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Scientific preamble
My personal perception of probability and statistics throughout my work is strongly driven by
the practical utility that one may derive from it. This requires to address a readership that is as
wide as possible. Therefore I may sometimes give preference to a rather intuitive presentation of
problems, techniques and results, while I intend to avoid jargon that I deem as overly technical
and therefore not useful. Albert Einstein’s famous words

Everything Should Be Made as Simple as Possible, But Not Simpler

should always serve as guidance when thinking about how science should be conducted and
communicated.

I seek to develop new theory and methodology motivated by the relevant practical issues
raised by my colleagues in the applied sciences, where the discussion of methods and results
should be done in a simple – yet clear and consistent – language to be fruitful for both sides.

While the main purpose of this manuscript is to provide a summary of my research activities
over the past years, I have also written many parts of it to serve as a general introduction to
numerous aspects of state-of-the-art spatiotemporal modeling of extreme and rare events.
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Résumé long en français

Mes travaux de recherche contribuent à la méthodologie de modélisation et d’estimation en
statistique spatiale et spatio-temporelle. Dans ce cadre probabiliste, je développe des appli-
cations pour répondre à des défis en sciences environnementales, climatiques, écologiques et
agro-épidémiologiques, dans le but d’inférer les facteurs explicatifs des phénomènes observés, et
de fournir des prédictions, souvent sous forme d’une cartographie spatiale ou spatio-temporelle.
Je me concentre sur des phénomènes rares et extrêmes, typiquement caractérisés par une proba-
bilité d’occurrence relativement faible ou des magnitudes relativement extrêmes. De tels événe-
ments entrainent souvent des impacts importants sur les systèmes climatiques, écologiques et
anthropiques. En raison de cette focale, mes approches se situent dans la plupart des cas
au-delà de la géostatique classique centrée sur les processus gaussiens, et elles possèdent une
assise solide dans deux domaines développés par des communautés mathématiques relative-
ment indépendantes, à savoir la géométrie stochastique et la théorie des valeurs extrêmes. La
géométrie stochastique fournit les modèles de processus ponctuels, bien adaptés pour modéliser
les positions et temps d’occurrence d’événements d’intérêt. Dans le contexte des risques environ-
nementaux, elle fournit ainsi une perpective de modélisation à une échelle souvent relativement
macroscopique en opérant avec des données discrètes de semis de points. En revanche, la théorie
des valeurs extrêmes traite des processus à variables continues et met à disposition des modèles
à fondement asymptotique pour capter les caractéristiques extrémales des lois marginales et
de la dépendance. Elle permet de modéliser la variabilité du phénomène pendant des épisodes
extrêmes, à une échelle spatiale et temporelle relativement fine, souvent en travaillant avec
un continuum pour le support spatial. Selon les problématiques abordées, mes approches
méthodologiques puisent dans l’une ou l’autre de ces champs disciplinaires théoriques avec des
chevauchements occasionnels mais de plus en plus fréquents dans mes travaux de recherche les
plus récents. Les prolongements envisagés dans mes recherches actuelles ont visée à rapprocher
ces deux domaines pour faciliter une modélisation intégrée des risques spatio-temporels dans
les disciplines scientifiques susmentionnées en alliant les échelles globale et locale grâce à une
boîte à outils basée sur un langage commun et sur une plus forte intégration des méthodes de
l’apprentissage artificiel.

En analyse des valeurs extrêmes, la partie théorique de mes travaux concerne la caractéri-
sation de la dépendance extrémale. Les processus limites en théorie asymptotique, et un grand
éventail d’autres modèles sous-asymptotiques plus souples, se construisent en multipliant un pro-
cessus stochastique à structure relativement simple, comme par exemple un processus gaussien,
avec une variable aléatoire d’échelle, et on peut alors parler d’une décomposition profile-échelle
par rapport à ces deux composantes. Sur ce fond, mes développements méthodologiques pro-
posent des approches d’estimation et de simulation pour des nouveaux modèles spatiaux et
spatio-temporels, pour lesquels je cherche à caractériser des indices de résumé du comportement
extrémal. Dans les approches de modélisation de la dépendance extrémale, une grande atten-
tion est prêtée à la distinction entre les deux régimes très différents de dépendance asymptotique
et d’indépendance asymptotique. Avec le premier, caractéristique des modèles asymptotiques
tels que les processus max-stables et les processus de Pareto généralisés, la force de dépen-
dance est stable à travers toutes les magnitudes extrêmes, et par conséquent l’étendue spatiale
et la durée temporelle des épisodes extrêmes ne dépendent pas de la magnitude d’un épisode
extrême. Toutefois, ce cadre se révèle être trop restrictif pour la plupart des processus envi-
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ronnementaux observés, dont les caractéristiques empiriques pointent vers le deuxième régime,
l’indépendance asymptotique. La découverte empirique de ce comportement de dépendance est
à l’origine des modèles “sous-asymptotiques", qui gardent une forte motivation asymptotique
mais sont capables de prendre en compte de façon flexible des taux de décroissance relativement
rapide dans les probabilités de dépassements conjoints de plusieurs composantes au dessus de
seuils de plus en plus élevés. Les classes de nouveaux modèles sous-asymptotiques de dépen-
dance extrémale issues de mes travaux se basent principalement sur des constructions faisant
apparaître une décomposition profile-échelle. Des caractérisations théoriques très générales sont
proposées pour décrire la structure de dépendance résultant de cette approche dans les lois
bivariées. L’inférence statistique est mise au point pour des processus construits comme des
mélanges d’échelle de champs gaussiens dans le cadre de la modélisation des dépassements de
seuil spatialisés, et pour des processus de type max-infiniment divisible pour les observations
de données de maxima ; ces nouveaux modèles ne manifestent pas la stabilité asymptotique des
modèles max-stables classiques. Outre ces propositions pour une meilleure prise en compte de la
dépendance extrémale, des nouveaux modèles de lois marginales ont été développés, d’une part
en adoptant une optique sous-asymptotique pour construire des lois de probabilité proches des
lois limites de Pareto généralisées pour les dépassements de seuils, mais plus souples, d’autre
part en intégrant des covariables et des effets aléatoires dans des modèles de queue de distribu-
tion structurés en trois composantes : un modèle de régression pour la distribution complète des
observations, permettant de définir un seuil nonstationnaire élevé, puis un modèle de régression
logistique pour la probabilité de dépassement de ce seuil, et enfin un modèle de régression avec
une loi de réponse de type Pareto généralisée pour les excès au-dessus de ce seuil.

La deuxième grande partie de mes travaux concerne la construction et l’estimation de nou-
veaux modélès bayésiens hiérarchiques, basés sur des processus gaussiens latents, pour les
semis de points spatio-temporels de données d’occurrence de risques environnementaux, tels
que les feux de forêts et les mouvements de terrain. Ces modèles de Cox log-gaussiens intégrènt
l’influence linéaire ou nonlinéaire d’une multitude de variables explicatives, et des effets aléa-
toires spatiaux ou spatio-temporels sont déployés pour tenir compte de la variabilité d’intensité
d’occurrence non expliquée par les variables observées seules. Un premier volet de ces travaux
concerne les incendies de forêts en France, dont les positions et les temps des départ représentent
un semis de points spatio-temporel ; la surface parcourue et brûlée par les feux peut être attachée
à ces points comme une marque numérique. Les modèles bayésiens hiérarchiques développés
pour ces données intègrent une multitude de covariables liées au couvert et à l’utlisation des
sols ("Land Cover – Land Use"), aux infrastructures et aux conditions météorologiques. Ces
covariables nécessitent souvent des pré-traitements importants pour obtenir une meilleure ca-
pacité prédictive dans le contexte de prédiction des incendies de forêt, et aussi pour ramener
ces données de type multi-source et multi-échelle à une échelle spatiale et temporelle com-
mune. Outre l’inférence sur ces facteurs de risque, qui sont susceptibles de manifester une
influence fortement non linéaire sur le risque d’occurrence des feux de forêt, il faut tenir compte
d’autres sources de variabilité spatio-temporelle méconnues en rajoutant des effets aléatoires
spatio-temporels. Cette approche rend possible une cartographie spatio-temporelle réaliste de
l’intensité d’occurrence des feux de forêt, et l’attribution de la variabilité spatio-temporelle ob-
servée aux facteurs de risque devient statistiquement fiable. Finalement, la surface brûlée est
modélisée à l’aide d’une composante du modèle prêtant une grande attention aux plus grands
feux de forêt ayant une influence dominante sur les surfaces brûlées cumulées en raison des
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queues de distribution lourdes, typiques pour les surfaces brûlées. Un deuxième volet traite
des mouvements de terrain en proposant des modélisations innovantes basées sur les processus
ponctuels, en particulier sur les processus de Cox log-gaussiens. Les mouvements de terrain
ont souvent lieu après l’occurrence d’un événement déclencheur, tel qu’un événement de précip-
itations intenses ou un séisme, dont la variation d’intensité spatiale et temporelle est observée
seulement partiellement, ou même pas du tout dans la plupart des cas historiques. En identifiant
un mouvement de terrain avec un point en espace planaire, typiquement défini comme la position
ayant l’altitude la plus élevée dans la cicatrice infligée au paysage par le mouvement de terrain,
la modélisation spatiale est abordée en incorporant diverses variables géomorphologiques dans
le modèle, ainsi que des effets aléatoires pour représenter l’influence spatialement variable de
l’événement déclencheur non observé. L’analyse des résultats à visée prédictive se concentre sur
une bonne prise en compte de l’effet aléatoire, et sur l’influence nonlinéaire de variables auxil-
iaires, comme par exemple la pente du terrain, et de leurs interactions potentielles avec l’effet
aléatoire. Un travail novateur étend ces approches à un cadre spatio-temporel pour analyser
un inventaire multi-événementiel de plusieurs milliers de mouvements de terrain, observés dans
une région d’Italie pendant une période d’observation de près d’un siècle. Cette modélisation a
permis de réveler et interpréter des patrons d’occurrence spatiaux et temporels des mouvements
de terrain.

Afin d’estimer les nouveaux modèles développés dans les approches décrites précédemment,
je fais appel à des méthodes d’estimation fréquentistes et bayésiennes. Pour maîtriser le grand
nombre d’observations dans ces applications spatio-temporelles, il est souvent nécessaire de
développer et déployer des techniques adaptées à l’utilisation de modèles de covariance en grande
dimension. En inférence bayésienne hiérarchique, mes contributions consistent en des extensions
de l’approche récente de l’Integrated Nested Laplace Approximation (INLA), qui est souvent
combinée à l’utilisation de modèles gaussiens markoviens spatiaux ou spatio-temporels, obtenus
grâce à l’approche des équations aux dérivées partielles stochastiques ("SPDE approach"). Ce
cadre de modélisation a généré une véritable révolution en analyse bayésienne spatiale en facili-
tant l’implémentation de modèles à processus gaussiens latents très sophistiqués. La complexité
des composantes de ces modèles peut être contrôlée d’une façon très intuitive à l’aide des lois a
priori de type "Penalized Complexity", que je déploie systématiquement. Mes travaux à fonde-
ment bayésien se focalisent sur des problématiques liées aux modèles de régression pour les
dépassements de seuil, et aux processus de Cox log-gaussiens dans un contexte spatio-temporel.
En revanche, l’estimation fréquentiste est préférée pour la plupart des modèles de dépendance
extrémale, caractérisés par des structures non-gaussiennes, qui nécessitent souvent des approches
d’intégration numérique pour gérer des variables latentes non gaussiennes ou pour tenir compte
d’un mécanisme de censure des observations en dessous d’un seuil (c’est-à-dire en dehors de
la queue de distribution). L’adaptation des méthodes de vraisemblance par paires représente
souvent une solution robuste permettant le passage à l’échelle avec des grands jeux de données,
tout en garantissant des propriétés des estimateurs semblables au maximum de vraisemblance
classique, telles que la consistance et la normalité asymptotique.

Une priorité dans les prolongements méthodologiques que je prévois développer dans les
prochaines années concerne une meilleure modélisation des risques multiples, surtout des risques
extrêmes. Il s’agit de risques pour lesquels plusieurs aléas ou enjeux interagissent, ce qui nécessite
de faire appel à une modélisation stochastique conjointe de plusieurs processus impliqués, sou-
vent définis à différentes échelles spatiales et temporelles. Par exemple, les incendies de forêt se
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produisent de préférence en situation de conjonction de l’accumulation d’un fort déficit hydrique
avec des températures élevées, générant un environnement très sec en présence d’un combustible
de végétation relativement sèche. La cascade des risques liés aux incendies de forêt peut encore
être prolongée vers les glissements de terrain, la pollution de l’air, et des rétroactions avec le
réchauffement climatique. Les processus faisant partie d’un tel système à composantes multiples
sont le plus souvent encore modélisés de façon séparée, et souvent par des chercheurs travail-
lant dans des disciplines distinctes. Un autre aspect de modélisation étroitement lié à ce défi,
auquel je souhaite m’attaquer, est une meilleure gestion de données volumineuses multi-source
et multi-échelle dans les modèles et algorithmes d’estimation statistiques. Un autre objectif
concerne une meilleure intégration entre les méthodes d’apprentissage artificiel, souvent à visée
purement prédictive et non inférentielle, et les méthodes d’estimation de modèles stochastiques
permettant une prédiction probabiliste et l’inférence des facteurs de risque. Dans les domaines
d’application de mes approches, je souhaite apporter mon expertise pour la solution de prob-
lèmes de modélisation spatio-temporelle en (agro-)écologie et épidémologie. En particulier, je
contribuerai à une meilleure exploitation des données opportunistes, pour lesquelles il faut cor-
riger les biais d’observation en cas de protocoles d’observation peu documentés et d’observations
entachées d’effets d’échantillonnage préférentiel.
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List of notations and abbreviations

Abbreviations

• BHM – Bayesian hierarchical model(ing)

• EVT – extreme-value theory

• GAM – generalized additive model(ing)

• GEV – Generalized Extreme-Value (Distribution)

• GPD – Generalized Pareto Distribution

• i.i.d. – independent and identically distributed

• INLA – Integrated Nested Laplace Approximation

• LGCP – log-Gaussian Cox process

• LGM – latent Gaussian model

• MEVT – multivariate extreme-value theory

• POT – peaks-over-threshold

• PPP – Poisson point process

• SPDE – stochastic partial differential equation

Functions

• a+ – max(a, 0) for a value a ∈ Rd, using the componentwise maximum if d > 1

• f(x) = o(g(x)) – f(x)/g(x)→ 0 for functions f, g (with g(x) 6= 0 for x > x0), as x→∞

• f ∼ g – f(x)/g(x)→ 1 for functions f, g (with g(x) 6= 0 as x > x0), for x→∞

• IA – the indicator function of the event A, i.e., IA(x) = 1 if x ∈ A, and IA(x) = 0 otherwise

Random variables and probability distributions

• F−1
X – (generalized) inverse of the distribution function FX of a random vector X

• FX ? FY – convolution of X ∼ FX and Y ∼ FY , i.e., the distribution of X + Y

• X1 ⊥ X2 – random variables/processes X1 and X2 are stochastically independent

• P(A) – the probability of event A
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Specific probability distributions

• Bin(n, p) – binomial distribution with n ∈ N trials and success probability p ∈ [0, 1]

• GPD(ξ, σ) – generalized Pareto distribution with shape ξ and scale σ > 0

• Pareto(α, β) – Pareto distribution with shape parameter α > 0 and scale parameter β > 0

Other notation

• x−i – a vector x with its ith component removed

• Ac – the complement set of a set A ⊂ RD



Chapter 1

Introduction

1.1 Short biography

Born January 20th, 1983, in Nuremberg, Germany, I effected my undergraduate studies in
applied mathematics ("Econo-Mathematics") at Ulm University, Germany. I decided to conclude
my studies with a Master Thesis under the supervision of Volker Schmidt on the topic of 3D-
modeling and inference with Gibbs point processes. While this study program puts relatively
strong focus on applications in finance and actuarial sciences, I developed strong interest for
a research career in environmental and life sciences, a fact that motivated me to enrol for the
Master of Science in Biostatistics at Montpellier University, France. After successful graduation,
I opted for a PhD project at IMAG, the mathematical institute of Montpellier University, with
focus on new models and inference tools in spatial extreme-value analysis, under the supervision
of Jean-Noël Bacro and Pierre Ribereau.

After defending my PhD in October 2013, I undertook the adventure of a post-doc project at
LIRMM, the Computer Science institute of Montpellier University, in collaboration with Sandra
Bringay and other members of her team. My work was part of a larger project geared towards
the development of statistics and data mining techniques for extracting clinically relevant infor-
mation from unstructured textual data retrieved from internet forums visited by breast cancer
patients. During the 10 months spent on this new research field, I have become familiar with
many data extraction and analysis techniques for high-dimensional data such as unstructured
texts, and my work has led to a number of conference papers and journal publications. Some
of these papers are co-authored with Mike Donald-Tzapi, a PhD student who took over the
torch when I left the project for joining INRA in 2014. Note that INRA is now called INRAE
after the 2020 merger with Irstea, another French public research institute with numerous sites
implanted in the French territory.

Since September 2014, I am a research associate and part of the BioSP unit of INRAE,
located at INRAE’s Avignon site, and whose research focuses on various modeling approaches
for spatially indexed processes. My recruitment aimed at maintaining the lab’s strong expertise
in modeling and inference approaches related to stochastic geometry and to modeling of complex
data, and at reinforcing BioSP’s links to academic research in France and worldwide. Using
the solid knowledge that I had already acquired on statistical modeling at the intersection of
geostatistics and extreme-value theory, I have since then substantially expanded my research
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interests towards spatiotemporal modeling of various types of extreme and rare events – using a
blend of frequentist and Bayesian inference techniques – to the service of fields such as climate
science, environmental risk analysis and mapping, and agroecology. A summary of selected
research results, and an outlook to future developments, is presented in this manuscript.

In 2020, I have won the Early Career Award of INRAE (Lauréat "Espoir Scientifique").

1.2 Challenges in modern spatiotemporal statistics
Environmental, climatological, ecological and epidemiological risks pose major challenges to
societies and ecosystems, and these may be further exacerbated in the current era of global
changes and ecological transitions. Events related to such risks show variation over space and
dynamics through time. Authorities, scientists and other stakeholders are in need of tools to
better understand and quantify relevant risk factors, to predict occurrences, and to provide a
range of realistic future scenarios, with the aim to inform policy for reducing disaster risk. Such
tools can be developed and trained using increasingly abundant and "big" datasets.

Events occurring close in space and/or time often tend to be similar, as Tobler (1970) has
enacted into his first law of geography:

Everything is related to everything else, but near things are more related than distant things.

Therefore, the modeling of spatial-temporal stochastic co-occurrence patterns is crucial for un-
derstanding and predicting such processes, and for drawing sound statistical inferences. To
succeed with such challenging data analyses, often combining data from multiple sources and
observed at different spatial and temporal scales, the development of new methodology at the
interface of the two following, up to now relatively disconnected research fields is a promising ap-
proach: extreme-value theory, which provides a framework for predicting probabilities of events
with very extreme magnitudes, and stochastic geometry, useful for studying geometric patterns
in occurrence locations/times. Constructing easily interpretable and deployable predictive mod-
els is challenging for high-dimensional data with many predictor variables, and it excludes the
use of "black-box" Machine Learning approaches.

In contrast to purely spatial modeling, spatio-temporel modeling adds the difficulty of appro-
priately capturing long-term trends and short-term variability along the time arrow. Temporal
dynamics and causal effects have a forward direction along the time axis, and the role of the
time dimension is fundamentally different from that of planar or 3D geographical space. The
study of consequences of global and local changes, such as climate change, changes in land cover
and land use, or ecological invasions, necessitates designing models that are often required to
be fundamentally nonstationary.

1.2.1 Practical goals of space-time modeling

A first typical goal is to design explanatory models that allow us to reveal and quantify the
influence of observed predictor variables – called covariates in the following – on one or several
target variables – called responses in the following. For the sake of simplicity, we use the
term covariates for both numeric and categorical explanatory variables. This goal requires the
development of regression approaches to formally decide if covariate effects are significant, and
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to show how they contribute to variability of the response variable (linearly or nonlinearly).
In particular, one must take into account the dependence of observations of the response over
space and time to avoid wrong inferences based on the erroneous assumption of conditional
independence of the response given the observed, deterministic covariates. More specifically,
the detection and quantification of nonstationarities with respect to the time covariate may be
the prime inferential goal (e.g., in climate change studies). While nonstationarities are most
commonly modeled in the marginal distributions, it may also be of interest do detect time-
variant dependence structures, e.g., for inference on the evolution of the size of hot spots of
climatic variables.

A second goal, intertwined with the first, is to provide prediction of partially observed
phenomena over space and time, and in particular forecasting, that is, prediction forward in time
for the near future. For the communication of results to scientists and other stakeholders, we
have to provide decision tools, for which spatiotemporal mapping of predictions and uncertainties
is particularly important.

1.2.2 Spatiotemporal statistical modeling in the era of big data

The fast development and deployment of remote or embedded sensing technologies (satellites,
drones, GPS-based mobile sensors, Lidar units) has led to an explosion of spatiotemporal
datasets in recent years. For the task of turning raw data into understanding, as formulated by
Wickham and Grolemund (2017), statistical learning techniques have become indispensible to
extract knowledge from a heap of data. Major research efforts have gone into spatial and spa-
tiotemporal statistics leading to appropriate extensions of available models, inference techniques
and mapping tools to cope with very large samples, i.e., to have scalable methods. In contrast
to the panoply of methods developed in the fields of artificial intelligence and Machine Learning,
the focus of the spatial statistics community remains on sound inferences, often model-based,
such that uncertainties stemming from the data-generating process and from the estimation
approach can be properly identified and assessed (Dunson, 2018).

In this age marked by global changes and ecological transitions, we often seek to better un-
derstand what has physically existed at a given time in the past and may continue to exist (e.g.,
geological features, past weather and climate), but we also aim to predict or to scenarize what
will happen in the nearest future (forecasting), or at medium-to-long-term temporal horizons,
by using probabilistic predictions. The development of generative stochastic models, for instance
stochastic generators of extreme weather events, is necessary to produce and communicate such
scenarios, to explain how likely they are, and to feed impact models with realistic scenarios of
external forcings.

A recurring theme in my research is to jointly characterize spatial-temporal trends and
dependencies for complex phenomena. Achieving this goal often requires combining different
data sources with data arising at various spatial and temporal scales.

Large multi-source and multi-scale space-time datasets

The surge of new tools and techniques for data acquisition and storage in recent decades has led
to an exponential growth in available data with a large diversity of georeferenced information,
data quality and accessibility.



4 CHAPTER 1. INTRODUCTION

As of today, my work focuses strongly on studying the dynamics in environmental and
climatological risks and in ecological processes, which are often strongly driven by a combination
of properties related to land cover/land use (available for various grid sizes based on sampling
campaigns at irregular time steps) and climate and weather (available as weather station data,
gridded reanalysis data, for various periods and spatial resolutions). Models and estimation
methods must be flexible enough to cope with such heterogeneous, multi-scale data. Moreover,
we often aim for the detection of multiple relevant spatial and temporal scales in the response
variable(s). The scales that are important for the understanding and prediction of the physical
processes may be different from the scales at which data have been observed and collected.
This situation often gives rise to an intricate structure of combinations of observed and latent
scales of space and time between predictor variables and the response. An important goal is
to reveal the relevant latent (i.e., unobserved) scales of processes through appropriate inference
approaches, often involving hierarchical formulations of statistical models.

Data quality is another potential issue. The sampling design may not follow a strict protocol
to ensure that it is uncorrelated with the measured variables, such that models have to be
able to take into account varying observation efforts and preferential sampling, for instance with
respect to spatial location or extreme values. Such issues are exacerbated in many citizen science
datasets, whose statistical analysis has found of major interest in recent years in disciplines such
as ecology.

Manipulating high-dimensional covariance matrices

For appropriate representations of spatiotemporal correlation, we are bound to manipulate large
covariance matrices and infer their structure from large datasets. This leads to the big n prob-
lem where the standard algorithms for covariance matrices (solving linear systems, inversion,
calculation of the determinant) of size n×n possess complexity involving O(n3) basic arithmetic
operations, if a generic covariance structure is assumed. Therefore, the classical geostatistical
setting, where common covariance functions (e.g., Matérn, powered-exponential) and related
covariance matrices are manipulated directly, is often too unwieldy in practice, and usually
comes with prohitively high computational cost for full likelihood inference. However, a rela-
tively recent shift towards direct manipulation of sparse approximations to inverse covariance
matrices (i.e., of Gauss–Markov processes, see Rue and Held, 2005) provides an elegant solu-
tion thanks to theoretical links between Gaussian processes and stochastic partial differential
equations (SPDEs) exploited by the seminal work of Lindgren et al. (2011).

Disentangling nonstationarities in marginal distributions and dependence

The correct specification of marginal distributions and dependence structures, and their inter-
play in the case of nonstationary processes, is a challenging task in practice. While marginal
distributions are intended to capture long-term behavior and variations therein, dependence
structures should characterize the short-range and short-term stochastic variability of the pro-
cess in space and time. In cases where observations tend to have similar values (e.g., in the
case of a variable observed at different locations at a given day of the year), this may be due
to a marginal effect (e.g., the mean parameter of the marginal distributions is very high for
all locations during the current season), or due to a dependence effect (e.g., observations at
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the observed locations are always similar for any given day). When distances between the lo-
cations are very small, one may hypothesize a pure dependence effect, while for locations that
are mutually separated very far one may rather hypothesize a marginal effect. For illustration,
consider the case of climatic variables: marginal distributions at a given point in space and
time are related to the notion of climate, while variability arising locally in space and time (i.e.,
space-time dependence) is related to the notion of weather.

Appropriate identifcation of marginal and dependence effects in the presence of nonstation-
arities may be facilitated by the availability of space-time datasets with large temporal depth.
Nevertheless, even in this setting the correct attribution of variability in the process arising at
intermediate spatial and temporal scales to either trends in marginal distributions or long-range
dependence patterns may be intricate, especially when we concentrate on rare events.

1.2.3 Modeling rare events with high impact

In practice, primary interest of statistical modeling should be geared towards those realizations
of physical processes that actually "matter", such as those that represent important risks and are
typically associated with relatively extreme values of some observed variables. Often, the obser-
vations of such high-impact events represent only a small fraction of the data sample. Therefore,
classical statistical theory where key tools are based on central limit theorems characterizing
"average" behavior of phenomena is not appropriate. Especially purely Gaussian models do
not provide an appropriate conceptual framework and tend to show bad performance in many
cases. Depending on the nature of the phenomenon and how it was observed, two alternative
frameworks come to the rescue: extreme-value theory (Coles, 2001; Beirlant et al., 2004) in the
case of continuous variables; and point process theory, or stochastic geometry (Chiu et al., 2013)
in the broader sense, in the case of discretely observed rare events.

Extreme values

The statistical estimation of a model using all observations from a data sample supplies little
control over the goodness-of-fit in the extreme regions of the distribution, because the latter
contribute only a small fraction to the sample. If we use standard statistical distributions and
methods, then the influence of the extreme observations is rather small on the estimation of
model parameters. Certain distributions may be endowed with shape parameters that provide
some flexibility in the tails, but usually there are no parameters to allow for precise and separate
control of behavior in tail regions. Fortunately, extreme-value theory provides limit theory
and statistical tools tailored to the analysis of extreme events. Two standard approaches –
block maxima and peaks-over-threshold – have been established for inferring extremal behavior.
Without loss of generality, we assume that the extreme events of interest are located in the upper
tail of the distribution. Lower-tail extremes may also be of interest (e.g., small temperatures
for analyzing cold spells), and it would be straightforward to adapt statements and tools for the
upper-tail by switching tails, e.g., by replacing a random variable X with its negation −X. In
the block maxima approach, we consider the sample of maxima over blocks of data of the same
size (e.g., yearly maxima for each weather station in the case of climatological extremes). In the
peaks-over-threshold approach (POT), we fix a high threshold and then study the exceedance
probability and the size of the excess above the threshold. Due to its easier interpretation with
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Figure 1.1: Illustration of two important modeling approaches in univariate EVT. Left display:
the block maximum approach, with black dots showing maxima over blocks delimited by vertical
red segments. Right display: the peaks-over-threshold approach, with blue segments showing
positive excesses above the threshold (horizontal red line).

respect to the original events and its higher flexibility through the choice of the threshold level
(which may be nonstationary), recent approaches often resort to the POT approach, and the
majority of approaches presented in my work follow this paradigm. The two approaches are
illustrated in Figure 1.1.

In POT-based inference, one usually has to decide about the approach used to handle the
values in the bulk of the distribution, i.e., the values below the threshold. One possibility is
to fully remove bulk data from the sample used for estimating the exceedance model. Then, it
is useful to provide an estimation for the mixture probability between the bulk component (for
which we may not specify a model) and the exceedance component. Another possibility is to
specify a model that applies to the full distribution (i.e., the bulk region and the exceedances)
in principle, but to censor non-exceeding observations during the inference procedure such that
they only contribute the binary information about exceedance of the threshold but not the
actual value below the threshold. This approach to calibrating models to data ensures that the
fit is good for the region of threshold exceedances, while less importance is attached to the fit
for values below the threshold. Such models may be preferred if it is desired that realizations of
the model include bulk values with smooth behavior around the threshold. In practice, another
benefit is that such models can be expected to provide a useful representation of quantiles below
the threshold but close to it.

In situations where extremes may occur in several components of a system (e.g., for different
variables, or for the same variable observed at different locations in space), it is important to
appropriately take into account the co-occurrence patterns of extremes for providing inferences
and predictions about joint occurrences of extreme values. In multivariate and spatial POT-
based modeling, the task of choosing a multivariate or spatial threshold is usually difficult.
There is no unique way of ordering observation vectors according to their magnitude, such
that an appropriate criterion has to be defined ad hoc (e.g., exceedances of the maximum, the
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Figure 1.2: Illustration of different types of threshold exceedances in the bivariate setting. The
threshold is shown in red. From left to right: exceedances in at least one of the two components;
exceedances of the sum of the two components; exceedances in a fixed component.

minimum or the sum of the vectors’ components). Examples of different types of bivariate
threshold exceedances are illustrated in Figure 1.2. The threshold criterion may depend on the
practical aim of the analysis but also on considerations regarding the tractability of estimation
and prediction methods. It is a major concern of my work to develop inference procedures for
extreme events characterized by the threshold exceedance of some practically useful aggregated
value of multiple variables, i.e., characterized by an appropriate exceedance region representing
a relatively small subset of the full support of the stochastic process of interest.

Point patterns

In many applications, primary interest lies in modeling the occurrence intensity of the events,
i.e., the focus is on counting the number of times that an event of interest happens in a given
area and a given period of time. Examples of such data are the positions in space and time
where we observe the ignition of a wildfire, the occurrence of a landslide, or the presence of a
plant or animal species. Such data then correspond to point patterns, for which stochastic point
process models can be used.

With point patterns, additional categorical or numerical information may be available for
each of the observed events, and such information can be represented mathematically through
marks of the points of the point pattern, leading to the notion of a marked point process. For
example, the burnt area of a wildfire is a numerical mark associated to the point representing
its ignition location and time.

It is worth pointing out that there exists a natural and well-studied link between the theory
of extreme values and point patterns (e.g., Resnick, 1987). This link originates from considering
the pattern of points where a variable exceeds a high threshold; i.e., the location and time of a
point identifies a local "hotspot" of the process under study. This approach allows adopting a
relatively macroscopic view on extreme event episodes in a continuous spatiotemporal stochastic
process, where information about such episodes is only considered through their occurrence
location and time.
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Particularities in modeling processes of rare events

The use of probabilistic frameworks for modeling and prediction allows taking into account
stochastic behavior of processes, and estimation uncertainty. Specifically, the rare character of
extreme events calls for appropriate theoretical and statistical tools to assess uncertainties. In
general, rareness may refer to rarely observed magnitudes (e.g., windstorms, heat waves, extreme
precipitation), or to occurrence numbers that are small when we compare them to to all the
possible configurations of space, time and covariates where no event occurred (e.g., wildfires,
landslides, temperature hotspots). In particular, the use of the Bayesian paradigm is beneficial
for accurate assessment of uncertainties through exploration of posterior distributions, and this
framework further makes it possible to incorporate prior information, such as expert knowledge,
into the modeling approach to obtain more reliable and stable results.

Even if Gaussian processes are widely used in spatiotemporal analysis thanks to their theo-
retical foundation in central limit theory and advantageous numerical properties, they cannot be
directly used for rare event data whose characteristics require the use of more appropriate non
Gaussian models, e.g., of max-stable models, or of generalized Pareto processes for modeling
extreme episodes of a spatiotemporal process. While estimation of Gaussian dependence models
can be achieved through numerically convenient and well-mastered techniques of weighted-least
squares, the construction and deployment of appropriate non Gaussian models typically requires
more sophisticated estimation and optimization routines, and their numerical complexity may
not scale well with the size of datasets.

1.2.4 Fusing Bayesian and frequentist inference

In the history of statistics and today’s statistical practice, a distinction between two major
inference frameworks has been carved out: frequentist and Bayesian statistics. Frequentist
statistical approaches put focus on the proportions or frequencies of occurrence of observation
values in the sample of observations. Estimated parameters and models should attribute high
probabilities to the observed sample. Parameters are usually considered as fixed but unknown
values, and hypothesis to be tested are considered as being fundamentally true or false. In
contrast, the Bayesian view of inference considers parameters as random variables, and focuses on
assigning probabilities to hypotheses. Bayesian modeling aims to treat all sources of uncertainty
as unknown quantities through the use of random variables. A prior probability is defined for
hypotheses to be investigated, and the prior probability is then updated in light of available
data to obtain posterior probabilities, which are then used to draw statistical inferences.

While rather strong opinions may be carried by communities promoting the advantages of
one view over the other (see, e.g., the content and discussion of the paper by Gelman, 2008),
I promote the idea of a pragmatic consideration of the benefits and drawbacks of the two
approaches depending on the problem to be solved, which leads to a blend of frequentist and
Bayesian inference techniques with the aim to bring together the best of both worlds.

In the frequentist approach, it may be easier to deploy estimation techniques that scale well
with increasingly large sample sizes, i.e., that are suitable for very high-dimensional problems
with millions of observations. Parameter inference using composite likelihoods (Lindsay, 1988;
Varin et al., 2011) is an important example where the use of prior distributions in the Bayesian
sense may be awkward in practice since direct interpretation of results is difficult, and adjust-
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ments to obtain results allowing for usual interpretation based on classical full likelihoods are
not possible or unwieldy in practice.

Bayesian inference is particularly relevant when prediction uncertainties are high. Due to
generally small occurrence numbers of rare events, the assessment of natural and statistical un-
certainties through appropriate stochastic modeling approaches is crucial, and the propagation
of such uncertainties across different model components must be handled with care. Expert
knowledge can be elicited for the construction of prior distributions in the often data-poor sit-
uation of rare and extreme events. State-of-the-art Bayesian implementations enable statistical
inference for very complex predictive models with many unknown parameters (up to tens of
thousands). As such, Bayesian techniques are particularly useful for latent variable models,
e.g., latent Gauss–Markov models. Often, the size of the latent random parameter vector is rel-
atively high but different from the even larger size of the observation vector, such that dimension
reduction can be achieved in modeling large datasets.

1.3 Main tools in my approaches

This section shortly summarizes the main theoretical and inferential tools in my work.
As a side note, in order to disseminate fundamentals of spatiotemporal analysis, I have

strongly contributed to a workshop tutorial and a publication (RESSTE Network, 2017) with
colleagues from INRAE’s RESSTE research network. It covers the full workflow from data
import to model validation and geostatistical spatiotemporal prediction (kriging) in the setting
of frequentist estimation of stationary Gaussian or log-Gaussian models.

1.3.1 Extreme-value theory

Gaussian models are ubiquitous in classical statistics thanks to the central limit theorems for
samples of random variables and stochastic processes, but they are not well adapted to modeling
rare and extreme events. In contrast, extreme-value theory (de Haan and Ferreira, 2007) provides
a set of asymptotic results (e.g., maximum domain of attraction conditions), limit models (e.g.,
max-stable processes, generalized Pareto processes), and summary statistics (e.g., tail correlation
functions, extremal coefficients) for continuous-valued processes. These tools are useful for the
analysis of extreme events of stochastic processes for which observations over a sufficiently long
period of time are available, such that a large number of independent observations, or near-
independent observations owing to mixing properties, can be used to statistically describe the
behavior of extreme quantiles.

1.3.2 Point processes and stochastic geometry

If the focus is on counting events and studying geometric patterns, with data available as
georeferenced observations of discrete variables and structures, then stochastic geometry pro-
vides appropriate exploratory tools (e.g., Ripley’s K-function, g-function) and model classes
(e.g., Poisson processes, Cox processes, Gibbs processes); see Chiu et al. (2013). For the sake
of spatial and spatiotemporal modeling of occurrences of risks, the class of log-Gaussian Cox
processes (LGCP Møller et al., 1998) allows for flexible inclusion of covariate information and
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random effects in the intensity function of the point process, and inference tools for latent Gaus-
sian modeling such as the integrated nested Laplace approximation (INLA, Rue et al., 2009)
can be deployed. In applications, high-risk situations can be attributed to specific risk factors,
geographic regions or time periods, and mapping of point process intensities and uncertainties
can be provided as a decision support for stakeholders.

1.3.3 Generalized additive modeling

Generalized additive models (Hastie and Tibshirani, 1990; Fahrmeir and Tutz, 2013) are flexible
regressions models where response variables Xi, i = 1, . . . , n are linked to a set of predictors
zi = (zi,1, . . . , zi,m) through a strictly monotonically increasing link function g according to the
following equation:

g(EXi) = f1(zi) + . . . fK(zi), i = 1, . . . , n,

with functions fk that may depend on a single predictor zi,j, or on two or more of the predictors in
the case where fk is an interaction effect. Usually a parametric or semi-parametric specification
is given for the functions fk, k = 1, . . . , K, and parameters have to be estimated. Trends
in marginal distributions of observations along the time axis, and in fact all such relatively
smooth trends due to time, season or other covariates, can be captured in a nonlinear way by
using GAMs, which usually scale well for small to moderately large datasets with hundreds to
millions of observations.

In frequentist inference, appropriate smoothness of the estimated effects is achieved through
smoothness penalties on the shape of the functions fk, k = 1, . . . , K. Optimal smoothness
parameters can be determined through cross-validation approaches. In the Bayesian framework,
a prior distribution can be specified for the parameters defining the effects fk, and then the
component fk can be interpreted as a random effect. Smoothness of estimated effects is achieved
through appropriate specification of multivariate prior distributions for the parameters involved
in the construction of fk. A benefit of the Bayesian approach is that smoothness parameters
(i.e., hyperparameters of the model) can be estimated simultaneously with the other parameters,
and information about posterior uncertainty in the smoothness is available.

1.3.4 Composite likelihood estimation

When strong model misspecification can be excluded, classical full likelihood inference can be
considered as the commendable standard approach when the likelihood function is numerically
tractable. In cases with many observation locations and times, full likelihoods may be numeri-
cally intractable even if they can be written in closed analytical form. Possible causes are matrix
operations that become intractable, or a combinatorial explosion of the number of terms to be
computed for the likelihood. The latter problem frequently arises with models for extreme-value
analysis, even for low-dimensional settings with more than two variables. To remedy such issues,
composite likelihood estimation (Lindsay, 1988; Varin et al., 2011) has become a useful alter-
native ensuring consistent estimation of parameters with asymptotic normality of estimators.
Its idea consists in constructing a likelihood from blocks of data while assuming independence
between blocks. The most popular choice is the pairwise likelihood, where blocks consist of two
observations each. If the parameters to be estimated can be identified from the information
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available in the chosen blocks, then composite likelihood estimation usually comes at a very
moderate loss of efficiency as compared to the full likelihood.

Often, especially in the spatial and spatiotemporal setting, estimation is carried out in a
two-step approach where one estimates marginal distributions in the first step, and then the
dependence structure in the second step (Joe, 2014). Marginal parameters estimated in the first
step using an independence likelihood (i.e., composite likelihood of univariate distributions),
or alternatively empirical marginal distributions, may have to be "plugged in" during the sec-
ond step. This approach has the benefit of estimating a smaller number of parameters during
each step as compared to joint estimation of all parameters. Moreover, it is possible to use
different estimation approaches in the two steps. Asymptotic theory still works with plug-in
approaches thanks to variants of the continuous mapping theorem and results for rank-based
(i.e., nonparametric and distribution-free) transformations (Joe, 2014).

1.3.5 Hierarchical modeling and INLA

Complex observation processes (e.g., multi-source, multi-scale, multi-type, preferential sam-
pling) often require a hierarchy of model layers to appropriately include and link the different
inputs. Inference is usually sought for unobserved processes, whose structure has to be appro-
priately specified at latent layers. Therefore, I adopt the paradigm of Bayesian hierarchical
modeling (BHM) in many approaches. With the lower-case notations typically applied in this
setting for the vectors of data (y), latent variables (x) and hyperparameters (θ), the three
layer-structure of hierarchical models can be summarized as follows:

Stage I: data y | x,θ – likelihood of observations,
Stage II: process x | θ – latent stochastic components
Stage III: hyperparameters θ – hyperpriors.

The latent process of Stage II encapsulates parameters of the likelihood of the observed data in
Stage I, while hyperparameters in Stage III consist of parameters governing the prior distribu-
tions of process parameters, and global parameters of the likelihood. In this hierarchy, Stage I
could also be considered as the observation process, while Stage II corresponds to a relatively
smooth process that is not directly observed and typically represents an important component
of the actual physical process that we want to estimate and predict. Often, the observations are
considered as conditionally independent given the latent process and the hyperparameters. In
particular, this assumption may considerably simplify and speed up estimation algorithms.

For the purpose of confronting the prior model with observed data to obtain posterior in-
ferences and predictions, the integrated nested Laplace approximation (INLA Rue et al., 2009;
Lindgren and Rue, 2015; Rue et al., 2017; Opitz, 2017) provides relatively fast and accurate
analytical approximations in Bayesian hierarchical models with latent Gaussian processes, and
typically requires only a fraction of the time of simulation-based Markov Chain Monte Carlo
(MCMC) estimation. INLA sidesteps issues with the construction of appropriate proposal dis-
tributions and slow mixing of Markov chains in simulation-based techniques, while providing
highly accurate results. The method astutely combines Laplace approximations (Tierney and
Kadane, 1986), used to compute expectations with respect to high-dimensional multivariate
Gauss–Markov random vectors with up to hundreds of thousand of components, with efficient
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numerical integration schemes for integration with respect to a relatively small number of hyper-
parameters (e.g., controling the variance and dependence of Gaussian components). Therefore,
it bypasses issues that may arise with simulation-based MCMC inference, where the design of
stable algorithms for fast exploration of the posterior distribution may be hampered by intri-
cate dependencies between the components of the model (e.g., Rue and Held, 2005). INLA is
implemented in the INLA package (Lindgren and Rue, 2015) of the R statistical software, and
over the last decade it has been widely adopted for Bayesian additive regression modeling of
spatial and spatiotemporal data (Opitz, 2017; Krainski et al., 2018). The Bayesian framework
of INLA allows for joint estimation and uncertainty assessment of latent components, hyper-
parameters and predictions. Recently, the speed and stability of INLA with high-dimensional
latent Gaussian structures were further leveraged through its integration with the sparse matrix
computation library PARDISO (van Niekerk et al., 2019). Technical details on how INLA works
are presented in the Appendix §A.1.

The choice of prior distributions is a crucial step in Bayesian modeling, even more if only a
small sample of rare events is available. While a number of general classes of prior distributions
based on theoretical concepts of informativeness have been proposed in the Bayesian paradigm
(e.g., objective priors, Jeffrey’s priors), it is notoriously difficult to specify appropriately infor-
mative and easily interpretable prior distributions in the high-dimensional setting of space-time
modeling, where models are often constructed by combining predictor components of various
types. In my work, I often make use of the recent approach of Penalized Complexity priors
(PC priors, Simpson et al., 2017) where the distance of the prior of a model (or of a model
component) with respect to a simpler baseline specification (the reference) is penalized at a
constant rate. This mechanism is implemented through an exponential prior on this distance,
such that the specific parametrization of the model (e.g., the standard deviation, the variance,
or the precision, which are equivalent up to strictly monotonic transformations) is without im-
portance for the resulting prior, and the modeler has to choose only the penalty rate. These
priors take the geometry induced by the choice of model parametrization into account, therefore
avoiding intricate interpretation problems that may arise otherwise. They are designed to allow
for shrinkage towards a simpler reference model in virtue of the principle of parsimony. They
also provide an objective (i.e., automatic) way of choosing the prior distribution family, while
keeping some degree of subjectivity in selecting the penalization rate parameter. An example
of a baseline for the variance of a Gaussian random variable is the value 0, i.e., the absence
of any stochasticity. Even better, the penalty rate can usually be set indirectly by prior spec-
ifications based on fixing a reference value u of the parameter of interest and the probability
P(parameter > u), with “>" replaced by “<" in some cases, depending on the role of the
parameter, such as P(standard deviation > 1) = 0.5.

1.3.6 Gauss–Markov structures and the SPDE approach

The characterization of spatiotemporal stochastic variability usually involves the specification
of a spatiotemporal covariance function and the manipulation of high-dimensional variance-
covariance matrices, whose number of rows/columns typically corresponds to the number of
observations and can reach several millions. While it is possible to break down such high-
dimensional matrices into smaller pieces during estimation (e.g., by using composite likelihoods)
or prediction (e.g., by using local kriging environments), it is often desirable to work with the
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full matrix for optimal inference based on the full likelihood, especially in Bayesian hierarchical
modeling (BHM). BHM provides a remedy by resorting to space-time Gaussian processes at
the process layer, recall §1.3.5, where the dimension of the latent process can be chosen to be
substantially lower than the number of observations. Moreover, such latent processes can be
specified through their precision matrix (i.e., the inverse variance-covariance matrix), which
provides the benefit of working with sparse matrices (i.e., matrices with mostly 0 entries) when
using Gauss–Markov dependence structures (Rue and Held, 2005). The Stochastic Partial Dif-
ferential Equation (SPDE) approach of Lindgren et al. (2011) has been a huge step forward
for high-dimensional geostatistical modeling thanks to providing Gauss–Markov representations
with closed-form precision matrices that accurately approximate the flexible and widely used
Matérn covariance function. This fundamental result provides spatial Gauss–Markov structures,
and these can be readily extended to include temporal dependence without losing sparsity of
the precision matrix by specifying temporal autoregressive structures (Cameletti et al., 2013;
Opitz, 2017). Technical background on the SPDE approach is given in §A.2.1.

1.4 Summary of main results
This section gives an elementary summary of main results in my work from the perspective of
their impact on practical spatial-temporal modeling and risk assessment of rare events. Detailed
technical background will be exposed in the following chapters.

1.4.1 General methodological developments and theory

Bayesian spatial-temporal inference and mapping of risks

An important part of my applied work aims to successfully adapt the INLA method to cope
with moderately many predictor variables (say, up to 100, e.g., in Lombardo et al., 2018; Opitz
et al., 2020b; Pimont et al., 2021; Opitz et al., 2020a), often with nonlinear influence on response
variables, and to capture temporal dynamics through models that have been purely spatial be-
fore in the existing literature (e.g., for landslides in Lombardo et al., 2020). The development
of INLA-based methodology for spatiotemporal modeling of the occurrence intensity of envi-
ronmental risks in the point process setting to predict the expected number of events is central
in my work, with important applications to wildfires and landslides. High-dimensional models
and optimization problems arise in this setting since one has to include a very large number
of control locations without observed events into the data vector. Typically, some of the rel-
evant predictor components have not been measured directly (e.g., the precipitation intensity
triggering landslides, or human activity at the origin of wildfires) and must be represented in
the model through space-time-indexed parameter surfaces (random effects) to be estimated.
Standard algorithms often turn out to be numerically prohibitive for estimation in this setting,
and numerical tricks are necessary to propose techniques for data dimension reduction (e.g.,
subsampling) while keeping the loss of data information small.

To cope with the large variety of possible models that become available by combining several
stochastic components into sophisticated models, their complexity is controlled through appro-
priately chosen penalized complexity priors, and model selection is performed by comparing
models based on multiple criteria, including predictive checks. A detailed discussion is provided
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in Opitz et al. (2020a) for a spatial application to landslide modeling, and a short exposition will
also be given in Chapter §7. Model selection is often achieved through stratified cross-validation
schemes; that is, in an objective, data-driven way by repeatedly removing part of the observa-
tions during the estimation step to numerically assess the forecasts through prediction scores
that quantify how close a model can predict unknown quantities of interest, and in particular
those values that have not (yet) been observed.

From theory to practice of flexible dependence modeling for space-time extremes

A collection of my results on the theory and implementation of realistic extreme-value models,
with the most foundational output in Huser et al. (2017); Engelke et al. (2019); Mhalla et al.
(2019); Bacro et al. (2019); Huser et al. (2021), allows addressing the question of how the
spatial extent and the duration of extreme event episodes depend on the event magnitude.
Spatiotemporal persistence of such events is a major factor for economic, sanitary and ecological
catastrophes (e.g., heatwaves, cold spells, air pollution episodes, floods, droughts).

If we suppose that the spatial extent of increasingly extreme events remains comparable in
size, then we observe a certain stability of co-occurrence patterns of high values when moving
towards higher and higher event magnitudes. This case is known as asymptotic dependence and
corresponds to the classical limit models obtained by multivariate and spatial extreme-value
theory. This situation implies that very high aggregated observation values may arise in case of
extreme episodes, for instance very extreme cumulated precipitation amounts over a catchment
when assessing flood risk. However, empirical findings and the physics of meteorological and
environmental processes often contradict such behavior.

The lack of appropriate statistical extreme-value tools for handling decreasing dependence
strength with increasing event magnitudes in spatial processes has been a strong motivation
to construct novel theoretically motivated but practically more flexible models. These mod-
els accommodate asymptotic independence with decreasing spatial-temporal scales of extreme
clusters for increasingly high magnitudes. At first glance, the ubiquitous Gaussian processes –
the "Swiss knife" of spatial statistics – are promising candidates in this context thanks to their
asymptotic independence, but they usually lack flexibility for realistic modeling when the appli-
cation focus is on extreme events, i.e., on the tail of probability distributions. I have therefore
strongly contributed to promote a more general modeling framework using the notions of scale
and profile with intuitive interpretation. Starting from a relatively simple and easily tractable
baseline process (the profile), we modify it through a random variable (the scale) to jointly drive
the extremes of all events, which may occur in several variables, over space and/or time. This
yields high flexibility in comparison to the baseline model. The scaling variable acts as a com-
mon "shock" impacting all components, and it naturally encodes the strength of concurrence of
extreme events in several components or locations/times. The use of Gaussian baseline models
allows us to assess how strongly the extremal behavior deviates from Gaussian-based approaches
used in "classical" geostatistics to capture the behavior of "ordinary" events.

The applications of such novel models confirm that atmospheric variables (e.g., wind speeds,
precipitation, air pollution) are most often asymptotically independent. The illustrating Fig-
ure 1.3 uses simulated data and shows cases where the same extreme quantile is observed in the
central pixel of the three images, the same Gaussian correlation function is used, but different
random scale variables are chosen, such that the peak value and the spatial extent of extreme
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Figure 1.3: Illustration of various strengths of spatial extremal dependence based on the same
correlation model for the Gaussian profile process, the same conditioning quantile in the central
pixel of the space, but different random scale variables.

clusters arising farther away from the central pixel are fundamentally different between the three
models.

Moreover, asymptotic theory can be combined with flexible Bayesian modeling as mentioned
in the previous §1.4.1, especially through the use of INLA. This allows for a realistic representa-
tion of the variability and dynamics of extreme events through space and time by fitting models
with many parameters to observed extreme episodes of variables such as precipitation or tem-
peratures. Specifically, the paper of Opitz et al. (2018) extends INLA and related frameworks
to estimate high quantiles and co-occurrence probabilities varying nonlinearly with space, time
and other predictor variables. By implementing extreme-value models for threshold exceedances
with INLA, reliable estimation and uncertainty assessment for extreme event probabilities be-
come possible while making allowance for the small sample size in the extreme-value context.
Moreover, our recent preprint Simpson et al. (2020) applies INLA-based modeling of space-time
extremal dependencies to the flexible conditional extremes framework.

I promote hierarchical modeling of extremes since it allows using asymptotically justified
probability distributions for extreme values, and we can embed latent (i.e., unobserved) processes
capturing the influence of external predictors, space and time on the occurrence probabilities
and magnitudes. Estimating relatively smooth latent components and their interaction allows
understanding the genesis of extreme states of the process under study, and then predicting
them.

1.4.2 Spotlight applications

Spatial and spatiotemporel modeling of landslide occurrences

The concept of occurrence intensity, until then unknown in the geomorphological community,
has been popularized for landslides in several of my papers, whose purpose is to propose INLA-
based mapping of landslide intensities and uncertainties using point process models (Lombardo
et al., 2018, 2019, 2020; Opitz et al., 2020a). Estimated models can be used to generate maps
highlighting the spatial or spatiotemporal distribution of risk components for different spatial
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scales. Using a century-spanning landslide inventory for a region in Italy, we have invented
models that allow modeling and understanding long-term temporal dynamics in spatial landslide
distributions (Lombardo et al., 2020).

Spatiotemporal modeling of wildfire activity in France

Models similar to those for landslides, but with larger event numbers and stronger focus on
spatiotemporal modeling, are built for wildfire occurrences in Mediterranean France in the papers
Gabriel et al. (2017); Fargeon et al. (2018); Opitz et al. (2020b); Pimont et al. (2021). The
models, constructed at daily resolution and incorporating weather conditions and land-use land-
cover covariates, allow for identifying the influence of various risk factors and for mapping fire
occurrence risk. Moreover, by combining a model component for occurrences (ignition locations
and times) with a model component for fire sizes, it is possible to reliably predict wildfire counts
and aggregated burnt areas at various spatial and temporal scales (Pimont et al., 2021). State-
of-the-art approaches to modeling wildfire risk strongly rely on the commonly used Fire Weather
Index (FWI, van Wagner, 1977), but our models indicate a transfer function from FWI to wildfire
activity that is strongly nonlinear for the study region. This finding highlights weaknesses of
this index for the study region, and it points out the need to develop more appropriate fire
danger indices.

Space-time dynamics of extreme Cévenol precipitation episodes

Extreme precipitation events in the French Mediterranean area, known as Cévenol or Mediter-
ranean episodes, occur in autumn when relatively hot and humid air enters onshore from the
Mediterranean and hits mountain ranges that have already cooled down. Important flooding
events with many casualties have been the consequence. By building on new extreme-value
models for space-time episodes in Bacro et al. (2019), we develop an innovative, hierarchically
structured model for asymptotically independent threshold exceedances. It enables physical in-
terpretation with respect to the spatial extent, temporal duration and velocity of precipitation
episodes by using a construction based on geometric objects moving through space and time.
The shape of such slanted space-time cylinders is then estimated to determine interacting spa-
tiotemporal scales. Precisely, we apply spatiotemporal kernels to a gamma process to generate
the latent layer of the model that jointly controls exceedance probabilities and excesses, the
latter following a generalized Pareto distribution. The implementation of fast frequentist esti-
mation techniques (composite likelihood) has enabled estimation for massive "high-frequency"
datasets of hourly precipitation data observed over 20 years.

Simulation of unprecedented extreme heatwaves in France

Motivated by the exceptional French summer heatwave in 2019, the work in Opitz et al. (2021)
capitalizes on the theoretical framework of scale-profile decompositions of Pareto limit process
in the POT framework to build a spatial scenario generator for extreme events of yet unseen
magnitude, featuring new yet realistic spatial patterns. Minimal modeling assumptions, guided
by asymptotic theory, are embedded into powerful nonparametric resampling techniques (e.g.,
Direct Sampling, Mariethoz and Caers, 2014) to generate extreme heatwave scenarios for France
based on a gridded reanalysis dataset of maximum daily temperatures. The illustration in
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Figure 1.4: Illustration of semi-parametric resampling of extreme spatial temperature episodes
in France. From left to right: most extreme event on original scale; same event on a scale
highlighting the observed value relative to the local climatology; two artificial scenarios obtained
through resampling.

Figure 1.4 shows an observed extreme episode and simulations obtained through resampling. A
similar resampling approach is developed for space-time extreme precipitation episodes in the
French Mediterranean region in Palacios-Rodriguez et al. (2020).

Predicting extreme space-time hotspots in sea surface temperatures

Large georeferenced datasets, often based on remote sensing, have become abundant in many
domains. However, gaps may arise when sensors are defective or cannot provide useful data,
for instance, due to cloud occusion with satellite-based instruments. Then, direct calculation
of data summaries, such as the minimum value within a extreme space-time hotspot, is not
possible. By adapting the INLA framework for extremes to a big space-time dataset of Red Sea
surface temperatures, our method in Castro-Camilo et al. (2020) succeeds in filling such gaps and
provides probabilistic predictions of hotspots. Developed in the context of the data challenge
of the 2019 Extreme-Value Analysis conference (Zagreb, Croatie), our method achieves superior
prediction performance for summaries of extreme space-time clusters in comparison to all other
competing teams. Figure 1.5 illustrates the gap filling approach for a specific observation day.

1.5 Structure of the remainder of this manuscript

Chapter 2 provides background on point process analysis and extreme-value theory. Flexible
modeling of univariate extremes is treated in Chapter 3, where flexibility stems either from
incorporating covariates in generalized additive models, or is obtained in a univariate distribu-
tional sense by defining extensions of the generalized Pareto distribution. Results for the theory
and practice of modeling bivariate extremes are exposed in Chapter 4. The Chapters 3 and 4
focus on theory and statistical tools for univariate and bivariate extremes; then, the modeling,
simulation and prediction of extremes in the spatial and spatiotemporal setting is the topic
of Chapter 5 in the asymptotic model setting, of Chapter 6 for the subasymptotic extensions,
including approaches residing more specifically in the hierarchical modeling framework. General
methodology for Bayesian modeling of point patterns using INLA is presented in Chapter 7,
while Chapter 8 focuses on landslides and Chapter 9 on wildfires. Next, Chapter 10 recaps my
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Figure 1.5: Illustration of gap filling in Red Sea surface temperatures. Data with gaps (left);
model-based prediction of gaps (middle); associated prediction uncertainty (right).

scientific environment (projects, students, collaborating teams) and also mentions other research
work that is not presented in detail in this manuscript. Finally, Chapter 11 summarizes impor-
tant future developments that I envisage to extend the results presented for this habilitation.
The appendix chapters A and B provide some technical background on specific aspects related
to the INLA-SPDE approach and to extreme-value analysis, respectively.



