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Abstract
The spread of invasive alien species to new areas has always been an appealing research topic for
mathematicians as well as for biologists. In particular, many investigations are carried out to recon-
struct the past dynamics of the alien species and to predict its future spread. In essence, the thesis
research aims to provide a generic methodology (i.e. scalable to various invasive species) that im-
proves the predictions of an invasive species dynamics for which no dedicated model is available and
whose initial conditions (i.e. date and location of the introduction of invasive species) are unknown.
In order to achieve this goal, we proceed in two complementary lines of research. The first one is
to propose a model&data-based inference method of biological invasions, in the framework of the
so-called mechanistic-statistical approach. This method allows us to jointly estimate the introduc-
tion point (date and location of the invasive species arrival) and other parameters of the dynamics
related to diffusion, reproduction and death. It is hinged on (i) a partial differential equation that
offers a phenomenological and concise description of the invasive species dynamics in a heteroge-
neous domain, (ii) a stochastic model that represents the observation process, which allows to fit
the partial differential equation to the data and (iii) a statistical Bayesian inference procedure, the
adaptive multiple importance sampling algorithm, for estimating model parameters. To gain in re-
alism, the phenomenological deterministic model could be replaced by a stochastic model, as for
example a stochastic partial differential equation or spatio-temporal point process. However, such
models may induce additional difficulties in estimation because of the supplementary parameters
and latent variables. Models issued from the framework of Piecewise-deterministic Markov Process
could be an appealing and interesting alternative to balance the trade-off between model realism
and estimation easiness. In the framework presented above, preference was given to the use of
generic spatio-temporal propagation models since the main processes underlying the spread of an
alien species are usually unknown. However, predictions that can be drawn from those models are
not optimal because they are affected by the assumptions made in the corresponding models, and do
not take into account the uncertainty about the model form. The approach I use to overcome this
problem is the so-called Bayesian model-averaging. This method consists of combining predictions
drawn from competing models in order to obtain a unique and ameliorated prediction. This tech-
nique has been previously used in environmental sciences. Nevertheless, it is not widespread in the
field of epidemiology. One of the methodological goals of the PhD is to investigate its application and
usefulness in predictive epidemiology.
The case study of my thesis is the phytopathogenic bacterium Xylella fastidiosa for which abun-
dant spatio-temporal and binary post-introduction surveillance data were collected from an intensive
surveillance plan implemented by governmental agencies after the first pathogen detection in Corsica
in 2015. This quarantine pathogen that has significantly impacted olive production in Italy and that
presents a drastic risk of change to the environment for its ability to reach a large variety of plants, is
susceptible to cause in France a major sanitary crisis, as the one caused in Italy since 2013 where the
socio-economical impacts are considerable.

Keywords: Mechanistic-statistical approach, partial differential equations, Bayesian inference, Bayesian
model-averaging, predictive epidemiology, biological invasions, Xylella fastidiosa.
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Résumé
L’invasion de territoires par des espèces allogènes a toujours été un sujet attrayant pour les mathé-
maticiens aussi bien que pour les biologistes. En particulier, de nombreux travaux sont menés afin
de reconstruire la dynamique passée d’espèces envahissantes. Fondamentalement, le projet de thèse
porte sur la recherche d’une méthodologie générique (i.e. adaptable à diverses espèces invasives),
permettant l’amélioration des prédictions d’une invasion biologique pour laquelle on ne dispose pas
de modèle spécifique et dont les conditions initiales (i.e. la date et le lieu d’introduction de l’espèce
invasive) sont inconnues. Pour atteindre cet objectif, on procède suivant deux axes de recherche
complémentaires. Dans le premier axe, on s’intéresse à l’inférence des invasions biologiques à par-
tir d’un modèle spatio-temporel de propagation et de données collectées, en suivant une approche
mécanistico-statistique. Cette méthode permet d’estimer d’une façon jointe le point d’introduction
(date et site de l’arrivée de l’espèce invasive) et d’autres paramètres de la dynamique reliés à la
diffusion, la reproduction et la mortalité. Elle repose sur (i) une équation aux dérivées partielles
offrant une représentation phénoménologique et concise d’une dynamique qui envahit un domaine
hétérogène, (ii) un modèle stochastique représentant le processus d’observation permettant d’ajuster
l’équation aux dérivées partielles aux données et (iii) une méthode d’inférence statistique Bayésienne,
l’adaptive multiple importance sampling algorithm, pour estimer les paramètres du modèle. Pour
gagner en réalisme, le modèle phénoménologique déterministe peut être remplacé par un modèle
stochastique, comme par exemple une équation aux dérivées partielles stochastique ou un processus
de points spatio-temporel. Cependant, de tels modèles peuvent induire des difficultés d’estimation
du fait des paramètres supplémentaires et des variables latentes. Des modèles dérivés du cadre des
processus de Markov déterministes par morceaux peuvent constituer une alternative intéressante en
permettant un compromis entre réalisme du modèle et facilité d’estimation. Dans le cadre d’étude
décrit ci-dessus, l’utilisation de modèles "tout-terrain" a été privilégiée puisque les déterminants de
propagation d’une espèce localement nouvelle dans un nouvel environnement sont généralement
incertains. Cependant, les prédictions pouvant être tirées de ces modèles ne sont pas optimales
puisqu’elles dépendent fortement des hypothèses sous-jacentes au modèle et qu’elles ne prennent pas
en compte les incertitudes pouvant l’entourer. Ma deuxième ligne de recherche consiste à proposer
une approche permettant de prendre en compte les incertitudes entourant chaque modèle. La tech-
nique que j’emploie est celle du Bayesian model-averaging. Cette technique consiste à combiner les
prédictions des modèles en compétition d’une façon à obtenir une prédiction unifiée améliorée. Cette
technique a souvent été utilisée en sciences environnementales. Toutefois, elle n’est pas répandue
dans le domaine de l’épidémiologie. L’un des buts méthodologiques de la thèse est d’en évaluer
l’intérêt pour l’épidémiologie prédictive.
Le cas d’étude de ma thèse est celui de la bactérie phytopathogène Xylella fastidiosa pour laquelle des
données de surveillance spatio-temporelles et binaires post-introduction ont été collectées à partir
d’un plan de surveillance intense qui a été mis en place par l’État suite à la première détection de
cette bactérie en Corse en 2015. Ce pathogène de quarantaine, qui a significativement impacté la
production d’olives en Italie et présente un risque de modification drastique de l’environnement du
fait de sa capacité à atteindre de nombreuses espèces végétales, a le potentiel de causer en France
une crise sanitaire majeure en santé végétale, à l’image de celle qu’elle cause depuis 2013 en Italie
où les impacts socio-économiques sont conséquents.
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1. Introduction

1.1. Aims and Motivation
Emergence of exogenous pathogens may induce severe sanitary and socio-economical crises.
The cost for pathogen eradication or containment generally increases with the delay be-
tween the establishment of the pathogen in a new territory and its detection [Jones and
Baker, 2004, Faria et al., 2014, Soubeyrand et al., 2018]. This further increases motiva-
tion for understanding the pathogen epidemiology, designing eradication or containment
strategies, and assessing their efficiency. In particular, reconstructing the past dynamics of
the pathogen [Boys et al., 2008, Roques et al., 2016, Soubeyrand and Roques, 2014] and
predicting its future extent [Chapman et al., 2015, Peterson et al., 2003], are key steps to
conduct such investigations.

In essence, the thesis research aims to provide a generic methodology (i.e., a method
scalable to various invasive species) that improves the predictions of an invasive species dy-
namics for which no dedicated model is available and whose initial conditions (i.e., date and
location of the introduction of invasive species) are unknown. In order to achieve this goal,
we proceed in two complementary lines of research.

The first one is to propose a model&data-based inference method of a pathogen dynamics,
in the framework of the so-called mechanistic-statistical approach [Berliner, 2003, Roques
et al., 2011, Soubeyrand et al., 2009a,b, Soubeyrand and Roques, 2014, Wikle, 2003a,b].
This method allows us to jointly estimate the introduction point (date and location of the
pathogen arrival) and other parameters of the dynamics related to diffusion, reproduction,
and death. It is grounded on (i) a Partial Differential Equation (PDE) which have been
extensively used for modeling, in a phenomenological and concise way, spatio-temporal pop-
ulation dynamics [Skellam, 1951, Okubo, 1980, Shigesada et al., 1995, Gatenby and Gawl-
inski, 1996, Shigesada and Kawasaki, 1997b, Turchin, 1998, Okubo and Levin, 2002], (ii) a
stochastic model that represents the observation process and describes the link between data
and the mechanistic representation of the dynamics, and (iii) a statistical Bayesian inference
procedure, the Adaptive multiple importance sampling (AMIS)[Cornuet et al., 2012], for
estimating model parameters. In order to relax hypotheses made on the dynamics, the de-
terministic phenomenological model could be replaced by a stochastic population-dynamic
model, from individual-based models [Renshaw, 1993, Kareiva and Shigesada, 1983] to ag-
gregated models [Soubeyrand et al., 2009b]. However, such models induce extra difficulties
in estimation because of the additional parameters and latent variables. Models issued from
the framework of PDMP model could be an appealing and interesting alternative to balance
the trade-off between model realism and estimation easiness. In the framework presented
above, preference has been given to the use of generic spatio-temporal propagation models
since the detailed processes underlying the spread of an alien species in a new environment
are usually unknown. However, predictions that can be drawn from those models are not op-
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timal because they are affected by the rather strong underlying assumptions, and do not take
into account the uncertainty about the model form. This limitation can be circumvented by
considering a family of candidate models and applying a model selection strategy [Burnham
et al., 1995] or a model aggregation strategy [Hoeting et al., 1999].

The second research line is to propose an approach that allows taking into account the
uncertainty about the model form. As part of the aggregation strategy, the Bayesian model-
averaging (BMA) approach has been proposed by Leamer [1978], to account for parameter
and model uncertainties [Hoeting et al., 1999]. This approach consists of averaging over
all candidate models in a Bayesian way for weighting models [Raftery, 1996, Volinsky et al.,
1997], combining multiple predictions and combining estimations to infer shared parameters
[Roberts, 1965, Madigan and Raftery, 1994, Wintle et al., 2003]. Despite ample literature
on BMA and its usefulness [Viallefont et al., 2001, Raftery et al., 2010, Parkinson and Liddle,
2013, Eicher et al., 2011, Sidman et al., 2008, Yeung et al., 2005, Oehler et al., 2009, Yin
and Yuan, 2009, Boone et al., 2005, 2008, Wintle et al., 2003, Raftery et al., 2005], it has
only been marginally applied in the context of predictive epidemiology.

The case study of the thesis is the dynamics of the phytopathogenic bacterium Xf in Cor-
sica, France. For this real case study, abundant spatio-temporal and binary post-introduction
surveillance data have been collected from an intensive surveillance plan implemented by
governmental agencies after the first in situ detection of Xf in 2015 in Corsica. This quar-
antine pathogen in Europe has significantly impacted olive production in Puglia, Italy, and
presents a drastic risk of environmental degradation due to its ability to reach a large variety
of plant species. It is currently present in a large part of Corsica island and more marginally
in Southeastern mainland France [Denancé et al., 2017a, Soubeyrand et al., 2018, Martinetti
and Soubeyrand, 2019]. It is susceptible to cause a major sanitary crisis in France, as the one
caused in Italy since 2013 where the socio-economical impacts have been considerable due
to the grabbing-up and death of a significant proportion of olive trees. Moreover, in summer
2019, the first two cases of olive trees infected by Xf in France were detected in Menton and
Antibes, which lifted risk evaluation related to this pathogen (https://agriculture.gouv.fr/la-
contamination-par-xylella-fastidiosa-de-2-oliviers-confirmee-en-paca).

1.2. Research questions
The following summarizes the methodological questions addressed in this thesis:

v How to infer initial conditions of a PDE modeling the propagation of an invasive species,
where the initial conditions represent the introduction of the species in question?

v How to extend this modeling and inferring framework, when various competing math-
ematical representations of an invasive species dynamics are considered?

v How to extend this modeling and inferring framework, when multiple introductions
potentially occur?
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These methodological questions allow me to answer the following epidemiological questions:

v When and where the strains of Xf that triggered the epidemic observed since 2015 in
Corsica were introduced in this region?

v Which measure of the propagation capacity of Xf can be obtained from spatio-temporal
surveillance data?

v What is the impact of winter temperatures on the dynamics of Xf in Corsica?

v What will be the spatial distribution of Xf in the future?

1.3. Chapters Contents and Manuscript Organization
This manuscript is organized as follows:

Chapter 2 gives the state of the art, in which mathematical tools have been outlined in a
manner to justify our choices for meeting epidemiological challenges. First, the epidemio-
logical context is detailed with a particular focus on the case study Xf and the existing data
in France, in particular in Corsica. Then, the mathematical context is reviewed under three
major headlines: modeling in population dynamics, inferring population dynamics given
a mathematical model, and accounting for model uncertainties using model selection and
model-averaging techniques.

Chapter 3 develops the first line of research. A mechanistic–statistical approach is pro-
posed to tackle the problem of recovering the location and time of the introduction of an
exogenous pathogen in a territory based on post-introduction data. In this chapter, we
assume that only one introduction spot triggered the pathogen propagation and eventual
subsequent introductions are considered to have negligible effects on the dynamics. In this
framework, we adapt the process of statistical analysis presented by McCullagh [2019] (see
Figure 1.1). The adaptation of this process is mapped out in Figure 1.2. Thus, a class of mod-
els is carefully considered, paying attention to the type and structure of data. Then, models
parameters are estimated using the adaptive multiple importance sampling algorithm, and
model choice criteria are used to select information from the model that is best linked to
data. Finally, we conduct goodness-of-fit tests, as model checking to check the adequacy
between the model and observed data.

Chapter 4 extend the process of statistical analysis presented in Figure 1.1 to raise issues
from the second research line (see Figure 1.2). The application of BMA is investigated in
the context of pathogen-dynamics prediction using PDEs-based models. The models are
grounded on a family of reaction-diffusion equations (including those presented in Chap-
ter 3) with different spatially heterogeneous diffusion and reproduction terms. Our aim is to
compute, from post-introduction data, the BMA posterior distribution of a certain quantity of
interest, such as the introduction time or location of the pathogen or its future spatial extent.
This approach is tested on simulated data and then applied to make predictions concerning
the dynamics of the phytopathogenic bacterium Xf in Southern Corsica, France.
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Chapter 5 provides a forward-looking statement of the first research line developed in
Chapter 3. The models used in Chapter 3 are generally not adapted to describe the dynamics
of populations that expand their range not only by neighborhood dispersal but also because
of new introductions in disease-free areas and by long-distance dispersal, which can corre-
spond to rare but significant events. Chapter 5 explores these features by incorporating into
the framework proposed in Chapter 3, the possibility of considering multiple introductions.
This should allow considering data at larger spatial scales, for which the hypothesis of a sin-
gle introduction is generally not adequate. Model parameters are estimated as in Chapter 3,
using the AMIS algorithm.

In Chapter 6, summary, discussions and perspectives are made to conclude and propose
improvements for furthering the work.

Figure 1.1.: The process of statistical analysis as presented by [McCullagh, 2019] (Chapter 12,
page 392).
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2. State of the art: Mathematical tools
for meeting epidemiological challenges

This chapter introduces the epidemiological context and outlines mathematical tools needed for the entire
manuscript. This chapter provides a bibliographical review described in a manner that justifies our choices for
meeting the epidemiological context.
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2.1. Epidemiological context

2.1.1. Brief Review on Epidemiology of Emerging Infectious Diseases
Epidemiology was first defined as the science of disease in the population [Plank, 1963].
Since then, it has regularly updated giving the evolution in the field. Nowadays, epidemi-
ology is defined as "the study of distribution and determinants of health-related states or
events (including diseases), and the application of this study to the control of diseases and
other health problems" [Friis and Sellers, 2004, Friis, 2017].

Four major types of epidemiological investigations can be distinguished: (i) descriptive
epidemiology which aims to identify the spatial and/or temporal distribution of a disease
in a population, (ii) analytical epidemiology with a view to study its determinants, (iii)
evaluative epidemiology that qualifies the impact and evaluate the results obtained from
health and disease prevention programs and, (iv) predictive epidemiology which propose
handy mathematical tools to describe, infer and forecast disease propagation.

Mainly, we focus in this thesis on plant epidemiology motivated by the severe damage
that can be triggered by the introduction of plant pathogens into a natural ecosystem [Pi-
mentel et al., 2005]. As for humans and animals, occurrence of a plant disease requires
interaction among three essential components: a susceptible host plant, a virulent pest (e.g.,
virus, bacteria, fungi and parasitic plants) and a favorable environment (e.g., related with
temperature, moisture, presence of a vector and wildlife) [Stevens, 1960]. However, the de-
velopment of the disease is largely affected by time factors [Agrios, 2005] as per example the
season of the year, the duration and frequency of favorable temperature, and the appearance
of vectors.

Figure 2.1.: Interrelations of the four components: host, pathogen, environment and time.

Disease

Thus, for the pathogen to propagate, there must exit an infected host plant and the pathogen
should be able to enter a susceptible plant and multiply in the newly infected host plant
which is conditioned by environmental and time factors (see Figure 2.1). The transmission of
pathogens may be either direct (e.g., carried externally or internally on the seed or planting
material like cuttings and sets) or indirect (e.g., via wind dispersal, water dissemination,
animals, insects, and human behavior).

Assessment of epidemiological parameters such as initial growth, incidence and prevalence
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is required for disease characterization purposes and will help in predicting disease dynamics.
In what follows, we recall the definition of the main quantities of interest.

The incidence rate represents the rate of occurrence of new cases per individual from
population at risk in a given period [Rothman et al., 2008]. It is one of the essential criteria
for determining the prevalence and speed of manifestation of a disease:

Incidence Rate = Number of new cases found at a specified time
Total population size

.

The prevalence rate is the proportion of infected plants in a population that have a disease
at a defined time or over a specified period:

Prevalence Rate = Number of existing cases of disease at a specified time
Total population size

.

Conversely to incidence, prevalence includes all existing cases in the population at the spec-
ified time, whereas incidence is computed based on new cases only.

The dispersal rate describes the expected proportion of disease disseminating agents to
leave an area. The so-called dispersal function typically gives the probability distribution of
the distance traveled by the disease.

The latent period is the delay between exposure to a pathogen and the appearance of
disease symptoms [Porta, 2008].

The infectious period is the period during which a pathogen produces dispersal units that
come into contact with a host [Frantzen, 2007].

The basic reproduction number denoted by R0 is defined as the expected number of sec-
ondary cases produced by a single infection in a susceptible population never infected be-
fore. In other words, R0 is the initial growth rate when the population is considered on a
generation basis [Diekmann and Heesterbeek, 2000]. This dimensionless number allows the
characterization of diseases according to their potential to cause epidemics:

– If R0 > 1, the disease is intensely transmitted. The higher the value of R0, the faster the
rise of the incidence rate.

– If R0 < 1, the number of infected plants is expected to decline after the introduction.

The mortality rate (or death rate) is the measure of the frequency of occurrence of death
in a specific population during a given interval of time [Porta, 2008]. It is commonly ex-
pressed in terms of per 1000 individuals:

Mortality Rate = Number of deaths during a specified time
Number of individuals at risk of dying during the period

× 1000.
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The fatality rate is the proportion of cases of a specified condition which are fatal within
a specified time [Porta, 2008]. It is commonly expressed as a percentage:

Fatality Rate = Number of deaths during a specified time
Number of individuals with the disease during the period

× 100.

2.1.2. Xylella fastidiosa
2.1.2.1. Definition

Xf is a phytopathogenic xylem-limited bacterium. Literally, the genus ’Xylella’ is taken from
xylem and refers to the fact that this bacterium is limited to the vascular tissues ensuring the
flow of crude sap in the plant; the specific epithet ’fastidiosa’ means highly critical and refers
to the nutritional fastidiousness of the organism, particularly on primary isolation [Wells
et al., 1987].

2.1.2.2. Status in France

Xf has probable origins from countries of the American continent [Pierce, 1892]. In fact,
available genetic data indicate that three of five subspecies of Xf have origins in different
geographic areas: fastidiosa subsp.fastidiosa originated in Central America, subsp.multiplex
in North America, and subsp.pauca in South America [Sicard et al., 2018]. This bacterium
has been reported for the first time in Europe in 2013, on olive trees in Italy [Saponari et al.,
2013]. The situation in Italy evolved rapidly into an important outbreak significantly im-
pacting olive culture and causing major sanitary crisis (massive grubbing-up of olive trees
in Apulia). Subsequently, Xf has been of concern in many European countries, including
France that reported the first detection in July 2015, on an ornemental plant, Polygala myrti-
folia, in South Corsica, and is currently mostly present in this island and in the PACA region
[Denancé et al., 2017b, Soubeyrand et al., 2018]. The observed disease incidence rate (%)
computed monthly for all hosts, since the first detection in situ in France is shown in Fig-
ure 2.2. The decrease in the observed disease incidence rate does not mean that there is an
actual decrease in the disease incidence, because detected positive cases are destroyed and
therefore subtracted from the overall disease incidence [Soubeyrand et al., 2018].

2.1.2.3. Transmission Modes

Xf is transmitted from one plant to another one by various xylem sap-feeding insects [Fra-
zier, 1965] as Froghoppers, Leafhoppers, Spittlebugs, Homoptera, and Auchenorrhyncha.
The Forghopper Philaenus spumarius is currently the only confirmed vector of Xf in Europe
[Maria Saponari, 2014, Cornara et al., 2017], and in experimental conditions, Neophilaenus
campestris and Philaenus italosignus confirmed their physiological ability to carry the bac-
terium out [Cavalieri et al., 2018]. However, all xylem sap-feeding insects remain suscepti-
ble vectors of the disease [Purcell, 1990].
Besides, plantation (using infected planting material like cuttings and sets), multiplication
and movements of infected seedlings may constitute an important risk factor for the diffu-
sion of the bacterium. Figure 2.3 describes the direct and indirect transmissions of Xf and
influencing factors of propagation.
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Figure 2.2.: Observed incidence rate (%) of Xf computed for all hosts, on a monthly basis since
the first in situ detection in France.

Figure 2.3.: Description of the transmission of Xf from plant to plant by xylem sap-feeding
insects and by movements of infected plants in different environmental situations
(high/low latitudes, high/low&winter temperatures).
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2.1.2.4. Factors of propagation

Many influencing factors affect the propagation of Xf such as the phenology of insect vec-
tors [Purcell, 1981, Almeida et al., 2005] and increasing globalization trade [Hulme, 2009],
which levels up the risk of infected plant transportation. As for other bacteria, the propa-
gation of Xf is also affected by many environmental factors such as latitude [Costello et al.,
2017], inoculation date [Davis et al., 1980] and temperature [Daugherty et al., 2009, 2017].
Winter temperature has been inferred as a chief environmental factor governing the dynam-
ics of Xf and the level of disease severity caused by Xf [Costello et al., 2017, Feil et al., 2003,
Henneberger, 2003, Purcell, 1977, Purcell et al., 1980]. For instance, isolines for the aver-
age minimum daily temperature in January have been shown to be consistent with regions
in the United States that are exposed to different levels of severity of Pierce’s disease of grape
caused by Xf [Anas et al., 2008, Feil and Purcell, 2001]. Most of the analyses on climatic
and environmental factors were performed for strains present in the Americas, mostly on
grapevines. However, climatic limits and severity of impacts largely depend on the host-
pathogen-ecosystem combination [EFSA Panel on Plant Health (PLH) et al., 2019]. Recent
studies on climatic suitability have been carried out in European conditions and have cor-
roborated the influence of temperature among other climatic factors [Godefroid et al., 2018,
Martinetti and Soubeyrand, 2019].

2.1.2.5. Hosts & Impacts

Xf is considered as one of the most dangerous plant bacteria in the world due to signifi-
cant potential agricultural and socio-economical impacts likely arising with its emergence
because there is still no treatment able to eliminate the bacteria from the plant except for
grubbing up and destroying infected plants [EFSA Panel on Plant Health (PLH) et al., 2019].
When in infected plants, Xf forms bacterial aggregates in the vascular tissues of the xylem
preventing the flow of crude sap, which results in the dryness and eventually the death of
the infected plant. Over 360 plant species have been reported as susceptible to be attacked
by the bacterium. The list of hosts in Europe is regularly updated (see Commission database
of host plants found to be susceptible to Xf in the Union territory). This wide range includes
wild plants, cultivated plants, forest species and ornamental plants (e.g., olive trees, vines,
fruit trees, lavender, cherry, oaks). However, groups identified within each subspecies target
more specific plants. So far, four subspecies of Xf have been frequently observed in Europe:
multiplex, pauca, sandyi and fastidiosa [EFSA Panel on Plant Health (PLH) et al., 2019]. Until
now, 59 plant species have been reported with Xf in France (see Figure 2.4) for the multiplex
(Sequence type: ST6, ST7) and pauca (Sequence type: ST53) subspecies [EFSA Panel on
Plant Health (PLH) et al., 2019] including economically valuable plants.

2.1.2.6. Epidemio-surveillance & control strategies

To avoid a potential socio-economical crisis in France similar to the one happening in Italy
since 2013, the French General Directorate of Food (DGAL) has implemented enhanced
control and surveillance measures after the first in situ detection of Xf in Corsica. These mea-
sures have been modified several times based on updated knowledge on Xf and according to
European directives. Mainly, the strategy focuses on the following actions:
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Figure 2.4.: Infection prevalence according to plant species identified in France until April 2019.

Figure 2.5.: Locations of plants, sampled from July 2015 to April 2019, that have been detected
as positive (red diamonds) or negative (cyan diamonds) to Xf in France (on the
left), and zoom in on Corsica (on the right).
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The enhanced surveillance of the national territory which generated a data set consisting
of a spatio-temporal point pattern (i.e., the locations and dates of plant samples) marked by
a binary variable indicating the result of the diagnostic test (i.e., indicating if the plant
sample is positive or negative to Xf). Until April 2019, approximately 32200 plants were
sampled, among which 1600 have been diagnosed as infected [with a real-time polymerase
chain reaction (PCR) technique; Denancé et al., 2017b]. Available data for each sampled
plant are its spatial coordinates, its sampling date (which is unique) and its health status
at the sampling date. Coordinates and health statuses at the sampling times are shown in
Figure 2.5.

The eradication of detected outbreaks by creating a buffer and demarcated areas around
the infected plant. Figure 2.6 shows:

• the buffer area, within which all infected and host plants are cut off and destroyed
after they have been treated with insecticide in order to prevent the dissemination of
vectors.

• the demarcated area, in which surveillance is implemented with the organisation of
inspections and sampling in order to assess the disease-free status of the area. The con-
trol of the movement of host plants outside demarcated zones is prevented to protect
disease-free areas.

Figure 2.6.: Representation of buffer and demarcated areas around a newly detected infected
plant.

In Corsica, the extended presence of the bacteria (see Figure 2.5) prompted the French
authorities to request the shift from an eradication strategy to a containment strategy, since
the eradication of Xf from the island was considered as impossible. The main difference
between both strategies is that only the infected plants are uprooted.

Beyond this surveillance and control strategy, France and other European countries pro-
moted the understanding of epidemiological characteristics of Xf from several perspectives.
This understanding has been particularly developed via modeling works focused on the Eu-
ropean situation [Strona et al., 2017, White et al., 2017, Bosso et al., 2016, Godefroid et al.,
2018, Soubeyrand et al., 2018, Martinetti and Soubeyrand, 2019, Kyrkou et al., 2018]. Pro-
viding more insights on the spread of this pathogen is specifically judicious to optimize
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surveillance and control strategies because the price to eradicate the pathogen increases
with the duration since the introduction and establishment of the pathogen [Soubeyrand
et al., 2018]. Denancé et al. [2017a] assessed the introduction of the two sequence types
found in Corsica around 1965 and 1980, respectively, using a phylogenetic approach. Like-
wise, Soubeyrand et al. [2018] dated the introduction around 1985 (95%-posterior interval:
[1978, 1993]) with a statistical analysis of temporal data. One of the interesting questions
in this context is how the disease was introduced in France, in particular in Corsica, where
the situation is most critical. Dating and localizing the introduction can bring an appropri-
ate answer to this question. However, inferring the introduction (location and date) from
post-introduction data (i.e., data collected over a temporal window covering a period after
the introduction time) providing the sanitary statuses of sampled plants, requires the infer-
ence of the spatio-temporal disease dynamics, and vice versa, because this dynamics links
the introduction and the observations. Thus, reconstructing the past dynamics of Xf (i.e.,
the spatio-temporal introduction jointly with other epidemiological parameters related to
growth, dispersal, and death that govern the post-introduction dynamics) can help under-
stand its origins and therefore ameliorate the ability to inform about its future spatial extent.
For addressing the above epidemiological challenges, mathematical tools (see Figure 2.7)
can contribute to the acquisition of knowledge about Xf and support the decision process of
decision makers (e.g., the French Ministry of Agriculture).

Figure 2.7.: Pipeline from the observation of the phenomenon of interest to prediction.
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2.2. Mathematical context
The spread of invasive alien species to new areas has long been an important research topic
not only for biologists but also for mathematicians because of their impact on the environ-
ment, indigenous species, and health of humans, animals, and plants [Andow et al., 1990,
1993, Baker, 1991, Hengeveld, 1989, Kermack and McKendrick, 1927, Richardson and Bond,
1991, Simberloff, 1989, Anderson et al., 1996, Shigesada and Kawasaki, 1997b, Weinberger,
1978]. An early work in predictive epidemiology dates back to Bernoulli [1760] after the in-
oculation of the smallpox epidemic. However, predictive epidemiology has started on a fast
track through the pioneering works of Ross [1911] on malaria and Hamer [1906] on measles.
Since then, models have evolved to fill in the gaps in the experimentation fields. Nowadays,
mathematical modeling has become an inseparable part of the experimental activity, espe-
cially to help in getting a better comprehension of the emerging dynamics. In particular,
extensive researches have been conducted in the intents of reconstructing the past dynamics
[Boys et al., 2008, Roques et al., 2016, Soubeyrand and Roques, 2014] of alien species and
predicting their future spatial extents [Chapman et al., 2015, Peterson et al., 2003]. In this
section, we review mathematical models in population dynamics, as well as inference and
prediction approaches that can be developed in the so-called mechanistic-statistical frame-
work used to describe, infer and predict physical, ecological, and epidemiological processes
[Berliner, 2003, Lanzarone et al., 2017, Roques et al., 2011, Soubeyrand et al., 2009a,b,
Wikle, 2003a,b]. This framework is hinged on a mechanistic model for the dynamics of
interest, a probabilistic model for the observation process, and a statistical procedure for
estimating parameters and predicting the dynamics.

2.2.1. Population Dynamics Modeling in Mathematical Epidemiology
Mathematical models for population dynamics are based on diverse mathematical tools
adapted to different resolutions at which the population dynamics are considered (e.g., indi-
viduals, groups, presence in quadrats, and numbers of individuals in districts), and different
levels of perceptions (e.g., the population itself, its averaged characteristics, or more gen-
erally aggregated functions of the population patterns). Mathematical models are either
deterministic or stochastic. Deterministic models perform the same way for a given set of
parameters and initial conditions. Concise deterministic models classically proposed for pop-
ulation dynamics only incorporate the main epidemiological and environmental drivers of
the dynamics. These drivers and secondary drivers can be implicitly handled by replacing
the deterministic model by a stochastic version, incorporating some inherent randomness,
that would contribute to the deduction of flexible realizations. For instance, in the compar-
ison of deterministic and stochastic models for circadian oscillations, [Gonze et al., 2002]
shows that, in the presence of noise in a small population, stochastic simulations are needed
to get more realistic realizations. In what follows, we will briefly review some modeling
approaches, from compartmental models to aggregate models, that are widely used to offer
insights into the mechanisms of spatio-temporal dynamics of populations. We mainly focus
on deterministic models, because in contrast to stochastic modeling approaches, they pro-
vide a phenomenological and concise description of the population dynamics, and can be
fitted to data in a reasonable time span. The advantage of this approach is that it can be
rapidly applied for endorsing a fast reaction after the detection of a new invasive species.
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2.2.1.1. Deterministic Compartmental Models

Compartmental models arose in the early 20th century with the pioneering works of public
health doctors [Ross, 1911, Hamer, 1906, Kermack and McKendrick, 1991] for describing the
dynamics of infectious diseases. In these models, the population is partitioned into a small
number of different compartments connected by a flow of individuals. Each compartment
contains individuals that have identical statuses with respect to the disease in question.

Directed flow graphs are usually used to represent these models (see Figures 2.8, 2.9,
2.10, and 2.11). The nodes represent the compartments and the arrows are weighted by
transmission functions. Typically, compartmental models are built with Ordinary Differen-
tial Equation (ODE). However, one can also build these models in a stochastic framework
[Andersson and Britton, 2012]. In what follows, we revisit some standard compartmental
models in the deterministic framework of ODE.

2.2.1.1.1. Standard SI Deterministic Model
Hamer [1906] built the simplest epidemiological model composed by two mutually exclu-
sive compartments: the susceptible (S), which is the class of individuals who are susceptible
to infection, and the infected (I), which consists of individuals whose the level of parasite
is sufficiently large, and who have a potential in transmitting the infection to other suscep-
tible individuals (see Figure 2.8). The propagation of the infection starts after a suscepti-
ble individual comes into positive direct contact with an infected and infectious individual.
Therefore, the more susceptibles in S and infectious in I, the more there is newly-infected
cases.

Hamer’s model suggests that once infected, an individual belonging to the compartment
S becomes infected/infectious and stays permanently in the compartment I. This model is
grounded on the following assumptions:

(H1) At time t, compartments S and I contain respectively S(t) and I(t) individuals;

(H2) The population is closed, i.e., the population size N = S(t) + I(t) for each t ∈ R+ is
constant;

(H3) S(0) = N − 1 which means that at time t = 0 all the population is susceptible except
the first infected individual;

(H4) β is the transmission intensity of the disease per unit of time;

(H5) Demographic factors are excluded.

S I
β

Figure 2.8.: Standard SI model
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Having compartmentalized the population, Hamer’s model is described by the following
set of differential equations that specify how the sizes of compartments change over time:

dS

dt
(t) = −f(S(t), I(t)), t ∈ R+,

dI

dt
(t) = f(S(t), I(t)), t ∈ R+,

(2.1)

where f(S, I) is the disease incidence over an infinitesimal time period dt. For instance, we
can assume that f(S, I) = βSI, β being a positive constant representing contact rate. Thus,
(2.1) is a differential system of the form:

dS

dt
(t) = −βS(t)I(t), t ∈ R+,

dI

dt
(t) = βS(t)I(t), t ∈ R+.

(2.2)

I Indication for Solving System (2.2)
Knowing that N = S(t) + I(t) for t ∈ R+, we obtain the following logistical system:

dS

dt
(t) = −βS(t)(N − S(t)), t ∈ R+,

dI

dt
(t) = β(N − I(t))I(t), t ∈ R+.

(2.3)

System (2.2) can now be easily solved. An analytical solution can be obtained by integrating
both of the system’s equations.

2.2.1.1.2. Standard SIR Deterministic Model
The SI model is considered to be simple. Most of all, the SI model is mostly adapted to incur-
able diseases. However, for many common diseases as the flu, the carrier of the disease can
recover. To take into account those individuals, Kermack and McKendrick [1927] proposed
to add the compartment R to the SI model (see Figure 2.9). The model is now based on the
following assumptions:

(H1) At time t, compartment R contains R(t) individuals;

(H2) The population is closed, i.e., the population size N = S(t) + I(t) +R(t) for each t ∈ R+

is constant;

(H3) S(0) = N − 1 and R(0) = 0, which means that at time t = 0 all the population is
susceptible except the first infected individual;

(H4) β is the transmission intensity of the disease per unit of time;

(H5) γ is the recovery rate per unit of time;

(H6) Demographic factors are excluded.
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S I R
β γ

Figure 2.9.: Standard SIR model

Having compartmentalized the population, the standard SIR model is described by the
following set of ordinary differential equations that specify how the sizes of compartments
change over time: 

dS

dt
(t) = − β

N
S(t)I(t), t ∈ R+,

dI

dt
(t) = β

N
S(t)I(t)− γI(t), t ∈ R+,

dR

dt
(t) = γI(t), t ∈ R+.

(2.4)

As for the differential system (2.2), system (2.4) can easily be solved analytically for all t ∈ R+.
Besides, one can get more in realism by assuming that hypothesis (H5) is not held and that
birth and death rates are equal and are denoted by b (see Figure 2.10). Then, the differential
system is formulated as follows:

dS

dt
(t) = bN − bS(t)− β

N
S(t)I(t), t ∈ R+,

dI

dt
(t) = β

N
S(t)I(t)− γI(t)− bI(t), t ∈ R+,

dR

dt
(t) = γI(t)− bR(t), t ∈ R+.

(2.5)

Unlike system (2.4), system (2.5) has to be solved numerically.

S I R
β γb

b

b

Figure 2.10.: SIR model including demographic factors

2.2.1.1.3. Standard SEIR Deterministic Model
The standard SIR model of Kermack and McKendrick [1991] has been extended to handle
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diseases with incubation period, during which the infected individual is not infectious yet.
Thus, the individual is in a specific compartment, called E for exposed. The simplest SEIR
model can be built based on the following hypotheses:

(H1) At time t, compartments S, E, I and R contain respectively S(t), E(t), I(t), and R(t)
individuals;

(H2) The population is closed, i.e., the population size N = S(t) +E(t) + I(t) +R(t) for each
t ∈ R+ is constant;

(H3) β is the transmission intensity per unit of time;

(H4) α is the incubation rate (i.e., the rate of latent individuals becoming infectious) per unit
of time;

(H5) γ is the rate of recovery per unit of time;

(H6) Demographic factors are excluded but could be added as in the system (2.5).

Thus, the above assumptions lead to the following system of differential equations that
describes the standard SEIR model:

dS

dt
(t) = − β

N
S(t)I(t), t ∈ R+,

dE

dt
(t) = β

N
S(t)I(t)− αE(t), t ∈ R+,

dI

dt
(t) = αE(t)− γI(t), t ∈ R+,

dR

dt
(t) = γI(t), t ∈ R+.

(2.6)

S E I R
β γα

Figure 2.11.: Standard SEIR model

2.2.1.2. Partial Differential Equations

ODE models presented in the section above offer a temporal description of population dy-
namics, but do not allow for a spatial representation of its dynamics. Conversely, PDE mod-
els incorporate the spatial aspect into the model using a spatial variable denoted by x, and
account for spatio-temporal interactions between population individuals. In the current sec-
tion, the modeled quantity is population density u. Modeling the dynamics of the pathogen
itself, would at least require modeling of susceptible hosts and infected hosts. To describe the
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transition between the discrete behaviour of an ODE system and the continuous behaviour
of a PDE equation we use the SI model presented in Section 2.2.1.1.

Assume that x is the location of an individual in a 1-dimensional space. The second
equation of System (2.3) satisfies:

I(x, t+ dt)− I(x, t)
dt

= β(N − I(x, t))I(x, t), t ∈ R+, (2.7)

hence, Equation (2.7)×dx yields:

I(x, t+ dt)dx
dt
− I(x, t)dx

dt
= β(N − I(x, t))I(x, t)dx, t ∈ R+. (2.8)

When one adds transport terms relative to the movement of an individual in a spatial domain:
moving from and to its vicinity, or staying at the same place (see Figure 2.12), one obtains:

dxI(x, t+ dt) = I(x, t)dx− 2D dt

dx
I(x, t)

+ I(x+ dx, t)D dt

dx

+ I(x− dx, t)D dt

dx
+ β(N − I(x, t))I(x, t+ dt)dxdt, t ∈ R+.

(2.9)

Thus, Equation (2.9)× 1
dxdt

one obtains the following discrete equation:

I(x, t+ dt)− I(x, t)
dt

= D
I(x+ dx, t)− 2I(x, t) + I(x− dx, t)

dx2 + f(I), t ∈ R+,

such that,
f(I) = β(N − I(x, t))I(x, t+ dt),

where dx and dt are respectively spatial and temporal variations, D is the diffusion rate,

D
dt

dx
is considered to be the probability of a host in the compartment I to move, and f(I) is

the so-called population growth term.
Hence, when dt→ 0, and dx→ 0, the above equations satisfies a PDE of the form:

∂I

∂t
= D

∂2I

∂x2 + f(I), t ∈ R+.

Let u be the probability of a host to be infected at time t in a location x. Based on equation

(2.3), one can write that u = I

N
(N is assumed to be constant). Indeed,

∂u

∂t
= D

∂2u

∂x2 + f(u), t ∈ R+.

This equation will be central in what follows.
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2.2.1.2.1. Reaction-diffusion Equations for Modeling Short-distance dispersal
When one aims to model dispersal phenomena such as spatio-temporal dynamics of popu-
lations, reaction-diffusion equations are frequently used and have been exploited in many
domains, especially in medicine, ecology, and epidemiology [Gatenby and Gawlinski, 1996,
Roques, 2013b, Murray and Kulesa, 1996]. Reaction-diffusion equations are PDE of parabolic
type [Evans, 1998]. Here, we describe some reaction-diffusion equations, in which dispersal
is considered as a random diffusion process.

Random diffusion at the population level can be derived from random walks at the indi-
vidual level. Random walks are often used to describe invasions by species that move via
short-distance dispersal. Basic random walk models describe the path of an individual mov-
ing in a spatial domain via a succession of random steps. Typically, in a uni-dimensional
space, as illustrated in Figure 2.12 and shown above, the individual located at x can move to
the left and reach x−d with probability PL, move to the right and reach x+d with probability
PR or stay at the same place with probability PS = 1 − PL − PR. Such a microscopic and
individual-based description of movements can be used to obtain diffusion equations at the
population level [Roques, 2013b, Shigesada and Kawasaki, 1997a, Skellam, 1951]. In par-
ticular, the 1D random walk without directional bias and with constant and non-persistent
increments leads to the following form of the diffusion equation: ∂u

∂t
= D ∂2u

∂x2 , where u is the
density of population.

