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Résumé

Un milieu granulaire est un milieu composé de grains en contacts dans une
phase fluide (du gaz et/ou de l’eau). Composants d’un pierrier, d’une dune
de sable, d’un manteau neigeux, d’une digue maritime ou fluviale, les milieux
granulaires sont omniprésents dans nos vies. Leur grande complexité et ori-
ginalité résident dans le fait que ces milieux peuvent se comporter comme un
solide, un liquide et même un gaz. Une avalanche, un mouvement de terrain,
sont les conséquences de la transition solide - fluide d’un matériau granu-
laire. Les régions montagneuses concernées représentent environ un quart
du territoire français métropolitain. De plus, la France présente un nombre
conséquent de barrages (plusieurs dizaines de milliers de petits barrages,
environ mille grands barrages) et des dizaines de milliers de kilomètres de
digues fluviales et maritimes. De part les nombreuses applications associées
à la gestion du risque, il est nécessaire de mieux comprendre les mécanismes
de la transition inertielle, plus particulièrement identifier les causes de son
initiation et les éventuels signaux précurseurs.

Dans ce travail, la transition inertielle est vue comme une instabilité mé-
canique, et les bouffées d’énergie cinétique associées à sa survenue, sont consi-
dérées comme des signatures d’instabilités mécaniques pré-existantes. Ainsi,
afin de mieux comprendre les mécanismes amenant à la transition inertielle,
l’apparition et la propagation des bouffées d’énergie cinétique sont étudiés
grâce à des expériences numériques quasi 2D, utilisant la méthode aux élé-
ments discrets (DEM). Les milieux granulaires sont considérés comme un
milieu continu à l’échelle de la pente ou de l’ouvrage. Cependant leur micro-
structure, c’est à dire la distribution spatiale des grains et de leur contacts,
conditionne leur comportement mécanique. La DEM permet de faire la jonc-
tion entre ces deux visions, notamment en introduisant une échelle mésosco-
pique entre les grains et le volume élémentaire représentatif. Dans cette thèse,
les cycles de grains, définis comme la partition du milieu basée sur le réseau de
contacts entre les grains, sont les méso-domaines à partir desquels les bouffées
d’énergie sont étudiées. Des indicateurs mésoscopiques comme un tenseur de
déformation et un tenseur de contrainte mésoscopiques (compatibles avec les
tenseurs macroscopiques) sont définis en vue de tester l’application du critère
du travail du second ordre à l’échelle mésoscopique. Le travail du second ordre
correspond au produit doublement contracté entre un tenseur de contrainte
incrémentale et un tenseur de déformation incrémentale. D’une manière gé-
nérale, les quantitées mésoscopiques peuvent être définies selon deux visions :
une vision de partition qui permet de retrouver la quantité macroscopique
par homogénéisation spatiale, et une vision structurale, indispensable à la
formulation d’un critère du second ordre mésoscopique, et dont le lien avec
la quantité macroscopique se fait par homogénéisation statistique.
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Dans un premier temps, des échantillons de densité différentes sont soumis
à un essai biaxial, et des bouffées d’énergie cinétique sont étudiées lorsque le
régime stationnaire est atteint, l’état critique. Après avoir isolé une zone de
propagation autour de chaque bouffée du reste de l’échantillon, il est montré
que les bouffées d’énergies cinétiques apparaissent dans une région où les
contacts sont proches du seuil de glissement et qui est plus lâche, avec des
cycles de grains de plus grande porosité, que dans le reste de l’échantillon.
L’annulation du travail du second ordre mésoscopique à l’intérieur de la zone
de la bouffée est un précurseur à son initiation. Durant la propagation de
la bouffée d’énergie cinétique, la micro-structure dans la zone de la bouffée
est réarrangée. Les cycles de grains d’ordre élévé et les particules libres sont
des acteurs majeurs de la réorganisation. Une bouffée d’énergie cinétique
est considérée comme une réorganisation à court terme d’une partie de la
micro-structure. Dans ce contexte d’essai biaxial à l’état critique, les bouffées
d’énergie cinétique restent localisées (ne se propagent pas à tous l’échantillon)
car les réorganisations sont efficaces pour retrouver une stabilité mécanique
et permettent d’enrayer sa propagation à tout l’échantillon, résultat qui est
retrouvé avec l’évolution du travail du second-ordre mésoscopique structural.

Dans un deuxième temps, la démarche mise en place pour un cisaille-
ment dans un essai biaxial est appliquée à un cisaillement gravitaire afin
de se rapprocher de l’exemple concret d’un glissement de terrain. L’échan-
tillon est incliné de manière progressive en présence de gravité. Deux types
de simulations sont effectuées et comparées. L’une des simulations conserve
des conditions aux frontières avec des murs rigides, alors que des conditions
limites périodiques sont choisies pour l’autre simulation. De manière géné-
rale, les deux conditions limites aboutissent à une transition inertielle pour
le même angle de pente mais l’état de contrainte est modifiée par la présence
de murs rigides. Comme pour l’essai biaxial, l’étude des bouffées d’énergies
cinétiques suggère une évolution progressive vers la transition inertielle : les
bouffées d’énergie cinétique deviennent de moins en moins localisées au fur
et à mesure que la pente se fait forte, jusqu’à la fin de la transition inertielle
qui est suivi d’un déplacement des grains en continu.

Mots clés : Matériaux granulaires, Instabilités mécaniques, Transition
inertielle, Echelle mésoscopique, Cycles de grains, Méthode aux élément dis-
crets, Critère du travail du second-ordre.



Abstract

A granular material is a media composed of grains in contact with each
other immersed a fluid phase (gaz and/or water). Components of a scree,
of a sand dune, of a snowpack, of sea and river dikes, granular materials
are widely present in our life. Their great complexity and originality come
from the fact that granular media can behave like a solid, a fluid and even a
gaz. An avalanche, a landslide may result from the solid-fluid transition in
a granular material. Mountain regions, that are widely concerned, represent
a quarter of the continental french territory. Moreover, France owns a large
number of dams (several tens of thousand of small dams, about a thousand of
big dams) and tens of thousands of kilometers of sea and river dikes. Because
of the numerous applications associated to risk management, it is necessary
to understand the mechanisms of the inertial transition. More particulary,
it is necessary to identify the causes of the inertial transition and if any
precursors exist.

In this work, inertial transition is a mechanical instability, and bursts of
kinetic energy are considered as early precursors of pre-existing mechanical
instabilities. Thus, occurence and propagation of bursts of kinetic energy
are studied, in order to better understand the mechanisms leading to the
inertial transition. This is done thanks to quasi 2D numerical experiments
with the use of the discrete element method (DEM). Granular materials can
be considered as a continuous media as the macroscopic scale. However their
micro-structure, the spatial distribution of grains and their contacts, drive
their mechanical behaviour. DEM enables to bridge the gap between these
two points of view, in particular with the introduction of an intermediate
scale, the mesoscopic scale, between the grain and the representative ele-
mentary volume. Grain loops, which are defined from the partition of the
contact network of the media, are the meso-domains from which bursts of
kinetic energy are analysed. Mesoscopic indicators are defined such as strain
and stress mesoscopic tensors (consistents with related macroscopic quan-
tities) in order to defined a second-order work criterion at the mesoscopic
scale. The second-order work correponds to the double dot contraction prod-
uct between an incremental stress tensor and an incremental strain tensor.
Generally, there are two approaches to define a meso-physical quantity. On
one hand, a partition approach from which the macroscopic quantity can
be found by spatial homogeneization. On the other hand, a structural ap-
proach, necessary for the second-order mesoscopic work criterion formulation
and from which the macroscopic quantity can be found back by means of sta-
tistical homogenization.

In a first time, granular samples of different density are submitted to a
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biaxial test and bursts of kinetic energy are analysed during the critical state
regime. A propagation zone is defined around the burst of kinetic energy to
show that bursts of kinetic energy occur in regions where the proportion of
contacts closed to sliding is higher than in the rest of the sample. Moreover
the burst region is also looser, with grain loops of higher porosity. The
vanishing of the second-order work at the mesoscopic scale, inside the burst
region, is a precursor to the initiation of the burst. During the propagation
of the burst, the micro-structures of the burst area are rearranged. High
order loops and rattlers (grains with no or one contact) play a key role in
the reorganization. Bursts of kinetic energy can be viewed as short time
reorganizations of a portion of the system. During a biaxial test, at the
critical state, bursts of kinetic energy remain localized (do not affect the
whole sample). The micro-structure reorganizations are able to stabilize
the region, mitigating the propagation of bursts to the whole sample. The
vanishing and then positive values of the structural second-order mesoscopic
work underline this point.

In a second time, the approach put in place for biaxial tests is applied to
granular packings on a slope, in order to get closer to the pratical exemple
of a landslide. Samples are titled progressively under gravity. Two simula-
tions with different boundary conditions are compared. One simulation has
rigid boundary conditions. The other simulation has periodic boundary con-
ditions. Both type of simulations exhibit an inertial transition at the same
slope angle. However in the rigid boundary conditions simulation, the stress
state and the failure is non homogeneous because of the presence of the rigid
walls. The analysis of bursts of kinetic energy analysis suggests a gradual
evolution towards inertial transition. The steeper the slope gets, the less lo-
calized and the more numerous bursts of kinetic energy are, until the inertial
transition, followed by a persisting movement of grains.

Mots clés : Granular material, Mechanical instabilities, Inertial tran-
sition, Mesoscopique scale, Grains loops, Discrete element method, second-
order work criterion.
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Chapter 1

Introduction

Many granular materials surround us, from the beach to the kitchen in-
gredients and through seismic gauge, mountains slopes and earthen dams
among many others. Their size variety is also wide, from ten of microns for
powders up to ten of meters for rocks in mountain screes. Conceptually, a
granular material is a set of solid particles in interaction and immersed in
a fluid (liquid or/and gas) filling the pore space. It can be dry if the fluid
is gas, partially saturated if liquid and gas coexist (mainly water and air) or
saturated if the liquid phase fill all the pore space.

Behind an apparent simplicity at the grain scale, granular media exhibit
a great diversity of behaviours under different solicitations at the scale of an
assembly of grains. Who has never play with sand and see his/her castle
crumble after the sea came by or because of a consolidation default ? From a
quasi-static solid regime, and under certain mechanical loadings or hydraulic
conditions, the granular assembly can flow like a liquid and even behave like
a gas (Figure 1.1).

Figure 1.1 – The flow regimes of granular material : solid, liquid, gas obtained
by pouring steel beads on a pile (Forterre and Pouliquen, 2008)

Illustrations of the consequences of the solid-fluid like transition are given
in Figure 1.2. In France, montains area represent about 22% of the total area.
They attract a lot of people either for tourism or for living. Slope stability
consequences can have a substantial impact on the population and human
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2 CHAPTER 1. INTRODUCTION

activities. Moreover, France also exhibits signifiants numbers of hydraulic
structures. The total linear length of dikes represent more than 9, 000 km as
protection against flooding, 10, 000km of dikes for navigation canals, 1, 000km
of hydroelectrics canals and 1, 000km of maritime dikes (Bonelli, 2012). In
addition, ten of thousands small embankement dams (smaller than 15m) and
about 600 large dams are enumerated. Many of these hydraulic structures
are made of compacted layers of soil which may be subjected to the solid-
fluid like transition resulting in dike or dam failure. Those numbers and the
related risks underline the importance of being able to anticipate failure with
dramatic consequences.

(a) (b)

(c)

Figure 1.2 – (a)Rotationnal landslide at the Daning River, Wushan County in
Yangqing Miunicipality, China (24.06.2015), (b) Liquefaction of the dam at
Vale’s Corrego do Feijao mine in southeastern Brazil (25.01.2019), (c)Slope
failure at north cell of Woman Creek Dam (2013) source : the Colorado State
Engineer’s Office

The transition between solid and fluid like behaviours is called the inertial
transition. To summarize, inertial transition is known to play an important
role in the triggering of natural hazards such as debris flow, landslides and
avalanches. It plays also a role in the destabilization of dikes or dams sub-
jected to internal erosion (Wautier et al., 2018a). Understanding and mod-
elling the inertial transition is still an active subject (Cambou et al., 2013;
Forterre and Pouliquen, 2008; Di Prisco and Pisanò, 2011; Vescovi et al.,
2018).
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At the material point scale, existence of bursts of kinetic energy are con-
sidered as a signature of effective failure (di Prisco and Imposimato, 1997;
Wan et al., 2017). They stand for early warnings of inertial transition (Darve
et al., 2004; Wautier, 2018), and by consequence, studying bursts of kinetic
energy makes a lot of sense to anticipate regime changes (Welker and McNa-
mara, 2011; Walker et al., 2014; Gaume et al., 2018). Although these failure
have consequences at the macro-scale, they come from micro-changes (con-
tact grain loss and grain displacement), at the scale of a grain. Micro-scale
investigations are thus needed to identify inertial transition mechanisms. In
the desire to brigde the gap between the contact scale properties and the
scale of the entire material, multiscale approaches are used to study granular
materials (Staron et al., 2005; Zhu et al., 2016c; Liu et al., 2018). Those up-
scaling approaches have proven that introducing an intermediate scale -the
meso-scale- is relevant. Indeed, macroscopic behaviour relies widely on the
geometrical arrangements of grains. Force chains (Radjai et al., 1996; Torde-
sillas, 2007) and grain loops (Zhu et al., 2017; Liu et al., 2020) have proven to
be revelant to give information on how forces and geometrical reorganizations
take place.

Since its introduction by Hill in 1958 (Hill, 1958), the second-order work
criterion has proved to be a useful and versatile tool to identify unstable
states (Wan et al., 2016). Unstable materials, in the sense of second-order
work criterion, will exhibit unbounded brutal increase in kinetic energy if a
suitable incremental loading is applied. The vanishing of the second-order
work is a necessary condition and a precursor of inertial transition. The
second-order work criterion is defined at the macro-scale (Nicot and Darve,
2007; Nicot et al., 2009, 2012b) and at the micro-scale (Nicot et al., 2007;
Hadda et al., 2013), but no works proposed yet a meso-scale definition.

The aim of this PhD thesis is to go back to the discrete nature of a
granular material in order to analyse and understand the elementary micro-
and meso-mechanics leading to the sudden appearance of kinetic energy, sig-
nature of a static/inertial transition. The consequences of outbursts at the
micro-scale and the meso-scale are analysed for different sample density. Pre-
cursors of the bursts of kinetic energy are looked at the grain scale and at the
meso-scale. Chapter 2 introduces the necessary concepts and background to
understand the work done here. The issue of instability in granular material
is reviewed, especially in the framework of inertial transition. The impor-
tance of defining a meso-scale is underlined, and the grain loop concept is
reviewed. The numerical simulation choice is underpined, and the principles
of Discrete Element Method is reviewed. All the concepts and tools needed
and used in this work to perform micro-mechanical analyses are given in
Chapter 3. In particular, we introduce two complementary perspectives to
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define meso-structures and attached meso-scale quantities: the structural
and the partition points of view. Meso-stresses and potential definitions of
a second-order mesoscopic work are introduced and discussed in relation to
the associated macroscopic quantities. In Chapter 4, the results obtained in
the context of a biaxial test are presented. Chapter 4 represents an exten-
sion of the published paper (Clerc et al., 2021). It presents the meso-scale
reorganisations during a burst of kinetic energy, precursors and elements re-
sponsible for the localisation of the outburst. Second-order mesoscopic work
definitions introduced in Chapter 3 are then tested. The methodology devel-
oped in Chapter 4 for studying representative elementary volumes of granular
materials are eventually applied to the analysis of a gravitational instability
issue in Chapter 5. Two approaches to simulate gravitational instabilities
are compared: with rigid boundary conditions or with periodic boundary
conditions.
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The aim of this chapter is to provide the state of the art, concepts and
methods necessary for the understanding of this PhD thesis. Let specify first
the material studied. Granular materials are, by definition, sets of solid par-
ticles in contact, in a fluid phase. In this work, the fluid is not considered.
Also the grains studied here are large enough (radius > 100 µm) so that
their interactions are only frictional and elastic. They are not dominated
by short range interaction forces (electrostatic, molecular etc.). The overall
behaviours of granular materials depends also on the grain shape and distri-
bution of grain saizes. In this work, grains are simplified as spheres. The
inertial transition plays a key role in the triggering of natural hazards, and
in the failure of civil engineering structures. The first section of this chapter
is devoted to the instability modes in granular materials. This section aims
to explain how kinetic energy relates to mechanical destabilization and how
the second-order work criterion, first established from a continuum point of
view by (Hill, 1958), could be used as a necessary condition to observe in-
ertial transition in granular media. Gravitational instability is also reviewed
in this section. Inertial transition can be studied experimentaly and or nu-
merically (Cambou et al., 2013; Forterre and Pouliquen, 2008; Vescovi et al.,
2018). In this PhD thesis, the numerical simulations relies on a Discrete
Element Method (DEM), whose principles are detailed in the second section.
The mesoscopic scale appears to be important to brigde the gap between the
grain scale and the scale of the material. Meso-structures, especially grain
loops, are introduced in the third section. Meso and micro-quantities, able
to quantify rearrangements in the micro-structure, are presented in the same
section.

2.1 Instabilities in granular materials

2.1.1 Instability criteria

The first attempt of definition of the stability in a mechanical system is
attributed to Lyapunov (Lyapunov, 1907) for celestial bodies. This orignal
definition is based on the principle that if small perturbations are imposed on
the position and/or the velocity, then the difference between the trajectories
and the velocities with or without perturbations are limited. The principle
can be extended to continuous materials by introducing adequate variables to
describe the strain/stress state of the system (Darve et al., 1995). For a given
continuous material, with a given loading history, let δl be an incremental
loading applied to the system, and δr the response of the material. The
system is stable if and only if ∀ µ > 0,∃ η > 0, ‖δl‖ < η ⇒ ‖δr‖ < µ. In
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other terms, a material is stable if any limited sollicitation creates a limited
response.

However, there is a need for a more practical criterion. According to
Hill’s sufficient condition of stability (Hill, 1958), the strain/stress state is
unstable if there exists at least one loading direction for which associated
strain rate can exist without external energy. This criterion can be written as
an energy balance in the general framework of continuum mechanics (Nicot
and Darve, 2007; Nicot et al., 2009, 2012b). In this case, Hill’s criterion
applied to a material point states that, for a given stress/strain equilibrium
(σ,ε) reached after a given loading history, the material point is unstable if
there is a least one couple (∆σ,∆ε) linked by the material’s constitutive law
such as ∆σ : ∆ε < 0.

Let Ω be a mechanical system. An equilibrium state is characterized by a
zero kinetic energy and by the fact that any variation of kinetic energy from
the current state is a second-order function of the applied perturbation. The
variation of the kinetic energy is given by :

∆t2Ëc = ∆t2
∫

Ω

IdV +

∫
δΩ

W ext
2 dS −

∫
Ω

W int
2 dV (2.1)

with

∆t2Ëc = 2 (Ec(t+ ∆t)− Ec(t))− 2Ėc∆t (2.2)

W ext
2 = ∆f · ∆u (2.3)

W int
2 = ∆σ : ∆ε (2.4)

Ec is the kinetic energy of the system, W ext
2 is called the external second-

order work, W int
2 is called the internal second-order work, I encapsulates

inertial terms, f = σ ·n and u are the stress and displacement vectors on
δΩ, σ and ε denote the stress and strain tensors in Ω, and ∆ represents the
increment between times t and t+ ∆t.

This equation states that the external work is always larger than the in-
tegral of the internal second-order work of the system. If there is no external
work change, a negative internal second-order work associated to a equilib-
rium position will result in an increase in kinetic energy (∆t2Ëc > 0). The
second-order work criterion only describes the potential ability of a system Ω
to develop kinetic energy with no external disturbance from an equilibrium
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state. With this criterion, the link between kinetic energy and instabilities
is clearly underlined. Bursts of kinetic energy are indeed considered as sig-
natures of mechanical instability (Nicot et al., 2012b).

An efficient use of the second-order work criterion to anticipate a burst
of kinetic energy, requires that :

1. The system control parameters are kept constant or ∆f · ∆u = 0 on
δΩ. This will help put forward situations where the deformation of the
system can be carried on without any input of energy on the system
boundaries.

2. The system must be balanced initially, that is to say Ec = 0 and
Ėc = 0.

According to the first requirement, W ext
2 = 0. Then the second require-

ment gives that the system evolves from a static situation (Ec = 0) to an
inertial regime (which corresponds to Ec(t + ∆t) > 0) only if W int

2 < 0.
Recent papers have shown the ability of the internal second-order work to
anticipate the occurence of a burst of kinetic energy, at the macro-scale (Nicot
et al., 2009; Daouadji et al., 2011; Nicot et al., 2012b; Wan et al., 2013; Nicot
et al., 2017; Wautier et al., 2018b). More specifically, it has been proven
that the vanishing of the internal second-order work is the most general sta-
bility criterion. It is a precursor to all other instability mechanisms (Nicot
et al., 2009; Challamel et al., 2010; Daouadji et al., 2011; Wan et al., 2013)
and other instability criteria are particular cases linked to specific failure
mechanisms (such as localized failure with (Rudnicki and Rice, 1975)).

2.1.2 Strain localization and failure

Failure can be diffuse (the whole system reach the stress limit state at
the same time), or localized. A shear band is a typical signature of a local-
ized failure (Vardoulakis et al., 1978). It is also considered as a bifurcation
problem since from a homogenous deformation field, the system changes to a
discontinuous deformation field (Sadrekarimi and Olson, 2010). Hill (1962);
Mandel (1964); Rudnicki and Rice (1975) successfully analysed the emer-
gence and inclination of shear bands. The localization of the deformation
occurs in a dense sample, just before the stress peak (Figure 2.1). At the
macro-scale, shear band formation is associated to non affine deformation
(Tordesillas et al., 2008). At the micro-scale, contact rolling and sliding have
been proved to play a great role in shear band formation (Oda and Kazama,
1998; Liu et al., 2018, 2019). An explicit relation between microscopic be-
haviours and macroscopic responses is missing.
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A B C D

GFE

Figure 2.1 – Deviatoric stress and volumetric strain curves against the axial
strain for a biaxial test (Liu et al., 2018). Seven moments are pointed out on
those curves, and their deviatoric strain is displayed, illustrating the forma-
tion of a shear band. The shear band is completely formed after the peak of
the deviatoric stress.
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2.1.3 The inertial transition

General definition

The inertial transition can be seen as being the transition from a solid
behaviour to a liquid behaviour. No internal stress scale exists for rigid grains,
on the contrary to other complex systems (e.g. Bingham fluids). Thus, the
onset of the inertial transition in a granular media is governed, as zero order
description, by contact between grains. The inititiation of the transition is
sensitive to the system preparation and to its history. Many soils mechanics
researches consist in modelling the solid-fluid transition and investigating,
among others, the impact of initial deformation, coupling between stress
and strain and the volume fraction (Roux and Radjai, 1998). Researches
have proposed elasto-plastic constitutive relations, trying to link the micro-
structure to the macroscopic behavior (Roux and Combe, 2002; Da Cruz,
2004; Vescovi et al., 2018, 2020; Marveggio et al., 2021). Concerning the dense
flow regime, for frictionless and mono-disperse granular materials, Da Cruz
et al. (2005) and Lois et al. (2005) observe that a the system is controlled
by a dimensionless parameter which quantifies dynamic effects: the inertial
number I. It is the ratio between inertial forces and imposed forces. For
large systems, and in the case of granular material with rigid particles, it
reads :

I =
γ̇d√
P/ρ

(2.5)

where γ̇ is the shear rate, d the mean diameter of the particles, P the macro-
scopic pressure and ρ the density of the packing. The inertial number could
also be seen as a ratio between two time scales (MiDi, 2004):

1. d/
√
P/ρ is a microscopic time scale, it represents the time a particle

takes to fall in a hole of size d under the pressure P . In other words,
it is the characteric time of rearrangements.

2. 1
γ̇
is a macroscopic time scale linked to the mean deformation.