Chapter 2

General background on extreme-value
analysis and point processes

This chapter reviews theoretical and statistical background for point processes in the first sec-
tion, and in the subsequent sections for univariate, bivariate and spatial extremes, as far as
it directly concerns the results presented afterwards. In the context of extreme-value model-
ing, shortcomings of already existing approaches are discussed; they have been inspiration and
motivation for tackling unresolved problems and developing the approaches presented in this
habilitation. Some connections between extreme-value theory and point processes are pointed
out. Textbooks providing a more extensive introduction into these fields are Cox and Isham
(1980); Illian et al. (2008); Moller and Waagepetersen (2003); Chiu et al. (2013) for point pro-
cesses and Resnick (1987); Embrechts et al. (1997); Coles (2001); Beirlant et al. (2004); de Haan
and Ferreira (2007) for extreme-value analysis, among others.

2.1 Point processes for modeling rare event occurrences

Stochastic geometry (Illian et al., 2008; Chiu et al., 2013) is a branch of mathematics studying
random geometric patterns, in particular the properties of collections of random geometric
objects. A central concern is the study of point processes, i.e., of random point patterns whose
realizations represent locally finite sets of points in some space, typically Rd for d ∈ {1, 2, 3}
in practice. The term point process emphasizes that we consider such objects as stochastic
processes, while the term point pattern puts more focus on the observed collection of points
and its geometric patterns. The distinction of these two terms blurries in practice and may
also strongly depend on the background of the modeler. We here use the abbreviation PP
to refer to both entities, point processes and point patterns, as far as no annoying ambiguity
arises. Many theoretical developments found their inspiration in important applications, such as
telecommunication networks, stereology, forestry, species distribution modeling and occurrences
of natural disasters.

Practical interest of studying random point patterns is usually direct towards the spatial
variation of its intensity (i.e., the expected number of points per spatial unit), and the in-
teractions arising among points, such as clustering or inhibition. The case of clustered point
patterns may arise if points occur preferentially in specific environmental conditions, such that

19
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intensity variations are driven by the underlying spatial distribution of environmental factors.
Examples of such factors are climatic conditions and land cover types (e.g., type of vegetation)
when modeling species distributions or wildfire occurrences. Model classes used to capture this
type of interaction are known as empirical or correlative point process models. The variables
describing relevant environmental conditions may be available as auxiliary data (covariates).
However, often some or all of them have not been observed, are not available, or it is not known
which variables might help to explain the variations in the intensity function. In these cases,
we can add random components to the intensity function to represent the a priori unspeci-
fied environmental conditions. If points occur independently from each other given the known
and unknown environmental conditions, then the class of Cox processes, and in particular the
subclass of log-Gaussian Cox processes (LGCPs, Møller et al., 1998), provide an appropriate
modeling framework for correlative modeling with random effects.

Other interaction types, of mechanistic nature, arise when points interact directly. Exam-
ples of such mechanisms are the competition or interaction among individuals whose position is
represented by the points, or causal relationships in the spatiotemporal dynamics of point occur-
rence, where earlier points may spawn or inhibit the occurrence of later points. Such patterns
can be captured through the class of Gibbs point processes, for which the intensity variation and
interactions between points are encoded into an energy functional, which is additively composed
of potential functions for singletons, pairs, triplets, and so on, of points. The energy function
weights the point pattern configurations according to the "energy" required to generate them,
which translates into a probability distribution over all PPs. A popular subclass of Gibbs pro-
cesses are pairwise Markov processes, in which interactions are restricted to pairs of points and
are usually defined locally in space; e.g., two points interact if they are closer than a certain
fixed distance.

Finally, points of a PP may be further characterized by additional numerical or type in-
formation. This information can be associated to points as marks. Marks could represent the
category of a point if there are several types of points in a multi-type PP, or the magnitude of
an event if points represent rare event occurrences.

Since the Poisson distribution Pois(λ) is the limit of the binomial distribution with npn →∞
as the number of trials n goes to infinity and the success probability pn goes to 0, the Poisson
distribution is the natural model for discrete rare events. More generally, Poisson point processes
arise as the limit of appropriately defined binomial processes based on a grid discretization of Rd

with mesh size going to 0 (see, e.g., Chiu et al., 2013). The main works in this manuscript are
based on LGCPs, i.e., Poisson processes with Gaussian random effects in the log-intensity. They
are detailed in Chapters 7 (general LGCP modeling), 8 (landslide modeling) and 9 (wildfire
modeling), where correlative modeling approaches are developed. Some mention will also be
made of mechanistic interactions and how to model them, especially in the outlook on ongoing
work and research perspectives in Chapters 10 and 11.

2.1.1 Intensity function and Poisson point processes

We suppose that a point process is observed over a bounded domain X ⊂ Rd, also called the
observation window. We write X = {x1, . . . , xn} to refer to the set of points of the pattern. We
use notation XB for X ∩ B, and N(B) = |XB| for the number of points, where B is a Borel
set. Therefore, N designates the random counting measure defined over the Borel sets of X ,
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such that N(B) ∈ N0 are random variables corresponding to the number of points Borel sets
B ⊂ X . In practice, the observation of a PP is usually available for bounded X , but considering
unbounded domains such as X = Rd may be relevant from a conceptual or theoretical stance.
In particular, the observed point pattern may be considered as the realization of a point process
defined over a domain that is larger than the observation window, which has consequences for
practical modeling if observed points within X can directly interact with points outside X .

The intensity function is fundamental in point pattern analysis, similar to mean surfaces
in classical geostatistics. It indicates the expected number of events per unit of space at any
position x ∈ X ; as such, it characterizes the first-order behavior of the point process. We note
the intensity function

λ(x), x ∈ X . (2.1)

A point x may refer to position in geographic space (X ⊂ R2), or to a combination of time and
geographic position in the observation window X = {(s, t) ∈ S × T } with spatial and temporal
observation windows S and T , respectively.

A fundamental theoretical and practical model in stochastic geometry, and more generally
in the field of stochastic processes, is given by the class of Poisson point processes, or Poisson
processes in short. We point out that Poisson PPs are also used in the constructive representa-
tions of important limit processes in extreme-value theory: max-stable processes, and the more
general class of max-id processes introduced in Chapter 6.

In Poisson PPs, the points arise independently according to the deterministic intensity func-
tion λ(x), x ∈ X , defined in (2.1). Therefore, in Borel sets B ⊂ X we observe Poisson-distributed
counts

N(B) ∼ Pois

(∫
B

λ(x) dx

)
. (2.2)

The probability density of a point pattern X = {x1, . . . , xn} observed in the window X is given
as

f(X) = exp

(
−
∫
X
λ(x) dx

) n∏
i=1

λ(xi), (2.3)

where we use the convention
∏0

i=1 λ(xi) = 1 in case of an empty pattern.

2.1.2 Log-Gaussian Cox processes

In the works presented in this habilitation, heavy use is made of the class of log-Gaussian Cox
process (LGCP) models, wich are part of the larger class of Cox processes. Such processes
include random components in the intensity function, and conditional to the intensity function
a Poisson process is obtained. Suppose that Λ = {Λ(x) ≥ 0, x ∈ X} is a nonnegative stochastic
process. The point process (or counting measure) N is a Cox process with intensity process Λ
if, by analogy with (2.2), we have

N(B) | Λ ∼ Pois

(∫
B

Λ(x) dx

)
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for all Borel sets B. In LGCPs, log Λ(s) is given as a Gaussian process. Usually there is no
closed-form expression of the density

EΛ exp

(
−
∫
X

Λ(x) dx

) n∏
i=1

Λ(xi),

such that for likelihood-based statistical inference we have to resort to techniques that allow
handling the latent Gaussian process log Λ(x), such as INLA.

2.1.3 Marked point processes

Each point may carry additional information, different from its coordinates in the window X .
We can represent this information numerically and attach it as a mark to the point, defining
a marked point process. For example, we can denote the points of a spatiotemporal marked
point pattern X = {x1, . . . , xn} as xi = (si, ti,mi), where s refers to spatial location, t to time,
and m to the mark, which is element of a mark space M. Marks may either be categorical,
i.e.,M = {1, . . . , kM}, or they could be numeric, e.g.,M = R+ in the case of wildfire ignition
points marked by the burnt surface. Usually, marks are used to encode information that only
exists if a point exists (e.g., size or magnitude of the event occurring at the point, traits of the
individual represented by the point), but not information that exists everywhere in space (i.e.,
covariates, such as land cover, land use, climate and weather).

2.1.4 Estimation of the point process intensity

In the case of a stationary intensity function over a bounded observation window X , the intensity
parameter λ can be estimated empirically as the number of points per spatial unit, i.e., λ̂ =
N(X )/|X |. In the absence of covariate information to be included into the model, nonparametric
estimation of nonstationary point process intensities has been studied intensively and is part of
the larger field of nonparametric statistics using kernel-based estimators. An intensity λ̂(x) can
be estimated through an appropriate choice of kernel function k(x1, x2) in λ̂(x) =

∑n
i=1 k(x, xi).

We do not further detail this approach here.
Instead, we suppose that we aim to estimate the parameter vector in a parametric model λθ

making use of the information contained in covariates zj(x), j = 1, . . . , J . For instance, θ may
represent the vector of covariate coefficients in the log-linear intensity model

λ(x) = β0 +
J∑
j=1

βjzj(x), β = (β0, β1, . . . , βm)T . (2.4)

The estimation of the parameters β in (2.4) can be done in a similar way for Poisson processes
and for more general processes featuring interaction of points (Waagepetersen and Guan, 2009).
The estimation is formulated as a regression problem (Baddeley et al., 2010). Some extra care is
needed for assessing the estimation uncertainty if the point pattern does not stem from a Poisson
point process. A main difficulty in likelihood-based estimation of the parameters β in the Poisson
PP model (2.3) is the computation of the integral

∫
X λ(x) dx. Different approximation strategies

have been developed to bypass this problem. A simple and robust approach is to discretize the
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observation window, typically using a fine grid, and to assume that the intensity function λ(x)
is (approximately) constant within each grid cell. Then, the number of events in a cell Ck of
the discretization of X has Poisson distribution, N(Ck) ∼ Pois(|Ck|), and the count variables
N(Ck) are mutually independent between different cells. Therefore, the estimation problem can
be reformulated as a logistic regression equation with Poisson responses:

Nk ∼ Pois(|Ck|), ENk = λk, log(λk) = β0 +
J∑
j=1

βjzjk. (2.5)

One further has to decide which covariate values zjk should be attributed to a cell Ck. For very
small cells with little intra-cell variabillity of covariates, one may simple take the covariate value
observed at a representative point within the cell, e.g., at its centerpoint. When covariates can
vary more strongly within individual cells, various approaches are possible, such as using an
average value taken over all of the covariate values observed in the cell.

Other approaches for numerically approximating the integral
∫
X λ(x) dx consist in using ap-

propriately weighted sums
∑

k ωkλ(x̃k) with discretization points x̃k and weights ωk > 0. A
widely used technique of this type is known as the Berman–Turner device (Berman and Turner,
1992; Baddeley and Turner, 2000), for which the discretization points consist of the observed
points xi, i = 1, . . . , n, augmented with a set of other points used to provide a relatively homo-
geneous discretization of space, e.g., by using a regular grid. This discretization scheme allows
writing the likelihood of the parameters β in the log-linear representation (2.4) as the likelihood
of a logistic regression equation, such that standard implementations of logistic regression can
be used. It becomes feasible to estimate parameter vectors β with a moderately large number
J of components.

2.1.5 Challenges with the spatiotemporal modeling of point patterns

With spatiotemporal point patterns, a very large number of discretization points k (up to several
millions) may arise in (2.5). Moreover, many sources of spatiotemporal variability in the point
process intensity may not be appropriately captured through a log-linear influence of covariates,
or appropriate covariates may not be available. Then, nonlinear and random effects should be
included into the linear predictor in (2.5). My work on spatial and spatiotemporal modeling of
landslides and wildfires, detailed in Chapters 8 and 9, tackles these challenges in the Bayesian
framework of INLA, with the SPDE approach used for modeling spatially indexed random
effects. The generic modeling framework, especially the use of subsampling techniques to cope
with the large observation vectors, is exposed in Chapter 7.

In some applications (e.g., wildfires) it is important to differentiate between moderate and
extreme events, which can be done based on the magnitude of the event attached as a mark to
the point. Then, the model developed for the marks should pay special attention to the modeling
of extreme magnitudes. An example of such modeling is presented in Chapter 9 through our
Firelihood model for wildfires.
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2.2 Univariate extremes
We shortly recall asymptotic results and formulas of limit distributions in univariate extreme-
value theory (EVT) of continuous variables, which are useful for statistical approaches. For
statistical modeling, we focus on two approaches. First, in the block maximum approach, we
divide the original data sample into blocks of same size and then extract the maximum from
each block to obtain a sample of block maxima. Second, in the peaks-over-threshold approach,
we fix a high threshold and then model the positive excesses above this threshold.

2.2.1 The trinity of univariate extreme-value limits

Univariate EVT is usually presented from the starting point of sample maxima and their
extreme-value limit distributions resulting from appropriate rescaling, where the term rescaling
refers to linear transformations, i.e., location-scale transformations. Limit theory for sample
maxima was the historical inception of EVT (Fréchet, 1927; Gnedenko, 1943). A more general
treatment is possible through three equivalent limits arising for sample maxima, for threshold
exceedances, and for the point process of sample points; on may call them the trinity of uni-
variate extreme-value limits to appreciate their ubiquity in EVT. We shortly review these three
approaches, their interconnections, and how they can be used for statistical inference.

Consider an i.i.d. sample X1, . . . , Xn with X1 ∼ FX , and denote by Mn = maxi=1,...,nXi the
sample maximum. The fundamental maximum domain of attraction (MDA) condition is given
by the following convergence property: if deterministic sequences an and bn > 0 exist such that

F n
X(an + bnz)→ G(z), n→∞, z ∈ R, (2.6)

with a nondegenerate limit distribution G, then G is a generalized extreme-value distribution
(GEVD). Equivalently, (Mn − an)/bn → Z ∼ G for n → ∞. GEVDs constitute a class of
three-parameter distributions defined as

GEV(z; ξ, σ, µ) = exp(−T (z)), T (z) =

{(
1 + ξ z−µ

σ

)−1/ξ

+
, ξ 6= 0,

exp
(
− z−µ

σ

)
, ξ = 0,

with shape ξ, location µ and scale σ > 0. The support of the GEVD is parameter-dependent
and given as (−∞, µ−σ/ξ] if ξ < 0, R if ξ = 0, and [µ−σ/ξ,∞) if ξ > 0. The shape parameter
ξ is the main driver of the tail decay rate, with fast polynomial decay to a finite upper endpoint
for ξ < 0, exponential decay for ξ = 0, and power-law decay for ξ > 0; a huge literature treats
its estimation (de Haan and Ferreira, 2007).

The MDA condition can be reformulated equivalently as follows, which leads over to the
peaks-over-threshold (POT) limit formulation. Consider a random variable X d

= X1 with essen-
tial supremum x? = sup{x : F (x) < 1}. Then, there exists a function b(t) > 0 such that

P(X ≥ t+ y/b(t))

P(X ≥ t)
→ (1 + ξy)

−1/ξ
+ , t→ x?, y ≥ 0, (2.7)

i.e., the distribution of X ≥ t+ y/b(t) | X ≥ t converges, and we obtain a limit distribution for
the excesses above the threshold. Therefore, the asymptotic behavior of threshold exceedances
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is closely related to the MDA condition, and the existence of the limits in the two frameworks
is equivalent. As a consequence of the limit in (2.7), the generalized Pareto distribution (GPD)
arises asymptotically as the distribution of rescaled threshold exceedances (X − t) | X ≥ t, and
its distribution function is given by

GPD(y;σGPD, ξ) =

{
1− (1 + ξy/σGPD)−1/ξ

+ , ξ 6= 0,
1− exp(−y/σGPD), ξ = 0,

with parameters σGPD > 0 and ξ ∈ R, where the tail index is the same as for the GEVD in the
MDA limit, while the scale parameter σGPD can be expressed as a function of the threshold and
the GEVD scale and location parameters.

Finally, we recall the point process limit, equivalent to the MDA and POT conditions, which
provides a direct transition between the two above limits. Consider the point process of rescaled
points, {(Xi − an)/bn, i = 1, . . . , n}, for n = 1, 2, . . .. Then, (2.6) is equivalent to the weak
convergence towards a Poisson point process

{(Xi − an)/bn, i = 1, . . . , n} → PPP(κ), n→∞,

where the Poisson intensity measure is defined as κ[z,∞) = T (z) for values z in the support of
the corresponding GEVD. To grasp the relationship to the two other limits, suppose that z is
the maximum point of the limit process PPP(κ). The Poisson process probability of observing
no point larger than z is exp(−κ[z,∞)) = exp(−T (z)), which is the expression of the GEVD
and establishes the link to limits for maxima. On the other hand, we can show straightforwardly
that the distribution of the excess y = z − u > 0 of point z above a threshold u corresponds to
the GPD as defined above.

2.2.2 Statistical considerations for univariate tail modeling

In contrast to the block maximum approach, POT techniques using threshold exceedances op-
erate with the original event data and and allow detailed modeling of trends, seasonality and
extremal clustering characteristics stemming from short-term dependence. Moreover, they also
give more flexibility for balancing bias and variance through an appropriate choice of the thresh-
old. In practice, the choice of a good threshold u should reflect the transition around which
the asymptotic regime takes place for the tail approximation through the GPD to be valid.
This implies a bias-variance trade-off, as a high threshold u leads to a good approximation (i.e.,
low bias) but yields a small number of exceedances (i.e., high variance), and vice versa for a
low threshold. Experience shows that automatic threshold selection procedures are not always
reliable. It is often difficult to find a good, natural and interpretable threshold, and parame-
ter estimates are often sensitive to this choice (Scarrott and MacDonald, 2012). In principle,
the block maximum approach would allow adapting the block size to handle the bias-variance
trade-off, but often there is a natural choice of block size (e.g., yearly maxima) according to
cyclic behavior, such as seasons, which leads to less flexibility of this approach in comparison to
the POT method.

A first systematic methodological treatment of the POT approach goes back to Davison
and Smith (1990), who advocate to capture systematic variation in extreme events by including
fixed covariate effects into the GPD parameters; parameters may be estimated by maximum
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likelihood or the method of moments. Useful diagnostics for careful bias-variance assessment to
choose a suitable threshold u above which observations are deemed to be extreme are discussed
in Davison and Smith (1990), Northrop and Jonathan (2011) and Scarrott and MacDonald
(2012).

2.2.3 A wider terminology of tail classes

There is no widely recognized standard for ordering univariate tail decay rates from the slowest
to the fastest, although a broad characterization is given by the three domains of attraction of
the maximum according to the value of the tail index: Fréchet (ξ > 0), Gumbel (ξ = 0) and
reverse Weibull (ξ < 0). The Gumbel limit (ξ = 0) attracts distributions with highly diverse
tail behavior such as finite upper bounds or heavy tails, and the classification according to the
three domains of attraction may be too coarse in many situations. In addition to the maximum
domains of attraction, we can refer to various other commonly used classes of upper tail behavior
of a random variable X ∼ F , for which we recall definitions for later reference. Relationships
among such tail classes, and the membership of well-known parametric univariate distributions
in such tail classes, are summarized in the Appendix B.3.

Definition 1 (Light-, heavy- and superheavy-tailed distributions). The distribution F is heavy-
tailed if exp(λx)F (x) → ∞ as x → ∞, for any λ > 0. Further, F is superheavy-tailed if
F (exp(·)) is heavy-tailed. If F is not heavy-tailed, it is light-tailed.

Definition 2 (Regularly varying functions and distributions (RV0
α and RV∞α )). A measurable

function g is regularly varying at infinity or at zero with index α ∈ R if g(tx)/g(t) → xα as
t → ∞ or t → 0, respectively, for any x > 0. We write g ∈ RV∞α or g ∈ RV0

α, respectively.
If α = 0, then g is said to be slowly varying. A probability distribution F with upper endpoint
x? =∞ is called regularly varying with index α ≥ 0 if F ∈ RV∞−α with the survivor distribution
F = 1−F of F . If x? <∞, then F is regularly varying at x? with index α if F (x?− ·) ∈ RV0

α.

A distribution F is in the Fréchet domain of attraction if and only if it is regularly varying
at ∞ with α = 1/ξ > 0, i.e., F ∈ RV∞−1/ξ.

Definition 3 (Exponential-tailed distributions (ETα, ETα,β)). The distribution F with upper
endpoint x? = ∞ is exponential-tailed with rate α ≥ 0 if for any x > 0, F (t + x)/F (t) →
exp(−αx), t → ∞. More specifically, if α > 0 and F (x) = r(x) exp(−αx), r ∈ RV∞β , we write
F ∈ ETα,β.

By definition, F ∈ ETα with α ≥ 0 if and only if F (log(·)) ∈ RV∞−α. The class ETα,β with
β > −1 is referred to as gamma-tailed distributions. Another important subclass of ETα are the
convolution-equivalent distributions.

Definition 4 (Convolution-equivalent distributions (CEα)). The distribution F is convolution
equivalent with index α ≥ 0 if F ∈ ETα and F ? F (x)/F (x) → 2

∫∞
−∞ exp(αx)F (dx) < ∞

when x → ∞. We write F ∈ CEα. We refer to the class CE0 with F ? F (x)/F (x) → 2 as
subexponential distributions.
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Subexponential distributions are a large class of heavy-tailed distributions characterized by
the following property, the principle of the single big jump: given i.i.d. random variablesXj ∼ F ,
j = 1, . . . , d, we have

P
(∑d

j=1Xj > x
)

P
(
maxdj=1Xj > x

) → 1, x→∞.

In practice, all of the commonly used heavy tailed distributions belong to the class of subexpo-
nential distributions, CE0.

Definition 5 (Weibull- and log-Weibull tailed distributions (WTβ, LWTβ)). The distribution
F is Weibull-tailed with index β > 0 if there exist α > 0, γ ∈ R, and r ∈ RV∞γ such that
F (x) ∼ r(x) exp(−αxβ). F is log-Weibull-tailed with index β > 0 if F (exp(·)) ∈WTβ.

2.3 Dependent extremes
This section provides a quick overview over extremal dependence concepts for random vectors
with a focus asymptotic representations used in the following chapters.

2.3.1 Dependence summaries of bivariate extremes

A random vector (X1, X2) with Xj ∼ FXj , j = 1, 2, is said to display asymptotic dependence if
the limit

χ = lim
q→1

P
(
X1 ≥ F−1

X1
(q), X2 ≥ F−1

X2
(q)
)
/(1− q) (2.8)

exists and is positive; a limit of 0 defines asymptotic independence. If X1
d
= X2, then χ =

limx→x? P(X2 ≥ x | X1 ≥ x) with x? the finite or infinite upper endpoint of the marginal
distribution. The parameter χ ∈ [0, 1] is termed the (upper) tail dependence coefficient or
the (upper) tail correlation, and a value χ > 0 summarizes the strength of the dependence
within the class of asymptotically dependent variables. Asymptotic dependence (χ > 0) means
that a certain joint tail stability prevails where joint exceedance behavior is independent of the
threshold level.

Under asymptotic independence (χ = 0)) where the probability of joint exceedances condi-
tional to a marginal exceedance vanishes when moving to the most extreme quantile levels, a
more useful summary is the rate at which the convergence to zero in Equation (2.8) occurs. A
widely satisfied assumption (Ledford and Tawn, 1997) is

P{X1 ≥ F−1
X1

(q), X2 ≥ F−1
X2

(q)} = `SV0(1− q)(1− q)1/ηX , η ∈ [0, 1], (2.9)

where `SV0 : [0, 1] → R+ is a function slowly varying at zero, i.e., lims→0 `SV0(sx)/`SV0(s) = 1,
x > 0. The parameter η is termed the residual tail dependence coefficient or the coefficient
of tail dependence. Positive and negative extremal association are indicated respectively by
η ∈ (1/2, 1] and η ∈ [0, 1/2), whilst asymptotically dependent variables have η = 1 and χ =
limq→1 `SV0(1− q). The case of asymptotic independence with χ = 0 and η = 1 is possible when
`SV0(1− q)→ 0 as q → 1. A value of η = 0 means that the left-hand side of (2.9) decays faster
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than any power of 1− q, whilst if the left-hand side is exactly zero for some q < 1, we say that
η is not defined.

Sometimes, the alternative index

χ = 2η − 1 ∈ [−1, 1] (2.10)

is used, which was introduced by Coles et al. (1999). For bivariate Gaussian vectors, χ is equal
to the linear correlation coefficient.

2.3.2 Max-stable limits for componentwise maxima

Classical multivariate extreme-value theory (MEVT) provides support for the use of max-stable
models for componentwise block maxima in random vectors, because they are the only possible
limits of linearly rescaled componentwise maxima. This property further extends to stochastic
processes (de Haan and Ferreira, 2007, Chapter 9). Max-stable processes provide a natural
modeling framework for asymptotically dependent extremes. We first state the multivariate
limit theory for maxima and threshold exceedances, and we then lead over to the spatial case
in §2.4, and more generally to the case of stochastic processes.

For a sequence of i.i.d. random vectors Xi = (Xi,1, . . . , Xi,d)
T ∼ FX , i = 1, 2, . . ., the

componentwise maximum

Mn = (Mn,1, . . . ,Mn,d)
T =

(
n

max
i=1

Xi,1, . . . ,
n

max
i=1

Xi,d

)T
(2.11)

has joint distribution function F n
X . If vector sequences an = (an,1, . . . , an,d)

T and bn =
(bn,1, . . . , bn,d)

T > 0 exist such that

F n
X(an + bnz)→ G, n→∞, (2.12)

with a nondegenerate joint limit distribution G, then G is called a multivariate extreme-value
distribution (MEVD). Equivalently, (Mn − an)/bn → Z ∼ G for n → ∞. Given the con-
vergence (2.12), we say that F is in the multivariate domain of attraction of G. The class
of limit distributions G coincides with the class of max-stable distributions, which are char-
acterized by the existence of deterministic normalizing sequences αn = (αn,1, . . . , αn,d)

T and
βn = (βn,1, . . . , βn,d)

T > 0 such that

Gn(αn + βnz) = G(z), z ∈ Rd, n ∈ N;

i.e., max-stable distributions satisfy equality with the limit in (2.12) when used for FX . The
univariate marginal distributions in MEVDs are of GEVD type, and the class of GEVDs defines
the class of univariate max-stable distributions.

To focus solely on the extremal dependence structure, it is useful to abstract away from the
marginal distributions Fj of Xj by transforming them to a standardized marginal distribution
F ?. Here we transform a random variableX ∼ F , supposed to be continuous, towards a marginal
distribution of unit Fréchet or standard Pareto type as follows:

XF = − 1

logF (X)
, XP =

1

1− F (X)
, (2.13)
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with superscripts F and P indicating the Fréchet and Pareto case, respectively. When the
specific choice of one or the other does not make a difference, we simple use the ?-notation for
both and write X? ∼ F ?. Both of these transformations ensure X? ≥ 0 and P(X? > x) ∼ 1/x
for x → ∞. The subsequent limit results hold in both cases, and they even hold in the more
general case of any probability integral transform that leads to a standardized distribution with
these two properties. As for notation, given a random vector X = (X1, . . . , Xd)

T , we write F ?
X

for the distribution of the random vector X? = (X?
1 , . . . , X

?
d)T with normalized margins:

X? ∼ F ?
X , F ?

X(x) = F ?
X(x1, . . . , xd) = FX

(
F−1

1 (F ?(x1)), . . . , F−1
d (F ?(xd))

)
,

which is similar to the idea of copula modeling (Joe, 2014), where the normalized marginal dis-
tributions are assumed to be uniform. Benefits of standardizing to marginal Pareto distributions
are summarized in Klüppelberg and Resnick (2008), where the authors introduce the concept
of Pareto copula.

The multivariate extreme value limit (2.12) is equivalent to the following two conditions:

1. the univariate domain of attraction condition holds for Xj, j = 1, . . . , d, such that

F n
j (an,j + bn,jz)→ Gj(z), n→∞,

with a GEVD Gj;

2. the multivariate domain of attraction condition holds for standardized dataX?, such that

(F ?
X)n(nz)→ G?(z), n→∞;

equivalently, we observe the convergence in distribution

M ?
n

n
=

(
n

max
i=1

X?
i,1

n
, . . . ,

n
max
i=1

X?
i,d

n

)T
→ Z? ∼ G?, n→∞.

Then, the joint distribution G? has unit Fréchet marginal distributions G?
j(z) = exp(−1/z) for

z > 0, and it is max-stable satisfying (G?)n(nz) = G?(z) for any n ∈ N. We say that G? is
simple max-stable.

An important and useful implication of this result is that the convergence of marginal dis-
tributions and convergence of the dependence structure (i.e., of the marginally standardized
multivariate distribution) can be considered separately, which allows for important simplifica-
tions in statistical modeling.

2.3.3 Representations of multivariate asymptotic dependence

A simple max-stable distribution G? has representation

G?(z) = exp(−V ?(z)), z ≥ 0,

with the exponent function V ?, which is homogeneous of order −1, i.e., tV ?(tz) = V ?(z)
for t > 0. It satisfies V ?(z) = ∞ if mindj=1 zj = 0. More generally, and by analogy with
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the univariate case, we can uniquely define an exponent measure κ? on [0,∞]d such that V ?

corresponds to the "survival measure" of κ?:

V ?(z) = κ?([0, z]C), z ∈ [0,∞).

The measure κ? can be evaluated for any Borel set B in Rd
+ and is (−1)-homogeneous: tκ(tB) =

κ(B) for t > 0.
To lead over to threshold-based representations, we can reformulate the domain of attrac-

tion condition using multivariate regular variation (MRV). A multivariate distribution F ?
X is

attracted by G? with exponent function V ? if and only if it satisifies the following MRV condi-
tion:

tP(X? 6≤ tx) = t (1− F ?
X(tx))→ V ?(x), t→∞, x > 0. (2.14)

Combined with the (−1)-homogeneity of V ?, MRV suggests using the following asymptotic
approximation in practice:

P(X? 6≤ x) = F
?

X(x) = 1− F ?
X(x) ≈ V ?(x) if

d

min
j=1

xj � 0.

The MRV condition, and the peaks-over-threshold stability that it represents, can be refor-
mulated more generally. For this, we consider a homogeneous function ` continuous in 0, where
homogeneity means that `(tx) = t`(x) for any t > 0, x ≥ 0. We call this function the cost
functional, or also the risk functional or aggregation functional. Examples for ` are norms, the
minimum, or an order statistics. Then, the MRV condition implies

tP
(
X?

`(X?)
∈ A, `(X?) > tr

)
→ S`(A)× θ`

r
, t→∞, (2.15)

with the so-called angular distribution S`(·) (also called angular measure, spectral distribution,
profile distribution) defined on the unit sphere S` with respect to `, and the extremal coefficient
θ` ≥ 0 associated to `. Here, we define S`(·) as a probability distribution with overall mass
1, but sometimes one rather considers the measure θ`S`(·) with overall mass θ`. The angular
distribution indicates along which directions W = X?/`(X?) the extreme values in X? tend
to concentrate when the magnitude R = `(X?) increases. The classical extremal coefficient
θd = V ?(1, . . . , 1) (Schlather and Tawn, 2003) arises for the maximum norm `(x) = ‖x‖∞. To
further extend this framework, we can allow choosing two different risk functionals for defining
the direction and the magnitude.

In practice, we choose a aggregation functional ` and fix a high threshold r, and then we
consider events X with `(X?) ≥ r as being extreme. This procedure is based on the following
convergence in distribution resulting from (2.15):

t−1X? | `(X?) ≥ t→ Y ? ∼ H?
` , t→∞ (2.16)

where we call H?
` an `-Pareto distribution (Dombry and Ribatet, 2015). By construction, we

have
H?
` (·) =

κ`(·)
κ`({y ∈ Rd

+ | `(y) ≥ 1}) .
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Figure 2.1: llustration of empirical spectral distributions for aggregation functional ` given as
the maximum norm (left) and the L1-norm (right). Observations outside the gray boxes are
considered as multivariate threshold exceedances, and their projection on the unit sphere with
respect to the norm defines observations of the spectral distribution S`.

The case θ`S` ≡ 0 is possible, where we set θ` = 0 while S` and H?
` are not defined. For instance,

this situation arises in the case of asymptotic independence with ` = min. We further point out
that the choice of `(x) = xj0 , i.e., of using the value of a fixed component j0 as aggregation
functional, refers to a special case of the conditional extremes approach (Heffernan and Tawn,
2004).

An illustration of empirical angular distributions using the maximum norm or the L1-norm
for ` to define bivariate exceedances is given in Figure 2.1. Finally, we study the example of using
the (generalized) maximum norm for the aggregation functional in more detail. Suppose that we
consider an event X as extreme if we observe a threshold exceedance Xj > uj in at least one of
the components j = 1, . . . , d. Then, standardized marginal thresholds are u?j = 1/(1− Fj(uj)),
j = 1, . . . , d. Therefore, we use the generalized maximum norm defined by

`(x?) =
d

max
j=1

x?j/u
?
j ,

and we fix the threshold of the risk functional ` to r = 1 to identify extreme multivariate events
with `(X?) ≥ r. The extremal coefficient associated to this norm is given as θ` = V ?(u?1, . . . , u

?
d).

Moreover, the `-Pareto distributions H?
` arising for exceedances with respect to this norm, and

taking into account the marginal transformations according to the tail parameters ξj, σj > 0
and µj for j = 1, . . . , d, are known as multivariate generalized Pareto distributions (Rootzén
and Tajvidi, 2006; Rootzén et al., 2018; Rootzén et al., 2018).

2.4 Spatial extremes
Based on the univariate and multivariate limit theory exposed in the preceding sections, there
has been increasing development of theoretical and statistical methodology for modeling spatial
extremes over the last 20 years, motivated by numerous applications in climatology and environ-
mental sciences. Given a stochastic process {X(s), s ∈ RD}, written X(s) in short, we say that
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it is in the maximum domain of attraction of a max-stable process {Z(s), s ∈ RD}, written Z(s)
in short, if the max-stable convergence (2.12) holds for all finite-dimensional distributions. To
provide mathematical formulas, we first fix some notations: for a collection of distinct locations
s = (s1, . . . , sm), we write X(s) = (X(s1), . . . , X(sm))T ∼ Fs. Then, the convergence condition
requires that appropriate normalizing deterministic vector sequences an(s) and bn(s) > 0 and
max-stable limit distributions Gs(z) exist for any choice of s, i.e.,

Fs(an(s) + bn(s)z)→ Gs(z), n→∞, z ∈ Rm.

Therefore, many results and modeling mechanisms obtained within multivariate extreme-value
theory and statistics can be adapted to the setting of stochastic processes by focusing on their
bivariate or higher-dimensional multivariate marginal distributions.

A constructive representation of max-stable processes, known as the spectral representation
(De Haan, 1984; Schlather, 2002), is often useful in spatial modeling. It states that any simple
max-stable process Z?(s) (i.e., having unit Fréchet margins) can be constructively represented
as

Z?(s) = max
i=1,2,...

RiWi(s), s ∈ S ⊂ Rd, (2.17)

where {Ri} are the points of a Poisson process on R+ with intensity measure r−2 dr, and Wi(s)
are independent copies of a random process W (s) satisfying E[max{W (s), 0}] = 1 and being
independent of {Ri}. The commonly used spatial models for max-stable processes are con-
structed from specific choices of W (s) in (2.17). Based on a centered Gaussian process W̃ (s),
constructions with W (s) = (W̃ (s))ν+ lead to extremal-t processes (Opitz, 2013) with degrees of
freedom parameter ν > 0, whereas constructions withW (s) = exp(W̃ (s)−Var(W̃ (s))/2) lead to
max-stable processes of Brown–Resnick type (Kabluchko et al., 2009). In all cases, appropriate
multiplicative scaling constants have to be applied to the spectral process W (s) to ensure the
unit moment condition.

2.4.1 Peaks-over-threshold limits for stochastic processes

The generalization of POT limits to the setting of stochastic processes is more intricate since
the exceedance regions in multivariate space Rd used in conjunction with the POT-convergence
(2.15) must be replaced by function spaces that are usually infinite-dimensional (Ferreira and
De Haan, 2014). Most results in the literature have been derived for the space of continuous
functions over a nonempty compact domain K ⊂ RD, denoted by C(K) and endowed with the
supremum norm ‖f‖∞ = sups∈K |f(s)|. The restriction of this function space to non-negative
functions is denoted by C+(K).

As before, we can work with homogeneous aggregation functionals `. A functional ` :
C+(K) → [0,∞) is called risk functional (or cost functional, aggregation functional) if it is
continuous and homogeneous, i.e., `(tf) = t `(f) for t ≥ 0. Functional limits equivalent to
the multivariate limits (2.15) and (2.16) arise (Dombry and Ribatet, 2015). Limits arising in
(2.16) are known as `-Pareto processes (Ferreira and De Haan, 2014; Dombry and Ribatet,
2015; Thibaud and Opitz, 2015; Palacios-Rodriguez et al., 2020), and these limit processes can
be transformed towards more general asymptotic univariate marginal distributions based on the
parameters ξ(s), σ(s) > 0, µ(s) for shape, scale and location, respectively, to obtain the class
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of generalized `-Pareto processes. We first provide a constructive definition of these two model
classes.

Definition 6 (Standard `-Pareto process). Suppose that Y ? = {Y ?(s), s ∈ K} is a stochastic
process in C+(K). We call Y ? a standard `-Pareto process if it can be represented as

Y ?(s)
d
= RW (s), s ∈ K, (2.18)

where

1. W is a stochastic process in C+(K) satisfying `(W ) = 1;

2. R has a standard Pareto distribution;

3. W and R are stochastically independent.

The process W is called spectral process or profile process ; is is defined on the unit sphere
in C+(K) with respect to `. This definition can be shown to be equivalent to the POT stability
property: for any u ≥ 1, the distribution of the renormalized exceedances {u−1Y ?|`(Y ?) ≥ u}
is equal to the distribution of Y ?. By construction, we get W d

= Y ?/`(Y ?) and R
d
= `(Y ?).

We now define generalized `-Pareto process to provide flexibility in the marginal distributions
according to the location-scale-shape parametrization of univariate EVT.

Definition 7 (Generalized `-Pareto process). Given an `-Pareto process Y ? and continuous
real functions ξ(s), σ(s) > 0 and µ(s) over K, a generalized `-Pareto process is any process
constructed as

Y (s)
d
=

{
µ(s) + σ(s)(Y ?(s)ξ(s) − 1)/ξ(s), ξ(s) 6= 0,
µ(s) + σ(s) log Y ?(s), ξ(s) = 0,

s ∈ K. (2.19)

In the above Definitions 6 and 7, we can think of s as a general index that may refer to loca-
tions in time, space or space-time. By analogy with the multivariate setting of random vectors,
different choices of ` may be used to answer different questions. If `(f) = maxdj=1 f(sj)/uj for
certain points sj ∈ K, j = 1, . . . , d, we focus on processes with at least one exceedance of the
marginal thresholds uj > 0. By contrast, `(f) = mindj=1 f(sj)/uj requires exceedances at each
of the d points. The original definition of a Pareto process (Ferreira and De Haan, 2014) uses
`(f) = sups∈K f(s), but conditioning on a different `(f) rather than sups∈K f(s) is desirable in
applications where data are only observed at a finite number of irregularly spaced points.

2.4.2 The trinity of limits of stochastic processes

By analogy with the trinity of univariate EVT limits outlined in §2.2.1, we recall the different
forms of convergence of extremes of continuous processes in terms of block maxima, threshold
exceedances and point processes, as done in our paper Thibaud and Opitz (2015). Throughout,
we will use the symbol =⇒ to indicate weak convergence of random elements from the univariate,
multivariate or functional domain. For i.i.d. copies X1, X2, . . . of a stochastic process X =
{X(s), s ∈ K} with continuous sample paths, we say that X is in the maximum domain of
attraction of a max-stable process Z = {Z(s), s ∈ K} if there exist sequences of deterministic
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continuous normalizing functions an(s) and bn(s) > 0 and such that (de Haan and Ferreira,
2007, Ch. 9) {

n
max
i=1

bn(s)−1{Xi(s)− an(s)}
}

=⇒ {Z(s)} , n→∞, s ∈ K, (2.20)

in C(K), with the limit process Z having nondegenerate univiariate GEVDs FZ(s). The distri-
bution of the marginally transformed process Z? with unit Fréchet margins, i.e., of the simple
max-stable process, is fully characterized by the exponent measure Λ on C(K)\{0} through the
relation (Giné et al., 1990)

Λ

[ ⋃
j=1,...,d

{
f ∈ C(K) : sup

s∈Kj
f(s) ≥ zj

}]
= − log pr

{
sup
s∈K1

Z?(s) ≤ z1, . . . , sup
s∈Kd

Z?(s) ≤ zd

}
(2.21)

for any collection of nonempty compact sets Kj ⊂ K and zj > 0 for j = 1, . . . , d. The measure
Λ is uniquely defined if we impose the constraint Λ{C(K) \ C+(K)} = 0. We obtain the
unique version as Λ+(B) = Λ[{f ∈ C(K) : f+ ∈ B}], for measurable B ⊂ C+(K) \ {0}, with
f+(s) = max{f(s), 0}. When the sets Kj = {sj} are singletons, expression (2.21) corresponds
to the multivariate exponent function V ?.

As before, max-stability of Z? implies that the measure Λ+ is homogeneous of order −1,
i.e., Λ+(tB) = t−1Λ+(B), t > 0. We now consider the limit behavior according to the scale-
profile decomposition of `-Pareto processes given in Definition 6. For a risk functional ` and
f ∈ C+(K) with `(f) > 0, consider the pseudo-polar coordinates (r, f0) with r = `(f) and
f0 = f/`(f) ∈ S` = {f ∈ C+(K | `(f) = 1}. If θ`(K) = Λ+[{`(f) ≥ 1}] > 0, arguments similar
to the multivariate pseudo-polar representation (2.15) imply the factorization

Λ+(df) = θ`(K) r−2drS`(df0), r > 0, (2.22)

with S` the `-spectral distribution on S`.
To establish the trinity of functional EVT limits, we consider the following additional as-

sumptions:
(A1) Marginal convergence: sequences of normalizing continuous functions and an(s) bn(s) > 0
exist such that, for each s ∈ K,

max
i=1,...,n

bn(s)−1{Xi(s)− an(s)} =⇒ Z(s), n→∞, s ∈ K, (2.23)

with a nondegenerate limit Z(s). The convergence (2.23) is uniform in s ∈ K.
(A2.i) Normalized max-stable convergence:{

max
i=1,...,n

n−1X?
i (s)

}
=⇒ {Z?(s)}, n→∞, (2.24)

where the max-stable limit process Z?(s) is characterized by its exponent measure Λ+.
(A2.ii) Standard point process convergence:{

n−1X?
i (s), i = 1, . . . , n

}
=⇒ P , n→∞, (2.25)
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where P = {Pi(s), i = 1, 2, . . .} is a Poisson process with intensity measure Λ+.
(A2.iii) Convergence of standard sup-exceedances:{

n−1X?(s) : sup
s∈K

X?(s) > n

}
=⇒ {Y ?

sup(s)}, n→∞,

where Y ?
sup is a standard sup-Pareto process with sup-spectral distribution Ssup associated to the

exponent measure Λ+ of Z? in (2.24) through (2.22). The convergences in assumptions (A2.i),
(A2.ii) and (A2.iii) are assumed to hold in C+(K)\{0} or some suitably defined closure thereof.

Then, from de Haan and Ferreira (2007), assumptions (A1) and (A2.i) are together equivalent
to the max-stable convergence in (2.20). From Ferreira and De Haan (2014), assumptions (A2.i),
(A2.ii) and (A2.iii) are equivalent. By assuming (A2.i), (A2.ii) or (A2.iii), we get the POT
convergence {

n−1X?(s) : `(X?) > n
}

=⇒ {Y ?
` (s)}, n→∞, (2.26)

from Dombry and Ribatet (2015, Theorem 3), where Y ?
` is a standard `-Pareto process charac-

terized by its `-spectral distribution S` according to the exponent measure Λ+, see (2.22).
The convergence (2.26) builds the link between max-stable limits for maxima and `-Pareto

limits for threshold exceedances, thus establishing a basis for threshold-based inference as follows.
From its constructive definition, the distribution of a standard `-Pareto process is r−2drS`(df0),
which is also equal to Λ+(df)/θ`(K) from (2.22) with f = rf0. Hence the convergence in (2.26)
conveys that

P {X? ∈ B | `(X?) > r} ≈ rΛ+(B)/θ`(K), r →∞,
for B ⊂ {f ∈ C+(K) : `(f) > r}. From de Haan and Ferreira (2007, Theorem 9.3.1), any of the
assumptions (A2.i), (A2.ii) and (A2.iii) imply that P{`(X?) ≥ r} ∼ θ`(K)/r as r →∞. Thus,
the convergence of `-exceedances gives P(X? ∈ B) ≈ Λ+(B) for extreme events B defined in
terms of `-exceedances.

Assumption (A1) implies the convergence of marginal pointwise maxima to GEVDs, such
that equivalent univariate POT limits exist. From a Pareto process perspective, it is convenient
to fix a high threshold function u(s) and to assume that the marginal univariate distributions
satisfy

P(X(s) > x) = [1 + ξ(s)(x− µmarg(s))/σmarg(s)]−1/ξ(s)
+ , x > u(s), (2.27)

which establishes the link to the univariate tail probabilities of the generalized Pareto process
through the usual location-scale-shape parameters from univariate EVT. Due to various stan-
dardization constants and the conditional process in (2.26), there are slight differences in the
location and scale parameters of marginal distributions in (2.27) and of the generalized Pareto
process in (7); see the details from our work in Palacios-Rodriguez et al. (2020).

2.5 Statistical considerations and challenges for spatiotem-
poral extremes

In this section, we shortly summarize statistical approaches for dependent extremes. In partic-
ular, we highlight challenges that arise for spatiotemporal statistical modeling of extremes.
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At an exploratory stage, empirical versions of the bivariate summaries in §2.3.1 can be
explored. They can help choose appropriate models and inference tools. Part of my work
presented in Chapter 4 develops flexible modeling and inference techniques for such bivariate
summaries, and of more general related summaries, by constructing generalized additive models
for the situation where the strength of extremal dependence may depend on covariates in a
nonlinear way.

2.5.1 Modeling with asymptotic models

Inference for max-stable models is often tricky, especially if the number of components in the
observation vectors is much larger than 2, for instance in spatial and spatiotemporal modeling.
Full likelihoods can only be calculated in small dimensions, which motivated the use of alter-
native, less efficient inference techniques, such as composite likelihoods (Padoan et al., 2010).
While componentwise block maxima are relatively easy to extract from data, a general drawback
with such maxima data is that the vectors of maxima may contain components from different
extreme events, such that interpretation of results in terms of the original extreme event episodes
can be awkward.

The above limitations of max-stable models have led to a stronger focus on POT-based meth-
ods in recent years. The choice of the threshold level in POT modeling usually requires some
thought and exploratory analysis. Moreover, in the multivariate and functional setting, there
is no unique ordering of values and therefore no unique way of defining the magnitude of an
extreme event and of setting a threshold. In practice, the choice of a norm, or more generally of
an aggregation functional `, as presented in the previous section, provides satisfactory flexibility
and can be adapted to the specific scientific questions to be answered. In inferential proce-
dures, the choice of the threshold further determines how non-extreme observations are removed
from the sample or how their values are censored. Censoring mechanisms may lead to more or
less computationally demanding inference procedures, where the effort to calculate multivariate
censoring probabilities is often the dominating component of numerical cost. Threshold choice
in POT approaches has been discussed extensively in the literature (Scarrott and MacDonald,
2012), while the validity of max-stability with respect to the choice of block length in block max-
ima techniques is usually not questioned. However, the distribution of observed block maxima
may still be far from the asymptotic regime, especially in the case of asymptotic independence,
which merits stronger attention and the development of more flexible alternative model classes.

The framework of generalized `-Pareto processes with an aggregation functional ` for model-
ing threshold exceedances has become increasingly popular because it circumvents many of the
computational bottlenecks of max-stable processes. Some typical difficulties arise in practice.
It is often desirable to work with an `-function that depends on the values of all locations in
the spatial domain (e.g., the maximum, minimum or average of all values in space), but obser-
vations are often available only at a finite number of irregularly spaced locations. Therefore,
the `-function cannot be evaluated based on the observations, and a different `-function (and
therefore a different criterion for characterizing extreme events) must be used on the observed
data. My contributions to this modeling approach using `-Pareto processes are twofold: first, the
statistical inference for the generalized Pareto process associated to the flexible and well-known
class of extremal-t processes (Thibaud and Opitz, 2015); second, the development of techniques
for semi-parametric resampling of extreme events, even of yet unobserved magnitude, under min-
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imal and nonparametric assumptions on the dependence structure (Palacios-Rodriguez et al.,
2020; Opitz et al., 2021). In earlier work (during my PhD thesis), I developed pairwise statis-
tical inference for spatial extremes based on the spectral measures S for different aggregation
functionals ` in bivariate distribution (Opitz et al., 2015).

2.5.2 Limitations of asymptotic models

The strong asymptotic justification of max-stable and generalized Pareto models can be both
a blessing and a curse. Max-stability is an expression of theoretical elegance and simplicity,
and it provides a robust modeling framework when few extreme data are available. However,
this strong assumption may be far from satisfied at subasymptotic levels arising with finite
samples. An instructive example is asymptotic independence, where the limiting max-stable
distribution is the product of independent margins and cannot capture the potentially strong
dependence that remains at extreme subasymptotic levels. Very extreme joint risks tend to be
strongly overestimated by asymptotic models if the data exhibit decreasing dependence strength
at more extreme levels. Because asymptotic models such as generalized `-Pareto processes are
characterized by POT-stability, they may be too rigid in practice. The absence of such stability
implies that the spatial or spatiotemporal extent of extreme episodes depends on the overall event
magnitude, e.g., expressed through the value of the aggregation functional `, and more realistic
models should make allowance for magnitude-dependent formulations of extremal dependence.
It is often ambiguous whether data should be modeled using an asymptotically dependent or
asymptotically independent distribution, and most families of distributions and processes only
exhibit one type of dependence. This implies that asymptotic models may be too restrictive in
practice, such that more flexible subasymptotic models can be useful in practice.

2.5.3 Towards increased flexibility through subasymptotic modeling

Because of practical limitations of asymptotic models such as max-stable or Pareto processes,
especially their restriction to asymptotic dependence, it is natural to seek subasymptotic models
for spatial extremes, which combine tail flexibility with computational tractability and have
known tail characteristics. In the case of asymptotic independence, Gaussian dependence models
might be reasonable and computationally convenient but they may lack flexibility in the joint
tails. Alternatively, Wadsworth and Tawn (2012) proposed inverted max-stable models, but they
are as difficult to fit as max-stable models. In the case of asymptotic dependence, subasymptotic
models were also developed (e.g., Wadsworth and Tawn, 2012; Krupskii et al., 2018) with the
aim of being more flexible than max-stable processes and making inference easier. A number
of other subasymptotic models have been proposed in recent years, and some of them able to
accommodate both asymptotic dependence and asymptotic independence have been developed
in the work presented in this manuscript, see Chapters 4 and 6.

Achieving a gain in flexibility for extremal dependence modeling, combined with flexible
representations of marginal distributions, has therefore become one of the main purposes of my
work. It has led me to propose more flexible model classes, and to develop related asymptotic
theory and statistical methods. One can mention the bivariate random scale constructions in §4.2
and GAM-based techniques for estimating extremal dependence conditional to covariates in §4.1,
the Gaussian scale mixture processes in §6.1, max-infinitely divisible processes extending the
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class of max-stable processes in §6.2, and hierarchical constructions in §6.3. While approaches
to spatial modeling of extremes (i.e., without considering temporal dependence in extremes)
have received a lot of attention in the 21st century, their spatiotemporal modeling is yet in its
infancy. The models and methods presented in this manuscript contribute to fill this blank space
and aim to help lay the foundation for off-the-shelf implementations of space-time extreme value
analysis.



Chapter 3

Flexible modeling of univariate extremes

Throughout this chapter on new approaches to statistical modeling of univariate extremes, we
focus on the tail behavior of data using the setting of threshold exceedances, and we do not tackle
explicit modeling of extremal dependence. Univariate EVT suggests using the asymptotically
arising generalized Pareto distribution (GPD), as recalled in Equation (2.8). We here present
two conceptually very different solutions to improve flexibility by relaxing the default assumption
that exceedance data correspond to an i.i.d. sample of the GPD. In § 3.1, we explain how the
generalized additive modeling (GAM) framework can be used to model threshold exceedances
and their occurrence conditionally to observed covariates or to random effects. When random
effects are included, then Bayesian estimation using INLA is developed, and the penalized
complexity (PC) prior of the tail index is derived. In § 3.2, a distributional extension of the GPD
is developed by proposing a class of models that can be represented as ratios of two random
variables, while keeping the GPD as a special case. This approach may provide better goodness-
of-fit in subasymptotic modeling when convergence to the asymptotic GPD is not yet attained in
data, especially in heavy-tailed data, and it may allow using a larger fraction of the data for the
tail model. Moreover, the ratio representation is a good entry point to develop latent process
modeling of spatial and spatiotemporal extremes, as shown later in § 6.3.

3.1 Three-stage GAMs for threshold exceedances

3.1.1 Three-stage structure

We here present a general modeling strategy that has been proposed and applied in Opitz
et al. (2018); Castro-Camilo et al. (2020). In order to construct a model based on threshold
exceedances that allows us to fully characterize nonstationary univariate tail behavior, we use
the following three components:

1. a threshold; it may have to be chosen nonstationary, i.e., conditionally to predictor vari-
ables, to ensure that it is not too low (where the asymptotic regime would not be valid)
and not too high (where too few or no exceedances would occur);

2. the threshold exceedance probability above the threshold in component 1, which may also
be nonstationary and depend on predictor variables;

39
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3. a probability distribution for the positive threshold excesses above the threshold in com-
ponent 1, which may also be nonstationary.

Our general strategy for modeling trends in high quantiles can be decomposed into three
stages corresponding to the above components, each consisting of a suitable univariate response
distribution combined with a generalized additive regression equation capturing systematic vari-
ation with covariates or random effects. An early GAM framework for maxima data using the
generalized extreme-value distribution (GEVD) was proposed by Chavez-Demoulin and Davison
(2005) where smoothing splines are incorporated into the parameters, and a POT-based ap-
proach with similarities to the three-stage procedure outlined below was proposed by Northrop
and Jonathan (2011) and Youngman (2019).

We use the following three-stage model. After fitting a full distribution in Stage 1 to all
data, a high probability p is fixed to determine a nonstationary threshold for Stages 2 and 3 by
setting it to the p-quantile of the distribution fitted in Stage 1. The vector of one or several
covariates is denoted by z, and it may include components that refer to spatial location or time.

1. Stage 1 (Full data distribution): This stage is "context-dependent", in the sense
that one chooses a combination of response distribution and link function that is deemed
appropriate for the data (bulk and extremes), and is amenable to GAM inference (e.g.,
Gaussian, Gamma...). A high nonstationary threshold u(z) is then chosen as the p-quantile
of the fitted response distribution.
An alternative procedure for Stage 1 would be to directly use quantile regression at the level
p without explicitly specifying a response distribution, but it may come along with high
estimation uncertainty if p is relatively high, especially with complex predictor structures.

2. Stage 2 (Binary logistic regression): Using the threshold u(z) obtained in Stage 1,
exceedance indicators are modeled as Bernoulli random variables, i.e.,

1(Y (z) > u(z)} ∼ Ber{pu(z)}. (3.1)

In case of multiple observations for the same predictor configuration z, the Bernoulli
distribution can be replaced with the corresponding binomial distribution.

3. Stage 3 (GPD regression): Using the threshold u(z) obtained in Stage 1, positive
threshold exceedances Y +

u (z) = Y (z)− u(z) | Y (z) > u(z) are extracted from the sample
and are modelled through the GPD, whose parameters ξ(z) and σGPD(z) may depend on
the covariate vector z.

For reasons of modeling and computational complexity, we use the working assumption that
the data are conditionally independent with respect to the trend surfaces. Dependence that
arises between observations conditionally to observed covariates can be captured to some extent
by including appropriately defined random effects at the layer of the linear predictors. For
similar reasons, the tail index ξ is often chosen to be stationary in practice; in this case, it is
estimated but it does not depend on covariates or random effects.

If Stage 1 involves a response distribution for which a nonstationary scaling parameter µ(z)
is estimated, it may be sensible to include it as a deterministic offset in the GPD scale, i.e.,
to include log(µ(z)) in the additive predictor of log(σ(z)). Since the nonstationary patterns
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in the bulk and the tail of the distribution could be quite similar to each other, this allows
borrowing strength from the bulk for more accurate tail estimation. Especially in a Bayesian
framework, the estimation may be simplified since the Gaussian prior distributions of additive
components in the GPD predictor can be chosen to be relatively smooth and informative, i.e.,
strongly concentrated around zero. This idea of propagating the scale information from the
bulk model to the tail model echos the fundamental question if extreme-value models should
only serve to correct deficiencies of models fitted to the full distribution. That is, should the
extreme-value model be fitted to some variant of normalized residuals of bulk models? Or is the
full distribution not of any interest, in which case relatively sophisticated models are needed to
capture only the tail of the distribution in its full complexity?

3.1.2 Bayesian inference of space-time trends with INLA

Fully Bayesian modeling approaches for spatial and/or temporal extremes often rely on latent
processes embedded into the GPD parameters to capture trends and dependence. In particular,
Gaussian processes can be used to capture spatial dependence and covariate-driven trends in
data such as precipitation; e.g., Cooley et al. (2007) take advantage of simulation-based Markov
chain Monte-Carlo (MCMC) methods for the estimation of posterior distributions. Here, we
adopt a similar model structure based on using Gaussian random effects in the predictors of the
three-stage specification in §3.1. We develop efficient statistical inference geared towards esti-
mating space-time random effects by exploiting the speed and accuracy of INLA to approximate
posterior distributions. A good choice of prior distributions enables appropriate smoothing of
predicted quantiles, which is especially important when predicting rare events. In this setting,
we can predict extreme conditional quantiles by combining the posterior mean predictions from
the binomial and GPD stages of the three-stage model.

Gaussian process priors can be deployed to capture systematic temporal and spatial trends
through semi-parametrically specified random effects in the three stages. We point out that
Gaussian dependence is usually not well adapted to extremes since it is often not strong enough
in the tails, but the use of latent Gaussian models, i.e., of Gaussian random effect components,
still makes sense for capturing nonlinear trends of space, season/time and other covariates.