Figure 2.12.: Uni-dimensional random walk model.

In 1937, Fisher analyzed the rate of advance of advantageous genes with a PDE [Fisher,
1937], which has been generalized into:

∂u

∂t
= D

∂2u

∂x2 + u(r − bu)︸ ︷︷ ︸
f(u)

, t ≥ 0, (2.10)

where u = u(t, x) is the frequency of the advantageous gene at time t and spatial location x
in a uni-dimensional space; D > 0 is the coefficient measuring the rate of dispersal; r stands
for the intrinsic growth rate of the species; and b corresponds to the coefficient measuring
the effect of intra-specific competition; f(u) is the population growth term.

In line with Fisher’s work, Skellam [Skellam, 1951] proposed two-dimensional PDE for
describing population dynamics. The so-called Skellam model, in particular, allowed him to
study population spread with Malthusian growth theoretically. This model incorporates two
terms, namely the population dispersal term and the population growth term, and assumes
that there is no intra-specific competition:

∂u

∂t
= D∆u+ ur , t ≥ 0, (2.11)

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the 2-dimensional diffusion operator of Laplace.
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Figure 2.13.: Numerical solution u(t,x) of Skellam model (2.11) in a bi-dimensional space
(where x = (x, y)) with Neumann boundary conditions, at time 0 (top left), 3 (top
right), 6 (bottom left) and 12 (bottom right). The dispersal coefficient and the
intrinsic growth rate were fixed at (D, r) = (5× 10−3, 0.5). The initial condition
was u(0,x) = 0.1 exp(−(10‖x− x̃0‖)2), where x̃0 = (x̃0, ỹ0) = (0.8, 0.8).

Figure 2.13 presents the solution of Equation (2.11) in a two-dimensional space, for specific
values of parameters, initial conditions and boundary conditions.

Positive wavefront type-solutions exist for Equation (2.11). A simplified form of a traveling
wave (in a unidimensional space) is a function of the form:

u(t, x) = U(x− ct),

where c ∈ R is the speed of the front U ∈ C2(R). Note that a traveling wavefront can be
defined not only when t > 0 but also for any t ∈ R.

Skellam showed that the rate of spread at the front of the population range asymptotically
approaches c0 = 2

√
rD when a small population is initially introduced at the origin. Fur-

thermore, Luther [Luther, 1906] and Kolmogorov et al. [Kolomogorov and Piscouno, 1937]
were the first to prove the existence of wavefront type-solutions for a diffusion equation with
a logistic growth term f(u) = ru(1 − u) (Fisher-KPP). Kolmogorov et al. showed that some
initial distributions converge asymptotically to a traveling wave propagating to the right with
a well defined, constant speed c = 2

√
rD. When the growth term includes an Allee effect as

follows: f(u) = ru(1− u)(u− θ), where θ ∈]0, 1[ is the Allee effect parameter, then there ex-
ists a unique positive wavefront-type solution with lim

x−→−∞
U = 1, lim

x−→+∞
U = 0. In addition,

the speed of the front is [Hadeler and Rothe, 1975, Rothe, 1981, Lewis, MA and Kareiva, P,
1993]:

36



c =
√

2rD(1
2 − θ). (2.12)

2.2.1.2.2. Integro-differential Equations for Modeling Long-distance Dispersal

The models introduced above are generally not adapted to describe the dynamics of popu-
lations that expand their range not only by neighborhood dispersal but also by long-distance
dispersal, which can correspond to rare but significant events. An additional modeling ap-
proach for dispersal phenomena is the use of alternative representations of disease propa-
gation that takes into account this twofold dispersal process [Alfaro et al., 2013]. In this
case, the homogeneous diffusion can be replaced by a kernel-based term within an integro-
differential equation. In this framework, the analogue of equation (2.10) will be written as
follows:

∂u

∂t
= J ? u− u+ u(r − bu)︸ ︷︷ ︸

f(u)

, t ≥ 0, (2.13)

with J ? u a function of the form:

J ? u(t, x) =
∫
R
J(|x− y|)u(t, y)dy,

where J is a dispersal kernel and the term J(|x− y|) is the probability density of the disper-
sal distance |x − y|. This approach applied to population dynamics [Fife, 1979] generally
allows a finer quantification of local and long-distance dispersal, and yields better predic-
tions [Higgins and Richardson, 1999, Nathan et al., 2008, Fayard et al., 2009, Gilioli et al.,
2013, White et al., 2017].

2.2.1.3. Stochastic Models for Population Dynamics

Diverse stochastic models have been proposed to represent randomness in population dy-
namics. Stochastic models can be built by adding stochastic components to deterministic
equations in order to include some inherent randomness, but diverse approaches for con-
structing stochastic population dynamics models have been developed, for instance: Stochas-
tic Differential Equation (SDE) used to model trajectories of individuals [Gloaguen et al.,
2018]; branching processes used to model the growth and adaptation of populations [Méléard,
2011]; coalescent processes used to generate genealogies which relate a random sample of
individuals resulting from a basic forward-time population model [Kingman, 1982, Gill et al.,
2012]; temporal point processes used to build birth-death models [Champagnat et al., 2006];
spatio-temporal point processes used to model the temporal evolution of the spatial pattern
of individuals forming a population [Soubeyrand et al., 2011]; stochastic Markovian areal
processes used to model large-scale dynamics [Soubeyrand et al., 2009b]; and regressions
(eventually including auto-regressive components) used to take into account the effect of en-
vironmental variables on population characteristics [Bordier et al., 2017]. Compared to their
deterministic analogues, if any, stochastic population-dynamic models generally allow relax-
ing hypotheses made on the dynamics and generating more diverse realizations. However,
these models tend to be less tractable in the analysis of model properties and the estimation
of unknown components. Suppose that we are interested in fitting a spatio-temporal popu-
lation dynamics model to data. There is, like in many other application fields, a trade-off
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between model realism and estimation complexity. For example, fitting a population dy-
namics model essentially constructed from a PDE containing a few parameters [Soubeyrand
and Roques, 2014] is generally easier than fitting a (more flexible and realistic) hierarchical
stochastic spatio-temporal Markovian model including a few parameters but numerous latent
variables [Soubeyrand et al., 2009b]. In this example, two extreme cases are considered:

ä a model with deterministic behavior and few degrees of freedom, which may yield poor
goodness-of-fit;

ä a model with stochastic behavior and lots of degrees of freedom, which may induce
identifiability issues.

All models are wrong, but some are useful [Box, 1976]. To construct useful models and avoid
the two extreme cases described above, allowing rapid, realistic, relevant and consistent
inferences are required. Spatio-temporal PDMP can play this role.

2.2.1.4. Piecewise-Deterministic Markov Processes1

PDMP were introduced by Davis [1984] as a general family of non-diffusive stochastic mod-
els. PDMP are càdlàg Markov Processes (i.e., right continuous with left limits Markov pro-
cesses), whose behavior is governed by a deterministic continuous motion (the flow) dis-
rupted at random times by discrete random events (the jumps). Such an event can be either
a discontinuity in the trajectory of the stochastic processes or merely a change in the rule
of the continuous dynamics [Davis, 1984, Azaïs and Bouguet, 2018]. This class of mod-
els is often built to model temporal processes and is rarely encountered in the literature
in a spatio-temporal framework. Nevertheless, spatio-temporal PDMP can be occasionally
encountered in the theoretical and quantitative population dynamics literature, but these
models are generally not called PDMP. For instance, spatio-temporal PDMP have been built
at the population level [Shigesada et al., 1995], the metapopulation level (which is a set of
populations) [Soubeyrand et al., 2009a] and the individual level [Caillerie, 2017]. These
processes are illustrated in Figure 2.14.

Let X ∈ Rn be an open subset, ∂X its boundary, X̄ its closure and B(X ) the set of real-
valued, bounded, measurable functions of X . A PDMP X(t) = {Xt; t > 0} with values in X
is defined by three basic elements:

• a deterministic continuous flow Φ : X × R → X , which drives the dynamics of the
process between the jumps;

• a jump rate λ : X → R+ which triggers the jump mechanism of the process (the larger
λ(x), the higher the probability to jump);

• a jump kernel Q : X → X ×B(X ), which rules the directions and the amplitudes of the
jumps of X.

A classical PDMP is the one in which the flow is driven by an ODE supposed to have a unique
solution Φ and the jump is governed by a Poisson process. With these tools, one can define

1Here, I use the notations of [Azaïs and Bouguet, 2018], which are also consistent with the notations of
Chapter 5.
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the sample paths of X recursively. Given T0 = 0 and X0 ∈ X , let S1 be a positive random
variable such that, for all t > 0,

P(S1 ≥ t) = exp
(
−
∫ t

0
λ(Φ(X0, s))ds

)
1{t<t+(X0)}, (2.14)

where t+(x) = inf{t > 0 : Φ(x, t) ∈ ∂X}, with the convention inf ∅ = +∞.
Then, let T1 = T0 + S1 be the first jump time and let U1 such that PU1 = Q(Φ(X0, S1), ·). We
can define, for t ∈ [T0, T1],

Xt =
{

Φ(X0, t) if t ∈ [T0, T1),
U1 if t = T1,

(2.15)

and so on for the subsequent intervals [T1, T2], [T2, T3], ...

Figure 2.14.: Illustrations of the flows and jumps for the coalescing colony model (left), the
metapopulation epidemic model (center) and the simple velocity-jump model
(right) proposed by [Shigesada et al., 1995], [Soubeyrand et al., 2009a] and
[Caillerie, 2017], respectively.
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2.2.1.5. Key Points of Mathematical Models in Population Dynamics

v Relatively concise deterministic models do not provide a full description of all the
biological and environmental drivers of population dynamics, but can be fitted to
data in a reasonable time span. The advantage of these models is that they can be
rapidly applied for endorsing a fast reaction after the detection of a new pathogen.

v Stochastic models of population dynamics can account for some inherent random-
ness but tend to be less tractable models from analysis and estimation perspectives.
The advantage of opting for a stochastic modeling approach is that it allows getting
more realistic and flexible realizations.

v The difficult task will be to find a convenient trade-off between deterministic and
stochastic models, bearing in mind that the purpose of the thesis research is to
provide a generic methodology (i.e., a method scalable to various invasive species)
that provides predictions for an invasive species dynamics, for which no dedicated
model is available and whose initial conditions (i.e., date and location of the intro-
duction of the invasive species) are unknown. Stratified dispersal models or PDMPs
appear as alternative models to achieve rapid, realistic and consistent inferences.
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2.2.2. Inferring Population Dynamics From Mathematical Models
2.2.2.1. Overview

Mathematical modeling approaches can contribute to understand population dynamics be-
cause one can interpret the parameters in the models and the relationships expressed be-
tween and among variables. Inferring population dynamics provides further relevant and
useful knowledge about model parameters that can be deduced from data. This is also
known as model calibration or solving inverse problems. In the following material, we will
only review the main methods applied to infer models in population dynamics described by
differential equations.

Traditionally, the estimation of parameters and any derived quantities have been carried
out using the Least-squares (LS) approach which have enjoyed an early history of applica-
tion [Weisberg, 1985]. A recent work of Li et al. [2019] inferred parameters using the LS
method in a nonlinear mean-reversion SDE model driven by Brownian motion for a popula-
tion growth model. With the increasing use of computers in mathematical analysis, the LS
approach was progressively replaced by the maximum-likelihood (ML) method [Burnham
et al., 1995]. In the present time, the Maximum Likelihood (ML) method is very widespread
[Müller et al., 2004, Timmer et al., 2004, Baker et al., 2005, Luzyanina et al., 2008, Roques
et al., 2016]. For instance, Roques et al. [2016] used the ML approach to infer diffusion rates
of a PDE-based population dynamics model, Luzyanina et al. [2008] estimated cell birth rate
in a cell population dynamics model also based on a PDE. In general, this approach provides
point estimates of model parameters and the sampling variance-covariance matrix or other
quantities related to estimation uncertainty.

Besides, in the past decade, Bayesian methods have been increasingly used in the field
of population dynamics. For example, Gillespie and Golightly [2010] estimated parame-
ters in a stochastic population growth model using an Markov Chains Monte Carlo (MCMC)
method; Heydari et al. [2014] proposed a Bayesian parameter estimation for stochastic lo-
gistic growth models; Gilioli et al. [2012] proposed a Bayesian inference method to estimate
parameters in a stochastic predator-prey system. Bayesian inference approaches have also
been applied to PDE-based population dynamics models. For instance, Spence et al. [2016]
estimated parameters of a PDE model for aquatic communities. Roques et al. [2011] esti-
mated the local fitness parameters and the diffusion parameter of a reaction-diffusion model
of population dynamics. Lanzarone et al. [2017] estimated the mortality rates coupling a
system of PDE to the MCMC algorithm. A joint estimation of such propagation characteris-
tics (diffusion rates, growth rates, mortality rates) and the initial condition (date and site
of the introduction) was proposed by Soubeyrand and Roques [2014] using a MCMC algo-
rithm with a simple reaction-diffusion model, and was applied to simulated data (i.e., data
collected over a temporal window covering a period after the introduction time). When one
only has at disposal post-introduction data, and if one aims to estimate the introduction
point, it is required to also estimate the propagation characteristics of the invasive species
(and vice versa), as suggested in Soubeyrand and Roques [2014], because these characteris-
tics link the introduction and the observations.

2.2.2.2. Inferential Statistical Methods

Inference about a certain parameter vector Θ can be made either in a frequentist framework,
which consists in assessing an objective point estimate Θ̂ of Θ given an appropriate model,
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or in a Bayesian framework, which technically consists in assessing the posterior distribution
[Θ|Y ] of Θ conditional on data Y. Philosophically, a posterior probability is to be interpreted
as a coherent judgment quantifying a subjective degree of uncertainty [Lindley, 2006]. The
benefit of the Bayesian approach is primarily to allow the incorporation of prior expertise
into the statistical analysis and the rigorous assessment of dependencies and uncertainties
in estimation (via the joint posterior distribution of parameters). Moreover, most people
better understand the direct probabilistic judgments about the unknowns provided by the
Bayesian paradigm when reporting uncertainty [O’Hagan, 2008]. In addition, the Bayesian
approach is computationally costly but leads to improved outcomes since it provides the joint
probability distribution of the unknowns given the observations and the prior knowledge,
thus providing complete information about the shape of the density and the uncertainty
about parameters, e.g., see Lanzarone et al. [2017].

Henceforth, we will keep using Gelfand’s bracket notation for probability distributions
[Gelfand and Smith, 1990]. The posterior distribution of the unknown, hereafter dubbed Θ,
is derived by Bayes’ rule:

[Θ|Y ] = [Y |Θ]× [Θ]
[Y ] ,

where [Y |Θ] is the conditional distribution of the data Y given the unknown Θ (i.e., the
likelihood function of the model); [Θ] is the prior distribution of Θ that depends on the ap-
plication; the distribution of Y , [Y ] =

∫
[Y |Θ][Θ]dΘ, may be a formidable integral, depending

on the dimension of the unknown Θ. However, modern Bayesian algorithms [Brooks, 2003]
avoid its computation by making recourse to Markov Chain (MC) techniques only based on
the un-normalized probability function [Y |Θ]× [Θ].

In what follows, we will present in a generic framework, the main statistical techniques
used to infer model parameters in both frequentist and Bayesian approaches, showing the
pros and cons of each approach.

2.2.2.2.1. Maximum-likelihood approach
Nowadays, the ML approach is the most widespread frequentist approach. This approach
provides an objective2, omnibus theory for estimation of model parameters and the sampling
covariance matrix [Burnham et al., 1995]. The likelihood is a real-valued function denoted
by L(Y ; Θ) = [Y |Θ] and is given by evaluating the joint probability of the observed data
sample Y = (y1, y2, . . . , yI) of size I given Θ. The primary goal of the ML approach is to
compute the global maximum of the likelihood function :

Θ̂ = argmax
Θ

L(Y ; Θ).

The likelihood is often a function of a large dimensional vector Θ and may have a compli-
cated surface with several local maxima, all of which may lead the optimization to get stuck
in local maxima [Dattner et al., 2017]. The most commonly used method to find the maxi-
mum likelihood is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) [Broyden, 1969, Fletcher,
1970, Goldfarb, 1970, Shanno, 1970] method, which belongs to Quasi-Newton methods.
The BFGS algorithm is implemented in computer software packages such as Matlab. In
complex settings, the search for acceptable optimum will require complex optimization al-

2Unlike Bayesian inference, the frequentist approach allows for a subjective choice of the estimator. However,
when this choice is made up, the frequentist approach is objective itself.
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gorithms, such as the simulated annealing algorithm [Kirkpatrick et al., 1983], in order to
converge to a global maximum.

2.2.2.2.2. Least-squares Approach
The LS approach [Legendre, 1805] targets the estimation of model parameters by minimiz-
ing the squared discrepancies between observed data Y and their expected values ui under
a specified model parameterized by Θ:

Θ̃ = min
Θ

( I∑
i=1

(yi − ui)2
)
.

LS estimation corresponds to maximum likelihood estimation when the noise is normally
distributed with equal variances.

Other fitting measures are sometimes preferred, for example, Least absolute deviations
(LAD) [Portnoy and Koenker, 1997], which is more robust to outliers. In addition, it is
worth noting that general frameworks, such as contrast estimation [Lánska, 1979, Dacunha-
Castelle and Duflo, 1982], embedding ML, LS, and LAD have been proposed to pool several
frequentist estimation approaches into a single setting providing general results about con-
vergence properties of estimators.

2.2.2.2.3. Markov Chain Monte Carlo Algorithms
Since the 1990s, the MCMC techniques have in majority been oriented towards Bayesian

inferences [Berliner, 2003, Lanzarone et al., 2017, Roques et al., 2011, Soubeyrand et al.,
2009a,b, Wikle, 2003a,b]. These computer-intensive techniques include a class of algorithms
for drawing samples from probability distributions [Gilks et al., 1996]. In the Bayesian con-
text, the chains provided by MCMC are supposed to converge to a stationary distribution:
the posterior distribution [Θ|Y ]. Once the stationarity is reached, the chain can be used
to sample from the posterior distribution of the parameters. The MCMC techniques can
adequately explore the space of the target distribution and find the regions with high prob-
ability, provided that the proposal distribution is well-chosen (neither diffusive nor focused)
to fastly reach the stationarity of the chain. In general, MCMC methods are more appropri-
ate for large dimensional problems than classical importance sampling methods [Robert and
Casella, 1998, Parent and Bernier, 2007].

Here, we briefly present the widely used versions of MCMC : Gibbs Sampler and the
Metropolis-Hastings algorithms. Conditions leading to the theoretical convergence of these
two widely used versions of MCMC , are described in Roberts and Smith [1994].

ä Metropolis-Hastings Sampler: Metropolis et al. [1953] proposed a sampler to construct
the Markov chains. Later, this sampler have been generalized by Hastings [1970]. Generally
speaking, the Metropolis-Hastings algorithm designs a Markov process by constructing tran-
sition probabilities from the proposal density which can be any chosen density from which
we can draw samples. Pseudo-code #1 describes the steps of the Metropolis-Hastings algo-
rithm.

ä Gibbs Sampler: The Gibbs sampler [Casella and George, 1992] is a method for sampling
from distributions over at least a parameters vector of two dimensions. It can be viewed as
a special case of the Metropolis-Hastings algorithm in which the proposal distributions are
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full conditional distributions. For this sampler to be usable, these conditional distributions
should be tractable, i.e., straightforward to sample from. Should this not be the case, and
in high dimensional problems, it is required to use other samplers such as the Metropolis-
Hastings algorithm. Pseudo-code #2 describes the steps of the Gibbs sampler.

Pseudo-code #1: Metropolis-Hastings Sampler

Suppose that π(Θ) is the density or probability mass function of the target distribution, e.g.
π(Θ) = [Θ | Y ]

1. Initialize the chain by setting an initial state Θ0 for the parameter vector Θ, such that
π(Θ0) 6= 0

2. At iteration m ≥ 1
a) Sample Θ∗ from the proposal distribution Θ∗ → g(Θ∗,Θm−1) and u from U([0, 1])
b) Compute the probability of acceptance α:

α = min
1, π(Θ∗)

π(Θm−1)
g(Θm−1|Θ∗)
g(Θ∗|Θm−1)

.
– If u ≤ α, then Θm = Θ∗
– If u > α, then Θm = Θm−1

Pseudo-code #2: Gibbs Sampler

1. Initialize the chain by setting an initial state Θ0 = (Θ1
0,Θ2

0, . . . ,ΘJ
0 ) for the parameter

vector Θ, such that: [Y |Θ0]× [Θ0] 6= 0

2. At iteration m ≥ 1
– Generate Θ1

m from the distribution [Θ1|Θ2
m−1, . . . ,Θ

j
m−1, . . . ,ΘJ

m−1, Y ]
– Generate Θ2

m from the distribution [Θ2|Θ1
m,Θ3

m−1, . . . ,Θ
j
m−1, . . . ,ΘJ

m−1, Y ]
– Generate Θj

m from the distribution [Θj|Θ1
m,Θ2

m, . . . ,Θj−1
m ,Θj+1

m−1, . . . ,ΘJ
m−1, Y ]

– Generate ΘJ
m from the distribution [ΘJ |Θ1

m,Θ2
m, . . . ,Θj

m, . . . ,ΘJ−1
m , Y ]

2.2.2.2.4. Classical Importance Sampling
Among MC methods, Importance sampling (IS) [Rubin, 1987, Ripley, 1987] consists of gen-
erating an initial sample of size M from a proposal distribution, and using this sample to pro-
vide an empirical approximation of the parameters posterior distribution via a final weighted
sample with respect to the integrated likelihood. This final sample {Θ̃m}M̃m=1 is obtained by
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resampling M̃ values with replacement from the initial sample of size M generated from the
proposal distribution, where the normalized importance weight w̃m is the sampling probabil-
ity of Θm. M and M̃ should be chosen large enough to best satisfy the law of large numbers.
Pseudo-code #3 describes the steps of the IS.

The appeal of IS remains in its solid theoretical foundations [Robert and Casella, 1998,
Parent and Bernier, 2007] (e.g., non-biased estimator, controlled variance) and its simple
implementation. In addition, the IS offers a framework to easily estimate the integrated
likelihood by averaging over the unnormalized weights computed in equation (2.16). How-
ever, to design efficient IS algorithms, the proposal distribution should be chosen as close as
possible to the posterior distribution. The posterior distribution being unknown, the crucial
choice of the proposal is a difficult task [Gelman et al., 1996, Roberts et al., 1997].

Pseudo-code #3: IS

1. Generate an initial sample {Θm}Mm=1 from the proposal distribution Θ→ g(Θ)

2. Compute the unnormalized importance weights as follows:

wm = [Θm|Y ]
g(Θm) , (2.16)

3. Normalize the weights:
w̃m = wm∑M

k=1 wk
, (2.17)

4. Sample with replacement {Θ̃m}M̃m=1 in {Θm}Mm=1 weighted by {w̃m}Mm=1.

2.2.2.2.5. Adaptive Multiple Importance Sampling Algorithm
The AMIS is an iterated importance sampling scheme [AMIS; Cornuet et al., 2012]. AMIS
consists of iteratively generating parameter vectors under an adaptive proposal distribution
and assigning weights to the parameter vectors. The main aim of the AMIS algorithm is
to overcome the difficulty related to the choice of the proposal distribution encountered in
classical MCMC and IS, by tuning the coefficients of the proposal distribution picked in a
parametric family of distributions, generally the Gaussian one, at the end of each iteration.

In this framework, at each iteration, new coefficient values for the proposal distribution
are determined using the current weighted posterior sample [Bugallo et al., 2015], then
the posterior sample is augmented by generating new replicates from the newly tuned pro-
posal distribution and the weights of the cumulated posterior sample are recomputed. The
algorithm is described in Pseudo-code #4.

The AMIS algorithm provides a weighted posterior sample {{Θl
m, w

l
m}Ll=1}Mm=1 of size ML,

which provides an empirical approximation of the posterior distribution [Θ|Y ]. Conditions
leading to the convergence in probability of the posterior mean of any function (integrable
with respect to the posterior distribution) of the parameters are described in Cornuet et al.
[2012], Marin et al. [2012] and are satisfied in our case. If in practice, the convergence of
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AMIS to the true posterior cannot be numerically demonstrated (because the true posterior
is not known), one can still assess its stabilization.

Like other adaptive importance sampling algorithms [Bugallo et al., 2015], AMIS can be
easily parallelized and its tuning parameters are automatically adapted across the algorithm
iterations, contrary to the basic MCMC and the ML approach. It has however to be noted that
AMIS has to be appropriately initialized, which can be relatively easily done in practice by
evaluating the marginal posterior distributions over 1D grids. Still, in regard with the compu-
tational cost, ML estimation could be an attractive option, even if the control of estimation
uncertainty is usually more convincing in the Bayesian framework. Using AMIS can yield
gains in computation time with respect to MCMC. From an example in population genetics,
Cornuet et al. [2012] observed that AMIS was six times faster than MCMC for providing sim-
ilar posteriors with slightly better repeatability in the case of AMIS (without parallelization).
The authors mentioned that AMIS is particularly interesting in cases where the likelihood is
computationally expensive because all particles simulated during the process are recycled,
which decreases the number of calls of the likelihood function.

Pseudo-code #4: AMIS

1. Set initial values µ0 and Σ0 for the mean vector and the variance matrix of the multi-
normal proposal distribution N (µ0,Σ0), whose probability density function is denoted
by Θ→ gµ0,Σ0(Θ).

2. At iteration m = 1, · · · ,M ,

a) Generate a new sample {Θl
m : l = 1 · · · , L} from the proposal distribution

N (µm−1,Σm−1).
b) Compute the un-normalized importance weights for the new sample as in Equation

(2.18), and re-compute the un-normalized weights for the previously generated
samples as in Equation (2.19):

w̃lm = [Y |Θl
m]× [Θl

m]
1
m

m∑
j=1

gµj−1,Σj−1(Θl
m)
, l = 1, · · · , L, (2.18)

w̃lε = [Y |Θl
ε]× [Θl

ε]
1
m

m∑
j=1

gµj−1,Σj−1(Θl
ε)
, ε = 1, · · · ,m− 1, l = 1, · · · , L, (2.19)

where gµj−1,Σj−1 is the probability density function of the multi-normal distribution
with mean vector µj−1 and variance matrix Σj−1.

c) Normalize the weights:

wlε = w̃lε
m∑
i=1

L∑
j=1

w̃ji

, ε = 1, · · · ,m, l = 1, · · · , L.
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d) Adapt coefficient values for the next proposal distribution as follows:

µm =
L∑
l=1

m∑
ε=1

wlεΘl
ε.

Σm =
L∑
l=1

m∑
ε=1

wlε(Θl
ε − µε)(Θl

ε − µε)t.

2.2.2.2.6. A brief comment on frequentist and Bayesian approaches
Here, we briefly comment the difference between the frequentist and Bayesian approaches
in terms of interpretation of results.

ä The frequentist approach describes the uncertainty about the value obtained through an
estimation procedure. In order to assess the reliability of the algorithmic-computation
procedure, one needs to make simulation studies using replicates of observation gener-
ated by the model, and repeat many times the estimation procedure.

ä The Bayesian approach assesses the remaining uncertainty about the unknowns, con-
ditionally to a unique observed dataset, and given a fundamental belief about their
possible variations. This is, therefore, a probabilistic judgment similar to a personnel
challenge with respect to the hypothetical value of these unknowns. There exist nu-
merous algorithms that allow computing the probability distribution relative to this
probabilistic judgment.

2.2.2.3. Key Points of Inferring Population Dynamics From Mathematical Models

v The Bayesian approach is generally computationally more costly than a frequen-
tist approach, but leads to improved outcomes since it systematically provides
the joint probability distribution of the unknowns given the observations and
the prior knowledge, thus providing complete information about the shape of
the density and the uncertainty about parameters.

v ML and LS estimation could be an attractive option, to regard with computa-
tional cost, even if the control of estimation uncertainty is usually more con-
vincing in the Bayesian framework. However, the likelihood function is often
multivariable and may have a complicated surface. Thus, the LS and ML ap-
proach may get stuck in local maxima.

v The MCMC techniques can adequately explore the parameter space to find the
regions with high posterior probability. In general, MCMC methods require
fewer iterations for the same level of accuracy than basic importance sampling
methods, provided that the proposal distribution is well-chosen to allow for fast
stationarity of the chain.

v Using AMIS is expected to allow gains in computation time with respect to
MCMC. In addition, AMIS can be easily parallelized and the parameters of the
proposal distribution are automatically adapted across the algorithm iterations,
contrary to the basic MCMC approach.
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2.2.3. Model Selection and Model-averaging
To statistically reconstruct the past and predict the future dynamics of pathogens, this dynam-
ics should be represented in a phenomenological and concise way. However, this approach
necessitates to ignore some processes and sources of variability involved in the epidemiolog-
ical dynamics, and models with various structures are likely to be considered as candidate
models. When the goal of the study is to make inferences and draw predictions, the use of
a single model is prone to prediction error because this model might not take into account
crucial drivers of the dynamics. This limitation can be circumvented by considering a family
of candidate models and applying a model selection strategy [Burnham et al., 1995] or a
model aggregation strategy [Hoeting et al., 1999].

2.2.3.1. Model Selection Methods

Numerous methods have been proposed as part of the model selection strategy, whether it is
for an explanatory or a predictive purpose. In this section, we focus on information criteria:
The Akaike’s information criterion (AIC)[Akaike, 1973] satisfies:

AIC = −2 log[Y |Θ̂] + 2k, (2.20)

where k is the number of model parameters, and Θ̂ is the maximum likelihood estimate of
the parameter vector Θ in the support S(Θ) of Θ:

Θ̂ = argmax
Θ∈S(Θ)

[Y |Θ].

The Bayesian information criterion (BIC)[Schwarz et al., 1978] satisfies:

BIC = −2 log[Y |Θ̂] + k log I, (2.21)

where I is the sample size.
The Deviance information criterion (DIC) satisfies:

DIC = D̄ + peff, (2.22)

where D̄ is the posterior mean of the devianceD(Θ) = −2 log[Y |Θ]+C (where C is a constant
that cancels out when one compares different models) and peff is the effective number of
parameters of the model. The difference in the two versions of the DIC considered here lies
in the calculation of peff. In the first version proposed by Spiegelhalter et al. [2002],

peff = pD = D̄ − D(Θ̄), (2.23)

where Θ̄ is the posterior mean of Θ: Θ̄ = E[Θ|Y ]. In the second version proposed by Gelman
et al. [2003],

peff = 1
2V(D(Θ)|Y ), (2.24)

where V(D(Θ)|Y ) is the posterior variance of D(Θ).
The Predictive information criterion (IC) of Ando [2011], which is supposed to solve over-
fitting issues, satisfies:

IC = D̄ + 2pD := 3D̄ − 2D(Θ̄). (2.25)
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The Widely Applicable Information Criterion (WAIC) [Watanabe, 2010, 2013], which is an
estimate of the expected log pointwise predictive density for a new dataset, satisfies:

WAIC = lppd− pWAIC,

where lppd is the log pointwise predictive density and pWAIC is an estimate of the effective
number of free parameters in the model. Let (Yq)q=1,··· ,Q be a division of the data Y . The
lppd is the logarithm of the predictive density integrated over the posterior distribution of
the model parameters summed over all the observations and is expressed as follows:

lppd =
Q∑
q=1

log
∫

[Yq|Θ]× [Θ|Y ]dΘ. (2.26)

To compute the lppd we use a sample of size n drawn from the posterior distribution of
Θ. n has to be chosen large enough to best approach the former distribution. Thus lppd is
calculated as follows:

lppd =
Q∑
q=1

log
(

n∑
i=1

[Yq|Θi]wi
)
. (2.27)

Two forms for pWAIC have been proposed in the literature. In the first approach, the pWAIC is
measured as follows:

pWAIC = 2
n∑
q=1

 log
(
E [Yq|Θ]

)
− E

(
log [Yq|Θ]

). (2.28)

In the second approach, the pWAIC is measured using the variance of individual terms in the
log predictive density summed over the Q subsets of data:

pWAIC =
Q∑
q=1

V
(

log[Yq|Θ]
)
. (2.29)

2.2.3.2. Bayesian Model-averaging Method

As part of the aggregation strategy, the BMA approach has been proposed by Leamer [1978]
to reduce and account for parameter and model uncertainties. This approach consists on
averaging over all the candidate models in a Bayesian way for weighting models [Raftery,
1996, Volinsky et al., 1997], combining multiple predictions and combining estimations to
infer shared parameters [Roberts, 1965, Madigan and Raftery, 1994, Wintle et al., 2003].
Theoretically, BMA provides better average predictive ability, as measured by a logarithmic
scoring rule, than using any single model [Madigan and Raftery, 1994]. The BMA efficiency
has been largely explored, in particular with respect to its theoretical properties [Rubin
and Schenker, 1986, Madigan and Raftery, 1994, Raftery and Zheng, 2003], leave-one-out
predictive performance [Madigan et al., 1995, Lamon and Clyde, 2000, Fernández et al.,
2002] and numerical performance [George and McCulloch, 1993, Clyde and George, 2000,
Viallefont et al., 2001]. While BMA is an intuitively attractive solution to the problem of
accounting for model uncertainty, it presents several difficulties related to its numerical im-
plementation [Hoeting et al., 1999]. By dint of some pioneering work implementing BMA
[Madigan and Raftery, 1994, Raftery, 1996, Volinsky et al., 1997], BMA has been applied
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in numerous study domains such as medicine [Oehler et al., 2009, Yin and Yuan, 2009],
ecology [Boone et al., 2005, 2008, Wintle et al., 2003], meteorology [Raftery et al., 2005],
genetics [Yeung et al., 2005], economical and political sciences [Eicher et al., 2011, Sidman
et al., 2008], engineering and physical sciences [Raftery et al., 2010, Parkinson and Liddle,
2013] and epidemiology [Viallefont et al., 2001]. Despite ample literature on BMA and its
usefulness, it has only been marginally applied in the context of predictive epidemiology.

Briefly, the BMA consists in computing the average of the posterior distribution of the
variable of interest ∆ provided under all the competing models {Mj; j = 1, · · · , J} and
weighted by the posterior model probabilities [Raftery, 1996, Hoeting et al., 1999]. ∆ is
typically a set of shared parameters or a future observation. The BMA posterior distribution
of ∆ given training data Y satisfies:

[∆|Y ] =
J∑
j=1

[∆|Y,Mj]× [Mj|Y ].

The posterior model probability ofMj is

[Mj|Y ] = [Y |Mj]× [Mj]∑J
j′=1[Y |Mj′ ]× [Mj′ ]

. (2.30)

The integrated likelihood [Y |Mj ] ofMj, which may be a formidable integral, depending on
the dimension of the unknown Θ, satisfies:

[Y |Mj] =
∫

[Y |Θj,Mj]× [Θj|Mj]dΘj, (2.31)

where Θj is the vector of parameters ofMj; [Y |Θj,Mj] is the likelihood under modelMj;
the prior distribution of Θj is denoted by [Θj|Mj] and [Mj] is the prior probability of Mj.
Thus, we clearly see with these formulas how Bayesian model averaging takes into account
uncertainties about the model form. The posterior mean of ∆ is likewise a weighted average
of the posterior means in the separate component models,

E[∆|Y ] =
n∑
i=1

[Mj|Y ]× E[∆|Mj, Y ]. (2.32)

Similarly, the posterior variance may be expressed via the formula:

V[∆|Y ] =
J∑
j=1

[Mj|Y ]×
V[∆|Mj, Y ] +

(
E[∆|Mj, Y ]− E[∆|Y ]

)2
. (2.33)

Based on the ample literature on model-averaging, we expect this technique to provide ame-
liorated predictions and a more realistic estimate of the uncertainty related to model predic-
tions than any single model. In addition, the BMA can be used for a direct model comparison
by computing model posterior probabilities which are equal to model weights [Hoeting et al.,
1999, Draper, 1995, Wintle et al., 2003].
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2.2.3.3. Key Points of Model Selection and Model-averaging

v Models with various structures are likely to be considered as candidate models
for a given epidemics.

v When the goal of the study is to make inferences and draw predictions, the
use of a single model is prone to prediction error because this model might
not take into account crucial drivers of the dynamics. This limitation can be
circumvented by considering a family of candidate models and applying a model
selection strategy or a model aggregation strategy.

v Model selection strategy is an intuitive, relatively fast strategy. However, ignor-
ing uncertainties involved in model selection leads to over optimistic outputs.

v BMA is a computer-intensive technique that is expected to give more realistic
inferences and ameliorated predictions than a single model.
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3. A mechanistic-statistical approach to
infer for spatio-temporal population
dynamics

This chapter introduces a published article1 cited hereafter:
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Major Components of The Chapter

Post-introduction Data on Xf
v „8000 plants sampled between 2015-2017 of which 800

have been diagnosed as infected (real-time PCR).

v For those „ 8000 plants, geographic coordinates and sam-
pling dates are available.

v T : average of the minimum daily temperature over January
and February b/n 1995 and 2003 (Map of T with 1 km grid
resolution on the right).
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Mechanistic-statistical Approach
v Couple the reaction-diffusion-absorption model with the prob-

abilistic model describing the observation process.

v Use Bayesian inference procedure via the AMIS algorithm.

v Jointly infer initial conditions and parameters of the dynamics
and select the threshold of temperature using various infor-
mation criteria.

Methodological Ingredients

I- Biological Questions

v Tackle the problem of recovering the location and time
of the introduction of a pathogen for which only post-
introduction data are available.

v Get more insights on the pathogen epidemiology in or-
der to adapt surveillance strategies.

tzentzentzen

II- Methodological Questions

v Estimate the initial conditions using observational par-
tial data.

v Jointly estimate the introduction spot and the propaga-
tion characteristics, because these characteristics link
the introduction to the observation.

v Choose an adequate statistical inference procedure
that is capable of ensuring the adequacy between
model and data in a reasonable time span.
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Selection of the threshold of temperature
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Main Results

Conclusion

v Initial conditions and model parameters related to diffusion, reproduction, and
mortality are jointly estimated in a Bayesian framework to assess for parameter
uncertainties. The threshold of temperature was selected using different selec-
tion criteria.

v Goodness-of-fit tests have been conducted to check the adequacy between the
model and the observed data.

v The conducted analysis tend to show that the introduction of Xf in South Corsica
has probably occurred near Ajaccio in 1959, long time before its first detection.
Results obtained for the introduction date are consistent with the results in the
literature.

gshhqdhq

Perspectives

v Use alternative representation of disease propagation to account for more epi-
demiological and environmental drivers such as long distance dispersal events
and seasonality.

v Refine the definition of the spatial partition by using additional relevant environ-
mental variables, other than the daily winter temperature.

v Incorporate into the model the possibility of multiple introductions of the
pathogen.

v Account for uncertainties about model forms.

Conclusion & Perspectives

3.1. Graphical Summary
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1 Introduction

Biological invasions have long been an important topic for biologists and mathemati-
cians because of their impact on the environment, indigenous species, and health of
humans, animals and plants (Andow et al. 1990, 1993; Baker 1991; Hengeveld 1989;
Kermack andMcKendrick 1927; Richardson andBond 1991; Simberloff 1989;Ander-
son et al. 1996; Shigesada andKawasaki 1997;Weinberger 1978). Biological invasions
are generally viewed as the result of a process with four stages: arrival, establishment,
spread and concentration (Reise et al. 2006; Vermeij 1996). Each stage of the inva-
sion process has been a core topic in mathematical modeling since the mid-twentieth
century (Fisher 1937; Mollison 1977; Okubo 1980; Shigesada et al. 1995; Skellam
1951), and better understanding processes governing invasions is chiefly relevant for
improving surveillance and control strategies. In particular, extensive researches have
been conducted in the intents of reconstructing the past dynamics (Boys et al. 2008;
Roques et al. 2016; Soubeyrand and Roques 2014) of alien species and predicting
their future spatial extents (Chapman et al. 2015; Peterson et al. 2003). In this con-
text, partial differential equations offer a rich and flexible framework that has been
applied to a large number of invasions (Gatenby and Gawlinski 1996; Lewis, MA and
Kareiva, P 1993; Murray 2002; Okubo and Levin 2002; Turchin 1998). Even though
a partial differential equation does not describe all the processes involved in an eco-
logical dynamics, it can help in understanding its important properties and inferring
its major components, such as dates and sites of invasive-species introductions.

Consider as an example the emergence ofXylella fastidiosa (Xf), a phytopathogenic
bacterium detected in South Corsica, France, in 2015 and currently present in a large
part of this island (Denancé et al. 2017b; Soubeyrand et al. 2018). This plant pathogen
has the potential to cause a major sanitary crisis in France, typically like in Italy,
where a large number of infected olive trees dried and died, causing serious damages
to olive cultivation. To avoid such a situation, the French General Directorate of Food
(DGAL) implemented enhanced control and surveillancemeasures after the first in situ
detection of Xf in Corsica, which generated a data set consisting of a spatio-temporal
point pattern (i.e. the locations and dates of plant samples) marked by a binary variable
indicating the result of the diagnostic test (i.e. indicating if the plant sample is positive
or negative to Xf).

In this example, only post-introduction data are available (i.e. data collected over a
temporal window covering a period after the introduction time), and we precisely pro-
pose in this article an approach for estimating the date and the site of the introduction
using such observational partial data. It has however to be noted that estimating the
introduction point from post-introduction data requires the estimation of the propaga-
tion characteristics of the invasive species (and vice versa) because these characteristics
link the introduction and the observations. Thus, in this paper, we aim at jointly esti-
mating the date and site of the introduction, and other parameters related to growth,
dispersal and death that govern the post-introduction dynamics.