Small values of I (typically I < 10−3 (Da Cruz, 2004)) corresponds to qua-
sitatic regimes as macroscopic deformation is slow compared to microscopic
rearrangements. Large values of I ( 10−3 < I < 10−1 for the inertial regime,
10−1 < I for the collisonal regime ) correspond to rapid flows, where either
the shear strain is significant or the pressure is low. We can note that it is
the only dimensionless number for monodisperse granular material without
cohesion and adhesion forces (Da Cruz, 2004).
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Inertial transition as a bifurcation

The inertial transition can be seen as a bifurcation: an abrupt and discon-
tinuous change in the state of the system and its response under the gradually
and continous evolution of state variables. The bifurcation domain is then
the set of states from which the system regime can evolve from quasi-static
to inertial state, while loading parameters evolve continuously (Nicot et al.,
2012a). In that case, the second-order work criterion is also considered as a
bifurcation criterion.

Gravitational slope instabilities

Flows of granular materials have attracted research attention at the fron-
tier between physics and mechanics. Slope stability has indeed a wide and im-
portant range of applications, from geophysics (triggering of avalanches, land-
slide, fault sliding) to industrial processes (storage and handling of powders,
food, granulates). The main goal of this analysis is to relate the slope failure
to its physical origins at the scale of the grains and their contacts. There are
different ways to simulate flows (see Figure 2.2) (Daerr and Douady, 1999).
The application for natural hazards such as landslide is our motivation for
simulating granular flows. Thus, we are interested in simulating a granular
packing on an inclined plane (Figure 2.2(d)).

The main challenge, in simulating a grain packing on a inclined plane
submitted to gravity is to minimize the effect of the walls containing the
sample. In the case of 2D simulations, there are two solutions to adress this
issue :

- Be careful on the dimensions of the packing so that the vertical di-
mension is smaller than the horizontal direction. According to the
literature (Aguirre et al., 2001; Staron et al., 2006; Oger et al., 2021),
the horizontal dimension should be at least 2.5 times bigger than the
vertical dimension. This threshold is really a minimum to avoid sig-
nificant wall effect in granular packings.

- Opting for periodic boundary conditions, which enable to suppress
walls in the horizontal direction. It will create a continuous path in
the horizontal dimension (Staron, 2008).

Lateral walls (in the third dimension) have been proved to influence the
behavior of the media (Jop et al., 2005, 2007). In order to simplify the
simulation, 2D simulations are a reasonable option to study the initiation of
gravitational instabilities. Different studies (Daerr and Douady, 1999; Staron
et al., 2006; Staron, 2008) have shown that a pre-avalanche interval exists.
Before the theoritical angle of failure θc predicted by Mohr-Coulomb crite-
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Figure 2.2 – Different configurations to create granular flows (either in a
numerical or experimental simulations) from (Forterre and Pouliquen, 2008).
(a) Plane shear, (b) Couette cell, (c) Silo (Staron and Hinch, 2005; Lube
et al., 2005), (d) flows on a inclined plane, (e) flows on a pile (Daerr and
Douady, 1999), (f) flows in a rotating drum (Jain et al., 2002). The (a) and
(b) options are not necessary conducted under gravity.
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rion, the sample exhibits important rearrangements and signs of instabilities.
This pre-destabilization phase occurs after a certain angle θd which varies in
function of the sample. θc is the static friction angle and θd the dynamic
friction angle. The interval [θd, θc] is an interesting period where precursors
can emmerge (stick slip, area of weak contacts, etc.). Contact law, shape
and size of particles have a great influence on the stability of the slope and
can change the range of pre-avalanche angle.

Finally, simple rheological descriptions have been formulated to describe
the behaviour of inertial flow of granular material. They are functions of
a friction coefficient and the inertial number I (Da Cruz, 2004; Pouliquen
et al., 2005; Jop et al., 2007; Marveggio et al., 2021).

2.2 Discrete Element Method

Granular material can be considered as a continuous medium at the macro
scale. However, at the micro-scale, granular materials are discrete materi-
als, composed of grains interacting with each other through contact laws. In
terms of numerical simulation, either discrete methods or continuum meth-
ods can be used to model granular media depending on the scale of interest.
In the scope of this PhD thesis, micro-mechanisms of inertial instability are
our main goal and continuum mechanics is not suitable framework. Discrete
element modelling is the method chosen in order to capture micro-structure
modifications due and/or linked to inertial transitions. Historically, Discrete
Element Method (DEM) started with (Cundall and Strack, 1979). It allows
working at the Representative Elementary Volume (REV) scale (Hill, 1958),
at which discrete and continuum descriptions merge. Through the use of
a REV, DEM simulations can be compared with experimental tests (Nicot
et al., 2013a; Haddad et al., 2015). Thanks to the increase in the com-
puting power, DEM is now an effective and efficient method to account for
the complex behaviour of granular materials (Luding, 2004; Šmilauer et al.,
2015; Walker and Tordesillas, 2010; Zhu et al., 2016a). In DEM, the ge-
ometry of the grains and the interaction forces between them are the two
main information needed to account for the evolution of the mechanical and
numerical systems. Among the two approaches developed in discrete meth-
ods, the smooth contact dynamics approach is chosen in this work (often
simply called DEM). Grain interpenetration is allowed so that the contact
between two grains corresponds to a unique variation in the contact forces,
and calculation can be done contact per contact. This method relies on an
explicit integration scheme, as opposed to implicit integration scheme used in
non smooth contact dynamics approaches, where grain overlapping is strictly
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Figure 2.3 – Scheme of the elasto-frictionnal law used in the numerical sim-
ulations (no viscosity).

prohibited. In this PhD thesis, all simulations were realised with the open
code source YADE (Yet Another Dynamic Engine) developed in the research
laboratory 3SR in Grenoble, France (Šmilauer et al., 2015). The computation
loop consists in four steps:

1. from the position of the particles, the contact points are identified. In
the case of spherical particles, the condition for contact between the
particles i and j can be basically summed up to ‖xi − xj‖ 6 ri + rj
where xi and ri (resp. xj and rj) is the position vector of the particle
i and its radius (resp j).

2. from the incremental kinematics of the particles i and j at contact,
the tangential and normal forces at the contact are computed based
on the contact law.

3. from the contact forces, the resulting acceleration for each particle can
be estimated, based on the second law of Newton.

4. the translational and rotational displacements of the particles are cal-
culated and the particle positions are updated.

2.2.1 Contact law

The interaction between the particles is defined by the contact law. In this
work, we use the elasto-frictionnal contact law that was initially introduced
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by (Cundall and Strack, 1979). It assumes that a contact is created by two
particles overlapping. The contact law is defined by two linear springs and a
slider (Figure 2.3).

At time t, the normal force F n(t) is a function of the outward normal
unit vector of the contact n(t), the normal stiffness kn and the overlapping
distance between the two spherical particles (1 and 2) δ(t) :

F n(t) = −knδ(t)n(t) (2.6)

The normal stiffness depends on the harmonic average of the two spheres’s
radii r1 and r2 in contact and a material Modulus E :

kn = E
2r1r2

r1 + r2

(2.7)

The overlapping distance at the time t is

δ(t) = r1 + r2 − ‖x2(t)− x1(t)‖ (2.8)

where xi(t) is the mass center position of the particle i at time t.
The tangential force F τ (t) is defined by the tangential stiffness and the

tangential displacement of the contact uτ (t) :

F τ (t) = −ktuτ (t) (2.9)

The tangential stiffness kt is linked to its normal couterpart kn by the
stiffness ratio α.

kt = αkn (2.10)
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Figure 2.4 – Three steps during the incremental update of the accumulated
shear displacement uτ for the computation of the tangential force. (a) Initial
situation with a contact of between two spherical particles, (b) First correc-
tion linked to the rotation of the two particles, (c) Second correction linked
to relative velocity between the two particles.
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Despite the apparent simple definition of the tangential force F τ (t), it
depends on the loading history and the accumulated tangential displacement
uτ (t). The next paragraph gives the expression of the incremental update of
the tangential displacement uτ (t) as it is implemented in YADE. Figure 2.4
illustrates the following equations.

At time t, two spherical particles labeled 1 and 2 are in contact. The
outward normal vector n(t) of the particle 1 (so from particle 1 to particle
2) is

n(t) =
x2(t)− x1(t)

‖x2(t)− x1(t)‖
(2.11)

The contact point xc(t) is located at the middle of the overlapping zone :

xc(t) = x1(t) +

(
R1 −

δ(t)

2

)
n(t) (2.12)

with δ(t) = R1 +R2 − ‖x(t)2 − x(t)1‖
At time t + ∆t, the two spheres move to new positions, x1(t + ∆t) and

x2(t + ∆t) respectively. If they are still in contact, the updated normal
vector is noted n(t + ∆t) and the new contact position is xc(t + ∆t). The
tangential displacement is updated by introducing a correction term linked
to the rotation of the normal vector at contact ∆uRτ and another correction
term due to the relative motion between them ∆uMτ .

Let w1(t) and w2(t) be the respective rotation rate of particles 1 and 2.
The correction term linked to the rotation of the normal vector at contact
takes into account the rotation of the normal vector with a rotation rate of
w1(t)+w2(t)

2
and the mutual movement correction is coming from the relative

motion of spheres v1/2(t) at the contact point:

v1/2(t) =

(
dx2

dt

)
t

−
(
dx1

dt

)
t

+w2(t)(xc(t)−x2(t))−w1(t)(xc(t)−x1(t))

(2.13)

Then, the incremental tangential displacement ∆uMτ is computed :

∆uMτ = ∆t
[
v1/2(t)−

(
v1/2(t) ·n(t+ ∆t)

)
n(t+ ∆t)

]
(2.14)

Finally, at time t+ ∆t, the tangential displacement is updated as follow :

u(t+ ∆t)τ = u(t)τ + ∆uRτ + ∆uMτ (2.15)
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Figure 2.5 – Coulomb criterion with afriction angle φ

The expression 2.9 of the tangential force is only valid as long as the
contact is not sliding. A Coulomb criteria with the contact friction angle
φ provides the formulation of the tangential force in function of φ and the
normal force (Figure 2.5). Thus, the final expression of the tangential force
F τ (t) is given as :

F τ (t) =

{
−k(t)u(t)τ if Fτ (t) < tanφF n(t)

− tanφ Fn(t) u(t)τ
||u(t)τ || otherwise

(2.16)

2.2.2 Newton’s second law of motion

After computing the accumulated forces for each particle from its con-
tacts, the integration of the second Newton’s law of motion for rigid solid
bodies leads to update the position and the orientation of each particles. The
current acceleration ẍ(t) is used to update the position from its value at time
t, x(t), to its value at the next step t + ∆t, x(t + ∆t). The position and
orientation of the particles are known at step points (i.e. t+ i∆t with i ∈ Z)
while velocities are know at mid-step points (i.e. t+ i

2
∆t with i ∈ Z). For a

single particle of mass density ρ and volume V , the force balance equation is

ρV ẍ(t) =
∑
c

F c(t) (2.17)
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where x(t) is the position of its mass center and F c(t) the contact forces
applied at the particles at the contact c. For rigid particles in a dry granular
packing, the only forces applied on the particle are contact forces (on internal
forces or other type of external forces). Thus, at the time t the acceleration
of the particle is known. By using the second-order finite difference, the
position at the time t+ ∆t relates to the acceleration ẍ(t) :

ẍ(t) =
x(t−∆t)− 2x(t) + x(t+ ∆t)

∆t2
(2.18)

x(t+ ∆t) = 2x(t)− x(t−∆t) + ẍ(t)∆t2 (2.19)

However, at time t only the position the position x(t) and the velocity
ẋ
(
t− ∆t

2

)
are known. The position x(t−∆t) is not known anymore, but it

can be expressed using the mean velocity at the previous step :

ẋ(t− ∆t

2
) =

x(t)− x(t−∆t)

∆t
(2.20)

Finally, using Equation 2.20 in Equation 2.19, the next position of the
particle is given by :

x(t+ ∆t) = x(t) + ∆t

[
ẋ(t− ∆t

2
) + ẍ(t)∆t

]
(2.21)

The mid-step velocity ẋ
(
t+ ∆t

2

)
is computed in order to be used in the

computation of the next on-step position x(t+ ∆t).

ẋ

(
t+

∆t

2

)
= ẋ

(
t− ∆t

2

)
+ ẍ(t)∆t (2.22)

x(t+ ∆t) = x(t) + ẋ

(
t+

∆t

2

)
∆t (2.23)

The Newton’s second law is used (Equation 2.24) and the same approxi-
mation as for the position are done for the rotation rate w (Equation 2.25).
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The particle orientation is then deduced from these equations and the use of
quaternion algebra (Šmilauer et al., 2010).

Jẇ(t) =
∑
c

rncF c(t) (2.24)

w

(
t+

∆t

2

)
= w

(
t− ∆t

2

)
+ ẇ(t)∆t (2.25)

with J = 2
5
ρV r2 the inertial moment of a sphere, r being the radius of

the particle and nc the outer normal vector of the contact c.

2.2.3 Computational constraints

The use of smooth contact dynamics with elasto-frictionnal contact law
imposes two constraints : a condition on the time step and the introduction
of a numerical damping. The first constraint is a Courant-Friedrichs-Lewy
(CFL) condition. It imposes a time step ∆t smaller than a critical time step
∆tcr. In YADE, the critical time step is fixed as a function of the highest
eigenfrequency within the system wmax.

∆tcr =
2

wmax
(2.26)

For a single mass spring system, the characteristic angular frequency is
function of the stiffness and the mass of the system. Since there is one
single mass, the highest eigenfrequency is the angular frequency wmax =√

k
m
. Thus, for this simplified system, the critical timestep is ∆tcr = 2

√
k
m
.

For a set of spheres linked by springs, the highest frequency is given for
two connected masses in opposite motion wmax = maxi

√
2ki
mi

. The critical
timestep for whole set of particles is thus given by :

∆tcr =
2

wmax
= mini

√
2mi

ki
(2.27)

The time step is defined from the critical P-wave time step. The stiffness
is the normal stiffness approximated by kn ' Er, where r is the harmonic
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average of the two spheres’s radii in contact (Equation 2.7). As an approxi-
mation, the critical time step is

∆tcr ' mini

√
4/3πr3ρ

2Er
' rmin

√
ρ

E
(2.28)

The second constraint is the absence of damping in the elasto-frictionnal
contact law for non sliding contacts. It is be necessary to dissipate kinetic
energy to prevent the system from permanently oscillating. An artificial
numerical damping is introduced in the form of dimensionless parameter,
the damping coeficient λd. The principle is to decrease (resp. increase) the
resultant contact forces

∑
F c on the particle to increase (resp. decrease) its

velocity by the increment ∆F d, as a function of the acceleration. For the
component i of the summary force acting on a grain, the definition of the
damping adds a correction term ∆F i

d :

∆F i
d∑

c F
i
c

= −λd sign

[(∑
c

F i
c

)
·
(
ẋi(t− ∆t

2
) + ẍi(t)

∆t

2

)]
(2.29)

This definition acts on forces and accelerations and thus does not con-
strain uniform motion. Moreover, it allows an equal damping for all particles
(Šmilauer et al., 2015).

2.2.4 Unbalanced forces

The unbalanced forces Funb is the ratio of mean resultant force on the
particles and mean contact force magnitude on the contacts. It is used as a
condition in the numerical simulation to assess the convergence towards the
equilibrium of the sample. At perfect static equilibrium, it will be zero, even
though zero won’t be reached because of computation precision.

Funb =

1
Np

∑Np
p=1 ‖

∑
c F

p
c‖

1
Nc

∑Nc
c=1 ‖F c‖

(2.30)

where Np and Nc are respectively the number of particles and the number of
contacts in the system. A typical value of 10−5 is used throughout this work.
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(a) (b)

Figure 2.6 – (a) Force chains visualisation in a granular assembly of photo-
elastic disks (Majmudar and Behringer, 2005). (b) Interplay between loops
and force chains in a 2D numerical sample (Zhu, 2015).

2.3 Mesoscopic point of view to describe gran-
ular materials behaviour

Granular systems complexity stems from their discrete nature, their micro-
structure. Contact scale properties and geometrical effects dictate the overall
mechanical behaviour of the granular materials. In this section, the contact
and force network is seen through meso-structure. Physical quantities rela-
tive to contacts and meso-structures are given to analyse reorganizations.

2.3.1 Meso-strucures

Numerical studies using DEM and experimental studies using (among
others), photo-elastic grains have shown that forces inside a granular material
is not homogeneously distributed and relies on limited structures, called force
chains (Drescher and De Jong, 1972; Jaeger et al., 1996; Oda et al., 2004;
Radjai et al., 1998; Tordesillas and Muthuswamy, 2009). Force chains exhibit
a strong anisotropy linked to the external loading applied to the material
(Figure 2.6(a)).

A force based approach consists in separating the force contact network in
a strong network (force chains) and a weak network composed of less loaded
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Figure 2.7 – Different loops order illustration in a granular material. Thin
black lines account for the contact network between grains. L3 : blue loop ;
L4 : pink loop ; L5 : green loop, L6+ :red loop.

grains surrounding the force chains, called grain loops. The advantage of the
grain loops is that, in a 2D sample, they result from the tesselation of the
sample area based on contact between grains, and thus provides a mesoscopic
scale between micro and macro scales. Compared to force chains that account
for the load bearing capacity, the grain loops account for the deformability
of the sample. Moreover the grain loops surrounding the force chains are
proven to ensure their mechanical stability (Zhu et al., 2016c,b) (see Figure
2.6(b)).

Grain loops are domains delineated by the contact network inside the
granular material. It exists only a unique partition of grain loops of the
granular material. Grain loops are computed through an algorithm which
starts from an arbitary grain and looks for its closer contact neighbour with
a minimization of the angle made between the two branch contacts (Figure
2.8(a)). The sample is then decomposed in an unique pavement of four
categories of grain loops based on the number of grains they are composed of
: L3, L4, L5, L6+ (Figure 2.7). The higher the order, the more deformable
the loops is. Recent works (Zhu et al., 2017; Liu et al., 2018) have proven
that the L3 and L6+ are the most active order loops in granular materials. In
this work, the walls of the DEM simulation are included in the loop detection
(Figure 2.8(b)).
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(a) (b)

n+1

n-1

α
β

γ
nα<β< γ

Wall

Figure 2.8 – Sketch for the definition of loops without wall (a), and with a
wall (b). (a) n and n − 1 are the grains already detected by the algorithm.
The next grain n+1 of the loop is detected by looking for the grain in contact
with n which minimize the angle between (n−1, n) and (n, n+1). (b) Walls
are considered like grains and can be part of loops in order to avoid fixing
an arbitrary maximal order loop.
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2.3.2 Reorganizations at the micro- and meso-scale

Mesoscopic methods have been developed to investigate changes among
meso-structures. The aim is to quantify the transformations at different
scales, to better understand how a granular sample is affected by an inertial
evolution.

Sliding index

The sliding index is an indicator showing how close is a contact from
sliding. In the case of an elasto-frictional contact law and a Coulomb criteron,
a contact slides if the magnitude of the shear contact force exceeds a threshold
imposed by the norm of the normal contact force and the friction angle. The
sliding index for each contact is then defined as :

Ip =
‖F τ‖

tanφFn(t)
(2.31)

The sliding index varies between the [0,1[ interval. 1 is considerer as
not reached because when the contact slides, the loss of the contact is of-
ten forthcoming, but not systematically . The closer to 1 the index is, the
higher probability to slide. The value above which the contact is considered
sufficiently close to sliding is chosen as Ip > 0.9. Previous work (Wautier
et al., 2018b) has demonstrated that contacts with Ip > 0.9 are likely to slide
if a small perturbation of the stress state is imposed (a perturbation whose
magnitude is 1% of the mean stress value).

Relative evolution of a given set of meso-structures

The relative evolution is a way to quantify the changes in micro-structures
of a granular material. It compares the set of meso-structures at a time t
to the set of meso-structures at a time t + ∆t (Figure 2.9). The loss of
meso-structures reads :

Lt+∆t
m =

∣∣Stm − Stm ∩ St+∆t
m

∣∣∣∣∣Strefm

∣∣∣ (2.32)

where m is the type of micro- or meso-structure analysed (rattlers, grain
loops of different orders, etc.), Stm (resp. St+∆t

m ) is the set of meso-structures
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St
m

St+Δt
m

loss gain

Figure 2.9 – The black circle represent the set of meso-structures m at the
time t and the blue circle the set of meso-structuresm at the time t+∆t. They
have a hatched joint portion, but outside this joint set, what remains from
the black circle is the loss meso-structures and, respectively, what remains of
the blue circle is the gained meso-structures.

m at the time t (resp. t+∆t) and
∣∣∣Strefm

∣∣∣ the total number of meso-structures
m at a given time of reference. Similary, the gain of meso-structures reads :

Gt+∆t
m =

∣∣St+∆t
m − Stm ∩ St+∆t

m

∣∣∣∣∣Strefm

∣∣∣ (2.33)

Life expectancy of meso-structures

In order quantify the renewal of the meso-structures, lifespan and life
expectancy are useful concepts, inspired from biology. The lifespan of a
meso-structure corresponds to the time it has continuously existed since its
formation, starting from a reference conformation. On the contrary the life
expectancy of a meso-structure is its remaining time of existance before dis-
appearing. These concepts measure how fast a granular system is losing the
memory of its past state (Zhu et al., 2016a; Wautier et al., 2018a; Deng et al.,
2021b).

Instead of measuring time of existence, the surviving rate Rm(t) of a set
of meso-structures Sm computes the percentage of the set of meso-structures
still existing at a time t (Sm(t)) with respect to the set of meso-structures
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which existed at time tref < t (Sm(tref )).

Rm(t) =
|Sm(tref )− Sm(tref ) ∩ Sm(t)|

|Sm(tref )|
(2.34)

The time in these three concepts may denote physical time or any other
forcing parameters measuring the application of external loading. For biaxial
test, the time is the axial strain, for a titling slope submitted to gravity, it is
the slope angle.

2.4 Conclusion
In this Chapter, the theoretical background of inertial transition has been

defined. The links between inertial transition, mechanical instabilities and
bursts of kinetic energy have been highlighted. Studying bursts of kinetic
energy is a relevant approach to understand the mechanisms of the inertial
transition. The second-order work criterion has been presented as a powerful
tool to detect instabilities, and a definition at the mesoscopic scale is formu-
lated in the next Chapter. In order to simulate the behaviour of granular
materials, Discrete Element Method with an elasto-frictional contact law is
introduced. The discrete methods are based on a simple four steps compu-
tational loop, and all the equations related to the computation of forces and
displacements are explained. Lastly, grain loops are defined, as well four
methods to study the rearrangements in the micro-structure: sliding index
of a contact, relative evolution, lifespan and life expectancy of a set of meso-
structures. Physical quantities at the mesoscopic scale are defined in the next
Chapter, for the purpose of supporting analyses and defining a second-order
work at this intermediate scale.
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This chapter introduces new mechanical quantities to analyse the inertial
transition at an intermediate scale. There are two approaches to define quan-
tities at the mesoscopic scale. On one side, meso-structures are considered
independently from one another, this is the structural approach. The macro
quantities derived from these meso-definitions are optained by statistical ho-
mogenization. On the other side, meso-structures are defined such as that
they form a partition of the sample domain, surrounded by neighbouring
meso-structures. This is the partition approach, and the macro quantities
are directly derived from a spatial homogenization. In the first section the
question of quasi 2D simulation is addressed. The choice of the 2D simula-
tion and important parameters resulting from the 2D simulation choice are
introduced. In the second section the mesoscopic porosity and mesoscopic
energies, relative to grain loops, are introduced. Finally, in the third section,
the definition of mesoscopic strains and stresses are presented, in order to
define an internal second-order mesoscopic work.

3.1 Quasi 2D simulation choices

The choice was made to use 2D simulations. YADE is a DEM software
made for 3D simulations, with 3D bodies. A way of computing 2D simulations
with YADE is to use 3D bodies (here spherical particles) constrained to move
within a plane, which is called a quasi 2D simulation.