The dependence between estimators of the two GPD parameters (scale and shape) in Stage 3
may cause unstable inferences with techniques such as INLA or MCMC. Therefore, to avoid
confounding problems, we propose to reparametrize the GPD using the tail index ξ and a
specific q-quantile κq for some fixed probability of interest q ∈ (0, 1), i.e.,

GPD(y;κq, ξ) =

{
1−

[
1 + {(1− q)−ξ − 1}y/κq

]−1/ξ

+
, ξ 6= 0,

1− (1− q)y/κq , ξ = 0,
y > 0; (3.2)

The overall α-quantile yα(z) of the data, for 1− pu(z) < α < 1, is then obtained as

yα(z) = u(z) + GPD−1{1− (1− α)/pu(z);κq(z), ξ(z)}

=

{
u(z) + κq(z)

[
{(1− α)/pu(z)}−ξ(z) − 1

]
/
{

(1− q)−ξ(z) − 1
}
, ξ(z) 6= 0,

u(z) + κq(z) log{(1− α)/pu(z)}/ log(1− q), ξ(z) = 0,
,

where GPD−1 denotes the quantile function of the GPD in (3.2).
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The additive predictor for INLA or for a frequentist GAM-implementation can be specified
for log κq, and choices such as the median (i.e., setting q = 0.5) may be expedient in practice.
Moreover, for Bayesian modeling we restrict attention to ξ ≥ 0 and thus exclude the very light-
tailed case ξ < 0 with finite and potentially nonstationary upper endpoint of the support of
the distribution, which may pose problems for likelihood-based modeling, and in particular for
accurate Laplace approximations with INLA.

Penalized complexity prior of the tail index

We derive the penalized complexity (PC) prior distribution (see §1.3.5) for the tail index in
the GPD, which provides a principled prior choice (Simpson et al., 2017) for this crucial model
parameter. We penalize the distance to a baseline model possessing light exponentially-decaying
tails, i.e., by using ξ = 0 as baseline. Moreover, when ξ ≥ 1 the tail is so heavy that the
mean does not even exist, and when ξ ≥ 1/2, the variance is infinite. Because of this, too
large values of ξ are unrealistic for many data types. It is therefore important to choose a
suitable prior distribution for ξ that giv priority to light and moderately heavy tails while
properly downweighting unrealistically heavy tails. Exponential tails usually make sense for
environmental data, and the heavier the tail, the stronger the penalty.

Let fξ(y) denote the GP density and fξ0(y) denote the exponential density. We obtain the
following formula for the Kullback-Leibler divergence with respect to the baseline model:

KLD(fξ||fξ0) =
ξ2

1− ξ , 0 ≤ ξ < 1. (3.3)

To define a PC prior π(ξ) for the tail index ξ, we assume that fξ is penalized at constant rate
in terms of its "distance" d(fξ, fξ0) =

√
2 KLD(fξ||fξ0) to the reference fξ0 , therefore involving

an exponential prior distribution for d(fξ, fξ0). Because the KLD (3.3) converges to infinity as
ξ → 1, such a prior will put zero mass on ξ ≥ 1, hence preventing infinite-mean models to occur.
We here propose two possible prior choices, which are based (i) directly on Equation (3.3), or
(ii) on an approximation of (3.3) as ξ → 0:

(i) exact PC prior:

π(ξ) = λ exp(−λd(fξ, fξ0))

∣∣∣∣∂d(fξ, fξ0)

∂ξ

∣∣∣∣ =
√

2λ exp

{
−
√

2λ
ξ

(1− ξ)1/2

}{
1− ξ/2

(1− ξ)3/2

}
= λ̃ exp

{
−λ̃ ξ

(1− ξ)1/2

}{
1− ξ/2

(1− ξ)3/2

}
, 0 ≤ ξ < 1, (3.4)

where the penalization rate parameter is λ = λ̃/
√

2 > 0;

(ii) approximate PC prior obtained by replacing (3.3) with the first-order approximation ξ2

near 0, leading to an exponential distribution with rate λ̃ =
√

2λ > 0:

π(ξ) =
√

2λ exp(−
√

2λξ) = λ̃ exp(−λ̃ξ), ξ ≥ 0; (3.5)

see Figure 3.1 for an illustration, which shows a good approximation of the exact PC prior (i)
by (ii), especially close to ξ = 0.
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Figure 3.1: PC priors for the GPD tail index ξ using the exact formula (left) or an approximation
(right).

Application to predicting extreme spatiotemporal precipitation quantiles

The following work was motivated by the Data Challenge of the 2017 conference on Extreme-
Value Analysis (EVA2017, Delft, Netherlands), with the goal of predicting monthly quantiles at
the 99.8% level in daily precipitation data for observed and unobserved locations. Data have
been measured at 40 stations during the period 1972–2016 and have been divided in a training
set (1972–1995) and a validation set (1996–2016), with only some of the stations active during
all of the training period.

In Stage 1 of the model, we fitted a gamma regression to the positive precipitation intensities,
with the goal to set a high space-time threshold u(s, t) chosen as the quantile for a probability p+.
In the regression equations of all three stages, we separately included an intercept term, a spatial
random effect with Matérn covariance, and a weekly-indexed seasonal random effect with cyclic
second-order random walk prior. The computational efficiency of INLA allowed us to conduct
an extensive cross-validation study for selecting certain model parameters that are crucial for
prediction (precisions of latent Gaussian effects, spatial range of Matérn effect, exceedance
probability p+ to set the threshold in Stage 1). The model is misspecified here because it does
not account for spatiotemporal dependence within precipitation episodes, such that we cannot
expect a good automatic fit of smoothing parameters through posterior distributions. Instead,
we used the cross-validated prediction score of the data challenge (quantile score) to compare a
grid of values for the smoothing parameters, and we choose the best performing configuration.
We devise a stratified cross-validation scheme by holding out complete data either for specific
years or for specific stations to appropriately cope with the twin goals of temporal and spatial
prediction, respectively.

Figure 3.2 illustrates the resulting INLA-based posterior means and credible intervals of the
spatial and seasonal effects for the three stages. A moderately high threshold of p+ = 0.92 is
identified for the tail model, and in particular the re-estimated exceedance probability model
in Stage 2 helps identify nonstationarity that is different between the tail and the bulk of the
distribution. The tail index is estimated at 0.34 with 95% credible interval of (0.31, 0.38),
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Figure 3.2: INLA fit of random effects in three-stage GAM for Dutch precipitation extremes.
Top row: spatial random effect. Bottom row: seasonal random effect.

implying moderately heavy tails, substantially heavier than the gamma tails in Stage 1.

3.1.3 Application to spatiotemporal gap filling for inference on ex-
treme hotspots

In the paper Castro-Camilo et al. (2020), already highlighted in §1.4.2, we describe an approach
implemented for the data challenge of the Extreme-Value Analysis conference 2019 in Zagreb.
The dataset consists of anomalies of gridded daily Red Sea surface temperatures, where some
space-time-contiguous areas of the dataset have been masked artificially. The goal is to predict
a summary variables of space-time clusters, defined as the minimum over space-time cylinders,
with a focus on extreme episodes. For that purpose, we develop a method for probabilistic
prediction of extreme value hotspots in a spatiotemporal framework, tailored to big datasets
containing important gaps. In this setting, direct calculation of summaries from data, such as
the minimum over a space-time domain, is not possible due to missing data.

To obtain predictive distributions for such cluster summaries, we propose a two-step ap-
proach. First, we model marginal distributions with a focus on accurate modeling of the upper
tail by using the three-stage GAM outlined above. Then, after transforming the data to a
standard Gaussian scale based on the marginal model, we estimate a Gaussian space-time de-
pendence model defined locally in the time domain for the space-time subregions where we want
to predict. As an alternative to GAMs for marginal modeling, we also studied the approach of
pooling data locally in space using nearest-neighbor techniques and then estimating distribution
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Figure 3.3: GAM-based spatially varying tail parameter estimates for Red Sea surface tempera-
ture anomalies based on the three-stage approach. Left display: GPD scale parameter. Middle
display: GPD shape parameter. Right display: exceedance probability.

parameters according to the three stages separately for each pooled dataset. To cope with the
high space-time resolution of data consisting of 11315 days and 16703 spatial pixels, the local
Gaussian models use the Markov representation of the Matérn correlation function based on the
SPDE approach. They are fitted in a Bayesian framework through INLA. Finally, we generate
posterior samples of the INLA model, backtransform them to the original marginal scale of the
data, and then use them to provide statistical inferences through Monte-Carlo estimation, such
as predictive distributions of cluster summaries.

For illustration, Figure 3.3 shows the GAM-based estimates of the GPD scale, the GPD shape
and the exceedance probability, where the threshold is fixed as a high quantile of a Gaussian
GAM for the mean of the Red Sea temperature anomalies.

3.1.4 Possible extensions of multi-stage GAMs for extremes

In future work, it would be interesting to replace the generalized Pareto distribution by more
flexible sub-asymptotic response distributions (e.g., Papastathopoulos and Tawn, 2013; Naveau
et al., 2016, or the class of models described in the following §3.2) amenable to GAM-based infer-
ence. More flexible models could potentially be applied at much lower thresholds, thus avoiding
that the non-continuous behavior around the threshold arising at relatively high quantiles. The
GAMs, or the mixed GAMs when using INLA, are not well-suited to properly capture space-time
dependence. As long as the primary objective is to estimate high marginal quantiles, the exact
characterization of the dependence structure is a secondary issue, or even perhaps a nuisance
in practice. Two-step approaches, such as the one adopted in Castro-Camilo et al. (2020), can
be a useful practical solution to jointly model complex marginal behavior and spatiotemporal
dependence, especially when prediction over space and time is the goal. Moreover, when the
GAM does not appropriately capture the spatiotemporal dependence patterns, then some care
is required with respect to assessment of the estimation uncertainty. More accurate standard
errors can be obtained by using block bootstrap techniques with re-estimation of parameters for
each bootstrap sample (Carlstein, 1986).
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3.2 Ratio constructions extending the GPD
In Yadav et al. (2020), we develop new flexible univariate models for light-tailed and heavy-tailed
data, which extend a hierarchical representation of the GPD limit for threshold exceedances.
These models can accommodate departure from asymptotic threshold stability in finite samples
while keeping the asymptotic GPD as a special case, and they can capture the tails and the bulk
jointly without losing much flexibility. For the Bayesian setting, we further design PC priors to
shrink the model towards a simpler reference given by the GPD.

It is often difficult to find a good, natural and interpretable threshold, and parameter esti-
mates are often sensitive to this choice (Scarrott and MacDonald, 2012). This has motivated
the development of subasymptotic models for univariate extremes, which are more flexible than
the asymptotic GPD at finite levels while keeping a GPD-like behavior in the tail; see, e.g.,
Frigessi et al. (2003); Carreau and Bengio (2009); Papastathopoulos and Tawn (2013); Naveau
et al. (2016), among others. Ideally, subasymptotic models allows us to describe also the dis-
tribution of moderate and low values through an appropriate parametrization, which partly or
fully separates control over bulk and tail properties.

In our approach, we extend the characterization of the GPD as an exponential mixture
with rate parameter following a gamma distribution. Let Gamma(β, α) denote the gamma
distribution with shape β > 0 and rate α > 0, then

Y | Λ ∼ Exp(Λ)
Λ ∼ Γ(α, β)

}
⇒ Y ∼ GPD(α/β, 1/β); (3.6)

see Reiss and Thomas (2007). In other words, exponentially-decaying tails become heavier (and
of power-law type) by making their rate parameter Λ random. We propose new tail models
constructed as in (3.6), but we modify the top and/or lower levels of the hierarchy in order
to gain in flexibility, while keeping the GP distribution with ξ ≥ 0 as a special case. For the
Bayesian setting, we derive the PC priors with respect to the GPD baseline model to allow
for control over the departure from the asymptotic GPD. We mainly focus on a parsimonious
extension of (3.6), which is based on a gamma distribution in both levels of the hierarchy. It
can potentially generate a wide variety of new models with light and heavy tails and various
behaviors in the bulk. While this section focuses on the univariate construction of this model,
its distributional properties and the PC prior, we describe a statistical application in the context
of Bayesian hierarchical modeling in § 6.3.

3.2.1 Univariate tail properties in rate mixture constructions

We can construct new rate mixture models for observations Y following a probability distribution
F as follows. We consider a family of distributions F ( · ;λ) with rate parameter λ and having
support on [0,∞), and an independent latent random variable Λ ≥ 0, such that Y | Λ ∼ F (·; Λ).
Equivalently, we have the following ratio representation, which is useful for simulation and
inference:

Y | Λ d
=
Ỹ

Λ
, with Λ ≥ 0⊥ Ỹ ≥ 0, Ỹ ∼ F ( · ; 1), (3.7)

The unconditional upper tail behavior of Y is determined by the interplay between the upper
tail of Ỹ and the lower tail of Λ, i.e., the upper tail of 1/Λ. We shortly discuss two particularly
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interesting scenarios; recall §2.2.3 for the discussion of various tail classes.
In the first scenario, we assume that 1/Λ in (3.7) has power-law tail decay, i.e., its distribution

is regularly varying with index −a < 0. If the distribution FY (·; 1) in (3.7) has a lighter upper
tail than that of 1/Λ, such that E(Ỹ a+ε) <∞ for some ε > 0 with Ỹ ∼ FY ( · ; 1), then Breiman’s
Lemma 1 (Breiman, 1965) implies that

1− F (y) = Pr(Y > y) ∼ E(Ỹ a) Pr(1/Λ > y), y →∞. (3.8)

The heavier-tailed random factor 1/Λ in (3.7) dominates the tail behavior of Y , while the
lighter-tailed random factor Ỹ contributes to extreme survival probabilities only through a
scaling factor.

In the second scenario, we assume that both Ỹ and 1/Λ in (3.7) have tails of Weibull type
with Weibull indices η̃ and ηΛ, respectively. Then, the variable Y constructed as in (3.7) also
has a tail of Weibull type. In particular, its Weibull index is ηY = (η̃ηΛ)/(η̃ + ηΛ) < min(η̃, ηΛ),
such that the tail of Y always has a slower decay rate than that of each of the two random
factors Ỹ and 1/Λ; see Arendarczyk and Debicki (2011).

3.2.2 Gamma-gamma model

Specifying the gamma distribution for F (·; 1) in (3.6) yields the hierarchical gamma-gamma
model, which may be written as

Y | Λ ∼ Γ(β1,Λ), Λ ∼ Γ(β2, α), α, β1, β2 > 0. (3.9)

The model (3.6) simplifies to the GPD obtained in (3.6) when β1 = 1. The distribution of Y
corresponds to a rescaled Fν1,ν2 distribution with degrees of freedom ν1 = 2β1 and ν2 = 2β2, and
scaling factor αβ1/β2, such that Y D

= (αβ1/β2)Z, with Z ∼ F2β1,2β2 . The gamma-gamma model
has a heavy power-law tail with tail index ξ = 1/β2.

3.2.3 Model extension with Weibull-type tail behavior

For data with a light upper tail and tail index equal to zero, we propose a model extension that
keeps the heavy-tailed GPD on the boundary of the parameter space as follows:

Y 1/k | Λ ∼ Γ(β1,Λ), k, β1 > 0,
Λ ∼ GIG(α/2, b, β2), (α, b, β2) ∈ DGIG,

(3.10)

where the latent rate parameter Λ is assumed to follow the generalized inverse Gaussian (GIG)
distribution with parameters α/2, b and β2, and where DGIG denotes its parameter space. For
the GIG(a, b, β)-distribution, it is given by a, b ≥ 0 and as follows for β: β ∈ R if a, b > 0; β > 0
if b = 0, a > 0; β < 0 if a = 0, b ≥ 0. The GIG distribution has an exponentially decaying tail
(i.e., Weibull-type tail with Weibull index one).

This model generalizes the gamma-gamma construction, which is on the boundary of the
parameter space with b = 0, k = 1 and β2 > 0. It captures a wide range of tail behaviors, from
very light tails to relatively heavy tails. Specifically, when b > 0, we deduce that Y has Weibull
index ηY = (1/k2)/(2/k) = 1/(2k) > 0, such that the model can capture Weibull tails with any
Weibull index.



48 CHAPTER 3. MODELING UNIVARIATE EXTREMES

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5
β1

P
C

 P
rio

r 
π(

β 1
)

penalty rate
κ1=1
κ1=2
κ1=3

Figure 3.4: PC prior density of β1 > 0 in the gamma-gamma ratio model for penalty rates
κ1 = 1, 2, 3 (blue, red and black curves, respectively).

3.2.4 PC priors of the shape parameters in the gamma-gamma model

We consider the GPD as the baseline distribution for setting PC priors in the gamma-gamma
model. The PC priors derived for the tail index parameter ξ of the GPD in §3.1.2 can be
straightforwardly adapted to provide a PC prior for β2 = 1/ξ. However, special care is required
for the shape parameter β1 of the gamma distribution in the numerator, which represents the
“distance” to the GP sub-model with β1 = 1. Writing l(β1) =

√
2KLD {γ(·;λ, β1)‖γ(·;λ, 1)} for

the Kullback-Leibler divergence of the gamma densities in the baseline and the general model,
we calculate the following PC prior for β1 > 0:

π(β1) =
κ

2
exp{−κ

√
2(β1 − 1)ψ(β1)− 2 log{Γ(β1)}}

∣∣∣∣∣ (β1 − 1)ψ′(β1)√
2(β1 − 1)ψ(β1)− 2 log{Γ(β1)}

∣∣∣∣∣
with κ > 0 the a predetermined penalty rate. An illustration is given in Figure 3.4, where a
clear peak at the parameter value of the baseline GPD model becomes visible.



Chapter 4

Flexible modeling of bivariate extremes

While Chapter 1 focused on univariate tails, we now turn to the modeling of the dependence
of extremes, viewed principally from the most fundamental configuration – a bivariate random
vector – in this Chapter 4. This chapter maintains some analogy with the preceding chapter. At
the beginning in §4.1, we develop generalized additive models (GAMs) to flexibly capture non-
linear variation in extremal dependence conditional to covariates for bivariate and multivariate
random vectors. The second §4.2 provides a catalog of very general and unifying results char-
acterizing extremal dependence in bivariate random scale constructions, which are ubiquitous
in the literature on flexible multivariate and spatial tail modeling, including representations of
multivariate POT limit distributions. In this chapter, we work with standard representations of
extremal dependence based on normalized marginal distributions as introduced in §2.3, such that
extremal dependence can be interpreted by ignoring marginal behavior; see also the extremal
dependence summaries in §2.3.1.

4.1 GAMs for bivariate extremal dependence

The probability and structure of co-occurrences of extreme values in multivariate data may
critically depend on auxiliary information provided by covariates. We develop a flexible GAM
framework based on high threshold exceedances for estimating covariate-dependent joint tail
characteristics for both regimes of asymptotic dependence and asymptotic independence. The
framework is based on suitably defined marginal pretransformations and projections of the
random vector along the directions of the unit simplex, which lead to convenient univariate rep-
resentations of multivariate exceedances based on the exponential distribution. This framework
allows combining GAM modeling both for the univariate margins and for bivariate dependence.

In §4.1.1, we recall asymptotic joint tail representations based on exponential marginal dis-
tributions, and we derive how exponential distributions arise for appropriately defined univariate
projections of the random vector in §4.1.2.

4.1.1 Representations of multivariate extremal dependence

For studying upper tail dependence, normalized marginal distributions are useful; recall (2.13)
where we define superscripts XP and XF to refer to marginal probability integral transform that

49
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establish standard Pareto or unit Fréchet distributions, respectively, in the case of continuous
marginal distributions. Exponential marginal distributions are particularly convenient here since
they are available in all standard implementations of generalized linear or additive models, and
of survival models where part of their distribution may be censored. We therefore work with
the following marginal transformation to a standard exponential scale, which is based on a
log-transformation of the standard Pareto representation:

XE = logXP .

If we start from the unit Fréchet representation, we can use an inverse transformation to obtain
an inverted standard exponential scale:

XE↓ = 1/XF ,

i.e., we switch the upper and the lower tail of the distribution to obtain standard exponential
margins.

Consider a random vector X = (X1, . . . , Xd), whose joint extremal behavior is characterized
by the exponent function V ?(z) as defined in §2.3. We here use a transformation L(z) = V ?(1/z)
of the exponent function with inverted arguments, known as stable tail dependence function. The
multivariate regular variation limit (2.14) of classical multivariate limit theory implies

1− Pr(XE↓ ≥ x) ∼ 1− exp(−L(x)) = 1−G?(1/x),
d

max
j=1

xj → 0, (4.1)

where G is a max-stable distribution with unit Fréchet marginal distribution. The stable tail
dependence function can be expressed through Pickands’ dependence function A as

L(x) = (x1 + . . .+ xd)A

(
xd

x1 + . . . xd
, . . . ,

x1

x1 + . . .+ xd

)
(4.2)

where A is defined for any direction (or weight vector) ω on the unit simplex Sd:

ω ∈ Sd =

{
(ω1, . . . , ωd) ≥ 0 |

d∑
j=1

ωj = 1

}
. (4.3)

Without loss of generality, we can drop ωd = 1−∑d−1
j=1 ωj and write A(ω1, . . . , wd−1), such that

A is a univariate function when d = 2. The function A must satisfy certain shape constraints
to be valid, among them maxdj=1 ωj ≤ A(ω) ≤ 1, where the lower bound is attained for perfect
asymptotic dependence. The above equations establish a useful directional representation of
multivariate tails in the case of asymptotic dependence where A has a non-trivial form.

With asymptotic independence, L(x) = x1 + . . .+xd has "trivial" form without parameters.
For the case of asymptotic independence, we propose to exploit the following more general
multivariate tail representation (Wadsworth et al., 2013):

Pr
(
XE

1 > ω1x, . . . , X
E
d > ωdx

)
∼ `(exp(x);ω) exp(−λ(ω)x), x→∞, (4.4)

with the angular dependence function λ(ω) and a slowly varying function `(x;ω). This rep-
resentation generalizes the bivariate representation in (2.9), which considers only the direc-
tion along the diagonal, and where the bivariate coefficient of tail dependence is given by
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η2 = 1/(2λ(1/2, 1/2)). The following forms arise for the angular dependence function. In
the case of asymptotic dependence, we have λ(ω) = maxdj=1 ωj. With asymptotic independence,
we obtain λ(ω) > maxdj=1 ωj. Classical mutual independence of the components of X leads to
λ(ω) = 1. If there were some form of "negative dependence" in the tail of X (e.g., negative
correlation), it is possible to obtain λ(ω) > 1; we do not consider this case in the following.

We concentrate our efforts on the construction of estimators of A(ω) and λ(ω) for fixed ω
but given additional auxiliary predictor information.

4.1.2 Univariate projections with exponential limits

Given the weight vector 0 ≤ ω = (ω1, . . . , ωd) ∈ Sd and a vector x, we define two types of
univariate projections of x along ω. The max-projection of x along ω is given as

max ω(x) =
d

max
j=1

ωjxj, ω ∈ Sd,

while the min-projection of x along ω is given as

min ω(x) =
d

min
j=1

xj/ωj, ω ∈ Sd.

These projections are constructed to give little influence on the projection to components xj
with small weights ωj. The two projections are linked by the following inversion transformation:

max ω(x) = 1/min ω(1/x).

Based on the tail representation (4.1) ofX with Pickands’ dependence function A(ω), which
is useful mainly for asymptotic dependence, we obtain that the lower tail ofMmin↓

ω = minω(XE↓)
is exponential with rate A(ω). In practice, we can model the lower tail through a right-censored
exponential distribution. On the other hand, ifX allows for the more general tail representation
(4.4) under asymptotic independence with angular dependence function λ(ω), then exceedances
of the min-projection Mmin

ω = minω(XE) satisfy

Pr
(
Mmin
ω > x+ u |Mmin

ω > u
)
→ exp {−xλ(ω)} , u→∞, x > 0.

In practice, such exceedances can be modeled with an exponential distribution with rate λ(ω).
Figure 4.1 gives an empirical illustration of the two above projections based on a bivariate
sample of the logistic extreme-value distribution.

4.1.3 GAM-based estimation

The exponential distribution and the right-censored exponential distribution, both of which arise
asymptotically for the directional projections in §4.1.2, are standard response distributions in
regression modeling. Here, generalized linear models may not give realistically flexible specifica-
tions of covariate influence on extremal dependence, such that we consider generalized additive
modeling.
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Figure 4.1: Illustration of univariate directional projections of multivariate extremes based on
a sample of size 2000 from the bivariate logistic extreme-value distribution. Left column: nor-
malized bivariate data sample. Right column: Projections along ω = (1/2, 1/2)T . Black dashed
lines in the displays on the right indicate the expected values of projections; the red dashed line
in the lower right display indicates the expected value of exceedances.
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Given observation vectorsXi, i = 1, . . . , n, each with a covariate vector zi, we first transform
margins to the exponential or inverted exponential scale. The original marginal distributions
can also be modeled through GAMs by using the available covariates; recall §3.1.

After transformation to the marginal exponential scale in the case of asymptotic depen-
dence, the observations Mmin↓

ω,i = minω(XE↓
i ) are assumed to be exponential, and they are

right-censored above a low threshold ulower. In the case of asymptotic independence, we extract
the positive threshold excesses

(
Mmin
ω,i − uupper

)
| Mmin

ω,i > uupper of Mmin
ω,i = minω(XE

i ) above a
high threshold uupper.

For estimating extremal dependence conditional to covariates, we then estimate z → A(ω; z)
and z → λ(ω; z) for fixed ω. In both cases, relevant values of the dependence function are
contained in the interval [maxdj=1 ωj, 1], such that we propose to use the link function

hω(x) = log
x−maxdj=1 ωj

1− x , x ∈
(

d
max
j=1

ωj, 1

)
,

to link the exponential rate parameter to the GAM predictor. Specifically for d = 2, fixing
ω = (0.5, 0.5) allows estimating the extremal dependence summaries χ(z) and η(z). In practice,
it may be useful to obtain estimates for both dependence regimes, and to investigate the results
to draw conclusions about the membership in one of the regimes. In some cases, the covariate
value z may govern the dependence regime.

For estimation, one could opt for the classical GAM framework using penalized likelihood
methods. Alternatively, Bayesian methods could be implemented, such as INLA, which already
provides support for censored exponential distributions in the context of survival analysis. We
recall the standard GAM approach. We aim to estimate the following semi-parametric specifi-
cation

f(ω; z) = h−1

{
zTβ +

K∑
k=1

hk(tk; z)

}
with f being one of {A, λ}, link function h, and semi-parametric effects hk, such as spline
functions described through B-splines and their coefficients to be estimated. The we denote by
λ the column vector that gathers all parameters to be estimated in the model. The dimension
(e.g., number of spline knots) and smoothness of semi-parametric functions hk can be determined
based on the penalized log-likelihood with penalty parameters γk ≥ 0, k = 1, . . . , K, given as

`(λ,γ) = `(λ)− 1

2

K∑
k=1

γk

∫
Hk
h
′′

k(tk)
2 dtk,

Coefficients in the semi-parametric functions can be optimized given fixed penalty parameters,
while optimal penalty parameters can be found through techniques such as cross-validation.
This avoids overfitting and allows finding the optimal smoothness of functions hk. In Bayesian
estimation, this regularization mechanism is obtained through the choice of prior variance and
dependence of coefficients to be estimated.

A simulation study in Mhalla et al. (2019) confirms good estimation behavior of classical
GAM estimation for the the directional dependence functions in practice, especially when the
sample size is relatively large.
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Figure 4.2: Nonparametric extremal dependence modeling of NO2 air pollution in France. Left:
measurement stations with road traffic stations in red. Middle: Effect of spatial distance assum-
ing asymptotic dependence. Right: effect of spatial distance assuming asymptotic independence.

4.1.4 Application to NO2 air pollution in France

We illustrate the usefulness of our modeling framework on a large dataset of nitrogen dioxide
(NO2) measurements recorded at 569 monitoring stations in France between 1999 and 2012.
We use the GAM framework for modeling marginal distributions and tail dependence in large
concentrations observed at pairs of stations. We tackle the central question of how extremal
dependence evolves with spatial distance and over years.

Our results imply asymptotic independence of data observed at different stations, and we
find that the estimated coefficients of tail dependence decrease as a function of spatial distance
and show distinct patterns for different years and for different types of stations (traffic vs.
background).

Due to the very large data set, we focus modeling on monthly maxima extracted from the
original data, and we estimate covariate-driven dependence coefficients that are useful under
asymptotic dependence or asymptotic independence. Univariate distributions were fitted using
GAMs for marginal GEVDs to normalize margins to the exponential scales. Then, the GAMs
for extremal dependence summaries were constructed as follows by using nonlinear functions of
spatial distance (dist) between locations and of year of observation ( t), and we consider two
types of measurement stations (road traffic stations vs. background stations):

h{θ(t, dist, type)/2} =θ0 + f θ1 (t) + f θ2 (dist) + f θ(t, dist),

h
[
{2η(t, dist, type)}−1

]
=η0 + f η1 (t) + f η2 (dist) + f η(t, dist),

with the classical bivariate extremal coefficient θ = 2−χ (in the case of asymptotic dependence)
and the coefficient of tail dependence η in the case of asymptotic independence.

The network of monitoring stations and some estimation results with respect to spatial
distance are illustrated in Figure 4.2. The results clearly point towards asymptotic independence
in data, and distinct extremal dependence behavior was observed for different years, and for
stations near road traffic as compared to background stations; see Mhalla et al. (2019) for
details.
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4.1.5 Possible extensions of GAM-based extremal dependence

The method developed above was centered on estimating response surfaces for fixed direction ω.
In contrast, to estimate the full dependence functions A or λ for a fixed covariate level z, it is
necessary to satisfy the shape constraints on these functions (e.g., convexity). For this purpose,
constrained optimization tools can be made available (e.g., related to the cobs technique –
COnstrained B-Splines Nonparametric Regression Quantiles). Moreover, in some cases visual
inspection of estimation results may allow us to decide on the asymptotic dependence regime
with high certainty, as in the case of the above air pollution data, but we deem important that
formal statistical decision tools are developed to distinguish between asymptotic dependence and
asymptotic independence in data conditional to auxiliary data. In a Bayesian setting, where
dependence characteristics for asymptotic dependence and asymptotic independence could be
estimated jointly, the design of prior distributions could be geared towards a clear preference
for one of the two regimes in the posterior distributions. More generally, in cases where a mix
of the two regimes is possible depending on the predictor information, e.g., due to different
weather patterns, we could seek to identify a partition of the covariate space into two subspaces
corresponding to the two regimes, respectively.

4.2 Extremal dependence in random factor constructions
The preceding section exploited "model-free" asymptotic representations to develop flexible for-
mulations of extremal dependence conditional to auxiliary information. In this section, we turn
away from covariate-based approaches and take a more theoretical perspective by characteriz-
ing extremal dependence properties of large classes of bivariate constructions, most of which
are non-asymptotic distributions and can be used to model the full bivariate distribution. The
question of how to construct flexible and interpretable dependence models accounting for a va-
riety of bivariate extremal behavior with respect to summaries such as χ and χ is recurrent in
the literature, and no general consensus and unified treatment has emerged so far. In Engelke
et al. (2019), we decide to consider the extremal dependence properties of vectors with a random
scale construction (X1, X2) = R(W1,W2), motivated by the ubiquity of such constructions in
the literature and their high flexibility. In most of the spatial and spatiotemporal dependence
models considered in the literature and particularly in my work, the bivariate distributions can
be cast into such random scale representations, such that this section provides a very general
theoretical framework and a catalog of useful constructions for modeling extremal dependence.
At the end of this section, it is illustrated how our results can be used to propose new models
that encompass both dependence classes of asymptotic dependence and independence.

A rich variety of bivariate dependence models have a pseudo-polar representation

(X1, X2) = R(W1,W2), R > 0 independent of (W1,W2) ∈ W ⊆ R2, (4.5)

where we term R the radial variable, assumed to have a non-degenerate distribution, and
(W1,W2) the angular variables. Indeed, many well-known copula families, including the el-
liptical, Archimedean, Liouville and multivariate Pareto families have such a representation.
We here focus on the upper tail dependence of such constructions. In particular, we examine
whether a given (X1, X2) displays asymptotic dependence or asymptotic independence, and the
strength of dependence within these classes.
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Using the common summary parameters χ and η = 2(χ − 1), we obtain that broad factors
affecting the results are the heaviness of the tails of R and (W1,W2), the shape of the support of
(W1,W2), and dependence between (W1,W2). When R is distinctly lighter-tailed than (W1,W2),
the extremal dependence of (X1, X2) is typically the same as that of (W1,W2), whereas similar
or heavier tails for R compared to (W1,W2) typically result in increased extremal dependence.
Similar tail heavinesses in R and (W1,W2) represent the most interesting and technical cases,
and we find both asymptotic independence and dependence of (X1, X2) possible in such cases
when (W1,W2) exhibit asymptotic independence. The bivariate case often directly extends to
higher-dimensional vectors and spatial processes, where the dependence is mainly analyzed in
terms of summaries of bivariate sub-vectors.

A broad split in representations of type (4.5) is the dimension ofW , the support of (W1,W2).
The most common case in the literature is thatW is a one-dimensional subset of R2, such as the
unit sphere defined by some norm or other homogeneous function. Examples include the Ma-
halanobis norm (elliptical distributions), L1 norm (Archimedean and Liouville distributions) or
L∞ norm (multivariate Pareto distributions). On top of the support W , to obtain distributions
within a particular family, R or (W1,W2) may be specified to have a certain distribution. Where
W is two-dimensional, it may sometimes be reduced to the one-dimensional case by redefining
R, such as in the Gaussian scale mixtures of Huser et al. (2017). Where W is two-dimensional,
the possible constructions stemming from (4.5) form an especially large class, since (W1,W2)
can itself have any copula. In this case, we focus on how the multiplication by R changes the
extremal dependence of (W1,W2), summarized by the coefficients (χW , ηW ), to obtain the ex-
tremal dependence of the modified vector (X1, X2) in terms of its coefficients (χX , ηX). The
marginal distributions of (W1,W2) and R play a crucial role, since, intuitively, the heavier the
tail of R the more additional dependence is introduced in the vector (X1, X2).

As we are focused on the upper tail of (X1, X2), we henceforth assume (W1,W2) ∈ R2
+; by the

invariance of copulas to monotonic marginal transformations, this also covers random location
constructions of the form (Y1, Y2) = S + (V1, V2), S ∈ R, (V1, V2) ∈ V ⊆ R2, with independence
between S and (V1, V2). For simplicity of presentation, we will often make the restriction that
W1 and W2 have the same distribution.

Various authors have focused on extremal dependence arising from certain types of polar
representation, but from the perspective of conditional extremes proposed by (Heffernan and
Tawn, 2004). This is different to our focus; here we examine the extremal dependence as both
variables grow at the same rate. Next, some of the most interesting and useful results of Engelke
et al. (2019) are summarized, and a literature review framing a large number of existing examples
in terms of our general results is given afterwards. For the following results, recall the list of tail
classes and associated notations given for reference in §2.2.3. If Q represents a bivariate random
vector Q = (Q1, Q2), we denote the minimum of its margins by Q∧ = Q1 ∧Q2.

4.2.1 Constrained angular variables

We first focus on the case where W is defined by a norm ν; specifically let W = {(w1, w2) ∈
R2

+ : ν(w1, w2) = 1}. Other types of constrained spaces may sometimes be of interest, but norm
spheres are a common restriction, and this focus allows greater generality in other aspects. We
examine the extremal dependence based on the heaviness of the tail of R.

To begin, the case where R belongs to the Fréchet MDA is the least delicate: as long as
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R has a much heavier tail than each of (W1,W2), results do not strongly depend on other
considerations. No equality in distribution is assumed between W1,W2 in this case.

Proposition 1 (R in Fréchet MDA). Let FR ∈ RV∞−α, α ≥ 0, P(W1 > 0) = P(W2 > 0) = 1,
and E(Wα+ε

j ) <∞, j = 1, 2, for some ε > 0. Then ηX = 1, and

χX = E [min {Wα
1 /E(Wα

1 ),Wα
2 /E(Wα

2 )}] . (4.6)

The condition E(Wα+ε
j ) <∞ is guaranteed when W is the unit sphere of a norm ν. Propo-

sition 1 notably also covers the general case where (W1,W2) ∈ R2
+. Small modifications to

Proposition 1 yield the bivariate exponent function of X, given by

VX(x1, x2) = E [max {Wα
1 /(E(Wα

1 )x1),Wα
2 /(E(Wα

2 )x2)}] . (4.7)

Next, we suppose that R is in the Gumbel MDA, with upper endpoint r? ∈ (0,∞], i.e.,

lim
t→r?

FR(t+ r/b(t))/FR(t) = e−r,

where b(t) is termed the auxiliary function. Such distributions can be expressed as

FR(r) = c(r) exp

{
−
∫ r

z

b(t)dt
}
, (4.8)

where z < r < r?, c(r) → c > 0 as r → r?, and the function a = 1/b is absolutely continuous
with density a′ satisfying limt→r? a

′(t) = 0 (e.g. Embrechts et al., 1997, Chapter 3.3). If r? =∞,
we also have that for any λ > 1, ρ ∈ R,

lim
r→∞

(rb(r))ρFR(λr)/FR(r) = 0. (4.9)

Before stating results for the Gumbel case of R, we first have to introduce some technical
notation. Suppose that W1

d
= W2

d
= W ∈ [0, 1] and ν(W1,W2) = 1. To this end, we assume that

ν is a symmetric norm, i.e., ν(x, y) = ν(y, x), and scaled to satisfy ν(x, y) ≥ max(x, y), such that
the unit sphere of ν is contained in that of the maximum, with ν(b, 1− b) = b for some b ≥ 1/2.
Let τ(z) = z/ν(z, 1 − z) = 1/ν(1, 1/z − 1). The random variable Z = W1/(W1 + W2) ∈ [0, 1]
satisfies

(W1,W2) = (Z, 1− Z)/ν(Z, 1− Z) = (τ(Z), τ(1− Z)). (4.10)

Define Iν = [b1, b2] ⊆ [1/2, 1] as the interval such that τ(z) = 1 for all z ∈ Iν , and τ(z) < 1
for z 6∈ Iν , and write τ(z) = τ1(z) for z ∈ [0, b1], τ(z) = 1 for z ∈ [b1, b2], and τ(z) = τ2(z) for
z ∈ [b2, 1], with τ1 strictly increasing and τ2 strictly decreasing. Figure 4.3 illustrates τ for a
particular ν.

We assume further that

(Z1): Z has a Lebesgue density, fZ , positive everywhere on (0, 1), and that its survival function
is regularly varying at 1, with FZ(1− ·) ∈ RV0

αZ
, αZ > 0,

and make the following mild regularity assumptions on the norm, ν, or equivalently τ :
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Figure 4.3: Illustration of unit spheres of norms. Left: the unit sphere for a particular norm ν;
centre-left: illustration of τ(z) (solid line) and τ(1 − z) (dashed line) for the same ν. Centre-
right and right: illustration of the unit sphere of ν(x, y) = θmax(x, y) + (1 − θ) min(x, y) for
two different values of θ.

(N1): The function τ is twice (piecewise) continuously differentiable except for finitely many
points, at which we only require existence of left and right derivatives of first and second
order.

(N2): τ is regularly varying as it approaches 1 from either side, i.e., 1− τ1(b1− ·) ∈ RV0
1/γ1

, and,
if b2 < 1, 1− τ2(b2 + ·) ∈ RV0

1/γ2
, γj ∈ (0, 1], j = 1, 2. We label γ = min(γ1, γ2) with γ = γ1

if b2 = 1.

In practice, (N1) and (N2) are satisfied by a wide variety of commonly used norms, and the
upper limit of γ1, γ2 ≤ 1 in (N2) is a consequence of convexity of the norm ν. Note that
τ(z) ≶ τ(1− z)⇔ z ≶ 1− z, so that

min(τ(z), τ(1− z)) =

{
τ(z), z ∈ [0, 1/2],

τ(1− z), z ∈ [1/2, 1].

Finally, denote ζ = τ(1/2) ∈ [1/2, 1], so that W∧ = min(τ(Z), τ(1− Z)) ∈ [0, ζ].

Proposition 2 (R in Gumbel MDA). Assume FR satisfies (4.8) and a number of other mild
assumptions, see Engelke et al. (2019). Then:

1. If ζ < 1, then χX = 0 and ηX = limx→r? logFR(x)/ logFR(x/ζ), which is defined only for
r? =∞.

2. If ζ = 1, then ηX = 1. Further, b1 = 1/2 and

χX =

0 if b2 > 1/2, i.e.,P(W = 1) > 0,
2τ ′2(1/2+)

τ ′2(1/2+)− τ ′1(1/2−)
otherwise.

We observe that asymptotic independence arises for ζ < 1, with the residual tail dependence
coefficient determined by the properties of FR. The following corollary covers an important
subclass of distributions in the Gumbel MDA.
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Corollary 1. If ζ < 1 and − logFR ∈ RV∞δ , δ ≥ 0, then ηX = ζδ.

Specifically if δ = 0, as in the case of log-normal R, then ηX = 1.
Finally, we suppose that R > 0 is in the negative Weibull MDA with upper endpoint r? > 0,

i.e.,

FR(r? − s) = `(s)sαR , ` ∈ RV0
0, αR > 0;

equivalently, we have that FR(r? − ·) ∈ RV0
αR

.

Proposition 3 (R in negative Weibull MDA). Assume FR(r?−·) ∈ RV0
αR

and that (N1), (N2)
and (Z1) hold. Then:

1. If ζ < 1, then χX = 0 and ηX is not defined.

2. If ζ = 1, then b1 = 1/2 and

χX =

0 if P(W = 1) > 0,
2τ ′2(1/2+)

τ ′2(1/2+)− τ ′1(1/2−)
otherwise,

ηX =

{
αR

1+αR
if P(W = 1) > 0,

1 otherwise.

4.2.2 Unconstrained angular variables

We now treat the case where the support W is two-dimensional. To avoid additional compli-
cations, we assume throughout this subsection that W1 and W2 share the common marginal
distribution FW . We also generally assume that the tail dependence coefficient χW and the
residual tail dependence coefficient ηW of (W1,W2) exist. For two-dimensionalW , the variety of
marginal and dependence behaviors possible for (W1,W2) means that systematic characteriza-
tion according only to the MDA of R is more difficult. In fact, we need to consider different tail
decays of both the radial variable R and the angular variable W since the combination of the
two is crucial to classify the extremal dependence of (X1, X2) = R(W1,W2). We focus on some
interesting sub-classes that still incorporate a wide variety of structures and cover most of the
parametric univariate distributions available for R andW . We structure results according to the
tail heaviness assumed for R, W , or both of them. In decreasing order we consider distributions
with superheavy tails, regularly varying distributions, distributions of log-Weibull and Weibull
type in the following exposition. Table 4.1 summarizes the general results developed in the fol-
lowing, and Table 4.2 contains the extremal dependence coefficients for all combinations of tail
decays of R and W for the specific, yet interesting example where W1 and W2 are independent.
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Radius R additional assumptions χX ηX
Superheavy tails
a) FW (x)/FR(x)→ c Prop. 4 1+cχW

1+c
1

b) FR = o(FW ) χW > 0 χW 1
χW = 0, FR(x) ≤ CFW∧(x) 0 ηW
χW = 0, FW∧ = o(FR) 0 (2b)

RV∞−αR
a) E(WαR+ε) <∞ P(W > 0) = 1 (4.6) 1
b) FW ∈ RV∞−αW
(i) αR > αW χW (4.12)
(ii) αR = αW Prop. 6 Prop. 6 1

LWTβR>1 FW , FW∧ ∈ LWTβR χW (4.14)
WTβR FW ∈WTβW , FW∧ ∈WTβW∧

Prop. 8 Prop. 8

Table 4.1: Tail dependence summaries χX and ηX for (X1, X2) = R(W1,W2) with different tail
decay rates of the radial variable R > 0 and unconstrained variables W1

d
= W2.
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Angle W Super-heavy Reg. varying log-Weibull (βW > 1) Weibull Neg. Weibull
Radius R
Super-heavy χX = (1 + c)−1 χX = 1 χX = 1 χX = 1 χX = 1

ηX : Prop. 4(2)
Reg. varying * αR < αW : χX = (4.6) > 0 χX = (4.6) > 0 χX = (4.6) > 0 χX = (4.6) > 0

αR = αW : Prop. 6
αW < αR < 2αW :

ηX = αW/αR
αR > 2αW : ηW = 1/2

log-Weibull * * βR = βW : ηX = (4.14) unknown χX = 0
(βR > 1) ηX = 1

Weibull * * unknown ηX = 2−βR/(βR+βW ) χX = 0
ηX = 1

Neg. Weibull * * * * ηX =
αW + αR
2αW + αR

Table 4.2: The values of χX and ηX for (X1, X2) = R(W1,W2) with W1,W2
d
= W independent, with different tail decay rates of

the radial and angular variables. The *’s indicate that multiplication with R does not change the tail dependence of (W1,W2),
i.e., χX = χW = 0 and ηX = ηW = 1/2. The combinations of Weibull and log-Weibull tails remain open problems.
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Superheavy-tailed variables

Suppose that R or W is superheavy-tailed, i.e., logR or logW is heavy-tailed. This case
naturally arises when considering random location constructions logR + (logW1, logW2); we
thus further assume W > 0 so that logWj, j = 1, 2, are well defined.

Proposition 4 (Superheavy-tailed variables).

1. If FlogR ∈ CE0 and FW (x)/FR(x)→ c ≥ 0 as x→∞, then ηX = 1 and

χX = (1 + c χW )/(1 + c) > 0. (4.11)

2. If FlogW ∈ CE0 and FR = o(FW ), then χX = χW . If further FlogR ∈ CE0 and

(a) FlogW∧ ∈ CE0 with FR(x)/FW∧(x) ≤ C for a constant C > 0 as x → ∞, then
ηX = ηW ;

(b) FW∧ = o(FR), then, provided the limit exists,

ηX = lim
x→∞

logFW (x)/ logFR(x).

Regularly varying variables

In this section we consider the case where R, W or both of them are regularly varying. When
R is regularly varying with index αR > 0 and E(WαR+ε) < ∞ for some ε > 0, then the tail
dependence coefficient χX is as described in Proposition 1. We first consider the case where W
is regularly varying with index αW > 0 and R is lighter tailed, i.e., either also regularly varying
with αR > αW or even lighter-tailed such as distributions in the Gumbel or negative Weibull
domain of attraction. Second, we study the case where both R and W are regularly varying
with the same index αW = αR, which turns out to be particularly involved, and which requires
additional assumptions.

Proposition 5 (W regularly varying with R lighter). Let FW ∈ RV∞−αW , αW ≥ 0, and suppose
that either FR ∈ RV∞−αR with αR > αW , or R is in the Gumbel or negative Weibull domain of
attraction; denote the latter case by αR =∞. Then χX = χW and

ηX =

{
αW/αR, if αR < αW/ηW , ηW = 0 or ηW not defined,
ηW , if αR > αW/ηW or αR =∞. (4.12)

The case where R and W are regularly varying with the same index α > 0 leads to various
scenarios for the extremal dependence in (X1, X2).

Proposition 6 (Regularly varying R and W with the same index). Let FR, FW ∈ RV∞−α with
α > 0. Then ηX = 1, and we have the following:

1. If FlogR ∈ CEα, and if FW (x)/FR(x)→ c ≥ 0 as x→∞, then

χX =
E(Wα

∧ ) + c χW E(Rα)

E(Wα) + cE(Rα)
.
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2. If FlogW ∈ CEα and FR = o(FW ), then χX = χW .

3. Let FlogR ∈ ETα,βR with βR ≥ −1 and E(Rα) =∞ if βR = −1, and let FlogW ∈ ETα,βW .

(a) If χW > 0 and if either βW > −1 or βW = −1 and E(Wα) =∞, then χX = χW .

(b) If χW ≥ 0 and if either βW < −1 or βW = −1 < βR and E(Wα) < ∞, then
χX = E(Wα

∧ )/E(Wα).

(c) If βR > −1, βW > −1 and E(Wα+ε
∧ ) <∞ for some ε > 0, then χX = 0.

We remark that the tail of R is not dominated by that of W in Proposition 6(1), while it is
dominated in Proposition 6(2). Proposition 6(3) shifts focus to relatively heavy tails in R with
E(Rα) =∞, such as the gamma tails of ETα,β with β > −1.

Log-Weibull-type variables

In this and the following subsubsection we concentrate on radial and angular variables in the
Gumbel domain of attraction. Due to the large variety of distributions in this domain we
consider subsets that include the most commonly used distribution families. We first study the
case where both R and W are log-Weibull-tailed; equivalently, logR and logW are Weibull-
tailed. We recall that a random variable Y is log-Weibull-tailed if

F Y (y) = `(log y)(log y)γ exp
(
−α(log y)β

)
, ` ∈ RV∞0 , γ ∈ R, α, β > 0, (4.13)

and we write FY ∈ LWTβ. In the following, we denote the β-parameters of R and W by βR and
βW , respectively. The superheavy-tailed case, βR < 1 or βW < 1, is already covered by §4.2.2,
and the case of regularly varying tails with βR = 1 or βW = 1 is treated in §4.2.2. We therefore
study the remaining case βR > 1 and βW > 1, which encompasses important distributions
such as the log-Gaussian. It is more intuitive to consider the random location construction
logR + log(W1,W2), where we can apply convolution-based results. When independent heavy-
tailed summands are involved in the convolution, typically only one of the values of summands
has a dominant contribution to a high values of the sum, resulting in relatively simple formulas;
see §4.2.2. On the contrary, in the light-tailed set-up all summands may contribute significantly
when high values arise in the sum, rendering the tail analysis more intricate. Only relatively few
general results on convolutions with tails lighter than exponential are available in the literature.

We consider the set-up where the components R, W and W∧ are log-Weibull-tailed with the
same coefficient β > 1 and a simplified form of the slowly varying function ` by assuming that
it is asymptotically constant, i.e., `(x) ∼ c > 0.

Proposition 7 (Light-tailed random location with FR ∈ LWTβ, β > 1). Suppose that
FR, FW , FW∧ ∈ LWTβ with possibly different parameters α, γ indexed by the corresponding R,
W and W∧, but where β = βR = βW = βW∧ > 1. Assume that the slowly varying functions `
behave asymptotically like positive constants.

1. If χW > 0, then χX = χW > 0.
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2. If χW = 0, then χX = 0 and

ηX = ηW ×
(
α

1/(β−1)
W∧

+ α
1/(β−1)
R

α
1/(β−1)
W + α

1/(β−1)
R

)β−1

, (4.14)

where ηW = αW/αW∧, and ηX = ηW if αW = αW∧.

Example 1 (Gaussian factor model). Suppose that logR is univariate standard Gaussian and
that log(W1,W2) is bivariate standard Gaussian, independent of R and with Gaussian correlation
ρW ∈ (−1, 1]. Then we have log-Weibull tails with parameters βR = βW = βW∧ = 2, αR = αW =
1/2 and αW∧ = 1/(1 + ρW ) (see Example 2). Applying (4.14) gives ηX = ηW × (3 + ρW )/(2(1 +
ρW )) = (3 + ρW )/4.

Weibull-type variables

We now consider the case where R and W follow a Weibull-type distribution, a rich class in the
Gumbel MDA. Recall that a variable Y is of Weibull-type, FY ∈WTβ, if

F Y (y) = `(y)yγ exp
(
−αyβ

)
, ` ∈ RV∞0 , γ ∈ R, α, β > 0. (4.15)

Well-known examples of Weibull-tailed distributions are the Gaussian with β = 2, the gamma
with β = 1 or, more generally, the Weibull where β is called the Weibull index.

For developing useful results, we further assume that, in addition to R and W , W∧ also has
a Weibull-type tail. As previously, we index the corresponding ` functions and the parameters
α, γ in (4.15) by the variable name.

Proposition 8 (Weibull-type variables). Suppose that FR ∈ WTβR, FW ∈ WTβW and FW∧ ∈
WTβW∧

. We have the following hierarchy of dependence structures:

1. If βW∧ = βW , αW∧ = αW , γW∧ = γW , then χX = χW = limx→∞ `W∧(x)/`W (x), if the limit
exists, and ηX = ηW = 1.

2. If βW∧ = βW , αW∧ = αW , γW∧ < γW , then χX = 0 and ηX = ηW = 1.

3. If βW∧ = βW , αW∧ > αW , then χX = 0 and

ηX = η
βR/(βR+βW )
W = (αW/αW∧)βR/(βR+βW ) .

4. If βW∧ > βW , then χX = 0 and ηX = ηW = 0.

In all of the cases encompassed by Proposition 8, (X1, X2) and (W1,W2) have the same tail
dependence coefficient χ, which can be positive only in case 1. In all other cases the variables
are asymptotically independent, and only in case 3 the residual tail dependence coefficient η
changes under the multiplication of the radial variable R. Since βR/(βR + βW ) ∈ (0, 1), this
always leads to an increase in dependence, that is, ηX > ηW .
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Example 2 (Gaussian scale mixtures). To illustrate the most interesting case 3 in Proposition 8
we consider (W1,W2) following a bivariate Gaussian distribution with standardized margins and
correlation ρW . We have that

FW (x) ∼ rW (x) exp(−x2/2), FW∧(x) ∼ rW∧(x) exp{−x2/(1 + ρW )},

where the tail distribution of the minimum follows from bounds on the multivariate Mills ratio
(e.g., Hashorva and Hüsler, 2003), and rW and rW∧ are regularly varying functions. Therefore,
ηW = (1 + ρW )/2, and

ηX = η
βR/(βR+2)
W = {(1 + ρW )/2}βR/(βR+2) .

Literature review and examples

Here we detail how existing distribution families fit into the framework of the above results.

Elliptical copulas Let Σ be a positive-definite covariance matrix with Cholesky decom-
position Σ = AAT , and (U1, U2) be uniformly distributed on the L2 sphere {(w1, w2) :
(w1, w2)(w1, w2)T = 1}. Then (X1, X2) = RA(U1, U2)T has an elliptical distribution for any
R > 0, called the generator. Therefore (W1,W2)T = A(U1, U2)T lies on the Mahalanobis sphere
W = {(w1, w2) : (w1, w2)Σ−1(w1, w2)T = 1}, and the extremal dependence in the upper right
orthant is unchanged by taking (Wj)+ = max(Wj, 0). It is well known that (X1, X2) is asymp-
totically dependent if and only if R is in the Fréchet MDA; then, the tail dependence coefficient
χX is given by (4.6), with Wj replaced by (Wj)+. For R in the Gumbel MDA, the scaling
condition on ν such that τ(w) ∈ [0, 1] yields Σ with diagonal elements 1, off-diagonal ele-
ments ρ ∈ (−1, 1), and residual tail dependence coefficient is given by Proposition 2(1) with
ζ = τ(1/2) = {(1+ρ)/2}1/2. In particular, the Gaussian distribution arises when FR(r) = e−r

2/2,
so that by Corollary 1, ηX = ζ2 = (1 + ρ)/2.

Archimedean and Liouville copulas Archimedean copulas, and the larger class of Liou-
ville copulas, arise as the survival copula when (W1,W2) is uniformly (respectively Dirichlet)
distributed on the positive part of the L1 sphere W = {(w1, w2) ∈ [0, 1]2 : w1 + w2 = 1}, and
R > 0. That is, (X1, X2) = R(W1,W2) has an inverted Archimedean or Liouville copula, whilst
the Archimedean or Liouville copula itself is that of (t(X1), t(X2)), for a monotonic decreasing
transformation t. By taking t(x) = 1/x, we obtain 1/(X1, X2) = (X̃1, X̃2) = R̃(W̃1, W̃2). The
dependence properties of Liouville copulas are studied in Belzile and Nešlehová (2017). For
(X1, X2), their Theorem 1 states that R in the Fréchet MDA leads to asymptotic dependence,
whilst the Gumbel and negative Weibull MDAs lead to asymptotic independence. The expo-
nent function given in their Theorem 1 matches Equation (4.7). In their Theorem 2, Belzile
and Nešlehová (2017) consider the extremal dependence properties of 1/(X1, X2) = R̃(W̃1, W̃2),
i.e., the Liouville copula itself. Since the reciprocal of Dirichlet random variables have regularly
varying tails, this links with Proposition 5 which states that asymptotic independence arises
if (W̃1, W̃2) themselves are asymptotically independent and heavier-tailed than R. Proposi-
tion 6(3c) is relevant if R̃ and W̃ are regularly varying with the same index.
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Multivariate (ρ-)Pareto copulas Let ρ : (0,∞)2 → (0,∞) be a positive homogeneous
function. Multivariate ρ-Pareto copulas arise when FR(r) = r−1, i.e., standard Pareto, and the
random vector (W1,W2) is concentrated onW = {(w1, w2) ∈ R2

+ : ρ(w1, w2) = 1} with marginals
satisfying E(W ) < ∞ (Dombry and Ribatet, 2015). The case of ρ(x1, x2) = max(x1, x2) leads
to the multivariate Pareto copula associated to multivariate generalized Pareto distributions.
Such copulas are asymptotically dependent (except for degenerate distributions) with χX given
by (4.6). Although we have focused on norms and ρ need not be convex, there is nothing in
Proposition 1 requiring this.

Model of Wadsworth et al. (2017) They consider the copula induced by taking R to be
generalized Pareto, FR(r) = (1 + λr)

−1/λ
+ , and W = {(w1, w2) ∈ [0, 1]2 : ‖(w1, w2)‖∗ = 1} where

‖ · ‖∗ is a symmetric norm subject to certain restrictions. These restrictions mean that λ ≤ 0
corresponds to asymptotic independence; the residual tail dependence coefficient ηX is as given
in Proposition 2 for λ = 0 with ζ = τ(1/2) = ‖(1, 1)‖−1

∗ , and Proposition 3 for λ < 0. When R
is in the Fréchet MDA (λ > 0) then asymptotic dependence holds with χX given by (4.6).

Model of Krupskii et al. (2018) They consider location mixtures of Gaussian distributions,
corresponding to scale mixtures of log-Gaussian distributions. Asymptotic dependence occurs
when the location variable is of exponential type, i.e., the scale is of Pareto type; the given χX
can then be obtained via (4.6). When the location is Weibull-tailed but with shape in (0, 1),
the scale is superheavy-tailed, with FR ∈ RV∞0 , and perfect extremal dependence (χX = 1)
arises. When the random location is Weibull-tailed with shape in (1,∞), then the random
scale R is in the Gumbel MDA and asymptotic independence arises. If F logR ∈ WT2 has
the same Weibull coefficient 2 as the standard Gaussian logW and as logW∧ (provided that
ρ = cor(logW1, logW2) ∈ (−1, 1]), then we can apply Proposition 7 to calculate the value of ηX
given as

ηX = ηW
αW∧ + αR
αW + αR

=
1 + ρ

2

(1 + ρ)−1 + αR
1/2 + αR

=
1 + (1 + ρ)αR

1 + 2αR
,

which extends the results of Krupskii et al. (2018). Specifically, with standard Gaussian logR
we get ηX = (3 + ρ)/4, see Example 1.