Such a joint estimation was proposed by Soubeyrand and Roques (2014) with a
simple reaction–diffusion model and was applied to simulated data. It was developed
in a mechanistic-statistical framework that has often been used to describe and infer
ecological processes. This framework combines amechanistic model for the dynamics
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of interest, a probabilistic model for the observation process and a statistical procedure
for estimating model parameters (Berliner 2003; Lanzarone et al. 2017; Roques et al.
2011; Soubeyrand et al. 2009a, b; Wikle 2003a, b). We adapted this framework for
dating and localizing the introduction of an invasive species by taking into account
spatial heterogeneities in growth andmortality. Precisely, we built amechanisticmodel
yielding the probability for the invasive species to occupy any spatial units at any time.
This spatio-temporal function, with values in [0, 1], satisfies (i) a reaction–diffusion
equation that describes the spread of the alien species in a sub-domain of the study
domain and (ii) a diffusion–absorption equation that describes the dispersal and the
death of the alien species in the complementary sub-domain. Typically, the partition
into the two sub-domains can be determined by environmental variables affecting the
growth andmortality of the invasive species (e.g. host/non-host environment, low/high
winter temperature, andpresence/absence of nutrients). In addition, ourmodel assumes
that there is only one introduction point (in time and space) that governs the emergence
of the invasive species and that eventual other introduction points have negligible
effects on the dynamics.

Estimation ofmodel parameters, including the time and the location of the introduc-
tion, is carried out in the Bayesian framework with the adaptive multiple importance
sampling algorithm (AMIS; Cornuet et al. 2012). Ourmainmotivation for usingAMIS
is the gain in computation time with respect to Markov chain Monte Carlo (MCMC)
often used in the mechanistic-statistical framework (see references above). From an
example in population genetics, Cornuet et al. (2012) observed that AMIS was 6 times
faster than MCMC for providing similar posteriors with a slightly better repeatabil-
ity in the case of AMIS (without parallelization). The authors mentioned that AMIS
is particularly interesting in cases where the likelihood is computationally expen-
sive (like in our case) because all particles simulated during the process are recycled,
whichminimizes the numbers of calls of the likelihood function. In addition, like other
adaptive importance sampling algorithms (Bugallo et al. 2015), AMIS can be easily
parallelized and its tuning parameters are automatically adapted across the algorithm
iterations.

In our framework, the two sub-domains, where the reaction–diffusion and
diffusion–absorption equations are defined, are obtained by thresholding a spatial
variable. The threshold value is determined with a selection criterion. Four criteria are
considered: the Bayesian information criterion (BIC; Schwarz et al. 1978), two ver-
sions of the deviance information criteria (DIC; Gelman et al. 2003; Spiegelhalter et al.
2002) and a predictive information criterion (IC; Ando 2011). In the Xf case study,
the two sub-domains are defined by thresholding the average of the minimum daily
temperature in January and February, the two coldest months of the year in Corsica.
Indeed, winter temperature has been inferred as an important environmental factor
governing the dynamics of Xf and the level of disease severity caused by Xf (Costello
et al. 2017; Feil et al. 2003; Feil and Purcell 2001; Henneberger 2003; Purcell 1977;
Purcell et al. 1980). For instance, isolines for the average minimum daily temperature
in January have been shown to be quite consistent with regions in the United States
that are exposed to different levels of severity of the Pierce’s disease of grape caused
by Xf (Anas et al. 2008).
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The paper is structured as follows. The hierarchical modeling framework coupling
a partial differential equation and a Bernoulli observation is described in Sect. 2.
Bayesian inference for parameter estimation grounded on the AMIS algorithm and
model selection are also presented in this methodological section. The results obtained
from surveillance data for Xf in the case study (Corsica) are provided in Sect. 3. In
Sect. 4, we summarize and discuss our work.

2 Themechanistic-statistical approach

2.1 Process model

Models based on parabolic partial differential equations have often been used to
describe biological invasions (Skellam 1951; Shigesada et al. 1995; Shigesada and
Kawasaki 1997; Okubo 1980). Here, we are interested in the invasion of a pathogen,
that spreads in a domain Ω included in R2. We assume that there is only one single
introduction point in time and space that triggered the invasion and that eventual sub-
sequent introductions have negligible effects on the dynamics and are therefore not
incorporated into the model. Furthermore, to account for spatial heterogeneity in the
reproduction regime of the pathogen, we divide Ω into two sub-domains, say Ω1 and
Ω2, such that Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and different growth terms apply to Ω1
and Ω2.

More formally, the spread of the pathogen is described by a coupled model gov-
erning the probability u(t, x) of a host located at site x = (x1, x2) ∈ Ω to be infected
at time t . This model is grounded on two particular types of parabolic partial differ-
ential equations: (i) a reaction–diffusion equation in Ω1 where the growth is logistic
(Verhulst 1838) and (ii) a diffusion–absorption equation in Ω2 where only dispersal
and death events occur. The probability u(t, x) satisfies:

⎧
⎪⎪⎨

⎪⎪⎩

∂u

∂t
= DΔu + bu

(
1 − u

K

)
1(x ∈ Ω1) − αu1(x ∈ Ω2), t ≥ τ0, x ∈ Ω,

∇u(t, x).n(x) = 0, t ≥ τ0, x ∈ ∂Ω,

u(τ0, x) = u0(x) ≥ 0, x ∈ Ω,

(1)

where D > 0 is the diffusion coefficient; b corresponds to the intrinsic growth rate of
the pathogen infection in Ω1; K ∈ (0, 1] is a plateau for the probability of infection
(i.e. an analogue to the carrying capacity of the environment); α is the decrease rate

of the infection in Ω2; Δ = ∂2

∂x21
+ ∂2

∂x22
is the 2-dimensional diffusion operator of

Laplace; x �→ 1(x ∈ Ωi ) is the characteristic function taking the value 1 if x ∈ Ωi

and 0 otherwise; τ0 ∈ R is the introduction time of the pathogen. As explained in
the introduction, the sub-domains Ω1 and Ω2 are defined by thresholding a spatial
function, say T , with the threshold value T̃ that is hold fixed: Ω1 = Ω1(T , T̃ ) = {x ∈
Ω : T (x) > T̃ } and Ω2 = Ω2(T , T̃ ) = {x ∈ Ω : T (x) ≤ T̃ }.

In our framework, the initial condition u0 models the introduction of the pathogen
in the study domain. Here, the introduction represents the initial phase of the outbreak
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corresponding to the arrival of the pathogen and its local establishment. Thus, u0 is
not expressed as a Dirac delta function but as a kernel function centered around the
central point of the introduction x̃0 = (x̃0, ỹ0) ∈ Ω . More precisely, the probability
of a host at x to be infected at τ0 satisfies:

u0(x) = p0 exp

(

−‖x − x̃0‖2
2σ 2

)

(2)

where p0 is the infection probability at (τ0, x̃0), σ 2 = r20
q , q is the 0.95-quantile of

the χ2 distribution with two degrees of freedom, and r0 is the radius of the kernel.
Thus, at τ0, if we neglect border effects, 95% of the infected plants are located within
the ball with center x̃0 and radius r0. Assuming in addition reflecting conditions on
the boundary ∂Ω of Ω , the system of equations (1) is well-posed (Evans 1998). In
addition, by constraining p0 in [0, K ], the principle of parabolic comparison (Protter,
MH and Weinberger, HF 1967) implies that the solution of (1) is also in the interval
[0, K ].
Remark We adopted a parsimonious approach consisting of modeling the probability
of a host to be infected (i.e., the local quantity of infected host units over the local total
quantity of host units) instead of the dynamics of the pathogen in the host population
(i.e., the local quantities of susceptible, exposed, infectious and removed host units).
This choice allowed us, in particular, to ignore eventual spatial heterogeneity in host
abundance and to reduce the number of unknown parameters.

2.2 Datamodel

Let ti ∈ R denote the sampling time of host i ∈ {1, . . . , I }, I ∈ N∗, xi ∈ Ω its
location and Yi ∈ {0, 1} its sanitary status observed at time ti (1 for infected, 0 for
healthy). Conditionally on u, T and {(ti , xi ) : 1 ≤ i ≤ I }, the sanitary statuses Yi ,
i ∈ {1, . . . , I }, are assumed to be independent random variables following Bernoulli
distributions with success probability u(ti , xi ):

Yi | u, T , {(ti , xi ) : 1 ≤ i ≤ I } ∼
indep.

Bernoulli(u(ti , xi )), (3)

where u depends on parameters D, b, K , α, τ0, x̃0, r0, p0 and T̃ .

Remark This simple data model could be modified to account for factors classically
encountered in epidemiology, e.g. false-positive and false-negative observations, and
spatial and temporal dependencies not accounted for in the process model. In the real
case study tackled in this article, each observed host was sampled only once. In a
case where hosts could be sampled several times, a temporal dependence should be
introduced in the observation process to account for, e.g., the within-host persistence
of the pathogen.
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2.3 Parameter estimation with an adaptive importance sampling algorithm

Inference about the parameter vector Θ = (D, b, K , α, τ0, x̃0, r0, p0) is made in the
Bayesian framework, which technically consists in assessing the posterior distribution
[Θ|Y ] of Θ conditional on sanitary statuses Y = {Yi : 1 ≤ i ≤ I }. The parameter
T̃ will be treated later in Sect. 2.4 via model selection. Philosophically, a posterior
probability is to be interpreted as a coherent judgment quantifying a subjective degree
of uncertainty (Lindley 2006).

In what follows, we will keep using Gelfand’s bracket notations for probability
distributions (Gelfand and Smith 1990). The posterior distribution of the unknown,
hereafter dubbed Θ , is derived by Bayes’ rule:

[Θ|Y ] = [Y |Θ] × [Θ]
[Y ] ,

where
[Y |Θ] is the conditional distribution of the data Y given the unknown Θ (i.e. the

likelihood function of the model) that satisfies [using Eq. (3)]:

[Y |Θ] =
I∏

i=1

u(ti , xi )Yi (1 − u(ti , xi ))1−Yi ; (4)

[Θ] is the prior distribution of Θ that depends on the application and that will be
specified in Sect. 3; the distribution of Y , [Y ] = ∫ [Y |Θ][Θ]dΘ , may be a formidable
integral, depending on the dimension of the unknown Θ . However, modern Bayesian
algorithms (Brooks 2003) avoid its computation by making recourse to Monte Carlo
techniques only based on the un-normalized probability function [Y |Θ] × [Θ]. Yet,
the computation of [Y |Θ] itself requires the value of the solution u of Eq. (1) for any
valid parameter vector Θ . This equation admits a unique solution for any fixed and
valid Θ , but cannot be solved analytically. Hence, we make recourse to a standard
finite-element method with the software Freefem++ (Hecht 2012); see Sect. 2.5.

For themechanistic-statisticalmodel defined above, the posterior distribution [Θ|Y ]
cannot be expressed analytically due to its intractable normalizing constant, but one
can draw a sample under this distribution using an adequate algorithm for Bayesian
inference. The so-called posterior sample [Θ|Y ] is then used to numerically charac-
terize all that we know about Θ after data assimilation. Here, we use the adaptive
multiple importance sampling (AMIS; Cornuet et al. 2012) algorithm, that consists of
iteratively generating parameter vectors under an adaptive proposal distribution and
assigning weights to the parameter vectors. To design efficient importance sampling
algorithms, the auxiliary proposal distribution should be chosen as close as possible
to the posterior distribution. However, the posterior distribution being unknown, the
crucial choice of the proposal is a difficult task (Gelman et al. 1996; Roberts et al.
1997). Themain aim of theAMIS algorithm is to overcome this difficulty by tuning the
coefficients of the proposal distribution picked in a parametric family of distributions,
generally the Gaussian one, at the end of each iteration.
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In this framework, at each iteration, new coefficient values for the proposal dis-
tribution are determined using the current weighted posterior sample (Bugallo et al.
2015), then the posterior sample is augmented by generating new replicates from the
newly tuned proposal distribution and the weights of the cumulated posterior sample
are recomputed. The algorithm can be described as follows:

1. Set initial values μ0 and Σ0 for the mean vector and the variance matrix of the
multi-normal proposal distributionN (μ0,Σ0), whose probability density function
is denoted by Θ → gμ0,Σ0(Θ).

2. At iteration m = 1, · · · , M ,

(a) Generate a new sample {Θ l
m : l = 1 · · · , L} from the proposal distribution

N (μm−1,Σm−1).
(b) Compute the un-normalized importance weights for the new sample as in

Eq. (5), and update the un-normalized weights for the previously generated
samples as in Eq. (6):

w̃l
m = [Y |Θ l

m] × [Θ l
m]

1

m

m∑

j=1
gμ j−1,Σ j−1(Θ

l
m)

, l = 1, · · · , L (5)

w̃l
ε = [Y |Θ l

ε] × [Θ l
ε]

1

m

m∑

j=1
gμ j−1,Σ j−1(Θ

l
ε)

, ε = 1, · · · ,m − 1, l = 1, · · · , L, (6)

where gμ j−1,Σ j−1 is the probability density function of the multi-normal dis-
tribution with mean vector μ j−1 and variance matrix Σ j−1.

(c) Normalize the weights:

wl
ε = w̃l

ε

m∑

i=1

L∑

j=1
w̃

j
i

, ε = 1, · · · ,m, l = 1, · · · , L.

(d) Adapt coefficient values for the next proposal distribution as follows:

μm =
L∑

l=1

m∑

ε=1

wl
εΘ

l
ε

Σm =
L∑

l=1

m∑

ε=1

wl
ε(Θ

l
ε − με)(Θ

l
ε − με)

t .

The AMIS algorithm provides a weighted posterior sample {{Θ l
m, wl

m}Ll=1}Mm=1 of size
ML , which provides an empirical approximation of the posterior distribution [Θ|Y ].
Conditions leading to the convergence in probability of the posterior mean of any
function (integrable with respect to the posterior distribution) of the parameters are
described in Cornuet et al. (2012) and are satisfied in our case.
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If in practice, the convergence of AMIS to the true posterior cannot be numerically
demonstrated (because the true posterior is not known), one can assess its stabilization

by evaluating the variation in the following deviation measure between the assess-
ments of the posterior distribution at iteration m − 1 and m > 1:

MG(m − 1,m) = max
c∈G

|pm(c) − pm−1(c)|,

where pm(c) denotes the assessment at iteration m of the posterior probability that Θ
is in the sub-domain c ⊂ R8 of the parameter space, i.e.

pm(c) =
m∑

m′=1

L∑

l=1

wl
m′1(Θ l

m′ ∈ c),

and G is a partition of a sub-space of the parameter space. The definition of G depends
on the application and will be given in the Results section.

We implemented AMIS in the R statistical software, except for solving the PDE,
which was performed by calling the Freefem++ software from R each time a new
parameter vector was proposed. Parallel computation was performed: the estima-
tion procedure for a fixed value of T̃ took approximately 1.75 days with (M, L) =
(50, 104) and the use of 100 computer cores.

2.4 Choice of T̃with amodel selection procedure

Implementation constraints concerning the partition of the study domain which
depends on the threshold T̃ , led us to proceed by two separate steps: (i) to infer
model parameters for different fixed values of T̃ and, then, (ii) to select the value of
T̃ having the largest support of data (this amounts to selecting a model within a class
of models characterized by T̃ ). Thus, for each element T̃a in {T̃1, . . . , T̃A} ⊂ RA,
A ∈ N∗, we carried out the estimation procedure described in Sect. 2.3 by instancing
T̃ at the value T̃a and letting it fixed. Then, the best value of T̃ is chosen byminimizing
some criteria classically used for model selection: here we rely on the Bayesian Infor-
mation criterion (BIC; Schwarz et al. 1978), two Deviance information criteria (DIC;
Spiegelhalter et al. 2002; Gelman et al. 2003) and a predictive Information Criterion
(IC; Ando 2011). We use different selection criteria in order to report the variability
of the selected T̃ when different hypotheses are made about which the best model is,
if any.

The BIC satisfies:

BIC = −2 log[Y |Θ̂] + k log I , (7)

where I is the sample size, k is the number of model parameters (in our setting, k is the
same for all the models), and Θ̂ is the maximum likelihood estimate of the parameter
vectorΘ in the support S(Θ; T̃a) ofΘ defined by the prior distribution (in our setting,
this support depends on the fixed value T̃a of T̃ ):
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Θ̂ = argmax
Θ∈S(Θ;T̃a)

[Y |Θ].

The DIC satisfies:

DIC = D̄ + peff, (8)

where D̄ is the posterior mean of the deviance D(Θ) = −2 log[Y |Θ] + C (where
C is a constant that cancels out when one compares different models) and peff is the
effective number of parameters of the model. The difference in the two versions of
the DIC considered here lies in the calculation of peff. In the first version proposed by
Spiegelhalter et al. (2002),

peff = pD = D̄ − D(Θ̄), (9)

where Θ̄ is the posterior mean of Θ: Θ̄ = E[Θ|Y ]. In the second version proposed
by Gelman et al. (2003),

peff = 1

2
V(D(Θ)|Y ), (10)

where V(D(Θ)|Y ) is the posterior variance of D(Θ). The IC of Ando (2011), which
is supposed to solve over-fitting issues, satisfies:

IC = D̄ + 2pD := 3D̄ − 2D(Θ̄). (11)

In practice, the different terms appearing in the four criteria, namely Θ̂ , Θ̄ , D̄ and
V(D(Θ)|Y ), are replaced by their empirical values using the weighted posterior sam-
ple {{Θ l

m, wl
m}Ll=1}Mm=1 provided by the application of the AMIS algorithm.

2.5 Numerical equation solving

For the application, computations for solving the PDE were carried out with the
software Freefem++ (Hecht 2012). A Finite Element Method was used. The non-
linearity has been treated with a Newton-Raphson algorithm applied to the variational
formulation of Equation (1), by instancing the criterion of convergence at the value
10−10. The solution was approximated by a piecewise linear and continuous function.
The time resolutionwas based on an adaptive step size using a backward Eulermethod.
Supplementary Figure S1 shows the spatial discretization composed of 4791 nodes
that has been used in the application in Sect. 3. With this mesh, the average computa-
tion time for one simulation is 55 s. We explored the effect of the spatial discretization
by comparing the numerical solutions of the equation obtained with the 4791 nodes
mesh and with a finer mesh composed of 10703 nodes. The solutions were computed
for the set of parameters corresponding to the posterior maximum (Supplementary
Material S4 shows the time continuous dynamics for this set of parameters). Supple-
mentary Figure S2 shows very close simulation results for both meshes. Moreover,
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we investigated the numerical error of system 1 by using the indicator, norm ||u||H2

which is classically considered to control the H1-error (Allaire 2008). Using the mesh
composed of 4791 nodes leads to a numerical error around 0.02 corresponding to a
satisfying accuracy for our application.

3 Application to the dynamics of Xylella fastidiosa in South Corsica

3.1 Surveillance data

For this application, we use spatio-temporal binary data on the presence of Xylella
fastidiosa (Xf) collected in South Corsica, France, from July 2015 to May 2017.
Over this period, approximately 8000 plants were sampled, among which 800 have
been diagnosed as infected (with a real-time polymerase chain reaction (PCR) tech-
nique; Denancé et al. 2017b). Available data for each sampled plant are its spatial
coordinates, its sampling date (which is unique) and its health status at the sam-
pling date. Coordinates and health statuses at the sampling times are shown in
Fig. 1.

3.2 Model specifications

As mentioned in the introduction, we use temperature data to divide the spatial
domain into two sub-domains. We exploit a freely available database (PVGIS ©
European Communities, 2001–2008) providing, in particular, monthly averages of
the daily minimum temperature reconstructed over a grid with spatial resolution
of 1×1km (Huld et al. 2006); these monthly averages correspond to the period
1995-2003, but we used them as references over the period covered by our mod-
els. We use these data to build the average of the daily minimum temperature
over January and February, say T (x) for any location x; see Fig. 1. T (x) is then
used to split the study domain into two parts: one part where T (x) ≤ T̃ and the
growth of Xf is hampered by cold winter temperatures, and the other part where
T (x) > T̃ and the growth of Xf is not hampered. The threshold value T̃ will
be selected in the set {4.0, 4.2, 4.4, . . . , 6.0}, in Celsius degrees. Panels of Fig. 2
display the partitioning of the study domain induced by the different values of
T̃ .

The prior distribution for Θ combines vague uniform distributions and Dirac dis-
tributions:

[Θ] = 1

(108 − 50) × 100 × 1 × 100 × 1000 × |Ω1|
×1(D∈[50; 108], b∈[0; 100], K∈]0; 1], α∈[0; 100], τ0∈[−1000; 0], x̃0∈Ω1)

× Dirac5000(r0) × Dirac0.1(p0),

where |Ω1| is the area of Ω1 and Diracb(B) is equal to 1 if B = b, and 0 other-
wise. The Dirac distribution for T̃ was chosen to deal with implementation issues
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Fig. 1 Locations of plants, sampled from July 2015 to May 2017, that have been detected as positive (red
dots) or negative (green dots) to Xylella fastidiosa in South Corsica, France, and map of the average of the
daily minimum temperature (in Celsius degrees) over January and February reconstructed over a grid with
spatial resolution of 1×1km (blue–white color palette) (color figure online)

explained in Section 2.4. We chose Dirac prior distributions for r0 and p0 in the
aim of precisely defining what is an introduction (see Section 2.1) and imposing
the same intensity level and spatial extent for the introduction in all the models in
competition. For D, b, K and α, we specified vague uniform priors satisfying con-
straints of positivity. In addition, the plateau K had to be less than 1, as indicated
in Sect. 2.1. For the introduction time τ0, we chose a uniform distribution between
−1000 months and 0 month before the first detection of Xf in South Corsica. Note
that, using a temporal model and aggregated data, Soubeyrand et al. (2018) inferred
an introduction date around −360 months before the first detection of Xf in South
Corsica. Finally, the introduction location x̃0 was supposed to be uniformly dis-
tributed in Ω1, the sub-domain where the conditions are favorable for the expansion
of Xf.
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Fig. 2 Partition of the study domain Ω into the sub-domains Ω1 and Ω2 with respect to the value of
T̃ in {4.0, 4.2, 4.4, . . . , 6.0}, in Celsius degrees. Red and green dots give the locations of infected and
non-infected samples (color figure online)

3.3 Selection of the temperature threshold

The spatio-temporal models corresponding to different values of T̃ ranging from 4
to 6◦C were fitted to data using the estimation approach presented in Sect. 2.3 (with
(M, L) = (50, 104)) and were compared with the four selection criteria introduced
in Sect. 2.4. The values of the criteria are displayed in Fig. 3. The smallest BIC value
was obtained for T̃ = 5.0 ◦C. The smallest DIC value based on the computation
proposed by Spiegelhalter et al. (2002) and the smallest IC values were obtained
for T̃ = 5.4 ◦C. The smallest DIC value based on the computation proposed by
Gelman et al. (2003) was obtained for T̃ = 5.6 ◦C. Except the BIC, which only
measures the adequacy between the model and data at the posterior mode of the
parameter vector, each of the three other criteria takes quite close values around T̃ =
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Fig. 3 Values of the four selection criteria (BIC, DIC1 of Spiegelhalter et al. (2002), DIC2 of (Gelman et al.
2003), IC of Ando (2011)) for different thresholds of temperature T̃ ranging from 4 to 6 ◦C. Non-linear
transformations of the y-axis were applied to facilitate the identification of the lowest values of the criteria

5.4 ◦C (typically from 5.0 to 5.6 ◦C). In what follows, we present the results obtained
with the model corresponding to the threshold T̃ = 5.4 ◦C, which is a satisfying
compromise.

3.4 Stabilization of the AMIS algorithm

Figure 4 gives the variation in MG(m − 1,m) for different partitions G allowing
us to assess the stabilization of all the 2D posterior distributions of parameters (see
Sect. 2.3 for the definition of the deviation measureMG). For each pair of parameters,
G was defined as the set of infinite cylinders with rectangular bases whose orthogonal
projection in the 2 dimensions of interest forms a 60×60 regular rectangular grid. In
each dimension of interest, the endpoints of the grid were set at the minimum and
maximum values of the corresponding parameter having a weight wl

M larger than
10−5 (the 2D posterior distributions over these 60×60 grids are displayed in Fig. 5).
Figure 4 shows the stabilization of all the 2D posterior distributions after iteration
21.
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Fig. 4 Variation in the deviation measure MG (m − 1,m) between the assessments of the posterior dis-
tribution at iteration m − 1 and m > 1 of the AMIS algorithm. MG(m − 1,m) is plotted for different
partitions G allowing the assessment of the stabilization of all the 2D posterior distributions of parameters
D, b, K , α, x̃0, ỹ0 and τ0

3.5 Posterior distribution of parameters

Marginal and 2D posterior distributions of parameters are displayed in Figs. 5, 6 and 7.
The introduction of Xf tends to be relatively ancient (posterior median: −680 months
before July 2015, i.e. introduction around 1959; posterior mean −681 months) but
also relatively uncertain (posterior standard deviation: 179 months). This uncertainty
has to be regarded in the light of the relatively high posterior correlation between τ0
and the reaction–diffusion–absorption parameters D, b and α. Acquiring knowledge
about D, b and α could help in eliciting informative priors for these parameters and
obtain a less uncertain estimation of the introduction date. Based on our analysis, the
introduction probably occurred around Ajaccio or the surrounding municipalities in
the East, North and North-East (Right panel of Fig. 6). Figure 7 and Table 1 show
posterior distributions and statistics of D, b, K and α. In particular, we observe that
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Table 1 Posterior medians, means and standard deviations of parameters of the reaction–diffusion–
absorption equation

Parameter Unit Median Mean Standard deviation

D m2month−1 1.8 × 105 2.0 × 105 0.7 × 105

b month−1 0.026 0.027 0.008

K probability 0.147 0.148 0.007

α month−1 0.12 0.13 0.05

the plateau for the probability of infection is around 15%. This relatively low estimate
has to be considered with caution. First, it is relative to the population of plants that
have been sampled. Second, it ignores the risk of false-negative observations. The
inference about the diffusion parameter D allowed us to assess the length of a straight
line move of the pathogen during a time unit, namely the month. This length is given
by Eq. (12) (Turchin 1998; Roques et al. 2016):

D = (length of a straight line move during one time step)2

4 × duration of the time step
, (12)

and has a posterior median equal to 155 meters per month (posterior mean: 155;
posterior standard deviation: 27). These figures correspond to themove of the pathogen
with different means, in particular via insects and transportation of infected plants,
which are both modeled by the diffusion operator in Eq. (1).

3.6 Goodness-of-fit of themodel

To check the adequacy between the selected model and observed data, we measured
the accuracy of the probabilistic predictions provided by the model by using the Brier
score (BS) (Brier 1950). This score is the mean of the square differences between (i)
the observed health statuses Y obs

i , i = 1, . . . , I (which is a realization of Yi and takes
values in {0, 1}), and (ii) the corresponding probabilities of infection u(ti , xi ), which
depend on Θ:

BS = 1

I

I∑

i=1

(
Y obs
i − u(ti , xi )

)2
. (13)

The Brier score varies between 0 and 1; lower the Brier score, better the goodness-of-
fit; a systematic prediction of 0.5 leads to a Brier score equal to 0.25, which can be
viewed as a threshold above which the model is clearly inadequate. In our application,
the posterior median of BS is 0.0829 (95%-posterior interval: [0.0827,0.0830]).

The probabilistic predictions provided by themodel can also be compared to simple
but data-informed predictions via the Brier skill score (BSS):
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BSS = 1 − BS

BSref
,

where BSref is the Brier score for a reference forecast. The BSS takes values between
−∞ and 1; A positive (resp. negative) BSS value indicates that the model-based
prediction is more (resp. less) accurate than the reference forecast. The most com-
mon reference forecast is the so-called climatology forecast (Mason 2004) that is
the mean Ȳ obs of {Y obs

i : i = 1, . . . , I }: BSref = (1/I )
∑I

i=1(Y
obs
i − Ȳ obs)2.

In our application, the posterior median of BSS is 0.031 and its 95%-posterior
interval is [0.029, 0.032], which is entirely above zero. Hence, the model-based
prediction tends to be significantly more accurate than the climatology fore-
cast.

We extended the goodness-of-fit analysis by building and analyzing a local Brier
score that allows us to check the adequacy of the model across space. The local Brier
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Fig. 6 Posterior distributions of the introduction time τ0 (histogram) and the introduction point x̃0 (color
palette). The prior for τ0 was uniform over [−1000, 0] (red line). The value of x̃0 having the largest weight
in AMIS is indicated by a blue cross. The prior for x̃0 was uniform over the space delimited by the contours
(color figure online)

score (LBS) computed at the location of observation i ∈ {1, . . . , I } is defined as a
mean over the k-nearest neighbors:

LBSk(i) = 1

k + 1

∑

i ′∈{i}∪Vk (i)

(
Y obs
i ′ − u(ti ′ , xi ′)

)2
, (14)

where Vk(i) is the set of indices in {1, . . . , I } corresponding to the k > 0 observa-
tions nearest to xi with respect to the Euclidean distance in R2. Figure 8 gives the
distribution of the posterior means of the local Brier scores (Remark: each LBSk(i)
has a posterior mean because it depends on θ via the function u). 6.2% of these
scores are above 0.25, which is a rather small percentage. Figure 9 displays loca-
tions where the LBS is larger than 0.25 with k = 20 (Supplementary Figure S3
provides similar information for k equal to 50, 100 and 150). This figure also indicates
whether observations with LBS>0.25 were detected as positive or negative to Xf.
None of the observations with LBS>0.25 are in Ω2 where the growth of the pathogen
is negative. Thus, discrepancies between data and the model are limited to Ω1. In
addition, in general, model discrepancies for positive samples and negative samples
are located approximately at the same places. Therefore, there might be some spa-
tially abrupt changes in the rate of infection that are not represented by our aggregated
model.
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Y = 0 Y = 1 LBS ≤ 0.25 LBS(Y = 0) > 0.25 LBS(Y = 1) > 0.25 Ω1

Fig. 9 Locations of samples diagnosed as positive and negative to Xylella fastidiosa (left) and samples with
different levels of the local Brier score with k = 20 (right; black circles: LBS20(i) ≤ 0.25; blue crosses:
Y obs
i = 0 and LBS20(i) > 0.25; red circles: Y obs

i = 1 and LBS20(i) > 0.25). The gray surface gives the
extent of Ω1 (color figure online)

4 Discussion

Since the detection of Xf in Europe, several modeling approaches have been imple-
mented to provide more insights on the spread of this invasive pathogen in European
environments (Strona et al. 2017; White et al. 2017; Bosso et al. 2016; Godefroid
et al. 2018; Soubeyrand et al. 2018; Martinetti and Soubeyrand 2018). In this paper,
we mainly focus on dating and localizing the introduction of this invasive species.
Nevertheless, inferring the parameters of the coupled reaction–diffusion–absorption
equation is required since only post-introduction data are available. The conducted
analyses using a Bayesian inference approach, tend to show that the introduction of Xf
in South Corsica occurred probably near Ajaccio around 1959 (95%-posterior interval:
[1933, 1986]), long time before its first detection. Our estimation of the introduction
time is relatively consistent with the results obtained by Denancé et al. (2017a) who
assessed the introduction of the two main strains found in Corsica around 1965 and
1980, respectively, using a phylogenetic approach. Likewise, our estimation is com-
patible to the result of Soubeyrand et al. (2018), who dated the introduction around
1985 (95%-posterior interval: [1978, 1993]) with a statistical analysis of temporal
data (indeed, the posterior intervals obtained from both analyses overlap). To obtain
a more accurate estimation of the introduction date, at least two tracks could be fol-
lowed: coupling the analysis of spatio-temporal surveillance data and genetic data, as
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discussed in Soubeyrand et al. (2018), and, as suggested in the result section, gaining
knowledge about parameters D, b and α whose estimations are correlated with the
estimation of the introduction date (such a knowledge could be incorporated into the
prior distribution and could lead to a narrower posterior distribution of τ0).

To infer the posterior distribution of the parameter vector we proceed in two steps:
(i) infer the parameters of the dynamics given the temperature threshold T̃ used for
partitioning the study domain, and (ii) choose T̃ using different selection criteria. A
possible extension of our work is to refine the definition of the spatial partition by
not only using the minimum daily winter temperature but also other relevant envi-
ronmental variables (Godefroid et al. 2018; Martinetti and Soubeyrand 2018). Thus,
a parametric logistic regression function depending on these variables could be built
for partitioning the study domain and its parameters should be jointly estimated with
the other parameters. However, this perspective requires a faster estimation approach.
Indeed, an important milestone towards an accurate inference about the parameter
vector, is to accurately solve the partial differential equation, which requires non-
negligible computation time. Fortunately, the AMIS algorithm is easily parallelized.
However, jointly estimating the partition of the study domain (and not only selecting it
as we did), would result on much larger computation times, especially if the partition
depends on multiple spatial variables. To reduce the computational cost, approximat-
ing the input/output relation in themechanisticmodel usingmeta-models necessitating
less computer intensive calculations could be a valuable option, that could be incorpo-
rated in AMIS (Osio and Amon 1996; Giunta andWatson 1998). In particular, kriging
meta-models show up to be an adequate solution for approximating deterministicmod-
els since they interpolate the observed or known data points (Simpson et al. 2001). An
additional advantage that derives from the use of AMIS is that its tuning parameters are
adapted across the algorithm iterations, contrary to the basicMCMCand themaximum
likelihood (ML) approach frequently used in the mechanistic-statistical framework.
It has however to be noted that AMIS has to be appropriately initialized, which can
be relatively easily done in practice by evaluating the marginal posterior distributions
over 1D grids. Still to regard with the computational cost, ML estimation could be an
interesting option, even if the control of estimation uncertainty is more convincing in
the Bayesian framework for a model such ours. Supplementary Section S3 and Figure
S4 precisely investigate ML applied to our case study: using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm for the maximization, the computation effort is
reduced, but results tend to indicate that the optimization is stuck in local maxima.
More complex optimization algorithms, such as the simulated annealing algorithm,
could be applied to converge to a globalmaximumbutmuchmore computationswould
hence be required.

Obviously, the deterministic model [Eqs. (1–2)] that we proposed to describe the
dynamics of the pathogen does not take into account all the epidemiological and
environmental drivers of the dynamics. These drivers could be implicitly handled by
replacing our model by a stochastic version that would result in more flexible realiza-
tions. Gonze et al. (2002) compared deterministic and stochastic models for circadian
oscillations and showed that, in presence of noise in a small population, stochastic sim-
ulations are needed to get more realistic realizations. Although the population size for
the case study of Xf is expected to be relatively large, stochastic population-dynamic
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models, from individual-based models (Renshaw 1993; Kareiva and Shigesada 1983)
to aggregatedmodels (Soubeyrand et al. 2009b), could allow to relax hypotheses made
on the dynamics. In contrast, our parsimonious model, which only incorporates the
main epidemiological and environmental drivers, provides a concise description of
the dynamics of the pathogen, and can be fitted to data in a reasonable time span. The
advantage of this approach is that it can be rapidly applied for endorsing a fast reaction
after the detection of a new invasive pathogen.

Instead of replacing our model by a stochastic version, we could refine it by taking
into account relevant supplementary epidemiological and environmental processes.
For instance, the diffusion, the growth/decrease of the pathogen infection and the
plateau for the infection probability (represented in our model by parameters D, b,
α and K ) could depend on the spatio-temporal distribution of insects transmitting
the pathogen, host density, seasonality and other environmental factors. Incorporat-
ing such dependencies into the model and using sufficiently high-resolution maps for
spatial factors could allow the modeling of rapid changes in the infection probability
that have been observed in Sect. 3.6. This sort of model refinement probably requires,
however, more data than we have for Xf. For example, mapping host-density for Xf is
not an easy issue because of the large spectrum of host species and the large variability
in species susceptibility. Similarly, estimating seasonal effects on the growth/decrease
rate of the infection probability certainly requires a larger observation temporal win-
dow allowing the detection of seasonal trends (in our case study, observations, which
are available during only 2years long after the introduction, mostly give informa-
tion on the accumulation of the disease across time, but not on within-year variations
of the infection probability). Neglecting all these factors implies that our framework
provides estimates of efficient parameters (e.g., we estimate an efficient diffusion coef-
ficient because diffusion is averaged over time in our model, neglecting seasonality
in the presence of insect vectors and in the transportation of plants).

An additional perspective for the framework that we proposed is the use of alter-
native representations of disease propagation. The homogeneous diffusion could
be replaced by an heterogeneous diffusion as proposed above, but could also be
replaced/augmented by a kernel-based term within an integro-differential equation
(Bonnefon et al. 2014), a spatial contact model (Mollison 1977), a mixed dispersal
kernel model (Clark et al. 1998), a stratified dispersal model (Shigesada et al. 1995)
or a piecewise deterministic Markov process (Abboud et al. 2018). These approaches,
allowing a finer quantification of local and long distance dispersal, are generally
expected to yield better predictions (Higgins and Richardson 1999; Nathan et al. 2008;
Fayard et al. 2009; Gilioli et al. 2013; White et al. 2017). For instance, White et al.
(2017) model the spread of Xf in the (supposed) early stages of the invasion in Apulia,
Italy, with a stratified dispersal approach. They predict that the long-distance dispersal
component is a paramount driver of the rapid spread of the pathogen and has to be
taken into account in the design ofmanagement strategies. They however advocate that
field estimates of key parameters, such as infection growth rate, local and non-local
dispersal parameters, should be estimated to decrease prediction uncertainty. The rela-
tively simple framework that we propose precisely provides, using field data, estimates
of such parameters and other quantities such as the temperature threshold, the date
and the location of the pathogen introduction. Regarding the pathogen introduction,
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we assumed that there is only one introduction that triggered the invasion and that
eventual subsequent introductions had negligible effects on the dynamics. In the aim
of relaxing this assumption, stratified dispersal models and piecewise deterministic
Markov processes (PDMP) discussed above can be designed to incorporate into the
model not only long-distance dispersal but also multiple introductions. Distinguishing
these two types of events from surveillance data is not easy in general, except if one has
at disposal genetic data or contact tracing data, but can anyway be modeled separately
with a mixture of two kernels (identifiability issues of the mixture components may
however arise). Abboud et al. (2018) precisely discuss a PDMP embedding multiple
introductions without implementing it in practice. This is one of the most attractive
perspectives for furthering our work.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

AbboudC, Senoussi R, Soubeyrand S (2018) Piecewise-deterministicMarkov processes for spatio-temporal
population dynamics. In: Azaïs R, Bouguet F (eds) Statistical inference for piecewise-deterministic
Markov processes, ISTE edn. Wiley, New York

Allaire G (2008) Analyse numérique et optimisation. Les Éditions de l’École Polytechnique, Palaiseau
Anas O, Harrison UJ, Brannen PM, Sutton TB (2008) The effect of warming winter temperature on the

severity of pierce’s disease in the appalachian mountains and piedmont of the southeastern United
States. Plant Health Prog 101094:450–459

Anderson RM,Donnelly CA, Ferguson NM,WoolhouseMEJ,Watt CJ, UdyHJ,Mawhinney S, Dunstan SP,
Southwood TRE,Wilesmith JW,Ryan JBM,Hoinville LJ, Hillerton JE, Austin AR,Wells GAH (1996)
Transmission dynamics and epidemiology of BSE in British cattle. Nature 382:779–788. https://doi.
org/10.1038/382779a0

Ando T (2011) Predictive Bayesian model selection. Am J Math Manag Sci 31:13–38. https://doi.org/10.
1080/01966324.2011.10737798

Andow D, Kareiva PM, Levin SA, Okubo A (1990) Spread of invading organisms. Landsc Ecol 4:177–188
Andow DA, Kareiva PM, Levin SA, Okubo A (1993) Spread of invading organisms: patterns of spread. In:

Kim KC, McPheron BA (eds) Evolution of insect pests: the pattern of variations. Wiley, New York,
pp 219–242

Baker HG (1991) The continuing evolution of weeds. Econ Bot 45:445–449
Berliner LM (2003) Physical-statistical modeling in geophysics. J Geophys Res Atmos 108:8776. https://

doi.org/10.1029/2002JD002865
Bonnefon O, Coville J, Garnier J, Roques L (2014) Inside dynamics of solutions of integro-differential

equations. Discrete Contin Dyn Syst B 19(10):3057–3085
Bosso L, Russo D, Febbraro MD, Cristinzio G, Zoina A (2016) Potential distribution of Xylella fastidiosa

in Italy: a maximum entropy model. Phytopathol Mediterr 55:62–72
Boys RJ, Wilkinson DJ, Kirkwood TBL (2008) Bayesian inference for a discretely observed stochastic

kinetic model. Stat Comput 18:125–135. https://doi.org/10.1007/s11222-007-9043-x
Brier GW (1950) Verification of forecasts expressed in terms of probability. OPTmonthey Weather Rev

78:1–3
Brooks S (2003) Bayesian computation: a statistical revolution. Trans R Stat Soc Ser A 15:2681–2697.

https://doi.org/10.1098/rsta.2003.1263
BugalloMF,Martino L, Corander J (2015) Adaptive importance sampling in signal processing. Digit Signal

Process 47:36–49. https://doi.org/10.1016/j.dsp.2015.05.014

123 75



Dating and localizing an invasion from post-introduction…

Chapman DS, White SM, Hooftman DA, Bullock JM (2015) Inventory and review of quantitative models
for spread of plant pests for use in pest risk assessment for the EU Territory, vol 12. EFSA Supporting
Publications, New York. https://doi.org/10.2903/sp.efsa.2015.EN-795

Clark JS, Fastie C, Hurtt G, Jackson ST, Johnson C, King GA, Lewis M, Lynch J, Pacala S, Prentice C,
Schupp EW, Webb T III, Wyckoff P (1998) Reid’s paradox of rapid plant migration: dispersal theory
and interpretation of paleoecological records. BioScience 48:13–24. https://doi.org/10.2307/1313224

Cornuet J, Marin JM, Mira A, Robert CP (2012) Adaptive multiple importance sampling. Scand J Stat
39:798–812. https://doi.org/10.1111/j.1467-9469.2011.00756.x

CostelloM, Steinmaus S, BoisserancC (2017) Environmental variables influencing the incidence of Pierce’s
disease. Aust J Grape Wine Res 23:287–295. https://doi.org/10.1111/ajgw.12262

Denancé N, Cesbron S, Briand M, Rieux A, Jacques MA (2017a) Is Xylella fastidiosa really emerging in
France? In: Costa J, Koebnik R (eds) 1st Annual conference of the EuroXanth—COST action integrat-
ing science on Xanthomonadaceae for integrated plant disease management in Europe, EuroXanth,
Coimbra, Portugal, vol 7

Denancé N, Legendre B, Briand M, Olivier V, Boisseson C, Poliakoff F, Jacques MA (2017b) Several
subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural
settings in France. Plant Pathol 66:1054–1064. https://doi.org/10.1111/ppa.12695

Evans LC (1998) Partial differential equations, graduate studies in mathematics, vol 19. American Mathe-
matical Society, Providence

Fayard J, Klein EK, Lefèvre F (2009) Long distance dispersal and the fate of a gene from the colonization
front. J Evol Biol 22(11):2171–2182

Feil H, Purcell AH (2001) Temperature-dependent growth and survival of Xylella fastidiosa in vitro and in
potted grapevines. Plant Dis 85:1230–1234. https://doi.org/10.1094/PDIS.2001.85.12.1230

Feil H, Feil WS, Purcell AH (2003) Effects of date of inoculation on the within-plant movement of Xylella
fastidiosa and persistence of Pierce’s disease within field grapevines. Phytopathology 93:244–251.
https://doi.org/10.1094/PHYTO.2003.93.2.244

Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369. https://doi.org/10.
1111/j.1469-1809.1937.tb02153.x

Gatenby RA, Gawlinski ET (1996) A reaction–diffusion model of cancer invasion. Cancer Res 56:5745–
5753

Gelfand AE, Smith AFM (1990) Sampling-based approaches to calculating marginal densities. J Am Stat
Assoc 85:398–409. https://doi.org/10.1080/01621459.1990.10476213

Gelman A, Roberts GO, GilksWR et al (1996) Efficient metropolis jumping rules. Bayesian Stat 5:599–608
Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Texts in statistical

science series. Chapman & Hall/CRC, New York
Gilioli G, Pasquali S, Tramontini S, Riolo F (2013) Modelling local and long-distance dispersal of invasive

chestnut gall wasp in europe. Ecol Model 263:281–290
Giunta A, Watson L (1998) A comparison of approximation modeling techniques-polynomial versus inter-

polating models. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and
optimization, multidisciplinary analysis optimization conferences, St. Louis, MO, USA, p 4758.
https://doi.org/10.2514/MMAO98

Godefroid M, Cruaud A, Streito JC, Rasplus JY, Rossi JP (2018) Climate change and the potential distri-
bution of Xylella fastidiosa in Europe. bioRxiv https://doi.org/10.1101/289876

Gonze D, Halloy J, Goldbeter A (2002) Deterministic versus stochastic models for circadian rhythms. J
Biol Phys 28:637–653. https://doi.org/10.1023/A:1021286607354

Hecht F (2012) New development in Freefem++. J NumerMath 20:251–266. https://doi.org/10.1515/jnum-
2012-0013

Hengeveld R (1989) Dynamics of biological invasions. Springer, New York
Henneberger TS (2003) Effects of low temperature on populations of Xylella fastidiosa in sycamore. Ph.D.

thesis, University of Georgia
Higgins SI, Richardson DM (1999) Predicting plant migration rates in a changing world: the role of long-

distance dispersal. Am Nat 153(5):464–475
Huld TA, Šúri M, Dunlop ED, Micale F (2006) Estimating average daytime and daily temperature profiles

within Europe. Environ Model Softw 21:1650–1661
Kareiva P, Shigesada N (1983) Analyzing insect movement as a correlated randomwalk. Oecologia 56:234–

238. https://doi.org/10.1007/BF00379695

12376



C. Abboud et al.

Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. R Soc
115:700–721. https://doi.org/10.1098/rspa.1927.0118

Lanzarone E, Pasquali S, Gilioli G, Marchesini E (2017) A Bayesian estimation approach for the mortality
in a stage-structured demographic model. J Math Biol 75:759–779. https://doi.org/10.1007/s00285-
017-1099-4

Lewis MA, Kareiva P (1993) Allee dynamics and the spread of invading organisms. Theor Popul Biol
43:141–158. https://doi.org/10.1006/tpbi.1993.1007

Lindley D (2006) Understanding uncertainty. Wiley, New York. https://doi.org/10.1002/0470055480
Martinetti D, Soubeyrand S (2018) Identifying lookouts for epidemio-surveillance: application to the emer-

gence of Xylella fastidiosa in France, submitted
Mason SJ (2004) On using “climatology” as a reference strategy in the brier and ranked probability

skill scores. Mon Weather Rev 132:1891–1895. https://doi.org/10.1175/1520-0493(2004)132<1891:
OUCAAR>2.0.CO;2

MollisonD (1977) Spatial contact models for ecological and epidemic spread. J R Stat Soc Ser B (Methodol)
39:283–326

Murray JD (2002) Mathematical biology. In: Interdisciplinary applied mathematics, vol 17, 3rd edn.
Springer, New York

Nathan R, Schurr FM, Spiegel O, Steinitz O, Trakhtenbrot A, Tsoar A (2008) Mechanisms of long-distance
seed dispersal. Trends Ecol Evol 23(11):638–647

Okubo A (1980) Diffusion and ecological problems: mathematical models, interdisciplinary applied math-
ematics, vol 10. Springer, New York

Okubo A, Levin S (2002) Diffusion and ecological problems—modern perspectives, 2nd edn. Springer,
New York. https://doi.org/10.1007/978-1-4757-4978-6

Osio IG, Amon CH (1996) An engineering design methodology with multistage Bayesian surrogates and
optimal sampling. Res Eng Des 8:189–206

Peterson RO,Vucetich JA, Page RE, ChouinardA et al (2003) Temporal and spatial aspects of predator–prey
dynamics. Alces 39:215–232. https://doi.org/10.1098/rspb.2015.0973

ProtterMH,WeinbergerHF (1967)Maximumprinciples in differential equations. Prentice-Hall, Englewood
Cliffs. https://doi.org/10.1007/978-1-4612-5282-5

Purcell A (1977) Cold therapy of pierce’s disease of grapevines. Plant Dis Rep 61:514–518
Purcell A et al (1980) Environmental therapy for pierce’s disease of grapevines. Plant Dis 64:388–390
Reise K, Olenin S, Thieltges DW (2006) Are aliens threatening european aquatic coastal ecosystems?

