drivers: a change in 

the relative price of organic products compared to conventional ones, a wider availability of organic 

products, an increase in households’ food expenditures or some life cycle changes (marriage, 

urbanisation, new-borns, retirement…) that affect preferences toward organic food. 

Using scanner data and a censored EASI demand system, we estimate price and expenditures elasticities 

of organic and conventional food in France from 2011 to 2018. We find that own-price elasticities of 

organic products are considerably larger than conventional products and that organic products are mostly 

luxury goods (expenditures elasticities are more than unity). Moreover, organic products are 

complements among themselves (negative cross-price elasticities) and substitutes of conventional 

products (positive cross-price elasticities). Organic food demand is thus reactive to price changes and 

an exemption of VAT for organic products would increase their market share by 40%. 

 

Keywords: organic food; EASI demand system; price elasticities; demographic variables.  
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4.1. Introduction 

 

From 2011 to 2018, the French organic market has increased by 149%, rising from €3.9 billion to 9.7€ 

billion, accounting eventually for almost 5% of French households’ food expenditures (Figure SM 1.a., 

Agence Bio, 2019a). This increase of organic food consumption is mostly homogenous across product 

families and the composition of the organic market has not changed a lot between 2011 and 2018: fruits 

and vegetables account for 15% of the organic market, dairy product for 10%, processed products for 

20% and meat for 8% (Figure SM 1.b). Moreover, for all families of products, the share of organic 

products (relatively to the share of conventional products) is steadily increasing (Figure SM 1.c). In 

addition, organic food production and consumption has also taken a key place in public policies (Egalim 

law in France, Farm to Fork in the European Union) as a way to promote healthier diet as well as 

mitigating climate change due to the lower pesticide and fertilizer uses. 

Concomitantly, organic food consumption is being increasing scrutinized in academic research, 

especially in economics, marketing and sociology. Indeed, consumption behavior can be studied from a 

large spectrum of scientific disciplines which have provided extensive knowledge on the factors that 

influence organic food purchases and consumption. Such factors include prices, expenditures and socio-

demographics characteristics as well as non-economic motivations such as personal health, 

environmental impacts, labor ethics or animal welfare (Gracia and de Magistris, 2008; Padilla Bravo et 

al., 2013).  

More precisely, regular organic consumers have a higher education and income than households 

purchasing mainly conventional products (Lambotte et al., 2020; Ngobo, 2011). Organic consumers are 

also more often female and have children, especially young ones (Hughner et al., 2007). They spend 

slightly more money on food and have a healthier diet (Boizot-Szantai et al., 2017; Kesse-Guyot et al., 

2013). Heavy organic consumers’ diets also result in lower greenhouse gases emissions, land occupation 

due to a lower consumption of animal products (Baudry et al., 2019; Seconda et al., 2018). Logically, 

organic consumers value more credence attributes than search and experience attributes (Massey et al., 

2018; Rana and Paul, 2017), which explains that the influence of credence attributes such as animal 

welfare, GMO-free , eco-packaging, fair trade or environmental friendliness on the probability of 

purchasing organic products has been found to be larger than that of education, marital status, and 

income (Padilla Bravo et al., 2013). 

Here we focus on the price driver and quantify the price-elasticities of organic products. These estimates 

are particularly important in a context where European policy makers are looking for instruments to 

reach the Green deal target of 25% organic area in 2030. In particular, we estimate how much rise in 

organic consumption can be expected from a VAT exemption for organic products and other fiscal 

measures, as well as how the effect of these measures differs across product categories. 

More precisely, we propose the following hypothesis concerning cross-prices elasticities: 



- H1: Within a given quality (conventional or organic), products have negative cross-price 

elasticities, i.e. organic products are complements with one another. 

- H2: The cross-price elasticities of conventional products in regard to their organic counterparts 

are small as the fact that a consumer shifts from conventional to organic food is not mainly 

determined by price factors. 

- H3: The cross-price elasticities of organic products in regard to their conventional counterparts 

are large, as consumers that are already purchasing organic products would reactively increase 

their consumption of organic food when conventional food prices increase (and vice-versa). 

The literature shows inconclusive evidence with respect to the role of price in organic consumption 

behavior as the effects of price strongly differ between product categories and retail stores (Buder et al., 

2014; Dimitri and Dettmann, 2012; Padel and Foster, 2005; Rödiger and Hamm, 2015). In the same 

review, Rödiger and Hamm (2015) also show that consumers were generally willing to pay a higher 

price for organic products. However, they insist on the fact that willingness to pay (WTP) differs greatly 

depending on the product categories and consumer segments. Finally, they reveal that WTP is positively 

influenced by the consumers’ attitudes toward organic food.  

One reason for the inconclusiveness of most studies concerning the role of price in organic consumption 

behavior relates to the small sample size of surveys and the intension-behavior gap, the bias between 

what interviewed consumers declare when surveyed and what they actually purchase and consume 

(Chekima et al., 2017; Zhen et al., 2019). To address these limits a growing field of the literature has 

used large panel data of actual purchases of thousands of household - such as Kantar’s Wordpanel® or 

Nielsen’s Homescan® to model demand systems and estimate price elasticities. In France, scanner panel 

data has been used to study organic consumption (Boizot-Szantai et al., 2017; Monier et al., 2009) or to 

estimate price elasticities of conventional food (Allais et al., 2010; Caillavet et al., 2016) but price 

elasticities for organic products have not yet been estimated yet. In addition, most studies worldwide 

focus on a specific product - often milk (Alviola and Capps, 2010; Bernard and Bernard, 2009; Glaser 

et al., 2000; Jonas and Roosen, 2008; Lopez and Lopez, 2009; Schröck, 2012) - or products’ family - 

fruits and vegetables mostly (Bunte et al., 2007; Fourmouzi et al., 2012; Kasteridis and Yen, 2012; Lin 

et al., 2009; Zhang et al., 2011). To our knowledge, an exhaustive demand system for all organic food 

has not yet been proposed. Moreover, an estimation of price elasticities for both organic and 

conventional food allows the investigation of asymmetric price responses. Asymmetric price elasticities 

for organic food, such as enounced in H2 and H3, has been recognized by previous research for specific 

products: Glaser et al. (1999) for frozen vegetables, Zhang et al. (2011) for fresh ones, Glaser et al. 