3.1.1 Choice of 2D over 3D simulations

The 3D description are a more meanningful choice to simulate and capture
all the behaviours of a real sample. However, the 3D system can be complex
for an initial analysis and opting for a 2D system is a way to simplify the
system and its graphical representation, while preserving most of the physical
process of micro-structure reorganisation. The aim is to come back to the
elementary mechanisms of inertial transition and develop tools which help
to understand it. These 2D numerical simulations can be viewed as a first
step to tackle the issue. Moreover, a challenge in granular materials studies
is to bridge the gap between the the particle scale and the sample scale.
The starting point of an analysis at an intermediate scale is the grain loops
which is well defined in 2D conditions. 3D equivalent of grain loops is still
a matter of discussion out of the scope of the present work (Nguyen et al.,
2020) and only very recent work enabled to extend the grain loop concept to
3D (Chueire et al., 2021). Note that despite the fact that grain loops can be
defined in 3D, the bijective link between the loop structure and an enclosed
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volume is lost. This is another reason to choose a 2D description.

3.1.2 The third dimension in a quasi 2D simulation

In quasi 2D, spheres are used instead of disks, and they are constrained
to move only centered within a plane (here the x-y plane). In such a set
up, the out of the plane dimension has no particular meaning. No forces
and kinematics can develop along the axis orthogonal to the plane under
consideration (contrary to 2D finite element descriptions which have a real
physical meaning). The lenght separating the walls in the z-direction is used
to compute stresses (here σxx and σyy) from contact forces. Defining stresses
instead of forces per unit lenght (N/m) is interesting to ease the comparison
with 3D studies and experiments. There are two main possibilities to set the
out of plane dimension as illustrated in Figure 3.1 :

- the two walls in the z-direction are fixed at one lenght unity of each
other. The values in N/m and Pa are then equivalent. The drawback
is that grain overlap is not similar in 2D or 3D simulations performed
under the same stress.

- the two walls in the z-direction are fixed at one maximum diameter of
each other. In that case, 2D and 3D simulations which are conducted
under the same stress result in similar grain interpenetration (the
contact forces are of the same magnitude).

Both methods were used in Chapter 4.
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Figure 3.1 – Scheme of the two possibilities to set the walls in the third
dimension.

3.1.3 Macro stress and strain in a quasi 2D representa-
tive elementary volume

The macroscopic stress and strain characterize a triaxial test, as they
are computed from the forces and displacements of the boundary walls. For
a representative elementary volume of granular material enclosed between
walls, the macroscopic stress tensor σ is computed from the resulting forces
on the walls. With use of frictionless walls, the stress tensor is diagonal.
Concerning the strain tensor, the diagonal terms correspond to the relative
variations of the box dimensions. Keeping the boundary walls forming a
rectangular box, the strain tensor is also diagonal (no distorsion). From this
context, the 2D deviatoric stress q, the 2D mean pressure p, the 2D deviatoric
strain εd and the 2D volumetric strain εv can be deduced directly as:

q = |σyy − σxx| (3.1)

εv = Tr(ε) = εxx + εyy (3.2)

p =
1

2
(σxx + σyy) (3.3)
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εd =
|εyy − εxx|

2
(3.4)

These definitions are compatible with the expression of the internal power
P as sum of product between conjugated variables :

P = σ : ε̇ = pε̇v + qε̇d (3.5)

3.2 Mesoscopic quantities

3.2.1 Structural and partition approaches at the meso-
scale

Macro- (strain, stress, porosity) or micro- (energy) quantities are adapted
to be expressed at the scale of a grain loop l at a time t. There are two
ways to create meso-quantities relative to the meso-domains. On one hand,
the meso-quantities can be considered as a partition of the macro-quantity.
There are defined so that their spatial average equals the meso-quantity,
it is the partition approach. On the other hand, the meso-quantity of a
meso-domain can be defined without considering the neighbouring meso-
domains. In that case, the statistical averaging of the meso-quantities equals
the macro-quantity, it is the structural approach. As an illustration, the
polygon in Figure 3.2(a) will be the partition grain loop domain, while the
surface incorporating the loop area and the total area of the loop’s spheres
(Figure 3.2(b)) corresponds to the structural grain loop domain.
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Structural
domain

Partition
domain

(b)(a)

Figure 3.2 – (a) Grain loop partition domain, based on the contact branches,
(b) Grain loop structural domain, some part of the spheres will be contained
in several domains.)

3.2.2 Mesoscopic porosity

Grain loops enclose polygons with edges correponding to the branch vec-
tors joining the grains center involved in the loop (Figure 3.3). Considering
the polygon formed by the loop, the porosity of grain loops can be studied to
capture the meso-volumetric behaviour of granular material (especially for
the highest order loops order). Stokes theorem is used in order to compute
the surface from the outer normal vectors and the position of the centers of
the grain loop edges.

Apartl =
1

2

Ne∑
k

xkmid ·nk (3.6)

where Ne is the number of edges, xkmid is the vector position of the center
of the edge lk (see Figure 3.3), and nk the outer normal vector of the edge
lk and whose norm is equal to the length of the lk edge.
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Figure 3.3 – The blue polygon is the grain loop l area. The hatched red area
is the area of a grain inside the grain loop area, which is part of the solid
area in the computation of the porosity. The kth edge lk and its outer normal
nk displayed for illustration of the computation of the loop area Apart.

The area of a loop containing a wall can be calculated by considering the
particle/wall contact points. The real loop porosity preall is calculated simply
by accounting for the area of the particles inside the grain loop area as solid
parts (Figure 3.3) :

preall =
Apartl −

∑
g Ag ∩ A

part
l

Apartl

(3.7)

If the grain loop analysed is of a high order (6 grains or more), it may
contain rattlers inside its void area. In that case, the effective porosity of the
loop l peffl is defined as :

peffl =
Al −

(∑
g Ag ∩ Al +

∑Nr
r=1Ar

)
Al

(3.8)

where Ar = πR2
r is the area of the Nr rattlers inside the grain loops, of radius

Rr. For small order loops (L3 or L4), the effective and the real porosities are
equal.
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3.2.3 Mesoscopic energies

Mesoscopic kinetic energy

For a spherical particle, the kinetic energy is calculated from the trans-
lational kinetic velocity of the particle vp and the rotational velocity of the
particle wp :

Ep
c =

1

2
mp ‖vp‖2 +

1

2
J ‖wp‖2 (3.9)

where J is the moment of inertia a sphere (Equation 2.24). The kinetic
energy of a grain loop l is the sum of the micro-kinetic energy of the par-
ticles considered. For the effective kinetic energy, the Np particles defining
the meso-structure l and the Nr rattlers contain inside the loop l are all
considered. For the real kinetic energy, only the Np particles defining the
meso-structure l are accounted for.

[
El
c

]struct
eff

=

Np∑
p=1

Ep
c +

Nr∑
r=1

Er
c (3.10)

[
El
c

]struct
real

=

Np∑
p=1

Ep
c (3.11)

These structural definitions may be revelant in the case where the grain
loop l is studied, independently of neighbouring loops. It may be useful for
instance in the framework of the internal second-order work computation.
However, if all the meso-structures are studied, this definition is not exten-
sive. To recover the sample kinetic energy by summing the mesoscopic kinetic
energies, the partition definiton of the kinetic meso-energy consists in taking
into account only the kinetic energy of the portion of the particles inside the
loop area (Figure 3.4).

[
El
c

]part
real

=

Np∑
p=1

|Vp ∩ Ωl|
|Ωl|

Ep
c (3.12)

If there are Nr rattlers inside the grain loops, the partition and effective
kinetic meso-energy is

[
El
c

]part
eff

=

Np∑
p=1

|Vp ∩ Ωl|
|Ωl|

Ep
c +

Nr∑
r=1

Er
c (3.13)
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Mesoscopic elastic energy

The elastic energy is computed at the contact scale. In the case of elasto-
frictional contacts, the elastic energy Ec

e stored in a contact c is

Ec
e =

1

2
kn (ucn)2 +

1

2
kt ‖ucτ‖

2 =
1

2
k−1
n (F c

n)2 +
1

2
k−1
t ‖F c

τ‖
2 (3.14)

with kn and kt the stiffnesses of the normal and tangential, as given in
Section 2.2 ; ucn and ucτ the normal and tangential displacements of the
contact ; F n and F τ the normal and tangential forces.

The structural point of view elastic mesoscopic energy is deduced from
the sum of the micro-elastic energy of the Nc contacts inside the grainloop l
(including the contacts between a particle and a wall) :

[
El
e

]struct
real

=
Nc∑
c=1

Ec
e (3.15)

For the partition perspective, neighbouring grain loops of the loop l are
considered. Since each contact belong to two loops, the elastic energy of the
contacts have to be divided by two :

[
El
e

]part
=

Nc∑
c=1

1

2
Ec
e (3.16)

In case rattlers collide with its surrounding grains, elastic energy be stored
in this transient contact. in that case, we can add the contribution of this
contact to the elastic meso-energy (effective elastic meso-energy).

The case of plastic dissipation

Plastic dissipation corresponds to the cumulative energy dissipated when
a contact slides (when ‖F c

τ‖ = φF c
n) giving rise to a dissipative tangential

displacement velocity u̇cτ . The incremental dissipation at a sliding contact c
during a time increment dt reads :

dDc
p = u̇cτ ·F c

τdt (3.17)

In DEM simulation, an accurate estimation of the plastic dissipation re-
quires an updating procedure every time steptime step. The tesselation of a
grain assembly into grain loops is computationnaly expensive, which prevent
to compute in practice the meso-scale plastic dissipation.
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3.3 Stress, strain and internal second-order work
definitions at the mesoscopic scale

3.3.1 Internal second-order work at the mesoscopic scale

Studying the occurrence of bursts of kinetic energy is related to investi-
gating the ability of the specimen to develop kinetic energy with a zero ex-
ternal second order work. The second-order work criterion is revelant for this
stability analysis, under the condition that the continuum mechanics frame-
work holds (see Equation 2.1). At the meso-scale, the continuum framework
is questionable. There is a priori no reason for the meso-domains to fulfill
the two requirements given in Section 2.1.1 and thus, no reason to use this
criterion to anticipate bursts of kinetic energy.

Despite these restrictions, meso-stresses and meso-strains in a mesoscopic
domain can be defined to build a so-called internal second-order mesoscopic
work. This approach assumes that the Macro-Homogeneity condition (second-
order Hill-Mandel lemma) is respected in the meso-domain Ωl :

〈∆σ : ∆ε〉Ωl = 〈∆σ〉Ωl : 〈∆ε〉Ωl (3.18)

where

〈•〉Ωl =
1

|Ωl|

∫
Ωl

•dV (3.19)

The necessary conditions to ensure the validity of the lemma is discussed
in (Nicot et al., 2017) at the scale of a representative elementary volume.
Thus, this lemma was not discussed for meso-domains.

(
W int

2

)
Ωl

= 〈∆σ〉Ωl : 〈∆ε〉Ωl (3.20)

Keeping in mind those restrictions and approximations, definitions of
strain and stress at the meso-scale are detailed in the next sub-sections.
While the definition of an incremental meso-strain does not cause signifi-
cant problems, the definition of an incremental meso-stress in not straight-
forward. Three potential formulations are proposed, all consistent with the
macroscopic stress definition. The criterion that will enable to select the best
formulations can be based on the minimization of the residue in the balance
equation of second-order work. The residue is composed of the terms difficult
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to estimate at the meso-scale, among which the inertial terms. Starting from
Equations 2.1 and 2.2, we obtain :

2 (Ec(t+ ∆t)− Ec(t))−2∆tĖc = ∆t2
∫

Ω

IdV +

∫
δΩ

W ext
2 dS−

∫
Ω

W int
2 dV

(3.21)

so

∆t2
∫

Ω

IdV + 2∆tĖc = 2∆Ec −
(∫

δΩ

W ext
2 dS −

∫
Ω

W int
2 dV

)
(3.22)

Residue = ∆Ec −
1

2

(∫
δΩ

W ext
2 dS −

∫
Ω

W int
2 dV

)
(3.23)

The residue is zero only if the system is at quasi-static regime. It is not
zero in the context of the analysis of a burst of kinetic energy. However,
the smaller the residue is in absolute, the smaller the inertial terms are.
By comparing the residue optained from the different definitions of W int

2

according to the meso-stress chosen, the best formulation of the meso-stress
in the framework of the balance equation of second-order work should be
found. It will be verified later in the numerical simulations (Chapter 4).

For the following equations, ⊗s is the symmetric tensor product : a⊗sb =
1
2

(a⊗ b+ b⊗ a) with a and b two vectors.

3.3.2 Strain and incremental strain at the mesoscopic
scale
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Ω
l

Figure 3.4 – Sketch of the calculation of the strain. The edge lk and its
associated displacements uki and outer normal nk are displayed. Note that
Ωl = V part

At the loop scale, the meso-strain is the average strain 〈ε〉Ωl within the
domain of the grain loop Ωl (Figure 3.4). It can be completely defined from
a boundary formulation, as follows :

〈ε〉Ωl =
1

|Ωl|

∫
∂Ωl

u⊗s ndA (3.24)

where u is the displacement vector, n the outward normal to the domain
Ωl. By computing strain at time t and t+ ∆t, an incremental strain can be
deduced. Note that the time steps ∆t should be small enough so that the
grain loop undergoes small perturbation between Ωl(t) and Ωl(t+ ∆t). The
incremental meso-strain between t and t+ ∆t can be expressed as a function
of the incremental displacement vector ∆u = u(t+ ∆t)− u(t) :

〈∆ε〉Ωl =
1

|Ωl|

∫
∂Ωl

∆u⊗s ndA (3.25)

where n and Ωl are considered at time t. Note also that the grain loop
can disappear in the interval ∆t with this definition of the incremental meso-
strain, since the definition relies only on grain incremental displacements
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that are always well defined. In practice, the calculation of the meso-strain
is based on the polygon shaped by the branch vectors of the grain loop
(Figure 3.4). Thus, the meso-strain tensor for a grain loop l is expressed as
a function of a linear interpolation of the incremental displacements of the
particles (Kruyt and Rothenburg, 1996; Bonelli et al., 2012; Liu et al., 2020):

〈∆ε〉Ωl =
1

|Ωl|
∑
k∈∂Ωl

1

2

(
∆u0

k + ∆u1
k

)
⊗s nklk (3.26)

where u0
k and u1

k are the displacement vectors of the vertices of the kth
edge, lk its length and nk its outside normal vector (see Figure 3.4).

3.3.3 Stress and incremental stress at the mesoscopic
scale

Using Love-Weber or more general Bagi definitions (Bagi, 1996; Nicot
et al., 2013b), the meso-stress can be expressed at time t based on contact
forces. However a direct use of this definition makes an incremental formu-
lation between time t and t+ ∆t more tricky to define as it relies on contact
forces and thus requires that the grain loop is not reorganized (persisting
contacts). In order to address this issue, two formulations are presented,
according to the two approaches to define meso-quantities. The first formu-
lation uses the Love-Weber stress in the grains belonging to the meso-domain
while the second is based on a mesoscopic stress definition (Bagi and Weber).
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Figure 3.5 – Sketch to illustrate the computation of the different meso-strains.
The portion of the grain inside the loop domain is displayed. V struct incorpo-
rates all the grains and the void inside the loop. External and internal forces
are mapped. Note that Ωl = V part
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Grain averaged mesostress formulation

In this formulation the meso-stress is espressed as the spatial average on
the domain Ωl (partition volume) of the micro stresses :

〈σ〉Ωl =
1

|Ωl|

∫
Ωl

σdV (3.27)

As the local stress tensor σ is equal to zero where there is no particles,
the integral can be transformed into a sum over the portions of the particles
included in the domain Ωl, noted Vp ∩ Ωl (Figure 3.5):

〈σ〉Ωl =
1

|Ωl|
∑
p∈Ωl

∫
Vp∩Ωl

σdV (3.28)

The integral over the portion Vg ∩ Ωl of the local stress tensor σ is the
average stress in this portion of the particle p weighted by the volume of this
portion, noted 〈σ〉Vp∩Ωl

:

〈σ〉Ωl =
1

|Ωl|
∑
p∈Ωl

|Vp ∩ Ωl| 〈σ〉Vp∩Ωl
(3.29)

We assume that the average stress in the portion inside the domain of the
grain loop is equal to the average stress of the particle. With this hypothesis,
we optain :

〈σ〉Ωl =
1

|Ωl|
∑
p∈Ωl

|Vp ∩ Ωl| 〈σ〉Vp (3.30)

The calculation of the average stress of the particle p has to be detailed.
Particles are subjected to a symmetrical second-order tensor local stress
which verifies the equation of motion ρẍ = div(σ) and σ = σT . In the
scope of dynamic evolution, the average stress 〈σ〉Vp is written :

〈σ〉Vp =
1

|Vp|

∫
∂Vp

σ ·n⊗s (x− cp)dA+
1

|Vp|

∫
Vp

ρẍ⊗s (x− cp)dV (3.31)

where x is the vector position of a point in Vp and cp the vector position of
the center of the particle. Let’s develop and simplify the two integrals in the
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right side of Equation 3.31. Particles are only subjected to contact forces f c
on their surface ∂Vg. Thus the first integral becomes :

1

|Vp|

∫
∂Vp

σ ·n⊗s (x− cp)dA =
Dp

2 |Vp|

Nc∑
c∈∂Vg

f c ⊗s nc (3.32)

where Nc the number of contacts of the particle, Dp its grain diameter and
nc the outward normal to Vg at contact c.

The second integral concerns kinematics. For a spherical rigid particle,
its is expressed by :

ẋ = ċp +Qp · (x− cp) (3.33)

ẍ = c̈p + (Q̇p +Q2
p) · (x− cp) (3.34)

with Qp the second-order skew symmetric tensor corresponding to the par-
ticle rotation rate. Thus, the second integral on the right side of Equation
3.31 is

1

|Vp|

∫
Vp

ρẍ⊗s (x− cp)dV =
ρD2

p

10
(Q̇p +Q2

p) (3.35)

As the ratio between Equation 3.35 and Equation 3.32 scales with D4
p, the

contribution of the particle rotation is assumed to be negligible compared to
contact forces’s. This point is contestable since contact forces may become
weak during a burst of kinetic energy.

Finally, the expression of the meso-stress, based on the particles stresses,
is

〈σ〉Ωl =
1

|Ωl|
∑
p∈∂Ωl

Dp |Vp ∩ Ωl|
2 |Vp|

Nc∑
c∈∂Vg

f c ⊗s nc (3.36)

It is different from the Love-Weber formula for the set of particles con-
cerned, because the domain Ωl (partition volume) is defined by the centers
of the particles (partition view) and does not contain their entire volume
(structural view) (Figure 3.5). Moreover, this definition is not restricited to
a quasi-static regime and it can be use for dynamical cases when the con-
tributions of rotation (equation 3.35) are non neglegible. A meso-stress is
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an artificial concept. It is not linked to a constitutive behaviour law. The
sum of the mean meso-stress resulting in the macro-stress is a way to make
this meso-stress definition consistent. This grain averaged meso-stress for-
mulation is extensive and is consistent with the macro-stress definition at the
REV scale (sample domain S) (see Section 4.3.1).

〈σ〉S =
1

|S|

∫
S

σdV =
1

|S|
∑
p∈S

|Vp| 〈σ〉Vp (3.37)

so

〈σ〉S =
1

|S|
∑
l

∑
p∈Ωl

|Vp ∩ Ωl| 〈σ〉Vp =
1

|S|
∑
l

|Ωl| 〈σ〉Ωl (3.38)

Following the hypothesis that geometric transformations between the
times t and t+ ∆t are small, we assume that :

〈∆σ〉Ωl = ∆ 〈σ〉Ωl = 〈σ(t+ ∆t)〉Ωl − 〈σ(t)〉Ωl (3.39)

where Ωl is considered at time t. As the domain Ωl is updated at each
increment, it is an updated Lagrangian description.

Meso-formulation of Bagi stress

Another way to define a mesoscopic stress is to apply the Bagi formulation
(Bagi, 1996) to the meso-domain V struct, which takes into account all the
volume of particles (Figure 3.2(a), 3.5). It is composed of two terms :

1. A Weber internal stress, based on internal contact forces between the
particles of the meso-domain ( f g+1/g in Figure 3.5).

2. A Bagi correction term taking into account external forces applied on
the meso-domain V struct ( f ext in Figure 3.5).

The mesoscopic Bagi stress is thus written :

〈
σBagi

〉
V struct

=
1

|V struct|

∫
Vext

f c⊗RncdV +
1

|V struct|

∫
∂V struct

f ext⊗rnextdA

(3.40)

where f c is the intern contact force between two consecutives particles, R
is the sum of the two particles in contact, nc is the normal contact vector
between them, f ext is an external force applied on the surface of V struct, r
the radius of the particle inside V struct where the force is applied and next
the normal vector to the external contact point.
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As all the forces are ponctual, the mesoscopic Bagi stress can be expressed
as:

〈
σBagi

〉
V struct

=
1

|V struct|
∑

p∈V struct
f p+1/p ⊗ (Rp +Rp+1)np/p+1

+
1

|V struct|
∑

p∈∂V struct
f pext/p ⊗Rpnp/pext

(3.41)

with fa/b is a force applied by the particle a to the particle b and na/b is
the normal vector form the center of the particle a to the particle b, p is a
article belonging to the extended meso-domain V struct and pext is a particle
outside the domain but in contact with it (Figure 3.5).

The first term of Equation 3.41 corresponds to the well known Love-Weber
formula applied at the meso-scale. The Weber stress σWeber gives Equation
3.42 here. For large numbers of grains, the Bagi stress is approximated by the
Weber stress, as the contribution of internal part is greater than the external
part (as volume grows faster than surface).〈

σWeber
〉
V struct

=
1

|V struct|
∑

p∈V struct
f p+1/p ⊗ (Rp +Rp+1)np/p+1 (3.42)

Since Equation 3.41 and Equation 3.42 converge towards the macroscopic
definition of the stress when the number of grains gets large enough, the Bagi
and the Weber definitions are candidates for the definition of a mesoscopic
stress. Contrary to the previous grain averaged mesostress definition, the
Bagi and Weber expression are not extensives (contacts are counted several
times in the summation), and the macro stress is deduced from the statistical
homogenization of the meso-stresses.

The hypothesis of small geometric incremental transformations is still
required here and the incremental mesoscopic Bagi stress can be written as
in Equation 3.39. The domain V struct is also updated at each increment of
time, so it is an updated Lagrangian description.

3.4 Conclusion
This Chapter introduces new mechanical quantities to analyse the inertial

transition at an intermediate scale. The starting point for an analysis at an
intermediate scale is the grain loops. Although 2D numerical simulations do
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not make physical sense with DEM modelling (unlike FEM modelling), all
numerical simulations are 2D which has proven in previous research studies
to be still relevant to capture most of the granular physics. Meso-quantities
have been defined and can be divided in two categories : either structural
(Energies : Equation 3.12, Equation 3.13, Equation 3.15 ; Stress : Equation
3.36) or partition (Energies : Equation 3.11, Equation 3.10, Equation 3.16
; Stress : Equation 3.41). Both approaches are useful. The partition view
gives a clear meaning to the quantities created, which can be a bit artificial
like the meso-stress. The structural view is necessary for the application of
the second-order mesoscopic criterion and the estimation of the residue.
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Figure 4.1 – Grain size distribution of the sample S1 (blue curve) and sample
S2 (red curve).

Inertial transitions result from the sudden release of energy in the form
of kinetic energy. In granular systems, these bursts of kinetic energy appear
at specific locations and propagate to the neighbourhood. In order to un-
derstand how these bursts form and modify the microstructure, we propose
to analyze this issue in a well known environnement, i.e. homogeneous ma-
terial domain. Critical state is interesting for the study of bursts. Indeed,
when approaching the failure surface, we can observe bursts which are not
propagating to the whole specimen. Thus, biaxial tests, common and well
documented tests, are chosen to observe the behaviour of a specimen sub-
jected to a deviatoric loading. Different numerical samples are created and
subjected to a biaxial test, using YADE. In this Chapter, the numerical set
up of biaxial tests is presented first. In a second part, the analysis of selected
bursts during critical state is detailed. Precursors of bursts initiation are
looked for. Second-order work criterion is investigated at the meso-scale as
presented in Section 3.3 and conclusions about the different definitions are
drawn in the last part.