Helgol Mar Res 60:77. https://doi.org/10.1007/s10152-006-0024-9
Renshaw E (1993)Modelling biological populations in space and time, vol 11. Cambridge University Press,

Cambridge. https://doi.org/10.1017/CBO9780511624094
Richardson DM, Bond WJ (1991) Determinants of plant distribution: evidence from pine invasions. Am

Nat 137:639–668
RobertsGO,GelmanA,GilksWR (1997)Weak convergence and optimal scaling of randomwalkmetropolis

algorithms. Ann Appl Probab 7:110–120
Roques L, Soubeyrand S, Rousselet J (2011) A statistical-reaction–diffusion approach for analyzing expan-

sion processes. J Theor Biol 274:43–51. https://doi.org/10.1016/j.jtbi.2011.01.006
Roques L, Walker E, Franck P, Soubeyrand S, Klein E (2016) Using genetic data to estimate diffusion rates

in heterogeneous landscapes. J Math Biol 73:397–422. https://doi.org/10.1007/s00285-015-0954-4
Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6:461–464. https://doi.org/10.1214/

aos/1176344136
ShigesadaN,KawasakiK (1997) Biological invasions: theory and practice, 1st edn. Oxford series in ecology

and evolution. Oxford University Press, Oxford
Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat

146:229–251
Simberloff D (1989) Which insect introductions succeed and which fail?, vol 37. Wiley, Chichester, pp

61–75
Simpson TW, Poplinski J, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design:

survey and recommendations. Eng Comput 17:129–150. https://doi.org/10.1007/PL00007198
Skellam JG (1951) Random dispersal in theoretical populations. Biometrika 38:196–218. https://doi.org/

10.2307/2332328
Soubeyrand S, Roques L (2014) Parameter estimation for reaction-diffusion models of biological invasions.

Popul Ecol 56:427–434. https://doi.org/10.1007/s10144-013-0415-0

123 77



Dating and localizing an invasion from post-introduction…

Soubeyrand S, Laine AL, Hanski I, Penttinen A (2009a) Spatio-temporal structure of host-pathogen inter-
actions in a metapopulation. Am Nat 174:308–320. https://doi.org/10.1086/603624

Soubeyrand S, Neuvonen S, PenttinenA (2009b)Mechanical-statisticalmodeling in ecology: from outbreak
detections to pest dynamics. Bull Math Biol 71:318–338. https://doi.org/10.1007/s11538-008-9363-
9

Soubeyrand S, de Jerphanion P, Martin O, Saussac M, Manceau C, Hendrikx P, Lannou C (2018) What
dynamics underly temporal observations?Application to the emergence ofXylella fastidiosa in France:
probably not a recent story. New Phytol. https://doi.org/10.1111/nph.15177

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity
and fit. J R Stat Soc Ser B (Stat Methodol) 64:583–639. https://doi.org/10.1111/1467-9868.00353

Strona G, Carstens CJ, Beck PS (2017) Network analysis reveals why Xylella fastidiosa will persist in
Europe. Sci Rep 7:71. https://doi.org/10.1038/s41598-017-00077-z

Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in
plants and animals. Sinauer, Sunderland

Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. In: Mathématique &
sciences humaines, vol 167, Quetelet, pp 51–81

Vermeij GJ (1996) An agenda for invasion biology. Biol Conserv 78:3–9
Weinberger H (1978)Asymptotic behavior of amodel in population genetics. In: Chadam JM (ed)Nonlinear

partial differential equations and applications. Springer, Berlin, pp 47–96
White SM, Bullock JM, Hooftman DAP, Chapman DS (2017) Modelling the spread and control of Xylella

fastidiosa in the early stages of invasion in Apulia, Italy. Biol Invasions 19:1825–1837. https://doi.
org/10.1007/s10530-017-1393-5

Wikle CK (2003a) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology
84:1382–1394

Wikle CK (2003b) Hierarchical models in environmental science. Int Stat Rev 71:181–199

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Candy Abboud1 ·Olivier Bonnefon1 · Eric Parent2,3 · Samuel Soubeyrand1

1 BioSP, INRA, 84914 Avignon, France

2 UMR 518 Math. Info. Appli., AgroParisTech, Paris, France

3 UMR 518 Math. Info. Appli., INRA, Paris, France

12378



3.3. Key Perspective Points of Chapter 4

v An important milestone towards an accurate inference of the PDE parameters
is to accurately solve this PDE, which requires a non negligible computational
time. Fortunately AMIS algorithm is easily parallelized. An additional advan-
tage of the AMIS is that its tuning parameters are adapted across the algorithm
iterations, contrary to MCMC and the ML frequently used in the framework of
the mechanistic-statistical approach.

v We discussed the pros and cons of replacing our deterministic model by a
stochastic version or refining it to account for relevant additional epidemiologi-
cal and environmental drivers of the dynamics, such as long distance dispersal
events, seasonality, supplementary climatic variables, and the spatio-temporal
distribution of the vector transmitting the pathogen.

v Two possible ideas were proposed to obtain a more accurate estimation of the
introduction date: coupling the analysis of spatio-temporal surveillance data
and genetic data, and gaining knowledge about parameters D, b, and α whose
estimation is correlated with the introduction date.
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4. Bayesian model-averaging for
predicting species dynamics

This chapter introduces an article1 in progress:
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1C. Abboud, O. Bonnefon, E. Parent, and S. Soubeyrand. Model&data-based prediction of pathogen dynamics.
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Major Components of The Chapter

Surveillance Data on Xf with Binary Records
v „9000 plants sampled since 2015 of which 900 have been

diagnosed as infected (real-time PCR).

v For those „ 9000 plants, geographic coordinates and sam-
pling dates are available.

v T : average of the minimum daily temperature over January
and February b/n 1995 and 2003 (Map of T with 1 km grid
resolution on the right).

BMA Approach
v Aggregate competing models grounded on a family of

reaction-diffusion equations with spatially heterogeneous dif-
fusion and reproduction terms.

v Use the AMIS algorithm for parameter estimation of each
model.

v Compare different existing approaches based on information
criteria and harmonic mean estimators to evaluate the poste-
rior probabilities of models.

Methodological Ingredients

I- Biological Questions

v Get more insights on the pathogen epidemiology.

v Design eradication and containment strategies.

v Assess the potential efficiency of these strategies.
tzentzentzen

II- Methodological Questions

v Avoid to draw a prediction relying on a single PDE-
based model that would be prone to errors.

v Make best use of all the various predictions that can be
drawn from a family of models.

v Handle parameter and model uncertainties.

v Investigate the application of the BMA approach in the
context of pathogen-dynamics prediction using PDE
models and data on Xf.

How to ¨ ¨ ¨

Inference of Models Shared Parameters
Estimation of the BMA marginal distribution of the date and site
of the introduction point.
gshhqdhq

τ0

D
e
n
s
it
y

−1000 −800 −600 −400 −200

0
.0

0
0
0

0
.0

0
0
5

0
.0

0
1
0

0
.0

0
1
5

0
.0

0
2
0

0
.0

0
2
5

x
~

0

y~
0

0

0.0015

0.003

1160000 1180000 1200000 1220000 1240000

6
0
6
0
0
0
0

6
0
8
0
0
0
0

6
1
0
0
0
0
0

6
1
2
0
0
0
0

6
1
4
0
0
0
0

6
1
6
0
0
0
0

gshhqdhq
gshhqdhq
gshhqdhq

gshhqdhqgshhqdhq

Estimation of the BMA marginal distribu-
tion of the threshold of temperature.
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Out-of-sample Predictive Behaviour

Main Results

Conclusion

v The conducted analysis for inferring shared parameters tend to show that the
introduction of Xf in South Corsica has probably occurred near Bastellica, to the
east of Ajaccio around 1952, long time before its first detection. Results obtained
for the introduction date are consistent with the precedent results.

v This approach allows to open up to smoothed threshold of temperature and to
account for uncertainties about model forms.

v In our particular case study, the BMA does not seem to outperform the "best"
model. However, it succeeded to better reflect the uncertainty about model
predictions, avoiding misleading decision making obtained from a single "best"
model.

v This approach was tested on simulated data and predictive behaviour was as-
sessed relatively to other reference forecasts.

gshhqdhq

Perspectives

v Aggregate different structures of the process model by replacing per
example the deterministic models by a stochastic version or a version
that accounts for additional drivers of the dynamics.

v Refine the definition of the spatial partition by using additional relevant
environmental variables, other than the daily winter temperature.

v Incorporate into the models the possibility of multiple introductions of
the pathogen.

Conclusion & Perspectives

4.1. Graphical Summary
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Prediction of invasive-pathogen dynamics is an essential
step towards the assessment of eradication and contain-
ment strategies. Suchpredictions areperformedusing surveil-
lance data andmodels grounded on partial differential equa-
tions (PDE), which form a framework often exploited to de-
sign invasion models. The framework allows the construc-
tion of phenomenological but concise models relying on
mechanistic hypotheses, however, it may lead to models
with overly rigid behaviour, in particular for describing phe-
nomena in population biology. Hence, to avoid to draw a pre-
diction relying on a single PDE-basedmodel that would be
prone to errors because of potential data-model mismatch,
we propose to apply Bayesian model-averaging (BMA) for
handling parameter andmodel uncertainties. In this setting,
we use adaptive importance sampling for parameter estima-
tion, and compare different existing approaches based on
information criteria and harmonic mean estimators to eval-
uate the posterior probabilities of models. This approach is
applied to predict the future extent of Xf, a phytopathogenic
bacterium in situ detected in Southern Corsica, France, in
2015.
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1 | INTRODUCTION

The emergence of exogenous pathogens in new territories may induce severe sanitary and socio-economical crises.
Such crises are reinforced by the eventually long delay between the establishment of the pathogen in a new territory
and its detection (Jones and Baker, 2004; Faria et al., 2014; Soubeyrand et al., 2018), because the cost for pathogen
eradication or containment generally increases with this delay, and by the potential for expansion of the pathogen.
Hence, reconstructing the past dynamics of the pathogen (Boys et al., 2008; Roques et al., 2016; Soubeyrand andRoques,
2014) and predicting its future extent (Chapman et al., 2015; Peterson et al., 2003) are key steps for understanding the
pathogen epidemiology, designing eradication or containment strategies and assessing their potential efficiency.

Partial differential equations (PDE) have been extensively used for modelling spatio-temporal population dynamics
(Skellam, 1951; Okubo, 1980; Shigesada et al., 1995; Gatenby and Gawlinski, 1996; Shigesada and Kawasaki, 1997;
Turchin, 1998; Okubo and Levin, 2002). PDE can precisely be used for past dynamics reconstruction and future extent
prediction, by exploiting their ability (i) to represent dynamics in a phenomenological and conciseway, and (ii) to be fitted
to data by attaching a probabilistic model of observations within a state-spacemodelling framework (Berliner, 2003;
Roques et al., 2011; Soubeyrand and Roques, 2014; Abboud et al., 2018). However, these equations, mostly relatively
simple, are not proficient in describing all the processes and sources of variability involved in an epidemiological
dynamics. In addition, various structures of PDE are likely to be considered as candidatemodels for a given epidemics.
When the goal of the study is to draw predictions, the use of one single model is prone to prediction error because
this model may not have taken into account crucial drivers of the dynamics. This limitation can be circumvented by
considering a set of candidatemodels and combine them, either by applying amodel selection strategy (Burnham et al.,
1995) or amodel aggregation strategy (Hoeting et al., 1999).

As part of the aggregation strategy, the Bayesianmodel-averaging (BMA) approach has been proposed by Leamer
(1978) to reduce and account for parameter and model uncertainties. This approach consists in averaging over all
candidate models in a Bayesian way for weighting models (Raftery, 1996; Volinsky et al., 1997), combining multiple
predictions and combining estimations to infer shared parameters (Roberts, 1965;Madigan and Raftery, 1994;Wintle
et al., 2003). Theoretically, BMA provides better average predictive ability, as measured by a logarithmic scoring rule,
than using any single model (Madigan and Raftery, 1994). The BMA efficiency has been largely explored, in particular
with respect to its theoretical properties (Rubin and Schenker, 1986;Madigan and Raftery, 1994; Raftery and Zheng,
2003), leave-one-out predictive performance (Madigan et al., 1995; Lamon and Clyde, 2000; Fernández et al., 2002)
and numerical performance (George andMcCulloch, 1993; Clyde and George; Viallefont et al., 2001). While BMA is an
intuitively attractive solution to the problem of accounting for model uncertainty, it presents several difficulties related
to its numerical implementation (Hoeting et al., 1999). By dint of some pioneering work implementing BMA (Madigan
and Raftery, 1994; Raftery, 1996; Volinsky et al., 1997), BMA has been applied in numerous study domains such as
medicine (Oehler et al., 2009; Yin and Yuan, 2009), ecology (Boone et al., 2005, 2008;Wintle et al., 2003), meteorology
(Raftery et al., 2005), genetics (Yeung et al., 2005), economical and political sciences (Eicher et al., 2011; Sidman et al.,
2008), engineering and physical sciences (Raftery et al., 2010; Parkinson and Liddle, 2013) and epidemiology (Viallefont
et al., 2001). Despite ample literature on BMA and its usefulness, it has been marginally applied in the context of
predictive epidemiology.

In this article, we investigate the application of BMA in the context of pathogen-dynamics prediction using PDE-
basedmodels andwewant to test its efficiency on a real case study. Themodels are grounded on a family of reaction-
diffusion equations with eventual spatially heterogeneous diffusion and reproduction terms. Our aim is to compute,
from post-introduction data, the BMA posterior distribution of a certain quantity of interest∆, which is typically the
introduction time or location of the pathogen or its future spatial extent. Following Abboud et al. (2019), we apply
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to each model the Adaptive Multiple Importance Sampling algorithm (AMIS; Cornuet et al., 2012) for providing an
empirical approximation, obtained via a weighted sample {∆n ,wn }Nn=1 of size N , of the posterior distribution of∆ given
the specifiedmodel. Then, for drawing BMA posterior samples of∆, we compute posterior probabilities of models using
different approximations of the integrated likelihood that have been proposed in the literature. Namely, we compare
estimators of the integrated likelihood that use information criteria: WAIC (Watanabe, 2013), BIC (Schwarz et al., 1978),
DIC in its two versions (Spiegelhalter et al., 2002; Gelman et al., 2003) and IC (Ando, 2011), as well as harmonic mean
estimators (HME; Raftery, 1996; Gelfand andDey, 1994).

This approach is first tested on simulated data and then applied tomake predictions concerning the dynamics of
the phytopathogenic bacterium Xylella fastidiosa (Xf) in Southern Corsica, France. For this real case study, abundant
spatio-temporal and binary post-introduction surveillance data have been collected from an intensive surveillance plan
implemented by governmental agencies after thefirst in situ detection of Xf in 2015 inCorsica. This quarantine pathogen
in Europe has significantly impacted olive production in Puglia, Italy, and presents a drastic risk of environmental
degradation due to its ability to reach a large variety of plant species. It is currently present in a large part of Corsica
island andmoremarginally in Southeasternmainland France (Denancé et al., 2017a; Soubeyrand et al., 2018;Martinetti
and Soubeyrand, 2018). Xf is susceptible to cause amajor sanitary crisis in France, as the one caused in Italy since 2013
where the socio-economical impacts are considerable due to the grabbing-up and death of a significant proportion of
olive trees.

The paper is organised as follows: Data are briefly described in Section 2. The competingmodels coupling a partial
differential equation and a Bernoulli observation process are presented in Section 3. The Bayesianmodel-averaging
technique is described in Section 4. The simulation study is presented in Section 5. Results obtained from surveillance
data for Xf in SouthernCorsica are detailed in Section 6; we specifically focus onmodel comparison, parameter inference
and out-of sample predictive performance. Finally, Section 7 provides a conclusion and a discussion of perspectives.

2 | SURVEILLANCE DATA WITH BINARY RECORDS

In this article, we analyse spatio-temporal binary post-introduction records informing about the presence/absence of Xf
in Southern Corsica, France. Data have been collected since the first detection of the bacterium in the study region in
July 2015. Between July 2015 and August 2018, approximately 9000 plants were sampled, amongwhich 900 have been
diagnosed as infectedwith a real-time polymerase chain reaction (real-time PCR) technique (Denancé et al., 2017b).
GPS coordinates, sampling dates and sanitary statuses (healthy/infected) are available for all the sampled plants. Spatial
locations and sanitary statuses at the sampling times are shown in Figure 1.

As for other bacteria, the growth and mortality of Xf are affected by various environmental variables such as
habitability of the environment, nutrients, climatic conditions and availability of dissemination means (e.g. insect
vectors). In this study, to account for spatial heterogeneity in the diffusion and the reproduction regimes of the
epidemics, we use temperature data to divide the spatial domain denoted byΩ into two sub-domains, sayΩ1 andΩ2,
such thatΩ = Ω1 ∪ Ω2,Ω1 ∩ Ω2 = ∅, and different diffusion and growth terms are applied to Ω1 andΩ2. We exploit a
freely available database (PVGIS © European Communities, 2001–2008) providing, in particular, monthly averages
of the daily minimum temperature reconstructed over a grid with 1×1km spatial resolution (Huld et al., 2006); these
monthly averages correspond to the period 1995-2003, but are used as references over the period covered by our study.
We use these data to build the average of the daily minimum temperature over January and February, sayT (x) for any
location x; see Figure 1. Average daily minimum temperature inWinter is known to be a crucial factor for the presence
or abundance of Xf (Anas et al., 2008;Martinetti and Soubeyrand, 2018).
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F IGURE 1 Locations of plants (left panel), sampled from July 2015 to August 2018, that have been detected as
positive (green dots) or negative (blue dots) to Xf in Southern Corsica, France, andmap of the average of the daily
minimum temperature (right panel) in Celsius degrees) over January and February reconstructed over a grid with
1×1km spatial resolution.

3 | COMPETING MODELS

Here, a set of models based on parabolic partial differential equations is used to describe pathogen dynamics at large
spatial scales. As explained in the introduction, thosemodels have been extensively used to represent population dy-
namics in a phenomenological and conciseway, and can be fitted to data in a hierarchical modelling setting incorporating
a probabilisticmodel of observations (Berliner, 2003; Roques et al., 2011; Soubeyrand and Roques, 2014). In the current
section, we propose a family of mechanistic models andwe present themodel for the observation process.

3.1 | Family ofMechanisticModels

We introduce a discrete familyM = {Mi (T̃ ) : 0 ≤ i ≤ I ; T̃ ∈ T} ofmodels governing the probability u(t , x) of a host
located at site x = (x1, y1) ∈ Ω to be infected at time t , where I ∈ Î and T is a finite collection of real values. The label i
refers to amodel structure, i.e. a specific form for the parabolic PDE. The label T̃ refers in our application to a threshold
temperature, which splits the spatial domain into two sub-domains where diffusion and growth termsmay be different.
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The generic form of models in familyM satisfies:




∂u

∂t
= ∆(DiT̃ (x)u) + fiT̃ (u), t ≥ τ0, x ∈ Ω,

+(DiT̃ (x)u(t , x)).n(x) = 0, t ≥ τ0, x ∈ ∂Ω,
u(τ0, x) = u0(x), x ∈ Ω,

(1)

where the first line is the reaction-diffusion equation, the second line gives boundary conditions, the third line gives
initial conditions, ∆ =

∂2

∂x21
+

∂2

∂x22
is the 2-dimensional diffusion operator of Laplace, and + =

∂

∂x1
+

∂

∂x2
is the

2-dimensional gradient operator.
The diffusion coefficientDiT̃ (x)may be spatially heterogeneous and is defined as a spatial regularization of:

diT̃ (x) =
2∑
k=1

DiT̃ k 1(x ∈ ΩT̃ k ), [i ≤ I , [T̃ ∈ T, (2)

where x 7→ 1(x ∈ ΩT̃ k ) is the indicator function taking the value 1 if x ∈ ΩT̃ k and 0 otherwise, and the sub-domains
ΩT̃ 1 andΩT̃ 2 are defined by thresholding the spatial functionT , with the threshold value T̃ such that: ΩT̃ 1 = {x ∈ Ω :
T (x) > T̃ } andΩT̃ 2 = {x ∈ Ω : T (x) ≤ T̃ }. In our application,T is a measure of temperature in winter,ΩT̃ 1 is the warm
region of Ω, and ΩT̃ 2 the cold one. IfDiT̃ 1 = DiT̃ 2, then the diffusion coefficient is spatially homogeneous. The spatial
regularization is required for the existence and the uniqueness of a classic solution u(t , x) of Equation (1); see (Roques,
2013). ThusDiT̃ is defined as:

DiT̃ (x) = 1(x ∈ Ω)
∫
Ò2
φ(x − y)diT̃ (y)dy, [x ∈ Ω, (3)

whereφ is the normal regularization kernel

φ(x) = 1

2πV e
−
‖x‖2
2V , (4)

and the transition speedV has to be tuned to approachmore or less the piecewise constant function diT̃ .
The reproduction termmay also be either spatially heterogeneous or not. In the homogeneous case,

fiT̃ (u) = bu
(
1 − u

K

)
, (5)

and in the heterogeneous case,

fiT̃ (u) = bu
(
1 − u

K

)
1(x ∈ ΩT̃ 1) − αu1(x ∈ ΩT̃ 2), [T̃ ∈ T, (6)

where b is the intrinsic growth rate of the epidemics; K ∈ (0, 1] is a plateau for the probability of infection (i.e. an analog
to the carrying capacity of the environment); α is the decrease rate of the infection inΩT̃ 2 in the heterogeneous case.

In the application, wewill consider threemodel structures:

• M0(T̃ ), under which DiT̃ 1 = DiT̃ 2 and fiT̃ satisfies Equation (6), i.e. homogeneous diffusion but heterogeneous
growth, like in Abboud et al. (2019);
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• M1(T̃ ), under whichDiT̃ 1 , DiT̃ 2 and fiT̃ satisfies Equation (6), i.e. heterogeneous diffusion and growth;
• M2(T̃ ), under which DiT̃ 1 , DiT̃ 2 and fiT̃ satisfies Equation (5), i.e. heterogeneous diffusion, but homogeneous

growth.

The second equation in system (1) corresponds to the homogeneous Neumann condition on the boundary ∂Ω ofΩ
(i.e. with reflection on the boundary). This condition is formalized by setting that the gradient of the spatial function
x 7→ DiT̃ (x)u(t , x) is orthogonal to the outward normal vector n(x ) at point x on the boundary ∂Ω, for all t ≥ τ0. Thus,
physically, there is neither outward nor inward flux from and toΩ.

The spatial function u0 models the introduction of the pathogen in the study domain at time τ0 ∈ Ò. Following
Abboud et al. (2019), the introduction represents the initial phase of the outbreak corresponding to the arrival of the
pathogen and its local establishment. Thus, u0 is not expressed as a Dirac function but as a kernel function centered
around the central point of the introduction x̃0 = (x̃0, ỹ0) ∈ Ω. More precisely, the probability of a host at x to be
infected at τ0 satisfies:

u0(x) = P0 exp
(
− ‖x − x̃0 ‖

2

2σ2

)
, (7)

where P0 is the infection probability at (τ0, x̃0), σ2 = r 2
0
q , q is the 0.95-quantile of the χ2 distributionwith two degrees

of freedom, and r0 is the radius of the kernel. Thus, at τ0, if we neglect border effects, 95% of the infected plants are
located within the ball with center x̃0 and radius r0.

With such initial and boundary conditions, the system of equations (1) is well-posed (Evans, 1998). In addition, by
constraining P0 in [0,K ], the principle of parabolic comparison (Protter, MH andWeinberger, HF, 1967) implies that the
solution of (1) remains in the interval [0,K ].

3.2 | ProbabilisticModels of Observations

Let t j ∈ Ò denote the sampling time of host j ∈ {1, . . . , J }, J ∈ Î∗, xj ∈ Ω its location andYj ∈ {0, 1} its sanitary status
observed at time t j (1 for infected, 0 for healthy). Conditionally on u ,Mi (T̃ ) and {(t j , xj ) : 1 ≤ j ≤ J }, the sanitary
statusesYj , j ∈ {1, . . . , J }, are assumed to be independent random variables following Bernoulli distributions with
success probability u(t j , xj ):

Yj | u,Mi (T̃ ), {(t j , xj ) : 1 ≤ j ≤ J } ∼indep. Bernoulli(u(t j , xj )), (8)

where u depends on themodelMi (T̃ ) and its vector of parametersΘiT̃ .
Remark. This datamodel was proposed in Abboud et al. (2019) for its simplicity. It could be refined to account for

sampling errors classically encountered in epidemiology, e.g. false-positive and false-negative observations, as well as
spatial and temporal dependencies not accounted for in the process model.
4 | BAYESIAN MODEL-AVERAGING

4.1 | Principle

Briefly, the BMA consists in estimating the expectation of the posterior distributions of the variable of interest ∆
provided under all the competingmodels andweighted by the posterior model probabilities (Raftery, 1996; Hoeting
et al., 1999). In the modeling setting introduced above, ∆ is typically a vector of shared parameters such as the
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introduction point (x̃0,τ0), the temperature threshold T̃ or the spatial probability of infection u over a future period.
UsingGelfand’s bracket notation for probability distributions (Gelfand and Smith, 1990), the BMAposterior distribution
of∆ given training dataY satisfies:

[∆ |Y ] =
∑

0≤i≤I ,T̃ ∈T
[∆ |Y ,Mi (T̃ )] × [Mi (T̃ ) |Y ]. (9)

The posterior model probability ofMi (T̃ ) is:

[Mi (T̃ ) |Y ] =
[Y |Mi (T̃ )] × [Mi (T̃ )]∑

0≤i ′≤I ,T̃ ′∈T
[Y |Mi ′ (T̃ ′)] × [Mi ′ (T̃ ′)]

. (10)

The integrated likelihood [Y |Mi (T̃ )] ofMi (T̃ ), which may be a complex integral depending on the dimension of the
unknowns and eventual dependencies, satisfies:

[Y |Mi (T̃ )] =
∫
[Y |Θ,Mi (T̃ )] × [Θ |Mi (T̃ )]dΘ. (11)

where Θ is the vector of parameters of Mi (T̃ ); [Y |Θ,Mi (T̃ )] is the likelihood under Mi (T̃ ); [Θ |Mi (T̃ )] is the prior
distribution ofΘ underMi (T̃ ); and [Mi (T̃ )] is the prior probability ofMi (T̃ ). The posterior mean of ∆ is a weighted
average of the posterior means under the competingmodels:

Å[∆ |Y ] =
∑

0≤i≤I ,T̃ ∈T
[Mi (T̃ ) |Y ] × Å[∆ |Mi (T̃ ),Y ]. (12)

The posterior variance is expressed as follows:

Ö[∆ |Y ] =
∑

0≤i≤I ,T̃ ∈T
[Mi (T̃ ) |Y ] ×

(
Ö[∆ |Mi (T̃ ),Y ] +

(
Å[∆ |Mi (T̃ ),Y ] − Å[∆ |Y ]

)2)
. (13)

4.2 | Implementation

To compute the BMA-posterior distribution of∆, we undertake a two-step process: In the first step, we compute the
posterior distribution of∆ givenmodelMi (T̃ ) and training dataY ; The second step consists in the computation of the
posterior model probability.

4.2.1 | Empirical Approximation of the Posterior Distribution of∆Given aModelMi (T̃ )

For themechanistic-statistical models defined in section 3, the likelihood [Y |∆,MiT̃ ] cannot be expressed analytically
because it is a function of u that cannot be written in a closed form, thus the need to approximate it using an adequate
algorithm for Bayesian inference. Following Abboud et al. (2019), we use the adaptivemultiple importance sampling
(AMIS; Cornuet et al., 2012) algorithm, that consists of iteratively generating parameter vectors under an adaptive
proposal distribution and assigning / updatingweights to the parameter vectors. To design efficient importance sampling
algorithms, the auxiliary proposal distribution should be chosen as close as possible to the posterior distribution.
However, the posterior distribution being unknown, the crucial choice of the proposal is a difficult task (Gelman et al.,
1996; Roberts et al., 1997). Themain aim of the AMIS algorithm is to overcome this difficulty by tuning the coefficients
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of the proposal distribution picked from a parametric family of distributions, generally the Gaussian one, at the end of
each iteration. In this framework, at each iteration, new coefficient values for the proposal distribution are determined
using the currentweighted posterior sample (Bugallo et al., 2015), then the posterior sample is augmented by generating
new replicates from the newly tuned proposal distribution and the weights of the cumulated posterior sample are
recomputed. The AMIS algorithm provides a weighted posterior sample {(∆lm ,w lm ) : 1 ≤ m ≤ M , 1 ≤ l ≤ L } of size
ML, which forms an empirical approximation of the posterior distribution [∆ |Y ,Mi (T̃ )] (m stands for the iteration; l
stands for the replicate parallelly generated at iterationm). Conditions leading to the convergence in probability of the
posterior mean of any function (integrable with respect to the posterior distribution) of the parameters are described in
Cornuet et al. (2012) and are satisfied in our case (Abboud et al., 2019).

We implemented the AMIS algorithm in the R statistical software, with calls to the software Freefem++ for solving
the PDE and, then, computing the likelihood. Parallel computation was performed in order to reduce the non-negligible
time of PDEnumerical resolution. With (M , L) = (50, 104) and the use of 100 cluster cores (the cluster being composed of
40-cores nodes Xeon(R) 2.2 Ghz, 228GoRAM), the estimation procedure for a fixed valueminimumwinter temperature
T̃ ∈ T takes approximately 1.75 days. Conversely to the MCMC algorithm that is often used in the mechanistic-
statistical framework (Soubeyrand and Roques, 2014; Lanzarone et al., 2017), AMIS, as a purelyMonte Carlo algorithm,
can be easily parallelized, and its tuning parameters are, in addition, automatically adapted at each iteration. The AMIS
algorithm provides at each iteration an assessment of the posterior distribution of parameters, which is expected to
converge to the true posterior distribution and to be stable after a so-called period of burn-in.

4.2.2 | Computation of the integrated likelihood

The evaluation of the integrated likelihood is required to compute the posterior model probability as shown in equation
(10). Hereafter, we present variousmethods to compute the integrated likelihood (that is not analytically tractable in
our case) in order to assess their impact on BMA predictions. Thesemethods are either based on information criteria or
harmonic mean estimators.
Estimators grounded on information criteria
The following information criteria are generally used for model comparison but can also be exploited to assess the
integrated likelihood in BMA as presented inMcElreath (2018), and in equation (24) below.

The BIC (Bayesian information criterion; Schwarz et al., 1978) satisfies for modelMi (T̃ ):

BICiT̃ = −2 log[Y |Θ̂,Mi (T̃ )] + ξiT̃ log J , (14)

where J is the sample size, ξiT̃ is the number of model parameters, and Θ̂ is the maximum likelihood estimate of the
parameter vectorΘ of modelMi (T̃ ) in the support SiT̃ ofΘ:

Θ̂ = argmax
Θ∈SiT̃

[Y |Θ,Mi (T̃ )].

TheDIC (deviance information criterion; Gelman et al., 2014) satisfies for modelMi (T̃ ):

DICiT̃ = D̄ + peff, (15)

where D̄ is the posterior mean of the deviance D(Θ) = −2 log[Y |Θ,Mi (T̃ )] + C (C is a constant that cancels out when
one compares different models) and peff is the effective number of parameters of themodel. The difference in the two
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versions of the DIC considered here lies in the calculation of peff. In the first version proposed by Spiegelhalter et al.
(2002),

peff = pD = D̄ − D(Θ̄), (16)

where Θ̄ is the posterior mean ofΘ under the modelMi (T̃ ): Θ̄ = E[Θ |Y ,Mi (T̃ )]. In the second version proposed by
Gelman et al. (2003),

peff =
1

2
V(D(Θ) |Y ,Mi (T̃ )), (17)

whereV(D(Θ) |Y ,Mi (T̃ )) is the posterior variance of D(Θ).

The IC (information criterion) of Ando (2011) is supposed to solve over-fitting issues in comparison with DIC:

ICiT̃ = D̄ + 2pD := 3D̄ − 2D(Θ̄). (18)

In practice, the different terms appearing in the four criteria, namely Θ̂, Θ̄, D̄ andV(D(Θ) |Y ,Mi (T̃ )), are replaced by
their empirical values using theweighted posterior sample {(∆lm ,w lm ) : 1 ≤ m ≤ M , 1 ≤ l ≤ L } provided by the AMIS
algorithm applied to themodelMi (T̃ ).

TheWAIC (Watanabe–Akaike information criterion;Watanabe, 2010), defined in the deviance scale for allowing
comparison to DIC, satisfies for modelMi (T̃ ):

WAICiT̃ = −2(lppdiT̃ − pWAICiT̃ ), (19)

where lppdiT̃ is the log pointwise predictive density and pWAICiT̃ is an estimate of the effective number of free parame-
ters in themodel. The term lppdiT̃ is the logarithm of the predictive density integrated over the posterior distribution of
themodel parameters summed over all observations:

lppdiT̃ =
J∑
j=1

log
∫
[Yj |Θ,Mi (T̃ )] × [Θ |Y ,Mi (T̃ )]dΘ. (20)

In practice, lppdiT̃ is replaced in theWAIC formula by its empirical analogue (seeGelman et al., 2014) using theweighted
posterior sample:

J∑
j=1

log
(
M∑
m=1

L∑
l=1

[Yj |Θlm ,Mi (T̃ )]w lm
)
. (21)

Following the initial proposal byWatanabe (2010), the term pWAICiT̃ can be expressed as:

pWAICiT̃ = 2
J∑
j=1

(
log

(
Å

[
Yj |Θ,Mi (T̃ )

] )
− Å

(
log [

Yj |Θ,Mi (T̃ )
] ))
. (22)
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Wewill also consider the following expression for pWAICiT̃ advocated by Gelman et al. (2014):

pWAICiT̃ =
J∑
j=1

Ö
(
log[Yj |Θ,Mi (T̃ )]

)
, (23)

WAIC has been used to approach the integrated likelihood [Y |Mi (T̃ )] by the so-called Akaike weight (McElreath, 2018):

̂[Y |Mi (T̃ )] =
exp(− 1

2
dWAICiT̃ )∑

0≤i≤I ,T̃ ∈T
exp(− 1

2
dWAICiT̃ )

, (24)

where dWAICiT̃ = WAICiT̃ − min
i ,T̃
{WAICiT̃ }. If prior probabilities of models are the same, then Akaike weights and

posterior model probabilities coincide. McElreath (2018) also suggested to replaceWAIC by other information criteria
in (24) andwewill test this proposal below by using BIC, DIC and IC.
HarmonicMean Estimators
For approaching the integrated likelihood, Newton and Raftery (1994) noticed, fromBayes theorem,

[Y |Mi (T̃ )]−1 =
∫
[Θ |Y ,Mi (T̃ )][Y |Θ,Mi (T̃ )]−1dΘ = Å([Y |Θ,Mi (T̃ )]−1 |Y ),

and proposed the sample harmonic mean of the likelihood as an estimator of [Y |Mi (T̃ )]. Thus, using the weighted
posterior sample {(∆lm ,w lm ) : 1 ≤ m ≤ M , 1 ≤ l ≤ L }, the harmonic mean estimator satisfies:

̂[Y |Mi (T̃ )] =
(
M∑
m=1

L∑
l=1

1

[Y |Θlm ,Mi (T̃ )]
w lm

)−1
. (25)

This estimator is easily computed and is consistent if the sample size tends to infinity but is rather unstable in practice
and in theory (the variance of the weights is not finite).

Gelfand andDey (1994) proposed a generalized version of equation (25), namely,

̂[Y |Mi (T̃ )] =
(
M∑
m=1

L∑
l=1

f (Θlm )
[Y |Θlm ,Mi (T̃ )] × [Θlm |Mi (T̃ )]

w lm

)−1
, (26)

where f (.) is an importance probability density function. Equation (26) gives an unbiased and consistent estimator of the
integrated likelihood if ∫ f (Θ)[Y |Θ,Mi (T̃ )]−1[Θ |Mi (T̃ )]−1dΘ < ∞. We choose for f an approximation of the posterior
distribution ofΘ, namely themultivariate normal distribution withmean vector and covariancematrix estimated from
the weighted posterior sample {(Θlm ,w lm ) : 1 ≤ m ≤ M , 1 ≤ l ≤ L }. This is supposed to give a stable version of the
harmonic mean estimator (Raftery et al., 2006).