(2000) and Alviola and Capps (2010) for milk, but has never been studied for all products. Asymmetries 

in price responses of organic and conventional food are key to understand consumer behavior, as they 

give precious information on the transitions and substitutions between conventional and organic 

products. Indeed, heavy organic consumers may not respond to conventional price changes as price is 

not a key determinant of their consumption of organic food, but conventional consumers could respond 

strongly to a decrease of organic food prices. 
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In addition to the issue of data availability, a technical difficulty may explain the scaricity of price-

elasticity estimates in the literature. Indeed, 70% of consumers never purchase organic products and 

thus spend 0% of their budget on organic food (Lambotte et al., 2020) and this high share of zero 

purchases for organic products necessitates the estimation of a censored demand system, a tool which is 

not directly available in existing statistical packages.  

 

In short, we propose the estimation of a censored demand system for both organic and conventional food 

from 2011 to 2018 in France to deepen the understanding of how prices drive organic food consumption. 

We thus estimate own and cross price elasticities, expenditures elasticities and incorporate in these 

estimates the influence of the availability of organic products and the socio-demographic characteristics 

of consumers. We show that a subvention, resulting in a 20% price reduction of organic food is unlikely 

to be sufficient to reach the Green deal target (25% of organic land in the EU, translated here in a market 

share of 25% for organic food) and that it is most effective on food categories which are highly sensible 

to price variation (Fruits & Vegetables, animal products). 

  



4.2. Data 

 

We use the Kantar Worldpanel® scanner data in France from 2011 to 2018, which can be treated as an 

unbalanced panel data of food purchases from a sample of roughly 12,000 French households per year. 

The households participate in the data collection during 5 years on average, and this dataset can thus be 

assimilated to an unbalanced panel data. This panel data contains socio-demographic information about 

the households and detailed information about the food products they purchase: the price paid and the 

quantity purchased, brand, size and type of shops and more crucially in our case, whether the products 

are organic. The different items purchased are categorized into 334 products, which are then grouped 

into 7 products’ families (see SM 2 for details): animal products, dairy products, cooking ingredients, 

starchy food, fruits and vegetables, drinks, and lastly processed food. These 7 products families are 

distinguished in both organic and conventional qualities, yielding 14 different product families in our 

final analysis. Prices and quantities are aggregated per quarter. 

In addition, we compute an indicator of the availability of organic products defined in Lambotte et al. 

(2020). The indicator is defined as the share of shops which offer the organic product of interest out of 

all shops where the household is shopping. More precisely, an organic product is available in a given 

shop for a given household if it has been purchased by others households of our sample in a shop from 

the same retail chain, of the same size (hypermarket vs. supermarket) and in the same administrative 

region.  
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4.3. Methodology 

 

4.3.1. Demand system as framework for analysing the drivers of the increase of organic food 

consumption 

 

Our econometric model is based on the Exact Affine Stone Index demand system, which is highly 

flexible in estimating expenditures elasticities and allows for the inclusion of socio-demographic 

variables and other demand shifters in the budget shares’ equations (details are given in subparts 4.3.2 

to 4.3.4.).   

To address price endogeneity (simultaneity between price and demand) and unit value bias, we use 

Fisher Ideal price indices as instrumental variables in which missing prices are based on the average 

prices faced by the households who shop in the same administrative region and supermarket brand 

(details are available in subpart 4.3.5.). 

The high frequency of zero purchases, in particular for organic products, is handled with the Shonkwiler 

and Yen (SY) two-step estimation for censored system of equations (Shonkwiler and Yen, 1999, more 

information is available in 4.3.6.). 

 

4.3.2. The Exact Affine Stone Index demand system specification 

 

More specifically, we draw from the EASI (Exact Affine Stone Index) incomplete demand system for 

censored data introduced by Cardwell et al. (2015) and Castellón et al. (2015), based itself on the original 

EASI model of Lewbel and Pendakur (2009). As we only have information on the households’ food 

expenditures, we cannot estimate a complete demand system, which require information on the 

households’ real income (LaFrance, 1990). Thus, we estimate a conditional demand system, i.e. the 

results hold conditional on the expenditures for the groups of food products and non-food goods. 

However, assuming that the expenditures on food products are weakly separable to non-food 

commodities (energy, transport, housing, clothes...) is a common and reasonable assumption. Moreover, 

as we are not estimating welfare changes, we are not strongly concerned by the endogeneity of group 

expenditures, which in reality creates a small bias in the EASI framework (Lewbel and Pendakur, 2009). 

The conditional EASI demand system can be written in its most disaggregated form as: 

𝑤ℎ𝑖𝑡 = ∑ 𝑎𝑖𝑗
𝐽
𝑗=1 𝑙𝑛𝑝ℎ𝑗𝑡 + ∑ 𝑏𝑖𝑟𝑦ℎ𝑡

𝑟𝐿
𝑟=1 + ∑ 𝑔𝑖𝑘

𝐾
𝑘=1 𝑧ℎ𝑘𝑡 + 𝜇ℎ𝑖𝑡, ℎ = 1,… ,𝐻;  𝑖 = 1, … , 𝐽;  𝑡 =

1, … , 𝑇               (1) 

where 𝑤ℎ𝑖𝑡 is the budget share of the ith product category for the hth household at time t, 𝑝ℎ𝑗𝑡 is the price 

index, J is the total number of product families, 𝑦ℎ𝑡 is the log of the household’s real food expenditures, 



L is the highest order of polynomial of 𝑦ℎ𝑡 that should be determined empirically, K is the number of 

exogenous demand shifters (socio-demographic variables, time trend and availability index) that 

influence preferences, 𝑧ℎ𝑘𝑡 is the kth demand shifters, with  𝑧ℎ1𝑡 = 1, i.e. 𝑔𝑖1 is the intercept in the budget 

share equations. 𝑎𝑖𝑗, 𝑏𝑖𝑟 and 𝑔𝑖𝑘 are parameters to be estimated and 𝜇ℎ𝑖𝑡 are the residuals which here 

directly account for unobserved preferences heterogeneity as random utility parameters (Lewbel and 

Pendakur, 2009). To assure that the model is consistent with economic theory and the utility 

maximization framework, the following restrictions are imposed during the estimation (adding-up, 

homogeneity, symmetry): 

∑ 𝑏𝑖0 = 1,
𝐽
𝑖=1  ∑ 𝑏𝑖𝑟 = 0

𝐽
𝑖=1 , ∑ 𝑎𝑖𝑗

𝐽
𝑖=1 = ∑ 𝑔𝑖𝑘 = ∑ 𝜇ℎ𝑖𝑡

𝐽
𝑖=1

𝐽
𝑖=1 = 0, 𝑎𝑖𝑗 = 𝑎𝑗𝑖.         (2) 

