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Abstract

The use of bioindicator fish species in monitoring programmes is widely accepted as a means of assessing marine environmental health. In such approaches, the effects of pollutants and other anthropogenic impacts on the health of individual fish is evaluated and compared to that of non-exposed reference fish. However, not all fish are the same. Genetic diversity between individuals translates into variance on how and when individuals respond to pollution, and the combined response of interbreeding individuals is reflected on how a population is affected by exposure to environmental stressors such as pollutants.

Whether due to natural causes or the result of previous pollution exposure and selection, some populations may be more tolerant to pollutant exposure than others. If not corrected, comparisons of disease profiles among populations with differing pollution tolerance levels will affect the interpretation of results from biomonitoring programmes.

In the UK, dab, Limanda limanda, and flounder, Platichthys flesus, are routinely used as environmental bioindicators of pollutant exposure; however, little information exists on population structuring among sampling locations. Here, the development of neutral microsatellite markers for dab and flounder is described. A novel approach for reducing the cost of labelling microsatellite primers in combination with multiple amplification of several loci in a single tube is then devised. Next, the development and preliminary evaluation of adaptive genetic markers to detect selection imposed by pollution is reported. No definitive evidence of strong and recent selective pressures at the analyzed genes is found, but suggestions for future research are made. Estimating genetic differentiation between populations is central in population genetic studies. Several new and traditional estimators of genetic differentiation are compared empirically. Consecutively, the genetic structure of dab around the British Isles is analysed and described. Two main dab subpopulations, subtly but significantly differentiated, have been identified, corresponding to the North Sea and Irish Sea basins, though there is also evidence of structuring at other scales. The implications for biomonitoring programmes are considered. Finally the combination of both genetic and biomonitoring information is explored. No evidence of increased relatedness or inbreeding among individuals afflicted with liver nodules is found, however, for some samples with abnormally high frequency of liver nodules, the incidence can be explained by recent immigration from other locations. Genotyping of assessed individuals provided important information not available by other means and the incorporation of population genetic data is encouraged for biomonitoring programmes studying mobile species.
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Glossary of Terms:

Adenocarcinoma: a malignant cancer originating from a glandular tissue.

Adenoma: a benign tumour in glandular tissue.

Allele frequency: the relative proportion of individuals carrying a particular allele at a certain locus as estimated from a population sample.

Allele: a variant in a polymorphic loci.

Allozyme: polymorphic enzyme varying in their amino acid sequence which can be used as a genetic marker.

Amplicon: the target of a PCR reaction, which is copied multiple times.

Amplify/amplification: the process by which a target DNA sequence (amplicon) is copied many times in a PCR reaction.

Bioindicators: a focal species used in biomonitoring for the assessment of pollution impacts on the natural environment.

Biomarker: a measurable aspect of the biology of a certain species modified by the presence of pollutants.

Biomonitoring: the assessment of the ecosystem health my measurement of species diversity or health status of a particular species. bp (base-pair): the two complementary DNA bases on either DNA strand, which can be used as unit to measure the length of a DNA sequence.

Cancer: a disease, in which a cell engages in uncontrolled growth, invasion of nearby tissues, and possibly metastasis.

Carcinogen: a substance believed to induce cancerigenous processes.

Carcinoma: a malignant cancer originating from epithelial tissue.

EST (Expressed sequence tag): a DNA sequence partially representing a transcribed gene.

Genetic drift: the fortuitous changes in reproductive output between individuals which lead to changes in allele frequencies between generations.

Genome: the full hereditary information of an organism encoded by DNA.

H E : Expected frequency of heterozygotes at a locus under HWE given the allelic diversity at the locus. Due to its tight relationship with number of alleles it is also known as gene diversity.

Heavy metal: a loose term referring to a subset of chemical elements with heavy atomic weight.

Hepatocarcinoma: a malignant cancer originating in the liver.

Heterozygote: an individual with two different alleles for the same locus H O : Observed frequency of heterozygotes at a given locus.

Homoplasy: within a locus, the mutation of an allele to another already pre-existing allelic state, thus not resulting in a new detectable allele.

Homozygote: an individual with two equal alleles for the same locus.

H S : Within-sample Heterozygosity: Expected heterozygosity (H E ) within a single sample.

H T : Total heterozygosity: Expected heterozygosity (H E ) calculated from a combination of samples.

HWE (Hardy-Weinberg Equilibrium):

The Hardy-Weinberg model states that, if two alleles of the same locus, A and B, are present in frequencies p and q (where p + q = 1), then the frequencies of homozygotes for A and B are AA = p 2 and BB = q 2 , while heterozygotes will be present at AB = 2pq; (note that: p 2 + q 2 + 2pq = 1). In the absence of selection, non-random mating and gene flow, the genotype frequencies remain essentially unchanged across generations. The model can be extended for loci with more than two alleles following the same principle, and larger number of alleles in a locus results in higher expected frequency of heterozygotes under the HWE.

Linkage disequilibrium: the non-random association of alleles at two different loci.

Lipophilic: ability of a substance to dissolve in non-polar substances such as oils, fats and other lipids.

Locus/loci: a certain location within the genome of an organism.

Microsatellite: a tandemly repeated short DNA sequence, typically present in non-coding parts of the genome, used as a genetic marker. Migration: from a population genetics perspective, the movement and successful contribution to the next generation of an individual between otherwise independent populations.

Monomorphic: a locus is said to be monomorphic when only one allele is present. mtDNA: mitochondrial DNA, DNA located within the mitochondria.

Multiplex: the amplification of several different amplicons within a single PCR reaction. Mutation: the process by which a particular sequence of DNA is changed from one allele to another.

Neoplasms/neoplasia: the abnormal cell growth within a tissue.

Null allele: an undetected allele, either due to mutations in the priming site or scoring errors.

Oncogene: a gene variant which putatively causes cancer.

Oncogenic: the process of genetic and cellular changes leading to the malignant transformation of a cell leading to the formation of a tumour.

PAH: Polycyclic aromatic hydrocarbons.

Panmixia: a state in which migration between all sampling locations is high enough to overcome genetic drift and local selective forces.

PCB: Polychlorinated biphenyls.

PCR (Polymerase chain reaction):

a technique employed in molecular biology for the amplification (generating many copies) of a particular DNA sequence (amplicon).

Polymorphic: a locus is said to be polymorphic when more than one allele is present.

Primer: a short nucleic acid of a certain sequence designed to anneal to a particular location in the genome and used as starting point for DNA replication. Two, one forwards and one reverse, are needed in a PCR reaction. Modern human activities have profound impacts on marine environments which can have negative effects on single organisms and entire ecosystems [START_REF] Hughes | New paradigms for supporting the resilience of marine ecosystems[END_REF]. These effects in turn, may interfere with human uses of the natural environment. Overfishing and by-catch are by far the most pressing problems faced by many marine organisms [START_REF] Pauly | Fishing down marine food webs[END_REF][START_REF] Jackson | Historical overfishing and the recent collapse of coastal ecosystems[END_REF][START_REF] Myers | Rapid worldwide depletion of predatory fish communities[END_REF][START_REF] Pauly | Global trends in world fisheries: impacts on marine ecosystems and food security[END_REF], though, other activities can also impact marine ecosystems at local and global scales. According to [START_REF] Costa | Recruitment and production of commercial species in estuaries[END_REF], non-harvesting anthropogenic impacts on marine ecosystems can be broadly classified into five classes: 1) Changes in temperature regimes: either by localised thermal pollution from power stations [START_REF] Ahn | Application of satellite infrared data for mapping of thermal plume contamination in coastal ecosytem of Korea[END_REF] or global climate change [START_REF] Perry | Climate change and distribution shifts in marine fishes[END_REF]; 2) engineering works and extraction of aggregates: which can increase turbidity and sediment deposition [START_REF] Desprez | Physical and biological impact of marine aggregate extraction along the Frech coast of the Eastern English Channel: short-and long-term post-dredging restoration[END_REF]; 3) eutrophication of rivers, estuaries and coastal waters which promote noxious red tides and uncontrolled algae growth [START_REF] Kite-Powell | Linking the oceans to public health: current efforts and future directions[END_REF]; 4) acoustic pollution created by ship engines, sonar and seismic surveys which mask natural sounds used by cetaceans, fish and other marine life [START_REF] Weilgart | The impacts of anthopogenic ocean noise on cetateans and implications for management[END_REF]; and 5) the introduction or rise in concentration of chemical compounds. The current thesis will deal primarily with the effects of the latter.

Exogenous compounds of anthropogenic origin are generally known as pollutants or contaminants, and direct and indirect exposure to pollutants have proven damaging to both humans and other living organisms [START_REF] Hawkins | Dose-related carcinogenic effects of water-borne benzo[a]pyere on livers of two small fish species[END_REF][START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF][START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Johnson | The genetic effects of environmental lead[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Järup | Hazards of heavy metal contamination[END_REF][START_REF] Waisberg | Molecular and cellular mechanisms of cadmium carcinogenesis[END_REF]. Once released into the environment, pollutants may move substantially though either transport by air, in water courses or biogenically [START_REF] Ballschmiter | Transport and fate of organic compounds in the global environment[END_REF][START_REF] Scheringer | Long-range transport of organic chemicals in the environment[END_REF], and then concentrate in marine environments such as estuaries, coastal waters and oceans [START_REF] Haynes | Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the Great Barrier Reef (Australia) environment: a review[END_REF][START_REF] Islam | Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and systhesis[END_REF][START_REF] Hughes | New paradigms for supporting the resilience of marine ecosystems[END_REF][START_REF] Kite-Powell | Linking the oceans to public health: current efforts and future directions[END_REF]. The effects of contaminants on an organism will depend on the nature of the contaminant, whether it is acting singularly or in combination with others, or whether it is interacting with other environmental factors. Furthermore, contaminants may have life stage, sex or population specific effects. Lawrence & Elliot (2003) classify the most common contaminants in estuaries and coastal areas into three groups: 1) Heavy metals, particularly cadmium, lead, mercury and arsenic, which are bioaccumulated by fish and shellfish and disrupt enzymatic activities, osmoregulatory processes, and the immune system [START_REF] Pulsford | Modulatory effects of disease, stress, copper, TBT and vitamin E on the immune system of flatfish[END_REF][START_REF] Johnson | The genetic effects of environmental lead[END_REF][START_REF] Järup | Hazards of heavy metal contamination[END_REF]; 2) Oils and petrochemicals, which have coating properties in the short term, and are bioaccumulated in the long term and may have tainting effects (change in odour or flavour) on commercial species [START_REF] Hellou | Bioconcentration of polycyclic aromatic compounds from sediments to muscle of finfish[END_REF][START_REF] Hellou | Polycyclic aromatic compounds and saturated hydrocarbons in tissues of flatfish: insights on environmental exposure[END_REF][START_REF] Srogi | Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review[END_REF]; 3) Persistent and synthetic organic chemicals, mainly halogenated and non-halogenated hydrocarbons, and organometals [START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF][START_REF] Marchand | Environmental quality of Estuaries[END_REF]. Of all the contaminants, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) have received particular attention [START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF]EU Commission, 2001;[START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Kalantzi | The global distribution of PCBs and organochlorine pesticides in butter[END_REF][START_REF] Judd | Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure[END_REF][START_REF] Srogi | Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review[END_REF]. The former are commercially produced by chlorination of biphenyls [START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF]; while the latter are the product of incomplete combustion of fossil fuels [START_REF] Srogi | Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review[END_REF]. These organic chemicals are lipophilic and therefore accumulate in lipid-high tissues within organisms [START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF][START_REF] Kalantzi | The global distribution of PCBs and organochlorine pesticides in butter[END_REF], and are considered as direct and indirect cause of cancers [START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF].

Biomonitoring:

Pollutants can have a dramatic impact on ecosystem health, which here will be defined as the ability of a particular environment to perform ecosystem services beneficial to humans. The consequences of pollution in the services offered by the marine environment include the loss of food items due to poisoning [START_REF] Judd | Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure[END_REF][START_REF] Corsolini | Persistent organic pollutants in edible fish: a human and environmental health problem[END_REF], reduced fishing yields and loss of leisure areas [START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF], and the loss of biodiversity [START_REF] Worm | Impacts of biodiversity loss on ocean ecosystem services[END_REF].

On the other hand, reduction or elimination of pollution loads can result in recovery and improved environmental quality. At a localised level, [START_REF] Smith | Effects of the closure of a major sewage outfall on sublittoral soft sediment benthic communities[END_REF] reported a change in benthic fauna towards a more pollution-sensitive species composition in Swansea Bay after the complete cessation of sewage discharge. [START_REF] Myers | Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor, Washington[END_REF] reported significant improvements of flatfish health in Puget Sound, USA, after sequestering highly polluted deposits underneath a cap of clean sediments. At an ecosystem level, whole estuaries, like the Mersey and Thames, have been the target of intense ecosystem restoration programmes resulting in marked improvements, albeit still incomplete, in biological diversity and ecological rehabilitation [START_REF] Andrews | Rehabilitation of the Inner Thames Estuary[END_REF][START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF]. Therefore, there is interest in understanding the effect of contaminants on the marine environment, assessing the spatial and temporal trends of those effects, and critically evaluating implications of pollution and the efficiency of contaminant control programmes and policies. That is the aim of biomonitoring: to monitor the biological effects of pollution [START_REF] Phillips | Use of bio-indicators in monitoring conservative contaminants: Programme designs imperatives[END_REF].

Biomonitoring programmes assess the health of an ecosystem by either measuring levels of species diversity [START_REF] Andrews | Rehabilitation of the Inner Thames Estuary[END_REF][START_REF] Whitfield | Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future[END_REF][START_REF] Breine | A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium)[END_REF] or the health status of particular species. In the latter cases, the focal species is known as a bioindicator, and some measurable aspect of its biology, a biomarker, is modified by the presence of pollutants [START_REF] Everaarts | DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda)[END_REF]. When choosing a bioindicator it is of paramount importance that the species lives in intimate contact with pollutants, that it readily absorbs and processes those pollutants, and that long term effects of pollutant exposure can be measured [START_REF] Wu | Induction, adaptation and recovery of biological responses: Implications for environmental monitoring[END_REF]. Within the marine environment, species of flatfish fulfil these requirements, and thus they are used in many areas of the world in biomonitoring assessments (MAFF, 1987;[START_REF] Eggens | Cytochrome P4501A indices as biomarkers of contaminant exposure: results of a field study with plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the southern North Sea[END_REF][START_REF] Hellou | Polycyclic aromatic compounds and saturated hydrocarbons in tissues of flatfish: insights on environmental exposure[END_REF][START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Johnson | Assessing the effects of anthropogenic stressors on Puget Sound flatfish populations[END_REF][START_REF] Nakata | Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan[END_REF][START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Davoodi | Effects of exposure to petroleum hydrocarbons upon the metabolism of the common sole Solea solea[END_REF][START_REF] Myers | Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor, Washington[END_REF][START_REF] Leonardi | Diseases of the Chilean flounder, Paralichthys adspersus (Steindachner, 1867), as a biomarker of marine coastal pollution near the Itata River (Chile): part II. Histopathological lesions[END_REF].

In the UK, two flatfish species, namely dab and flounder, are of particular importance due to their relatively high abundance and ubiquity in the European coastal shelf. Both species are regularly monitored in the rivers, estuaries and coastal areas of England and Wales, and standard techniques on how to collect and analyse biomarker data [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF], and accompanying quality assurance procedures (BEQUALM, 2009) have been established. In the next two sections the biological characteristics of the two bioindicator species will be considered, followed by an overview of the biomarkers considered in the biomonitoring programmes.

1.2 Flatfish Biology: [START_REF] Gibson | Flatfishes: Biology and Exploitation[END_REF] provides an extensive review of flatfish biology. Flatfishes comprise a significant component of all teleost fishes, with more than 700 species from over 15 families.

All flatfishes share characteristics such as benthic lifestyle, laterally compressed body, having both eyes on the same side of the head, chamaleonic ability to change colour and patterns according to their environment, and the innate skill to bury into the sediment. Eye migration on the larva, a dorsal fin that continues onto the head, and protrusible eyes constitute the characteristic feature of the Order Pleuronectiformes. Several European flatfish species, such as dab, Limanda limanda, flounder, Platichthys flesus, and Plaice, Pleuronectes platessa, belong to the Pleuronectidae family. Other families represented in European coastal waters are Soleidae (Soles) and Scophthalmidae (Turbot) [START_REF] Millner | Atlantic Flatfish Fisheries[END_REF]. [START_REF] Verneau | Phylogeny of flatfishes (Pleuronectiformes): comparisons and contradictions of molecular and morpho-anatomical data[END_REF] composed a phylogenetic tree to understand the evolutionary relationships between Pleuronectiformes present in European waters. The results molecular approaches, pointed that Pleuronectidae and Scophthalmidae were the two most closely related families, and that Soleidae were the most divergent group from the other families studied. [START_REF] Sotelo | Identification of flatfish (Pleuronectiforme) species using DNA-based techniques[END_REF] designed a set of restriction enzymes to provide specific restriction profiles for 24 species of flatfish species commercially available in Europe.

The hydrophobic nature of PAHs and PCBs leads them to be associated with fine sediments [START_REF] Camacho-Ibar | Total PCBs in Liverpool Bay Sediments[END_REF], thus the benthic lifestyle of flatfishes renders them ideally suited as bioindicator monitoring programs.

Biology of Flounder:

Flounder, Platichthys flesus, is widely distributed throughout the coastal waters and estuaries of Europe, and few species are as widespread as the flounder in the European estuarine context, providing an ideal sentinel species for estuarine pollution studies [START_REF] Eggens | Cytochrome P4501A indices as biomarkers of contaminant exposure: results of a field study with plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the southern North Sea[END_REF][START_REF] Costa | Recruitment and production of commercial species in estuaries[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF]. Flounder is found from the White Sea, south to the Atlantic coast of Portugal, including the Baltic Sea, and relict populations within the Mediterranean Sea [START_REF] Galleguillos | Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae)[END_REF][START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF][START_REF] Albert | Flatfishes of Norwegian coasts and fjords[END_REF][START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF][START_REF] Svendäng | The inshore demersal fish community on the Swedish Skagerrak coast: regulation by recruitment from offshore sources[END_REF].

Flounder live in shallow coastal waters throughout their lifecycle and are rarely found below the 40 m contour line [START_REF] Albert | Flatfishes of Norwegian coasts and fjords[END_REF][START_REF] Svendäng | The inshore demersal fish community on the Swedish Skagerrak coast: regulation by recruitment from offshore sources[END_REF]. Analysis of their stomach contents reveals that flounder are generalist feeders, targeting indiscriminately any invertebrates in high abundances in the environment [START_REF] Moore | The basis of food selection in flounders, Platichthys flesus (L.), in the Severn Estuary[END_REF][START_REF] Beaumont | The age, growth and diet of a freshwater population of the flounder, Platichthys flesus (L.), in southern England[END_REF]. Flounders are normally dextrally orientated, as most Pleuronectidae; nevertheless, individuals sinistrally orientated occur in all populations at different percentages: around the British Isles the percentage seems to be around 6%; while in the Baltic, reversed fish can comprise over 35% of the population [START_REF] Beaumont | The age, growth and diet of a freshwater population of the flounder, Platichthys flesus (L.), in southern England[END_REF].

Orientation is suspected to be related to maternal inheritance (Prof. P. Dando, personal communication).

Natural reproduction is preceded by the adults migrating offshore to fully marine environments from the feeding grounds in coastal lagoons and estuaries. Aggregations occur at particular sites, where the adult stock mass spawns. In the North Sea they seem to overlap with those of plaice [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF], which are located in the Southern Bight and the Eastern English Channel (van der [START_REF] Van Der Veer | Immigration, settlement, and density-dependent mortality of a larval and early postlarval 0-group plaice (Pleuronectes platesa) population in the western Wadden Sea[END_REF]. There seems to be a cline in the spawning time throughout the species range [START_REF] Beaumont | The age, growth and diet of a freshwater population of the flounder, Platichthys flesus (L.), in southern England[END_REF][START_REF] Bekhti | Glugea stephani (Hagenmüller, 1899), microsporidie parasite du flet Platichthys flesus (L., 1758) du littoral Languedocien. Importance du regime alimentaire de l'hôte dans le cycle saisonnier du parasite[END_REF][START_REF] Lønning | A comparative study of pelagic and demersal eggs from common marine fishes in northern Norway[END_REF][START_REF] Rijnsdorp | Ecology of Reproduction[END_REF]. Highest egg concentrations in the North Sea are in February (van der Land, 1991), but can be detected from December till May [START_REF] Beaumont | The age, growth and diet of a freshwater population of the flounder, Platichthys flesus (L.), in southern England[END_REF][START_REF] Van Der Veer | Impact of coelenterate predation on larval plaice Pleuronectes platesa and flounder Platichthys flesus stock in the western Wadden Sea[END_REF].

Under normal open sea conditions, the eggs and larvae drift with residual currents, and approach the coastal zone from where larvae will settle in nursery areas. The pelagic eggs and larvae suffer strong mortality, especially under predation by coelenterates, [START_REF] Van Der Veer | Impact of coelenterate predation on larval plaice Pleuronectes platesa and flounder Platichthys flesus stock in the western Wadden Sea[END_REF], and flounder year-class strength is thought to be controlled by this stage [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF]. The larvae migrate into the estuaries and tidal flats near river mouths, and show strong preference for riverine fresh waters [START_REF] Jager | Accumulation of flounder larvae (Platichthys flesus L.) in the Dollard (Ems estuary, Wadden Sea)[END_REF]. Larvae also show a strong rheotaxic behaviour, which further favours the migration into rivers [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF]. Young flounder show selective tidal transport [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF], and use the tides to move up the estuaries. Fish are more buoyant in full strength sea water, thus, they float (and actively swim) during flood tide and sink (and remain in the sediment) during ebb tide [START_REF] Jager | Accumulation of flounder larvae (Platichthys flesus L.) in the Dollard (Ems estuary, Wadden Sea)[END_REF]. The first settlers after metamorphosis appear in brackish-waters with medium-sized sediment or muddy areas by the end of April or middle of May [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF].

Flounder can remain in the nursery areas for as long as three years, and then migrate to marine waters in order to breed [START_REF] Van Der Veer | Population dynamics of an intertidal 0-group flounder Platichthys flesus population in the western Dutch Wadden Sea[END_REF].

The Baltic Sea is effectively a large brackish water estuary, with surface salinities decreasing from West to East and from South to North, where they can be as low as three practical salinity units (psu). Salinity also varies vertically, with a halocline at 50-70m deep, where salinity is between 11-22psu, however this bottom layer is often hypoxic [START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF]. The Baltic constitutes a particular adaptive challenge: it is inhabited by both marine and freshwater fauna, and both have had to adapt to life and reproduction at low salinity [START_REF] Andersson | Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data[END_REF][START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF][START_REF] Limborg | Genetic population structure of European sprat Sprattus sprattus: differentiation across a steep environmental gradient in a small pelagic fish[END_REF]. [START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF] found that salinity was a decisive factor in successful reproduction, as eggs lost their neutral buoyancy at low salinity. It was found that flounder have colonised the Baltic by two different means: 1) flounder in the southern Baltic have modified their sperm activation and egg buoyancy to lower salinities (ca. 11psu) and restricted their reproduction to the deep basins with higher salinity; and 2) populations in the northern parts of the Baltic have gone a step further in the adaptation to nearly fresh water conditions (ca. 6psu), by laying demersal eggs in shallow areas. These differences in biological adaptations between northern and southern Baltic flounder were later confirmed to coincide with population structure using neutral genetic markers (Hemmer-Hansen et al., 2007b;[START_REF] Florin | Population structure of flounder (Platichthys flesus) in the Baltic Sea: differences among demersal and pelagic spawners[END_REF]. Furthermore, flounder from the North and Baltic Seas also showed genetic divergence at non-neutral genetic markers (Hemmer-Hansen et al., 2007a) and showed adaptive differences in stress response to salinity [START_REF] Larsen | Adaptive differences in gene expression in European flounder (Platichthys flesus)[END_REF]2008). [START_REF] Galleguillos | Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae)[END_REF] found, by the means of allozymes that all populations sampled from the Danish Belt, English Channel, and Irish Sea did not show strong genetic differentiation, having an overall genetic identity of 0.998. As a sequel to [START_REF] Galleguillos | Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae)[END_REF] findings, [START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF] using allozymes and mitochondrial DNA, undertook more exhaustive sampling including the Danish belt, Kattegat, North Sea, French Atlantic Coast, and Portugal. Within the Mediterranean basin, the sampling stations extended from the Ebro Delta, the Gulf de Lyon, to the Adriatic and the Aegean. The overall trend was weak geographic differentiation from the Danish Belt Sea to Southern Portugal, while strong divergence was found between Mediterranean and Atlantic populations. The low levels of differentiation on the Atlantic coast were regarded as an indicator of substantial gene flow.

Flounder is now one of the key sentinel species for marine pollution assessment within the European and British context [START_REF] Eggens | Cytochrome P4501A indices as biomarkers of contaminant exposure: results of a field study with plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the southern North Sea[END_REF][START_REF] Simpson | Pathology of the liver, kidney and gonad of flounder (Platichthys flesus) from a UK estuary impacted by endocrine disrupting chemicals[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF][START_REF] George | A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platichthys flesus) subjected to estuarine pollution[END_REF][START_REF] Sheader | Isolation of differentially expressed genes from contaminant exposed European flounder by suppressive, substractive hybridisation[END_REF][START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF], but much information on population definition, composition and structure, migration rates between estuaries, and effective population size should be obtained in order to fully exploit the benefits of biomonitoring data.

Biology of Dab:

Dab, Limanda limanda are widely distributed, from the Bay of Biscay to the White Sea. The population centre of mass is located in the North Sea, where they are the most abundant flatfish, and third ranking fish after sprat Sprattus sprattus and Raitt's sand eel Ammodytes marinus [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. The abundance of dab decreases from the centre of the distribution towards the edges, and dab are four times more common in southern Norway (Karmøy area) than in northern Norway (Lofoten Archipelago) [START_REF] Albert | Flatfishes of Norwegian coasts and fjords[END_REF]. Dab are also found in the Irish Sea, Iceland, the Faeroe Islands, and the entrance of the Baltic, where the species is present only as far north as the island of Gotland [START_REF] Htun-Han | The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[END_REF].

The North Sea dab biomass is estimated at around two million tonnes [START_REF] Daan | Ecology of North Sea fish[END_REF]. In fact, dab numbers are thought to have tripled since the early 70's as a result of reduction of predators, increased food availability due to eutrophication of the North Sea, scavenging of by-catch and trawling disturbance [START_REF] Kaiser | Opportunistic feeding by dabs within areas of trawl disturbance: possible implications for increased survival[END_REF], and sea temperature rise [START_REF] Von Westernhagen | Species assemblages of pelagic fish embryos in the southern North Sea between 1984 and 2000[END_REF]. Although some individuals have been caught at depths of 200m [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF], dab generally inhabit waters less than 100 meters deep. For example, in the south eastern North Sea the vast majority of the population are found in shallow sandy substrata less than 30m deep [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. Dab abundances also seem to vary throughout the year, with higher concentrations in the shallows (20-40m) from July to December [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF]. [START_REF] Braber | The food of live flatfish species (Pleuronectiformes) in the southern North Sea[END_REF] studied the diet of adult and juvenile dab. Several taxa are were found in dab stomach: crustaceans (Mysids, Gammarids, Crangon, Carcinus and Portunus) and polychaetes (Lanice, Arenicola, Nereis and Pectinaria). Also prevalent in young dab diet were mollusc siphons and fish eggs. Bryozoans, hydroids and echinoderms were also recorded in minor quantities. There seems to be some seasonality in the feeding patterns of dab, with polychaetes consumed in winter, molluscs in spring, and ascidians in autumn [START_REF] Ortega-Salas | Seasonal changes in the common dab, Limanda limanda (L.) in Isle of Man waters[END_REF]. However, dab around Anglesey, in the Eastern Irish Sea, exhibit a much higher proportion of echinoderms, especially Amphiura brachiata, in stomach contents, to the point of becoming the dominant species in the dab diet [START_REF] Kaiser | Opportunistic feeding by dabs within areas of trawl disturbance: possible implications for increased survival[END_REF][START_REF] Seisay | Population ecology of dab (Limanda limanda L.) in the Eatern Irish Sea[END_REF]. On the whole, dab are also opportunistic feeders, feeding on the most common prey available in their environment [START_REF] Hinz | The feeding strategy of dab Limanda limanda in the southern North Sea: Linking stomach contents to prey availability in the environment[END_REF].

Like other flatfish, dab take advantage of selective tidal transport and ride the spring and ebb tides to economise the energetic cost of migrations [START_REF] De Veen | On selective tidal transport in the migration of North Sea plaice (Pleuronectes platessa) and other flatfish species[END_REF], which they undertake seasonally between coastal feeding grounds and more offshore breeding areas [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF]. Overall, the onset of reproductive activity for dab starts in January and ends in September, and is characterised by being particularly extended at most locations (van der Land, 1991). However, as with flounder, dab reproduction is modulated according to location, starting when water temperature reaches 7 or 8 o C (Ortega-Salas, 1980). In the southern tip of the geographical distribution, spawning may start as early as January [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF], then peaks in February or March in Southern North Sea [START_REF] Htun-Han | The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[END_REF], in March-April in the German Bight [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF], and progresses upwards towards Norway, where peak spawning is in May-June [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. Around the British Isles, most eggs are released between February and May. In the Irish Sea, females are ripe from February to May [START_REF] Ortega-Salas | Seasonal changes in the common dab, Limanda limanda (L.) in Isle of Man waters[END_REF][START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF], with most females spawning in March [START_REF] Seisay | Population ecology of dab (Limanda limanda L.) in the Eatern Irish Sea[END_REF]. Icelandic females reach running condition in May [START_REF] Jonsson | Contribution to the biology of the dab in Icelandic waters[END_REF], and Baltic populations experience spawning peaks in May -July [START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF]. In higher latitudes, breeding time is more tightly constrained, and is later in the year. In the Barents Sea, spawning takes place in mid-July [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. Individual females spawn for a maximum of six weeks [START_REF] Htun-Han | The reproductive biology of the dab Limanda limanda (L.) in the North Sea: seasonal changes in the ovary[END_REF], and within locations, older and larger females start the breeding season, while first time spawners follow a little later [START_REF] Ortega-Salas | Seasonal changes in the common dab, Limanda limanda (L.) in Isle of Man waters[END_REF]. Breeding grounds are usually located offshore, in depths between 20-50 m [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. The location of several spawning grounds has been estimated by measuring the sea surface egg and larvae concentrations across the North Sea: the German Bight, the north of the Friesian Islands, the southern edge of the Dogger Bank, and off Flamborough Head [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF][START_REF] Bolle | Nursery grounds of dab (Limanda limanda L) in the sourthern North Sea[END_REF]; and the Irish Sea: where higher concentrations are found off Ireland and in the Liverpool and Cardigan Bays [START_REF] Fox | Spring plankton surveys of the Irish Sea in 1995: the distribution of fish eggs and larvae[END_REF]. Some local adaptation to lower salinities has been observed in dab populations from the Baltic; nevertheless, dab distribution does not reach the same coverage as flounder. Successful reproduction occurs occasionally in the Arkona and Bornholm basins only when marine water plumes from the North Sea enter the Baltic [START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF]. Egg size is slightly larger in the Baltic than in the North Sea [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF].

Generally, the eggs undergo passive dispersion and are always the most abundant fish species in pelagic eggs assemblages throughout the species geographical range in February and March [START_REF] Campos | Inferences form the horizontal distribution of dab, Limanda limanda (L.) and flounder, Platichthys flesus (L.) larvae in the south-eastern North Sea[END_REF]. However, exceptions occur when very cold surface temperatures are prolonged into the spring, when plaice eggs become more common than those of dab [START_REF] Von Westernhagen | Species assemblages of pelagic fish embryos in the southern North Sea between 1984 and 2000[END_REF]. [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF] undertook a comprehensive study on recruitment of dab, and found that the benthic lifestyle starts after metamorphosis at a length of 13-20mm. Larvae do not show rheotaxic behaviour, and are not constrained to estuaries as nursery areas. Settlement occurs in both shallow coastal areas and offshore.

Therefore, young dabs are found in a much wider and deeper depth range than young plaice.

Temporally, while plaice juveniles are already present in the nursery in April, newly settled dab in the west coast of Scotland do not appear until mid-May, and are uncommon until June [START_REF] Gibson | Ontogenetic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallowwater nursery ground[END_REF]. In Dutch shallow waters (4-10m), large numbers of 0-group fish are not seen until September/October [START_REF] Bolle | Nursery grounds of dab (Limanda limanda L) in the sourthern North Sea[END_REF] and stay in high numbers until December [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. There is a second peak in dab abundance in February, when one year old juveniles enter the shallow waters [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. Plaice juveniles migrate onshore to shallow waters (ca. 0.5m) in order to avoid predation and maximise growth [START_REF] Gibson | Ontogenetic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallowwater nursery ground[END_REF], but dab juveniles are rarely caught intertidally. Laboratory experiments with dab juveniles found that maximum growth occurred between 15 o C and 18 o C, and was halted at temperatures above 22 o C [START_REF] Bolle | Nursery grounds of dab (Limanda limanda L) in the sourthern North Sea[END_REF], so dab may be effectively temperature restricted to deeper waters. A significant negative relationship between winter-spring temperature and young of the year juvenile abundance in autumn has been found throughout the southern half of the species distribution [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF].

Growth rates are also different depending on locality. North Sea fishes have the slowest growth rates, which might be related to food quality and hyper-abundance of dab and competition [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF]. Irish Sea dab grow faster than North Sea or Icelandic dab during the first three or four years, after which the trend is reversed [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF], limiting Irish Sea fish to a maximum size of 36.7 cm for females and 26.0 cm for males [START_REF] Seisay | Population ecology of dab (Limanda limanda L.) in the Eatern Irish Sea[END_REF].

Southern most populations in the coast of Brittany, experience the fastest growth rates and the largest recorded sizes, with maximum female size of 43.5 cm and maximum male size of 39.0 cm [START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF]. Dab usually stay in shallow coastal waters until they reach the age of two years when they migrate offshore to join the adult population. In the North Sea first reproduction is at one year for males, and two years for females, at mean lengths of 10 cm and 14 cm respectively [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. However, Rijnsdorp et al. (1992) report later sexual maturation in the North Sea by one year, and in Icelandic populations males are presumed to mature at 2-3 years and females at 3-4 years old [START_REF] Jonsson | Contribution to the biology of the dab in Icelandic waters[END_REF]. In the Irish Sea, mean length and age at maturation for males and females were 12 cm and 19 cm total length, and 0.86 and 3.06 years old respectively [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF]. Brittany females also join the breeding stock at three years of age but are then 27 cm long. Life expectancy also varies throughout the geographical range: in the North Sea, fish as old as 11 years can be found [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF], while in the Irish Sea dab only reach 8 or 9 years [START_REF] Ortega-Salas | Seasonal changes in the common dab, Limanda limanda (L.) in Isle of Man waters[END_REF][START_REF] Seisay | Population ecology of dab (Limanda limanda L.) in the Eatern Irish Sea[END_REF]. Dab mortality as by-catch from the plaice fishery is high [START_REF] Kaiser | Survival of by-catch from a beam trawl[END_REF], and juvenile mortality rates seem to be comparable in both East and West British coasts [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF].

It is generally recognised that dab can be subdivided into several local stocks depending on their spawning time and location, size, growth rate, life expectancy, and morphometric variation such as relative size of head and number of rays in dorsal and anal fins [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF][START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF][START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF][START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. Yet their pelagic larval stage may result in strong gene flow between these populations and the possibility of panmixia arises. Whether these morphometric and life-history-traits differences emerge due to genetic differentiation or are a product of phenotypic plasticity modulated by the environment is not yet known. A resolution to this issue is needed if dab are to be successfully managed or used in biomonitoring programs [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF].

Apart from the current thesis and studies on pollution effects on DNA integrity [START_REF] Everaarts | DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda)[END_REF][START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF]CEFAS, 2003b;[START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF], relatively few published studies have used genetic tools in dab. The phylogenetic relationship of dab with other European flatfish species has been resolved [START_REF] Verneau | Phylogeny of flatfishes (Pleuronectiformes): comparisons and contradictions of molecular and morpho-anatomical data[END_REF][START_REF] Exadactylos | Allozyme variation and genetic inter-relationships between seven flatfish species (Pleuronectiformes)[END_REF][START_REF] Sotelo | Identification of flatfish (Pleuronectiforme) species using DNA-based techniques[END_REF][START_REF] Espiñeira | Development of a method for the genetic identification of flatfish species on the basis of mitochondrial DNA sequences[END_REF], and the number of chromosomes (2n=26) has been studied [START_REF] Di | The karyotype of the dab (Limanda limanda L.)[END_REF]. Furthermore, a line of research has followed the isolation of genes in dab involved in either oncogenic processes, Ras genes [START_REF] Rotchell | Chemically-induced genetic damage in fish: isolation and characterization of the dab (Limanda limanda) Ras gene[END_REF], or tumour suppression, retinoblastoma genes [START_REF] Corbier | Isolation of the retinoblastoma cDNA from the marine flatfish dab (Limanda limanda) and evidence of mutational alterations in liver tumours[END_REF][START_REF] Rotchell | A novel population health approach: using fish retinoblastoma gene profiles as a surrogate for humans[END_REF].

Biomarkers:

Measureable entities such as morphological and biochemical responses and compensatory mechanisms exhibited by an organism after exposure to contaminants are used as biomarkers. A good biomarker is one which is able to elucidate whether an organism has been exposed to pollutants, if the pollutants have been incorporated into the body tissues, and if a toxicological response has been triggered [START_REF] Everaarts | DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda)[END_REF][START_REF] Wu | Induction, adaptation and recovery of biological responses: Implications for environmental monitoring[END_REF]. Current standard biomarkers include: 1) assessment of DNA adducts; 2) histopathology of liver tissues; 3) quantification of CYP1A or EROD activity; and 4) chemical analysis of low molecular weight PAHs excreted into bile as metabolites.

DNA Adducts:

DNA is susceptible to damage to any of its parts: the phosphodiester backbone, the ribose sugars, or the purine or pyrimidine bases (reviewed by [START_REF] Carajaville | Genetic damage and the molecular-cellular response to pollution[END_REF]. The damage can be either at the sequence of nucleotides level or at the structural level. The former one will have mutagenic effects; while the latter will disable replication and transcription.

If damage has been caused at the DNA sequence level, then mutations that affect genes controlling normal cell division, differentiation and apoptosis, can lead to neoplasms [START_REF] Rotchell | Chemically-induced genetic damage in fish: isolation and characterization of the dab (Limanda limanda) Ras gene[END_REF][START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Corbier | Isolation of the retinoblastoma cDNA from the marine flatfish dab (Limanda limanda) and evidence of mutational alterations in liver tumours[END_REF][START_REF] Rotchell | A novel population health approach: using fish retinoblastoma gene profiles as a surrogate for humans[END_REF]. A neoplasm is an abnormal tissue growth, which can go through a series of stages: initiation, promotion, and progression. At this final stage, further mutations can trigger the transformation of the benign neoplasms into a malignant invasive cancer [START_REF] Carajaville | Genetic damage and the molecular-cellular response to pollution[END_REF].

Damage can instead be initially structural: electrophilic chemicals can form covalent bonds with DNA. Some inert compounds, among them PAHs, are metabolised by the organism into an electrophilic state, thus rendering them prone to form the same bonds. These covalent bonds are known as DNA adducts, and may entail inhibition of DNA transcription or blockage of DNA replication, therefore behaving mutagenically, and ultimately resulting in tumorigenic [START_REF] Hawkins | Dose-related carcinogenic effects of water-borne benzo[a]pyere on livers of two small fish species[END_REF][START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Carajaville | Genetic damage and the molecular-cellular response to pollution[END_REF]. Pollution exposure has been successfully detected with the use of DNA adducts or DNA strand breakage [START_REF] Everaarts | DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda)[END_REF]Theodorakis & Shugart, 1997;1998;Theodorakis et al., 1997;1999;[START_REF] Neuparth | A genetic ecotoxicological approach using crustacean and fish as model organisms[END_REF] and the technique is commonly employed in biomonitoring surveys of flatfish [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF]CEFAS, 2003b;[START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF].

Liver Histopathology:

As discussed under the DNA adduct section, anthropogenic pollutants can lead to the formation of tumours in several ways. Therefore, fish liver can be analysed by histology to find hepatic foci of cellular alteration (FCA), benign adenomas and malignant hepatocarcinomas [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF], which can all be used as a biomarkers of lifelong pollution exposure. These types of data can then be used in comparative studies between locations or in time-series [START_REF] Simpson | Pathology of the liver, kidney and gonad of flounder (Platichthys flesus) from a UK estuary impacted by endocrine disrupting chemicals[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF][START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF].

EROD Activity:

Organisms have developed mechanisms to detoxify themselves, of which the Mixed Function Oxygenase (MFO) enzyme system is the primary detoxification pathway for contaminants such as PCBs and PAHs. These mechanisms are induced by exposure to pollutants. The terminal component of the MFO system is known as Cytochrome P4501A1 (CYP1A1), which catalyses hepatic ethoxyresorufin-O-deethylase (EROD) [START_REF] Eggens | Cytochrome P4501A indices as biomarkers of contaminant exposure: results of a field study with plaice (Pleuronectes platessa) and flounder (Platichthys flesus) from the southern North Sea[END_REF]. Both CYP1A1 and EROD levels in liver cells has been used extensively as an indicator of exposure to PCBs and PAHs [START_REF] Wirgin | Genetic polymorphism of cytochrome P450IA in cancerprone Hudson River tomcod[END_REF][START_REF] Förlin | Induction of cytochrome P450 1A in teleosts: environmental monitoring in swedish fresh, brackish and marine waters[END_REF][START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF]CEFAS, 2003c).

However, EROD levels do not have a simple relationship with DNA strand damage [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF][START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF], so information collected with one marker is not necessarily comparable to data from another marker.

Bile metabolites:

Fish readily absorb PAHs from the environment, which are processed in the liver and then may be excreted through the bile. Empirical studies have found that measurement of bile metabolites is equally sensitive to and complements the analysis of EROD activity [START_REF] Gagnon | EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil[END_REF]. Thus, fish bile is considered to be representative of previous exposure to petroleum derivatives and used in biomonitoring programmes evaluating flatfish health [START_REF] Neall | The use of biomarkers in biological effects monitoring, in Monitoring of the quality of the marine environment, 2000-2001[END_REF].

New biomarkers of exposure to pollutants:

Apart from the biomarkers mentioned above, there is an interest to detect pollution adaptation, thus, efforts are being diverted towards developing a suite of markers sensitive to gene variability [START_REF] George | A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platichthys flesus) subjected to estuarine pollution[END_REF].

Detoxification-related genes, as all genes, are subject to mutations and may show different levels of variability between species [START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF], between populations, and ultimately between individuals (George & Leaver, 2002). One of the genes within the UGT family, UGT1B1, isolated from plaice (Pleuronectes platessa), shows high levels of polymorphism between individual plaice after restriction digestion (George & Leaver, 2002).

These expressed genes are vital to the survival of the individual, and mutations at this level may have relevant effects on the demography and age class distribution of natural populations. Other detoxification mechanisms that might show variability include: the UDPglucuronosyltransferase (UGT), which neutralize lipophilic toxic wastes and pollutants [START_REF] George | Molecular evidence for multiple UDP-glucoronosyltransferase gene families in fish[END_REF]; glutathione-S-transferase (GST), which ligate many toxic compounds to the cysteine sulphur of glutathione, and neutralize lipid peroxidation products [START_REF] Martinez-Lara | Evidence from heterologous expression of glutathione S-transferases A and A1 of the plaice (Pleuronectes platessa) that their endogenous role is in detoxification of lipid peroxidation products[END_REF]; epoxide hydrolase (EH), which is suspected to help in the excretion of PAHs [START_REF] Willet | Differential phase I and phase II enzyme activities in brown bullhead and channel catfish exposed to β-naphthoflavone[END_REF]; REL family proteins bind with kB factors and enable genes encoding for cytokines, and acute phase proteins among others [START_REF] Schlezinger | NF-kB (REL) homologues in scup (Stenotomus chrysops) and possible activation of NF-kB by AH receptor agonists[END_REF]; Orosomucoid 1 and α-1-acid glycoprotein (AGP) were expressed in intoxicated rat liver [START_REF] Kondraganti | Effects of 3-Methylcholanthrene on gene expression profiling in the rat using cDNA microarrays analyses[END_REF]. If sufficient polymorphism can be found in a number of these detoxification genes, they could be used as adaptive markers for population analysis.

Much interest has recently been focussed towards identifying differentially expressed genes related to pollutant exposure. [START_REF] George | A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platichthys flesus) subjected to estuarine pollution[END_REF] quantified expression of CYP1A mRNA by the use of real time quantitative-PCR, and detected slight differences between polluted and reference sites. [START_REF] Sheader | Isolation of differentially expressed genes from contaminant exposed European flounder by suppressive, substractive hybridisation[END_REF]2006) applied suppressive, subtractive hybridisation (SSH) to flounder from exposed and non-exposed environments, and isolated 284 mRNA sequences with potential differential expression. Of these sequences, 84 could be cautiously identified to other published sequences, of which some were thought to have detoxifying qualities. [START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF] employed the same technique, and compiled 256 expressed genes: fourteen were tested by reverse-transcriptase PCR on flounder from contaminated and reference sites and eight genes were differentially expressed when exposed to high or low concentrations of an herbicide cocktail. Assessment of the technique was then taken to the field: flounder from polluted environments showed up-regulation of seven genes during the summer months matching high herbicide concentrations, compared to winter months when herbicide levels are low. Flounder from low pollution estuaries showed little change in expression of these genes throughout the year. Three of these genes were energy-related: NADH dehydrogenase, Cytochrome c oxidase, and ATP synthetase, suggesting that flounder in polluted environments require more energy. Three other genes have detoxifying qualities: lipocalin-type prostaglandin D synthetase (L-PGDS), betaine homocysteine methyltransferase (BHMT), and carboxylesterase, which are involved in the proteolytic degradation of herbicides. The other genes, such as Hepatocyte growth factor and Elongin C, could indicate potential carcinogenesis. SHH proves as a powerful technique to establish new differentially expressed detoxification-related genes, thereby providing a new generation of biomarkers for assessing contamination of aquatic environments.

Evolutionary Ecotoxicology:

There is an increasing interest in tackling the effects of pollutants in populations, by merging ecotoxicology and population genetics (D 'Surney et al., 2000;[START_REF] Bickham | Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology[END_REF][START_REF] Belfiore | Effects of contaminants on genetic patterns in aquatic organisms: a review[END_REF][START_REF] Theodorakis | Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment[END_REF]. The effects of pollution go beyond the individual, and could have extensive consequences at the population and species level. The pressures imposed by environmental pollution on individual organisms disappear when pollution ceases, however, the effects on the gene pool are of a more permanent nature.

In the case of bioindicator marine fish species, there are four plausible outcomes of genetic variability (and consequences for biomonitoring programmes) after selection by pollution.

These vary depending on the intensity of the selection pressure and the patterns of connectivity between exposed and non-exposed populations (modified from [START_REF] Baker | Consequences of polluted environments on population structure: the bank vole (Clethrionomys glareolus) at Chernobyl[END_REF]: These four hypotheses are not mutually exclusive and combinations are likely. Furthermore, it might prove very difficult to distinguish between such hypothesis and natural variation between populations (Theodorakis & Shugart, 1997;[START_REF] Baker | Consequences of polluted environments on population structure: the bank vole (Clethrionomys glareolus) at Chernobyl[END_REF][START_REF] Roark | Population genetics structure of the western mosquitofish, Gambusia affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX[END_REF]. If the effects of pollution on a population are to be assessed, the other natural factors affecting genetic variability (mutation, migration, genetic drift and selection) and the species phylogeographic and demographic history need to be well understood beforehand [START_REF] Cronin | A population genetic analysis on the potential for a crude oil spill to induce heritable mutations and impact natural populations[END_REF][START_REF] Staton | Ecotoxicology and population genetics: The emergence of "Phylogeographic and Evolutionary Ecotoxicology[END_REF]. Long term pre-and post-exposure genetic analysis would be the best way of detecting the pollution effects on the gene pool, though such natural scenarios are scarce. The potential selective effects of pollution have been demonstrated in several empirical studies based on the dynamics of genetic diversity in polluted and nonpolluted populations, both in controlled replicate experimental populations [START_REF] Gardeström | A multilevel approach to predict toxicity in copepod populations: assessment of growth, genetics, and population structure[END_REF][START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF] and in wild populations (Theodorakis & Shugart, 1997;[START_REF] Peles | Population genetic structure of earthworm (Lumbricus rubellus) in soils contaminated by heavy metals[END_REF][START_REF] Theodorakis | Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a Pulp-mill-contaminated river[END_REF][START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF].

The genetic consequences of pollution cannot be taken lightly. Low levels of genetic diversity can lead to inbreeding, which can have very different and unpredictable consequences [START_REF] Amos | When does conservation genetics matter?[END_REF][START_REF] England | Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential[END_REF]. On one hand, inbreeding can purge deleterious alleles and reduce genetic load, enhancing the chances of survival in a particular habitat, though such processes do not necessarily result in enhanced overall fitness [START_REF] Rowe | Intraspecific competition disadvantages inbred natterjack toad (Bufo calamita) genotypes over outbred ones in a shared pond environment[END_REF]. On the other hand, inbreeding can raise levels of homozygosity, increase the frequency of deleterious alleles, and ultimately elicit a mutational meltdown, where a vicious loop of reduction of population size and inbreeding, reciprocally encouraged by each other, incur in a final extirpation or extinction [START_REF] Amos | When does conservation genetics matter?[END_REF][START_REF] Beebee | An introduction to Molecular Ecology[END_REF]. Inbred populations of guppy Poecilia reticulata, invariably show reduced salinity tolerance [START_REF] Shikano | Temporal changes in allele frequency, genetic variation and inbreeding depression in small populations of the guppy, Poecilia reticulata[END_REF], and highly heterozygous fishes experience higher levels of detoxification rates and less DNA damage after exposure to chemical pollutants [START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF], or are able to tolerate higher levels of pollutants [START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF]. Theodorakis et al. (1997) found a positive correlation between levels of radiation, DNA structural damage (in the form of strand breaks), and reduced fertility and higher numbers of abnormal embryos in mosquitofish, Gambusia affinis. If radiation is causing DNA structural damage and the latter is related to reduced fertility, a population exposed to high levels of radioactive pollution will experience reduced reproductive output, and have profound effects on the population's viability [START_REF] Theodorakis | Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment[END_REF]. Individuals from radiated and control populations varied in randomly amplified polymorphic DNA (RAPDs) profiles, and certain bands were particularly common in individuals from radioactive sites (Theodorakis & Shugart, 1997). Translocation of fish from control sites to radioactive ones resulted in differential survival of fish: those with the same RAPD bands as the radiated population survived [START_REF] Theodorakis | Genetic Ecotoxicology IV: survival and DNA strand breakage is dependent on genotype in radionucleotide-exposed mosquitofish[END_REF]. Organochlorine residues may be an important source for malformation of dab embryos, and [START_REF] Dethlefsen | Malformations in North Sea pelagic fish embryos during the period 1984-1995[END_REF] found a significant reduction in the frequency of abnormalities as the concentration of organochlorine in the North Sea was lowered since 1987.

Long-term environmental contamination pressures will have profound effects on the gene pool of natural populations, and in light of the negative synergistic effects between pollution and climate change [START_REF] Schiedek | Interactions between climate change and contaminants[END_REF], it becomes imperative that the evolutionary processes involved in the long-term exposure to anthropogenic contaminants are understood. Polymorphic molecular markers in the context of population genetics emerge as leading candidates to tackle such questions related to predictive response.

Introduction to Population Genetics:

Population genetics in the marine environment:

One of the key roles of geneticists in fisheries and environmental studies is the identification of self-contained groups of individuals which comprise a definable genetic pool or breeding unit, distinguishable from other similar groups of individuals of the same species (Carvalho & Hauser, 1994;Carvalho & Hauser, 1998;[START_REF] Thorpe | Exploited marine invertebrates: genetics and fisheries[END_REF][START_REF] Ward | Genetics in fisheries management[END_REF][START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF]. Genetic information is needed to define the population structure of a species, to establish breeding and conservation units [START_REF] Fraser | Adaptive evolutionary conservation: Towards a united concept for defining conservation units[END_REF][START_REF] Schwartz | Genetic monitoring as a promising tool for conservation and management[END_REF], and to understand the genetic variability and the distribution of that genetic variability present within a species [START_REF] Waples | What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity[END_REF].

In the fisheries field the identification of reproductively isolated units, known as stocks, is of particular importance (Carvalho & Hauser, 1994;[START_REF] Ward | Genetics in fisheries management[END_REF]. If a fishery is to be successfully managed, attention must be paid at the level of sub-structuring of the species to be managed. Furthermore, populations may be adapted to local conditions [START_REF] Carvalho | Evolutionary aspects of fish distribution: genetic variability and adaptation[END_REF][START_REF] Naish | Bridging the gap between the genotype and the phenotype: linking genetic variation, selection and adaptation in fishes[END_REF], and if a locally adapted stock is overexploited, it might not be possible to replenish the stock with individuals migrating from adjacent areas.

Marine fish usually support large census populations, have pelagic larvae and are capable of extensive migration, which combined create the prediction of panmixia, whereby they are expected to show genetic homogeneity over large sections of the sea [START_REF] Ward | A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes[END_REF]Waples, 1998). Nevertheless, there is increasing evidence that marine fishes experience higher levels of genetic structuring than previously expected [START_REF] Andersson | Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data[END_REF][START_REF] Pogson | Genetic population structure and gene flow in the Atlantic Cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci[END_REF][START_REF] Magoulas | Mitochondrial DNA phylogeny aand the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus)[END_REF][START_REF] Lundy | Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish[END_REF][START_REF] Ruzzante | A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence[END_REF][START_REF] Hutchinson | Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites[END_REF][START_REF] Mattiangeli | VNTR variability in Atlantic poor cod (Trisopterus minutus minutus) throughout its range: single locus minisatellite data suggest reproductive isolation for the Faroe Bank population[END_REF][START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF], and that the level of gene flow needed to overcome the urge for local adaptation may have been underestimated (Hemmer-Hansen et al., 2007a;[START_REF] Larsen | Adaptive differences in gene expression in European flounder (Platichthys flesus)[END_REF].

Population genetics basic concepts:

Thomas Hardy and Wilhelm Weinberg established the basis for population studies based on gene frequency at the beginning of the last century (Hedrick, 1999a;[START_REF] Beebee | An introduction to Molecular Ecology[END_REF].