4.2.3 | Priors and posterior samples

For the applications, we assume as a prior knowledge that the models are equally weighted. Because several model
structures with different sets of parameters were considered, the prior distribution ofΘ partly depends on themodel
structure. These distributions combine vague uniform andDirac distributions (Dirac distributions are considered for r0
and p0 for identifiability issues) and are provided in ESM1. AMIS is then applied to obtain aweighted posterior sample of
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sizeML = 5 × 105 for each candidate model; see Section 4.2.1. Posterior model probabilities, empirical approximations
of BMA posterior distributions and other posterior quantities (including predicted infectionmaps) were calculated by
sampling with replacement 104 (models×)parameters with respect to parameter weights and, if necessary, with respect
tomodel weights.
5 | APPLICATION TO SIMULATED DATA

A simulation study is carried out by generating three different datasets {O(g ) : g = 1, 2, 3} = {(t j , xj ,Y (g )j
) : 1 ≤ j ≤ J }

from two different generativemodels. Wewish to assess which approach for the computation of the posterior model
probabilities is reliable. To obtain an assessment relevant for the real case study tackled in the next section, we use the
same spatial domainΩ, observations locations xj and observation times t j than in the real data set and, for most of the
parameters, we use values close to parameter estimates obtained in the next section. The twomodels that we used
wereM0(5.5), in which the diffusion is homogeneous (D1 = D2), andM1(5.5), in which the diffusion is heterogeneous.
For the latter model, we considered two cases: D2 = 0.9D1 andD2 = 0.1D1. Table 1 summarizesmodel specifications
and provides parameter values.

TABLE 1 Specifications of modelsM0(5.5) andM1(5.5) fromwhich datasets were generated for the simulation
study.

Dataset Model Diffusion Parameter values
O1 M0(5.5) D1 = D2 = D D = 3.2e+05, b = 0.049, K = 0.15,

α = 0.26, x̃0 = (1.176023e+06, 6.108375e+06), τ0 = −335
O2 M1(5.5) D1 = 0.9D2 D1 = 2.0e+05,D2 = 1.8e+05, b = 0.025, K = 0.14,

α = 0.50, x̃0 = (1.178962e+06, 6.113653e+06), τ0 = −650
O3 M1(5.5) D1 = 0.1D2 D1 = 2.0e+05,D2 = 2.0e+04, b = 0.025, K = 0.14,

α = 0.50, x̃0 = (1.178962e+06, 6.113653e+06), τ0 = −650

The reliability of each approach for computing posterior model probabilities was assessed by fitting the twomodels
to the three generated datasets and by checking, for each dataset, whether the truemodel has the largest probability.

Figures 2–4 report the posterior map of the introduction location and the histograms of the marginal posterior
distributions of the other parameters when the truemodel is fitted to data. We can observe that the ’True’ parameter
values are all in the 95% credible interval.

Afterward, in order to get theBMAposterior distribution,wefirst consider as a prior knowledge that both candidate
modelsM0(5.5) andM1(5.5) are equally weighted. Then, we compute posterior model probabilities using evidence-
based and Bayesian predictive estimators (see Table 2). While DIC2 (Equations (15) and (16)) was found to correctly
identify the ’True’ model when applied to the three case studies, both BIC (Equation (14)) and DIC1 (Equations (15) and
(17)) led to incorrect model choice. In particular, DIC1 gives nonsensical results, which is probably due to the fact that
the posterior distribution is not well summarized by its mean (Gelman et al., 2014). Eventhough the IC (Equation (18)) is
a Bayesian predictive information criteria, it does not seem to accurately compute posterior model probability in the
case where data was generated frommodelM1(5.5). We notice that the harmonic mean estimators HME1 (Equation
(26)) andHME2 (Equation (25)) and theWAIC (Equation (19)) in its two versionsWAIC1 (Equation (22)) andWAIC2 (
Equation (23)) are able to correctly identify the ’True’ model. However, it has been shown that theWAIC relying on
data partition can cause difficulties in the case of spatial data (Gelman et al., 2014). In the application to real data, we
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will favor the harmonic mean estimator of Gelfand andDey (HME1) because it is the stabilized version of the harmonic
mean estimator of Raftery (HME2) and it is based on awell-founded theory.

TABLE 2 Posterior model probabilities obtained for each simulated dataset using different methods to assess the
integrated likelihood, namely, those based on BIC, DIC1 andDIC2 (evidence-based estimators) and those based on
HME1, HME2, WAIC1, WAIC2 and IC (predictive estimators).

Type of Method Model Diffusion PosteriorModel Probability
approach M0(5.5) M1(5.5)

Evidence-based BIC M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 1.00 0.00

D2 = 0.1D1 1.00 0.00
DIC1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 <0.01 >0.99
D2 = 0.1D1 1.00 0.00

DIC2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.57 0.43

D2 = 0.1D1 0.30 0.70
Predictive HME1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.12 0.88
D2 = 0.1D1 0.08 0.92

HME2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.80 0.20

D2 = 0.1D1 0.23 0.77
WAIC1 M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.40 0.60
D2 = 0.1D1 0.41 0.59

WAIC2 M0(5.5) D2 = D1 1.00 0.00
M1(5.5) D2 = 0.9D1 0.40 0.60

D2 = 0.1D1 0.40 0.60
IC M0(5.5) D2 = D1 1.00 0.00

M1(5.5) D2 = 0.9D1 0.00 1.00
D2 = 0.1D1 1.00 0.00
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F IGURE 2 Posterior map of the introduction location and histograms of marginal posterior distributions for all the
other parameters of modelM0(5.5)when it is fitted to data O1 . Red line: true value. Dashed black lines 0.025 and 0.975
posterior quantiles. Blue cross on themap: true introduction location. Color palette: posterior probability of the
introduction location.
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F IGURE 4 Posterior map of the introduction location and histograms of marginal posterior distributions for all the
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6 | APPLICATION TO XYLELLA FASTIDIOSA DATA

6.1 | Model Comparison

In the analysis of the Xf data in Southern Corsica, we first compare BMAmethods on the set of 15models presented
in Section 3 for model comparison purposes. For each model, vague and uniform priors were considered for the
model parameters. All models were assumed equally likely a priori. The Xf dataset is split into a training dataset
that contains all the points sampled between July 2015 and April 2017 and a validation dataset that contains all the
points sampled between May 2017 and January 2019. We begin by estimating the joint posterior distribution of
eachmodel parameter vector conditionally on the training data, to allow us to later validate our approach by creating
forecasts starting inMay 2017. AMIS algorithmwas applied for this purpose as explained in Section 4.2.1. Convergence
diagnostic and goodness-of-fit tests (not shown) were carried out like in Abboud et al. (2019) for eachmodel and yield
satisfying results (at least concerning the stabilization of the algorithm). For computing the empirical posterior model
probabilities we use various evidence-based and predictive estimators: Table 3 compares posterior model probabilities
obtained via BIC (Equation (14)), DIC1 (Equations (15) and (16)), DIC2 (Equations (15) and (17)), IC (Equation (18)),
HME1 (Equation (26)), HME2 (Equation (25)), WAIC1 (Equations (19) and (22)) andWAIC2 (Equations (19) and (23)).
Most of the used estimators agreed in the selection of modelM0(5.5) as the best model, associated the lowest posterior
model probabilities to the samemodels, but differed in the subsequent ranking. Furthermore, theDIC1 and IC ranked the
modelM0(5) as the best model. However, the last estimators led towrongmodel choice when applied to simulated data.
It is also clear from the table that some significant posteriormodel probabilitieswere associated to othermodels such as,
M0(5),M1(5) andM1(5.5). The two highest posterior model probabilities obtainedwith HME1 goes forM0(5.5)with
[M0(5.5) |Y ] = 0.61 andM0(5.5)with [M0(5) |Y ] = 0.38, while the lowest posterior model probabilities are associated
to themodels in the setM2(T̃ ) and themodels with T̃ = 6.
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CANDY ABBOUD ET AL. 15
TABLE 3 Posterior model probabilities approximated using: BIC, DIC1 (Spiegelhalter et al., 2002), DIC2 (Gelman
et al., 2003), IC (Ando, 2011), HME1 (Gelfand andDey, 1994), HME2 (Raftery, 1996),WAIC1 (Watanabe, 2010) and
WAIC2 (Gelman et al., 2014). The highest posterior model probability value obtained with eachmethod is highlighted in
yellow.

PosteriorModel Probability
Mi (T̃ ) BIC DIC1 DIC2 IC HME1 HME2 WAIC1 WAIC2

T̃ = 4 °C
M0 2.745 × 10−3 1.032 × 10−8 2.360 × 10−4 5.019 × 10−14 3.809 × 10−4 2.509 × 10−5 1.522 × 10−4 1.684 × 10−4

M1 2.737 × 10−14 7.353 × 10−17 4.367 × 10−12 6.953 × 10−23 4.816 × 10−15 4.932 × 10−14 1.045 × 10−11 1.152 × 10−11

M2 1.195 × 10−62 1.916 × 10−67 1.694 × 10−65 1.068 × 10−71 1.123 × 10−64 3.278 × 10−67 3.119 × 10−64 3.465 × 10−64

T̃ = 4.5 °C
M0 1.231 × 10−1 1.537 × 10−7 1.977 × 10−3 5.560 × 10−13 2.594 × 10−5 2.786 × 10−4 3.292 × 10−3 3.201 × 10−3

M1 7.885 × 10−11 2.487 × 10−14 6.821 × 10−9 1.676 × 10−20 8.199 × 10−12 1.703 × 10−10 2.681 × 10−9 3.194 × 10−9

M2 7.430 × 10−63 8.880 × 10−69 6.582 × 10−64 4.602 × 10−75 2.784 × 10−65 1.986 × 10−64 1.210 × 10−63 1.343 × 10−63

T̃ = 5 °C
M0 1.412 × 10−1 8.413 × 10−1 2.313 × 10−2 9.513 × 10−1 3.814 × 10−1 7.465 × 10−3 3.393 × 10−2 3.342 × 10−2

M1 5.818 × 10−7 5.884 × 10−3 3.619 × 10−5 4.558 × 10−2 1.763 × 10−3 6.800 × 10−5 2.222 × 10−5 2.521 × 10−5

M2 3.697 × 10−58 2.831 × 10−63 2.708 × 10−60 9.547 × 10−68 4.027 × 10−60 5.850 × 10−61 8.180 × 10−60 8.842 × 10−60

T̃ = 5.5 °C
M0 7.328 × 10−1 1.439 × 10−1 9.723 × 10−1 1.258 × 10−3 6.126 × 10−1 9.913 × 10−1 9.604 × 10−1 9.610 × 10−1

M1 1.071 × 10−4 8.979 × 10−3 2.285 × 10−3 1.843 × 10−3 3.787 × 10−3 9.099 × 10−4 2.183 × 10−3 2.148 × 10−3

M2 4.898 × 10−62 1.690 × 10−68 2.503 × 10−64 2.034 × 10−74 1.856 × 10−64 3.896 × 10−65 8.396 × 10−64 8.891 × 10−64

T̃ = 6 °C
M0 8.100 × 10−73 2.855 × 10−79 6.007 × 10−73 4.477 × 10−86 3.852 × 10−81 6.049 × 10−76 3.120 × 10−73 3.250 × 10−73

M1 4.864 × 10−69 1.919 × 10−73 1.720 × 10−67 4.635 × 10−80 2.712 × 10−76 2.385 × 10−70 6.280 × 10−68 6.163 × 10−68

M2 3.054 × 10−62 8.454 × 10−69 2.693 × 10−64 5.788 × 10−75 3.253 × 10−64 2.692 × 10−65 1.056 × 10−63 1.158 × 10−63

6.2 | Inference

Motivated by the results obtained on simulated data, we use the HME1 for computing the posterior model probabilities,
and then inferring shared parameters (the introduction point and the threshold of temperature). BMAmarginal and 2D
posterior distributions of shared parameters are displayed in Figures and 5 and 6. Figure 5 illustrates the advantage
of the BMA since one obtains a posterior distribution of the threshold of temperature instead of a unique selected
value as in Abboud et al. (2019). The introduction of Xf tends to be relatively ancient (posterior median: −763.7months
before July 2015, i.e. introduction around 1952; posterior mean −748.7months) but also relatively uncertain (posterior
standard deviation: 156months). In comparison, the inference of the introduction time provided by the best model
is: posterior median −791months before July 2015, i.e. introduction around 1951; posterior mean −779.02months;
posterior standard deviation: 133months. We notice that the posterior standard deviation with BMA is larger than the
onewith the best model, certainly better reflecting the estimation uncertainty.
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F IGURE 5 BMAmarginal posterior distribution of
the threshold of temperature T̃ .

F IGURE 6 BMA
Posterior distributions of
the introduction time τ0
(histogram) and the
introduction point x̃0
(color palette). The prior
for τ0 was uniform over
[−1000, 0] (red line). The
value of x̃0 having the
largest weight in the BMA
posterior sample of size
105 is indicated by a blue
cross. The prior for x̃0
was uniform overΩT̃ 1 formodelMi (T̃ ), 0 ≤ i ≤ I .
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F IGURE 7 Comparison between the in-sample forecasts obtained from training data namely, the posterior mean
provided by the best model (top), the posterior mean provided by BMA (middle), climatology and kernel smoothing
reference forecasts (bottom), and the out-of-sample forecast obtained using a bandwidth of 5 kilometers.

6.3 | Out-of-Sample Predictive behaviour

Figures 7–9 show several in-sample forecasts obtained from training data and out-of sample forecasts obtained from
validation data. The out-of-sample forecast is computed as a spatial kernel smoother of validation data, i.e. {(xj ,Yj ) :
t j ∈ [May 2017–January 2019]}, using the Epanechnikov kernel, which is proportional to d 7→ (1 − d 2)1( |d | ≤ 1) and is
applied in the kernel smoother to the geographical distance scaled by different bandwidth values. Thus, in Figure 7, the
right panel shows the resulting map for a 5km bandwidth, and this is considered as the true time-averaged infection
probability betweenMay 2017 and January 2019 that wewant to predict. Varying the bandwidth allows us to explore
different visions of the truth. We compare the out-of-sample forecast for a given smoothing level to four in-sample
forecasts computed from training data between July 2015 and April 2017, namely:

• the posterior mean of u computed and averaged over the periodMay 2017–January 2019, which is provided by the
best model selected from and fitted to training data (i.e., the best model is the model with the highest posterior
model probability);

• the posterior mean of u computed and averaged over the periodMay 2017–January 2019, which is provided by
BMA applied to training data;

• the so-called climatology forecast (Mason, 2004), which is themean of {Yj : t j ∈ [July 2015–April 2017]};
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F IGURE 8 Comparison between the in-sample forecasts obtained from training data namely, the posterior mean
provided by the best model (top), the posterior mean provided by BMA (middle), climatology and kernel smoothing
reference forecasts (bottom), and the out-of-sample forecast obtained using a bandwidth of 15 kilometers.

• the spatial kernel smoother of {(xj ,Yj ) : t j ∈ [July 2015–April 2017]}, using the Epanechnikov kernel and the same
bandwidth than the one used for the out-of-sample forecast.

The root-mean-squared error (RMSE) was computed tomeasure the predictive behaviour of the BMA, the best model,
the climatology and the kernel smoothing overMay 2017–January 2019, i.e. how close are these forecasts compared to
the "expected truth". This quantity was calculated over a regular square grid coveringΩ andwith 1km×1km cell size:

RMSE =
√√√
1

H

H∑
h=1

( ˆ̄uh − ū (b)h ),

where ˆ̄uh is the average (in time and space) prediction of u in grid cell h overMay 2017–January 2019 provided by one
of the predictors; ū (b)

h
is the average (in time and space) of u in grid cell h provided by the spatial kernel smoother with

bandwidth b > 0 applied to validation data; andH is the number of grid cells.
Thus, the RMSE was computed for bandwidths ranging between 2.5 and 25 kilometers. Figure 10 presents the

RMSE curves for different bandwidths of kernel smoothing and for all the in-sample forecasts. The BMA and the best
model almost have the same accuracy with slightly lower RMSE values for the BMAmodel. This is also observed from
Figures 7–9 indicating that the posterior mean of the BMA forecast and the posterior mean of the best model forecast
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F IGURE 9 Comparison between the in-sample forecasts obtained from training data namely, the posterior mean
provided by the best model (top), the posterior mean provided by BMA (middle), climatology and kernel smoothing
reference forecasts (bottom), and the out-of-sample forecast obtained using a bandwidth of 25 kilometers.

are very similar. However, the standard deviations for BMA are larger than those provided by the best model, certainly
better reflecting the uncertainty about the predictions. In addition, BMA better performs than kernel smoothing and
climatology for bandwidths up to 15Km. However, when the bandwidth is larger, BMA leads to larger RMSE values than
kernel smoothing but still lower values than climatology. We can interpret these results as follows: 1) The climatology,
which predicts the same infection probability everywhere, obviously does not account for themajor spatially-structured
effect of cold temperatures in winter on Xf reproduction and/or propagation. 2)When the bandwidth b is large, the
out-of-sample forecast tends to a very smooth function that even yields significantly positive infection probabilities
in regions where Xf reproduction and/or propagation is hampered (i.e. cold regions in winter). This bias in what we
called the expected truth is also encountered in the in-sample forecast based on kernel smoothing and partly explains the
advantage of this predictor for large bandwidths. It could also explains why the climatology predictor could improve
its performance at even larger bandwidths (for extremely large bandwidths, the kernel smoother and the climatology
coincide). 3) For small bandwidths, the high probability areas identified by the kernel smoother applied to training
data and to validation data are spatially close but do not exactly coincide. In contrast, the quite smoothmechanistic
predictions based on BMA do not predict peaks of infection as observed in the out-of-sample forecast but correctly
delineate regions where these peaks can arise.
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F IGURE 10 RMSE curves showing
the out-of-sample Predictive
Behaviour of the BMA compared to the
best model, the climatology and the
kernel smoothing.
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7 | CONCLUSION

In summary, we have presented the use of a PDE-based Bayesianmodel-averaging approach aiming to infer and predict
invasive species dynamics using multiple competingmodels, with application to Xf. In addition to combiningmodel infer-
ences and predictions, the BMA can be used for a direct model comparison by computingmodel posterior probabilities,
which are equal to model weights. To compute these weights we proceed trying various evidence-based and predictive
methods proposed in the literature. Most of the used estimators agreed in the selection of modelM0(5.5) as the best
model, and associated the lowest weights to the samemodels, but differed in the detailed ranking. Motivated by the
results obtained on simulated data and based on thewell founded theory of the Gelfand andDey’s method, we have
shown the results obtained when applying this method to real data in order to average over all model predictions and to
infer shaared parameters such as the introduction point and the threshold of temperature.

Our analyses show that the introduction of Xf in Southern Corsica occurred probably near Bastellica, to the east
of Ajaccio around 1952 (95%-posterior interval: [1933, 1979]), long time before its first detection. The estimation of
the introduction site is relatively consistent with the results obtained by Abboud et al. (2019) in the sense that the
posterior distributions obtained from both analyses overlap. It is also compatible with the result of Soubeyrand et al.
(2018) andDenancé et al. (2017a), who estimated that the date of introduction of this bacterium is relatively ancient.
Our BMA approach is expected to0 better reflect the uncertainty about the respective inferences as assessed by
credibility intervals showed in the result section. Moreover, we compare the BMA approach to the approach in Abboud
et al. (2019) where first the posterior distribution of model’s parameter vector was inferred given the threshold of
temperature and then, this threshold was chosen using selection criteria. The PDE-based BMA approach presented in
this paper, allows to open up to smoothed threshold of temperature bymeans of the weighted BMA posterior sample of
model parameter vectors (i.e. temperature-dependent), which informs us on the temperature threshold by providing an
empirical approximation of its marginal BMA posterior distribution.
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Based on the ample literature onmodel-averaging, wewere expecting this techniquewould provide ameliorated
predictions andmore realistic estimate of the uncertainty associated with model predictions than any single model
(Hoeting et al., 1999; Draper, 1995;Wintle et al., 2003). However, our application shows that the BMA does not seem
to outperform the best model. In this case study, as discussed byWintle et al. (2003), this may be due in part to the
dominance of one or two predictors in all of the models or the lack of complete independence between the training
and testing data. Likewise, in our application, the credibility intervals providedwith BMAwere larger than the ones
provided by the bestmodel. This could reflect the fact that BMAhas succeeded in better assessing the uncertainty about
model predictions, avoiding overconfidence about predictions andmisleading decisionmaking obtainedwhen using a
single best model. However, to firmly confirm this result, complementary studies should be conducted to calibrate the
credibility intervals. Obviously, the deterministic candidatemodels (Equation (1–7)) that we proposed to describe the
dynamics of the pathogen succeed to fairly describe the discrepancies between low and high probability of infection but
fails when it comes to the details, e.g., the spatio-temporal disease clusters that can be observed using kernel smoothing
with small bandwidth. These details could be implicitly taken into account by coupling the partial differential equation to
stochastic or observed covariables that would result in more flexible realizations. Although the population size for the
case study of Xf is here relatively large, to damper strong variations from themean effect, stochastic population-dynamic
models (Renshaw, 1993; Kareiva and Shigesada, 1983; Soubeyrand et al., 2009) could allow to relax the deterministic
behaviour for the dynamics. In contrast, our parsimonious choice of candidatemodels that only incorporate themain
epidemiological and environmental drivers, provides a concise description of the dynamics of the pathogen, and can
be fitted to data in a reasonable computer time. The advantage of this approach is that it can be rapidly applied for
endorsing a fast reaction after the detection of a new invasive pathogen as suggested in Abboud et al. (2019). Since
the detection of Xf in Europe, several modeling approaches have been implemented to providemore insights on the
spread of this invasive pathogen in European environments (Strona et al., 2017;White et al., 2017; Bosso et al., 2016;
Godefroid et al., 2018; Soubeyrand et al., 2018;Martinetti and Soubeyrand, 2018). An interesting perspective of our
workwould be to consider all the predictions obtained from these variousmodels in the case study of Xf in Southern
Corsica within the BMA framework. BMA is indeed an approach for taking advantage of different model structures
and our work could be extended tomore diversemathematical representations of the infection probability, including
stochastic representations.
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4.3. Key Points of Chapter 4

v The advantage of the BMA approach compared to the approach presented in
Chapter 3 is that it can better reflect the uncertainty about model predictions.
BMA helps avoiding overconfidence predictions and misleading decision mak-
ing obtained when using a single model.

v We discuss the results obtained about the performance of the BMA predictions
compared to the predictions obtained from the "best" model. We were surprised
that the difference was so insignificant for our case study, with regards to theo-
retical considerations in favor of BMA.

v To submit this article, I still have to evaluate the integrated likelihood using the
non-biased estimator mentioned in Section 2.2.2.2.4. This estimator is natu-
rally provided in a classical importance sampling by averaging over computed
unnormalized weights. Its application in the framework of AMIS has first to be
investigated, and then compared to the HME1 to identify potential discrepan-
cies, if any, with respect to the distribution of posterior model probabilities.
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5. Piecewise-deterministic Markov
Processes a way to gain more realism

The chapter is divided into two parts: The first part introduces a part of a book chapter1 published by Wiley on
the 6th of August 2018, and cited hereafter. The second part introduces the first analysis obtained on a work
in progress, and discusses the results and the difficulties.
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1 C. Abboud, R. Senoussi, and S. Soubeyrand. Piecewise-deterministic Markov Processes for Spatio-temporal
Population Dynamics. In Azaïs, Romain and Bouguet, Florian, editor, Statistical Inference for Piecewise-
deterministic Markov Processes. ISTE Editions/Wiley, 2018
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Major Components of The Chapter

Surveillance Data on Xf with Binary Records
v „17000 plants sampled since 2015 of which 1000 have been

diagnosed as infected (real-time PCR).

v For those „ 17000 plants, geographic coordinates and
sampling dates are available.

v T : average of the minimum daily temperature over January
and February b/n 1995 and 2003 (Map of T with 1 km grid
resolution on the right) thresholded by T̃ “ 5°C.

PDMP with Multiple Introductions
v Aggregate multiple PDMP with multiple introductions based

on a coupled reaction-diffusion-absorption equation.

v Use the AMIS algorithm for model’s parameter estimation in
the framework of the mechanistic-statistical approach.

v Jointly infer initial conditions and parameters of the dynamics.

Methodological Ingredients

I- Biological Questions

v Know when and where the strains of Xf that triggered
the epidemic observed since 2015 in Corsica were in-
troduced in this region.

v Get more insights on the pathogen epidemiology in or-
der to adapt surveillance strategies.

tzentzentzentzentzentzentz

II- Methodological Questions

v Extend the modeling and inferring framework of the last
two chapters, when multiple introductions potentially
occurs.

v Adapt this framework to allow inferring model parame-
ters in a reasonable time span.

How to ¨ ¨ ¨

Estimation of the marginal distributions of two introduction
dates and the 2D posterior distribution of introduction locations.
gshhqdhq

gshhqdhq
gshhqdhq
gshhqdhq
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Numerical Solution of the model with two
introductions for values of Θ associated
with the highest posterior weight.

gshhqdhq
gshhqdhq

Estimation of the
marginal posterior
distribution of pa-
rameters (panels in
the diagonal) and 2D
posterior distributions
of parameters (lower
triangle panels). Cor-
relation cœfficients
are provided in the
upper triangle panels.
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Main Results

Conclusion

v In this Chapter, we show that the coalescing colony model can be formulated as
a spatio-temporal PDMP, and then propose a PDE-based PDMP to incorporate
into the models of Chapters 3 and 4 the possibility of multiple introductions.

v We do not infer the PDMP as such, but we inferred in a Bayesian framework,
Initial conditions and parameters related to diffusion, reproduction, and mortality,
under a simplified problem and implementation.

v Lower standard deviation values where obtained for model parameters com-
pared to the values obtained in Chapter 3.

v Our preliminary results raises questions about whether the AMIS algorithm will
still be tractable in a high dimensional problem such as a spatio-temporal PDMP
with multiple introductions.

gshhqdhq

Perspectives

v Infer the PDMP as a whole and alternative approaches.

v Apportion the different sources of uncertainty.

v Use additional information brought by genetic data.

v Adapt AMIS to reduce computational time and reach the stable state faster.

Conclusion & Perspectives

5.1. Graphical Summary
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7

Piecewise-deterministic Markov Processes
for Spatio-temporal Population Dynamics

7.1. Introduction

7.1.1. Models for Population Dynamics

Population dynamics is the study of the structure, the pattern and the biological and
environmental drivers of populations. Studies of population dynamics are carried out
at various scales, from the microscopic scale to the global scale, and are particularly
relevant in ecology and epidemiology.

Numerous and diverse modeling approaches have been proposed to
mathematically represent population dynamics. These modeling approaches are
based on diverse mathematical tools adapted to (i) different resolutions at which the
population dynamics are considered (e.g. individuals, groups, presence in quadrats,
and numbers of individuals in districts), and (ii) different levels of perceptions (e.g.
the population itself, its averaged characteristics, or more generally aggregated
functions of the population patterns). For instance, ODEs were used to describe the
average growth of populations [TUR 03, chap.3], branching processes were used to
model the growth and adaptation of populations [MÉL 11], PDEs and
integrodifferential equations were used to represent the spatio-temporal intensity of
populations with local and non-local dispersal capacities [ROQ 10, ALF 13], SDEs
were used to model trajectories of individuals [GLO 15], temporal point processes
were used to build birth-death models [CHA 06], spatio-temporal point processes
were used to model the temporal evolution of the spatial pattern of individuals
forming a population [SOU 11], stochastic Markovian areal processes were used to
model large-scale dynamics [SOU 09b], regressions (eventually including

Chapter written by Candy ABBOUD, Rachid SENOUSSI and Samuel SOUBEYRAND.

5.2. Book Chapter
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auto-regressive components) were used to take into account the effect of
environmental variables on population characteristics [BOR 17].

Suppose that we are interested in fitting a spatio-temporal population dynamic
model to data. There is, like in many other application fields, a trade-off between
model realism and estimation complexity. For example, fitting a population dynamic
model essentially constructed from a partial differential equation containing a few
parameters [SOU 14b] is generally easier than fitting a (more flexible and realistic)
hierarchical stochastic spatio-temporal Markovian model including a few parameters
but numerous latent variables [SOU 09b]. In this example, two extreme cases are
considered: (i) a model with a deterministic behavior and a few degrees of freedom,
which may yield poor goodness-of-fit, and (ii) a model with a stochastic behavior and
lots of degrees of freedom, which may induce identifiability issues. Intermediate
models are required to achieve rapid, realistic and consistent inferences.
Spatio-temporal PDMPs can play this role.

7.1.2. Spatio-temporal PDMP for Population Dynamics

Spatio-temporal PDMPs can be occasionally encountered in the theoretical and
quantitative population dynamic literature, but these models are generally not called
PDMPs. Here, we give three examples of spatio-temporal PDMPs built at three
different levels: the population, the metapopulation (which is a set of populations)
and the individual. These processes are illustrated in Figure 7.1.

The coalescing colony model [SHI 95], which was developed to represent stratified
diffusion in biological invasions, is a PDMP. Stratified diffusion typically consists
of two components: neighborhood diffusion and long-distance dispersal. The former
component is modeled in the coalescing colony model by a deterministic expansion of
colonies (this is the flow); The latter component is modeled by the random Markovian
generation of new colonies away from the existing colonies (this is the jump process).
The coalescing colony model was developed to investigate the impact of stratified
dispersal on the rate of expansion of populations with several propagation modes.

The metapopulation epidemic model proposed in [SOU 09a] is another example
of spatio-temporal PDMP representing a population dynamic. Here, the population
of interest is a pathogen population whose hosts are spread in a set of disconnected
areas, called host patches. In this model, host patches can be either healthy or infected
by the pathogen; When a host patch is infected, the local pathogen population grows
in a deterministic way (this is the flow); Infected patches can infect distant healthy
patches in a stochastic manner (this is the jump process; the pathogen jumps from
infected patches to healthy patches). The metapopulation epidemic model was fitted
to presence/absence data of the pathogen in host patches at the end of successive
epidemic seasons.
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PDMPs can also provide concise mathematical descriptions of trajectories of
individuals. Examples of such models are given in [CAI 17, chap. 1] under the term
velocity-jump models. These models were used to carry out a statistical analysis of
the expansion of the cane toad using data obtained by monitoring successive daily
locations of a sample of toads. In the simplest model, each individual randomly
alternates between encamped and running modes, whose durations are independently
and exponentially distributed (this is the jump process). When an individual jumps
towards a new running mode, the direction is randomly drawn in a specified
distribution. When an individual is running, its movement is deterministic and linear
given the random direction of the movement (this is the flow).

New colony

Jump

Flow

Newly infected patch

Jump

Flow

Flow

Flow

Flow

Flow

Flow

Flow

Jumps

Shift in direction after an encamped stage

Direct shift in direction

Figure 7.1: Illustrations of the flows and jumps for the coalescing colony model (left),
the metapopulation epidemic model (center) and the simple velocity-jump model.

7.1.3. Chapter Contents

In the following, we describe three contexts where PDMPs arise for describing
population dynamics at the population level, the metapopulation level and the
individual level, respectively. Section 7.2 shows how the coalescing colony model
was built and how it can be formulated as a PDMP. It also introduces a
spatio-temporal PDMP based on a reaction-diffusion equation that could be used to
model the dynamic of an invading pathogen (e.g. Xylella fastidiosa in Corsica) that
might have been introduced at multiple points in space and time. Section 7.3 presents
the metapopulation epidemic model mentioned above and gives details about how it
was fitted to data. Section 7.4 describes a theoretical framework for building
trajectory models with jumps, including PDMPs.

7.2. Stratified Dispersal Models

In this section, we briefly review some mathematical models describing
spatio-temporal dynamics of populations. We are especially interested in the
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dispersal modes incorporated in these models. Thus, we will consider some
reaction-diffusion models including only short-distance dispersal processes, and
coalescing colony models including both short-distance and long-distance dispersal
processes. We will show how the latter model can be formulated as a PDMP. Finally
we will present an original reaction-diffusion-based PDMP describing invasion
dynamics with multiple introductions.

7.2.1. Reaction-diffusion Equations for Modeling Short-distance
Dispersal

There are typically three stages arising successively during a biological invasion
process: (1) establishment where a few individuals arrive and succeed to settle, (2)
linear expansion when the invasion occurs by neighborhood diffusion as in this
section or biphasic expansion when the invasion is driven by stratified diffusion (see
Section 7.2.2), and (3) concentration of the invasive species in the area of invasion
until saturation [COL 04, RIC 00]. When one aims to model dispersal phenomena
such as biological invasions, reaction-diffusion equations are frequently used and
have been exploited in many domains, especially in medicine, ecology and
epidemiology [GAT 96, ROQ 13, MUR 96]. Reaction-diffusion equations are partial
differential equations of parabolic type [EVA 98]. Here, we describe some
reaction-diffusion equations, in which dispersal is considered as a random diffusion
process.

Random diffusion at the population level can be derived from random walks at the
individual level. Random walks are often used to describe invasions by species that
move via short-distance dispersal. Basic random walk models describe the path of an
individual moving in a spatial domain via a succession of random steps. Typically, in a
unidimensional space, as illustrated in Figure 7.2, the individual located at x can move
to the left and reach x− d with probability PL, move to the right and reach x+ d with
probability PR or stay at the same place with probability PS = 1 − PL − PR. Such
a microscopic and individual-based description of movements can be used to obtain
diffusion equations at the population level [ROQ 13, SHI 97, SKE 51]. In particular,
the 1D random walk without directional bias and with constant and non-persistant
increments leads to the following form of diffusion equation: ∂u∂t = D ∂2u

∂x2 , where u is
the density of population.

In 1937, Fisher analyzed the rate of advance of advantageous genes with a PDE
[FIS 37], which has been generalized into:

∂u

∂t
= D

∂2u

∂x2
+ u(r − bu)︸ ︷︷ ︸

f(u)

, t ≥ 0 [7.1]
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Figure 7.2: Unidimensional random walk model.

where u = u(t, x) is the frequency of the advantageous gene at time t and spatial
location x in a unidimensional space; D > 0 is the coefficient measuring the rate of
dispersal; r stands for the intrinsic growth rate of the species; and b corresponds to the
coefficient measuring the effect of intra-specific competition; f(u) is the population
growth term.

In the line with Fisher’s work, Skellam [SKE 51] proposed two-dimensional
PDEs for describing population dynamics. The so-called Skellam model, in
particular, allowed him to theoretically study population spread with Malthusian
growth. This model incorporates two terms, namely the population dispersal term and
the population growth term, and assumes that there is no intra-specific competition:

∂u

∂t
= D∆u+ ur , t ≥ 0 [7.2]

Figure 7.3 presents the solution of Equation [7.2] in a two-dimensional space, for
specific values of parameters, initial conditions and boundary conditions.

Positive wavefront type-solutions exist for Equation [7.2]. One simplified form of
a traveling wave (in a unidimensional space) is a function of the form:

u(t, x) = U(x− ct)

where c ∈ R is the speed of the front U ∈ C2(R). Note that a traveling wavefront can
be defined not only when t > 0 but also for any t ∈ R.

Skellam showed that the rate of spread at the front of the population range
asymptotically approaches c0 = 2

√
rD when a small population is initially

introduced at the origin. Furthermore, Luther [LUT 06] and Kolmogorov et al.
[KOL 37] were the first to prove the existence of wavefront type-solutions for a
diffusion equation with a logistic growth term f(u) = ru(1 − u) (Fisher-KPP).
Kolmogorov et al. showed that some initial distributions converge asymptotically to a
traveling wave propagating to the right with a well defined, constant speed
c = 2

√
rD. When the growth term includes an Allee effect as follows:

f(u) = ru(1 − u)(u − θ), where θ ∈]0, 1[ is the Allee effect parameter, then there
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Figure 7.3: Numerical solution u(t,x) of Skellam model [7.2] in a bi-dimensional
space (where x = (x, y)) with Neumann boundary conditions, at time 0 (top left), 3
(top right), 6 (bottom left) and 12 (bottom right). The dispersal coefficient and the
intrinsic growth rate were fixed at (D, r) = (5× 10−3, 0.5). The initial condition

was u(0,x) = 0.1 exp(−(10‖x− x̃0‖)2), where x̃0 = (x̃0, ỹ0) = (0.8, 0.8).

exists a unique positive wavefront-type solution with lim
x−→−∞

U = 1, lim
x−→+∞

U = 0.

In addition, the speed of the front is [HAD 75, ROT 81, LEW 93]:

c =
√

2rD(
1

2
− θ) [7.3]

7.2.2. Stratified Diffusion

The models introduced above are generally not adapted to describe the dynamics
of populations that expand their range not only by neighborhood dispersal but also by
long-distance dispersal, which can corresponds to rare but significant events. The term
stratified diffusion was used to describe this twofold dispersal process [HEN 89].

Shigesada et al. [SHI 95] proposed stratified diffusion models (derived from
Skellam’s equation for neighborhood dispersal) and studied their properties. In theses
models, the population of interest is in a homogeneous environment and expands its
range continuously in time for neighborhood dispersal and at discrete random times
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for long-distance dispersal (i.e. colonization events). Two frameworks were
considered: (i) the nuclei of colonization created by long-distance migrants are
located far enough to assume that their ranges do not overlap, mutually and with the
mother colony, for a long time; (ii) the nuclei of colonization created by
long-distance migrants merge with the mother colony as soon as they touch the
mother colony (because of their own expansion and the expansion of the mother
colony), but the merging of two nuclei of colonization is neglected. Framework (ii)
led to the coalescing colony model [SHI 95] that we revisit in the next section by
incorporating an Allee effect.

7.2.3. Coalescing Colony Model with Allee effect

Model description and properties

Suppose that a few individuals invade a given location of the 2D Euclidean space
at t = 0, succeed to settle, and form a so-called mother colony with a disk shape
whose radius increases at a constant rate c by neighborhood diffusion (the
establishment phase is neglected). By setting c =

√
2rD( 1

2 − θ), the expansion of
the mother colony is an approximation of the population expansion governed by the
following PDE incorporating an Allee effect (see Equation [7.3]):

∂u

∂t
= D∆u+ ru(1− u)(u− θ),

given adequate initial conditions.

The expansion of the mother colony is augmented by long-distance dispersal
events generating child colonies. More precisely, the mother colony releases long-
distance dispersers that settle at a distance L > 0 of the border of the mother colony
and produce child colonies. The rate of generation of child colonies, say λ̃, is assumed
to depend on the current radius z of the mother colony. Typically, λ̃ is a non-decreasing
function of z. Shigesada et al. considered three cases:

• λ̃(z) = λ0, i.e. the mother colony produces long-distance migrants at a constant
rate;

• λ̃(z) = λ1z, i.e. the mother colony produces long-distance migrants at a time-
varying rate proportional to its perimeter;

• λ̃(z) = λ2z
2, i.e. the mother colony produces long-distance migrants at a time-

varying rate proportional to its area.

Additionally, every child colony expands its range circularly at the constant rate c, like
the mother colony, but do not release long-distance migrants. When the mother colony
and a child colony collide, the area covered by the child colony is instantaneously
assigned to the mother colony, which remains a disk with same center but with a
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larger radius. Collisions between child colonies are neglected. An illustration of this
process is provided in Figure 7.4.

Figure 7.4: Illustration for the coalescing colony model. First, from t = 0, the range of the
mother colony (disks) expands by short-distance dispersal with a constant rate c (left). Then,
the mother colony generates long-distance dispersers to the distance L from its border at the
rate λ̃(z(t)). The child colonies (circles) expands their range at the rate c until they collides

with the mother colony after a period of duration L
2c

. Finally (right), at the time of coalescence,
the range of the blue including the green colony is immediately reshaped into a circular pattern

while the total area of both colonies remains the same.

The coalescing colony model is characterized by the following properties
[SHI 95]. The expectation of the number of child colonies having radius s at time t,
say n(s, t), satisfies the following von Foerster equation and initial / boundary
conditions:





∂n
∂t (s, t) + c∂n∂s (s, t) = 0 for s ∈ (0, s∗(t))

n(s, 0) = 0

cn(0, t) = λ̃(z(t)),

[7.4]

where z(t) is the radius of the mother colony at time t and s∗(t) is the radius of the
first child colony coalescing with the mother colony immediately before the collision.
Equation [7.4] has an explicit solution:

n(s, t) =
1

c
λ̃
(
z
(
t− s

c

))
1{ct≥s>0}(s, t).

The area πz(t)2 of the mother colony satisfies, before and after collision with a
child colony:

d

dt
πz2 =

{
2πzc for t ∈ (0, t1)

2πzc+ πs∗2n(s∗, t)(c− ds∗

dt ) for t ≥ t1,
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where t1 = L
2c is the time when the first mother-child collision occurs.

Finally, z(t) and s∗(t) are linked by the following equation when t ≥ t1:

L = z(t)− z
(
t− s∗(t)

c

)
+ s∗(t),

where t − s∗(t)
c is the time when the collided child colony was at a distance L of the

mother colony (for further details see Shigesada et al. [SHI 95]).

PDMP Formulation of the Coalescing Colony Model with Allee Effect:

The coalescing colony model can be seen as a precursory example of PDMPs
modeling spatio-temporal population dynamics. In this case, the PDMP is the Boolean
process formed by the union of the mother and child colonies:

Xt = B(O, z(t)) ∪
(m(t)⋃

i=1

Ai(t)
)

Ai(t) =

{
B(Oi, si(t)) if d(O,Oi) > z(t) + si(t)

∅ otherwise,

where B(O, z(t)) is the ball with center O and radius z(t) covered by the mother
colony, m(t) is the number of child colonies generated until time t, and B(Oi, si(t))
is the ball with center Oi and radius si(t) covered by child colony i until its collision
with the mother colony, that is to say while z(t) + si(t) < d(O,Oi), and d(·, ·)
is the inter-point Euclidean distance. Between collision times (thereafter called jump
times), the radii of the mother and child colonies grow at the constant speed c given by
Equation [7.3]. We remind, in addition, that the coalescence of two child colonies and
the generation of grandchild colonies by child colonies (i.e. secondary colonizations)
are neglected.