Model of Huser and Wadsworth (2019) They consider scale mixtures of asymptotically
independent vectors where both R and W have Pareto margins with different shape parame-
ters. Asymptotic dependence arises when R is heavier tailed; χX is then given by (4.6), whilst
asymptotic independence arises when W is heavier tailed and ηX is given by (4.12). When R
and W have the same shape parameter, their assumption ηW < 1 implies that E(Wα+ε

∧ ) < ∞
for some ε > 0, giving asymptotic independence by Proposition 6(3c).

A new model class

We here exemplify a new construction using unconstrained (W1,W2) that has the desirable prop-
erty of smoothly interpolating between asymptotic dependence and asymptotic independence,
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whilst yielding non-trivial structures within each class. By smoothness, we mean that the tran-
sition between classes occurs at an interior point, θ0, of the parameter space Θ, and, assuming
increasing dependence with θ, limθ→θ0+ χX = 0, limθ→θ0− ηX = 1.

The following proposition provides a general principle for constructing new dependence mod-
els permitting both asymptotic dependence and asymptotic independence.

Proposition 9. Let R be in the MDA of a generalized extreme value distribution with shape
parameter ξ ∈ R, and let (W1,W2) with W1

d
= W2

d
= W have χW = 0, well-defined ηW ∈ (0, 1),

and FW (w? − ·) ∈ RV0
αW

, αW > 0. Then

1. For ξ > 0, χX = E(W
1/ξ
∧ )/E(W 1/ξ), ηX = 1,

2. For ξ = 0, χX = 0, ηX = 1,

3. For ξ < 0, χX = 0, ηX = (1− ξαW )/(1− ξαW/ηW ).

The model construction opportunities from Proposition 9 are quite varied; specifically taking
FR that permits all three tail behaviors produces a flexible range of models spanning the two
dependence classes.

4.2.3 Discussion of results

In §4.2.1, where (W1,W2) is constrained to the sphere of some norm, classical results on multi-
variate Pareto copulas are recovered for regularly varying R, whereas new structures are obtained
for distributions of R with light tails or finite upper endpoint. In particular, for the Gumbel
MDA we get a large variety of behaviors for asymptotically independent (X1, X2) that strongly
depend on the auxiliary function b of R and the shape of the ν-sphere.

For unconstrained distributions of both R andW , §4.2.2 formalizes the general intuition that
heavier tails of R introduce more additional dependence in (X1, X2). The results summarized in
Table 4.2 for the special case of the independence model allow for several conclusions. The most
interesting (and involved) situations figure along the main diagonal where R andW have similar
tail behavior. Above this main diagonal, R is so heavy that it mostly dominates the extremal
dependence in (X1, X2). On the other hand, below the diagonal, R is too light tailed, relatively
to W , to have an impact on the tail dependence coefficients χX and ηX . Similar observations
hold true for the more general case of arbitrary dependence in (W1,W2) summarized in Table
4.1.

Multivariate analogs of the upper and residual tail dependence coefficients are obtained by
considering the d-variate survival function P(X1 ≥ x1, . . . , Xd ≥ xd) recalled in Equations (2.8)
and (2.9). For random scale constructions in d dimensions, the results from §4.2.2 are all directly
applicable if the Wj components have common margins, since similarly to the bivariate case,
we only need to consider the two variables X∧ = Rmin(W1, . . . ,Wd) and Xj = RWj. An
assumption of common margins is more realistic in spatial models, where dependence is often
analyzed in terms of bivariate margins anyway.

Although our focus was on dependence, knowledge on how the marginal scales of R and
W and the dependence properties of (W1,W2) influence the dependence of (X1, X2) makes it
easier to construct models (X1, X2) that naturally accommodate both marginal distributions and



68 CHAPTER 4. MODELING BIVARIATE EXTREMES

dependence of multivariate data. Such modeling avoids what may be construed as the artificial
separation of modeling of margins and dependence known as copula modeling. For example, in
factor constructions based on independent random variables, such as the ones with independent
W1 and W2 discussed throughout, our results give guidance on the relative tail heaviness of R
with respect to (W1,W2) necessary to transition from asymptotic independence to asymptotic
dependence in (X1, X2), and both heavy- or light-tailed marginal distributions are possible by
considering the distribution of either (X1, X2) or log(X1, X2) as a model for data.



Chapter 5

Spatial-temporal extreme-value modeling
based on asymptotically stable dependence

In this chapter, asymptotic models are understood as constructions that correspond to limit
distributions in extreme-value theory of stochastic processes. The two main representatives
are max-stable processes, which arise asymptotically for rescaled componentwise maxima taken
over an increasing number of independently replicated processes, and `-Pareto processes, which
arise asymptotically for the normalized process conditional to the exceedance of an aggregation
functional ` over an increasingly large threshold tending towards the upper endpoint of its
distributions. We have presented these two model in classes in §2.4. While first approaches to
statistical inference for max-stable processes go back to Smith (1990) and have been followed by
a large number of publications, the spatial and spatiotemporal modeling using `-Pareto processes
has been developed more recently following the seminal theoretical work of Ferreira and De Haan
(2014) and Dombry and Ribatet (2015). The first paper having proposed parametric statistical
inference in a wide class of models, known as elliptical Pareto processes, will be discussed in
§5.1 (Thibaud and Opitz, 2015).

The customary parametric models for spatial and spatiotemporal extremes usually involve
Gaussian processes in their construction and may be seen as too unwieldy and inflexible in
practice for extremes of complex processes such as temperature or precipitation. In many ap-
plications, methods are needed to generate an essentially infinite number of new simulations
of extreme spatial and spatiotemporal episodes associated with magnitudes beyond the range
of observed values. These simulations can be fed to impact models, e.g., to assess and project
potential risks associated with extreme climatic events in hydrological, agricultural or public
health processes. Therefore, when gridded datasets are available, it is useful to develop re-
sampling algorithms that use only minimal asymptotic assumptions from EVT of stochastic
processes but abstain from more restrictive parametric assumptions. An approach to semi-
parametric resampling of spatial extreme episodes was proposed in Opitz et al. (2021), where
we combine a lifting step based on the threshold stability of `-Pareto processes with generic
nonparametric resampling techniques such as Direct Sampling ; see §5.2 for details. Moreover,
extensions to the spatiotemporal setting were untertaken in Palacios-Rodriguez et al. (2020); we
discuss the choice of spatiotemporal aggregation functionals `, and operational solutions to take
into account the intermittence in precipitation data (i.e., the singularity at the lower endpoint
0 corresponding to absence of precipitation) are proposed and validated.

69
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5.1 Statistical inference and simulation for elliptical Pareto
processes

`-Pareto processes have been established as the natural limits for extreme events defined in terms
of exceedances of a risk functional; see §2.4. In Thibaud and Opitz (2015), we provide statistical
inference methods based on a tractable yet flexible extremal dependence model. We introduce
the class of elliptical `-Pareto processes, which arise as the limit of threshold exceedances of
certain elliptical processes and are characterized by a correlation function and a shape parameter.
Elliptical processes are characterized by their finite-dimensional distributions that all possess
elliptically contoured densities; see §B.1. If the index of components is not finite (e.g., with
processes defined over RD), then such processes can always be constructed as variance mixtures
of Gaussian processes.

The extremal-t process represents the max-stable counterpart to elliptical `-Pareto processes
(Opitz, 2013) and can be seen as a generalization of two models that have proven flexible for
modelling extremal dependence in environmental data based on asymptotic theory (Davison
et al., 2012, 2019): the extremal Gaussian model (Schlather, 2002), and the Brown–Resnick
model (Kabluchko et al., 2009). The extremal-t process arises for asymptotically dependent
elliptical processes. The elliptical `-Pareto processes form the corresponding class of limiting
process for threshold exceedances of such elliptical processes. We propose an efficient inference
approach for parametric models based on a full likelihood with partial censoring. The resulting
novel inferential procedures are more efficient than composite likelihood methods, and we assess
efficiency gains over a pairwise likelihood in a simulation study in Thibaud and Opitz (2015). In
addition, we propose a new approach to exact simulation from extremal-t and elliptical Pareto
processes, and we show how conditional simulations can be obtained very easily for the latter.

5.1.1 Likelihood inference for `-Pareto processes

We now work in the setting of the generalized `-Pareto limit processes as obtained in Equa-
tion (2.26) and use the assumptions preceding this equation. We first provide the gen-
eral construction of `-Pareto likelihoods. Consider a collection s = (s1, . . . , sd) of d sites
in the compact domain K ⊂ RD. We assume that the finite-dimensional observation vec-
tor X(s) = {X(s1), . . . , X(sd)} is embedded in a process {X(s)}s∈K that satisfies assump-
tion (A1) and the equivalent assumptions (A2.i), (A2.ii) and (A2.iii). The finite-dimensional
marginal measures of the exponent measure Λ relative to d sites s = (s1, . . . , sd) are written
as Λs, i.e., Λs(×j=1,...,d[aj, bj]) = Λ[

⋂
j=1,...,d{f ∈ C(K) : f(sj) ∈ [aj, bj]}] for 0 < aj < bj,

j = 1, . . . , d. In particular, V (z1, . . . , zd) = Λs
{

(×dj=1[−∞, zj])C
}
. Further, we consider a

sample X1(s), . . . , Xn(s) of independent replicates of X(s). The finite-dimensional vectors
of the marginally normalized process X? (recall Equation (2.13)) are denoted by X?(s) =
(X?(s1), . . . , X?(sd)). It is possible to estimate marginal parameters separately before estimating
the dependence from the normalized vector X?(s), which avoids the challenging maximization
of a likelihood of parameters related to both the dependence and marginal distributions. Here
we describe the second step, which aims at estimating the measure Λ+ based on `-exceedances
of X?(s) with a suitably chosen risk functional `. Different choices of ` yield different ap-
proaches to inference, and it is crucial that `(X?) can be determined from X?(s); i.e., we need
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`(X?) = `(X?(s)).
The condition `(X?(s)) ≥ 1 is used to select the exceedance observation vectors to which

the `-Pareto process is fitted. For a standard `-Pareto process Y ?
` , the probability density of

the vector Y ?(s) = {Y ?
` (s1), . . . , Y ?

` (sd)} on {y ∈ Rd
+ \ {0} : `(y) ≥ 1} is λ+,s(y)/κ`(K), where

λ+,s is the density of Λ+,s, the finite-dimensional marginal measure of Λ+ relative to the sites s.
When Λ+,s is absolutely continuous with respect to Lebesgue measure, λ+,s is the full derivative
−V1:d(y), where V is the exponent function. Otherwise, when Λ+,s puts positive mass to lower-
dimensional subspaces of Rd

+, we get slightly different expressions for λ+,s on those subspaces
(Coles and Tawn, 1991).

Based on the sample of `-exceedances X?
k(s), k = 1, . . . , Nu, satisfying `(X?

k(s)) > 1, the
`-Pareto process has full likelihood

Nu∏
k=1

λ+,s(X
?
k(s))

κ`(K)
. (5.1)

When the constant κ`(K) cannot be calculated explicitly, Monte-Carlo approximations are re-
quired to evaluate the likelihood function (5.1). For a choice of ` that is both tractable and
useful in practice, we here focus on `(f) = maxdj=1 f(sj)/uj with a high multivariate threshold
u = (u1, . . . , ud) > 0, leading to an exceedance for at least one of the sites in s when `(f) ≥ 1.
Then, κ`(K) = V (u), and we get (Ferreira and De Haan, 2014)

P(Y ?(s) ≤ y) =
V {min(y,u)} − V (y)

V (u)
, y 6≤ u,

which is the multivariate Pareto distribution defined by Rootzén and Tajvidi (2006). Specifying
κ`(K) = V (u) in (5.1) yields the corresponding likelihood

L̃1(ψ) =
Nu∏
k=1

λ+,s(X
?
k(s))

V (u)
,

with parameter vector ψ. Still, inference based on L̃1 might be inefficient in practice for two
reasons. First, using the full information from an observation X?

k(s) with `(X?
k(s)) > 1 might be

inefficient since the asymptotic distribution might model the non-exceeding components badly
and thus induce bias in the estimators. Second, positive mass on the boundary of Rd

+\{0} creates
a discontinuity due to the weak convergence of the data process (without positive mass on the
boundary) to the `-Pareto process in (2.26), as is the case for the extremal elliptical model. The
margins of X?

k(s) are chosen to be strictly positive, which is incoherent with the possible mass
on the axis for Λ+,s. In some applications, such mass may have a physical interpretation (e.g.,
absence of precipitation corresponding to an observed value of 0). However, the normalized
marginal distributions must then allow for this singularity at 0, which raises many questions on
how to implement the marginal normalization in practice; see Palacios-Rodriguez et al. (2020)
for a discussion and an example of a distribution normalized in this way. To overcome the above
two issues, we propose the use of a censoring scheme. We consider the censored observations
Xc
k(s) = max(X?

k(s),u), where the maximum is taken componentwise. The corresponding
likelihood is

L̃2(ψ) =
Nu∏
k=1

−VIk(Xc
k(s))

V (u)
,
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where VIk denotes the partial derivative of V with respect to the indices Ik ⊂ {1, . . . , d} as-
sociated to the components that exceed their corresponding marginal thresholds. If both n
and Nu are observed, we further propose to incorporate the information provided by the bino-
mial variable n−Nu, representing the number of fully censored observations, into the modified
likelihoods

Lm = {1− V (u)}n−NuV (u)Nu × L̃m, m = 1, 2.

The threshold vector u must be high enough to yield V (u) ≤ 1.
Full likelihood inference based on L1 or L2 is possible if we know λ+,s, the function V and

its partial derivatives. We derive these expressions for extremal elliptical processes in §5.1.2.
Finally, we point out that the likelihood L2 is closely related to a censored likelihood approach
proposed for inference with the Brown–Resnick model in Wadsworth and Tawn (2014).

For modeling in practice, we propose to use flexible parametric families of elliptical Pareto
processes, described in the following §, to define the measure Λ+.

5.1.2 The elliptical Pareto model

The construction and properties of multivariate distributions with elliptically contoured densi-
ties, called elliptical distributions in short, are recalled in §B.1. We refer to a random vector
with elliptical distribution as an elliptical random vector. An elliptical random vector can be
written as

X = RAU + µ, (5.2)

with R a nonnegative random variable, A a d× d deterministic nonsingular matrix defining the
dispersion matrix Σ = AAT , U a random vector independent of R and distributed uniformly on
the Euclidean unit sphere {x ∈ Rd : xTx = 1} and µ ∈ Rd a deterministic shift vector. The
restriction to nonsingular square matrices A excludes some special, degenerate cases of minor
practical importance. As an extension of (5.2), a random process X is called elliptical if all
its finite-dimensional distributions are elliptical with dispersion matrices Σ defined through a
correlation function. The max-stable limits in (2.20) for elliptical processes are either processes
with independent univariate marginal distributions in the case of asymptotic independence,
as for instance the limits of Gaussian processes, or are extremal-t processes in all other cases
(Opitz, 2013). In terms of standard Fréchet margins, extremal-t processes can be constructively
represented through the spectral construction (2.17) as

Z?(s) = mα max
i=1,2,...

Wi(s)
α
+/Qi, mα = π1/221−α/2Γ{(α + 1)/2}−1, (5.3)

where 0 < Q1 < Q2 < · · · are the points of a unit-rate Poisson process on the positive half-line,
and Wi = {Wi(s)} are independent replicates of a standard Gaussian process with continuous
sample paths and correlation function ρ (Opitz, 2013). By interpreting the processes Wi as
independent marks of the points of the Poisson process {Qi}, we see that the point process

{Pi, i = 1, 2, . . .} = {mα(Wi)
α
+/Qi, i = 1, 2, . . .} (5.4)

is Poisson with intensity measure Λ+. From Poisson process theory (see Chapter 2 in Daley
and Vere-Jones, 2003), the points Pi with `(Pi) ≥ 1 are independent and have distribution
Λ+(df)/κ`(K); they are realizations of the corresponding `-Pareto process, see §2.4. We coin
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the term elliptical `-Pareto process since the tails of its finite-dimensional distributions cor-
respond to elliptical distributions with a Pareto-distributed radial variable R in (5.2). The
finite-dimensional dependence structure associated to d sites s = (s1, . . . , sd) is characterized by
the exponent function (Nikoloulopoulos et al., 2009; Opitz, 2013)

V (z) = − logP{Z?(s1) ≤ z1, . . . , Z
?(sd) ≤ zd}

=
d∑
j=1

z−1
j tα+1

{
(z−j/zj)

1/α; Σ−j,j, (α + 1)−1
(
Σ−j,−j − Σ−j,jΣ

′
−j,j
)}
, (5.5)

with the correlation matrix Σ = {ρ(sj1 , sj2)}1≤j1,j2≤d related to the correlation function ρ, and
with tα(·;µ,Σ) the cumulative distribution function of a multivariate t distribution with α de-
grees of freedom and parameters µ (median vector) and Σ (scatter matrix). Dependence struc-
tures of Brown–Resnick type can be interpreted as a special case of extremal-t dependence, aris-
ing asymptotically when α→∞. The truncation ofWi at zero in (5.3) implies that the measure
Λ+ of an extremal-t process has positive mass on the set {f ∈ C+(K) \ {0} : mins∈K f(s) = 0},
which is not the case for Brown–Resnick processes.

Densities and partial derivatives of the exponent function

Ribatet (2013) gives the density λs of Λs,

λs(y) = α1−dπ(1−d)/2|Σs|−1/2Γ{(α + 1)/2}−1Γ{(α + d)/2}

×
d∏
j=1

|yj|1/α−1{T1/α(y)TΣ−1
s T1/α(y)}−(α+d)/2, y ∈ Rd,

where Σs = {ρ(sj1 , sj2)}1≤j1,j2≤d denotes the finite-dimensional correlation matrix according
to the correlation function ρ of the extremal-t dependence structure relative to the sites s =
(s1, . . . , sd), and T1/α is a transformation defined as Ta(x) = sign(x)|x|a for a > 0. The density
λ+,s of Λ+,s on (0,∞)d is equal to λs. The partial derivatives VIk of the exponent function V
are calculated by integrating λs with respect to the components in the set complementary to
Ik. The integration is carried out using conditional intensities.

Given a collection s0 = (s0,1, . . . , s0,d′) of d′ conditioning locations with values y0, the condi-
tional intensity λs|s0,y0(y) = λ(s,s0)(y,y0)/λs0(y0) equals (Ribatet, 2013)

λs|s0,y0(y) = α−dπ−d/2(d+ α)−d/2|Σ̃|−1/2Γ{(α + d′)/2}−1Γ{(α + d+ d′)/2}

×
d∏
j=1

|yj|1/α−1

[
1 +
{T1/α(y)− µ̃}′Σ̃−1{T1/α(y)− µ̃}

d′ + α

]−(α+d+d′)/2

, (5.6)

with

µ̃ = Σs:s0Σ
−1
s0
T1/α(y0), Σ̃ =

T1/α(y0)TΣ−1
s0
T1/α(y0)

d′ + α

(
Σs − Σs:s0Σ

−1
s0

Σs0:s

)
,

where Σs:s0 denotes the matrix of covariances between the random vectors corresponding to the
location vectors s and s0. Expression (5.6) is the density of a random vector Tα(X), where X
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follows a d-dimensional elliptical t distribution with d′ + α degrees of freedom and parameters
µ̃ and Σ̃.

Without loss of generality, we consider the partial derivative V1:d′(y) of V with respect
to the indices 1 to d′ such that Ik = {1, ..., d′}, obtained by calculating the integral of
λs(d′+1):d|s1:d′ ,y1:d′ (y(d′+1):d) and by multiplying the resulting expression by λs1:d′ (y1:d′). The re-
quired integral of the conditional density is td′+α(y

1/α
(d′+1):d − µ̃; 0, Σ̃). We get

−V1:d′(y) = td′+α

(
y

1/α
(d′+1):d − µ̃; Σ̃

)
α1−d′π(1−d′)/2|Σ1:d′|−1/2Γ{(α + 1)/2}−1

× Γ{(α + d′)/2}
(

d′∏
j=1

|yj|
)1/α−1 {

(yT1:d′)
1/αΣ−1

1:d′y
1/α
1:d′

}−(α+d′)/2
, (5.7)

with
µ̃ = Σ(d′+1):d,1:d′Σ

−1
1:d′y

1/α
1:d′

and
Σ̃ = (d′ + α)−1(yT1:d′)

1/αΣ−1
1:d′y

1/α
1:d′ (Σ(d′+1):d − Σ(d′+1):d,1:d′Σ

−1
1:d′Σ1:d′,(d′+1):d).

There exists positive mass on the boundary {y ∈ Rd
+ \ {0} : ‖y‖∞ > 0}. Equation (5.7) gives

the densities λ+,s for a point y on the boundary of Rd
+ \ {0}: if y1:d′ > 0 and y(d′+1):d = 0, then

the density on the corresponding subset of Rd
+ \ {0} is −V1:d′(y), see Coles and Tawn (1991,

§3.1).
The results of an extensive simulation study in Thibaud and Opitz (2015) suggest that cen-

sored approaches are the best in practice, when the model is misspecified. Moreover, full likeli-
hood inference improves estimation efficiency when the distribution of extremes is close to the
limiting model, but a pairwise likelihood approach appears more robust to certain kinds of model
misspecification. Thibaud and Opitz (2015) conduct an application to spatial precipitation ex-
tremes around the city of Zurich, Switzerland, where the elliptical Pareto models outperform the
Brown–Resnick model on the boundary of the their parameter space. Conditional simulations
from the selected model are then used to perform spatial mapping of conditional means and
uncertainties during an extreme episode using observed measurements at 44 locations.

Exact simulation procedures for the extremal elliptical dependence

Based on the results in Thibaud and Opitz (2015), we now describe exact finite-dimensional
simulation procedures for three processes related to elliptical extremes: max-stable extremal-t
processes, elliptical Pareto processes and conditional processes when conditioning on fixed values
at certain sites. The specificities of the elliptical structure in finite-dimensional distributions
allow for fast and exact simulation algorithms. In the literature, there also exist alternative
exact simulation algorithms for max-stable process classes including the extremal-t processes,
proposed more recently by (Dombry et al., 2016), among others. In the recent preprint of Zhong
et al. (2021), we have further extended such approaches to the wider class of max-infinitely
divisible processes presented later in §6.2.

Due to the elliptical structure of the points P 1/α
i of the point process {Pi} in (5.4), an

equivalent representation of the finite-dimensional projection of an extremal-t process relative
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to d sites s = (s1, . . . , sd) is obtained by setting

Ps,i = {E(U1,1)α+}−1(AsUi)
α
+/Qi, (5.8)

with As the Cholesky root of Σs = AsA
T
s and Ui = (Ui,1, . . . , Ui,d)

′ independent and identically
distributed copies of some vector U uniformly distributed on the Euclidean unit sphere Sd. This
representation is a special case of Theorem 3.2 of Opitz (2013) and allows exact simulation of
both max-stable and Pareto processes due to the boundedness ‖(AsUi)

α
+‖∞ ≤ 1.

In practice, max-stable processes are simulated using only a finite number of Ps,i. When a
finite boundary b < ∞ exists for the components of QiPs,i such that P(maxi=1,2,...QiPs,i(sj) ≤
b) = 1 for j = 1, ..., d, exact simulation of Z?

s can be achieved from a finite number of points Ps,i
(Schlather, 2002, Theorem 4). Since the components of {E(U1,1)α+}−1(AsUi)

α
+ in (5.8) are always

bounded by b = {E(U1,1)α+}−1, exact simulation of extremal-t processes is possible. For i ≥ 1,
‖Ps,i‖∞ ≤ b/Qi with a decreasing sequence {Qi}i>0. If ‖maxi=1,...,τb Ps,i‖∞ ≥ b/Qτb for some
τb > 1, then the points Ps,i for i > τb cannot contribute to the maximum in (5.3) and we have
Z?
s = maxτbi=1 Ps,i. Two numerical limitations may restrict the applicability of this simulation

approach: first, standard algorithms for determining the Cholesky root As of Σs require O(d3)
basic operations; second, b may be large if α or d are large, requiring the simulation of a very
large number of points Ps,i. More precisely,

b = 2π1/2 Γ{(d+ α)/2}
Γ{(α + 1)/2}Γ(d/2)

≈ 21−α/2π1/2 (d+ α− 2)α/2

Γ{(α + 1)/2} , d→∞,

using Stirling’s formula. In certain situations, notably when d indexes a fine spatial grid of points,
these limitations are too restrictive. Then the conventional approach for approximate simulation
can be used, where we assume that the distribution W (s) has some finite upper endpoint used
to stop the iterative simulation, leading to an approximation error in the simulated max-stable
process. Since the tails of W (sj)

α
+ become heavier when α increases, the approximation error

also increases.
The simulation of the points Ps,i in (5.8) yields an algorithm for the simulation of `-Pareto

processes: the points Ps,i with `(Ps,i) ≥ 1 are independent realizations from the standard `-
Pareto processes; see Figure 5.1. Moreover, for u0 > 0, the homogeneity of Λ+,s implies that
the points u−1

0 Ps,i with `(Ps,i) ≥ u0 are also realizations from the standard `-standard process,
i.e., we can use the POT stability of `-Pareto processes. The existence of the upper bound b
allows us to simulate all the points Ps,i in a set A = ([0, u]d)C ⊂ Rd

+ for u > 0. Since the set
`(y) ≥ u0 is a subset of A for suitably chosen u, we can obtain exact simulations from every
elliptical `-Pareto process.

Instead of simulating the points of the Poisson process, it is possible to use an acceptance-
rejection algorithm to generate realisations of Y ?

` (s) without dealing with a random number
of realisations. First, we consider the simulation of a standard `-Pareto process with `(f) =
maxdj=1 f(sj). We need {E(U1,1)α+}−1/Qi ≥ 1 at a point Pi that satisfies `(Pi) ≥ 1. On [1,∞),
the distribution of a point {E(U1,1)α+}−1/Qi, conditional to an exceedance of 1, corresponds to
a standard Pareto random variable R. Hence, any vector R(AsU)α+ with U independent of R is
a standard `-Pareto process if `{R(AsU)α+} ≥ 1. When ` is different from the componentwise
maximum, we proceed as before and fix u0 > 0 such that maxdj=1 f(sj) ≥ 1 whenever `(f) ≥ u0.
Then the vector u−1

0 R(AsU)α+, given that `{R(AsU)α+} ≥ u0, is a realisation of Y ?
` (s). We
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Figure 5.1: Simulation of extremal elliptical processes. Left: simulation (black line) from an
extremal-t process with α = 1 and ρ(h) = exp(−‖h‖). The grey lines show the points Ps,i in the
spectral decomposition (5.8). Right: independent simulations from the corresponding elliptical
`-Pareto process with `(f) = sups∈[0,5] f(s) are given by the points Ps,i with `(Ps,i) ≥ 1.

can get a sample of Y ?
` (s) by repeatedly simulating random vectors u−1

0 R(AsU)α+ and retaining
only those vectors fulfilling the condition `{R(AsU)α+} ≥ u0. To minimize the frequency of
rejections, u0 should be chosen as small as possible.

Whereas conditioning Λ on exceedances of `(f) over 1 yields the distribution of the `-Pareto
process, one might instead be interested in the conditional distribution when values y0 > 0 for a
collection of sites s0 = (s0,1, . . . , s0,d′) are fixed. The finite-dimensional conditional distribution
for the sites s = (s1, . . . , sd), disjoint with s0, has density (5.6). The conditional process defined
on K \ {s0} corresponds to a transformed t process that can easily be simulated.

5.1.3 Discussion of parametric inference with POT-stable processes

The class of `-Pareto models for POT-modeling of stochastic processes sits on a solid theoretical
foundation and provides flexibility with respect to the definition of extreme events through risk
functionals. Their functional POT-stability may not always be satisfied at observed levels of
data, but it provides a useful and elegant modeling framework. Statistical inference based on
partial censoring of non-extreme components is efficient but leads to relatively high computa-
tional cost even for moderate numbers of components d (e.g., less than 50). In Thibaud and
Opitz (2015), we illustrated the estimation approach for extreme precipitations observed at 44
locations around Zurich, Switzerland. For higher-dimensional problems with a larger number of
components, one has to resort to alternative estimation approaches such as pairwise likelihoods.
Exact simulation and conditional simulation of elliptical `-Pareto processes is straightforward
and fast, which stands in contrast to the intricate conditional simulation procedures arising for
max-stable processes (Dombry et al., 2013).

5.2 Semi-parametric resampling of spatial extremes

Resampling refers to simulation techniques used to generate new scenarios that realistically
reproduce statistical features of observed data, such as trends or spatial dependence patterns.
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These scenarios can be fed into process-based impact models (e.g., models for property insurance,
rainfall-runoff, agricultural yield, energy production) to study their sensitivity with respect to
variations in the input scenarios. Examples of parametric models have been outlined in the
previous sections, and they can be used for simulation if they appropriately represent the data-
generating process. However, they impose relatively strong assumptions on the structure of the
observed data. Moreover, parameter estimation may be very computer-intensive in the case of
data with a large number of observations, especially in the spatial setting with many observation
locations, such as gridded data. As an alternative, nonparametric resampling methods such as
Multiple-Point Geostatistics (Mariethoz and Caers, 2014; Tahmasebi, 2018) have emerged in
the geoscience literature for fast simulation using only minimal assumptions on the distribution
of data. Nonparametric resampling allows the simulation of new datasets preserving important
data features such as spatial patterns from observed datasets. Observations are often called
training data, while one refers to resampled data as simulation data. Training data are usually
given on some regular grid spanning over time, space or space-time. In this section, we discuss
solutions to appropriately extrapolate statistical features of extreme events beyond the observed
range of training data, which poses problems with many standard resampling algorithms when
the variables of interest are continuous, i.e., when they are not restricted to a finite number
of levels. The use of nonparametric resampling techniques is hampered by their inability to
produce simulations with new extreme events beyond the observed range of data values. We
show how to combine such techniques with extreme-value theory of stochastic processes, i.e.,
with asymptotic theory leading to `-Pareto process limits, to extrapolate observed data towards
yet unobserved high quantiles.

The asymptotic dependence structure in extreme-value limits is fundamentally nonparamet-
ric, even in the bivariate case, which is is contrast to the central limit theory for random vectors
and stochastic processes, for which a single parameter – the linear correlation coefficient – fully
characterizes the bivariate dependence in the Gaussian limits. Therefore, parametric models
for extreme-value dependence may impose unrealistically restrictive assumptions, especially in
the context of spatially indexed processes. Moreover, all of the asymptotic spatial extreme-
value models that are commonly deployed in practice are based on Gaussian or log-Gaussian
processes arising in the spectral processes used to construct the max-stable process in the spec-
tral construction (2.17). Therefore, dependence in these extreme-value models inherits many
of the properties of Gaussian dependence. Multiple-point statistics and related nonparametric
resampling techniques such as Direct Sampling Mariethoz et al. (2012) aim to better represent
complex spatial dependence patterns arising for more than two locations, as compared to the
Gaussian models whose correlation functions describe behavior only between two locations.

In the new approach that we propose (Opitz et al., 2021), original data are first enriched with
new values in the tail region, and then classical resampling algorithms are applied to enriched
data. In a first approach to enrichment that we label "naive resampling", discussed in §5.2.1, we
generate an independent sample of the marginal distribution while keeping the rank order of the
observed data. We point out inaccuracies of this approach around the most extreme values, and
we therefore develop a second approach that works for datasets with many replicates. It is based
on the asymptotic representation of extreme events through two stochastically independent
components: a magnitude variable, and a profile field describing spatial variation; recall the
Definition (6) of `-Pareto processes. To generate enriched data, we fix a target range of return
levels of the magnitude variable, and we resample magnitudes constrained to this range.
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5.2.1 Naive resampling

With naive resampling, simulation must take place over the same domain as the original dataset,
and the same grid resolution must be used. Based on a stationarity assumption for marginal
distributions, we estimate the marginal distribution using only minimal assumptions by com-
bining a kernel density estimate for the body of the distribution with a simple tail model based
on univariate EVT. We first compute the kernel density estimate (kde), and we then fix a high
threshold to model the tail using a GPD. The kde is used to estimate the exceedance probability
above the threshold, and by assuming continuity of the density around the threshold we obtain
the value of the GPD scale parameter from the value of the kde-based density at the threshold.
It remains to estimate the tail index, for which a variety of approaches can be implemented; see
Opitz et al. (2021) for examples.

The idea for data enrichment is then relatively simple: we generate a new i.i.d. sample of
the same size as the training sample according to the estimated marginal distribution, and the
indices of the order statistics of the original and new samples remain the same. For instance,
the maximum value of the new sample is at the same spatial location as the original maximum
value. Then, standard resampling algorithms can be applied to the enriched dataset, in which the
dependence structure has been preserved by keeping the ranks of the training data. Alternatively,
one could also proceed in a slightly different way after the generation of the new i.i.d. sample:
resampling could be applied to the dataset in which the actual values of the variable are replaced
by their ranks in the training sample, and then we attribute the order statistics of the newly
generated i.i.d. sample to the corresponding ranks in the resampled dataset of ranks.

If the stochastic process from which the training data have been generated is mixing, i.e., if
it has long-range independence in the observation window, simulated quantiles will correspond
well to original quantiles in the central part of the distribution where data are dense, owing to
the law of large numbers. Similar behavior is obtained for replicated data with a sufficiently
large number of replicates, for instance independent replicates of a spatial process. Therefore,
we can expect that resampling is faithful to statistical features in the training data as far as the
central part of the distribution is concerned.

The main issue with naive resampling is the independent sampling of the new values in
the tails of the distribution. By consequence, simulated quantiles can differ substantially from
quantiles of the training data distribution close to the extremes. In particular, the spacings
between order statistics Y(i) and Y(i+1) are relatively large when i is close to 1or to n. As a
consequence, too large maxima will arise in the naive resampling approach, and it would be
difficult to target specific ranges of return periods for summary statistics that are relatively
strongly correlated with the maximum. Another consequence is that naive resampling tends to
produce very strong spatial variability in the pixels having a value close to the maximum value
Y(n). Therefore, even if a training image shows relatively smooth behavior around the pixel
containing the maximum value, naive resampling will tend to produce a relatively rugged surface
around the maximum in simulated images. Finally, we underline that the naive resampling
procedure depends strongly on the grid resolution. While measures of effective sample size
for dependent data may be comparable when studying the same process at different spatial
resolutions, they can strongly vary in the case of an i.i.d. sample. The impact of i.i.d. resampling
can be assessed using theoretical results such as Renyi’s theorem, see Opitz et al. (2021) for
details.
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5.2.2 Lifting using functional extreme-value theory

For appropriate extrapolation of extreme values while preserving the spatial coherence in training
data, we propose to make use of EVT for stochastic processes, where generalized Pareto processes
arise in the limit, as recalled in §2.4. We assume that data have been generated by a stochastic
process with realizations in the space C(K) of continuous functions over a compact domain K.
Given a homogeneous aggregation functional ` and a relatively large threshold u, the POT
convergence in (2.26) suggests using the following POT assumption:

{u−1X?(s)} | `(X?) > u
d
= {Y ?

` (s)}, s ∈ K,

where Y ?
` is an `-Pareto process as given in Definition 6. Then, we can exploit the following

scale-profile decomposition of Pareto processes:

Y ?
` (s) = RW (s), R ⊥W , R ∼ Pareto(1, 1), s ∈ K,

where `(W ) = 1, i.e., the profile W is a random element on the functional "unit sphere" with
respect to the functional `. The scale R is a random variable, independent of W .

Given an aggregation functional `, the steps of the resampling procedure including data
enrichment with respect to extreme event episodes can be summarized as follows, where the
necessity of the post-processing Step 6 will be explained in the following §:

1. Estimate marginal distributions, for instance as described in the previous §5.2.1.

2. Apply the marginal probability integral transform based on the marginal distribution from
Step 1 to standardize the marginal distribution of the original data.

3. Extract observed extreme episodes based on exceedances of the aggregation functional `.

4. Decompose extreme episodes into their empirical scale and profile components.

5. Enrich data by lifting extreme episodes using newly sampled scale variables according to
a target value or a target range of return levels of the aggregation functional.

6. Post-process non extreme values in enriched data.

7. Perform nonparametric resampling using enriched extremes.

8. Backtransform margins using the marginal distribution from Step 1.

Details of the steps of the above algorithm are discussed in Opitz et al. (2021).

Postprocessing of non extreme values

A practical difficulty with the lifting approach, which also arises with many other methods of
multivariate and spatial extreme-value modeling, concerns the treatment of small and moder-
ately large observation values. Asymptotic theory does not uniquely determine how such values
should be modified when lifting the extreme sample fraction. Whereas in theory we consider
sample sizes that increase to infinity, such that non-extreme values are compressed to the lower
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bound of the support of the limit distribution due to the marginal location-scale normaliza-
tion in (2.12), in practice we have to cope with finite and fixed sample sizes. In this lifting
approach, we remedy this issue by proposing a rescaling of non-extreme standardized values
based on a minimum entropy principle to avoid unrealistic artefacts in simulations. Given a
marginal threshold umarg below which we do not trust the asymptotic model (e.g., the quantile
at 80%), we do not directly lift the observations below the threshold during the data enrichment
step. Instead, given that the resampled scale variable transforms the threshold umarg to the
value ũmarg and that the lower bound of the support of the standardized marginal distribution
is x?lower, we linearly rescale the observations below the threshold such that their support covers
the full interval [x?lower, ũmarg]; see the details in Opitz et al. (2021).

5.2.3 Spatiotemporal extensions

The lifting procedure is adapted to the simulation of extreme episodes with spatial and temporal
extent (i.e., spanning several time steps) in Palacios-Rodriguez et al. (2020). For the case
where extreme episodes are allowed to span several time steps with temporal dependence in the
simulations, the paper discusses how to extract meaningful extreme episodes as training data.
This involves choosing an aggregation functional used to aggregate standardized observations
over space and time. This choice further requires setting the length of extreme episodes, for which
exploratory statistics on temporal extremal dependence can be studied. In a similar manner, we
can restrict the spatial extent of extreme episodes to areas smaller than the full study domain,
in case where it is very large. Moreover, we focus on the particularities of precipitation data,
for which intermittence (i.e., absence of precipitation) may arise at some locations and time
steps during an extreme episode, such that we have to appropriately handle the singular mass
at 0 in the univariate marginal distribution of precipitation during the three consecutive tasks
of marginal standardization, lifting and marginal backtransformation. Details can be found in
Palacios-Rodriguez et al. (2020).

5.2.4 Application examples

We shortly illustrate the practical implementation and results of such resampling procedures
for extreme event episodes of two distinct meteorological variables: temperatures in mainland
France (Opitz et al., 2021), and precipitation in the Mediterranean region of France (Palacios-
Rodriguez et al., 2020).

Heatwaves in mainland France

The temperature application is motivated by the extreme heatwaves observed during the summer
of 2019 in France and over large parts of Europe. We use daily gridded data (8 km resolution)
from the SAFRAN reanalysis of Météo France for years 2010–2016. We standardize marginal
distributions of data to a uniform scale on (−1, 0) by using a pixel-specific transformation
combining a kde for the bulk with the GPD for the tail. We put focus on days with high
temperatures over relatively large areas of the French territory by using the median as a spatial
aggregation functional. Another advantage of the median is that the ranking of extreme episodes
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Figure 5.2: Semiparametric resampling of heatwave episodes in France. Top row: examples
of selected extreme training data for lifting. Bottom row: examples of simulations obtained
through the combination of lifting and nonparametric resampling.

does not depend on the choice of the standardized distribution, which is uniform here to establish
a relatively close link to copula modeling.

Then, a day is considered as an extreme episode if the median of standardized observations
is in the tail of the distribution of all the observed median values. We consider only data for the
summer months from June to September. After applying a declustering step to avoid selecting
days from the same heatwave, we keep the 6 most extreme days as training data, and we aim
to simulate new spatial extreme episodes. We here apply the lifting step to obtain enriched
data composed of 6 episodes lifted to correspond to a return period of approximately 10 years.
For this step, we have to estimate the `-extremal coefficient θ` in P(`(X) ≥ r) ≈ −θ`r, and
we use an estimate θ̂` obtained by matching empirical and theoretical exceedance probability
of the aggregation functional ` for a relatively high quantile. Direct Sampling (DS Mariethoz
et al., 2010) is then performed on the 6 lifted episodes to be able to produce an essentially
infinite number of new scenarios. In DS, we start with an "empty" simulation image and
then we iteratively fill the simulation as follows: first, randomly selected an empty pixel in the
simulation image to be filled; then, scan for a pixel in the training data possessing a very similar
”neighborhood” of already simulated pixels; finally, fill the empty pixel with the selected training
data value. As criterion to check if a neighborhood in the training data matches the already
simulated parts of the neighborhood of a pixel to fill in the simulation image, we use a distance
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Figure 5.3: Summary statistics based on semiparametric resampling simulations of extreme
events. Pixel-wise empirical means (left) and standard deviations (right) calculated over 100
simulations of heatwaves in France with 10-year return period.

criterion weighted at 90% by the nearest-neighbor pattern of data values and at 10% by the
spatial coordinates. The weight on spatial coordinates ensures that we we fill a pixel in the
simulation image with the value of a training pixel that is located not too far away. This allows
us to take into account spatial nonstationarities in the dependence patterns of extreme values.
To summarize mean and variance of simulations obtained with this stochastic generator, we
have computed pixel-wise empirical mean and variances over 100 final simulations in Figure 5.3;
the resulting maps highlight the strong spatial nonstationarities in the distribution of extreme
events.

To check if various summary statistics of data are appropriately captured by the simulation
approach, we implement a procedure similar to cross-validation, where we use a larger number
of the most extreme episodes from the original data. Summary statistics considered here are
the minimum, maximum, median, mean, range and interquartile range of the values for all the
spatial pixels during an extreme episode. The procedure is based on complete extrapolation
since we do not use the 20 most extreme episodes (in terms of the aggregation functional) for
generating the simulations but only lower-ranked episodes. By simulating new episodes for return
levels above the quantile of ` that separates validation and training episodes, we can compare
the distribution of simulated summary statistics to the validation sample of the 20 observed
summary statistics; see Figure 5.4. While it is difficult to perfectly match all summaries in
complete extrapolation, we can conclude that the simulation method provides plausible new
scenarios of extreme heatwaves.

Mediterrean precipitation episodes in France

In Palacios-Rodriguez et al. (2020), we consider gridded hourly precipitation reanalysis data for
the south of France for the period 1997–2007. This Mediterranean region of France is known
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Figure 5.4: Validation study with summary statistics calculated for each extreme episode. His-
tograms show summary statistics of 250 simulations in a setting of complete extrapolation. Blue
lines indicate the summary values of validation data consisting of the 20 most extreme observed
episodes. From left to right: range, minimum, median (top row); mean, maximum, interquartile
range.
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for violent precipitation episodes during autumn, which are triggered when warm and humid air
enters the land from the sea and then clashes with colder mountainous regions. While we do not
apply nonparametric resampling on lifted extreme space-time episodes in this application, we
give a detailed analysis of how the choice of two spatiotemporal different aggregation functionals
(maximum, median) can lead to very different results in terms of risk measures calculated for
a large ensemble of lifted episodes. Whereas the maximum aggregation puts focus only on the
largest value and allows capturing very localized high peaks of precipitation, the median aggrega-
tion puts focus on the typical amount of precipitation during an extreme episode and is stronger
oriented towards taking into account high values of space-time accumulated precipitation, for
instance over a catchment area.

Figure 5.5 highlights differences in two risk measures (quantile, conditional tail expectation)
with respect to the type of aggregation functional and the quantile level used for calculating
these risk measures. The quantile levels are specific to each episode and correspond to a quantile
of the values occurring during the episode; for instance, the quantile level 98% means that the
risk measure focuses on the 2% of pixels with the most extreme values. We observe important
differences in the values of each of the two risk measures along each of the three dimensions of
comparison (quantile level of the risk measure; target return level of the aggregation functional;
type of aggregation functional).

5.2.5 Discussion of resampling approaches with extremes

A benefit of naive resampling is that it can be applied to data that do not have any struc-
ture of independent replication, such as spatial datasets without temporal replicates. With this
approach, EVT is used only for the modeling of univariate marginal distributions. While sim-
ulations reproduce the behavior around the global maximum of training data in a rather crude
manner, synthetic data examples in Opitz et al. (2021) show that this approach may still be
relevant and useful in practice thanks to its simplicity, especially in cases where the strength of
extremal dependence in the training data is relatively weak.

The more sophisticated lifting procedure anchored in EVT for dependent extremes exploits
POT stability to jointly lift observed extreme-event patterns to more extreme magnitudes. As
already outlined earlier, this stability property may not be satisfied by many meteorological
and environmental data of interest, where often a weakening of dependence strength is observed
with increasing event magnitudes. Nevertheless, the asymptotic stability may still be considered
as a useful and easily interpretable working assumption in such cases, although certain results
may have to interpreted with care when the aim of simulation is to achieve extrapolation very
far beyond the observed quantiles. In such cases, simulated extremal dependencies may be
too strong when extrapolating very far into the tail, which typically leads to a conservative
assessment of the impact of joint risks.

Validity checks with respect to the assumptions underlying resampling procedures are im-
portant but notoriously difficult in the extreme-value setting due to the scarcity of extreme data.
The POT property is useful since it allows checking the stability of data summaries across differ-
ent threshold levels. It allows implementing checks of the soundness of extrapolation above the
observed range of values by retaining the largest extreme episodes as a validation set, as done
in our example. We suggest a more systematic use of this approach as commendable practice in
extreme-value studies.
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Figure 5.5: Comparison of risk measures for extreme spatiotemporal precipitation episodes in
the south of France. Boxplots are based on 500 extreme episodes simulated through lifting of the
50 most extreme observed episodes. First row: spatiotemporal median aggregation functional.
Second row: spatiotemporal maximum aggregation functional. Red boxplots: target return level
of at least 6 months; blue boxplots: target return level of at least 10 years.
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In cases where the assumption of POT-stability is not warranted, an interesting extension
of the above approach could be developed based on subasymptotic modeling frameworks, such
as the conditional extremes approach (Heffernan and Tawn, 2004; Wadsworth and Tawn, 2019).
However, stronger semi-parametric assumptions may be required in this setting.

Finally, the combination of parametric assumptions suggested by EVT with nonparametric
resampling techniques can be seen as an approach that paves the way towards more general
hybrid parametric-nonparametric resampling techniques.



Chapter 6

Subasymptotic spatial-temporal
extreme-value modeling

The previous chapter was centered on modeling and simulation tools for asymptotic models
featuring stability properties in marginal distributions and the dependence structure. As al-
ready explained before, the dependence stability is often not observed in real datasets, such that
co-occurrences of extreme values at higher quantiles become relatively less frequent. For in-
stance, the spatial extent and temporal duration of extreme episodes could become smaller and
shorter, respectively, when higher magnitudes are observed. This implies that the cluster size of
extremes depends on event magnitude. Bivariate diagnostics and more flexible subasymptotic
extremal dependence models for multivariate data have been developed since the mid of the
1990s (Ledford and Tawn, 1996; Coles et al., 1999; Heffernan and Tawn, 2004), see also the
contributions discussed in Chapter 4, but the extension to models that systematically address
relatively fast joint tail decays in the spatial and spatiotemporal setting is more recent. This
chapter summarizes several contributions to this very active area of research. In asymptotic
models, the peaks-over-threshold stability can be expressed through a scale-profile decomposi-
tion of the `-Pareto limit processes with a Pareto-distributed scale variable, as outlined in §2.4.
The construction principle of the subasymptotic models below is based on replacing the Pareto-
distribution of the scaling variable by more flexible alternatives. Moreover, we will also discuss
more specific subasymptotic models that strongly capitalize on hierarchical constructions.

6.1 Modeling threshold exceedances with Gaussian scale
mixture processes

The pseudo-polar representations of multivariate limit distributions (i.e., the scale-profile de-
composition of generalized Pareto limits; recall Definition 6) have motivated Wadsworth et al.
(2017) to explore how more flexible transitions between dependence classes can be achieved
through a common random scaling applied to a random vector on the unit sphere, the latter be-
ing defined from a norm on R2. The work in Engelke et al. (2019), summarized in §4.2, provides
an in-depth analysis of bivariate dependence structures arising from such constructions. In this
section, we use the pseudo-polar representation of multivariate elliptical distributions, such as
the multivariate Gaussian, and we argue that a flexible and natural extension of this approach

87
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to spatial modeling consists in using the wide class of randomly scaled Gaussian processes,
also known as Gaussian scale mixtures. This class comprises all infinite-domain processes pos-
sessing finite-dimensional nondegenerate elliptical distributions (Huang and Cambanis, 1979).
In exceedance-based modeling, the gain in tail flexibility as compared to Gaussian models or
asymptotic models for extremes could allow fixing lower thresholds, thus improving statistical
efficiency. In Gaussian scale mixtures, the Gaussian correlation structure can be viewed as a
mechanism to capture certain properties of the bulk of the distribution, like the range of de-
pendence, while the random scale parameters give separate control over the joint tail decay
rates.

A main purpose of this approach is to propose new, parsimonious and flexible subasymp-
totic dependence models to achieve a smooth transition between asymptotic independence and
asymptotic dependence. We pay strong attention to appropriately capturing the tail decay in
asymptotically independent scenarios while keeping a highly flexible asymptotically dependent
submodel. The asymptotically dependent submodels in the class of Gaussian scale mixtures
are closely related to the elliptic Pareto process of Thibaud and Opitz (2015), see §5.1, while
the asymptotically independent counterparts described below provide more flexible parametric
alternatives. Parameter inference allows the data to provide evidence about the asymptotic
dependence class without fixing it a priori.

The results in this section are published in Opitz (2016); Huser et al. (2017).

6.1.1 Gaussian scale mixture processes

To create flexible spatial models, we define a Gaussian scale mixture process (i.e., a Gaussian
process with random variance) as follows:

X(s) = RW (s), s ∈ S ⊂ RD, (6.1)

where W (s) is a standard Gaussian process with correlation function ρ(s1, s2), and RF is a
positive random variable with distribution F and density f , independent of W (s). Conditional
on R, the random process X(s) is Gaussian with zero mean and variance R2. Gaussian processes
arise as a special case when R = r0 almost surely for some r0 > 0. We propose to use the
copula associated to (6.1) as a model for extremal dependence, i.e., we only use the dependence
structure for modeling extremes, but we may modify the marginal distributions by transforming
them in a monotonically strictly increasing manner.

Finite-dimensional distributions

When the process (6.1) is observed at d spatial locations s1, . . . , sd ∈ S, we write Xj = X(sj)
and Wj = W (sj), j = 1, . . . , d, yielding the random vectors X = (X1, . . . , Xd)

T and W =
(W1, . . . ,Wd)

T . From (6.1), one has the representation

X = RW , R ∼ F⊥W ∼ Nd(0,Σ), (6.2)

where Σ is a correlation matrix determined by the spatial configuration of sites. The Gaussian
scale mixture vectors given in (6.1) correspond to elliptically contoured distributions (Cambanis
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et al., 1981); see B.1. By conditioning on R, we deduce that the distribution G and density g
of X are

G(x) =

∫ ∞
0

Φd(x/r; Σ)f(r)dr, g(x) =

∫ ∞
0

φd(x/r; Σ)r−df(r)dr, x ∈ Rd, (6.3)

where Φd(·; Σ) and φd(·; Σ), respectively, denote the d-variate Gaussian distribution and density
with zero mean and covariance matrix Σ. Some non-trivial choices of the mixing density f(r)
lead to a closed-form expression of the density g(x), including the Student-t, Laplace and slash
models (Kotz et al., 2005). In general, the unidimensional integrals in (6.3) can be accurately
approximated using numerical integration. Marginal distributions Gk and their corresponding
densities gk, k = 1, . . . , d, are

Gk(xk) =

∫ ∞
0

Φ(xk/r)f(r)dr, gk(xk) =

∫ ∞
0

φ(xk/r)r
−1f(r)dr, xk ∈ R, (6.4)

where Φ(·) = Φ1( · ; 1) and φ(·) = φ1( · ; 1) denote the univariate standard Gaussian distribution
and density, respectively. The use of a censored likelihood requires the partial derivatives of
the distribution G in (6.3), which can be expressed as univariate integrals where the integrand
involves conditional Gaussian distribution functions (which can be estimated without bias (Genz
and Bretz, 2009)) and probability densities; see Huser et al. (2017) for details.

Conditional distributions and simulation algorithm

We develop an efficient algorithm for conditional simulation of Gaussian scale mixtures, which
is crucial for prediction and estimation of complex functionals in spatial and spatiotemporal
settings. For X = (XT

1 ,X
T
2 )T = R(W T

1 ,W
T
2 )T a d-dimensional Gaussian scale mixture parti-

tioned into subvectorsX1 andX2 of dimensions d1 ∈ {1, . . . , d−1} and d2 = d−d1, respectively,
we first derive the conditional distributions of X2 given X1 and of the latent variable R given
X1. Let Σi,j, i, j ∈ {1, 2}, denote the corresponding blocks of the covariance matrix Σ of
W = (W T

1 ,W
T
2 )T and Σi|j = Σi,i − Σi,jΣ

−1
j,jΣj,i.

Proposition 10 (Conditional distributions). The conditional distribution of X2 given X1 = x1

is elliptic with density

fX2|X1=x1(x2) = c−1
0 |Σ2|1|−1/2hd

{
(x2 − µ2|1)TΣ−1

2|1(x2 − µ2|1) + c1

}
, x2 ∈ Rd2 , (6.5)

where µ2|1 = Σ2,1Σ
−1
1,1x1, c0 = Ad2

∫∞
0
hd(r

2 + c1)rd2−1dr, c1 = xT1 Σ−1
1,1x1 and

hd(t) = A−1
d t(1−d)/2fRRW

(
√
r), fRRW

(r) =

∫ ∞
0

F (s−1)
{
fRW

(rs) + f ′RW
(rs)rs

}
ds.

It has pseudo-polar representation µ2|1 +R2|1Σ
1/2
2|1U with Σ2|1 = Σ

1/2
2|1 Σ

T/2
2|1 , ‖U‖2 = 1 and radius

R2|1 whose density is fR2|1(r) = Ad2 c
−1
0 rd2−1hd(r

2 + c1), r > 0. The conditional density of R
given X1 = x1 ∈ Rd1, with 1 ≤ d1 ≤ d, is

fR|X1=x1(r) = r−d1f(r)φd1(x1/r; Σ1;1)/g(x1), r ≥ 0. (6.6)
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Figure 6.1: Conditional simulations from an asymptotically independent Gaussian process (left),
an asymptotically dependent Student-t process with 3 degrees of freedom (middle), and from one
of the newly proposed Gaussian scale mixture processes with β = γ = 1 leading to asymptotic
independence (right), displayed using exponential marginal distributions. The underlying Gaus-
sian field has exponential correlation function ρ(s1, s2) = exp(−‖s1 − s2‖/0.1). Simulation is
done conditional to the central grid cell at (0.5, 0.5), whose value is fixed to the 99.99%-quantile.
The conditional simulation of the scale variable R̃ is based on a Metropolis–Hastings algorithm.
The three conditional simulations of the Gaussian component W̃ use the same random seed.

Based on the above result, simulation of X2 conditional on X1 = x1 can be done either
by directly simulating the elements of the pseudo-polar representation µ2|1 + R2|1Σ

1/2
2|1U , or by

exploiting the latent Gaussian structure in a two-step procedure. To simulate RW2 conditional
on RW1 = x1, we first generate a realization r̃ of the conditional scale variable R̃ according
to its density fR|X1=x1 in (6.6), and we then sample a realization w̃2 of W2 conditional on
R̃ = r̃ and X1 = x1, i.e., we sample w̃2 according to the conditional Gaussian distribution
W2 | W1 = x1/r̃ with mean µ2|1/r̃ and covariance matrix Σ2|1. Then, r̃w̃2 is a realization of
the conditional vector X2 given X1 = x1.

For an illustration of conditional simulation, Figure 6.1 displays conditional realizations
of three Gaussian scale mixture models, where the impact of choosing different random scale
distributions emerges clearly.

6.1.2 Flexible spatial dependence with Gaussian scale mixtures

Bivariate dependence properties of Gaussian scale mixtures can be obtained from the general
results for random scale constructions in §4.2; see Example 2. For a regularly varying scale
distribution F we get asymptotically dependent extremal-t limit processes (Opitz, 2013). We
now outline two models for flexible modeling of threshold exceedances in the spatial setting,
which are discussed in detail in Opitz (2016) and Huser et al. (2017), along with several other
models. The following more specific result for Weibull-tailed random scale variables, established
in Huser et al. (2017), will motivate the so-called HOT model and also applies to the Laplace
model. It states that asymptotic independence arises for Weibull-tailed scale variables, with
flexible expressions for the dependence mesure χ.
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Proposition 11 (Weibull-tailed Gaussian scale mixtures). Suppose that

P(R ≥ r) = 1− F (r) ∼ αrγ exp(−δrβ), r →∞, (6.7)

for some constants α > 0, β > 0, γ ∈ R and δ > 0. Then χ = 0 and

χ = 2 {(1 + ρ)/2}β/(β+2) − 1.

The joint tail can be written as

P(FX1 > 1− 1/x, FX2 > 1− 1/x) = L(x)x−2/(1+χ), x→∞,

where L(x) ∼ K log(x)(1−1/η) 2γ+β
2β

+1/(2η)−1 is a slowly varying function as x → ∞ and K is a
positive constant depending on α, β, γ and δ.

The HOT model

The HOT model, which was named as such in the literature after the authors’ initials in Huser
et al. (2017), bridges asymptotic dependence and independence. It can generate any value of
χ ∈ [ρ, 1] for fixed Gaussian correlation ρ < 1. Its novel two-parameter Weibull-type distribution
F with support [1,∞) contains the Dirac mass at 1 as limiting case, yielding asymptotically
independent standard Gaussian processes, and the Pareto distribution as boundary case, yielding
asymptotic dependence. The distribution of the scale variable R with parameters β ≥ 0 and
γ > 0 is defined as

F (r) =

{
1− exp

{
−γ(rβ − 1)/β

}
, β > 0,

1− r−γ, β = 0,
r ≥ 1. (6.8)

The distribution (6.8) forms a continuous parametric family with respect to β since the term
(rβ−1)/β converges to log r as β ↓ 0. It is the result of applying the inverse Box–Cox transform
with power β to an exponential variable with rate γ. The type of asymptotic dependence is
determined by the value of β. When β > 0, (6.8) coincides with the tail representation (6.7)
with the same tail parameter β, yielding asymptotic independence. When β = 0 or β ↓ 0, the
variable R is Pareto distributed with F (r) = 1 − r−γ, r ≥ 1, yielding asymptotic dependence.
The Dirac mass at 1 is obtained as β →∞ or as γ →∞. The benefit of this model is to provide
a smooth transition from asymptotic independence to asymptotic dependence with χ ↑ 1 for
β ↓ 0 and γ > 0 and ρ fixed; moreover, it still keeps a smooth transition from asymptotic
dependence to asymptotic independence with χ ↓ 0 as γ ↓ 0 and β = 0 and ρ are fixed, leading
to a Gaussian limit.