The Hardy-Weinberg equilibrium (HWE) model states, that, if two alleles of the same locus, A and B, are present in frequencies p and q (where p + q = 1), then the frequencies of homozygotes for A and B are p 2 and q 2 , while heterozygotes (AB) will be present at 2pq (furthermore, p 2 + q 2 + 2pq =1). If a group of individuals is randomly mating and is not subject to mutation, selection, genetic drift, nor migration, then gene frequencies are expected to remain unchanged from one generation to the next. Natural populations hardly ever meet the ideal requirements for the HWE model, and measurement of the deviations from the model can be used to investigate population substructuring. Wright's F-statistics [START_REF] Wright | Isolation by distance[END_REF][START_REF] Wright | The genetical structure of populations[END_REF] give estimates of deviations from expected heterozygote frequency (F), and are calculated as:

E O E H H H F
Where, H E and H O are the expected and observed heterozygosity. Departures from the HWE model expectations are valuable as they may reveal substructuring of the population. To quantify the departure, three different hierarchical levels are used. F is relates individuals to subpopulation, F it relates individuals with total population, and F st relates subpopulations with total population. The latter is the most widely used, and it evaluates differences at the level of subpopulations from the total population. It is calculated as follows:
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Where, H t is the total population heterozygosity, and H s is the within-population heterozygosity [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF]. In undifferentiated equilibrium populations Fstatistics are all zero (provided the HWE assumptions are met). The greater the departure from zero the stronger the sub-structuring of the populations. Another way of evaluating genetic relationships is using Nei's Identity (I) [START_REF] Nei | Genetic distance between populations[END_REF]. Based on allele frequency in each population, it ranges from one (identical allele frequencies) to zero (no alleles shared). If p 1 and p 2 are allele frequencies in subpopulation 1 and 2, I is calculated as: 2) Selection: some of these mutations may entail negative effects on the organism (i.e. loss of function), and thus will be selected against and disappear. The result is an increase or fixation of the alternative allele, until new alleles are created.

3) Genetic drift: once there are a number of alleles at a locus, fortuitous changes in reproductive output between individuals will lead to changes in allele frequencies between generations. These changes can range from minimal to strong depending on the relative number of breeding individuals. Differences in genetic drift between isolated populations will generate differences in allele frequencies between those populations. 4) Migration: entails the translocation and successful interbreeding of individuals between populations. Therefore, alleles are exchanged between populations. If migration is high enough to overcome genetic drift and local selective forces, the allele frequencies will be homogenous between populations. The latter case is known as panmixia.

These opposing forces are the drivers behind the creation of population structuring, as the rate of mutation, selection, genetic drift and migration may be different in varying locations of the species range. The process is known as divergence, and allows formation of subpopulations. When gene flow between two populations of the same species is prevented by some geographical impediment, such as a mountain range or large extensions of water, the populations experience vicariance, and may ultimately divert into different species.

Molecular Markers:

The basis of molecular ecology is to assess the variability of genomic information contained within individual organisms that makes them unique when compared to other organisms. The information is conserved as DNA, which is inherited by the offspring, and may be translated into proteins. In order to assess the genetic diversity found among individuals or populations of a particular species, molecular markers can be identified and studied. Molecular markers are protein or small nucleic acid molecules which have variations in their DNA sequence (i.e. they are polymorphic) and, thus, have at least two alleles or variants. Diploid eukaryotic individuals may then be scored as homozygous (two identical alleles), or heterozygous (two different alleles). If molecular markers are neutral, they are considered to be representative of the processes affecting the whole genome, such as isolation or migration between subpopulations. Conversely, if they behave independently from the rest of the genome they may be under the influence of other external factors such as positive or balancing selection [START_REF] Schlötterer | A microsatellite-based multilocus screen for the identification of local selective sweeps[END_REF]. A brief overview of two genetic markers relevant to the current thesis is now provided:

Allozymes:

The first molecular markers to be widely used were allozymes, which are polymorphic enzymes varying in their amino acid sequence, and can be scored according to their mobility in an electric field. Allozymes show Mendelian inheritance and considerable protein polymorphism has been revealed between organisms from different species [START_REF] Andersson | Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data[END_REF][START_REF] Blanquer | Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus)(Osteichthyes, Pleuronectoformes, Scophthlamidae) throughout their range in Europe[END_REF][START_REF] Verneau | Phylogeny of flatfishes (Pleuronectiformes): comparisons and contradictions of molecular and morpho-anatomical data[END_REF][START_REF] Exadactylos | Allozyme variation and genetic inter-relationships between seven flatfish species (Pleuronectiformes)[END_REF] or among populations within species [START_REF] Galleguillos | Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae)[END_REF][START_REF] Blanquer | Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus)(Osteichthyes, Pleuronectoformes, Scophthlamidae) throughout their range in Europe[END_REF][START_REF] Verspoor | The evolution of genetic divergence at protein coding loci among anadromous and nonanadrous populations of Atlantic salmon Salmo salar[END_REF][START_REF] Kotoulas | Genetic structure of the common sole Solea vulgaris at different geographic scales[END_REF][START_REF] Bembo | Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters[END_REF][START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF][START_REF] Bouza | Gene diversity analysis in natural populations and cultured stocks of turbot (Scophthalmus maximus L.)[END_REF][START_REF] Exadactylos | Population structure of the Dover sole, Solea solea L., in a background of high gene flow[END_REF][START_REF] Foss | Population genetic studies of the Atlantic halibut in the North Atlantic Ocean[END_REF][START_REF] Giaever | Population genetic substructure in blue whiting based on allozyme data[END_REF]. However, redundancy of the genetic code prevents detection of substantial amounts of genetic variation, such as silent mutations or synonymous nucleotide substitutions [START_REF] Beebee | An introduction to Molecular Ecology[END_REF]. Consequently, classical markers have sometimes overlooked genetic divergence between populations, mainly due to low levels of polymorphism and heterogeneity found with allozymes.

Microsatellites, also known as simple sequence repeats (SSRs), are tandemly repeated short sequences, mainly dinucleotides, typically present in non-coding parts of the genome [START_REF] Jarne | Microsatellites, from molecules to populations and back[END_REF][START_REF] Chistiakov | Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics[END_REF][START_REF] Li | Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[END_REF][START_REF] Oliveira | Origin, evolution and genome distribution of microsatellites[END_REF]. Their high polymorphism in the form of variation of the number of repeats, putative neutrality as they are not translated into proteins, and codominance, where heterozygotes show both alleles as two bands, have rendered them very useful in ecological management [START_REF] Schwartz | Genetic monitoring as a promising tool for conservation and management[END_REF][START_REF] Waples | Integrating data into management of marine resources: how can we do it better?[END_REF], forensic analysis [START_REF] Primmer | The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud[END_REF][START_REF] Renshaw | Application of hypervariable genetic markers to forensic identification of 'wild' from hatchery-raised red drum, Sciaenops ocellatus[END_REF], and food production issues [START_REF] Liu | DNA marker technology and their application in aquaculture genetics[END_REF][START_REF] Chistiakov | Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics[END_REF].

Microsatellite variability may arise in several ways, but the most basic source of polymorphism is by replication slippage when the polymerase encounters a long set of repeated short sequences [START_REF] Viguera | Replication slippage involves DNA polymerase pausing and dissociation[END_REF][START_REF] Li | Microsatellites within Genes: Structure, Function, and Evolution[END_REF]. Basically the polymerase gets confused with how many copies are tandemly arranged, and adds or removes a copy. As microsatellites are normally located in non-coding regions, the mutation may be accepted, and a new allele at that locus is created. Microsatellites have a natural tendency towards elongation (Ellegren, 2002b;[START_REF] Seyfert | The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex[END_REF], and longer microsatellite alleles are more prone to mutation than shorter ones [START_REF] Seyfert | The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex[END_REF][START_REF] Brandström | Genome-wide analysis of microsatellite polymorphims in chicken circumventing the ascertainment bias[END_REF], though, as the microsatellite increases in size it becomes unstable, and mutations breaking the repeated sequence may appear, splitting the microsatellite into shorter sections (Ellegren, 2002a) and reducing its mutation rate [START_REF] Brandström | Genome-wide analysis of microsatellite polymorphims in chicken circumventing the ascertainment bias[END_REF]. Being composed of repeated elements, microsatellites are expected to follow a stepwise mutation model (SMM) in which new alleles emerge by the incorporation or deletion of a single extra repeated element [START_REF] Kimura | Stepwise mutation model and distribution of allelic frequencies in a finite population[END_REF]). The mutation model followed by microsatellites has attracted considerable attention, as it affects the way estimators of genetic differentiation are calculated (Goldstein et al., 1995a;[START_REF] Shriver | A novel measure of genetic distance for highly polymorphic tandem repeat loci[END_REF][START_REF] Slatkin | A measure of population subdivision based on microsatellite allele frequencies[END_REF][START_REF] Michalakis | A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci[END_REF]. However, the general conclusion is that, in most cases, differentiation can be safely estimated assuming an Infinite Allele Model [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF]Estoup et al., 2002a), and recent studies suggest that generation of new alleles in microsatellites involving more than one repeat element are more common than previously thought [START_REF] Seyfert | The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex[END_REF].

Microsatellites are amplified from isolated nuclear DNA through PCR, to which oligonucleotides complementary to the flanking regions of the SSR are added. The DNA and PCR mixture goes through several cycles (generally 30) of denaturation (92 o C), annealing (temperature depending on the length of the oligonucleotide primers, but generally between 50 50 o C and 60 o C), and elongation (72 o C), where the SSR is amplified exponentially. If the oligonucleotide primers are marked, either radioactively or by fluorescence, then the size of the SSR can be scored on electrophoresis gels or capillaries [START_REF] Beebee | An introduction to Molecular Ecology[END_REF].

Microsatellites have revealed and deepened the knowledge of population polymorphism and structure where other markers, such as allozymes, have not been able to or showed reduced structure [START_REF] Ruzzante | A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence[END_REF][START_REF] Shaw | Microsatellite DNA analysis of population struture in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses[END_REF][START_REF] Ball | Population structure of the wreckfish Polyprion americanus determined with microsatellite genetic markers[END_REF][START_REF] Launey | Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism[END_REF][START_REF] Bernal-Ramírez | Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents[END_REF][START_REF] Knutsen | Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod[END_REF][START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF]Hemmer-Hansen et al., 2007b;Suk & Neff, 2009a). Nevertheless, some studies have also reported better structure resolution with allozymes than with microsatellites [START_REF] Lemaire | Do discrepancies between microsatellites and allozyme variation reveal differential selection between sea and lagoon in the sea bass (Dicentrarchus labrax)?[END_REF][START_REF] De Innocentiis | Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean Sea[END_REF][START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF][START_REF] Gosling | Genetic variability in Irish populations of the invasive zebra mussel, Dreissena polymorpha: discordant estimates of population differentiation from allozymes and microsatellites[END_REF]. Microsatellites have recently received some attention from the ecotoxicology research community [START_REF] Brown | Development and use of microsatellite DNA loci for genetic ecotoxicological studies of the fathead minnow (Pimephales promela)[END_REF][START_REF] Dimsoski | Development of DNA-based microsatellite marker technology for studies of genetic diversity in stressor impacted populations[END_REF], and are expected to provide important information on the effects of pollutants on population structure and genetic variability.

There are many microsatellites developed for European flatfish species [START_REF] Coughlan | Four polymorphic microsatellites in turbot Scophthalmus maximus[END_REF][START_REF] Mcgowan | Polymorphic microsatellite markers for Atlantic halibut, Hippoglossus hippoglossus[END_REF]Iyengar et al., 2000b;Iyengar et al., 2000a;[START_REF] Watts | Polymorphic microsatellite loci in the European plaice, Pleuronectes platessa, and their utility in flounder, lemon sole and Dover sole[END_REF]Hoarau et al., 2002a;[START_REF] Funes | Isolation and characterization of ten microsatellite loci for Senegal sole (Solea senegalensis Kaup)[END_REF][START_REF] Casas | Characterization of microsatellite markers derived from sequence databases for the European flounder (Platichthys flesus)[END_REF][START_REF] Garoia | Isolation of polymorphic DNA microsatellites in the common sole Solea vulgaris[END_REF][START_REF] Pardo | New microsatellite markers in turbot ( Scophthalmus maximus) derived from an enriched genomic library and sequence databases[END_REF]. However, despite the fact that microsatellites developed from one species can sometimes be amplified in related species [START_REF] Primmer | A wide-range survey of cross-species microsatellite amplification in birds[END_REF], using cross-species amplified loci can be problematic [START_REF] Oliveira | Origin, evolution and genome distribution of microsatellites[END_REF] and best results are obtained when markers are developed directly from the target species, especially when large numbers of markers are sought.

Summary and Aims of the thesis:

Impacts of anthropogenic pollutants on natural environments can be assessed by measuring biomarkers such as tumorigenic processes in the liver, DNA adducts, or EROD activity on flatfishes, namely flounder and dab. However, our understanding of the population structure, connectivity between populations, and temporal stability of such structure in flounder and dab is limited. These aspects of the bioindicator species ecology need to be understood for a correct interpretation of the biomonitoring data.

There were two aims for the thesis: 1) to understand the patterns of connectivity between biomonitoring sampling locations and evaluate the possible effects of individual movement;

and 2) two evaluate the potential for local adaptation to pollution, and if so whether evidence of selection could be found.

Therefore the objectives of the thesis were:

1. To develop a suite of microsatellite markers for dab and flounder: therefore the isolation and characterisation of the first 30 microsatellite markers for dab and a new set of 28 novel microsatellites for flounder are described in Chapters 2 and 3. 2. To develop a low-cost high-throughput technique: In order to maximise the number of loci and individuals genotyped a novel labelling technique aimed at reducing the costs of testing and genotyping large number of microsatellite markers is described in Chapter 4. Three multiplex reactions for dab are also described here. 
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Chapter 2: Development of 30 microsatellite markers for dab (Limanda limanda L.): a key UK marine biomonitoring species 2.1 Abstract:

Dab (Limanda limanda) are the principal target fish species in offshore biomonitoring programmes in the UK; however detailed knowledge of genetic structure and connectivity among sampling locations is unavailable. Here, the isolation and characterisation of 30 polymorphic microsatellite loci for dab is described. The number of alleles per locus ranged from 2 to 42, with observed heterozygosities ranging from 0.089 to 1. These loci will enable high resolution of genetic population structure and dynamics of dab around the British Isles.

Introduction:

Flatfishes are ideal indicator species for assessing the biological effects of contaminants in the marine environment, and in the UK the dab (Limanda limanda) is studied in annual monitoring programmes [START_REF] Cefas | Monitoring of the quality of the marine environment[END_REF]. Although an extensive data base exists on the assessment of individual consequences of pollution exposure [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF], information on the genetic structure of dab and population connectivity is limited, both of which are important to correctly interpret biomonitoring data. Furthermore, the potential evolutionary processes in populations displaying elevated levels of disease, or exposed to high levels of pollutants, have not been addressed. Here, the isolation and characterisation of 30 novel polymorphic microsatellite loci for dab, which can be used to analyse the genetic structure of dab populations, is described.

Methods, Results and Discussion:

A microsatellite enriched genomic library was constructed following a subtractive [START_REF] Hall | BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[END_REF]. Enrichment efficiency was high at 87.5%.

Primers were designed on either side of 58 putative microsatellites using PRIMER3 [START_REF] Rozen | PRIMER3 on the WWW for general users and for biologist programmers[END_REF], and tested for successful amplification at several annealing temperatures on 3% TBE agarose gels. Forward primers of pairs reliably amplifying on several individuals were then ordered M13-tailed at the 5' end [START_REF] Schuelke | An economic method for the fluorescent labeling of PCR fragments[END_REF]. Nested PCRs with forward-tailed primer, reverse primer, and FAM TM -labelled M13-tail oligos were used for genotyping. PCR cocktails of 10 µl final volume contained around 20 ng of DNA, 1x GoTaq® Flexi buffer (Promega), 1.5 mM MgCl 2 , 125 µM dNTP, 0.1 µM Forward-tailed primer, 0.5 µM of Reverse primer, 0.5 µM of FAM TM -labelled M13-tails, and 0.5 U GoTaq® DNA polymerase (Promega).

PCRs were carried on a BioRad Tetrad2® Peltier Thermal Cyclers and the thermocycling programmes were as follows: an initial denaturation phase of 3 min at 95 o C, followed by 13 cycles of 30s at 95 o C, 45s at the forward primer annealing temperature ( 2.1). Genotypes were analyzed with GENETIX (Belkhir et al., 1996(Belkhir et al., -2004) ) and GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF], where polymorphism varied from 2 to 42 alleles with an average of 15 alleles per locus. Observed heterozygosity ranged from 0.083 to 1. Significant deviations from the Hardy-Weinberg Expectations in the form of heterozygote deficiencies were found in DAC4-34, DAC5-70, DAG2-15, DAG2-22, and DAG4-91 in either or both populations, suggesting the presence of null alleles in these markers. Marker DAC5-21 was highly similar/homologous to the Hippoglossus hippoglossus microsatellite Hhi61IMB

(GenBank: EF569094), and parts of the sequence of DAC2-15 were highly similar to the Potassium Chloride transporter gene (BC136157.1; blastn value=2e -11 ). Although significant linkage disequilibrium was found in one of two populations between several loci, no pair of loci was significantly linked for both populations, suggesting that linkage is likely to be an artefact of small sample sizes. Cross-species amplification on eleven European flatfish species was tested using the same parameters as for dab (Table 2.2). These markers will prove invaluable for the description of genetic population structure, connectivity and demographics of dab around the British Isles. Furthermore, they will enable more accurate interpretation of biomonitoring data, and provide a neutral genetic background with which adaptive genetic markers can be compared. 

Introduction:

The European flounder, Platichthys flesus L., is used as a model species in ecotoxicology to examine the ecosystem impacts of anthropogenic pollution. For example, recent studies have examined the effects of toxicants on DNA disruption, gene expression, transcriptomics and tumorigenesis [START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF][START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF][START_REF] Williams | Gene expression responses of European flounder (Platichthys flesus) to 17-β estradiol[END_REF]. Although some microsatellite markers have been used on European flounder [START_REF] Casas | Characterization of microsatellite markers derived from sequence databases for the European flounder (Platichthys flesus)[END_REF]Hemmer-Hansen et al., 2007b), only six non-EST-linked species-specific loci have been published to date. Increasing this number will extend the range of applications, such as population assignment, localised impacts of toxicant exposure, and ultimately contribute towards the production of linkage maps. Here, the development and characterisation of 28 novel microsatellite markers developed from European flounder is described.

Methods, Results and Discussion:

European flounder (n=2) were collected from the Irish Sea (53°18'56.45"N; 3°53'59.64"W)

and fin clips stored in 100% ethanol until processing. A microsatellite enriched genomic library was constructed following the protocol of Tysklind et al. (2009b). From this library, 1344 colonies were screened for microsatellites by PCR amplification with M13 Forward primer and a mixture of non-biotinylated microsatellite probes. 196 positive amplicons were sequenced (Macrogen Inc., Korea), edited, analyzed and checked for duplicates using BIOEDIT [START_REF] Hall | BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT[END_REF]. Enrichment efficiency was high at 87.8%. Primers were designed either side of 47 putative microsatellites using PRIMER3 [START_REF] Rozen | PRIMER3 on the WWW for general users and for biologist programmers[END_REF], and tested for successful amplification at several annealing temperatures on 3% TBE agarose gels. M13-tailed forward primers were then ordered [START_REF] Schuelke | An economic method for the fluorescent labeling of PCR fragments[END_REF]. Nested PCRs with tailed forward primer, reverse LIZ-600®). 28 primer pairs produced polymorphic bands at the expected sizes. Allele sizes were scored with GeneMapper® Software 4.0. Genotypes were analyzed with GENETIX (Belkhir et al., 1996(Belkhir et al., -2004) ) and GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF], where polymorphism varied from 8 to 38 alleles with an average of 16 alleles per locus per population (Table 3.1).

Observed heterozygosity ranged from 0.542 to 1, and only one marker (FLAC4-60) significantly deviated from Hardy Weinberg Expectations in the Tyne sample after Bonferroni correction. FLAC2-18 was similar to Sciaenops ocellatus microsatellite Scoc76 (GenBank:

EU727070.1). Markers FLAC1-32 and FLAG2-76 appear to be in linkage disequilibrium in both populations and overall, suggesting that both markers are gametically linked. Cross-species amplification on eleven European flatfish species was tested using the same parameters as for flounder (Table 3.2).

These novel nuclear markers will contribute to the library of available markers and will provide tools to enhance our understanding of the genetic structure of flounder throughout its range, and increase the power of detecting signals of evolutionary processes imposed on populations under contaminant and other environmental stress. 

Introduction:

Since the mid 1990's, microsatellites have been the marker of choice for parentage analysis, assessment of neutral variation and population structure in natural populations, and genome mapping [START_REF] Jarne | Microsatellites, from molecules to populations and back[END_REF][START_REF] Li | Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[END_REF][START_REF] Chistiakov | Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics[END_REF][START_REF] Oliveira | Origin, evolution and genome distribution of microsatellites[END_REF].

However, their high initial development cost has often restricted their use in species with no existing genomic resources. The cost of development in novel species may be overcome by using microsatellites developed from closely related species [START_REF] Primmer | A wide-range survey of cross-species microsatellite amplification in birds[END_REF]. However, cross-amplifying microsatellites from closely related species may lead to problems with reduced polymorphism and non-specific amplification due to ascertainment bias [START_REF] Oliveira | Origin, evolution and genome distribution of microsatellites[END_REF]. Ascertainment bias is the result of the several stages of selection for polymorphism during the microsatellite development in the target species that lead to reliable and polymorphic loci in the target species but not necessarily in other taxa [START_REF] Goldstein | Launching microsatellites: a review of mutation processes and methods of phylogenetic inference[END_REF][START_REF] Brandström | Genome-wide analysis of microsatellite polymorphims in chicken circumventing the ascertainment bias[END_REF]. Therefore, many researchers prefer to develop speciesspecific loci despite the costs. Fortunately, recent technical advances have simultaneously reduced the cost and increased the yield of polymorphic microsatellite loci [START_REF] Zane | Strategies for microsatellite isolation: a review[END_REF].

After the initial stages of the microsatellite development process (i.e. partial library construction, probing and sequencing), a relatively large number of microsatellite sequences may be produced, for which designing and testing primers is simple and relatively cheap.

Oligonucleotide primers are designed that are complementary to the flanking sequence on the 5' and 3' sides of the microsatellite sequence, and the microsatellite is then amplified using the polymerase chain reaction (PCR). After initial amplification to verify the utility of the primers and the approximate size of the amplified fragment, the forward primers of successfully amplifying primer pairs are labelled with a dye that fluoresces under excitation by a laser, enabling the size of the PCR product to be accurately measured in an automated sequencer. Modern automated sequencers can measure fluorescence at different wavelengths allowing multiple dyes to be used to label PCR primers. This property of modern sequencers allows the simultaneous measurement of multiple PCR fragments of the same size (if they are labelled with different dyes), and also, the measurement of PCR products of different sizes labelled with the same dye. Thus, both size and dye-based discrimination is possible, and combining several labelled primers is possible to reduce the time and costs associated with microsatellite genotyping [START_REF] Neff | Microsatellite multiplexing in fish[END_REF][START_REF] Schoske | Multiplex PCR design strategy used for the simultaneous amplification of 10 Y chromosome short tandem repeat (STR) loci[END_REF]. However, despite the savings that are possible by multiplexing primers, the initial costs of purchasing labelled primers can be prohibitive, thus constraining the number of microsatellites tested, and ultimately the total number of markers used in a genotyping project.

New analysis methods and programs are tackling ever more complex questions regarding population structure, migration rates, effective population size (N e ), demographic changes and relatedness [START_REF] Excoffier | Computer programs for population genetics data analysis: a survival guide[END_REF], that require increasing numbers of loci to provide robust answers. Furthermore, the power of any analysis is generally improved with a higher number of loci (Kalinowski, 2002b;[START_REF] Medina | Number of individuals and molecular markers to use in genetic differentiation studies[END_REF][START_REF] Ryman | POWSIM: a computer program for assessing statistical power when testing for genetic differentiation[END_REF]. Hence there is an increasing demand for fast, simple, and economic hi-throughput techniques for analysing large numbers of loci. [START_REF] Schuelke | An economic method for the fluorescent labeling of PCR fragments[END_REF] described a nested PCR in which a universal fluorescent oligonucleotide (M13 tail) could be used to label any PCR product, a technique that is frequently used during microsatellite development [START_REF] Canino | Development and characterization of novel di-and tetranucleotide microsatellite markers in Pacific Cod (Gadus macrocephalus)[END_REF][START_REF] Johansson | Development of microsatellite markers in the St Lucia anole, Anolis luciae[END_REF][START_REF] Lallias | Characterization of 27 microsatellite loci in the European flat oyster Ostrea edulis[END_REF][START_REF] Nikolic | A set of 37 microsatellite DNA markers for genetic diversity and structure analysis of Atlantic salmon Salmo salar populations[END_REF]Tysklind et al., 2009b;2009a). A tail is essentially an oligonucleotide extension of known sequence which is added to the 5' end of the forward primer upon design (i.e. tail-primer). In order to work effectively, the tail should not interfere with the priming properties of the primer, and thus the PCR can proceed as normal, with the only exception that during the PCR the DNA polymerase incorporates the tail sequence into the amplicon. The advantage of adding such tail to the primer is that another oligonucleotide, a fluorescently labelled-oligo of exactly the same sequence as the tail, can be added to the PCR reaction. Thus, the labelled-oligo will anneal with the area of the amplicon composed by the original tail, and after enough cycles of amplification, obtain a labelled (K) The PCR reaction is started, and the forward tail-primers are incorporated into many different amplicons.

(L) The labelled-oligos only bind to specific tail-primers thus creating label-specific amplicons for each pair of primers. Previously, several PCR products have been labelled with the same labelled tail within a single reaction [START_REF] Oetting | Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers[END_REF]. However, the technique is not cost-effective at the genotyping stage as the other detection wavelengths of modern DNA sequencing platforms are not utilised. [START_REF] Guo | Methodology for using a universal primer to label amplified DNA segments for molecular analysis[END_REF] successfully multiplexed microsatellite primers with two different tails labelled with two different dyes, improving the efficiency of the tailing protocol, but still not exploiting other wavelengths. [START_REF] Missiaggia | Plant microsatellite genotyping with 4-color fluorescent detection using multiple-tailed primers[END_REF] addressed this issue by performing separate PCR reactions for each colour (with four M13 tails in different colours) and then blending them together before sequencing, a technique generally known as poolplexing [START_REF] Meudt | Almost forgotten or latest practice? AFLP applications, analyses and advances[END_REF]. Although the latter approach makes full advantage of detection capability of the sequencer, it is reagent and time consuming and becomes unpractical for large genotyping projects.

Here, a cost-effective way of labelling primers in four different wave-lengths for multiplex microsatellite analysis of large sample sizes is described.

4.3 Methods, Results and Discussion:

Tailing:

The aim was to use a limited number of labelled-oligos to label several target amplicons with different dyes in a single reaction. The underlying principle was to allow the tailing process for each of the dyes employed to occur independently, and in parallel, within a single reaction (Figure 4.1 J-L). To achieve these conditions, the four tails must not interfere with each other (i.e. not bind to each other), and operate under the same conditions (i.e. annealing temperatures). Therefore three additional oligonucleotide tails that fulfilled the following conditions were identified: the same number of bases (18bp), similar GC content (50-55%), similar annealing temperature (53-55 o C), and no self-priming or cross-priming between tails, which was tested theoretically using FASTPCR [START_REF] Kalendar | FastPCR software for PCR primer and probe design and repeat search[END_REF]. Of the 19 universal bacterial sequences considered, three fulfilled the above conditions and were deemed suitable to work in multiplex with M13for tail: M13rev; Bhg-r; and +19bs (Table 4.1).

Microsatellite forward primers with M13for, M13rev, bhg-r, and +19bs tails at the 5' end were ordered. M13for, M13rev, bhg-r and +19bs oligos were ordered, each labelled with a different fluorescent dye (FAM®, PET®, NED®, VIC®). A subset of normally labelled forward microsatellite primers were ordered for amplicon comparison with tailed products, and all primers were normalized to 50µM stock. Four oligonucleotide sequences (in lower case) suitable for use as labelled tails and compatible in multiplexing, followed by two examples of forward primers (DAC2-15for and DAC2-28for in UPPER case) and their tailed forms (DAC2-15-P and DAC2-28-V).

Multiplexing:

Dab microsatellite primers (Tysklind et al., 2009b) were first grouped into potential multiplex combinations with MULTIPLX [START_REF] Kaplinski | MultiPLX: automatic grouping and evaluation of PCR primers[END_REF] which evaluates all possible primer pair compatibility issues (primer-primer or primer-product alignments, and differences in melting temperatures) and produces theoretical multiplex combinations. The stringency of the theoretical reaction can be modified, and primer combinations were evaluated at both normal and high stringency. Combinations of two or three primer pairs that consistently clustered together were chosen as starting nuclei for multiplex combinations. If amplification was successful, then additional primer pairs, checked for microsatellite allele size range, colour and primer compatibility in FASTPCR [START_REF] Kalendar | FastPCR software for PCR primer and probe design and repeat search[END_REF], were subsequently added to the multiplex. The process was repeated until no more primer pairs fitted the above conditions. Three multiplexes, containing 16 loci for dab, were successfully designed and tested (Table 4.2) and reactions were performed in 5µl PCR using the Qiagen® multiplex PRC kits with the following final concentration of primers: 0.2µM for reverse, 0.02µM for tailforward, and 0.1µM labelled-oligo/loci in that colour (i.e. in a 12 loci mix, four loci in some colours = 0.4µm of each labelled tail) and around 20ng of DNA. The PCR reaction programme was modified from that in [START_REF] Hinten | SNP-SCALE: SNP scoring by colour and length exclusion[END_REF] 

Performance and Evaluation of multiplexed tailed primers:

The four oligonucleotide tails performed satisfactorily, both singularly and in multiplex, in over 60 microsatellite markers used in this study. Peak height and shape did not change significantly between tailed+(labelled-oligo), and labelled-only primers and were easily scored, the only difference being the size of the PCR product which was consistently 18bp longer. Although PCRs with up to 12 loci were tested successfully without reduction in electropherogram performance, problems with overlapping size ranges and incompatibility between primers posed considerable problems when searching for compatible groups of primer pairs, which resulted in multiplexes with relatively few loci (Table 4.2 The cost of designing tailed-primers (ca. £5.5 from a major oligonucleotide provider) is a fraction of the cost of fluorescently labelled primers (ca. £55 for 10,000 picomoles from Applied Biosystems). In the current study more than 130 primer pairs (plus around 30 loci in other organisms) have been tested at the sequencer level, which would have entailed a price of over £7,000 in labelled primers alone (130 x £55= £7,150), with many labelled primers being leftover from those loci not extensively employed (i.e. not included in multiplexes).

Instead, all primers were labelled for under £1,200 by ordering all forward primers tailed ( 130x £5.5 = £715) and four labelled tails (£35 for FAM® tail, and £135 for 300,000 picomoles of VIC®, NED® and PET® tails = 3 x £135 + 1 x £35 = £440). Note that labelled primers are considerably more economic in larger volumes (£55 for 10,000 picomoles compared to £135

for 300,000 picomoles).

Tailing microsatellite primers brings about considerable cost reductions that can only be exploited in the genotyping phase if used in multiplex. Purpose-built multiplexing PCR kits are expensive (Qiagen: £1,197 for a 1000 x 50μl reactions), but very effective at multiplexing. If the reaction volume is reduced (5μl total volume) the expense becomes justified (£0.12 per reaction). In the dab genotyping study, 16 loci were genotyped in plates with just three multiplex reactions (plate cost = £1; reaction cost for 96 individuals: £0.12 x 96 x 3 + £1 x3 = £37.56), instead of 16 independent reactions with a cheaper PCR kit (£0.05 per 5μl reaction; plate reaction cost: £0.05 x 96 x 16 + £1 x16 = £92.80). The difference represents a 40% reduction in reaction cost alone, which would be even more pronounced as more loci and larger multiplexes are screened. Furthermore, there are considerable savings in technical time, plastic waste (plates and pipette tips), and energy costs associated with reduced number of reactions.

Additionally, the technique was tested on other fish, mollusc and reptilian species with equally impressive results suggesting they could be used on many other eukaryotes (Y.

Surget-Groba; S. van Wijk; S. Pascoal; personal communication). These tails offer the advantage of being fully compatible with multiplexing in a single tube, overcoming the need to perform several PCRs for each colour. As an added advantage, redesigning primers, in order to change the size of the product or to avoid a polymorphic primer annealing sequence (null alleles), becomes more affordable.

Overall, the combination of tailing and multiplexing can substantially reduce the cost of genotyping projects, and in particular, molecular ecology laboratories, that commonly embark on many small and medium scale genotyping projects with many different species, will benefit the most: labelled tails can be purchased commonly, aliquoted, and used for several projects. Another added advantage of using common labelled tails is that larger number of users imply faster turnover of fluorescent oligonucleotides, which over time decrease in fluorescent strength.

Chapter 5: Development and testing of adaptive markers to evaluate signals of selection imposed by pollution in dab, Limanda limanda.

Abstract:

In the UK, dab is routinely used as an environmental bioindicator of pollutant exposure.

However, pollutants can exert strong selective pressures on wild populations, and the potential effects of pollution from an evolutionary perspective have received less attention.

Recent advances in genomics and bioinformatics have produced a rapid increase in the volume of DNA sequence data available, even for non-model organisms. Such data represent an invaluable resource for the development of genetic markers to study selection and adaptation processes. Here, the development and testing of 35 gene-linked microsatellites markers (EST-SSRs) derived from a library of differentially expressed genes after exposure to pollutants is reported. The markers are tested among putative healthy dab and dab exhibiting two common biomarker responses to pollution. No definitive evidence of strong and recent selective pressures at the analyzed genes is found, but suggestions for future research are made.

Introduction:

There is natural variation in the way that different individuals respond to environmental contaminants [START_REF] Hawkins | The metabolic/physiological basis of genotypedependent mortality during copper exposure in Mytilus edulis[END_REF][START_REF] Weis | Tolerance and stress in a polluted environment: the case of the mummichog[END_REF][START_REF] Depledge | New approaches in ecotoxicology: can inter-individual physiological variability be used as a tool to investigate pollution effects?[END_REF][START_REF] Theodorakis | Genetic Ecotoxicology III: the relationship between DNA strand breaks and genotype in mosquitofish exposed to radiation[END_REF][START_REF] Theodorakis | Genetic Ecotoxicology IV: survival and DNA strand breakage is dependent on genotype in radionucleotide-exposed mosquitofish[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF], and this can be problematic when assessing the biological effects of pollutants [START_REF] Depledge | New approaches in ecotoxicology: can inter-individual physiological variability be used as a tool to investigate pollution effects?[END_REF]1996;[START_REF] Pulsford | Modulatory effects of disease, stress, copper, TBT and vitamin E on the immune system of flatfish[END_REF][START_REF] Belfiore | Effects of contaminants on genetic patterns in aquatic organisms: a review[END_REF][START_REF] Theodorakis | Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment[END_REF][START_REF] Meyer | Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments[END_REF][START_REF] Kirby | Differential sensitivity of flounder (Platichthys flesus) in response to oestrogenic chemical exposure: an issue for design and interpretation of monitoring and research programmes[END_REF]. The evidence for genotype-specific sensitivity or resistance to disease development, especially tumour development, is accumulating in human medicine: certain polymorphisms at DNA repair genes have been linked to the occurrence of mutations that inactivate the p53 gene, a tumour suppressor gene [START_REF] Ryk | Influence of polymorphism in DNA repair and defence genes on p53 mutations in bladder tumours[END_REF][START_REF] Whibley | p53 polymorphisms: cancer implications[END_REF]. [START_REF] Wu | Interaction of genetic polymorphism in cytochrome P450 2E1 and glutathione S-Transferase M1 to breast cancer in Taiwanese women without smoking and drinking habits[END_REF] found that women with a particular combination of alleles at two detoxifying genes, cytochrome P450

and glutathione S-transferase, had significantly increased risk of developing breast cancer, even without smoking or drinking habits. Furthermore, there is evidence that genotype-specific susceptibility varies among different human ethnic groups [START_REF] Bhisey | Polymorphism at CYP and GST gene loci and susceptibility to tobacco related cancers[END_REF][START_REF] Chikako | NQO1, MPO, and the risk of lung cancer: a HuGE review[END_REF][START_REF] Distelman-Menachem | Analysis of BRCA1/BRCA2 genes' contribution to breats cancer susceptibility in high risk Jewish Ashkenazi women[END_REF].

There are differences in susceptibility (measured as EROD expression and liver tumorigenic damage) between flatfish species. For example, in the Puget Sound, USA, that was heavily polluted with PAHs (polycyclic aromatic hydrocarbons derived from the incomplete combustion of organic matter [START_REF] Srogi | Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review[END_REF]), both English sole, Pleuronectes vetulus, and starry flounder, Platichthys stellatus, are sympatric. The English sole has a high incidence of liver neoplasia [START_REF] Johnson | Assessing the effects of anthropogenic stressors on Puget Sound flatfish populations[END_REF][START_REF] Myers | Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor, Washington[END_REF] and is routinely used as a bioindicator of pollution; whereas for the starry flounder very few instances of liver tumours have ever been recorded in the latter species (four in 20 years) [START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF]. The different ways in which the species metabolise pollutants, combined with variance in cytochrome P-450IA (CYP1A) expression is thought to be responsible for the susceptibility to the development of liver pathologies [START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF]. The CYP1A gene has a role in neutralizing toxic compounds (i.e. PAHs) [START_REF] Carajaville | Genetic damage and the molecular-cellular response to pollution[END_REF] and fish exhibit high CYP1A activity after exposure to pollutants (measured as EROD activity). However, elevated CYP1A activity is also associated with production of carcinogenic reactive oxygen species (ROS).

Therefore there are both positive and negative effects of having a highly active CYP1A gene. [START_REF] Wirgin | Genetic polymorphism of cytochrome P450IA in cancerprone Hudson River tomcod[END_REF] revised the CYP1A genetic profile of PAH-exposed and unexposed populations of tomcod, Microgadus tomcod, and found evidence of polymorphism at the mitochondrial genes regulating CYP1A for the first time in teleost fishes, opening the way for studies on selection on CYP1A. Populations of killifish, Fundulus heteroclitus, chronically exposed to PAHs show evidence of a refractory CYP1A response (low EROD inducibility) [START_REF] Meyer | Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments[END_REF]. Low EROD response in killifish from polluted sites was inherited at least to the F1 generation, suggesting a genetic component in CYP1A activity; however, high EROD inducibility was recovered after two generations (F2 and F3) reared in uncontaminated environments [START_REF] Meyer | Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments[END_REF], which contradicted the genetic hypothesis. Studies on European flounder, Platichthys flesus, using real time PCR and microsatellites, identified the quantitative and qualitative diversity of CYP1A-coding genes at the intra-and inter-family level [START_REF] Dixon | Application of real time PCR determination to assess interanimal variabilities in CYP1A induction in the European flounder (Platichthys flesus)[END_REF], and [START_REF] David | Molecular approach to aquatic environmental bioreporting: differential response to environmental inducers of cytochrome P450 monooxygenase genes in the detritivorous subalpine planktonic crustacea, Daphnia pulex[END_REF] found evidence that different populations of Daphnia pulex exposed to different levels of polyphenolic compounds in their environment, showed different profiles of another cytochrome P450, the CYP4 gene family. Overall these studies suggest that populations can change their profiles of biomarker response (i.e. EROD induction) after long term exposure to pollutants, thus indicating evolutionary adaptation of populations to pollution.

In the case of dab, Limanda limanda, some locations consistently show higher frequencies of liver pathologies than others (CEFAS, 2003a;2005;[START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF].

Although in principle they are associated with pollutant exposure, the relationship is not always so simple. Fish collected from certain locations, such as Cardigan Bay, with no nearby sources of industrial and domestic pollutants (MAFF, 1990;CEFAS, 2000), suffer from high incidence of tumours in their liver [START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF]CEFAS, 2003a;[START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF]. On the other hand, dab from sites such as Amble located only 30 km from the historically polluted Tyne estuary [START_REF] Hudson-Edwards | Processes of formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing minerals in the Tyne Basin, Northeast England: Implications for metal-contaminated river systems[END_REF], have rather low frequency of liver lesions [START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF]. There are many possible explanations for such patterns, such as age, environmental quality of nursery grounds, migration between locations, or genetic differences in individual response to pollutants [START_REF] Kirby | Differential sensitivity of flounder (Platichthys flesus) in response to oestrogenic chemical exposure: an issue for design and interpretation of monitoring and research programmes[END_REF]. The latter factor could also be population-specific, and could be influenced, through selection, by previous exposure to pollutant. Changes in allele frequencies in fish populations have already been reported from polluted environments [START_REF] Wirgin | Genetic polymorphism of cytochrome P450IA in cancerprone Hudson River tomcod[END_REF]Theodorakis & Shugart, 1997;[START_REF] David | Molecular approach to aquatic environmental bioreporting: differential response to environmental inducers of cytochrome P450 monooxygenase genes in the detritivorous subalpine planktonic crustacea, Daphnia pulex[END_REF][START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF], and may have been caused by selection of particular individuals carrying specific alleles at certain genes. If populations can adapt to high pollution exposure, they might show reduced biomarker response [START_REF] Meyer | Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments[END_REF][START_REF] Kirby | Differential sensitivity of flounder (Platichthys flesus) in response to oestrogenic chemical exposure: an issue for design and interpretation of monitoring and research programmes[END_REF]. Therefore, it is important to evaluate whether dab has adapted to life in a polluted environment, as such process would impinge on the interpretation of biomarker response.

Genetic markers to detect selection:

The increased availability of Expressed Sequence Tags (ESTs), even for non-model species, has attracted the attention of molecular ecologists. Their assumed coding nature and thus potential for being under selection, together with the possibility of assigning protein function, offer an ideal counter-balance to the putative neutrality of microsatellite markers (Vasemägi et al., 2005;[START_REF] Bouck | The molecular ecologists' guide to expressed sequence tags[END_REF][START_REF] Naish | Bridging the gap between the genotype and the phenotype: linking genetic variation, selection and adaptation in fishes[END_REF]. If a particular point mutation endows a net benefit to the carrier, then the offspring will not only inherit the point mutation, but large sections of DNA around it, depending on where the nearest recombination points reside. The process is known as genomic hitch-hiking [START_REF] Smith | The hitch-hiking effect of a favourable gene[END_REF] and extends the signal of selection from the single point mutation to a more sizeable area of the genome (Figure 5.1). If selection is strong enough, the area may become a variability valley or sweep detection window [START_REF] Teschke | Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans[END_REF], and markers within that area would show evidence of selective sweeps [START_REF] Guinand | How to detect polymorphisms undergoing selection in marine fishes? A review of methods and case studies, including flatfishes[END_REF]) (Figure 5.2). Two types of markers can be used to find such variability valleys: single nucleotide polymorphisms (SNPs) or microsatellites (single sequence repeats = SSRs). The former offer the advantages of being very common and possibly identifying the selected site, but selective sweeps will be harder to detect due to the lower variability of the marker. Microsatellites will be present in lower frequencies throughout the genome, but their higher allele variability significantly increases their potential for detecting changes in allele distribution due to recent selective sweeps relative to a correspondingly similar number of SNP loci [START_REF] Schlötterer | A microsatellite-based multilocus screen for the identification of local selective sweeps[END_REF][START_REF] Teschke | Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans[END_REF]. Most times this will lead to a failure in functionally and the disappearance of the new mutation, but sometimes the new polymorphism might not imply negative effects, and a new allele emerges at the functional gene (coloured in pink). If the new "pink" allele does not entail any advantage in the current environment, its frequency within the population will be a product of drift and migration (D). However, under novel selective pressures (e.g. pollution), previous relatively neutral mutations (or even slightly deleterious) might become decisive in survival and rapidly "sweep" across the population and become the dominant allele (E). Note that the SSR-allele linked to the selected functional allele has now become nearly fixed. The black line represents a sequence of DNA in which a particular functional gene is under strong selection (gene in red and pointed to by a red arrow). Several genetic markers, either microsatellites or SNPs, are genotyped around the selection point. The level of polymorphism (blue arrows) of the genotyped markers is indicated by the blue trace: the higher it is the more polymorphism is detected at the marker. In the first trace, selection has just started operating and a large section of the DNA is inherited together with the functional gene, thus creating a variability valley and a sweep detection window (black bracket). However, in further generations (t=2, t=3) recombination events will start to break the linkage between the selected locus and the genotyped markers, reducing the width of the variability valley and the sweep detection window.

Microsatellites may be located in coding regions where their polymorphisms affect protein function or even cause disease [START_REF] Cummings | Trinucleotide repeats: mechanisms and pathophysiology[END_REF]; may not be located within open reading frames but may have regulatory functions over gene expression or be structurally important in DNA folding [START_REF] Li | Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[END_REF]; or may have unknown function within the EST [START_REF] Li | Microsatellites within Genes: Structure, Function, and Evolution[END_REF]. Microsatellites derived from EST libraries are known as EST-SSRs (Expressed sequence tags simple sequence repeats) [START_REF] Ellis | EST-SSRs as a resource for population genetic analyses[END_REF], and conventionally have been genotyped in the same way as putatively neutral microsatellites and the resulting sample pair-wise F ST 's screened for outlier loci [START_REF] Beaumont | Evaluating loci for use in the genetic analysis of population structure[END_REF][START_REF] Beaumont | Identifying adaptive genetic divergence among populations from genome scans[END_REF][START_REF] Antao | LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[END_REF].

The detection of outlier loci has resulted in two problems: in order to identify statistically significant outlier loci, a large number of loci need to be screened in many individuals. Only large changes in allele frequency (a population is monomorphic while others are not) will be 76 identified as significant (Vasemägi et al., 2005). Secondly once an EST-SSR is found to be under selection, it is usually not annotated and no function can be allocated to it, thus the nature of the selective pressure remains unknown (Vasemägi & Primmer, 2005;G. Hoarau, personal communication referring to Coyer et al., 2009). In order to address the first problem, DNA pooling [START_REF] Breen | Accuracy and sensitivity of DNA pooling with microsatellite repeats using capillary electrophoresis[END_REF][START_REF] Ritland | Estimation of gene frequency and heterozygosity from pooled samples[END_REF] has been suggested as a quick way of evaluating selective sweeps [START_REF] Thomas | A pooling approach to detect signatures of selective sweeps in genome scans using microsatellites[END_REF]. Essentially, individuals are pooled according to provenance or any other characteristic, and screened for a multitude of markers, in a search for selective sweeps or allele range changes. The problem on non-annotation can be overcome if EST-SSRs are restricted to those for which a function has been allocated.

Several studies have examined differences in expression profiles of flounder before and after exposure to pollutants, herbicides and other environmentally relevant chemicals [START_REF] Sheader | Isolation of differentially expressed genes from contaminant exposed European flounder by suppressive, substractive hybridisation[END_REF][START_REF] Sheader | Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microsarray[END_REF][START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF][START_REF] Williams | Gene expression responses of European flounder (Platichthys flesus) to 17-β estradiol[END_REF]. These studies have found many genes that were up or down-regulated after treatment compared to controls, suggesting their involvement in pollutant response. Of the nearly 8000 ESTs published, a few (ca. 600) were identified by homology to actual proteins and known functions, and were classified into three broad areas: Energy-related, detoxification, and tissue injury/tumour growth [START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF]. Here, microsatellite-embedded ESTs are used to test whether a relationship exists between polymorphism in differentially expressed genes, considered to be relevant for the individual success in a polluted environment, and biomarkers of pollution exposure, interpreted as a proxy of success/failure in a polluted environment.

Materials and Methods:

EST-SSR development:

Here, only the differentially expressed ESTs after exposure to pollutants [START_REF] Sheader | Isolation of differentially expressed genes from contaminant exposed European flounder by suppressive, substractive hybridisation[END_REF][START_REF] Sheader | Oxidative stress response of European flounder (Platichthys flesus) to cadmium determined by a custom cDNA microsarray[END_REF][START_REF] Marchand | Molecular identification and expression of differentially regulated genes on the European flounder, Platichthys flesus, submitted to pesticide exposure[END_REF][START_REF] Williams | Gene expression responses of European flounder (Platichthys flesus) to 17-β estradiol[END_REF] were used in order to maximise the chances of finding pollutant-relevant genes. The published flounder EST library was screened for microsatellite motifs using the software SPUTNIK [START_REF] Abajian | [END_REF]. Roughly amplified in dab (Table 5.1)

Experimental design:

A sample of dab was collected from the North Sea as part of the CSEMP biomonitoring programme in North East Dogger (NeD07), a location that has a very high prevalence of liver lesions [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]. Another sample of fish collected in Irish Sea in 2007 with low prevalence of liver lesions was used as a comparison.

Two contrasting liver lesions were chosen: Hepatocellular adenomas and lipoidosis. The former are benign neoplasms and were chosen because of their potential to develop into lifethreatening condition (carcinoma), relevance to human health studies, and their known causality by pollutant exposure [START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Koehler | The gender-specific risk to liver toxicity and cancer of flounder (Platichthys flesus L.) at the German Wadden Sea coast[END_REF]. The latter is the abnormal retention of lipids on the liver which can be chemically induced, and is thought to be an early toxicological response [START_REF] Köhler | Histological and cytochemical indices of toxic injury in the liver of dab Limanda limanda[END_REF], is commonly found in fish from heavily polluted areas [START_REF] Teh | Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress[END_REF][START_REF] Schlacher | Estuarine fish health assessment: Evidence of wastewater impacts based on nitrogen isotopes and histopathology[END_REF], and can be fatal [START_REF] Penrith | Hepatic lipoidosis and fatty infiltration of organs in a captive African stonefish, Synanceja verrucosa Bloch & Schnider[END_REF]. In the current study, the aim is not to identify genes directly linked to the propensity of developing a disease (i.e. whether the disease is heritable), but to test whether certain alleles among the EST-SSRs considered are associated with alleles at genes that either improve or hinder detoxification mechanisms (i.e. variability in the differentially expressed genes leads to variability in biomarker response). Four different "Phenotypes" were considered:

A) Fish with hepatocellular adenomas from NeD07: "Adenoma NeD fish" B) Fish with lipoidosis but no tumorigenic activity from NeD07; "Lipoidosis NeD fish" C) Fish with no recorded liver disease from NeD07; "Healthy NeD" D) Fish with no recorded liver disease from Liverpool Bay (LiV07): "Healthy LiV" Bau98

Evidence for selective sweeps at any of the EST-SSRs could occur in three different ways:

First, a reduction of allelic diversity in either of the disease phenotypes would imply that certain alleles are less effective at detoxification, rendering the individual susceptible to disease; Second, allele fixation in fish with no disease record from NeD07 would suggest that the allele is linked to a key gene that is contributing to disease resistance in a noxious environment. And finally, a selective sweep could have affected a whole NeD07 population, hence the inclusion of fish from the Irish Sea, which was used as a control to confirm that any apparent lack of polymorphism at in NeD07 phenotypes was not due to a pan-population selective sweep. DNA from 22 individuals from each of the "phenotype" groups were normalised to 50ng/μl and pooled together. Additionally four individuals were also scored at each EST-SSR to assess peak shape and polymorphism. Standard PCRs were performed as previously described in Chapter 4 with tailed-forward primers and labelled tail-oligos.

Different EST-SSRs were not multiplexed or poolplexed initially to avoid confusion with crosscolour pull-ups (an artefact peak created by an interference between spectral absorbances) [START_REF] Rudin | An introduction to forensic DNA analysis[END_REF]. The genotypes were analysed using GeneMapper®.

Results:

Most ESTs isolated from flounder, amplified in dab. Of those, 13 were monomorphic and one had three peaks per individual, but showed no variability between individuals. The remaining 15 showed polymorphism among individuals and showed several peaks in at least one of the pooled amplifications.

Seven of these EST-SSRs showed differences among pooled DNA phenotype groups:

EST-02 (apolipoprotein A1 precursor): On the first amplification, Adenoma and Lipoidosis fish showed three peaks, while healthy fish from NeD and LiV only showed one peak, although with different sizes in base-pairs (bp) in each case. Weak amplification in single individuals suggested the presence of null alleles. The forward primer was redesigned (but there was no space on the flanking region for redesigning the reverse primer). The new primer combination improved microsatellite patterns, albeit null alleles were still prevalent. No differences among phenotypes were found between groups with the new primer combination.

EST-11 (COMM 1/copper metabolism): On the first amplification, three alleles (176, 182 and 185pb) were identified for Adenoma fish, but only two (176 and 182bp) for the rest of phenotypes.

EST-14 (GTP Cyclohydrolase 1): Healthy fish from NeD showed reduced variability with only two alleles (232 and 234bp), while Adenoma fish showed a large range of alleles from 206 to 242bp, lipoidosis and healthy fish from LiV showed intermediate ranges of alleles (212-234bp).

EST-19 (p8/Metastasis): Failed to amplify in the lipoidosis fish, while other amplifications were successful. The PCR was repeated to confirm the pattern. Single amplifications revealed that most individuals from the Lipoidosis group failed to amplify, but failed amplifications in the other groups were also found. Mispriming was suspected as the source of the pattern, thus a new reverse primer was designed and tested (there was no space in the flanking region for redesigning a forwards primer). The new primers amplified successfully in all samples, thus confirming problems with the first reverse primer and rejecting the possibility of a locus deletion. EST-27 (Trafficking Prot subunit 1): fish suffering from adenomas and lipoidosis showed a skewed distribution of alleles towards shorter alleles compared to all other healthy fish.

EST

However, single amplifications were distorted by a non-specific band so new primers were redesigned and tested. The new primers showed no difference in allele distribution.

EST-30 (Ubiquitin conjugating Protein): Three peaks (185, 192, and 205) were present in fish with adenomas and healthy fish from both NeD and LiV, but peak 192 was missing from fish suffering lipoidosis.

Overall, null alleles were detected at several loci which resulted in a few initial false positives.

After primers were redesigned for the null allele-affected loci, no marker showed signals of recent strong selective sweeps (i.e. lack of polymorphism) in any of the phenotype groups.

However, a few loci showed reduced variability in at least one of the groups compared to the others.