Let Tj be the j-th jump time corresponding to the time of generation of child
colony j. Let τj be the time of collision between the mother colony and child colony
j. Over [Tj , Tj+1), m(t) = j, eventual collisions following the expansion of colonies
occur in a deterministic way and describing the dynamic of Xt is equivalent to
describing the dynamics of the radii z(t) and si(t), i = 1, . . . , j, because the centers
O and Oi are fixed. For t ∈ [0, T1),

z(t) = ct
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and for t ∈ [Tj , Tj+1), j ≥ 1, the radii of the mother and child colonies satisfy:

z(t) =z(Tj) + c(t− Tj)

+

j∑

i=1

[(
si(τ

−
i )2 + z(τ−i )2

)1/2
− z(τ−i )

]
1(t ≥ τi > Tj)

si(t) ={si(Tj) + c(t− Tj)}1(t < τi), ∀i = 1, · · · , j,

where

si(τ
−
i ) =si(Tj) + c(τi − Tj)

z(τ−i ) =z(max{τi−1, Tj}) + c(τi −max{τi−1, Tj})

with the conventions τ0 = 0 and si(t) = 0 when child colony i has merged with the
mother colony. We now give the expression of τi for i such that Tj < τi < Tj+1. Let
t0 = max{τi−1, Tj} be the time of the event (i.e. a collision or the generation of a
child colony) preceeding τi. If a collision occured at t0 and if the resulting
instantaneous growth of the mother colony led the mother colony to touch or overlap
colony i, then τi = t0 (i.e. multiple instantaneous collisions occur). Otherwise, τi
satisfies the following equation:

d(O,Oi) = L+ z(Ti) = z(t0) + c(τi − t0) + si(t0) + c(τi − t0),

whose solution is:

τi = t0 +
d(O,Oi)− z(t0)− si(t0)

2c
. [7.5]

In the case of instantaneous collisions, the fraction in Equation [7.5] is non-positive
(since the sum of radii z(t0) + si(t0) is larger than or equal to d(O,Oi)). Thus,
whatever the event at t0,





τi = t0 + max

{
0,
d(O,Oi)− z(t0)− si(t0)

2c

}

t0 = max{τi−1, Tj}.

Therefore, τi can be recursively defined as a function of radii and center locations at
time Tj , which are functions of XTj

To demonstrate thatXt can be viewed as a PDMP, we will now give the expression
of the flow function Φ, the jump rate λ and the jump kernel Q. Let

x = B(Ox, zx) ∪
( Kx⋃

k=1

B(Oxk, sxk)
)
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be in the set X of unions of disjoint balls included in R2 and suppose that k is
ordered such as the sequence of d(Ox, Oxk) increases with k. Note that knowing x is
equivalent to knowing {Ox, zx, Oxk, sxk; k = 1, . . . ,Kx}. Define Φ over X ×R+ as
follows:

Φ(x, t) = B(Ox, φ1(x, t)) ∪
(
Kx⋃

k=1

B(Oxk, φ2(x, t, k))

)
,

with the convention B(Oxk, 0) = ∅ and

φ1(x, t) = zx + ct

+

Kx∑

k=1

[(
(sxk + ct)2 + (φ1(x, τx,k−1) + c(t− τx,k−1))2

)1/2

− (φ1(x, τx,k−1) + c(t− τx,k−1))
]
1(t ≥ τxk)

φ2(x, t, k) = (sxk + ct)1(t < τxk), ∀k = 1, · · · ,Kx

τx0 = 0

τxk = τx,k−1 + max

{
0,
d(Ox, Oxk)− φ1(x, τx,k−1)− φ2(x, τx,k−1, k)

2c

}

∀k = 1, . . . ,Kx.

Thus, Xt is a PDMP with flow function Φ:

Xt =

{
Φ(XTj

, t) if t ∈ [Tj , Tj+1)

Uj+1 if t = Tj+1,

where the inter-jump duration Sj+1 = Tj+1 − Tj (with j ≥ 1 and the convention
T0 = 0) has a survival function satisfying:

P (Sj+1 ≥ t) = exp

(
−
∫ t

0

λ(Φ(XTj , v))dv

)
;

the rate function λ : X → R+ satisfies:

λ(x) = λ̃(zx),

with λ̃(zx) = λ1zx for example as proposed in Section 7.2.3; and Uj+1 is drawn from
the jump kernel Q(Φ(XTj , Sj+1), ·) such that:

Uj+1 = Φ(XTj
, Sj+1) ∪ B(Onew, 0)

with Onew uniformly drawn on the circle centered around O and radius z(Tj+1) + L.
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7.2.4. A PDMP Based on Reaction-Diffusion for Modeling Invasions with
Multiple Introductions

Section 7.2.1 presented the use of reaction-diffusion equations for modeling
population dynamics with short-distance dispersal and Section 7.2.2 presented the
combination of a jumping process and an approximation of a reaction-diffusion
equation to obtain a model with both short and long-distance dispersal. The latter
model was shown to be a PDMP. Here, we introduce another spatio-temporal PDMP
based on reaction-diffusion for modeling dynamics with short-distance dispersal only
but with multiple introductions of the species of interest. In this model, the flow
represented by a reaction-diffusion equation with an Allee effect will be
stochastically disrupted at random times to mimic introductions having a limited
extent in space. This model will be used in a future study to describe the dynamics of
the plant-pathogenic bacterium Xylella fastidiosa (Xf) in Corsica. Figure 7.5 shows
the pattern of plants which have been detected as infected by Xf in Corsica between
August 2015 and May 2017. This map displays several clusters of infected plants
with different sizes, which may have been induced by several introductions of the
pathogen in different areas of Corsica and at different times.

Figure 7.5: Pattern of plants which have been detected as infected by Xylella
fastidiosa in Corsica between August 2015 and May 2017.

In what follows, we introduce a candidate model for describing the invasion of
Corsica by Xf and lay some track to estimate the unknown parameters and latent
variables of the model. Assume that u(t, x), which will be used to model the
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probability that a plant located at x ∈ Ω ⊂ R2 is infected at time t, satisfies between
two introductions of the invading species:

{
∂u
∂t = D∆u+ bu(u− θ)(1− u) in Ω

∇u.n = 0 on ∂Ω,
[7.6]

where D is the dispersal rate, b the intrinsic growth rate of Xf, and θ ∈]0; 1
2 [ the

reaction threshold in Ω which induces an Allee effect (Ω, in the Xf application, will
be the area covered by the Corsican territory).

The progression of u will be interrupted at each introduction time and
re-initialized. At the first introduction time, i.e. t = τ0, u is initialized as follows:

u0(x) = u(τ0, x) = f(x, x0) in Ω,

where f : Ω 7→ [0, 1] is a continuous function, which is typically decreasing with
the distance from x0 to x (like a kernel function). Thus, the invading species is first
introduced around x0 at τ0.

The subsequent introductions (i.e. the jumps) are assumed to be governed by a
spatio-temporal homogeneous Poisson point process Ψ with constant intensity λ over
Ω× (τ0, τend). Let {ψ1

0 , · · · , ψN0 } be a realization of Ψ where ψi0 = (xi0, Ti), and set
(x0

0, T0) = (x0, τ0) and TN+1 = τend. We define the spatio-temporal PDMP
{Xt}τ0≤t<τend by:

Xt(x) =





f(x,x0
0) if t = T0 = τ0

u(t,x) if t ∈ (Ti, Ti+1), i = 0, . . . , N

u(t,x) + f(x, xi0) if t = Ti, i = 1, . . . , N

where u is governed by Equation [7.6] over (Ti, Ti+1] with initial state at Ti being
XTi

. Then, min{1,max{0, Xt(x))}} is viewed as the probability that a plant located
at x ∈ Ω is infected at time t. The min−max operator is used because Xt may
sporadically go out of [0, 1].

In the application of interest, namely the invading dynamic of Xf in Corsica, the
estimation of model parameters (D, b, θ, λ and eventual parameters arising in f )
and latent variables (jump times Ti and introduction locations xi0) will be carried out
in a mechanistic-statistical framework, which can cope with various types of data
[ROQ 11, SOU 09a, SOU 09b, WIK 03a, WIK 03b]. Consider, for instance, that data
collection consists of independently sampling plants in Ω× (τ0, τend) and diagnosing
their health statuses. Let Z(sj , tj) ∈ {0, 1} be the observed health status of plant j
sampled at location sj and time tj , j = 1, . . . , n, where 0 stands for the observed
healthy status and 1 for the observed infected status. Let εFN be the probability of
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diagnosing a plant as healthy whereas it is infected (false-negative rate) and εFP be the
probability of diagnosing a plant as infected whereas it is healthy (false-postive rate).
Then, Z(sj , tj) can be assumed to be Bernoulli distributed as follows:1

Z(sj , tj) | {Xt}
indep.∼ Bernoulli

(
εFN min{1,max{0, Xtj (sj))}}

+ εFP(1−min{1,max{0, Xtj (sj))}})
)
,

and the estimation of model parameters and latent variables can be made, in a
frequentist or Bayesian framework, with the resulting likelihood and an appropriate
algorithm (an example of Bayesian algorithm will be given in the next section for a
different model).

7.3. Metapopulation Epidemic Model

See Appendix C

7.4. Stochastic Approaches for Modeling Spatial Trajectories

See Appendix C

7.5. Conclusion

This chapter gave an introduction to spatio-temporal PDMPs used to model
population dynamics. Spatio-temporal PDMPs offer the possibility to build flexible
models and achieve relatively realistic and consistent inferences. Thus, we presented
three different modeling frameworks corresponding to three resolutions, namely the
population, the metapopulation and the individual. We have seen that, depending on
the dynamics of interest, the jumps in the PDMP can correspond to long-distance
dispersal events, new introductions, or significant shifts in individual behaviors.

In the examples of models presented above, the spatio-temporal dependencies are
contained in the flow function, whereas jumps are independent and identically
distributed. However, for populations whose individuals can be transported in groups
[SOU 11, SOU 14a], jumps should be correlated in space and time. For instance, in
the metapopulation model of Section 7.3, a source patch could release a group of
spores transported by wind towards a set of nearby patches. Such a process could
lead to the simultaneous infection of several aggregated patches. Hence, developing

1 With respect to its initial version, this Equation has been corrected in this manuscript.
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PDMPs with dependent random jumps would be interesting for better taking into
account specificities of some population dynamics. Moreover, it would be also
challenging from the perspective of model construction, simulation and inference.
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5.3. Unravelling Multiple Introductions of an Invasive
Species

This section is a first step towards inferring a spatio-temporal PDMP designed as the example
introduced at the end of Section 5.2. Here, we do not infer a spatio-temporal PDMP as such,
but we aim to explore the possible difficulties that we may encounter in future working
projects in this direction. Thus, we infer model parameters using post-introduction data of
Xf in Corsica (and not only South Corsica as in previous chapters), supposing that only one
jump has occurred (i.e., two introductions of the invasive species). We also simplify the
problem and its implementation by using one of the models introduced in Chapters 3 and
4, and by fixing the temperature threshold included in the model. At the end of this section
we discuss the extension of the approach proposed below to infer the PDMP as a whole and
alternative approaches.

5.3.1. Methods
We are interested in the invasion of a pathogen with multiple introductions in a domain
Ω included in R2. This domain is partitioned into two sub-domains to account for spatial
heterogeneities in the reproduction regimes of the pathogen. The sub-domains Ω1 and Ω2
are defined by thresholding a spatial function, say T , with the threshold value T̃ that is hold
fixed, such that: Ω = Ω1 ∪ Ω2; Ω1 = Ω1(T, T̃ ) = {x ∈ Ω : T (x) > T̃}; and Ω2 = Ω2(T, T̃ ) =
{x ∈ Ω : T (x) ≤ T̃}.

Let us re-call a model used in Chapters 3 and 4, describing the flow u(t,x) between the
introductions, where u(t,x) is the probability of a plant located at x ∈ Ω to be infected at
time t. The probability u(t,x) satisfies:

∂u

∂t
= D∆u+ bu

(
1− u

K

)
1(x ∈ Ω1)− αu1(x ∈ Ω2), t ≥ τ0, x ∈ Ω,

∇u(t,x).n(x) = 0, t ≥ τ0, x ∈ ∂Ω,
(5.1)

where D > 0 is the diffusion coefficient; b corresponds to the intrinsic growth rate of the
pathogen infection in Ω1; K ∈ (0, 1] is a plateau for the probability of infection (i.e., an
analogue to the carrying capacity of the environment); α is the decrease rate of the infection

in Ω2; ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is the 2-dimensional diffusion operator of Laplace; ∇ = ∂

∂x1
+ ∂

∂x2
is

the 2-dimensional gradient operator; x 7→ 1(x ∈ Ωi) is the characteristic function taking the
value 1 if x ∈ Ωi and 0 otherwise; τ0 ∈ R is the first introduction time of the pathogen.

Homogeneous boundary conditions are considered on the boundary ∂Ω of Ω, i.e., with
reflection on the boundary (second line of Equation (5.1)). Physically, this signifies that
there is neither outward nor inward flux from and to Ω.

The progression of u will be interrupted at each introduction time and re-initialized condi-
tionally on the state of u right before the introduction time. At the first introduction time τ0,
u is initialized as follows:

u0(x) = u(τ0,x) = f(x, xi), (5.2)
where f is made explicit in Equation (5.4) below.

The subsequent introductions (i.e. the jumps) are assumed to be governed by a spatio-
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temporal homogeneous Poisson point process Ψ with constant intensity λ over Ω× (τ0, τend).
Let {ψ1, · · · , ψN}, N ∈ N∗, be a non-empty realization of Ψ where ψi = (xi, τi), i ∈ {1, · · · , N}.
In addition, let τN+1 = τend. We define the spatio-temporal PDMP {Xt}τ0≤t<τend by:

Xt(x) =


f(x,x0) if t = τ0,

u(t,x) if t ∈ (τi, τi+1), i = 0, . . . , N,
u(t,x) + f(x, xi) if t = τi, i = 1, . . . , N,

(5.3)

where u is governed by Equation (5.1) over (τi, τi+1] with initial state at τi being Xτi
. Then,

min{1,max{0, Xt(x))}} is viewed as the probability that a plant located at x ∈ Ω is infected
at time t. The min−max operator is used because Xt may sporadically go out of [0, 1] at
jumping times depending on the amplitude of the jumps. Following the way we modeled the
introduction in Chapters 3 and 4, f satisfies:

f(x, xi) = p0 exp
(
−‖x− xi‖2

2σ2

)
, (5.4)

where p0 is the supplementary infection probability at (τi,xi), ∀i = 0, · · · , N ; ‖.‖ is the Eu-
clidean norm; σ2 = r2

0
q

, q is the 0.95-quantile of the χ2 distribution with two degrees of
freedom; and r0 is the radius of the kernel. Thus, at τi, if we neglect border effects, 95% of
the infected supplementary plants are located within the ball with center xi and radius r0.

Remark: To avoid the min−max operator, the supplementary infection probability could
apply only on the susceptible fraction of the local population. Thus, in Equation (5.3), at
t = τi, Xt(x) would be equal to u(t,x) + (1− u(t,x))f(x, xi).

In the application of interest, namely the invading dynamics of Xf in Corsica, we dispose
of spatio-temporal post-introduction data collected between July 2015 and April 2019. Over
this period, approximately 17000 plants were sampled, among which 1000 have been diag-
nosed as infected using real-time polymerase chain reaction (PCR) technique [Denancé et al.,
2017b]. Figure 5.1 shows coordinates and health statuses of sampled plants in the island.
Moreover, we build the average of the daily minimum temperature to divide the spatial
domain into two-subdomains. This average is provided by a freely available temperature
dataset [Huld et al., 2006], and is used in Chapters 3 and 4. Here, the threshold of tempera-
ture is fixed to T̃ = 5 (in Celsius degrees). Model partitioning for this threshold is shown in
Figure 5.1.

Due to lack of time, the estimation of model parameters is performed for exploration pur-
poses. For this reason, we mainly focus on inferring parameters of the model embedding
only two introductions (i.e., N = 1). Precisely, we aim to infer the vector of parameters
Θ = [D, b, K, α, x0, τ0, x1, τ1, r0, p0]. Any other component arising in f is hold fixed. This
estimation is carried out in the mechanistic-statistical framework. Consider that data collec-
tion consists of independently sampling plants in Ω × (τ0, τend) and diagnosing their health
statuses. Let Y (tj, sj) ∈ {0, 1} be the observed health status of plant j sampled at location sj
and time tj, j = 1, . . . , n ∈ N∗, where 0 stands for the observed healthy status and 1 for the
observed infected status. Then, Y (tj, sj) is assumed to be Bernoulli distributed as follows:

Y (tj, sj) | {Xt}
indep.∼ Bernoulli

(
min{1,max{0, Xtj (sj))}}

)
. (5.5)

128



Figure 5.1.: Locations of plants sampled from July 2015 to April 2019, that have been detected
as positive (black dots) or negative (grey dots) to Xf in Corsica, France, and
partition of the study domain Ω into the sub-domains Ω1 and Ω2 for T̃ = 5°C.

The estimation of Θ is made in the Bayesian framework introduced in Chapter 3 by spec-
ifying the likelihood function and the prior distribution, and by implementing the AMIS
algorithm. The likelihood satisfies, using Equation (5.5):

[Y |Θ] =
n∏
j=1

u(tj, sj)Y (tj ,sj)(1− u(tj, sj))1−Y (sj ,tj). (5.6)

The prior distribution for Θ, which combines vague and uniform distributions and Dirac dis-
tributions, satisfies:
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Figure 5.2.: Variation in the deviation measure MG(m − 1,m) between the assessments of
the posterior distribution at iteration m − 1 and m > 1 of the AMIS algorithm.
MG(m− 1,m) is plotted for different partitions G allowing the assessment of the
stabilization of all the 2D posterior distributions of parameters D, b, K, α, x0, y0,
τ0, x1, y1 and τ1.

[Θ] = 1
(108 − 50)× 100× 1× 100× 1000× |Ω1|
× 1(D ∈ [50; 108], b ∈ [0; 100], K ∈]0; 1], α ∈ [0; 100])
× 1(τ0 ∈ [−1000; 0], τ1 ∈ [−1000; 40],x0 ∈ Ω1,x1 ∈ Ω1)
× Dirac5000(r0)× Dirac0.1(p0),
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where |Ω1| is the area of Ω1 and Diracb(B) is equal to 1 if B = b, and 0 otherwise. The
Dirac distribution for T̃ is chosen to deal with implementation issues explained in Chapter 3.
We choose Dirac prior distributions for r0 and p0 in the aim of precisely defining what is an
introduction and to avoid any identifiability issues. For D, b, K and α, we specify vague uni-
form priors satisfying constraints of positivity. In addition, the plateau K has to be less than
1, as indicated in Section 5.3.1. For the first introduction time τ0, we choose a uniform dis-
tribution between −1000 months and 0 month before the first detection of Xf in Corsica. For
the second introduction time τ1, we choose a uniform distribution between −1000 months
and 40 months (i.e., few months before the last observation). Note that, using a temporal
model and aggregated data, Soubeyrand et al. [2018] inferred an introduction date around
−360 months before the first detection of Xf in South Corsica. Finally, the introduction loca-
tions x0 and x1 were supposed to be uniformly distributed in Ω1, the sub-domain where the
conditions are favorable for the expansion of Xf.
The AMIS algorithm (see Section 2.2.2.2.5) iteratively generates parameter vectors under
the adaptive multinormal proposal distribution N (µm−1,Σm−1), m = 1, · · · ,M, where M is
the number of algorithm iterations. µm−1 and Σm−1 are the mean vector and the covariance
matrix of this distribution at iteration m, also called tuning parameters.

5.3.2. Preliminary Results
5.3.2.1. Stabilization of the AMIS Algorithm and Exploration of the Search Space

We assess the stabilization of the AMIS as proposed in Chapter 3. Thus, we evaluate the
variation in the following deviation measure between the assessments of the posterior distri-
bution at iteration m− 1 and m > 1:

MG(m− 1,m) = max
c∈G
|pm(c)− pm−1(c)|,

where pm(c) denotes the assessment at iteration m of the posterior probability that Θ is in
the sub-domain c ⊂ R10 of the parameter space, i.e.

pm(c) =
m∑

m′=1

L∑
l=1

wlm′1(Θl
m′ ∈ c),

G is a partition of a sub-space of the parameter space and {(Θl
m′ , w

l
m′) : 1 ≤ m′ ≤ m, 1 ≤ l ≤

L} is the weighted posterior sample provided by AMIS at iteration m ∈ {1, · · · ,M}.
Figure 5.2 gives the variation in MG(m − 1,m) for different partitions G allowing us to

assess the stabilization of all the 2D posterior distributions of parameters). For each pair
of parameters, G was defined as the set of infinite cylinders with rectangular bases whose
orthogonal projection in the 2 dimensions of interest forms a 20×20 regular rectangular
grid. In each dimension of interest, the endpoints of the grid were set at the minimum and
maximum values of the corresponding parameter having a weight wlM larger than 10−5 (the
2D posterior distributions over these 20×20 grids are displayed in Figure 5.6). Figure 5.2
shows the stabilization of all the 2D posterior distributions after iteration 50.
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Figure 5.3.: Search space of the parameters x0 and x1 showing all the parameters generated
from the proposal distributions since the first AMIS iteration (grey dots), and
trajectory across AMIS iterations of the components of µm (the mean vector of the
proposal distribution) corresponding to x0 (in green) and x1 (in blue). The larger
the circle the higher the iteration.

Figure 5.3 shows, for the introduction locations, the search space exploited by the proposal
distributions across AMIS iterations. If the entire domain Ω1 has not been explored, a large
fraction of it did. Unexplored regions could be visited by proposing initial proposal distribu-
tions with larger supports with respect to x0 and x1. However, unexplored regions may be
unlikely regions for the introductions, given the data and the constraints incorporated in the
model and the prior, and therefore legitimately unexplored. Figure 5.3 also shows that AMIS
rapidly identified an introduction in the West of Corsica corresponding to the introduction
identified in Chapters 3 and 4. AMIS was more "hesitating" for the second introduction in
the North where Ω1 is more fragmented and the disease prevalence is lower.

5.3.2.2. Posterior Distributions of the Parameters
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Table 5.1.: Posterior medians, means and standard deviations of parameters of the reaction-
diffusion-absorption equation obtained in Chapter 3 and in the current study.

Parameter Unit Study Median Mean Standard deviation
D m2· month−1 Current 2.4× 105 2.4× 105 0.5× 105

Chapter 3 1.8× 105 2.0× 105 0.7× 105

b month−1 Current 0.019 0.019 0.003
Chapter 3 0.026 0.027 0.008

K probability Current 0.13 0.13 0.01
Chapter 3 0.15 0.15 0.01

α month−1 Current 0.07 0.07 0.02
Chapter 3 0.12 0.13 0.05

Table 5.1 compares posterior statistics of D, b, K and α obtained for this application and
for the analogue model with one introduction proposed and fitted to data from South Cor-
sica only in Chapter 3. Standard deviations of parameters tend to be lower in the current
study than in Chapter 3. This may be due to the additional data that are considered and
that bring additional information. Another possibility is that the parameter space was not
fully explored by the inference algorithm, which might got stuck in a local maximum. We
observe that the plateau for the probability of infection is around 12%. This value is lower
than the one obtained in Chapter 3, and this may be due to the dependence of this param-
eter from the population of plants that have been sampled, and which is not equal in both
studies. Concerning the diffusion parameter D (directly estimated by AMIS; see Table 5.1),
as in Chapter 3, the inference allowed us to assess the length of a straight line move of
the pathogen during a time unit, namely the month. This length is given by Equation (5.7)
[Turchin, 1998, Roques et al., 2016] that we re-call hereafter:

D = (length of a straight line move during one time step)2

4× duration of the time step
, (5.7)

and has a posterior median equal to 176 meters (posterior mean: 178m; posterior standard
deviation: 19m). These figures correspond to the move of the pathogen with different means,
in particular via insects and transportation of infected plants, which are both modeled by the
diffusion operator in Equation (5.1). The posterior mean length is larger than values inferred
or assumed in earlier studies, which generally only take into account movement of insect vec-
tors [Halkka et al., 1971, Lago et al., 2018, Plazio et al., 2017, Weaver and King, 1954, White
et al., 2017] (see Figure 5.4).

Marginal and 2D posterior distributions of parameters are displayed in Figures 5.5 and 5.6.
The introduction of Xf in Corsica tends to be relatively ancient. The first introduction, τ0, has
a posterior median of -842 (posterior mean: -822 months before July 2015, i.e. introduction
around 1945; posterior standard deviation: 124 months). The second introduction τ1 has a
posterior median of -315 (posterior mean: -317 months before July 2015, i.e. introduction
around 1988; posterior standard deviation: 96 months).
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Figure 5.5.: Marginal posterior distributions of the introduction times τ0 (histogram in blue)
and τ1 (histogram in green), and 2D posterior distributions of the introduction
locations x0 and x1 (color palette). The prior for τ0 and τ1 was uniform (red line).
The value of xi having the largest weight in AMIS is indicated by a blue cross for
i = 0 and by a green cross for i = 1. The prior for xi, i = 1, 2, was uniform over
the space Ω1 delimited by the contours.

Figure 5.7 shows the numerical solution of the model with two introductions for the values
of Θ that has the largest posterior weight. This numerical solution is shown at the times of
the introductions τ0 and τ1, at the time of the first observation in July 2015, and at the
time of the last observation in April 2019. We notice that there are some discrepancies
between the spatial distribution of positive cases sampled in the North-East and the East
of the island, and the model’s solution for the Θ associated to the largest posterior weight.
Indeed, positive cases observed on the East coast are in regions with very low probability in
April 2019. This could reflect an issue with the model incorporating only two introductions.
However, it has to be noted that these positive cases occurred in areas with particularly low
observed disease prevalence and are surrounded by lots of negative cases (see Figure 5.1).
More investigations should be carried out to check the adequacy between the model and the
data, such as goodness-of-fit tests and simulations study, and to assess whether the models
with larger numbers of introductions could solve this issue.
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Figure 5.6.: Marginal posterior distributions of parameters (panels in the diagonal) and 2D
posterior distributions of parameters over 20×20 grids (panels in the lower triangle).
Figures in the upper triangle panels provide correlation coefficients.
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Figure 5.7.: Numerical solution {Xt}t of Equations (5.1)–(5.5) in Corsica with Neumann
boundary conditions, at time t = τ0, t = τ1, t = 0 the time of the first ob-
servation in May 2015 and t = 45 time of the last observation in April 2019.
(D, b,K, α) = (3.1e+ 05, 0.03, 0.1, 0.1). The first initial condition was u(τ0,x0) =
0.01 exp(−(5 × 103‖x − x0‖)2), where x0 = (x0, y0) = (1178530, 6.126555). The
second introduction occurred in x1 = (x1, y1) = (1217379, 6211505). Locations of
Xf-positive (black dots) and negative (grey dots) cases observed between July 2015
and April 2019.

137



5.4. Raised questions drawn from Chapter 5

v When superposing the data to the model solution (see Figure 5.7) we notice
some obvious discrepancies. These discrepancies may be due in part to the
continuous nature of the PDE, and also to the choice of the domain spatial
partition only based on a measure of winter temperature, and to the need for
supplementary introductions in the model. However, to correctly judge the
adequacy of the model to the data, the reliability and the sharpness of the
approach, we need to perform goodness-of-fit tests.

v Lower standard deviation values were obtained for model parameters compared
to the values obtained in Chapter 3. Does this means that incorporating two in-
troductions in the model has decreased the uncertainty about the parameters?
Is it due to the supplementary data that were considered or to the failure of
the inference algorithm to fully explore the parameter space? To answer these
questions, a complementary study could be conducted to calibrate the credibil-
ity intervals under simulation studies.

v Eventhough the model with two introductions has lower standard deviations
for the introduction times, these quantities remain strongly uncertain. To give
more accurate results about these parameters, it is important to apportion the
different sources of uncertainty, and as proposed in Chapter 3, to use additional
information brought by genetic data for example.

v The preliminary inference achieved in this chapter, raises questions about
whether the AMIS algorithm will still be tractable in a high dimensional prob-
lem such as a spatio-temporal PDMP with multiple introductions. An intuitive
way for estimating the PDMP if the number of introductions N is low, consists
of assuming a prior for N weighting only a few small values (e.g., between 1
and 10), estimating model parameters with AMIS for each possible value of N ,
and integrating over N the product between the conditional posterior of the pa-
rameters given N and the prior of N , as we did for T̃ in the BMA approach. The
DAG in Figure 5.8 should be used to correctly design this approach. If N is po-
tentially large, another algorithm not conditional on N (i.e., a sort of reversible
jump algorithm) should certainly be developed.
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Figure 5.8.: DAG for inferring the Bayesian posterior distribution of the PDMP parameters
and the latent variables (jump times and introduction locations).
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6. Conclusion

6.1. Summary & Discussions
The main objective of the thesis is to propose an efficient methodology scalable to various
invasive quarantine pests for which no dedicated model is available and whose initial intro-
ductions (date and time) are unknown. The detection of Xf in France for the first time during
2015 is the real case study that has motivated our research and enhanced the usefulness of
the proposed methods.

How have we addressed the research questions raised in
Section 1.2 towards meeting this aim, and what information

have we brought forward to the decision-makers for supporting
the decision process about the quarantine pest Xf?

Task #1: Tackle the problem of recovering the initial conditions of the pathogen
based on post-introduction data

To achieve the first goal of my thesis, I followed the approach proposed by [Soubeyrand
and Roques, 2014] with a simple reaction-diffusion model and a MCMC algorithm to link
the model to simulated data. Thus, I adopted a mechanistic-statistical approach that han-
dles the characterizations of the surveillance-based observation process. This approach is
grounded on a coupled reaction-diffusion-absorption model that describes the dynamics of
the invasive species through time and heterogeneous space with respect to growth. Initial
conditions and model parameters were jointly estimated in a Bayesian framework. With this
approach, one can first recover a distribution for any biological parameters of the model
and the distribution of the initial location of invasion and the starting time of the invasion.
Moreover, the challenge achieved was to control the degree of convergence of the proposed
approach. This mathematical–statistical analysis is sufficiently general to be used for various
types of invasions and can efficiently recover biological as well as demographic parameters
of a biological invasion.

Using deterministic models offers a concise and parsimonious description of the pathogen
dynamics

When one aims to link data to model, one should find a compromise between model re-
alism and estimation difficulty. Deterministic models, in particular parabolic PDE, offer a
rich and flexible modelling framework that has been applied to a large number of invasions.
Eventhough a PDE does not describe all the processes involved in the pathogen dynamics, it
can, however, help understanding its essential properties and inferring its major components.
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In this first task, we focused on the inference of the date and location of pathogen introduc-
tion after assuming that only one introduction governs the emergence of the pathogen and
that eventual subsequent introductions have negligible effects on the dynamics. However,
estimating this introduction point requires the estimation of the propagation characteristics,
and vice versa because these characteristics link the introduction to the observations. Thus,
I conducted a joint estimation of the PDE parameters and initial conditions in a Bayesian
framework. The limitation of this approach lies in the fact that the PDE model could not rep-
resent the small-scale variations as shown in the conducted analyses of Local Brier Scores.

Bayesian inference better represents parameter uncertainties

The benefit of the Bayesian approach is primarily to allow the incorporation of prior ex-
pertise into the statistical analysis and the rigorous assessment of dependencies and un-
certainties in estimation via the joint posterior distribution of parameters. Unfortunately,
informative priors are not always easily provided due to the lack of information on model
parameters or because experts prefer to use objective (i.e., non-informative) priors, while a
prior is never entirely objective [Kass and Wasserman, 1996]. Moreover, even if the Bayesian
approach is generally more costly than the frequentist approach, the Bayesian approach can
directly assess uncertainty in parameter estimation conversely to the frequentist approach,
which requires an additional task to fulfill this assessment (e.g., via the computation of the
Fisher information matrix or via parametric bootstrap). Besides, most people better un-
derstand the direct probabilistic judgments about the unknowns provided by the Bayesian
paradigm when reporting uncertainty [O’Hagan, 2008].

AMIS has advantageous features

The main motivation for using AMIS is the gain in computation time comparing to Markov
chain Monte Carlo (MCMC). In particular, AMIS is interesting in cases where the likelihood
is computationally expensive [Cornuet et al., 2012] because all particles simulated during
the process are recycled, which minimizes the number of calls of the likelihood function.
This applies to our case, in the sense that non-negligible computation time is needed to accu-
rately solve the PDE and obtain an accurate inference about the model parameters. Another
milestone towards a less expensive inference approach is that AMIS can be easily paral-
lelized. On the other hand, tuning coefficients of the proposal distribution are automatically
adapted across the algorithm iterations, contrary to the basic MCMC and the ML approach
frequently used in the mechanistic-statistical framework. This can be rather challenging,
even in adaptive MCMC algorithms, where the convergence properties of nonhomogeneous
Markov Chains are roughly achievable [Haario et al., 2001, Liu, 2008]. It has, however, to
be noted that AMIS has to be appropriately initialized, which can be relatively easily done in
practice by evaluating the marginal posterior distributions over 1D grids. Limitation in the
AMIS algorithm shows up in Chapter 5, where one introduction was added to the inference
approach. Adding three components to the parameters vector caused a slower algorithm
stabilization and a potential difficulty in exploring the parameter space.
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Selection criteria have determined the threshold of temperature under which Xf is ham-
pered

To infer the posterior distribution of the parameter vector we proceed in two steps: (i)
inference of the parameters of the dynamics given the temperature threshold T̃ used for par-
titioning the study domain with AMIS algorithm, and (ii) selection of T̃ using four criteria:
the BIC, two versions of the DIC and IC. The limitation of this approach is that the uncertainty
about the temperature threshold T̃ is not quantified. Ideally, to be able to give a better rep-
resentation of this parameter (i.e., a random representation in the Bayesian paradigm) and
to assess its uncertainty, two solutions can be proposed. The first solution is to jointly infer
T̃ with the other parameters of the dynamics (but this solution induce technical adaptations
of the algorithm that are expected to negatively impact computation times), and the second
is to use the BMA approach as shown in Chapter 4 where the posterior model probabilities
coincide with the posterior distribution of T̃ . The temperature threshold obtained for the
case study of Xf in our applications is presently estimated between 5 and 5.5 Celsius degrees.
Note that, before submitting our work on BMA to a journal, we will consider supplementary
temperature thresholds (e.g., every 0.25 °C) to provide a smoother posterior distribution of
T̃ .

Xf probably did not recently emerge in France

The conducted analyses tend to show that the introduction of Xf in South Corsica oc-
curred probably near Ajaccio around 1959 (95%-posterior interval: [1933, 1986]), long time
before its first detection in 2015. Our results on the estimation of the introduction time are
relatively consistent with the results obtained by Denancé et al. [2017a] who assessed the
introduction of the two main strains found in Corsica around 1965 and 1980, respectively,
using a phylogenetic approach. Likewise, our estimation is compatible with the result of
Soubeyrand et al. [2018], who dated the introduction around 1985 (95%-posterior inter-
val: [1978, 1993]) with a statistical analysis of temporal data (indeed, the posterior intervals
obtained from both studies overlap). Moreover, we helped in gaining knowledge about the
spread velocity of vector and disease combined, which is obviously linked to the introduction
time. The values obtained are on average of 2 × 105 m2/month (median = 1.8 × 105, sd =
0.7× 105), that corresponds roughly to a front velocity of 155 m/month.

Task #2: Investigate the application of BMA in the context of pathogen dynam-
ics using PDE models

To achieve this task, I have considered models grounded on a family of reaction-diffusion
equations with eventual spatially heterogeneous diffusion and reproduction terms. I have
computed, from post-introduction data, the BMA posterior distribution of the introduction
time and location of the pathogen and its future spatial extent. Following the approach
presented in Chapter 3, I have applied to each model the AMIS algorithm for providing an
empirical approximation obtained via a weighted sample of the posterior distribution, given
the specified model. Then, for drawing BMA posterior samples, I have computed posterior
probabilities of models using different approximations of the integrated likelihood that have
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been proposed in the literature. I have first applied the approach on simulated data and
then applied it to make predictions concerning the real case study of Xf in Southern Corsica,
France.

BMA is expected to better reflect uncertainty about model predictions and provide
more realistic inferences. However, in our case study, this technique does not seem to
outperform on the best model

Based on the ample literature on model-averaging, we were expecting this technique to
provide ameliorated predictions and a more realistic estimate of the uncertainty associated
with model predictions than any single model [Hoeting et al., 1999, Draper, 1995, Wintle
et al., 2003]. However, our application shows that the BMA does not seem to outperform
the best model. In this case study, as discussed by Wintle et al. [2003], this may be due
in part to the dominance of one or two predictors among all the models or the lack of
complete independence between the training and testing data. Likewise, in our application,
the credibility intervals provided with BMA were larger than the ones provided by the best
model. This could reflect the fact that BMA has succeeded in better assessing the uncer-
tainty about model predictions, avoiding overconfidence about predictions and misleading
decision making obtained when using a single best model. However, to firmly confirm this
result, complementary studies should be conducted to calibrate the credibility intervals.

BMA offers a direct way to model comparison

In addition to combining model inferences and predictions, the BMA can be used for a
direct model comparison by computing model posterior probabilities. To compute these
probabilities, we have proceeded trying various evidence-based and predictive methods pro-
posed in the literature. Most of the used estimators agreed in that the best model is the one,
for which the diffusion rate is spatially homogeneous and the threshold of temperature is
equal to 5.5 °C, and associated the lowest weights to the same models, but differed in the
detailed ranking. One non-biased estimator that we should implement, and whose applica-
tion is pursuant to the nature of AMIS, can be obtained by averaging over the unnormalized
importance weights computed at the final iteration of the algorithm [Bugallo et al., 2015].
This approach, viewed as a benchmark, might allow us to identify which of the implemented
methods is the most consistent.

Model selection ignores model uncertainty

In Chapter 4, we first infer the posterior distribution of model parameters given the thresh-
old of temperature, and then this threshold was chosen using selection criteria. This ap-
proach does not allow the quantification of the uncertainty about the selected value. The
BMA approach presented in Chapter 4 allows ones to open up to smoothed threshold of
temperature by means of the empirical approximation of the BMA marginal posterior distri-
bution.
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Task #3: Unravelling multiple introductions of pathogen dynamics

The third task is considered to be an extension of Task #1.

The PDE models used in Task #1 are generally not adapted to describe the dynamics of
populations that expand their range not only by neighborhood dispersal but also because
of new introductions in disease-free areas and by long-distance dispersal, which can corre-
spond to rare but significant events. The term stratified diffusion was used to describe this
twofold dispersal process [Hengeveld, 1989]. To further the work done in Task #1, stratified
diffusion models and PDMP can be designed to incorporate into the model not only long-
distance dispersal but also multiple introductions. Distinguishing these two types of events
from surveillance data is not easy in general, except if one has at disposal genetic data or
contact tracing data, but can anyway be modeled separately with a mixture of two kernels
[Sapoukhina et al., 2010]. However, identifiability issues of the mixture components may
arise if information in data is limited to infer in details the dispersal processes.

The coalescing colony model is a PDMP

PDMP have often been built to model temporal processes. Spatio-temporal PDMP are also
occasionally encountered in the theoretical and quantitative population dynamics literature,
even if they are not called PDMP. For instance, spatio-temporal PDMP have been built at
the population level [Shigesada et al., 1995], the metapopulation level [Soubeyrand et al.,
2009a] (which is a set of populations) and the individual level [Caillerie, 2017]. I have
precisely shown in Chapter 5 that the coalescing colony model of [Shigesada et al., 1995],
which was developed to represent stratified diffusion in biological invasions, can be formu-
lated as a spatio-temporal PDMP.

Inferring parameters of the spatio-temporal PDMP

To achieve the third task, I proposed a spatio-temporal PDMP embedding multiple intro-
ductions. Then, I used a Bayesian inference with AMIS algorithm to jointly estimate the
parameters of the model and its initial conditions for a fixed number of introductions. In
the case of Xf, this allowed the extension of the study domain to the entire Corsican island.
In fact, Xf multiplex is the only subspecies that has been observed in Corsica, but two se-
quence types (see Chapter 2) have been found with Xf-positive cases, which could be due to
multiple introductions. Thus, the spatio-temporal PDMP offers a more realistic framework
for the dynamics of Xf in Corsica. The preliminary inference achieved in this chapter, raises
concerns about whether the AMIS algorithm will still be tractable in a high dimensional
problem such as a spatio-temporal PDMP with multiple introductions (i.e, the number of
introductions is no longer a fixed parameter, but a jump process). How can we adapt it to
reduce computational time and allow for faster stabilization?
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6.2. Outlook
To achieve the goal of the thesis, three main tasks have been performed in light of various
parsimonious choices and assumptions. To conclude the thesis, the possibility of having a dif-
ferent standpoint on these choices and relaxing the considered assumptions is investigated.
Several improvements and engaging perspectives, which are subject to future research, are
also distinguished. The prospects I propose here, are divided into two parts: (i) the generic
methodological prospects, which are related to the modelling, the inference and the predic-
tion tools, and (ii) the application prospects, which concerns amelioration to best adapt the
approach to the specific case study of Xf.