The Laplace model

The Laplace model, proposed prior to the HOT model in Opitz (2016), uses the distribution
F (r) = 1− exp(−r2/2)), r > 0, known as Rayleigh distribution. Therefore, it is asymptotically
independent with Weibull index β = 2. An interesting feature of the corresponding Gaussian
scale mixture model is that its upper and lower univariate tails are part of the generalized Pareto
family. Indeed, P(X(s) > x) = 0.5 exp(−x) for x > 0, which defines the tail of a generalized
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Pareto distribution with tail index ξ = 0. More generally, owing to the sum stability of elliptical
distribution families, all nondegenerate weighted sums of components of X again have GPD
tails with ξ = 0, such that using this model in the extreme-value context is very natural and
convenient.

Moreover, it is possible to characterize the joint tail behavior with respect to how extrapola-
tion is done for various aggregations of a random vector with this Gaussian scale mixture struc-
ture. The following proposition from Opitz (2016) summarizes the extrapolation of probabilities
for exceedance sets, where some extrapolation relationships are exact and not only asymptotic.
We focus on four useful choices that are common in the literature. Given a fixed threshold u, a
vector x is a marginal exceedance in x1 if x1 ≥ u, it is a sum exceedance if

∑d
j=1 xj ≥ u, it is

a max exceedance if maxj=1,...,d xj ≥ u, and it is a min exceedance if minj=1,...,d xj ≥ u. For the
corresponding exceedance sets, we write Ax1(u) = {x | x1 ≥ u}, Asum(u) = {x | ∑j xj ≥ u},
Amax(u) = {x | maxj xj ≥ u} and Amin(u) = {x | minj xj ≥ u}.
Proposition 12 (Extrapolation of exceedance probabilities in the Laplace model). For X ∼
L(Σ) a d-dimensional centered Laplace vector with dispersion matrix Σ, u > 0 a threshold and
t = (t, . . . , t) > 0 defining a translation X − t of the vector, we have the following properties:

P(X − t ∈ Asum(u)) = exp

(
− d√

eTΣe
× t
)
P(X ∈ Asum(u)),

P(X − t ∈ Ax1(u)) = exp (−t/√σ11)P(X ∈ Ax1(u)),

P(X − t ∈ Amax(u)) ∼ exp (−t/σ)P(X ∈ Amax(u)), u→∞,
where σ =

√
max(σ11, . . . , σdd) in the last equation. When Σ = Σ? is a correlation matrix, we

further have

P(X − t ∈ Amin(u)) ∼ exp
(
−
√
eT (Σ?)−1e× t

)
P(X ∈ Amin(u)), u→∞.

6.1.3 Statistical inference

To estimate the extremal dependence structure from the observed high spatial threshold ex-
ceedances, we use a two-step procedure that is often used with likelihood models for dependence
in extremes: marginal distributions are estimated nonparametrically based on ranks, and then
dependence parameters are estimated using a full likelihood with partial censoring to prevent
estimates from being influenced by low and moderate values; see the closely related approach
advocated for elliptical Pareto processes in §5.1 and the general estimation principle recalled in
§1.3.4. Results from Thibaud and Opitz (2015) and Huser et al. (2017) suggest that it provides
a reasonable compromise between bias and variance compared to alternative approaches using
threshold exceedances. Even faster inference of tail behavior is possible when censoring is not
partial but is only applied in the case where no component exceeds its marginal threshold. In a
simulation study in Huser et al. (2017), we have demonstrated good performance of the partial
censoring approach for the HOT model.

6.1.4 Applications

Two applications of spatial modeling of extreme wind speeds through the above Gaussian scale
mixture models have been implemented in Opitz (2016); Huser et al. (2017). We here describe
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only the approach used in Huser et al. (2017) where we analyze hourly wind speed extremes
recorded during 2012–2014 in the Pacific Northwest, US, a region with large wind energy re-
sources. Data are available year-round at 20 meteorological towers. To avoid modeling complex
spatiotemporal nonstationary patterns, we restrict attention to winter months for the 12 sta-
tions located on the East side of the Cascade mountain range; see the upper panel of Figure 6.2.
Selected data comprise up to 6504 hourly observations at each site. Wind patterns are mainly
characterized by easterly and westerly winds.

We fitted Gaussian scale mixtures of type (6.8), with or without parameter constraints such
as β = 0, and we further fitted a range of natural competitor models. A model comparison based
on likelihood-based criteria for goodness-of-fit, and on CRPS for spatial prediction, indicates
superior performance of the most complex HOT model considered for this application. The use
of conditional simulation of the selected model based on Proposition 10 is illustrated for spatial
prediction in the lower panel of Figure 6.2.

6.1.5 Discussion of spatial subasymptotic POT modeling

A number of approaches with mechanisms similar to Gaussian scale mixtures have been proposed
in the recent literature to construct subasymptotic spatial peaks-over-threshold models (Huser
and Wadsworth, 2019; Castro-Camilo et al., 2020). A strong benefit of Huser and Wadsworth
(2019) for statistical inferencer is that the transition between asymptotic dependence and asymp-
totic independence takes place in the interior of the parameter space; however, this comes at
the price of a construction of the dependence model that is more copula-like and less intuitive
as compared to Gaussian scale mixtures. Castro-Camilo et al. (2020) implement peaks-over-
threshold inference for the so-called Gaussian factor copulas of Krupskii et al. (2018), a model
that is a variant of Gaussian location mixtures shortly discussed in §4.2; it leads to asymptotic
dependence with limits of the Brown–Resnick type (Kabluchko et al., 2009).

6.2 Modeling maxima with max-infinitely divisible pro-
cesses

Max-stable processes are the natural models for spatial extremes when considering componen-
twise maxima data, as recalled in §2.4. Max-stable models are appropriate when asymptotic
stability properties in the dependence structure are satisfied at the observed levels, and they
have been established as useful statistical models in practice (Davison et al., 2012, 2019). As
pointed out in §2.5 and the preceding section, a fast growing body of empirical studies of en-
vironmental and climatic extremes in the literature has provided evidence that the asymptotic
stability arising asymptotically is often violated at finite levels, and that the spatial dependence
strength is weakening as events become more extreme (see, e.g., Huser et al., 2017; Tawn et al.,
2018; Huser and Wadsworth, 2019; Bacro et al., 2019; Castro-Camilo et al., 2020; Bopp et al.,
2020). In particular, under asymptotic independence, maxima become ultimately independent
at the highest levels, whichs calls for more specialized models to capture the decay rate towards
independence. In this setting, the commonly used max-stable models are not able to capture
the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels.
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Figure 6.2: Application of spatial peaks-over-threshold modeling to wind speeds with Gaussian
scale mixtures. Top left display: Topographic map with meteorological towers and US state
boundaries (black). Overlaid ellipses are centered at Goodnow Hills (GDH) and correspond
to the isocontours of the fitted subasymptotic dependence coefficients χ(u) = 0.5, 0.4, 0.3, 0.2
(from the center outward) using the thresholds u = 0.97 (red) and u = 0.99 (blue), for the best
geometrically anisotropic model of Huser et al. (2017). Top right display: Wind rose of winter
wind speeds for the 12 stations, preliminarily transformed to the uniform scale. The color scale
corresponds to different marginal quantile ranges. Bottom left display: Conditional simulation
for the best model found in Huser et al. (2017) with conditioning values observed at the twelve
stations on February 22, 2012, a day of very strong wind. Bottom middle and right displays:
corresponding 25% and 75%-conditional quantiles based on 500 simulations. The color scale in
the bottom row indicates quantile levels.

Figure 6.3 empirically illustrates weakening dependence strength at higher levels through
level-dependent extremal coefficients estimated for wind speed maxima at 30 weather stations
in the Netherlands, using different block sizes. Especially with relatively small blocks (daily,
weekly), data show a relatively strong evolution towards larger extremal coefficients (correspond-
ing to weaker extremal dependence) at higher quantiles.

We therefore propose a more flexible modeling framework based on the class of max-infinitely
divisible processes, which extend max-stable processes while retaining dependence properties
that are natural for maxima. We develop two parametric constructions for max-infinitely di-
visible models, which relax the max-stability property but remain close to popular max-stable
models obtained as special cases. The first model considers maxima over a finite, random
number of independent observations, while the second model generalizes the spectral represen-
tation (2.17) of max-stable processes. By analogy with max-stable processes, inference can be
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Figure 6.3: Empirical level-dependent extremal coefficients for different block sizes (solid curves),
as defined in Equation (6.14), for Netherlands wind speed data, plotted as a function of uniform
quantiles u. Shaded areas are 95%-confidence intervals.

performed using a pairwise likelihood.

6.2.1 Definition and Poisson process construction

A multivariate distribution function G on Rd, d ≥ 1, is max-infinitely divisible (max-id) if and
only if Gt (with Gt(z) = G(z)t) is a valid distribution function on Rd for any t > 0. A max-
id distribution G describes the componentwise maximum of m independent random variables
with distribution F = G1/m, for any m = 1, 2, . . .. This property permits to switch from
the joint distribution G of the componentwise maximum over a given time unit to alternative
time units and in particular to the distribution F of the original events. Unlike the univariate
case, multivariate distributions are not always max-id. However, any monotonically increasing
marginal transformation of a max-id distribution preserves the max-id property. We will exploit
a constructive characterization of max-id distributions based on Poisson processes (Resnick,
1987, Chapter 5). For simplicity, we focus on multivariate distributions, and skip some technical
details in the following.

We consider a Poisson point process (PPP) defined on the domain E = [l1,∞]×. . .×[ld,∞] ⊆
[−∞,∞]d with a locally finite mean measure Λ ≥ 0. Given the Poisson points

{Xi, i = 1, . . . , N} ∼ PPP(Λ), N ∈ N0 ∪ {∞}, (6.9)

we can define a random vector Z = (Z1, . . . , Zd)
T ∈ Rd as the componentwise maximum over

the Poisson points Xi and the lower endpoint l, i.e.,

Z = max
( N

max
i=1

Xi, l
)
. (6.10)
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The value Z = l arises when N = 0, i.e., when the Poisson process contains no points in E \{l}.
Any max-id distribution can be represented constructively as in (6.10), and this approach can
be extended to max-id processes (Giné et al., 1990). The joint distribution function of Z is

G(z) = exp {−Λ ([−∞, z]c)} , z ∈ E, G(z) = 0, z ∈ Ec, (6.11)

where z = (z1, . . . , zd)
T and [−∞, z] = [−∞, z1]× · · · × [−∞, zd]. By analogy with max-stable

distributions, the measure Λ is called the exponent measure or mean measure of G, and V (z) =
Λ([−∞, z]c) is called the exponent function. The Poisson process representation is helpful for
intuitive interpretation, modeling and simulation of max-id distributions and processes.

6.2.2 Dependence properties

Max-id random vectors Z are associated(Resnick, 1987, Proposition 5.29), such that a certain
form of positive dependence prevails. Extremal dependence is closely related to the tail behavior
of the exponent measure Λ since

1−G(z) = 1− exp {−Λ ([−∞, z]c)} ∼ Λ ([−∞, z]c) , min
j=1,...,d

zj →∞. (6.12)

If a max-id distribution G with exponent measure Λ is used to model the componentwise max-
imum over m independent random vectors with distribution F such that Fm = G, then

F (z) = G1/m(z) = exp {−Λ ([−∞, z]c) /m} , (6.13)

which gives the first-order tail approximation 1 − F (z) ≈ Λ([−∞, z]c)/m when z has large
components and/or m is large. therefore, the extremal dependence structures of F , G and Λ
are of the same form.

The dependence strength may be summarized by the level-dependent extremal coefficient.
For any d-dimension random vector Z = (Z1, . . . , Zd)

T with joint distribution F , assumed to
be continuous for simplicity and possessing marginal distributions F1, . . . , Fd, we define the
level-dependent coefficient θd(u), for probability level u ∈ (0, 1), as

θd(u) =
log
[
F
{
F−1

1 (u), . . . , F−1
d (u)

}]
log(u)

, u ∈ (0, 1). (6.14)

For max-id distributions, θd(u) = −Λ? ([0, (u, . . . , u)]c) / log u. This coefficient can be inter-
preted as the equivalent number of independent variables amongst the d variables at the proba-
bility level u ∈ (0, 1). Furthermore, in the bivariate case we obtain the link to the tail correlation
measure χ(u) =∼ 2− θ2(u) as u→ 1.

6.2.3 Construction principles

Useful max-id models can be built either by (i) directly specifying the exponent measure Λ in
(6.9), or (ii) defining the pointsXi constructively in the representation (6.10), or (iii) exploiting
the fact that max-id distributions arise as limits of Fm

m as m → ∞ where the distributions Fm
are not necessarily identical. We propose two new general construction principles: we can follow
(i) by defining a finite exponent measure Λ, or we follow (ii) and directly define the points Xi

in (6.10), generalizing the spectral representation of max-stable processes in (2.17) with infinite
exponent measure Λ.
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Models with finite exponent measure Λ

Using a finite exponent measure Λ = cH parametrized by an arbitrary probability distribution
H on E and a constant c > 0, the resulting max-id vector Z has joint distribution

Gc,H(z) = exp[−c{1−H(z)}], z ∈ E, G(z) = 0, z ∈ Ec, (6.15)

and can be interpreted as the componentwise maximum over a finite number N of independent
events, where N follows the Poisson distribution with mean c. As Λ is finite and the event
{N = 0} has probability exp(−c) > 0, this yields positive mass at the lower boundary l. In
practice, this singularity is rather a nuisance than a relevant model feature, and we may restrict
c to the range [c0,∞) with a relatively large value of c0 > 0, to ensure that exp(−c) ≈ 0. Once
a parametric model for H has been chosen, the additional parameter c refines the tail behavior
of G as compared to that of H and adds flexibility. Consider the distribution F = G

1/m
c,H of the

original observations, for some fixed m > 0. Using (6.13),

1− F (z) = 1−G1/m
c,H (z) = 1− exp[−(c/m){1−H(z)}] ∼ (c/m){1−H(z)}, (6.16)

as m → ∞ and/or mindj=1 zj → ∞, so that the constant c controls the tail weight of F
with respect to that of H. The finite measure model Gc,H in (6.15) therefore interpolates
between the tail behavior of H (for c = 1) and that of the max-stable limit of H for c → ∞,
which is a useful feature when modeling sub-asymptotic block maxima. In the spatial con-
text, this construction generalizes to max-id processes constructed as the pointwise maximum
Z(s) = max{X1(s), . . . , XN(s), l(s)}, where X1(s), . . . , XN(s) are independent realizations of
X(s) conditionally on N , and l(s) is their lower bound function. Relevant choices for the
process X(s) include Gaussian processes or Student-t processes, for which efficient implementa-
tions of routines to compute multivariate distribution functions exist, or more general elliptical
processes. When X(s) is Gaussian, then Z(s) is asymptotically independent, and when X(s)
is Student-t with α > 0 degrees of freedom, then Z(s) is asymptotically dependent with the
max-stable extremal-t limit process (Opitz, 2013).

Generalized spectral construction

To prevent the singularity at the lower endpoint l in max-id models with finite exponent mea-
sures, we mimick the spectral representation of max-stable processes in (2.17), but we use a more
flexible Poisson point process intensity for the random scales {Ri} > 0. This allows proposing
parametric models that can smoothly bridge asymptotic dependence and independence through
a mechanism very similar to the Gaussian scale mixtures discussed in §6.1.1, and with the same
joint dependence properties. Let Wi(s) be independent copies of a random process W (s) with
0 < E[max{W (s), 0}] <∞, independent of {Ri}. We construct the max-id process as

Z(s) = max
i=1,2,...

RiWi(s), s ∈ S ⊂ RD, 0 < {Ri} ∼ PPP(κγ), (6.17)

where the mean measure κγ , parametrized by the vector γ ∈ Γ ⊂ Rq, is such that κγ([0,∞)) =
∞ but κγ([r,∞)) <∞ for any r > 0. We specify κγ in order to recover max-stable models as a
special case. As negative values of Wi(s) do not contribute to the maximum Z(s) in (6.17) we
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Figure 6.4: Bivariate level-dependent extremal coefficients for a selection of models. Top row:
finite exponent measure model (6.15). Middle row: infinite exponent measure model (6.20).
Bottom row: model of Padoan (2013) for different variogram values λ (left), Gaussian copula
model for different correlation values (middle), Student t copula model for different values of the
degrees of freedom parameter (right). The models in the top and middle rows and the Student
t copula models are based on an underlying standard Gaussian vector (W (s1),W (s2))T with
correlation ρ(h) = 0.5.
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may replace Wi(s) by max{Wi(s), 0} and set l(s) = 0. The finite-dimensional exponent measure
Λ in (6.11) is given by

Λ ([0, z]c) =

∫ ∞
0

{1− FW (z/r)}κγ(dr) <∞, z ∈ (0,∞)d, (6.18)

where FW denotes the distribution of the process W (s) observed at any finite collection of d ≥ 1
sites s1, . . . , sd ∈ S. Since it must be Radon on E \ {l}, a constraint to be verified is that values
Λ ([0, z]c) are finite for any z ∈ (0,∞)d. An intuitive interpretation of (6.17) is to view the
max-id process Z(s) as the pointwise maximum of an infinite number of independent "storms"
RiWi(s) characterized by their amplitude Ri and their spatial extent Wi(s). In practice, we can
take Wi(s) as Gaussian processes, and then the scaling variables Ri adjust this baseline model
for accommodating more specific joint tail decay rates; recall the results shown in §4.2.2.

The power-law tail of the measure κ([r,∞]) = 1/r, r > 0, in the max-stable construction
(2.17) yields asymptotic dependence. To extend this to asymptotic independence, we propose
lighter-tailed models with a Pareto tail on the boundary of the parameter space to keep the
max-stable spectral representation as a special case. We say that a measure κ is Weibull-tailed
if κ([r,∞)) ∼ crτ exp(−αrβ) as r → ∞ for some constants c > 0, α > 0, β > 0 and τ ∈ R,
where we refer to β as the Weibull coefficient of κ. We propose the following two models for the
measure κγ in (6.17):

κ[1]
γ ([r,∞)) = r−(1−α) exp{−α(rβ − 1)/β}, r > 0,γ = (α, β)T ∈ [0, 1)× [0,∞), (6.19)

κ[2]
γ ([r,∞)) = r−β exp{−α(rβ − 1)/β}, r > 0,γ = (α, β)T ∈ (0,∞)× [0,∞). (6.20)

For β = 0, we interpret κ[1]
γ and κ

[2]
γ as the limits as β ↓ 0, giving κ

[1]
γ ([r,∞)) = r−1 and

κ
[2]
γ ([r,∞)) = r−α, r > 0. With standard Gaussian W (s), the max-stable extremal-t process

with α > 0 degrees of freedom arises from κ
[2]
γ when β = 0. In the non max-stable cases, the

tail decay of κ[k]
γ , k = 1, 2, is of Weibull type and yields asymptotic independence with Gaussian

W (s). With Gaussian correlation function ρ(h), the coefficient of tail dependence between two
sites s1, s2 at distance h = ‖s1 − s2‖ is η(h) = [{1 + ρ(h)}/2]β/(β+2), such that the parameter
β plays a crucial role for the joint tail decay rate, while the parameter α also impacts the
dependence structure but to a milder degree.

An important distinction between the max-stable and max-id constructions is that the as-
sumption of independence between Ri and Wi(s) is not essential in the max-id case. In the
preprint Zhong et al. (2020), we extend the above model by letting the correlation function
ρ(·) of the standard Gaussian process Wi depend on Ri, such that ρ(s1, s2;Ri) may decrease as
Ri increases, and the spatial dependence strength weakens when the overall event magnitude
represented by the points {Ri} gets larger. For stationary and isotropic ρ(·), we could consider
the exponential correlation function

ρ(s1, s2;Ri) = exp{−‖s1 − s2‖(1 +Ri)
ν/λ}, (6.21)

for some baseline range parameter λ > 0, and "modulation" parameter ν ∈ R. When ν > 0,
the spatial range parameter λ(1 + Ri)

−ν gets smaller as Ri increases, and vice versa when
ν < 0. Introducing dependence between Ri and Wi adds considerable flexibility to the model
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and improves its ability to appropriately capture the dependence of moderately extreme events.
Moreover, over large study areas or long periods of time, the strength of extremal dependence,
and therefore the spatial extent of clusters of extreme values, may vary. We therefore may
extend t exponential correlation model by incorporating spatiotemporal covariates. We index
the correlation function of the process Wi by time t as ρt(s1, s2;Ri) to emphasize that it may
vary over time. Building upon propositions for nonstationary Gaussian correlation structures
from the literature, a flexible nonstationary correlation function on R2 is given by

ρt(s1, s2;Ri) = |Ωs1,t(Ri)|1/4|Ωs2,t(Ri)|1/4
∣∣∣∣Ωs1,t(Ri) + Ωs2,t(Ri)

2

∣∣∣∣−1/2

C
(
Q

1/2
s1;s2,t(Ri)

)
,

where Ωs,t(Ri) is a 2-by-2 covariance matrix that may depend on spatial location s, time t and
the Poisson points {Ri}, where C(h) is a stationary isotropic correlation function with unit
range, e.g., C(h) = exp(−h), h ≥ 0, and Qs1;s2,t(Ri) is the quadratic form

Qs1;s2,t(Ri) = (s1 − s2)T
(

Ωs1,t(Ri) + Ωs2,t(Ri)

2

)−1

(s1 − s2).

Covariates, such as time and altitude as used in our temperature data application in Zhong et al.
(2020), can be linked to the matrix Ωs,t(Ri). More precisely, we propose the following general
model for the covariance matrix Ωs,t(Ri):

Ωs,t(Ri) = λ2
s,t(1+Ri)

−2νA(θ), A(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
1 0
0 a

] [
cos(θ) − sin(θ)
sin(θ) cos(θ)

]T
, (6.22)

where λs,t > 0 is a baseline range parameter, ν ∈ R, a > 0, θ ∈ [0, π/2] define a geometric
anisotropy. Covariates may be included in λs,t, for example by specifying λs,t = exp(λ0 + λ1 ×
alts + λ2 × t), where λ0, λ1, λ2 ∈ R are range parameters corresponding to the intercept, the
effect of altitude, and the effect of time, respectively, on the spatial dependence range.

To illustrate the flexibility of some of the max-id models discussed above, Figure 6.4 displays
bivariate level-dependent extremal coefficient θ2(u) for a variety of models.

Using the spectral construction (6.17), simulation mechanisms for max-id models are similar
to those for max-stable models. The Gaussian-based models can be simulated exactly by ex-
ploiting multivariate elliptical representations, by analogy with the exact simulation procedures
discussed for the extremal-t models in §5.1.2.

6.2.4 Inference

By analogy with the special case of max-stable likelihoods, there is a combinatorial explosion of
the number of terms to be computed for the max-id likelihoods in dimension larger than two,
such that full likelihood inference is not feasible. We propose using two-step pairwise likelihood
inference §1.3.4. In the first step, we fit GEV marginal distributions using some standard
method, location-wise maximum likelihood fits, or GAM models to capture spatial trends in the
GEV parameters. For the second step, data are transformed to a uniform marginal scale (i.e.,
we use a copula approach), and then we estimate the max-id dependence parameters with a
pairwise likelihood.
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6.2.5 Applications

In Huser et al. (2021), we illustrate the benefits of our new modeling framework on Dutch wind
gust maxima calculated over different time units. Results strongly suggest that our proposed
models outperform other natural models, such as the Student-t copula process and its max-
stable limit, even for large block sizes. In the preprint Zhong et al. (2020), we tackle the
nonstationary modeling of annual temperature maxima for a century-spanning dataset of 44
European weather stations with a focus on temporal nonstationarities due to climate change.
Here, we shortly present the approach and results for the Dutch wind data.

We consider extremes in daily wind gusts from the Netherlands at 30 monitoring stations
from 1999 to 2008, and we focus on months October–March, which experience the strongest
wind gusts. To study wind gust extremes on various time scales, we compute daily, weekly,
monthly and yearly block maxima.

We proceed by a two-step approach for estimating marginal distributions and dependence
parameters. We model marginal distributions separately at each location, but jointly across time
scales to borrow strength across time series when few observations are available. Specifically,
let z̃ij;k denote the i-th observation at the j-th monitoring station for the k-th time scale. We
assume that the daily maxima, z̃i1j;1, follow a generalized extreme-value (GEV) distribution
G̃j;1(z) with location, scale and shape parameters µj ∈ R, σj > 0 and ξj ∈ R, respectively, and
that maxima for larger time scales, z̃ikj;k (k = 2, 3, 4), are also GEV-distributed according to

G̃j;k(z) = G̃j;1(z)bkθj = exp

{
−
(

1 + ξj
z − [µj − σj{1− (bkθj)

ξj}/ξj]
σj(bkθj)ξj

)−1/ξj

+

}
, k = 2, 3, 4,

where a+ = max(a, 0), b2 = 7, b3 = 30 and b4 = 182 are (approximate) block sizes for weekly,
monthly and yearly data, respectively, and θj ∈ (0, 1] is the extremal index specific to each
station, representing the proportion of independent extremes within each block. This univariate
model utilizes the common summary of temporal extremal dependence without the need to spec-
ify a full multivariate distribution for all the daily observations in a block. For each site j, we
then maximize a composite likelihood constructed by multiplying the univariate likelihood con-
tributions of all maximum values. The estimated shape parameters are all negative, suggesting
short bounded tails, and the extremal index roughly lies in the interval [0.5, 0.6], revealing some
mild extremal dependence in the daily time series. For modeling dependence, we standardize
the data to the Unif(0, 1)-scale and treat the transformed margins as perfectly uniform in the
pairwise likelihood approach used to estimate the dependence parameters in the second step.

The special dependence structure of componentwise maxima suggests that these data might
be well described over space by a max-id process since the pointwise confidence bounds of the
level-dependent extremal coefficients in Figure 6.3 have no overlap for the lowest and highest
quantiles of weekly maxima.

We estimate a selection of max-id models based on the above construction principles and
using a powered exponential correlation function with range and smoothness parameter for the
Gaussian processes involved in the constructions; see Huser et al. (2021) for details. Through-
out all of the fitted models, estimated range parameters λ̂ are large and suggest that spatial
dependence is quite strong. In contrast, estimated smoothness parameters show that there is
small-scale variability. A comparison of the max-stable models with the max-id extensions re-
veals that max-stability may be realistic assumption for yearly maxima, while for weekly and
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monthly maxima the estimates of β̂ in non-max-stable models are always significantly different
from zero at the 95% confidence level. This implies that these block maxima tend to be closer
to a max-stable process as the block size increases, while β provides extra flexibility at sub-
asymptotic regimes associated with small block sizes. In comparison with the infinite exponent
measure models, the max-id models with finite exponent measure, based on the Gaussian or
Student-t processes in their construction, are also very competitive. In particular, the Student-t
max-id model shows the best performance overall, as measured in terms of the Composite Likeli-
hood Information Criterion (CLIC). The parameter c, corresponding to the expected number of
independent replicates used to compute maxima, is always estimated to lie above 7.9, such that
the singular mass arising in the density of these models is negligible. Overall, our novel max-id
models outperform their max-stable extremal-t counterparts for small and moderate block sizes,
as well as classical copula models from geostatistics for large block sizes.

6.3 Hierarchical subasymptotic POT models with depen-
dence

Hierarchical constructions of statistical models involve several layers of model components and
have found widespread use in spatial and spatiotemporal statistical modeling; recall §1.3.5. The
top layer usually refers to the data. In this layer, the probability distribution of the observed data
is defined, and the aspects related to the sampling design, the observation protocol, the nature
of recorded variables and potential observation errors must be taken into account properly. The
second layer typically refers to a latent (i.e., unobserved) process, which represents the process
that one seeks to reveal and study. It could be given as a spatial-temporal parameter surface,
often driven by environmental conditions, and it is typically smoother than the top layer of data,
especially in the case of discretely observed data, such as event counts or occurrence positions
and times of events. In the third and deepest layer (from the perspective of the observer),
hyperparameters are defined, i.e., parameters that control the behavior of the latent process
(variance, dependence, smoothness...), and sometimes also parameters related to the shape of
the univariate distribution of observations conditional to the latent process. For reasons of
parsimonious and identifiable model structures, but also for the sake of computational benefits,
the observations in the data layer are usually assumed to be conditionally independent with
respect to the latent process and the hyperparameters.

In this section, several novel constructions and methods for hierarchical modeling of threshold
exceedances in continuous variables are discussed. The conditional independence assumption is
very useful in the context of threshold exceedances, since exceedances then arise independently
in the observed data conditional to the latent process. Therefore, likelihood expressions taking
into account the censoring below the threshold correspond to products of censored univariate
distributions, which pose less numerical challenges than the joint censoring of several dependent
variables.

Hierarchical modeling is often associated with approximation techniques applied in a Bayesian
framework, since in many cases the "unconditional" likelihoods (i.e., after integrating out the
latent variables) are not available in simple form. Alternatively, if we keep the latent variables
as parameters of the model, then a very large number of parameters may have to be estimated.
An example falling into this category is the INLA-based model with spatiotemporal Gaussian
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random effects embedded into three-stage POT approach using GAM equations for predicting
high precipitation quantiles in Opitz et al. (2018), as outlined in §3.1.2. In this model, first
a nonstationary marginal model is estimated for the full distribution and used to fix a high
threshold corresponding to a high predicted quantile of the fitted model. In the second stage, a
nonparametric logistic regression model is used to accurately (re)estimate the exceedance prob-
ability above this threshold. Finally, a nonparametric GPD model can be fitted to the excesses
above the threshold in the third stage. To account for unobserved or unavailable predictor
variables, and to capture stochastic behavior not explained by the response distributions in the
three stages, random effects can be incorporated into the linear predictors in the GAM formulas.

In this section, we consider hierarchical models that put stronger focus on appropriately
capturing the extremal dependence structure than the above INLA-based model. We discuss
a spatial model with a latent copula structure, based on the flexible univariate gamma-gamma
construction presented in §3.2.2, where we adapt simulation-based Markov Chain Monte Carlo
estimation to handle latent variables. As a second contribution, we highlight another spa-
tiotemporal hierarchical model involving the GPD, for which the "unconditional" marginal and
dependence parameters can be estimated in a frequentist setting by using a pairwise likelihood
approach. This model has a strong physical interpretation thanks to spatiotemporal kernel
smoothing of a gamma noise process for generating dependence at the latent process layer.
Moreover, the latent process is shared between the two components for exceedance probabilities
and excesses, so that positive correlations between exceedance probabilities and excess sizes can
be captured by the model. A further benefit of this model is that its unconditional univariate
distributions exactly correspond to the GPD limit from EVT, while in most other hierarchical
constructions only the data distribution conditional to the latent process possesses such a strong
asymptotic grounding.

6.3.1 Bayesian spatial modeling of extreme event episodes with flexi-
ble ratio constructions

We now discuss the approach taken in Yadav et al. (2020). It combines a flexible, subasymptotic
univariate model given by the ratio of two gamma variables with a spatial dependence model
embedded within one of the gamma-parameters. It permits fully Bayesian inference, and can
naturally incorporate covariate information. The number of latent variables is large in this
model, with one latent variable for each observation. Nonetheless, it can be fitted in fairly high
dimensions using MCMC by exploiting the Metropolis-adjusted Langevin algorithm (MALA),
which guarantees fast convergence of Markov chains with efficient block proposals for the latent
variables. We also develop an adaptive scheme to calibrate the MALA tuning parameters.

Recall from §3.2.2 that the gamma-gamma model, and similar ratio constructions, can be
expressed as

Y | Λ d
=
Ỹ

Λ
, with Λ ≥ 0 ⊥ Ỹ ≥ 0, Ỹ ∼ FY ( · ; Λ = 1),

where in the gamma-gamma case FY ( · ; Λ = 1) corresponds to a Γ(β2, 1)-distribution, and
Λ ∼ Γ(β2, α). Our general spatial hierarchical construction for observations Yj, j = 1, . . . , d and
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latent variables Λj is as follows:

Yj | Λ,ΘY
ind∼ FY ( · ; Λj,ΘY ), j = 1, . . . , d,

Λ | ΘΛ ∼ CΛ

{
FΛ1(·; Θmar

Λ ), . . . , FΛd(·; Θmar
Λ ); Θdep

Λ

}
, (6.23)

Θ ∼ π(Θ),

where CΛ refers to the spatial copula of Λ, FΛj(·; Θmar
Λ ) denotes the marginal distribution of

Λj, j = 1, . . . , d, and π(Θ) is the prior distribution of the parameter vector Θ.
The joint distribution of Y , Λ, and Θ can be decomposed into conditional distributions as

π(Y ,Λ,ΘY ,ΘΛ) = π(Y | Λ,ΘY ) π(Λ | ΘΛ) π(Θ), where π(·) denotes a generic (conditional)
distribution. The joint posterior distribution π (Λ,Θ | Y ) of latent variables Λ and hyperparam-
eters Θ is then proportional to π(Y ,Λ,Θ), and the posterior distribution of hyperparameters
Θ is obtained by integrating out the latent parameters Λ, i.e.,

π (Θ | Y ) =

∫
π (Λ,Θ | Y ) dΛ. (6.24)

The dimension of the integration domain in (6.24) can be very high if there are a lot of latent
variables. We solve this issue by implementing an MCMC algorithm, in which the latent variables
Λ are imputed and updated at each iteration.

Joint upper tail behavior

The joint upper tail behavior of the hierarchical model is driven by the interplay of the joint
lower-tail behavior of the latent process Λ and the upper-tail behavior of the conditionally
independent random variables at the observation layer of the model. We here provide more
details for the case where 1/Λj has univariate regularly varying distribution with positive tail
index ξ, and where Ỹ is lighter-tailed such that E(Ỹ 1/ξ+ε) <∞ for some ε > 0, which includes
the gamma-gamma model. If, in addition, the multivariate distribution F1/Λ of 1/Λ is regularly
varying at infinity as defined in (2.14), we have

1− F1/Λ(ty)

1− F1/Λ(t1)
→ V1/Λ(y), t→∞, y > 0,

where 1 = (1, . . . , 1)T ∈ Rd and V1/Λ(y) is some positive limit function. Theorem 3 of Fougeres
and Mercadier (2012) then implies multivariate regular variation of FY , i.e.,

1− FY (ty)

1− FY (t1)
→ VY (y) =

∫ ∞
0

. . .

∫ ∞
0

V1/Λ(y/x)
d∏
j=1

FY (dxj; Λ = 1), t→∞, y > 0.

The functions V1/Λ and VY represent exponent measures of multivariate max-stable distributions
(not necessarily simple as defined in §2.3.2), and here they are homogeneous of order −1/ξ, i.e.,
V1/Λ(ty) = t−1/ξV1/Λ(y) and VY (ty) = t−1/ξVY (y) for positive values of t and y. This result fully
characterizes the extremal dependence structure of the process Y resulting from the construction
(6.23) in the heavy-tailed case. In practice, we consider either a Gaussian copula in Λ, or an
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elliptical Student-t copula, i.e., the dependence structure of the Gaussian scale mixtures with
Student-t marginal distributions. The Gaussian copula leads to asymptotic independence in the
limit, while the Student-t copula generates asymptotic dependence.

For modeling replicated observations of spatial extreme event episodes, we suppose that
observed data Yi(sj), i = 1, . . . , n, j = 1, . . . , d, are composed of n independent time replicates
of the d components of a random vector Y = (Y (s1), . . . , Y (sd))

T indexed by locations s1, . . . , sd
in RD, typically D = 2.

Censored likelihood with data augmentation for latent variables

Based on the case of the Gaussian copula in Λ, we illustrate the likelihood formula of data
censored below a relatively high threshold and augmented with the latent variables. We write
yij = Yi(sj), λij = Λi(sj), i = 1, . . . , n, j = 1, . . . , d, and use the symbols φ and φρ for the
univariate and multivariate Gaussian densities corresponding to Φ and Φρ, respectively. Given
a data vector yi = (yi1, . . . , yid)

T and a fixed threshold vector ui = (ui1, . . . , uid)
T ∈ [0,∞)d,

we introduce the exceedance indicator vector ei = (ei1, . . . , eid)
T with eij = 1 if yij ≥ uij and

eij = 0 otherwise. If uij = 0, no censoring is applied to the value yij, on the other hand, if
uij = ∞ then the observation yij is treated as fully censored. This may be used to handle
missing data and prediction at unobserved locations. In the augmented censored likelihood
contribution of yi, we consider both Θ and λi = (λi1, . . . , λid)

T as parameters. The density
of observations (yij, eij) conditional on λij is fc(yij, eij;λij, β1) = Γ(uij; β1, λij) if eij = 0 and
fc(yij, eij;λij, β1) = γ(yij; β1, λij) if eij = 1, where γ( · ; β1, λij) is the gamma density with rate
λij and shape β1. The augmented censored likelihood contribution for the data vector (yTi , e

T
i )T

is thus

L(Θ,λi;yi, ei) =
d∏
j=1

fc(yij, eij;λij, β1)

× φρ[Φ−1{Γ(λi1;α, β2)}, . . . ,Φ−1{Γ(λid;α, β2)}]×
d∏
j=1

γ(λij;α, β2)

φ[Φ−1{Γ(λij;α, β2)}] ,

where the first line refers to the observation model and the second line to the latent model. The
overall augmented censored likelihood is

Ln(Θ,λ;y, e) =
n∏
i=1

L(Θ,λi;yi, ei),

where λ = (λT1 , . . . ,λ
T
n )T , y = (yT1 , . . . ,y

T
n )T , and e = (eT1 , . . . , e

T
n )T . Thanks to data augmen-

tation and to the conditional independence assumption, only univariate censoring is required,
which facilitates computations.

Markov chain Monte Carlo inference

We use Markov chain Monte Carlo (MCMC) sampling to generate a representative posterior
sample of the hyperparameter vector Θ and the latent variables Λ involved in the hierarchical
model (6.23), conditional on observed data. For prior distributions of hyperparameters, we use
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Figure 6.5: Daily precipitation data for Germany. Left: Mean precipitation in mm at study sites
calculated over the days of selected extreme events. Right: Mean precipitation in mm plotted
with respect to the stations’ altitude in m.

appropriately defined PC priors; see their derivation for β1 and β2 in §3.2.2. To handle the
high dimensionality of the vector of latent variables, we generate MCMC block proposals that
ensure a relatively fast exploration of the high-dimensional parameter space of Λ. Specifically,
we propose using the Metropolis-adjusted Langevin algorithm (MALA), which exploits the gra-
dient of the log-posterior density evaluated at the current parameter configuration to design an
efficient multivariate Gaussian proposal density. Details are given in Yadav et al. (2020), where
a simulation study shows that our algorithm works correctly and provides accurate inferences.

Application to precipitation extremes in Germany

We apply our hierarchical models to daily precipitation data in Germany for a set of d = 150
locations with some missing data for the study period from 2009 to 2018. To avoid model-
ing complex seasonal nonstationarities, we consider only the observations for the months of
September to December, resulting in n = 1220 temporal replicates. The location-specific mean
precipitation intensities reported in Figure 6.5 show a tendency towards higher values in regions
with higher altitudes. The precipitation intensities are zero or very small for most of the days
in the observation period, and we first extract extreme events (i.e., specific days) used to fit our
spatial hierarchical model. We identify extreme events as threshold exceedances of the average
daily precipitation amount taken over all study locations. Using the time series of the binary
occurrence indicators of such exceedances, we capture temporal dependence by modeling this
time series through a logistic regression with a random effect defined as a first-order autoregres-
sive Gaussian process; see Yadav et al. (2020) for the specification of this model, its inference
using INLA and the results. Then, in a second step, we fit the marginally censored gamma-
gamma model with latent Gaussian copula (and some other models) to the time series of the
selected extreme events. Since the model is subasymptotic and quite flexible, we have explored
the use of moderately high thresholds corresponding to marginal empirical quantiles at levels
85%, 90% and 95%. A by-product of censoring low values is that the tricky explicit treatment
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Figure 6.6: Boxplots of posterior predictive samples at 20 hold-out locations for three different
marginal thresholds.

of observations of value zero for precipitation intensities is avoided.
The estimated gamma-gamma model shows a satisfactory goodness-of-fit and spatial predic-

tive performance as measured by CRPS and tail-weighted CRPS, and it performs better than
a number of simpler models for the precipitation data. Relatively little difference is found be-
tween results for different marginal threshold levels, which confirms the flexibility of the model
at subasymptotic levels. For illustration, Figure 6.6 shows boxplots of MCMC-based posterior
predictive samples at 20 locations held out during the estimation.

6.3.2 Spatiotemporal Gamma-Pareto models

With the exception of the conditional extremes models of Simpson and Wadsworth (2020), the
space-time models for extremes available in the current literature typically capture asymptotic
dependence or exact asymptotic independence at small distances, while they are not suitable for
dealing with residual dependence in asymptotic independence. In Bacro et al. (2019), we propose
a novel approach to space-time modeling of asymptotically independent data, where we avoid
the tendency of asymptotically-stable models to potentially strongly overestimate joint extreme
risks. The model provides a hierarchical formulation for modeling spatiotemporal exceedances
over high thresholds. It is defined over a continuous space-time domain and allows for a physical
interpretation of extreme events spreading over space and time. Strong motivation comes from
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the time series models of Bortot and Gaetan (2014) by developing a generalization of their latent
temporal process. Alternatively, our latent process may be viewed as a space-time version of
the temporal trawl processes introduced by Barndorff-Nielsen et al. (2014). Our approach is
based on representing a generalized Pareto distribution as a gamma mixture of an exponential
distribution, as already shown in Equation (3.6). This representation enables us to keep easily
tractable marginal distributions which remain coherent with univariate EVT. For the latent
process with gamma marginal distributions, we use a kernel convolution of a space-time gamma
random process (Wolpert and Ickstadt, 1998) based on influence zones defined as cylinders
with an ellipsoidal basis to generate anisotropic spatiotemporal dependence in exceedances.
Bivariate densities are available in closed form for this model, and we propose efficient statistical
inference based on a pairwise composite likelihood approach, which scales well for relatively large
datasets such as the hourly precipitations in the French Mediterranean area studied in the data
application.

Hierarchical formulation

We consider a stationary space-time random field Z = {Z(x), x ∈ X} with spatiotemporal
index x = (s, t) ∈ X = R2 × R+, such that s indicates spatial location and t time. Without
loss of generality (since we can apply marginal transformations to the model), we assume that
the margins Z(x) belong to the Fréchet domain of attraction with positive shape parameter ξ.
To infer the tail behavior of Z, we focus on values exceeding a fixed high threshold u, and we
consider the exceedances over u,

Y (x) = (Z(x)− u)× I(u,∞)(Z(x)).

We now formulate a two-stage model that induces spatiotemporal dependence arising in both
the exceedance indicators I(u,∞)(Z(x)) and the positive excesses Z(x) − u > 0 by integrating
space-time dependence into a latent gamma component. A key feature of our model is that it
naturally links the exceedance probability to the size of the excess, and therefore it provides a
joint space-time structure of the zero part and the positive part in the zero-inflated distribution
of Y (x). A quite natural assumption is that larger exceedance probabilities may come along
with higher exceedances, and the model allows capturing such positive correlation.

In the first stage (observation layer) of the model, we condition on a latent space-time random
field {Λ(x)} with marginal distributions Λ(x) ∼ Gamma(α, β) with shape α > 0 and rate β > 0.
We assume that

Y (x) | (Λ(x), Y (x) > 0) ∼ Exp (Λ(x)) ,

P(Y (x) > 0 | Λ(x)) = e−κΛ(x),

where κ > 0 is a parameter controling the rate of exceedances of the threshold. The resulting
marginal distribution of Y (x) conditionally on Z(x) > u corresponds to the GPD, and the
unconditional marginal distribution function of Y (x) is

F (y;σ, ξ) =

{
p if y = 0,
p+ (1− p)GPD(y; ξ, σ) if y > 0,
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with shape parameter ξ = 1/α, scale parameter σ = (κ + β)/α, and with 1− p the probability
of an exceedance over u, i.e., P(Z(x) > u) = P(Y (x) > 0) = 1−p. The probability of exceeding
u,

P(Z(x) > u) = E (P(Y (x) > 0|Λ(x))) = E
(
e−κΛ(x)

)
=

(
β

κ+ β

)α
, (6.25)

depends on κ, and it is the Laplace transform of Λ(x) evaluated at κ. The constraint ξ > 0
is not restrictive for dealing with the French precipitation data, which are known to be heavy-
tailed. For general modeling purposes, we can relax this assumption by considering a marginal
transformation within the class of GPDs for threshold exceedances.

Latent spatiotemporal gamma process

In the latent second stage of the model, spatiotemporal dependence is introduced by means of
a space-time stationary random field {Λ(x), x ∈ X} with Gamma(α, β) marginal distributions.
In principle, we could use an arbitrarily wide range of models with any kind of space-time de-
pendence structure, for instance by marginally transforming a space-time Gaussian random field
using the copula idea (Joe, 2014); see the preceding section presenting the work in Yadav et al.
(2020) for a related approach. However, we here aim to propose a construction where gamma
marginal distributions arise naturally without applying rather artificial marginal transforma-
tions. Inspired by the gamma process convolutions of Wolpert and Ickstadt (1998), we develop
a space-time gamma convolution process with gamma marginal distributions. The kernel shape
in our construction allows for a straightforward interpretation of the dependence structure, and
it offers a physical interpretation of real phenomena such as mass and participle transport. We
fix X = RD and consider A ∈ Bb(X ), a subset of X belonging to the σ-field Bb(X ) restricted
to bounded sets of X . A gamma random field Γ(dx) is a non negative random measure defined
on X , characterized by a base measure α(dx) and an inverse scale parameter β and obeying the
following two conditions:

1. Γ(A) =
∫
A

Γ(dx) ∼ Gamma(α(A), β), with α(A) =
∫
A
α(dx);

2. for any A1, A2 ∈ Bb(X ) such that A1 ∩A2 = ∅, Γ(A1) and Γ(A2) are independent random
variables.

Likelihood-related calculations for our model rely on the Laplace exponent of the random mea-
sure given by

L(φ) = − logE
(

exp

{
−
∫
φ(x)Γ(dx)

})
=

∫
X

log

{
1 +

φ(x)

β

}
α(dx)

where φ may be any positive measurable function; in our case, it will represent the kernel
function. With φ(x) = vIA(x), we get

L(φ) = − logE (exp{−vΓ(A)}) =

∫
A

log

{
1 +

v

β

}
α(dx) = α(A) log

{
1 +

v

β

}
,

i.e.,

E (exp{−vΓ(A)}) =

(
β

v + β

)α(A)

.
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Figure 6.7: Illustration of indicator kernels for space-time Gamma-Pareto processes. Left dis-
play: elliptical basis in space. Right display: intersection of two space-time cylinders with the
same elliptical basis.

For bivariate analyses we choose φ(x) = v1IA1(x) + v2IA2(x), which yields

E(exp{−v1Γ(A1)− v2Γ(A2)}) =

(
1 +

v1

β

)−α(A1\A2)(
1 +

v1 + v2

β

)−α(A1∩A2)(
1 +

v2

β

)−α(A2\A1)

.

We propose to model {Λ(x), x ∈ X} as a convolution using a 3D indicator kernel K(x, x′)
(i.e., an indicator function) with an indicator set of finite volume used to convolve the gamma
random field Γ(dx) (Wolpert and Ickstadt, 1998), i.e., Λ(x) =

∫
K(x, x′)Γ(dx′). The shape of

the kernel can be very general (though non indicator kernels usually do not lead to gamma
marginal distributions), and particular choices may lead to nonstationary random fields, or to
stationary random fields with given dependence properties such as full symmetry, separability
or independence beyond some spatial distance or temporal lag. In order to limit model complex-
ity and computational burden to a reasonable amount, we propose using the indicator kernel
K(x, x′) = IA(x− x′), for A ∈ Bb(X ), where A is given as a slated elliptical cylinder, defining a
D-dimensional set Ax that moves through X according to some velocity vector. More precisely,
let E(s, γ1, γ2, φ) be an ellipse centered at s = (s1, s2) ∈ R2 (see the left display of Figure 6.7),
with its axes rotated counterclockwise by the angle φ with respect to the coordinate axes, and
with the semi-axes’ lengths in the rotated coordinate system denoted by γ1 and γ2, respectively.
A physical interpretation of this construction is that the ellipse describes the spatial influence
zone of a storm centered at s. For the temporal dynamics, we assume that the ellipses (storms)
E(s, γ1, γ2, φ) move through space with a velocity ω = (ω1, ω2) ∈ R2 for a duration of δ > 0.
The volume of the intersection of two slated elliptical cylinders (see the right display of Figure
6.7) is given by

V (s, t, s′, t′) = (δ − |t− t′|)+ × ν2(E(s, γ1, γ2, φ) ∩ E(s̃, γ1, γ2, φ))

where s̃ = (s̃1, s̃2) with s̃i = s′i − |t′ − t| × ωi, i = 1, 2.
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For two fixed locations, the strength of dependence in the random field Λ(x) is an increasing
monotone function of the intersection volume; other choices of A are possible, provided that we
are able to calculate efficiently the volume of the intersection.

We consider the measure

α(B) = ανD(B)/νD(A), B ∈ Bb(X ), (6.26)

where νD(·) is the Lebesgue measure on RD. It follows that Λ(x) ∼ Gamma(α, β). The univari-
ate Laplace transform of Λ(x) is

LP (1)
x (v) := E

(
e−vΛ(x)

)
=

(
β

v + β

)α
,

and the bivariate Laplace transform of Λ(x) and Λ(x′) is

LP
(2)
x,x′(v1, v2) =

(
β

v1 + β

)α(Ax\Ax′ )( β

v1 + v2 + β

)α(Ax∩Ax′ )( β

v2 + β

)α(Ax′\Ax)

.

The intersecting volume |Ax1 ∩ Ax2| tends to 0 if ‖x2 − x1‖ → ∞, which establishes the
property of α-mixing over space and time for the processes Λ(x) and Y (x).

Joint tail behavior of Gamma-Pareto processes

Thanks to closed-form expressions of bivariate Laplace transforms, the values of the bivariate
distribution function of Z(x) are also available in closed form. It is easy to show that for any
(x, x′) ∈ X 2, x 6= x′, and for values v exceeding a threshold u ≥ 0, we get

Pr(Z(x) > v,Z(x′) > v) =LP
(2)
x,x′(v − u+ κ, v − u+ κ)

=

(
1 +

v − u+ κ

β

)−α(Ax\Ax′ )(
1 +

2v − 2u+ 2κ

β

)−α(Ax∩Ax′ )

×
(

1 +
v − u+ κ

β

)−α(Ax′\Ax)

.

To simplify notations, we set c0 = α(Ax), c1 = α(Ax\Ax′), c2 = α(Ax ∩ Ax′) , c3 = α(Ax′\Ax),
such that c1 = c3 = c0 − c2 ≥ 0 and c1 + 2c2 + c3 = 2c0. For c2 = 0 characterizing disjoint
indicator sets Ax and Ax′ , it is clear that Z(x) and Z(x′) are independent.

The process Z(x) is asymptotically independent. If we assume u = 0 without loss of gener-
ality and x 6= x′, then the tail correlation coefficient can be calculated as follows:

χx,x′(v) =
P(Z(x) > v,Z(x′) > v)

P(Z(x′) > v)
∼ 2−c2

(
v

β

)c2−c0
, v →∞.

Since c2 < c0, we obtain χx,x′ = 0 in the limit as v → ∞. To characterize the faster joint tail
decay, we can calculate

χx,x′ = lim
v→∞

χxx′(v) =
2c0

c1 + c2 + c3

− 1 =
c2

2c0 − c2

,

which describes the ratio between the intersecting volume of Ax and Ax′ and the volume of the
union of these two sets.
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Figure 6.8: Precipitation data for southern France. Dots correspond to the stations used for
fitting; their diameter is proportional to station-wise empirical 99% quantiles u(s) (left display)
and estimates of the GPD parameters ξ(s) (middle display) and σ(s) (right display).

Pairwise likelihood inference

Based on the above formula for the bivariate survivor function of Z(x), it is straightforward
to derive the expression of the pairwise likelihood (PL) of the model. We use temporal and
spatial cutoff distances beyond which pairs are not included into the PL. This keeps the number
of terms in the PL tractable, and it also avoids that its value is dominated by a large number
of intermediate-range distances where spatial and temporal dependence has almost completely
vanished. Due to the mixing properties of the Gamma-Pareto field, we obtain asymptotic nor-
mality of the PL estimator, and standard errors and information criteria such as the composite
likelihood information criterion (CLIC) can be obtained through block subsampling techniques
(Carlstein, 1986). A simulation study in Bacro et al. (2019) shows that PL estimation is efficient
even in high-dimensional settings and provides unbiased parameter estimates for the complex
hierarchical space-time models that we propose.

Application to Mediterranean precipitation episodes

We apply the hierarchical model to precipitation extremes observed over a study region in
the south of France. Extreme rainfall events usually occur during fall season in this area.
They are mainly due to southern winds driving warm and moist air from the Mediterranean
sea towards the relatively cold mountainous areas, leading to a situation which often provokes
severe thunderstorms. The dataset for September to November months of the study period
spanning the years 1993–2010 consists of observations for 50 weather stations over 54542 hours.
The spatial design of the stations is illustrated in Figure 6.8, where marginal tail behavior is
highlighted.

Figure 6.9 displays empirical estimates of extremal dependence measures χ and χ for different
threshold levels and strongly supports the assumption of asymptotic independence at all positive
distances and at all positive temporal lags. In particular, the relatively stable behavior of the
χ-estimates for different threshold levels indicates the presence of residual tail dependence that
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Figure 6.9: Empirical estimates of extremal dependence measures χ (left column) and χ (right
column) for the precipitation data in southern France with respect to temporal lags (top row)
and spatial distances (bottom row).

vanishes only asymptotically.

Joint estimation of nonstationary margins and dependence would be highly intricate here.
Therefore, we adopt a two-step procedure. We first fit a GPD separately to each station with
thresholds chosen as the empirical 99.5% quantile. Next, we use the estimated parameters ξ̂ and
σ̂ to transform the raw exceedances Y (x) observed at station s to a marginally normalized scale.
Then, we fit our hierarchical models to the censored pretransformed data Ỹ (x) by numerically
maximizing the pairwise likelihood. We consider two settings for the hierarchical model, with
and without velocity, and we further compare these two models to three variants of a censored
Gaussian space-time copula model pertaining to the class of asymptotic independent processes.
Estimation results, especially CLICs, show a preference for our hierarchical models with the
best value for model the most complex model. For visual interpretation, we refer to Figure 6.10,
which shows a simulation of G1 where a slight movement of rainfall along the west-east direction
becomes apparent. More details about the application can be found in Bacro et al. (2019).



114 CHAPTER 6. SUBASYMPTOTIC SPATIAL-TEMPORAL EXTREMES

Figure 6.10: A simulation example showing exceedances above the 0.95-quantile for the best
Gamma-Pareto model for French precipitation data. Dots correspond to the stations used for
fitting. The evolution over time during 19 hours is presented row-wise starting from the top
left. The bottom right display illustrates the estimated ellipse basis of space-time kernel sets,
centred at the barycenter of the locations, and the movement induced by the velocity vector.
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6.4 Discussion of subasymptotic modeling of extremes
Subasymptotic models for spatial and spatiotemporal extremes do not directly arise as extreme-
value limits, such as max-stable or Pareto processes. They provide higher flexibility for cap-
turing joint tail behavior at finite levels, especially when the strength of extremal dependence
decreases at higher quantile levels (e.g., smaller spatial area of excursion sets above increasingly
high thresholds, shorter duration of more extreme episodes). Aside from high flexibility, useful
subasymptotic models should preserve a strong asymptotic motivation, for instance by keeping
customary asymptotic models as special boundary cases, or by providing formulas for extremal
dependence measures that are simple to compute and to interpret. Since a much larger range
of potentially useful model classes is available for subasymptotic modeling thanks to dropping
the asymptotic stability properties, model selection and validation has to be carried out very
carefully. For that purpose, we define novel tools such as the level-dependent extremal coeffi-
cient for max-id processes, and in several publications (e.g., Huser et al., 2017; Zhong et al.,
2020) we propose the use of predictive scores for comparing models, such as variants of CRPS
for spatial prediction. Efficient inference of parameters is another important step towards sta-
tistical practice with subasymptotic models. We therefore adapt estimation tools of classical
limit models (pairwise likelihoods, partially censored likelihoods) to the new model classes, and
we show through simulation studies that estimation and parameter inference work well.

Because of the use of random scaling variables that do not vary over space, spatial Gaus-
sian scale mixture processes and max-id processes are not mixing, i.e., independence cannot
be attained between locations that are far separated. When we seek to model extreme events
of moderate spatial extent over very large study areas, these models may therefore not be ap-
propriate. Extensions towards models with similar construction mechanisms but allowing for
dependence decay towards independence for increasingly large spatial distances would therefore
be welcome and are part of ongoing work. Spatiotemporal extensions of random scaling tech-
niques for modeling extreme event episodes spanning over several discrete time steps, or arising
in continuous time, are another active field of research. In this context, it would also help to
provide mechanisms allowing the temporal dependence to decay towards independence for times
that are separated by an increasingly large time lag.

The hierarchical spatiotemporal Gamma-Pareto models present an interesting option for
asymptotically independent data. Mixing in space and time arises naturally, and pairwise like-
lihood estimation is fast due to to simple analytical expressions for bivariate distribution func-
tions. Some aspects still require further developments for such models, such as spatiotemporal
prediction, e.g., through simulation conditional to observed values.

Another very flexible class of subasymptotic models for multivariate, spatial and spatiotem-
poral data has been developed through the conditional extremes approach (Heffernan and Tawn,
2004; Wadsworth and Tawn, 2019; Simpson and Wadsworth, 2020), where one models the pro-
cess conditional to an exceedance of a high fixed threshold at a given location. By using a
marginal scale with exponential tails, the conditional process can be flexibly modeled through
a nonstationary Gaussian random field. In this setting, our preprint Simpson et al. (2020)
tackles spatial and spatiotemporal modeling and proposes particularly flexible, semi-parametric
model specifications for the conditional mean, and we embed the model into the INLA-SPDE
framework to achieve efficient Bayesian inference for datasets with a large number of several
thousands of observation locations.
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Chapter 7

Spatiotemporal Bayesian modeling of
occurrences of environmental risks

This chapter provides a brief general introduction to flexible Bayesian modeling of intensity
functions of spatiotemporal point patterns. We aim to answer the question of how many events
will happen and where they will happen. By using marked point processes, that is, by addi-
tionally modeling information about the type or magnitude of events, we can further answer
the question of how severe the events will be, or of which type they will be. The purpose of
constructing and estimating models is to explain the factors contributing to event occurrence
and magnitude, and to provide prediction over space and time for hazard and risk mapping.
Specific approaches and results for applications to landslides and wildfires are presented in the
following Chapters 8 and 9, respectively.