Discussion:

The development of microsatellite markers from EST libraries proved successful. Even when the ESTs had originally been isolated from another closely related species, most amplified in dab, suggesting that targeted regions of the dab and flounder genomes are similar. Twelve of these EST-SSRs showed good microsatellite profiles and, being polymorphic, would probably be well suited as population markers. Microsatellites developed from EST libraries are now commonplace in population genetic analyses [START_REF] Rossetto | Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae[END_REF][START_REF] Casas | Characterization of microsatellite markers derived from sequence databases for the European flounder (Platichthys flesus)[END_REF][START_REF] Stenvik | Development of 25 gene-associated microsatellite markers of Atlantic cod (Gadus morhua L.)[END_REF][START_REF] Ellis | EST-SSRs as a resource for population genetic analyses[END_REF][START_REF] Coyer | Expressed sequence tag-derived polymorphic SSR markers for Fucus serratus and amplificantion in other species of Fucus[END_REF], thus the EST-SSRs developed here should also be considered in future dab (or flounder) genetic studies. Although the pooling approach proved a good way of assessing patterns of polymorphism, it does not negate the need for individual screening of large numbers of individuals for many loci in order to detect weaker or older signals [START_REF] Teschke | Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans[END_REF]. Two key problems to the approach emerged in the current study:

First, the pooling approach is valid when screening large numbers of loci (ca. 1000 mouse microsatellites for the Thomas et al. (2007) study), where the focus is on detecting very strong and recent selective sweeps which lead to the fixation of only one allele. However, the extended signal of selection across variability valleys becomes eroded across generations (Figure 5.2), as recombination reduces the extent of the "valley" and variability is incorporated around the selection point, even if selection is still active. The rate of polymorphism recovery will be locus-specific depending on its unique mutation characteristics [START_REF] Brandström | Genome-wide analysis of microsatellite polymorphims in chicken circumventing the ascertainment bias[END_REF]. As a result, the power of the approach decreases over time since the selection event. The power also decreases when trying to detect weaker selective pressures: For example, when the selected allele does not become fixed for the population [START_REF] Smith | The hitch-hiking effect of a favourable gene[END_REF], or where the target gene is quantitative in nature [START_REF] Glazier | Finding genes that underlie complex traits[END_REF].

Secondly, null alleles (due to either primers failing to anneal or preferential amplification of certain alleles in the pooled reaction) were present in a few loci resulting in false positives.

The mispriming seemed more prominent in the pooled samples that in single individuals, in accordance to results reported by [START_REF] Teschke | Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans[END_REF].

In the current study, some markers showed reduced variability, but not complete allele fixation, in one or more of the phenotypes compared to others (EST-11, EST-14, and EST-30).

Such observations suggest the possibility of selection for or against specific alleles in nearby loci. Nevertheless, given there is still variability in these loci, larger numbers of individuals would need to be singly genotyped to evaluate unambiguously a selective response at the locus and gain statistical significance. Such an individual genotyping could be done in conjunction with neutral microsatellites.

To conclude, the limitations imposed in the current approach, i.e., only using ESTs involved in the toxicological response of fish, may overly reduce the size of the initial test panel. In particular, using only loci for which a function could be allocated reduced our study to using genes within the flatfish genome that are conserved across taxa, while some of the most interesting adaptations to pollution tolerance might be unique pathways evolved within flatfish, and thus unreported from other taxa. Furthermore, individual variability in gene expression may be less related to mutations in the measured gene, but in gene promoters in completely different parts of the genome (trans-acting factors) (Vasemägi & Primmer, 2005).

Finally it should be noted that the lack of evidence of selection, is not evidence that it does not exist, but that more comprehensive approaches to evaluate pollution selection pressures are required.

Summary:

Thirty-five microsatellite markers linked to genes differentially expressed after exposure to pollution were designed and tested on groups of healthy and diseased fish.

Of the polymorphic markers, none showed complete fixation for a particular allele in any of the fish groups in the pooled amplifications. However, reduced polymorphism was found in some of the loci-group combinations.

When using the EST-SSR approach, the exclusion of un-annotated sequences is not recommended, as it limits the sampled genome to phylogenetically conserved areas while recent and more relevant adaptations might be unique to the studied taxon.

Individual genotyping of fish with the polymorphic markers, in combination with neutral markers, is suggested as a means to evaluate the possibility of weak/older selection events at these loci. There was concordance in the ranking order of information content of loci with all heterozygosity-corrected estimators, though with marked differences to traditional estimators. Contrary to common perception, highly diverse microsatellites proved more informative in elucidating population genetic structure than reduced variability ones. Such discrepancies emphasize the inherent limitations of traditional estimators in understanding the distribution of information revealed by highly diverse markers. In conclusion, the use of "high-heterozygosity-tolerant" estimators is recommended for biological systems where markers are characterised by high and variable levels of heterozygosity across loci.

Glossary of terms and abbreviations:

Chapter 6 deals with a set of complex statistical concepts relevant to the analysis of population genetic data. To simplify the reading, the definition of some commonly used terms and the explanation of abbreviations used are provided below.

Heterozygote: an individual with two different alleles for the same locus

Homozygote: an individual with two equal alleles for the same locus.

HWE:

Hardy-Weinberg Equilibrium. The Hardy-Weinberg model states that, if two alleles of the same locus, A and B, are present in frequencies p and q (where p + q = 1), then the frequencies of homozygotes for A and B are AA = p 2 and BB = q 2 , while heterozygotes will be present at AB = 2pq; (note that: p 2 + q 2 + 2pq = 1). In the absence of selection, non-random mating and gene flow, the genotype frequencies remain essentially unchanged across generations. The model can be extended for loci with more than two alleles following the same principle, and larger number of alleles in a locus results in higher expected frequency of heterozygotes under the HWE.

H O : Observed frequency of heterozygotes at a given locus.

H E : Expected frequency of heterozygotes at a locus under HWE given the allelic diversity at the locus. Due to its tight relationship with number of alleles it is also known as gene diversity. HTE: Heterozygosity-Tolerant Estimator of genetic differentiation: these are both estimators corrected for heterozygosity (HCE) and estimators purposely constructed to take into account differences in locus heterozygosity (i.e. D est )

Δ HC : Locus-specific magnitude of change between UCE and HCE estimates, which was calculated for each locus, year and pair of Θ WC and Θ' WC as:

Δ HC = Θ' WC -Θ WC .
Homoplasy: within a locus, the mutation of an allele to another already pre-existing allelic state, thus not resulting in a new detectable allele. The occurrence of homoplasy is problematic for population genetic studies as the resulting two alleles are not distinguishable by detection methods (identical by state) but are not related to each other (identical by descent).

Null allele: an undetected allele, either due to mutations in the priming site or scoring errors. Null alleles may increase the frequency of apparent homozygote individuals and disrupt the HWE.

Introduction:

The quantification of genetic differentiation among populations has generated much discussion ever since Wright devised measures to describe the distribution of genetic variation in wild populations (1943; 1951). The level of structure between populations is defined by a parameter (i.e. F ST , D, R ST ) which is the real value of structure associated with the studied organisms and that, as all parameters, can never be truly known or computed, even if the whole species is genotyped. Instead, geneticists use differences in genetic diversity among samples collected from the populations thought to be representative of those populations; statistics are then used to reach an approximate value of the real parameter [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF]Hedrick, 1999a). Statistical values, when used to evaluate a parameter, are known as estimators.

Although there are a plethora of genetic differentiation estimators, a few have dominated the field of population genetics: D S and unbiased D SU [START_REF] Nei | Genetic distance between populations[END_REF]1978), [START_REF] Cavalli-Sforza | Phylogenetic analysis: models and estimation procedures[END_REF], G ST [START_REF] Nei | Analysis of gene diversity in subdivided populations[END_REF], Θ WC [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] and φ ST (Excoffier et al., 1992) are most commonly reported. Many of these estimators were initially developed to analyse trait frequencies, blood groups, allozymes and sequence data which are all characterised by low to moderate levels of diversity. However, the discovery of highly polymorphic microsatellite markers has revolutionized the field of population genetics, increasing the power and scope of questions that can be addressed [START_REF] Jarne | Microsatellites, from molecules to populations and back[END_REF][START_REF] Li | Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review[END_REF], especially in weakly differentiated systems such as marine fish (Carvalho & Hauser, 1994;1998;[START_REF] Chistiakov | Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics[END_REF][START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF]. As microsatellites became more commonly used, their high mutation rates and potential limit in number of alleles (Goldstein et al., 1995a;[START_REF] Goldstein | Launching microsatellites: a review of mutation processes and methods of phylogenetic inference[END_REF] led to the development of several new estimators of genetic differentiation that take into account the mutation mechanisms associated with microsatellites, that is, the stepwise mutation model (SMM) and the limited K-allele model (KAM) [START_REF] Kimura | Stepwise mutation model and distribution of allelic frequencies in a finite population[END_REF][START_REF] Shriver | VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach[END_REF][START_REF] Valdes | Allele frequencies at microsatellite loci: the stepwise mutation model revisited[END_REF]. The new estimators were [START_REF] Slatkin | A measure of population subdivision based on microsatellite allele frequencies[END_REF], (δμ) 2 (Goldstein et al., 1995b), D SW [START_REF] Shriver | A novel measure of genetic distance for highly polymorphic tandem repeat loci[END_REF] and [START_REF] Michalakis | A genetic estimation of population subdivision using distances between alleles with special reference for microsatellite loci[END_REF]. The performance of such estimators has been extensively tested [START_REF] Takezaki | Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[END_REF][START_REF] Goldstein | Launching microsatellites: a review of mutation processes and methods of phylogenetic inference[END_REF][START_REF] Pérez-Lezaun | Microsatellite variation and the differentiation of modern humans[END_REF][START_REF] Lugon-Moulin | Hierarchical analyses of genetic differentiation in a hybrid zone of Sorex araneus (Insectivora: Soricidae)[END_REF], and although microsatellites do not conform to all the assumptions of the infinite allele model (IAM), estimators of F ST (i.e. Θ WC ) generally provide a better representation of genetic differentiation within species than R ST [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF]Kalinowski, 2002a;Estoup et al., 2002a).
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Most estimators of genetic differentiation are strongly dependent on the heterozygosity of the markers used. G ST and to a lesser extent Θ WC , were developed to detect differences in expected heterozygosities, and explain observed excess homozygosity by partitioning subpopulations [START_REF] Nei | Analysis of gene diversity in subdivided populations[END_REF]. Therefore, differentiation cannot exceed the level of homozygosity (Hedrick, 1999b;Kalinowski, 2002a). With low heterozygosity markers such as allozymes there is considerable scope to assign excess homozygosity to substructure if needed (e.g. when samples do not comprise a panmictic population). However, as heterozygosity increases there is less scope (homozygosity) for partitioning, which results in negligible or no differentiation between samples (Hedrick, 1999b;Kalinowski, 2002b). Such patterns have been interpreted as highly heterozygous loci losing information content (becoming saturated) due to their high mutation rates resulting in homoplasy [START_REF] Balloux | Microsatellites can be misleading: an empirical and simulation study[END_REF][START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF][START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF][START_REF] Astanei | Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas)[END_REF]. It is generally believed that the potential for information content of a marker increases with heterozygosity until a maximum value is reached around H E ~0.700 after which the utility of a marker decreases sharply [START_REF] Leblois | Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance[END_REF] to the point where [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF] recommends using loci with H E < 0.800 for the computation of Θ WC . Indeed, [START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF] suggested separating loci by heterozygosity and performing analyses separately so the effect of mutational bias in highly heterozygous loci could be ascertained. Taking account of these constraints on measures of genetic differentiation is of utmost importance for studies on taxa displaying high heterozygosities [START_REF] Ward | A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes[END_REF][START_REF] Dewoody | Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[END_REF]. Indeed, the inverse relationship between Θ WC and heterozygosity has been reported in several empirical [START_REF] Paetkau | An empirical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae) populations[END_REF][START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF][START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF][START_REF] Astanei | Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas)[END_REF][START_REF] Carreras-Carbonell | Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci[END_REF][START_REF] Weetman | Genetic population structure across a range of geographic scales in the commercially exploited marine gastropod Buccinum undatum[END_REF] and simulated studies (Kalinowski, 2002b;2002a).

Populations with no shared alleles (i.e. indicating no recent genetic exchange), but high heterozygosity, may show little differentiation (Hedrick, 1999b;[START_REF] Carreras-Carbonell | Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci[END_REF]. Therefore, highly heterozygous loci may not necessarily be saturated; instead, the estimators may be limited in their statistical properties at high heterozygosities. Focussing on these limitations on G ST , [START_REF] Hedrick | A standarized genetic differentiation measure[END_REF] proposed a standardised G' ST by dividing the estimate (G ST ) by the maximum hypothetical value that could be reached given the observed levels of genetic variation (G ST(max) ). Following the same approach, [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF] modified an analysis of molecular variance (AMOVA) (Excoffier et al., 1992) to obtain a similarly standardised differentiation estimator: φ' ST . The latest addition to this family of HTE of genetic differentiation were devised by [START_REF] Jost | Gst and its relatives do not measure differentiation[END_REF], where a new measure, D, and its unbiased estimator D est , are suggested as measures of actual differentiation. Despite the numerous studies on the effect of gene diversity on estimators of differentiation such as Θ WC , relatively few studies have employed heterozygosity-corrected estimators of differentiation until recently [START_REF] Heller | Relationship between three measures of genetic differentiation Gst, Dest, and G'st: how wrong have we been?[END_REF]. The initial uses of G' ST were limited to the evaluation of outlier loci [START_REF] Nielsen | Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms[END_REF], the comparison of different markers (Hemmer- Hansen et al., 2007a), and testing especially whether maximum differentiation has been attained [START_REF] Duftner | Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from lake Tanganyika[END_REF]. However, the number of studies reporting standardised estimators of differentiation is increasing, targeting population structure of turbot, Psetta maxima, [START_REF] Florin | megrim, Lepidorhombus whiffiagonis[END_REF], Trinidadian guppies, Poecilia reticulata, (Suk & Neff, 2009a), Antarctic icefish, Chaenocephalus aceratus, [START_REF] Papetti | Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands[END_REF], several species of Tanganyikan cichlids [START_REF] Wagner | Contrasting patterns of spatial genetic structure in sympatric rock-dwelling cichlid fishes[END_REF], American lobsters, Homarus americanus, [START_REF] Kenchington | Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus[END_REF] and sea stars, Astropecten aranciacus [START_REF] Zulliger | Genetic structure of the high dispersal Atlanto-Mediterranean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci[END_REF].

Although the new estimators of genetic differentiation are unlikely to radically change the patterns of significance of differentiation obtained with more traditional estimators, they may improve our understanding of how different populations are, and consequently improve our ability to identify mechanisms generating temporal and spatial patterns. In the field of fisheries genetics, for example, the sensitivity of Θ WC to heterozygosity may explain, in part, the incidence of very low (Θ WC = 0.002) but highly significant structuring commonly found in many marine fish [START_REF] Lundy | Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish[END_REF][START_REF] Ruzzante | A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence[END_REF][START_REF] Knutsen | Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod[END_REF][START_REF] Jørgensen | Marine landscape and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF][START_REF] Larsson | Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus[END_REF]. Although there has been some discussion about the performance of the HTE retrospectively [START_REF] Heller | Relationship between three measures of genetic differentiation Gst, Dest, and G'st: how wrong have we been?[END_REF] and in theory [START_REF] Ryman | Effect of mutation on genetic differentiation among nonequilibrium populations[END_REF]2009;[START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF], there is a need for empirical evaluation of the use of HTE and their implications in population structure interpretation and choice of markers.

The aim here is not to revise the mathematical equations and assumptions underlying the estimators, which has been dealt with elsewhere (Hedrick, 1999b;[START_REF] Hedrick | A standarized genetic differentiation measure[END_REF][START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF][START_REF] Jost | Gst and its relatives do not measure differentiation[END_REF][START_REF] Ryman | Effect of mutation on genetic differentiation among nonequilibrium populations[END_REF]2009;[START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF] Although in later chapters these areas will be considered separately, in this chapter, for simplicity, two broad groups will be used and referred to as North Sea (North Sea and English Channel) and Irish Sea (Irish Sea and Atlantic).

In total, 40 samples, each with 21 to 183 individual dab, Limanda limanda, were analysed (Table 6.1). DNA was extracted from fin clips using the hi-salt extraction method [START_REF] Aljanabi | Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[END_REF] Some individuals could not be fully genotyped even after several attempted amplifications and have been removed for some of the analyses.

Data Analysis:

Power, locus characteristics and HWE:

The power of the microsatellite suite to detect differentiation between two hypothetical populations was assessed with POWSIM [START_REF] Ryman | POWSIM: a computer program for assessing statistical power when testing for genetic differentiation[END_REF]. The default Markov chain parameters were used with the overall combined allele frequencies, dividing them into two populations with effective population size (Ne) of 10,000 individuals, and for varying number of generations (proportional to Fst) and sample sizes of 100 and 50 individuals. The software CREATE was used to produce input files whenever possible [START_REF] Coombs | CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs[END_REF]. Observed (H O ) and expected heterozygosity (H E ) were estimated with GENALEX [START_REF] Peakall | GenAlEx V5.04: Genetic Analysis in Excel[END_REF] and GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]. The same software was used to check genotypes for Hardy-Weinberg equilibrium (HWE) and linkage disequilibrium. Markov Chain parameters for the HWE test in GENEPOP V4.0 were 10,000 dememorisations and 100 batches of 5,000 iterations. 
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The presence of null alleles was assessed with MICRO-CHECKER [START_REF] Van Oosterhout | MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data[END_REF]. Whenever samples or loci were not in HWE, and linkage disequilibrium or null alleles were detected, the source was identified and the electropherogram re-checked for veracity.

Single locus information content:

Each locus has a unique evolutionary history depending on when the locus became polymorphic within the genome, the locus and allele-specific mutation rates, and the population processes shaping the distribution of alleles. Therefore, the information content regarding population structure will also be unique to each locus. The information content of a locus, and thus its value from a population genetics perspective, will be assessed here by the amount of differentiation it is able to detect in the studied system.

The following estimators of genetic differentiation were calculated for each locus independently: Θ WC and Θ' WC , G ST_est and G ST_est ', φ ST and φ' ST , D S and D est . Locus-specific Θ WC [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] was calculated in GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]. Standardised Θ' WC estimates were calculated in a similar way to G' ST [START_REF] Hedrick | A standarized genetic differentiation measure[END_REF]. Θ max was calculated by transforming the raw genotype data with RECODEDATA V.0.1 [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF]) so that all populations had non-overlapping allele ranges for all loci. In these conditions, all populations are maximally differentiated (no alleles in common), but heterozygosities remain unaffected by the transformation. Single locus Θ max was calculated also with GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]. Standardized Θ' WC was calculated by dividing the original Θ WC by Θ max . Other studies have recently applied similar approaches to calculate HCEs of F ST [START_REF] Kenchington | Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus[END_REF][START_REF] Papetti | Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands[END_REF]. Single locus φ ST (Excoffier et al., 1992) and its heterozygosity corrected standardised version, φ' ST [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF], were calculated in GENODIVE [START_REF] Meirmans | GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms[END_REF] with significance values based on 10,000 permutations. G' ST and D were calculated manually following published instructions [START_REF] Hedrick | A standarized genetic differentiation measure[END_REF][START_REF] Jost | Gst and its relatives do not measure differentiation[END_REF] and confirmed with the software SMoG-D [START_REF] Crawford | SMoG-D: Software for the measurement of Genetic Diversity[END_REF], which was also used to calculate G' ST_est and D est which are corrected for differences in sample size [START_REF] Nei | Estimation of fixation indices and gene diversities[END_REF]. To assess the influence of the correction in each locus, the magnitude of the increase (Δ HC ) from UCEs to HCEs was calculated for one of the estimators (Θ WC ) by subtracting the UCE from the HCE (i.e. Δ HC = Θ' WC -Θ WC ) for each locus and year.

Investigation of the HTEs was undertaken using two versions of the dab data set: data set A consisted of the entire data; while data set B consisted of only fully genotyped individuals (89% of the entire data set) and excluded loci with evidence of null alleles, allowing an examination of the influence of missing data and loci with null alleles. The relationships (Pearson's correlation and associated probabilities) between the different estimators of differentiation and H E or probabilities of random genic and genotypic distributions were analysed using MINITAB®.

Two additional contrasting analysis methods were employed to evaluate the relevance of the heterozygosity correction on a locus by locus basis. First, a locus specific Exact G-test [START_REF] Raymond | An exact test for population differentiation[END_REF], which reports the probability that the alleles observed at a locus are randomly distributed among samples (i.e. the locus is not structured). Exact G-tests were calculated in GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF] with 10,000 dememorisations and 500 batches of 10,000 iterations. And secondly, a multivariate analysis, in which the allelic patterns provided by each loci can be studied independently and contrasted [START_REF] Laloë | Consensus genetic structuring and typological value of markers using multiple co-inertia analysis[END_REF][START_REF] Jombart | Genetic markers in the playground of multivariate analysis[END_REF]. The consensus of genetic structuring of the different markers was assessed by correspondence analysis of single locus population data. The analysis was performed with the packages ADE4 [START_REF] Chessel | The ade4 package -I: One-table methods[END_REF] and ADEGENET [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF] in R (R Development Core Team, 2009), to evaluate the magnitude, the direction, and the temporal stability of the information portrayed by each locus. Missing allelic data were substituted by the mean χ 2 distance, which effectively places missing data at the origin of the axis [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF]. Using genetic markers under directional or balancing selection can distort estimates of genetic differentiation [START_REF] Nielsen | Evidence of microsatellite hitch-hiking selection in Atlantic cod (Gadus morhua L.): implications for inferring population structure in nonmodel organisms[END_REF], therefore the neutrality of markers was tested with the F ST -outlier method [START_REF] Beaumont | Evaluating loci for use in the genetic analysis of population structure[END_REF][START_REF] Beaumont | Identifying adaptive genetic divergence among populations from genome scans[END_REF] in LOSITAN [START_REF] Antao | LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[END_REF] for each year independently and the whole data set combined.

Multilocus pairwise population differentiation:

Locus-specific pairwise Θ WC [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF], Θ max , Θ' WC , and pairwise Exact G-test of genic subdivision [START_REF] Raymond | An exact test for population differentiation[END_REF] were calculated in GENEPOP 4.0. Pairwise Θ WC , Nei's D S [START_REF] Nei | Genetic distance between populations[END_REF] and unbiased D SU [START_REF] Nei | Estimation of average heterozygosity and genetic distance from a small number of individuals[END_REF], and associated significances based on 1000 permutations, were calculated with GENETIX (Belkhir et al., 1996(Belkhir et al., -2004)). Pairwise φ' ST and significance values based on 10,000 permutation were calculated in GENODIVE [START_REF] Meirmans | GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms[END_REF]. Pairwise D est and G' ST_est were computed in SMoG-D [START_REF] Crawford | SMoG-D: Software for the measurement of Genetic Diversity[END_REF]. As recommended by [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF], multilocus averages were calculated for Θ WC in GENEPOP 4.0. However, another multilocus average (arithmetic mean of all loci)

was calculated for Θ WC and for all other estimators so they could be compared. For all estimators, each year was treated independently as suggested by [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF]. Loci with null alleles were excluded from the multilocus average calculation.
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6.4 Results:

Power, locus characteristics and HWE:

POWSIM suggested that the power of the loci combination was 99% to detect differentiations as low as 0.0025 with sample sizes of 100 individuals, or as low as 0.005 for sample sizes of 50 individuals. The genotyping error rate was low with 98.4% of alleles identical in both amplifications of the duplicated sample, and most of the errors were at two microsatellite loci: DAC1-35 (92% accuracy) and DAC5-70 (96% accuracy). The number of alleles per locus ranged between 8 and 56, and the observed heterozygosity per locus was between 0.089 and 0.946 (Table 6.2). The mean observed heterozygosity across loci within samples was between 0.666 and 0.728. The exclusion of DAC1-35 and DAC5-70 did not alter significantly the mean observed heterozygosity. Two microsatellites, DAC1-35 and DAC5-70, showed deviations from HWE in the form of heterozygote deficiency (Table 6.2). MICRO-CHECKER suggested the presence of null alleles in some of the samples in some of the years for DAC1-35 and for all samples in all years for DAC5-70. No markers showed evidence of large allele drop-out or stuttering scoring problems. Once the two markers with heterozygosity deficiencies were removed, all samples conformed to HWE expectations. When all samples were pooled into a single group each year, HW became highly significant, even after removal of DAC1-35 and DAC5-70, suggesting that all samples do not belong to the same panmictic population. No linkage disequilibrium was found among any combination of loci when all samples were pooled together. However, significant linkage (p<0.001) was found in up to three genotype comparisons in each year, but none were consistent across samples or years. The source of the disequilibrium was always one or two individuals showing rare alleles or unusual allele combinations at two or more loci for the particular sample collected.

Locus neutrality test:

The neutrality test conducted using LOSITAN suggested that DAC3-14 was outside the 95% confidence envelope for each of the four years and the whole data set, suggesting that directional selection may have played a role in shaping the allele distribution at that locus.

Although one locus (16x0.05=0.8) would be predicted to be significant by chance alone, the annual recurrence deserves attention. Four other loci (DAG2-90, DAG5-17, DAC5-21, and DAC1-35) appeared to be under balancing selection at 95% CI when the whole data set was analysed together, but not on a year by year basis, when the CI was set to 99%, or when DAC3-14 was removed from the analysis.

Locus= locus name; Na = Number of alleles at locus; Range = Range of allele sizes (bp); Ĥo = Observed heterozygosity at locus; Ĥe= Mean expected heterozygosity; pvalue of HWE conformity= probability that the locus is in Hardy-Weinberg equilibrium expectations, significant values (p<0.001) are in bold; P-value of Genic differentiation = probability that the allele diversity found at the locus is randomly distributed across samples, values significantly departing from random distribution (p<0.001) are in bold; Fis (GENEPOP) = locus-specific Fis as calculated by GENEPOP. Range (bp) 300-416 234-276 186-224 108-156 95-129 156-200 134-209 150-192 312-368 98-124 154-260 102-162 238-352 91-176 98-205 179-197 Accordingly, Θ WC also exhibited the same trend, with higher values for low diversity markers 2005 2007 The analysis of genic and genotypic subdivision (i.e. whether alleles are randomly distributed across samples) revealed that allele frequencies were significantly different among samples 88). When studied in more detail it became clear that there were marked and consistent differences in allele frequencies at some loci between some locations, particularly between basins (Figure 6.5).
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Multivariate Analysis:

The results of the single locus correspondence analysis (CA) showed that four loci (DAC1-55, DAG4-64, DAC3-14, and DAC1-90) separated North Sea and Irish Sea samples clearly along the first axis (The CA of these four loci are in Figure 6.6). These markers had the highest locusspecific Θ' WC , while many had low Θ WC , confirming that important information was missed by Θ WC . Another three loci (DAC2-15, DAC5-5, and DAC4-40) also succeeded in separating North Sea and Irish Sea samples for some of the years, which coincided with those years with higher locus-specific Δ HC . The remaining loci did not differentiate between North Sea and Irish Sea. In each plot, the screeplots of the eigenvalues are drawn in a corner. Irish Sea samples are coloured in greed to ease identification. 

Single locus information content:

Correcting estimates of genetic differentiation for locus heterozygosity had an important impact on interpreting the patterns of locus-specific genetic structuring. Θ WC , G ST_est , and φ ST values were all negatively correlated with H E (average of UCEs = -0.244; p≈0.05), a pattern that became even more apparent when DAC3-14 (which had a high UCEs despite high H E ) was removed (average r = -0.420; p=0.001). The slope of the relationship of UCEs and H E was not very steep because differentiation among the samples was generally not strong: a feature typical of marine species [START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF]. As populations become increasingly differentiated across the genome, UCEs are more likely to pick up differentiation at low H E loci than at highly diverse loci which will result in steeper slopes such as those found for sockeye salmon (r≈-0.708; p<0.001) [START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF], walleye Pollock (r≈-0.792; p=0.001) [START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF] and zebra mussels (r≈-0.900; p≈0.036) [START_REF] Astanei | Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas)[END_REF]. These studies involved either anadromous species, which are known to be much more strongly structured than marine fish [START_REF] Ward | A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes[END_REF][START_REF] Dewoody | Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals[END_REF][START_REF] King | Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation[END_REF], or covered large parts of the species range, which maximises the chances of finding structure. At the opposite end of the scale, [START_REF] Larsson | Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus[END_REF] reported higher differentiation (Θ WC =0.002) with microsatellites than with allozymes (Θ WC =0.001), contradicting the dependence of Θ WC on heterozygosity. However, in systems with low levels of structuring, such as in herring, Θ WC is more likely to detect at least minimal differences for microsatellites than for low diversity allozymes, since the former typically have higher information content, that is, are more genetically diverse.

The negative relationship between UCEs and H E would suggest that, in the case of dab, low H E markers contain more information than high H E ones. However, HCE and D est all had positive relationships with H E (average r≈0.325; p≈0.009), more accurately representing the higher chances of allele-rich loci to show genetic structure among populations. When plotted against H E all four HTE showed a similar pattern: low heterozygosity loci showing narrower levels of differentiation, while high heterozygosity markers exhibited a much broader range of differentiation levels, truly representing the increased probability of highly diverse markers to be structured among populations. The pattern is concordant with that observed in other studies [START_REF] Carreras-Carbonell | Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci[END_REF], where highly variable markers, when corrected for heterozygosity, display higher levels of differentiation.
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The linear relationship between Θ max and H E suggest that standardising Θ WC for individual loci could be simplified as Equation 6.1:

Although such a correction might appear to inflate estimates of differentiation, it actually has very little effect on non-structured loci: DAG2-90 remains negative and DAC5-77 barely changes in value (Θ WC and Θ' WC < 0.002) despite high gene diversities (H E = 0.9 and 0.5 respectively). A note of caution should, however, be exercised here: pairwise Θ' WC calculations cannot be simplified using locus overall H E , as each pairwise comparison has its own unique specific expected total heterozygosity (H T ) associated with it. Such a correction would, however, be fairly easy to include in existing packages.

There were more mismatches between the significant departures from random genic Although [START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF] highlighted the negative relationship between H E and differentiation, it was assumed that because the estimated Θ WC did not reach the maximum value (Θ max ), Θ WC was not being constrained by low homozygosity. Essentially, Θ max was viewed as the saturation limit, beyond which any further change in allele frequencies would be obscured by homoplasy and thus would be non-informative. However, a Θ WC of one will only be achieved when two populations are fixed for one alternative allele each (Kalinowski, 2002a). From unity, Θ max decreases with increasing number of alleles, and to reach a Θ max of any value (Θ max = 1-H E ) two populations must not share any alleles, which corresponds to the intuitive definition of full differentiation (100% differentiated), and which can occur at any value between 0 and 1, depending on heterozygosity. Hence, the space between zero and Θ max is the full range of values for Θ WC , and therefore the standardisation of Θ WC (Θ' WC ) results in a more appropriate indicator of the level of population connectivity, which is usually the target of molecular ecology studies.

Unfortunately, O'Reilly et al. (2004) did not report a locus-specific exact G-test of genic or genotypic differentiation that would portray more accurately how informative the loci used were. Given the elevated number of significant comparisons in the pairwise exact G-test (42 out 45 comparisons with a p<0.001), however, it is likely that much information was missed in the seven loci with reported H E above 0.90. Indeed if one recalculates locus-specific Θ' WC from their published Θ WC and H E using Equation 6.1, some of their high polymorphism loci which showed slight differentiation (Θ WC ~0.002) reveal Θ' WC as high as ~0.060. Furthermore, many of these loci (namely Tch5, Tch6, Tch8, and Tch14) with increased Θ' WC coincide with those that produced more significant pairwise comparisons in the exact G-test of population differentiation.

Population genetic differentiation:

Dab were not expected to display strong levels of differentiation at the scale covered in this study, but the stability of differentiation between sea basins among the temporal replicate samples, regardless of which estimator is used, conveys strong evidence of some degree of genetic and potentially, demographic independence between Irish Sea and North Sea samples.

Pairwise comparisons of HTE did not alter the multilocus differentiation values among samples within the same basin noticeably, corroborating the rather homogeneous genetic composition of dab within basins. On the other hand, multilocus differentiation estimates among samples from different sea basins increased consistently, suggesting that previously undetected differences at high heterozygosity markers exerted an impact. failed to reveal any population structure within the British Isles [START_REF] Astanei | Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas)[END_REF].

Nevertheless, a later study employing eight moderately heterozygous allozymes on the same mussel samples revealed much higher substructuring [START_REF] Gosling | Genetic variability in Irish populations of the invasive zebra mussel, Dreissena polymorpha: discordant estimates of population differentiation from allozymes and microsatellites[END_REF], thus reanalysis of the microsatellite data correcting for heterozygosity might reveal previously undetected structuring.

In the low differentiation system studied here, the heterozygosity correction only changed the values slightly, but the limits imposed by high heterozygosity on Θ WC become increasingly relevant as samples are more differentiated. The differentiation levels found by [START_REF] Carreras-Carbonell | Population structure within and between subspecies of the Mediterranean triplefin fish Tripterygion delaisi revealed by highly polymorphic microsatellite loci[END_REF] between two subspecies of Tripterygion delaisi were apparently low (Θ WC =0.066). Nevertheless, when heterozygosity was accounted for, differentiation increased over an order of magnitude (G' ST =0.740), more concordant with expectations for divergence of subspecies.

In addition to the intrinsic relationship between traditional estimators and heterozygosity, Kalinowski (2002a) reported that the effective population size (N e ) had a significant effect on Θ WC , where small populations reached higher levels of Θ WC than large populations. The observation was explained by the propensity for large populations to harbour more alleles than small ones. Thus the latter have lower heterozygosities, which allow larger Θ max , yielding higher differentiation as measured with traditional estimators for smaller populations than for larger ones. Such pattern was also acknowledged by [START_REF] Ryman | Gst is still a useful measure of genetic differentiation -a comment on Jost's D[END_REF] between equilibrium G ST and within-sample heterozygosity (H S ). Although, such processes are tangentially linked with the buffering inertia of large populations to genetic drift, it adds another dimension to the explanation of small differentiation values found in many marine organisms, exemplifying the importance of correcting for heterozygosity when studying genetic structure of large populations with highly diverse microsatellites.

Mutation and information content:

Several studies have identified the problem of estimating F ST from highly polymorphic microsatellites [START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF][START_REF] O'reilly | Inverse relationship between Fst and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure[END_REF][START_REF] Astanei | Genetic variability and phylogeography of the invasive zebra mussel, Dreissena polymorpha (Pallas)[END_REF], but all assumed that the error was in the markers, rather than the estimator: by equating H S to mutation bias, they concluded that mutation was responsible for the lack of differentiation among populations. Indeed, mutation, as the ultimate source of all genetic variability, plays an important role in determining the information content of loci. Microsatellites have dominated population genetics recently due to their typically high and largely neutral rate of mutations.

However, such high mutability can compromise their effectiveness as proxies of demographic processes: hypothetically, mutation rates could reach levels where homoplasy (mutation to an already existing allelic state) would mask the allelic patterns imprinted by evolutionary processes (Estoup et al., 2002a).

Whether the low UCEs values obtained with high diversity loci is due to problems in the estimators or homoplasy needs careful examination. The value of differentiation at a neutral locus between two populations is determined by the balance between two opposing forces:

on one side, drift will change the allele frequencies randomly, while on the other, migration between the populations will homogenise allele frequencies. A third force, mutation, plays a pivotal role in our capacity to detect the balance. If a mutation results in a new allele, then the increased number of variants for drift to act upon will increase the power of differentiation detection at a locus. On the other hand, if an allele reverts back into a preexisting allele (homoplasy), then the mutation will mimic the effect of a migrant, producing the false impression that the two populations are still exchanging genes. Thus high mutation rates will be associated both with higher power to detect differentiation and an increased risk of assuming that shared alleles between populations are identical by descent. Although the level of homoplasy at a locus has indeed been found to be correlated with mutation rate (Estoup et al., 2002a;[START_REF] Brandström | Genome-wide analysis of microsatellite polymorphims in chicken circumventing the ascertainment bias[END_REF], loci with a higher number of alleles may be more resistant to the effects of homoplasy as homoplasious events will be diluted among the large number of alleles. Indeed, Estoup et al. (2002a) concluded that high diversity loci were still more informative, regardless of homoplasy, than less diverse loci in exact tests of differentiation, and that the most marked effects of homoplasy would be detected in highly mutable loci with a tightly restricted allele states.

Explaining the low UCE of high diversity loci by homoplasy would imply that homoplasy is equally rampant and purposeful in all high diversity loci to generate a consistent lack of additional differentiation between independent populations at these loci. On the contrary, in the present study, several highly diverse microsatellites had very low UCE values, but showed concordant structure of samples across locus-specific multivariate analysis, and the allelic distributions were not random across samples (exact G test p<0.001) indicating differentiation among samples and suggesting that homoplasy is not always the only force associated with low UCEs observed in highly diverse microsatellites.

Furthermore equating heterozygosity and mutation rate may be misleading, as although two equally diverse loci may have had the same number of mutations resulting in the current polymorphisms (estimated mutation rate), the speed and time in which the loci have reached the current state may be very different (real mutation rate), and thus, the two markers could carry very different information about demographic history depending on when in evolutionary time the loci became polymorphic. For example, despite the heterozygosity correction, non-structured markers remained uninformative. Given that most loci show some degree of differentiation across the sampled range, it becomes interesting to know why a few loci are so consistently non-differentiated. All microsatellites were tested in eleven other

European flatfish species for cross-species amplification (Tysklind et al., 2009b). All noninformative loci (DAC2-28, DAG2-90, and DAC5-77) amplified in four to eight other closely related species, suggesting the loci are older than the separation of the different species and that some mechanism (either homoplasy within a limited allele size range or balancing selection) is preventing the accumulation of demographic information in these loci.

Conversely, highly informative loci for population structure in dab (DAC3-14, DAC4-64, DAC1-90, DAC2-15, and DAC1-55) failed to amplify in any of the other surveyed species, indicating these loci emerged and became polymorphic exclusively within dab's evolutionary history, and thus, carry information solely about demographic processes of dab.

Drift and information content:

As with any contentious statistical novelty, HTEs have been rejected by some authors [START_REF] Ryman | Effect of mutation on genetic differentiation among nonequilibrium populations[END_REF]2009) because G' ST implies that different loci experience varying levels of drift, a process which is also observed in the current study. Their simulations show that loci with the same mutation rate reach the same G ST value when mutation equilibrium is reached regardless of initial heterozygosity (Figure 4 in [START_REF] Ryman | Gst is still a useful measure of genetic differentiation -a comment on Jost's D[END_REF]. However, two issues emerge. First, the maximum heterozygosity considered was 0.450, whereas higher heterozygosities where G ST is expected to behave very poorly, are not reported. And secondly, populations will have loci with different mutation rates, thus graphs A and C of their However, drift will have a much stronger effect on highly variable loci: those with high mutation rates, as defined to [START_REF] Ryman | Gst is still a useful measure of genetic differentiation -a comment on Jost's D[END_REF], will display such characteristics as lower allele frequencies and are thus more prone to relative change and extinction than alleles at low diversity loci. Indeed, in the same simulation, markers with high mutation rates (Hs=0.800) reach their maximum differentiation value (G ST = 0.018 or G' ST = 1) at which the populations no longer share any alleles after ca. 10 -3 generations. Lower heterozygosity markers (Hs=0.286; Hs=10 -3 and Hs=10 -5 ), conversely take considerably longer (ca. 10 -4 generations) to reach a state of maximum differentiation. The speed at which differentiation occurs in the Figure 1 system for [START_REF] Ryman | Gst is still a useful measure of genetic differentiation -a comment on Jost's D[END_REF] is, however, exaggerated, as no migration is assumed between populations, and both drift and mutation (which under the IAM used will only create new alleles) will work synergistically to increase differentiation.

Thus in natural systems where the effects of one process could mask the other, the speed of differentiation is expected to be slower, albeit still conforming to the same principles.

Finally, as pointed out by [START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF], G ST and other UCEs may still influence the estimation of migrant and past demographic events, but are completely unreliable at depicting differentiation between populations because G ST =0.001 may represent a range of structuring from no differentiation to complete segregation of allelic states. Moreover, differentiation among samples should be descriptive of the allele diversity observed, and independent of any assumptions or equilibrium states.

Detection of loci under selection:

The implications of the limitations imposed by heterozygosity on F ST estimates are far from trivial. Different areas of the genome are expected to display varying levels of estimated differentiation between independent populations [START_REF] Nosil | Divergent selection and heterogeneous genomic divergence[END_REF], however, accepting Θ WC as an estimator of differentiation implies that different regions of the genome have different values for maximum levels of differentiation depending on allele diversity (i.e. two hypothetical populations with no similarities in their genome could have estimated F ST of any value between 0 and 1 despite their genomes being completely different) which immediately negates the comparison or averaging Θ WC among loci without prior standardisation.

Following the same line of thought, the description of markers under differential and balancing selection by comparing F ST to heterozygosity would need re-defining. Under current assumptions an average Θ WC is used to generate a 95% confidence interval envelope of possible Θ WC across a range of H E . The average Θ WC value has been fixed when computing the simulated markers to remain the same, regardless of H E , in an attempt to mimic real genomic differentiation (F ST ). However, as populations become differentiated, loci with lower H E will generate higher Θ WC values than high heterozygosity loci. Such a pattern can be observed in the envelope of Θ WC for simulated loci, as it gets narrower at the high heterozygosity end of the spectrum. However, the key issue here is that the same value of Θ WC implies very different levels of differentiation across the range of heterozygosity: a Θ WC = 0.05 at H E = 0.4 corresponds to many more alleles in common (8% of maximum differentiation) than Θ WC =0.05 at H E =0.9 (50% of maximum differentiation).
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HTE would exhibit a different behaviour: at the same level of true genomic differentiation HTE are expected to increase (as would the height of the envelope) with H E , given that there are more alleles for drift to act upon. In the case of dab, one of the most structured loci, DAC3-14, showed marked allele frequency differences in samples from different basins, and LOSITAN highlighted the locus as potentially under selection, a pattern also obvious when Θ WC was plotted against H E . However, once corrected for heterozygosity, estimates of differentiation in other loci resembled those in DAC3-14. Under this scenario, DAC3-14 would most likely be within the 95% confidence envelope. Furthermore, if selection was effectively driving the structure found at DAC3-14, the expected direction of differentiation would be different to that shown by the rest of the markers [START_REF] Schlötterer | A microsatellite-based multilocus screen for the identification of local selective sweeps[END_REF]. The correspondence analysis revealed that several loci showed structure in the same direction as DAC3-14 (i.e.

separating Irish Sea from North Sea), suggesting a genome-wide differentiation rather than locus-specific selection.

Another example of the effect of heterozygosity correction on the evaluation of loci under selection can be observed in the [START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF] study. Outstanding differentiation for both the least diverse single allozyme and microsatellite (locus-specific Θ WC around 0.150 compared to the average of 0.023) and a strong and significant inverse correlation between Θ WC and H S (r=-0.805; p<0.001) were reported. However, when HCE are calculated using Equation 6.1, the average Θ' WC and G' ST_est are approximately 0.120 and the two previously outlying markers are no longer discordant with the rest. The negative correlation between differentiation and heterozygosity is also lost (r=0.217; p=0.344).

Comparison between estimators:

The function of an estimator is to find a value that best represents the relative time of divergence and the amount of gene flow between two populations (F ST ). It, thus, becomes essential that estimators increase linearly with time or reduced gene flow. A good estimator of differentiation should ideally be able to detect differentiation equally across the whole range of heterozygosity values (0-1), which would result on a horizontal line when averaging across loci with different heterozygosities. However, as alleles in more diverse loci have lower frequencies, they have a higher chance of being affected by drift, which results in diverse loci showing increased divergence, and a skewed slope for the across-heterozygosity loci average.

Traditional estimators fail to convey information about the organisation of alleles at high diversity markers, thus should not be deemed as appropriate estimators of real differentiation (F ST ) when using highly diverse microsatellites. Corrected versions of the traditional estimators and new measures fare better at the high heterozygosity end of the spectrum. Nevertheless they differ subtly.

All four HTE gave very similar values for most markers, thought, G' ST_est and D est seemed more affected by null alleles in those loci surveyed than other estimators. Furthermore D est , seemed less sensitive to structure in low diversity loci than its counterparts. Although φ' ST locusspecific values were very similar to those computed with the rest of estimators, pairwise comparisons resulted in reduced values compared to other HTEs.

Keeping Θ WC as the foundation for an HTE may offer some advantages. The popularity of Θ WC is based on several studies that have demonstrated its reliability: Θ WC has been found to have reduced bias and variance [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF][START_REF] Raufaste | Properties of bias and variance of two multiallelic estimators of Fst[END_REF], and was found to be relatively robust to differences in mutation model [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF] and mutation rate (Kalinowski, 2002a). Nonetheless, it is possible that the reduced variance and standard error of Θ WC for loci with higher number of alleles (compared with D S , D A and D C ) reported by Kalinoswki (2002) are due to the reduced space available for variance (zero to Θ max ). Such effects mean that Θ' WC will not display such advantages, and behave equally variably for high polymorphism loci as the other estimators. The only way to address such issues effectively is to evaluate the behaviour (variance and bias) of the estimates with simulations under different scenarios including different sample sizes, mutation models and rates, population models, and levels of homoplasy and null alleles.

Conclusion:

Traditional estimators of differentiation were compared empirically with high-heterozygositytolerant measures of differentiation on a dab data set. Results suggest that Θ WC , G ST_est and φ ST consistently yielded reduced values for high heterozygosity markers, confirming their compromised performance in highly genetically diverse systems. Correcting for heterozygosity revealed that highly polymorphic markers contained considerable levels of undetected diversity, and could indeed be more informative regarding population structure than their less diverse counterparts. It is thereby suggested that heterozygosity-tolerant estimators be employed more widely when the aim is to assess the magnitude of differentiation, and particularly when highly variable microsatellites in marine species are analysed. However, their use for more complex analysis, such as estimation of number of migrants, population effective size or demographic events may need further careful consideration [START_REF] Ryman | Effect of mutation on genetic differentiation among nonequilibrium populations[END_REF]2009;[START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF].

Of the measures considered here, Θ' WC and φ' ST were found to be the most reliable across the whole heterozygosity range and in loci with null alleles; however, simulations of the behaviour of corrected estimates under diverse scenarios (mutation model and rate, homoplasy, null alleles, and populations models) are required to assess their accuracy and stability.

Chapter 7: Population genetic structure of dab (Limanda limanda L.): a key biomonitoring species 7.1 Abstract:

The use of bioindicator fish species in monitoring programmes is widely accepted as a means of assessing marine ecosystem health. The effects of pollutants and other anthropogenic impacts on the health of individual fish is evaluated and compared to that of non-exposed reference fish. In the UK, dab, Limanda limanda, have been routinely used as environmental bioindicators of pollutant exposure, but little information exists on the population structuring or lack of between the sampling locations. In the current study, the genetic structure of dab and its temporal stability around the British Isles is evaluated with 16 microsatellite loci over the course of four sampling years. Several analytical methods coincide in defining two significant and clear groups corresponding to the North and Irish Seas. Further structuring within either sea basin and in the English Channel was weaker and fluctuated over time. Two independent methods to evaluate past demographic changes concluded that a significant population expansion signal could be detected in most locations. The consequences of comparing genetically structured populations in their environmental response are briefly discussed.

Introduction:

Awareness that the natural environment is not just a precious commodity, but intrinsic to the sustained existence of human societies and the livelihoods of its members, is increasingly commonplace [START_REF] Islam | Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and systhesis[END_REF][START_REF] Hughes | New paradigms for supporting the resilience of marine ecosystems[END_REF][START_REF] Schiedek | Interactions between climate change and contaminants[END_REF][START_REF] Kite-Powell | Linking the oceans to public health: current efforts and future directions[END_REF][START_REF] Stott | Environmental enforcement in the UK[END_REF]. Human activities often result in the transformation or contamination of habitats with high levels of pollutants, which may have deleterious effects on wildlife, ecosystems, and ultimately on human uses of such ecosystems [START_REF] Tanabe | PCB problems in the future: foresight from current knowledge[END_REF][START_REF] Kalantzi | The global distribution of PCBs and organochlorine pesticides in butter[END_REF]. Aquatic environments are particularly threatened because they often serve as intentional, or more often, unintentional repositories of pollutants [START_REF] Haynes | Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the Great Barrier Reef (Australia) environment: a review[END_REF][START_REF] Islam | Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and systhesis[END_REF]. Such anthropogenic effluents later concentrate in lakes, estuaries, coastal waters and ultimately oceans, where levels may reach more significant levels [START_REF] Ballschmiter | Transport and fate of organic compounds in the global environment[END_REF][START_REF] Scheringer | Long-range transport of organic chemicals in the environment[END_REF]. Heavily polluted environments can have adverse effects on human activities, and, within the marine environment, the most conspicuous impacts include poisoning of food items (fish and shellfish) [START_REF] Judd | Contribution of PCB exposure from fish consumption to total dioxin-like dietary exposure[END_REF][START_REF] Corsolini | Persistent organic pollutants in edible fish: a human and environmental health problem[END_REF], reduced fish yields and loss of leisure areas [START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF], and loss of biodiversity and ecosystem services [START_REF] Worm | Impacts of biodiversity loss on ocean ecosystem services[END_REF].

Governments are now urged to evaluate levels of pollution in aquatic environments, which in turn has resulted in the development and implementation of suites of tools and protocols for detection and remediation of anthropogenic impacts. The UK aims for "clean, healthy, safe, One way of evaluating pollution levels, is to employ bioindicator species for which parameters such as presence or absence, population size, health status, and other proxies of ecosystem health are regularly recorded providing time series data [START_REF] Phillips | Use of bio-indicators in monitoring conservative contaminants: Programme designs imperatives[END_REF][START_REF] Whitfield | Fishes as indicators of environmental and ecological changes within estuaries: a review of progress and some suggestions for the future[END_REF][START_REF] Van Der Oost | Fish bioaccumulation and biomarkers in environmental risk assessment: a review[END_REF][START_REF] Breine | A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium)[END_REF]. Changes in such parameters can be analysed in conjunction with changes in pollutant levels and other environmental variables, to ascertain the effect of pollutants on natural ecosystems, their trends over time, and the efficiency of endorsed environmental policies [START_REF] Vethaak | Long-term trends in the prevalence of cancer and other major diseases among flatfish in the southeastern North Sea as indicators of changing ecosystem health[END_REF]. Standard techniques on how to collect and analyse biomarker data [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF] 2003c).

Due to their benthic lifestyle, and thus, close proximity to settled pollutants, flatfishes are considered prime candidates for bio-assessing pollution in estuaries and coastal waters (MAFF, 1987;[START_REF] Köhler | Histological and cytochemical indices of toxic injury in the liver of dab Limanda limanda[END_REF][START_REF] Förlin | Induction of cytochrome P450 1A in teleosts: environmental monitoring in swedish fresh, brackish and marine waters[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF][START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Leonardi | Diseases of the Chilean flounder, Paralichthys adspersus (Steindachner, 1867), as a biomarker of marine coastal pollution near the Itata River (Chile): part II. Histopathological lesions[END_REF]. Furthermore, their medium-high trophic status, which renders them prone to bioaccumulation of pollutants [START_REF] Hellou | Bioaccumulation of aromatic hydrocarbons from sediments: a dose-response study with flounder (Pseudopleuronectes americanus)[END_REF][START_REF] Hellou | Polycyclic aromatic compounds and saturated hydrocarbons in tissues of flatfish: insights on environmental exposure[END_REF][START_REF] Nakata | Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan[END_REF], and relative longevity [START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF], which permits the development of long term diseases [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF], also enhances their attractiveness in biomonitoring schemes. Thus, in UK shallow waters, dab (Limanda limanda)

is used as a key bioindicator sentinel species [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF]. Detailed biomonitoring of dab is now performed on a regular basis, and has excelled as a way to assess levels of pollutants and its effects on individual fish (CEFAS, 2003c;[START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF]Skouras et al., 2003;[START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Vethaak | Long-term trends in the prevalence of cancer and other major diseases among flatfish in the southeastern North Sea as indicators of changing ecosystem health[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]. Nonetheless, the consequences of pollution at the population level within an evolutionary timescale on dab have received relatively little attention. Different populations may exhibit differing susceptibility thresholds, and in the long term, the selection pressure imposed by pollutants can have important consequences on individual responses to pollutants and the genetic composition of populations (Theodorakis & Shugart, 1997;[START_REF] Belfiore | Effects of contaminants on genetic patterns in aquatic organisms: a review[END_REF][START_REF] Bickham | Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology[END_REF][START_REF] Gardeström | A multilevel approach to predict toxicity in copepod populations: assessment of growth, genetics, and population structure[END_REF][START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF]. In addition to affecting valuable population genetic resources (FAO, 2008), and thus, resilience [START_REF] Reusch | Ecosystem recovey after climatic extremes enhanced by genotypic diversity[END_REF], varying susceptibility and adaptive changes in the pollution tolerance of wild fish could potentially impinge on the interpretation of biomonitoring data (Chapter 1).

Furthermore, important questions about dab biology remain unanswered, such as patterns of population connectivity and the stability of such population structure over time. These concepts are of paramount importance to evaluate the potential for adaptation of populations to local conditions [START_REF] Carvalho | Evolutionary aspects of fish distribution: genetic variability and adaptation[END_REF][START_REF] Conover | Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation[END_REF]. In the same way as different individuals respond to pollutants in different ways, so do populations, thus it is important to estimate the extent and boundaries of biologically meaningful groups of interbreeding individuals. In doing so, the response of fish to contaminants can be controlled for varying levels of dispersal, susceptibility, or localised selection factors (either natural or anthropogenic). Indeed, the extent to which individuals share a common gene pool, as well as factors such as population size and the intensity of selection pressures such as pollution, will not only determine the nature and speed of response to pollution events, but also importantly the resilience, or ability of populations to recover from localised declines [START_REF] Bickham | Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology[END_REF][START_REF] Reusch | Ecosystem recovey after climatic extremes enhanced by genotypic diversity[END_REF]. Therefore, information on population structure, genetic variability, connectivity, temporal stability and adult or larval migration between locations are all needed for more meaningful interpretation of biomonitoring data [START_REF] Theodorakis | Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment[END_REF].

Detecting structure by genetic means in marine organisms is not an easy task. The resistance of large sized populations to genetic drift, which minimises the process of genetic differentiation, together with high fecundity and the potential for extended dispersal, nurture the perfect conditions for hypothetical panmixia [START_REF] Ward | A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes[END_REF]Waples, 1998). Despite such potential, the elusive structured nature or many marine fish has been revealed with the use of genetic markers, particularly microsatellites (Carvalho & Hauser, 1994a;[START_REF] Lundy | Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish[END_REF][START_REF] Ruzzante | A review of the evidence for genetic structure of cod (Gadus morhua) populations in the NW Atlantic and population affinities of larval cod off Newfoundland and the Gulf of St. Lawrence[END_REF][START_REF] Bernal-Ramírez | Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents[END_REF][START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF][START_REF] Jørgensen | Marine landscape and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF]Hemmer-Hansen et al., 2007b;[START_REF] Limborg | Genetic population structure of European sprat Sprattus sprattus: differentiation across a steep environmental gradient in a small pelagic fish[END_REF].