4.1 Numerical experiment at REV scale

4.1.1 Sample preparation

Numerical experiments are carried out with quasi 2D numerical samples,
as described in Section 3.1.
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Two types of samples are created, type S1 (Liu et al., 2020) and type S2

(Deng et al., 2021b) inspired from the two cited works. Characteristics of
the two samples are summarized in Table 4.1. The PSD of both samples are
illustrated in Figure 4.1 and general views of the two samples at the beginning
of the test are shown in Figure 4.2. For the sample S1, it has been chosen
to fix the out of plane walls at 1 m from each other, while it has been fixed
at 0.04 m for the sample S2. The two samples configuration corresponds to
the two options for the out of plane wall exposed in Section 3.1.2, to express
stresses in Pa in 2D numerical set ups. Also, the grain density is multiplied
by 8 between the sample S1 and the sample S2. Refering to Equation 2.28, it
is an artificial way to speed up the simulation. Thus, this change influences
the speed of the simulation and the amplitude of the energy values, but it
has been checked that it does not influence the essential physics of bursts of
kinetic energy (see Section 4.1.5).

Samples S1 and S2 are created with the same protocol. The spheres
are first placed randomly in a square domain, with a smaller radius than
targeted. They grow homothetically until the desired confining pressure is
reached and the unbalance forces remain below a certain threshold (Equation
2.30). This threshold ensure that the forces applied on the spheres are very
low compared to the contact forces (see Section 2.2.4). Secondly, the inter
particles friction angle Φ can be reduced from its initial value to obtained
samples with the same particle size distribution but different densities. To
obtain a dense sample, Φ for each contact is decreased from 35◦ to 0◦ while
maintaining a confining pressure of 100 kPa. A loose sample is obtained by
keeping the friction angle to 35◦. Again, the quasi-static regime of the sample
is verified through unbalance forces. With this protocol a loose and a dense
specimen are created for material of type S2 (Table 4.2).

The biaxial test consists in two parts. An isotropic compression of σ0 =
100kPa is first applied until unbalanced forces decrease below a fixed thresh-
old. Then, the confining pressure σ0 is maintained on the lateral walls while
a strain rate ε̇ is imposed in the vertical direction (Figure 4.2). The numeri-
cal damping for the sample creation step and the biaxial test is set to a low
value (0.05), in order not to inhibit the creation and propagation of kinetic
outbursts.
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Table 4.1 – Characteristics of the two type of samples and parameters of the
biaxial test.

Parameters Sample S1 Sample S2

Number of spheres 25, 000 20, 000
Grain density 3, 000 kg.m−3 3, 000× 8 kg.m−3

Rmean 3× 10−4 m 4× 10−3 m
Dmax/Dmin 3.5 2

Sample Aspect Ratio (Height/Length) 1 1.5
Interparticle friction angle Φ 35◦ 35◦

kn/D 356 MPa 356 MPa
kt/kn 0.42 0.42

Numerical damping coefficient 0.05 0.05
Confining stress σ0 100 kPa 100 kPa
Loading rate ε̇ 0.01.s−1 0.01.s−1

Table 4.2 – 2D Porosity of the samples

Sample S1 dense Sample S2 dense Sample S2 loose
0.1670 0.1603 0.2082

25 000 
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Figure 4.2 – Scheme of the biaxial test for the sample S1 (a) and the sample
S2 (b). The ratio of size between the two samples is not respected. However
one can notice the different aspect ratios of the two types of sample. During
the second part of the biaxial test, the confining pressure σ0 is maintained
lateraly, while a strain rate ε̇ is applied along the horizontal direction.
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4.1.2 Drained biaxial test

In order to check whether our simulations are consistent with experimen-
tal observations, the deviatoric stress and the volumetric strain curves are
plotted for each sample in Figure 4.3. The 2D expressions of the deviatoric
stress and the volumetric strain are given in Equation 3.1 and 3.2 in Section
3.1.3. The vertical lines A and B represent respectively the characteristic
point of volumetric strain εyy and the maximum deviatoric stress q.

The curves in Figure 4.3(a) and 4.3(c) are typical responses for dense
sample S1: they exhibit hardening with contractancy phase followed by a
softening with dilatancy phase. In other terms, the q curve shows a strong
increase leading to a peak followed by a decrease and a plateau. The q peak
is around at 1% of axial strain for both specimens (line B in Figures 4.3
(a) and (c)). For the dense sample S1, no localization of the deformation is
observed, contrary to the dense sample S2 .

The curves in Figure 4.3(b) are typical response for a loose sample: the
sample experiences hardening with contractancy. The deviatoric stress in-
creases until reaching a plateau at around 6% of axial strain (Figure 4.3
(b)).
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Figure 4.3 – Deviatoric stress and volumetric strain for (a) dense sample S1,
(b) loose sample S2, (c) dense sample S2 as a function of the axial strain
during the biaxial test. The A and B vertical lines on dense samples graphs
represent respectively the maximum contractancy and the maximum devia-
toric stress.
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4.1.3 Meso-structures evolution benchmark

In Section 2.3, the definition of meso-structures as grain loops was intro-
duced. This unique partition is defined for each sample and the evolution
of each grain loop order is presented in Figure 4.4. Figure 4.4 illustrates
that the ratio of each grain loop order depends on the nature of the sample
and the loading history. Each sample presents a different evolution along the
biaxial test.

For the loose sample S2 (Figure 4.4(b)), the low variations (not more than
2%) in the composition of meso-structures as a function of the axial strain
show that the sample is close to the ultimate composition at critical state.
L6+ loops are in larger amounts than the smallest orders (L3 and L4) and
the L5 order.

The dense sample S1 (Figure 4.4(a)) exhibits the same ranking in the
composition of grains loops. Before the maximum contractancy (line A in
Figure 4.3(a)) the L6+ order is in minority while the small orders are in
majority (10% against 70% for the L3 and L4 orders together). However
after the maximum deviatoric stress (line B Figure 4.3(a)), highest order
loops outnumber the smallest ones, and the composition ressembles the one
in the loose sample S2. The dense sample S2 (Figure 4.3(c)) at the beginning
of the biaxial test has a similar composition as the dense sample S1. However,
after the maximum deviatoric stress state, the smallest order loops are still
in majority (about 60% of the composition) and followed by the L6+ order
and the L5 order.

In the dense sample S1, no strain localization is observed contrary to the
dense sample S2 because of the different aspect ratios of the two samples (see
Figure 4.2). The 1 : 1 aspect ratio of dense sample S1 prevents the formation
of a shear band which is not the case for the dense sample S2 of aspect ratio
1 : 1.5. Thus, the final loops composition of the dense sample S1 is similar to
the one in Liu et al. (2018) when restricting the analysis to the shear band
domain.

4.1.4 Energy analysis

At the scale of the sample, the evolution of the different energies are simi-
lar in the different samples. Figure 4.5 shows the variations in kinetic energy,
plastic dissipation and elastic strain energy as a function of axial strain. The
analytical expressions of these energies are reviewed in Chapter 3.2.3. The
variation of these energies corresponds to the difference between the energy
at a given axial strain and the same energy just before the deviatoric loading
is applied. Elastic strain energy increases earlier (until the peak of deviatoric
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the maximum contractancy and the maximum deviatoric stress as in Figure
4.4.
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Table 4.3 – Mean kinetic energies for the three samples at critical state

Parameters sample S1 sample S2 loose sample S2 dense
Mean Ec total 1.7× 10−8 J 1.6× 10−2 J 2.2× 10−2 J

Mean Ec per grain 6.4× 10−13 J 7.8× 10−7 J 1.1× 10−6 J

stress represented by the line B in Figures 4.5(a) and (c)), then decreases
and reaches a plateau. Plastic dissipation increases at a constant rate except
at the very beginning corresponding to the pseudo elastic regime.

The mean and max values of the kinetic energy for the samples S2 are
higher than for the sample S1, considering the higher grain density. Kinetic
energy fluctuates a lot around the mean values as shown in Figures 4.5.
However, note that the kinetic energy is three order of magnitude smaller
than the elastic strain energy and the plastic dissipation. It shows that
macroscopically, the material remains in a quasi-static regime, where most
of the dissipation is done through friction. Local outbursts of kinetic energy
are detected through the following criterion : a grain is assumed to be part
of a burst of kinetic energy if its energy is several times above the mean
grain kinetic energy at critical state. In practice, five times the mean grain
kinetic energy is the threshold taken. Each sample exhibits different mean
macroscopic kinetic energy and mean kinetic energy per grain. The values
are given in the Table 4.3.

We shall have a close look on the deviatoric stress q curve around the
appearance of bursts of kinetic energy, given in Figure 4.6. The onset of
a burst corresponds indeed to a drop in q. Thus, a localized outburst of
kinetic energy has macroscopic consequences in the form of a small transient
instability with drops of deviatoric stress q.
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Figure 4.5 – Evolution of elastic strain energy Ee, plastic dissipation Ep (left
y − axis) and kinetic energy Ec (right y − axis) for (a) the dense sample
S1, (b) loose sample S2, (c) dense sample S2 as a function of the axial strain
during the biaxial test. The reference state corresponds to the isotropic
compression state reached before the deviatoric loading is applied. The A and
B vertical lines on dense samples graphs represent respectively the maximum
contractancy and the maximum deviatoric stress, as in Figure 4.4 and Figure
4.3.
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Figure 4.6 – Correlation between drops in deviatoric stress and bursts of
kinetic energy in the (a) dense sample S1 and (b) loose sample S2. A zoom
is made for one burst to show the decrease of q at the onset of a burst.
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Among all the bursts of kinetic energy observed at critical state, four
or three bursts are selected arbitrarily for the three different samples as
shown by horizontal blue hashed lines in Figure 4.6. Those selected bursts
are analysed in details in the next sections. They are chosen along the q
plateau where a quasi-stationnary regime is reached, so they are all supposed
equivalent.

4.1.5 Influence of the grain density

In order to check that increasing the particle density in the simulation has
not physically irrevelant consequences for studying outbursts of kinetic en-
ergy, another dense sample S2 is created with a grain density of 2, 400 kg.m−3.
All the characteristics of this new sample S2 are the same as for the dense
sample S2 given in Table 4.1. This sample is subjected to the same drained
biaxial test as described in Section 4.1.2. The deviatoric stress q and the vol-
umetric strain εv of the this new sample are compared to the dense sample
S2 with a grain density of 3, 000× 8 kg.m−3 in Figure 4.7. The variation for
both quantities are the same for both samples. The denser sample is a bit
more contractant at the beginning of the hardening phase (Figure 4.7(b)),
but the characteristic point and the q peak occur at the same axial strains.
In other words, both samples have the same mechanical response along the
drained test.
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Figure 4.7 – Deviatoric stress (a) and volumetric strain (b) for sample S1

with a density of 2, 400 kg.m−3 (red curves) and for sample S1 with a density
of 3, 000× 8 kg.m−3 (green curves).

As for energy variations, both samples exhibit the same order of values
for plastic dissipation (Figure 4.8(a)), elastic strain energy (Figure 4.8(b))
and kinetic energy (Figure 4.8(c)). However the level of kinetic energy for
the sample with a grain density of 2, 400 kg.m−3 is a bit lower (see Table
4.4). By counting the number of times the kinetic energy of the sample
is exceeding a fixed threshold, the number of potential inertial events is
established (Table 4.4). The threshold is fixed at five times the mean kinetic
energy of the sample during critical state. The number of potential events
is smaller for the sample with the highest grain density. It is due to the fact
that more energy is needed to move a heavy grain, so burst may occur a bit
less frequently. The values of kinetic energy variations of both samples being
the same, the potential events have the same amplitude and are as important
in both samples.
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Figure 4.8 – Variation of plastic dissipation (a), kinetic energy (b) and elastic
strain energy (c) for sample S2 with a density of 2, 400 kg.m−3 (red curves,
values on the left vertical axis) and for sample S1 with a density of 3, 000×
8 kg.m−3 (green curves, values on the right vertical axis).
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Table 4.4 – Mean kinetic energies and number of potential outburst events
for the dense grain comparison.

Parameters Sample 3, 000× 8 kg.m−3 Sample 2, 400 kg.m−3

Mean Ec total 2.1× 10−2 J 7.4× 10−3 J
Number of outburst events 154 100

To conclude, in absence of gravity, increasing the grain density of sample
S1 to decrease the time of execution of the simulation has no impact on the
mechanical response and no significant impact on the energy variations.

4.2 Analysis of bursts of kinetic energy

4.2.1 Burst definition

With the study of numerous bursts per sample, a lot of data is available.
Thus, for the sake of clarity, in this chapter, the results of a single burst of the
dense sample S1 are presented. If not specified otherwise, all the following
results are qualitatively similar for other bursts in the same sample and in
the other samples S2. In order to illustrate the similarities (and the limited
differences), the results obtained for a burst in the loose sample S2 are given
in the Appendix C.1.

Figure 4.9 shows a reduced time lapse of the burst studied. It shows a
typical evolution in time and space of an outburst. Before the burst, the
kinetic energy of the spheres is very low. Then the initiation affects few
grains whose kinetic energy increases drastically. The burst spreads to about
a half of the sample before disappearing. During its initiation, propagation
and attenuation, the center of the burst moves sightly on the right of the
x-axis but it remains localized in space and time, and does not propagate
to the entire sample. Other bursts may propagate less or more than the
presented burst, but in all cases, they do not affect the whole sample (which
explains limited drops in macro deviatoric stress q). Our aim is to better
understand the triggering and propagating mechanisms of a burst. Thus
we need to distinguish the area concerned by the burst from the other part
of the sample. In Figure 4.9(c), the immediate neighbourhood of the burst
is displayed as a red square. This zone is defined manually once for all
and it takes into account the location of the initiation and the direction of
propagation. For simultaneous bursts with different centers, several boxes
are considered in Appendix C.1.
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Figure 4.9 – Reduced time lapse of the burst. Particles are coloured according
to their kinetic energy expressed in Joule. The bounding box used to provide
an approximate definition of the burst domain is displayed in red.
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Figure 4.10 – Evolution of the elastic strain energy Ee, the plastic dissipation
Ep (on the left y-axis), and the kinetic energy Ec (on the right left y-axis)
during the burst of kinetic energy.

The same energy analysis at the scale of the whole sample in Figure 4.5
is done at the burst scale in Figure 4.10. This analysis shows that the kinetic
energy variations is only a fraction of the energy variations and exchanges
during a burst, at critical state in a drained biaxial test. During the outburst
(between vertical lines), the kinetic energy passes through a peak while the
elastic strain energy decreases and the plastic dissipation increases (Figure
4.10). The minimum of elastic strain energy is reached at the same moment
that kinetic energy is at its maximum, while the end of the plastic dissipation
occurs a bit later. From these basic observations, we can deduce that there is
an excess in elastic energy stored in the contacts which is then transformed
into kinetic energy (translation or rotation of the grains) and also dissipated
by friction (slip between the grains at the concidered contacts). As shown
by the double axis of Figure 4.10, the variations of plastic dissipation are
larger than the variation of kinetic energy. Frictional dissipation remains
the main mechanism during an outburst. This is related to the imposed
confining pressure and the lack of contractancy (the burst occurs at critical
state), where the micro-structure rearranges with no volume change which
makes it difficult to have a lot of free grains.
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4.2.2 Co-localization of the strain and the bursts of ki-
netic energy

As seen in Chapter 2, shear band in frictional granular materials is a great
subject of interest in many fields and still need research to understand how
it develops. Shear band concentrates the deformation, contact rolling and
sliding. In the context of localized failure, it is interesting to investigate the
potential localization of bursts of kinetic energy.

Mean deviatoric meso-strain is computed from the beginning of the crit-
ical state (corresponding to the formation of the shear band, see Section
2.1.2), noted ti, until the end of the biaxial test tf . The strain of a loop can
be calculated even if the loop (as a meso-domain of spheres in contact) does
not exist anymore and the meso-strain definition is given in Equation 3.26.
The mean deviatoric meso-strain of a loop l reads :

〈εd〉l∆tc =

(
εlI
)

∆tc
−
(
εlII
)

∆tc

(εyy(tf )− εyy(ti))∆tc

(4.1)

where
(
εlI
)

∆tc
>
(
εlII
)

∆tc
are eigen values of the meso-strain tensor εl com-

puted during tf − ti , εyy the axial strain sample scale.
As expected from the aspect ratio of samples S1 and S2 and according to

Liu (2018), no shear band in the dense sample S1 is observed (Figure 4.11).
The dense sample S2 exhibits strain localization (Figure 4.12(a)). The loose
sample S2 which does not present a shear band, stands as a comparison
(Figure 4.12(b)). In the dense sample S2, a second and smaller shear band
is obeserved, reflecting in the left corner.
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Figure 4.11 – Mean deviatoric strain field for the dense sample S1. The
meso-mean deviatoric strain map of the sample ressembles the one given for
a sample of the same aspect ratio in (Liu, 2018).
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Figure 4.12 – Mean deviatoric strain for the dense sample S2 (a) and the
loose sample S2 (b). A main diagonal shear band is observed in the dense
sample S2, with even a second small shear band reflecting in the left corner.

Similary to the mean meso-strain, the mean kinetic meso-energy is com-
puted as the mean kinetic energy of the spheres over the critical state, inside
a loop which exists at the beginning of the critical state. Thus, the same
partition of the mean quantities (kinetic energy and strain) are obtained.
The mean kinetic meso-energy of a loop l during ∆tc relies on the partition
definition of the kinetic meso-energy (Equation 3.12), and it reads :

〈Ec〉l∆tc =

Np∑
p=1

∣∣∣(Vp)ti ∩ (Ωl)ti

∣∣∣∣∣(Ωl)ti
∣∣ 〈Ep

c 〉∆tc (4.2)

where Np is the number of spheres in the loop at the time ti, (Ωl)ti the domain
of the loop at the time ti, (Vp)ti ∩ (Ωl)ti the portion of the sphere p inside the
domain (Ωl)ti and 〈E

p
c 〉 is the mean kinetic energy of the sphere p. Rattlers

are not considered.
The mean meso-strain maps for the dense and loose samples S2 are given

in Figure 4.13. The localization of the mean kinetic meso-energy in the same
area as the mean deviatoric meso-strain is clear (Figure 4.13(a) and Figure
4.12(a)). A small reflecting secondary band is also visible : in the reflexion
with the upper wall and in the join with the main shear band on the bottom
left. On the contrary, no localization of the kinetic energy is visible for the
loose sample S2 (Figure 4.13(b)).
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Figure 4.13 – Mean kinetic meso-energy for the dense sample S2 (a) and the
loose sample S2 (b).

Thus, kinetic energy is co-localized in the same area as strain, and bursts
of kinetic energy only initiate and propagate in the shear band. If Figure
4.12(a) and Figure 4.13(a) are compared, one can see the width of the shear
band as defined with loops of incremental deviatoric strain larger than the
mean value coincides with the with band defined from the grains with larger
kinetic energy with respect to the mean value. In Figure 4.14 and in Figure
4.15, the shear band is kept as a background by displaying the loops with large
incremental deviatoric strains (light blue to red color scale). The spheres
with kinetic energy larger than 10 times the mean kinetic energy per grain
during the critical state (Table 4.3) are superimposed in black. Figure 4.14
illustrates that bursts only occur inside the shear band and their expanfing
outside the shear band is scarce. Futhermore, very large bursts that escape
from the shear band domain, propagate in one side of the shear band and
do not cross it. Figure 4.15 gives a time lapse of a burst occuring in the top
right corner and propagating only below the shear band.
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ε
d

Figure 4.14 – Three examples of burst of kinetic energy originating only from
inside the shear band. Only spheres the kinetic energy of which is above the
burst criterion are displayed in black. For more visual clarity, only loop
belonging to the shear band are displayed.
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ε
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Figure 4.15 – Time lapse of a large burst occuring in the top right corner
and propagating only in the part of the sample at the right of the shear
band. Only spheres the kinetic energy of which is above the burst criterion
are displayed in black.
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Figure 4.16 – Different zones for the analysis. The burst area is displayed in
red (iner domain), as in Figure 4.9. The rest of the sample (outter domain)
is displayed with blue hatching.

As a conclusion, in a sample with a localized deviatoric strain, bursts
originate only from inside the shear band. If the burst of kinetic energy is
large enough, it will escape only on one side of the shear band. The analysis
could be pushed further.

4.2.3 Micro-structure precursors

Energy analyses are only a first step in order to identify the origins of
outbursts. there is a need to identify precursors in order to understand the
localisation of the burst in a specific area. In order to do this, we compare
the micro-structure in the burst domain to the region where the burst does
not propagate. The inner and outter domains are displayed in Figure 4.16.

Sliding index

The sliding index Ip for each contact, as defined in Section 2.3.2, is a
suitable precursor candidate at the contact scale. The probability densities
of Ip computed from contacts in the inner and outter domains of the burst (see
Figure 4.16) are given in Figure 4.17. Before the burst (Figure 4.17(a)), there
are more contacts close to sliding (Ip close to 1) inside the burst area than
outside. Moreover the outter domain contains much more stable contacts (Ip
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Figure 4.17 – Sliding Index’s propability density before (a) and after (b) the
burst of kinetic energy in the inner domain (red) and the outter domain
(blue) the burst area.

close to 0). After the occurrence of the burst, the tail of the Ip probability
function has dropped for the contacts inside (Figure 4.17(b)). The burst area
has even a lower probability to contain unstable contacts than the outter
domain. Thus, Ip close to 1 is a necessary condition to observe outbursts in
a specific area, which supports the idea already underlined in Wautier et al.
(2018b). This result also contributes to a rational delimitation of the burst
domain. There is a strong contrast between the behaviour of grains in the
inner and the outter domains. The outburst is rooted in a zone with a high
level of elastic energy storage and contacts close to their sliding limit.

Porosity at mesoscopic scale

In addition to sliding index related to the grain scale, meso-structures can
be a mean to bring structural and micro-changes out. In the next sections,
meso-structures as grain loops are studied to better understand how the
micro-structure rearranges during the outburst.

The porosity for the inner and outter domains is given in Figure 4.18.
The porosity is computed from the effective porosity of the loops (Equation
3.8) weighted by their surface area. Thus, it gives more weight to the high
order loops which are responsible for the porosity. The effective weighted
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Figure 4.18 – Porosity in the inner (red) and the outter (blue) domains. The
kinetic energy is displayed (in grey) to compare the evolution of the porosity
according to the evolution of the burst.

porosity reads:

ϕ =
1

|Ω|
∑
l∈Ω

peffl |Ωl| (4.3)

where Ω is the zone of interest (i.e. burst area), peffl the effective porosity
of the loop l as noted in Equation 3.8 and |Ωl| the area of the loop domain l
(|Ωl| =

∑
l∈Ω |Ωp|) .

As seen in Figure 4.18, the inner domain of the burst of kinetic energy
presents a looser micro-structure than the outter domain. During the burst
of kinetic energy occurrence, the porosity of the inner domain has a slight
increase, whereas it is nearly constant in the outter domain, underlining the
localized meso-structure changes inside the burst area. During the burst of
kinetic energy in the sample S2, the porosity decreases inside the inner do-
main, while in the outter domain no significant changes are observed (Figure
4.18). The evolution of the inner domain curve is not the same in the sample
S1 than S2. This difference will be explained later. However, both porosity
changes are localized in the inner domain and during the burst life time.
Thus the burst develops inside a domain which is slightly looser on average
in comparison to the outter the domain.
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(a) All loops (b) Loop orders

Figure 4.19 – Loops densities comparison between the inner and outter do-
mains. (a) Loop densities computed with all loop orders (b) loop densities
per loop order. For both graphs, the kinetic energy is displayed to relate the
evolution of the porosity to the propagation of the burst.

To complete the analysis, the density of loops (number of loop of the
same order per unit area) for the inner and outter domains is computed
(Figure 4.19). The loop density is smaller in the inner burst domain than
in the outter domain, and decreases during the increase in kinetic energy.
The same results are obtained for the sample S2 (Figure C.6). In Figure
4.19(b), the loop density for each loop order is compared between the inner
and outter burst domains. The inside loop density is smaller for each order.
However, the gap between the inside and outside loop densities is small and
their evolutions are marginal. The burst area keeps a meso-structure similar
to the outter domain, and the composition of the meso-structure is consistent
with the one given in Figure 4.4. Inside the burst domain, the combination of
larger porosity and smaller loop densities for all grain loop categories suggests
that loops are larger inside the burst domain. In other words, it means the
high order loops are larger (mainly L6+) since low order loops configurations
(L3, L4) can not vary much. To summarize, the burst inner domain is more
porous, with bigger high order loops.