7.1 General framework: Log-Gaussian Cox processes

Log-Gaussian Cox processes (LGCPs, Møller et al., 1998) can be viewed as Poisson point pro-
cesses with Gaussian random effects in their intensity function. As such, they are natural models
to capture clusters of occurrences of points that are not explainable through the deterministic
components (e.g., fixed covariate effects) in the intensity function. The following exposition fo-
cuses on models of LGCP type. Conditional to the random intensity function, LGCPs become
nonstationary Poisson processes, for which a wide variety of estimation techniques are available,
including standard likelihood estimation. A difficulty to be handled is that some discretization of
continuous space and time is necessary to estimate an integral of the intensity function over the
observation window. Moreover, the inclusion of the Gaussian random effects requires estimation
techniques that allow handling latent Gaussian variables, and we here focus on INLA (Illian
et al., 2012). Spatially indexed random effects can be defined through the SPDE approach.

7.1.1 Susceptibility vs. occurrence intensity

The statistical modeling of occurrences of environmental risks in the geosciences, such as land-
slide processes, has spawned a rich literature. In most of these approaches, the probability of
occurrence of such events is represented only through the notion of susceptibility when con-
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ducting estimation and hazard mapping. This means that one models the probability of pres-
ence/absence of events in the areal units in a fixed partition of space. For instance, one may
consider a fine-meshed regular grid of pixels covering geographic space, or one may consider
more problem-specific partitions of space, such as slope units as used in Lombardo et al. (2020)
for landslide occurrences, or administrative units. In contrast, the intensity function of a point
process is defined over continuous space, and it is of prime interest in the modeling of point
processes. While the approach of modeling susceptibilities gives access to a wide range of clas-
sification algorithms from statistics and machine learning communities to estimate models, we
identify two major drawbacks from focusing attention solely on the probability of presence or
absence in a given areal unit. First, a probability of occurrence is associated to a fixed areal unit,
such that we cannot easily provide occurrence probabilities for other areal units than those fixed
in the estimated model. In particular, upscaling of probabilities from smaller to larger areal
units is awkward. By contrast, an intensity function allows calculating intensities for arbitrary
spatial units, and probabilities for the occurrence of at least one landslide event are readily de-
rived. Second, the notion of susceptibility is binary since it considers only presence or absence,
but it does not provide any information on the number of events that may arise in an area.
Again, the intensity framework is more general since it allows calculating expected event counts
for any spatial support, and the probability distribution of the number of events can be calcu-
lated analytically or obtained through Monte-Carlo simulation of the estimated point process
models. Our seminal paper Lombardo et al. (2018) has introduced the point process concept
to the geomorphological community of landslide modelers, and in several follow-up publications
and ongoing work we capitalize on this approach by providing relevant modeling extensions.

It is important to note that many point process models can be accurately approximated
and estimated through variants of logistic regression, i.e., through a representation with pres-
ence/absence values. Therefore, classification methods can still be applied analogously for point
process models. By consequence, we recommend to systematically use a point process framework
where possible, since all the features and methods of susceptibility modeling are still available,
but it comes with important additional conceptual and practical benefits.

7.1.2 Random effects for capturing unavailable environmental predic-
tors

Let us consider a Poisson process over an observation window X with intensity function λ(x),
x ∈ X ⊂ RD, as already introduced in §2.1. By including random effects in the intensity
functions, we obtain a Cox process. As outlined above, the class of log-Gaussian Cox processes
(LGCPs, Møller et al., 1998) has proven to be particulary flexible and useful for modeling
complex spatial and spatiotemporal point patterns. With Cox processes, we use upper-case
notation Λ(x) to emphasize the randomness in the intensity function.

Effects of observed covariates zj(x), j = 1, . . . , J , can be incorporated into the intensity
function through a log-linear specification, i.e., as fixed effects. The log-intensities of flexible
LGCP models with fixed and random effects can be structured according to the following formula
defining a generalized additive mixed model (GAMM) with log-link function:

log Λ(x) = β0 +
J∑
j=1

βjzj(x) +
L∑
`=1

W`(x), x ∈ X . (7.1)
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The Gaussian random effects W`(x) may directly depend on location x, for instance in the
case of a spatial random effect (D = 2). Spatial random effects may be defined through the
SPDE approach, or as spatial conditionally autoregressive models based on areal units with
an adjacency graph (Besag, 1974). In other cases, random effects may depend only indirectly
on location x through a covariate zj(x) observed at x; for instance, W`(zj(x)) can be used to
capture the nonlinear influence of the covariate zj. The role of random effects is to capture
sources of variation of the intensity function that cannot be explained through the deterministic
and log-linear influence of the fixed effects βjzj(x) of the observed covariates zj, j = 1, . . . , J .

When adopting Bayesian estimation techniques as described below, we systematically scale
continuous covariates to have empirical mean 0 and empirical variance 1. This facilitates defining
priors for fixed effect coefficients with similar influence of different covariates, and it allows for
a more straightforward interpretation and comparison of the absolute values of estimated fixed
effect coefficients.

7.1.3 Event magnitudes as marks in log-Gaussian Cox processes

Additional information may be available to characterize events and can be modeled as marks
of the points. Events may be of different type (e.g., shallow and deep landslides, or small
and large wildfires), in which case the mark is categorical and indicates the type, leading to a
multi-type point process. Marks may also be represented on a continuous numerical scale; a
typical example is event magnitude (e.g., burnt area of wildfires, or size of landslide scars). An
alternative solution to including this additional information as marks consists of extending the
observation space X of points, such that it also contains the dimensions along which the marks
are defined. For instance, instead of using real-valued marks, points of the point pattern could
be defined as the vector combining the point location and the mark, such that X = RD+1.

In many applications, it is challenging to define a model for both point occurrences and
marks that appropriately captures the potential interactions between these two components.
In the simplest case, mark values arise independently from the point process intensity, and we
are in the situation of geostatistical marking. Then, the estimation of the process describing
the mark distribution can be done separately from the estimation of the point process model
without marks.

7.2 General estimation strategy using INLA-SPDE

Estimation methods for point processes are a lively area of research. For spatial and spa-
tiotemporal LGCPs whose log-linear predictor in (7.1) comprises fixed effects and a spatial or
spatiotemporal Gaussian random field, relatively fast and robust methods are available to esti-
mate fixed effects coefficients and the parameters of the Gaussian covariance function. These
approaches do not explicitly handle the latent Gaussian variables but rather focus on second-
order properties of the point process (i.e., the characterization of the interaction in point pairs)
that are available in closed form. For estimating fixed effect coefficients, it would be possible to
adapt the approach to intensity estimation outlined in §2.1.4. To estimate also the hyperparam-
eters of the Gaussian process (e.g., variance, range), we can mention moment-based methods
(Illian et al., 2008; Waagepetersen and Guan, 2009) or composite likelihood-based approach
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(Guan, 2006). However, these approaches do not provide the surface of the latent process con-
ditional to the observed point pattern, i.e., , they do not provide an estimation Λ̂(x) of Λ(x).
Though, estimation of the field Λ, together with the associated uncertainties, is required for
intensity mapping, which is often a crucial goal in applications to environmental risks, such
as landslides or wildfires. Therefore, we here focus on likelihood-based techniques that allow
for inferences on all model components, especially on the latent field Λ(x). More precisely, we
adopt a fully Bayesian approach using INLA-SPDE, where we can set prior distributions for the
hyperparameters controling the latent Gaussian predictor components.

Recall that the probability density function of an observed finite point pattern X =
(x1, . . . , xN)T (without considering marks), composed of a random but finite number N ≥ 0
of points xi in the observation window X , corresponds to the expectation

fLGCP(X) = EΛ

[
exp

(
−
∫
X

Λ(x) dx

) N∏
i=1

Λ(xi)

]
,

using the convention that
∏N

i=1 Λ(xi) = 1 if N = 0. Closed-form expressions of this expectation
are not available in general, but Bayesian inference techniques, such as INLA, have been devel-
oped to approximate it numerically. In the Bayesian framework, the Gaussian processes arising
in the log-Gaussian intensity function Λ(x) can be viewed as prior distributions for deterministic
components of the intensity function of a Poisson process.

Two major challenges arise for likelihood-based inference in LGCPs: (i) intensity functions
Λ(x) are conceptually defined over continuous space; (ii) the Gaussian random effects lead to an
intractable likelihood with no general closed-form expression. As to (i), different approximation
strategies allow numerical computation of the integral

∫
X Λ(x) dx conditional on Λ. A standard

approach is to discretize the observation window and to assume that the intensity function
does not vary within the cells Ck of the resulting partition of the observation window, where⋃K
k Ck = X and Ck1∩Ck2 = ∅ if k1 6= k2. Then, conditional on Λ, the number of points observed

in a cell Ck, k = 1, . . . , K, is Poisson distributed with N(Ck) ∼ Pois(|Ck| × Λk), where |Ck| is
the Lebesgue volume, and N(Ck) are mutually independent. Therefore, estimating the LGCP
corresponds to performing a (mixed) Poisson regression with the canonical log-link:

Nk | Λk
ind∼ Pois(|Ck| × Λk), log(Λk) = µk, k = 1, . . . , K, (7.2)

where the linear predictor µk is additively composed of fixed and random effects, as described
above. The multiplicative constants |Ck| > 0 appear as an offset log(|Ck|) in the intercept of
the linear predictor of the Poisson regression. For space-varying random effects, we use its value
at sk, defined as the center of the grid cell Ck, to compute µk.

Other approaches for numerically approximating the integral
∫
X Λ(x) dx in (7.2) exist. Typi-

cally, they use appropriately weighted sums
∑

k ωkλ(x̃k) with discretization points x̃k and weights
ωk > 0, which lead to variants of Poisson and logistic regression. In the Berman–Turner device
(Berman and Turner, 1992), discretization points consist of observed points xi, i = 1, . . . , N ,
augmented with dummy points. Both point sets together are used to define a partition of the
observation window, typically given by the Voronoi tessellation of the observation window using
the set of observed points and dummy points as Voronoi cell centers. Weights then corre-
spond to the hypervolume of the Voronoi cells, and this approach allows writing the likelihood
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of the log-linear representation (7.1) as a variant of the likelihood of Poisson regression with
log-link. Alternatively, if the observed counts Nk in (7.2) are binary, i.e., Nk ∈ {0, 1}, then
P(Nk = 1) = 1− exp(− exp(−(log(|Ck|) + µk)). This means that the Poisson regression model
with log-link is equivalent to a regression model with Bernoulli response distribution and com-
plementary log-log link function, which is available in standard implementations of GAMs and
GAMMs, especially in R-INLA. Baddeley et al. (2010) provide an insightful comparative discus-
sion of various representations.

If there are marks, then we can define a GAMM with Gaussian random effects and an
appropriate response distribution for the marks, and estimate it also with INLA. Moreover,
some of the random effects may be shared between the mark model and the occurrence model,
such that stochastic interactions between the occurrence of events and the mark-generating
mechanism can be captured. Sharing of random effects is described in Krainski et al. (2018),
for instance.

This general framework of regression models with random effects could also be used to esti-
mate point process models with Gibbs-like mechanistic interactions, where random effects may
arise in the trend component and in the interaction coefficients. However, since full likelihoods
involve an intractable normalizing constant in Gibbs models, we can only work with variants of
pseudo-likelihoods. In the setting of Bayesian inference with pseudo-likelihoods, consistency re-
sults and the Bernstein von-Mises theorem will ensure convergence of posterior means to the true
parameters in appropriately defined asymptotic settings (e.g., Soubeyrand and Haon-Lasportes,
2015); however, the uncertainties conveyed by posterior distributions, such as those obtained
from INLA, are wrong.

7.3 Data aggregation and subsampling schemes

Spatiotemporal hierarchical modeling is notoriously computer-intensive due to the large datasets
and the numerical challenges with spatiotemporal covariances. With the implementation of
INLA in R-INLA, up to several hundreds of thousands of observations can be handled, and the
recent integration of the PARDISO sparse matrix library within R-INLA has further improved
numerical stability and speed (van Niekerk et al., 2019). However, stable inferences with INLA
may require compromises with respect to the complexity of the latent model and the num-
ber of observations, where both aspects jointly determine the size and sparsity structure of
the Gaussian precision matrices, and therefore the computation times, memory requirements
and the well-conditioned numerical behavior of operations such as solving linear systems and
inverting matrices. Usually even stronger restrictions arise with alternative methods such as
Markov Chain Monte Carlo (MCMC) to achieve approximation quality comparable to INLA
(e.g., Taylor and Diggle, 2014; van Niekerk et al., 2019). Krainski et al. (2018, Section 8.4)
develop some strategies for LGCPs by aggregating the events to relatively large mapping units
and by lowering the spatial-temporal resolution of Gaussian random effects to decrease model
complexity and computing times. However, this solution would cause a deterioration of results
especially for small-scale structures (e.g., spatiotemporal prediction for small mapping units
and time intervals), and it is problematic with respect to covariates, which would also have to
be aggregated to larger spatial-temporal units, thus impeding predictions and interpretation at
small scales.
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Another useful solution to cope with large space-time datasets consists in subsampling tech-
niques, where the model is estimated using an appropriately reweighted subsample of data
points, while keeping the loss of information as small as possible. Subsampling techniques for
point processes have been proposed (Baddeley and Turner, 2000; Rathbun et al., 2007; Tokdar
and Kass, 2010; Baddeley et al., 2010; Rathbun, 2013; Baddeley et al., 2014). As outlined above,
the estimation of LGCP models can be numerically represented as a regression problem with
Gaussian random effects. Let us consider the approach of using event counts on a partition of
the observation window, where we use the Poisson response distribution with log-link. If the grid
is very dense, such that event counts are (almost) all binary (i.e., 0 or 1), then logistic regres-
sion would be an interesting alternative; see the discussion in (Baddeley et al., 2010; Lombardo
et al., 2018). Since maximum likelihood is equivalent to maximizing the empirical expectation
of the log-density of observations, a subsampling scheme is appropriate if it ensures a faithful
approximation of this expectation. Subsampling schemes in likelihood-based estimation can be
interpreted as importance sampling (Tokdar and Kass, 2010): the original sample with constant
observation weight 1 is replaced by a subsample with many observation weights typically larger
than 1, and potentially non-constant, to compute the empirical expectation. The history of
estimation techniques using weighted subsampling goes back to Horvitz and Thompson (1952).

Based on the representation (7.2) of a LGCP model conditional to Λ, we consider the Poisson
intensities Λk, k = 1, . . . , K, as the parameters to be estimated, and we aim to select a subsample
Nkj with weights ωj, j = 1, . . . , J , such that the subsample likelihood function is as close as
possible to the full data likelihood. To make R-INLA-based estimation feasible (van Niekerk et al.,
2019), we can devise subsampling schemes that strongly reduce the number of observations in a
stratified way (with respect to predictor subspaces) to keep the loss of information and its impact
on posterior inferences small. We can use the rule of thumb of Baddeley et al. (2014, 2015) as a
guideline: it recommends that the subsample of observations 0 should be larger than the sample
of occurrence points by a factor of at least 4, but using higher factors is advised if estimation
remains numerically feasible. We do not subsample observations Nk > 0 since they are rare and
the goal is to appropriately characterize their occurrence; i.e., they are kept with weight 1. For
the other observations Nk = 0, subsampling can be closely linked to Poisson additivity. Indeed,
the weighted likelihood contribution exp(−Λk)

ωk = exp(−ωkΛk) of the observation Nk = 0 with
weight ωk ∈ N corresponds to the likelihood of the weighted sum

∑ωk
`=1 0 = 0 of ωk observations

with count 0, and the size of the initial sample with ωk observations 0 is divided by the factor
ωk. The set of predictors arising in the regression equation (7.1) may be different between all
k in a LGCP model (e.g., if there is there is a spatial random effect that varies continuously in
space), but one can use the working assumption that this set is often very similar for cells Ck
that are close in space (and also close in time, if there is a temporal dimension). A stratified
subsampling scheme should result in a known positive sampling probability pk > 0 for each
observation Nk in (7.2). Then, the weights that we use for the likelihood of the subsampled
observations are given by ωk = 1/pk for selected indices k.

So far, no standard solutions exist for designing efficient subsampling strategies. In partic-
ular, future research should investigate into stratification techniques that ensure appropriate
subsampling of high-risk subdomains of the predictor space, i.e., of subdomains that may be
relatively small in terms of the number of mapping units but that tend to be associated to high
occurrence intensities of points.
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7.4 Model selection and validation

Model selection and validation of point processes, and particularly of LGCPs, is a wide area
with a multitude of approaches developed in the extant literature. In general, model comparison
for very sophisticated models, often estimated through approximate estimation procedures such
as INLA, should not be based on a single criterion. Different models of various complexity may
provide insights into complementary aspects of the same applied problem.

7.4.1 Goodness-of-fit using likelihood-based information criteria

We can compare models through classical likelihood-based information criteria adapted to the
Bayesian context: the Deviance Information Criterion (DIC), and the Watanabe–Akaike In-
formation Criterion (WAIC). These goodness-of-fit criteria take the effective dimension of the
posterior latent Gaussian model into account, thus penalizing model complexity. Their close
relationship to the predictive performance measured through leave-one-out cross-validation has
been established, and WAIC is known to better take the stochasticity of the posterior predictive
distributions into account (Gelman et al., 2014). With INLA, these quantities are calculated
through sensible approximation techniques (Rue et al., 2009)

7.4.2 Assessing posterior predictive distributions

Posterior predictive distributions may be of interest for a variety of quantities, for instance for
various spatiotemporal aggregations of event numbers or of event magnitudes. For aggregating
event magnitudes in the case of a marked point process with marks representing event magnitude,
we can add up the magnitudes for the points observed within the sets forming a partition of the
observation window into relevant mapping units.

To focus on criteria evaluating the predictive performance of models, we can implement a
cross-validation scheme. Specifically, with an estimation approach involving a division of the
observation window into small mapping units, we can randomly partition the set of mapping
units into k folds (e.g., k = 10), each containing approximately the same number of mapping
units (or approximately the same aggregated hypervolume of the mapping units in each fold).
We can then calculate predictive scores for various choices of mapping units. If we want to
assess predictive performance over mapping units larger than those used for estimation, we
can aggregate observed and predicted counts from the smaller mapping units of the model.
Predictive scores can assess information about either the predicted counts λ̂k = E(Λk | y),
the predicted probabilities of occurrences p̂k = 1 − exp(−λ̂k), or the full posterior predictive
distribution of Λk | y, where y denotes the vector of observed counts used in the GAMM to
estimate the LGCP.

An alternative approach for constructing the hold-out sets for cross-validated predictive
diagnostics, studied by Leininger et al. (2017), consists of constructing hold-out sets by removing
points at random from the point pattern; this is known as thinning (Chiu et al., 2013). In general,
we prefer the more challenging task of predicting entire spatially-contiguous areas where all data
within some mapping units have been removed, which is also more suited to assessing mapping-
unit-based hazard predictions.
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In yet another approach for very large point patterns, we could also divide the observation
window into two sub-windows, one relatively large, used for training (i.e., for estimating the
model), and the other kept for validation.

Posterior predictive distributions of various quantities of interest can be estimated by gen-
erating a large number of posterior samples of counts (and marks if part of the model) for each
cross-validation fit. While INLA does not directly provide posterior samples because of its use
of deterministic and not simulation-based approximations, these can be generated conveniently
from the estimated posterior model (Rue et al., 2017). Using R-INLA’s internal, discrete approxi-
mations for posterior distributions of hyperparameters and latent Gaussian fields, the simulation
algorithm first generates a realization of the hyperparameter vector; next, conditional on these
hyperparameters, a latent Gaussian field is sampled according to the posterior precision matrix
computed through Laplace approximation; finally, counts (and marks) are simulated from the
mapping-unit-based Poisson distributions (and mark distributions) with intensities defined ac-
cording to the simulated latent Gaussian fields. Cross-validation results using simulations of the
posterior predictive distributions should be based on a relatively large number of samples of the
full posterior model (e.g., at least 1000) to avoid too noisy estimation of prediction scores.

7.4.3 Prediction scores for susceptibility

If we consider only presence or absence of events, we can use scores that allow assessing binary
classification methods. In particular, the area-under-the-curve (AUC, Fawcett, 2006) measures
prediction quality for the presence or absence of points. AUC only considers the relative ordering
of predicted probabilities, or of any monotonically strictly increasing transformation of such
probabilities, but it does not allow checking for systematic biases. It summarizes the structure
of true/false positives negatives for probability thresholds between 0 and 1, and it provides a
value in [0, 1], with 1 indicating perfect classification while 0.5 indicates random prediction.
However, when we assess predictions for relatively large mapping units where counts larger than
one are frequent, the presence/absence distinction may be too coarse, and predictive scores for
counts may be more appropriate and informative.

In cases where a model also predicts magnitudes given as point marks, AUC can be used
to assess predicted exceedance probabilities over severity thresholds. Alternatively, we can also
consider the Brier score for binary outcomes (Brier, 1950). It corresponds to the Mean Squared
Error, and is known to be a proper scoring rule in the sense of Gneiting and Raftery (2007).

Due to the complexity of LGCP models with various terms in the linear predictor (7.1),
it is recommendable practice to assess not only a single predictive score for comparing and
ranking models but rather a basket of several scores measuring different aspects of predictive
performance.

7.4.4 Prediction scores for count-valued predictions

For assessing predictions of counts to rank models according to predictive performance, we can
calculate the residual sum of squared errors (RSS), the residual sum of absolute errors (RSA),
and a χ2-statistics corresponding to a "studentized" version of RSS, where these three scores use
predicted and observed counts. We can further calculate the continuous ranked probability score
(CRPS, Gneiting and Katzfuss, 2014) using the predictive distribution functions and observed



7.5. MAPPING 125

counts. RSS and CRPS are proper scoring rules (Gneiting and Raftery, 2007). The formulas
for mapping-unit-based RSS, RSA and χ2 are as follows:

RSS =
N∑
k=1

(yk − λ̂k)2, RSA =
N∑
k=1

|yk − λ̂k|, χ2 =
N∑
k=1

(yk − λ̂k)2

λ̂k
,

where λ̂k =
∫∞

0
πk(log(λ) | y) dλ with πk(· | y) the posterior density of the linear predictor

log(Λk). The general CRPS formula for a single observation yobs and a corresponding (posterior)
predictive distribution F̂ (y) from a model may be expressed as

∫∞
−∞ {F̂ (y)− I(y ≥ yobs)}2 dy.

For the mapping-unit-based CRPS score, we add up the CRPS values over all mapping units
and therefore use

CRPS =
N∑
k=1

∞∑
y=0

y∑
`=0

[∫ ∞
0

exp(−λ)
λ`

`!
πk{log(λ) | y}1

λ
dλ− I(y ≥ yk)

]2

.

For criteria involving larger mapping units different from those used for estimation, the original
mapping-unit-based observed counts yk and intensities λk must be aggregated over the predictive
mapping units. This requires resorting to the joint posterior distributions of all Λk corresponding
to the mapping units that we want to aggregate. Since such CRPS formulas are difficult to
calculate analytically, we use posterior sampling as implemented in R-INLA, and we compute a
Monte-Carlo approximation of CRPS values based on a large number of posterior samples.

These three measures rely on counts: while RSS and RSA focus on point predictions defined
through the posterior mean of intensities at pixel level, CRPS also accounts for the uncertainty
of the predictive distributions and yields good scores for models that provide predictions that are
both calibrated (i.e., correct on average) and sharp (i.e., having little prediction uncertainty).

7.5 Mapping
Producing spatial maps of risk components, or time-indexed spatial maps or dynamic maps in
the case of spatiotemporal resolution of models, is usually an important goal of modeling the
occurrences of environmental risks. Such maps can be produced based on predicted intensities
λ̂(x), and spatial variability in prediction uncertainties can be highlighted by mapping uncer-
tainty measures associated with λ̂(x), such as posterior standard deviations or lengths of credible
intervals. More specifically, we can also map posterior means and uncertainties of spatially in-
dexed random effects in the linear predictor (7.1). In particular, we could highlight areas where
the random effect is significant, e.g., where credible intervals of Wk(x) do not overlap 0, which
puts focus on areas where the other predictor components alone (such as fixed effects) do not
succeed in accurately predicting the occurrence intensities.

It is further possible to aggregate predictions of quantities such as counts or magnitudes to
various mapping units of interest, and to produce the corresponding maps where the mapped
values are constant within each mapping unit.
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Chapter 8

Bayesian spatiotemporal modeling and
prediction of landslides

Landsliding processes represent a major category among environmental risks. Landslides are
nearly ubiquitous phenomena worldwide and pose severe threats to people, properties and the
environment in many areas, often causing large numbers of human fatalities and huge economic
costs. Investigators have for long attempted to estimate landslide hazard in an effort to determine
where, when (or how frequently), and how large (or how destructive) landslides are expected to
be in an area. This information may prove useful to design landslide mitigation strategies, and
to reduce landslide risk and societal and economic losses. Typical triggers for such movements
of land masses are heavy precipitation and earthquakes, and short-to-medium term processes
related to vegetation cover and soil erosion may favor the likelihood of landslides. In this
chapter, we outline a new modeling framework for landslides due to weather triggers based on
log-Gaussian Cox processes (LGCPs). We draw advantage from Bayesian hierarchical modeling
using INLA to construct and estimate sophisticated models that enable us to capture the complex
influence of numerous observed predictor variables related to geomorphological features and
their interactions, and to include spatial or spatiotemporal random effects to represent the
contribution of other unobserved environmental factors, especially of the triggering event which
is usually not observed at appropriately fine resolution over space and time.

In the literature of geomorphology, most of the attempts at predicting the occurrence of pop-
ulations of landslides by adopting statistical approaches are based on the empirical observation
that landslides occur as a result of multiple, interacting, conditioning and triggering factors.
Based on this observation, and under the assumption that at the spatial and temporal scales of
our investigation individual landslides are georeferenced points in the landscape, we build our
modeling effort on point processes, specifically on a LGCP, recall Chapter 7. Individual land-
slides in an area form a point pattern generated by an unknown intensity function. The modeling
framework has two stochastic components: (i) a Poisson component, which models the observed
random landslide count in each terrain subdivision according to a given landslide "intensity",
i.e., the expected number of landslides per terrain subdivision; and (ii) a Gaussian component,
used to account for the spatial or spatiotemporal distribution of the local observed or unobserved
environmental conditions that influence landslide occurrence. The landslide intensity may be
transformed into a corresponding landslide susceptibility.

Our seminal paper Lombardo et al. (2018) has introduced the point process concept to the
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geomorphological community of landslide modelers, and in follow-up publications (Lombardo
et al., 2019, 2020; Opitz et al., 2020a) and ongoing work we capitalize on this approach by
providing relevant modeling extensions. In several of these papers, we analyze a collection of
4874 separate debris-flow landslides triggered by a major rainfall discharge in an area of around
100 km2 on the island of Sicily (Southern Italy), on October 1, 2009. In the recent preprint
Opitz et al. (2020a), we propose and compare the most sophisticated of our spatial models,
including models from previous papers but also novel models that can account for interaction
between the latent spatial random effect and a covariate (e.g., the slope steepness) through
the idea of space-varying regression. In this preprint, we also roll out a detailed discussion of
how model selection can be achieved with very complex models. Finally, in Lombardo et al.
(2020), we also consider the time domain and propose a space-time modeling approach to study
the question of stochastic temporal dependence in landslide inventories, which had so far not
yet been examined in the geomorphological literature. Based on a landslide occurrence dataset
spanning almost a century for a study region in Italy, we give a detailed discussion of various
aspects that distinguish the spatiotemporal from the purely spatial case.

8.1 The intensity concept for modeling landsliding risk
The modeling of landslide processes has spawned a rich literature of statistical approaches, see
the review of Reichenbach et al. (2018). However, for representing the probability of occurrence
of such events only the notion of susceptibility was used for estimation and mapping purposes.
This means that one models the probability of presence/absence for the areal units in a fixed
partition of space. For instance, one may consider a fine-meshed regular grid of pixels covering
geographic space, or one may consider more problem-specific partitions of space, such as slope
units (SUs) or administrative units. In contrast to the concept of an intensity function defined
over continuous space, as usually employed in point process modeling, there are two drawbacks
from focusing attention solely on the probability of presence or absence in a given areal unit.
First, a probability of occurrence is associated to a fixed areal unit, such that we cannot easily
provide occurrence probabilities for other areal units than those fixed in the model used for
estimation. In particular, upscaling of probabilities from smaller to larger areal units is awkward.
By contrast, an intensity function allows calculating intensities for arbitrary spatial units, and
probabilities for the occurrence of at least one landslide event are readily derived. Second,
the notion of susceptibility may be overly simplistic because of its binary nature: it considers
only presence or absence, but it does not provide any information on the number of events
that may arise in an area, which is especially problematic when relatively large mapping units
are used, where many landslides may occur in a single unit. Again, the intensity framework
is more general since it allows calculating expected event counts for any spatial support, and
the probability distribution of the number of events can be calculated analytically or obtained
through Monte-Carlo simulation of estimated point process models.

8.2 Spatial scales and covariates
Geomorphologically relevant covariates are given at high raster resolution. The list of available
covariates typically includes variables such as Elevation, Aspect (i.e., the slope angle in [0, 2π)
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describing the exposition of the area with respect to the North), Slope Steepness, Planar Cur-
vature (measured perpendicular to the steepest slope angle and characterizing the convergence
and divergence of flow across the surface), Profile Curvature (indicating the direction of max-
imum slope), the Distance to the closest tectonic fault line, Normalized Difference Vegetation
Index (NDVI, measuring the "greenness" of a landscape and serving as a proxy for vegetation),
Landform (with around 10 categories), Lithology (i.e., soil type with more than 20 categories,
where we summarize rare soil types into a single class "other"), and Land Use (with around 10
categories). In Lombardo et al. (2018, 2019); Opitz et al. (2020a), the original high-resolution
raster images of these covariates are aggregated to a 15m × 15m grid, which yields a representa-
tion of the study area through 449, 038 pixels. Then, the LGCP models are discretized through
a Poisson regression formulation with respect to this grid, as described through Equation (7.2).

We additionally exploit mapping units at an intermediate resolution (between small pixels
and the full study area) known as slope units (SUs). The SU partition defines a physically-
motivated and moderately-sized spatial discretization, which is useful for capturing latent ran-
dom effects such as the influence of the spatially-varying precipitation event. SUs can be viewed
as relatively homogeneous mapping units with respect to geomorphological and geophysical fea-
tures relevant to landslide activations. For instance, the study area in Sicily, Italy, is composed
of 3484 SUs; see Figure 8.1. Some landslides triggered within the same SU may be due to a joint
triggering mechanism, which could lead to some residual stochastic dependence in the landslide
occurrence process (conditional to the geomorphological structure and the precipitation trigger),
but such spatial dependence is likely to be very weak when considering events arising in separate
SUs. In other words, landslide data in different SUs can be safely assumed to be conditionally
independent given fixed and random effects, such that the LGCP framework is appropriate.

8.3 Modeling nonlinear responses and unobserved triggers

We first summarize the most relevant spatial model structures and then present a selection of
important results.

8.3.1 Model structure

We define a log-linear model for the point process intensity of landslides where we may include
fixed effects of observed covariates and several types of random effects. Since usually the obser-
vations of the landslide trigger (e.g., precipitation) are not available at satisfactorily high spatial
resolution, we include a latent spatial random effect in the linear predictor of the point process
intensity to capture the influence of such unobserved and spatially varying effects. Moreover,
some covariates are known to have a strongly nonlinear influence on the log-intensity of the point
process. Therefore, in some cases it is important to allow for nonlinear covariate effects through
the use of spline-like random effect terms. In practice, a simple and robust solution consists of
using piecewise constant splines with a first-order random walk prior, as implemented for the
models in this chapter. PC priors can be specified for the random walk precision parameter
in order to estimate spline curves with appropriate posterior smoothness. More generally, we
systematically use PC priors for all estimated hyperparameters in LGCP models for landslides.



130 CHAPTER 8. BAYESIAN MODELING OF LANDSLIDES

Figure 8.1: Illustration of the slope units (SUs) in the Sicily study area in Italy, used to define
latent Gaussian random effects with conditionally autoregressive spatial structure. Left display:
map indicating the number of adjacent SUs. Right display: adjacency graph of SUs.

In Opitz et al. (2020a), we define a baseline model including fixed effects, a spline effect for
the Aspect covariate, and a spatial random effect, as follows:

log Λ0(s) =
Jcont∑
j=1

βcont
j zcont

j (s) +
3∑
j=1

`j∑
`=1

βcat
j,` z

cat
j,` (s) + xCRW1

Aspect(s) + xCAR
SU (s). (8.1)

The precisions in the centered Gaussian priors of fixed effect coefficients βcont
j estimated for con-

tinuous variables are fixed to obtain moderately informative priors, without any hyperparame-
ters to be estimated. By contrast, we use PC priors for the precision parameters of coefficients
βcat
j of factor effects (i.e., of categorical effects), where a sum-to-zero constraint is imposed

for each of the factors (Lithology, Landform, Land Use in our case) to ensure identifiability.
A separate precision parameter τ is used for each factor with the a priori specification that
P(
√

1/τ > 1) = 0.01). In a similar way, we specify the hyperpriors for the marginal precisions
of the cyclic random walk prior used for the Aspect covariate, cyclic over a subdivision of [0, 2π)
into 16 categories, and of the conditionally autoregressive (CAR) spatial effect (Besag, 1974) de-
fined at the level of SUs based on their adjacency structure, again with a sum-to-zero-constraint
for identifiability reasons.

We explore several extensions of the baseline regression equation (8.1). We can include
additional i.i.d. effects specified either at the 15 m pixel level or the SU level, or additional
nonlinear spline effects for other covariates, such as the Slope Steepness (in which case we
remove its fixed effect), or an additional space-varying regression (SVR) term for covariates
such as the Slope Steepness. In our most complex model, we include both a nonlinear spline
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Figure 8.2: Posterior estimates (mean, 95% credible bounds) of covariate effects on spatial
landslide intensity in the Sicily area. Left: fixed effect coefficients for the different models in
Opitz et al. (2020a). Right: Nonlinear cyclic effect of Aspect in the baseline model (8.1).

effect xRW1
Slope and a SVR coefficient xCAR

Slope with spatial CAR prior for the Slope Steepness, leading
to the following regression formula:

log Λext-1(s) = log Λ0,−Slope(s) + xRW1
Slope(s) + Slope(s)× xCAR

Slope(s), (8.2)

where Λ0,−Slope(s) is the equation of the baseline model after removal of the fixed effect of Slope
Steepness.

Finally, we construct a model similar to the preceding one but which links the latent spatial
effect xCAR

SU (s) and the SVR component. If the latent spatial effect acts as a proxy for the pre-
cipitation trigger, then its low values indicate a weak or absent trigger effect, and then the Slope
Steepness value could become irrelevant since no landslides occur, whatever the geomorpholog-
ical conditions. In this case, the SVR component can locally neutralize the globally estimated
Slope Steepness effect. We here consider the following model:

log Λext-2(s) = log Λ0,−Slope(s) + xRW1
Slope(s) + β × Slope(s)× xCAR

SU (s), (8.3)

with the interaction coefficient β ∈ R to be estimated. Unlike the most complex model (8.2)
(where complexity is understood in terms of the number of latent Gaussian variables), this
model features only one single CAR effect, xCAR

SU (s), instead of the two a priori independent
effects, xCAR

SU (s) and xCAR
Slope(s), such that we consider it as a parsimonious variant of space-varying

regression.

8.3.2 Summary of spatial modeling results in the Sicily area

Covariates included as fixed effects show relatively stable estimates of their posterior coefficients
when we compare models with differently specified random effects, except for cases where the
random effect is used to capture a covariate’s effect partially or fully, as it is the case for Slope
Steepness in models (8.2) and (8.2); see the left display in Figure 8.2. The right display in
Figure 8.2 exemplifies the estimation of a nonlinear effect using the example of Aspect, for
which a cyclic random walk prior was used to make angles 0 and 2π identical.
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Figure 8.3: Mapping of components of predicted landslide intensities for the Sicily study area.
Left: Slope Steepness covariate. Middle: Predicted landslide log-intensity of the baseline
model (8.1). Right: Combined effect of Slope Steepness components in the space-varying re-
gression model (8.2).

In Figure 8.3, certain components of the predicted landslide intensities are shown: a map
of the Slope Steepness – a key covariate – is plotted on the left display; the spatial prediction
obtained from the baseline model (8.1) is given in the middle display; the combined effect of the
predictor components related to Slope Steepness in the most complex model (8.2) with SVR is
shown in the right display. Both the middle and the right display reveal the spatial distribution
of the strength of the precipitation trigger, which entered the study area from the West (around
the middle of the vertical axis), and then crossed the study area while losing intensity and
exiting through the southwestern boundary.

Finally, Figure 8.4 shows why the parsimonious formulation of the SVR component with
respect to Slope Steepness in model (8.3) is a sensible choice. The patterns of the slope contri-
bution to the linear predictor are very similar between the model with and without SVR when
we plot this contribution as a function of the value of the global spatial random effect xCAR

SU (s)
and the Slope Steepness value. This holds especially in the region where the small gray dots are
concentrated, i.e., where we have observations of landslide counts. These results corroborate the
following interpretation of the parsimonious model: the interaction between the latent spatial
effect and the Slope Steepness allows us to establish a direct link between the trigger intensity
and the Slope Steepness effect, and the latter effect is mostly irrelevant in regions where the
trigger was absent or only weak.

We further compare models based on information criteria such as WAIC, and by using a 10-
fold cross-validation scheme where SUs are held out entirely. Cross-validation allows us to check
for overfitting with very complex models and to assess the models’ performance in out-of-sample
prediction.

For predictive performance, we compare a number of useful scores to contrast observations
and predictions either at the pixel level or at the SU level; recall §7.4.2 for a summary of such
scores. Some scores use only presence/absence-information (e.g., AUC), while others allow using
the actual count value (e.g., CRPS). We summarize main findings from Opitz et al. (2020a). The
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Figure 8.4: Illustration of the Slope Steepness effect in models with space-varying regression.
The overall Slope effect is shown through the color map in a coordinate system given by the Slope
value and the posterior mean of the latent spatial effect. Light grey dots indicate the position
of the observed SUs in this coordinate system. Left display: most complex model (8.2) with an
independently specified global spatial random effect. Right display: parsimonious model (8.3)
where the SVR-coefficient corresponds to the rescaled global spatial random effect.

results show that the inclusion of a nonlinear effect of the Slope Steepness, implemented through
a piecewise constant spline curve with random walk prior, is important for good prediction. We
point out that the baseline model is already relatively competitive and shows stable and quite
good performance throughout, and it does not suffer from several relatively bad count-based
scores arising for some of the more complex models. Overall, the ranking of models based on
their predictive performance looks quite different from the one based on WAIC (although scores
and WAIC values are often close between different models). A possible reason is that very high
stochasticity and complexity of prior models may lead to more unstable, noisy predictions.

In general, we recommend a careful inspection of the fitted models based on several criteria,
for goodness-of-fit and for out-of-sample prediction. Models such as (8.2) and (8.3), which
possess extra flexibility thanks to an SVR component, are relatively competitive overall for
prediction. Despite their increased computational complexity, such models are useful by offering
insights into the "physical" interaction of Slope Steepness (or of other covariates) with the
unobserved precipitation trigger, to which we have alluded in the discussion of Figure 8.4.
In terms of WAIC, the inclusion of an additional SVR component for the Slope Steepness (but
without using a spline curve effect for this covariate) provides the most substantial improvement
over the baseline model. The relatively complex models (8.2) and (8.3) also lead to substantial
improvement in WAIC, while no relevant improvement in goodness-of-fit could be achieved by
adding spatially independent random effects at the pixel or SU level.

8.4 Modeling spatiotemporal dependence over several decades

Some available landslide datasets comprise inventories for several triggers or several time peri-
ods. So far, the existing landslide literature had tackled statistical modeling of such data from
a purely spatial perspective, i.e., by assuming that subsequent time periods or time steps are
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linked solely through covariate coefficients that are constant over time. In Lombardo et al.
(2020), we go beyond this restriction and propose spatiotemporal modeling approaches with a
focus on revealing temporal dependence patterns that cannot be explained through available
geomorphological predictor variables alone. To improve over the existing techniques, we there-
fore construct innovative LGCP models that consider latent random effects of (i) spatial, (ii)
temporal, and (iii) spatiotemporal type among adjacent terrain mapping units, among the same
mapping units but subsequent in time, or using both conditions together, respectively.

We use a data inventory covering the period from before 1941 to 2014 for the Collazzone area
in in Central Italy, for which most of the relevant geomorphological covariates are also available
as spatial rasters. We subdivide the 79 km2 area into 889 slope units (SUs). In this work, we
do not retain the very high pixel resolution for defining models, mostly for computational rea-
sons. Instead, we directly use observations given at SU resolution by appropriately aggregating
landslide counts and covariate information to the SU scale. For continuous covariates, both the
SU-wise empirical average and the empirical standard deviation of raster-based covariate values
are used as predictors. The aggregation through the standard deviation provides information
about the homogeneity of covariate values with a SU. We further conduct appropriate prepro-
cessing steps with the original landslide data, consisting of spatial inventories for 19 periods, to
aggregate them into 6 relatively homogeneous time intervals, which are approximately of the
same length except for the first interval spanning a longer time. Figure 8.5 illustrates the original
spatiotemporal distribution of the landslide dataset and its aggregation towards 6 time intervals.
Figure 8.6 gives an illustration of the SUs, and in particular of their adjacency structure used
for defining the conditionally autoregressive spatial random effects in the LGCP models.

8.4.1 Model structure

The model structure in space corresponds to the spatial baseline model (8.1). In all of the
considered spatiotemporal models, we define moderately informative PC priors for hyperparam-
eters. As in the spatial models, all hyperparameters are estimated, except for the precisions of
the centered Gaussian priors of fixed effects of continuous covariates.

We consider a simple baseline model where the spatial covariates enter only as fixed effects.
In this model, we allow for time-interval-specific regression constants,

log
(
Λbase
j (si)

)
= log(|Ai|) +β0 +βj +

8∑
k=1

βmorph
k,1 zmean

k (si) +
8∑

k=1

βmorph
k,2 zsd

k (si) +
13∑
k=1

βthem
k zprop

k (si),

(8.4)
where j = 1, . . . , 6 indexes the time intervals and each si, i = 1, . . . , 889, corresponds to a
different SU with area |Ai| > 0. Overall, the model comprises 35 covariate coefficients β to be
estimated. In Equation (8.4), fixed effects are separated according to the SU-wise means and
standard deviations of continuous morphometric variables with superscript "morph", and ac-
cording to the 13 categories of thematic properties with superscript "them", expressed through
SU-wise proportions. We impose a sum-to-zero constraint on the 6 time-interval-specific inter-
cepts βj to ensure identifiability of the global intercept β0, and the common precision parameter
of these 6 intercepts is estimated. This time-varying intercept can be considered as a relatively
simple temporal random effect.
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Figure 8.5: Illustration of the spatiotemporal landslide inventory of the Collazzone area, Central
Italy. The upper display shows the spatial distribution of landslide scars according to the 19
original time intervals. The lower display puts focus on the temporal structure and the temporal
aggregation into 6 relatively homogeneous time intervals.
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Figure 8.6: Illustration of SUs in the spatiotemporal landslide inventory of the Collazzone area,
Central Italy, and of their adjacency structure used for defining conditionally autoregressive
spatial random effects.

To extend the baseline model in (8.4), we add spatial random effects according to three
different specifications. Our assumption prior to estimating models is that the spatial random
effect should differ between SUs and between different time intervals, but that it may be similar
for observations of landslide counts arising close in space or in time. In a first extension, we
use a Gaussian random effect with conditionally autoregressive (CAR) spatial dependence and
6 independent replicates in time. The role of the CAR effect is to explain variations in the
landslide intensity that cannot be explained by the observed covariates, and the full model can
be written as follows:

log
(
ΛS
j (si)

)
= log

(
Λbase
j (si)

)
+W S

j (si), i = 1, . . . , 889, j = 1, . . . , 6. (8.5)

In a second extension, featuring a structure similar to (8.5) at first sight, we now assume prior
temporal dependence of SU-based random effects within the same SU, while disregarding any
direct spatial relationship between adjacent SUs:

log
(
ΛT
j (si)

)
= log

(
Λbase
j (si)

)
+WT

i (tj), i = 1, . . . , 889, j = 1, . . . , 6, (8.6)

using first-order auto-regressive (AR1) Gaussian time series WT
i (tj) within SUs, whose prior

distributions are mutually independent between SUs. Finally, we combine the two preceding ex-
tensions with either spatial or temporal dependence into a model that features both dependence
mechanisms in its spatiotemporal Gaussian random effect:

log
(
ΛST
j (si)

)
= log

(
Λbase
j (si)

)
+W ST(si, tj), i = 1, . . . , 889, j = 1, . . . , 6, (8.7)

where the Gaussian processW ST(si, tj) combines a spatial CAR structure with SU-wise temporal
AR1 structure. This model is able to capture spatial and temporal dependence in a parsimo-
nious way by estimating the spatial precision parameter of the CAR model and the temporal
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correlation parameter, constraint to the interval (−1, 1), for the temporal AR1 structure. This
is the most complex spatiotemporel model that we consider here. It can learn about spatial
clustering and temporal persistence in the structure of the landslide-triggering mechanism.

8.4.2 Summary of spatiotemporal modeling results

Similar to the model comparison tools developed for spatial models, see §8.3, we compare mod-
els using visual displays but also numerical scores based on presence-absence or on counts of
landslides in SUs for each of the 6 time intervals. For checking out-of-sample prediction perfor-
mance, we consider two cross-validation schemes: Space-CV, which is 10-fold and stratified in
space by holding out the same SUs over the 6 time intervals; Time-CV, which is 6-fold since
we hold out full time intervals, one at a time. Overall, we identify the model (8.7) with both
spatial and temporal dependence in its spatiotemporal random effect as the best model with
good relative and absolute performance in both Space-CV and Time-CV. This model provides
the additional convenience of interpreting spatial and temporal dependence parameters. We
find substantial temporal correlation with a significant AR1 correlation parameter. Figure 8.7
summarizes results for out-of-sample validation using either Space-CV or Time-CV.

Based on time-interval-specific SU-based posterior intensity estimates of the landslide point
process, we further propose a novel classification approach to identify spatiotemporal regions
with similar posterior susceptibility and intensity behavior; see Figure 8.8 for the resulting
maps. We distinguish between clearly stable and clearly unstable SUs, and we further consider
two intermediate classes of rather stable or rather unstable SUs; see Lombardo et al. (2020) for
details.

Finally, as an outlook towards joint modeling of occurrence locations and sizes of landslides
using a marked LGCP model, we can study the relationship of landslide counts (observed or
predicted) to observed aggregated landslide areas in the spatiotemporal Collazzone dataset;
see Figure 8.9. Interestingly, the plots highlight a strong dependence with an almost linear
correlation pattern between intensities and aggregated landslide areas, such that the intensity
of the point process model seems to provide a good proxy for the aggregated magnitudes of
landslides, up to a scaling factor. If we consider the area of a landslide as a mark of the
landslide point, then this exploratory finding hints at marks whose univariate distribution could
be independent and identical across space and time.

8.5 Outlook towards modeling extensions

Based on the foregoing work presented in this chapter, we have identified a number of important
extensions that we have started to implement in ongoing work.

A first extension towards multi-type point processes will allow for modeling of several types
of landslides (e.g., shallow vs. deep, small vs. large) in a single model. Predictor components,
such as covariates or random effects, can have the same or different influence in the linear
predictors of the intensity functions associated to the different landslide types. Random effects
capturing triggers and other unobserved environmental conditions may be shared between the
intensity functions of several landslide types. Joint modeling of several landslide types may
therefore provide insights into the similarities and differences among the generating mechanisms
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Figure 8.9: Relationship of landslide counts (observed in upper two rows, predicted using
model (8.7) in lower two rows) to observed aggregated landslide areas.
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of different landslide types. Moreover, the estimation of components that are shared between
different types (where possible and appropriate) is a means to reduce estimation uncertainties. A
promising approach consists of using a multi-type Poisson process with inhomogeneous intensity
functions λi(s), i = 1, . . . ,m for the m different types as starting point, such that the process
obtained by superposing all point patterns is still of Poisson type with intensity function λ(s) =∑m

i=1 λi(s), and marks follow a multinomial distribution whose probability parameters are given
by λi(s)/λ(s), i = 1, . . . ,m. Through the inclusion of random effects, which may be correlated
or shared between point types, we obtain a flexible modeling framework of multivariate log-
Gaussian Cox processes, and statistical inference can be performed in a Bayesian framework
using the same tools as in the single-type case, i.e., we can use INLA and further combine it with
the SPDE approach, see Chapter 7. R-INLA provides functionality to implement such models
through the use of several response vectors corresponding to multiple regression equations.

With the purpose of modeling the magnitude of landslides, the aforementioned approach of
defining a multi-type point process according to different magnitude categories is a practical
solution, but another avenue would consist of using point processes with a continuous mark
space to exactly model the observed magnitudes. This would establish a predictive modeling
approach that simultaneously answers three questions: where will landslides occur? how many
will occur? how large will they be? As pointed out in the summary of spatiotemporal results in
§8.4.2, a preliminary analysis revealed a quite strong, seemingly linear correlation between the
observed/predicted counts for SUs and the aggregated landslide areas. This could hint at the
mark distribution being independent from the local occurrence intensity, but a deeper analysis
and proper modeling tools are required to examine this relationship, which might show different
behavior on other landslide inventories. By analogy with the multi-type case, a marked Pois-
son process could provide an appropriate framework, and the use of random effects leads to a
marked LGCP. Its intensity function Λ(s) and the distribution of a mark attached to an event
s could be positively or negatively correlated, i.e., a larger number of events may locally come
along with relatively larger or smaller event magnitudes, respectively. The choice of an appro-
priate probability distribution for marks is also very important, and again the mechanisms for
estimating multiple regressions in INLA with the possibility of sharing random effects between
different responses would allow for fully Bayesian inference.

Finally, the joint stochastic modeling of observed triggering weather events and landsliding
events could be tackled in a spatiotemporal setting at a relatively coarse spatial scale. For regions
where relatively complete landslide inventories spanning several decades have been constructed,
we could additionally collect historical weather data from stations within the region or nearby.
Then, a joint spatiotemporal model could be developed for extreme precipitation episodes and
landsliding activity, with the aim to reveal the interactions between the two processes. This
idea represents an example of joint stochastic modeling of multiple risks (or of a risk and its
driver(s)) and their interactions, which is one of the major research perspectives to my work
that will be further discussed in the scientific outlook in Chapter 11.
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Chapter 9

Bayesian spatiotemporal modeling and
prediction of wildfires

Wildfires are uncontrolled fires of vegetation. The annual burnt area worldwide is on average
approximately 3.5 million km2 (Giglio et al., 2013), but the characteristics of fire activity in
terms of numbers, size, intensity and severity vary substantially over space and time, depending
on many factors related to weather, climate, vegetation, orography, as well as local and regional
human influences. Wildfires represent major environmental and ecological risks worldwide and
show strong interactions and feedbacks with many other climatic, environmental and ecological
processes. They provoke many human casualties and substantial economic costs, and they
can trigger extreme air pollution episodes and lead to the important losses of biomass and
biodiversity. Climate change may further exacerbate their frequency and extent. Moreover,
wildfires contribute an important fraction of global greenhouse gas emissions, such that they
can further accelerate climate change and drive problematic feedback loops in the Earth system
when climate extremes further increase wildfire activity.

9.1 Challenges in wildfire modeling

In the study of wildfire activity, explanatory and predictive modeling approaches are both im-
portant. Explanatory models allow us to attribute components of wildfire activity to risk factors,
such as land cover and land use types and their spatial structure, meteorological conditions and
socio-economic variables. This informs wildfire management about action levers to reduce risks.
On the other hand, predictive models with spatiotemporal resolution aim to produce precise
risk maps and forecasts. In particular, this may require incorporating random effects in models
to capture spatiotemporally structured variability of wildfire risk that cannot be explained by
the available predictor information from one of the aforementioned risk factor classes.

In France, most wildfires are caused by human activity (accidents or arson). Natural causes
such as lightning are much less frequent and amount to around 10% of wildfire occurrences
in Europe. A major difficulty in accurate modeling is to assess and quantify the influence of
human activity and its spatiotemporal dynamics. Usually only relatively static proxy variables
are available for this risk factor (e.g., spatially resolved indices characterizing wildland-to-urban
interface, touristic zones, and their evolution over longer time periods such as years or decades).

143
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Dynamic data of mobile phone activity could help gain better understanding and predictions of
human behavior related to wildfires, but data collection and exploitation raise strong concerns
about privacy. Another important variable is fuel and soil moisture, for which only relatively
rough spatiotemporal estimations can be derived from the observation of meteorological and
surface variables at irregulary spaced weather stations, from satellite-based remote sensing, and
from climate reanalyses that assimilate observation data into climate models. Finally, wildfire
prevention policies and measures may not be well documented, or applied heterogeneously, in
space and time. Overall, it is therefore highly challenging to disentangle how the space-time
dynamics of wildfire activity across years are driven by climate cycles, global warming and
changes in preventive measures, human activity and fuel structure.

The study of wildfire activity has led to a large body of statistical and machine learning
literature (see the reviews of Preisler et al., 2004; Xi et al., 2019; Pereira and Turkman, 2019)
and to the rise of a number of specialized scientific journals, with the goal to provide methods
for identifying risk factors, producing risk maps and proposing wildfire management policies to
reduce wildfire activity. Most statistical studies focus on modeling either occurrence numbers or
sizes, the latter usually represented by the burnt areas of spatially and temporally contiguous
wildfire events. In occurrence modeling, the spatial or spatiotemporal pattern of ignition points
(or other representative points of separate wildfire events) can be analyzed with point process
tools. Often, data are available as presences/absences or counts over dense spatial or spatiotem-
poral grids; or data have been transformed to such representations in order to facilitate modeling
and to harmonize different spatial-temporal scales of wildfire and auxiliary data (e.g., weather
conditions, land cover, land use).

A first component of wildfire activity that we aim to model is the occurrence intensity,
especially the location, time and numbers of wildfire ignitions (where? when? how many? ).
This can be achieved through point process models. If presence/absence in relatively small grid
cells is considered, then binary classification models can also be used. Another key characteristic
of wildfire impacts is burnt area. It can provide a direct approximation of the loss of biomass and
emission of greenhouse gases, and it allows for interpretation with respect to loss of ecosystem
services. Distributions of wildfire sizes usually show quite heavy tails, such that a small number
of wildfires have a very dominant contribution to aggregated burnt areas. Moreover, spatial
and temporal predictability of the occurrences and sizes of wildfires may be low, especially
in the case of large wildfires. Therefore, while extreme values in wildfire sizes represent only
a small fraction of the sample, it is very important to carefully address their distributional
properties and to identify the presence of spatial and temporal structures in their occurrence
patterns as far as possible. A large number of univariate probability distributions has been
explored for wildfire sizes, but no consensus has arisen so far on which parametric distribution
family provides the best fit (Pereira and Turkman, 2019). Specifically, distributions suggested
by extreme-value theory, such as the generalized Pareto distribution (GPD, §2.2.1) arising for
threshold exceedances, have been studied (e.g., approaches by De Zea Bermudez et al., 2009;
Turkman et al., 2010; Amaral-Turkman et al., 2011; Pereira and Turkman, 2019), and we will
use them to model exceedances above a range of increasingly high severity thresholds in Pimont
et al. (2021).
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Figure 9.1: Prométhée wildfire dataset (without the island of Corsica here). The map shows
the locations of the 23, 309 wildfires observed during the 1995–2018 period in one of the 9, 562
DFCI grid cells in the Mediterranean basin in Southern France.

9.1.1 Multi-scale multi-source datasets

Another issue in data analysis and predictive modeling is the multi-source multi-scale struc-
ture of relevant variables and data. Daily wildfire occurrences in France are available from
the Prométhée database since the 1970s; they are georeferenced using the so-called DFCI grid
at 2 km resolution. A map showing spatial position of more than 20, 000 wildfire occurrences
recorded in the DFCI grid during the period 1995–2018 is presented in Figure 9.1. Weather
variables are provided by Météo France, e.g., as observations of irregularly-spaced weather sta-
tions, or as SAFRAN reanalysis data at 8 km grid resolution. Land cover and land use (LCLU)
variables, especially forest cover, can be obtained from the CORINE land cover database and
from databases of the national IGN service. Some databases are available in vector format as
shapefiles, while others are of raster type. Some temporal dynamics in LCLU variables can be
exploited since databases have been updated at several occasions. Besides multi-scale struc-
tures in the datasets, we also expect that different spatial and temporal scales, not necessary
congruent with the data scales, are of interest for wildfire modeling and prediction.

9.1.2 Weather predictors

Wildfire activity shows a strong response to weather conditions, where especially dry and hot
conditions are very fire-prone. In Gabriel et al. (2017), we have done some exploratory analysis
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with respect to weather variables for the Bouches-du-Rhône administrative region in Southern
France. We aimed to understand the temporal scales of weather factors, here given by precipita-
tion, temperature and wind speeds. Based on the observation series for a weather station in the
center of this study domain, Figure 9.2 illustrates these three variables by differentiating their
values for days with and without wildfire occurrences. Low precipitation and high temperatures
appear clearly as factors favoring wildfire occurrences, while the role of wind speeds is less clear.

Instead of using raw weather variables, we can also work with one of the fire weather indices
defined in the literature. These indices aggregate weather variables (and sometimes other inputs
such as LULC variables) into a single structure variable, whose high values ideally represent
weather conditions that are particularly prone to wildfires. In the papers Fargeon et al. (2018)
and Pimont et al. (2021) discussed below, we focus on the widely used Fire Weather Index (FWI
van Wagner, 1977), originally established for forest regions in Canada. The FWI first aggregates
weather conditions into fuel moisture indices for vegetation and top soil layers, which are then
further aggregated into indices for buildup (related to wildfire occurrence) and spread (related to
wildfire sizes). The final FWI value is obtained by combining buildup and spread indices. Other
wildfire indices exist (e.g., the McArthur Forest Fire Danger Index developed in Australia, or
the Fosberg Fire Weather Index developed in the USA), but we focus on the Canadian FWI in
this chapter.

9.1.3 Land-use and land-cover predictors

Wildfire activity is also very strongly conditioned by how land is covered and used. First, the
availability of fuel is related to the vegetation cover (forest, type of tree species, other natural or
cultivated vegetation) and its fuel moisture state due to weather conditions. In dry conditions,
some tree species are known to ignite more easily and then allow for faster spreading of wildfires
(e.g., coniferous forests, by contrast with deciduous forests). In contrast, areas covered by water
(lakes, rivers), and more generally very humid zones, do not suffer from wildfire activity. In
France, most wildfire ignitions are caused by human activity, such that the presence of buildings
and population density, transport networks and touristic infrastructures play an important role
for the spatiotemporal variation of wildfire activity. Especially the wildland-to-urban interface,
corresponding to transition zones between densely populated urban areas and thick forest cover,
is known to represent relatively high wildfire risk. Figure 9.3 illustrates four variables related to
land use and land cover (LULC).