Here, the genetic diversity of dab using a panel of species-specific microsatellites (Tysklind et al., 2009b) will be examined and the null hypothesis that dab are genetically homogeneous in the coastal waters around the British Isles will be testes. Alternatively, the distribution of genetic diversity of the species across the geographical range covered by the CSEMP programme will be dissected, an approach commonly termed landscape genetics [START_REF] Manel | Lanscape genetics: combining landscape ecology and populations genetics[END_REF] and successfully applied to marine fish species [START_REF] Jørgensen | Marine landscape and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea[END_REF]Hansen & Hemmer-Hansen, 2007;[START_REF] Mccairns | Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large scale estuarine environment[END_REF][START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF][START_REF] Galarza | The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species[END_REF]. The genetic signatures of past demographic events in relation to the extant distribution of genetic diversity will also be explored. Finally, the temporal stability of patterns of detectable genetic structuring will be assessed, which helps to interpret the biological significance of patterns of genetic differentiation (Carvalho & Hauser, 1998;Waples, 1998;[START_REF] Bernal-Ramírez | Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF][START_REF] Nielsen | Microgeographical population structure of cod Gadus morhua in the North Sea and west of Scotland: the role of sampling loci and individuals[END_REF].

Materials and Methods:

Sampling:

Since the mid 1980's dab have been monitored every year around the UK for the presence of parasites, diseases, and other bioindicators of pollutant exposure (MAFF, 1987;1995;CEFAS, 2000;2003a;[START_REF] Cefas | Monitoring of the quality of the marine environment[END_REF][START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF]. Currently the CSEMP operates for three weeks at the beginning of each summer and has several established sampling stations which are visited during that period [START_REF] Cefas | Monitoring of the quality of the marine environment[END_REF]. Standard numbers of fish are processed for different projects, and each individual fish is allocated an identification number so that data from different projects can be cross-referenced. Fin clips were collected from these fish and stored in absolute ethanol for genetic analysis. Genetic samples were collected for four consecutive years (2005)(2006)(2007)(2008) in up to 15 stations covering four areas: North Sea (ICES areas: IVb, IVc), English Channel (ICES areas: VIId, VIIe), and Irish Sea (ICES area: VIIa). The latter includes samples from both Cardigan Bay, hereafter as Irish Sea (South), and samples north of Anglesey, hereafter Irish Sea (North). Complementary to the biomonitoring programme samples, three additional samples were obtained from the South Celtic Sea (ICES area: VIIj) and the Atlantic coast of Ireland (ICES areas: VIa, VIIb). Overall, 40 samples, each with 21 to 183 individual dab (and a grand total of 3027), were genotyped (Figure 7.1; Table 6.1).

Samples were allocated a three letter code representing the sampling location and two 123 numbers representing the year of collection (05-08) (Table 6.1). DNA was extracted from the fin clips using the hi-salt extraction method [START_REF] Aljanabi | Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques[END_REF] 

Data quality assurance, locus characteristics and conformity to expectations:

Allele sizes were determined with GENE MAPPER® and each individual genotype reviewed at least twice. Each individual peak (over 100,000 for those individuals included in the analysis) was carefully checked for correct size standard labelling and allele miscoring or cross-colour 124 pull-ups (an artefact peak created by interference between spectral absorbances) [START_REF] Rudin | An introduction to forensic DNA analysis[END_REF]. Any rare or unexpected alleles or HWE and linkage disequilibrium outliers were thoroughly checked once again. One sample, ScB06, was DNA-extracted and genotyped twice, at the beginning and end of the project to check for scoring consistency [START_REF] Dewoody | Mitigating scoring errors in microsatellite data from wild populations[END_REF]. At least two individuals per plate were re-genotyped to verify amplification consistency between plates. Some individuals could not be fully genotyped even after several attempted amplifications and have been removed for some of the analyses. Sample sizes after removal of incomplete genotypes were also calculated (Table 6.1).

The software CREATE was used to produce input files whenever possible [START_REF] Coombs | CREATE: a software to create input files from diploid genotypic data for 52 genetic software programs[END_REF]. Observed and expected heterozygosity, and Locus-specific Θ WC and f wc [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] were estimated with GENALEX [START_REF] Peakall | GenAlEx V5.04: Genetic Analysis in Excel[END_REF]) and GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]. The same two software packages were used to check genotypes for HWE and linkage disequilibrium. Markov Chain parameters for the HWE test in GENEPOP V4.0 were 10,000 dememorisations and 100 batches of 5,000 iterations. The presence of null alleles, large allele dropout, and scoring errors due to allele stuttering were assessed with MICRO-CHECKER (van Oosterhout et al., 2004). Loci suspected with null alleles were excluded from analysis except where otherwise stated.

Testing the existence of differentiation among samples and pairwise compassions:

Simulated power of the microsatellite loci to detect differentiation:

The power of the microsatellite marker suite to detect differentiation between independent populations was assessed with POWSIM [START_REF] Ryman | POWSIM: a computer program for assessing statistical power when testing for genetic differentiation[END_REF]. The default Markov chain parameters were used with the overall combined allele frequencies, dividing them into two populations with 10,000 individuals as effective population size (Ne), and for varying number of generations (proportional to Fst) and sampling sizes (100 and 50 individuals per sample).

Testing for the existence of structure among samples:

Global Θ WC was calculated with FSTAT 2.9.3 [START_REF] Goudet | FSTAT (vers. 1.2): a computer program to calculate F-statistics[END_REF]2001). Pairwise Θ WC [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF] were calculated in GENEPOP V4.0. Associated significances based on 1000 permutations were calculated with GENETIX (Belkhir et al., 1996(Belkhir et al., -2004)). Each year was treated independently as suggested by [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF]. As seen in Chapter 6, traditional estimators of differentiation (Θ WC ) are heavily influenced by heterozygosity and lose their linearity with actual differentiation at high levels of within-sample heterozygosity 125 [START_REF] Shriver | A novel measure of genetic distance for highly polymorphic tandem repeat loci[END_REF]Hedrick, 1999b;[START_REF] Hedrick | A standarized genetic differentiation measure[END_REF]. Therefore, and given that several loci exhibited high levels of allele diversity and associated heterozygosity, a standardised estimator of differentiation, Θ' WC , was calculated. Standardised Θ' WC estimates were calculated in a similar way as G' ST [START_REF] Hedrick | A standarized genetic differentiation measure[END_REF], and as hinted by [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF]. Θ max was calculated by transforming the raw genotype data with RECODEDATA V.0.1 [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF], so that all populations had non-overlapping allele ranges for all loci. In these conditions, all populations are maximally differentiated (no alleles in common) but heterozygosities remain unaffected. Locus-specific Θ max was calculated with GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF]. Standardized Θ' WC was calculated by dividing the original Θ WC by Θ max . Other studies have also calculated standardised Θ' WC estimates in a similar way [START_REF] Kenchington | Pleistocene glaciation events shape genetic structure across the range of the American lobster, Homarus americanus[END_REF][START_REF] Papetti | Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands[END_REF]. Multilocus average (arithmetic mean of all loci) was calculated for Θ WC and for Θ' WC allowing a comparison between both estimators.

Exact G-test [START_REF] Raymond | An exact test for population differentiation[END_REF] of the probability of random allele and genotype distributions across samples (genic and genotypic subdivision) were calculated with GENEPOP V4.0 [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF], where the Markov Chain parameters were set to 10,000 dememorisations and 500 batches of 10,000 iterations.

The population genetics programme GENODIVE [START_REF] Meirmans | GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms[END_REF]) offers a clustering algorithm which aims at grouping a number of observations (either population samples or individuals) into K most probable clusters based on observation means.

Observations are then assigned to clusters with the closest mean. The analysis, named K-Means clustering, was employed to investigate the most likely number of genetic clusters within the data and which samples belong to each cluster. Analysis of molecular variance (AMOVA) estimating φ ST (Excoffier et al., 1992) and the heterozygosity corrected φ' ST [START_REF] Meirmans | Using the AMOVA framework to estimate a standarized genetic differentiation measure[END_REF] were performed within the same software, where significance was assessed with 10,000 permutations. Sources of variation included within individuals, among individuals within samples, among samples within clusters (as estimated by the K-means clustering analysis), and among clusters. AMOVAs were run for each year separately, for all years together but subdivided by clusters, and with all data using year as clusters.

Genetic relationship between samples:

Neighbour-joining trees were constructed with the PHYLIP package [START_REF] Felsenstein | PHYLIP-Phylogeny inference package (version 3.2)[END_REF] based on Nei's Genetic Distance, D S [START_REF] Nei | Genetic distance between populations[END_REF], which is nearly equivalent to the differentiation calculated with heterozygosity corrected estimators when differentiation is small [START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF].
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Robustness of the nodes was assessed by bootstrapping the allelic frequencies at different loci 1,000 times.

Geo-referenced analysis:

7.3.4.1 Relationship between genetic distance and geographic distance:

Patterns of genetic differentiation can sometimes be explained by geographic distance between sampling locations [START_REF] Kotoulas | Genetic structure of the common sole Solea vulgaris at different geographic scales[END_REF][START_REF] King | Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF], a phenomenon called isolation by distance [START_REF] Wright | Isolation by distance[END_REF]. Therefore, the influence on the genetic structure of the distance needed for a dab to migrate between areas will be evaluated. Patterns of isolation by distance were tested using Mantel tests in IBD V.1.52 [START_REF] Bohonak | IBD (Isolation by Distance): a program for analyses of isolation by distance[END_REF]. Regressions of Fst/(1-Fst) over the log of the minimum distance by sea (km measured in Google TM Earth) were tested with 100,000 randomisations as suggested by [START_REF] Rousset | Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance[END_REF]. Both Θ WC and Θ' WC estimates were used for comparison. In order to unravel the effects of geographic distance versus sea basin on the genetic distance, partial correlation mantel tests with a third matrix containing sea basin (North Sea-Irish Sea-Atlantic), in which 0 coded for samples within the same basin and 1 for different basins, were performed.

Mimicking [START_REF] Mccairns | Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large scale estuarine environment[END_REF], Mantel tests of correlation between genetic and geographic distance of samples within basins were computed to evaluate whether the isolation by distance held within basin. LyB samples were excluded from the latter analysis due to their undifferentiated nature (see results). The basin-wise test was not possible for 2005 due to the low number of samples available.

Evaluation of the most important barriers to gene exchange between locations:

Aiming to better understand the patterns of differentiation between sampling locations, the software BARRIER v2.2 (Manni & Guérard, 2004;Manni et al., 2004) was employed. The programme generates cells around the sampling locations which have edges in common with other sampling locations, thus a network of connectivity between the geo-referenced locations is created. The sharpest changes in genetic composition between neighbouring locations can then be assessed. The interconnectivity network can be modified to depict realistic patterns of interaction between sampling locations (i.e. when investigating marine organisms, the "edges" between samples collected at either side of a mass of land are not allowed). The coordinates of the dab sampling location were plotted and two different networks investigated: one in which sampling locations in the Irish Sea connected to the North Sea, and one in which empty cells (virtual points) were used to represent Great Britain and Ireland, effectively eliminating the common edges between Irish Sea and North Sea, and between OfF and RyE, and LiV and LyB. Edges between StB and RwB and InC, and between AmB and NeD were allowed. The different genetic distance matrices calculated in Chapter 6

(Θ WC , Θ' WC , G ST_est , G' ST_est , and D est ) were plotted onto the map and compared.

Additionally, the software can take several different matrices and provide a support value for each barrier based on how many matrices coincide in supporting each barrier. Therefore, two multi-matrix analyses were performed: first, an evaluation of the concordance between distance matrices of each locus, giving an estimate of how much of the genome support a certain barrier; and secondly, a significance value for each barrier can be obtained by analysing multilocus bootstrap replicates. Bootstrapping of corrected estimates of differentiation was unpractical, therefore Nei's D S [START_REF] Nei | Genetic distance between populations[END_REF] was used instead as it is very similar to corrected estimates of differentiation in low differentiation systems [START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF].

The significance of the barriers was calculated by resampling 1,000 bootstrapped matrices created with the PHYLIP package [START_REF] Felsenstein | PHYLIP-Phylogeny inference package (version 3.2)[END_REF].

Population membership of geo-referenced samples:

Each sample does not necessarily represent unique populations, as several samples can be collected from the same population. Therefore the membership of each sample to populations was studied in two different ways: first employing Bayesian algorithms (GENELAND) and secondly, to provide a contrasting outlook, with a principal component analysis (ADEGENET).

The R package GENELAND (Guillot et al., 2005;2005;2008;[START_REF] Guillot | Inference of structure in subdivided populations at low level of genetic differentiation. The correlated allele frequencies model revisited[END_REF] carries a Bayesian clustering algorithm to estimate the number of populations based on conformity to HWE and linkage equilibrium developed by [START_REF] Pritchard | Inference of population structure using multilocus genotype data[END_REF], and modified to include georeferenced data. The outputs are presented as estimated number of populations (k) and

Voronoi tessellation maps of posterior probability of belonging to each of the estimated populations. Each sampling year was analysed independently, with 500,000 iterations and thinning to every 100 th , the correlated allele model, and up to 20 populations. As the GENELAND algorithm has been designed to cope with null alleles, all loci were included in the analysis. Males and females were also analysed separately to investigate the possibility of sex-biased dispersal. When making plots, the coordinates of LyB samples were modified slightly towards the south (Lat: 50.61 changed to Lat: 50.41) in order to improve the visualisation of the membership of the sample when the map of Britain was overlaid. The correction was applied only when plotting, so it does not have any effect on the calculation of membership.

Another two R packages, ADE4 [START_REF] Chessel | The ade4 package -I: One-table methods[END_REF] and ADEGENET [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF] were invoked to perform multivariate analysis at several levels of the data [START_REF] Jombart | Genetic markers in the playground of multivariate analysis[END_REF].

Sample correspondence analysis (CA) of the whole data set (All years) and spatial principal component analysis (sPCA) for every year were studied to understand the clustering and positioning of the samples in respect to others with and without spatial priors [START_REF] Jombart | Revealing cryptic spatial patterns in genetic variability by a new multivariate method[END_REF]. Plots were centred on the origin and missing genotypes were treated as suggested in the ADEGENET manual: replaced with the allele means for PCA and the mean χ 2 distance for CA, which effectively places missing data at the origin of the axis. Analyses were performed also using only fully genotyped individuals, but results were the same as those from the corrected data set (allele means or χ 2 ). For the sPCA, the networks between samples were modified as with BARRIER to represent biologically realistic connections (i.e. no direct links between Irish Sea and North Sea samples).

Migration and admixture:

To assess the levels of extant connectivity among basins, the probability of individuals being first generation migrants was assessed with GENECLASS2 [START_REF] Piry | GENECLASS2: A software for genetic assignment and first-generation migrant detection[END_REF]. Since not all possible dab populations were sampled, only the likelihood of an individual being born where it was caught was computed (L h ). The allele frequencies-based method [START_REF] Paetkau | Microsatellite analysis of population structure in Canadian polar bears[END_REF] with a default frequency for missing alleles of 0.001 was used as criteria for computation of L h values. [START_REF] Rannala | Detecting immigration by using multilocus genotypes, Procceding of the National Academy of Sciences of the United States of America[END_REF] multilocus Bayesian method was also computed for comparison. The associated probability of L h values was computed by simulating 10,000 individuals [START_REF] Paetkau | Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power[END_REF]. The analysis was run separately for each year with only individuals fully genotyped.

Individuals from one of the samples (OfF05), which was received as DNA extracts, were located in between individuals from StB05 (i.e. individuals 1 to 12 were labelled as StB05, while individuals 13-42 were labelled as OfF05, and individuals 44-95 were again labelled as deviations were estimated with 10,000 bootstraps over loci. Since only very recent admixture events were targeted, molecular distances (measured as allele size difference under the SMM) are unlikely to play an influential role, and thus ignored in the current analysis [START_REF] Hansen | Reproductive isolation, evolutionary distinctiveness an setting conservation priorities: the case of the European lake whitefish and the endangered North Sea houting (Coregonus spp.)[END_REF]. The admixture proportions of two samples (InF07 and RwB07) considered to be not influenced by migrants were also calculated as a control.

Maximum-likelihood estimates of individual admixture proportions (h) were estimated with the [START_REF] Buerkle | Maximum-likelihood estimation of a hybrid index based on molecular markers[END_REF] method in GENODIVE [START_REF] Meirmans | GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms[END_REF]. All of the NeD and AmB, and LiV and StB samples (except StB05) were pooled to produce reference (North Sea) and alternative (Irish Sea) populations respectively.

Temporal analysis:

The existence of significant genetic structure does not necessarily imply that it is biologically meaningful (Waples, 1998), thus, the temporal stability of the genetic structure is key in discarding finding structure by chance distribution of alleles (Carvalho & Hauser, 1998).

Several methods were employed to assess the stability of genetic structure over the temporal replicate samples. First, pairwise Θ WC and Θ' WC were calculated for samples within location across years, and correlation between Θ WC and time (years) were studied with Mantel tests in IBD V.1.52 [START_REF] Bohonak | IBD (Isolation by Distance): a program for analyses of isolation by distance[END_REF]. To evaluate if genetic distance between samples were stable across years, correlation between years of genetic distance (Θ WC ) across the whole study area was also tested with Mantel tests.

In order to generate a graphical representation of temporal structure and connectivity within and among locations, an artificial geographic and temporal matrix was created. The GENELAND manual's suggestion of linearizing 2-dimensional coordinates into 1-dimensional distances [START_REF] Guillot | Inference of structure in subdivided populations at low level of genetic differentiation. The correlated allele frequencies model revisited[END_REF] was exploited to transform geographical coordinates to one dimension. The distances of sampling locations to an arbitrary central point (LyB) was used as the abscissa and sampling year as the ordinate. The geographical distance was divided by ten so abscissa and ordinate were of similar magnitudes. The GENELAND algorithm was run for four independent Markov chain Monte Carlo (MCMC) with 1,000,000 iterations sampled every 200 th and discarding the first 500. The analysis was repeated three times with a random order of sampling locations. The same grid was analysed with a sPCA in ADEGENET, in which the connection network was modified to allow all geographically possible connections across all years. Care was taken to ensure that links between samples from the same location, but from different years, were allowed.

Age and sex effects on genetic differentiation:

Age data, read from otoliths, were supplied by CEFAS for three samples in 2007 (NeD07, RyE07, LiV07) with 178 to 184 individuals each. To evaluate whether there were cohort changes in genetic composition within locations, the samples were subdivided into age classes and an analysis of genetic differentiation among age classes within location was performed for all subclasses with at least 20 individuals. To assess whether sex-biased dispersal was prevalent in dab, all individuals were visually sexed upon collection, and genotypes were subdivided accordingly. Genetic differentiation between males and females within and among sampling sites was investigated using neighbour-joining trees [START_REF] Felsenstein | PHYLIP-Phylogeny inference package (version 3.2)[END_REF], and GENELAND plots (Guillot et al., 2005).

Past demographic events:

Changes in population size remain imprinted as signatures on their genetic diversity. In a constant sized population the allelic diversity emerges randomly throughout time. On the other hand, a population experiencing rapid increase in the number of individuals (effectively a population expansion) will undergo an increase in overall population mutation rate and fast production of new alleles [START_REF] Reich | Genetic evidence for a Paleolithic human population expansion in Africa[END_REF]. Such a signature can then be detected, many generations later, by the population distribution of the individual distance between allele pairs. The k test developed by [START_REF] Reich | Genetic evidence for a Paleolithic human population expansion in Africa[END_REF] is constructed to test the null hypothesis that alleles have emerged randomly throughout the population's history, and not concentrated in a particular point in time (a population expansion). Similarly, under the population expansion scenario, all loci are expected to have expanded at the same time and thus, the same authors devised another statistic, g, aimed at assessing the congruence of the calculated age of the most ancient allele bifurcation of all loci [START_REF] Reich | Genetic evidence for a Paleolithic human population expansion in Africa[END_REF]. The estimated g can then be compared against a table of simulated cut-off values to assess its significance [START_REF] Reich | Statistical properties of two tests that use multilocus data sets to detect population expansions[END_REF]. The Microsoft Excel macro KGTESTS [START_REF] Bilgin | Kgtests: a simple Excel macro program to detect signatures of population expansion using microsatellites[END_REF] was employed to estimate single locus k, multilocus g, and the multilocus associated probability of k. Samples were tested independently as structuring can increase the signal of expansion [START_REF] Reich | Genetic evidence for a Paleolithic human population expansion in Africa[END_REF]. As DAC1-35 carried strong negative k values, but was also a showed evidence of stuttering errors or large allele dropout. Once the two markers outside HWE were removed, all samples complied with HWE expectations.

No evidence of linkage disequilibrium was found among any combination of loci when all samples were pooled together. However, significant linkage (p<0.001) was found in up to three genotype comparisons in each year, but none were consistent across samples or years.

The source of the disequilibrium was always one or two individuals showing rare alleles or unusual allele combinations at two or more loci for the particular sample they were collected in. The genotypes of these individuals were checked several times, and no evidence of allele miscoring, cross-colour pull-ups, or size-standard miscalling was found, suggesting the genotypes are true. The source of the linkage disequilibrium was probably due to migrants or rare alleles rather than actual genomic linkage among loci.

Testing the existence of differentiation among samples and pairwise compassions:

Simulated power of the microsatellite loci to detect differentiation:

POWSIM suggested that the power of the loci suite was 99% to detect differentiations as low as 0.0025 with sample sizes of 100 individuals, or as low as 0.005 for sample sizes of 50 individuals.

Testing for the existence of structure among samples:

When all samples were pooled each year, HW became highly significant, even after removal of DAC1-35 and DAC5-70, suggesting that all samples in each year do not belong to the same panmictic population. The patterns of genic subdivision suggested that the allele distribution is consistently significantly different from random (p<0.001) for a number of loci (DAG4-64, , further suggesting the existence of genetic substructure. When studied in more detail it became clear that there were marked and consistent differences in allele frequencies for some loci between some locations. The global Θ WC [START_REF] Weir | Estimating F-statistics for the analysis of population structure[END_REF], which measures the level of population substructuring, including all samples and markers was 0.004 (99% CI 0.001-0.008), suggesting weak structuring of the dab samples. Pairwise estimates of population differentiation ( The AMOVA (Table 7.2) suggested that around 98.4% of the variation was within individuals, while 0.8, 0.1 and 0.7% were among individuals within populations, among populations within clusters, and between clusters respectively. Despite the low levels, all were significant (p=0.036, p=0.009, and p<0.001). When φ ST was corrected for high heterozygosity, differentiation among populations within clusters remained low (φ' ST =0.004), but became more evident between clusters (up to φ' ST =0.024 in 2008).
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In the neighbour-joining trees North Sea samples clustered together at one side of the tree, while Irish Sea samples clustered at the other end in all years (Figure 7.2). One exception was the sample OfF05 (N=21), which clustered with the Irish Sea samples. RyE Bay was generally incorporated within the North Sea cluster. On the other hand, the samples from Lyme Bay always fell in between the North Sea and Irish Sea samples. In 2006, the Atlantic samples clustered together with Irish Sea samples.

Geo-referenced Analysis:

Relationship between genetic distance and geographic distance:

Pairwise Θ WC /(1-Θ WC ) among samples were significantly correlated with the shortest sea distance (km) between samples for 2006 (Mantel test, r=0.700, p<0.001), 2007 (r=0.641, p<0.001) and2008 (r=0.816, p<0.001). The relationship was weaker for samples in 2005 (r=0.424, p=0.057) (Table 7.3). Using the heterozygosity standardised version, Θ' WC /(1-Θ' WC ), did not alter markedly the significance values and increased only slightly the slope of the relationships (Figure 7.3). However, when sea basin was accounted for (partial mantel test), all values became non-significant (except for 2006 when including Atlantic samples), suggesting that the function "sea basin" performs better at explaining genetic distance than geographic distance per se among samples. All test of isolation by distance within basin were not significant, reinforcing the role of basin as a primary factor impacting the distribution of genetic diversity of dab. Finally, if geographic distance was divided into three classes: below 400 km (representing within basin), 400 to 1000 km (distance from either North Sea or Irish Sea to English Channel), and above 1000 km (between Irish Sea and North Sea), the slopes of the relationship between genetic distance and geographic distance became nearly horizontal and non-significant, confirming the initial pattern of isolation by distance truly represents the genetic distance associated with the different basins, with LyB samples falling in between both basins. (2005)(2006)(2007)(2008) and overall (All). Sources of variation: Individuals; Individuals within Samples; Samples within Clusters; and Clusters. Cluster are those estimated by the K-means clustering analysis and correspond to North Sea-English Channel and Irish Sea basins. %var= percentage of variation explained by the source of variation. φ ST = estimated amount of differentiation in the system in each source of variation. St.err= Standard error around the estimated φ ST . p-value= probability that the 95% CI of the estimated φ ST encompasses zero. φ' ST : estimated amount of differentiation in the system after correction for heterozygosity. The analysis was repeated with only Females and only Males. The amount of genetic variation explained by the different years was also tested with AMOVA, using year as the cluster (All by years). To understand the relationships between samples, neighbour-joining trees based on Nei's D S [START_REF] Nei | Genetic distance between populations[END_REF]. There is one for each year (2005)(2006)(2007)(2008). Robustness of the nodes was assessed with a 100 bootstraps, the number of times two samples clustered together out of the 100 bootstraps (bootstrap support value) is given near the node. Coloured bubbles have been placed to ease understanding: Dark blue represents samples collected from the North Sea; Light blue are samples collected in the English Channel; Light Green are those samples collected in the Irish Sea; and brown is reserved for those samples collected in the Atlantic coast of Ireland. Two estimates of genetic distance ΘWC (light squares) and Θ'WC (corrected for heterozygosity; dark triangles) are compared to minimum distance travelled by sea between two samples. The overall trend is for a positive relationship between genetic and geographic distances; however the relationship is lost (horizontal regression lines) when comparisons are divided into three groups: within basin (short distance), between North and Irish Seas (long distance), or between either seas and the English Channel (medium distance).

Evaluation of the most important barriers to gene exchange between locations:

In 

Population membership of geo-referenced samples:

GENELAND estimated the most likely number of interbreeding groups of individuals as three (2005) or four (2006,2007,2008). The posterior probability maps ( 

Migration and admixture:

Outputs from the individual migrant-detection exercise run in GENECLASS2, whether calculated with the allele frequencies method [START_REF] Paetkau | Microsatellite analysis of population structure in Canadian polar bears[END_REF] or the Bayesian approach [START_REF] Rannala | Detecting immigration by using multilocus genotypes, Procceding of the National Academy of Sciences of the United States of America[END_REF], were very similar (Table 7.4). However, those individuals identified as migrants by one method not always matched those identified by the other. It was found that the number of discordant individuals (those not identified by both methods)

approximately matched those expected by chance (i.e. number of individuals considered x 0.01). Therefore, only those individuals significant with both methods will be discussed.

Several individuals each year had very low probabilities (p<0.01) of belonging to the same group of interbreeding individuals as the rest of dab collected in the same location that year. 7.5). For another six individuals, InC05

was the second best fit, suggesting that the 16 individuals of the original sample were unlikely to be caught at Off Flamborough, and most likely represented fish from the Irish Sea. The last five individuals, those requested at a later date and labelled as OfF05x, showed highest affinity with NeD05 and probably do represent real off Flamborough dab.

Table 7.4: Migrant detection

Estimated number of migrants as assessed by GENECLASS2 with two different methods. Allele: allele frequency method [START_REF] Paetkau | Microsatellite analysis of population structure in Canadian polar bears[END_REF]; and Bayes: Bayesian [START_REF] Rannala | Detecting immigration by using multilocus genotypes, Procceding of the National Academy of Sciences of the United States of America[END_REF]. The population admixture proportions (m Y ) of dab living in LyB and InC are reported in Table 7. 6. The standard deviations were relatively large but general patterns can still be drawn from the results. The North Sea influence on LyB is higher than in InC, and increases over the years, while InC seems to be dominated by an Irish Sea component, albeit there is clear influence of North Sea genotypes in 2008. Unfortunately the results of the individual admixture proportion analysis (h) revealed that the genetic difference between North Sea and Irish Sea was insufficient to confidently assign individuals to either basins or hybrid status as the confidence intervals included both basins for many individuals (data not shown). 
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Temporal Analysis:

The AMOVA suggested that overall no variation in genetic diversity distribution was explained by changes across years (φ SY =0.000; φ' SY =0.000).

All pairwise Θ WC and Θ' WC values for samples from the same location across years were low (average Θ WC =0.001, average Θ' WC =0.004; Table 7.7) and only five comparisons out of 42, had probabilities below 0.05: StB05 with StB07, RyE06 with RyE07, AmB06 with AmB08, and NeD08 with NeD06 and NeD07. None remained significant after Bonferroni correction, suggesting temporal stability of most locations. Correcting for heterozygosity did not increase the value of differentiation substantially for most comparisons, however, some higher values were noteworthy: StB05 exhibited much higher differentiation with all other StB samples than any other within location comparisons, and InC samples tended to be maximally differentiated to the previous and next year samples. 

Age and Sex effects on genetic differentiation:

The age of dab in NeD07 and LiV07 ranged from 1 to 8 years. LiV07 had at least 20 fish in age year classes 1-6, while NeD07 exhibited a bimodal distribution where only age classes 1, 2, 4, and 5 had at least 20 individuals. RyE07 was dominated by fish aged 1 or 2, with very few fish aged 3 or 4. Θ WC values (Table 7.9) between age classes within samples were very low (negative to 0.0014) and non-significant, suggesting genetic homogeneity between year cohorts. Θ WC values between age classes among samples were larger (up to 0.012) and significant in several of comparisons. The ratio of males and females varied widely between samples (10-90%), but were generally female dominated. The proportion of males to females was 50% at age one in NeD07 and LiV07 and decreased to about 20% at age 5. In NeD07 the proportion of males reached 50% again for ages 6 and 7, and in RyE07 the older age classes (3 and 4 year old) were dominated by males (up to 80%). However, the small sample sizes of these older age classes restrict interpretation. The sex-specific GENELAND analysis in 2006 suggested similar groupings for both sexes: females were divided into three groups: coastal North Sea (OfF06 and InF06, and partly AmB06), a second large group containing all of the Irish Sea plus the rest of the North Sea (NeD06, RyE06 and partly AmB06), and a third group 

Past demographic events:

Most loci in most samples had negative k values (average of 13.6 negative loci for all loci, and 11.7 when loci with null alleles were removed), which resulted in significant multilocus k for most samples (35 out of 40) (Table 7.10). 17 samples remained significant after Bonferroni correction. No g value for any sample was below the cut-off value reported by [START_REF] Reich | Statistical properties of two tests that use multilocus data sets to detect population expansions[END_REF] for the number of individuals and loci studied here. The BOTTLENECK analysis indicated that most samples for all years were significant under the SMM for all three analyses (Sign Test, Standard differences test, and the Wilcoxon test) (Appendix: undertaken, and strongly significant. The temporal stability of such structuring indicates that it is not the outcome of the random distribution of genetic diversity, but more likely the result of biological processes shaping such distribution (Waples, 1998;[START_REF] Waples | Integrating data into management of marine resources: how can we do it better?[END_REF].

A strong isolation by distance pattern was detected at first using the full data set; however, controlling for sea basin reduced the associated probabilities to non-significant in most years.

Taken together with the absence of isolation by distance patterns within basin, and the lack of relationship between genetic and geographic distances when classed into within and between basins, is it evident that the distribution of genetic diversity was little influenced by geographic distance. It thus becomes more likely that dab populations are subdivided by the coastal and oceanographic features of the British Isles. Most of the genetic diversity of dab was explained by differences within individual dab (98.4%), which is common in many marine fish [START_REF] Gyllensten | The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species[END_REF][START_REF] Galvin | Population genetics of Atlantic cod using amplified single locus minisatellite VNTR analysis[END_REF][START_REF] Giaever | Population genetic substructure in blue whiting based on allozyme data[END_REF][START_REF] Lundy | Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish[END_REF]van Herwerden et al., 2003;[START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF][START_REF] Jorde | Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations[END_REF]. However, the amongindividuals, among-samples and among-basins components of genetic diversity were all highly significant overall and for most years. Once corrected for heterozygosity, AMOVA suggested that sea basin explained around 2% of the genetic variation found in dab, while only 0.4% differentiated samples within basin. The K-means clustering analysis and the sPCA both suggested the existence of two broad groups for all years: one composed of all the North Sea and English Channel samples, and the other comprising fish from the Irish Sea and Atlantic.

Samples collected from the North Sea were generally considered very similar to one another in most of the analyses performed: structuring within the North Sea was much weaker.

Nevertheless, the sPCA depicted the NeD and RyE samples as marginally less differentiated from the Irish Sea, than the other coastal North Sea samples (AmB, OfF, and InF), a pattern that was also supported by the temporal sPCA. Such differences were also detected by the 2 nd and 3 rd order barriers in the Barrier analysis dividing NeD from the rest of North Sea. The NeD samples were also significantly differentiated (although not always after Bonferroni correction) from southern North Sea samples (InF and/or RyE) in the three years examined.

Overall, despite the lack of significance in some years, the different test suggests very weak differentiation across the North Sea, although perhaps not temporally stable. Structure at such low differentiation values could be caused by differences in sample size, or slight changes in genetic composition between cohorts.
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Within the North Sea, the Off Flamborough 2005 sample was exceptional in that it clustered with the ISS samples in the neighbour-joining trees, k-means clustering analysis, GENELAND, CA and sPCA. However, two issues have been identified which may have resulted in such pattern: first, the sample size (N=21) was the smallest used employed, and may have biased the heterozygosity and allele frequency within the sample, thus making it unreliable; and secondly, although the samples were labelled as belonging to Off Flamborough when received, they were located in the middle of Irish Sea samples, and thus treated with caution ever since. The individual assignment analysis revealed the origin or the disparity; 16 of the samples were assigned to the InC05 population, while the other five, which were shipped separately, clustered with the NeD05 sample, and thus probably represented a fraction of the real OfF05 sample. Emphasis needs to be placed in that OfF05 was the only sample for which there were doubts about the origin of individuals, and the potential problem with the sample was identified from the outset.

The Irish Sea was also quite homogeneous with very few significant genetic differences between samples: InC05 and StB05, and RwB07 with InC07 and LiV07. However, the Irish Sea can be divided into two: The northern part (ISN: RwB, LiV, StB), which consistently clustered together in all analyses; and the samples collected from Cardigan Bay (ISS), which some analyses and years grouped with ISN, while in others it clustered with LyB. Of particular note are the results of the Barrier analysis: most other analysis placed the confines of the Irish Sea dab population south of InC or east of LyB, while Barrier suggested the most supported edge (bootstrap and Loci wise) for the first three years was north of InC. Barrier highlights the sharpest change in genetic distance between two adjacent samples, thus suggesting that gene flow between InC and ISN may be somewhat limited although not resulting in as strong genetic differentiation as between sea basins.

The structure in the English Channel was more complex and varied across years. With the exception of 2006, genetic differentiation between the two English Channel samples was not significant. However, their affinity to other sea basins differed substantially. Rye Bay was found to be more closely related to North Sea than to Irish Sea, and neighbour joining trees, CA, GENELAND, and sPCA always placed it within the North Sea group. On the other hand, Lyme Bay changed genetically over the course of the study. The positioning of InC and LyB samples in either North Sea, Irish Sea or their own group, seems to be a recurrent trend throughout the years and across analysis methods. First, LyB seemed undifferentiated from either North Sea nor Irish Sea as pairwise genetic differentiation values between LyB and other samples (North Sea and Irish Sea) were smaller and less significant than between other cross-basin comparisons. The sPCA also depicted LyB samples as undifferentiated from either Irish Sea or North Sea. Although the K-means clustering analysis placed LyB within the North Sea cluster, it was always the first sample to be separated from North Sea when the number of clusters was increased. With GENELAND LyB samples clustered with either the North Sea (2006,2007) or together with InC in a third cluster (2005,2008). LyB samples played a crucial role in creating the illusion of an isolation by distance pattern in the studied system, as their undifferentiated nature fulfilled the middle link between North Sea and Irish Sea.

In those samples for which age information was available, the proportion of females increased with age. The prevalence of males at younger age classes and subsequent female domination in older age classes has been reported in some studies [START_REF] Albert | Flatfishes of Norwegian coasts and fjords[END_REF][START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF]. There were differences in the significance of sex-specific patterns of differentiation.

For example, females in 2006 displayed considerable levels of differentiation within the North Sea, and those from ISS were in general more differentiated (Θ WC ) from North Sea than males from the same area. On the other hand, females from the ISN in 2006 were not statistically different from those in the North Sea. However, no clear pattern emerged throughout the years. Furthermore, although the AMOVA suggested different φ ST values for males and females every year, the standard deviations overlapped between the sexes, thus suggesting that the differences the sexes are not statistically significant and may be random.

As mentioned earlier, no significant genetic structure has been found among other flatfish at the regional scale covered here [START_REF] Galleguillos | Genetic and morphological divergence between populations of the flatfish Platichthys flesus (L.) (Pleuronectidae)[END_REF][START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF]Hoarau et al., 2002b;2004;2005;Hemmer-Hansen et al., 2007b). These studies have shown significant structuring between the European continental shelf and either Iceland or the Baltic Sea, but have found no significant structure within the continental shelf itself. The reasons for the lack of structure in flounder and plaice may be at the experimental design level: the fine-scale sampling, increased number of loci in this study ( 16), and temporal replication of the same sampling sites may have enhanced our ability to detect significance of structure; alternatively, dab biology may be less affected by some of the characteristics that typify many other marine fish such as long ranging pelagic eggs and larvae and strong migratory behaviour.

Dab eggs and larvae are ubiquitous throughout the North Sea [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF] and the Irish Sea [START_REF] Fox | Spring plankton surveys of the Irish Sea in 1995: the distribution of fish eggs and larvae[END_REF]. However eggs can hatch quickly (4.5 days at 14 o C), and larvae seem capable of controlling, to some extent, their movements [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF][START_REF] Beggs | Variability in settlement and recruitment of 0-group dab Limanda limanda L. in Port Erin Bay, Irish Sea[END_REF], which together with their less demanding nature regarding depth than other flatfish larvae [START_REF] Bolle | Nursery grounds of dab (Limanda limanda L) in the sourthern North Sea[END_REF][START_REF] Gibson | Ontogenetic changes in depth distribution of juvenile flatfishes in relation to predation risk and temperature on a shallowwater nursery ground[END_REF], may effectively reduce the effective dispersal of most individual eggs. Furthermore, [START_REF] Galarza | The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species[END_REF] verified that marine currents and sea fronts can represent effective barriers to gene flow between populations, regardless of egg type or pelagic larval duration, and results in detectable genetic differentiation at regional scales. The cyclonic gyre that forms within the Irish sea in spring and summer [START_REF] Hill | The summer gyre in the western Irish Sea: Shelf sea paradigms and management implications[END_REF] has been suggested as a larvae retention mechanism for Norway lobster, Nephrops norvegicus, [START_REF] Hill | The western Irish Sea gyre: a retention system for Norway lobster (Nephrops norvegicus)[END_REF], and could have a similar effect on dab eggs and larvae. Furthermore, a strong jet-like westward flow across the St. Georges

Channel (between St. Davids Head of Wales and Carnsore Point in Ireland) prevents the blend of Celtic and Irish Seas water masses [START_REF] Brown | Observations of the physical structure and seasonal jet-like circulation of the Celtic Sea and St. George's Channel of the Irish Sea[END_REF], further complicating the export of eggs and larvae between the English Channel and North Sea. On a modelling exercise incorporating oceanographic data of the Irish Sea, simulated eggs and larvae dispersed an average of 80km from point of release, largely remained within 160km of point of release, and very few travelling up to 300km from point of release (van der [START_REF] Van Der Molen | Dispersal patterns of the eggs and larvae of spring-spawning fish in the Irish Sea, UK[END_REF]. These dispersal distances and the oceanographic features of the Irish Sea are in accordance with the structure found here in dab between North Sea and Irish Sea, for which a major genetic boundary exists between InC and LyB dab, and are suggestive of lack of migrants during the early life history stages of dab.

Adult dab are known to engage in seasonal migrations between feeding and spawning grounds, but these are generally thought to be between the coastal and offshore sections of certain areas (i.e from the Wadden Sea to the German Bight) [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF], not between basins. The assessment of the real time migrant analysis suggested little exchange of migrants.

Adult migration:

Levels of differentiation as low as φ ST = 0.009 and Θ WC = 0.027 were considered sufficient by [START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF] to quantify the relative contribution of different spawning subpopulations of Atlantic herring, Clupea harengus, to fished feeding aggregations. Similarly, [START_REF] Hauser | An empirical verification of population assignment methods by marking and parentage data: hatchery and wild steelhead (Oncorhynchus mykiss) in Forks Creek, Washington, USA[END_REF] evaluated that Θ WC as low as 0.02 were sufficient to clearly distinguish between wild steelhead salmon, Oncorhynchus mykiss, and their hatchery born counterparts in creeks were the latter had been released. [START_REF] Jorde | Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations[END_REF] studied cod collected along a 200 km stretch of Southern Norway coast and was successfully reassigned between 50 to 70% of individuals back into the population of origin even with an average Θ WC as low as 0.0013.

Despite being low, the genetic differentiation found in dab between sampling sites was still enough for the detection of probable migrants. Note however, that two key issues hinder the accuracy of the results: first, not all possible donor populations have been sampled, which in the previous examples [START_REF] Hauser | An empirical verification of population assignment methods by marking and parentage data: hatchery and wild steelhead (Oncorhynchus mykiss) in Forks Creek, Washington, USA[END_REF][START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF] was paramount for the correct assignment of individuals; and second, only migrants with outstanding genotypes could be identified, as given the low differentiation, many combinations of genotypes are probably common in all basins.

Over the course of four years, 21 dab out of 3027 were considered trans-basin migrants by both allele frequency and Bayesian methods. Although the number of migrants was estimated to be low, rare long distance migration rates of 1% per generation as found here would very quickly erode the genetic differentiation found in dab [START_REF] Slatkin | Gene flow and the geographic structure of natural populations[END_REF][START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF][START_REF] Waples | Integrating data into management of marine resources: how can we do it better?[END_REF]. Two potential hypotheses would explain the existence of detectable immigrants: first, the individuals identified as migrants are actually fish locally born but carry a particularly rare combination of alleles at the studied loci; conversely, detected migrants may indeed be true long distance migrants (with a genotypes typical of elsewhere), but these migrants will not carry suites of locally-adapted genes which may prevent them from successfully contributing to the next generation. Such an adaptive scenario would make compatible the occurrence of long ranger migrants together with the existence of genetic differentiation.

Temporal aspects of genetic structure:

The reproducibility of patterns of genetic structure over time strengthens the biological significance of the differences found (Carvalho & Hauser, 1998;Waples, 1998). Some studies have assessed the stability of patterns of genetic structuring over long periods of time, either by sampling the same locations after a number of years or analysing stored biological material [START_REF] Bernal-Ramírez | Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents[END_REF][START_REF] Hutchinson | Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua)[END_REF][START_REF] Hoarau | Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.)[END_REF][START_REF] Poulsen | Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua)[END_REF]; while other studies, like the current one, have aimed at finding how stable the structuring is in consecutive years [START_REF] Bembo | Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF][START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF]Hemmer-Hansen et al., 2007a;[START_REF] Pampoulie | Recolonization history and large-scale dispersal in the open sea: the case study of the North Atlantic cod, Gadus morhua L[END_REF][START_REF] Franckowiak | Temporal effective size estimates of a managed walleye Sander vitreus population and implications for genetic-based management[END_REF][START_REF] Papetti | Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands[END_REF]. Some have found largely stable genetic patterns [START_REF] Bembo | Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters[END_REF][START_REF] Bernal-Ramírez | Temporal stability of genetic population structure in the New Zealand snapper, Pagrus auratus, and relationship to coastal currents[END_REF][START_REF] Poulsen | Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua)[END_REF][START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF]Hemmer-Hansen et al., 2007a;[START_REF] Pampoulie | Recolonization history and large-scale dispersal in the open sea: the case study of the North Atlantic cod, Gadus morhua L[END_REF], while others have reported both long term changes and genetic differences between consecutive years suggesting the structure was transient or was altered by external factors [START_REF] Hutchinson | Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua)[END_REF][START_REF] Hoarau | Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.)[END_REF][START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF][START_REF] Franckowiak | Temporal effective size estimates of a managed walleye Sander vitreus population and implications for genetic-based management[END_REF][START_REF] Papetti | Spatial and temporal boundaries to gene flow between Chaenocephalus aceratus populations at South Orkney and South Shetlands[END_REF].

The temporal stability across consecutive sampling years of the genetic structure of dab was remarkable. No significant genetic differentiation (Θ WC or Θ' WC ) was found at any location between the temporal replicate samples. The differentiation values were very low, even after correction for heterozygosity, highlighting that even highly polymorphic and structured loci (such as DAC4-64) had similar allele distribution within location across years. Both the temporal GENELAND and sPCA suggested genetic stability for most locations, indicative that the structure found for dab is likely to be biologically significant rather than the product of random distribution of alleles (Carvalho & Hauser, 1998;Waples, 1998).

Dab targeted in the stations covered by the CSEMP programme seem younger than previously reported in the early 1990's, where the 5 and 6 year old classes accounted for the majority of the dab population in the Eastern North Sea, with very few one year old fish collected [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF]. Such changes in age composition of populations could be explained by age segregation, increased mortality, or temporal changes in recruitment numbers. Indeed cohort strength fluctuations have been reported for dab [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF][START_REF] Van Der Veer | Recruitment in flatfish, with special emphasis on North Atlantic species: Progress made by the Flatfish Symposia[END_REF][START_REF] Beggs | Variability in settlement and recruitment of 0-group dab Limanda limanda L. in Port Erin Bay, Irish Sea[END_REF], which could generate apparent genetic structuring.

Nonetheless, the temporal stability was evident even among age cohorts for those samples for which age information was available (NeD07, RyE07 and LiV07), suggesting that the stability of genetic composition was inherent to the local dab population and not a chance effect of sampling the same very successful cohort across the four years. Our results are thus more in line with those obtained among cod cohorts, where differences among cohorts within samples were not significant [START_REF] Jorde | Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations[END_REF], than those from herring, where a significant effect was detected among year classes within samples [START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF].

Despite general temporal stability, there were exceptions: The StB05 sample was more differentiated from the rest of StB samples than any other within-location comparison, though, such pattern was most likely due to its smaller sample size (N = 30), especially when incomplete genotypes were removed (N = 18). Without doubt the most interesting temporal change is that found in the western English Channel: LyB samples became increasingly more Unfortunately the individual admixture analysis could not resolve whether the change was due an increase of pure North Sea dab (immediate recent migrants) or an increase in the North Sea proportion of the genome of all dab (diluted effect of more ancient migrants).

Past demographic events:

The past demographic history of a population is key in understanding the present distribution of genetic diversity. Patterns of recent migration can result in no genetic differentiation [START_REF] Slatkin | Gene flow and the geographic structure of natural populations[END_REF]; but so can recent divergence of two populations from a common ancestor.

The recent creation of North and Irish Seas [START_REF] Behre | A new Holocene sea-level curve for the southern North Sea[END_REF] have been hypothesised as causes for the presence of only weak genetic structure found many other marine organisms with large population sizes in the North East Atlantic [START_REF] Gyllensten | The genetic structure of fish: differences in the intraspecific distribution of biochemical genetic variation between marine, anadromous, and freshwater species[END_REF]; and evidence of expansion signals at both mtDNA and microsatellite data have been detected in many species such as cod, Gadus morhua [START_REF] Pogson | Genetic population structure and gene flow in the Atlantic Cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci[END_REF][START_REF] Pampoulie | Recolonization history and large-scale dispersal in the open sea: the case study of the North Atlantic cod, Gadus morhua L[END_REF], flounder [START_REF] Borsa | [END_REF], plaice [START_REF] Hoarau | Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data[END_REF], common crabs, Carcinus maenas [START_REF] Roman | A global invader at home: population structure of the green crab, Carcinus maenas, in Europe[END_REF], gobies, Pomatoschistus microps [START_REF] Gysels | Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea[END_REF], thornback rays, Raja clavata [START_REF] Chevolot | Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae)[END_REF], and fucoids, Fucus serratus [START_REF] Hoarau | Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus[END_REF].

Most loci for most samples revealed negative k values suggesting alleles for these loci all emerged in a short period of time. The exclusion of those loci with null alleles (DAC1-35 and On the other hand, no g value was significant. However, the interlocus g test is particularly sensitive to variations in mutation rates between loci, which increase the ratio of g [START_REF] Reich | Genetic evidence for a Paleolithic human population expansion in Africa[END_REF], and other studies have also reported similar patterns of highly significant k values associated with non-significant g values [START_REF] Donnelly | Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae[END_REF][START_REF] Munkacsi | Ustilago maydis populations tracked maize through domestication and cultivation in the Americas[END_REF].

Unique locus characteristics such as homoplasy, allele size restrictions, and whether the polymorphism at the locus is species specific or was present before the creation of the species under study, would all result in widely divergent estimates of the age of the deepest allele branching effectively blurring the expansion signal as detected by the g ratio. As in other studies using k and g tests [START_REF] Donnelly | Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae[END_REF][START_REF] Munkacsi | Ustilago maydis populations tracked maize through domestication and cultivation in the Americas[END_REF] and given the overwhelming significance of the k statistic in most dab samples the population expansion signal is accepted as true. Two possible past events could explain an expansion signal in dab:

the colonisation of the North Sea and Irish Sea after the last glaciation [START_REF] Maggs | Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa[END_REF], or the recent surge in dab numbers reported since the 1970's [START_REF] Kaiser | Opportunistic feeding by dabs within areas of trawl disturbance: possible implications for increased survival[END_REF]. These hypotheses will be discussed below.

The original aim of the BOTTLENECK analysis was to resolve whether those samples not showing an expansion signal (i.e. AmB in 2005 and 2006 and the Irish Sea) had instead recently experienced a recent contraction in population size. The results provided unexpected insights into the past demography of dab. Most samples had H E outside the expected H eq 95% CI under the SMM, the most conservative mutation model and the one that best applies to microsatellites. However, the Wilcoxon test indicated that the source of the significance was heterozygote deficiency instead of excess, suggestive of population expansion [START_REF] Luikart | Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data[END_REF]. A more detailed locus specific analysis (Data not shown) revealed some very interesting patterns about the population expansion signal and microsatellite evolution: first of all, four loci (DAG2-90, DAG4-64, DAG5-17, and DAC1-90) showed highly significant heterozygosity excess for most samples under the IAM. Such a pattern would indicate that a bottleneck has affected all samples only in the part of the genome where these loci reside, however, it is much more plausible that such a pattern is just indicative that these loci are very unlikely to follow an IAM. When locus-specific values were analysed under the SMM the opposite pattern was revealed, most loci were highly significant in most samples but for heterozygosity deficiency, indicative of population expansion over most of the genome. The four loci aforementioned, together with DAC5-21, did not show deviations from the expected Reconstructed map of Europe when Ice sheets were at their maximum expanse (21,000 years ago). Borders of ice sheets represented in light blue [START_REF] Maggs | Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa[END_REF]; Whether the British and Scandinavian Ice sheet joined is subject to controversy; Postulated North Sea and English Channel shorelines 12,000 years ago (65m below current sea level) [START_REF] Behre | A new Holocene sea-level curve for the southern North Sea[END_REF] are approximately delineated in brown. Dab has an estimated biomass of two million tonnes in the North Sea [START_REF] Daan | Ecology of North Sea fish[END_REF], which together with the average weight of adult dab (ca. 100g; average weight of dab included in the CSEMP programme), translates into 20,000 million individual dab in the southern North Sea alone. Although such estimation is very crude, it still conveys an approximation of the magnitude of the number of dab living around the British Isles. For organisms with such large census population sizes, genetic drift is not likely to play a major role on population differentiation, and thus differentiation at neutral markers between isolated dab groups is expected to emerge very slowly.

Conclusion and brief implications for biomonitoring programmes:

Overall, the results of current study reveal the existence of significant genetic structure of dab at the regional scale covered here, in which dab from the different sea basins were genetically distinguishable. Several non-mutually exclusive hypothesis can lead to structure in the marine environment: reduced migration combined with genetic drift [START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF], fidelity to spawning site [START_REF] Thorrold | Natal homing in a marine fish metapopulation[END_REF][START_REF] Vitale | The spatial distribution of cod (Gadus morhua L.) spawning grounds in the Kattegat, eastern North Sea[END_REF], and local adaptation [START_REF] Carvalho | Evolutionary aspects of fish distribution: genetic variability and adaptation[END_REF][START_REF] Conover | Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation[END_REF]Hemmer-Hansen et al., 2007a). The small Fst values found here may not necessarily imply high levels of gene flow between populations [START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF]. On the contrary, the existence of small Fst values with neutral markers despite such large populations, and recent colonisation history, may suggest the existence of biologically significant genetic differences at the adaptive level and the existence of locally adapted populations. Several authors have previously studied different dab populations across its distribution range, and have reported differences among them in morphological (e.g. number of vertebrae, spines and rays) and life history traits (e.g. growth rate, maximum size and age at maturity) [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF][START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF][START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF][START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF]. The results from the current study raise the possibility that such differences may not just represent phenotypic plasticity, but could indeed be genetically-based, indicating a higher than expected degree of isolation among populations. Therefore, their mechanisms of response to pollution and other environmental stresses might vary between basins. Evidence of such patterns has already started to emerge: blood plasma proteome of dab not only reveals their liver tumour status, but also their provenance: Irish Sea or North Sea [START_REF] Ward | Plasma proteome analysis reveals the geographical origin and liver tumor status of dab (Limanda limanda) from UK marine waters[END_REF]; larger sex biases have been reported in expression of hepatic ethoxyresorufin-Odeethylase (EROD) in North Sea fish than in Irish Sea fish [START_REF] Kirby | The use of Ethoxyresorufin-O-deethylase (EROD) in fish as a biological effects monitoring tool[END_REF]; and dab from the North Sea and Irish Sea seem to have a two year gap between the earliest onsets of the cancerigenous process in each location (Grant Stentiford, CEFAS, personal communication).

Furthermore, the disease profiles of dab seem to be temporally stable [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF], reinforcing the idea of locally stable dab populations. Given the patterns of genetic differentiation found in dab around the British Isles, it is recommended that biomonitoring programmes take such structuring into account: fish from target polluted sites should be compared to fish from reference sites within the same subpopulation boundaries. In doing so, managers would avoid confounding variance due to subpopulation-specific inherent likelihood of developing disease and that truly caused by pollutants. Additionally, subpopulation-specific disease-frequency baselines can now be established with evolutionary meaningful geographical boundaries, allowing detection of finer changes in location-specific disease prevalence.The genetic changes reported at the western English Channel may command special treatment in biomonitoring analysis, as the susceptibility of the immigrant North Sea fraction of the population may be different from the originally found in LyB.