While focusing on high order loops, the mean real and the mean effective
porosities are compared for the inner and outter domains (Figure 4.20). As
suggested by our previous analysis on the weighted effective porosity, the
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(a) Effective porosity (with rattlers) (b) Real porosity (without rattlers)

Figure 4.20 – (a) Mean effective porosity and (b) mean real porosity for high
order of loops iin the inner and outter burst domain. The kinetic energy is
displayed to relate the evolution of the porosity to the propagation of the
burst.

mean effective porosity inside the domain of the burst is higher than outside
(Figure 4.20(a)). However, considering the real porosity, the outside domain
is looser (Figure 4.20(b)). These two results suggest that the high order
loops in the inner domain contain less rattlers than in the outter domain,
which result in a larger loop deformability. Knowing that rattlers play an
important role in mechanical stability (Wautier et al., 2019; Wang et al.,
2021), this result highlights that the meso-structures in the inner domain are
more prone to mechanical instability. The small drop in the mean effective
porosity and the small increase in the mean real porosity inside show that
the high order loops get enriched of rattlers during the outburst. This first
observation on high order loops containing less rattlers inside the burst do-
main is not found back in the sample S2 (Figure C.11). On the contrary, the
evolution of the mean real and mean effective porosities for high order loops
indicates that the inner domain contains more rattlers. However, they do get
enriched in rattlers during the outburst. To conclude, the proportion of rat-
tlers contained in high order loops can not be a criterion for the occurence of
the burst. The difference between the two samples can be explained by their
grain size distribution and their density. It is a point which needs further
investigation.
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Statistical noise makes the inner / outter domain comparison analysis
questionnable. It could be suggested that comparing areas of the same size
is more significant. However, this comparison is far from being easy. Even-
tually, the choice of the outter domain may not be revelant, but it gives an
overall state of the sample and really highlights the localization of a burst in
a specific domain and not everywhere else.

To conclude, a common criterion for the occurence of a burst of kinetic
energy is that the related domain is looser and contains larger meso-loops
(i.e. high order loops). The difference in the porosity and size of high order
loops is reduced if the analysis is carried out for few percents of axial strain
latter in the same area, provided that there is not other bursts occurring or
about to occur in this area.

4.2.4 Meso-structure reorganizations

In this part, the qualitative evolution of meso-structures is studied during
the burst of kinetic energy, inside and outside the burst area.

Evolution of meso-structures during the burst of kinetic energy and
surviving rates

First, the relative evolution of each loop order categories is studied. The
expression of the relative evolution is given in Section 2.3.2. Figure 4.21(a)
shows the changes inside the burst area for the four main order loops. There
is about the same loss and gain amounts for each order of loops and this
amount is not zero during the burst (between the vertical lines in Figure
4.21(a). This observation complements the flat evolution of the loop den-
sity in the inner domain given in Figure 4.19(b). Thus, the meso-structures
population remains statically stable despite changes due to reorganisations
in the contacts during the burst occurrence. The 6+ order loops are created
and lost with the same proportions at the same time and they are the most
affected meso-structures. However we can notice that the 3, 4 and 5 order
grain loops present a dissymmetry in the “gain” and “loss” curves : loops
are broken first (peak of lost loops before the maximum of kinetic energy)
and then created (peak of gain loops after the maximum of kinetic energy).
In conclusion, the lowest order loops are transformed into the highest or-
der loops before the peak of kinetic energy and then created back while the
highest order loops are constantly being created and destroyed during the
outburst of kinetic energy.

Figure 4.21(b) shows the relative evolution of rattlers during the burst
appearance in the inner domain. The maximum and minimum relative evo-
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(a) (b)

Figure 4.21 – Relative variation of the number of grain loops (a) and rattlers
(b) in the inner domain compared with the corresponding numbers N0 before
the occurence of the burst. The vertical dotted lines stand for the maximum
of kinetic energy during the burst, as in Figures of the previous section 4.2.3

lutions are not reached simultaneously, which means that the rattlers are
first generated and then lost. This observation matches with the ones for the
grain loops. Before the peak of kinetic energy, a significant amount of low
order loops are broken, thus creating rattlers. L6+ loops in the burst area
contain rattlers and their breakage may also free some rattlers, even though
they may be used for building new loops (Wautier et al., 2019). When kinetic
energy decreases, rattlers are used to create low order loops. In the outter
domain, no significant trends can be highlighted, neither in rattlers (Figure
4.22(b)) nor in grain loops evolutions (Figure 4.22(a)). Figure 4.21 and Fig-
ure 4.22 show that meso-structure populations evolve only inside the burst
domain. We assume that once the meso-structure population stabilizes, the
kinetic energy starts dissipating. In other terms, the percentage of changes
in the meso-structure is correlated with the level of kinetic energy.
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(a) (b)

Figure 4.22 – Relative variation of the numbers of grain loops (a) and rattlers
(b) in the outter domain compared with the corresponding numbersN0 before
the occurence of the burst. The vertical dotted lines stand for the maximum
of kinetic energy during the burst.

Meso-structure surviving rates

Secondly, the surviving rate is studied for the four main order loops during
the burst of kinetic energy, inside and outside the burst area. As explained in
Chapter 2.3.2, the surviving rate measures qualitatively how many structures
have persisted from a reference state. The nature of the meso-structure at
a given axial strain is compared to the one at the beginning of the window
of observation (before the onset of the burst of kinetic energy). In the inner
domain, there is an important drop in the surviving rate of all the grain
loops ( Figure 4.23(a)). After the burst, 22% of L6+ loops existing before
the burst have disappeared, which is the highest percentage. Lower order
loop exhibit a slightly higher percentage of survival rates. This ranking
underlines once more the fact that L6+ loops are more involved in the micro-
structure changes during the kinetic energy outburst. At the end of the
outburst, the area is stabilized as the surviving rates do not decrease after
the burst and exhibit a plateau. The new micro-structure is stable enough
not to change immediately after the burst, at least inside this area. Outside
the burst area, there is not a huge drop, and thus, not such a percentage
of changes among the meso-structures (only 2%) (Figure 4.23(b)). This is
consistent with the flat relative evolution of the meso-structures in the outter
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(a) (b)

Figure 4.23 – Surviving rates for the four main grain loop orders (a) in the
inner and (b) the outter domains. The vertical dotted lines stand for the
maximum of kinetic energy during the burst.

domain (section 4.2.4). The changes in the micro- and meso-structures are
concentrated in the inner burst domain. However bursts of kinetic energy
influence meso-structure reorganization even far from its neighbourhood (in
the outter domain). Indeed, in the mid of the outburst, which corresponds
to the peak of kinetic energy, the curves in Figure 4.23(b) display a change
in their steepness. The outter domain is influenced by the propagation of
the outburst and gives rise to some micro-structural reorganization. The
micro-structure is rearranging to cope with the inertial instability and thus,
surviving rates decreases (surviving rates slope increases) for all loop order
categories.

Identifying changes at the microscopic scale can be done from the study
of different evolution patterns of the meso-domains. By studying meso-
structures, it is possible to highlight changes in the burst area and understand
the mechanisms of reorganisation of the micro-structure undergone during a
burst of kinetic energy.
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4.3 Second-order meso-work insights during bursts
of kinetic energy

As recalled in section 2.1, the second-order work criterion is used for judg-
ing, under certain conditions, whether a system can develop kinetic energy
under external disturbance. In this section and thanks to the tools devel-
oped in Chapter 3.3 at the meso-scale, the variations of the different formula-
tions of the internal second-order mesoscopic work are computed (Equation
3.20). For the next sections, meso-stress and meso-strain are calculated dur-
ing macroscopic increments of axial strain of 1E− 6. From now on, to avoid
excessive heaviness in the labelling, the internal second-order mesocopic work
is named second-order mesoscopic work or second-order meso-work.

4.3.1 Grain averaged second-order mesoscopic work evo-
lution

Spatial homogenization of the grain averaged meso-stress

In Chapter 3, the partition view of the meso-stress was defined (the grain
averaged meso-stress). In Figure 4.24, each component of the macroscopic
stress is compared to the corresponding component of the weighted average
of grain averaged meso-stress, in order to check the consistency between the
macro-scale stress definition and the spatial homogenization of the proposed
meso-stress definition. In the weighted average computation, a loop con-
tributes for its fraction area of the total sample domain. The comparison
is made for the whole sample domain and over all the biaxial test. The
dotted lines represent the components of the sum of the weighted average
meso-stress, while solid lines represent the components of the macro-stress.
The components of the weighted average meso-stress agree very well with
the evolution of each corresponding macro-component. The proposed grain
averaged meso-stress definition is compatible with the macro-stress through
a spatial averaging.
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Figure 4.24 – Comparison between the macroscopic stress σmacro and the
weighted average of the grain averaged mesoscopic stress 〈σm〉

Evolution during a burst of kinetic energy

In this section, the second-order mesoscopic work is computed from the
meso-strain (Equation 3.26) and the grain averaged meso-stress definition
(Equation 3.36). It will be noted Wm

2 .
In Figure 4.25, the spatial distribution of grain averaged second-order

mesoscopic work during the propagation of the burst is displayed. Each panel
in Figure 4.25 corresponds to the same labelled panel in Figure 4.9, with the
exception of the panel (∗) that corresponds to an additional step prior to the
detection of the burst of kinetic energy. The variations of the grain averaged
meso-stress (negative or positive) are in line with the variations of the kinetic
energy, with wider borders and distinct limits. The loops corresponding to
the center of the burst, that is to say the kinetic energy of which is the highest
(Figure 4.9), exhibits negative values at the onset of the burst (panel (b) of
Figure 4.25). The extra panel (∗) suggests that the instability results from
a perturbation initiated in the right lower corner. This is still visible in the
panel (b). Thus, the variations of the grain averaged second-order meso-work
can provide additional information on the origins of the burst. In conclusion,
large absolute values of second-order meso-work correlate with the variations
of kinetic energy and can reveal additional details prior to the detection of
the burst of kinetic energy (if there is any). It enables to see the nucleation
of the burst in advance and stands therefore as a precursor.
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Figure 4.25 – Reduced time sequence of second-order mesoscopic work Wm
2 .

(a) (b) (c) (d) (e) (f) correspond to the same steps in Figure 4.9 while (*)
corresponds to an additional step between (a) and (b).
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One can notice that the whole burst area does not exhibit negative second-
order meso-work works. Negative and positive second-order meso-work works
are observed next to each other. In order to assess the predominance of neg-
ative or positive second-order meso-work work in the burst area, the volume
weighted average second-order work 〈W int

2 〉Ω is computed over the burst do-
main Ω :〈

W int
2

〉
Ω

=
1∑

l∈Ω |Ωl|
∑
l∈Ω

|Ωl|Wm
2 l (4.4)

with l reffering to loops inside the area of interest Ω.
Its evolution inside and outside the outburst area is given in Figure 3.5.

〈W2〉Ω is negative only at the nucleation of the burst. It increases with pos-
itive values during the burst and then returns to its almost null pre-burst
value. On the contrary, The outside domain shows no negative values. The
vanishing of 〈W2〉Ω just before the release of kinetic energy can be seen as a
signature of underlying mechanical instability in the burst domain. The fol-
lowing increase shows the active and rapid reorganisations of the microstruc-
ture, underlined in the previous sections (section 4.2.4). Thus, these reorga-
nizations allow a quick restabilization of the burst domain and prevent the
burst from propagating to the entire sample. As a result, the burst subsides
and remains localized.



4.3. Second-order mesoscopic work insights 85

Figure 4.26 – Volume weighted average of the second-order meso-work Wm
2

during the burst of kinetic energy, in the neighbour of the initiation of the
burst. The peak of kinetic energy is marked with the grey dash-dot vertical
line. The dashed blue line is the evolution of the weighted average of the
second-order meso-work Wm

2 outside the burst domain, as a reference. The
two vertical solid lines correspond to the initiation and the end of the burst
of kinetic energy.
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4.3.2 Definition based on Bagi and Weber formulation
of the stress

The formulations of the meso-stress chosen in this section to compute the
second-order meso-work are the Bagi meso-stress definition (Equation 3.41)
and the Weber meso-stress definition (Equation 3.42). Note that these alter-
native meso-stress definitions remain consistent with the macroscopic stress
definition through spatial averaging as the well known Love-Weber equation
is recovered at the sample scale (the Bagi correction term corresponding to
boundary forces became negligeable as soon as the number of grains become
large).The resulting second order meso-works are noted respectively WBagi

2

and WWeber
2 .

Figures 4.27 and 4.28 represent the reduced time sequence for respectively
WBagi

2 and WWeber
2 . The variations of both meso-stresses are in line with the

kinetic energy evolution, negative and positive values are exhibited along
each other. The variations of WWeber

2 are of the same order of Wm
2 , but

concern less meso-domains (smaller spatial expansion). The variations of
WBagi

2 are one order of magnitude greater which is consistent with the fact
that the meso-Bagi stress is greater than the meso-Weber stress (due to
additional boundary terms in the definition). Similary, but not exactly as
for the variations of the grain averaged second-order mesoscopic work Wm

2 ,
the panels (*) of Figures 4.27 and 4.28 give some details on the origins of the
burst.
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Figure 4.27 – Reduced time sequence of second-order mesoscopic workWBagi
2 .

(a) (b) (c) (d) (e) (f) correspond to the same step of Figure 4.9 while (*)
corresponds to an additional step between (a) and (b).
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Figure 4.28 – Reduced time sequence of second-order mesoscopic work
WWeber

2 . (a) (b) (c) (d) (e) (f) correspond to the same step of Figure 4.9
while (*) corresponds to an additional step between (a) and (b). The order
of magnitude of the Weber second-order mesoscopic work variations are of
the same order as the ones of Wm

2 in Figure 4.25.
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In order to conclude on the precursor nature of those definitions of second
order mesoscopic work, their weighted averages inside the burst area and
outside are computed as in Equation 4.4 and given in Figure 4.29. Note
that Bagi and Weber second-order mesoscopic works are defined on the loop
domain including the entire grain domain (structural and not partition view
point as shown in Figure 3.2) so the weights in the averaging are different
from the previous ones given in Equation 4.4. The weighted average ofWBagi

2

exhibits positive values at the onset of the outburst and peaks at maximum
kinetic energy (Figure 4.29(a)). The weighted average of WWeber

2 vanishes at
the onset of the burst and it is after the peak of kinetic energy that it increases
with positive values (Figure 4.29(b)). The vanishing of the Weber second-
order meso-work can be seen as a signature of the instability in the burst
domain (no negative values are exhibited in the outside domain). Soon after
the weighted average of WWeber

2 becomes positive again, the kinetic energy
decreases. The time scale necessary for the micro-structure reorganizations
and the increase in positive values of WWeber

2 may be link to the microscopic
rearrangements time scale d/

√
P/ρ evoked in the definition of the inertial

number (Section 2.1.3). The scenario in which the efficient reorganizations
of the micro-structure restrict the limitation of the outburst in space and
time is definitively supported by the varitions of weighted average of Weber
second-order mesoscopic work.
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Weber

Figure 4.29 – Volume weighted average of the Bagi and Weber second-order
meso-work during the burst of kinetic energy, in the neighbour of the initia-
tion of the burst. The peak of kinetic energy is marked with the grey dash-dot
vertical lines. The two vertical solid lines correspond to the initiation and
the end of the burst of kinetic energy.
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4.3.3 Energy balance validation of the second-order meso-
work definitions

Three different definitions of the second-order mesoscopic work for the
second-order meso-work criterion have been considered. Without taking into
account the nature of precursor presented by the grain averaged and Weber
definition, the best definition may be chosen on a mesoscopic residue min-
imization criterion (Equation 3.23). This minimization criterion should en-
able to derive a link between the mesoscopic and macroscopic definition of the
second-order work. The double contraction product prevents the derivation
of the macroscopic second-order work from spatial averaging. This requires
the validity of Hill’s lemma which is not straightforward to demonstrate in
the present case. The mesoscopic residue in the case of the grain averaged
second-order meso-work is not computable as the second-order work is de-
fined on the partition volume of the meso-domain Ωl (or V part), whereas
the external second-order work is defined from the structural volume V struct.
Consequently, only the residue of the Bagi and Weber second-order meso-
works are computed. The absolute mean residues during the burst of kinetic
energy are given in Figure 4.30. For both definitions, the absolute mean
residue peaks at the maximum of kinetic energy. The values of the Weber
residue are more than three times smaller than the Bagi residue, which makes
the Weber definition a better candidate as second-order mesoscopic work.
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Figure 4.30 – Mean residue for Bagi and Weber second-order mesoscopic
work. The peak of kinetic energy is represented as the grey dotted vertical
line.

To conclude, the Weber second-order mesoscopic work minimizes the
residue derived from the balance equation of the second-order meso-workcriterion.
Thus, it is the Weber second-order meso-work which should be considered for
local analyses. Furthemore, the Weber second-order meso-work vanishes on
the onset of a burst of kinetic energy, and it measures the time needed by the
micro-structure to stabilize. It is a meso-precursor for mechanical instability
in a given domain.

4.4 Conclusion

In this chapter, analyses of outbursts of kinetic energy during drained
biaxial tests on various samples highlight the existence of precursors and
propensity elements for outbursts. We have seen that if there is a localiza-
tion of the deformation, bursts of kinetic energy are also localized in the
shear band. It has been established that an outburst occurs in an area which
is looser and in which contacts are closer to slide than in the rest of the sam-
ple where the burst does not propagate. Mesoscopic stresses and mesoscopic
second-order works were defined. The grain averaged Wm

2 and the Weber
WWeber

2 second-order mesoscopic works vanish inside the burst area on the
onset of the burst and thus are considered as precursors of mechanical insta-
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bility. During the outburst, the microstructure is reorganized. High order
loops and rattlers play a great role during this transition. The evolution
of meso-structures and the variation of the weighted average of second-order
mesoscopic works (Wm

2 andWWeber
2 ) have shown that this is the quick micro-

structure reorganization that enables the outburst to propagate to the rest
of the sample.
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In Chapter 4, post processing techniques and mesoscopic quantities defi-
nitions wereintroduced in order to better understand the initiation of inertial
transition. The study took place at the material point scale in samples con-
sidered as representative elementary volumes. The fertile background on
which a burst can appear and develop were defined, even though a global
inertial transition has not been observed at the scale of the whole sample.
Indeed, rearrangements in the micro-structure during a burst limits its prop-
agation. Our observations and conclusions are limited to the onset of inertial
transition. Nevertheless the approach developed is versatile and can be ap-
plied to a more concrete case : a mechanical destabilization in a granular
slope subjected to gravity.

The aim here is to study the beginning of the destabilization, i.e the
solid/fluid-like transition only, not to study the fluid regime. Two sets of
simulation were set up : one simulation with rigid boundaries, as for the
samples in Chapter 4, and one simulation with periodic boundary conditions.
In the first section, the generation of the samples and the different steps of
the simulation are presented. In the second section, the evolution of different
parameters is studied in order to delineate the quasi-static regime and under-
stand the different stages undergone by the sample. In the third section, the
influence of the porosity and the boundary conditions is analysed. In the last
section, occurence of bursts of kinetic energy without periodic conditions are
studied to discuss the link between burst of kinetic energy and landslides.

5.1 Gravity test principles

In the present section, the generation and the progress of gravity insta-
bility tests are introduced. The simulation with rigid boundaries is noted rbc
and the simulation with periodic boundary conditions is noted pbc. These
two simulations with different boundary conditions are two different ways to
simulate a granular gravitational collapse. In the case of rigid boundaries,
the samples are defined sufficiently elongated to minimize the perturbation
induced by the walls on the micro-structure (Section 2.1.3).

5.1.1 Creation of the sample

A sample rbc is created according to the same protocol presented in Sec-
tion 4.1.1). With respect to the walls effect described in Section 2.1.3, the
aspect ratio of the box is 0.14 (horizontal length = 7.05m ; vertical length
= 0.94m), as illustrated in Figure 5.1. The number of grains in this type of
analysis is smaller than in drained biaxial test, the total number of spheres
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is here 8, 000.
The aim is to obtain samples with the same characteristics as the samples

S2 created in the Chapter 4. Thus, the third dimension is settled at one
maximum diameter. Moreover, the granular size distribution, normalized by
the mean radius is the same. From this original specimen, two samples of
different porosities are created. The interparticle friction angle is decreased
until the porosity of the sample ressembles the porosity of the targeted sample
S2 (dense or loose). All the characteristics are given in Table 5.1.

Table 5.1 – Characteristics of the samples with rigid boundaries rbc.

Parameters Samples Dense (D) & Loose (L)
Number of spheres 8, 000

Grain density 3, 000 kg.m−3

Rmean 1.5× 10−2 m
Dmax/Dmin 1.98
Porosity D : 0.163;L : 0.198

Sample Aspect Ratio (Height/Length) 0.14
Interparticle Friction angle Φ 35◦

Particle/Wall Friction angle 0◦

kn/D 356 MPa
kt/kn 0.42

Numerical damping coefficient 0.05
Angle velocity for gravity 0.18◦.s−1

5.1.2 Gravity driven instabilities test

In order to create a slope, there are two options: either the box or the
vector gravity is tilted. Technically, the second option is easier to implement.
After the preparation step, gravity is turned on. The spheres in contact with
the bottom wall are fixed to it in order to avoid sliding along the bottom
wall (Figure 5.2(b)). The top wall, that was used to compact the sample, is
lifted in order to create a free surface (Figure 5.2(c)). This is done sufficiently
slow so that the unbalanced forces remains smaller than 10−5 (this prevents
spheres from being ejected because of sudden release in consolidation stress).
The top wall is placed far enough to observe an inertial transition before
the spheres enter in contact with it, at five times the mean radius from its
position after consolidation (Figure 5.2(c)). When the three initial steps are
achieved, then gravity is tilted with a constant velocity given in Table 5.1.
It is a velocity chosen as a compromise beetween a time consuming lower
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Figure 5.1 – Dense sample with rigid boundaries after the preparation step.
The grains are coloured as a function of their radius.

value and keeping the simulation rate independant as long as possible. The
simulation is stopped, when the angle of gravity reached 50◦.

5.1.3 Influence of the type of boundary counditions :
periodic conditions

Another type of sample is created with periodic boundary conditions
(Wenrui, 2021). Periodic boundary conditions are used in the x-axis direc-
tion, and rigid walls are placed in the other directions. The characterics of
the created samples are listed in Table 5.2. The preparation is slightly differ-
ent from the preparation of the sample rbc. Once a cloud of 5, 000 particles
with the characterics given in Table 5.2 is generated in a box of dimension X :
1.25 m × Y : 1.20 m, gravity activates. After gravity deposition, the interpar-
ticle friction is decreased to generate three samples with different porosities
(Table 5.2). Eventually, the grains in contact with the bottom wall are fixed
to it in order to avoid grain sliding on the bottom wall. Gravity vector is
titled with a higher angle velocity ()0.5◦.s−1) than for the samples rbc . The
simulation stops when the slope angle reaches 40◦.
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Figure 5.2 – Sketch of the steps before the beginning of the simulation : (a)
the sample is isotropically compacted, (b) gravity is activated and spheres in
contact with the lower wall are fixed (colored in red), (c) the upper wall is
lifted up at a distance of five times the mean radius of the sample.
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Table 5.2 – Characteristics of the samples with periodic boundary conditions
pbc.

Parameters Samples Dense (D) & Loose (L) & Intermediate (I)
Number of spheres 5, 000

Grain density 3, 000 kg.m−3

Rmean 5.4× 10−3 m
Dmax/Dmin 1.98
Porosity D : 0.162 ; L: 0.212 ; I :0, 192

Interparticle Friction angle Φ 35◦

Particle/Wall Friction angle 35◦

kn/D 356 MPa
kt/kn 0.42

Numerical damping coefficient 0.05
Angle velocity for gravity 0.5◦.s−1

Figure 5.3 – Sketch of the sample creation with periodic boundary conditions.
On the left : the cloud of particles in the box of dimension 1.25 m× 1.20 m.
On the right : the sample after gravity deposition. Particles in red at the
bottom of the sample are fixed.
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5.2 Evolution of quasi-static macro-scale quan-
tities

In this section, a quasi-static analysis is conducted in order to understand
how the sample evolves during the titling of gravity. To verify the extent to
which the problem of interest may be considered as quasi-static, the inertial
number of the sample is computed first. The sample rbc with an initial
porosity of 0.198 and the sample pbc with an initial porosity of 0.192 are
compared, as they have similar initial porosities. For this section, and for
the sake of brevity, the two samples will be referred as rbc and pbc without
specifying the initial porosity. The influence of the porosity and the boundary
conditions will be discussed in the next section.