9.1.4 Building novel tools for the analysis of wildfire activity

The goal of my work on wildfire activity is to provide novel exploratory tools and Bayesian
hierarchical models to improve the exploration and modeling of the complex multi-scale space-
time structures arising for wildfire occurrences. Since the largest wildfires account for most of
the total aggregated burnt area of all wildfires, particular attention is required to accurately
model the tail of the wildfire size distribution, especially of exceedances above high thresholds.

Some novel exploratory tools, as well as modeling approaches based on INLA and the SPDE
approach, are proposed in our early paper Gabriel et al. (2017) for the spatiotemporal analysis of
wildfire occurrences using data from the Bouches-du-Rhône area in Southern France. We explore
the role assigned to temporal scales of the weather variables given as prepitation, temperature
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Figure 9.2: Exploratory plots for wildfire-weather relationships for the Bouches-du-Rhône dé-
partement. Top row: Monthly boxplots of weather data, where red boxplots represent the
subsample of days with observed wildfires; the left display shows 7 day cumulated precipitation
preceding the reported day; the middle display shows 7 day average temperature preceding the
reported day; the right display shows wind speed for the reported day. Bottom row: scatterplots
of weather data for all days of the study period: the left display shows average 7 day temper-
ature preceding the reported day and base-10 logarithm of (1+cumulated precipitation); the
right display shows the same averages and aggregations but over 28 days preceding the reported
day; in both display in the bottom line, the days with wildfire occurrences are shown in red,
and the size of the ×-symbol is proportional to the wind speed observed at the day.
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Figure 9.3: Examples of LULC covariates for the Prométhée area. Top left: coverage of conifer-
ous trees; top right: water coverage; bottom left: building coverage; bottom right: total length
of roads (in kilometers).
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and wind speeds in the point process intensity of wildfire ignition points. Moreover, using
spatiotemporal inhomogeneousK-functions (Illian et al., 2008) implemented in the stpp package
of R, we study how differently specifiied spatiotemporal model structures allow us to capture
spatiotemporal clustering of wildfire ignition points, and more specifically if space and time are
separable in the clusters not explained by the spatiotemporal intensity functions of the models.
The models were estimated at annual temporal resolution and have been obtained either through
kernel intensity estimation or as variants of models including weather and LULC covariates, as
well as different specifications of random effects (spatial; spatial, and temporal random walk;
temporally replicated spatial random effect) in the intensity function. Some of the exploratory
analyses implemented in Gabriel et al. (2017) would merit to be deployed at larger spatial scales
over the full Prométhée area in Mediterranean France.

In our paper Opitz et al. (2020b), detailed in §9.2, we develop spatiotemporal point process
modeling (without marks) for the whole Prométhée area using INLA and the SPDE approach to
study the influence of a wide variety of LULC-related pedictor variables, some of them designed
specifically to provide information about the wildland-to-urban interface. The model has reso-
lution at monthly scale and uses the 2 km pixel resolution of the Prométhée wildfire database.
Random effects were used to explain residual seasonal effects and the spatiotemporal variation
at annual scale not explained by the observed covariates (LULC, precipitation, temperature).

In §9.3, we present results from the work in Pimont et al. (2021), focused on spatiotemporal
joint modeling of occurrences and sizes, especially of large wildfires. In this approach, we use
the FWI to capture weather influence, and we explore through nonlinear spline effects how well
it captures variations in the occurrence and size responses at daily scale. All components of the
model are estimated using the INLA-SPDE approach, except for the exceedance distribution
corresponding to the category of largest wildfires, where we use a frequentist maximum likelihood
estimator of the parameters of a GPD model with negative shape (not available with INLA).
We baptize this model Firelihood, and it is a solid basis for work in progress on several modeling
extensions to further improve its predictive performance and its interpretability.

9.2 Spatiotemporal occurrence modeling with focus on land
cover and land use

For this work (Opitz et al., 2020b), we have considered the spatiotemporal point pattern (without
marks) of wildfires in the Prométhée study region (without the island of Corsica) for the years
1995–2018, and we work with a monthly resolution for time and with the 2 km DFCI grid for
space. We have put particular attention to constructing a relatively large number of potentially
useful covariates related to LULC.

9.2.1 Land-use land-cover covariates

We first unify datasets with different spatial resolution towards the DFCI grid by constructing
summary covariates of the land cover variables which are available at very high spatial resolution
from the IGN service We here do not consider temporal changes in LULC variables, which may
be relatively small during the study period. First, we calculate proportions of forest cover type
and buildings, and lengths of road types, for an intermediate regular grid at 200 m resolution.
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Then, for each DFCI cell at 2 km resolution and each covariate, we compute the mean and
standard deviation of the 100 subgrid values. This two-step approach keeps valuable information
concerning the fine-scale structure of covariate values when we aggregate them to the DFCI
grid. The mean summary shows the overall trend inside each DFCI cell, and the standard
deviation measures the variability around this trend and informs about small-scale heterogeneity.
Moreover, we generate synthetic covariates as interactions of several of the original covariates in
order to highlight the interface of forest areas to human activity. Wildland-to-urban interfaces
are heterogeneous areas where the two main prerequisites of wildfires, vegetation and human
activity, are expected to strongly coincide with wildfire outbreaks. We compute two additional
covariates to take into account the interface between open forests and urbanized areas, and
between open forests and paths. For this, we multiply the percentage of open forests by the
percentage of buildings or by the total length of paths inside each DFCI cell, respectively.

For weather influence, we here work with covariates obtained through the spatiotemporal
kriging of observations of precipitation and temperature.

9.2.2 Model structure

The spatiotemporal log-intensity function of the log-Gaussian Cox process in Opitz et al. (2020b)
has the following additive structure, which includes 30 covariates zland

j related to LULC and 3
covariates ẑclim

j related to weather conditions:

log Λ(s, t) =β0 + βtimet̃+
30∑
j=1

βland
j zland

j (s) +
3∑
j=1

βclim
j ẑclim

j (s, t) (9.1)

+ f(month(t)) +W (s, a(t)); (9.2)

the first line in the above formula shows fixed effects with coefficients βtype
j to estimate, and

the second line shows random effects. Based on a transformation t̃ = t−tmin

tmax−tmin
of the observa-

tion period to the interval [0, 1], a linear trend is estimated through the fixed effect coefficient
βtime. A Gaussian space-time random effect W (s, a(t)) is defined at the level of the years a(t)
associated with the observation month t. A seasonal effect f(month(t)) is defined at monthly
resolution with 12 levels. The hat-notation ẑclim

j indicates that climate covariates have been
estimated beforehand through kriging of monthly observation series recorded at 17 weather sta-
tions. We represent the Gaussian fields W (s, a(t)) by using the SPDE approach (see §A.2.1
for background), such that we work with a Gauss–Markov approximation of the Matérn co-
variance function, see Figure 9.4 for the spatial triangulation mesh that we use. For different
spatiotemporal structures in W (s, a(t)), we considered four choices, and we here report only the
finally selected (and most sophisticated) prior model of time-stationary autoregression defined
as follows:

W (s, a(t)) = ρW (s, a(t)− 1) +
√

1− ρ2εa(t)(s), ρ ∈ (−1, 1), (9.3)

where εa(t)(s) are the spatial Matérn-SPDE innovation fields, independent between years.
Estimation is carried out using INLA.
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Figure 9.4: Spatial triangulation mesh for the spatiotemporal residual effect of the model of
Opitz et al. (2020b). Left: DFCI grid cells and internal and external boundaries for the mesh
construction (1, 000 km unit). Right: triangulation mesh structure for the INLA-SPDE ap-
proach.

9.2.3 Main results

The posterior distributions of hyperparameters of the spatiotemporal residual effect W (s, a(t))
indicate relatively strong year-to-year dependence (with posterior mean of autocorrelation at
0.89) and relatively small spatial range (with posterior mean at 20 km). The posterior mean of
1.4 of the standard deviation of W (s, a(t)) implies that a substantial part of the spatiotemporal
variability in occurrence intensities of wildfires cannot be explained by the LULC and climate
covariates incorporated into this model.

Regarding estimated fixed effects, we first highlight a significant decreasing linear time tend
over the study period, which corresponds to an almost 40% drop in the point process intensity
when comparing the beginning and the end of the 24-year study period. In the context of a
warming climate with a tendency towards higher positive temperature anomalies and more arid
climate in the Mediterranean basin, which makes weather conditions more favorable to wildfires
in principle, this opposite effect may be interpreted as a consequence of improved preventive
measures.

The weather and LULC covariates expressed through the mean over the DFCI cell, which
contribute to increase the probability of occurrence of forest fires, are the following: temperature
anomaly, road length, proportion of conifer trees, slope, and areas of regulated touristic zones.
On the other hand, high values of the following factors significantly decrease this probability:
altitude, precipitation anomaly, water coverage (e.g., lakes, rivers), building coverage, length of
secondary roads, and length of paths. For the French Mediterranean area, our results therefore
precisely quantify the influence of factors that are known to favor or limit the occurrence of a
forest fire. We believe that altitude, with the strongest coefficient in absolute value, already
summarizes a lot of information in the study area. Indeed, low altitude levels can be found near
the coastline where the climate is the most Mediterranean, hot and dry, with highly flammable
plant species (conifers) and strong human presence (buildings, roads, tourism). By contrast,
at higher altitudes temperatures are lower, precipitation is higher, vegetation is less present
and less favorable to ignition, and human activity is lower or more strongly supervised in the
case of tourism. The total length of roads can be seen as a proxy for human presence, while
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conifers are strongly present in the study region and represent a highly flammable tree species.
The slope provides complementary information with respect to altitude; for instance, along the
Mediterranean coast we find areas with low elevation but with steep slopes (creeks, valleys) and
high touristic activity. Slope is also known to be a factor of faster propagation of forest fires,
therefore it seems logical to find its coefficient to be significantly positive. The significance of
the regulated tourist zone covariate might be explained by the fact that, despite the efforts of
conservation and prevention of the forest areas, touristic pressure is so high that it increases
the risk of wildfire occurrences. Subregions of the study domain with a very high proportion
of buildings (urban areas) or water naturally have a much lower level of forest fire exposure.
According to our model, the presence of many secondary roads and paths tends to limit the
occurrence of a forest fire. This characteristic contrasts with an opposite effect observed for the
total length of all roads, highlighting the major impact of primary roads.

Both interface effects (forest-to-building, forest-to-paths) are significant. The forest-building
covariate increases the fire occurrence intensity, while the forest-to-paths factor leads to a de-
crease. Forest-to-building interfaces concentrate the main cause of wildfire outbreaks: human
activity in a forest environment. The risk reduction owing to the forest-to-paths factor is more
difficult to explain, but may be due to the fact that the presence of small dirt roads and paths
does not necessarily coincide with fire-hazard-prone human activities.

Among the class of standard deviation covariates derived from LULC data, a group of vari-
ables significantly increases the probability of fire occurrence: secondary road length, forest
cover, path length, building cover, shrubland, conifers and moorland; two other variables are
associated to a significant decrease of wildfire numbers: road length, altitude. Overall, these
effects are in line with our general understanding: locally heterogeneous environments, where
human activity often coincides with presence of combustible material, favor the outbreak of
wildfires. The effects of the different road types are not always easy to disentangle, but our
model shows that taking into account averages and variances of road lengths in DFCI grid cells
for different road types (primary, secondary, paths) considerably improves the goodness-of-fit.

In summary, unusually high temperatures and low precipitation result in strongly increased
fire occurrence risk, and we observe a strong effect of LULC, especially of areas where human
activity (agriculture, recreation, tourism) takes place in the presence of forest cover. In particu-
lar, DFCI cells with high average forest cover alone were not found to be exposed more strongly
to fire risk in a significant way; rather, the presence of buildings and forest together, the domi-
nance of coniferous trees, and a fragmented forest cover have been identified as important factors
(among others) contributing to increased fire occurrences.

In Figure 9.5, the estimated residual seasonal effect at monthly resolution is shown. It is
bimodal, with a large peak in summer but also a second lower peak in spring. For both peaks,
we conjecture that the state of the combustible material cannot be characterized completely
by the temperature and precipitation covariates. In particular, the spring peak may be due to
relatively dry vegetation at the end of winter; moreover, agricultural activity could contribute
to accidental wildfire ignitions in this season.

Finally, Figure 9.6 shows maps of posterior predictions of expected wildfire numbers for the
summer months of June to September in 2017. Clearly, very high occurrence numbers arise in
July and especially in August, and spatial nonstationarities are strong. Predicted intensities
are particularly low in the blueish area around the coordinate x = 0.8, which corresponds to
marshland, i.e., to very humid land cover.
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Figure 9.5: Estimated seasonal effect in the final model of Opitz et al. (2020b). The black curve
shows the posterior mean of the odds ratio with the month of June as reference (i.e., with its
value scaled to 1), with 95% credible intervals (blue curves).
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Figure 9.6: Estimated log-intensity functions log(Λ(s, t)) for the months of June to September
in 2017 based on the final model of Opitz et al. (2020b), with unit km−2. Top row: June, July.
Bottom row: August, September.
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9.3 Firelihood : Joint modeling of occurrences and sizes
with focus on weather influence

In the work described in Fargeon et al. (2018); Pimont et al. (2021), we propose joint modeling
of wildfire occurrences and sizes. This project was developed independently from Opitz et al.
(2020b), which explains some differences in modeling choices. In contrast to the relatively strong
focus on new statistical methodology for large space-time point patterns in Opitz et al. (2021),
the approaches promoted in Fargeon et al. (2018); Pimont et al. (2021), and in ongoing work on
extensions, are more strongly motivated by practical wildfire management considerations. The
notion of wildfire occurrences here consists of considering only escaped wildfires defined by a
burnt area equal to or exceeding 1 ha, i.e., wildfires that have not been extinguished at an early
stage; we discard smaller wildfires.

Firelihood is designed as a Bayesian hierarchical regression model with several types of re-
sponse variables to represent daily fire activity. It corresponds to a marked point process in
which individual fires are the points (occurrence component), and the fire sizes (i.e., burnt ar-
eas) are the marks (size component). Using a grid approximation of space and a daily resolution
for time, a space-time Poisson model with log link function and random effects for the occurrence
component is adjusted to gridded fire counts using INLA combined with the SPDE approach to
define Gaussian process priors for spatial random effects. To appropriate characterize the wild-
fire sizes, and especially extreme wildfires, the size model is based on a mixture distribution,
where the mixture components have support over disjoint intervals used to subdivide [1,∞).
Mixture components correspond to truncated Pareto and generalized Pareto distributions and
are also estimated with INLA except for the most extreme interval. The Fire Weather Index
(FWI) and Forest Area (FA) are used as explanatory variables, We focus on the role of the
weather drivers in this model, which does not explicitly use LULC predictors. Seasonal and
spatial random effects, as well as a post-2003 effect, are included to improve the consistency of
the relationship between climate and fire occurrence.

For spatial discretization we use the regular 8 km grid given by the SAFRAN reanalysis
of Météo France. We consider this voxel size (8 × 8 km2 × 1 day) as a good approximation
for the "true" Poisson distribution of occurrence numbers resulting from aggregating intra-pixel
variation, since estimated pixel-per-day probabilities remain small. Another criterion for the
choice of pixel resolution was that, to appropriately capture spatial variation, the pixel extent
should be by a multiple smaller than the range of spatial correlation estimated in the spatial
random effect. Our model fits show that this range is approximately 30 km, which is indeed
substantially larger than pixel size. Moreover, most fires observed in the study area spread for
less than a day and are smaller than 1000 ha, which is much smaller than the area of a pixel.
Therefore, it is also appropriate to stick to the above voxel scale for fire size modeling, even
if a very small number of fires spread over more than one voxel. Finally, it is not necessary
to subsample the voxel-based wildfire counts in the implementation (see §7.3 for subsampling
techniques), such that the chosen voxel dimensions are consistent with the computational and
memory costs of INLA.
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Figure 9.7: Schematic representation of the Firelihood model developed in Pimont et al. (2021).
The representation of the fire size model in the lower left display suggests a density that is
continuous at the severity thresholds, but the model that we have implemented does not impose
this continuity constraint.

9.3.1 Structure of Firelihood regression models

The general mechanism of the Firelihood -model is outlined in the schematic representation in
Figure 9.7. A system of regression models is combined to jointly model occurrence numbers,
and exceedance probabilities and excess sizes of burnt areas above the four severity thresholds of
1, 10, 100, 1000 ha. By construction of the dataset used for the model, the exceedance probability
of 1 ha is 1, since we consider only escaped fires. Model components are trained with data from
1995–2014 (calibration sample), while the years 2015–2018 (validation sample) are withheld for
the evaluation of the predictive performance. The dataset for fire occurrence contains fire counts
for approximately 4.44 million pixel-days, the large majority of them being zero, whereas the
dataset of fire sizes contains 7193 observations.

We denote by Nit the number of wildfire occurrences on day t ∈ {1, . . . , n} and in the
8km × 8km pixel i ∈ {1, . . . , d} with centroid si, and by Ai,t ⊂ D the space-time cell with
volume |Ai,t| = 64 (ignoring units). The year corresponding to a given day t is written a(t) ∈
{1995, . . . , 2018}, and the week number within the year as week(t) ∈ {1, . . . , 52}. If at least
one fire is observed (Nit > 0), we denote by Yit = (Yit,1, . . . , Yit,Nit) ∈ RNit

+ the vector of the
corresponding quantitative marks, here restricted to values [1,∞) since we consider only escaped
fires. We write R(`)

it = (R
(`)
it,1, . . . , R

(`)
it,Nit

) ∈ {0, 1}Nit , ` = 1, . . . , 4, for the corresponding vectors
of binary exceedance indicators R(`)

it,k = I(Yit,k > u`), k = 1, . . . , Nit, with thresholds u1 = 1,
u2 = 10, u3 = 100 and u4 = 1000, each in hectare (ha) units. Finally, we write zFA(s, t) and
zFWI(s, t) for the voxel-based observations of FA and FWI, respectively.
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In the next two subsections, we detail the most complex model that we fit, which we con-
sider as the best model based on various model selection and validation steps. To verify the
added value of this full model and to avoid overfitting, we also systematically estimate simpler
submodels, in which some of the predictor components are removed, and we then conduct model
selection and comparison using WAIC (if estimation is done with INLA) or AIC (if estimation
is frequentist), as well as visual and predictive criteria. Specifically, we obtain posterior pre-
dictive distributions for burnt areas, and in particular for burnt areas aggregated over various
spatiotemporal supports. This is done by generating approximate simulations from the pos-
terior model using R-INLA, and by appropriately combining the simulated variables to obtain
representative samples of the quantity to predict.

Occurrence component

In the most complex model, we use the following general structure of the linear predictor of the
occurrence process. A Poisson response distribution is combined with Gaussian random effects
in the log-intensity. Within each voxel Ai,t, we assume that the Poisson intensity does not vary.
This leads to the following formula of the linear predictor:

µCOX
i,t = log

(∫
Ai,t

λ(s, t)d(s, t)

)
= log λ(si, t) + log |Ai,t|
=βCOX

0 + β>2003 I(a(t) > 2003)+

+ gCOX
FA (zFA(si, t)) + gCOX

FWI (zFWI(si, t)) + gCOX
season(week(t))

+W2D-SPDE(si) +Wiid(si).

The coefficient β>2003 allows capturing differences in post-2003 wildfire occurrence intensities.
The three nonlinear effects gCOX

COMP with COMP ∈ {FA,FWI, season} have Gaussian process
priors of first-order random walk type (RW1, i.e., we model these effects as step functions), with
a relatively large number of 30, 18 and 23 segments, respectively, to allow for near-continuous
behavior. The RW1 prior model is known to be stable for estimation with INLA (using a sum-to-
zero constraint to ensure identifiability), and it has only a single hyperparameter to be estimated.
Finally, to capture variation in the occurrence intensity that cannot be explained by the other
predictor variables, we have two components indexed by space and endowed with Gaussian
process priors. One is of SPDE type with approximate Matérn covariance (W2D-SPDE) to capture
residual variation in the occurrence intensity with spatial dependence, and the second one is of
i.i.d. type (Wiid) to capture spatially unstructured variation, i.e., the prior model corresponds
to Gaussian variables that are independent between spatial pixels. All hyperparameters are
estimated from data, and we use PC priors.

Size component

For the fire size component, we develop a piecewise model of fire size distribution, that is, a
mixture distribution with disjoint supports (i.e., size classes) of the mixture components; recall
Figure 9.7. This avoids making restrictive parametric assumptions on the general shape of the
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probability density of the distribution in all size classes together. In Pimont et al. (2021), we
conduct preliminary analyses of the response of fire size distributions for different FWI levels
using mean excess plots (Hall and Wellner, 2020) of the log-transformed sizes of escaped fires,
which leads us to fix the segment boundaries to u`, ` = 1, . . . , 5, with u5 = ∞. The number of
observed exceedances over increasingly high thresholds suggests a slow power-law-like tail decay
for all thresholds except for the highest one, for which exceedance numbers seem to decrease
much faster as in the power-law setting, consistent with findings in Cui and Perera (2008). We
therefore assume that

Yit,k/u` | (Yit,k ≥ u`) ∼ Pareto(α`, 1), ` = 1, 2, 3,

and logα` is allowed to vary nonlinearly with FA and FWI. We implement estimation of this
structure by using the survival model framework of INLA, where only wildfires satisfying Yit,k ≥
u` are used to estimate α`, and we further censor the wildfire sizes above u`+1. The link function,
and the prior structure of the linear predictor, are given as follows:

logα` = gSIZE,`
FA (zFA(si, t)) + gSIZE,`

FWI (zFWI(si, t)), ` = 1, 2, 3.

For the category with largest fire sizes (exceeding u4 = 1000 ha and containing 33 fires for the
training period), we take into account physical considerations and deploy a GPD, which allows
for a finite upper endpoint if its shape parameter is negative. Indeed, an upper bound for forest
fires — maybe a very large one — must necessarily exist. We fit the GPD to log10(Yit,k/1000)
given that Yit,k ≥ 1000. This model with the possibility for a negative shape parameter is not
available within INLA due to the finite and parameter-dependent upper endpoint of its support.
Instead, we estimate the GPD parameters using frequentist maximum likelihood. Owing to the
small sample size, we choose a more parsimonious parametrization of covariate influence using
only linear coefficients:

log10(Yit,k/1000) | (Yit,k ≥ 1000) ∼ GPD(ξit, σit),

log σit = σ0 + σFA × zFA(si, t) + σFWI × zFWI(si, t),

log ξit = ξ0 + ξFA × zFA(si, t) + ξFWI × zFWI(si, t).

In principle, we could simply estimate the exceedance probabilities above u`+1 derived from
the power law with parameter α` for ` = 1, 2, 3, but we cannot expect a good estimation because
of the relatively small sample fraction of fire sizes in the segment above u`+1. Therefore, we use
INLA to separately model and estimate these exceedance probabilities, noted pu`it ∈ (0, 1), above
thresholds u`, ` = 2, 3, 4, based on logistic regressions using the indicator variables of threshold
exceedances, R(`)

it,k, as data for the response variable:

log
pu`it

1− pu`it
= βEXC,`

0 + gEXC,`
FWI (zFWI(si, t)) + gEXC,`

FA (zFA(si, t)), ` = 2, 3, 4,

again with Gaussian first-order random walk priors in gEXC,`
FWI and gEXC,`

FA .

9.3.2 Estimated effects and their interpretation

Several of the random effect components estimated for the most complex Firelihood model
are shown in Figure 9.8 with pointwise 95% credible intervals. In the occurrence component
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describing the expected numbers of wildfires, we find a posterior multiplicative effect of FWI
that is close to linear for small to moderately large FWI values, but the effect is dampened and
essentially flat for higher FWI values. This can be seen as evidence that FWI is not very useful
as an index for the occurrence of the most extreme fires in the Mediterranean region, since the
proportionality relationship is broken for the most extreme values of FWI, such that FWI would
tend to indicate a too high wildfire occurrence risk during high-FWI regimes.

The multiplicative effect of forest area (FA) is also estimated to be strongly nonlinear. A
steep increase of relative wildfire occurrence intensity from 0% up to 20% of FA in a pixel is
followed by a dampening with a high plateau region between 30% to 60% approximately, before
the effect slighlty declines for pixels with very dense forest cover. Dense forest cover often comes
along with less human activity, such that less fire ignitions ensue.

The seasonal trend defined at weekly resolution also highlights strong variability with a
difference of up to 60% in occurrence numbers at different times of the year. Highest relatively
risk arises at the end of August; we conjecture that the FWI does not appropriately capture the
fuel moisture conditions over the full wildfire season.

The posterior multiplicative spatial effect highlights that there remains strong spatial vari-
ability between pixels that cannot be explained by the other predictors. Spatially aggregated
structures arise, where spatial clusters with relatively low or relatively high wildfire occurrence
intensities spanning over several adjacent pixels become visible.

Finally, the displays on the right-hand side of Figure 9.8 illustrate estimated exceedance
probabilities above a selection of thresholds (1, 5, 10, 100, 500, 2000 ha), and how these vary
nonlinearly with respect to FA and FWI.

9.3.3 Predictive model comparison

We further conduct a more specific analysis of predicted temporal and spatial patterns, and of
how they change if some key components of the linear predictor is removed from the model;
that is, if we fit the model without one or several of the random effects in the full model. To
realize this analysis, we use 1000 samples of the posterior distributions according to each of the
considered models. Figures 9.9 and 9.10 report the results of the comparison of different models
and observations for predictions of aggregated occurrence numbers and burnt areas, respectively.
The full Firelihood model shows generally good correspondence with observations in all displays
(yearly trends, seasonal trends, spatial trends) except for the very extreme observation year
of 2003, while removing key components from the model (i.e., using only nonlinear FWI, no
seasonal effect, no spatial effect, respectively) leads to severe biases in predictions. Predictions of
burnt areas are generally more noisy because of the heavy tails in the distribution of burnt areas.
In Pimont et al. (2021), we also discuss some diagnostics similar to the above ones but restricted
to the year 2003, which stands out for its exceptionally high fire activity. The Firelihood model
could not fully capture the behavior for this extreme year. The estimation of the numbers of
escaped fires was consistent with observations for 2003, but the model underrepresents larger
fires and burnt areas. This finding could again be due to limitations of the FWI in rating fire
danger during extreme heatwaves, and it highlights the importance of long time series including
catastrophic years for accurate fire activity modeling.

Finally, we define several binary representations of predictive behavior, for instance the
occurrence of at least one fire in a pixel-day, or the exceedance of a severity threshold given that
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Figure 9.8: Estimated effects of the most complex Firelihood model. In the fire occurrence
component, the estimated nonlinear curves of FWI, season and forest area are shown with
pointwise 95% credible intervals. The effects included in the fire occurrence component are
expressed as posterior means of multiplicative factors with respect to some reference value. For
the fire size component, we show how posterior exceedance probabilities over a range of severity
thresholds vary with FWI and FA (with fixed FA and FWI value, respectively).

a fire occurs. This approach allows computing Area-Under-the-Curve (AUC) scores, which are
shown in Figure 9.11. Occurrence of wildfires is generally very well predicted by our full model
with the AUC above 0.8 in the validation dataset. By contrast, the prediction of exceedances
of severity thresholds of burnt areas is generally more difficult and leads to lower AUC scores
between 0.55 and 0.75, depending on the threshold.

From the analyses detailed in Pimont et al. (2021), we conclude that the overall number
of escaped fires for the whole study region can be coarsely reproduced at daily scale, and it is
accurately predicted on a weekly or longer basis. We also predict the overall weekly number
of larger fires (10–100 ha), where the accuracy decays with size since the model uncertainty
increases with event rareness. Likewise, more localized predictions of fire numbers or burnt
areas, for instance at the level of administrative areas (départements), require a longer temporal
aggregation period to maintain model accuracy. In summary, our study sheds new light on the
stochastic processes underlying fire hazard, and it our model is a promising tool for predicting
and projecting future fire hazard in the context of climate change, see in particular the results
presented in Fargeon et al. (2018).

9.4 Outlook towards modeling extensions

The following subsections summarize several possible extensions whose relevancy is grounded
on the analysis of still open questions resulting from the work in Gabriel et al. (2017); Fargeon
et al. (2018); Opitz et al. (2020b); Pimont et al. (2021). Some of these extensions are already
tackled in work in progress.
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Figure 9.9: Firelihood -based predictions of occurrence numbers of escaped fires based on poste-
rior simulations aggregated over time and space. Each display compares predictions of the full
model with those from a simpler model where some key random effect components are removed,
i.e., , of a model only with FWI effect (upper left display), without seasonal random effect
(upper right display), and without spatial effect (lower display).
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Figure 9.10: Firelihood -based predictions of burnt areas aggregated over time and space based on
aggregated posterior simulations of the occurrence and the size components. The configuration
of the displays is the same as in Figure 9.9.

Figure 9.11: AUC scores calculated for the training and validation period for the Firelihood
model. We compare the Full model (with nonlinear FWI effect) with a simpler model that has
linear FWI effect in the linear predictor of the occurrence component.
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9.4.1 Small-scale inhibition among wildfire occurrences

While the above exposition has focused on models such as LGCPs that are able to capture
spatiotemporal clustering in wildfire occurrence, there may also be notable inhibitive effects
among wildfire ignitions at relatively small spatial and temporal scales. In particular, it is
natural to assume that no wildfires can take place over the same surface immediately after an
outbreak, and ecological knowledge about regeneration cycles of vegetation suggests that this
inhibitive pattern between neighboring events can last for several years after a fire. It would
be worthwhile to better quantify this claim and provide empirical evidence from data. Hybrid
point process models incorporating a mix of aggregative and repulsive structures at different
scales are an active area of research (Baddeley et al., 2013) and could be used to incorporate
this mechanism into generative models.

In Gabriel et al. (2017), we propose a descriptive measure to quantify such repulsive effects
through the annual normalized empirical intensity ratio index Iyear. Values of this novel index
below 1 indicate temporal inhibition between fire events at close distances, while values above 1
suggest temporal clustering. It is defined as the ratio of two aggregated counts: in the numer-
ator, the number of events observed in the follow-up years after a wildfire in a reference period
(and spatially close to this wildfire), where the reference period consists of the reference year
and potentially also some of the preceding years; in the denominator, for the same spatial buffer,
the number of wildfire events observed outside the chosen reference and follow-up periods. In
addition, we normalize the counts in the numerator and denominator with the global intensities
(in the full study region) for the respective periods. Figure 9.12 shows this annual index for var-
ious configurations of lengths of reference and follow-up periods, and of wildfire size categories,
in a specific administrative area (Bouches-du-Rhône). Especially for larger wildfires, the inhibi-
tion effect becomes clearly visible, despite the positional uncertainty about the exact location
of wildfires; recall that the observed burnt areas are typically relatively small in comparison to
the 2 km grid resolution of the Prométhée database. It would be interesting to further refine
this index and its estimation to conduct proper statistical inferences and to apply it at a larger
scale in France and in other wildfire-prone areas. A recurrent difficulty is that wildfire ignition
locations are often not recorded exactly but only up to a certain grid resolution, e.g., at 2 km
resolution in the Prométhée database, such that there is relatively high uncertainty about the
exact spatial location of the wildfire scar, especially if most wildfire sizes are much smaller than
a grid cell.

9.4.2 Fully Bayesian inference for joint occurrence-size modeling

With respect to the Firelihood model proposed in Pimont et al. (2021) for joint modeling of occur-
rences and sizes in Mediterranean France, we work on several extensions to provide improvement
in predictions especially for extreme wildfires, in uncertainty assessment and in interpretation.

First, due to the complexity of Firelihood, the occurrence and size model components are
estimated separately, such that transfer of information between components, and inference on
stochastic interactions between the two components, are not feasible. Moreover, the GPD with
negative tail index fitted to the logarithms of the largest burnt areas is estimated in a frequentist
setting, since the INLA framework is not appropriate for that purpose. An exploration of
alternative formulations of size models that are fully amenable to inference with INLA could
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Figure 9.12: Annual normalized empirical intensity ratio index. Left: Results for wildfiires with
at least 10 ha of burnt surface and a 5 year follow-up period. Middle: Results for reference
wildfires with at least 50 ha of burnt surface and all other events with 20 ha minimum surface,
and 3 year follow-up period. Right: Results for reference wildfires with at least 100 ha of burnt
surface and other events with 25 ha minimum surface, and a 3 year follow-up period.

lead to conceptually more elegant modeling solution.
Second, temporal stochastic structures in the current Firelihood version are relatively simple

since they are restricted to spatiotemporal variability of covariates and to a categorical effect
with two levels, the latter used to capture a decrease of wildfire numbers after the pivotal year of
2003 marked by exceptionally high wildfire activity (which may have triggered improved wildfire
prevention). As a consequence, simulated posterior predictive distributions for some space-
time aggregations of wildfire activity do not appropriately capture some very extreme events,
specifically the year 2003. A promising lead is to propose more flexible spatiotemporal structures.
Moreover, to allow for joint estimation and fully Bayesian inference of all model components
in models with more complex temporal structures, suitable data subsampling schemes, similar
to the approach implemented in Opitz et al. (2020b), should be developed, and their loss of
information must be analyzed carefully. We should take care to achieve subsample sizes that
allow running models on standard desktop computers, in contrast to the often highly computer-
intensive approaches in the literature, especially plenty of fast access memory; see the discussion
in 7.3.

Third, it is important to further conceptualize the combination of spatiotemporal marked
point processes with extreme-value theory in the modeling mechanisms combining moderate
and extreme wildfires. Extreme wildfires can be defined as exceedances above a high but fixed
severity threshold for burnt areas. The point pattern of extreme fires can be viewed as a thinning
of the full point pattern, and we can conduct threshold selection to identify a suitable threshold
for applying the theoretically justified GPD to the excesses of burnt area above the threshold.

Fourth, in order to estimate spatially indexed random effects that affect several model com-
ponents simultaneously, the idea of sharing can be developed: the random effect is estimated
within one response variable (e.g., wildfire counts), and we also include it with a scaling co-
efficient (which may be 0 in the absence of a shared effect) in some other, potentially related
response variables (e.g., wildfire size exceedances). The significance of the sharing coefficient
can be assessed. Sharing could be used as tool to increase model parsimony and it may offer
new scientific insight; see also the preprint (e.g., Opitz et al., 2021). Sharing may be especially
relevant to "borrow strength" for estimating complex structures in the linear predictors related
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to extreme events, where only a relatively small number of observations is available. By using
sharing, we can let the data decide if effects estimated at moderate quantile levels of wildfire
sizes carry over to extreme levels. Currently, the size component of Firelihood does not have
any spatially indexed random effects.

Fifth, we can improve on the nonlinear FWI effect that is global in the current Firelihood
model. Instead, we may use a more sophisticated model featuring a month-specific nonlinear
FWI effect. Indeed, Pimont et al. (2021) identify some shortcomings of the FWI in capturing
seasonal variation of wildfire occurrences in France, which could be remediated by estimating a
seasonally varying response of wildfire activity to FWI.

A final point of caution concerning spatiotemporal point process models with heavy-tailed
marks is model validation and comparison based on posterior predictive distributions. Due to
heavy tails and to high uncertainty in the spatiotemporal prediction of individual wildfires, cus-
tomary validation scores such as mean-squared/absolute errors (MSE, MAE) or CRPS are of
only limited informative value. The distribution of the contributions of individual observations
to such scores tends to be heavy-tailed, such that adding up or averaging such contributions (as
is done in MSE, or when considering average CRPS) will not lead to reliable scores. Method-
ological developments are still necessary to define appropriate probabilistic prediction scores and
techniques, and they could be inspired by the theoretical analyses of Taillardat et al. (2019). In
particular, instead of comparing different forecast models based on means of scores of individ-
ual observations, one may compare the full empirical distribution of such scores and then use
variants of stochastic dominance to rank forecast models.

9.4.3 New indices of wildfire danger

So far, we have considered the widely used FWI as a standard measure of meteorological wildfire
danger. However, the shortcomings pointed out for this index in our work suggest that we should
seek a more appropriate formula to define meteorogical fire danger in the Mediterranean region
based on raw weather variables such as temperature, precipitation, wind speed and humidity.
We intend to use statistical learning techniques such as Random Forests or boosted regression
to learn about the functional relationship of fire activity components with weather variables
and their interactions. This exploratory analysis can help define relatively parsimonious para-
metric or nonparametric models of fire danger indices, which may include expert knowledge on
biophysical mechanisms. Extreme-value theory will be of great use for two reasons: first, we
aim to put focus on weather conditions leading to extreme wildfires; second, highly fire-prone
vegetation conditions typically correspond to lower-tail extremes of so called live fuel moisture.
We further aim to include LULC information in this approach. This work is expected to result
in new definitions of wildfire danger indices, and we will use regression models to link them to
wildfire activity components while taking into account remaining prediction uncertainties.

9.4.4 Towards operational forecasts of wildfire activity

Currently available spatiotemporal models provide valuable predictions and insights into risk
factors and their contribution to components of fire activity, but the use of predictive models
for operational purposes requires an even finer spatial and temporal resolution of predictions.
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Moreover, specific event types such as multiple wildfire ignitions at several close locations
at the same time, and fires that "escaped" at an initial stage by exceeding certain severity
thresholds, are particularly problematic for firefighters and merit the development of modeling
approaches with even stronger focus on these situations. Multiple fire occurrences within a
relatively small space-time buffer are very rare but highly problematic, and by their extreme
nature they could be modeled through extreme-value techniques for discrete variables.

Such approaches are part of ongoing work and project proposals, and they will be developed
with colleagues from INRAE’s URFM lab in Avignon and in collaboration with Météo France,
among others.

9.4.5 Decomposition of risk and uncertainty components under cli-
mate change

Due to the high complexity and spatiotemporal fragmentation of the processes involved in wild-
fire activity, and due to the resulting high sophistication of models required to provide realistic
predictions, there remain large uncertainties in model outputs, even if we can use relatively large
wildfire datasets to calibrate models. Another source of uncertainty related to future projections
of wildfire activity is given by different scenarios for climate change and for changes in LULC.
With respect to climate change, scenarios such as the Representative Concentration Pathways
(RCP) can be injected as new predictors into probabilistic regression models to obtain proba-
bilistic predictions (Fargeon et al., 2018). However, the question of how to apply an appropriate
weighting of the results according to different scenarios of severity of climate change (and also
different climate models) is still an open question. Moreover, appropriate decomposition of the
variability and uncertainty of model outcomes according to different sources of uncertainty is
another problem that requires deeper analysis; the following components of uncertainty could
be considered: natural uncertainty of the biophysical processes; intrinsic uncertainty of climate
change scenarios, and uncertainty in the attribution of climate change effects; uncertainty of
model choice; parameter estimation uncertainty.

The development of methods to better identify, separate and quantify these sources of un-
certainty from spatiotemporal posterior simulations is therefore another area of research to be
investigated.
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Chapter 10

Student supervision, teaching and other
research output

10.1 Other research output

10.1.1 Text mining

The work during my 10-month post-doc project at the computer science institute LIRMM of
Montpellier University has led to the publication of a number of relevant results, and it has
laid the foundation for a wide range of follow-up projects (in which I am not involved any
more today due to lack of time and focus on core topics of INRAE). During my post-doc, I
have used highly noisy and unstructured textual data extracted from online health forums, for
which I have developed statistical methods and computer codes to extract structured medical
knowledge about the quality of life of breast cancer patients. This involved attribution and
statistical analysis of text content to items of quality-of-life questionnaires in Opitz et al. (2014),
and non-supervised structure analysis of topics discussed in these forums (Nzali et al., 2017),
among other approaches (Tapi Nzali et al., 2015; Nzali et al., 2017; Tapi Nzali et al., 2019).

I have implemented related concepts and models in ongoing joint work with my colleague
André Kretzschmar at BioSP, with the goal of automatically analyzing transcribed interviews
with beekeepers, in particular with respect to how they cope (from the epidemiological and
economical stance) with a parasite (varroa destructor) that is strongly harming and decimating
bee colonies.

10.1.2 EVT-based analysis of windstorm-based insurance claims

With partners at Allianz France and Lyon’s ISFA institute for actuarial sciences, we have used
EVT to study the design of highly nonlinear "transfer functions" that explain how the most
extreme wind speeds observed during windstorms translate into property damage, and which
subregions of the French territory show relatively homogeneous exposure patterns by using
ad-hoc designed spatial clustering techniques (Mornet et al., 2015, 2017). Interestingly, the
homogeneous wind risk zones that we find through non-supervised clustering reflect orographic
structures of the French territory since they grossly correspond to the most important river
catchments.

167
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Figure 10.1: Schematic overview of meta-modeling of agroecological events in pest-predator
population dynamics through spatiotemporal point processes.

10.1.3 Stochastic modeling of agricultural landscapes and their impact
on agroecological processes

This field of research has become very important for me over the past three years thanks to col-
laborations at BioSP and the PhD project of Patrizia Zamberletti (2018–2021). It contains two
major axes, and a schematic summary of important steps is given in Figure 10.1. First, we de-
velop new generative stochastic models for statistical inference and simulation with agricultural
landscapes. They are based on a vector-based representation of the spatial landscape support
using polygons (2D) and line segments (1D), and the allocation of landscape elements with
categories, such as "crop vs. semi-natural habitat" or "hedge vs. no-hedge" is achieved through
Markov random field models; see the details in our publication Zamberletti et al. (2021a).

Then, we simulate in cascade a model of these 2D-1D landscapes and a spatially explicit
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predator-prey dynamical system based on the numerical solution of systems of partial differen-
tial equations (PDEs), and we implement the application of pesticide treatments when a certain
threshold value of the pest density is exceeded locally. Based on a large variety of parameter
configurations used to control the spatiotemporal dynamics in the landscape-pest-predator sys-
tem, we study the impacts of landscape structure (composition and configuration) and of species
traits on biological control outcomes, such as the number of pesticide treatments and the local
peak value of pest density in case of treatments.

Specifically, we develop marked point process models for the joint analysis of locations and
magnitudes of pest density peaks after an exceedance of the pest density threshold has occurred,
i.e., just before a pesticide treament is applied. Marked PPs are used as meta-models in this
approach, and they can be viewed as an upscaling from prey-predator simulations at high spa-
tiotemporal resolution to intermediate scales where agroecological key events can be highlighted
and represented parsimoniously through the marked PP. We use generalized additive regression
models for the point processes to estimate and infer the drivers of spatiotemporal dynamics in
the occurrence and magnitude of key events. For the discretization of the study area (recall
the regression equation (7.2)), we here design a problem-specific discretization. We capitalize
on the implementation of triangulation mesh generation in the R-INLA package of R (available
for the SPDE models) to obtain mapping units that make allowance for the special role of line
segments (e.g., allocated with hedges) in agricultural landscapes; see Figure 10.2. In particular,
we distinguish between different types of mapping units: units in a patch center, units con-
necting exactly two patches, and units connecting more than two patches (blue), where these
three categories can be associated with different ecological dynamics. Details of this work are
available in the two preprints Zamberletti et al. (2021c,b).

10.1.4 Modeling spatiotemporal trends in soil properties using INLA-
SPDE

With colleagues from INRAE’s InfoSol unit at INRAE Orléans, who maintain and explore the
data and soil samples in the Conservatoire Européen d’Échantillons de Sol (i.e., the European
Conservatory for Soil Samples), we have tackled spatiotemporal soil modeling with focus on
space-varying temporal trends. This project has its beginnings in INRAE’s RESSTE network
for spatiotemporal statistics, and some significant progress was achieved during the PhD project
of Bifeng Hu supervised by colleagues at InfoSol. Our collaborative work is still in progress, but
important intermediate results have already been collected in Bifeng’s PhD manuscript. Our
motivation is to develop a novel modeling approach to space-time mapping of soil variables,
which allows drawing statistical inferences on spatial-temporal soil dynamics. Soil conditions
can vary significantly over space and may show strong temporal dynamics, often triggered or
enhanced by anthropogenic activity, e.g., application of fertilizers and pesticides, atmospheric
deposition of nitrogen and sulfur, and other environmental factors driven by climate change.
Soil contributes to a wide range of ecosystem services since soil fulfills many important functions
including biomass production, storage and filtration of water, storage and recycling of nutrients,
and habitat for biological activity and carbon storage.

Datasets of soil variables can be massive and result from complex, spatially and temporally
heterogeneous sampling procedures. We complete them with covariate data related to soil types,
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Figure 10.2: Spatial discretisation of the regression models for point process meta-models of
agroecological events in pest-predator population dynamics. Complete mesh discretisation (light
grey), mesh cells used in the analysis (dark grey), landscape patches (black). Cell centroids of
different colour refer to different cell types: cell in patch center (red), cell connecting exactly
two patches (green), cell connecting more than two patches (blue).



10.1. OTHER RESEARCH OUTPUT 171

weather and climate. The sampling process is of opportunistic nature and highly irregular in
space and time in the data that we study, and data may be very noisy due to measurement
errors. We use a large database containing hundreds of thousands of soil samples of different
soil properties for the mainland French territory collected since the 1990s. The data correspond
to the collection of the results of soil analyses requested by farmers for their fields. Although
we could not detect any strong preferential sampling effects in these data, they can be qualified
as opportunistic since there is no strict protocol for setting sampling locations and times, and
observations arise only if users (i.e., farmers) make a request.

In the following, I shortly outline major issues that we can solve through the INLA-SPDE
approach thanks to the specific structure of the model that we estimate. Statistical inference on
temporal trends and their variation through space is paramount for explanatory and predictive
modeling of soil variables but has not yet been much explored. In this work, we advocate a model
constructed in the INLA-SPDE framework, similar to space-varying regression (e.g., §8.3), to
tackle a number of statistical issues that are difficult to solve with state-of-the-art kriging or
machine learning approaches in soil science:

1. Data are not available for a factorial design of spatial stations and time steps, such that
we may have many missing values in the time series for a fixed location. This renders
location-wise estimation (e.g., regression) difficult. Spatial pooling of data is possible, but
leads to the question of the choice and weighting of areas to pool, and may lead to spatial
oversmoothing of results.

2. Standard regression and machine learning techniques may be used to explain the target
variable’s variation through available covariates, such as time or geological and climatolog-
ical features, but the usual assumption of independent residuals leads to wrong inferences.
In particular, uncertainty in regression coefficients would be underestimated because spa-
tial dependence implies a smaller effective sample size of data.

3. The estimation of space-varying regression coefficients (e.g., for the time covariate or the
intercept) in continuous space is challenging, especially if we wish to conduct a data-driven
choice of parameters governing the spatial smoothness of the estimated trend surface.

4. A precise assessment of estimation and prediction uncertainty is challenging in regression
models when estimation is performed in several steps (e.g., in the following setting: re-
gression in step 1, followed by spatiotemporal dependence modeling of regression residuals
in step 2 for kriging them).

5. Space-time covariance matrices become increasingly intractable with more data points.
Even with only several thousands of data points, one may have to resort to dependence
structure representations defined locally in space and time (e.g., pairwise likelihood, kriging
neighborhoods).

With INLA-SPDE, joint estimation of all model components, including smoothness parameters
(Issues 2, 3, 4), becomes feasible for any sampling design (Issue 1) and with many data points
(Issue 5), such that estimation uncertainty is propagated through all model components jointly.
Through the hierarchical formulation of INLA-based models, we can accommodate measure-
ment errors at the observation layer. The SPDE approach allows using sparse spatiotemporal
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precision matrices, tractable in very high dimension (Issue 5) and useful for defining flexible
prior structures for space-varying components (Issue 3).

We assume that a soil property S at space-time position (x, t) can be predicted from obser-
vations and other covariate information, that is, we use the so-called scorpan model

S(x, t) = f({si, i = 1, . . . , n}, c, o, r, p, a, n . . .)

where S(x, t) is the soil class or attribute to predict, f a function, {si, i = 1, . . . , n} are the
measured soil properties, c refers to the climate, o to organisms, r to relief, p to soil parent
material, a to age, and n = x to the spatial position. Among other predictor variables to be
included, the time t is of prime importance in our model but is usually not explicitly included
in the scorpan-model. Given observations si = s(xi, ti), our most complex Bayesian model
possesses the following prior structure, here written as a regression equation:

s(xi, ti) = β0+
∑

j∈scorpan

βsc
j z

sc
j (xi)+f(month(ti))+W0(xi)+t̃iW1(xi)+

L∑
`=1

B`(ti)W
res
` (xi)+ε(xi, ti),

(10.1)
with the following elements:

• fixed effect coefficients βsc
j with independent Gaussian priors for scorpan-related spatial

covariates zsc
j (xi);

• normalized time t̃ = t−tmin

tmax−tmin
∈ [0, 1], such that the left bound 0 corresponds to the

beginning of the study period tmin, and the right bound 1 corresponds to the end of the
study period tmax;

• a seasonal effect f(month(t)) with first-order random walk prior, defined at monthly res-
olution;

• a spatial Gaussian process W0 to define a space-varying intercept;

• a spatial Gaussian process W1 to define a space-varying slope;

• spatial Gaussian processes W res
` (s), ` = 1, . . . , K to capture residual, space-varying non-

linear effects using B-spline functions B`(t) defined over the time dimension;

• mutual independence between all of the above spatial Gaussian processes;

• i.i.d. Gaussian variables ε(s, t) ∼ N (0, σ2
ε) to capture measurement errors and variability

in the response values not explained by the other effects.

To improve identifiability of the above model components, we can impose sum-to-zero contraints
on the Gaussian variables pertaining to certain random effects, such as the monthly random
walk, and the spatial Gaussian processes W0 and W1. Through the INLA-SPDE approach, we
can obtain accurate estimations and uncertainty measures for all of the above components, and
for spatiotemporal predictions of S(x, t). Using observations of soil variables such as pH or
Phosphorus, we fit this model and compare it to simpler variants, embedded as submodels in
the general model by removing some of the additive components.
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10.2 Supervision of students

10.2.1 Master students

After my PhD, I have supervised several master students at the M1 and M2 level (note: M2
corresponds to the final year in 5-year bachelor-master studies) working on various subjects:

• Yassine Motie (M2, 2014), topic Acquisition of Patient Vocabulary From Health Forums,
Master thesis conducted at LIRMM, Montpellier University.

• Khadija Sabir (M2, 2018), topic Simulation of agricultural landscapes to study population
dynamics of pest and auxiliary, Master thesis conducted at BioSP, defended at SupAgro
Montpellier.

• Thomas Minotto (M1, 2018), topic Calculating tree detectability in forest canopies based
on pairwise tree interaction, master project conducted at BioSP.

• Oussama Ennouri (M2, 2020) topic Geostatistical kriging of conditional extremes, one of
the final year projects for his studies at MinesParisTech.

10.2.2 PhD projects and post-docs

At BioSP, I am currently co-supervising (with Julien Papaïx, Édith Gabriel) the PhD project
(2018–2021) of Patrizia Zamberletti on Spatiotemporal modeling and simulation of agricultural
landscapes, with an application to pest regulation, see §10.1.3. This PhD project is funded for
half by INRAE’s (former) MIA and SPE divisions, and for half by the Provence-Alpes Côte
d’Azur region.

In the framework of the KAUST Competitive Research Grant (CRG) project Statistical Esti-
mation and Detection of Extreme Hot Spots, with Environmental and Ecological Applications, a
project during 2018–2021 coordinated by Raphaël Huser, I am co-supervising the PhD projects
of three students, Rishikesh Yadav, Peng Zhong, Zhongwei Zhang, at KAUST (King Abdul-
lah University of Science and Technology, Saudi Arabia). With funding from this project, I
have also co-supervised a post-doc project of Emma Simpson at Lancaster University, on the
topic of flexible high-dimensional spatiotemporal modeling of conditional extremes using the
INLA-SPDE framework, see Simpson et al. (2020) for a submitted preprint of our work.

With colleagues at University of Montpellier (Julie Carreau, Gwladys Toulemonde), I have
been supervising the 18-month post-doc project of Fátima Palacios Rodriguez on resampling
methods for space-time precipitation extremes, with results presented in §5.2. We had obtained
funding for this project from Montpellier Université d’Excellence (MUSE), the Labex NUMEV,
and Inria.

Moreover, I am closely involved (or have been involved) in a number of PhD projects of
young collaborators without being in the position of supervisor, specifically in the PhD projects
of Hélène Fargeon (URFM, INRAE Avignon; wildfire modeling), Bifeng Hu (Infosol, INRAE
Orléans; soil modeling), Oksana Grente (CEFE-CNRS, OFB; wolf attacks on sheep herds) and
Jonathan Koh (Chair of Statistics, EPFL, Lausanne; wildfire modeling).

A recent PhD project funded by the 3IA Cóte d’Azur structure (dedicated to fostering
artificial intelligence and smart territories) will start in spring of 2021 in co-supervision with
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Elena de Bernardino at Nice University. The topic is at the intersection of spatiotemporal
statistics, EVT, stochastic geometry and statistical learning, and it will focus on theoretical
and statistical tools for excursion sets above high thresholds in stochastic processes. Based on
datasets over dense and regular spatiotemporal grids obtained from physical models for weather
reanalysis and projection, we will study the distribution of geometric properties of excursion
sets over high thresholds, such as the area, perimeter and Euler characteristic. This approach
will allow for a relatively sparse representation of extremal dependence in big datasets, and we
intend to seek connections to widely used geometric landscape descriptors in landscape ecology;
see Chapter 11 for more background.

10.3 My role in research groups and project consortia

INRAE’s RESSTE network1 for spatiotemporal data analysis, launched in 2014 by Denis Allard
(BioSP), has become an important forum with more than 50 affiliated members from France
and abroad for bringing together researchers, for animating workshops and for exchanging on
cutting-edge research geared towards statistical modeling of the interplay of space and time
in environmental and climatic processes. I am steering committee member of this network,
and I have taken a leading role in organizing and animating several international workshops
and tutorials (Avignon, Montpellier, Lancaster, each with 30-50 participants; one of them co-
organized with the EcoStat GdR network dealing with Ecological Statistics) on space-time
modeling with classical geostatistical methods (see the review paper RESSTE Network (2017)
resulting from this work) and with INLA-SPDE techniques.

A major research grant, in which I am involved as co-investigator, is the KAUST Com-
petitive Research Grant entitled Statistical Estimation and Detection of Extreme Hot Spots,
with Environmental and Ecological Applications, coordinated by Raphaël Huser, from 2018 to
2021. I am one of five international co-investigators, and I co-supervise several PhD projects
at KAUST, and a post-doc project of Emma Simpson at Lancaster University, with several vis-
its of these students at BioSP. Moreover, I have significantly contributed to two LEFE projects
("Les enveloppes fluides et l’environnement", funded by INSU for fostering new project-centered
collaborations) called "Cerise" (2016–2018) and "Fraise" (2019-2021). Both projects put focus
on the topic of space-time modeling of extremes, and I am coordinator of several of the work
packages.

Since 2017, I am elected member (reelected in 2020) of the Environment and Statistics group
of the French Statistical Society. It fosters discussions on the use of statistics to environmental
and ecological problems, and we organize workshops and other activities focusing on the use of
statistical methodology in this context. I am webmaster of this group, and I have been principal
organizer of an online workshop in November 2020 on environmental risk analysis with more
than 100 registered participants.

1https://informatique-mia.inrae.fr/reseau-resste/

https://informatique-mia.inrae.fr/reseau-resste/
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10.4 Teaching
This section shortly summarizes my activity of teaching and training at undergraduate and
graduate level after my PhD defense.

10.4.1 Undergraduate level

During the first semester of the academic year 2016–2017, I have taught an introductory course
of descriptive statistics at IUT Avignon.

During a one-week course on Extreme-Value Analysis in 2019 and in 2021, organized for
the student exchanges of the European ATHENS network at MinesParisTech, I have given a
one-day course with practicals on multivariate extreme-value theory.

I am the coordinator of a Master Course (M2 level, 24 hours) on Spatial Statistics, taught
intermittently since 2018–2019 at Aix-Marseille University as part of a Master of Data Science
programme (with Denis Allard, Florent Bonneu).

During the academic year 2020–2021, I give a course "Introduction à l’analyse des valeurs
extrêmes" (translation: "Introduction to extreme-value analysis"), of 16 hours mixing theory
and practicals for implementation with R, at École Centrale Marseille.

10.4.2 Graduate level

In the framework of the life-long training of INRA(E) staff, which is also open to external par-
ticipants, I have teached a four-day course "Processus ponctuels spatio-temporels" (translation:
“Space-time point processes") in March 2018 jointly with my colleague Édith Gabriel (BioSP).
The workshop took place at the Avignon site of INRAE.

With the colleagues from the steering committee of INRAE’s RESSTE network focusing on
spatiotemporal statistics, we have elaborated a one-day workshop to teach the full workflow of
analyzing and predicting space-time data using geostatistical tools available in the R language.
We have held this workshop twice: at the Spatial Statistics conference in Lancaster, UK (2017),
and at the METMA workshop in Montpellier (2018).

In November 2018, I have given an introduction to the INLA-SPDE method during 6 hours
of tutorials and practicals at the SPDE workshop in Avignon, organized with the help of the
RESSTE network and the GdR EcoStat, a French research federation for statistical ecology.

In May 2019, I have given a one-day course with practicals to present statistical regression
modeling to PhD students of the École Doctorale (PhD school) of Avignon, within a one-week
introduction to statistics for PhD students without a strong statistical background.
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Chapter 11

Outlook to future research

The research projects that I intend to develop will focus on new methodology for data analysis
and statistical inference geared towards spatiotemporal risk modeling. Specific unsolved applied
problems, identified in collaboration with scientists in various applied disciplines (climate science,
ecology, geomorphology, soil science...), will serve as motivation and for case studies. Some
avenues of future research have already been outlined in the preceding chapters presenting results
of my finalized work. The following presentation highlights other projects that are already work
in progress in some cases, and it outlines more general and fundamental research questions that
I aim to tackle in my future work.

11.1 My ecosystem of collaborations

Proposing new research tools and advancing knowledge on agricultural, environmental and eco-
logical questions and problems is a highly collaborative endeavor. Within INRAE, I have es-
tablished important and stable collaborations. At BioSP, we have a multidisciplinary team
assembling experts on spatiotemporal statistics, dynamical systems, ecology and epidemiology.
I work with colleagues on methodological advances in spatiotemporal statistics for extremes and
point patterns, and also on new tools for the stochastic simulation of agricultural landscapes,
and for sensitivity analyses of agroecological processes (e.g., pest-predator systems) with respect
to landscape composition and configuration. With colleagues from the URFM unit in Avignon,
whose work focuses on Mediterranean forests, I collaborate on wildfire modeling, and with the
Sol/Infosol units in Orléans on soil modeling.