Overall, the microsatellites developed for dab (Tysklind et al., 2009b) have proved invaluable in detecting subtle but highly significant and temporally stable genetic structure around the British Isles. The acknowledgement of such structure by the biomonitoring community will contribute to a better understanding of the processes undertaken by dab in their quest for adaptation and survival in an increasingly human-altered environment.

Summary:

1) Over 3,000 dab collected from up to 15 stations over the course of four years were genotyped at 16 microsatellite loci.

2) Significant structuring of the genetic diversity of dab was found, suggesting that dab around the UK form at least two distinct subpopulations.

3) The genetic structuring was found to be generally stable over the course of four years, indicating the structuring is due to biological reasons and not a sampling artefact.

4) The main subpopulations found, North Sea and Irish Sea, correspond to differences found in other traits of dab biology (e.g. physiological and life-historytraits).

5) Biomonitoring programmes using dab around the British Isles should be aware of the evolutionary isolation of dab subpopulations and analyse the biomonitoring data accordingly (i.e. only comparing within subpopulation target and reference sites).

Chapter 8: Integration of population genetic data into marine biomonitoring: a case study using dab, Limanda limanda.

Abstract:

The dab, Limanda limanda, is one of the key biomonitoring species in the UK and is extensively studied for biological responses of exposure to anthropogenic pollutants. Using a mobile species, however, to evaluate localized pollution burdens can be problematic, as sampling location might not represent the true life-long exposure record. As revealed by genetic markers dab are not a single homogenous entity throughout the sampling range. Here the patterns of genetic connectivity and disease incidence are compared and a disparity between the strongest barrier to gene-flow and the sharpest change in biomarker profiles is found. There was no obvious relationship between two measures of inbreeding and disease records, indicating that mating between close relatives is not the cause for individual difference in biomarkers. Furthermore, there was no evidence for increased relatedness among individuals afflicted with liver nodules, suggesting that carcinogenic processes are not restricted to a particular genetic section of the population. Genetic differentiation among samples is exploited to study the provenance of fish displaying liver nodules. Most diseased fish can be assumed to belong to where they were collected; however for some samples with abnormally high frequency of liver nodules, like St. Bees in 2007, the incidence can be explained by recent immigration from other locations. Genotyping of assessed individuals provided important information not available by other means and the incorporation of population genetic data is encouraged for programmes studying mobile species.

Introduction:

Biomonitoring programmes aim to assess the effects of anthropogenic pollutants in the natural environment. They use bioindicator species for which biomarkers (parasite loads, diseases and other conditions) associated with pollution exposure are recorded. The incidence of each biomarker can then be studied spatially and temporally to understand the biological implications of chemical compounds derived from human activities [START_REF] Phillips | Use of bio-indicators in monitoring conservative contaminants: Programme designs imperatives[END_REF]. In aquatic ecosystems fish are commonly used to evaluate the effects of industrial and domestic effluents on rivers, lakes, estuaries and coastal areas (van der [START_REF] Van Der Oost | Fish bioaccumulation and biomarkers in environmental risk assessment: a review[END_REF], and biomonitoring exercises employing fish abound (MAFF, 1987;[START_REF] Förlin | Induction of cytochrome P450 1A in teleosts: environmental monitoring in swedish fresh, brackish and marine waters[END_REF][START_REF] Schmitt | Biomonitoring of lead-contaminated Missouri Streams with an assay for Erythrocyte δ-aminolevulinic acid dehydratase activity in fish blood[END_REF][START_REF] Teh | Histopathologic biomarkers in feral freshwater fish populations exposed to different types of contaminant stress[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Breine | A fish-based assessment tool for the ecological quality of the brackish Schelde estuary in Flanders (Belgium)[END_REF][START_REF] Schlacher | Estuarine fish health assessment: Evidence of wastewater impacts based on nitrogen isotopes and histopathology[END_REF][START_REF] Leonardi | Diseases of the Chilean flounder, Paralichthys adspersus (Steindachner, 1867), as a biomarker of marine coastal pollution near the Itata River (Chile): part II. Histopathological lesions[END_REF].

Dab (Limanda limanda) are one of the key biomonitoring species in marine environmental quality assessment in the North East Atlantic, and monitoring programmes, both at European (OSPAR, 2009) and UK levels (CEFAS, 2003c;2005;[START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF] have been established.

As part of the Clean Seas Environmental Monitoring Programme (CSEMP) a sampling cruise is undertaken every year to assess the health status of dab around the UK. On a standard CSEMP station, disease profiles and parasite load of individual fish are recorded. Upon collection dab are immediately placed in flow-through tanks with aerated sea water, and individual fish evaluated in one of two ways in each sampling station: first, a set of 50 fish, described here as "comprehensive", are thoroughly examined for external diseases and parasite load [START_REF] Bucke | Common diseases and parasites of fish in the North Atlantic: training guide for identification[END_REF][START_REF] Broeg | The use of fish metabolic, pathological and parasitological indices in pollution monitoring[END_REF][START_REF] Schmidt | Parasites of flounder (Platichthys flesus L.) from the German Bight, North Sea, and their potential use in biological effects monitoring[END_REF], the liver is sampled for histopathology [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF] and the gonad analysed for evidence of endocrine disruption [START_REF] Scott | Evidence for estrogenic endocrine disruption in an offshore flatfish, the dab (Limanda limanda L.)[END_REF]. Additionally, bioindicators of exposure to organic contaminants such EROD activity and bile metabolites are examined [START_REF] Kirby | The use of Ethoxyresorufin-O-deethylase (EROD) in fish as a biological effects monitoring tool[END_REF][START_REF] Neall | The use of biomarkers in biological effects monitoring, in Monitoring of the quality of the marine environment, 2000-2001[END_REF], DNA is assessed for evidence of disruption [START_REF] Everaarts | DNA integrity as a biomarker of marine pollution: strand breaks in seastar (Asterias rubens) and dab (Limanda limanda)[END_REF][START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF]CEFAS, 2003b), and blood plasma is collected for proteomic analysis [START_REF] Ward | Plasma proteome analysis reveals the geographical origin and liver tumor status of dab (Limanda limanda) from UK marine waters[END_REF], collectively yielding a very complete individual disease record. Complementarily, larger numbers of fish (up to 300 in some stations), and denoted as "externals only", are screened for external diseases and grossly visible liver pathologies. The combination of both methodologies generates detailed information of disease processes (comprehensive) together with a more accurate representation of disease frequency at each location (externals).

Dab display variations in the incidence of diseases and other biomarkers of pollutant exposure among sampling locations [START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF][START_REF] Ward | Plasma proteome analysis reveals the geographical origin and liver tumor status of dab (Limanda limanda) from UK marine waters[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF] which are then reported and interpreted in evaluations of ecosystem health (MAFF, 1987;1995;CEFAS, 2000;2003a;[START_REF] Cefas | Monitoring of the quality of the marine environment[END_REF][START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF]. Some locations, such as Liverpool Bay and Dogger Bank, that have heavy and complex loads of natural and anthropogenic pollutants (MAFF, 1990;[START_REF] Laslett | Concentrations of dissolved and suspended particulate Cd, Cu, Mn, Ni, Pb and Zn in surface waters around the coasts of England and Wales and in Adjacent Seas[END_REF][START_REF] Camacho-Ibar | Total PCBs in Liverpool Bay Sediments[END_REF][START_REF] Langston | Bioavailability of metals in sediments fo the Dogger Bank (Central North Sea): a mesocosm study[END_REF] show biomarker profiles characterised by high EROD activity (CEFAS, 2003c;[START_REF] Kirby | The use of Ethoxyresorufin-O-deethylase (EROD) in fish as a biological effects monitoring tool[END_REF], high frequency of DNA adducts [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF]CEFAS, 2003b), and the prevalence of carcinogenic processes [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]. Furthermore the trends reported in the incidence of these biomarkers over time are congruent with changes in environmental quality [START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF] and somatic concentration of pollutants [START_REF] Franklin | The concentration of mercury in fish taken from Liverpool Bay, UK in 2002[END_REF].

Of all diseases encountered in dab, liver nodules and other hepatic tumorigenic processes have attracted most attention. The causality between many pollutants and liver lesions has been extensively studied [START_REF] Mix | Cancerous diseases in aquatic animals and their association with environmental pollutants: a critical literature review[END_REF][START_REF] Stein | Overview of studies on liver carcinogenesis in English sole from Puget Sound; evidence for a xenobiotic chemical etiology II: biochemical studies[END_REF][START_REF] Johnson | The genetic effects of environmental lead[END_REF][START_REF] Järup | Hazards of heavy metal contamination[END_REF][START_REF] Waisberg | Molecular and cellular mechanisms of cadmium carcinogenesis[END_REF][START_REF] Koehler | The gender-specific risk to liver toxicity and cancer of flounder (Platichthys flesus L.) at the German Wadden Sea coast[END_REF], thereby rendering liver lesions important and informative indicators of pollutant exposure for which a set of guidelines has been standardised [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF] together with quality assurance procedures (BEQUALM, 2009).

Nevertheless, the elevated incidence of tumours in some locations considered pristine, like Cardigan Bay sites, remains unexplained [START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF]. The use of a mobile species entail problems in linking biomarker responses to collection location (CEFAS, 2003a;[START_REF] Van Der Oost | Fish bioaccumulation and biomarkers in environmental risk assessment: a review[END_REF], as fish heavily exposed to pollution in one area could migrate to a nonpolluted area and, upon collection for biomonitoring assessment, create a false impression that toxicants operate in that location. Conversely, if healthy fish from non-polluted areas have recently migrated into a target contaminated site, their lack of long term responses will dilute the signal of pollution exposure, and the biomonitoring assessment will fail to report the true impact of local sources of pollution.

One effective way to identify marine population boundaries and connectivity, and the provenance of individual fish is to use genetic markers (Carvalho & Hauser, 1994;1998;[START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF], especially markers exhibiting high levels of polymorphism and potential for individual assignment, such as microsatellites [START_REF] Manel | Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignement tests and multilocus genotypes[END_REF].

Microsatellites have also attracted attention from the ecotoxicology community [START_REF] Brown | Development and use of microsatellite DNA loci for genetic ecotoxicological studies of the fathead minnow (Pimephales promela)[END_REF][START_REF] Dimsoski | Development of DNA-based microsatellite marker technology for studies of genetic diversity in stressor impacted populations[END_REF] and have been employed in a few environmental pollution impact assessment studies [START_REF] Berckmoes | Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF][START_REF] Fratini | Relationship between heavy metal accumulation and genetic variability decrease in the intertidal crab Pachygrapsus marmoratus (Decapoda; Grapsidae)[END_REF][START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF]. In relation to such application, a suite of microsatellites for dab was developed (Tysklind et al., 2009b). Weak but highly significant and temporally stable structure was found between North Sea and Irish Sea stations (Chapter 7). In this chapter, the utility of employing microsatellites in studies of biomonitoring in dab are examined in a detailed case by case analysis.

Firstly, the distribution of genetic diversity and changes in biomarker incidence will be evaluated to extract relevant biological relationships among samples. An assignment exercise [START_REF] Paetkau | Microsatellite analysis of population structure in Canadian polar bears[END_REF]2004;[START_REF] Rannala | Detecting immigration by using multilocus genotypes, Procceding of the National Academy of Sciences of the United States of America[END_REF] based on dab's population genetic data (Chapter 7) will then be performed to examine the putative origin of fish afflicted with liver nodules. The underlying rationale was based on the notion that if diseased fish at a particular location belonged to the same gene pool as healthy fish found at that location, the former would most likely be assigned back to the original sample. Conversely, if diseased fish were assigned elsewhere, then some process (i.e. migration or convergent selection) might be driving the genetic differences between healthy and diseased fish.

Pollution has been hypothesised to exert strong selective pressures on organisms which could lead to bottlenecks and reduction of genetic diversity [START_REF] Bickham | Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology[END_REF][START_REF] Belfiore | Effects of contaminants on genetic patterns in aquatic organisms: a review[END_REF]. Indeed, pollutants have been shown to impact allele richness and heterozygosity, both experimentally and in wild populations. [START_REF] Gardeström | A multilevel approach to predict toxicity in copepod populations: assessment of growth, genetics, and population structure[END_REF] evaluated the effects of flame retardants on exposed and control replicate populations of the copepod Nitocra psammophila, and detected significantly reduced heterozygosity in the exposed populations. Likewise, [START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF] reported a reduction of allele diversity and heterozygosity in midges, Chironomus riparius, after experimental exposure to tributyltin (TBT). In wild populations of flounder, Platichthys flesus, from different estuaries, [START_REF] Marchand | Responses of European flounder Platichthys flesus populations to contamination in different estuaries along the Atlantic coast of France[END_REF] reported reduced heterozygosity in samples collected from polluted estuaries compared to the reference estuary, although the differences were small and not significant.

Nonetheless, some field studies have sometimes reported the opposite. Theodorakis & Shugart (1997) found significantly higher levels of heterozygosity and diversity in mosquito fish, Gambusia affinis, living in a noxious cocktail of radionucleotides, heavy metals, PCBs and PAHs, than in those fish living in pristine environments. Similarly, [START_REF] Peles | Population genetic structure of earthworm (Lumbricus rubellus) in soils contaminated by heavy metals[END_REF] also reported significantly higher levels of heterozygosity in earthworms, Lumbricus rubellus, living in heavy metal contaminated plots than in nearby control soils. The issue becomes even more complex when the individual heterozygosity relationship with pollution tolerance is studied. [START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF] reported lower biomarker induction (EROD) in more heterozygous individual chub, Leuciscus cephalus; and [START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF] reported reduced heavy metal load in more heterozygous eels, Anguilla anguilla. On the other hand, [START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF] found the opposite trend in yellow perch, Perca flavescens, with more heterozygous individuals carrying higher levels of heavy metals. These apparently contradictory patterns can be still be reconciled. For different species the detoxification and tolerance processes are different [START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF], in some cases the advantage may reside in being able to excrete the pollutant [START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF], while in others highly heterozygotic individuals may be able to tolerate higher levels of pollutants [START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF]. In all these cases, highly heterozygote individuals have a survival advantage which would produce more heterozygotic populations such as those found by Theodorakis & Shugart (1997) and [START_REF] Peles | Population genetic structure of earthworm (Lumbricus rubellus) in soils contaminated by heavy metals[END_REF]. The opposite trends observed in the experimental exercises [START_REF] Gardeström | A multilevel approach to predict toxicity in copepod populations: assessment of growth, genetics, and population structure[END_REF][START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF] could be explained by the selection exerted by a single toxicant selecting just for one genotype combined with the effects of reduction in population size in experimental trials.

Multilocus heterozygosity has often been hypothesised as an indicator of general individual fitness [START_REF] Coulson | Microsatellites reveal heterosis in red deer[END_REF][START_REF] Coltman | Parasite-mediated selection against inbred Soay sheep in a free-living, island population[END_REF][START_REF] Rowe | Intraspecific competition disadvantages inbred natterjack toad (Bufo calamita) genotypes over outbred ones in a shared pond environment[END_REF][START_REF] Mainguy | Multilocus heterozygosity, parental relatedness and individual fitness components in a wild mountain goat, Oreamnos americanus population[END_REF] as inbred individuals are more likely to be homozygous for individual loci, both neutral and coding. The negative aspects of inbreeding emerge as an increasing number of recessive deleterious alleles become expressed in the homozygous state [START_REF] Beebee | An introduction to Molecular Ecology[END_REF].

Relationships between heterozygosity (either positive or negative) and general individual fitness in the form of survival, growth rate, parasite load, overall symmetry, or stress resistance have been studied widely [START_REF] Danzmann | Heterozygosity and component of fitness in a strain of rainbow trout[END_REF][START_REF] Beaumont | Genetic studies of laboratory reared mussels, Mytilus edulis: heterozygote deficiencies, heterozygosity and growth[END_REF][START_REF] Blanco | Allozyme heterozygosity and development in Atlantic salmon, Salmo salar[END_REF][START_REF] Shikano | Relationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in the guppy (Poecilia reticulata)[END_REF][START_REF] Borell | Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L[END_REF][START_REF] Blanchet | Evidence of parasite-mediated disruptive selection on genetic diversity in a wild fish population[END_REF], although these relationships may vary between populations [START_REF] Pogson | DNA heterozygosity and growth rate in the Atlantic cod Gadus morhua (L)[END_REF]. As reviewed before, several studies have also found heterozygosity to be relevant in pollution tolerance, thus, dab varying in average heterozygosity may perform differently after exposure to pollutants.

Accordingly, the correlation between heterozygosity or inbreeding coefficient and various disease and parasite records will be examined here.

The high incidence of liver lesions across the whole tumorigenic process [START_REF] Feist | Biological effects of contaminants: Use of liver pathology of the European flatfish dab (Limanda limanda L.) and flounder (Platichthys flesus L.) for monitoring[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF], together with the possibility of screening large numbers of individuals open the possibility of using dab as epidemiological models of cancer incidence in humans [START_REF] Rotchell | A novel population health approach: using fish retinoblastoma gene profiles as a surrogate for humans[END_REF]. Here, the information available on the incidence of human cancer will be exploited to formulate hypothesis to be tested on the data set. Certain polymorphic genes may play a crucial role on whether the tumorigenic process progresses onto detectable pathologies [START_REF] Nebert | Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer[END_REF][START_REF] Nock | Polymorphisms in estrogen bioactivation, detoxification and oxidative DNA base excision repair genes and prostate cancer risk[END_REF][START_REF] Ryk | Influence of polymorphism in DNA repair and defence genes on p53 mutations in bladder tumours[END_REF][START_REF] Wu | Interaction of genetic polymorphism in cytochrome P450 2E1 and glutathione S-Transferase M1 to breast cancer in Taiwanese women without smoking and drinking habits[END_REF][START_REF] Fasching | Role of genetic polymorphisms and ovarian cancer susceptibility[END_REF][START_REF] Whibley | p53 polymorphisms: cancer implications[END_REF], thus certain cancers are more prevalent in some human populations than others [START_REF] Bhisey | Polymorphism at CYP and GST gene loci and susceptibility to tobacco related cancers[END_REF][START_REF] Chikako | NQO1, MPO, and the risk of lung cancer: a HuGE review[END_REF][START_REF] Distelman-Menachem | Analysis of BRCA1/BRCA2 genes' contribution to breats cancer susceptibility in high risk Jewish Ashkenazi women[END_REF], and differences in cancer development risk are found at the family level [START_REF] Lynch | Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome)[END_REF][START_REF] Pharoah | Family history and the risk of breast cancer: a systematic review and meta-analysis[END_REF][START_REF] Lynch | Hereditary ovarian carcinoma: heterogeneity, molecular genetics, pathology, and management[END_REF][START_REF] Permuth-Wey | Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis[END_REF]. If the propensity of developing cancers is family-specific also in dab, then fish recorded with liver nodules might be more related to each other than the rest of non-affected individuals. The familial relationships between those fish exhibiting liver nodules will also be examined and compared to the average relatedness of all fish captured in the same area.

Materials and Methods:

Samples for the genetic analysis of individual dab were collected following the CSEMP assessment of biomarkers on four consecutive years (2005)(2006)(2007)(2008) in several stations covering three basins: the North Sea, the English Channel, and the Irish Sea.

Biomarker data:

The results of the biomarker screening (i.e. individual disease records) were provided by CEFAS. The samples considered for genetic analysis here were a mixture of both "comprehensive" and "externals only" screened fish (Table 8.1) as defined in the introduction. Three samples (NeD07, Rye07 and Liv07) were analysed at the "comprehensive level" (i.e. all biomarkers were included). For these three samples age data read from otoliths was also provided by CEFAS. The rest of the samples were evaluated only at "externals level".

Two further levels of analysis were evaluated for all samples: at the sample level, and at the individual level.

Disease profiles were handled as in [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]:

1) "externals": five grossly visible diseases recorded for all fish: lymphocystis, epidermal papilloma, skin ulceration, skin hyperpigmentation and liver nodules (Table 8.1).

2) "Comprehensive": composed of the "externals" plus an extra five categories described in [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF] summarising 32 different liver lesions classified according to their severity from Category 1 (non-specific) to Category 5 (malignant neoplasms) ( Figure 8.2).

Individual disease records of all genotyped individuals were first transformed into presence or absence (1 or 0) of all aforementioned categories and within-sample prevalence was calculated as average among individuals. [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]. Lat. Long. = coordinates where samples were collected. Sample size = number of individual fish genotyped for each location and year, numbers in italics are the number of individuals with no missing data. Disease coverage indicates whether the genotyped fish were assessed only for external and grossly visible diseases (Ext.) or where fully analysed for internal histopathology (Comp.) 

Genetic profiling:

Individual genotype data was composed of 16 microsatellite loci (Tysklind et al., 2009b) (see Chapters 6 and 7 for details). To understand the distribution of genetic diversity of dab around the British Isles and the connectivity between samples, the results of several genetic analysis were re-examined, namely, neighbour-joining genetic distance trees [START_REF] Felsenstein | PHYLIP-Phylogeny inference package (version 3.2)[END_REF], GENELAND plots (Guillot et al., 2005;2005;2008;[START_REF] Guillot | Inference of structure in subdivided populations at low level of genetic differentiation. The correlated allele frequencies model revisited[END_REF], several forms of multivariate analysis (sample correspondence analysis and spatial principal component analysis) [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF][START_REF] Jombart | Revealing cryptic spatial patterns in genetic variability by a new multivariate method[END_REF]2009), and admixture proportions at population level [START_REF] Bertorelle | Inferring admixture proportions from molecular data[END_REF][START_REF] Dupanloup | Inferring admixture proportions from molecular data: extension to any number of parental populations[END_REF]. The methodology of the analysis of genetic data is described in Chapter 7.

Sample level analysis:

Evaluation of disease incidence:

The multivariate statistical package PRIMER™6.1.6 [START_REF] Clarke | Change in marine communities: an approach to statistical analysis and interpretation[END_REF] was employed to analyse the biomonitoring data. Factors, which are used in some of the analysis, can be introduced a priori into the analysis. Three different factors were considered here: "Basin" as defined in the population genetics chapter (North Sea vs. Irish Sea, where English Channel samples were considered North Sea), "Year" (2005)(2006)(2007)(2008), and "Region" as defined by [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]: North Sea Offshore, North Sea Inshore, English Channel, Irish Sea South, Irish Sea North. The significance of each factor at explaining biomarker variability among samples was assessed with an analysis of similarity (ANOSIM) with 10,000 permutations.

A principal component analysis (PCA) was performed to evaluate the contribution of each disease to the distribution of biomarker data. A resemblance matrix based on Euclidean distance was calculated and then used to produce non-metric multi-dimensional scaling (MDS) plots onto which resemblance boundaries were overlaid. The incidence of each of the diseases was incorporated into the MDS in the form of bubble plots where larger bubbles represent a higher frequency of the disease. The resemblance matrix was also used to generate dendrograms of sample similarity, where node robustness at the 50% level was assessed by the SIMPROF test with 10,000 simulations of 50,000 permutations each.

Correspondence between distribution of disease profiles and genetic diversity:

In order to assess the relationship between disease prevalence and genetic structuring, the Euclidean distance of disease prevalence between samples collected each year was compared subset of random individuals within the sample (R G '). Only individuals fully genotyped were included in the non-diseased group, and genotypes were converted as suggested in the STORM manual to unique numbers from one to n from the smallest to the largest allele at each locus with the CONVERT excel sheet supplied with the software (available at http://www3.interscience.wiley.com/cgi-bin/fulltext/121494629/PDFSTART). The STORM manual stresses that the number of randomised iteration has to be smaller than the number of possible combinations of individuals (n(n-1)/2) within each group, thus for sample sizes around 50 individuals, 100 iterations were used (for example: a sample with 48 individuals of which three have liver nodules: number of combinations= [45(45-1)/2]+[3(3-1)/2]= 993 >>> 100), while 1,000 iterations were employed for those samples with nearly 100 individuals.

The significance was assessed by counting the number of iterations (R G ') with a value above and below the obtained R G .

Individual level analysis:

Relationships between Heterozygosity and bioindicator profiles:

Several estimators based on genotypic data have been devised to assess individual inbreeding level when pedigree information is not available: [START_REF] Coulson | Microsatellites reveal heterosis in red deer[END_REF] devised a measure, d 2 , which included theoretical molecular distance under a stepwise mutation model [START_REF] Kimura | Stepwise mutation model and distribution of allelic frequencies in a finite population[END_REF], though the relevance of the mutational model to the estimator has been questioned [START_REF] Tsitrone | Heterosis, marker mutational processes and population inbreeding history[END_REF][START_REF] Goudet | The correlation between inbreeding and fitness: does allele size matter?[END_REF]. Amos et al. (2001) proposed another individual measure, internal relatedness (IR), based on the allele frequency-corrected "relatedness" of the two alleles at each locus averaged over loci. Positive IR values denote individuals whose parents are more related than average, while negative values are indicative of outbred ones. IR has been used extensively; nevertheless, [START_REF] Aparicio | What should we weigh to estimate heterozygosity, alleles or loci?[END_REF] pointed out problems with differences in loci allele diversity and rare alleles, and described yet another measure, homozygosity weighted by loci, hL, which takes locus allelic diversity into consideration.

Both IR and hL were calculated in STORM v1.1 [START_REF] Frasier | STORM: software for testing hypothesis of relatedness and mating patterns[END_REF] for each individual in three large samples (over 100 fish) from 2007 (NeD07, Rye07 and Liv07), for which age and complete disease profiles were available. To avoid problems with loci exclusion (STORM manual), only individuals with complete genotypes were considered here. The relationships between both measures of inbreeding and disease (summarised into the 10 categories) and parasite records (both, individual parasite species, and sum of number of species infecting individuals) were analysed in MINITAB™. To assess whether more heterozygous individuals were in better general condition, weight and length (standardised by age class), were used as a proxies of general fitness [START_REF] Blanco | Allozyme heterozygosity and development in Atlantic salmon, Salmo salar[END_REF][START_REF] Coltman | Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites[END_REF][START_REF] David | heterozygosity-fitness correlations: new perspectives on old problems[END_REF][START_REF] Borell | Correlations between fitness and heterozygosity at allozyme and microsatellite loci in the Atlantic salmon, Salmo salar L[END_REF]) and compared to heterozygosity.

Assignment of diseased fish:

The assignment exercise was conducted in the software package GENECLASS2 [START_REF] Piry | GENECLASS2: A software for genetic assignment and first-generation migrant detection[END_REF]. First, fish genotypes were split into two groups, diseased (liver nodules) and healthy, for each location. Complete genotypes of healthy fish, which were the majority, at each location were used as reference samples. Genotypes of diseased individuals were then considered for assignment. The Bayesian multilocus assignment criterion [START_REF] Rannala | Detecting immigration by using multilocus genotypes, Procceding of the National Academy of Sciences of the United States of America[END_REF] was used, and associated probabilities were calculated by simulating 10,000 individuals from the available genotypes [START_REF] Paetkau | Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power[END_REF]. The complete analysis was run independently for each year.

Results:

8.4.1 Population Level:

Evaluation of disease incidence:

There were strong differences in disease incidence between the samples (Table 8.2). The ANOSIM revealed that "Basin" was a weak descriptor for the distribution of biomarker data (Global R=0.094; p=0.058), as was "Year" (Global R=-0.044; p=0.810). "Region" on the other hand was the best factor fitting the biomonitoring data (Global R=0.431; p<0.001), thus "Region" was kept as factor for all subsequent analysis.

The PCA ordination plot of the grossly visible diseases (Figure 8.3) segregated sampling locations along the first principal component. The PCA1, PCA2, and PCA3 explained 81.2%, 9.0% and 6.2% of the variability of the data respectively. The Eigenvectors indicated that hyperpigmentation dominated the PCA1, which spaced North Sea samples from English Channel and Irish Sea; while skin ulceration was the main driver behind PCA2, which effectively separated coastal from offshore sites within the North Sea, and North and South sites within the Irish Sea.

The MDS plot with resemblance boundaries (Figure 8.3) and the Euclidean distance dendrogram (Figure 8.4) revealed significant clustering among samples within "Region" suggesting spatial and temporal stability of disease patterns for most locations. However, some temporal trends became apparent: there was an increase of hyperpigmentation The results of the Mantel tests (Table 8.3) suggest significant correlations between genetic (Θ' WC ) and Euclidean distances for 2006 and 2007. The relationship was not significant in 2005, 2008, for the whole data set, nor for either basin alone (North Sea or Irish Sea). The relationship between both distances was positively correlated, and nearly significant for North Sea (r=0.216; p=0.096), but not for the Irish Sea (r=-0.157; p=0.801). When the two distances were plotted against each other (Figure 8.8), two different relationships became apparent; first a positive relationship between both distances among North Sea and Irish Sea samples; and secondly, a cluster of dots with very low genetic differentiation but marked differences in disease profiles, which correspond to the North Sea-English Channel comparisons. As revealed by the BARRIER analysis, the English Channel samples were genetically more similar to the North Sea, but the disease incidence was rather low (Figure 8.3), and were very similar to the disease profiles found in the north of the Irish Sea. The discordant English Channel samples disrupted the relationship between both distances, and when the English Channel channel samples were removed from the Mantel analysis of all other samples, the relationship became highly significant (r=0.315; p=0.004). Although not relevant from a heterozygosity point of view, many diseases were correlated with age at all sites (Appendix: Table B.2). Several diseases were also positively correlated with each other in NeD07 (e.g. skin ulceration, hyperpigmentation and liver nodules), as some individual fish often suffer from these pathologies simultaneously while others are relatively disease free.

Assignment of diseased fish:

The power (genetic differentiation assessed with 14 loci) of the assignment test was insufficient to exclude (with a p<0.05) alternative samples as potential sources of most individual fish. Nevertheless, the assignment test assigned many individuals with liver nodules back to the samples of origin, and for many others the second best option was also the sample of origin (Table 8.6), suggesting that these individuals are local fish and not migrants from other areas. When considering those individuals that do not assign back to the location of collection some interesting patterns emerge: could be excluded as potential sources, reinforcing the perception of genetic cohesion between diseased and non-diseased fish in ScB06.

In 2007, most fish collected in NeD with liver nodules were assigned back to NeD (or was a very close second best fit). Three fish had low probabilities (p<0.1) of being local fish, and were assigned to Amb, InF and LyB. The patterns in the Irish Sea were different from those in 2006. Two fish with liver nodules collected in InC were assigned to RyE (albeit with relatively low probability values), while a third individual was most likely a migrant from LiV. Similarly a fish collected in RwB was much more likely to be from StB or LiV than a local fish. Three fish were collected with liver nodules in Liv07: for two the first choice was LiV, while for a third fish LiV was a close second choice (after LyB). Most interestingly, the majority of the individuals reported with liver nodules in StB07 were assigned back into LiV (or was a very close second best). Three individuals had higher affinities elsewhere (NeD and AmB), but still the probability of belonging to LiV was higher than to StB for all three fish. StB07 was the only sample for which a positive (and near-significant) relatedness value was obtained.

Surprisingly, most of the fish with liver nodules from the North Sea in 2008 were assigned to Off08 (or were a close second best fit). In two instances, NeD could be rejected as a source for fish collected in NeD, and only one individual from NeD was likely to belong to the same pool as the rest of NeD fish. Similarly, none of the fish with liver nodules collected in LiV seemed local, but rather were most likely to be from LyB, Inf and NeD. Three fish suffered from liver nodules in StB08, but were more likely to be from InC and LyB.
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8.5 Discussion:

Overview of the correspondence between distribution of disease profiles and genetic diversity:

The Barrier analysis revealed that the strongest boundaries between populations were different for genetic and disease data: the sharpest genetic boundary was apparent around the Southern Irish Sea (either North or South of InC), while the most noticeable change in disease profile was in the Dover-Calais strait. The difference between boundaries created a set of samples (RyE and LyB) that were genetically more similar to North Sea but exhibited disease profiles more in line of those from the Irish Sea. Once the English Channel samples were removed, the genetic and disease distances were highly correlated. The relationship is most probably not causative (i.e. the genetic composition of fish does not determine the pathological record) but coincidental (i.e. the same environmental and biological features that shape the genetic composition of dab in conjunction with local sources of contaminants produce the localised pattern observed in diseases profiles). The relationship between incidence of biomarkers, known history of pollution exposure, and genotype profile will be discussed on an area by area basis:

North Sea:

Dogger Bank samples are characterised by a high incidence of skin ulceration, liver nodules and frequent occurrence of all stages of the carcinogenic process (i.e. Cat3 to Cat5) (MAFF, 1995;CEFAS, 2003a;[START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF]. The presence of high levels of some heavy metals, particularly cadmium [START_REF] Langston | Bioavailability of metals in sediments fo the Dogger Bank (Central North Sea): a mesocosm study[END_REF], which has carcinogenic properties [START_REF] Waisberg | Molecular and cellular mechanisms of cadmium carcinogenesis[END_REF], may be associated with the increased levels of disease incidence in Dogger Bank compared to other North Sea sites.

In the samples considered for genetic analysis in 2005 and 2006 there were no recorded liver nodules, though, this was because the individuals genotyped those years were from the smaller size classes (15-20cm) which are probably also the youngest and have not yet developed visible tumours [START_REF] Baumann | Relationship between liver tumors and age in brown bullhead populations from two lake Erie tributaries[END_REF] Together, both tests suggest that fish suffering from liver nodules are from the same gene pool as the rest of fish collected in NeD. Thus whatever is triggering the carcinogenic process should affect all fish at the Dogger Bank equally: either all fish have migrated together or the source of carcinogens is locally available. Given the temporal stability of the disease profile, the latter seems more probable. Three fish (out of 13) had low probabilities of belonging to the local population, and instead seem more related to coastal, or more likely given the low probability values, to some other unsampled population. Contrary to the apparent stability in 2007, the pattern changed completely in 2008 when most of the eight fish captured with liver nodules in NeD had much higher probabilities of belonging to Off08. For two fish NeD could even be rejected as a source population (p<0.05). Those fish with liver nodules collected in InF08 were also assigned back into OfF08. There were no obvious sample size differences between NeD08 and Off08 (72 & 91 after removal of incomplete genotypes) which could have biased the analysis. The two samples were slightly but significantly differentiated (Θ WC = 0.001; Θ' WC = 0.009; p<0.05) which could have help with the assignment test. Both groups of individuals with liver nodules from NeD08 and InF08 were near-significantly less related to each other and to the rest of the sample than expected by random draws from their respective samples (R G = -0.061; p(R G '<R G ) = 0.066; R G = -0.186; p(R G '<R G ) = 0.061), which also suggest that they do not belong to the same gene pool as the rest of the individuals collected at those locations. Two scenarios could explain such pattern: either a sudden increase of OfF fish migrating into NeD and exposed to carcinogens has occurred; or alternatively, there has been a change in the genetic composition of NeD non-liver nodules fish (i.e. the younger ones), while the older diseased fish are assigned to whichever is the closest population examined to the older NeD. The former scenario is unlikely as at least some local individuals would be expected among those with liver nodules (only one has a high second-best probability of belonging to NeD). In order to test the latter scenario effectively, age information would be needed: data that are not available here.

When analysing whole disease profiles, several samples did not match with those from other years collected at the same location. The OfF06 disease profile clustered with English Channel and Cardigan Bay samples; however, rather than clustering due to the presence of a particular disease, the uniting feature was the reduced prevalence of most diseases (Figure 8.5) (albeit there was one individual with liver nodules). Genetically, OfF06 was also an outlier; the sample correspondence analysis placed it outside the rest of North Sea samples (Figure 7.8), the spatial principal component analysis suggested it was the most differentiated sample from the Irish Sea (Figure 7.9), and the GENELAND plots isolated OfF06 and InF06 from the rest of North Sea (Figure 7.5). The correspondence between both genetics and disease profiles strongly suggest that OfF06, or at least part of it, does not represent the same fish collective as other North Sea samples or samples obtained in Off Flamborough in other years. Instead, part of the sample may have recently emigrated into Off Flamborough from some other area with low disease prevalence that remained non-sampled for genetic analysis (as genetically OfF06 was different from all other samples). The OfF06 samples belonged to the "Comprehensive" group which are exhaustively studied for several projects, thus the recent migrant nature of OfF06 should be taken into account in those studies including that sample.

English Channel:

The English Channel experiences relatively low levels of pollutants (MAFF, 1990). Within the English Channel, RyE boasts the lowest disease incidence, and consequently, it is often considered as a reference site in biomonitoring programmes involving dab (MAFF, 1995;CEFAS, 2003a;[START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF]. In agreement with the published findings, the English Channel samples studied here were characterised by a generally low incidence of most diseases (Figure 8.5). The only fish with liver nodules genotyped from the English Channel over the course of four years (RyE07-1529) had a highest probability of belonging to Cardigan Bay, which normally experience a high incidence of liver nodules. Although the probability of being a local fish was also high, which would weaken the migrant hypothesis, the individual also suffered from skin ulceration and hyperpigmentation, which are rare in RyE, and thus supported the recent migrant hypothesis. The four individuals with foci of cellular alteration (i.e. beginnings of carcinogenic process) collected in Rye Bay in 2007 were significantly excluded as related to the rest of non-diseased fish, suggesting that they do not belong to the same gene pool as the rest of collected fish. When analysed in GENECLASS2, no individuals were assigned back to RyE, but instead to LiV, NeD and InF, and one had very low probability of belonging to any of the sampled populations (all p<0.05). Overall, the results suggest that there is a very low incidence of tumorigenic processes in dab from Rye Bay, and the few cases encountered are likely to be migrants from other areas. It is possible that the increased incidence of foci of cellular alteration reported in 2000 (CEFAS, 2003a) is due to increased migration from other areas.

Given the lack of genetically-local fish exhibiting liver nodules or foci of cellular alteration, it can be assumed that whatever is triggering the process elsewhere (i.e. Dogger Bank and Cardigan Bay) is absent in Rye Bay. Low exposure to carcinogens such as PCAs and PCBs may be proposed [START_REF] Kirby | Hepatic EROD activity in flounder (Platichthys flesus) as an indicator of contaminant exposure in English estuaries[END_REF] with an increase in disease incidence (Figure 8.3), suggesting that the increase in North Sea genetic traits is more likely to have originated from within the English Channel (such as from RyE). Age data was not available for LyB, and so it was not possible to determine whether the low incidence of disease recorded at this site was related to young age or other processes.

To conclude, although Rye Bay genetically could be a reference site for sites in the North Sea, the young age of fish collected there confounds the interpretation of the low disease incidence detected, and thus compromises its utility as a realistic reference site. 204 8.5.1.3 Cardigan Bay:

In the late 1980's dab collected from Cardigan Bay were found to have the lowest disease prevalence of the Irish Sea (MAFF, 1987), and thus was considered as a relatively unpolluted reference site. Nevertheless, liver nodules started being reported from Cardigan Bay samples in the mid 1990's, although most of these liver nodules were not confirmed as hepatic adenomas, (MAFF, 1995) and there were no DNA adducts detected in outer Cardigan Bay in 1996 [START_REF] Lyons | 32P-postlabelling analysis of DNA adducts and EROD induction as biomarkers of genotoxin exposure in dab (Limanda limanda) from British coastal waters[END_REF]. Since then, Cardigan Bay dab have often been reported to suffer from a high incidence of liver nodules (CEFAS, 2003a) and confirmed adenomas and carcinomas [START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF][START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF][START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF] Furthermore, two of them had skin hyperpigmentation which was very rare that year in InC (three in total) reinforcing the notion that they are biologically or geographically different to the rest of fish collected in the area that year. Although one of those individuals with liver nodules could be assigned to LiV with high probability, the other two had low probabilities overall for belonging to any sampled population, perhaps indicating that the population of origin was not genotyped. Furthermore, the analysis of admixture ( , 1990;CEFAS, 2000), some of which are known carcinogens [START_REF] Hawkins | Dose-related carcinogenic effects of water-borne benzo[a]pyere on livers of two small fish species[END_REF][START_REF] Reichert | Molecular epizootiology of genotoxic events in marine fish: linking contaminant exposure, DNA damage, and tissue-level alterations[END_REF][START_REF] Baumann | Epizootics of cancer in fish associated with genotoxins in sediment and water[END_REF][START_REF] Srogi | Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review[END_REF]. In a four fish species assessment, PCBs were found to be an order of magnitude smaller in Cardigan Bay than in the Liverpool area (MAFF, 1990). Therefore the elevated occurrence of tumorigenic processes in dab is unexplained [START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF]. The genetic data provided in the current study is not suggestive of consistent migration of diseased fish into Cardigan Bay; indeed, the converse appears to be the case as the low incidence of disease in 2008 is associated with immigrant genetic influence. Therefore a local source of carcinogens should be sought.

Wales has a large and increasing coverage of bracken fern, Pteridium aquilinum, [START_REF] Pakeman | The bracken problem in Great Britain: its present extent and future changes[END_REF] a plant which has been demonstrated to have carcinogenic effect on many animals:

100% of rats fed on bracken developed multiple tumours (some of which were malignant adenocarcinomas) in the intestine and mammary glands [START_REF] Evans | Carcinogenic activity of bracken[END_REF]; bladder neoplasias were also induced by bracken fern in guinea pigs, mice, and cattle [START_REF] Bryan | The pathogenesis of experimental bladder cancer[END_REF].

The toxicity can be transferred through milk from mother (cows and mice) to offspring or consumers of milk products [START_REF] Evans | Passage of bracken fern toxicity into milk[END_REF][START_REF] Alonso-Amelot | Excretion, through milk, of ptaquiloside in bracken-fed cows. A quantitative assessment[END_REF]. Even the airborne spores have been found to be carcinogenic and the intensity of the DNA damage, in the form of DNA adducts, correlated with extent of exposure [START_REF] Simán | Fern spore extracts can damage DNA[END_REF].

Associations between bracken exposure and the high incidence of gastric cancers in humans residing in North Wales have been reported [START_REF] Galpin | Gastric-cancer in Gwynedd -possible links with bracken[END_REF], but others have questioned the strength of the causality of bracken in the development of human cancers [START_REF] Wilson | Should we be frightened of bracken? A review of the evidence[END_REF]. The toxic compound in bracken, ptaquiloside [START_REF] Potter | Carcinogenic effects of ptaquiloside in bracken fern and related compounds[END_REF], is water soluble and can be leached by rain from the fronds onto the topsoil and from there to rivers and water reservoirs, especially in heavy rainfall areas [START_REF] Rasmussen | Occurence of the carcinogenic Bracken constituent ptaquiloside in fronds, topsoils and organic soil layers in Denmark[END_REF]. Under neutral or slightly acid conditions, cold temperatures and low light exposure the compounds are quite stable (weeks and months) [START_REF] Saito | Chemical assay of ptaquiloside, the carcinogen of Pteridium aquilinum, and the distribution of related compounds in the Pteridaceae[END_REF]) and thus, it is possible that heavy rainfalls after the sporing season (August-October) may carry large concentrations of ptaquiloside compounds into Cardigan Bay, creating DNA-adducts in dab and ultimately producing the 206 tumours observed. Whether bracken leachate is responsible for the high incidence of dab tumours would need measurements of compound concentrations at sea after heavy rainfall and assessment of the toxicity of ptaquiloside on dab. Although bracken may be increasing in abundance in Wales [START_REF] Pakeman | The bracken problem in Great Britain: its present extent and future changes[END_REF], it is still a native plant [START_REF] Ashcroft | Rejection of Pteridium aquilinum subspecies <atlanticum(C.N. Page)[END_REF], which makes the sudden increase in genotoxic damage shown in dab difficult to explain. Therefore other explanations will be explored.

Cardigan Bay is relatively free of industrial and domestic pollutants as the human population density is low and there are no large industrial centres around its shores. Nevertheless, large concentrations of lead, copper, zinc and cadmium have been reported in the northern tip and southern part of the Bay (Abdullah et al., 1972). The existence of the heavy metals has been attributed to river runoff from mineral rich areas in Snowdonia, and mining activities in the XIX th century (Abdullah & Royle, 1972), which are then concentrated in the southern part of Cardigan Bay (underneath the InC and ScB sampling sites) by the local circulation pattern (Abdullah et al., 1972). On the other hand, more recent work by [START_REF] Pearce | Trace metal variations in the shells of Ensis siliqua record pollution and environmental conditions in the sea to the west of mainland Britain[END_REF] studied the concentration of several heavy metals in the shells of razor shells (Ensis siliqua) and instead reported rather low levels of all contaminants in Cardigan Bay compared to Liverpool and Dulas Bays (North East shore of Anglesey). However razor shells live in the intertidal shore and the highest concentrations of heavy metals were reported in deeper waters (Abdullah et al., 1972) and thus it is possible that dab are exposed to remnant high levels of heavy metals of natural origin or dating back to past mining activities. Heavy metals are known carcinogens [START_REF] Johnson | The genetic effects of environmental lead[END_REF][START_REF] Järup | Hazards of heavy metal contamination[END_REF][START_REF] Waisberg | Molecular and cellular mechanisms of cadmium carcinogenesis[END_REF] and could induce tumorigenic processes in local dab. Although exposure to heavy metals is a more plausible explanation to the high incidence of liver nodules in Cardigan Bay than fern leachate, these polluted sediments have been present since at least the 1970's when measured by Abdullah et al. (1972) which still does not explain the temporal pattern of carcinogenic processes detected in dab. The only way these settled pollutants could change the patterns of the diseases of the local population of dab suddenly is if sediments experienced atypical disturbance routinely from the 1990's. The start of aggregate dredging or energy reserves exploitation could have such an impact by resuspending the sediments [START_REF] Desprez | Physical and biological impact of marine aggregate extraction along the Frech coast of the Eastern English Channel: short-and long-term post-dredging restoration[END_REF][START_REF] Hitchcock | Physical impacts of marine aggregate dredging on seabed resources in coastal deposits[END_REF][START_REF] Barrio Froján | Long-term benthic responses to sustained disturbance by aggreate extraction in an area off the east coast of the United Kingdom[END_REF], thereby leading to an increase in heavy metal exposure. However, neither dredging for aggregates nor oil reserves exploration is reported to occur in Cardigan Bay (http://www.cardiganbaysac.org.uk/?page_id=102) others (NeD08, InF08). These cases were associated with low probability of the individuals belonging to the same population as the rest of the sample and suffered from diseases not common in the rest of the fish collected in the same sample. Such a pattern could be either created by a genome x environment mismatch hypothesis (Garcia de [START_REF] De Leaniz | A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation[END_REF] in which migrant individuals are poor performers in the novel environment and rapidly succumb to locally prevalent diseases; or alternatively, these individuals represent the lingering remnants of previously dominant local fish. In order to answer these questions a combination of genetic profiling and otoliths aging and otolith microchemistry [START_REF] Thorrold | Natal homing in a marine fish metapopulation[END_REF][START_REF] Miller | A comparison of population structure in black rockfish (Sebastes melanops) as determined with otolith microchemistry and microsatellite DNA[END_REF] would be powerful at discerning between immigrants, either as early juveniles or recently as adults, and generational genetic changes, where both adult and juveniles show the same otolith microchemistry (due to the prevailing water chemistry) but different genetic signals.

Conclusion and Recommendations:

The incorporation of population genetics data into biomonitoring programmes has provided valuable insights into the aetiology of the observed prevalence of diseases, and more particularly liver nodules, around England and Wales.

Several cases of potential diseased migrants were revealed. The importance of these movement patterns is paramount in the correct interpretation of biomarker data, as some locations (e.g. StB in 2007) may be considered erroneously over-exposed to carcinogens.

Conversely, some samples with differing biomarker incidence compared to other years in the same location were associated with genetic changes (e.g. InF06 and InC07), suggesting that their biomarker profile might not represent local exposure to pollutants. There were no temporally stable patterns of movement, which prevented the formulation of general trends of disease incidence due to migration.

No obvious relationship between multilocus heterozygosity as measured by microsatellite markers and disease profiles or proxies of fitness (age standardised weight and length) was found. Inbreeding in such a common marine fish is unlikely, therefore reducing the possibility of inbreeding-associated heterozygosity outperformance. Unfortunately, due to lack of substantial number of samples, time restrictions, and competition with other projects also working on population genetic structure of flounder, no further analysis on flounder was performed after the development of microsatellites.

Nevertheless, in view of the documented record and continuing interest in flounder and its response to contaminants [START_REF] Kirby | Hepatic EROD activity in flounder (Platichthys flesus) as an indicator of contaminant exposure in English estuaries[END_REF][START_REF] Stentiford | Histopathological biomarkers in estuarine fish species for the assessment of biological effects of contaminants[END_REF][START_REF] Kirby | Differential sensitivity of flounder (Platichthys flesus) in response to oestrogenic chemical exposure: an issue for design and interpretation of monitoring and research programmes[END_REF], the new microsatellites will facilitate additional work on the extent and dynamics of population structuring in this species.

A temporally replicated and comprehensive sampling regime of dab around Great Britain was accomplished. Over 3000 individual fish were genotyped for 16 microsatellite loci of varying levels of allelic diversity. Highly significant and temporally stable differentiation was detected between North Sea and Irish Sea fish, indicating the existence of at least two genetically distinct populations of dab.

9.2 Critical evaluation of the project:

Movement of dab:

Individual movement patterns are of paramount importance for biomonitoring programmes.

In the current study several instances of potential movement of large groups of fish, as well as individual fish were suggested by the combination of genetic and biomarker datasets. No general trends were detected across years, and thus no routine migrations could be inferred.

Such findings are highly relevant in the interpretation of biomarker information, as the individual-estimated exposure to pollutants could be very different from historical exposure.

However, several issues undermine the interpretation of the movement results: First of all, although most of the diseased migrant fish were assigned to populations in the same basin in which they were collected, the level of genetic differentiation among samples within basins was low, and thus confidence in the assignment was correspondingly low. Second, most of the species range remained unsampled, thus migration of individuals from unsampled populations could impact negatively on the assessment exercise. And finally, the lack of age data proved problematic when explaining the differences observed between diseased and non-diseased fish collected in the same location, as without age it was not possible to distinguish between recent migration of the diseased fish and local older fish belonging to a genetically different cohort from non-diseased fish.

However, the potential for diseased fish to be genetically different from non-diseased fish was demonstrated, as was the possibility that the occasional occurrence of liver injuries in dab in some sites derived from recent migrants. Identifying migrants and source populations would be of great advantage in biomonitoring programmes of mobile species, as not only will the interpretation of biomarker data be more precise, but a wider perspective of the dispersive effects of localised pollution will be gained.

Selection imposed by pollution:

The existence of genetic structure indicates the possibility of independent evolution of the different gene pools of the species [START_REF] Carvalho | Evolutionary aspects of fish distribution: genetic variability and adaptation[END_REF][START_REF] Conover | Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation[END_REF], and several biological traits are indeed different between North Sea and Irish Sea fish. Therefore, dab from the North and Irish Seas may have been subjected to different natural selection pressures (and independent genetic drift) and may well have differences in their biological response. However, it does not necessarily follow that these groups have the potential for pollution-induced adaptations, as pollution is unlikely to exert selection on whole sea basins.

The evidence for structuring within sea basin was much weaker, although still significant in some years. North East Dogger in particular was significantly different to other sites in the North Sea for several years, which together with the high metal concentration and the potential for dab to settle offshore, may open the possibility for local adaptation of dab in this particular site. Several methods were employed aimed at detecting genetic differences between diseased and non-diseased fish at Dogger Bank:

The results of the gene-linked microsatellites were inconclusive. However, several aspects of the experimental design may have reduced our power to detect selection. First of all, the use of only taxonomically conserved genes may have been an inappropriate choice, as if the genes are present in both dab and other divergent taxa, the genes are probably tightly functionally restricted thus limiting the variability for selection to act upon. Secondly, the age of the fish used was unknown when the experiments were performed, and thus the diseased Despite not fulfilling the original aim of detecting genes under selection and differential survival, the project demonstrated, not only the possibility of developing polymorphic microsatellites very economically from EST libraries, but also that, for these, polymorphism can be "estimated" beforehand by comparing with other homologous sequences isolated in other species and individuals. Of the 35 primer pairs tested, 15 yielded polymorphic microsatellite loci in dab. The fact that these loci are tightly linked to genes which are up or down regulated after exposure to pollution, might render the set of 15 microsatellites attractive for studies of pollution effects on other flatfish, or even other fish species given the existence of conserved genes and regulatory pathways across taxa. And finally, the DNA pooling and selective sweep approach, although not ideally suited for marine organisms, remained a fast and economic method to detect polymorphism and variance in that polymorphism among groups of individuals. The method could be particularly useful when studying strong selective pressures and gradients, such as those imposed by salinity in the North Sea-Baltic confluence [START_REF] Andersson | Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data[END_REF][START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF]Hemmer-Hansen et al., 2007b;[START_REF] Larsen | Adaptive differences in gene expression in European flounder (Platichthys flesus)[END_REF][START_REF] Limborg | Genetic population structure of European sprat Sprattus sprattus: differentiation across a steep environmental gradient in a small pelagic fish[END_REF], or when studying the effects on the genetic composition of historical pollution burdens such as in the Mersey Estuary or Puget Sound [START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF][START_REF] Myers | Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor, Washington[END_REF].

A second attempt was made to test whether diseased fish belonged to the same genetic population as the non-diseased fish collected in the same location (regardless of which one represented the "local" population). Assignment tests can be interpreted in two ways: first, to find the source population of an individual; and secondly, whether sampling sites can be rejected as potential source populations. Of the 61 fish encountered with liver nodules, only three could be significantly rejected as belonging to capture sites. Given the limited genetic differentiation between neighbouring sampling sites, such results are unsurprising. The relatedness test was more powerful when more than one individual per sample suffered from liver nodules, and evidence was found that some diseased fish were not a random subset of fish collected in the location. Such findings are intriguing and demand further study. As mentioned earlier, it is not known whether these fish represent true migrants or are genetically different local fish (either by age or susceptibility), as both hypotheses imply similar genetic signatures (diseased fish are genetically different from non-diseased fish). If alternative methods could be employed to provide an independent estimation of origin [START_REF] Smith | Multiple techniques for determining stock relationships between orange roughy, Hoplostethus atlanticus, fisheries in the eatern Tasman Sea[END_REF][START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF], the issue would be better resolved (Section 9.3.3).

Regardless of whether the differences were created by selection, cohort differences or migration, it was still evident that in some locations diseased fish did not belong to the same breeding unit as proximate non-diseased fish.

A third and final attempt of detecting differences between diseased and non-diseased fish was evaluated: the relationship between disease and heterozygosity. No significant relationships were, however, found. There were several problems which limited the potential to detect selection in the current study; some were analytical (already mentioned); while others were methodological or inherent qualities of the system studied.