𝑦ℎ𝑡, the log of the household’s real food expenditures, is expressed as an affine transformation of the 

log nominal of food expenditures 𝑥ℎ𝑡 deflated by the Stone index, hence the name of the model 

(Pendakur, 2009): 

𝑦ℎ𝑡 =  𝑙𝑛𝑥ℎ𝑡 − ∑ 𝑤ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑗𝑡 +
1

2
∑ ∑ 𝑎𝑖𝑗𝑙𝑛𝑝ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑖𝑡

𝐽
𝑖=1

𝐽
𝑗=1

𝐽
𝑗=1 .          (3) 

With such an exact definition of 𝑦ℎ𝑡, equation (1) can be written as: 

𝑤ℎ𝑖𝑡 = ∑ 𝑏𝑖𝑟(𝑙𝑛𝑥ℎ𝑡 −∑ 𝑤ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑗𝑡 +
1

2
∑ ∑ 𝑎𝑖𝑗𝑙𝑛𝑝ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑖𝑡

𝐽
𝑖=1

𝐽
𝑗=1

𝐽
𝑗=1 )𝑟𝐿

𝑟=1 + ∑ 𝑎𝑖𝑗
𝐽
𝑖=1 𝑙𝑛𝑝ℎ𝑗𝑡 +

∑ 𝑔𝑖𝑘
𝐾
𝑘=1 𝑧ℎ𝑘𝑡 + 𝜇ℎ𝑖𝑡                (4) 

which is non-linear, because the coefficient 𝑏𝑖𝑟 multiplies 𝑎𝑖𝑗 power r, and endogenous, as the budget 

share 𝑤𝑖ℎ𝑡 appears in both side of the equation. However, Lewbel and Pendakur (2009) have shown that 

the non-linearity can easily be dealt with by using an approximate EASI model, which defined �̃�ℎ𝑡 as 

the log of the Stone-index deflated nominal expenditures, an approximation to the real household’s 

expenditures 𝑦ℎ𝑡: 

�̃�ℎ𝑡 = 𝑙𝑛𝑥ℎ𝑡 − ∑ 𝑤ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑗𝑡
𝐽
𝑗=1 .              (5) 

The estimators obtained with the approximate EASI model are numerically very close to the real ones, 

and using the approximate expression has been the common practice as it releases a lot of the 

computational burden of the estimation (Lewbel and Pendakur, 2009; Zhen et al., 2014). The 

endogeneity of the budget shares can be dealt with in using �̅�𝑗𝑡, the sample average budget share, instead 

of 𝑤ℎ𝑗𝑡 in equation (4), yielding �̅�ℎ𝑡 = 𝑙𝑛𝑥ℎ𝑡 − ∑ �̅�ℎ𝑗𝑡𝑙𝑛𝑝ℎ𝑗𝑡
𝐽
𝑗=1 . However, this specification has been 

shown to leave y unchanged (�̃�ℎ𝑡 and �̅�ℎ𝑡 have a correlation of 0.998 in the data used by (Lewbel and 

Pendakur, 2009)) and is therefore rarely implemented.  
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4.3.3. Inclusion of socio-demographic variables and other demand shifters 

 

The possibility to include socio-demographic variables in the EASI model is of particular importance to 

our analysis. Indeed, this method of inclusion of demand shifters, related to the concept of demographic 

translation introduced by (Pollak and Wales, 1981), modifies both the intercepts and the regression 

parameters of prices and expenditures (from which elasticities are computed) but still allow the 

aggregation of the households (𝑤𝑖𝑡 =
∑ 𝑥ℎ𝑡𝑤ℎ𝑖𝑡
𝐻
ℎ=1

∑ 𝑥ℎ𝑡
𝐻
ℎ=1

, (Muellbauer, 1974)) to accommodate the estimation 

of population-valid elasticities.  

 

4.3.4. Flexibility of the expenditures elasticities and non-linear Engel curves  

 

The high flexibility of the EASI model, especially in the large order of polynomials (in this study, three) 

of 𝑦ℎ𝑡 it accommodates, allows the estimation of non-linear Engel curves and an in-depth study of the 

expenditures elasticities of organic products. Indeed, as expenditures is different across households, and 

as expenditures elasticities also vary among products, a high variety of relationships between 

expenditures and products are expected, which cannot be correctly estimated with linear Engel curves 

(Banks et al., 1997).  

 

4.3.5. Correcting for the endogeneity of prices in the EASI demand system 

 

Sources of price endogeneity in scanner data 

 
Demand systems estimated with scanner data suffer from endogeneity in the disaggregated prices, which 

might be due to any of the common econometric reasons: omitted variables, measurement errors and 

simultaneity.  

- Simultaneity of supply and demand in the formation of price is not an issue in disaggregated 

demand systems as the households are rather atomistic and do not have the market power to 

influence market equilibrium prices (Zhen et al., 2014).  

- Omitted variables and measurements errors are likely to occur in disaggregated demand systems 

as the households’ preferences and the prices are not averaged. The main source of endogeneity 

in scanner data originates from the fact that the information on prices is based on unit values, 

i.e. for a given food category, the mean of the prices paid by a consumer for products in this 

category, divided by the quantities purchased (Boonsaeng et al., 2019). Thus, the unit values 

integrate both an exogenous price and a quality-related price, the households who value quality 

more have higher unit values than the households who do not. This quality-related price leads 

to the so-called unit value bias, as a change in the unit value of a given category for a given 



household integrates both the exogenous change of the true prices and the endogenous change 

of quality as the household might modify the mix of quality-differentiated products in his 

purchase basket when the prices change. For example, if real prices increase, households might 

react by lowering the quality of the products purchased, and the unit value will increase less 

than the real prices increase. Thus, in the demand equation, the same change in the budget share 

will be associated to a lower change in unit values, yielding upper-biased regression coefficients 

for the unit values, compared to an estimation with the true prices (which vary more and thus 

have a lower regression coefficient (Deaton, 1988)). Similarly, if the regression coefficients 

obtained with unit values are used to predict the impacts of real price changes on demand, these 

impacts will be overestimated. 

Finally, omitted variables, such as the true households’ preferences, may create endogeneity in 

prices. Indeed, the households who have a strong preference for some food products and 

purchase a high quantity of them are more likely to spend some time or resources to find lower 

prices as these products weight more on their expenditures, and so they are abler to purchase 

them at a lower prices: 𝑝ℎ𝑖𝑡 for such households will be lower than for other households. 