5.2.1 Enforcability of quasi-static analysis

The inertial number I formulation is given in Equation 2.5. As recalled
in Section 2.1.3, a grain packing is considered out of the quasi-static regime if
I > 10−3. The mean diameter d and the particle density ρ are known material
properties. For the pressure P , which is not homogeneous in the sample, an
order of magnitude is obtained in the middle of the sample considering the
vertical stress applied by a column of granular material of height H/2 :

P = (1− Φ)ρg
H

2
(5.1)

where g is the magnitude of the gravitational acceleration, Φ the porosity of
the sample and H the height of the grain packing.

In both simulations, it is observed that the velocity of the particles is not
homogeneous. On the free surface, the velocity is maximal, while velocity is
minimal at the bottom (Figure 5.4(a)). This velocity profile on slope granular
flow can be found in the litterature (Pouliquen et al., 2005; Jop et al., 2007).
Thus, the order of magnitude of the tangential velocity γ̇ is approximated as
the difference between a mean free surface velocity vmax and mean bottom
velocity vmin :

γ̇ =
vmax − vmin

H
(5.2)

Figure 5.5 shows the evolution of the inertial number during the simu-
lation for both samples. The inertial number for the sample pbc increases
slowly and even linearly after 20◦. For this sample, θpbci = 31◦ is the limit
of the quasi-static regime. The sample rbc exhibits the same quasi-static
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Figure 5.4 – (a) Mean velocity in function of sample’s depth and (b) inertial
number as a function of sample’s depth in the sample pbc. Same types of
curves are found for the sample rbc.
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limit θrbci = 31◦ , even though the increase is linear from the early beginning.
Even though, particle velocity field is not homogeneous, inertial numbers for
different layers are still of the same order of magnitude (Figure5.4(b)). To
summarize, both samples are out of the quasi-static regime after 31◦.

One can notice that there is a drop of the inertial number around θs = 35◦

for the sample rbc (Figure 5.5(a)). This is due to the fact that the grains
touch the top wall and clog the flow. At the beginning of the simulation,
there is a free surface on the top of the sample, and there is no contact
with the upper wall (Figure 5.6(a)). When the sample starts flowing, the
space between the initial free surface and the upper wall is quickly filled
up, stopping the flow (Figure 5.6(b)). From an angle of 35◦, just after the
beginning of the dense regime, the sample is stuck in the left part of the box
and the flow dynamics vanishes. Note that the sample is considered as stuck
when meso-structures are formed in the corner (Figure 5.6(b)). Thus, the
data collected for the sample rbc after the angle θs is reached are not revelant
for the triggering of instability. Similary, the data collected after the θrbci is
reached are out of the scope of our static model. Thus, in the next figures,
the data after θi for both samples are shaded.

5.2.2 Depth averaged stress behaviour

In the context of the slope simulation, the stress is not homogeneous in
the sample. Nevertheless, the hypothesis is made that in thin layers at a
given depth, the stress state can be considered homogeneous. Thus, both
samples are divided in five different layers and the stress in each layer is
computed as spatial average of the Love & Weber stress inside the layer :

〈σlayer〉 =
1

|Ωlayer|
∑

p∈Ωlayer

σpVp (5.3)

where Ωlayer is the domain of the considered layer, σp the Love & Weber
stress for the particle p and Vp its volume. The particles in contact with the
bottom wall and thus fixed to it are not considered in the computation.

The deviatoric stress and the mean stress are deduced from the principal
stresses in a 2D context. The expression of the mean stress is the same as in
Equation 3.3 and of the stress is given in Equation 3.1.

q − p curves for each layer for both samples are presented in Figure 5.7.
The curves for the sample pbc are almost vertical and reach the failure line
at the point corresponding to the inclination angle of 18.5◦ (Figure 5.7(c)).
So the inner friction angle of the sample pbc equals the slope angle for which
the stress path reaches a failure limit. The curves for the sample rbc do not
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Figure 5.5 – Evolution of the inertial number I as a function of the slope
angle for the sample rbc (a) and the sample pbc (b). The angle for which
each sample enters in the inertial regime is pointed out (vertical solid line).
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Figure 5.6 – Illustration of the titling of the sample rbc and the up wall
cloging. (a) The sample when the slope angle is at 0◦ : the spheres are
displayed in blue, the grain loops are displayed in black. (b) The sample
when the slope angle is at 35◦ : the spheres are displayed in blue, the grain
loops in black and the rattlers in green are displayed.
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exhibit initial zero or quasi zero q values as for the sample pbc. The pre-
simulation stress imposed on the walls is responsible for these values. In this
sample, all the layers do not reach the failure line for an inclination angle of
16◦. Only the top layers do (Figure 5.7(b)). This is an other consequence of
the confining walls. The difference of magnitude in the p and q values stems
from the difference in the mean radii between the two types of samples, for
the same out of the plane dimension (see Section 3.1.2), and from the effects
of the confining walls.

The sample rbc is not homogeneous in the sense that five layers have
different initial stress ratio q/p. This is related to the lateral walls kept
the memory of the horizontal pre-stress imposed during the preparation step
(isotropic compression) while the vertical pre-stress has been released with
the lift of the top wall. For both samples, the interparticle friction angle (set
to 35◦) is different from the internal friction angle (measured in Figure 5.7
16◦ or 18.5◦). The plastic limit surface in the q − p plane is reached for a
slope of 18.5◦ (or 16◦), which is consistent with the standard Mohr-Coulomb
model. For both samples, we can make the hypothesis of a pre-avalanche
interval as introduced in the litterature (Daerr and Douady, 1999; Staron
et al., 2006; Staron, 2008). The lower limit of the pre-avalanche interval
(pre- destabilization angle noted θd in Section 2.1.3) is the internal friction
angle (rbc : 16◦, pbc :18.5◦) and its upper limit is the angle from which the
sample is no longer in a quasi static regime (rbc : 31◦ , pbc : 31◦).

5.2.3 Macroscopic and mesoscopic evolutions

After specifying the limits of our quasi-static analysis, the behaviour of
both samples is analysed with more details thanks to the grain loops and
the porosity evolutions. The differences so far between the two samples are
attributed to their boundary conditions.

Meso-structure evolution

In Chapter 4, it has been shown that the macroscopic behaviour of the
sample can be illustrated by the evolution of its meso-loops. Figure 5.8 gives
the evolution of the numer of loops (for each loop order) divided by the total
number of spheres for both samples. For the sample rbc (Figure 5.8(a)), the
number of loops does not evolve much for low order loops, it decreases slightly.
However, the number of the highest order loops increases until the clogged
configuration of the sample. For the sample pbc (Figure 5.8(b)), a decrease
in the number of small order loops is also observed, as well as an increase
in the number of the highest order loops until 18.5◦, which corresponds to
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Figure 5.7 – p − q path of 5 layers (a) for (b) the sample rbc and (c) the
sample pbc. For both samples, the first point of the curves (horizontal slope)
is surrounded by a circle and the last point (inertial transition) by a square
(see the red arrow for the direction of the p−q path). Every point corresponds
to a 2◦ increment of the slope angle.
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(a)

(b)

(°)

Figure 5.8 – Evolution of the number of loops per category, normalized by
the number of grains for (a) the sample rbc and (b) the sample pbc. Grey
parts correspond to the data after the sample enters in the inertial regime.

the failure line (Figure 5.7(c)). We can observe that both samples do not
have the same loop composition at the beginning of the test, despite their
similar initial porosity. With a majority of L6+ loops from the beginning,
the sample rbc has indeed a looser micro-structure than the sample pbc.

Lifespan and life expectancy of all meso-structures are also analysed in
order to evaluate the importance of grain loops changes. Lifespan and life
expectancy are computed for a reference slope angle (here 7.5◦), in Figure
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5.9. The lifespan is given on the left, in blue, and the life expectancy is
given on the right, in red. For both samples, there are a majority of loops
that exist from the beginning of the simulation (high blue column at angle
0◦). These long-living loops completely disapear when the sample enters
in the inertial regime, which correponds to the complete renewal of meso-
structures. Few or none of the meso-structures present at 7.5◦ are present
at the initiation of inertial transition. Moreover, most of them will even
disappear before the slope angle reaches 20◦ in both samples (Figure 5.9(b)
and Figure 5.9(d)) corresponding to the internal friction (the material reaches
the Mohr-Coulomb failure line).

For the sample pbc, there are peaks of life expectancy around 15◦, which
corresponds to massive reorganisations occuring before failure line (Figure
5.9(a)). On the contrary, for the sample rbc, the lifespan - life expectancy
histogramm is bell shaped, showing important reorganisations from early
stage of the simulation (Figure 5.9(c)). This might be due to the fact that
the sample rbc is looser than the sample pbc (higher order loops for the same
porosity).

Porosity evolution and role of rattlers

For free surface samples, the macro porosity is defined from the weighted
average of the grain loop porosity. The weight corresponds to the loop area
and the grain loop is either computed with rattlers (effective porosity, Equa-
tion 3.8) or without (real porosity, Equation 3.8) (see Equation 4.3). For the
sample pbc, in which the free surface stays horizontal thanks to the periodic
boundary conditions, a reference height may be alternatively chosen to define
a rectangular domain where the porosity is estimated. A reference height of
80% of the height sample is chosen (Figure 5.10(a)). By definition, ϕeff80 is an
effective porosity (all grains takien into account). The porosity ϕeff80 is also
computed for the sample rbc, as a comparison. Indeed, before the inertial
transition, the inclinaison of the free surface allows to compute ϕeff80 (no big
depresion on the right of the sample yet). The ϕeff80 porosity reads :

ϕeff80 = 1−
∑

i∈Ω80
Ai

|Ω80|
(5.4)

where Ω80 is the area of the sample below the reference height of 80%, and
Ai the area of the particle i inside the domain Ω80 .

The ϕ80 porosity evolutions are given for samples pbc and rbc in Figure
5.10. The sample pbc is only dilatant after the first failure line angle, corre-
sponding to the predominance of L6+ loops (Figure 5.10(b)). The sample rbc
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Figure 5.9 – Lifespan (blue) and life expenctancy (red) for the sample pbc
(respectively sample rbc) at 7.5◦ (a) (resp. (c)) and 18◦ (b) (resp. (d)). The
grey parts correspond to the data after the sample enters the inertial regime.
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exibits a slight contractancy before the inertial transition (Figure 5.10(c)).
The contractant behavior is typical of a loose sample.

The weighted real porosity (without taking into account rattlers, Equa-
tion 3.7) and the weighted effective porosity (taking into account rattlers,
Equation 3.8) for the sample rbc are compared in Figure 5.11. Without
rattlers, the behaviour is fully dilatant, with a porosity increasing until the
sample reaches the upper wall. By considering the rattlers, the weigthed
average porosity increases slightly. With this formulation of the porosity, the
total area is not fixed (which explains dilatancy) and the free surface (made
only of rattlers) is not accounted for.
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Figure 5.10 – (a) Sketch of the computation of the ϕ80 porosity, evolution of
the ϕ80 porosity for (b) the sample pbc and (c) the sample rbc. Grey part
corresponds to the data after the sample enters in the inertial regime.
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Figure 5.11 – Effective (with rattlers) and real (without rattlers) weighted
average porosities of the sample rbc. Grey part corresponds to the data after
the sample enters in the inertial regime.

Figure 5.12 shows grain loops and rattlers of both samples at different
slope angles. For both samples, the grain loops are larger and contain more
rattlers when the slope angle increases. The upper layer close to the free
surface contains only rattlers for high slope angles (Figure 5.12(c)).

By combining Figures 5.10, 5.11 and 5.12, few conclusions can be drawn.
Grain loops are becoming larger with the inclination angle which is under-
lined by the increasing weighted average real porosity for the sample rbc and
the ϕeff80 porosity for the sample pbc. The difference between ϕeff80 and the
weighted average effective porosity for the sample rbc is due to the top layer,
which contains only rattlers near the inertial transition. The fact that rat-
tlers are created inside those larger grain loops, filling up the space created,
is highlighted by the weighted average effective porosity for the sample rbc
which does not evolve much (contrary to the real porosity as shown in Figure
5.11).

Note that rattlers are not present at the beginning of the simulation
(Figure 5.12(a)). Indeed, in a simulation without gravity, rattlers are defined
as grains with one or no contact with another grain, and thus they are not
part of grain loops. However, with the introduction of gravity, those free
particles fall at the bottom of the loop, and form L3 grain loops which do not
contribute to the main micro-structure of the sample (Figure 5.13). Another
definition of rattlers is formulated in (Wenrui, 2021) to identify the settled
rattlers in loops as illustrated in Figure 5.13, but it is not investigated here.
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Figure 5.12 – Loops and rattlers for the pbc and sample rbc at 0◦ (a), 12◦

(b), 24◦ (c) of inclination.
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Figure 5.13 – Sketch of a position of a rattlers without gravity (a) and with
gravity (b). In (b) the rattler forms a small loop that does not participate
to stress transmission.

As a conclusion, for both samples the inclination of gravity creates larger
meso-structures, elongated in the slope direction (Figures 5.12), and rattlers
appear increasingly inside the grain loops and also at the free surface. The
slight difference in the dilatancy between both samples shows they are not
of the same density (despite their initial comparable porosities). The sample
pbc is denser and the sample rbc tends to be looser for similar porosities.
This conclusion is also supported by the meso-structure evolution in Section
5.2.3.

5.3 Influence of porosity and boundary condi-
tions

In the previous section, two samples of similar porosities but with different
boundary conditions have been compared in parallel. Despite their similar
initial porosities, they exhibit for some points, different behaviours. In order
to highlight the influence of the porosity and of the boundary conditions, the
three samples with periodic boundary conditions (Table 5.3) are compared
to the two samples with rigid boundary conditions (Table 5.4). The data
from the loose samples are displayed in blue, the dense samples in red and
the intermediate sample in green in the following figures. The data after the
inertial transition is shaded on the figures. Light grey parts correspond to
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Table 5.3 – Porosities of the sample pbc

Samples Dense (D) Loose (L) Intermediate (I)
Porosity 0.162 0.212 0.192

Table 5.4 – Porosities of the sample rbc

Samples Dense (D) Loose (L)
Porosity 0.163 0.198

the loose and intermediate samples inertial transition and dark grey parts
coorespond to the dense ones.

5.3.1 Inertial transition and kinetic energy

The inertial number is compared between the different samples in Figure
5.14. For the pbc simulation, one can see the dense sample enters in the
inertial regime later (Figure 5.14(a)). This is the same for the samples rbc
(Figure 5.14(b)), but with a larger gap.

Figure 5.15 compares the kinetic energy of all the samples. In pbc simula-
tions, the looser the sample, the greater the kinetic energy (Figure 5.15(a)).
Indeed, a dense sample has a more compact micro-structure able to adapt to
evolving loading conditions for small slope inclinations. The kinetic energy
of the loose and intermediate samples are converging when they reach 17◦.
This angle corresponds to the plastic limit for loose and intermediate samples
(see Figure 5.7) where no softening occurs. The kinetic energy in the dense
sample increases later and converges after 30◦. The convergence of the kinetic
energy could be explained by the convergence of micro-structure as during
the critical state in a biaxial test. However, we need to be cautious because
it happens after the inertial transition while the concept of critical state is
defined in quasi-static regime. (Da Cruz et al., 2005) already underlined the
non influence of the sample preparation on the steady flow characterics, but
with no gravity. Thus, the hypothesis can be made that the convergence of
all the samples toward the same level of kinetic energy is due to the steady
flow regime.

Similar observations are drawn from the curves obtained with the sample
rbc (Figure 5.15(b)). The kinetic energy is greater at the beginning in the
loose sample than in the dense sample. Nevertheless, there is two differences
due to the boundary conditions. Firstly, the kinetic energy of the two samples
is of the same order of magnitude for small angles (before 5◦). Secondly, no
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Figure 5.14 – Inertial number of the three samples pbc (a) and the two samples
rbc (b). Black lines spot the inertial transition angle. For samples rbc,vertical
lines show when the granular packing get into contact with the upper wall.

convergence of the kinetic energy is observed because the two samples pbc
reach the upper wall and clogg for different slope angles (around 35◦ for the
loose sample, just after 40◦ for the dense sample).

The boundary conditions have no significant influence on the kinetic en-
ergy evolution nor the inertial number evolution except through the presence
of an upper wall.

5.3.2 Depth averaged stress behaviour

Stresses for all the samples are computed as in Section 5.2.2. The inter-
mediate and the loose samples pbc exhibit a similar behaviour as observed
previously in Figure 5.7 (Figure 5.16(a) and 5.16(b)). In contrast, the stress
response of the dense sample reaches a failure line at 25◦ and then comes
back on the 18◦ failure line. It is comparable to the softening observed for
a dense sample in a biaxial test (see section 4.1.5 for example). Note that
the deviatoric stress at the beginning of the simulation is almost zero for the
dense sample (Figure 5.16(c)). This can be explained by the fact that during
the preparation of the sample, the interparticle friction angle was lowered to
0◦, resulting in negligeable tangential forces at contact, and with an isotropic
micro-structure.
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Figure 5.15 – Kinetic energy of the three samples pbc (a) and the two samples
rbc (b). Grey parts show the inertial regime : the light grey part corresponds
to the loose samples inertial transition, the dark grey part cooresponds to
the dense ones.

For samples rbc, the free surface layers of the dense sample reach a failure
line at 24◦, but no return to a lower failure line is observed (Figure 5.17(a)).
Contrary to pbc samples, the initial stress state has a non zero deviatoric
stress. It is a consequence of the rigid boundary conditions which maintain a
lateral confining stress even after the vertical stress is released in the prepa-
ration steps. The non vertical stress responses, for the bottom loose layer
(Figure 5.17(b)) and for the dense sample also underline the confining effect
of the lateral walls. The confining effect of the wall prevents some of the lay-
ers from reaching the failure line, thus leading to a non homogeneous stress
field. Reaching of the top wall, and the lateral concentration of the stress
when titling the gravity may also inhibit the softening of the dense sample
rbc.
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Figure 5.16 – q − p curves for the dense sample pbc (a), the intermediate
sample (b), the loose sample pbc (c). The five layers are the same as defined
in Figure 5.7(a).
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Figure 5.17 – q− p curves for the dense sample rbc (a) and the loose sample
rbc (b). The five layers are the same as defined in Figure 5.7(a)

5.3.3 Volumetric behaviour and meso-structure evolu-
tion

Porosity

Figure 5.18 presents the ϕ80 porosity of all samples (Equation 5.4). In
samples pbc, the dense sample is dilatant, the loose sample is contractant and
the intermediate sample is slightly dilatant (Figure 5.18(a)). The porosities
converge towards a unique porosity after the transition in the inertial regime.
For samples rbc, the loose sample is slighly contractant before it reaches the
wall as seen in Figure 5.10 (Figure 5.18(b)). For the dense sample, the
behaviour is dilatant as the dense sample pbc. Porosities do not converge
because of the influence of the upper wall.

Grain loops ratios

In terms of meso-structures, the ratios of the number of each loop order
against the total number of grains are compared in Figure 5.19. For samples
pbc, the behaviour of each sample is aligned with their porosity: intermediate
and dense samples show decreasing ratio for low order loops while their ratio
for high order loops are increasing, before decreasing at angles around their
failure line (18◦ or 24◦). The loose sample evolves less through decreasing
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Figure 5.18 – ϕeff80 porosity of samples pbc (a) and weighted effective porosi-
ties for the samples rbc. Grey parts show the inertial regime : the light grey
part corresponds to the loose samples inertial transition, the dark grey part
cooresponds to the dense ones.

number of loops per categories. All meso-structures ratios align after the
inertial transition. Loose sample has more high order loops at the beginning
while the intermediate and dense samples have more low order loops. For
samples rbc, the varitions of the ratios are the same as for the dense and
loose samples pbc. Low order loop ratios are decreasing for both but the
dense sample has higher ratios. For high order loops, their ratios are both
decreasing, but the loose sample has a greater ratio before 15◦. The decrease
of high order loop ratio for the dense sample begins after the failure line is
reached. Ratios of grain loops are not converging because of the influence of
the upper wall.

Grain loops lifespan and life expectancy

A last remark on the reorganisation of the grain loops is made in Figures
5.20 and 5.21. The birth and death histogramm shows that dense and inter-
mediate samples pbc (Figures 5.20(a) and 5.20(b)) experience reorganisations
later, between slope angles coresponding to the internal friction angle and
to the inertial transition. However for the loose samples, the reorganisations
are more instantaneous with bell shape histogramms. Grain loops have short
life expectancy (Figures 5.20(c) and 5.21(b)). The dense sample rbc has a
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Figure 5.19 – Evolution of L3, L4, L5 and L6+ for samples pbc (a) and for
samples pbc (b). Grey parts show the inertial regime : the light grey part
begins for the loose sample inertial transition, the dark grey part begins for
the dense’s.
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small bell shape histogramm, and some reorganizations occur later, around
the failure line (Figures 5.21(a)). It seems that the dense sample is a bit
more prone to early reorganizations than it is expected to be.

5.3.4 Conclusion on the influence of boundary condi-
tions

In the last sections, differences in the behaviour of the sample of similar
porosity but with different boundary conditions are raised. As underlined
in the previous Section 5.2, the intermediate sample pbc and loose sample
rbc do not have similar behaviour despite their similar initial porosities. The
intermediate sample pbc shows some characterics corresponding to a dense
sample (porosity and grain loops evolution), and other ones corresponding of
a loose sample (stress path). The loose sample rbc has a loose behaviour, even
though its contractant behavior is limited. Thus, the difference in porosity
and grain loops evolution between the intermediate sample pbc and loose
sample rbc is not the consequence of their different boundary conditions.

The samples with periodic boundary conditions reach a steady flow and
converge to the same sample characteristics (Da Cruz et al., 2005). On the
contrary, the samples with rigid boundary conditions exhibit a limited steady
flow because of the clogging in the left up corner just after the inertial tran-
sition. They do not converge toward the same characteristics. Nevertheless,
all the samples exhibit patterns of mechanical instability prior to the in-
ertial transition, especially underlined by the life span and life expectancy
diagramms for intermediate and dense samples pbc (Figure 5.20). For all
samples, these marks of instability are even prior to the failure line reached
before the inertial transition (Section 5.3.2). Those information are consis-
tent with a pre-avalanche interval in (Daerr and Douady, 1999; Staron et al.,
2006; Staron, 2008), in which the micro-structure undergoes numerous modi-
fications. However, the pre-destabilization angle θd supposed in Section 5.2.2
should be reajusted considering the rearrangements spotted in the samples
(Figure 5.20). The pre-destabilization angle is lower than the slope angle as-
sociated with the failure line. The closer the slope angle is from the inertial
transition angle, the more important the micro-structure rearrangments are.

In brief, concerning the type of boundary conditions, two important con-
sequences should be put forward:

- The confining pressure of the rigid walls creates non homogeneous
samples in terms of stress state and with an initial non zero deviatoric
stress.

- The upper wall prevents the samples to flow and avoids to observe the
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Figure 5.20 – Birth death histogramms for the dense sample pbc (a), the
intermediate sample pbc (b), the loose sample pbc (c). Grey parts show the
inertial regime.
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Figure 5.21 – Birth death histogramms for the dense sample rbc (a), the loose
sample rbc (b). Grey parts show the inertial regime.
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microstructure convergence.
A parallel between samples with rigid boundary conditions and retaining

barrier on steep slopes can be drawn. In both cases, the stress state is lower
than without rigid walls / barriers. The presence of barriers modify the stress
state and enables important reorganizations during pre-rupture stage.

5.4 Analysis of bursts of kinetic energy
General behaviour of a granular packing during the two simulations with

different boundary conditions has been studied along with the limitations
of rigid boundaries. Analysis in this section is mainly focused on the loose
sample rbc. The general onset of the failure is detailed in the first section.
In a second part, two bursts of kinetic energy are studied with in the same
framework as in Section 4.2.