First, there were problems with the choice of samples. In most cases the tissue samples received for genotyping belonged to those fish only assessed for external diseases and grossly visible liver nodules, thereby increasing the sample size (from 50 to over a 100), though limiting the potential to correlate the genetic information to more detailed biomarker data.

Genotyping the 50 fish fully evaluated for biomarkers plus another extra 50 evaluated only for external diseases, would have been a more appropriate genotyping regime. In doing so, the complete biomarker data would still be available for half of the individuals, while meeting the need for large sample sizes to detect subtle marine population structure (Waples, 1998).

The system studied was also not ideally suited for studies on pollution-induced selection. The localised occurrence of pollution combined with a fish capable of regional movement imposes inherent uncertainty over the life-long exposure to pollutants. However, such a scenario is of course typical of many marine taxa, and studies need to take the consequences of such factors into consideration when generating sampling designs. Second, the low levels of the targeted biomarker (liver nodules) in current populations prevented statistical analysis between diseased and non-diseased fish. Third, dab reach sexual maturity much earlier (age one or 2) than the age at which most biomarkers are detected, thereby contributing to the next generation before potential differential mortality. Finally, the mortality directly attributed to pollution is unknown, but given the generally low disease levels (maximum of 18% in StB07 though normally 5%-10% in the most polluted sites), the extent of pollutioninduced selection in dab is difficult to predict. Nevertheless, dab larvae, in contrast to plaice or flounder, are not dependent on coastal shallow areas and estuaries to settle [START_REF] Henderson | On the variation in dab Limanda limanda recruitment: a zoogeographic study[END_REF], and thus are hypothetically able to directly settle in the same environment as their parents, which ecologically may enhance the potential for local adaptation. Furthermore, differences in overall-lifetime reproductive success between susceptible and tolerant fish might be a sufficiently strong selective pressure, especially since it is females in general who live longest [START_REF] Deniel | Comparative study of growth of flatfishes on the west coast of Brittany[END_REF]. Older females tend to produce more eggs with higher survival chances [START_REF] Buckley | Winter flounder, Pseudopleuronectes americanus reproductive success. II. Effects of spawning time and female size on size, composition and viability of eggs and larvae[END_REF], and females are three times more likely to develop liver injuries than males of the same age [START_REF] Koehler | The gender-specific risk to liver toxicity and cancer of flounder (Platichthys flesus L.) at the German Wadden Sea coast[END_REF]. The combination of stronger selective pressures on females, with larger reproductive output of more viable larvae by pollutiontolerant females, could lead to a selective advantage for individuals born from native older females in polluted sites such as Dogger Bank. Similar reasoning can be applied also to putative selection against immigrant genotypes, which is increasingly recognised as a key mechanism of population differentiation [START_REF] Nosil | Reproductive isolation caused by natural selection against immigrants from divergent habitats[END_REF].

Pollution-induced selection is more easily studied in limited gene-flow systems such as lakes and rivers subject to industrial effluent [START_REF] Theodorakis | Genetic Ecotoxicology III: the relationship between DNA strand breaks and genotype in mosquitofish exposed to radiation[END_REF][START_REF] Theodorakis | Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a Pulp-mill-contaminated river[END_REF][START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF], though, geographic-specific selection in marine fish is still possible under strong environmental pressures or gradients as evidenced by locally adapted populations of flounder [START_REF] Nissling | Reproductive success in relation to salinity for three flatfish species, dab (Limanda limanda), plaice (Pleuronectes platessa), and flounder (Platichthys flesus), in the brackish water Baltic Sea[END_REF]Hemmer-Hansen et al., 2007a;2007b;[START_REF] Larsen | Adaptive differences in gene expression in European flounder (Platichthys flesus)[END_REF]2008), herring [START_REF] Andersson | Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data[END_REF][START_REF] Bekkevold | Environmental correlates of population differentiation in Atlantic herring[END_REF][START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF] and cod [START_REF] Knutsen | Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod[END_REF][START_REF] Pogson | Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation a the pantophysin (PanI) locus[END_REF][START_REF] Jorde | Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations[END_REF][START_REF] Olsen | Small-scale biocomplexity in coastal Atlantic cod supporting a Darwinian perspective on fisheries management[END_REF].

When aiming to study pollution-induced selection, semi-enclosed areas of the sea where diseases have a much higher prevalence, such as the 80% liver nodule incidence reported from Puget Sound in the 1980's [START_REF] Myers | Improved flatfish health following remediation of a PAH-contaminated site in Eagle Harbor, Washington[END_REF], would be an ideal study sites.

Nonetheless, such high incidence of diseases is fortunately not recorded from British waters.

Biomonitoring programmes and genetics:

The work presented here highlighted the importance of evaluating patterns of connectivity and selection in biomonitoring. First of all, a quick recap over some key factors and characteristics that define ideal bioindicator species and biomarker responses. The former should live in close contact with pollution, be widespread and amenable to frequent sampling, and should represent the local conditions with respect to pollution exposure. The latter should have a reliable dose-response relationship with exposure, and not be affected by non-pollutant factors, such as season, size, sampling protocol or individual variability [START_REF] Wu | Induction, adaptation and recovery of biological responses: Implications for environmental monitoring[END_REF].

Therefore, it is important to identify clearly the significance of connectivity and adaptation on such factors from a biomonitoring perspective: movement of individuals (not to be confused with what geneticists define as migration or gene flow) will mainly affect the use of bioindicator species, as a "good" biomarker will still represent the changing surroundings wherever the individual goes; on the other hand, adaptation will principally affect the use of a particular biomarker, as individual variability, and selection acting on it, may influence the biomarker response of an otherwise effective bioindicator. Molecular genetic tools can assist in understanding these processes in biomonitoring schemes.

Movement of bioindicators:

Sources of pollution are probably patchy in the natural environment; individual movement therefore introduces variability in the exposure to pollution and consequently into the biomarker being measured. As described previously, groups of individuals may be relatively isolated from other such groups, which, through random genetic drift, will differentiate genetically over generations creating subpopulations. Such subpopulations can be identified by genetic markers. Movement of individuals may be more widespread than the extent of the subpopulation, but effective reproduction with other subpopulation may be affected by either natal homing [START_REF] Thorrold | Natal homing in a marine fish metapopulation[END_REF] or selection [START_REF] Nosil | Reproductive isolation caused by natural selection against immigrants from divergent habitats[END_REF]. Therefore, it is possible to detect with genetic markers recent immigrants or passing individuals that do not belong to the local populations. In this thesis, potential movement among dab biomonitoring stations was uncovered with the use of genetic markers, raising uncertainty about the legitimacy of sampled individual dab as being representative of local levels of pollution.

However, the general temporal stability in biomarker frequency among biomonitoring stations [START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF] suggests that most dab actually represent local fish.

Furthermore, the existence of very small but significant genetic differences among some locations within sea basin suggests subpopulation cohesiveness giving more support to the biomonitoring data. Indeed, the benefits of including population genetic tools in biomonitoring programmes using mobile bioindicators are two-fold: first, the genetic discreteness of bioindicators among stations at the time of sampling can be interpreted as relative stability of the local population, if the pattern is replicated temporally. Second, rare migrants with non-concordant phenotypes or biomarker profile can be detected, removing some of the variability originally introduced by movement of individuals.

Biomarker response variability:

Organisms reproducing through sex are genetically variable, and such genetic variability, if coding, can translate into advantages for some individuals under certain environmental circumstances. Pollution, like any other environmental variable, can impose strong selective pressures. Indeed, pollutants have been shown to impact genetic diversity (allele richness and heterozygosity), both experimentally [START_REF] Gardeström | A multilevel approach to predict toxicity in copepod populations: assessment of growth, genetics, and population structure[END_REF][START_REF] Nowak | Rapid genetic erosion in pollutant-exposed experimental chironomid populations[END_REF], and in wild populations (Theodorakis & Shugart, 1997;[START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF][START_REF] Peles | Population genetic structure of earthworm (Lumbricus rubellus) in soils contaminated by heavy metals[END_REF][START_REF] Theodorakis | Evidence of altered gene flow, mutation rate, and genetic diversity in redbreast sunfish from a Pulp-mill-contaminated river[END_REF][START_REF] Bourret | Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient[END_REF]. As seen earlier, if the biomarker employed conveys any benefit or hindrance to individuals, the biomarker response may be under selection, which, over generations and isolation, may lead to a locally adapted population and modified response biomarker profile. Such processes will be of particular importance for those bioindicator species with reduced mobility of larval dispersal. [START_REF] Untersee | Local adaptation and maternal effects in two species of marine gastropod (genus Crepidula) that differ in dispersal potetial[END_REF] compared the copper tolerance on juveniles of two closely related gastropods, one with a pelagic larvae, Crepidula fornicata, and another with a benthic larvae, C. convexa, from polluted and reference sites. The juveniles of the latter from the polluted site showed significantly less mortality after 96h exposure to copper than those from the reference site and the other species, suggesting that C. convexa, given its non-dispersive reproductive mode, had adapted to a high copper concentrations. Although the experiment was aimed at assessing a biomarker, the concept remains the same, that organisms with limited dispersal (whether larval or adult) may elicit different biomarker response depending on previous exposure. Again molecular genetic markers prove invaluable here in detecting the potential for local adaptation, when using neutral markers, or actual changes in pollution response, when using adaptive genetic markers.

The existence of two genetically different dab populations indicate that fish in each basin might evolve independently from each other. Therefore, it was suggested that biomonitoring programmes acknowledge the results of the genetic analysis and avoid the comparison between North Sea and Irish Sea, as fish from either basin have the potential to respond differently to common environmental pressures. As mentioned earlier, there are several other biological traits which are also different between both populations, including biomarker tendency and age at first appearance of liver nodules (G. Stentiford -pers. communication).

However, currently there is no direct evidence that the genetic difference at neutral markers translates into biomonitoring-relevant traits. Establishing such causality would require transplantation and laboratory common-garden experiments with fish from both sea basins.

Some such experiments have been undertaken with flounder with interesting results. [START_REF] Kirby | Differential sensitivity of flounder (Platichthys flesus) in response to oestrogenic chemical exposure: an issue for design and interpretation of monitoring and research programmes[END_REF] sampled flounder from three different estuaries in the UK (Alde, Tyne and Mersey) and a farmed sample, and exposed the different fish to a vitellogenin inducer. They then measured the differences in biomarker response (vitellogenin level), and compared them among estuaries. All fish showed similarly high levels of biomarker response after six days, but after 10 days Mersey estuary flounder showed significantly lower induction on average than other fish samples. Most interestingly, fish from the Mersey and Tyne showed much more variability in response after 10 days exposure than fish from the reference sites (Alde and farmed), which all invariably expressed much higher vitellogenin levels. Such results may indicate that there are individuals in the Mersey with reduced response compared to reference estuaries. Flounder are much more likely than dab to be under strong pollution selective pressures as they inhabit estuaries for long parts of their lives where exposure levels may be higher.

An important evolutionary aspect of biomarker response is their heritability, as this will dictate whether adaptation is possible. Population of killifish, Fundulus heteroclitus, from contaminated sites show reduced EROD induction compared to non-exposed populations.

First generation offspring inherit the low EROD activity when reared under controlled laboratory conditions, but not those from the second or third generation where the low EROD induction trait is apparently lost [START_REF] Meyer | Cytochrome P4501A (CYP1A) in killifish (Fundulus heteroclitus): heritability of altered expression and relationship to survival in contaminated sediments[END_REF]. The existence of genetic diversity at key pollution related genes, the role of such genetic diversity in individual pollution tolerance, and the strength of the selective pressures acting on bioindicator species should be evaluated.

Overall conclusion of the importance of evolutionary theory and genetic markers in biomonitoring:

Two key components of evolution, connectivity and selection, have important implications on the choice and interpretation of both bioindicator and biomarker. The variance in biomarker introduced by the movement of mobile bioindicator species may initially suggest that sessile species are more suitable for assessment of local pollution exposure. However, the increased potential for selective forces on poorly dispersing species may locally modify the biomarker response. The effects of one may counterbalance the other, and as evaluated by [START_REF] Wu | Induction, adaptation and recovery of biological responses: Implications for environmental monitoring[END_REF] no animal group (crustacean, mollusc nor fish) appear to offer improved biomonitoring potential. In an ideal world, all individuals of bioindicator species should respond equally to pollution exposure (i.e. show no variability or no heritability), and should represent local conditions. Detecting adaptive changes in natural populations is notoriously more difficult than detecting genetic structure, and correcting for individual movement is, thus, easier than correcting for variance in response.

The congruence of population of origin for most dab with liver nodules within a particular sea basin each year was astonishing (e.g. most fish with liver nodules collected in the Irish Sea originated in Liverpool Bay in 2007). Such findings demand further investigation as the implications are relevant to both the biology of dab and the evaluation of pollution bioavailability and its consequences. For example, in the Irish Sea, dab with liver nodules were mostly assigned to those areas with known high incidence of liver nodules, implying:

first, that the pollution ranking of the location where the fish was collected should be lowered; second, that the pollution at the location to which the fish was assigned to, has a higher impact on dab than previously assumed; and third, that dab, and many other organisms, may be acting as a dispersive agent of pollutants from one area to others.

To conclude, the appreciation of evolutionary processes in biomonitoring is paramount for the correct evaluation of the biological effects of pollution, and genetic markers should be employed to correct for movement of bioindicators and potential adaptation processes in biomarkers.

9.4 Detecting differentiation and selection in marine fish using genetic markers:

Although differentiation and selection are two different processes they both have to potential to generate a genetic imprint on natural populations, and results of the latter cannot be understood without the consideration of the former. Detecting both microevolutionary forces in marine organisms is challenging. Many marine taxa combine large effective population size with dispersive life stages which may result in extensive connectivity and apparent lack of population structure. Such characteristics demand the use of the most sensitive markers and analytical techniques [START_REF] Conover | Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation[END_REF][START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF][START_REF] Naish | Bridging the gap between the genotype and the phenotype: linking genetic variation, selection and adaptation in fishes[END_REF].

The structure found in dab contributes to the mounting number of studies challenging the paradigm that the sea is a homogeneous environment, indicating how marine fish with pelagic eggs and larvae can occur in temporally stable subdivided entities even without palpable environmental gradients such as salinity or temperature. Within the North East Atlantic there is evidence of structured populations, among others, of herring [START_REF] Mariani | North Sea herring population structure revealed by microsatellite analysis[END_REF][START_REF] Ruzzante | Biocomplexity in a highly migratory pelagic marine fish, Atlantic herring[END_REF], sprat [START_REF] Limborg | Genetic population structure of European sprat Sprattus sprattus: differentiation across a steep environmental gradient in a small pelagic fish[END_REF], hake [START_REF] Lundy | Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish[END_REF][START_REF] Castillo | Fine spatial structure of Atlantic hake (Merluccius merluccius) stocks revealed by variation at microsatellite loci[END_REF], and cod [START_REF] Hutchinson | Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites[END_REF]. Structure has been found, even at very small geographical scales [START_REF] Knutsen | Fine-scaled geographical population structuring in a highly mobile marine species: the Atlantic cod[END_REF][START_REF] Jorde | Spatial scale of genetic structuring in coastal cod Gadus morhua and geographic extent of local populations[END_REF]. Gradually, scientists are accepting that marine fish can exist in localised populations subject to a mosaic of environmental pressures shaping the biological characteristics of individuals. Acknowledging that such individual variability may be linked to the environment where the individual resides should change the way many ecological aspects of marine organisms are understood and examined [START_REF] Bembo | Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters[END_REF][START_REF] Nielsen | Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea[END_REF]Hemmer-Hansen et al., 2007a;[START_REF] Larsen | Adaptive differences in gene expression in European flounder (Platichthys flesus)[END_REF][START_REF] Larsen | Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus)[END_REF].

The relatively large number of microsatellite loci employed, combined with a temporally replicated sampling strategy proved powerful at detecting the structure of dab around the British Isles. The length of the study, four years, offered a rare view of the complexity of the genetic structure of marine fish. Some locations were genetically indistinguishable every year, a reflection of their putatively stable demographics, whereas in other cases, the genetic signal suggested either small populations exhibiting stochastic fluctuations or immigration from other areas.

The differing estimates of population structure and extensive data set available in the present study provided an opportunity for a thorough analysis of the different estimators of differentiation available, and an assessment of the relevance, if any, of allelic diversity per se on such estimates (Chapter 6). The overall conclusion indicated that substantial amounts of consistent structuring, that is, allele frequencies that were consistently different for several loci between sampling locations, remained unreported by the traditional estimators (e.g. loci . The temporal and spatial consistency of the allele frequency differences between North Sea and Irish Sea provided unambiguous evidence of the importance of such heterogeneity.

DAC4

The consequences of the limitations imposed by high allelic diversity on the estimates of differentiation are far from trivial: it demands a reconsideration of the way the choice of molecular markers is made, the analysis of marine population structure is designed, and the assessment of the existence of selection and adaptation is conducted.

Choice of markers and analysis implications:

Various perceived constraints in the use of microsatellite markers, including limitations resulting from their highly variable levels of polymorphism [START_REF] Olsen | Moderately and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon, Oncorhynchus nerka[END_REF], uncertain mutation models [START_REF] Balloux | The estimation of population differentiation with microsatellite markers[END_REF] and issues of cross-calibration among laboratories [START_REF] Lahood | Microsatellite allele ladders in two species of Pacific salmon: preparation and field-test results[END_REF] has stimulated a search for additional marker systems, especially the use of single nucleotide polymorphisms (SNPs). SNPs are variations in individual bases (A, C, G, and T) of a particular DNA sequence. They are normally biallelic, and can be homozygous for either allele or heterozygous. Several characteristics revolving around their low mutation rate have been highlighted as beneficial at inferring population history: low variation within populations, the ease of comparison between loci based on their binary nature, ease of interpretation, and presumed low levels of homoplasy [START_REF] Brumfield | The utility of single nucleotide polymorphisms in inferences of population history[END_REF].

Effects of markers on the power to detect differentiation:

Genetic structuring detected with microsatellites that typically display high mutation rates has been viewed as unrepresentative of the general background level of variability [START_REF] Brumfield | The utility of single nucleotide polymorphisms in inferences of population history[END_REF]. However, such an assertion depends in part on the aim of the study. If the aim is to delineate groups of individuals whose "background" variability is strongly divergent (i.e.

different species), then the low mutation rates of SNPs will give a more robust and conservative indication of reproductive isolation. Conversely, the low variability (low discerning power) combined with their low mutation rate (slow rate of change in allelic states) will weaken their power at detecting very recent and subtle structuring. As reviewed by [START_REF] Hauser | Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts[END_REF] "very recent and subtle structuring" does not necessarily imply large numbers of effective migrants, especially in the context of large effective population sizes. If populations show temporally and spatially stable differences in allele frequencies at high diversity loci, it implies that those populations are not exchanging many individuals, confirming differentiation as suggested by Θ' WC , and not as suggested by Θ WC . [START_REF] Rosenberg | Informativeness of genetic markers for inference of ancestry[END_REF] established that microsatellites (particularly dinucleotides repeats)

were five to eight times more informative than SNPs at detecting structure and ancestry in humans, and it is widely recognised that many more SNPs than microsatellites are needed to achieve the same level of statistical power measured as Θ WC [START_REF] Brumfield | The utility of single nucleotide polymorphisms in inferences of population history[END_REF][START_REF] Seddon | SNPs in ecological and conservation studies: a test in the Scandinavian wolf population[END_REF][START_REF] Ryynänen | A comparison of biallelic markers and microsatellites for the estimation of population and conservation genetic parameters in Atlantic Salmon (Salmo salar)[END_REF][START_REF] Schopen | Comparison of information content for microsatellites and SNPs in poultry and cattle[END_REF]. However, the low power of Θ WC 9.4.1.2 Effect of marker on the power to detect selection: Some SNPs are directly embedded within coding genes, which opens the possibility for selection to act on particular allele or heterozygosity states. Thus SNPs remain the choice marker when the selected point of mutation or target gene is known [START_REF] Pogson | Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation a the pantophysin (PanI) locus[END_REF]. Furthermore, dense arrays of SNPs can provide enormous amounts of evolutionary significant information [START_REF] Baird | Rapid SNP discovery and genetic mapping using sequenced RAD markers[END_REF]. However, such SNP arrays are mostly unavailable for non-model species, and given that SNPs are rather uninformative unless in known selected genes or in large numbers, microsatellites remain the choice marker for detection of selection in non-model species. Nevertheless, the situation is changing as the detailed sequence or EST data on the genome of non-model species becomes more widely available [START_REF] Pogson | Natural selection and the genetic differentiation of coastal and Arctic populations of the Atlantic cod in northern Norway: a test involving nucleotide sequence variation a the pantophysin (PanI) locus[END_REF].

One way to evaluate signals of selection is to screen numerous genetic markers and compare their differentiation values with their heterozygosity [START_REF] Beaumont | Evaluating loci for use in the genetic analysis of population structure[END_REF][START_REF] Beaumont | Identifying adaptive genetic divergence among populations from genome scans[END_REF]. Such a protocol is known as the outlier loci method and has become quite common. However, the correction for heterozygosity will most likely disrupt the relationship; indeed, the extent to which outlier loci can still be detected after correction for heterozygosity needs to be re-examined.

Alternatively, selection could be detected as loci who do not share the same inertia as the rest, that is, the differentiation follows a different pathway in a lineage of individuals which might then be detected spatially. If loci are putatively neutral they should only carry information of demographic and recombination events (an internal mutation rate), assuming that most of the genome is not affected by selection then, most of the scored loci should show concordant trends (albeit not concordant magnitude of differentiation, as this is highly dependent on allelic diversity). On the other hand if a locus is under selection, the signal provided by such loci, and others genomically linked, will be discordant to neutral loci or loci under stabilising selection. Exceptions may occur in extreme selection scenarios that lead to bottlenecks, in which selected and neutral loci will all show the same trends of inertia, but in these cases, signals of selective sweeps and bottlenecks are easier to detect [START_REF] Cornuet | Description and power analysis of two test for detecting recent population bottlenecks from allele frequency data[END_REF][START_REF] Teschke | Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans[END_REF]. The possibility to detect selection in the context of molecular markers displaying different properties should be explored with both simulations and empirical evaluation. However, to statistically test such assumptions one would need many loci, though this is also the case with the outlier loci method, and statistical problems regarding significance (5% false positives at 0.05 significance) (Vasemägi & Primmer, 2005) could still emerge.

errors. The balance between more detailed geographic coverage and minor increase in genotyping errors will depend on the biological system studied and the molecular marker employed.

Complementary tools to genetic markers:

Multidisciplinary assessments combining several types of markers can be powerful in detecting population structure [START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF]. In the case of dab, the biomarkers of pollution and genetic markers combined synergistically to highlight cases of individual migrants and population changes. The otoliths of dab in several samples were used to age the fish, which provided important insights into the relationship between age and many biomarkers of pollution. However, in several occasions the confounding effects of migration, possible generational genetic change, and selection remained unresolved. Fish age data, as read from otolith of the remaining samples, would have helped interpret some of these observations. Nevertheless, otoliths have other important attributes that should be considered in studies of population genetics, and particularly at distinguishing between selection, generational change, and migration.

Otoliths are formed throughout the life of an individual fish, a property that allows estimating the age of individuals. As they are produced, new layers of calcium carbonate capture the signal of trace elements present in the surrounding water. Therefore it is possible to cut thin sections of the otolith, analyse the microchemistry of a layer, and infer where the fish was when the layer was formed [START_REF] Thorrold | Natal homing in a marine fish metapopulation[END_REF], provided that sufficiently marked and consistent spatial or temporal heterogeneity exists. Otoliths may also vary in shape between fishery stocks, and thus shape has been used to delineate even between local stocks of cod, Gadus morhua, [START_REF] Cardinale | Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths[END_REF] and orange roughy, Hoplostethus atlanticus (Smith et al., 2002). [START_REF] Bradbury | Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental aproaches[END_REF] studied rainbow smelt, Osmerus mordax, among several estuaries, and found that adults were genetically different among estuaries, while recruiting juveniles were not. Such results could be the product of either natal homing, larvae are able to disperse but later return to their natal estuary to spawn, or alternatively, differential selection between local and immigrant juveniles resulting in the differentiated adult populations. The dilemma was resolved by using otolith microchemistry, which suggested the adults had not left the estuaries, and therefore concluding that selection against immigrant juveniles was the causative factor behind the differentiation among adult populations.

Otoliths have been used in plaice, Pleuronectes platessa, within the Irish Sea not only to detect population structure and patterns of movement, but also past history of pollutant exposure [START_REF] Geffen | Spatial differences in the trace element concentrations of Irish Sea plaice, Pleuronectes platessa, and whiting, Merlangius merlangus, otoliths[END_REF]. Their utility, even at such a small scale as the Irish Sea, suggests they would be informative to differentiate between fish moving within sea basin.

However, this in not to say that otoliths could replace genetic markers as assignment method in flatfish biomonitoring programmes: otoliths cannot provide information on selection processes. Integrated data sets that employ both data from otoliths and genetic markers to examine population structure and gene flow offer a particularly potent approach.

Suggestions for future work:

Apart from the independent evolutionary potential of the dab populations employed as bioindicators in different areas, the importance of patterns of movement, as revealed by genetic markers, in the interpretation of biomonitoring data was highlighted by the current study. Therefore, the use of genetic markers to correctly assign the source population of the individual is recommended on a routine basis. More affordable and reliable methods of genotyping individuals should be developed, so that biomonitoring and other endbeneficiaries of genetic tools, such as the forensic evaluation of fish products [START_REF] Ogden | Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry[END_REF], can routinely genotype large numbers of individuals. The age of fish played a pivotal role when trying to disentangle the genetic and disease relationships. Therefore, age should be a key element in studies comparing biomarker incidence and age. Reading otoliths is a labour intensive process, so new methods to age fish in large quantities should be developed. The potential use of otolith microchemistry to distinguish between the different sampling locations should be explored, as they would provide a useful control for distinguishing between migration and the effects of selection.

The long-term temporal stability of the dab structure should be explored by studying archived samples of fish. Exploratory work on wax-embedded liver tissues from previous histopathology exercises (personal observation) indicated that DNA extracted was of sufficient quality to amplify short microsatellites. Use of such resources should be further explored, especially with Cardigan and Liverpool Bay dab populations, where temporal changes in liver nodule frequency have been reported.

Cardigan Bay and Dogger Bank offer attractive scenarios to study both, the role of pollutioninduced selection (anthropogenic effects), and potential differential sensitivity of populations to pollution stress (natural variation present regardless of pollution). Genetic changes recorded during the four years, combined with changes in disease incidence, generate a complex pattern worthy of further investigation. The potential for differential biomarker responses between Irish Sea and North Sea dab (or even at a regional level between Cardigan Bay/Red Wharf Bay and Dogger Bank/Amble) should be explored. Studying the population genetic structure of flounder, both with neutral and potentially adaptive genetic markers, could yield interesting results.

The performance and behaviour of the different estimators of differentiation: traditional, corrected and D est , should be explored with simulations to understand their variance around the real parameter to be estimated. The effects of loci with differing allele diversities and null alleles should be explored to assess their reliability. Finally, the possibility of detecting selection after correction for heterozygosity with the use of differentiation should be reexamined.

Summary of the thesis:

A case is made to enhance the integration of population genetic data into biomonitoring programmes, and as such it is worthwhile summarising the various ways that such integration may be of value. Genetic markers may yield information on various processes, including: (i)

The extent of migration and gene flow, which can provide indirect information on distinguishing resident and migrant individuals; (ii) The assignment of individuals to putative source populations, which not only allow for a more effective examination of spatially variable pollution stressors, but importantly also impacts on the assessment and dynamics of population recruitment; (iii) The detection of selection and existence of locally adapted populations, either as the potential for such differentiation using neutral markers, or directly through analysis of adaptive genes. The advent of genomic approaches is especially relevant here; (iv) The estimation of demographics, including gene flow and effective population size: aspects of population structure that affect significantly the response to selection; (v) The extent of species that may be cryptic and inadvertently included in estimates of congeneric genetic or phenotypic variation.

In relation to the above generalities, several key points can be highlighted:

1) Biomonitoring programmes are invaluable to understand the effects of chemical pollutants in the natural environment. They provide important information on the bioavailability of pollutants and the biological and ecological implications of such pollutants. Biomarker responses are measured in bioindicator species, and results can be interpreted as exposure to pollution.

2) Movement, migration, isolation and selection can all have implications on the reliability of bioindicators and biomarkers to convey correct information of pollutant exposure.

3) As a case study, genetic markers, both neutral and potentially adaptive, were developed and tested on a commonly used bioindicator species in biomonitoring programmes in the North East Atlantic: the dab, Limanda limanda. 
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Today the world gave the most beautiful gift. The air was fresh and I felt immensely happy that I was alive, that I was there, and then. If I died tomorrow, I'll be a happy dead man, as I have been in heaven, heaven on earth....
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Results of the BOTTLENECK analysis for all dab samples by location (columns) and years (2005-08) with 14 loci. The probability of He being within the Heq 95% CI is reported for three different tests (Sign, Standard differences and Wilcoxon) under three different mutation models (IAM, TPM, and SMM). The Wilcoxon test also checks whether significance is due to heterozygote deficiency (expansion signal) or heterozygote excess (bottleneck signal). Significant values (p<0.05) are in red, those significant after bonferroni corretion are in red and bold. The results of the Standard differences test should be considered with care, as at least 20 loci are recomended for this test, thus they are shaded in grey. 

  Tysklind N, Neuparth T, Ashcroft GR, Taylor MI, Lyons BP, McCarthy ID, Carvalho GR (2009) Isolation and characterization of 28 new microsatellite markers for European flounder (Platichthys flesus L.), Molecular Ecology Resources, 9, 1065-1068. Tysklind N, Taylor MI, Lyons BP, McCarthy ID, Carvalho GR (2009) Development of 30 microsatellite markers for dab (Limanda limanda L.): a key UK biomonitoring species, Molecular Ecology Resources, 9, 951-955.

  1: Characteristics of 30 microsatellite loci for dab, Limanda limanda. ........................Table 2.2: Cross-species amplification of dab, Limanda limanda, microsatellites.................... Table 3.1: Characteristics of 28 microsatellite loci for flounder, Platichthys flesus ................. Table 3.2: Cross-species amplification of flounder, Platichthys flesus, microsatellites ............ Table 4.1: Oligonucleotide multiplexing tails: ........................................................................... Table 4.2: Multiplex tables: ....................................................................................................... Table 5.1: EST-SSR testing ......................................................................................................... Table 6.1: Sample information. ................................................................................................. Table 6.2: Locus information ..................................................................................................... Table 6.3: Locus-specific differentiation values ........................................................................ Table 6.4: Multilocus pairwise differentiation ........................................................................ Table 7.1: Pairwise estimates of differentiation (Θ WC & Θ' WC ) of dab, Limanda limanda, around the British Isles ........................................................................................................................ Table 7.2: AMOVA of dab, Limanda limanda, around the British Isles ................................... Table 7.3: Mantel tests ............................................................................................................ Table 7.4: Migrant detection ................................................................................................... Table 7.5: Assigment of OfF05 individuals .............................................................................. Table 7. 6: Population admixture proportion (m Y ) .................................................................. Table 7.7: Pairwise differentiation across years within location ............................................ Table 7.8: Mantel test of correlation of genetic and temporal distance ................................ Table 7.9: Cohort genetic differentiation ................................................................................ Table 7.10: Test of population expansion (k and g) ................................................................ Table 8.1: Sample information ................................................................................................ Table 8.2: Sample "External" disease incidence. ....................................................................

Figure 1 .

 1 Figure 1.1: Evolutionary scenario A: ..........................................................................................

  Figure 1.1: Evolutionary scenario A: ..........................................................................................

Figure 1 . 2 :

 12 Figure 1.2: Evolutionary scenario B: ..........................................................................................

Figure 1 . 3 :

 13 Figure 1.3: Evolutionary scenario C: ..........................................................................................

Figure 1 . 4 :

 14 Figure 1.4: Evolutionary scenario D:..........................................................................................

Figure 4 . 1 :

 41 Figure 4.1: Tailing process in a PCR ...........................................................................................

Figure 4 . 2 :

 42 Figure 4.2: Multiplex electropherograms. .................................................................................

Figure 5 . 1 :

 51 Figure 5.1: Diagram of a selective sweep and the principle behind EST-SSRs ..........................

Figure 5 . 2 :

 52 Figure 5.2: Diagram of reduction in variability around a selection point. ................................

Figure 6 . 1 :

 61 Figure 6.1: Relationship between Θ max and H E . .........................................................................

Figure 6 . 2 :

 62 Figure 6.2: Relationship between Θ WC and H E . ..........................................................................

Figure 6 . 3 :

 63 Figure 6.3: Relationship between Θ' WC and H E : .........................................................................

Figure 6 . 4 :

 64 Figure 6.4: Relationship between D est and H E :...........................................................................

Figure 6 . 5 :

 65 Figure 6.5: Selected allele frequency plots across the North Sea, English Channel and Irish Sea. .................................................................................................................................................

Figure 6 . 6 :

 66 Figure 6.6: Locus-specific sample correspondence analysis ...................................................

Figure 7

 7 Figure 7.1: Sampling locations. ................................................................................................

Figure 7

 7 Figure 7.2: Neighbour joining trees. ........................................................................................

Figure 7 . 3 :

 73 Figure 7.3: Genetic distance (Θ WC and Θ' WC ) Vs. Geographic distance (km). ..........................

Figure 7 . 4 :

 74 Figure 7.4: GENELAND plots for 2005. ..................................................................................

Figure 7 . 5 :

 75 Figure 7.5: GENELAND plots for 2006. ...................................................................................

Figure 7 . 6 :

 76 Figure 7.6: GENELAND plots for 2007. ...................................................................................

Figure 7 . 7 :

 77 Figure 7.7: GENELAND plots for 2008. ...................................................................................

Figure 7 . 8 :

 78 Figure 7.8: Sample correspondence analysis: .........................................................................

Figure 7 .

 7 Figure 7.10: Temporal analysis in GENELAND (GENETIME): (Previous page) ........................

Figure 7 .

 7 Figure 7.11: Temporal Analysis (sPCA): ...................................................................................

Figure 7 .

 7 Figure 7.12: Map of coastal Europe. .......................................................................................

Figure 7 .

 7 Figure 7.13: Map of coastal Europe at the Last Glacial Maxima. ............................................

Figure 8 .

 8 Figure 8.1: Grossly visible diseases of dab, Limanda limanda. ...............................................

Figure 8 .

 8 Figure 8.2: Liver lesions and pathologies of dab, Limanda limanda. ......................................

Figure 8 .

 8 Figure 8.3: PCA of disease prevalence in dab, Limanda limanda. ...........................................

Figure 8 .

 8 Figure 8.4: MDS plot of disease prevalence in dab, Limanda limanda. ..................................

Figure 8 . 5 :

 85 Figure 8.5: Dendrogram of disease profiles. ...........................................................................

Figure 8 . 6 :

 86 Figure 8.6: MDS bubble plots of single diseases .....................................................................

Figure 8 . 7 :

 87 Figure 8.7: Strongest barriers to gene flow and disease prevalence. .....................................

Figure 8 . 8 :

 88 Figure 8.8: Genetic distance versus disease Euclidean distance. ............................................

  Restriction enzymes: enzymes used to cut a DNA sequence at particular places known as restriction sites. Sample: from a population genetics perspective, a population sample is a subset of individuals collected from a location, and thought to be genetically representative of the local population. SNP: Single nucleotide polymorphism, a particular nucleotide within a DNA sequence for which several alleles are detected among individuals. SSR: Simple sequence repeat; see microsatellite.Tumorigenesis: the process of tumour formation.

40 1 )

 1 Evolutionary scenario A: Populations are mainly self-recruiting with little gene flow from other populations. Isolation provides the potential for local adaptation. Genes providing pollution tolerance become widespread in polluted areas. Consequences: Potential loss of genetic variability and directional change towards pollution-tolerant alleles in detoxification genes. Increased pollution tolerance may bias biomarker data. LEGEND: Three time points are represented on top of each other, beginning at the top. The two sides of the box represent two populations, while the lines in between them represent barriers to gene flow either by larval recruitment (grey arrows) or adult migration (black arrows). The sizes of the cartoon fish represent age. The different colours of the cartoon fish represent genetic diversity. One gene (red) grants tolerance to pollution (which may in homozygous or heterozygous state). Pollution increases in the right hand population over time from top to bottom as brown background. The black crosses indicate pollution-induced mortality.

Figure

  Figure 1.1: Evolutionary scenario A:

Figure

  Figure 1.2: Evolutionary scenario B:

Figure

  Figure 1.3: Evolutionary scenario C:

Figure

  Figure 1.4: Evolutionary scenario D:

  s identity, Nei's genetic standard distance (D S ) can be calculated as:There are four key factors affecting the distribution of genetic diversity in populations:1) Mutation: is the source of genetic diversity and happens randomly across the DNA sequence creating variants (alleles) at certain locations of the DNA (Locus/Loci).

  3. To evaluate signals of pollution-induced selection: Gene-linked microsatellite markers derived from a pollution-induced expressed sequence tags library are developed and tested for signals of selection in dab afflicted with liver diseases in Chapter 5. 4. To evaluate the best estimator of differentiation: Several new and traditional estimators of genetic differentiation are compared empirically in Chapter 6. 5. To examine the population structure of dab: Several biomonitoring stations of dab are sampled and individuals genotyped. The genetic data are then analysed with several software packages and the results reported in Chapter 7. 6. To evaluate the significance of the genetic data in the biomonitoring context: The results of the genetic analysis are integrated with the biomarker of pollution exposure data. Findings are reported in Chapter 8.

  amplicon (Figure 4.1 A-I) (A) a sequence of DNA is represented (Black). The target to be amplified is represented in orange. A forward tailed-primer in blue (forward) and purple (tail) are also drawn. (B) The forward tailed-primer anneal to the binding site in the DNA sequence (C) The DNA polymerase extends the sequence from the priming site, replicating the target (D) The reverse primer anneals to the reverse binding site (E) The DNA polymerase extends the sequence from the reverse binding site. (F) The process is repeated several times (G) Once all of the tailed-primer has been incorporated into amplicons, the labelledoligo is allowed into the reaction (H) The fluorescent-oligo binds to the tailed section of the amplicon (I) A fluorescently labelled amplicon is produced (J) Four different forward tail-primer with different tails (different colours) are designed, with correspondingly different labelledoligos.

Figure 4 . 1 :

 41 Figure 4.1: Tailing process in a PCR

  and started with 15min at 95 o C to activate the Hot-Start polymerase. Then 13 cycles of 30s at 94 o C, 90s at 60 o C, and 60s at 72 o C, followed by 31 cycles of 30s at 94 o C, 90s at 50 o C, and 60s at 72 o C, and finalised with a 30min extension phase at 60 o C. The forward tail-primer anneals to the substrate DNA and is incorporated intothe amplicon during the first 13 cycles, while the annealing temperature is too high for the labelled-oligos to anneal. In the following 31 cycles with a lower annealing temperature the labelled-oligos take over, incorporating the fluorescent label into the PCR amplicons. The different tails were initially tested singly and then in combinations into 4, 8 and 12 loci products were resolved on an ABI 377 automated sequencer, and microsatellite allele sizes scored with GENEMAPPER software.

  Figure 4.2: Multiplex electropherograms. Multiplex electropherograms revealing the genotypes at seven loci of two individual dab. The alleles are indicated by arrows, and alleles belonging to the same locus are under the same bracket. Two loci are labelled with the M13for blue tail (FAM®), two loci with the M13rev green tail (VIC®), two loci with the Bhg-r yellow/black tail (NED®) and one with the +19bs tail in red (PET®).

Figure 5 . 1 :

 51 Figure 5.1: Diagram of a selective sweep and the principle behind EST-SSRsThe diagram represents a DNA sequence as line (A). Within the line there is a functional gene coloured in red. Closely linked to the functional gene there is a repetitive element (a SSR/microsatellite) coloured here in yellow. Both the functional gene and the SSR are inherited together as recombination (depicted by the blue crosses) occurs at either side of the gene-SSR duo. A population of individuals is represented (B). All individuals have the same red gene, but polymorphism in the number of repeats in the SSR (length of the yellow line) is present among the individuals. Mutation (yellow stars) might occur within the functional gene (C). Most times this will lead to a failure in functionally and the disappearance of the new mutation, but sometimes the new polymorphism might not imply negative effects, and a new allele emerges at the functional gene (coloured in pink). If the new "pink" allele does not entail any advantage in the current environment, its frequency within the population will be a product of drift and migration (D). However, under novel selective pressures (e.g. pollution), previous relatively neutral mutations (or even slightly deleterious) might become decisive in survival and rapidly "sweep" across the population and become the dominant allele (E). Note that the SSR-allele linked to the selected functional allele has now become nearly fixed.

Figure 5 . 2 :

 52 Figure 5.2: Diagram of reduction in variability around a selection point.

  500 sequences contained microsatellite-like motifs. The resulting microsatellite library was cross-searched for known-function ESTs, and the ensuing ESTs blasted against the NCBI database (http://www.ncbi.nlm.nih.gov) to compare the microsatellite region of the sequence with other homologous sequences. If the microsatellite region was monomorphic throughout a wide range of taxa, the EST was rejected. The selection process reduced the numbers to 31 known-function potentially polymorphic EST-SSRs. A further four unknown 77 function EST-SSRs were selected, based on their high probability of polymorphism. Primers were designed and tested as in Chapter 2 and 3. Primers were tested for amplification on individual flounder and individual dab. Amplification success, first assessed on 3% TBE agarose gels, was high: 30 EST-SSRs amplified at the expected size range in flounder and 31

(

  Next page)Testing EST-SSR for evidence of selective sweeps in dab, Limanda limanda. EST = GenBank accession number; Motif = microsatellite motif found in sequence; Function = putative function identified by homology; F-primer = forward primer for microsatellite amplification; R-primer= reverse primer for microsatellite amplification; Size = expected product size; EST-SSR = Name of the gene-associated microsatellite; F & D = test of amplification in flounder (F) and dab (D) on agarose gels: 1= success, ~= unresolved, -= negative. Poly?= test for allelic polymorphism, mono= monomorphic, yes = polymorphism was found, ? = unresolved, no amp = no amplification; size range = allele size range found for the locus; μsat?= whether the microsatllite was deemed usable as a population marker; Differences? = test of whether there were differences in the pooled amplifications between the different phenotypes considered: (A) fish from Dogger Bank suffering from liver adenomas; (B) fish from Dogger Bank suffering from lipoidosis; (C) fish from Dogger Bank with no recorded liver diseases; (D) fish from the Irish Sea with no recorded disease.

  -24 (Sulfated glycoprotein/tumour inducer): Initially, only one allele (144bp) was found in the adenoma fish, while the other groups revealed several alleles. Eight individuals per phenotype were then genotyped singly, which revealed that individuals showed up to four peaks suggesting the primers were not only amplifying the target gene. PCR conditions were made more stringent by increasing the annealing temperature to 58 o C and reducing the number of cycles to 25. Four individuals with adenomas and four healthy individuals from NeD were genotyped. With the new PCR conditions, the patterns of variability were reversed: individuals with adenomas showed two alleles (142 and 144), while healthy individuals showed only one allele (142).

  , but rather assess and compare the performance of the UCEs and HTEs of genetic differentiation on a temporally replicated data set from a weakly genetically differentiated marine fish species (large population sizes with recent divergence times and possible migration). The temporal replication facilitates assessment of the biological importance of any significant structure detected, while the inclusion of several spatial samples per putative population (basin) increases the robustness of the estimated differentiation values. Data are based on 16 loci showing a range of heterozygosity values, allowing evaluation of the performance of estimators at different levels of allele diversity. Genetic samples of dab were collected for four consecutive years (2005-2008) as part of the Clean Seas Environment Monitoring Programme (CSEMP) (CEFAS, 2005) in up to 15 stations covering five areas in the North East Atlantic.

(

  DAC5-5 and DAC2-37) (Figure6.2). The standardisation of Θ WC markedly changed the perception of information content of the different loci. For example, highly heterozygous DAG4-64 increased from a Θ WC of 0.003 to a Θ' WC of 0.080, while the relative contribution to multilocus differentiation of low variability DAC2-37 declined. Some markers did not change in ranking: DAC3-14 ranked highly with all estimators, while DAG2-90 remained noninformative despite containing high gene diversity. The relationship between HTE and H E was clearly positive (Figure6.3; Figure6.4). The values of genetic differentiation obtained by the different HTE were very similar to each other, as were those from uncorrected estimates, with the exception of those loci known to have null alleles (DAC1-35 and DAC5-70). Estimates of loci with null alleles based on Θ WC and φ ST showed reduced differentiation compared to estimates based on G ST_est and D est , perhaps indicating that the latter may be prone to overestimation of differentiation when null alleles are present.Locus-specific differentiation values (information content) of 16 microsatellite loci in dab, Limanda limanda, for four years(2005)(2006)(2007)(2008). Locus= locus name; H E = Heterozygosity (colour coded from blue=low to green=high); Uncorrected estimators of differentiation = Θ WC , G ST_est , and φ ST ; Heterozygosity corrected estimators = Θ' WC , G ST_est ', φ' ST , D est (All colour coded from yellow=low to orange=high); p(gnc) = probability that the allele distribution at the locus is random among sample; p(gtc) = probability that the genotype distribution is random among samples (p significant after Bonferroni correction are in bold); Δ HC = magnitude of change after heterozygosity correction (Δ HC = Θ' WC -Θ WC ).

(

  p<0.001) in all years for a number of loci (those with the highest Δ HC : DAG4-64,, and significant (p<0.05) in at least two years for seven other loci (those with average Δ HC : DAC1-35, DAC1-55,, further suggesting the existence of genetic differentiation. No significant differences were detected in four markers (those with little or no Δ HC : DAC2-28, DAG2-90, DAC5-77, and DAG5-

  These were the markers largely unaffected by the correction. Loci DAG5-17 and DAC5-21 are notable exceptions as, although the corrected values were relatively high, the CA did not suggest a division between North Sea and Irish Sea. The pie charts depict the proportion of each allele in a sample. Each colour represents a different allele. There are four pie charts per area (three for InF) representing the different sampling years: 2005 to the left, 2008 to the right. DAC5-5: Low diversity locus. Note the lower frequency of the main allele in blue (121bp) in LyB and the Irish Sea.DAC4-64: High diversity locus. Note the higher frequency of the purple allele in the North Sea and LyB (165bp), and higher frequency of the orange allele in Irish Sea (157bp).DAC3-14: Average diversity locus. Note the higher frequency of the red allele (168bp) in the North Sea, the higher frequency of the blue one in the Irish Sea (162bp), and intermediate frequency of both in LyB.
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 65 Figure 6.5: Selected allele frequency plots across the North Sea, English Channel and Irish Sea.

Figure 6

 6 Figure 6.6: Locus-specific sample correspondence analysis

  distribution and UCEs (i.e. Θ WC values of 0.001 with p<0.001) than with HTE. The magnitude of correction (Δ HC ) coincides with the significance associated with the exact G test of genic and genotypic differentiation, where the markers with the most statistically significant differences in allele frequency among samples correspond to those with the greatest Δ HC . Furthermore, corrected values are better predictors of locus performance in the CA: loci such as DAG4-64 and DAC1-90 correctly separated North Sea from Irish Sea samples for all years (despite Θ WC ~0.003), confirming their utility at detecting structure in dab and deserved increase in differentiation estimate (Θ' WC ~ 0.070 and 0.040 respectively).The most surprising result was the near perfect match between the different HTE in locusspecific differentiation values and ranking according to information content. Nevertheless, the values provided by the different HTEs varied slightly. D est seemed less effective at detecting differentiation across low heterozygosity loci, so that D est values for DAC5-5 and DAC2-37 were consistently lower than estimates from HCE (Θ' WC , G' ST_est , and φ' ST ). If for example, the structure of locus DAC5-5 in 2008 is examined, the number of alleles and heterozygosity are found to be low (N A =6; H E =0.186). The alleles are not randomly distributed across samples (p=0.001) which results in Θ WC and Θ' WC of around 0.020 and the CA also separates samples according to basin. However, D est estimates the overall differentiation value at 0.007. The reduced sensitivity of D est to detect differentiation at low levels of heterozygosity was also denoted by the steeper correlation between D est and H E (r=0.414; p=0.001) than HCE and H E (r≈0.295; p≈0.021) (Figure6.3; Figure6.4). Small D est values at the low heterozygosity end of the spectrum were also observed by[START_REF] Ryman | Gst is still a useful measure of genetic differentiation -a comment on Jost's D[END_REF], and as explained by[START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF], are due to the very nature of the estimator: D est measures differentiation based on how many alleles are different between populations, so perhaps at reduced number of alleles the power of detecting subtle structure is diminished compared to estimators more directly based on heterozygosity.

Figure 4

 4 Figure 4 will occur simultaneously within the same population, and thus resulting in different G ST values among loci in the same populations even at mutation equilibrium.

  productive and biologically diverse ocean and seas"(DEFRA, 2002) has resulted in the creation of the Marine and Coastal Access Bill (DEFRA, 2009). At a wider European level, the OSPAR convention (OSPAR Commission, 2000) and the European Union Marine Strategy Framework Directive (European Parliament, 2008) promote coordination of environment management between member states.

  , and samples genotyped for 16 loci published in Tysklind et al. (2009b) in multiplex PCRs as described in Chapter 4. Samples collected in 2005, and some of those collected in 2006 were DNA extracted externally by qualified CEFAS technicians.

Figure 7 . 1 :

 71 Figure 7.1: Sampling locations. Dab sampling locations around the British Isles colour coded by basin. North Sea sites are in dark blue (North east Dogger Bank: NeD; Amble: AmB; Off Flamborough: OfF; Indefatigable Bank: InF); English Channel sites are in light blue (Rye Bay: RyE; Lyme Bay: LyB); Irish Sea (South) sites are in light green (Celtic Sea: CeS; South Cardigan Bay: ScB; Inner Cardigan Bay: InC); Irish Sea (North) locations are in dark green (Red Wharf Bay: RwB; Liverpool Bay: LiV; Saint Bees Point: StB; Dundrum Bay: DuB); Atlantic samples are in brown (North of Ireland: NoI; West of Ireland: WoI).

  StB05). Due to the low amplification success of both the StB05 (18) and OfF05 (16) some extra samples were requested and five individuals were sent. These latter individuals were labelled as OfF05x thereafter. Since then the OfF05 sample was treated with caution. To evaluate the provenance of OfF05 individuals, a GENECLASS2[START_REF] Piry | GENECLASS2: A software for genetic assignment and first-generation migrant detection[END_REF] assignment exercise was performed. Reference population allele frequencies were created from the individuals fully genotyped in 2005 from all other samples. The individuals from OfF05 were then compared to the rest of the populations to check whether they were more likely to come from the North Sea or the Irish Sea.The admixture proportions at the population level, estimated as m Y[START_REF] Bertorelle | Inferring admixture proportions from molecular data[END_REF], of the LyB and InC samples were evaluated in ADMIX 2.0[START_REF] Dupanloup | Inferring admixture proportions from molecular data: extension to any number of parental populations[END_REF], using two grouped reference samples: North Sea (NeD and AmB) and Irish Sea (LiV and StB). Each year was analysed separately except for 2005, due to small sample size. Instead, the Irish Sea samples of 2006 were used as Irish Sea reference for 2005, while the North Sea samples of 2005 were kept as North Sea reference for the 2005 admixture analysis. Standard

  Mantel test of correlation (r) between genetic distance (Fst/(1-Fst) and geographic distance (log) and basin (North Sea-Irish Sea-Atlantic) and associated probabilities (p). Tests performed for each year separately, and repeated for 2005 (without Off05 sample) and 2006 (without the Atlantic samples). (A) Correlation of genetic distance and basin. (B) Partial Mantel test of genetic and geographic distance, controlling for the effect of basin (In grey). (C) Partial Mantel test of genetic distance and basin, controlling for geographic distance. (D) Mantel test of genetic and geographic distances. Two estimators of genetic distance were employed: ΘWC (ANALYSIS 1) and its heterozygosity corrected form, Θ'WC (ANALYSIS 2). Significant probability values after Bonferroni correction in bold. Bottom left (ANALYSIS 3) are the results of the Mantel test within sea basin for each year (2006-2008). Bottom right (ANALYSIS 4) are the results of the Mantel test of correlation between genetic and geographic distances within basin (<400km), between either North Sea or Irish Sea and English Channel (400-1000km), and between North Sea and Irish Sea (>1000km).
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 73 Figure 7.3: Genetic distance (Θ WC and Θ' WC ) Vs. Geographic distance (km).

  2005, uncorrected estimators suggested the barrier between LyB05 and North Sea samples as the most important; however, all corrected estimators positioned the strongest barrier between StB05 and InC05. Bootstrapping of D S yielded 77.6% support for the StB05-InC05 barrier, with a further 19.6% of barriers lying on the InC05-LyB05, giving weight to the barriers provided by the corrected estimators. When single locus matrices were employed and combined in a single map, it was revealed that the patterns of differentiation were different across loci. The InC05-LyB05 boundary was supported by most loci (5), while the InC05-StB05 and LyB05-NeD05 boundaries were supported by four and three loci respectively. The larger number of samples in 2006 increased the complexity in the order of importance of the barriers. Θ WC indicated a first boundary between Irish Sea (South) and Irish Sea (North) samples, a second boundary (InF06-RyE06) separated North Sea from English Channel samples, and a third isolated LiV06 from the rest of Irish Sea (North). Θ' WC , G' ST_est , and D est , generated similar first four boundaries, albeit in different orders. To summarise, they -boundary between InC08 and LyB08 reclaims strong cross-boundary differences for much of the genome.In general there was better agreement in the order of barriers between corrected estimators of differentiation and bootstrapped D S distances (which are generated by randomly resampling loci with replacement within individuals from the raw data), indicating that corrected estimators are better descriptors of genetic structure and thus of barriers to gene exchanges. Geographically, the eastern part of the English Channel and the south of the Irish Sea seem to be where the strongest and most supported barriers (both by loci and bootstraps) for all years are detected. However, the position of the barriers within the area varied from north ofInC in 2005, 2006 and 2007, to south of InC in 2008. 

  Figure 7.4;Figure 7.5;Figure 7.6;Figure 7.7) showed clear subdivision between North Sea and Irish Sea samples for all years. RyE samples normally clustered with North Sea (except 2007), while LyB flipped between North Sea in 2006 and a third group with either RyE (2007) or InC (2005 and 2008).The Atlantic samples of 2006 formed a putative independent breeding unit from the rest.

Figure 7 .