Moreover, collaborations with colleagues outside of INRAE have become a cornerstone to
propose relatively fundamental theoretical and novel methodological approaches, especially in
the context of extreme-value theory, e.g., with collaborators at KAUST, in Lausanne, at the
universities of Montpellier, Nice, Lancaster and Venice, and at ITC Twente, among others.

I plan to strengthen these existing collaborations, and amend them with new collaborations,
especially within France, and in particular in the Provence-Alpes Côte d’Azur region where the
INRAE Avignon site is located.
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11.2 Modeling spatiotemporal extremes

In the field of extreme-value theory, I will continue to develop novel theory and methods for
spatiotemporal modeling and prediction of extreme episodes.

11.2.1 Learning aggregation functionals that drive extreme impacts

Special care is required when the extreme character of events or of environmental conditions
does not become manifest in very extreme observed values of a process, but is rather the result
of a specific and rare combination of temporal duration, spatial extent and moderately high ob-
servations, i.e., of an extreme value in an appropriately defined aggregation over space and time
of certain processes. Inferring this aggregation could be viewed as a problem of high-dimensional
(functional) statistical learning. One can mention the example of precipitation deficits, whose
accumulation can generate extreme drought conditions that build up slowly, especially when
combined with relatively strong positive temperature anomalies. Another relevant case is the
combination of the values of environmental and climatic factors occurring during an agricul-
tural cropping season that strongly impact the phenology of crops (i.e., their life cycle) and may
provoke extremely low agricultural yields. The modeling of multivariate spatiotemporal depen-
dencies and extreme-value theory will be at the core of the extensions to the state-of-the-art that
I intend to develop with my collaborators. The scale-profile decompositions of extreme event
episodes discussed in this manuscript are a promising base for developing such approaches.

11.2.2 Nonstationary extremes in space and time

I propose to develop stochastic models to gain precise insights into space-varying behavior of
temporal trends in the frequency, magnitude and spatiotemporal extent of extreme episodes, and
to allow for the detection of such behavior and its attribution to climate change. Nonstationary
extreme-value modeling is yet in its infancy, especially in the space-time context, and a major
goal is to propose appropriate extensions to be applied to Earth surface and atmosphere data.
Seasonal and multi-annual cycles (e.g., El Niño, La Niña), as well as long-term trends owing
to anthropogenic climate change, must be captured appropriately. The theoretically-founded
and asymptotically dependent state-of-the-art models in EVT may lack flexibility and may be
rather unwieldy for capturing complex nonstationarties in relatively high-dimensional data. In
contrast, the conditional extremes framework, originating in the work of Heffernan and Tawn
(2004), preserves strong asymptotic motivation but allows for flexible dependence modeling of
extremes through marginally transformed Gaussian processes. Its recent extension to spatial
and spatiotemporal processes (Wadsworth and Tawn, 2019; Simpson and Wadsworth, 2020),
used in combination with generalized additive modeling (GAMs, see Castro-Camilo et al., 2020,
for instance), will be a good point of departure for nonstationary modeling in both dependence
and marginal distributions, i.e., of weather event structure and climate conditions in the context
of climatic applications. The Gaussian dependence in these models can also serve as entrypoint
for using probabilistic machine learning models, which are often based on flexible Gaussian
structures. The results obtained within the PhD project on the stochastic geometry of extreme
excursion sets, starting in spring 2021 and discussed in §10.2.2, will further contribute to this
axis of research.
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11.2.3 Global extremes

Modeling of large-scale extremal dependence patterns in processes observed over the whole globe
have received relatively little attention so far. In climate science, dependence models for global
extremes could improve our understanding of large-scale atmospheric processes and climate
change, and they could provide new perspectives on the analysis of global circulation patterns
and related data, e.g., climate model outputs such as reanalyses or projections. In this setting,
models and estimation routines must be adapted to the spherical support of the globe and to a
potentially very large number of observation locations and times, especially when gridded data
are used. An interesting lead would be to extend the conditional extremes model, formulated
and estimated with a Gaussian residual process through the INLA-SPDE approach, and already
implemented for standard Euclidean 2D space and relatively small spatial domains (a part
of the Red Sea) in Simpson et al. (2020). With the spherical domain of the globe, Matérn-
like SPDE models can be constructed as before (Lindgren et al., 2011), and the numerical
complexity remains comparable to the setting of a Euclidean space. The implementation of
spherical SPDE models is readily available in the R-INLA package. Moreover, to take into
account nonstationarities in the extremal dependence structure, it would be possible to include
a small number of covariates in the range and variance parameter of the Gaussian process
used in the conditional extremes model, or to apply a space transformation approach where
the spherical support is transformed before deploying the SPDE that will define the Gaussian
covariance structure. The inclusion of temporal nonstationarities into the model as mentioned
in §11.2.2, and the implementation of statistical inferences for related parameters, could further
allow conducting detection and attribution studies with respect to climate change effects.

If modeling the process over the full globe is too intricate due to the complexity of the
data-generating process, we could still use the conditional extremes model defined over part
of the spherical support to characterize local extreme climate properties and their variability
over the globe. In climate science, one usually distinguishes "climate", corresponding to the
univariate marginal distributions in the climate processes, from "weather", corresponding to
local spatiotemporal dependence in the weather variables. We could therefore consider spatial
and spatiotemporal conditional extremes models that are nonstationary with respect to the
conditioning location, i.e., we let the parameters of the conditional extremes model vary over
the globe and then study the differences in the characteristics of the estimated models. This
approach bears some resemblance with local likelihood modeling (Loader, 2006), used in the
extreme-value setting with subasymptotic spatial models by Castro-Camilo and Huser (2020).
The characteristics of the local conditional extremes model can be thought of as characterizing
the local climate, i.e., we would include local dependence properties as part of the local climate.
A potential application of this could be a clustering approach based on the local climate charac-
teristics, such that we could achieve a classification of locations (and maybe also seasons) into
a moderate number of different climate classes.

11.2.4 Fast robust likelihood-free estimation of dependent extremes

Likelihood-based estimation can be considered as the "gold standard" of statistical inference
when likelihood expressions are relatively easy and fast to compute and when we assume that
models correctly capture the specifics of the data-generating mechanism. However, in peaks-
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over-threshold modeling of dependent spatial or spatiotemporal extremes, the computation of
likelihoods is often extremely computer-intensive and time-consuming due to multivariate cen-
soring schemes, and the computational cost may become prohibitively high, especially in cases
where we have data for many observation locations, such as gridded data. In this situation,
one could resort to estimation approaches that scale better with very large data volumes. An
example outside the extreme-value context is the method of regression kriging for Gaussian data
in classical geostatistics, which combines (i) a regression model for the trend of the response
distribution with (ii) moment-based estimation of the covariance function in the residuals using
weighted least-squares techniques.

In the extreme-value context, I propose exploring the following approaches in future work.

Regression kriging for conditional extremes

In the conditional extremes framework for spatial and spatiotemporal data (Wadsworth and
Tawn, 2019; Simpson and Wadsworth, 2020; Simpson et al., 2020), the dependence structure
can be flexibly and conveniently modeled through a nonstationary Gaussian process with the
structure of its mean and covariance function suggested by asymptotic considerations and con-
straints that ensure a well-defined model. Therefore, it would be interesting to develop and
estimate appropriately constrained generalized additive models with covariates in the Gaussian
location and scale parameter to estimate the mean and variance function (so-called GAMLSS:
Generalized Additive Models for Location, Scale and Shape), combined with a weighted-least-
squares estimator of the correlation structure. This approach would build a bridge between
classical geostatistics and EVT, and it would lead to a relatively robust estimation technique
that scales well with the size of datasets. Moreover, the non-Gaussian marginal distributions of
tails of the data can also be modeled using approaches of type GAM or GAMLSS, see Mhalla
et al. (2019); Castro-Camilo et al. (2020) for examples.

Robust rank-based estimation of marginally transformed Gaussian mixtures

With the Gaussian scale mixture models discussed in §6.1.1, it is possible to estimate correlation
matrices by using only ranks. As highlighted in work of Hult and Lindskog (2002), the rank-
based correlation coefficient known as Kendall’s tau is invariant with respect to the choice of
the distribution of the random scale variable, and a simple closed-form bijective transformation
to the linear correlation coefficient exists. Therefore, in case of replicated observations of a
Gaussian scale mixture process, it is possible to estimate the correlation matrix of the (latent)
Gaussian process using only ranks, even if the Gaussian process has a random scale and has
been transformed marginally (in a strictly monotonic way). This allows for very flexible model-
ing of spatial data through Gaussian scale mixtures, especially if these have been transformed
marginally towards a marginal distribution that is different from the symmetric marginal dis-
tributions of Gaussian scale mixtures possessing heavier-than-Gaussian tails. To model the full
distribution of data and not only threshold exceedances, but while still keeping focus on appro-
priately capturing extremal dependence in the upper tail, one could therefore proceed through
the following "robust", likelihood-free approach applied to Gaussian scale mixture models: (i)
estimate trends in the median of the process using quantile regression; (ii) estimate the Gaussian
correlation coefficients using rank-based estimators of pairwise correlations; (iii) estimate cor-
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relation parameters using weighted least squares between empirical and parametric correlation
coefficients; (iv) estimate parameters of the distribution of the random scale variable by con-
trasting empirical and theoretical values of the finite-sample estimates of the χ and χ-measures;
see §2.3.1. If the data correspond can be represented as a parametric marginal transformation
of the Gaussian scale mixture, then the transformation parameters could be estimated by min-
imizing so-called empirical distribution function statistics, such as variants of the Cramér-von
Mises or Anderson–Darling statistics. An approach using the above step (ii) has been proposed
for semiparametric modeling of the extremal dependence in multivariate data in Klüppelberg
et al. (2008), and consistency of estimators has been established. A combination of steps (ii) and
(iii) is proposed in Klüppelberg and Kuhn (2009), again with theoretical results on asymptotic
estimator properties. These results from the literature can be used to study the theoretical
properties of estimators based on the steps described above. For more general subasymptotic
models, such as location-scale mixtures of Gaussian processes, the minimization of some contrast
between empirical and theoretical values of the finite-sample estimates of the χ and χ-measures
could also be explored; asymptotic results for the estimators could be obtained based on recent
work of Lalancette et al. (2020).

Scoring rules as loss functions beyond the likelihood

In a more general POT setting beyond the ideas discussed for conditional extremes in §11.2.4,
we can replace the loss function, corresponding to the Kullback-Leibler loss when we maximize
the likelihood, with a more general loss. A promising lead is the use of proper scoring rules
(as defined byGneiting and Raftery (2007)) in the loss function. An example is the use of the
gradient score in (de Fondeville and Davison, 2018), which bypasses the heavy computation of
multivariate integrals in multivariate likelihoods implementing censoring of components falling
below a marginal threshold. Such approaches could be generalized to subasymptotic models,
e.g., Gaussian mixture processes, and the construction of more general scoring rules for this
purpose could be tackled. Alternatively, scoring rules such as the continuous ranked probability
score (CRPS), used to assess spatial or spatiotemporal univariate predictions (e.g., at a location
whose data were not used during estimation), could be computed based on cross-validation and
then minimized to obtain parameter estimates.

One may object that such approaches lead to a conceptual problem with model validation
since scoring rules were designed to validate predictions after parameter estimation, but here
we would already use them to estimate parameters. However, with relatively large datasets, a
separation of datasets into training data (where scores are used for estimation) and validation
data (where scores are used for validation) could be envisaged and would present a solution to
this problem.

11.2.5 Assessing probabilistic predictions of heavy-tail phenomena

The validation of predictions of extremes of distributions with very heavy tails is notoriously
difficult. Most standard validation metrics and scores are not appropriate since they may have
infinite mean or variance. For instance, the variance of a distribution does not exist if its tail
index is larger than one half, and the mean does not exist if its tail index is larger than one.
Even if these moments exist, the behavior of prediction scores may not be stable and robust
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enough to warrant their use in practice. An example is the validation of predictions of burnt
areas of wildfires, or of burnt areas aggregated for various spatiotemporal mapping units, as
discussed in Chapter 9. Wildfires are known to be quite heavy-tailed in most wildfire-prone
areas of the globe (Pereira and Turkman, 2019), often with tail indices estimated above 0.5 or
even above 1. Some of the strong variability of extreme event sizes can be captured through the
inclusion of covariate information and spatial and temporal random effects, but even then the
tails conditional to such information remain relatively heavy.

So far, there is no good solution to validate predictions in this context. The additive contri-
butions of predictions for individual observations to measures such as mean squared error, mean
absolute error or CRPS inherit the heavy-tail behavior of the observations. Similar issues arise
with landslides (Lombardo et al., 2020) and insurance claims after windstorms (Mornet et al.,
2015, 2017). The validation problem could be transformed into a problem for ordered categorical
predictions if we work with exceedance probabilities over a number of increasingly high severity
thresholds, but this is rather an ad-hoc approach that requires application-specific constructions
of the score, and it also neglects tail behavior when extrapolating beyond the highest threshold.
A different solution for comparing the performance of several forecasters could consist in devel-
oping criteria for comparing the distribution of the contributions of the forecasters’ predictions
of individual observations to the overall score. For example, with CRPS one usually reports the
average of CRPS values for the observations to predict. Taillardat et al. (2019) demonstrate
that this is not satisfactory for validating extreme-event predictions. Instead, the distributions
of CRPS values of different forecasters should be compared more generally by directing stronger
attention to the tail behavior of the CRPS distribution.

In practice, I suggest to explore the use of stochastic dominance properties between different
empirical CRPS distributions, which could allow concluding on the superior performance of one
forecast over another if a clear dominance relation arises. More generally, more thought should
be invested to find good solutions for communicating heavy-tailed forecast distributions (e.g.,
posterior predictive distributions in Bayesian models) in a concise and visually appealing fashion
to stakeholders.

11.3 Stochastic geometry of extremes in large gridded data

Stochastic geometry (Chiu et al., 2013) is a branch of probability theory and statistics that is
concerned with the study of geometric patterns and shapes, especially of point patterns. The
characterization of excursion sets of stochastic processes in Euclidean spaces has also given rise
to a large body of literature (see the monographs of Adler, 1981, 2010). When data are available
on relatively dense spatial grids over relatively large spatial supports (e.g., climate model output,
satellite observations), then new insights could be gained by studying extreme excursion sets in
these data, or by considering the locations of local extreme hotspots as the points of a point
pattern.

11.3.1 The stochastic geometry of excursion sets

Summary statistics of excursion sets of spatial or spatiotemporal extreme-event episodes can
serve as a parsimonious and easily interpretable representation of spatiotemporal extreme-value
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behavior when focusing on large-scale properties rather than on small-scale variations like those
captured by Gaussian-based random field constructions defined over continuous space. Specif-
ically, the probability distributions of the extent, the perimeter and the number of connected
components and holes of excursion sets are of interest. They allow for useful interpretations; for
instance, in the ecological context the perimeter of an excursion set for a high threshold can be
viewed as measuring the size of the interface between regions where components of an ecosystem
are under high stress (excursion) or suffer from only moderate/low stress (no excursion).

While existing theory (see Adler, 1981, 2010) mostly focuses on Gaussian random fields and
single replicates of a spatial process, we can extend and transpose those results to the setting
of spatiotemporal EVT by working with Gaussian mixture representations and their extreme-
value limits (extremal-t dependence, Brown–Resnick-type dependence). Specifically, results on
the moments (expectation, variance...) of the three above-mentioned characteristics of excursion
sets are relevant and can be derived from the mixture representation; this is work in progress.
Based on such developments, new empirical and parametric estimators of characteristics of
extreme excursion sets can be developed, and novel summaries for extreme excursions may arise
from these developments.

In the spatial analyses used in landscape ecology (Naveh and Lieberman, 2013), geometric
summaries play an important role; see also our work on stochastic agricultural landscape simula-
tors in Zamberletti et al. (2021a). Therefore, I nourish the expectancy that we can cross-fertilize
landscape ecology and spatiotemporal EVT. For example, we could obtain useful definitions of
relevant coefficients of extreme excursion sets from landscape ecology for EVT, and we could
use EVT-based characterizations of the geometry of extreme excursions in environmental and
climatic conditions to drive and improve ecological analyses.

This body of work will be conducted by a PhD student starting his thesis in the spring of
2021, in collaboration with Elena di Bernardino (3IA Côte d’Azur, Nice University).

11.3.2 Marked point process analyses for local extrema

By adopting a bird’s eye view on the large-scale spatial and spatiotemporal behavior of extremes,
an extreme episode can be considered as a point indexed by space and time (e.g., the barycenter
of an excursion set, or a local maximum of the process). A point may carry additional infor-
mation as point marks, for instance the value of the exceedance of the local maximum, or the
area of the excursion set. Therefore, we obtain a spatiotemporal marked point pattern, and we
can apply techniques from stochastic geometry to explore and model the spatiotemporal trends
in the occurrence intensity, in the spatiotemporal distribution of marks conditional to the oc-
currence pattern, and in the local interactions between points and marks. The point process
representation can be viewed as a meta-modeling approach that still preserves a lot of valuable
information about the extreme-event structure, but it may lead to a lower-dimensional repre-
sentation of gridded data through a comparatively small set of marked points. This approach is
of interest when considering excursion sets and local hotspots of the raw data without marginal
transformations, but it could also be used to study such properties in anomalies obtained after
marginally normalizing observations with respect to local climate properties (e.g., mean, vari-
ance, tail parameters). Moreover, it can be considered as a spatiotemporal declustering method
for peaks-over-threshold analysis.

In work in progress with colleagues at BioSP and the Mathematics department (LMA) of
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Avignon University, we consider local maxima in gridded reanalyses of US temperatures, and
we develop a hybrid of Gibbs processes and LGCPs using the INLA-SPDE approach. Due to
our extraction algorithm of hotspots, these cannot occur in adjacent pixels, i.e., there is some
form of local spatial inhibition between the points. We take into account local inhibition of
points by capturing them through "mechanistic" interactions in the Gibbs energy, and large-
scale aggregation patterns are captured through Gaussian random effects in the trend function
of the Gibbs model.

11.4 Modeling compound extremes and multiple risks

My current work encompasses promising projects geared towards the spatiotemporal analysis
of climatic, environmental, ecological and agro-epidemiological risks. While the deployment of
cutting-edge techniques of statistical modeling has led to important progress in the mapping
and prediction of high-impact events of specific types (e.g., landslides, wildfires, windstorms,
heatwaves, agricultural pest hotspots), the study of the potential effects of concurrence and
interaction of multiple event types is still largely underexplored. The understanding, modeling
and probabilistic prediction of such multiple events has been identified as a major methodolog-
ical challenge, at the international level within the Sendai framework of the United Nations
Office for Disaster Risk Reduction, but also at the national French level in prospective out-
looks of research institutes (INSU OSU, INRAE...). The presence of interdependence, or more
specifically of cascading effects, may lead to a nonlinear scaling of event magnitudes, occur-
rence probabilities and joint impacts as compared to a separate, compartmentalized analysis of
events with an "additive" treatment of separate risks. The notion of compound events has been
coined for climate-related events comprising a combination of several types of risk drivers or
risks (Leonard et al., 2014; Zscheischler et al., 2018). I plan to develop models and methods for
the joint probabilistic analysis of multiple events by using relevant spatial and temporal scales at
the observation and process level within Bayesian hierarchical modeling, so far deployed mostly
in the setting of single event types. Moreover, developments in multivariate spatial and spa-
tiotemporal extreme-value analysis will be important to characterize the interplay of extreme
conditions in drivers and risks. A crucial task is to achieve accurate propagation of uncertainties
between model components, especially between predictors associated to the different response
variables (i.e., to different event types). Moreover, the projection of joint risks in the setting
of possible changes in climate and Land Cover Land Use (LULC) is important for long-term
prospective risk analysis and the deployment of resilience strategies.

To give an example of cascading multiple events, let us consider the system composed of
drought, wildfires, extreme precipitation and landslides. Metereological drought is a key con-
dition for the outbreak of wildfires. Wildfires consume combustibles such as trees and other
vegetation, laying bare the soil and making it sensitive to atmospheric conditions as well as ero-
sive and sliding processes. In particular, tree roots that have previously stabilized slopes with
non-solid surfaces may be burnt or may rot, thus creating instabilities and channels for precip-
itation run-off. If this situation arises during the years following a large wildfire event, then
major landsliding events may be triggered by extreme precipitation, and in particular landslides
may occur at intermediate slope angles where the soil structure has been destabilized. There-
fore, joint modeling of drought conditions, precipitation extremes, wildfire and landslide risk is
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of interest. It involves modeling of two event cascades (droughts  wildfires, precipitation  
landslides), and it could further be modified to make allowance for the explicit modeling of soil
properties. Another nexus of compound events involving wildfires concerns the emission of large
quantities of greenhouse gases and atmospheric pollution. In this respect, one may even observe
feedback loops at relatively large scales (e.g., global) when greenhouse gas emissions further
exacerbate climate change, which in turn may lead to even stronger meteorological extremes,
especially drought conditions (Jones et al., 2020).

In the ecological context, these multi-risk developments will contribute to the field of predic-
tive approaches in biology, ecology and agriculture i.e., to the development of methods, often
data-driven or simulation-based, that allow predicting how biological or ecological systems may
react to changes such as modified external forcings. For example, one may study the risk of
crop yield losses in an environment characterized by an increase of extreme climatic risks, or one
may study the risk of invasive species (which could be hosts of pathogens of cultivated crops)
propagating as a consequence of climatic or land-use changes.

Two more specific topics that I wish to explore are listed in the following.

11.4.1 Risk functionals and risk measures for compound extremes

The term compound extremes has been coined in the climate science literature (e.g., Zscheischler
and Seneviratne, 2017; Zscheischler et al., 2018). Compound extremes arise when several risk
variables or drivers of such variables are simultaneously in a state that can be considered as
extreme. This notion is therefore closely related to multivariate extremes. In the current
literature, compound extremes of variables defined over spatiotemporal supports are typically
studied by using an aggregation functional to summarize spatially indexed observations of a
variable into a scalar value, and then the multivariate dependence of such scalar variables can
be studied (e.g., Zscheischler et al., 2021). The extension and application of generalized Pareto
processes or conditional extremes models to a multivariate spatial or spatiotemporal setting
could improve the knowledge about the spatiotemporal variability when compound phenomenons
occur. In particular, the construction of aggregation functionals for multivariate spatiotemporal
risk drivers, whose exceedances appropriately identify situations of high risk (i.e., of extreme
states arising in one, or jointly in several response variables), could be formalized through novel
methodological developments and can be considered as a statistical learning problem.

Moreover, the notion of risk measures, or more specifically the class of coherent risk measures
satisfying certain axioms (e.g., Delbaen, 2002), is commonly used in the actuarial context for
univariate or multivariate variables (Albrecht, 2014). Risk measures are deterministic scalar
quantities that give a measure for the severity of a risk (i.e., of some random quantity). Ex-
tensions to the multivariate spatiotemporal context are still rare (some simple ad-hoc defined
risk measures were used in our work Palacios-Rodriguez et al. (2020)), but would be relevant
for many applications. Some ideas have been developed for univariate spatial processes, e.g.,
for Gaussian processes (Ahmed et al., 2016), max-stable processes (Koch, 2017) or more general
processes used to model maxima data (Ahmed et al., 2020), and would merit extensions to more
general settings.
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11.4.2 Joint modeling of multiple risks

Beyond the multivariate modeling of components of extreme risks, there is so far no standard
approach for the joint modeling of multiple risks, especially in the spatial and spatiotemporal
setting. Models will become more complex when several risk components have to be modeled
jointly in a realistic manner, and accurate modeling of their potentially very complex interac-
tions is challenging. The propagation of different types of uncertainties (natural variability in
the modeled processes, model uncertainty, estimation uncertainty of parameters, uncertainty
due to different scenarios of climate change...) among model components and towards the re-
sulting predictions for risks is particularly difficult to handle. Hierarchical modeling approaches,
especially Bayesian hierarchical modeling, are a promising lead to achieve sound inferences, pre-
dictions and uncertainty assessments. Especially the modeling framework of INLA-SPDE allows
for incorporating multi-source multi-scale data into multi-component models for one or several
response variables, where complex covariate effects and spatial-temporal random effects can
be captured. The propagation of uncertainties between different components can be achieved
through correlated random effects, or sharing of random effects from one component to others
using a sharing coefficient to be estimated; i.e., we put a random effect W (s, t) in one compo-
nent, and it can be copied and rescaled to appear in other components as βcompW (s, t), with
the hyperparameter βcomp to be estimated.

Simulation-based approaches also play an important role, especially when we deploy a cou-
pling of bio-geo-physical procerss models and stochastic/statistical models. The work on agroe-
cological risks (see §10.1.3) is a good example of coupling stochastic landscape models (with
statistical inference of landscape parameters) and spatially explicit population dynamics mod-
els, numerically simualted according to a system of partial differential equations.

11.5 Spatiotemporal modeling of complex ecological pro-
cesses

I will invest in collaborative efforts to tackle the following challenges in statistical ecology.
Current state-of-the-art approaches in quantitative ecology still often disregard important spatial
variations in ecological phenomena (e.g., by using mean-field approaches where variables are
aggregated over space and/or time). Moreover, the development of spatiotemporal modeling,
i.e., the inclusion of temporal dynamics, is still in its infancy in many ecological fields including
species distribution modeling. Through my collaborations with quantitative ecologists at BioSP
and beyond, I aim to help contribute new methodological tools for spatiotemporal analysis of
ecological phenomena as outlined in the following.

11.5.1 Marked point process meta-models of dynamical systems

As already mentioned in §§11.3.2,10.1.3, marked point processes and stochastic geometry tools
could be used for studying the geometry of extremes in spatiotemporal stochastic processes and
gridded datasets. A similar analysis can be envisioned for the numerical simulations of spatially
explicit dynamical systems, for instance systems of Lotka–Volterra-like equations for population
dynamics. Then, a marked point process describing key events of the spatiotemporal dynamics
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(e.g., exceedance of a threshold of a pest species in an agricultural landscape) can be viewed as a
"meta-model" for the full dynamical system, and sensitivity analyses of the system with respect
to its parameters can be carried out through models and tools for point patterns and stochastic
geometry. In the project conducted by Patrizia Zamberletti in her PhD thesis at BioSP, we apply
this approach to simulations of prey-predator systems in agricultural landscapes. A parametric
stochastic landscape simulator is used to generate a multitude of landscape supports (crop
and non-crop fields, presence and absence of hedges on field boundaries), and then a 1D-2D
population dynamics model is simulated according to parameters controling the dynamics of
prey and predator species with respect to different habitat types (1D = hedge, 2D = crop or
semi-natural). When the pest density in a field exceeds a predefined threshold, then a pesticide
treatment is applied, reducing the local pest density to a very small value. We consider the local
pest hotspots leading to pesticide treatments as key agroecological events, and we model the
locations of the corresponding local maxima and threshold excesses as a spatiotemporal marked
point process. Local and global landscape properties, and population dynamics parameters, are
considered as predictors in a system of two regression equations for the point process intensity
and the size of the excess. This approach provides new insights into the spatiotemporal dynamics
of pest hotspots, and it shows how biological control measures can be designed to keep pest
densities below an economic threshold where pesticide treatments have to be applied.

While we do not use asymptotic models (e.g., GPDs) in this analysis, a further integration of
extreme-value techniques could be explored in future research, and the approach could be used
more generally for sensitivity analyses of outputs of more general spatially indexed dynamical
systems in ecology and other disciplines.

11.5.2 Intervention events in space-time point patterns

In ongoing work, I adapt tools of stochastic geometry (especially space-time variants of Ripley’s
K function) to assess how the occurrence of one type of event, which we may call an interven-
tion, influences the occurrence intensity of a second type of event. This provides insights into
dynamical structures of processes and can be linked to causal modeling. It is also related to the
concept of Before-After-Control-Impact (BACI) analyses, as established by Stewart-Oaten et al.
(1986), although BACI is usually not carried out in the context of multi-type point processes.
To make this abstract concept more tangible, let us consider two examples that I am currently
studying with partner institutes. The first example concerns wolf attacks on sheep herds, which
have become increasingly frequent over recent years due to the recolonization of France by wolf
packs. An important yet unanswered question concerns the effect of wolf removals (i.e., by
shooting them = intervention) on the occurrence pattern of wolf attacks on sheep herds. I am
currently investigating this problem with colleagues from the French Biodiversity Office (OFB)
and CEFE-CNRS in Montpellier. The second example concerns Asian hornets, an invasive
species in France and Europe that inflicts major damage on native bee populations. Based on
citizen science data collected by beekeepers and other stakeholders, we want to explore the effect
of deploying traps for capturing the Asian hornets that found new nests during the spring season
(= intervention) on the space-time point pattern of observed locations of Asian hornet nests. I
am coordinating and implementing the statistical modeling efforts within a partnership between
BioSP, the ITSAP institute and the Museum National d’Histoire Naturelle (MNHN). Finally,
the pesticide treatments in the pest-predator systems discussed in §11.5.1 could also be seen
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as intervention events, and a BACI analysis of the spatiotemporal point pattern of pesticide
hotspots would provide a novel way of analyzing these model outputs of numerical simulations
of dynamical systems.

11.5.3 Spatiotemporal preferential sampling in species distribution
data

It is a challenging task to model observation processes (i.e., what typically corresponds to the
top layer in a hierarchical model) when the observation effort is not uniform and not known
from a precisely defined observation protocol. The rise of crowdsourced data collection, e.g., in
the context of ecological projects for the observation of animal or vegetal species, but also the
availability of large historical datasets without strict observation protocols collected by national
parks in France, call for innovations in quantitative modeling through appropriate statistical
models and methods. Some statistical tools already allow us to mitigate or even fully control
potential biases in statistical analyses, often thanks to the availability of smaller data subsets
of protocoled data (Pennino et al., 2019; Gelfand and Shirota, 2019). One of my research
perspectives, in collaboration with colleagues at BioSP and the CisStats-network of INRAE
(for statistics in the context of Citizen Science), aims to explore and model such preferential
sampling effects and their space-time dynamics. We seek to disentangle preferential sampling
effects from species distribution dynamics by exploiting multi-source data with different types
of observation protocols (or absence thereof). Strong connections to space-time modeling of
marked point processes will arise. We will implement such approaches within the INLA-SPDE
framework enabling Bayesian modeling and the complex assessment of uncertainties.

Another important extension of state-of-the-art species distribution models concerns multi-
species modeling with a moderate to large number of species (say, between 2 to 100), for which
variants of parsimoniously defined coregionalization models could be developed, implemented
and compared using the INLA-SPDE approach. For instance, Choiruddin et al. (2020) have
developed frequentist regularized estimation of cross-correlation parameters of log-Gaussian Cox
processes in a highly multivariate setting, and we aim to transfer their approach to a Bayesian
setting where parameters, point process intensities and associated uncertainties can be estimated
more holistically.

Moreover, preferential sampling effects could also be explored in the context of extreme values
of continuous variables. For example, air pollution measurement networks are often denser in
urban or industrial regions exposed to extreme concentrations. For this goal, point process
models with extreme marks, similar to the models presented for wildfire modeling in §9.3, could
be used.

11.5.4 Stochastic geometry for hidden elements in forest remote sens-
ing

In work started during the Master project of Thomas Minotto at BioSP in 2018, we have
worked on the problem of the detectability of trees through remote sensing. When using aerial
photos and airborne laser scanning to identify individual trees and their properties, and to
estimate population measures such as total biomass, biases arise since some trees may not be
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correctly identifiable or may be hidden by others. By considering a forest as a marked point
pattern, we have started to explore the influence of spatial interaction among trees (aggregation,
repulsiveness, complete randomness) on the detection probability of trees. Points represent tree
stems, and marks can be defined as the radius of the tree crown. Based on the K-function
used to characterize pairwise interaction in point processes, and using certain assumptions on
the mark distribution, we have obtained first theoretical results on the detection probabilities
of trees. These results could be used to extend the estimation approaches developed in the PhD
thesis of Kansanen (2020) under the assumption of complete spatial randomness.

In another context, regarding the estimation of the Leaf Area Density of trees in a forest
(an important ecological indicator of the forest cover) terrestrial LiDAR sensors (light detection
and ranging) can be deployed to sample the forest canopy structure around the location of the
LiDAR instrument. The LiDAR.records the reflection of laser beams that it emits. Forest canopy
elements farther away from the instrument are often occluded by nearer elements. Therefore,
estimation of the forest canopy structure, especially of Leaf Area Density, must take into account
the occlusion effects, which can be considered as a variant of preferential sampling. In Soma
et al. (2020), colleagues from INRAE Avignon have proposed a kriging method that takes into
account the censoring of laser beams when predicting the 3D Leaf Area Density structure from
the LiDAR data. To extend the conceptual framework and to further improve estimations, the
stochastic geometry of the laser beams and occluding objects could be taken into account in
greater detail. Specifically, we could draw from the developments around the detectability of
forest trees and spatiotemporal preferential sampling outlined previously, and we could develop
Bayesian kriging techniques such as the INLA-SPDE approach.

11.6 Towards spatiotemporal data science of rare events

An overarching goal of my work is to significantly contribute to the development of a branch
of data science that focuses on space-time data, and especially on observations at low occur-
rence frequency but presenting high impacts on the Earth system with its human societies and
ecosystems. At BioSP, spatiotemporal data science has been identified as a thematic priority to
be developed through joint working groups and new recruitments in our lab.

In my projects, the goal will consist of combining tools and relative benefits from ma-
chine learning and probabilistic space-time modeling in order to achieve powerful predictive
approaches, where model outputs allow for probabilistic interpretation and decision support.
The strengths of machine learning are rooted in its capability to treat high-dimensional "big"
datasets, to use regularisation techniques, to work with simple-to-compute cost functions that
differ from unwieldy classical likelihoods, and to operate with only few modeling hypotheses.
By contrast, probabilistic spatiotemporal modeling places strong emphasis on explicit spatial-
temporal dependence structures, seeks to control and accurately assess uncertainties, allows for
attribution of response variations to covariates and risk factors through statistical inference,
provides good interpretability of results, and enables robust problem-specific solutions grounded
in theoretical domains including extreme-value theory and stochastic geometry. Merging the
best of both worlds would offer huge benefits.

In particular, embedding machine learning tools such as boosting, regularization, graphical
(Markovian) models or neural networks in a natural way into stochastic modeling of spatially
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indexed rare event data is among the big challenges that I wish to help tackle. For instance,
probabilistic Gaussian-based machine learning models could be embedded into the conditional
extremes framework, where Gaussian processes offer high flexibility for capturing extremal de-
pendencies. As to the modeling of discretely observed rare events (i.e., point patterns), the
estimation of spatiotemporal regression equations (see Chapter 7) presents a promising vantage
point to apply classification algorithms from machine learning for the estimation of point process
intensities and interaction potentials.

Therefore, future work should aspire to a powerful fusion of Bayesian and frequentist statis-
tics with machine learning techniques, while making allowance for the specifics of spatial and
spatiotemporal data.



Appendix A

Latent Gaussian modeling using the
INLA-SPDE framework

A.1 The integrated nested Laplace approximation (INLA)

The integrated nested Laplace approximation (INLA) has been proposed as a tool for analytical
approximation of posterior distributions in the wide class of Bayesian generalized additive re-
gression models with Gaussian process priors, also referred to as latent Gaussian models. Since
its inception in Rue et al. (2009), INLA has today become the prime inference approach for
spatial Bayesian models thanks to its implementation in the INLA package of the R software. It
also strongly benefits from its integration with the SPDE approach of Lindgren et al. (2011),
which provides numerically advantageous Gauss–Markov representations of the Matérn covari-
ance function, see §A.2.1. This section gives an overview of how approximations are carried out
and highlights some of the available models. It draws strongly from the presentation in Opitz
(2017).

A.1.1 Latent Gaussian models

Here we provide some general details on the latent Gaussian approach for spatial modelling,
denoting the observed data generically by y = (y1, . . . , yn). Following Bayesian convention, we
use lower-case notations for parameters and random variables, and we use π(·) as the generic
symbol to refer to probability densities (and the associated distributions). In hierarchical model-
ing with latent Gaussian processes, we define a latent, unobserved multivariate Gaussian vector
x = (x1, . . . , xd), and we assume conditional independence of the observations y with respect
to x. We use the so-called observation matrix A ∈ Rn×d to define a linear predictor

η = η(x) = Ax (A.1)

that linearly combines the latent variables in x into components ηi associated with yi, i =
1, . . . , n. For instance, x may contain the values of a spatial field at nodes s̃1, . . . , s̃d, and A
has i-th line Ai = (0, . . . , 0, 1, 0, . . . , 0) if the observation location si of yi coincides with one of
the nodes s̃j0 , and the 1-entry is at the j0th position. Otherwise, several entries of Ai could
have non-zero weight to implement interpolation between the nodes. The distribution of η is
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also multivariate Gaussian, by analogy with x. The univariate probability distribution of yi,
often referred to as the likelihood model, can be non-Gaussian and is parametrized by the linear
predictor ηi, and potentially other hyperparameters related to the shape of the distribution. The
vector of hyperparameters (i.e., of parameters that are not components of one of the Gaussian
vectors x and η), such as parameters related to variance, spatial dependence range, or the
smoothness of a spline curve, is denoted by θ. The hierarchical model is structured as follows:

θ ∼ π(·) hyperparameters,
x | θ ∼ Nm(0, Q(θ)−1) latent Gaussian components,

yi | x,θ ind.∼ π(· | ηi,θ), likelihood of observations.

The matrix Q(θ) denotes the precision matrix of the latent Gaussian vector x, whose variance-
covariance structure may depend on some of the hyperparameters in θ that we seek to estimate.
For example, in the simplest case of observations yi having a Gaussian distribution, the condi-
tional variance σ2 of yi given ηi is a hyperparameter, and we define

yi | ηi, σ2 ∼ N (ηi, σ
2), i = 1, . . . , n.

Distributions available for the likelihood in R-INLA are the binomial, Poisson, negative binomial,
log-gaussian, skew-gaussian, beta, exponential, gamma, Weibull, GEVD and GPD, among many
others. The linear predictor is usually linked to one of the parameters of the distribution through
a link function, e.g., the log-link in the log-Gaussian exponential, Poisson cases, or the logistic
link (logit) for the binomial and Beta cases.

A major benefit of the construction with latent variables is that the dimension d of the
latent vector x is not directly determined by the number of observations n. The computational
complexity and stability of matrix operations (e.g., determinants, matrix products, solution of
linear systems) arising in the likelihood calculations for the above Bayesian hierarchical model is
therefore mainly determined by the tractability of the precision matrix Q(θ), whose dimension
can be controled independently from the number of observations. Such matrix operations can be
implemented very efficiently if precision matrices are sparse (Rue, 2005). If data are replicated
many times with dependence between replications, such as spatial data observed at regular time
steps in spatiotemporal modeling, the sparsity property can be preserved in the precision matrix
of the latent space-time process x, especially by using separable dependence structures where
replications are linked together through a precision matrix that is again sparse, such as the
precision matrix of a temporal Gaussian auto-regressive process.

A.1.2 Laplace approximation

The joint posterior density of latent variables x and hyperparameters θ in a latent Gaussian
model is

π(x,θ | y) ∝ exp

(
−0.5x′Q(θ)x+

∑
i

log π(yi | ηi,θ) + log π(θ)

)
. (A.2)

This density over a high-dimensional space does usually not characterize one of the standard
multivariate families and is therefore difficult to interpret and to manipulate directly. In this
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setting, Laplace approximation is useful to derive posterior densities and estimations of practical
interest. In practice, the main interest lies in the marginal posteriors of hyperparameters θj, of
latent variables xi and of the resulting predictors ηi, where the latter can be included into x for
notational convenience. Calculation of these univariate posterior densities requires integration
with respect to θ and x:

π(θj | y) =

∫ ∫
π(x,θ | y)dx dθ−j =

∫
π(θ | y)dθ−j, (A.3)

π(xi | y) =

∫ ∫
π(x,θ | y)dx−i dθ =

∫
π(xi | θ,y)π(θ | y) dθ. (A.4)

The classical Laplace approximation used for latent Gaussian models was proposed by Tier-
ney and Kadane (1986). Typically, one seeks to evaluate an integral

∫
Rd f(x) dx, where the

positive integrand function f , here written as f(x) = exp(kg(x)) with a scale variable k ≥ 1,
is defined over a high-dimensional space with large d and is "well-behaved" in the sense that
it satisfies some minimal regularity requirements, is unimodal and its shape is not too far from
the symmetric Gaussian bell-shape; for instance, requiring strict log-concavity of f is useful, see
Saumard and Wellner (2014). Since the integral value is mainly determined by the behavior
around the mode of g, a second-order Taylor approximation of g can be substituted for g to
calculate an approximate value of the integral. Assuming that x? is the unique global maximum
of g, we get g(x) ≈ g(x?) + 0.5(x − x?)′H(g)(x?)(x − x?) for values x close to x? with the
Hessian matrix H(g)(x?). Notice that −H(g)(x?) is positive definite. An approximate value
of the integral can be calculated using the fact that a multivariate Gaussian density integrates
to 1. The resulting following integral approximation in dimension d is expected to become more
and more accurate for higher values of k, i.e., when the area below the integrand exp(kg(x))
becomes concentrated more and more closely around the mode (Tierney and Kadane, 1986). :∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
exp(kg(x)) dx (A.5)

k→∞∼
∫ ∞

−∞
exp(kg(x?) + 0.5k(x− x?)′H(g)(x?)(x− x?)) dx

=

(
2π

k

)d/2
|H(g)(x?)|−1/2 exp(kg(x?)). (A.6)

In statistical practice, k may represent the number of i.i.d. replications, each of which has
density exp(g(x)). Higher values of k usually lead to better approximation, and more detailed
formal results on the quality of approximation have been derived (Tierney and Kadane, 1986;
Rue et al., 2009). Many of the models commonly estimated with INLA have no structure of
strictly i.i.d. replication, but the Laplace approximation remains sufficiently accurate in most
cases since there usually still is a structure of internal replication; ideally, for each latent variable
xi0 we have at least several observations yi which contain information about xi0 . Recall that
observations are conditionally independent with respect to x by construction of the model.

In the context of INLA, the following observation will be interesting and useful. Fix k = 1
in (A.5) and suppose that f(x) = exp(g(x)) = π(x,θ), where π(x,θ) is the joint probability
density of a random vector (x,θ). Then, in (A.6), the term exp(g(x?)) is the value of π at
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its mode x? for fixed θ, whereas (2π)d/2 |H(g)(x?)|−1/2 is 1/πG(x? | θ) with πG a Gaussian
approximation with mean vector x? to the conditional density of x | θ. In practice, we can
determine the mean µ? = x? and the precision matrix Q? = −H(g)(x?) of πG through an
iterative Newton–Raphson optimization. Starting from the joint posterior (A.2) of our latent
Gaussian model, we set g(x) = −0.5x′Q(θ)x +

∑
i log π(yi | ηi, θ). We further write gi(xi) =

log π(yi | xi,θ) and calculate its second-order Taylor expansion gi(xi) ≈ gi(µ
(0)
i ) + bixi− 0.5cix

2
i .

Without loss of generality, we here assume that the linear predictor η corresponds to the latent
Gaussian vector x. We start the iterative optimization with initial values Q(1) = Q + diag(c)
and µ(1), where Q(1)µ(1) = b. We then iterate this procedure until convergence such that
µ(j) → µ? = x? and Q(j) → Q? = Q + diag(c?), j = 1, 2, . . ., j → ∞, where an appropriate
convergence criterion must be used. Notice that the conditional independence assumption of
observations yi with respect to (ηi,θ) allows preserving the sparse structure in Q?. Moreover, a
strictly log-concave likelihood function xi 7→ π(yi | xi,θ) ensures ci > 0 such that Q(j) are valid
precision matrices and local curvature information around µ

(j)
i can be used for constructing a

useful Gaussian approximation. It is further possible to impose linear constraintsMx = e onto
x and x? with given matrix M and vector e by using the approach of conditioning through
kriging (Rue et al., 2009).

To calculate posterior marginal densities of hyperparameters,

π(θj | y) =

∫ ∫
π(x,θ | y)dx dθ−j =

∫
π(θ | y)dθ−j, (A.7)

we use the Laplace approximation for the inner integral
∫
π(x,θ | y)dx = π(θ | y) such that

the approximated density π̃ satisfies

π̃(θ | y) ∝ π(x,θ,y)

πG(x | θ,y)
|x=x?(θ) (A.8)

with x?(θ) the mode of the joint density π(x,θ,y) for fixed (θ,y) and a Gaussian density πG
that approximates π(x | θ,y):

πG(x | θ,y) = (2π)n/2|Q?(θ)|1/2 exp (−0.5(x− x?(θ))′Q?(θ)(x− x?(θ))) . (A.9)

Notice that the Gaussian approximation πG is exact if the likelihood model π(yi | ηi,θ) itself is
Gaussian. An approximation of the posterior marginal of θj in (A.7) is now obtained through a
numerical integration with a set of integration nodes θ` chosen from a numerical exploration of
the surface of the density π̃(θ−j, θj | y) (with θj held fixed). This yields

π̃(θj | y) =
L∑
`=1

ω`π̃(θ` | y) (A.10)

with weights ω` (which are chosen to be equal in the approaches implemented in R-INLA). In
R-INLA, θ` can either be chosen as a grid around the mode of π̃(θ | y) (int.strategy="grid",
the most costly variant), or through a simpler so-called complete composite design which is
less costly when the dimension of θ is relatively large (int.strategy="ccd", the default ap-
proach), or we may use only one integration node given as the mode value (int.strategy="eb",
corresponding to the idea of an empirical Bayes approach).
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For calculating posterior marginal densities of the latent Gaussian field, i.e., the marginal
density π(xi | y) of a latent variable xi, we lean on representation (A.4). Numerical integra-
tion is performed with respect to the integral θ, and the Laplace approximation (A.8) allows
approximating π(θ | y). It thus remains to (approximately) evaluate π(xi | θ,y). A simple
and fast solution would be to use the univariate Gaussian approximation resulting from the
multivariate Gaussian approximation (A.9) whose mean value is x?i (θ) and whose variance can
easily and quickly be calculated from a partial inversion of the precision Q?(θ) (Rue, 2005)
(strategy="gaussian" in R-INLA). However, this Gaussian approximation often fails to cap-
ture skewness behavior and can generate nonnegligible bias in certain cases – an important
exception to this issue being the case where the data likelihood is Gaussian. In the general case,
using again a Laplace-like approximation

π(x,θ,y)

πG(x−i | xi,θ,y)
|x−i=x?−i(xi,θ) (A.11)

with mode x?−i(xi,θ) of π(x,θ,y) for fixed (xi,θ,y) would be preferable, but is relatively costly
(strategy="laplace" in R-INLA). Instead, Rue et al. (2009) propose a so-called simplified
Laplace approximation based on third-order Taylor developments of numerator and denomina-
tor in (A.11) that satisfactorily remedies location and skewness inaccuracies of the Gaussian
approximation (strategy="simplified.laplace" in R-INLA, the default). Notice that the
“Nested” in INLA refers to this second Laplace-like approximation. Another recent extension
implemented in R-INLA is known as the adaptive approximation and uses the simplified Laplace
approximation for latent Gaussian components composed of a number of latent Gaussian vari-
ables below a user-defined maximum (e.g., 100), whereas the Gaussian approximation is applied
to larger components. This ensures a good approximation for important model components
such as fixed effect coefficients, while memory and time are saved through the potentially cruder
approximation of larger components.

A.2 Gauss–Markov models
We say that a random vector x | θ ∼ N (0,Q−1) is Gauss–Markov if the number of non
null entries of its n × n precision matrix Q = (qij)1≤i,j≤n is O(n). Such sparse precision ma-
trices allow efficient numerical computation of matrix operations such as LR-decomposition
(with sparse factors L and R), determinant calculation, and matrix-vector products. For in-
stance, complexity of matrix inversion decreases from O(n3) for matrices without any structural
constraints to around O(n3/2) for sparse matrices. Using Gauss–Markov structures fundamen-
tally shifts the dependence characterization from covariance matrices Q−1 to precision ma-
trices Q. Notice that the conditional expectation is easily expressed through the regression
E(xi | x−i) = −∑j 6=i(qij/qii)xj where only a small number of the sum terms, also called the
neighborhood of xi, are non-zero owing to the sparse structure of Q. The conditional variance
is V(xi | x−i) = 1/qii. Efficient algorithms for sparse matrix calculations (Rue and Held, 2005)
are used in R-INLA. For fast and memory-saving calculations, it is important to make the preci-
sion matrix Q “as diagonal as possible” by reordering variables to regroup nonzero elements as
close as possible to the diagonal. R-INLA has implemented several of those reordering strategies;
see Rue and Held (2005) for more details on reordering algorithms. If certain Gauss–Markov
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models exist for spatially indexed graphs (e.g., the classical conditionally autoregressive model
of Besag, 1974), useful covariance functions defined over continuous space Rd and leading to
Gauss–Markov covariance matrices are difficult to establish. An exception is the very flexible
approximate Gauss–Markov representation of Matérn-like covariances based on certain stochas-
tic partial differential equations – the SPDE approach – which is also implemented in R-INLA;
see the following §A.2.1.

A.2.1 The SPDE approach

The latent variable framework used by INLA allows us to choose the spatial resolution of the
latent model separately from the design of observed locations. We can use the results of Lindgren
et al. (2011), known as the stochastic partial differential equation (SPDE) approach, to work with
numerically convenient Markovian approximations to the Matérn covariance function, leading to
sparse precision matrices. This modeling framework is most often used for Gaussian processes
in 2D space, but it also works for spline functions defined in 1D space. The SPDE is given by(

κ2 −∆
)α/2

τW (s) = B(s), α = ν +D/2, s ∈ RD, (A.12)

with the Laplace operator ∆y =
∑D

j=1 ∂
2y/∂2xj (involving a so-called fractional Laplacian if

α/2 6∈ N), and a standard Gaussian white noise process B(s). It has a unique stationary solution
given by a zero-mean Gaussian process W (s) with Matérn covariance function. Here, ν is the
shape parameter of the Matérn, with ν = 0.5 yielding the exponential covariance model. The
marginal variance is Γ(ν)/(Γ(ν+D/2)(4π)D/2κ2ντ 2), and the empirical range, where a correlation
of approximately 0.1 is attained between two points, is approximately at distance

√
8ν/κ2. This

range parameter is different from the range in the classical Matérn parametrization (Fuglstad
et al., 2018).

In practice, the domain is finite, i.e., different from RD, and appropriate boundary conditions
must be imposed to ensure a unique solution. An approximate solution is constructed through
the representation W (s) =

∑m
j=1 W̃jΨj(s) with locally supported basis functions Ψj(s) (e.g.,

linear or quadratic B-splines forD = 1, and finite elements forD = 2). The solution of the SPDE
in the subspace spanned by the linear combination W (s) then yields W̃ = (W̃1, . . . , W̃m)T ∼
Nm(0, Q−1

W ) with precision matrix QW known in analytical form. The vector W̃ contains the
variables used to represent a single replicate of the Gaussian process.

The value of α determines how the approximate solution of the SPDE is constructed (Lind-
gren et al., 2011), and it must be fixed when estimating the model with INLA. The INLA
implementation currently supports using α ∈ [1, 2], i.e., ν ∈ [0, 1] for D = 2.

A.2.2 Space-time Gauss-Markov models

Spatiotemporal modeling is usually based on replicated observations of a spatial process. In this
subsection, we detail how to combine Kronecker products of precision matrices to generate the
latent variable representations of space-time processes featuring a sparse precision matrix, e.g.,
space-time processes with first-order temporal autoregression.

In a setting with ` ≥ 1 independent and identically distributed copies of spatial Gaussian
fields, the joint precision matrix of the ` fields can be represented as the Kronecker product
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QST = QT ⊗ In, where I` is the ` × ` identity matrix. More general time-stationary and
temporally dependent sparse precision matrices are possible using the assumption of separable
space-time dependence. Given sparse precision matrices QS and QT representing the purely
spatial and purely temporal covariance structure, respectively, the precision matrix for ` time
steps of the space-time process corresponds to the Kronecker product QST = QT ⊗ QS. The
precision matrix QT corresponds to a stationary Gaussian time series (e.g., of a first-order
auto-regressive process), assumed to have variance 1 for the sake of identifiability of variance
parameters.

With R-INLA, the standard choice for modeling spatiotemporal dependence is temporal auto-
correlation for QT . Using discrete and equidistant time steps, we consider the stationary space-
time process, with auto-correlation parameter ρ ∈ (−1, 1), given as

W (s, 1) = ε1(s),

W (s, t+ 1) = ρW (s, t) +
√

1− ρ2εt+1(s), t = 1, 2, . . . , (A.13)

where εt, t = 1, 2, . . . are Gaussian random fields with Matérn covariance, andW (s, t) and ε(s, t)
possess the same variance. Then, the space-time precision matrix for the Cartesian product of a
collection of sites and times corresponds to the Kronecker product of the corresponding purely
spatial Matérn precision matrix QW described in §A.2.1, and the purely temporal `× ` precision
matrix QAR1 of a stationary first-order auto-regressive process with marginal variance 1, defined
as follows for ` ≥ 1 time steps:

QAR1 =
1

1− ρ2



1 −ρ
−ρ 1 + ρ2 −ρ

−ρ 1 + ρ2 −ρ
. . . . . . . . .

−ρ 1 + ρ2 −ρ
−ρ 1


.

Using the spatial observation matrices A as introduced in Equation (A.1), the observation matrix
AST for the space-time process observed over the same set of locations at each time step is given
by the block-diagonal matrix

AST =


AS 0 · · · · · · 0
0 AS 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 AS 0
0 · · · · · · 0 AS


with ` blocks on the diagonal.
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Appendix B

Details for extreme-value analysis

B.1 Elliptical distributions and processes

A random vector X ∈ Rd is said to follow an elliptical distribution if it can be written as

X = RAU + µ, (B.1)

with R a nonnegative random variable, A a d × d deterministic nonsingular matrix defining
the dispersion matrix Σ = AAT (i.e., a covariance matrix), U a random vector independent of
R and distributed uniformly on the Euclidean unit sphere {x ∈ Rd : xTx = 1} and µ ∈ Rd

a deterministic shift vector. The restriction to nonsingular square matrices A excludes some
special cases of minor practical importance and ensures invertibility of Σ. Examples of elliptical
distributions are the multivariate Gaussian and the multivariate elliptical t distributions. As an
extension of (B.1), a random process {X(s)} is called elliptical if all its finite-dimensional distri-
butions are elliptical with the entries of the dispersion matrices Σ defined through a correlation
function.

Elliptical distributions can be viewed as a random scaling of a uniform random vector residing
on the unit sphere defined with respect to the Mahalanobis norm ‖x‖Σ =

√
xTΣ−1x. Using

elliptic theory (Cambanis et al., 1981), one can write the multivariate density of an elliptical
random vector X as

g(x) = |Σ|−1/2hd
(
‖x‖2

Σ

)
, x ∈ Rd,

for some function hd : [0,∞) → [0,∞). The d-variate Gaussian distribution is characterized
by hd(t) = (2π)−d/2 exp(−t/2), t ≥ 0. A change of variables gives the density fR of the radial
component R as fR(r) = Adr

d−1hd(r
2), r > 0, where Ad denotes the surface area of the unit

ball in Rd, i.e., A1 = 1 and Ad = 2πd/2{Γ(d/2)}−1, d > 1, with the gamma function Γ(·).

B.2 Breiman’s lemma

The following Lemma 1 is widely known as Breiman’s lemma and is useful in many contexts of
extreme-value modeling, especially with random scale constructions.

199



200 APPENDIX B. DETAILS FOR EXTREME-VALUE ANALYSIS

Lemma 1 (Breiman’s lemma, see Breiman (1965) and Pakes (2004), Lemma 2.1). Suppose
X ∼ F , Y ∼ G are independent random variables. If F ∈ RV∞−α with α ≥ 0 and Y ≥ 0 with
E(Y α+ε) <∞ for some ε > 0, then

FXY (x) ∼ E (Y α) F (x), x→∞.

Equivalently, if F ∈ ETα and E(e(α+ε)Y ) <∞, then FX+Y (x) = F ? G(x) ∼ E
(
eαY
)
F (x).

B.3 Relationships among univariate tail classes and exam-
ples

.
The following lemma summarizes important relationships between the tail classes listed in

§2.2.3. We refer to the class of heavy-tailed distributions by HT, and to superheavy-tailed
distributions by SHT.

Lemma 2 (Relationships between tail classes). The following relationships between distribution
classes hold:

1. RV∞α ⊂ CE0 for α > 0,

2. ET0 ( HT.

3. For ETα with α > 0, we have:

• F (exp(·)) ∈ ETα ⇔ F ∈ RV∞α ,
• CEα ⊂ ETα,
• ETα,β>−1 ∩ CE = ∅.

4. For WTβ, we have:

• WT1 ⊂
⋃
α>0 ETα,

• WTβ ⊂ CE0 for β < 1,
• LWTβ ⊂ SHT for β < 1.

5. By denoting F1 ≺ F2 if F 1(x)/F 2(x)→ 0 for x→∞, we have:

• If α̃ < α, then WTβ>1 ≺ ETα ≺ ETα̃ ≺ WTβ<1 ≺ LWTβ>1 ≺ RV∞α>0 ≺ RV∞α̃ ≺
SHT.
• CEα>0 ≺ ETα̃,β for α̃ ≤ α and any β > 0.

We recall the membership in tail classes for well-known parametric distribution families in
Table B.1, see Johnson et al. (1994, 1995) for reference about parameters. Here we abstract
away from the usual parameter symbols of these distributions to avoid conflicting notations
with general tail parameters. Given a random variable X, we refer parameters as scl and loc
if scl × X + loc has scale scl and location loc, where X has scale 1 and location 0. Another
parameter shp may be related to shape for some distributions.
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RV0
α WTβ ETα HT LWTβ RV∞α

normal β = 2
log-normal 3 β = 2
exponential β = 1 α = scl
gamma β = 1 α = scl

inverse normal β = 1 α = shp
2 mean2

logistic β = 1 α = scl
log-logistic β = 1 3 α = shp
Gumbel β = 1 α = scl
Weibull β = shp shp = 1, α = scl shp < 1
t 3 β = 1 α = shp
Pareto 3 β = 1 α = shp
Fréchet 3 β = 1 α = shp
stable β = shp = 2 shp < 2 shp < 2,β = 1 α = 1/shp > 1/2
F (shp1, shp2) 3 α = 2/shp2
uniform α = 1
Beta(shp1, shp2) α = shp2
triangular α = 2
GEV α = 1/shp < 0 shp = 0, β = 1 shp = 0, α = scl shp > 0 shp > 0, β = 1 α = 1/shp

Table B.1: Membership in tail classes (columns) for distribution families (rows). The column RV0
α refers to the behavior of

F (x? − ·) when x? <∞. All heavy-tailed distributions in this table are also subexponential. All distributions in ETα listed in
this table are in ETα,β except for the inverse normal; the inverse normal is in CEα. The parameter shp of the stable distributions
is here chosen as their stability parameter.
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