5.4.1 Diffuse failure

The potential failure of the slope can be assessed with the sliding Index Ip
(Equation 2.31) at the scale of the sample. Maps of Ip are given for the loose
samples pbc and rbc (Figure 5.22). Contacts are represented by their branch
segments (segment linking the center of both spheres in contact) and the
color of the line depends on the value of the contact sliding index. The closer
the contact is to sliding, the darker the color is. For both samples, the density
of critical contacts (Ip > 0.9) increases with the slope angle. Moreover, the
density of critical contacts is homogeneous in the sample pbc (Figure 5.22),
meaning the failure is likely to be diffuse. This is consistent with the fact that
the different parts of the sample reach the failure state at the same inclination
angle (see Figure 5.7(c)). For the sample rbc, the proportion of contacts close
to sliding is higher than in the sample pbc. However, the density of critical
contacts is also homogeneous in the loose sample rbc. Similar Ip maps are
obtained for the other samples (dense and intermediate). Thus, dense, loose
or intermediate samples have a diffuse slope failure. Bursts of kinetic energy
can appear everywhere in the sample.

For all samples, after the inertial transition, the kinetic energy increases
strongly (but shortly for the samples rbc). The reorganisations in the micro-
structure are not sufficient to dissipate the external work, kinetic energy is
thus increasing, and movement of grains becomes continuous. A grain veloc-
ity gradient exists, distributed along the cross direction. As a consequence,
there is also a kinetic energy gradient inside the sample during the flow regime
(Figure 5.23).
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Figure 5.22 – Sliding index Ip representation for the loose sample pbc and
loose sample rbc for 0◦ (a), 10◦ (b), 20◦ (c) showing the homogenous increase
of the number of contacts close to sliding.
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Figure 5.23 – Kinetic energy of particles in the loose sample pbc(a) and loose
sample rbc (b).

To confirm the macroscopic diffuse failure, the weigthed average mesosecond-
order workWm

2 is computed for the loose sample rbc (Figure 5.24). The grain
averaged definition is selected in order to compute the weighted average since
the macro second-order work results from the spatial homogeneization of the
partition definition of the second-order work (see Section 3.2). Early vanish-
ings of weighted average of Wm

2 are exhibited by the sample (around 15◦),
before the failure line is reached. This observation is consistent with the ex-
istence of a bifurcation domain for granular materials. The larger the angle
of inclination, the more frequent larger vanishing for the second-order work.
Thus the entire sample experiences destabilization before its global inertial
transition.
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Figure 5.24 – Weighted average second-order mesoscopic work Wm
2 along

the entire gravitational stability test for the loose sample rbc. Grey area
corresponds to the data after the sample reaches the top wall.

5.4.2 Bursts of kinetic energy in the loose sample rbc

Bursts of kinetic energy can appear everywhere in the sample, even though
there are more bursts close to the free surface. In Chapter 4, bursts are de-
tected by comparing the grain kinetic energy to the mean grain kinetic energy
at critical state, which is (on average) a stationnary regime. No such sta-
tionnary regime exists in the present simulations. Therefore, the definition
of a burst should be adjusted. The criterion becomes the following: a grain
is assumed to be part of a burst if its kinetic energy is above the mean grain
kinetic energy in the sample at the time of interest. Two bursts are arbitrary
selected in the loose sample rbc (Figure 5.25), between 11.8◦ and 12.5◦. They
occur within the same angle range, but one after the other, one at the bottom
of the sample, the other near the free surface.
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(a)

(b)

(c)

(d)

(e)

(f)

g

g

Figure 5.25 – Time lapse of the two bursts and their associated area (in pink
for the shallow burst, in green for the deep burst).
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(b)(a)

outside
inside

outside
inside

Figure 5.26 – Mean kinetic energy per particle inside and outside the shallow
burst (a) and the deep burst (b).

The mean kinetic energy per grain in the inner burst domains confirms
the two events selected are bursts. The kinetic energy inside the burst area is
four time larger than outside (Figure 5.26). The two areas are active, that is
to say other bursts have occured or will occur in the same area (for example,
before the deep burst in Figure 5.26(b)).

Deep burst of kinetic energy

The probability density function of the sliding index Ip in the inner (green
box in Figure 5.25) and outter domains before and after the burst is given in
Figure 5.27. The difference between the two states is not well marked as for
the burst in the biaxial test (section 4.2.3), but the proportion of contacts
close to sliding (Ip > 0.8) decreases after the burst. The pdf of the sliding
index outside is suggesting that the rest of the sample is quite unstable too
(increase in the pdf close to Ip = 1).
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(a) (b)

Figure 5.27 – Probability density function of the sliding index Ip for the
contacts inside the inner and outter domains for the deep burst area, before
the burst (a), and after (b).

The same tendency can be found for the relative evolution of the meso-
structures (Figure 5.28) and the surviving rates (Figure 5.29) in the inner
and outter burst areas. For the relative evolution, the active changes outside
the burst area blur the changes inside the burst area (Figure 5.28(b)). More-
over, this inner area is concerned by two successive bursts (5.26(b)) and the
concentration in time and space for the relative evolution of meso-structures
is no longer striking. The succession of two bursts is also apparent for the
life expectancy of the meso-structures inside the burst area (Figure 5.29(a)).
The slope of the grain loops surviving rate is already steep before the oc-
curence of the burst studied. However the stabilization is clear after the
burst (plateau). in the outter burst area, the slope of the curve has a smaller
coefficient, indicating less reorganizations take place in the rest of the sample
(occuring at a smaller rate). These observations are consistent with those
reported in Section 4.2.4 for biaxial tests.
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(a) (b)
burst

Figure 5.28 – Relative evolution of the four different orders of loops inside
(a) and outside (b) the deep burst area.

(a) (b)burst

Figure 5.29 – Surviving rates of the four different orders of loops inside (a)
and outside (b) the deep burst area.

The weighted average of the second-order work WWeber
2 inside the deep

burst area shows that there is a vanishing of the second-order mesoscopic
work, just before the burst (Figure 5.30). This results confirms the ability
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Figure 5.30 –Weighted average ofWeber second-order mesoscopic work inside
the deep burst area.

of the Weber second-order meso-work as a precursor for bursts of kinetic
energy occurence, according to the results given in Chapter 4. Thus, local
vanishing of the second-order meso-work can occur prior to the failure state,
underlining local mechanical instabilities. Similar results can be found in the
litterature for granular media resting in a slope configuration. Even though
second-order mesoscopic work is not computed in (Darve and Laouafa, 2000),
local vanishing of the second-order work in a granular medium on a slope is
exhibited prior to the failure.

Shallow burst of kinetic energy

The observations for the shallow burst are the same as for the burst oc-
curing deeper in the sample. The shallow burst area (pink box in Figure 5.25)
undergoes successive bursts of kinetic energy. As a consequence, the relative
evolution of the meso-structure in the inner burst domain is not occuring
only during the burst event (Figure 5.32(a)). The global instability of the
sample creates a steady percentage of reorganizations, which is still less than
inside the burst area (Figure 5.32(b)). The surviving rates curve in the inner
domain has a steeper slope than in the outter, but with no plateau at the
end of the burst (Figure 5.32(c)). It is linked to the fact that the free surface
starts moving continuously before the bottom of the sample does. However
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(b)(a)

Figure 5.31 – Probability density function of the sliding index Ip for the
contacts inside and outside the shallow burst area, before the burst (a), and
after (b).

there is still a decrease in the proportion of unstable contacts inside the area
after the burst (Figure 5.31(b)). This decrease underlines a stabilization
effect of the reorganizations inside the burst area, but according to Figure
5.32, this effect is limited. Again, the weighted average of the second-order
mesoscopic work WWeber

2 vanishes before the burst (Figure 5.33), and proves
again to be a good indicator of instability.
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Figure 5.33 – Weighted average Weber second-order mesoscopic work inside
the shallow burst area.

5.4.3 Conclusion on specific patterns for bursts of ki-
netic energy

In this section, the diffuse and progresive failure of the loose sample rbc is
further proved by studying bursts of kinetic energy occuring close to the free
surface or deeper in the sample. The same results are found in the sample pbc
(Wenrui, 2021). The bursts studied in the loose sample rbc are occuring when
the sample is already well destabilized, but the features observed during the
biaxial test are globally recovered, especially for the second-order mesoscopic
work variations.

Even though analysis of bursts in the very early stage of the simulation
lacks to reach a conclusion, a hypothesis on the links between bursts of kinetic
energy and slope instability can be formulated. The failure can be seen as the
succession of bursts of kinetic energy. Bursts of kinetic energy are short time
events corresponding to localized reorganizations as seen in Chapter 4. The
study of the bursts in the loose sample rbc shows that the succession of bursts
creates a greater rate of rearrangements (Figure 5.29, 5.28 and 5.32). The
inertial transition results in the constant movement of the sample, especially
at the free surface (Figure 5.23). Consequently, the accumulation of short
term reorganization and localized bursts of kinetic energy leads to a long
term reorganization and global inertial transition (Deng et al., 2021b,a).
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5.5 Conclusion
Gravitational slope instability simulations have been carried out with

two different methods. Periodic boundary conditions allow to study the full
destabilization. The rigid boundary conditions enable to study the inertial
transition and the beginning of the flow regime, because of sample clogging in
a corner with the upper wall. In other words, both boundary conditions can
be used for the inertial transition and bursts of kinetic analysis. Although
the stress state is modified by the presence of rigid boundaries, similar slope
angles are observed for the inertial transition and the failure line for both
boundary conditions. A pre-avalanche slope angle range is noticed for both
boundary conditions. The pre-destabilization angle θd is inferior to the slope
angle for which the failure line is reached (around 15◦), and the upper limit
is the slope angle for which the inertial regime i sestablished (around 30◦).
Diffuse failure is highlighted for both boundary conditions, irrespective of the
initial porosity. Analysis of bursts during the simulations proves the revelance
of the framework introduced in Chapter 4. With the results obtained from
the detailed analysis of outbursts, an assumption can be made on the link
between bursts of kinetic energy and inertial transition. If bursts of kinetic
energy are regarded as short term reorganization, then the inertial transition
can be considered as an accumulation of outbursts leading to a long term
reorganization.



Chapter 6

General conclusion and
perspectives

6.1 Synthesis of the main outcomes
The present work introduced an approach at the mesoscopic scale to define

and analyse bursts of kinetic energy, using 2D DEM simulations. This inves-
tigation was based on the definition of meso-structures as grain loops and re-
lated meso-quantities, especially meso-stresses, meso-strain and second-order
mesoscopic works. The objective was to identify precursors for localized
bursts of kinetic energy. In the meantime, the mechanisms of the propa-
gation of bursts were also identified and allowed to understand why bursts
stay localized or propagate. The meso-quantities are applied to gravitational
instability, reinforcing the link between bursts of kinetic energy and inertial
transition.

6.1.1 Meso-structures analysis to identify precursors of
bursts of kinetic energy

The new quantities defined in Chapter 3 at the mesoscopic scale were
applied in Chapter 4 and Chapter 5 to the analysis of bursts of kinetic en-
ergy. There are two approaches for defining the meso-quantities. One vision
is structural, focusing on only one meso-structure independently from any
neighboring meso-structures. In this approach, macro-scale quantities can
be found from statistic homogenization. The other vision is based on the
partition of the specimen, macro-scale quantities are then recovered from the
spatial homogenization of the meso-quantities. The structural approach is
necessary for the application of the second-order mesoscopic work criterion,
while the partition approach is interesting to make a direct link bewteen the
meso-scale and the macro-scale (thanks to spatial averaging). Definitions of
meso-stress, meso-strain and associated second-order mesoscopic work were
carefully analyzed in order to be consistent whith related macroscopic quan-
tities. It was shown that only the grain averaged second-order work Wm

2 and
the Weber second-order workWWeber

2 are suitable candidates to compute the
second-order mesoscopic work. The partition formulation Wm

2 is prefered in
order to map the sample domain and detect areas of mechanical instabilities
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based on the vanishing of the second-order mesoscopic work. The structural
approachWWeber

2 is more convinient to analysis meso-structures individually.
The comparison between the effective and real meso-porosity highlihts the
presence of rattlers.

Meso-structures as grain loops have proven to be useful to better un-
derstand the behaviour of granular materials. Grain loops evolution (incre-
mental evolution, surviving rate, lifespan and life expectancy) is a powerful
quantitative measurements to understand the propagation of bursts and their
occurrences, which can not be seen at the macro-scale. The vanishing of the
second-order mesoscopic work is shown to be as a precursor of the occurence
of bursts of kinetic energy. Moreover, it has been shown that a burst appears
in an area with more contacts close to sliding, and that contains loops of high
order with larger loop area (for similar orders) than outside the burst do-
main. During the burst propagation, meso-structures rearrangement mostly
concerns high order loops (in terms of proportions of the loop populations).
Small order loops are broken to create rattlers or high order loops as the the
kinetic energy increases, then high order loops collapse to reform smaller or-
der loops as the kinetic energy decreases. During a burst, the meso-structures
in the burst area reorganize at a rate much higher than in the rest of the sam-
ple not affected by the burst. A burst remains localized if the meso-structure
can rearrange efficiently and stops the propagation. This can be observed
with the variation of the Weber second-order mesoscopic work, that becomes
positive after the peak of energy, when the meso-structure stabilizes again.

In the case of the localization of the deformation, bursts of kinetic energy
come from the shear band only. If there is a localization of the deformation
in the granular material, the mesoscopic mechanical instabilities are also
concentrated, in the same area as the deformation. If there is no localiza-
tion of the deformation, bursts of kinetic energy are more likely to appear
everywhere in the sample.

6.1.2 Triggering of gravitational instability

One of the application of the study of bursts of kinetic energy is the trig-
gering of gravitational instabilities. A 2D idealized modelling was used, with
two boundary conditions: periodic boundary conditions and rigid boundary
conditions. The main difference in the results was the stress state in the sam-
ple. With periodic boundary conditions, the whole sample reaches failure for
the same slope angle (the stress ratio q/p is homogeneous in the sample). On
the contrary, with rigid boundary conditions, the Mohr-Coulomb failure cri-
terion is reached for different slope angles depending on the depth. The upper
layer is the first part of the sample to reach the failure surface. Expanding to
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larger scales, this observation is consistent with the use of safety barrier on
steep slope for snow and rock avalanches. They act as anchors in the ground,
responsible for a decrease in the deviatoric stress in the soil. Despite this dif-
ference, both boundary conditions exhibit the same behaviour regarding the
triggering of the inertial transition. No permanent inertial regime is observed
for rigid boundary conditions because of the presence of the top wall which
prevents the granular packing from sliding permanently. For both type of
boundary conditions, there is an pre-avalanche interval, before the inertial
transition, when the granular system exhibits strong micro-structure rear-
rangements. The pre-destabilization angle (smaller slop angle from which
reorganizations appears) seems to be lower than the internal friction angle,
according to lifespan and life expectancy of grain loops and bursts analysis.
Moreover, the triggering of bursts of kinetic energy relies on similar micro-
structure features in both cases.

6.1.3 From bursts of kinetic energy to inertial transition

The gravitational instability simulations allowed to observe the transition
between small and localized bursts of kinetic energy and the global movement
of the sample, with a velocity gradient. The steeper the slope gets, the less
localized the reorganisations in the meso-structures are. Bursts are becoming
larger and tend to fuel themselves creating zones of instability, such as the
free surface, until the inertial transition establishes. Bursts of kinetic energy
can be interpreted as short term reorganizations, and the accumulation of
bursts can be regarded as long term reorganization.

6.2 Perspectives

6.2.1 Improving the modelling

Accounting for grain rotations

Grain rotation is disregarded from the definition of the meso-strain, meso-
stress and second-order mesoscopic work. However grain rotations are proved
to play a great role in the behaviour of granular materials (Oda and Kazama,
1998; Da Cruz et al., 2005; Liu et al., 2018).

Grain shape

In this work, grains are simplified as spheres in order to reduce computa-
tional cost. Several methods make possible to take into account, in an exact
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or simplified way, the shape of the grains: use of the Level-set method (Duriez
and Galusinski, 2021), polyhedron forms (Azéma et al., 2009; Quezada et al.,
2012), clumps (Mede et al., 2018) and the introduction of a rolling friction
(Hosn et al., 2017), to simulate more complex forms for grains in granular
material simulations with a discrete element method.

2D to 3D modelling

The notion of grain cycles as a partition of the sample domain is only valid
in 2D conditions: it is the starting point for an analysis at this intermediate
scale. In 3D, there is still not general agreement for defintion of 3D grain
loops (Nguyen et al., 2020). A 3D defining for grain loops is needed, which
is the aim of very recent works (Chueire et al., 2021). This is the only lock
that prevented mesoscopic analysis of three-dimensional simulations.

6.2.2 Force chains

As force chains definition involves the mean stress within the assembly
considered, this requires that the stress within the assembly is nearly homo-
geneous. In the context of granular packing on a slope, the stress increases
with depth. Force chains evolution can be the object of further research
provided that the standard definition is adapted. Even at REV scale, the
standard definition makes force chains artificially short lived meso-structures
since it assumes that force chains are linear structures. Branching is dis-
regarded which makes force chains disappearing and reappearing frequently
under small contact forces fluctuations. As an illustration, considering the
biaxial test, the relative evolution (Equation 2.33 and 2.32) of force chains for
the selected bursts presented in the dense sample S1 and the loose sample S2

does not give much information about a contrast between inside or outside
the burst area (Figure 6.1). Even if the reorganization is more noisy and
intense inside the burst area (Figure 6.1(A1) and 6.1(B1)), it appears that
force chains are rearranging with a constant rate either inside or outside the
burst area.

Zhu et al. (2016c,b); Tordesillas et al. (2011) have proven that the grain
loops surrounding the force chains ensure their stability. It will be then
interesting to focus on the behaviour of grain loops surrounding force chains
during bursts of kinetic energy and to track their co-evolutions.
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6.2.3 Global microstructure reorganization as a sequence
of burts of kinetic energy

At critical state, we have shown that bursts of kinetic energy have a fi-
nite size and thus inertial transition is limited. There is also a higher rate
of reorganizations inside the burst area than where the burst does not prop-
agate. According to the work of Na Deng (Deng et al., 2021b), there is two
time scale mechanisms forcing the micro-structure to reorganize : short time
reorganization and long time reorganization. It will be interesting to invest,
qualitatively, the rate of reorganization during a burst of kinetic energy, in
the burst domain, to link the bursts to the short time reorganization mecha-
nisms. Thus, this future work can enable to understand how successive bursts
result in global micro-structure reoranization. Similary, successive bursts of
kinetic energy seem to lead to the inertial transition in the context of a slope.
The analysis of a bursts sequence at different slope angles will be able to con-
firm if the mechanisms observed in the biaxial test are recovered also in the
context of gravitational instability.
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Figure 6.1 – Relative evolution of force chains for the burst presented for the
dense sample A (resp. loose sample N) inside (A1) (resp.(B1)) and outside
the burst area (A2) (resp. (B2)).
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Annexe B

Résumé étendu en français

B.1 Contexte général
Un milieu granulaire est composé de grains en contacts dans une phase

fluide (du gaz et/ou de l’eau). Composants d’un pierrier, d’une dune de sable,
d’un manteau neigeux, d’une digue maritime ou fluviale, les milieux granu-
laires sont omniprésents. Derrière leur apparente simplicité à l’échelle d’un
grain, ces milieux présentent une grande diversité de comportements selon
les sollicitations imposées à l’échelle de plusieurs grains. Leur complexité et
leur originalité résident dans le fait que ces milieux peuvent se comporter
comme un solide, un liquide et même un gaz. Une avalanche, un mouvement
de terrain, la rupture d’un barrage en remblais sont les conséquences de la
transition solide - fluide d’un matériau granulaire (Figure B.1). Les régions
montagneuses concernées représentent environ un quart du territoire français
métropolitain. De plus, la France présente un nombre conséquent de barrages
(plusieurs dizaines de milliers de petits barrages, environ mille grands bar-
rages) et plusieurs milliers de kilomètres de digues fluviales et maritimes
(Bonelli, 2012). En relation avec les nombreuses applications associées à la
gestion du risque, il est nécessaire de mieux comprendre les mécanismes de
la transition de l’état solide à l’état fluide, appelée transition inertielle, et
plus particulièrement d’identifier les causes de son initiation et les éventuels
signaux précurseurs.
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(a) (b)

Figure B.1 – Exemples de conséquences de la transition solide - fluide dans
un milieu granulaire : (a) Mouvement de terrain rotationnel sur les bords
de la rivière Daning, Comté de Wushan, Chine (24.06.2015) (b) Barrage de
retenue de déchet minier après liquéfaction, Mine exploitée par Vale SA,
Brumadinho, Brézil (25.01.2019)

B.2 Objectifs et méthodologie

Afin d’étudier la transition inertielle dans les milieux granulaires, nous
avons chercher à identifier et analyser des évènements inertiels, appelés bouf-
fées d’énergie cinétique. Les bouffées d’énergie cinétiques sont considérées
comme des évènements précurseurs à une transition inertielle (Darve et al.,
2004; Wautier, 2018). L’objectif principal de cette thèse est d’analyser des
bouffées d’énergie cinétique sous un angle micromécanique pour identifier
leurs précurseurs. Ce travail est réalisé d’un point de vue numérique en pre-
nant en compte la nature discréte des milieux granulaires en choisissant une
méthode aux éléments discrets (DEM) pour modéliser les milieux granulaires.
Ainsi, un milieu quasi 2D (grains 3D centrés sur un plan), composés de grains
sphériques dont les interactions sont régies par des lois élastoplastiques, est
simulé via le logiciel en license open source YADE (Šmilauer et al., 2010).
Les analyses multi-échelles sont souvent mises en oeuvres pour étudier les
milieux granulaires (Liu et al., 2018; Staron and Hinch, 2005; Zhu et al.,
2016b) en reliant les deux échelles extrêmes que sont les échelles micro- et
macro-scopique. Par exemple, une rupture de digue a des origines microsco-
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piques (rupture des contacts entre les grains) et des conséquences à l’échelle
macroscopique (glissement du talus). Suivant cette logique, une analyse à
l’échelle mésoscopique (à l’échelle d’un petit nombre de grains) est proposée.
Dans un milieu quasi 2D, des méso-structures peuvent être définies par par-
tition du réseau de contacts (Zhu et al., 2017; Liu et al., 2018) : les cycles
de grains. Les cycles de grains ont déjà prouvé leur capacité à rendre compte
des réorganisations au sein du milieu. Dans le contexte de la mécanique des
milieux continus, y compris les milieux granulaires, les instabilités dépendent
de l’état contrainte/déformation comparé aux conditions de chargement. En
reprenant la condition nécessaire de stabilité de Hill Nicot et al. (2017) et
Nicot et al. (2009, 2012b) ont formulé un critère nécessaire au développement
d’une instabilité. Pour un point matériel et pour de petits incréments, ce cri-
tère donne la potentialité du système à développer de l’énergie cinétique sans
sollicitation extérieure et depuis un état d’équilibre (σ,ε) atteint après un
historique de chargement donné, si W int

2 = ∆σ : ∆ε < 0. L’annulation du
travail du second ordre est une condition nécessaire à la transition inertielle
(Nicot et al., 2009; Daouadji et al., 2011). Dans le cadre de la recherche de
précurseurs aux bouffées d’énergie cinétique et d’une étude multi-échelle, une
expression mésoscopique pour le travail du second ordre est proposée.