 7 Figure 7.8The correspondence analysis (CA; Figure 7.8) clearly separated all North Sea samples from Irish Sea-Atlantic samples along the first axis, placing the LyB samples of 2005, 2006, and 2007 in between North Sea and Irish Sea samples. The LyB08 samples clustered with the rest of the North Sea samples. Again, the OfF05 sample clustered with the rest of Irish Sea samples. The sPCA ( Figure 7.9) indicated the existence of structure on the first global component (i.e. indicating differences between distant samples) but not the local end of the spectrum (i.e. between neighbouring samples) for all years as seen on the screeplots (sorted eigenvalues) and decomposition values, resulting in two differentiated clusters, one centred in the North Sea (OfF) and another in the southern Irish Sea (South). Samples from LyB were consistently undifferentiated from either North Sea or Irish Sea, suggesting either a mixture of individuals from both locations or the existence of an admixed population in the western part of the English Channel.
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 74 Figure 7.4: GENELAND plots for 2005.

Figure 7 . 8 : 2006 Figure 7 . 9 :

 78200679 Figure 7.8: Sample correspondence analysis: Sample correspondence analysis (CA) separating North sea (Left) from Irish Sea (Right) along the first axis (abscissa). Highlighted in light blue are LyB samples. Note that from 2005-2006 LyB are in between Irish and North Seas samples, while in 2008 they clearly cluster with the rest of North Sea. Highlighted in dark blue is the mislabelled OfF05 sample clustering with the rest of the Irish Sea.

  These individuals will be referred to as migrants (although other processes could produce such signals,see Discussion). In those cases, GENECLASS2 evaluates the probability of the migrant belonging to any of the other samples included in the analysis, and assigns the individual to whichever is most probable. There were cases in which individuals were assigned to a neighbouring sampling site; and others in which individuals were assigned to another basin; the latter are hereafter referred to as "trans-basin migrants". In 2005, only one individual, common to both methods, was assigned as a probable trans-basin migrant. In 2006, 13 individuals were identified as migrants by both methods. Of these, four individuals from the North Sea samples were estimated to have a Irish Sea provenance. No individuals from the Irish Sea were considered as migrants by both methods, and one individual from the Atlantic was considered an Irish Sea immigrant. In 2007, only two out of the nine migrants detected in the North Sea came from the Irish Sea, while four migrants into the Irish Sea had an assigned provenance in the North Sea. In 2008, most of the detected migrants found in the North Sea were assigned to other North Sea samples (23 out 27) and only three were considered by both methods as Irish Sea immigrants; On the other hand, half of the migrants detected by both methods in the Irish Sea came from the North Sea (6 out of 11). Across the four years, the number of fish of hypothetical trans-basin origin was low; resulting in less than 1% of the fish collected in the North Sea having an Irish Sea origin, and around 2% of the fish collected in the Irish Sea were estimated to be born in the North Sea. When the individuals in the uncertain 2005 sample, OfF05, were compared to the other available samples in 2005, 10 out of 21 individuals were allocated to InC05 (Table
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 710 Figure 7.10: Temporal analysis in GENELAND (GENETIME): (Previous page)GENELAND plot of the artificial geographical and temporal matrix: Location names are listed (dark blue box) from the Atlantic and Irish Sea (left) to North Sea (right). Geographical distances (km) from a centre location (LyB) divided by 100 are listed below (light blue box). GENELAND identified six clusters with very high probability (top left diagram). Therefore, six different membership plots are ilustrated, one for each identified cluster. In each plot the abscissa (x axis) are sampling locations ordered from left to right, while the ordinate (y axis) are years(2005)(2006)(2007)(2008). Each sample is represented by a black dot, and the probability of belonging to a cluster by the intensity of yellow/white. White/yellow indicates high probability of belonging to a cluster, while red indicates low probability of belonging to that cluster.

Figure 7 .

 7 Figure 7.11: Temporal Analysis (sPCA):A spatial principal component analysis of all dab samples sorted by location (x axis) and year (y axis). Atlantic and Irish Sea samples to the left, English Channel in the middle and North Sea to the right. The order of the locations from left to right is : NoI, StB, LiV, DuB, RwB, Woi, InC, ScB, CeS, LyB(=0), RyE, InF, OfF, NeD, AmB). First plot: the connection network was designed to allow links between all neighbouring samples across all years; Second plot: the size of the square represents absolute values of the first global component, large white squares are well differentiated from large black squares, while small squares are undifferentiated from either. Third plot: as the previous one, but a grey scale is used to indicate undifferentiated samples. Fourth plot: Display of the eigenvalues of the sPCA, indicating the existence of only one major global component.

  with the Atlantic and CeS06 samples. The males were subdivided in four clusters: a first cluster with InF06, a second with the rest of the North Sea, a third conformed of the whole Irish Sea plus CeS06, and finally a fourth clusters with the Atlantic samples. GENELAND clusters for males and females coincided in 2007, with a boundary between InC07 and LyB07. Females in 2008 clustered in two populations, one cluster with LiV08 and StB08 and the rest of the sites in another cluster, suggesting the three individual females of InC08 were genetically more similar to North Sea. While males in 2008 on the other hand separated into three clusters, one with LiV08 and StB08, a second cluster with InC08 (where 27/30 individuals were males) and LyB08, and a third with all the other locations. (Appendix: Table A.1)

  differentiated over time, a relationship picked up by the Mantel test (r=0.922; p<0.001) and also displayed by the temporal GENELAND and sPCA. The CA also placed the 2005 LyB sample very close to those from the Irish Sea; while those in 2006 and 2007 were located in between both basins; finally, the 2008 sample was clearly placed in the middle of all the North Sea samples. The effect of North Sea dab moving into LyB was also suggested by the outputs of the Barrier analysis, as the most supported barrier shifted from north of InC for the first three years to south of InC, between LyB and InC, in 2008. Besides, 2008 was the only year for which all estimators of differentiation agreed on the first barrier, suggesting the strong shift in allele frequencies created by the direct contact between North Sea genotypes and Irish Sea genotypes eclipsed the change of allele frequencies north of InC previously detected in other years. These patterns, together with the increase in North Sea admixture proportion over time are suggestive of an increase of North Sea dab into the western English Channel.

DAC5- 70 )

 70 only affected the significance class of five of the 40 samples; furthermore,[START_REF] Reich | Statistical properties of two tests that use multilocus data sets to detect population expansions[END_REF] discourage selectively removing loci from analysis, and therefore only the values for the whole locus suite will be discussed. The multilocus associated probabilities for most samples (35 out of 40) were below 0.05, strongly suggesting dab, as a whole, have experienced a dramatic population expansion in the past. Only five samples failed to reach the 0.05 significance level. In the North Sea: Amble both in 2005 and 2006; and three samples in the Irish Sea:RwB and DuB in 2006, and StB in 2008. On the other hand, the distribution of values significant after Bonferroni correction was not random either: InF and RyE were always highly significant; NeD, OfF, and samples in the Cardigan Bay area also seem prone to significance; LyB was significant in 2007; while no k value for Irish Sea (North) samples remained significant after Bonferroni correction.

Figure 7 .

 7 Figure 7.12: Map of coastal Europe. Map of Europe showing the width of the coastal shelf. Reproduced from Google TM Earth. Light blue represents the coastal shelf with shallow depths. Darker blue represents the deeper ocean basin. Note the narrowness of the coastal shelf around the Bay of Biscay, the Iberian Peninsula and Morroco. The location of the sampling stations is provided for reference.

Figure

  Figure 7.13: Map of coastal Europe at the Last Glacial Maxima.
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 81 Figure 8.1: Grossly visible diseases of dab, Limanda limanda. Reproduced from Stentiford et al, 2009. Top left = healthy fish with no visible diseases; Top right = Epidermal papilloma (EP); Centre left = Skin hyperpigmentation (HYP); Centre right = Skin ulceration (U); Bottom left = Lymphocystis (LY); Bottom right = Liver nodule (LN) and remaining apparently normal liver (*).
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 82 Figure 8.2: Liver lesions and pathologies of dab, Limanda limanda. Reproduced from Stentiford et al, 2009. Top left = Normal liver with no abnormality detected; Top right = Nuclear pleomorphism (Cat1); Centre left = Granuloma (white arrow) and melanomacrophage (black arrow) (Cat2); Centre right = Focus of cellular alteration (Cat3); Bottom left = Hepatocellular adenoma (Cat4); Bottom right = malignant neoplasm (Cat4). Scale bars: top left and right (100 μm); middle left and bottom left (200 μm); middle right and bottom right (50 μm).

Figure 8 .

 8 Figure 8.3: PCA of disease prevalence in dab, Limanda limanda. Principal component analysis of five disease prevalence in dab samples collected from UK biomonitoring sites from 2005 to 2008 colour coded by region. The circle to the left represent vectors of each disease: HYP= hyperpigmentation; LY=Lymphocystis; EP= epidermal papilloma; U= skin ulceration; LN= Liver nodule.
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 84 Figure 8.4: MDS plot of disease prevalence in dab, Limanda limanda. Non-Metric Multi-Dimensional Scaling plot of disease prevalence data from dab collected in UK biomonitoring sites from 2005 to 2008 colour coded by region.

Figure 8 . 5 : 191 Figure 8 . 6 :

 8519186 Figure 8.5: Dendrogram of disease profiles. Dendrogram of samples based on Euclidean distance between disease profiles of dab samples collected in UK biomonitoring sites from 2005-2008. Nodes with less than 50% support after 50,000 permutations are depicted with dotted red lines. Samples are colour coded by region to simplify interpretation.

  InC08 was characterised particularly by the lack of any visible liver nodules. Although InC08 was clearly nested within the Irish Sea branch of genetic distance trees (Figure 7.2) and correspondence analysis (Figure 7.8), GENELAND indicated that InC08 was different from other Irish Sea samples in 2008, and was placed together with LyB08 (Figure 7.7).

  and non-diseased phenotypes may have consisted of fish of different age classes, thereby compromising the comparison. The test would have been more meaningful if only old fish (i.e. >5 years) with, and without disease were used. Finally, the gene-linked microsatellites should have been genotyped in more single individuals to gain statistical power in those cases where reduced polymorphism was detected. In retrospect, the development of the genelinked markers should have been performed in parallel with the construction of the neutral microsatellite library and incorporated into the routine genotyping of dab from the start.

4) 6 )

 6 Two broad evolutionary units were identified in the North and Irish Seas, with further weak substructuring within sea basin, resulting in complex pattern of diverse potential for local adaption and pollution-induced selection. 5) Molecular tools proved invaluable in detecting patterns of movement of individuals and temporal changes in genetic composition of dab in sampling locations which correlated with changes in biomarker profile. Although no pollution-induced selection was detected, new avenues of detecting adaptation were explored and key sampling and statistical factors for projects targeting pollution-induced selection were highlighted. 7) Empirical evaluation of different estimators of differentiation indicated that a considerable proportion of genetic differentiation was not being captured by traditional estimators of differentiation. Once corrected, a more accurate representation of the distribution of allelic states was obtained. Such findings may have implications in the choice of markers when organisms with weak structure are the target of study.
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North Sea Irish Sea Locus Name/ GenBank Accession no. Motif Forward Primer (5'-3') Reverse Primer (5'-3')

  

	Characterization of 30 microsatellite loci isolated from Limanda limanda in two populations. Motif = repeat sequence of the isolated clone; Ta = Annealing temperature;
	N= number of individuals successfully amplified (out of 48). Na = Number of alleles; Range = allele size range; Ho = Observed Heterozygosity; He = Expected
	Heterozygosity; p = associated probability value of conformation with Hardy-Weinberg Equilibrium (HWE). Bold p values indicate significant deviation from HWE after
	Bonferroni correction.										
						N Na	Range	Na Ho	He	p	Na Ho	He	p
	DAC1-35	EU982372	(AC)40	GAAGTCTCCAGGAACGACTACA	TCAAGAACACAGACGTCAGGA	60 47 26 302-372	22 0.913 0.932 0.051	22 0.875 0.933 0.065
	DAC1-55	EU982373	(AC)20	AAAGTGGGGATTGAGGAAGG	ACACCACACACCCACACAAT	60 48 10 242-268	9 0.792 0.745 0.558	8 0.667 0.802 0.07
	DAC1-6	EU982374	(AC)38	GTCAGAACCACCCCCACA	TGAGACAGTTTGACCCTGATTTT	55 45 42 144-346	28 0.917 0.946 0.04	27 0.905 0.955 0.084
	DAC1-90	EU982375	(AC)24	TGGCTCCTATCAAATACATA	CTCTGTTTCTTTCAGGACTC	60 48 21 102-146	18 0.958 0.918 0.241	19 0.917 0.925 0.185
	DAC2-15	EU982376	(AC)24	CTCAGAGATGCCCAGAGGTC	GACAAGAACGCACGCACAC	60 48 11 174-216	8 0.625 0.681 0.072	8 0.708 0.723 0.313
	DAC2-28	EU982377	(AC)10C(AC)5	GTGTTTCCGCTTGGCTTG	GCCTGGCAGACACCTACACT	60 48 12 110-150	10 0.875 0.807 0.715	9 0.875 0.767 0.283
	DAC2-36	EU982378	(AC)18	GTTTGTTGCTCAGGTGCAGA	TGGGGAAGACACGTGTAAGA	52 47 34 215-327	21 0.913 0.791	1	23 0.958 0.894 0.933
	DAC2-37	EU982379	(AC)11	GGTATGTGCTTTGCCCTCAG	TGTTTGGTTGTCCGTTATGG	58 48 4 240-248	3 0.292 0.254	1	3 0.083 0.081	1
	DAC2-82	EU982380	(AC)50	ATGAAGCCTGTGTGCCTTTC	TTATGACCCTGGTTCCCTCA	55 45 34 335-434	24 0.913 0.946 0.031	28 0.909 0.953 0.239
	DAC3-12	EU982381	(AC)15GC(AC)12	CTGCTTGTTTTGGTGACACA	TAGGCGTGTGTGCATATGTT	55 47 18 103-141	15	1	0.903 0.902	14 0.75 0.897 0.029
	DAC3-14	EU982382	(AC)12	CTGTCAACTCGACTCTGGAGGA	GCAAGAACACACATATTCAGCTACA 60 48 8 160-174	6 0.542 0.726 0.006	6	0.5 0.697 0.043
	DAC3-86	EU982383	(AC)15	GACCCCTCATGTGACTCCAG	CCTCTGAGGGCCCTTGTC	55 48 8 221-241	6 0.458 0.55 0.318	6 0.458 0.418 0.763
	DAC4-20	EU982384	(AC)30	GTTTCCACGCTGCCTTCTT	TTCATCAATTTAACATAAAAAGAGAGA 55 45 30 123-181	25 0.917 0.932 0.633	22 0.955 0.944 0.698
	DAC4-34	EU982385	(AC)15	TCCGGAGAGGTGAGGAGTTA	CATCGAATGAAAATGGAGGAG	55 46 31 179-241	21 0.591 0.93 <0.001 22 0.625 0.939 <0.001
	DAC4-40	EU982386	(AC)21	TAGATAATGGGGCCCACAGG	TTAGCCGTTGTGGTTGACAG	60 47 20 320-365	15 0.957 0.872 0.795	17 0.875 0.881 0.26
	DAC5-21	EU982387 (AC)11(AGACAC)5	AAATGTGACGTAGGTTAGGTTTCTG	CGAAGGCAGCTTTCTTCTCT	58 48 26 96-160	23 0.875 0.944 0.014	20 0.958 0.928 0.951
	DAC5-5	EU982388	(AC)11AT(AC)6	TGCTTGAAGGCATTGTTGAC	CGTAGCTGCCTCTGAGTATTTG	60 48 5 117-127	5 0.25 0.264 0.295	3 0.208 0.223 0.113
	DAC5-70	EU982389	(AC)13	CAGACATGTTTGTGTTTTCTCTCTG	AGGCACGAAAGCATGAATGA	58 48 28 112-188	14 0.75 0.875 <0.001 24 0.75 0.942 0.004
	DAC5-77	EU982390	(AC)10	TCAATGGGGCAAAAGACAAT	CTTTCAATCGTGCATTCTTCA	60 48 8 104-122	6 0.333 0.33 0.419	7	0.5 0.495 0.03
	DAC5-78	EU982391	(AC)18	AGGAATGAATCGTCCTGTGG	CAAACCACCAGGGGAATAAA	55 47 36 100-186	23 0.87 0.93 0.053	27 0.875 0.952 0.011
	DAG1-14	EU982392	(AC)13	AAGGGATGATTGCACACACA	TGCAAAGGTTTGTTGAAGAACT	52 48 8 175-193	6 0.71 0.62 0.95	7 0.38	0.45 0.03
	DAG2-15	EU982393	(AG)16	GACATGGCATCAGCTCTTGA	TCCCACAAGTAAAAGAAATTCCA	52 46 13 145-169	10 0.61 0.88 <0.001 12 0.57	0.88 <0.001
	DAG2-22	EU982394	(AG)17	CGTTTACATGTGGTATCTGTCTG	AGATGGACAGATAGATGGATTGA	55 48 20 122-166	15 0.667 0.892 <0.001 14 0.458 0.883 <0.001
	DAG2-90	EU982395	(AG)11AT(AG)5	AGGCAAGGATTTGGAAGGTT	TCACCCCTTAATCTGGAATTG	60 48 14 158-186	14 0.875 0.897 0.724	12 0.958 0.88 0.824
	DAG4-64	EU982396	(AG)5GGG(AG)16	TGCACGTTGTGTGTCTCTCTC	GGGAAAAAGGAGGGGAAATA	60 48 23 143-191	20	1	0.933 0.741	18 0.958 0.919 0.539
	DAG4-91	EU982397	(AG)24CG(AG)10	CTGCCGATGAAGGAGTTTTC	TGTGTGGTAGCAGACAGTGGA	60 45 30 209-345	23 0.583 0.92 <0.001 19 0.524 0.931 <0.001
	DAG5-12	EU982398	(ATCT)23	CCCCAATTCATTATCTATGAACG	CCGGCAATCCAGGTTACTTA	55 47 21 132-256	18 0.958 0.887 0.229	13 0.957 0.843 0.78
	DAG5-17	EU982399	(AG)29	ACCTGTCTGCAGGAAGAGGA	TCTGATGTGCTGCTGTTTCC	60 47 31 170-242	23	1	0.928 0.799	25	1	0.946 0.707
	DAG5-45	EU982400	(AGAT)39	AAATAAGACTGGAATAAATATGCAC	AATATACCGGCTGCTATGAC	55 47 25 207-275	19	1	0.924 0.473	21 0.958 0.926 0.634
	DAG5-88	EU982401	(AG)10AA(AG)9	TTTTCCCGAAAGTCCCTCTT	AGCCGGGATTTCATTATTCC	58 48 2 187-189	2 0.688 0.313 0.357	2 0.75	0.25	1
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	Results of cross-species amplification of 30 microsatellite loci developed from dab on other European
	flatfish species (n=1/spp). Amplification conditions identical to those described for dab. Presence of
	microsatellite-like products is indicated with allele sizes, absence with a (-). Ll = Limanda limanda; Pf =
	Platichthys flesus; Pp = Pleuronectes platessa; Lw =Lepidorhombus whiffiagonis; Hp = Hippoglossoides
	platessoides; Sr = Scophthalmus rhombus ; Pm = Psetta maxima; Mv = Microchirus variegatus; Mk =
	Microstomus kitt ; Ss = Solea solea; Pl = Pegusa lascaris; Bl = Buglossidium luteum.		
	Locus	Ll	Pf	Pp	Lw	Hp	Sr	Pm	Mv	Mk	Ss	Pl	Bl
	DAC1-35	342/356	-	-	-	-	-	-	-	-	-	-	-
	DAC1-55	254/258	-	-	-	-	-	-	-	-	-	-	-
	DAC1-6	249/249 144/170	-	144/144 196/196 158/160 162/162 152/154	-	-	-	185/189
	DAC1-90	122/132	-	-	-	-	-	-	-	-	-	-	-
	DAC2-15	202/204	-	-	-	-	-	-	-	-	-	-	-
	DAC2-28	130/130 118/118 118/130	-	134/134 116/118 116/118	-	-	118/128	-	-
	DAC2-36	231/271	-	-	-	-	-	-	-	-	-	-	-
	DAC2-37	244/248 240/240 240/240	-	242/242 238/238 232/232	-	-	-	-	-
	DAC2-82	349/437 345/361	-	-	-	-	359/389	-	-	-	-	-
	DAC3-12	117/125 103/109 107/125 101/109 113/113	99/99	89/125	85/93	-	93/101	-	-
	DAC3-14	164/172	-	-	-	-	-	-	-	-	-	-	-
	DAC3-86	223/229	-	-	-	-	-	-	-	-	-	-	-
	DAC4-20	136/160	-	-	-	160/166	-	-	-	-	-	-	-
	DAC4-34	235/235	-	-	-	239/239	-	-	-	-	203/203	-	-
	DAC4-40	334/351	-	324/324	-	-	-	-	-	-	-	-	-
	DAC5-21	109/119	-	-	-	126/126	-	134/134	-	-	-	-	-
	DAC5-5	121/121 119/121 115/121	-	111/121 121/121 121/121	-	-	109/115 121/121 121/121
	DAC5-70	146/154	-	-	-	-	-	-	-	-	-	-	-
	DAC5-77	108/112	-	106/106 102/138 102/138 102/138 102/138	-	-	102/106 102/106 102/138
	DAC5-78	131/153	-	161/161	-	-	101/103 114/124	-	-	133/139	-	-
	DAG1-14	183/183	-	-	-	181/187	-	181/181	-	178/181 181/209	-	-
	DAG2-15	155/155	-	-	-	-	-	-	-	-	-	-	-
	DAG2-22	138/138 108/156	-	124/138 138/138	-	156/156	-	-	136/264	-	122/134
	DAG2-90	162/176 178/186	-	-	170/182 156/176 152/156	-	-	-	-	-
	DAG4-64	147/159	-	-	-	-	-	-	-	-	-	-	-
	DAG4-91	260/260	-	-	-	-	-	-	-	-	-	-	-
	DAG5-12	223/267 241/341	-	-	137/145	-	203/211	-	-	-	-	-
	DAG5-17	200/208	-	-	-	168/182	-	174/212	-	-	-	-	-
	DAG4-64	147/159	-	-	-	-	-	-	-	-	-	-	-
	DAG4-91	260/260	-	-	-	-	-	-	-	-	-	-	-
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	Chapter 3: Isolation and
	characterisation of 28 microsatellite
	markers for European flounder
	(Platichthys flesus L.).
	3.1 Abstract:
	European Flounder (Platichthys flesus L.) are used in ecotoxicological studies
	to provide detailed information on the effects of pollution on individual fish. Data on
	population and evolutionary level effects are, however, limited. Here, the isolation and
	characterisation of 28 novel species specific microsatellite loci are presented. The number of
	alleles ranged from 8 to 38, and observed heterozygosity from 0.542 to 1.

Locus Name/ GenBank Accession no. Overall Mersey Estuary Tyne Estuary

  

	Characterization of 28 microsatellite loci isolated from Platichthys flesus in two estuarine populations. Motif = repeat sequence of the isolated clone; Ta = Annealing
	temperature; N= number of individuals successfully amplified (out of 48). Na = Number of alleles; Range = allele size range; Ho = Observed Heterozygosity; He =
	Expected Heterozygosity; p = associated probability value of conformation with Hardy-Weinberg Equilibrium (HWE). Bold p values indicate significant deviation from
	HWE after Bonferoni correction.								
			Motif	Forward	Reverse	Ta N Na	Range	Na Ho	He	p	Na Ho	He	p
	FLAC1-32 FJ360492	(AC)19	GAGAAACCTCCCACAGGTGA	GGGAAATAACGCTGATACGAA	55 48 13 156-184	9 0.833 0.829 0.381 11 0.958 0.881 0.070
	FLAC1-47 FJ360493	(AC)7+(AC)16	ACGCACATACGAAGCCGTAG	ATTTCTGCCCAGGGATTACC	55 47 10 242-270	7 0.542 0.680 0.044	8 0.652 0.700 0.500
	FLAC2-16 FJ360494	(AC)15	CCATCTACCCCCAGAAAACA	CTCCGGGGGAAACTTAAGAG	55 48 20 156-202	17 0.917 0.869 0.431 16 0.833 0.904 0.022
	FLAC2-18 FJ360495	(AC)20	AAAAGCCAATGACCTGTTGC	GCATGCCAGTGAGAACAATG	55 48 20 216-266	16 0.958 0.910 0.041 18 0.833 0.901 0.074
	FLAC2-46 FJ360496	(AC)16	TGCATGGTTTTAAATACGACAA	GAACAGCAGCCTTTGTTTTTG	55 45 16 167-209	13 0.875 0.868 0.316 14 0.810 0.892 0.129
	FLAC3-19 FJ360497	(AC)5AC(AC)17	GAAACCAGGGGGCTCTTTAG	TCTTAGATCCCCCGAATGTG	55 48 11 221-279	8 0.792 0.813 0.579 11 0.833 0.858 0.537
	FLAC4-60 FJ360498	(AC)22TC(AC)5	CGCCTCTTGACACACAGAGA	AGCCCTTCTGTTCGAGTTCA	55 48 18 179-257	13 0.833 0.859 0.877 15 0.792 0.893 0.001
	FLAC4-67 FJ360499	(AC)27	ACCTGGACCAAACACACACA	CCCCACCATGTCAGAACTTA	55 48 27 175-296	19 1.000 0.914 0.613 22 0.875 0.931 0.206
	FLAC4-69 FJ360500	(AC)5+(AC)14	GGGAGAACCTGTCAAACCTG	AACGCAACACGCATACAAAC	55 47 23 228-300	20 0.875 0.934 0.161 19 1.000 0.919 0.995
	FLAC4-7	FJ360501	(AC)5AT(AC)3GC(AC)23	CGATGGCCTTCTCTTTTTCA	TTTTGATGCCATTTGCATGT	55 47 12 169-197	12 0.913 0.837 0.969 10 0.792 0.806 0.470
	FLAC4-81 FJ360502	(AC)16AG(AC)4	CAAGGCTCCTGTGACAGCTT	CCAGTAAGAGATCAAACACG	55 48 14 174-208	12 0.708 0.867 0.020 12 0.625 0.850 0.006
	FLAG1-11 FJ360503	(AG)18	GCGAGAGAGGGAGAAAGAAAA	TTCCTATCTGGTTCAGTCCTTCTT 55 48 23 235-337	18 0.833 0.914 0.021 18 0.917 0.919 0.622
	FLAG1-81 FJ360504	(AG)20GGAGGG(AG)8	AAAACCTGGTGGCATATGGT	GCTTTCATTTCCCAGGTCAG	55 47 20 196-236	17 1.000 0.899 0.688 14 0.833 0.892 0.068
	FLAG2-76 FJ360505	(AG)6CG(AG)21	ACCTTTCGACCACCTGTCTG	TCTCATGTGCTGCTGTTTCC	55 43 25 156-226	17 0.800 0.918 0.146 21 0.870 0.928 0.034
	FLAG3-55 FJ360506	(AG)16	GCCAGCTTCATGACACACAC	GCCGATGGCATGTAGAGAAT	55 48 13 228-266	8 0.833 0.686 0.791 11 0.833 0.797 0.064
	FLAG3-73 FJ360507	(AG)16	TGATGGACAGCTTCAGCATC	GAACACCATCAGGTATCTTCATCA 55 48 23 257-325	16 0.917 0.903 0.115 18 0.875 0.909 0.025
	FLAG4-25 FJ360508	(AC)15A(AC)19	CGGGGTCACAGTTTAACACA	TGTTCATGTGGTTGCATTTG	55 46 37 120-314	25 0.957 0.947 0.670 22 0.870 0.908 0.039
	FLAG4-65 FJ360509	(AGAT)18+(AG)11	TGTGTGTGAGTGTATGTTTACTTGG	CAGTTGCGCAAGCTAATGTC	55 48 24 232-302	19 0.833 0.926 0.024 22 0.958 0.941 0.506
	FLAG4-71 FJ360510	(AG)17AA(AG)5	TGAAAAGGGATAAGAGGGAGA	TTCTAGCTGGACTCAAGGGTAA 55 46 30 183-247	24 0.917 0.947 0.290 20 0.955 0.934 0.546
	FLAG5-83 FJ360511	(AGAT)16	CCAGTGCAGAGGAGTTTTCAG	TTGAGTTCACTCCTGCACCA	55 41 38 200-340	28 1.000 0.957 1.000 24 0.895 0.950 0.076
	FLAG5-87 FJ360512	(AG)9GG(AG)16	TCTTCTCGCTGCATGAACAC	CCGTTTCCTTTGTCCAACAT	55 48 23 159-263	18 1.000 0.916 0.818 20 1.000 0.917 0.017
	FLAG6-14 FJ360513	(AG)18AT(AG)8	CAGTAGCAGGGTGTTTTTCCTT	CCAGTAATGACCAAACCCAAA	55 44 31 226-364	21 0.857 0.925 0.026 21 0.870 0.936 0.009
	FLAG6-77 FJ360514 (AGAT)33(AT)3(AGAT)9	TAAGATAGATAGCTGCATTG	CATGTTTCTTTCACAAATTA	55 48 29 136-274	23 0.833 0.944 0.043 22 0.958 0.940 0.726
	FLAG7-17 FJ360515	(AG)18	GCAACGAGCTGCTAATTAAGG	CGACCAACACAAACCACTTG	55 48 8 170-188	6 0.917 0.759 0.251	7 0.875 0.747 0.864
	FLAG8-19 FJ360516	(AG)11GG(AG)13	ACCTCGGCCAGCACTTAATA	AAAGGGGGCAGATGATTAGG	55 48 20 165-209	16 0.875 0.901 0.555 18 0.917 0.932 0.344
	FLAG8-37 FJ360517 (GT)10G(AG)8CG(AG)30	GAACTCCTGTCCTGCTGCTC	CCGTCATCGCTCTCTGAGG	55 47 24 213-275	16 0.826 0.872 0.299 23 0.875 0.930 0.248
	FLAG8-41 FJ360518	(AG)19	AAATCCAGATGCAGGTCACA	GAGGCTCTGGCTGTTTGTTC	55 48 13 221-255	11 0.917 0.783 0.068 12 0.792 0.832 0.243
	FLAG8-89 FJ360519	(AC)12+(AG)23	CCCATACAGACAGCTGGTGA	TTTCCCACGATGGAGGAG	55 47 23 173-223	17 1.000 0.919 0.909 20 0.875 0.915 0.402
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	Results of cross-species amplification of 28 microsatellite loci developed from European flounder on
	other European flatfish species (n = 1/spp.). Amplification conditions identical to those described for
	European flounder. Presence of microsatellite-like products is indicated with allele sizes, absence with
	a '-'. Pf = Platichthys flesus; Ll = Limanda limanda; Pp = Pleuronectes platessa; Hp = Hippoglossoides
	platessoides; Lw = Lepidorhombus whiffiagonis; Sr = Scophthalmus rhombus; Pm = Psetta maxima; Bl =
	Buglossidium luteum; Ss = Solea solea; Pl = Pegusa lascaris; Mv = Microchirus variegatus; Mk =
	Microstomus kitt.											
	Locus	Pf	Ll	Pp	Hp	Lw	Sr	Pm	Bl	Ss	Pl	Mv	Mk
	FLAC1-32	176/176 168/170 166/170 166/166	-	166/178	-	-	160/162	-	154/166	-
	FLAC1-47	262/262	-	-	-	-	-	-	-	-	-	-	-
	FLAC2-16	178/196 170/172 192/196 164/172 160/160 164/166 164/166 158/192 176/180 158/258	-	-
	FLAC2-18	242/246 256/260 250/256 226/226	-	-	246/248	-	266/270 280/280 302/308 296/296
	FLAC2-46	187/205 179/191 181/209	-	-	-	-	-	195/207	-	-	-
	FLAC3-19	221/273	-	249/249 259/263	-	249/265 253/265	-	251/251 267/267 237/263 267/279
	FLAC4-60	179/183	-	-	-	-	-	-	-	-	-	-	-
	FLAC4-67	192/199	-	-	-	-	-	-	-	-	-	-	-
	FLAC4-69	276/285	-	290/292	-	-	-	-	254/264 242/242	-	246/280	
	FLAC4-7	187/189	-	193/193	-	-	-	-	-	-	-	-	-
	FLAC4-81	174/192	-	192/198 176/188	-	-	-	-	-	-	186/194 182/192
	FLAG1-11	249/249	-	-	-	-	-	-	-	-	-	-	-
	FLAG1-81	204/210	-	-	222/222	-	184/190	-	-	-	-	-	-
	FLAG2-76	170/170	-	-	-	-	-	-	-	-	-	-	-
	FLAG3-55	256/258	-	230/236	-	-	-	-	-	228/252	-	-	-
	FLAG3-73	277/295	-	-	-	-	-	-	-	-	-	-	-
	FLAG4-25	254/284	-	-	-	-	-	-	-	-	-	-	-
	FLAG4-65	240/286	-	180/188	-	264/264	-	160/198 158/194 182/224 166/206 154/190 164/202
	FLAG4-71	197/211	-	185/195	-	-	-	187/205	-	-	211/227	-	-
	FLAG5-83	314/314	-	-	-	-	-	-	-	-	-	-	-
	FLAG5-87	167/177	-	-	-	-	-	-	-	-	189/189	-	187/199
	FLAG6-14	304/324	-	273/277	-	256/266	-	228/244	-	-	-	264/282	-
	FLAG6-77	196/220	-	148/194	-	-	-	124/160	-	168/176	-	120/156 126/164
	FLAG7-17	178/180 168/168 172/180 178/190 172/174 176/176 176/176 174/182 176/180	-	-	168/174
	FLAG8-19	171/183 190/205 187/195	-	-	167/199	-	193/197 185/190 181/185 167/185 179/183
	FLAG8-37	235/237	-	-	202/202	-	-	-	-	-	-	-	-
	FLAG8-41	239/239	-	237/237	-	-	-	-	-	241/248 221/221 245/248 253/267
	FLAG8-89	195/209	-	207/225 195/195	-	221/221 219/219	-	171/183 185/197 181/189	-

Table 3 .2: Cross-species amplification of flounder, Platichthys flesus, microsatellites
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	Chapter 4: Maximising the cost to
	benefit ratio of microsatellite
	genotyping by multiplex tailing
	4.1 Abstract:
	Microsatellite markers are used in ecological studies to answer increasingly elaborate
	questions. The potential to reach accurate conclusions is dependent on the number of
	markers employed, and thus, there is a need to develop cheaper and more effective ways of
	genotyping non-model organisms. Here, a set of oligonucleotides (tails) with similar annealing
	temperatures, GC content, and no self-priming or cross-priming properties are suggested and
	tested in multiplex PCRs. The economic, technical, and logistic implications of the general use
	of these tails are also discussed.

Table 4 .1: Oligonucleotide multiplexing tails:

 4 

Table 4 .2: Multiplex tables:
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	Description of three
	multiplex combinations
	(A, B, C) of microsatellite
	primers	for	single-
	reaction amplification in
	dab (Limanda limanda).
	Four fluorescent colours
	were employed (FAM®,
	VIC®, NED® and PET®),
	and several loci were
	sometimes amplified in
	each colour. Locus names
	and size ranges of
	amplified products are
	listed underneath the
	labelling dye employed
	for the locus.	

Table 5 .1: EST-SSR testing
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	EST	Motif	Function	F-primer	R-primer	Size EST-SSR F D Poly? size range μsat?	Differences?
	DV565603	(ATT)15	Additional Sex Comb-like 1	TTGGTCAGAGCACACAGGAG	GCCACCAAAAGATGACAGGT	250 EST-01-N	1	1 mono 270		no
	AJ578051	(AC)21	apolipoprotein A1 precursor	ATCCTCTCCACCCTGTTCCT	CTGTTCTCCAAATTCTCCTTAGAG 162 EST-02-N	1	1 yes	130-167 ?	Reduced var C&D
	EC378204	(AGA)8	Binding prot/Peptidyl-proline isomerase	CCGATCCATTTTGGACAGAC	TGAGCAACAACTTCCGTGTC	119 EST-03-N	1	1 mono 111	
	EC378419	(GT)8	Cell Death Apoptosis 10	CCAGCCCGATTAAGAAGTCA	GGAGCAGCTCTTGGTCAAAC	154 EST-04-N	-	-4peaks 149-157 ?	no
	DV568872	(AGG)6	Cell Death Apoptosis 4	AACAGCTGAGGGATGCTTGT	GGCAGAATCAAGGCGTTAAG	156 EST-05-N	1	?		?	?
	DV569360	(AC)16	claudin	GGGGGTCATGTTCATTCTGT	GTGAGCGTGAAGACACCTGA	185 EST-06-N	1	1 yes	167-182 yes	no
	EC378628	(CT)11	COMM 1/copper metabolism	GCCAAAGTGAACCAGATGCT	GAGTCCGCTCTGGTCTGAAC	175 EST-07-N	1	1 mono 191	
	EC379377	(AC)16	Complement control protein	TCTCTTACCTGTGGGGCATC	CAACTCAAGTTAGAAAAGCAACG 216 EST-08-N	1	1 yes	292-302 ?	no
	EC378550	(AC)10	Complement control protein factor	TCAGAAGCAACACAGGTTGG	TTGACAATTTTGGGAATGTGA	158 EST-09-V	1	1 yes	217-232 yes	?
	CF379162	(AC)9	Cyt malate dehydrogenase	CTCCTGGACGGCTAATGTGT	CCCTGAAGACTTGCTGTTCC	234 EST-10-V	1	1 yes	232-246 yes	no
	DV568350	(AT)6	Cyt P450 CyP2F2	CGGGCAGAATTTTGAATGTT	CAAATACAGGCAGCAAGCAA	196 EST-11-V	1	1 yes	175-185 yes	A has a longer allele, 185
	EC377805	(GT)8	cytochrome c oxidase copper chaperone	AGAGGAAAGCTGCACAGAGC	TAAATAAGCGGGGGAAAAGG	152 EST-12-V	-	-mono 133/140/142 ?	no
	EC378538	(TG)8	Flavin adenine dinucleotide synthetase	CGCCTCACACCTCATTACCT	GCCATTACTTCAGACGCACA	195 EST-13-V	1	1 mono 212		no
	DV568641 (CCT)8(GT)8(GT)14	GTP Cyclohydrolase 1	CGAGTTTCTGACGCTGATCC	TGTCCAGAATCGTTTGACCA	219 EST-14-V	1	1 yes	230-234 yes	no
	DV565618	(GGT)7	Hsp40	GGGGAAGAAGGTCTGAAAGG	CCCCGAAGAACTGTTCAAAG	151 EST-15-V	1	1 mono 159		no
	CF379117	(TG)6	Inmunoglobulin M	CTCAACCTGGTCAACGTCAG	TTTTATTTTGATTTTGAATCTGCAT 152 EST-16-V	1	1 mono 166		no
	EC379462	(AC)22(CT)5	MHC class 1 Antigen	GCCCTCAAACAAATTTCCTC	GGGGCTGTTCTCCAAATTCT	172 EST-17-V	~1 yes	213-238 yes	no
	CF379204	(AG)x (CT)x	Myosin Light Chain	GCCGGCAACGTAGACTACAA	TGAGTGGCTGAGCACATAGG	187 EST-18-P	1	1 mono			no
	DV569527	(AAG)43	p8 protein (metastasis)	CAGATCCTGTTGTTGTTCTGCT	CCACGTGACTCATGTTGGTC	209 EST-19-P	1	1 yes		yes	Reduced var B
	EC379653	(GT)6	Pleurocidin (antimicrobial)	AGCTAGAGCAGGGGTTTTCA	CCAACATGGAAAACCAAATGT	166 EST-20-P	1	1 ?		no	no
	EC378887	(GT)18	Profilin	CCACCAATCCTGATGGCTAC	ACAGGCAGCTCAGGTGTGTA	212 EST-21-P	~1 ?		no	no
	DV568031	(AC)5	Protein Lysine	TTGCTTCTCGTATCCCCTCT	AAGTGGTTCATTCAAAAAGTGTGA 104 EST-22-P	1	1 mono 122	no	no
	DV565797	(ATC)9	Selenoprotein P	GACATCTGCAACTGCTCTGC	CCCCTGAATGTTATGATGGTG	207 EST-23-P	1	1 mono 198	no	no
	DV567967	(TG)10	Sulfated glycoprotein (tumour)	GCCTTTGAGCACATTTGGTT	GCGTCGCCAACAACTTTAAT	108 EST-24-P	-	1 yes	116-144 yes	A only 144, others 124-144
	DV570271	(AG)X	Syndecan 2	GAAACAAAAACAAAGAGCAGGA	GACAGGCGTCAAAATGTCAA	232 EST-25-P	-	1 mono 240	no	no
	EC378618	(GCT)7	Toxin 1	CGAACAGAAAACCAGAACCA	CTCACCGTTATCTCGGGTGT	178 EST-26-P	~~yes	203-221 yes	no
	DV566291	(AC)20	Trafficking Prot subunit 1	ACGGCTTGGACAGTGAACTC	CACAACAGTTTGATTCATGTTGC 174 EST-27-F	1	1 yes	236-260 yes	Reduced var A&B?
	EC378076	(GT)30	Trancobalamin I Precursor	GAGGGGGACAAGATCACTCA	GCATGATGCACACACTCACTC	235 EST-28-F	1	1 yes	245-291 yes	?
	CF379224	(TGC)4	translation elongation	ACAAGGTTGGAACCGACATC	GCTCAAAGCTTTAATAACCGTGT 171 EST-29-F	~~no amp		
	DV569969	(GT)19	Ubiquitin conjugating Protein	CCACTCCCCTGTTAAGTTGC	TAAGGCAAACGGTGGAAATC	194 EST-30-F	1	1 yes	185-205 ?	Reduced var B
	DV567625	(CAG)5	Vitellogenin A	ATCATCCTCCTCCAGCTCCT	GAGAGCGTTGACCCTGTTTC	188 EST-31-F	-	-mono 189-211 no	no
	CF379086	(GT)9	z-unknown function	GATCCAGGCATCTGTGGTTT	AAACAGGCAATACAAAATGAGAAA 120 EST-32-F	1	1 mono 129	no	no
	CF379071	(AG)10	z-unknown function	ATGTGTCATCGCTGTCTTGC	CTGGTCTGACAGTCGTTCCTT	151 EST-33-F	1	1 yes	173-183 yes	no
	EC379649	(AG)23	z-unknown function	ACGAGAGGCCCCTTTAAATC	TCGAACGACGAATGTATGGA	240 EST-34-F	~~mono			no
	EC379543	(CT)6(AC)21	z-unknown function	TGGACTCCCAGTCTCCTCTG	CAGCAGCAGCAGTCAAGTTT	155 EST-35-F	1	1 yes	185-191 yes	no

  Estimating the partitioning of genetic variability among wild populations continues to play a pivotal role not only in evolutionary biology and ecology, but also in conservation biology.

	Chapter 6: Differentiation in
	genetically diverse marine
	populations: an empirical comparison
	of heterozygosity-tolerant estimators
	6.1 Abstract:

Accordingly, it is important to employ an appropriate estimator of genetic differentiation that matches the salient attributes of a genetic marker system. Only when certain conditions are met can differentiation estimators generate meaningful interpretation of patterns of population connectivity and migration. Although there is an extensive array of estimators available based on various models of population structure and mutational mechanisms, the effect of heterozygosity on such estimators have, until recently, received little attention. The key issue concerns the limit imposed by heterozygosity on the maximum value of differentiation between populations that can be estimated. Microsatellites can have high allelic diversities with correspondingly high heterozygosities, and in marine organisms, which typically comprise large effective population sizes, heterozygosities can reach problematically high levels. To address issues arising from high heterozygosities, a new generation of estimators has been devised: G' ST , φ' ST , Θ' WC , and D est . In the present study, the performance of traditional (Θ WC , G ST , φ ST ) and "high-heterozygosity-tolerant" estimators are compared by application to a large spatially and temporally replicated microsatellite data set from dab (Limanda limanda L.): a European flatfish with large population sizes and recent colonization history -features typically resulting in high genetic variability and subtle genetic structuring.

  , and samples genotyped for 16 microsatellite loci published inTysklind et al. 

(2009b) in multiplex PCRs as indicated in Chapter 4. Genotypes were determined with GENE MAPPER® and each individual genotype checked at least twice, and any rare alleles or HWE and LD outliers were checked for allele miscoring, size-standard miscalling, or cross-colour pull-ups (an artefact peak created by an interference between spectral absorbances,

[START_REF] Rudin | An introduction to forensic DNA analysis[END_REF]

. In one sample, ScB06, DNA was extracted and genotyped twice, at the beginning and end of the project to check for scoring consistency

[START_REF] Dewoody | Mitigating scoring errors in microsatellite data from wild populations[END_REF]

. At least two individuals per plate were re-genotyped to verify amplification consistency between plates.

Table 6 .1: Sample information.

 6 Location= name of location where the sample was collected; Abv= the abreviation used in the text to refer to samples collected in a particular location, usually followed by the year the sample was collected (i.e. NeD06); Area= the general Area where the location is situated: NS=North Sea, EC= English Channel, ISS = Irish Sea South, ISN = Irish Sea North, AT= Atlantic coast of Ireland; Lat= Latitude; Long= Longitude; Sample Size = number of individual fish within a sample, sorted by collection year. Samples sizes after removal of incomplete genotypes are in italics; Ho and He= Observed and Expected Heterozygosities, sorted by sampling location and year; p-Value HWE (no Nulls)= Probability that the sample is in significant departure of Hardy-Weinberg Equilibrium expectations when marker with null alleles are removed. Significant P values (P<0.001) are in bold.

	Location	Abv. Area Lat. Long.

8 8 Mean Basic statistics

  

	Na	56	22	25	25	15	23	34	18	30	13	51	30	8	43	55	9	28.6

Table 6 .2: Locus information hjf 95 6.4.3 Single locus information content:

 6 The locus-specific UCEs (Θ WC , G ST_est , and φ ST ) ranged from negative and nil (DAC1-35, DAC2-WC , G' ST_est , φ' ST , and D est ) also had minimum values of zero (DAC2-28, DAC5-77, and DAG2-90 and DAG5-88 in most years), while maximum values were much higher for some loci (DAC3-14, DAG4-64, and reached up to 0.100 in some cases (Table6.3). Predictably, locus-specific Θ max had a linear inversely proportional relationship with heterozygosity (Figure6.1), and was equal to the expected homozygosity (Θ max =1-H E ), thus low heterozygosity markers (DAC2-37, DAC5-5, DAG5-88 and DAC5-77) exhibited the greatest potential to reveal differentiation as measured by UCEs (up to 0.900), while high heterozygosity markers (DAG5-17, DAC5-21, DAG4-64 and DAC1-90) showed Θ max values around 0.050 (the reader is reminded that this in complete absence of common alleles).

	-

Table 6 .3: Locus-specific differentiation values (information content) 97Table 6 .3: (cont.)
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			0.942 0.818 0.773 0.804 0.220 0.903 0.942 0.756 0.875 0.438 0.965 0.939 0.073 0.943 0.946 0.395
		Θ WC	-0.001 0.003 0.002 0.000 0.002 0.001 0.008 0.025 0.010 -0.001 0.000 0.005 0.003 0.002 0.000 0.007
		G ST _est	0.000 0.000 0.001 0.001 0.000 0.001 0.005 0.024 0.011 0.000 -0.001 0.005 -0.002 0.002 0.006 0.013
		φ ST	0.000 0.002 0.001 0.003 -0.002 0.005 0.007 0.033 0.009 0.008 -0.001 0.005 0.002 0.001 -0.002 0.000
	2006 2005	Θ' WC G' ST _est φ' ST D est p (gnc) p (gtp) Δ HC H E Θ WC G ST _est φ ST Θ' WC G' ST _est φ' ST	-0.009 0.016 0.007 0.000 0.003 0.009 0.133 0.103 0.082 -0.001 -0.014 0.076 0.003 0.027 0.007 0.011 0.000 0.001 0.006 0.004 0.000 0.011 0.113 0.111 0.102 0.000 -0.020 0.099 -0.002 0.038 0.112 0.024 0.007 0.012 0.005 0.013 -0.003 0.051 0.122 0.137 0.071 0.014 -0.036 0.075 0.002 0.017 -0.037 -0.001 0.000 0.001 0.005 0.003 0.000 0.010 0.108 0.089 0.092 0.000 -0.019 0.094 0.000 0.037 0.107 0.010 0.098 0.204 0.280 0.440 0.202 0.236 0.000 0.000 0.000 0.652 0.456 0.001 0.373 0.002 0.003 0.626 0.387 0.270 0.260 0.451 0.243 0.252 0.000 0.000 0.000 0.689 0.535 0.002 0.414 0.003 0.737 0.600 -0.008 0.013 0.006 0.000 0.001 0.008 0.125 0.078 0.071 -0.001 -0.013 0.071 0.000 0.025 0.006 0.004 0.942 0.828 0.750 0.809 0.213 0.902 0.945 0.748 0.877 0.456 0.963 0.940 0.091 0.943 0.941 0.398 -0.001 0.004 0.001 0.000 0.008 0.001 0.002 0.022 0.005 0.000 0.001 0.002 0.011 0.001 0.003 0.000 0.001 0.003 0.001 0.000 0.008 0.001 0.003 0.022 0.004 0.000 0.001 0.003 0.014 0.002 0.006 -0.002 -0.001 0.004 0.000 -0.001 0.009 0.001 0.002 0.020 0.006 0.001 0.001 0.002 0.009 0.001 0.002 0.000 -0.009 0.023 0.006 0.000 0.010 0.014 0.036 0.087 0.043 0.000 0.034 0.035 0.012 0.020 0.046 0.000 0.009 0.021 0.006 0.000 0.011 0.016 0.050 0.092 0.036 0.000 0.038 0.056 0.016 0.030 0.094 -0.003 -0.012 0.023 0.001 -0.005 0.011 0.007 0.034 0.081 0.048 0.002 0.037 0.037 0.010 0.024 0.039 -0.001
		D est	0.009 0.018 0.005 0.000 0.002 0.014 0.048 0.072 0.032 0.000 0.036 0.053 0.002 0.029 0.089 -0.001
		p (gnc)	0.121 0.000 0.027 0.527 0.000 0.038 0.010 0.000 0.000 0.363 0.009 0.001 0.000 0.097 0.000 0.539
		p (gtp) Δ HC	0.831 0.000 0.033 0.494 0.001 0.028 0.025 0.000 0.001 0.347 0.024 0.004 0.000 0.217 0.000 0.547 -0.008 0.019 0.004 0.000 0.002 0.012 0.034 0.065 0.037 0.000 0.033 0.033 0.001 0.019 0.043 0.000

E

2007 2008 Figure 6.1: Relationship between Θ max and H E .

  Relationship between locus-specific Θ max and H E among dab samples for 16 loci. Each year is represented by a different symbol.

	E	0.945 0.820 0.756 0.816 0.166 0.906 0.944 0.749 0.881 0.457 0.964 0.940 0.099 0.943 0.932 0.428
	Θ WC	0.002 0.004 0.003 0.000 0.004 -0.001 0.004 0.027 0.003 0.000 0.001 0.000 0.009 0.001 0.004 -0.003
	G ST _est	0.002 0.003 0.002 -0.001 0.006 0.000 0.003 0.034 0.002 0.001 0.002 0.000 0.012 0.000 0.009 -0.004
	φ ST	0.002 0.004 0.003 -0.001 0.005 -0.001 0.004 0.024 0.002 0.001 0.002 0.000 0.007 0.001 0.006 -0.004
	Θ' WC	0.031 0.020 0.014 -0.002 0.005 -0.006 0.069 0.109 0.023 0.000 0.036 0.008 0.010 0.012 0.061 -0.006
	G' ST _est	0.031 0.016 0.007 -0.007 0.008 -0.004 0.061 0.139 0.015 0.001 0.057 -0.001 0.014 0.010 0.127 -0.007
	φ' ST	0.028 0.021 0.013 -0.003 0.005 -0.012 0.068 0.097 0.019 0.003 0.046 0.002 0.008 0.015 0.084 -0.006
	D est	0.029 0.013 0.005 -0.006 0.001 -0.003 0.058 0.110 0.013 0.001 0.055 -0.001 0.002 0.009 0.119 -0.003
	p (gnc)	0.000 0.030 0.016 0.763 0.088 0.570 0.000 0.000 0.000 0.099 0.027 0.017 0.009 0.073 0.000 0.762
	p (gtp) Δ HC	0.009 0.038 0.014 0.792 0.138 0.538 0.000 0.000 0.000 0.087 0.025 0.026 0.018 0.114 0.004 0.888 0.029 0.017 0.010 -0.002 0.001 -0.005 0.065 0.082 0.020 0.000 0.035 0.007 0.001 0.011 0.057 -0.003
	H E	0.939 0.808 0.769 0.809 0.186 0.905 0.943 0.754 0.885 0.482 0.964 0.938 0.106 0.943 0.930 0.432
	Θ WC	0.000 0.006 0.005 0.002 0.017 0.000 0.005 0.015 0.004 0.001 0.000 0.003 0.011 0.002 0.003 0.008
	G ST _est	0.001 0.007 0.004 0.001 0.023 -0.001 0.004 0.016 0.003 0.000 0.001 0.002 0.012 0.002 0.006 0.008
	φ ST	0.001 0.007 0.006 0.002 0.020 0.000 0.004 0.010 0.004 0.002 0.001 0.002 0.014 0.001 0.003 0.011
	Θ' WC	-0.004 0.033 0.020 0.009 0.021 -0.004 0.082 0.062 0.035 0.002 0.005 0.045 0.012 0.031 0.045 0.015
	G' ST _est	0.013 0.041 0.018 0.003 0.029 -0.011 0.078 0.070 0.030 0.000 0.025 0.042 0.014 0.037 0.091 0.015
	φ' ST	0.014 0.038 0.026 0.011 0.024 -0.005 0.070 0.042 0.037 0.003 0.018 0.037 0.015 0.019 0.041 0.019
	D est	0.013 0.034 0.014 0.003 0.007 -0.010 0.074 0.055 0.027 0.000 0.024 0.040 0.002 0.035 0.086 0.007
	p (gnc)	0.003 0.000 0.010 0.094 0.001 0.744 0.000 0.000 0.000 0.337 0.180 0.000 0.017 0.019 0.000 0.132
	p (gtp) Δ HC	0.221 0.000 0.009 0.100 0.001 0.741 0.000 0.000 0.000 0.360 0.242 0.000 0.032 0.041 0.014 0.155 -0.004 0.027 0.015 0.007 0.004 -0.004 0.077 0.047 0.031 0.001 0.005 0.042 0.001 0.029 0.042 0.006
	Figure 6.2:	

Relationship between Θ WC and H E .

  Relationship between locus-specific Θ WC and H E among dab samples for 16 loci. Each year is represented by a different symbol. Locus DAC3-14 is highlighted within the grey box.
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Figure 6.3: Relationship between Θ' WC and H E :

Relationship between locus-specific Θ' WC and H E among dab samples for 16 loci. Each year is represented by a different symbol. Locus DAC3-14 is highlighted by the grey box.