- Unit values are also subject to important measurement errors, especially compared to real prices 

or prices gathered at shops, which leads to attenuation bias, biasing the prices coefficients 

toward zero. The purchased quantities, used to construct unit values, can also be mismeasured, 

especially in the case of fresh fruits and vegetables. The measurement errors are reflected in 

both the left and right sides of the budget share equation (the measure of quantities intervenes 

in the computation of both the budget shares and the unit values), the quantities and unit values 

are negatively correlated and the quantities and budget share are positively correlated. Thus, if 

the quantities are mismeasured, for example overestimated, the budget shares will also be 

overestimated, but the unit values will be underestimated. The relation between budget shares 

and unit values, of keen interest in a demand system, is afflicted by the negative correlation 

between the quantity and unit values and the estimated relation will be more negative than the 

true relation without measurement errors (Olivia and Gibson, 2003).  

 

 

Price indexes and endogeneity correction 

 
In our discussion of the differences between complete and incomplete demand system, we have 

underlined that expenditures endogeneity is negligible in the EASI based demand systems. However, 

price endogeneity leads to important misspecifications of the demand systems as Zhen et al. (2014) show 

using Nielsen®’s Homescan panel data. Thus, we implement instrument variables for the prices in the 

SY procedure for censored demand systems and we compute the Fisher Ideal (FI) price index of each 

food category, for each household and at each time period (here quarters) to correct for unit values bias. 
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The FI index is the geometric mean of the Laspeyre and Paasches indices and is viewed as ideal and 

superlative as it provides a second-order differential approximation to any twice differential cost 

function (Boonsaeng et al., 2019; Diewert, 1998). More precisely, the Laspeyres index computes the 

price differential between how much a given household pays for an average quantity of a given products’ 

family (aggregating k products) relative to the average household; while the Paasche index estimates the 

price ratio between how much a given household pays for its own consumption of a products’ family 

relative to the price the average household would pay for the same quantity. 

Doing so, we mitigate any potential bias related to the use of unit values by weighting individual unit 

values and quantity purchases of disaggregated goods by national averages (variables indexed with 0 in 

equation (6)) when aggregating these unit values to compute the aggregated products’ families FI 

indices. More importantly, using the FI index eases the comparison between price and budget shares of 

the conventional and organic version of a same products’ family as the aggregation procedure in the FI 

index computation account for the quantities of each product.  

The FI price index for a given product’s family, household and time is computed as follow: 

𝑝ℎ𝑖𝑡 = √
∑ 𝑝ℎ𝑘𝑡𝑞𝑘0𝑘 ∑ 𝑝ℎ𝑘𝑡𝑞ℎ𝑘𝑡𝑘

∑ 𝑝𝑘0𝑞𝑘0𝑘 ∑ 𝑝𝑘0𝑘 𝑞ℎ𝑘𝑡
,              (6) 

where 𝑝𝑘ℎ𝑡 and 𝑞𝑘ℎ𝑡 are the price and quantity purchased of the food product k by household h at time 

t respectively and 𝑝𝑘0 and 𝑞𝑘0 are the base price and quantity of product k, computed as the average 

national price and quantity of k in the first quarter of 2011. If the household h does not purchase any 

good from the category i at time t, then ∑𝑝𝑘0 𝑞ℎ𝑘𝑡 and ∑𝑝𝑘ℎ𝑡𝑞ℎ𝑘𝑡 equals zero, i.e. the demand is 

censored. Moreover, when the household h does not purchase the good k in time t, we do not have 

information on 𝑝ℎ𝑘𝑡 and we estimate the missing prices as the average price of the good k from all the 

households who purchased this good in time t, shopping in a shop from the same brand and size as the 

household h and living in the same region (for organic products, which are less purchased, we only 

considered household shopping in a shop of the same brand). More precisely, we create clusters of 

households, based on the time period, the brand and size of shops they purchased from and the region 

they live in, in a similar fashion as Zhen et al. (2019). So, in the case of missing price from a household 

who does not purchase a given good k, we use the average price of the cluster the household belongs to, 

𝑝𝑔𝑘𝑡, where 𝑔 = 1,… , 𝐺 indicates the cluster, G being the total number of cluster (shops’ brand x region 

x shops’ size = 11 x 14 x 2 = 308 clusters), which maintains an important price variability between each 

cluster (Ferrier et al., 2017). Thus, when constructing the FI price index for a given household, we 

replace 
∑𝑝𝑘ℎ𝑡𝑞𝑘ℎ𝑡

∑𝑝𝑘0𝑞𝑘ℎ𝑡
 by 

∑𝑝𝑘𝑔𝑡

∑𝑝𝑘0
 for the k goods the household did not purchase at time t. 

This methodology is also akin to the one developed by Muth et al., (2020), except that we do not have 

information on the official retail prices for each good k as they do, so we estimate them as the average 

of all purchases of k from a cluster of households.  



Similarly, we compute the clustered FI price indexes for a category i, 𝑝𝑔𝑖𝑡, using only the average 𝑝𝑔𝑘𝑡 

that were computed in the previous step to estimate the missing prices in the households’ specific FI 

price indexes. The clustered FI price indexes for a category are used as instruments for individual price 

indexes 𝑝ℎ𝑖𝑡 in the estimation of the demand system in order to eliminate prices endogeneity as the 

clustered FI price indexes are an average of households’ prices indexes in a given cluster, where 

households face similar prices, limiting the possibility of simultaneity, omitted variables and 

measurement errors from unit values (Muth et al., 2020; Zhen et al., 2014). This instrumentation of 

individual price indexes is directly related to the cluster approach of Deaton (1988). To keep consistency 

with the availability index we developed, we clustered the households on the same criteria: region, size 

and brand of shops visited. 

 

4.3.6. Accounting for the censoring of budget shares  

 

Scanner data, with its rich information on households and purchasing patterns, in conjunction with the 

high flexibility of the EASI demand system, are powerful tools to analyse the demand for organic 

products. 

Table 1. Percentage of censored (zero) observation per product families 

 Conventional Organic 

Animal 0.1% 75.3% 

Dairy 0.6% 83.2% 

Drinks 0.2% 71.7% 

FV 0.3% 58.4% 

Ingredients 0.1% 63.8% 

Processed 0.1% 74.8% 

Starchy 1.7% 66.0% 

 

 However, demand systems based on scanner data suffer from the presence of many zero-purchases, 

especially for some categories of organic products (Table 1), and the budget shares are censored (Heien 

and Wessells, 1990; Muth et al., 2020; Zhen et al., 2014). Indeed, the budget shares are designed to lie 

between 0 and 1 and thus cannot be negative. The budget shares that are null can be seen as censored 

by an unobservable variable controlling the decision to purchase or not products among the considered 

categories. To correctly estimate the parameters in such a censored system of equations, we apply the 

two-step procedure of Shonkwiler and Yen (1999). 