B.3 Quantités à l’échelle mésoscopique
Afin de définir une échelle mésoscopique, il existe deux approches com-

plémentaires. D’un coté, l’approche par partition définit le méso-domaine
comme étant la partie interne (aire ou volume) d’un cycle de grains (Figure
B.2 (a)). Dans ce cas, la quantité macroscopique est retrouvée par moyenne
spatiale des quantités mésoscopiques. D’un autre coté, le méso-domaine de
l’approche structurelle comprend la partie externe d’un cycle de grains (Fi-
gure B.2 (b)) et la quantité macroscopique est calculée à partir de la moyenne
statistique des quantités mésoscopiques. Cette approche est nécessaire pour
le calcul du travail extérieur du second ordre et elle permet la mise en place
d’un bilan énergétique lié au critère du travail du second ordre.
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Domaine 
structurel

Domaine 
Par partition

(a)

Figure B.2 – Les deux approches pour définir un méso-domaine : (a) ap-
proche par partition (b) approche structurelle

Selon l’approche choisie, l’énergie cinétique, l’énergie élastique et la po-
rosité peuvent être définies à l’échelle mésoscopique. Les particules libres
piégées dans les cycles de grains, peuvent être incluses, ou non, dans les cal-
culs. La comparaison entre des données (de porosité plus particulièrement)
avec ou sans particules libres est intéressante pour mieux définir le rôle de
ces particules. Un des objectifs de ce travail est de proposer une expression
du critère du travail du second ordre à l’échelle mésoscopique. Une contrainte
mésoscopique σ et une déformation mésoscopique ε doivent être donc défi-
nies. Elles sont définies bien que, à l’échelle mésoscopique, petite par rapport
à la taille d’un VER, il n’y a pas d’unicité de leur définition et bien qu’il n’y
ait a priori aucune raison pour que les méso-domaines remplissent les deux
conditions à l’utilisation de l’annulation du travail du second-ordre comme
marqueur d’instabilité mécanique qui sont un état initial d’équilibre et un
travil extérieur nul. En faisant l’hypothèse que la condition d’homogénéité
macroscopique peut s’appliquer sur un méso-domaine Ω, alors le travail du
second ordre est exprimé ainsi à l’échelle mésoscopique :(

W int
2

)
Ω

= 〈∆σ〉Ω : 〈∆ε〉Ω (B.1)

Une déformation (incrémentale) mésoscopique peut être définie comme la
déformation (incrémentale) moyenne sur le cycle de grains, via le déplacement
(incrémental) des grains de la méso-structure et par interpolation le long
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des bords du méso-domaine (Bonelli et al., 2012; Liu et al., 2020). Pour la
contrainte, la définition d’une contrainte mésoscopique n’est pas si triviale
et dépend de l’approche choisie. Dans le cas d’une approche par partition,
la contrainte mésoscopique est la contrainte moyenne sur le méso-domaine
Ωl (Figure B.2(a)). Le calcul fait apparaitre la contrainte moyenne dans la
portion du grain inclu dans le méso-domaine Vp ∩ Ωl, Vp étant le volume de
la particule p. En faisant l’hypothèse que la contrainte moyenne dans cette
portion est égale à la contrainte moyenne dans la particule entière. On écrit
alors :

〈σ〉Ωl =
1

|Ωl|
∑
p∈Ωl

|Vp ∩ Ωl| 〈σ〉Vp (B.2)

Dans le cas de l’approche structurelle, la contrainte mésoscopique reprend
la formulation de Bagi. Il y a un terme, dit de Weber, qui prend en compte
la contrainte due aux forces internes au cycle de grains, et un terme dit de
correction de Bagi qui prend en compte la contrainte due aux forces exté-
rieures, s’exerçant sur la frontière du méso-domaine (Figure B.2(b)). Ainsi
pour la contrainte à l’échelle mésoscopique avec une approche structurelle, il
existe deux définitions possibles : celle de Weber (Equation B.3) et celle de
Bagi (Equation B.4). Ces deux définitions ainsi que la définition par partition
sont toutes cohérentes avec la définition de la contrainte à l’échelle du VER
lorsqu’on considère suffisement de mesostructures.

〈
σWeber

〉
V struct

=
1

|V struct|
∑

p∈V struct
f p+1/p ⊗ (Rp +Rp+1)np/p+1 (B.3)

〈
σBagi

〉
V struct

=
1

|V struct|
∑

p∈V struct
f p+1/p ⊗ (Rp +Rp+1)np/p+1

+
1

|V struct|
∑

p∈∂V struct
f pext/p ⊗Rpnp/pext

(B.4)

avec fa/b la force appliquée par la particule a sur la particule b, na/b la
normale orientée du centre de la particule a vers la particule b, p la particule
appartenant au méso-domaine V struct et pext les autres particules en contact
avec le méso-domaine V struct.

Dans le but de choisir la meilleure formulation (vis à vis de la définition
d’un travail du second ordre mésoscopique) pour la définition de la contrainte
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mésoscopique pour l’approche structurelle, un critère est proposé à partir du
bilan d’énergie lié au travail du second ordre (Equation B.5).

∆t2Ëc = ∆t2
∫

Ω

IdV +

∫
δΩ

W ext
2 dS −

∫
Ω

W int
2 dV (B.5)

En exprimant la dérivée seconde de l’énergie cinétique comme la somme de
la dérivée première de l’énergie cinétique et la variation de l’énergie cinétique
(Equation B.6), nous faisons apparaitre les termes qui vont constituer un
résidu à minimiser (Equation B.7) :

2 (Ec(t+ ∆t)− Ec(t))−2Ėc∆t = ∆t2
∫

Ω

IdV +

∫
δΩ

W ext
2 dS−

∫
Ω

W int
2 dV

(B.6)

∆t2
∫

Ω

IdV + 2∆tĖc = 2∆Ec −
(∫

δΩ

W ext
2 dS −

∫
Ω

W int
2 dV

)

Residu = 2∆Ec −
(∫

δΩ

W ext
2 dS −

∫
Ω

W int
2 dV

) (B.7)

La formulation de la contrainte mésoscopique, par l’approche structurelle,
qui minimise le résidu correspond à la formulation permettant de construire
le meilleur indicateur de stabilité mécanique à l’échelle mésoscopique.

B.4 Bouffées d’énergie cinétique dans un milieu
granulaire 2D soumis à un test biaxial

Une première façon d’étudier le développement de bouffées d’énergie ci-
nétique dans un milieu granulaire soumis à un cisaillement est de réaliser un
test biaxial. Plusieurs échantillons quasi 2D de rapport d’aspect différents
sont créés. Le test biaxial consiste en une phase de compression isotrope,
puis à contrainte latérale constante, un taux de déformation constant est
imposé verticalement.

Lors du test biaxial, l’énergie cinétique connait de nombreuses variations
de grande amplitude mais d’amplitude plus petite que les variations de dis-
sipation plastique et d’énergie élastique. Ce sont les boufées d’énergie ciné-
tique. Une fois l’état critique atteint, elles sont isolées et définies en fonction
de l’énergie cinétique moyenne atteinte dans un domaine dit intérieur (Figure
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Figure B.3 – Exemple d’une bouffée d’énergie cinétique dans un échantillon
dense de rapport d’aspect 1. La zone encadrée rouge est la zone où la bouffée
apparait et se propage, c’est le domaine interne à la bouffée. La zone hachurée
bleue correspond au domaine non concerné par la bouffée d’énergie cinétique,
appelé domaine externe.

B.3) comparée à l’énergie cinétique moyenne durant l’état critique du test
biaxial. Les résultats obtenus sont similaires pour toutes les bouffées d’éner-
gie cinétique étudiées dans les différents échantillons. Afin de mieux mettre
en évidence ce qui peut causer ou ce qui peut résulter d’une bouffée d’éner-
gie, le domaine interne et le domaine externe de la bouffée sont distingués et
comparés dans les analyses lors de l’apparition et de la propagation de cette
même bouffée d’énergie cinétique (Figure B.3).

Un des objectifs de ce travail est d’identifier des précurseurs à l’apparition
des bouffées d’énergie. L’indice de glissement défini à l’échelle d’un contact
est un indice qui permet de mesurer la potentialité de rupture d’un contact.
Plus l’indice est proche de 1, plus le contact a des chances de disparaitre.
En comparant la probabilité de densité de fonction avant et après une bouf-
fée dans les domaines interne et externe, il apparait que le domaine interne
contient plus de contacts critiques, c’est à dire plus de contacts proches de
la rupture. Parallèlement, si la porosité et la densité des cycles de grains
dans chaque domaine sont comparés, il apparait que le domaine interne est
plus lâche et comporte moins de cycles de grains. La zone où se développe la
bouffée d’énergie cinétique contient davantage de grands cycles de grains.



154 ANNEXE B. RÉSUMÉ ÉTENDU EN FRANÇAIS

Le deuxième objectif est de mieux comprendre les réorganisations mecro-
structurelles liés à une bouffée d’énergie cinétique. En analysant l’évolution
relative des différents catégories de cycles de grain et leur taux de survie
durant une bouffée, il est constaté que les réorganisations des méso-structures
sont concentrées durant la bouffée et dans le domaine interne. Les cycles les
plus grands sont ceux qui sont le plus réorganisés, probablement parce que
ce sont ceux qui sont les plus déformables. Les particules libres ont aussi un
rôle à jouer, leur appararition et leur disparition étant directement liés aux
destructions et créations des cycles de grains. L’évolution relative des cycles
de grains atteint un maximum autour du maximum de l’énergie cinétique de
la bouffée.

Enfin, les variations des trois définitions du travail du second ordre méso-
scopique sont étudiées pour savoir si le critère du travail du second ordre est
applicable à l’échelle mésoscopique (Figure B.4). La moyenne pondérée dans
le domaine interne de la définition pour l’approche partitionnelle (Figure
B.4(a)) et de la définition pour l’approche structurelle de Weber (Figure
B.4(c)) s’annulent avant l’apparition de la bouffée d’énergie cinétique. De
plus, pour l’approche structurelle, la définition de Weber minimise le résidu
comparé à la définition de Bagi. Nous avons donc deux définitions d’un travail
du second ordre mésoscopique pour lequel son annulation est un précurseur
à l’apparition d’une bouffée d’énergie cinétique.
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We
ber

(a) (b) (c)

Figure B.4 – Moyenne pondérée des trois définitions du travail du second
ordre mésoscopique durant une bouffée d’énergie cinétique : (a) Définition
par partition, (b) Définition structurelle de Bagi, (c) Définition structurelle
de Weber. Les droites verticales représentent la durée de la bouffée d’éner-
gie cinétique et la droite verticale en pointillée marque le pic de l’énergie
cinétique.
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Un domaine, plus lâche, avec une forte propabilité de contacts critiques
et l’annulation du travail du second ordre mésoscopique sont des précurseurs
au développement d’une bouffée d’énergie cinétique dans ce domaine. La
bouffée d’énergie cinétique entraine des réorganisations à l’échelle micro- et
méso-scopiques localisées dans le domaine interne de la bouffée et durant sa
propagation.

B.5 Déclenchement d’instabilités gravitaires
Les conclusions, tirées des tests biaxiaux, sont analysées par la suite dans

le contexte d’un cisaillement sur une pente soumise à la gravité. Des échan-
tillons de densité différentes sont créés avec des caractéristiques similaires
aux échantillons du test biaxial. La simulation consiste à créer progressive-
ment une pente sur un échantillon avec une surface libre. Pour cela, l’angle
entre la verticale et le vecteur gravité est augmenté avec un taux constant.
Deux types de conditions limites sont utilisées : conditions limites rigides et
conditions limites périodiques.

La transition inertielle est marquée par un nombre inertiel qui devient su-
périeur à 10−3 (Da Cruz, 2004). Les échantillons passent dans le domaine iner-
tiel après 30◦ (Figure B.5), indépendamment de leur conditions aux limites.
Cet angle dépend uniquement de la densité de l’échantillon, les échantillons
denses ayant une transition inertielle un peu plus tardive. Par conséquent,
les analyses en régime quasi-statiques menées dans ce paragraphe se limitent
aux données avant 30◦. L’étude de l’évolution des indices de glissement dans
tout l’échantillon montre que la transition inertielle est diffuse.
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Figure B.5 – Variation du nombre inertiel dans les échantillons avec des
conditions périodiques (a) et dans les échantillons avec des conditions aux
frontières rigides (b).

L’état de contrainte des échantillons montre qu’une partie (conditions
aux frontières rigides) ou que l’intégralité de l’échantillon (conditions pério-
diques) atteint la limite théorique de rupture de Mohr Coulomb bien avant
la transition inertielle. Cet angle dépend de la densité de l’échantillon et
de ses conditions aux frontières. Il est inférieur à 20◦ pour les échantillons
denses et supérieur pour les échantillons lâches. Il est étonnant de constater
que la rupture statique prédite par Mohr Coulomb est atteinte bien avant
que l’échantillon ait perdu la mémoire de son état initial avec la transition
inertielle. L’angle de rupture statique et l’angle marquant la fin du régime
quasi-statique définissent un intervalle de pré-avalanche (Daerr and Douady,
1999; Staron et al., 2006; Staron, 2008), où les reorganisations sont plus in-
tensives. Cet intervalle est également visible dans l’évolution des cycles de
grain. L’analyse des durées de vie et des espérances de vie des cycles de
grains mettent en évidence des réorganisations localisées autour de l’angle
de rupture statique pour les échantillons denses et des réorganisations immé-
diates dès la formation d’une pente légère (> 5◦) pour les échantillons lâches.
De même l’évolution du travail du second ordre mésoscopique moyenné sur
l’ensemble de l’échantillon s’annule à plusieurs reprises avant que la pente
atteigne 15◦ (Figure B.6). Par conséquent la transtion inertielle n’est pas
brusque, mais elle est précédée d’un intervalle où les réorganisations micro-
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Intervalle de pré-avalanche

Figure B.6 – Moyenne pondérée du travail du second ordre mésoscopique
(approche partitionnelle), sur tout l’échantillon lâche avec conditions aux
frontières rigides. Le travail du second ordre s’annule avant 15◦, et s’annule
de plus en plus fréquemment jusqu’à la transition inertielle. La partie grisée
correspond au domaine inertiel.

et mésoscopiques sont de plus en plus fortes et où l’échantillon atteint la
limite de rupture statique.

Lors de l’étude d’une bouffée d’énergie cinétique dans l’intervalle de pré-
avalanche, on retrouve les mêmes précurseurs mis en lumière lors du test
biaxial (indice de glissement, porosité et annulation du travail du second
ordre mésoscopique), bien que les réorganisations mésoscopiques soient moins
concentrées dans le domaine interne à la bouffée. Nous supposons que les
bouffées d’énergie cinétique ont les mêmes conséquences (réorganisations li-
mitées à la durée de vie de la bouffée et concentrées dans le domaine interne)
que celles répertoriées dans le test biaxial pour de faibles angles de pente.
Une fois que l’échantillon atteint le début de l’intervalle de pré-avalanche, les
réorganisations sont moins concentrées, aboutissant à des bouffées de plus en
plus diffuses, jusqu’à la transition inertielle totale.

Ainsi la transition inertielle apparait ici comme un phénomène moins
soudain que l’on pouvait l’imaginer. Il existe un intervalle de pré-avalanche
où les réorganisations se font de plus en plus intenses et les bouffées d’énergie
cinétique plus diffuses, menant jusqu’à la transition inertielle. Les conditions
aux limites influencent quant à elles que l’état de contrainte du milieu et le
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chemin de chargement suivi. Les conditions aux limites rigides génèrent une
pré-contrainte et modifient l’état de contrainte similairement à des barrières
de sécurité sur les flancs rocheux / neigeux à risque.

B.6 Perspectives
La modélisation du milieu granulaire peut être améliorée. Des simulations

quasi 2D ont été choisies car il n’existe pour l’instant pas de concensus quant
à la définition des cycles de grain en 3D (Nguyen et al., 2020). Des déve-
loppements récents sont néanmoins prometteurs et permettent d’envisager
d’étendre ce travail au cas 3D (Chueire et al., 2021). La forme des particules
pourraient aussi être plus réaliste afin de mieux prendre en compte la rota-
tion des grains. L’évolution des bouffées d’énergie cinétique vers la transition
inertielle doit être encore mieux cernée. Une des hypothèses à développer
est celle d’une réorganisation globale comme une série de bouffées d’énergie
cinétique. Les évènements inertiels peuvent être vus comme des réorgani-
sations à court terme et l’accumulation de séquences d’évènements comme
une réorganisation à long terme (Deng et al., 2021b). Cette théorie doit être
étayée dans le contexte d’un test biaxial - la réorganisation à long terme étant
alors l’état critique- et dans le contexte d’une pente soumise à la gravité -la
réorganisation à long terme étant la transition inertielle.
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Annexe C

Appendices 1

C.1 Results of the sample loose S2 under a biaxial
test

In this section are gathered all the results for a select burst during the
drained biaxial test on the loose sample S2. They are presented in the same
order as the results observed in the dense sample S1 in Chapter 4.

161
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(f)(c)

(e)(b)

(d)(a)

Ec 
(J)

Figure C.1 – Reduced time lapse of a burst in the loose sample S2, during
critical state. Particles are coloured according to their kinetic energy expres-
sed in Joule and a log scale is used here to display the kinetic energy. For this
timelapse, there are two bursts occuring simultaneously. Thus, two bounding
boxes are used to define of the inner burst domain (red boxes).
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Figure C.2 – Evolution of the elastic energy Ee, the plastic dissipation Ep
(on the left y-axis), and the kinetic energy Ec during the burst of kinetic
energy. Note that the elastic energy decreases latter than in the burst of the
dense sample S1 . This result can be linked to the inner burst domain which
is smaller for this burst than the burst presented in the dense sample S1.
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(a) (b)

Figure C.3 – Sliding Index’s propability density before (a) and after (b) the
burst of kinetic energy in the inner (red) and outter (blue) burst domains.
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Figure C.4 – Inner and outter domains are displayed. The inner burst do-
main is displayed in red, as in Figure C.1. The outter domain is hatched in
blue and concern all the sample but the inner domain.
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Figure C.5 – Porosity in the inner and outter domains. The kinetic energy
is recalled (grey curve / right y-axis). The porosity is higher inside the burst
domain, which is a similar result to the sample dense S1 (Figure 4.18). Ho-
wever the decrease in the porosity is not found for the dense sample S1. A
hypothesis is that the rearangements are more efficient in the loose sample
(because of contractancy), enabling convergence of the microstructure poro-
sities after the burst.
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(a) All loops (b) Loop orders

Figure C.6 – Loops densities comparison between the inner and outter
domains. (a) All order of loops are accounted (b) The different order of
loop density are compared. For both graphs, the kinetic energy is displayed
to relate the evolution of the porosity to the propagation of the burst.The
results are similar to the sample S1 (FigureC.6). The values of loop density
are smaller than in FigureC.6 because the grains are bigger.
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(a) Real porosity (with rattlers) (b) Apparent porosity (without rattlers)
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Figure C.7 – (a) Mean Real porosity and (b) mean apparent porosity for
high order of loops in the inner and outter domains. The kinetic energy is
displayed to relate the evolution of the porosity to the propagation of the
burst. If real porosity for high order loops inside the burst area is in average
similar to the outter domain while its apparent porosity is higher shows that
the L6+ loops inside the burst domain contains more rattlers. For this type
of sample, the high order loops are bigger and contains more rattlers.
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(b)(a)

Figure C.8 – Relative variation of grain loops (a) and rattlers (b) in the
inner burst domain. The vertical dotted lines stands for the maximum of
kinetic energy during the burst, as in the previous figures.

(b)(a)

Figure C.9 – Relative variation of grain loops (a) and rattlers (b) in the
outter burst domain.The vertical dotted lines stands for the maximum of
kinetic energy during the burst.
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(b)(a)

Figure C.10 – Surviving rates for the four main grain loops orders in (a) the
inner and (b) outter burst domains.The vertical dotted lines stands for the
maximum of kinetic energy during the burst. in the outter domain, a single
change of slope in the surviving rates is also observed
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Figure C.11 – Reduced time sequence of mesoscopic second-order workWm
2

based on Figure C.1. Contrary to the burst in the sample S1 (Figure 4.25)
no extra panel has been added, no additional information is revealed by
the variation of the second-order work Wm

2 on the origins of the burst. The
propagation of the second-order mesoscopic work variations is wider than the
propagation of the burst in Figure C.1, underlining the influence the burst
has outside a domain defined only on kinetic energy.
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Figure C.12 – Reduced time sequence of second-order mesoscopic work
WBagi

2 based on Figure C.1.
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Figure C.13 – Reduced time sequence of second-order mesoscopic work
WWeber

2 based on Figure C.1.
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Micro Based Weber Bagi

Figure C.14 – Volume weighted average of second-order mesoscopic work
Wm

2 , WBagi
2 and WWeber

2 during the burst of energy, in the burst domain.
The peak of kinetic energy is represented as the grey dotted vertical line. As
a reminder, the meso-volume considered in the avering process are not the
same for the three meso-second-order work def : Ωl (i.e. V part) for Wm

2 and
V struct for WBagi

2 and WWeber
2 .
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Figure C.15 – Mean residue with Bagi and Weber second-order meso-work.
The peak of kinetic energy is represented as the grey dotted vertical line.
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Titre : Analyse mésoscopique de la transition inertielle dans les milieux granulaires.

Mots clefs : matériaux granulaires, transition inertielle, mésostructures, instabilités, méthode aux éléments discrets.

Résumé : L’un des caractères remarquables du comportement des milieux granulaires est leur capacité à se comporter
comme un solide ou un fluide. C’est cette propriété qui est à l’origine des avalanches ou des glissements de terrain par
exemple.
La transition inertielle, qui est le passage d’un régime quasi-statique à un régime dynamique, est assimilable à un brusque
changement de comportement, de solide à fluide. C’est l’objet d’étude de cette thèse. Les bouffées d’énergie cinétique, pre-
miers signes d’une instabilité, sont analysées à l’échelle mésoscopique en simulant des matériaux granulaires en conditions
quasi 2D, soumis à un cisaillement, avec ou sans gravité. Les cycles de grains sont des structures importantes permettant
une analyse fine de l’évolution du milieu à une échelle intermédiaire, entre l’échelle des grains et celle du volume élémentaire
représentatif. Sur cette base, une échelle mésoscopique est définie, et de nouvelles grandeurs sont définies à cette échelle,
notamment un tenseur des contraintes mésoscopique et un travail du second-ordre mésoscopique.
Dans le contexte d’un essai biaxial sans gravité, il est observé que des bouffées d’énergie cinétique apparaissent dans des
zones lâches, où les contacts sont plus proches du seuil de glissement que dans le reste de l’échantillon. L’évolution des
méso-structures illustre les réorganisations microscopiques localisées dans le temps et dans l’espace créées par une bouffée
localisée. Ces observations montrent que le critère du travail du second ordre est aussi applicable à l’échelle mésoscopique
et que son annulation est un précurseur à l’apparition d’une bouffée d’énergie cinétique. Des résultats similaires sont
retrouvés lors de l’analyse du déclenchement du glissement d’une pente soumise à la gravité. Plus la pente augmente, plus
les réorganisations liées aux bouffées d’énergie cinétique sont fréquentes, jusqu’à un glissement généralisé qui marque la
fin de la transition inertielle.

Title : Mesoscopic scale analysis of inertial transition in granular materials.

Keywords : granular materials, inertial transition, mesostructures, instabilites, discrete element method.

Abstract : One of the remarkable characters of granular materials behaviour is their capacity to behave like a solid or
a fluid. This is this property which leads to snow avalanches or landslides for example.
The inertial transition, which is the transition from a quasi-static regime to a dynamical regime, is consider as a sudden
change in the behaviour, from solid to fluid. This is the subject of this PhD thesis. As first clues of inertial instability,
bursts of kinetic energy are studied at the mesoscopic scale in different quasi 2D volumes of granular materials, under
shearing with or without gravity. Grain loops are important structures allowing a sharp analysis of the media evolution
at an intermediate scale, between the grain scale and the scale of a representative elementary volume. On this basis, a
mesoscopic scale is defined, and new mesoscopic quantities, in particular a mesoscopic stress tensor and a second-order
mesoscopic work.
In the context of a biaxial test without gravity, bursts of kinetic enrgy are shown to appear in a loose areas, where the
proportion of critical contacts (close to sliding) is higher than in the rest of the granular specimen. Meso-strucure evolutions
underline the time and space dynamics of microscopic reorganizations induced by localized bursts of kinetic energy. These
observations show that the second-order work criterion can be applied at the mesoscale and that the vanishing of the
second-order mesoscopic work is a precusor of bursts of kinetic energy. Similar results are found for the triggering of slope
sliding subjected to gravity. The steeper the slope is, the more frequent the reorganizations linked to bursts of kinetic
energy are, until the end of the inertial transition marked by a overall displacement of all grains.
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