Generic Methodological Prospects

"[...] even when the world is indeed a well-defined closed system, [...] different modellers
can generate different nonequivalent descriptions of it, [...] more than one model may
be compatible with the same set of data or evidence."[Saltelli et al., 2008]

The deterministic model that we proposed in Chapter 3 to represent the disease has sur-
vived a series of tests. However, this model only takes into account a few biological drivers of
the disease dynamics. These drivers could be implicitly handled by investigating alternative
representations of disease dynamics:

v A possible extension of this modelling approach is to replace the deterministic model by
a stochastic version, for instance, an SDE model that would allow relaxing hypotheses
made on the dynamics. However, this is not the ideal trade-off between model realism
and easiness of inference, compared to the PDMP approach. Nevertheless, this should
not prevent us from comparing stochastic and deterministic models in the framework
of the BMA approach presented in Chapter 4. By averaging over miscellaneous stochas-
tic and deterministic competing models of the dynamics, consistently with theoretical
findings, the BMA would be expected to clearly outperform the best model.

v An additional perspective can be investigated by aggregating models in the BMA frame-
work, to compare: (i) models including only short distance dispersal, with homoge-
neous/heterogeneous diffusion as the set of models already proposed in Chapter 4, to
(ii) models allowing a finer quantification of local and long distance dispersal such as
integro-differential equations [Bonnefon et al., 2014], spatial contact models [Mollison,
1977], mixed dispersal kernel models [Clark et al., 1998], stratified dispersal models
[Shigesada et al., 1995] or PDMP [Abboud et al., 2019a]. Models incorporating both
short and long distance dispersal are generally expected to yield better predictions [Hig-
gins and Richardson, 1999, Nathan et al., 2008, Fayard et al., 2009, Gilioli et al., 2013,
White et al., 2017].

v Estimating the parameters of the PDE in a Bayesian framework turned out to have a rel-
atively high computational cost. To reduce this cost, approximating the input/output
relation in the mechanistic model using meta-models necessitating less computer in-
tensive calculations could be a valuable option, that could be incorporated in AMIS
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[Osio and Amon, 1996, Giunta and Watson, 1998]. In particular, kriging meta-models
show up to be an adequate solution for approximating deterministic models since they
interpolate the observed or known data points [Simpson et al., 2001].

v All the aggregated PDE models in Chapters 3 and 4 assume a logistic form of the re-
production term. In Chapter 5, we proposed a PDMP model including an Allee effect.
However, the exact form of the reproduction term is generally not known; for instance,
there are many cases where one does not know whether there is an Allee effect or not.
Thus, the following questions arise:

(1) Is it important to include an Allee effect in a model when this effect is present in
the population?

(2) Does including an Allee effect when this effect is not present in the population will
result in misleading predictions?

(3) Which method can be adapted to predict the expansion speed when one does not
know if an Allee effect is present?

To address the above questions one can consider a continuous family of reaction-diffusion
models (Mρ(θ)), indexed by a parameter ρ and with coefficient θ:

∂tu = D∆u+ fρ(u), t ≥ 0, x ∈ Rn, (6.1)

where u(t, x) represents the population density at time t and position x ∈ Rn. The
growth functions fρ are defined as follows:

fρ(u) = r u (1− u/K) (u+ ρ), (6.2)

with r > 0. We note that fρ(0) = fρ(K) = 0. For this type of growth functions,
provided that the initial condition u0(x) := u(0, x) satisfies 0 ≤ u0 ≤ 1, an immediate
consequence of the parabolic maximum principle [Protter, MH and Weinberger, HF,
1967, Roques, 2013a] is

0 ≤ u(t, x) ≤ K for all t ≥ 0, x ∈ Rn.

Depending on the value of ρ the model Mρ either describes a strong Allee effect, a
weak Allee effect, or the absence of Allee effect. In that respect:

– when ρ ≥ K, there is no Allee effect, and the model fulfills the standard KPP
assumption;

– when 0 ≤ ρ < K, fρ(u) always remains positive for u ∈ (0, K), but the maximum
per capita growth rate is not reached as u→ 0: there is a weak Allee effect;

– when −K/2 ≤ ρ < 0, fρ(u) < 0 for u ∈ (0, ρ): there is a strong Allee effect;

– when ρ < −K/2, u always converges uniformly to 0 for large t, as u(t, x) is smaller
than the solution of U ′(t) = fρ(U) with U(0) = K (it is a consequence of a standard
comparison principle), which itself converges to 0.

The advantage of this type of models, is that analytic formulas for the spreading speeds
vρ associated with the models (Mρ) can be computed [Hadeler and Rothe, 1975] as
follows:
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Figure 6.1.: Bayesian model-averaging as illustrated in [Saltelli et al., 2008] (Chapter 1, page
9).
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The spreading speed is generally of paramount importance in population dynamics studies
[Malchow et al., 2007, Mistro et al., 2012], and being able to derive explicit formula for the
spreading speed allows ones to get an accurate description for it that can then be explicitly
used for estimation purposes.

"Uncertainty is everywhere and you cannot escape from it" [Lindley, 2006].

This citation means that the uncertainty is always present when modelling and inferring
a certain phenomenon, but it is important to quantify it. In my thesis, I have provided a
coherent judgment quantifying a subjective degree of uncertainty in model output. In other
words, I have provided a posterior distribution of the unknown parameters conditionally
to data and assessed uncertainties about model output. To reduce these uncertainties and
make our models more suitable for decision-making, it is important to precise how these
quantified uncertainties can be apportioned to different sources of uncertainty in the model
input [Saltelli et al., 2004]. This medium is the so-called sensitivity analysis. Ideally, if
we had more time, we should have run sensitivity analyses in tandem with the uncertainty
analyses, as proposed by [Saltelli et al., 2008]. Here, I propose a sensitivity analysis for two
model inputs:

v Input: The Prior distribution

In the BMA analysis, one has to specify the priors for the candidate models and their
respective parameters. This choice is crucial because the prior governs how posterior
mass is spread among models, and it provides shrinkage correction for the estimated
parameters. However, there may be few information available about the model and
its parameters. Even if available, some experts still prefer an objective prior, to see
what kind of information can be deducted from the data. For instance, in the case of
Xf, a phylogenetic analysis of the data collected in Corsica and in regions where Xf

147



has been present for a long period and which could be the source of the infection in
Corsica, can help in eliciting an informative prior on the introduction date [Denancé
et al., 2017a]. In addition, an informative prior of the dispersal rate can be elicited by
using the knowledge about the movements of insect vectors. However, movements of
infected seedlings, for which there is no precise knowledge, has also an influence on the
diffusion rate (see Section 2.1.2.3). Thus, building an informative prior of the dispersal
rate, which is only based on vectors movements, may lead to a "biased" prior distri-
bution. Consequently, a non-informative prior should be embedded into the analysis.
Typically, we have used a uniform prior over the model space in which we incorporated
some biological knowledge and equal prior weights for all the models. An interesting
perspective of our work on the BMA would be to run a sensitivity analysis regarding
the prior’s influence.

v Input: Models and parameters

We have quantified the uncertainties about model and parameters using the BMA ap-
proach, illustrated by [Saltelli et al., 2008] as in Figure 6.1. A sensitivity analysis could
be executed after sampling the parameters and determining the posterior weights of the
models. This analysis addresses the questions on how much of the uncertainty is due
to the model selection, and on how much is due to the estimation of the parameters.

PDMP Embedding Multiple Introductions: A Promising Research Project

Due to lack of time, the analyses on the PDMP have not been accomplished. However, I
tried to explore as much as possible, the proposal made in [Abboud et al., 2018] on inferring
a PDMP with multiple introductions. This seems to be a promising avenue of research.
Ideally, the work done on inferring PDMP can be forwarded in many interesting ways:

v In Chapter 5, I have fixed the number of introductions to two. An approach that one can
tailor is to first infer the posterior distribution of model parameters given the number
of introductions, for instance from 1 to 10 introductions, and then, this number can be
inferred in the BMA framework, as we have done for the threshold of temperature in
Chapter 4.

v An interesting avenue is to explore spatio-temporal PDMP with a parametric model
of the conditional intensity of the jump process to describe the introduction process,
such as the inhomogeneous Poisson process incorporating spatial covariables. Typically,
these covariables could be environmental variables affecting the growth and mortality
of invasive species.

v Another avenue of research for making more precise inferences to unravel the char-
acteristics of the introduction process, is to incorporate genomic data (sub-families,
sequence type, or genome of the pathogen) that may provide information about the
jumps of the spatio-temporal PDMP.

v The AMIS algorithm that we adapted to a PDMP with a fixed number of introductions
should be improved to better explore the parameter space, in order to apply it in a
more complex framework where the introductions are governed by a spatio-temporal

148



point process. An interesting approach that should be investigated in this respect is
the Markov adaptive multiple importance sampling algorithm [MAMIS; Martino et al.,
2015]. This algorithm applies the iterative IS approach using an adaptive proposal dis-
tribution. The location coefficients of the proposals are adapted according to an MCMC
technique, such as Metropolis-Hastings or Gibbs sampler (see Section 2.2.2.2.3). The
main difference with respect to the AMIS lies in the more streamlined adaptation proce-
dure of MAMIS. Moreover, this MCMC-Driven Adaptive Multiple Importance Sampling
technique reduces the dependence on the choice of the cloud of proposals, since the
proposal density in the MCMC method can be adapted in order to optimize the perfor-
mance. This approach is supposed to make "the best of both worlds".

Application Prospects

In Chapter 4, we use surveillance data collected only in South Corsica to estimate Xf in-
troduction and the temperature threshold over which this bacterium is hampered, and then,
predict its future spatial extent. A possible complement of our study is to extrapolate the risk
beyond South Corsica. Figure 6.2 shows a basic example of static risk maps. These maps
are constructed over a grid with a spatial resolution of 1 × 1km, using the two temperature
thresholds T̃ that have the highest posterior weights in the BMA approach. Our static risk
map indicates where Xf is likely to spread if it is introduced by only accounting on winter
temperatures. It is worth noting that Xf-positive cases have been found in Northern Corsica,
in PACA region and in the Balearic Islands in Spain, which are located in areas at high risk
where {x : T (x) > 5} or in their vicinity.

Our temperature-based risk map seems to be consistent with the map provided by EFSA
Panel on Plant Health (PLH) et al. [2019] and shown in Figure 6.3, where Apulia, Corsica,
the North-western Mediterranean coast, and the Balearic Islands are the areas at the high-
est risk. The consistency of our map with those provided by Godefroid et al. [2018] and
Martinetti and Soubeyrand [2019] is however less clear (see Figures 6.4 and 6.5). Note
that the risk maps provided by EFSA Panel on Plant Health (PLH) et al. [2019], Martinetti
and Soubeyrand [2019], Godefroid et al. [2018] are obtained from analyses incorporating
numerous environmental explanatory variables. To ameliorate the static prediction obtained
from our model, we should incorporate other important factors influencing the propagation
of Xf to partition the study domain. In particular, we could focus on variables, which have
been identified by Martinetti and Soubeyrand [2019] with a machine learning approach, as
very influential variables (e.g., precipitation seasonality, solar radiation, precipitation during
the dry season).

Beyond the estimation of risk maps, Martinetti and Soubeyrand [2019] proposed sampling
algorithms based on risk to improve the surveillance of Xf in terms of early detection. Like-
wise, our static risk map can be used to conceive sampling strategies in a risk-based sampling
approach. But we could design epidemio-surveillance surveys by considering dynamical risk
maps instead of the static risk map shown in Figure 6.2. At least two settings can be consid-
ered from this perspective: (1) adding a time dimension to our risk map in the context of
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global warming; and (2) exploiting the inferred information about disease diffusion to adapt
the risk map with time.

Concerning point (1), global change in climate may generally impact population dynam-
ics [Malchow et al., 2007, Mistro et al., 2012]. In particular, climatic change under global
warming is susceptible to cause a significant increase in winter temperatures [Maxwell et al.,
1992]. Therefore, the spread of Xf may probably increase, because cold winter temperatures
are considered to be the regulatory "curing" mechanism of Xf dynamics [Purcell, 1977, Anas
et al., 2008, Feil and Purcell, 2001]. In our approach, the sub-domain where Xf is suscepti-
ble to propagate will extend with the increase of winter temperatures. This, suggests that
epidemio-surveillance strategies should be adapted to the inter-annual fluctuations of winter
temperatures.

Concerning point (2), the results obtained in Chapter 3 provided an estimate of the
spread velocity of vector and disease combined, which has an average of 2× 105 m2/month,
(median = 1.8 × 105, sd = 0.7 × 105). This velocity corresponds roughly to a front ve-
locity of 155 m/month. Hence, surveillance schemes could be designed to take into ac-
count the potential spread around already detected foci. For instance, the subspecies pauca
has been recently detected for the first time on an olive tree on the East coast of PACA
https://agriculture.gouv.fr/la-contamination-par-xylella-fastidiosa-de-2-oliviers-confirmee-en-
paca). The surveillance of pauca on olive trees will be obviously reinforced around this focus
and more largely in the whole region. Concerning the surveillance around the focus, our re-
sult about the dissemination of Xf should encourage to survey eventual pauca-infected olive
trees in a time-increasing domain, whose border could move forward at a speed of approxi-
mately 155m× 12 ≈ 2km per year.

With the recent detection (August 2019) in Antibes and Menton of two olive trees infected
by Xf (at least one of the trees being infected by the subspecies pauca, as mentionned above),
the concern about this pathogen has raised in PACA and at the national level. A methodolog-
ical work such as mine presented in this thesis contributes, from an applied perspective, to
unravell the global behaviour of a new pathogen introduced in a new environment. The
inferences that are made from such a methodological work can be exploited as scientific
knowledge used to inform decision-makers and other stakeholders (e.g., the inferences that
I obtained have been incorporated in the scientific opinion written by the European Food
Safety Authority (EFSA) Panel on Plant Health and discussed in the scientific committee
about Xf advising the Prefect of Corsica). With knowledge acquired since 2015 (e.g., by
INRA research units and within the XF-ACTORS project) about the behaviour of Xf in Euro-
pean environments, the French authorities in charge of the surveillance and control of Xf
are naturally better equipped for the potential future spread of the subspecies pauca recently
detected in PACA than they were in 2015 when Xf was first in situ detected in Corsica and
PACA.

150



Thresholded average minimum daily temperature in January−February

Twinter >  5.0
Twinter >  5.5

Figure 6.2.: Risk maps constructed over a grid with spatial resolution of 1× 1km, using the
thresholds of temperatures T̃ (in Celsius degrees) associated to the models with
the highest posterior probabilities in the BMA approach, namely 5°C and 5.5°C,
and the location of Xf-positive cases (black dots) sampled between July 2015 and
September 2019 in France.
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Figure 6.3.: Potential for the establishment of Xf according to climatic suitability, using an
ensemble predictions model, published in EFSA Panel on Plant Health (PLH) et al.
[2019].

Figure 6.4.: Risk maps in Corsica and PACA inferred from the surveillance data of Xf collected
in Corsica, published in Martinetti and Soubeyrand [2019].
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Figure 6.5.: Potential distribution of multiplex (on the left) and pauca (on the right) subspecies
of Xf published in Godefroid et al. [2018].
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S1 Numerical Equation Solving

Figure S1: Mesh used for the Finite Element Method. This mesh contains 4791 nodes and 9141 triangles. The

geometrical characteristics of this mesh were used to compute the accuracy of the simulator.
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IsoValue
-0.00331879
0.00165939
0.00497818
0.00829697
0.0116158
0.0149345
0.0182533
0.0215721
0.0248909
0.0282097
0.0315285
0.0348473
0.038166
0.0414848
0.0448036
0.0481224
0.0514412
0.05476
0.0580788
0.0663757

IsoValue
-0.00331857
0.00165929
0.00497786
0.00829643
0.011615
0.0149336
0.0182522
0.0215707
0.0248893
0.0282079
0.0315265
0.034845
0.0381636
0.0414822
0.0448007
0.0481193
0.0514379
0.0547565
0.058075
0.0663715

IsoValue
-0.00802271
0.00401136
0.0120341
0.0200568
0.0280795
0.0361022
0.0441249
0.0521477
0.0601704
0.0681931
0.0762158
0.0842385
0.0922612
0.100284
0.108307
0.116329
0.124352
0.132375
0.140398
0.160454

IsoValue
-0.00802266
0.00401134
0.012034
0.0200567
0.0280793
0.036102
0.0441247
0.0521473
0.06017
0.0681927
0.0762153
0.084238
0.0922607
0.100283
0.108306
0.116329
0.124351
0.132374
0.140397
0.160453

(c) (d)

(a) (b)

Figure S2: Probability of infection obtained at two different times and with two different meshes for the

parameter vector corresponding to the posterior maximum. Top panels: 100 months after the introduction;

Bottom panels: time of the last observation; Left panels: mesh composed of 4791 nodes; Right panel: finer

mesh with 10703 nodes. Average difference between (a) and (b): 3e−5; Maximal difference: 0.002. Average

difference between (c) and (d): 4e−5; Maximal difference: 0.02.

2

172



S2 Local Brier Score

Y = 0 Y = 1 LBS ≤ 0.25 LBS(Y = 0) > 0.25 LBS(Y = 1) > 0.25 Ω1

Figure S3: Locations where the LBS given in section 3.5.1 (main text) is larger than 0.25 with k = 50 (top),

k = 100 (center), k = 150 (bottom). The gray surface gives the extent of Ω1.
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S3 Maximum likelihood estimation

Estimation of the parameter vector Θ = (D, b,K, α, τ0, x̃0, r0, p0) was also performed in the frequentist setting

via maximum likelihood estimation. The maximization of the likelihood was made with the function fmincon

of Matlab R2015b. This function searches for the optimum of a constrained nonlinear multivariable function

using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. To take into account the risk of finding a local

optimum, we carried out the maximization of the likelihood for 240 different initial values of the parameter

vector drawn from the prior distribution. Figure S4 shows the evolution of the log-likelihood function from

the initial values to the optimal values for the 240 calls of fmincon. We clearly see that most of the calls

led to a relatively high likelihood (despite a few exceptions), but none of them led to a higher value than

the highest value obtained with AMIS, which is not designed as an optimizer but is designed as a sampler

in the posterior distribution (the highest log-likelihood value obtained with fmincon is -2467.8, whereas it

is -2449.9 with AMIS). From a computational perspective, the maximum likelihood approach required 273

likelihood evaluations in average (i.e., 6.5 × 104 evaluations for the 240 optimizations), whereas we made

50 × 104 likelihood evaluations in AMIS. Thus, maximum likelihood estimation is less demanding, but is

apparently stuck in local optimum with our model and data, and an additional task would be required to assess

uncertainty in parameter estimation (e.g., via the computation of the Fisher information matrix), whereas

AMIS directly provides estimation uncertainty.
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Optimizer call

Figure S4: Values of the log-likelihood function evaluated at 240 different initial values of Θ used for the

optimization (green crosses), and at the 240 resulting optimized values of Θ obtained with the fmincon function

(blue crosses). The red asterisk indicates the maximum value of the log-likelihood obtained in the AMIS

procedure.
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S1 Priors

The prior distributions [ΘiT̃ |Mi(T̃ )] combine vague uniform and Dirac distributions. Dirac distributions are

considered for r0 and p0, which are related to the initial conditions. These parameters are kept fixed for

identifiability issues.

[Θ0T̃ |M0(T̃ )] =
1

(108 − 50)× 100× 1× 100× 1000× |ΩT̃1|

× 1(D ∈ [50; 108], b ∈ [0; 100],K ∈]0; 1], α ∈ [0; 100], τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).

[Θ1T̃ |M1(T̃ )] =
1

(108 − 100)× (104 − 10)× 100× 1× 100× 1000× |ΩT̃1|

× 1(D1T̃1 ∈ [100; 108], D1T̃2 ∈ [10; 104], b ∈ [0; 100],K ∈]0; 1], α ∈ [0; 100], τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).

[Θ2T̃ |M2(T̃ )] =
1

(108 − 50)× (105 − 50)× 100× 1× 1000× |ΩT̃1|

× 1(D2T̃1 ∈ [50; 108], D2T̃2 ∈ [50; 105], b ∈ [0; 100],K ∈]0; 1], τ0 ∈ [−1000; 0], x̃0 ∈ ΩT̃1)

×Dirac5000(r0)×Dirac0.1(p0).
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C. Appendix for Chapter 5
The following sections themselves are not incorporated in my Thesis because they were
written by my co-autors, S. Soubeyrand and R. Senoussi, in the book chapter "Abboud et al.
2018".
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7.3. Metapopulation Epidemic Model

7.3.1. Spatially Realistic Levins Model

In ecology, the class of Stochastic Patch Occupancy Models (SPOM) has been
developed to characterize and infer the dynamics of metapopulations. A
metapopulation is a set of spatially separated populations of the same species which
interact via between-population migrations of individuals. Among this class of
models, the spatially realistic Levins model (SRLM) is a major reference [OVA 04].

Consider a set of n circular habitat patches with areas ai > 0 and centers xi ∈ R2,
i ∈ I = {1, . . . , n}. Let di,j denote the Euclidean distance between xi and xj . The
binary variable Yi(t) ∈ {0, 1} gives the occupation status of patch i at time t ∈ R:
Yi(t) = 1 if patch i is occupied by the species of interest at t, Yi(t) = 0 otherwise.
The random vector Y(t) = {Y1(t), . . . , Yn(t)} follows a binary-state continuous-time
Markov process with inhomogeneous transition rates. Local extinctions independently
occur with a constant rate ei, which is typically proportional to the patch area ai:

P(Yi(t+ dt) = 0 | Yi(t) = 1) = eidt.

Colonizations of unoccupied patches occur with a time-varying rate depending on the
occupation status of the other patches and their distance with respect to the focal patch:

P(Yi(t+ dt) = 1 | Yi(t) = 0) =
n∑

j=1
j 6=i

cijYj(t)dt,

where cij is typically a function of the distance dij and other patch characteristics such
as the areas ai and aj . In general, the larger dij , the lower cij (source patches send
more migrants to close patches than to further patches), and the larger ai and aj , the
larger cij (large patches send more migrants and have a higher propensity to receive
migrants).

7.3.2. A Colonization Piecewise-Deterministic Markov Process

Here, we are interested in a pathogen metapopulation. Thus, in what follows, we
adopt the vocabulary of epidemiology. In particular, thereafter, a patch is a set of hosts
for the pathogen of interest, an occupied patch is a patch that is infected by a pathogen
population, and an unoccupied patch is said to be healthy.

This section presents the metapopulation model proposed in [SOU 09a], which
differs from the Levins model mainly because (i) extinctions and colonizations occur
on distinct periods, (ii) the binary occupation status Yi(t) is augmented by a
time-varying quantitative variable providing the size of the pathogen population
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within patch i, and (iii) observation variables are explicitly introduced in the model.
To simplify the presentation of the model, we focus on the metapopulation dynamic
during one year, which is assumed to consist of two successive periods: the
dormancy period and the growing season period. Without loss of generality, we
assume that dormancy occurs during the time interval [−1, 0) while the growing
season occurs during the interval [0, 1). The initial time t = −1 is just after the end
of the previous growing season, while time t = 1 corresponds to the beginning of the
next season.

In the following, infection times Ti (i ∈ I) denote the times of initiation of local
epidemics in the year under consideration; let T = {Ti : i ∈ I}. As a local epidemic
can only occur during the growing season, Ti ≥ 0. We assume that the pathogen
survived in patch i during the dormancy if and only if Ti = 0. In the case of local
epidemics not due to survival of the pathogen in patch i the infection time is a
colonization time. By convention, we set Ti ≥ 1 if patch i is still healthy at time
t = 1.

Observation variables

Â The metapopulation dynamic is observed at the patch level at times t = −1
and t = 1, i.e. the end of successive years. Given that sampling is not complete (there
are some patches whose health statuses are not observed) and that infections are not
always detected, we introduce the observation variables Y obs

i,t , i ∈ I = {1, . . . , n} and
t ∈ {0, 1}:

Y obs
i,t =





0 if the meadow is observed as healthy
1 if the meadow is observed infected
NA if the meadow is not sampled.

There are no false-positives (i.e. healthy patches observed as infected). In addition,
vectors of explanatory variables are observed at the patch level, namely the patch
coordinates xi, the area ai covered by the patch and {Bi, Ci, Di} that will arise in the
model as regressors.

In the model, the response variables are the observations Yobs
1 = {Y obs

i,1 : i ∈ I} at
time t = 1, and we work conditionally on past observations Yobs

−1 = {Y obs
i,−1 : i ∈ I}

and covariates {xi, ai, Bi, Ci, Di : i ∈ I}. The observed final health statuses Y obs
i,1 are

assumed to be independently drawn from {0, 1, NA} with unequal probabilities, given
actual final health statuses:

Y obs
i,1 | Yi(1) ∼ α1Dirac(0) + α2Dirac(1) + (1− α1 − α2)Dirac(NA),
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where α1 and α2 account for misclassification and incompleteness in the observation
process at t = 1 and satisfy:

α1 = r1
p1

p1 + q1(1− p1)

α2 = r1

(
1− p1

p1 + q1(1− p1)

)

p1 = P(Y obs
i1 = 1 | Y obs

i1 6= NA)

q1 = P(Yi,1 = 1 | Y obs
i1 = 0)

r1 = P(Y obs
i1 6= NA).

Probabilities p1, q1 and r1 are observation parameters whose values are assessed
before fitting the model to data and plugged in the model.

Extinctions

Extinctions of the pathogen in infected patches can only occur during the
dormancy period [−1, 0). Times of extinction are not explicitly introduced into the
model. We simply assume that extinctions between times -1 and 0 are, conditionally
on observations Y obs

i,−1, the result of independent Bernoulli draws for the infection
statuses Yi(0) of patches:

Yi(0) | Y obs
i,−1 ∼ Bernoulli(bis(Y obs

i,−1))

bi = logit−1(BTi β)

s(Y obs
i,−1) =





1 if Y obs
i,−1 = 1

q−1 if Y obs
i,−1 = 0

p−1 + q−1(1− p−1) if Y obs
i,−1 = NA,

[7.7]

where bi gives the conditional probability of pathogen survival given that patch i was
infected in the beginning of dormancy, and s deals with misclassification and
incompleteness of the observation process at time t = −1. bi is a function of
observed covariates Bi and a vector of parameters β (BTi is the transpose of Bi),
p−1 = P(Y obs

i,−1 = 1 | Y obs
i,−1 6= NA) and q−1 = P(Yi,−1 = 1 | Y obs

i,−1 = 0).
Probabilities p−1 and q−1 are observation parameters whose values are assessed
before fitting the model to data and plugged in the model. By convention, Yi(0) = 1
if and only if Ti = 0.

Colonizations

Healthy patches are immune during the dormancy and susceptible within the
growing season. Infected patches are infectious only during the growing season. The
degrees of susceptibility and infectiousness depend on explanatory variables and time
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as described below. In addition, already infected patches cannot be over-infected
during the growing season.

The spread of the pathogen during the growing season is modeled as a
spatio-temporal piecewise-Poisson point process [ILL 08] . In this process, point
(t, x) specifies a time and a location at which the numbers of dispersing incoming
pathogen are large enough to potentially initiate a local epidemic in a healthy patch
with a standard degree of susceptibility. Thus, each point stands for a potential
colonization event.

The point process is governed by an intensity function λ̃ quantifying the risk of
infection at each space-time location, this risk being generated by the already infected
patches. Therefore, λ̃ varies in time and space with the number, the spatial locations
and the infectiousness of these patches. The expression of λ̃ at time t and location x
is given by:

λ̃(t, x) =
∑

j∈It
cjgj(t− Tj)h(x, xj), [7.8]

where It = {j ∈ I : Tj < t} is the set of patches infected before time t; cj encodes
characteristics of patch j such as its physiological state and features of the
surrounding habitat, which are expected to partly determine the infectiousness of j;
gj is a deterministic standardized disease progress function, which gives the shape of
the pathogen growth within patch j; h is a dispersal function, which models pathogen
dispersal as a function of the source location xj and the location of the receiving
patch x. The product cjgj(t− Tj) specifies the degree of infectiousness of patch j at
time t. In the beginning of the growing season, just after time zero, λ̃ is generated
only by those patches in which the pathogen survived during the dormancy.

The standardized disease progress function is specified with a thresholded
quadratic form:

gj(t) = min{t2, ωaj}1(t ≥ 0), [7.9]

where ω is a positive parameter. The threshold ωaj takes into account possible
saturation effects, which are assumed to be proportional to the patch area aj .

The dispersal function h is specified as an anisotropic exponential dispersal
function parameterized by η = (η1, . . . , η5) [SOU 07]:

h(x, x′) =
h1{φ(x− x′)}
h2{φ(x− x′)}2 exp

(
− ||x− x′||
h2{φ(x− x′)}

)
,

where φ(x−x′) is the angle made by the vector x−x′, ||x−x′|| is the distance between
x and x′, h1(φ) gives the probability that a spore is dispersed in direction φ, and h2(φ)
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gives the expected distance travelled by a spore dispersed in direction φ. The angular
function h1 is assumed to be a von Mises density function [FIS 95] parameterized by
a mean direction parameter η1 ∈ R and a dispersion parameter η2 > 0:

h1(φ) = {2πI0(η2)}−1 exp{η2 cos(φ− η1)},

with I0(u) = (2π)−1
∫ 2π

0
exp{u cos(φ)}dφ. The angular function h2 is assumed to

be proportional to a von Mises density function parameterized by a mean direction
parameter η3 ∈ R, a dispersion parameter η4 > 0

h2(φ) = η5{2πI0(η4)}−1 exp{η4 cos(φ− η3)},

where η5 > 0 is the constant of proportionality.

A healthy patch i is colonized during the growing season if a point of the piecewise
Poisson point process is deposited in i and it succeeds in initiating a local epidemic.
The intensity of points deposited in i at time t is given by the product aiλ̃(t, xi); ai
is considered as the effective capture area of patch i and x 7→ λ̃(t, x) is assumed to
be approximately constant over patch i. Any deposited point is assumed to initiate a
local epidemic with probability di, which reflects the degree of susceptibility of i and
encodes individual characteristics such as local climatic conditions.

Quantities cj and di always appear in the model as the product cjdi. They are
jointly modeled as a function of explanatory variables: cjdi = exp(CTj γ + DT

i δ),
where Cj and Di are vectors of covariates, and γ and δ are vectors of parameters.

PDMP formulation of the colonization dynamic

Let Xt ∈ X , t ∈ [0, 1], be the [2× n] matrix satisfying:

Xt =

(
X11(t) · · · X1n(t)
X21(t) · · · X2n(t)

)
=

(
c1g1(t− T1) · · · cngn(t− Tn)

Y1(t) · · · Yn(t)

)
,

where each column provides, for a given patch, the size of the pathogen population at
time t and the health status of the patch at time t (remind that Yi(t) = 1(t ≥ Ti)).

We introduce the function Φ = (Φ1, . . . ,Φn) : X × R+ → X whose j-th
component satisfies:

Φj(x, t) =





(
0

0

)
if x2j = 0

(
cj min{(t+

√
x1j/cj)

2, ωaj}
1

)
if x2j = 1.

[7.10]

Let Ti and Ti′ be two successive colonization times (i.e. 0 < Ti < Ti′ and no
colonization occurred in the time interval (Ti, Ti′)), called jump times in the PDMP
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framework. The inter-jump duration Si′ = Ti′ − Ti has a survival function detailed
in Equation [7.16] that takes an exponential form depending on the multivariate jump
rate λ : X 7→ Rn+:

λ(Xt) =



d1a1λ̃(t, x1)(1− Y1(t))

...
dnanλ̃(t, xn)(1− Yn(t))


 ,

where λ̃ was defined in Equation [7.8] and can be expressed as a function of Xt, and
the variables Y1(t), . . . , Yn(t) are the components of the 2nd row of Xt.

Using Equations [7.9] and [7.10], Xt is a PDMP with flow function Φ:

Xt =

{
Φ(XTi , t) if t ∈ [Ti, Ti′)

Ui′ if t = Ti′ ,

where Ui′ is drawn from the jump kernel Qi′(Φ(XTi , Si′), ·). In the simplest case
(the one which is considered thereafter), the jump kernel is a Dirac distribution, which
changes only the health status X2i′(t) = Yi′(t) of i′ from healthy to infected:

Ui′ = Φ(XTi , Si′) +

(
0n

1n(i′)

)
,

where 0n is the raw vector with n zeros and 1n(i′) is the raw vector whose i′-th
element is equal to 1 and the n− 1 other elements are equal to 0. This form could be
generalized by drawing a random value for the size of the pathogen populationX1i′(t)
in patch i′ when this patch is colonized:

Ui′ = Φ(XTi , Si′) +

(
min{Ui′ , ωai′ci′}1n(i′)

1n(i′)

)
,

where the real variable Ui′ should be randomly drawn in R+. As mentioned above,
we use thereafter the simplest case:

Xt =





Φ(XTi , t) if t ∈ [Ti, Ti′)

Φ(XTi , Si′) +

(
0n

1n(i′)

)
if t = Ti′ .

7.3.3. Bayesian Inference Approach

We aim to infer infection times T and parameters Θ = (ω, η, β, γ, δ) given
observed health statuses Yobs

i,−1 and Yobs
i,1 , covariates Z = {xi, ai, Bi, Ci, Di : i ∈ I}

and observation parameters κ−1 = (p−1, q−1) and κ1 = (p1, q1) (we will see below,
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in Remark 1, that the observation parameter r1 can be removed from the model in the
inference stage). The inference is made by using the probability distribution
P (Yobs

1 | Yobs
−1,Z), which can be written as follows:

P (Yobs
1 | Yobs

−1,Z) =

∫

T

Pκ1
(Yobs

1 | T)dPΘ,κ−1
(T | Yobs

−1,Z). [7.11]

Equation [7.11] highlights the hierarchical structure of the model. In the first stage,
the term PΘ,κ−1(T | Yobs

−1,Z) gives the distribution of infection times given the
observed initial statuses and covariates. This term incorporates the survival process
during dormancy and the colonization PDMP parameterized by Θ, and the
observation process at time t = −1 parameterized by κ−1. In the second stage, the
term Pκ1

(Yobs
1 | T) gives the distribution of the observed final statuses given

infection times. This term corresponds to the observation process at time t = 1
parameterized by κ1. Note that when T is known, Yobs

−1 and Z bring no information
on Yobs

1 , i.e. Pκ1
(Yobs

1 | T,Yobs
−1,Z) = Pκ1

(Yobs
1 | T).

Equation [7.11] can be used to infer the unknowns T and Θ. However, the
integral at the right-hand-side cannot be calculated analytically. To overcome this
difficulty, the infection times T can be considered as latent variables, whose
distribution is specified by PΘ,κ−1(T | Yobs

−1,Z), and inference can be carried out
with a Markov chain Monte Carlo (MCMC) method in the Bayesian context
[ROB 99] or a Monte Carlo expectation maximization method in the frequentist
context [WEI 90].

In this study, we chose the Bayesian approach and we applied MCMC using a
Metropolis-Hastings algorithm to draw a sample from the posterior distribution of the
parameters and the infection times. The posterior distribution, up to a normalizing
constant, can be written as

Pκ−1,κ1
(Θ,T | Yobs

−1,Y
obs
1 ,Z) ∝ Pκ1

(Yobs
1 |T)PΘ,κ−1

(T | Yobs
−1,Z)π(Θ),[7.12]

where π is the prior distribution of Θ and the symbol ‘∝’ means ‘proportional to’.
The following paragraphs provide the expressions of the terms appearing in
Equation [7.12].

Expression of P (T | Yobs
−1 ,Z)

Here, we give the expression of the conditional probability of any space-time
configuration T, describing what patches are infected at what times, given the
observed initial health statuses Yobs

−1 and covariates Z. Thereafter, for the sake of
convenience, we omit the conditioning covariates and the conditioning parameters in
the notation.
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We make the three following assumptions in addition to those made above. First,
the infection potential is constant within each patch. Second, the degree of
susceptibility of a healthy patch at time zero is independent of the initial health status
at time t = −1. Third, points of the Poisson point process located in susceptible
patches independently succeed in initiating local epidemics. The success of a point in
initiating a local epidemic is patch dependent. It is measured by the success
probability di which reflects the degree of susceptibility of i and encodes individual
characteristics such as local climatic conditions.

Let t1, . . . , tn be times in [0, 1] and IA = {i ∈ I : ti = 0}, IB = {i ∈ I :
0 < ti < 1} and IC = {i ∈ I : ti = 1}. IA, IB and IC are associated, respectively,
with the sets of patches where the pathogen survived during the dormancy, which were
colonized during the season and which remained healthy. We show below that:

P ({Ti = 0 : i ∈ IA}, {Ti = ti : i ∈ IB}, {Ti ≥ 1 : i ∈ IC} | Yobs
−1)

=
∏

i∈IA
bis(Y

obs
i,−1)

∏

i∈IB
{1−bis(Y obs

i,−1)}e−diaiΛ̃(ti,xi)diaiλ̃(ti, xi)

×
∏

i∈IC
{1−bis(Y obs

i,−1)}e−diaiΛ̃(1,xi),

[7.13]

where Λ̃(t, x) =
∫ t

0
λ̃(s, x)ds is the time-cumulated infection risk affecting location

x. Quantities di and cj are only contained in diaiλ̃(ti, xi) and diaiΛ̃(ti, xi) as the
product form dicj . This product was directly modeled (instead of separately modeling
di and cj) to avoid identifiability difficulties in parameter estimation.

In Equation [7.13], the term bis(Y
obs
i,−1) is the probability of pathogen survival in i

during the dormancy. In the second product of [7.13], the term 1−bis(Y obs
i,−1) is the

probability of pathogen extinction in i during the dormancy. The term
e−diaiΛ̃(ti,xi)diaiλ̃(ti, xi) is the probability that i remained susceptible during [0, ti)
and was infected at ti. The product diaiλ̃(t, xi) of the degree of susceptibility di, the
capture area ai, and the infection risk λ̃(t, xi) measures the instantaneous risk of
infection of patch i at time t. Finally, in the third product of [7.13], 1−bis(Y obs

i,−1) is

the probability of pathogen extinction in i during the dormancy and e−diaiΛ̃(1,xi) is
the probability that i remained healthy during the epidemic period [0, 1].

Proof of Equation [7.13]

Let τ0, . . . , τn+1 be n+ 2 ordered times in [0, 1] satisfying

0 = τ0 = · · · = τq < · · · < τr = · · · = τn+1 = 1,

and I∗ = {i1, . . . , in} be a permutation of I = {1, . . . , n}. We want to determine the
conditional probability that, given the observed initial statuses Yobs

−1 and the covariates
Z,
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– patch ik (k ≤ q) is infected at time τk = 0 (survival of the pathogen during
dormancy),

– patch ik (q < k < r) is the k-th patch to be infected and its infection time is
τk ∈ (0, 1) (colonization),

– patch ik, k ≥ r, is still susceptible at time τk = 1.

In other words, we want to determine

p(I∗, τ ; Yobs
−1) =P ({Tik = τk : k < r}, {Tik > τk : k ≥ r} | Yobs

−1)

where τ = {τ1, . . . , τn}. Note that times τq+1, · · · , τr−1 corresponding to
colonization events are mutually different and different from one under the Poisson
assumption.

Let A = {Tik = τk : k ≤ q}, B = {Tik = τk : q < k < r}, C = {Tik > τk : k ≥
r} and D = {Tik > 0 : k > q}. As {Tik = τk : k < r} = A ∩ B and the event D is
included in B ∩ C,

p(I∗, τ ; Yobs
−1) =P (A,B, C | Yobs

−1)

=P (A,B, C,D | Yobs
−1)

=P (C | A,B,D,Yobs
−1)P (B | A,D,Yobs

−1)P (A | D,Yobs
−1)P (D | Yobs

−1).

The two last terms at the right-hand-side of the previous equation correspond to
survivals and extinctions during the dormancy and can be written as

P (A | D,Yobs
−1) =P (A | Yobs

−1) =
∏

k≤q
P (Tik = 0 | Y obs

ik,−1) =
∏

k≤q
biks(Y

obs
ik,−1)

[7.14]

P (D | Yobs
−1) =

∏

k>q

P (Tik > 0 | Y obs
ik,−1) =

∏

k>q

{1− biks(Y obs
ik,−1)}. [7.15]

where function s, satisfying s(y) = (q−1)1(y=0){p−1 + q−1(1− p−1)}1(y=NA), y ∈
{0, 1, NA}, comes from [7.7].

The term P (B | A,D,Y−1) is the conditional probability density function of
the colonization times. So, it corresponds to the pathogen spread during the season
modeled using a piecewise spatio-temporal Poisson point process with intensity λ̃ (see
eq. [7.8]). Assuming that the degree of susceptibility of a patch not infected at time
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zero is not affected by the initial health status, P (B | A,D,Yobs
−1) can be decomposed

into

P (B |A,D,Yobs
−1) =

∏

q<k<r

P (Tik = τk | {Tij = τj : j < k})

=
∏

q<k<r

P (Tik = τk, {Tij > τk : j > k} | {Tij = τj : j < k})

=
∏

q<k<r

(
− ∂P (Tik > t, {Tij > τk : j > k} | {Tij = τj : j < k})

∂t

∣∣∣∣
t=τk

)
.

P (Tik > t, {Tij > τk : j > k} | {Tij = τj : j < k}) is the probability that
the k-th patch to be infected is not infected during the time interval [τk−1, t], and
that the other remaining susceptible patches are not infected during the time interval
[τk−1, τk]. Hence,

P (Tik > t,{Tij > τk : j > k} | {Tij = τj : j < k})
=P (Nik(τk−1, t) = 0, {Nij (τk−1, τk) = 0 : j > k} | {Tij = τj : j < k}),

where Ni(t1, t2) is the number of points —of the Poisson point process— which
(i) are located in the spatial surface Ai covered by patch i, (ii) are located in the time
interval [t1, t2], and (iii) are effectively efficient for initiating a local epidemic.
Condition (iii) depends on the degree of susceptibility of the patch in question. We
assume that the filter due to (iii) is an independent thinning operator
[DIG 83, STO 95] with the probability di of thinning which depends on local
characteristics. From the Poisson and thinning assumptions, Ni(t1, t2) is Poisson
distributed with mean value di

∫
Ai

∫ t2
t1
λ̃(t, x)dtdx. Assuming that the infection risk

is constant on the spatial surface Ai (with area ai and centroid xi) yields

Ni(t1, t2) | {Tj : j ∈ It2} ∼ Poisson(diaiΛ̃(t1, t2, xi))

Λ̃(t1, t2, xi) =

∫ t2

t1

λ̃(s, xi)ds.