Consider the following system of equations representing the censoring of the budget shares 𝑤ℎ𝑖𝑡:  

𝑤ℎ𝑖𝑡
∗ = 𝑓(𝑍ℎ𝑘𝑡, 𝑝ℎ𝑗𝑡, 𝑦ℎ𝑡; 𝜃𝑖) + 𝜇ℎ𝑖𝑡              (7)  

where 𝑓(. ) corresponds to the specification given in equation (1) and 𝜃𝑖 is the vector of parameters,  

𝑤ℎ𝑖𝑡 = 𝑑ℎ𝑖𝑡𝑤ℎ𝑖𝑡
∗                 (8) 
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where 𝑤ℎ𝑖𝑡 is the observed budget share, 𝑤ℎ𝑖𝑡
∗  is the latent budget share and 𝑑ℎ𝑖𝑡 is a dummy variable 

defining the selection process (if household h purchased the products’ family i at least one at time t, 

𝑑ℎ𝑖𝑡 = 1, and zero otherwise):  

𝑑ℎ𝑖𝑡 = {
1𝑖𝑓 𝑑ℎ𝑖𝑡

∗ > 0

0 𝑖𝑓 𝑑ℎ𝑖𝑡
∗ ≤ 0

,                (9) 

where 𝑑ℎ𝑖𝑡
∗ = 𝑠′ℎ𝑖𝑡𝜌𝑖 + 휀ℎ𝑖𝑡 ,            (10) 

and the latent dependent variable 𝑑ℎ𝑖𝑡
∗   is estimated by a matrix of socio-demographic variables and an 

availability indicator 𝑠ℎ𝑖𝑡. 

The two step procedure then consists of the maximum likelihood probit estimations of equation (10) for 

all products’ families, to obtain the estimates 𝜌�̂� of the selection parameters 𝜌𝑖 and then calculate the 

cumulative distribution function (cdf) Φ̂ℎ𝑖𝑡(𝑠′ℎ𝑖𝑡𝜌𝑖) and the probability density function (pdf) 

�̂�ℎ𝑖𝑡(𝑠′ℎ𝑖𝑡𝜌𝑖). 

In the second step, the EASI system of equation defined in (1) is augmented with the Φ̂ℎ𝑖𝑡(𝑠′ℎ𝑖𝑡𝜌𝑖) and 

�̂�ℎ𝑖𝑡(𝑠′ℎ𝑖𝑡𝜌𝑖): 

 𝑤ℎ𝑖𝑡 = Φ̂ℎ𝑖𝑡(∑ 𝑎𝑖𝑗
𝐽
𝑖=1 𝑙𝑛𝑝ℎ𝑗𝑡 + ∑ 𝑏𝑖𝑟𝑦ℎ𝑡

𝑟𝐿
𝑟=1 + ∑ 𝑔𝑖𝑘

𝐾
𝑘=1 𝑧ℎ𝑘𝑡) + 𝛿�̂�ℎ𝑖𝑡 + 휀ℎ𝑖𝑡      (11) 

Equation (11) is estimated using 3SLS as we introduce instrument variables for 𝑦ℎ𝑡
𝑟  and because the 

budget shares of a same household are correlated. However, the adding-up restrictions only holds for 

the latent equations (7). To address this issue, the 𝑛 − 1 products’ family (here organic starchy food) is 

treated as a residual category and the system in (11) is estimated for 𝑖 = 1,2,… , 𝑛 − 1 (Drichoutis et al., 

2008; Yen et al., 2003). As shown in the footnote 9 of Yen et al. (2003), the Marshallian, Hicksian and 

expenditures elasticities for the 𝑛𝑡ℎ products’ family can be retrieved using the budget constraint. 

The Hicksian (compensated) elasticities are calculated as 𝑒𝑖𝑗 =
1

�̅�𝑖
Φ̂𝑖𝑎𝑖𝑗 + �̅�𝑗 − Δ𝑖𝑗 where �̅�𝑖is the 

sample average observed budget share for i, Φ̂𝑖 is the sample mean of the Φ̂ℎ𝑖𝑡 and Δ𝑖𝑗 is the Kronecker 

delta, with Δ𝑖𝑗 = 1 𝑖𝑓 𝑖 = 𝑗 (own-price elasticities) and Δ𝑖𝑗 = 0 𝑖𝑓 𝑖 ≠ 𝑗 (cross-price elasticities) 

(Cardwell et al., 2015; Yen et al., 2002). 

The expenditure elasticities are given by 𝜂𝑖 =
Φ̂𝑖(∑ 𝑟𝑏𝑖𝑟𝑦ℎ𝑡

𝑟−1))𝐿
𝑟=1

�̅�𝑖
+ 1 where Φ̂𝑖(∑ 𝑟𝑏𝑖𝑟𝑦ℎ𝑡

𝑟−1)𝐿
𝑟=1  is the 

derivative of 𝑤ℎ𝑖𝑡 with respect to the real expenditures 𝑦ℎ𝑡 (Castellón et al., 2015; Yen et al., 2002). 

The Marshallian (uncompensated) elasticities, accounting for income effects in addition to substitution 

effects, are obtained via the Slutsky equation: 𝑒𝑖𝑗
∗ = 𝑒𝑖𝑗 − �̅�𝑖𝜂𝑖. 

 

  



4.4. Results and discussion 

 

 

 

 

 

Figure 1. Hicksian price elasticities 
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4.4.1. Own-price elasticities 

 
All the own-price elasticities (except the residual product family which is designed as inelastic) have 

the expected negative signs (Figure 1). The own-price elasticities for conventional products are 

moderate (-0.55 to -1), indicating that consumers are moderately responsive to price changes. The 

own-price elasticities are much larger for organic products (-1.2 to -5.9), with the exception of drinks 

(-0.9), showing that consumers purchasing organic products greatly adjust their purchases of organic 

products when prices evolve. The lower own-price elasticities of organic drinks may relate to strong 

habits and/or higher health or fair trade preoccupation: hot beverages (coffee, tea, infusions) indeed 

make up 40 % of the organic drinks category. 