The distribution ofNi(t1, t2) is conditional on infection times in the past of t2 because
λ̃ is a function of these times on [t1, t2] (see eq. [7.8]). Moreover,Nij (τk−1, t) (j ≥ k)
are independent for t ∈ [τk−1, τk]. This yields

P (Tik > t,{Tij > τk : j > k} | {Tij = τj : j < k})

= exp{−dikaik Λ̃(τk−1, t, xik)}
∏

j>k

exp{−dijaij Λ̃(τk−1, τk, xij )}.

[7.16]
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It follows

P (B | A,D,Yobs
−1) =

∏

q<k<r


dikaik λ̃(τk, xik)

∏

j≥k
exp{−dijaij Λ̃(τk−1, τk, xij )}


 .

[7.17]

The term P (C | A,B,D,Yobs
−1) corresponds to the patches which remain

susceptible at the end of the season. Its expression was also derived using the Poisson
point process. Indeed, P (C | A,B,D,Yobs

−1) is the probability that patches ik (k ≥ r)
remain susceptible during the time interval [τr−1, 1], i.e. after the infection of the
(r − 1)-th patch to be infected. Thus,

P (C | A,B,D,Yobs
−1) =

∏

k≥r
P (Nik(τr−1, 1) = 0 | {Tij = τj : j < r}) [7.18]

=
∏

k≥r
exp{−dikaik Λ̃(τr−1, 1, xik)} [7.19]

From [7.14], [7.17] and [7.18], it follows

p(I∗, τ ; Y−1) =
∏

k≤q
biks(Yik,−1)

×
∏

q<k<r

{1− biks(Yik,−1)}dikaik λ̃(τk, xik) exp{−dikaik Λ̃(0, τk, xik)}

×
∏

k≥r
{1− biks(Yik,−1)} exp{−dikaik Λ̃(0, 1, xik)}

Expression of P (Yobs
1 | T)

It is assumed that infected patches remain infected until the end of the season, i.e.
if Ti < 1, then Yi(1) = 1. Moreover, we add one assumption to those made on the
observation process when survivals during the dormancy were modeled: the success
in detecting an infection does not depend on the infection time.

Using material provided in the paragraph entitled Observation variables in Section
7.3.2, the distribution P (Yobs

1 | T) satisfies:

P (Yobs
1 | T) =

∏

i∈I
P (Y obs

i1 | Ti)

=
∏

i:Y obs
i1

=1

p11(Ti < 1)

p1 + q1(1− p1)

∏

i:Y obs
i1

=0

(
1− p11(Ti < 1)

p1 + q1(1− p1)

)

× (r1)
∑

i
1(Y obs

i1 6=NA)(1− r1)
∑

i
1(Y obs

i1 =NA),

[7.20]
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Remark 1. Assessing r1 prior to the estimation procedure is not required since the
term (r1)

∑
i
1(Y obs

i1 6=NA)(1 − r1)
∑

i
1(Y obs

i1 =NA) in [7.20] brings no information on the
dynamics and can be removed from the posterior distribution in the MCMC.

Remark 2. In [7.20], the fraction p11(Ti < 1)/{p1 +q1(1−p1)} is the probability
that Y obs

i1 = 1 given the infection time Ti and given that the patch is sampled at time
t = 1. It equals zero if Ti ≥ 1 since a healthy patch is never observed as infected.
It is less than one if Ti < 1 since the pathogen presence in an infected patch can be
undetected.

7.3.4. Markov Chain Monte Carlo (MCMC) Algorithm

This section shows how to sequentially update the parameters and the infection
times in the MCMC algorithm, by exploiting the decomposition properties of the
posterior distribution (block updating).

The posterior distribution can be decomposed as follows. We split Θ into two
subsets: Θ = (θ1, θ2), where θ1 is the parameter vector used to specify the survival
probabilities bi (i ∈ I), and θ2 is the parameter vector used in the infection risk λ̃.
Actually, θ2 parameterize ci, di, g and h which appear in λ̃. The posterior distribution
Pκ−1,κ1

(Θ,T | Yobs
−1,Y

obs
1 ) can be decomposed into, up to a multiplicative constant,

Pκ−1,κ1
(Θ,T | Yobs

−1,Y
obs
1 ) ∝ Pκ1

(Yobs
1 |T)Qκ−1

(T,Yobs
−1, θ1)Q(T, θ2)π1(θ1)π2(θ2)

[7.21]

where π1 and π2 are the prior distributions for θ1 and θ2, Pκ1
(Yobs

1 | T) is given
by [7.20], and

Qκ−1(T | Yobs
−1, θ1) =

∏

i:Ti=0

bis(Y
obs
i,−1)

∏

i:Ti>0

{1− bis(Y obs
i,−1)} [7.22]

Q(T | θ2) =
∏

i:0<Ti<1

diaiλ̃(Ti, xi)e
−diaiΛ̃(Ti,xi)

∏

i:Ti≥1

e−diaiΛ̃(1,xi),

[7.23]

are obtained from [7.13].

Let Tc, θc1 and θc2 denote current values for the infection times and the parameters
in the algorithm. Let T∗, θ∗1 and θ∗2 be candidate values respectively drawn from the
proposal distributions q(· | Tc), q(· | θc1) and q(· | θc2). First, T∗ replaces Tc with
probability

min

{
1,
Pκ1

(Yobs
1 |T∗)Qκ−1

(T∗,Yobs
−1, θ

c
1)Q(T∗, θc2)q(Tc | T∗)

Pκ1
(Yobs

1 |Tc)Qκ−1
(Tc,Yobs

−1, θ
c
1)Q(Tc, θc2)q(T∗ | Tc)

}
.
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No significant simplification is possible in the calculation of this acceptance
probability (only the priors disappear). Second, θ∗1 replaces θc1 with probability

min

{
1,
Qκ−1

(Tc,Yobs
−1, θ

∗
1)π1(θ∗1)q(θc1 | θ∗1)

Qκ−1(Tc,Yobs
−1, θ

c
1)π1(θc1)q(θ∗1 | θc1)

}
.

Here, only the new value of [7.22] and π1(θ∗1) must be computed. Third, θ∗2 replaces
θc2 with probability

min

{
1,
Q(Tc, θ∗2)π2(θ∗2)q(θc2 | θ∗2)

Q(Tc, θc2)π2(θc2)q(θ∗2 | θc2)

}
.

Here, only the new value of [7.23] and π2(θ∗2) must be computed.

If the number of infection times is large, then the proposed infection times will
certainly be always rejected. To overcome this issue, one can sequentially update
subsets of infectious times. For any subset J of I, we can draw candidate values
T∗J = {T ∗i : i ∈ J } from a proposal distribution q(· | Tc

J ), where
Tc
J = {T ci : i ∈ J }, and accept it with probability

min

{
1,
Pκ1

(Yobs
1 |T∗)Qκ−1

(T∗,Yobs
−1, θ

c
1)Q(T∗, θc2)q(Tc

J | T∗J )

Pκ1
(Yobs

1 |Tc)Qκ−1
(Tc,Yobs

−1, θ
c
1)Q(Tc, θc2)q(T∗J | Tc

J )

}
,

where component i of T∗ is T ∗i if i ∈ J , and T ci else. Note that a similar procedure
can be applied for θ1 and θ2 if their dimensions are extensive.

7.3.5. Example of Results

The inference approach presented above was applied to infer the metapopulation
dynamic of the powdery mildew Podosphaera plantaginis, which is a fungal pathogen
of the host plant Plantago lanceolata, in the Åland Islands. Host plants are spread in
more than 4000 meadows (i.e. patches) in this archipelago. Figure 7.6 shows patches
observed as infected in 2003 and 2004. Details about data, prior distributions, MCMC
tuning and results can be found in [SOU 09a]. Here, we only illustrate the type of
output that can be obtained, namely the posterior distributions of the infection times
in 2004 of six different patches; see Figure 7.7. Each of the six distributions shows
a typical pattern, from the patch that was certainly infected in the beginning of the
growing season (patch 1) to the patch that certainly remained healthy until the end of
the season (patch 6).
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Figure 7.6: Map of the Åland Islands and patches of Plantago lanceolata that are
healthy (dots) and infected (circles) in 2003 (top panel) and 2004 (bottom panel).

7.4. Stochastic Approaches for Modeling Spatial Trajectories

The study of animal movements informs on both individual behaviors of focal
species and population-level dynamics. In particular, the characterization of territories
used by individuals can be assessed via an estimation of the expected movements
of animals, using discretely located data obtained at some given observation times.
Many other application domains (e.g. physics of particles and transportation science)
actually share the same questions regarding statistical inference of movements and
trajectory reconstitution conditional on observations.
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Figure 7.7: Zero-one-inflated posterior distributions of the infection times in year
2004 of six different patches (top panels). Locations of patches in the Åland Islands
are indicated in the top panel. In each top panel, the dots at times zero and one give

the posterior probabilities that the infection time is zero and one, respectively.

Various theoretical models for describing movements are available. Initially,
continuous-time movements were often assumed to be simple Brownian motions
[HOR 07], but then more and more general stochastic differential equations have
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been proposed [IAC 08]. Other approaches consider movements in a discrete-time
context, mainly using multivariate Markov chains.In this section and in connection
with the topic of the book, we will only consider time-continuous processes. From
the numeric and inferential point of view, several R packages are available for
performing statistical analyses of trajectories (e.g. Move, BBMM and
MovementAnalysis).

In what follows, we present the simple case of interpolating punctual observations
along a d-dimensional Brownian motion giving rise to the so called Brownian bridge.
Then, we show how one can use the stochastic machinery, namely the martingale
machinery of predictable compensation for jumps, for building models of trajectories
with jumps that can be viewed as PDMPs. We illustrate our approach by exhibiting
the diversity of behaviors that elementary examples may exhibit.

Notation

We will assume that the continuous index set for processes is time. Naturally,
depending on the topic, one can replace the time index by any other real variable that
have a pertinent meaning with respect to the underlying dynamics. Scalar elements
(either constants, functions or processes) will be denoted by capital letters (e.g., X),
vector elements by bold letters (x), and matrix elements by capital bold letters (X).
Moreover, note that random functions include deterministic ones, and that the term
process is used with a generic meaning, whereas the term sequence denotes only
discrete-time random processes.

7.4.1. Conditioning a Brownian Motion by Punctual Observations

Due to the lack of relevant knowledge or because of their characteristics,
movements of animals or particles in spatial domains are often modeled as
realizations of Brownian processes, which are viewed as reference models for
trajectories. We recall that a standard d-dimensional Brownian motion w(t) in Rd
simply consists of d independent copies of one-dimensional standard Brownian
motions Wi(t) with Wi(0) = 0, i = 1, · · · , d. w(t) being Gaussian, it is entirely
characterized by its first order moments: E(w(t)) = 0 and
E(w(t)wT (s)) = (t ∧ s)Id where Id stands for the d-unit matrix.

Observations of a random processes x(t) representing a trajectory, even when they
are dense in time, always yield a sequential data set yn = x(Ty

n ) for observation
time Ty

n , n = 1, 2, . . .. Assuming that these observation times are independent of
the process, one can infer some statistical characteristics of x(t) and then take into
account observations to simulate (i.e. reconstruct or interpolate) the non-observed part
of the trajectory. In the case of the Brownian motion, the conditioning with respect to
observations gives the so-called Brownian bridge.
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Brownian bridge on Rd

The Brownian bridge X(t), t ∈ [0, 1], in R is defined (in distribution) as a
Brownian motion W (t), t ∈ [0, 1], conditional on the knowledge that at t = 1,
W (t) = 0. A path-wise definition exists: X(t) = W (t)− tW (1), t ∈ [0, 1].

This definition can be straightly extended to any interval [T1, T2]. Using the
specific properties of conditional expectation for Gaussian distribution, one can
easily prove that conditionally on {W (T1),W (T2)}, the Brownian bridge
X(t), t ∈ [T1, T2], is a Gaussian process, with E(X(t)) = W (T1)(T2−t)+W (T2)(t−T1)

T2−T1

and E(X(t)X(s)) = (T2−t)(s−T1)
T2−T1

= C(t, s), independent of W (T1), W (T2), for
T1 ≤ s ≤ t ≤ T2.

In particular, X(t) follows a Gaussian distribution with mean
µ(t) = a1 + t−T1

T2−T1
(a2 − a1) and variance σ2(t) = C(t, t) where a1 = W (T1) and

a2 = W (T2).

A d-dimensional Brownian bridge x(t) = (X1, . . . , Xd)(t), t ∈ [T1, T2], with
x(Tj) = aj = (a1,j , . . . , ad,j) ∈ Rd, j = 1, 2, is defined as a vector of d independent
Brownian bridges Xi(t) with Xi(Tj) = ai,j , j = 1, 2. More explicitly, x(t) has
a Gaussian density ϕ(x|µ(t),Σ(t)) with mean µ(t) = a1 + t−T1

T2−T1
(a2 − a1) and

covariance matrix Σ(t) = (T2−t)(s−T1)
T2−T1

Id.

Brownian bridge with noisy extremal points

Due to measurement errors, the points aj , j = 1, 2, are generally random. If we
assume these points to be independent with densities faj , j = 1, 2, the distribution of
x(t) can be written:

P (x(t) ∈ D) =

∫

Rd×Rd

(∫

D
ϕ(x|µ(t),Σ(t))dx

)
fa1

(u)fa2
(v)dudv, D ⊂ Rd.

In the case of Gaussian densities faj (u) =
∏d
i=1 ϕ(ui|ai,j , σ2

j ), j = 1, 2, the
process x(t) remains Gaussian with mean µ(t,a1,a2) = a1+ t−T1

T2−T1
(a2−a1) whereas

its covariance matrix satisfies Σ∗(t) = σ∗2(t)Id with

σ∗(t) =
(T2 − t)(t− T1)

T2 − T1
+ σ2

1

(
T2 − t
T2 − T1

)2

+ σ2
2

(
t− T1

T2 − T1

)2

.

Mean occupation time

An important index in ecological studies is the mean occupation time of space
domain D during a time interval [t1, t2], which is defined as the non-negative random
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Figure 7.8: Paths in the plane of a standard Brownian motion starting at point (0,0)
marked by "1" and arriving at an unconditioning point marked by "2" (left) and a

standard Brownian bridge starting and arriving at point (0,0) marked by "1" (right).

variable τD = 1
t2−t1

∫ t2
t1

1{x(t)∈D}dt. Its expectation ν(D) = E(τD) induces an
absolutely continuous measure with density:

h(x) =
1

t2 − t1

∫ t2

t1

ϕ(x | µ(t,a1,a2),Σ∗(t))dt.

Related statistical issues

For ecological and territory planing purposes, one can be interested in the
estimation of the density h(x) after collecting a set of observations
(Tj ,x(Tj) = aj), j = 1, . . . , n + 1. Assume that these data are drawn from a
d-dimensional Brownian motion with diffusion coefficient σ2 and variances of
measurement errors σ2

j depending on locations aj , and for t ∈ [Tj , Tj+1], and let

µj(t) = µ(t,aj ,aj+1)

σ∗j (t) = σ2 (Tj+1 − t)(t− Tj)
Tj+1 − Tj

+ σ2
j

(
Tj+1 − t
Tj+1 − Tj

)2

+ σ2
j+1

(
t− Tj

Tj+1 − Tj

)2

.
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Let the process x(t), t ∈ [T1, Tn+1], be formed by the set of independent Brownian
bridges connecting aj to ai+1 within time interval [Tj , Tj+1], j = 1, . . . , n. Then, the
total mean occupation time of space has density

h(x) =
1

Tn+1 − T1

n∑

j=1

∫ Tj+1

Tj

ϕ(x | µj(t),Σ∗j (t))dt. [7.24]

The variances of measurement errors σ2
j are generally specified and one only has

to estimate the diffusion coefficient σ2 to compute the occupation time density.

The following trick was used to build a simple conditional likelihood for data.
Assume that n is even, then one can prove that observations x(T2k), k = 1, . . . , n/2,
conditional on the values of observations x(T2k−1), k = 1, . . . , n/2, are independent
Gaussian random vectors with mean vectors µ2k−1(T2k) and covariance matrices
Σ∗2k−1(T2k). Hence, we can get an estimate σ̂2 by maximizing the following
likelihood:

n/2∏

k=1

ϕ(a2k | µ2k−1(T2k),Σ∗2k−1(T2k)).

The estimation of density h can be performed with standard numerical methods
approximating the integral form in Equation [7.24]. This approach was compared to
kernel methods considering observed locations as i.i.d. random vectors drawn from h,
and was proven to be much more efficient since it accounts for measurement errors
and temporal dependencies between observed locations. Moreover, the first approach
yields more realistic domains for level sets of h.

Extension to further movement dynamics

Beyond the Brownian bridge, there exists today a wide range of literature about
more general (and more realistic) diffusion bridges in R1 and Rd related to some
specific stochastic differential equations of the form:

dx(t) = f(t,x)dt+ σ(t,x)dw,

driven by a d-dimensionnal Brownian motion w(t) and a vectorial drift function f .

There are many results about the characterization (in distribution as well as in a
path-wise sense) of these diffusions when they are considered conditionally on their
values x(Tj) = aj at times Tj , j = 1, 2. These results are however more complicated
to obtain since they are grounded on sophisticated tools such as the Girsanov theorem.
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7.4.2. Movements with Jumps, Including Mathematical Preliminaries

Thereafter, we assume that there exists a complete probability space (Ω,F,P) with
a filtration (or history) F = (Ft)t≥0 such that processes are F-adapted, stopping times
refer to F and martingales to (F,P). We shall neither develop the classical theory of
the predictable σ-algebra nor insist on other definitions such as predictable processes.
One has to know that a process with everywhere càglàd paths (i.e. left continuous with
right limits) are predictable. We also adopt standard notations for a process X(t) such
as X(t−) = lims↑tX(s) and ∆X(t) = X(t)−X(t−). For càdlàg processes X , the
continuous part is defined as Xc(t) = X(t)−∑s≤t ∆X(s).

Point processes and predictable projections

In what follows, an 1D temporal point process N(t) is given by a strictly
increasing sequence of stopping times (Ti)i≥0 with the convention that T0 = 0. The
associated counting process is defined as N(t) = Σi>01{Ti≤t}. Under this definition
N is adapted. Moreover, it is assumed to be a simple point process in the sense that
all jumps are only 1-valued.

As an adapted increasing process, N is a submartingale (i.e.
E(N(t)|Fs) ≥ N(s); for all t ≥ s) and by the Doob-Meyer Theorem [PRO 05],
there exists an increasing predictable process Ñ(t) such that M(t) = N(t)− Ñ(t) is
a martingale. Ñ(t) is called the predictable compensator of N(t). Theoretically, it is
defined as a conditional expectation with respect to the predictable σ-field. In most
interesting cases, Ñ(t) is almost surely absolutely continuous with respect to the
Lebesgue measure with a random density function λ(t), called the intensity function,
that is Ñ(t) =

∫ t
0
λ(s)ds.

When the filtration reduces to natural history of the processN(t), the intensity can
be deduced as follows (see [DAL 88] for details): If regular versions Gi+1(dt|FTi) of
the conditional distribution functions of interval lengths Di+1 = Ti+1−Ti exist, then
Ñ(t) = Σi>0 Λi(t), with

Λi+1(t) =

{
0 if t ≤ Ti∫ (t−Ti)∧Di+1

0

Gi+1(ds|FTi )
1−Gi+1(s−|FTi )

if t > Ti.
[7.25]

If Gi(dt|FTi) � dt, i ≥ 1, then one can paste the different pieces into a single
formula Ñ(t) =

∫ t
0
λ(s)ds. As we shall see below, this expression is largely used in

survival analysis, where Λi(t) stands for the cumulative hazard function of the random
variable Di and its derivative is the hazard function.

For filtrations richer than the natural history, the calculation of the compensator is
generally out of reach, but it conserves the same interpretation, namely the best
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cumulative predictor of the jumps of N . Authors generally assume some specific
forms for the intensity process grounded on relevant hypotheses for the application
domain of interest, because in many interesting cases, the form of the compensator
uniquely determines the probability distribution underlying the point process N(t).
For example a deterministic continuous compensator refers to a Poisson processes
(see an example of sample paths for N and Ñ , and the associated compensating
process M in Figure 7.9).

A useful and universal property, under the natural history, is that a simple point
process N with continuous and a.s. unbounded compensator Ñ undergoing the
random time change Ñ−1(t), yields a standard homogeneous Poisson process
N∗(t) = N(Ñ−1(t)). A partial converse is that a standard Poisson process
N∗(t) =

∑
i>0 1{T∗

i
≤t} and a positive function λ(t) jointly give rise to a Poisson

process N(t) =
∑
i>0 1{Ti≤t} of intensity λ(t) with Ti =

∫ T∗i
0

λ(s)ds = Λ(T ∗i ).

Generalization to multivariate and marked point processes

A d-dimensional point process N(t) = (N1, . . . , Nd)(t) is defined similarly as
above by a probability space with d sequences of stopping times (T ji ), j = 1, . . . , d,
i ≥ 0, with corresponding vectorial compensator Ñ(t) = (Ñ1, . . . , Ñd)(t) and
martingales M j(t) = (N j − Ñ j)(t).

However, in the context of movements with random jump sizes, we need a wider
generalization, namely the marked point processes and their dual predictable
projections [JAC 75]. We avoid details of the theory by simply restricting our
presentation of marked point processes within the following framework. A sequence
of random vectors (Ti, εi)i≥0 taking values in R+ × Rd with Ti < Ti+1 defines a
random measure N(dt, dx) =

∑
i δ(Ti,εi). A stochastic machinery similar than above

can be developed to enable us to assert that there exists a predictable random measure
(on an extended probability space) Ñ(dt, dx) such that for every predictable process
Y (s, x), the process MY (t) =

∫ t
0

∫
Rd Y (s, x)(N − Ñ)(dt, dx) is a martingale.

In the case of a filtration corresponding to the natural history, a formulation
similar to [7.25] gives the predictable projection, by replacing the previous
conditional probability function Gi+1(dt|FTi) by the distributions
Gi+1(dt × dx|FTi) of the variable (Ti+1 − Ti, εi+1) conditionally on FTi . More
precisely, we have Ñ(dt, dx) = Σi>0Λi(dt, dx), with

Λi+1(dt, dx) =
Gi+1(dt− Ti, dx|FTi)

Gi+1([t− Ti,∞]× Rd|FTi)
1{Ti<t≤Ti+1}.

Example 1

In the case of an 1D point process, let us assume that Gi+1(ds|FTi) is the Weibull
distribution W (α, β), with hazard function h(t) = βαβtβ−1 and cumulative hazard
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function H(t) = (αt)β . Parameters α and β are the scale and shape characteristics.
According to Equation [7.25], the compensator is written Ñ(t) = αβ(

∑n
i=1(Ti −

Ti−1)β + (t− Tn)β) for Tn < t ≤ Tn+1.

This compensator is stochastic since its expression depends on the stopping times
Ti. Actually,N is a renewal process and it is not a Poisson process, unless β = 1 since
for that case Ñ(t) = αβt is deterministic.

Example 2

We now consider the analogous Poisson process with intensity λ(t) = βαβtβ−1.
Thus, for any interval I = [τ1, τ2], the number of point events N(I) in I is Poisson
distributed with parameter Λ(I) =

∫ τ2
τ1
λ(s)ds = αβ(τβ1 − τβ2 ). In addition, given

the number of point events N(I) = k, its realization {Y1, . . . Yk} within I , are i.i.d
random variables with probability density g(t) = β tβ−1

τβ2 −τ
β
1

1{τ1≤t≤τ2}.

For simulation purpose, note that Yj has the same distribution as
(U(τβ2 − τβ1 ) + τβ1 ), where U is uniformly distributed over [0, 1]. Note also that the
time transformation Λ−1(t) makes N∗(t) = N(Λ−1(t) to be a standard Poisson
process. Observing that D∗i+1 = T ∗i+1 − T ∗i is exponentially distributed with rate 1,
one can prove that the inter-event length time Di+1 = Ti+1 − Ti, conditionally on Ti
(or T ∗i ), has the following survival function:

Si+1(t) = exp{−αβ((Ti + t)β − T βi )} , t ≥ 0.

This formula states that Ti+1 conditionally on the event Ti+1 > Ti behaves as a
Weibull distributed random variable Y ∼W (α, β), conditioned by the event Y > Ti;
this is the memory loss property of a Poisson process. Figure 7.9 illustrates sample
paths for N, Ñ and M for parameter values α = 1 and β = 1.2.

Stochastic integrals for purely discontinuous martingales

In the context of point processes, stochastic integration reduces to path-wise
integrals (in the sense of Stieltjes-Lebesgue integrals for bounded variation
integrands), but nevertheless requires care. For sake of completeness, let us first
recall that a semimartingale X(t) is defined by the identity X(t) = M(t) + A(t),
where M(t) is a local martingale and A(t) is a locally bounded variation process. For
any semimartingale X , one can define its quadratic variation process
[X,X](t) = X2(t) − 2

∫ t
0
X(s−)dX(s), which is also a locally bounded variation

process and satisfies ∆[X,X](t) = (∆X(t))2. The continuous part of [X,X] is
defined by [X,X]c(t) = [X,X](t) −∑0≤s≤t(∆X(s))2. The quadratic co-variation
process of two semimartingales is defined by duality as
[X,Y ](t) = ([X + Y,X + Y ] − [X,X] − [Y, Y ])/2, and similarly satisfies
∆[X,Y ](t) = ∆X(t)∆Y (t).
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Figure 7.9: Left: Counting Poisson process N(t) of Example 2 (broken line) and its
compensator Ñ(t) = tβ (continuous line) with α = 1 and β = 1.2. Right: The

corresponding compensating martingale M(t) = (N − Ñ)(t).

For a simple counting process N , we have [N,N ](t) = N(t). More generally
[X,X](t) =

∑
s≤0 ∆X2(s) holds for any adapted process X with locally bounded

variation, so that [X,X](t) ≡ 0 if in addition X is continuous. In fact, the machinery
of stochastic calculus intervenes only when the martingale component M has a non-
purely discontinuous part (i.e. [M c,M c] 6= 0).

Point processes, compensators and martingales

We recall that if M(t) = N(t) − Ñ(t) denotes the martingale compensating the
jumps of a simple point process N , then any adapted, integrable predictable (in
particular left continuous) f(t), gives rise to a martingale Mf (t) =

∫ t
0
f(s)dM(s).

These processes are also purely discontinuous martingales and their quadratic
co-variation processes satisfy the following formula
[Mf ,Mg](t) =

∫ t
0
f(s)g(s)dN(s). As a by-product, we see that [Mf ,Mg](t) is

compensated by
∫ t

0
f(s)g(s)dÑ(s), so that for t ≥ s, we have:

E(Mf (t)Mg(t) | Fs) = E

(∫ t

0

f(u)g(u)dÑ(u) | Fs
)
.

This formula is particularly appealing for deterministic functions f and g and/or handy
expressions of the compensator Ñ(dt) to explicitly calculate the covariance functions.
Figure 7.10 shows two examples of 2D-trajectories whose coordinates are correlated
martingales defined by stochastic integrals as above.
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Figure 7.10: Realization of 2D martingales Xi(t) =
∫ t

0
fi(s)d(N − Ñ)(s),

i ∈ {1, 2}, with f1(t) = 1 + cos(t) and f2(t) = 0.5− 2 sin(3t) (left panel), and
f1(t) = cos(0.3t) and f2(t) = 2 sin(0.3t) (right panel).

Example 3: Stochastic differential equations with impulsions
We now illustrate an other type of dynamical systems based on stochastic

differential equations driven by compound point processes via a particular but
nevertheless generic example for many dynamics.

We consider an autonomous system undergoing random shocks at random times.
For x = (x1, x2), we consider the quadratic function C(x) = x2

1 + βx2
2 on the plane

R2. The level curves of C are either ellipses (when β > 0) or hyperbolas (when
β < 0). This is obvious for β > 0. For β < 0, let β = −ρ2, then the equation
C(x) = c can be written (x1− ρx2)(x1 + ρx2) = c, which reduces to u1u2 = c after
a linear transformation.

Besides, using classical tricks for ordinary differential equations (ODE), one can
prove that functions x(t) satisfying C(x(t)) = c are governed by the following
homogeneous linear ODE:

x′(t) = Ax(t), with x(0) = x∗ [7.26]

whose solution is x(t) = eAtx∗. More explicitly,

– if β = ρ2 > 0, we have A =

(
0 −ρ2

1 0

)
and the solution of ODE [7.26] is:

x1(t) = x∗1 cos(ρt) − x∗2ρ sin(ρt)
x2(t) = x∗1 sin(ρt)/ρ + x∗2 cos(ρt)
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– whereas for β = −ρ2 < 0, we get A =

(
0 −ρ
−1/ρ 0

)
, yielding the following

solution of ODE [7.26]:

x1(t) = x∗1(et + e−t)/2 + x∗2ρ(−et + e−t)/2
x2(t) = x∗1(−et + e−t)/(2ρ) + x∗2ρ(et + e−t)/2

Next, let us consider the marked point process
∑
i>0 δ(Ti,εi) in R+ × R2, and the

bi-dimensional stochastic differential equation (SDE):

dz(t) = A(z(t−))dt+ dM(t) [7.27]

where M(t) =
∑
i>0 εi1{Ti≤t}. The sequence (εi)i≥1 is formed by i.i.d. elements

and is independent of (Ti)i≥1.

The solution of this SDE consists in a particle trajectory formed by a sequence of
disjoint curve arcs, each being a solution of Eq. [7.26]: at random times Ti, the particle
jumps by a size εi from its present orbit at a new location, initiates a new orbit, and so
on.

Figure 7.11 illustrates sample paths for both ellipsoidal and hyperbolic orbits,
depending on the sign of β, with standard Gaussian variables εi.
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Figure 7.11: Realizations of path obtained with an SDE with jumps (Example 3).
Left: Ellipsoidal orbits (β = 2). Right: Hyperbolic orbits (β = −0.7).
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When are these stochastic differential equations PDMP?

As seen earlier in this chapter and the introductory chapter, piecewise deterministic
Markov processes (PDMP) introduced by M.H.A Davis [DAV 84] enrich the usual
classes of Markov Processes (diffusions, jump processes,...) by allowing a part of
determinism in paths while inheriting the appealing Markovian properties [COS 08].
PMDP are time homogeneous Rd-valued processes x(t) with càdlàg sample paths.

PDMPs can be sequentially constructed via an increasing sequence of stopping
times (Tn)n≥0 with T0 = 0 and x(0) = x0. For x(Tn) = xn and t ∈ [Tn, Tn+1[, the
process x(t) obeys a deterministic rule, e.g. an ODE dx(t) = V (x(t))dt, governed
by a regular vector field V . Then, conditionally to the past FTn , the lifetime
Dn+1 = Tn+1 − Tn has hazard function λ(s) = h(x(Tn + s)), where h is a
non-negative bounded measurable function on Rd. At time Tn+1, the process x(t)
jumps to a state x(Tn+1) = x(Tn+1−) + εn+1, in accordance with a probability
transition Q(dε|x(Tn+1−)). The triplet (V, h,Q) characterizes entirely the
probability distribution of the PMDP. Note that when h satisfies
< ∇h(x), F (x) >≡ 0, for all x, i.e. h is a first integral for dynamical system, then
λ(s) is constant on the deterministic parts of paths and therefore the Dn are
exponentially distributed.

Piecewise deterministic processes presented in this paper are based on a little
more general marked point processes N(dt, dx) =

∑
i≥0 δ(Ti,εi) and so are neither

Markovian nor time homogeneous in general and, therefore, are not PDMP in
general. For the class of processes developed here to be PDMP, it is sufficient that the
conditional cumulative intensities are separable measures in dt and dx and have the
following form:

Λi(dt− Ti, dx) = h(x(Ti + t))dt×Q(dx|x(Tn+1−)).

7.4.3. The Doléans Dade Exponential Semimartingales

The following theorem is borrowed from Protter [PRO 05] and is a consequence
of the change of variables theorem as regards to Ito calculus for semimartingales.

THEOREM 7.1.– If X is a semimartingale with X(0) = 0, then there exists a unique
semimartingale Z satisfying the equation dZ(t) = Z(t−)dX(t), with Z(0) = 1
which is given by:

Z(t) = exp(X(t)− 1
2 [X,X]c(t))

∏

s≤t

(
(1 + ∆X(s)) exp−∆X(s)

)
. [7.28]

The solution Z(t), usually denoted EX(t), is called the stochastic (or Doléans
Dade) exponential of X . This theorem encompasses many useful results and
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applications. The formula reduces a lot for locally bounded variation processes X ,
since in this case [X,X]c(t) ≡ 0 implies that

Z(t) = expX
c(t)
∏

s≤t
(1 + ∆X(s))) .

Under a mild integrability condition, if X(t) is a martingale, then Z(t) is also a
martingale. A multivariate version of the theorem exists [JAC 82] and corresponds to
the analog of deterministic linear differential equations dZ(t) = Z(t−)dX(t) with a
matrix process A and a vector semimartingale X .

In what follows, we present several applications of exponential martingales.

Example 4: Deterministic semimartingales

Theorem 7.1 includes extensions of the case of deterministic homogeneous linear
differential equations. For instance, for any d × d matrix A, there exists a unique
solution Z(t) = expAt z0 to equation dZ(t) = AZ(t)dt, with Z(0) = zo ∈ Rd,
taking here the deterministic matrix semimartingale X(t) = At.

Example 5: Cumulative hazard function

The probability distribution function F (t) = P (T ≤ t) and the survival function
S(t) = 1 − F (t) of a non-negative random variable T , with dS(t) = −dF (t), are
monotonic functions and have bounded variations. The cumulative hazard function
Λ(t) =

∫ t
0

dF (s)
1−F (s−) satisfies the equation dΛ(t)(1− F (s−)) = d(F (s)). Conversely,

given a positive increasing function Λ with Λ(0) = 0, there exists a unique function S
with S(0) = 0, which satisfies dS(t) = −S(t−)dΛ(t). Equation [7.28] implies that
S satisfies:

S(t) = 1− F (t) = exp−Λc(t)
∏

s≤t
(1−∆Λ(s)) .

Note that the absolutely-continuous case dΛ(t) = λ(s)ds yields S(t) = e
−
∫ t
0
λ(s)ds

.

Example 6 : Survival analysis

Survival analysis in statistics is based on the simple case of a simple point process
with at most one event at time T . Let S(t) and Λ(t) be respectively the survival and
cumulative hazard functions of T ; then according to formula [7.25], the associated
compensating martingale is written M(t) = 1{T≤t}−

∫ t
0

1{s<T}λ(s)ds = 1{T≤t}−
Λ(t ∧ T ).

Since M is a pure jump martingale, with [M,M ]c(t) ≡ 0 and
M c(t) = −Λ(t ∧ T ), its exponential is also a pure jump martingale and satisfies:
Z(t) = exp−Λ(t∧T )

(
1 + 1[T,∞[(t)

)
= S(t ∧ T )

(
1 + 1[T,∞[(t)

)
.
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For statistical purposes, we have however to deal with a little more sophisticated
exponential martingale. Assume for example that T has hazard functions λ0(t) under
probability P0 and λθ(t) under probability Pθ, such that λθ(t) = µθ(t)λ0(s). Now,
if we consider the P0 martingale Xθ(t) =

∫ t
0
(µθ(s) − 1)dM0(s), we find that its

stochastic exponential Zθ(t) = exp

∫ t
0

log(µθ(s))dN(s)−
∫ t
0

(µθ(s)−1)λθ(s)ds is also a P0

martingale that exactly corresponds to the likelihood ratio Lθ(t) = E(dPθdP0
|Ft) =

fθ(t)
1{T≤t}(1− Fθ(t))1{T>t} .

This construction is in fact a major key for dealing with more general statistical
contexts (see Section 7.4.4 ).
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Figure 7.12: Sample paths of 2D stochastic exponentials Z(t) = E(M(t)) (see
Equation [7.28]) driven by compensating martingales Mj(t); j = 1, 2, based on a

standard Poisson process N(t). Left: M1(t) =
∫ t

0
cos(s)(dN(s)− ds) and

M2(t) = −
∫ t

0
sin(s)(dN(s)− ds). Right: M1(t) =

∫ t
0
(1 + cos(s))(dN(s)− ds)

and M2(t) =
∫ t

0
(1− sin(s))(dN(s)− ds).

7.4.4. Statistical Issues

General case

We present here an important application of the exponential semimartingale
theorem allowing a statistical approaches for marked point processes and related
models such as PDMPs. It is a sort of Girsanov theorem characterizing the ratio of
probability measures. Given two equivalent probability measures P and Q on some
complete filtration F = {Ft}t≤0, we already knows that the Radon-Nycodym

206



PDMP for Spatio-temporal Population Dynamics

derivative Z(ω) = dP
dQ is a positive Q-integrable random variable implying therefore

that the process Z(t) = E(Z|Ft) is a positive uniformly integrable martingale that
equals dP|Ft

dQ|Ft
, such that Z(t) corresponds to a ratio of likelihoods.

In a statistical framework, considering a parametric set of probabilities (Pθ, θ ∈ Θ)
equivalent to Q, such that dÑθ(t) = µθ(t)dÑ(t), where Ñθ and Ñ are the respective
compensators of N , one may expect to find , under some mild conditions, a particular
Q-martingale Wθ(t) =

∫ t
0
ρθ(s)d(N − Ñ)(t) such that the likelihood ratio Zθ(t)

corresponds to the positive stochastic exponential of Wθ(t). Indeed, one can promptly
and heuristically prove that it is true (and only true) for the process ρθ(t) = λθ(t)−1.

In the context of multivariate/marked point processes, Jacod [JAC 75] gives a plain
formula for the Radon-Nycodym derivative dP|Ft

dQ|Ft
under the natural filtration. This

formula corresponds to the solution of the Doléan Dade equation for the martingale
Wθ(t).

An Example

The statistical approach proposed above is applied here to the process presented
in Example 3 of Section 7.4.2, which is piecewise driven by an ODE and randomly
jumps at times Ti with jump amplitudes εi; in other words, this process statisfies the
stochastic differential equation: dX(t) = V (X(t−))dt+

∑
i εiδTi .

Among the many potential measurements of the movement (eg length, kinetic
energy,...), let us take the travel length L as a movement characteristic of a particle on
orbits. For a particle starting from x0 at time t = 0, this is defined by:

L(t,X0) =

∫ t

0

|V ((X(s))|ds.

On one hand, let us assume that the random measure N(dt, dx) =
∑
i δ(Ti,εi) has

under probability Q the conditional intensities:

Λi(dt, dx | FTi) = dt1{Ti≤t<Ti+1} × ϕ(x|0, I2)dx,

where ϕ(x|m,Σ) stands for the Gaussian density with mean m and covariance Σ in
R2. In that case we obtain Ñ(dt, dx) = dtϕ(x|0, I2)dx, meaning that N(dt, dx) is a
Poisson measure under Q.

On the other hand, let us assume that under Pθ, the conditional intensities depends
on paths as follows:

Λi,θ(dt, dx | FTi) = αhβ1
(t− Ti, X(Ti))1{Ti≤t<Ti+1}dt× ϕ(x|mθ(t), I2)dx,
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where for Ti ≤ t < Ti+1, θ = (α, γ, β1, β2) and γ = (γ1, γ2), we define:

hβ1(s,X0)) =
d

ds
Lβ1(s,X0)

mθ(t) = γ Lβ2(t− Ti, X(Ti)).

The function hβ(s,X0), should be interpreted as the hazard function of the Weibull
distributionW (1, β) related to the positive travel length variableL on the orbit starting
from X0.

The previous equations ultimately tells that Ñθ(dt, dx) = λθ(t, x)Ñθ(dt, dx),
with

λθ(t, x) = α
∑

i≥0

hβ1
(t− Ti, X(Ti))

exp−
1
2 [<γ,γ>L2β2 (t−Ti,X(Ti))−2<x,γ>Lβ2 (t−Ti,X(Ti))] 1{Ti≤t<Ti+1}.

Next, for the sake of simplicity, let us suppose that the process is observed in the
random time interval [0, Tn], such that the likelihood ratio corresponds to the
stochastic exponential of the Q martingale
Wθ(t) =

∫ t
0

∫
R2(λθ(s, x) − 1)(N − Ñ)(ds, dx). According to formula [7.28], the

log-likelihood is equal to:

log(Zθ(Tn)) = −
∫ Tn

0

∫

R2

(λθ(s, x)− 1)Ñ(ds, dx)

+

∫ Tn

0

∫

R2

log(λθ(s, x))N(ds, dx).

= −α
(
n−1∑

i=0

Lβ1(Ti+1 − Ti, X(Ti))

)
− Tn + n log(α)

+

n−1∑

i=0

log(hβ1(Ti+1 − Ti, X(Ti+1)))

−1

2
< γ, γ >

n−1∑

i=0

L2β2(Ti+1 − Ti, X(Ti+1))

+

n−1∑

i=0

< γ,∆X(Ti+1) > Lβ2(Ti+1 − Ti, X(Ti+1)).

One can therefore easily derive the set of equations for the maximum likelihood
estimate (MLE) θ̂ and apply a classical optimization procedure. As an illustration, we
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deal here with the simple case where the parameters β1 and β2 are known, which
allows us to get explicit formulas for the MLE of α and γ = (γ1, γ2):

α̂ =
n∑n−1

i=0 L
β1(Ti+1 − Ti, X(Ti))

γ̂ =

∑n−1
i=0 ∆X(Ti+1)Lβ2(Ti+1 − Ti, X(Ti+1))
∑n−1
i=0 L

2β2(Ti+1 − Ti, X(Ti+1))
.

As a perspective, one can expect to use asymptotic techniques for discrete time
indexed martingales in order to derive the asymptotic behaviors (in almost sure and
in distribution senses) of these estimators and, therefore, perform sensible null
hypothesis testing such as γ = 0 and α = α0.
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