In a marketing study of price promotions in the USA, Bezawada and Pauwels (2013) also show that 

organic sales strongly increase when organic products’ prices are lower and that the long term own-

price elasticities of organic products are larger than conventional products’ ones. Glaser et al. (1999) 

also find large own-price elasticities for several organic vegetables in the USA, ranging from -1.630 to 

-2.268, whereas the own-price elasticities for the same vegetables but in conventional quality only 

range from -0.102 to -1.043. Similarly, Lin et al. (2009) find own-price elasticities for organic fruits 

ranging from -1.06 to -3.54 while own-price elasticities for conventional fruits only range from -0.49 

to -0.85.  

 

4.4.2. Cross-price elasticities 

 

83% of the cross-price elasticities of conventional products’ families are positive (upper half of Figure 

1), indicating that most conventional products are substitutes to both other conventional and organic 

products. These cross-price elasticities are mostly small however, attesting that price-driven 

substitutions are difficult between such large product families. These small elasticities also illustrate 

the selection process as a large share of the sample does not purchase the organic versions of products, 

the price of these organic products would have to greatly decrease to incite consumers who only 

purchase conventional products to start consuming organic products. 

The case of the cross-elasticities between conventional fruits and vegetables and conventional animal 

products is worth highlighting as the value of this elasticity is larger, showing that F&V are substitutes 

to animal products.  

For conventional products, H1 is invalidated as conventional products are mostly substitutes among 

themselves, with small although positive cross price elasticities. However, H2 is confirmed as the 

cross-price elasticities of conventional products with organics ones are close to zero. 

 



The cross-price elasticities of organic products differ from those of conventional products. Indeed, most 

of these elasticities are of large absolute value and present a variety of signs. The cross-price elasticities 

of organic products with conventional products are mostly positive (83% of positive elasticities 

excluding the residual products’ family), indicating that organic products are substitutes of conventional 

products.  

The consumption of organic products is especially responsive to price changes of conventional F&V, 

animal and processed products, which validates H3. Oppositely, the cross-price elasticities of organic 

products with other organic products are mostly negative (80% of negative elasticities) showing that 

organic products are complements among themselves and verifying H1 for organic products. 

This indicates that organic consumers seem to link their purchases from different families of products 

and that they would rather increase the quantity of organic food they consume proportionally in all 

products’ families rather than on one specific family.  

Organic F&V have especially large price-elasticities and also strongly influence the demand for other 

organic food (price elasticities of other organic foods with organic F&V are large). These large 

elasticities may be explained by the fact that organic F&V is the most purchased family of organic 

products: there are only 54% of zero purchases in our data vs. 73% on average for other organic product 

families. Thus, the demand for organic F&V is less censored and prices have more influence on their 

demand than the socio-demographics or the probits’ distribution and density functions estimates from 

the first stage of the SY demand system.  

 

This asymmetry between organic and conventional products’ elasticities has also been observed by 

Glaser et al. (1999) for frozen vegetables in the USA. They find that elasticities of conventional 

products’ demand in regards to organic products’ prices are close to zero whereas the elasticities of 

organic products in regards to conventional prices are positive and ranging from 0.446 to 2.437. Glaser 

et al. (2000) and Alviola and Capps (2010) find similar results for organic and conventional milk 

consumption in the USA, organic milk is a strong substitute for conventional milk whereas conventional 

milk purchases are not influenced by organic milk prices. Zhang et al. (2011) demonstrate similar results 

for fresh organic and conventional vegetables in the USA. 

The asymmetry of cross-price elasticities indicates that an increase of conventional products’ prices (via 

a tax for example) would efficiently shift consumers’ purchases from conventional to organic products 

whereas an increase of organic products’ prices would not change consumers’ behavior, i.e. would not 

strongly reduce organic food consumption. As observed by Lin et al. (2009) in the case of organic and 

conventional fruits in the USA, a change in the relative prices of organic and conventional products 

would strongly incite consumers to cross-over from conventional to organic products while it would 

less likely results in a reverting of organic purchases to conventional ones. 
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4.4.3. Expenditure elasticities 

Figure 2. Expenditures elasticities 

 

 

Conventional animal products and drinks appears– on average – as luxury goods, as the expenditures 

elasticities are slightly greater than unity (Figure 2). Thus, if an average consumer is able to spend more 

on food, he will relatively spend more of this additional expenditures on animal product and drinks 

(likely meat and alcohol). Most of the organic products are also luxury goods with the notable exception 

of dairy products which appears as normal goods. The other conventional and organic families of 

products have positive and lower than unity expenditures elasticities, ranging from 0.803 to 0.967, 

indicating that they are normal goods, i.e. if a household’s food expenditures increase by 10%, he will 

increase its consumption of these normal goods, but by less than 10%.  

Demonstrating that organic products’ expenditures elasticities are close to unity reveals that income is 

not strongly limiting organic food consumption and that purchasing organic products is possible at any 

level of food expenditures, thus confirming the intuitions of Monier et al. (2009), Yiridoe et al. (2005) 

and Lambotte et al. (2020). Boizot-Szantai et al. (2017) have also shown that food expenditures are not 

strongly different (10% higher) between the highest and lowest quintile in term of organic consumption. 



In addition, as food has an income elasticity close to 0 in respect to the whole households’ expenditures 

(Benus et al., 1976), these results on expenditures elasticities can be extended to income elasticities. 

 

4.4.4. Simulation of a price subvention for organic products 

 

Using the Hicksian elasticities (𝑒𝑖𝑗) presented in Figure 1, we assess the impact of a subvention of 

organic food (i.e. a reduction of 20% of the price of organic products, assuming perfect transmission) 

on the budget shares of organic food. Our simulation is based on the budget shares of 2018 (�̅�𝑖
2018), and 

thus predict the budget shares after a subvention (�̅�𝑖
∅𝑆𝑈𝐵𝑉) as �̅�𝑖

∅𝑆𝑈𝐵𝑉 = �̅�𝑖
2018(1 + ∑ 𝑒𝑖𝑗∆𝑝𝑗

𝐽
𝑗=1 ) 

where ∆𝑝𝑖 is a vector of price changes, i.e. zero for conventional product and -20% for organic products. 

The 20% price decrease of organic products yields an increase in the demand of organic food of 40%. 

Nevertheless, the average budget share of organic food only reaches 5.9% after the subvention, which 

is far from the Green deal target (Table 2).  

 

Table 2. Effects of a VAT exemption for organic products 

Organic Product Family Budget shares in 2018 Budget shares subvention Variation (% increase) 

Animal 0.6% 0.9% 50% 

Dairy 0.3% 0.4% 25% 

Drinks 0.6% 0.7% 22% 

Fruits and Vegetables 0.7% 1.2% 77% 

Cooking Ingredients 0.6% 0.9% 39% 

Processed food 1.1% 1.5% 40% 

 

The price subvention has a higher impact on organic product families which have relatively large own-

price elasticities, i.e., animal products and F&V, which are thus more impacted by the subvention (+50% 

and +77% increase of their budget share after the VAT exemption compared to 2018 respectively). As 

the actual budget shares of organic products are really small compared to conventional products’, the 

20% price subvention has a weak absolute effect on organic food demand. A wider subsidization of 

organic food would be needed to reach the 25% target of the Green deal. However, organic product 

cannot be indefinitely subsidized due to government’s tax burdens and because subsidizing organic 

products would only be efficient up to the point that organic food prices equal their conventional 

counterparts. Once such equilibrium is reached, the demand for organic products would not be related 

to prices anymore but rather to availability, consumption motives (health, environmental impacts, fair 

trade …) or purchasing and cooking habits. Our results tend to show that these factors could play a larger 

role than organic food prices in increasing organic food consumption to a substantial market share such 

as the 25% target of the Green deal.  
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4.4.5. Limits & future research 

 

The main limit of these estimates is the absence of a stronger correction than the FI index for the quality 

bias in prices and for price endogeneity. Quality correction à la Cox and Wohlgenant (1986), regressing 

socio-demographics on the unit values and using the predicted unit values in the demand system, often 

produces unrealistic price estimates (negative prices) in our case, because for some organic products, 

we have few observations in a given time period. Products’ availability has been used as an instrument 

for prices but our existing availability index may still too endogenous for this purpose (Allcott et al., 

2019). This is nevertheless something that could be explored. 

Another limit is the absence of a corrected computation of standard errors for the parameters of the two-

step censored demand system. We intend to remedy to these issues in a future version of this paper, 

computing standard errors using a bootstrapping procedure (Castellón et al., 2015).  

In the same direction, a verification of the different theoretical and computational assumptions related 

to demand system estimation in the SY two-step procedure would be useful for future research. An 

application and estimation of the censored model proposed by Zhen et al. (2014), would allow to verify 

our results and compare the estimated elasticities and standard errors between both models. 

  



4.5. Conclusion 

 

In an attempt to improve the understanding of organic consumers’ behaviour, we estimate price and 

expenditures elasticities of organic and conventional food in France from 2011 to 2018 using Kantar® 

scanner data. We successfully develop a censored EASI demand system for 7 organic and conventional 

products’ families. 

We find that the own-price elasticities of organic products are considerably more than unity (in absolute 

values) and larger than conventional products’ elasticities, indicating that consumers are willing to 

increase their consumption of organic products when organic prices decrease. We show that organic 

products are either luxury or normal goods, with expenditures elasticities close to unity in both cases. 

This indicates that expenditures, and more generally household’s income, do not strongly affect organic 

food consumption.  

Moreover, organic products are mostly complements among themselves as witnessed by the large share 

of negative cross-price elasticities between organic products’ families. However, organic products 

appear as substitutes of conventional products, as shown by their positive cross-price elasticities.  

Organic food demand is thus reactive to price changes of both organic and conventional products which 

indicates that a subvention of organic products or a tax of conventional products would increase 

consumption of organic food. We show that a price subvention of organic products, reducing organic 

prices by 20% (assuming a perfect transmission) would increase the market share of organic food by 

40%, driven by animal products and F&V. Although this effect is large, it would only increase organic 

food market share from 4.3% in 2018 to 6% after the subvention, which is far from the Green deal target, 

i.e. a 25% market share for organic food. 

Should such a pricing policy be enforced and which level of subvention and targets should be selected 

is still an open question, worth discussing in future research. Some areas worth questioning might 

include the advantages and disadvantages of taxing conventional products versus subsidizing organic 

products, in term of both farmers and consumers’ welfares or estimating an optimal tax/subsidy level 

under nutritional, environmental and budget constraints. 
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4.6. Supplementary Materials.  

 

SM 1. Descriptive information of the market of organic food from 2011 to 2018 

 

 

 

  

Figure SM 1.a. Evolution of the market share of organic and conventional food from 2011 to 2018 

 



Figure SM 1.b. Evolution of the share of products’ families in total organic expenditures 
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Figure SM 1.c. Evolution of the share of the organic version relatively to the conventional one for each products’ 

families 



SM 2. Products Aggregation into families  

Family Products 

Conventional 

quality 

budget share 

in 2018 

Organic 

Quality 

budget share 

in 2018 

Animal Meat, fish, eggs. 28.2% 0.6% 

Dairy Cheese, milk. 7.7% 0.3% 

Drinks 
Alcoholic drinks, coffee, tea, milk substitutes, water, 

juices, soda. 
15.4% 0.6% 

Fruits and Vegetables Fresh, frozen and processed fruits and vegetables. 11.9% 0.7% 

Cooking Ingredients Fat, culinary ingredients, sweeteners, butter. 7.6% 0.6% 

Processed food 
Desserts, baby food, biscuits, pastries, prepared 

meals, confectionary, appetizers. 
22.5% 1% 

Starchy food Bread, flour, cereals, pasta, pulses. 2.6% 0.3% 
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General Conclusion 
 

Conclusion 

 

This thesis has tried to deepen the current understanding of the consequences of a production and 

consumption shift toward quality food products. On one side, we have assessed the economic and 

environmental performances of quality-labelled farms compared to their conventional alternatives. On 

a second side, we have analyzed consumers’ behavior toward quality food, with a focus on the regularity 

of organic consumption and organic price elasticities.  

 

In the first chapter, we focus on PDO dairy farms and develop a model in order to include direct LUC 

in the estimation of farms’ GHGE. Using a dataset of 95 LCA of dairy farms in Savoy and Franche-

Comté, we reconstitute farms’ cost, revenues and gross margin. We also simulate the direct land-use 

changes of these farms (soil carbon sequestration or emission) and the impact of several farming 

practices on carbon sequestration in order to estimate net GHGE. Although we could not find synergies 

between the economic (gross margin) and environmental (GHGE) performances of PDO dairy farms, 

we uncover several levers that improve one of the above-cited performance without compromising the 

other. Investing in equipment to more efficiently dry the hay or milk the cows, limit livestock density, 

or reduce fuel use increase the environmental performance by 5 to 13% without impairing gross margin. 

Increasing labor use or reducing the amount of protein in the diet enhance the economic performance 

by 7 to 21% without deteriorating the environmental performance. We show that integrating the effect 

of LUC and management practices in the assessment of farms’ carbon footprint and proposing indicators 

of economic and environmental performances harmonized per liter of milk produced or per hectare of 

land used is key to robustly analyze the performances of dairy farms. Our results show that PDO farms, 

similarly to conventional farms, have antagonistic carbon footprint and economic margins, i.e. the farms 

with the lowest carbon footprint also have the lowest profitability. This indicates that encouraging 

certified dairy production may not create the win-win situation expected, especially because of the lower 

productivity of PDO farms and land-use changes, even if several levers could increase the performances 

of such farms. 

In the second chapter, we continue our analysis of the economic and environmental performances of 

quality-labelled farming systems with a comparison of organic and conventional dairy farms in France. 

Using a similar dataset of the LCA of 3,191 dairy farms in France, we develop our model of theoretical 

land use change to integrate the estimation of indirect land use changes in addition to direct LUC and 

the impact of management practices on carbon sequestration. Moreover, using the extraordinary size of 

our dataset, we perform propensity score weighting to robustly control for the structural and pedo-



climatic differences between organic and conventional farms. Doing so, we find that organic milk has a 

8.6 – 29% lower carbon footprint than conventional milk, depending on whether indirect land use 

changes are accounted for. In addition, we could not find a significant difference between the gross 

margin of organic and conventional farms. We show that integrating a weighting or matching procedure 

in the comparison of the performances of different farming systems is crucial: for example, without 

weighting, the carbon footprint of organic milk is 39% lower instead of 29% and the conventional farms 

are significantly more profitable. We raise that integrating indirect LUC in LCA is complex and 

introduces uncertainty, which may explain why indirect LUC are sparsely included in the GHGE’ 

estimates of food products. Finally, the results of this chapter on organic and conventional farms 

relativize our findings on PDO farms: all farming systems have an antagonism between their 

environmental and economics performances when LUC and carbon sequestration are accounting for. 

Thus, we cannot assert that either organic or PDO would be win-win dairy farming systems but we show 

that certified farms have lower carbon footprints that comparable conventional farms. This result alone 

justifies public policies attempting at developing certified agricultural systems to reduce territorial 

GHGE. 

In the third chapter, we analyze purchase behavior of quality food consumers using several years of 

Kantar®’s scanner data (database of the purchases of 12,000 of households). We find that the 

consumption of geographical indications and label rouge food is always occasional while consumer 

attitude towards organic food is often regular: for a given product, consumers tend to either purchase it 

always organic or always conventional but not often a mix of both (occasional). More precisely, we 

uncover that 29% of the households are regular for at least one organic product although very few 

households are organic regulars for their entire basket. However, these regular organic consumers are 

key actors for marketing strategies or public policies as they are responsible for 28% of the purchases 

of the organic market and up to 50% for some fruits and vegetables, eggs or milk. Baby food, meal 

substitutes, desserts, bread and flour also show evidences of regular organic purchases behavior. Using 

a random utility modelling and a logit estimation, we show that regular organic consumers are in general 

more wealthy, urban, have a higher professional status, are more likely in couple and have relatively 

less children. Regular organic behavior is more prominent in products categories that are more widely 

available in all types of shops but does not seem influenced by the relative price of organic products 

compared to their conventional alternatives. The main motive behind this study of consumer behavior 

toward certified food through the prism of regularity was to analyze the duplication of regulars purchases 

among different products. Indeed, if regular purchases of a product are an entry point to wider transition 

to diets based on certified products, then public policies targeting the consumption of products for which 

regular purchases is common would be effective in increasing the consumption of certified food. 

However, our results indicate that regular purchases are not strongly duplicated. Nevertheless, 

increasing the availability of organic products in all the shopping sources and the information about the 
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benefits of organic products on the health, environment or animal welfare seems to be effective public 

actions to increase regular behavior toward organic products and the overall consumption of organic 

food.  

In the last chapter, we also use scanner data and apply a censored EASI demand system, in order to 

estimate price and expenditures elasticities of organic and conventional food in France from 2011 to 

2018. We uncover that own-price elasticities of organic products are considerably larger than 

conventional products’ elasticities, indicating that reducing the price of organic food would strongly 

increase its consumption. We also show that organic products can be mostly classified as luxury goods 

with expenditures elasticities slightly higher than unity, indicative of a rather small role of food 

expenditures and income in determining organic consumption. Moreover, organic products are 

complements among themselves (negative cross-price elasticities) but they are substitutes of 

conventional products (positive cross-price elasticities). Organic food demand is thus reactive to price 

changes and a price subvention of organic products would increase their market share by 40%. This final 

chapter presents complementary results to the third chapter in regards to the role of price in organic food 

consumption: whereas regular consumers’ purchase decisions are not related to prices, occasional 

consumers are more reactive to price changes, especially for the conventional alternatives. The results 

of this chapter show that subventions of certified food, decreasing their relative price are effective public 

actions to increase the consumption of certified products and thus the transition to diets based on such 

quality products. 

 

Limits and future research 

 

This work however suffers some limits worth mentioning. First of all, the assessment of the economic 

and environmental performances of PDO and organic dairy farms is hindered by the omission of the 

farmers’ knowledge and skills, which are not (and cannot be) observed in the LCA datasets we use. 

These omitting variables might create endogeneity in the regression models we applied and thus the 

causality of the relationships we identify must be carefully considered. Other methods, such as farm 

system modelling or Data Envelopment Analysis have been applied to similar context (Beukes et al., 

2010; Doole, 2014; Iribarren et al., 2011) and could be used to increase the robustness of our results.  

Secondly, the model we used to estimate GHGE from direct and indirect LUC is based on secondary 

data sources which comes with a high level of uncertainty at the farm level that we could not 

satisfactorily reduce. These usual values of dLUC/iLUC emission factors from the IPCC (2019) are 

based on national averages anc cannot account for the heterogeneity of farms. Using results such as ours 

in a bottom-up process to re-estimate such average values of dLUC and iLUC emission factors could 

improve the knowledge of farms’ GHGE and help defining mitigation strategies. 



Thirdly, gathering a panel database of farms’ LCA instead of cross-sectional database could improve 

our estimation of the difference in economic and environmental performances between certified and 

conventional farms. Indeed, observing the same farms before and after their transitions from a 

conventional system to an organic one could yield precious information on the structural and 

performances’ differences between both farming systems. 

Lastly, our analysis of consumers’ behavior toward quality food, and especially toward organic food did 

not identify transitions or shifts from a regular consumption of conventional products to a regular 

consumption of organic versions of these products. Defining a methodology to identify such transitions 

as well as the factors that hinder them would enlighten greatly the empirical understanding of 

consumers’ preferences and purchasing behavior.  
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