Relationship between D est and H E :

  Relationship between locus-specific D est and H E among dab samples for 16 loci. Each year is represented by a different symbol.

	6.4.3.2 Genic and Genotypic Exact G-test:	Θ' WC vs. H E	
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	6.5 Discussion:								
		NeD08	Amb08	Off08	Inf08	Rye08	LyB08	InC08	Liv08	StB08
	NeD08	0.001	0.211	0.134	0.002	0.008	0.016	<0.001	<0.001	<0.001
	Amb08	0.006		0.038	0.004	0.019	0.002	<0.001	<0.001	<0.001
	Off08	0.293	0.213		0.003	0.007	0.007	<0.001	<0.001	<0.001
	Inf08	0.016	0.103	0.058		0.117	0.007	<0.001	<0.001	<0.001
	Rye08	0.039	0.126	0.065	0.363		0.096	<0.001	<0.001	<0.001
	LyB08	0.066	0.023	0.041	0.112	0.301		0.194	<0.001	<0.001
	InC08	<0.001	<0.001	<0.001	<0.001	0.002	0.409		0.054	0.001
	Liv08	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.474		0.080
	StB08	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.035	0.329	
	Θ WC (↑) vs. Θ' WC								
		NeD08	Amb08	Off08	Inf08	Rye08	LyB08	InC08	Liv08	StB08
	NeD08		0.002	0.001 *	0.005 **	0.004 *	0.003	0.021 ***	0.011 ***	0.011 ***
	Amb08	0.001		0.001	0.001	0.002 **	0.001	0.015 ***	0.006 ***	0.009 ***
	Off08	0.009	0.001		0.001	0.000	0.004 *	0.017 ***	0.010 ***	0.007 ***
	Inf08	0.013	0.002	0.004		0.000	0.004	0.017 ***	0.007 ***	0.007 ***
	Rye08	0.010	0.005	0.003	-0.004		0.003	0.013 ***	0.009 ***	0.006 ***
	LyB08	0.011	0.013	0.025	0.006	0.006		0.007	0.004 *	0.006 ***
	InC08	0.047	0.053	0.042	0.049	0.030	0.023		0.001	0.003
	Liv08	0.044	0.044	0.047	0.038	0.043	0.035	0.002		0.002
	StB08	0.058	0.061	0.055	0.049	0.047	0.049	0.016	-0.002	
		Ned08	Amb08	Off08	InF08	Rye08	LyB08	InC08	Liv08	StB08
	Ned08		0.001	0.001	0.002	0.002	0.001	0.011	0.006	0.006
	Amb08	0.000		0.001	0.000	0.001	0.001	0.008	0.003	0.005
	Off08	0.009	0.000		0.000	0.000	0.002	0.008	0.005	0.004
	InF08	0.011	0.002	0.004		0.000	0.002	0.008	0.004	0.004
	Rye08	0.009	0.005	0.004	-0.003		0.001	0.006	0.005	0.003
	LyB08	0.011	0.012	0.024	0.005	0.006		0.004	0.002	0.003
	InC08	0.039	0.046	0.035	0.042	0.027	0.023		0.001	0.002
	Liv08	0.041	0.042	0.044	0.037	0.041	0.036	0.007		0.001
	StB08	0.054	0.057	0.052	0.046	0.045	0.048	0.017	0.000	
		Ned08	Amb08	Off08	InF08	Rye08	LyB08	InC08	Liv08	StB08
	Ned08		0.000	0.001	0.002 **	0.001 *	0.000	0.010 ***	0.004 ***	0.008 ***
	Amb08	0.000		0.000	0.001	0.001 *	0.001	0.010 ***	0.004 ***	0.008 ***
	Off08	0.003	0.001		0.000	0.000	0.002 *	0.009 ***	0.005 ***	0.007 ***
	InF08	0.008	0.002	0.001		0.000	0.001	0.011 ***	0.005 ***	0.006 ***
	Rye08	0.004	0.004	0.000	0.001		0.000	0.007 ***	0.005 ***	0.006 ***
	LyB08	0.000	0.004	0.009	0.003	0.001		0.003	0.000 **	0.005 ***
	InC08	0.034	0.037	0.031	0.037	0.025	0.010		-0.005	0.000
	Liv08	0.016	0.015	0.020	0.017	0.019	0.001	-0.019		-0.002
	StB08	0.028	0.030	0.023	0.023	0.021	0.018	-0.001	-0.006	
	D S (Ned08	Amb08	Off08	InF08	Rye08	LyB08	InC08	Liv08	StB08
	Ned08		0.015	0.017	0.020 **	0.018 *	0.022	0.055 ***	0.033 ***	0.036 ***
	Amb08	-0.001		0.014	0.015	0.017	0.024	0.055 ***	0.031 ***	0.037 ***
	Off08	0.008	0.000		0.014	0.013	0.027 *	0.049 ***	0.033 ***	0.031 ***
	InF08	0.009	0.001	0.003		0.014	0.022	0.053 ***	0.031 ***	0.030 ***
	Rye08	0.007	0.004	0.004	-0.003		0.021	0.046 ***	0.033 ***	0.030 ***
	LyB08	0.009	0.012	0.022	0.003	0.005		0.042	0.031 *	0.035 ***
	InC08	0.029	0.039	0.027	0.035	0.021	0.019		0.027	0.029
	Liv08	0.036	0.039	0.039	0.033	0.037	0.034	0.006		0.016
	StB08	0.049	0.053	0.048	0.043	0.042	0.045	0.015	-0.001	
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P Genic (↑) vs. P Genotypic (↓)

G ST_est (↑) vs. G ST_est ' (↓) φ ST (↑) vs. φ' ST (↓)

  The values obtained for multilocus Θ' WC were very similar to those obtained from Θ WC when only the six loci with H E below 0.800 were used (data not shown), indicating that the low Θ WC values of loci with high heterozygosity, but structured among samples, were acting to reduce the multilocus Θ WC estimates unnecessarily. The concordance of values between the pairwise differences for three of the HTE (Θ' WC , G' ST_est , and D est ) is reassuring. Interestingly, the differentiation values of Θ' WC , G' ST_est , and D est , were very similar to those obtained with Nei's original D S formula[START_REF] Nei | Genetic distance between populations[END_REF], which confirms[START_REF] Jost | D vs. Gst: Response to Heller and Siegismund (2009) and Ryman and Leimar[END_REF] suggestion that D ≈ D S when differentiation is not very strong. Multilocus φ' ST estimates were about half of those from the other estimators, but still larger than uncorrected values.

Many studies have reported higher levels of structure using low polymorphism markers (such as allozymes), where microsatellites failed. De

[START_REF] De Innocentiis | Allozyme and microsatellite loci provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean Sea[END_REF] 

reported higher levels of structure in dusky grouper, Epinephelus marginatus, using nine allozymes (Θ WC =0.214) than with seven microsatellites (Θ WC =0.018). However, when one of the allozymes showing extreme structuring (ADA, Θ WC =0.717) is removed and HCE calculated from their published data, microsatellites show higher levels of overall differentiation (Θ' WC =0.087) than allozymes (Θ' WC =0.064). Likewise, the unexplained low global Θ WC values (~0.016) obtained in a study of poorly dispersive whelks, Buccinum undatum, with a negative relationship between heterozygosity and differentiation (r=-0.799; p=0.105)

[START_REF] Weetman | Genetic population structure across a range of geographic scales in the commercially exploited marine gastropod Buccinum undatum[END_REF]

, fitted expectations better with a recalculated average global Θ' WC of 0.069. Moreover a positive relationship between Θ' WC with gene diversity emerges (r=0.636; p=0.249). On a study of zebra mussels, Dreissena polymorpha, five microsatellites with very high H E (0.790 to 0.890)

Table 7

 7 The pattern between North Sea and Irish Sea was repeated every year. In contrast, the English Channel samples' significant Θ WC values with other basins changed across years. The two Atlantic samples of 2006 displayed highly significant (p<0.001) genetic differentiation against all North Sea samples, but were undifferentiated from Irish Sea samples based on Θ WC .The K-Means clustering analysis suggested that k=2 best fitted the data for all years. Sample membership for k=2, k=3 and k=4 were also calculated. For k=2, all North Sea samples together with RyE and LyB formed one cluster in all years with the exception of OfF05 which clustered with Irish Sea samples. Irish Sea, including Cardigan Bay and Atlantic samples, formed a second cluster in all years. Although the most likely (and temporally stable) k value was two, the patterns of subdivision between samples for larger k's can give insights into further dissimilarities between samples. When three clusters were forced, OfF05 and LyB05 composed a separate group from North Sea and Irish Sea in 2005; in 2006 the imposition of three and four clusters separated Atlantic and Irish Sea (South) samples from the rest of Irish Sea and OfF06 and InF06 separated from the rest of North Sea. Increasing k to three and four in 2007 separated RwB07 and LyB07 from Irish Sea and North Sea respectively; while in 2008, k of three or four resulted in the segregation of InC08 and LyB08 from Irish Sea and North Sea.Pairwise estimators of differentiation between samples, sorted by years: 2005-2008; Tables correspond to pairs of Θ WC (above diagonal) and heterozygosity corrected Θ' WC (below diagonal). Significiance values are denoted with stars (*=below 0.05; **=below 0.01; ***=below 0.001). The values have been shaded in orage and yellow for ease of interpretation: The stronger the colour (orange) the higher the relative value among comparisons (within estimator and year). The lines represent the borders between samples in different basins: North Sea (top and left), Irish Sea, and Atlantic (bottom and right)

	.1)

WC and Θ' WC values were close to zero and non significant between samples from the same sea basin (i.e. North Sea, Irish Sea), but higher and highly significant (p<0.001) when comparing samples across sea basins.

Table 7 .1: Pairwise estimates of differentiation (Θ WC & Θ' WC ) of dab, Limanda limanda, around the British Isles 135
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Table 7

 7 

	.1 (Cont.)								
	2007 NeD07 AmB07 OfF07 InF07	RyE07	LyB07	InC07	RwB07	LiV07	StB07
	NeD07		0.002	0.000	0.001	0.002 *** 0.001	0.004 *** 0.011 *** 0.005 *** 0.005 ***
	AmB07	0.000		-0.001	-0.003	0.000	0.002	0.006 *** 0.016 *** 0.008 *** 0.009 ***
	OfF07	0.001	0.005		-0.003	0.001	0.001	0.007 *** 0.020 *** 0.009 *** 0.011 ***
	InF07	-0.001	-0.007	-0.012		0.000	0.003	0.006 *** 0.016 *** 0.007 *** 0.009 ***
	RyE07	0.012	0.000	0.005	-0.002		0.000	0.003 *	0.011 *** 0.003 *** 0.004 ***
	LyB07	0.000	-0.004	-0.006	0.013	-0.004		0.005	0.007 *** 0.001	0.003
	InC07	0.027	0.030	0.036	0.041	0.012	0.002		0.007 ** 0.002	0.000
	RwB07	0.057	0.060	0.068	0.055	0.054	0.028	0.026		0.002 ** -0.001
	LiV07	0.032	0.037	0.047	0.033	0.026	0.001	0.011	0.009		-0.001
	StB07	0.038	0.047	0.055	0.049	0.026	0.009	-0.003	0.009	-0.006
	2008 NeD08 AmB08 OfF08 InF08	RyE08	LyB08	InC08	LiV08	StB08
	NeD08		0.002	0.001 *	0.005 ** 0.004 *	0.003	0.021 *** 0.011 *** 0.011 ***
	AmB08	0.001		0.001	0.001	0.002 ** 0.001	0.015 *** 0.006 *** 0.009 ***
	OfF08	0.009	0.001		0.001	0.000	0.004 *	0.017 *** 0.010 *** 0.007 ***
	InF08	0.013	0.002	0.004		0.000	0.004	0.017 *** 0.007 *** 0.007 ***
	RyE08	0.010	0.005	0.003	-0.004		0.003	0.013 *** 0.009 *** 0.006 ***
	LyB08	0.011	0.013	0.025	0.006	0.006		0.007	0.004 *	0.006 ***
	InC08	0.047	0.053	0.042	0.049	0.030	0.023		0.001	0.003
	LiV08	0.044	0.044	0.047	0.038	0.043	0.035	0.002		0.002
	StB08	0.058	0.061	0.055	0.049	0.047	0.049	0.016	-0.002	

All by Years 2005 2006 2007 2008 All Analysis

  of Molecular Variance of dab samples around the British Isles for four years

					Whole					Females					Males		
	Source of Variation Nested in %var	φ ST	st.err. p-value φ' ST	%var	φ ST	st.err. p-value φ' ST	%var	φ ST	st.err. p-value φ' ST
	Within Individual -	0.981	0.019	0.011	--	--	0.979	0.021	0.019	--	--	0.980	0.020	0.007	--	--
	Among Individual Samples 0.012	0.012	0.008	0.040	--	0.011	0.011	0.015	0.151	--	0.014	0.014	0.007	0.090	--
	Among Samples	Clusters	0.003	0.003	0.002	0.006	0.010	0.006	0.006	0.003	0.012	0.020	0.004	0.004	0.003	0.036	0.014
	Among Clusters	-	0.004	0.004	0.002 <0.001 0.013	0.004	0.004	0.005 <0.001 0.015	0.003	0.003	0.003	0.102	0.009
	Within Individual -	0.986	0.014	0.008	--	--	0.991	0.009	0.010	--	--	0.983	0.017	0.010	--	--
	Among Individual Samples 0.008	0.008	0.006	0.013	--	0.004	0.004	0.007	0.224	--	0.008	0.009	0.009	0.054	--
	Among Samples	Clusters	0.001	0.001	0.000 <0.001 0.005	0.002	0.002	0.001	0.015	0.006	0.002	0.002	0.001	0.017	0.006
	Among Clusters	-	0.004	0.004	0.003 <0.001 0.014	0.003	0.003	0.002 <0.001 0.012	0.007	0.007	0.004	0.001	0.022
	Within Individual -	0.985	0.015	0.010	--	--	0.980	0.020	0.011	--	--	0.997	0.003	0.013	--	--
	Among Individual Samples 0.009	0.009	0.008	0.008	--	0.015	0.015	0.008	0.001	--	-0.004 -0.004 0.011	0.705	--
	Among Samples	Clusters	0.000	0.001	0.001	0.088	0.002	0.001	0.001	0.001	0.081	0.003	0.000	0.000	0.002	0.414	0.001
	Among Clusters	-	0.005	0.005	0.003	0.005	0.018	0.005	0.005	0.003 <0.001 0.016	0.007	0.007	0.004 <0.001 0.022
	Within Individual -	0.984	0.016	0.008	--	--	0.981	0.019	0.009	--	--	0.987	0.013	0.010	--	--
	Among Individual Samples 0.008	0.008	0.007	0.036	--	0.009	0.009	0.007	0.072	--	0.005	0.005	0.010	0.241	--
	Among Samples	Clusters	0.001	0.001	0.001	0.009	0.004	0.001	0.001	0.001	0.091	0.003	0.002	0.003	0.001	0.020	0.009
	Among Clusters	-	0.007	0.007	0.003 <0.001 0.024	0.009	0.009	0.004	0.172	0.030	0.005	0.005	0.002	0.013	0.018
	Within Individual -	0.985	0.015	0.009	--	--										
	Among Individual Samples 0.009	0.009	0.006 <0.001	--										
	Among Samples	Clusters	0.001	0.001	0.000 <0.001 0.004										
	Among Clusters	-	0.005	0.005	0.003 <0.001 0.017										
	Within Individual -	0.987	0.013	0.007	--	--										
	Among Individual Samples 0.009	0.009	0.006 <0.001	--										
	Among Samples	Years	0.004	0.004	0.002 <0.001 0.013										
	Among Years	-	0.000	0.000	0.000 <0.001 0.000										

Table 7 .2: AMOVA of dab, Limanda limanda, around the British Isles 138 2005 2006 Figure 7.2: Neighbour joining trees.
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Table 7 .3: Mantel tests
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  Common: are the number of individuals identified as migrants by both methods. Only individuals with p <0.01 of belonging to where they were caught are reported. Total = total number of migrants identified by GeneClass2. NS= North Sea; IS= Irish Sea; AT= Atlantic Coast of Ireland. XX<-XX: The first basin indicates where the individual was caught, the basin after (<-) indicates the estimated provenance. Mismatch= the number of individuals for which both methods estimated different origin basins. Ind.= number of individuals included in the analysis (total), number of individuals from the NS (NS<-NS), from the IS (IS<-IS) and from the AT (AT-AT). Pecentages indicate the percentage of fish from one basin that are assumed to have originated in another (i.e NS<-IS: % of fish fished in the NS with an IS origin).

		All. Bay. Com. Ind.	All. Bay. Com. Ind.	All. Bay. Com. Ind.	All. Bay. Com. Ind.
	Total	4	3	1	236	23 25 13	960	15 14 12	861	39 41 34	614
	NS <-NS	1	1	0	139	5	6	1	389	7	6	5	543	23 22 19	466
	NS <-IS	0	1	0	0%	6	7	4	1.03%	2	3	2	0.37%	4	6	3	0.64%
	NS <-AT	-	-			0	3	0	0.00%	-	-	-		-	-	-	
	IS <-IS	2	0	0	97	6	6	3	460	0	1	0	318	5	6	5	148
	IS <-NS	1	1	1	1%	3	1	0	0.00%	6	4	4	1.26%	7	7	6	4.05%
	IS																
									Ind.		NeD05 Amb05 LyB05 InC05 StB05
									OfF05-013	0.758 0.446 0.341		0.68 0.155
									OfF05-014	0.213 0.198 0.133 0.619 0.127
									OfF05-016	0.302 0.085 0.202 0.281 0.047
	Individuals in the OfF05 sample were	OfF05-017	0.03 0.063 0.031 0.144 0.009
	assigned to the other samples available in		OfF05-018	0.284 0.272 0.484 0.848 0.172
	2005 (NeD05, AmB05, LyB05, InC05, StB05).	OfF05-019	0.256 0.161 0.154 0.404	0.03
	In green are the highest probability value, in	OfF05-021	0.004 0.002 0.011		0.08 0.013
	yellow the second highest probability. At the	OfF05-023	0.144 0.061	0.14		0.18 0.155
	bottom of the individuals list (in blue) are the		OfF05-024	0.382 0.422 0.663 0.737 0.146
	five individuals received separately.			OfF05-025		0.5 0.595 0.435 0.744 0.263
									OfF05-026	0.134	0.22 0.078 0.432	0.45
									OfF05-027	0.902 0.732 0.713		0.96 0.976
									OfF05-028	0.831 0.405 0.415 0.656 0.113
									OfF05-033	0.31 0.286	0.53 0.833 0.068
									OfF05-040	0.314 0.096	0.12 0.288 0.047
									OfF05-042	0.036 0.137 0.056 0.218 0.112
									OfF0x-012	0.576 0.553 0.452 0.799 0.329
									OfF0x-013	0.633 0.401 0.078 0.332 0.126
									OfF0x-014	0.645 0.362 0.412 0.381 0.065
									OfF0x-015	0.272	0.11 0.011 0.019 0.007
									OfF0x-051	0.002 0.003 0.002 0.001	0

Table 7 .5: Assigment of OfF05 individuals
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	1	1

Table 7 . 6: Population admixture proportion (m Y )
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	Location Year	2005 2006 2007 2008
		NS (m Y )	0.692	0.535	0.818	0.957
	LyB	s.d IS (m Y )	0.306 0.308	0.191 0.465	0.194 0.182	0.200 0.043
		s.d	0.306	0.191	0.194	0.200
		NS (m Y )	0.193	-0.054	-0.060	0.447
	InC	s.d IS (m Y )	0.161 0.807	0.210 1.054	0.156 1.060	0.252 0.553
		s.d	0.161	0.210	0.156	0.252
		NS (m Y )			0.974	
	InF	s.d IS (m Y )			0.151 0.026	
		s.d			0.151	
		NS (m Y )			-0.071	
	RwB	s.d IS (m Y )			0.142 1.071	
		s.d			0.142	

Table 7 .10: Test of population expansion (k and g)

 7 Table A.2).Test of population expansion in dab samples from 2005 to 2008 will all loci (16) or all without null alleles (NN). Loc -ve= number of loci with negative K values out of 16 (out of 14 for NN). p = multilocus associated probability of k, non significant values (p>0.05) highlighted in red, values significant after Bonferroni correction (0.05/40=0.0012) are in bold. g= value of the g statistic (all in italics), none were below the significance threshold provided in[START_REF] Reich | Statistical properties of two tests that use multilocus data sets to detect population expansions[END_REF] 

				NeD Amb Off Inf		Rye LyB Ces Scb Inc RwB Liv		StB Dub Noi Woi
			Loc -ve	15	11	15			14			13			14	
	2005	All NN	p (k ) g Loc -ve p (k )	0.000 0.085 0.000 0.907 0.765 0.939 13 9 14 0.001 0.180 0.000			0.001 0.987 12 0.005			0.008 0.817 11 0.022			0.001 0.952 13 0.001	
			g	0.990 0.922 0.860			0.865			0.812			1.015	
			Loc -ve	14	11	13	15	15	13	12	15	15	11	12	13	9	14	12
	2006	All NN	p (k ) g Loc -ve p (k )	0.001 0.085 0.008 0.000 0.000 0.008 0.029 0.000 0.000 0.085 0.029 0.008 0.355 0.001 0.881 0.982 0.879 0.816 1.050 0.756 0.774 0.921 1.003 0.948 0.879 1.064 1.287 0.843 12 9 11 13 13 11 10 13 13 10 11 12 8 12 0.005 0.180 0.022 0.001 0.001 0.022 0.073 0.001 0.001 0.073 0.022 0.005 0.352 0.005	0.029 0.799 10 0.073
			g	0.958 0.958 0.991 0.948 1.075 0.880 0.874 0.913 0.993 0.825 0.710 1.005 0.830 0.965	0.956
			Loc -ve	14	14	14	16	15	15			13	13	13	13	
	2007	All NN	p (k ) g Loc -ve p (k )	0.001 0.001 0.001 0.000 0.000 0.000 0.908 0.827 0.890 0.878 0.945 0.912 12 12 12 14 13 13 0.005 0.005 0.005 0.000 0.001 0.001			0.008 0.008 0.008 0.008 0.886 0.937 0.974 1.095 11 11 11 11 0.022 0.022 0.022 0.022	
			g	1.022 0.981 1.032 0.869 1.019 0.979			0.885 0.893 0.893 1.020	
			Loc -ve	13	14	15	15	16	13			15	13		11	
	2008	All NN	p (k ) g Loc -ve p (k )	0.008 0.001 0.000 0.000 0.000 0.008 0.870 0.817 0.812 0.859 0.876 1.086 11 12 13 13 14 11 0.022 0.005 0.001 0.001 0.000 0.022			0.000 0.008 2.273 0.850 13 11 0.001 0.022		0.085 0.776 9 0.180	
			g	1.109 0.888 0.956 0.887 0.917 0.968			0.946 0.978		0.945	

Table 8 .1: Sample information Location and

 8 abbreviation (Abv.) used in the text. Basin corresponds to the general division found with genetic methods among dab samples. Region corresponds to the allocation of samples according to disease incidence

Table 8 .3: Correspondence between genetic distance and disease Euclidean distance.

 8 

	Mantel test of correlation between genetic distance Θ' WC /(1-
	Θ' WC ) and disease Euclidean distance. r = correlation value; p =
	associated probability after 100,000 randomisation of of the
	Euclidean distance matrix: p<0.05 denoted with *, p significant
	after Bonferroni correction (0.05/4 = 0.0125) are in bold.

8: Genetic distance versus disease Euclidean distance.

  Relationship between genetic distance Θ' WC /(1-Θ' WC ) and Euclidean distance of disease prevalence in dab collected in UK biomonitoring stations from 2005-2008. The circle highlights those comparisons between North Sea and English Channel (low genetic distance but high disease Euclidean distance).

							r	p
					2005	-0.370	0.808
					2006	0.505	0.011 *
					2007	0.433	0.015 *
					2008	0.085	0.293
		0.6					
	Euclidean distance	0.1 0.2 0.3 0.4 0.5					
		0					
	-0.02	0	0.02	0.04	0.06		0.08	0.1
	Genetic Distance Θ' WC /(1-Θ' WC )		2005	2006	2007	2008

Table 8 .4: Average within-group relatedness (R G ) of dab, Limanda limanda, with liver nodules.
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	Samples in which more than one
	individual had grossly visible liver
	nodules (LN) were divided into two
	groups: reference and LN. LN groups
	are shaded in grey. The average
	pairwise relatedness (R G ) of group
	members is listed. The probability of
	obtaining values below (%val<R G )
	and above (%val>R G ) the observed
	R G , given the sample size and within-
	sample genetic diversity, are also
	provided. Significant values (p<0.05)
	are in denoted with a *.

Table 8 .5: Average within-group relatedness (R G ) of histopathology groups.

 8 As reported by[START_REF] Mainguy | Multilocus heterozygosity, parental relatedness and individual fitness components in a wild mountain goat, Oreamnos americanus population[END_REF], IR and hL were highly correlated to each other. Neither measure of inbreeding (IR and hL) was correlated with the calculated general fitness proxies (age-standardised weight and length) for any of the locations analysed (Appendix: TableB.1).

	Three samples (NeD07, Liv07, and
	Rye07) were subdivided according to
	histopathology records: Cat3 = Foci of
	cellular alteration; Cat4 = Benign
	adenomas; Cat5 = Malignant neoplasms.
	The probability of obtaining values
	below (%val< R G ) and above (%val> R G )
	the observed R G , given the sample size
	and within-sample genetic diversity, are
	also listed. Significant values are
	denoted with a *.

Table 8 .6: Individual assignment of dab, Limanda limanda, with liver nodules

 8 Results of the individual assignment of dab with liver nodules (LN) collected from UK biomonitoring sites from 2005-2008. The assignment was based on genotype data. Fish collected at each site with no visible liver nodules were used as reference. Each year was analysed independently(2005)(2006)(2007)(2008). Individuals are listed on the first column and the probability of being assigned to each sample (Top row) is displayed below each sample name. Values in bold and highlighted in green reflect the best probability score of assignment to any of the samples considered. Values in light grey reflect probabilities below 0.05, indicating samples that can be excluded as a potential source population for the considered individual.

			2005		
	Individual	NeD05 Amb05 LyB05 InC05 StB05	
	InC05-109	0.116	0.003	0.170 0.184 0.010	
				2006	
	Individual	NeD06 Amb06 Off06 InF06 Rye06 ScB06 InC06 Rwb06 Liv06 StB06
	OfF06-994	0.767	0.404	0.308 0.500 0.683 0.687 0.298 0.520 0.762 0.681
	InF06-D40	0.333	0.215	0.618 0.203 0.327 0.540 0.278 0.474 0.348 0.359
	ScB06-001	0.090	0.003	0.004 0.027 0.039 0.101 0.002 0.044 0.003 0.034
	ScB06-002	0.548	0.297	0.227 0.347 0.412 0.298 0.336 0.278 0.555 0.327
	ScB06-014	0.821	0.792	0.405 0.692 0.866 0.937 0.732 0.874 0.910 0.876
	ScB06-027	0.074	0.016	0.022 0.089 0.018 0.199 0.076 0.024 0.098 0.013
	ScB06-029	0.870	0.713	0.651 0.382 0.769 0.880 0.667 0.923 0.585 0.957
	InC06-113	0.870	0.659	0.348 0.240 0.524 0.811 0.650 0.635 0.534 0.554
	InC06-137	0.142	0.021	0.020 0.252 0.105 0.490 0.280 0.177 0.368 0.362
	RwB06-187	0.911	0.831	0.278 0.626 0.819 0.969 0.373 0.563 0.788 0.916
				2008	
	Individual	NeD08 Amb08 Off08 Inf08 Rye08 LyB08 InC08 Liv08 StB08
	NeD08-011	0.082	0.282	0.358 0.337 0.025	0.095 0.028 0.009 0.023
	NeD08-019	0.068	0.168	0.415 0.132 0.164	0.131 0.036 0.090 0.555
	NeD08-026	0.977	0.938	0.899 0.864 0.811	0.978 0.219 0.758 0.928
	NeD08-032	0.197	0.553	0.669 0.465 0.710	0.318 0.151 0.040 0.124
	NeD08-033	0.119	0.310	0.460 0.423 0.221	0.230 0.358 0.056 0.173
	NeD08-034	0.391	0.354	0.426 0.569 0.501	0.546 0.274 0.066 0.392
	NeD08-035	0.014	0.236	0.310 0.177 0.091	0.074 0.037 0.052 0.127
	NeD08-071	0.047	0.089	0.290 0.224 0.082	0.137 0.163 0.021 0.083
	InF08-049	0.079	0.012	0.300 0.177 0.020	0.012 0.048 0.056 0.017
	InF08-092	0.226	0.056	0.234 0.137 0.084	0.049 0.063 0.225 0.218
	LiV08-018	0.846	0.537	0.482 0.801 0.767	0.613 0.583 0.691 0.569
	LiV08-023	0.705	0.926	0.727 0.836 0.895	0.932 0.640 0.571 0.775
	LiV08-032	0.506	0.719	0.665 0.918 0.650	0.710 0.319 0.600 0.665
	StB08-015	0.213	0.353	0.403 0.276 0.113	0.452 0.101 0.212 0.226
	StB08-028	0.211	0.104	0.077 0.147 0.046	0.170 0.234 0.073 0.187
	StB08-056	0.679	0.407	0.787 0.179 0.734	0.605 0.836 0.439 0.622

Table 8 .7 (cont.)
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	The only individual collected with liver nodules in 2005, was assigned back into InC. In 2006,
	all fish collected with liver nodules in the Irish Sea (ScB, InC, and RwB) were assigned to ScB06
	(or it was the second best option with comparable scores to the first option). There was one
	exception (individual ScB06-002) which had a much higher probability of belonging to Liv06
	than other Irish Sea locations. Interestingly, for one individual (ScB06-001) most other sites

  The relatedness and assignment tests provide interesting insights into the source of individuals suffering from liver tumours across the North Sea. Most individuals with liver nodules in 2007 were assigned back into NeD, and the relatedness test suggested that the groupings according to liver nodules (R G ) were random draws from the whole sample (R G ').

	. When the larger, presumably older size
	classes (non genotyped) were considered, the liver nodules frequency was 4.2% in 2005 and
	7.3% in 2006, more in line with the values recorded for genotyped samples in 2007 (7.1%)
	and 2008 (8.7%).

  , rendering RyE an appropriate reference site for those sites with a North Sea genetic signal (North Sea, RyE and LyB in some years). However, Rye Bay was dominated by very young fish in 2007 (1 or 2 years old), and as reported by[START_REF] Baumann | Relationship between liver tumors and age in brown bullhead populations from two lake Erie tributaries[END_REF], age and most diseases (including liver nodules) are significantly correlated in all three sites. If fish in Rye Bay are always very young, it could explain the low disease incidence regardless of exposure to pollutants. Dab data from a previous sampling cruise(2004), in which all fish from all stations were aged, revealed that RyE was indeed the site with the youngest average age (Mean=2.93, S.E.=0.18), supporting the notion that Rye Bay is normally composed by young fish. The apparent lack of older individuals at Rye Bay raises the question of the fate of older individuals (>2-3 years): is local mortality and fish turnover very high? Or are they migrating elsewhere? The two hypotheses are discussed:The low prevalence of diseases does not suggest mortality at young age; similarly mortality due to predation and fishing pressure are unlikely to be so markedly different among areas.The increased relatedness of non-diseased Rye Bay fish could suggest that the location may act as a nursery for dab: young cohorts of siblings occurring together for the first year or two and then dispersing or mixing with other cohorts born elsewhere. Given the age, disease and genetic relatedness, migration to other areas becomes the most plausible option. Rye Bay always clusters genetically with North Sea sites, so dab born in RyE could be migrating north as they mature and recruit into the North Sea sites. There were low but significant genetic differences between RyE and the northernmost locations in the North Sea for all years, thus from a genetic point of view, dab born in RyE are unlikely to recruit into Dogger Bank or northern coastal stations in large numbers. On the other hand, InF and RyE were genetically very similar in 2007 and 2008 so InF could be a receptive location for maturing RyE fish.At the other end of the English Channel, the increase in apparent North Sea admixture in LyB over time reported in Chapter 7(Figures 7.11 and 7.12 and Table 7.7) was not accompanied

  . A marked increase in DNA adducts from none being recorded in 1996 to levels comparable to Liverpool Bay in 2000 has been reported (CEFAS, 2003b). Concomitantly, in the current study, liver nodules were common in Cardigan Bay samples in 2005, 2006 and 2007. The assignment test suggested that, with few exceptions, most diseased individuals in 2005 and 2006 wereassigned back to Cardigan Bay, and the relatedness test indicated that diseased fish were genetically a random draw of all fish collected in ScB06, altogether suggesting that the existence of tumours in dab is a local feature. The existence of tumours in dab captured both in summer and winter[START_REF] Lyons | A biological effects monitoring survey of Cardigan Bay using flatfish histopathology, cellular biomarkers and sediment bioassays: findings of the Prince Madog Prize 2003[END_REF] is coherent with this view. On the other hand, the three individuals with liver nodules collected in 2007 were significantly less related to each other and other local dab than expected by random, and were assigned to other locations.

  Table7.7), which suggested no admixture for InC06 and InC07, indicated some influence from the North Sea in InC08. The influence is likely to proceed from the English Channel given the increase in North Sea genetic component, but reduced disease incidence typical of English Channel. Furthermore there were no recorded 205 cases of hyperpigmentation in InC08, the lack of which is typical of English Channel sites, while fish from Cardigan Bay in other years had incidences of hyperpigmentation.Much of Cardigan Bay has been protected as 'Special Areas of Conservation' (SAC) under the

	European Community Habitats Directive (http://www.jncc.gov.uk/page-1445) and is reported
	to have low levels of nitrogen compounds, phosphate, silicate, tributyl tin, and low
	concentration of polyaromatic hydrocarbons (PAHs) and organochlorinated pesticides (PCBs)
	(MAFF

  Genotyping of individuals included in biomonitoring programmes or at least in those stations of most concern, should be introduced and ideally carried out routinely to achieve an improved understanding of patterns of movement, biomarker incidence, and potential selection. Increasing the number of loci screened would improve the rejection power of the is relatively isolated from other such groups of individuals. The relevance of local adaptation for biomonitoring programmes is that, if the measured biomarker of exposure is detrimental for the survival of the individual, then selection over generations in the local population may show reduced values for the biomarker measured (i.e. the population is pollution-adapted).Such findings may lead to the erroneous conclusion that pollution effects are receding. On the other hand, if the number of immigrants is sufficiently high to prevent local adaptation, individuals may not indicate proximate levels of pollution exposure.Given the key role that movement and pollution selection can have on the reliability of biomonitoring results, the current thesis aimed to evaluate the extent and patterns of genetic structuring (driven by gene flow, selection and genetic drift) in flatfish species employed in the UK as bioindicators of pollution exposure. To that aim, a large number of genetic markers, both neutral and potentially adaptive, were developed for two species: dab, Limanda limanda, and flounder, Platichthys flesus.

  Long hours had I been working in the office, when, finally, mentally exhausted, but contented with the progress made, I decided it was time to go home... I was not tired, my eyes were still wide open, and my mind firing like an atomic reaction, I closed my dear laptop and prepared to go home, when something suddenly struck me, I crossed the huge window of the office, and there it was... An enormous and glorious sun solemnly rising between the clouds. The pale early morning blue was the perfect background for those oranges and pinks emanating from the yellow sphere. The green of the trees either side of the city blended in to form the perfect frame, the sea, intimidated by such beauty, tried to mimic the colours like a playful child. I went out, on my way home, as I rose the hill heading to my own little piece of the world, I continued to admire this unique gift from the top of the hill The dormant city laid by my feet, unbelievably quiet. Only the birds, exploiting the void air, welcomed the new day, and I felt like the sun had given me that gift only to me, to remind me of the beauty of life

Table A .2: Results of the Bottleneck analysis Table A.2: (cont.) NeD Amb Off Inf Rye LyB Ces Scb Inc RwB Liv StB Dub Noi Woi

 A 

	IAM		0.464 0.237 0.096	0.533	0.544	0.408
	TPM		0.069 0.345 0.158	0.159	0.175	0.338
	SMM		0.004 0.062 0.023	0.005	0.003	0.067
	Stand. IAM		0.173 0.062 0.195	0.239	0.151	0.346
	TPM		0.001 0.178 0.171	0.013	0.002	0.014
	SMM		0.000 0.000 0.000	0.000	0.000	0.000
	IAM	H def	0.852 0.932 0.923	0.768	0.866	0.687
		H exc	0.163 0.077 0.086	0.251	0.148	0.335
		H def/exc 0.326 0.153 0.173	0.502	0.296	0.670
	TPM	H def	0.059 0.271 0.086	0.059	0.052	0.163
		H exc	0.948 0.749 0.923	0.948	0.955	0.852
		H def/exc 0.119 0.542 0.173	0.119	0.104	0.326
	SMM	H def	0.001 0.021 0.003	0.000	0.002	0.015
		H exc	0.999 0.982 0.998	1.000	0.998	0.988
		H def/exc 0.002 0.042 0.005	0.001	0.004	0.030

NeD Amb Off Inf Rye LyB Ces Scb Inc RwB Liv StB Dub Noi Woi

  

	IAM	0.241 0.234 0.242 0.333 0.460 0.249 0.242 0.515 0.249 0.423 0.533 0.542 0.114 0.333 0.444
	TPM	0.171 0.386 0.325 0.313 0.070 0.343 0.182 0.160 0.313 0.358 0.130 0.071 0.062 0.069 0.166
	SMM	0.016 0.020 0.005 0.004 0.004 0.017 0.019 0.003 0.018 0.075 0.019 0.015 0.015 0.014 0.001
	IAM	0.031 0.032 0.288 0.144 0.085 0.074 0.025 0.135 0.139 0.066 0.209 0.158 0.114 0.187 0.341
	TPM	0.047 0.166 0.004 0.010 0.016 0.039 0.086 0.003 0.068 0.098 0.006 0.006 0.007 0

.001 0.001 SMM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 IAM H def

  0.955 0.955 0.805 0.821 0.923 0.923 0.961 0.805 0.879 0.923 0.821 0.805 0.914 0.787 0.729 H exc 0.052 0.052 0.213 0.196 0.086 0.086 0.045 0.213 0.134 0.086 0.196 0.213 0.097 0.232 0.292 H def/exc 0.104 0.104 0.426 0.391 0.173 0.173 0.091 0.426 0.268 0.173 0.391 0.426 0.194 0.463 0.583

	Test		
	Sign		
	2005		
	Wilcoxon		
	Sign Test		
	Stand.		
	Diff		
	2006		
	TPM	H def	0.292 0.271 0.179 0.108 0.121 0.213 0.271 0.121 0.213 0.292 0.121 0.134 0.108 0.052 0.059
	Wilcoxon	H exc	0.729 0.749 0.837 0.903 0.892 0.805 0.749 0.892 0.805 0.729 0.892 0.879 0.903 0.955 0.948
		H def/exc 0.583 0.542 0.358 0.217 0.241 0.426 0.542 0.241 0.426 0.583 0.241 0.268 0.217 0.104 0.119
	SMM	H def	0.003 0.008 0.002 0.001 0.001 0.015 0.010 0.002 0.003 0.029 0.001 0.002 0.002 0.002 0.001
		H exc	0.998 0.993 0.999 1.000 0.999 0.988 0.992 0.999 0.998 0.975 0.999 0.999 0.998 0.998 1.000
		H def/exc 0.005 0.017 0.003 0.001 0.002 0.030 0.020 0.003 0.005 0.058 0.003 0.003 0.004 0.004 0.001

Table B .1: Correlations with individual inbreeding coefficient (I)

 B Correlation (r) between individual dab inbreeding coefficients, age, fitness proxies, sex and several biomarkers of pollution. Three samples were considered for the analysis:NeD07, Rye07 and Liv07; IR= Internal relatedness; hL= average homozygosity by loci; Age = age of individual fish; Lgt= length; Wgt= weigth; LgtST= age-standardised length; WgtST= age-standardised weight; Values within the double edged box are those relating inbreeding coefficients to all other parameters. Associated significance values are depicted to the right of correlation values: ~ = p<0.1; * = p<0.05; ** = p<0.01; *** = p<0.001.

				NeD07					Rye07					Liv07	
		IR	hL	Lgt	Wgt	Age	LgtST	IR	hL	Lgt	Wgt	Age	LgtST	IR	hL	Lgt	Wgt	Age	LgtST
	hL	0.964 ***						0.940 ***						0.955 ***				
	Lgt	0.092	0.086					-0.079	-0.140					0.068	0.071			
	Wgt	0.122	0.111	0.938 ***				-0.071	-0.146	0.971 ***				0.076	0.088	0.962 ***		
	Age	0.109	0.100	0.845 *** 0.806 ***			-0.174	-0.196 * 0.782 *** 0.757 ***			0.125	0.121	0.829 *** 0.793 ***	
	LgtST	-0.027	-0.018	-	0.388 *** -0.002		0.153	0.090	-	0.487 *** 0.000		0.031	0.050	-	0.454 *** -0.017
	WgtST -0.034	-0.038	0.358 *** -	-0.001	0.882 *** 0.134	0.065	0.421 *** -	0.000	0.962 *** 0.011	0.033	0.414 *** -	-0.020	0.953 ***

Table B . 2: Correlations with individual inbreeding coefficient (II)

 B Correlation (r) between individual dab inbreeding coefficients, age, sex and several biomarkers of pollution. Three samples were considered for the analysis: NeD07, Rye07 and Liv07; IR= Internal relatedness; hL= average homozygosity by loci; Age = age of individual fish; M= male; F= female; LY=Lymphocystis; U= skin ulceration; EP= epidermal papilloma; HYP= Hyperpigmentation; LN+= presence or absence of liver nodules; Cat1= non-specific liver lesions; Cat2= non-neoplastic toxicopathic; Cat3= foci of cellular alteration; Cat4 = Bening neoplasms; Cat5 = Malignant neoplasms. Values within the double edged box are those relating inbreeding coefficients to all other parameters. Associated significance values are depicted to the right of correlation values: ~ = p<0.1; * = p<0.05; ** = p<0.01; *** = p<0.001.

			IR	hL	Age	M	F	LY	U	EP	HYP	LN+	Cat1	Cat2	Cat3	Cat4	Cat5
		hL	0.964 ***												
		Age 0.109	0.100											
		M	-0.129 ~-0.146 ~-0.261 ***										
		F	0.129 ~0.147 ~0.257 *** -									
		LY	-	-	-	-	-								
	NeD07	U EP HYP -0.029 -0.054 -LN+ -0.001	-0.062 --0.048 -0.020	0.274 *** -0.135 ~0.136 ---0.488 *** -0.094 0.097 0.413 *** -0.128 ~0.129 ~-~---	-0.206 ** 0.225 **	--	0.261 ***				
		Cat1 0.207 ** 0.198 ** 0.284 *** -0.101	0.100	-	0.090	-	0.146 ~0.086			
		Cat2 -0.006	-0.022	0.015	-0.037	0.038	-	-0.014	-	0.014	0.054	0.062		
		Cat3 0.086	0.059	0.578 *** -0.103	0.098	-	0.183 *	-	0.319 *** 0.280 *** 0.148 * -0.034	
		Cat4 0.024	0.033	0.520 *** -0.054	0.055	-	0.205 **	-	0.278 *** 0.584 *** 0.109	-0.072	0.283 ***
		Cat5 0.071	0.017	0.107	-0.082	0.083 ~-	0.222 **	-	0.099	0.380 *** 0.033	0.253 *** 0.140 ~-0.038
		Paras 0.046	0.085	0.346 *** -0.188 * 0.192 *	-	0.024	-	0.248 *** 0.101	0.072	0.037	0.196 ** 0.083	0.061

2005 2006

2007 2008 Figure 7.2: (Cont.)

Figure 7.5: GENELAND plots for 2006.

Figure 7.6: GENELAND plots for 2007.

Figure 7.7: GENELAND plots for 2008.

Table A.1: (cont.)
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Multilocus pairwise population differentiation:

Since multilocus pairwise estimates of differentiation (UCEs and HTEs) in all years were very similar, both in pattern and values, only the results for 2008 samples are given as example (Table 6.4). In general, pairwise UCE values were close to zero and non significant between samples from the same sea basin (i.e. North Sea, Irish Sea), but higher (up to 0.019) and highly significant (p<0.001) when compared across sea basins for all years.

Standardization did not alter the ranking of pairwise differences, but increased the values of differentiation as a function of locus heterozygosity, which, as seen before, had variable effects across loci. Differentiation after correction remained negative or very small withinbasin, while it increased by a factor of 3-7, and reached levels above 0.200 between North Sea and Irish Sea samples for several loci. Multilocus Θ WC estimates [START_REF] Rousset | GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux[END_REF] and arithmetic average Θ WC multilocus estimates were not noticeably different, and therefore only the latter are reported here. Pairwise G' ST_est , D est and φ' ST produced very similar patterns of differentiation to those produced by Θ WC and Θ' WC , but in the same range of magnitudes as Θ' WC . The effect of including individuals with missing data points was minimal for all estimators, while including loci DAC1-35 and DAC5-70 (which had suspected null alleles) modified the values and general pattern slightly. No general direction could be extracted from the effect of including the loci with null alleles in estimation of pairwise differentiation,

which is what would be expected by randomly removing alleles from genotypes. candidate for null alleles, g values and probabilities of k were calculated with and without loci affected by null alleles (DAC1-35 and DAC5-70).

Sudden reductions in population size, commonly known as bottlenecks, also leave an imprint on allelic composition. As the effective size of a population diminishes, rare alleles are lost faster than they are replaced by mutation and allelic diversity diminishes [START_REF] Spencer | Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks[END_REF][START_REF] England | Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential[END_REF], but as rare alleles have little effect on heterozygosity, the latter is expected to remain unaffected for a number of generations (2 -4 N e ) resulting in an heterozygosity excess with respect to the number of alleles [START_REF] Cornuet | Description and power analysis of two test for detecting recent population bottlenecks from allele frequency data[END_REF]. The heterozygosity, measured as gene diversity (H E ), can then be compared with that expected in a population of constant size with the observed number of alleles, the heterozygosity at mutation drift equilibrium (H eq ), assuming particular mutation models: Infinite Allele Model (IAM), Stepwise Mutation Model (SMM), or a combination of both, the two phase model (TPM). Note that such a test evaluates an excess of heterozygosity (H E > H eq ) not excess of heterozygotes (H O > H E ). The probability of H E being within the 95% CI of H eq was assessed with BOTTLENECK 1.2.02 [START_REF] Piry | BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequecy data[END_REF], under the three mutation models (IAM, SMM, and TPM: 95% SMM, variance=10) and with a 1000 simulation iterations. As loci deviating from the HWE can potentially affect bottleneck signals [START_REF] Luikart | Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data[END_REF], those with evidence of null alleles were not included for the analysis (DAC1-35, DAC5-70).

7.4 Results:

Quality assurance, locus characteristics and conformity to expectations:

The genotyping error rate was low with 98.4% of alleles identical in both amplifications of the duplicated sample, and most of the errors were at two loci: DAC1-35 (92% accuracy) and DAC5-70 (96% accuracy).

The number of alleles per locus ranged between 8 and 56, and the observed heterozygosity per locus between 0.089 and 0.946. The mean observed heterozygosity across loci within samples was between 0.666 and 0.728 (Table 6. from the rest of the North Sea. The InC07-RwB07 boundary was also backed by the highest bootstrap support (76.6%). Interestingly, no locus revealed the InC07-RwB07 edge as most important, which was the case for the InC07-LyB07 edge and the boundaries around NeD07 and OfF07. However, when the second most important barrier in each locus was included, the InC07-RwB07 became the most dominant.

In (2005( -2006( , 2005( -2007( , 2005( -2008( , 2006( -2007( , 2006( -2008( , 2007( -2008 (Section B) (Section B). r = correlation values ; p = significance assessed by comparing the actual r with rscores obtained by randomizing rows and colums of the second matrix.

The temporal analysis in GENELAND suggested six clusters consistently with a minimum probability of 0.7 and a maximum of 0.98, even when populations were ordered randomly (data not shown). The posterior probability maps (Figure 7.10) suggested temporal stability for most locations in the Irish Sea and English Channel (samples for all years of a location fell within the same cluster). Cluster 1 contained those samples from Atlantic (NoI06 and WoI06).

The North Sea was mainly placed within Cluster 2, together with RyE and LyB samples from 2006 onwards. Some influence of the Cluster 2 was also evident within the Irish Sea. H eq for any sample. Such an apparently paradoxical pattern becomes sensible when the power of the analysis is examined. As reported by [START_REF] Cornuet | Description and power analysis of two test for detecting recent population bottlenecks from allele frequency data[END_REF], the power of detecting population fluctuations diminishes faster with time since bottleneck/expansion for highly diverse loci (H E < 0.8; detectable for 0.1x2N e generations) than for loci with average H E (0.3 < H E < 0.8; detectable for 0.25x2N e generations). All loci which complied with the expected H eq had H O > 0.9. The volatility of demographic change signals in highly diverse loci is explained by [START_REF] Cornuet | Description and power analysis of two test for detecting recent population bottlenecks from allele frequency data[END_REF] by their higher mutation rate, and thus a quicker recovery of H eq . In the case of dab, such property implies that the allelic diversity has reached equilibrium with heterozygosity in highly diverse loci but not the rest of the genome. Such a recovery would be impossible from a very recent expansion signal such as that created by the current increase in dab numbers [START_REF] Kaiser | Opportunistic feeding by dabs within areas of trawl disturbance: possible implications for increased survival[END_REF], thus the alternative explanation, recent colonisation of the Irish Sea and North Sea, will be explored. D'amato ( 2006) employed BOTTLENECK to evaluate past demographic changes in long-tailed hake, Macruronus magellanicus, and also found significant heterozygosity deficit with compared to H eq , which was linked to population expansion as well. In agreement with the dab results, the most diverse microsatellite loci used by D'amato had reduced signals of population expansion.

The population expansion signal found here with two different methods, allele distribution (k test) and heterozygosity (BOTTLENECK), is consistent with the recent re-inundation of the North and Irish Seas 10,000 and 8,000 years ago [START_REF] Behre | A new Holocene sea-level curve for the southern North Sea[END_REF] and subsequent colonisation by its current biota [START_REF] Maggs | Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa[END_REF]. If a dab generation time of two years for the males and three years for females is assumed [START_REF] Bakhsh | Population studies of the flatfish Limanda limanda (L.) in Anglesey waters[END_REF][START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF], dab must have expanded into the North Sea and Irish Sea about three or four thousand generations ago, which is similar to the number of human generations estimated (4800) since the population expansion detected (60,000 to 100,000 years ago) by k and g tests in African human populations [START_REF] Reich | Statistical properties of two tests that use multilocus data sets to detect population expansions[END_REF]. At the height of the last glacial maximum, dab census size must have been much smaller than today as suitable habitat for a shallow demersal species such as dab, would have been limited to the narrow Atlantic coastal shelf off France, Spain, and Morocco (Figure 7.12;Figure 7.13). As the ice sheet retreated, the large shallow expanses of continental shelf around the British Isles must have represented a formidable habitat expansion for dab, as has been shown for many sub-boreal marine organisms [START_REF] Pogson | Genetic population structure and gene flow in the Atlantic Cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci[END_REF][START_REF] Borsa | Genetic structure of flounders Platichthys flesus and P. stellatus at different geographic scales[END_REF][START_REF] Hoarau | Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data[END_REF][START_REF] Gysels | Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea[END_REF][START_REF] Chevolot | Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae)[END_REF][START_REF] Pampoulie | Recolonization history and large-scale dispersal in the open sea: the case study of the North Atlantic cod, Gadus morhua L[END_REF].

to genetic differentiation Θ' WC /(1-Θ' WC ) [START_REF] Rousset | Genetic differentiation and estimation of gene flow from F-Statistics under isolation by distance[END_REF] of the same samples and tested with Mantel tests in IBD [START_REF] Bohonak | IBD (Isolation by Distance): a program for analyses of isolation by distance[END_REF]. Three levels were considered: first the whole data set (All) to assess general trends; then, single years (2005)(2006)(2007)(2008) to check for changes among years; and finally, all samples from all years within the same basin (North Sea and Irish Sea) to assess if within-basin spatial-temporal changes in distances were similar. To avoid false significant correlations between genetic and disease distances, the English Channel samples were not included in either basin for the latter test. The significance of correlations was assessed with 100,000 randomisations of rows and columns of the Euclidean distance matrix.

Sharp changes in disease profiles and genetic composition were evaluated in BARRIER v2.2 (Manni et al., 2004;Manni & Guérard, 2004). The programme generates cells around the sampling locations which have edges in common with other sampling locations, thus a network of connectivity between the geo-referenced locations is created. The coordinates of the sampling location were drawn and connection networks modified with empty cells (virtual points) to represent Great Britain eliminating the common edges between Irish Sea and North Sea, and between OfF and RyE, and LiV and LyB. Edges between StB and RwB and InC, and between Amb and NeD were purposely allowed. The two different distances, Θ' WC and Euclidean distance of biomarkers, were plotted onto the map and compared against each other on a year by year basis.

Relatedness between diseased and non-diseased fish:

To test the hypothesis that the presence of grossly visible liver nodules are family specific the software STORM v1.1 [START_REF] Frasier | STORM: software for testing hypothesis of relatedness and mating patterns[END_REF], which calculates relatedness (R) between individuals at several levels, was employed. Diseased groups were created with individuals ailing from liver nodules and average within-group relatedness (R G ) calculated. Only those locations with more than one diseased individual were considered for analysis. For the three samples with "Detailed" disease data, groups were also created for disease categories 3 to 5 (Cat3: Foci of cellular alteration; Cat4: Adenomas; Cat5: Carcinomas). In the latter, some individuals suffered from two or more categories and these were classified into whichever group was most severe (i.e. if an individual had both foci of cellular alteration and carcinomas, it was placed within Cat5).

The significance of the analysis was assessed by comparing the obtained results (R G ) with those produced by randomisations (R G ') in which a group of the same size as the diseased group was created by randomly sampling from all individuals from the location studied; therefore effectively evaluating the chance of obtaining the observed R G values among a prevalence at NeD over time as depicted by the hyperpigmentation bubble plots (Figure 8.5).

The StB07 sample stands out from the rest of Irish Sea (North) samples, which seems driven by low prevalence of skin ulceration and frequent liver nodules found in that location in 2007 (Figure 8.5). Of particular interest, are the Irish Sea (South) cluster composed of those samples collected in Cardigan Bay, all samples cluster together except for InC08 which instead seems more similar to English Channel or Irish Sea (North) samples. Also noticeable is Off06 which clusters with the Irish Sea South samples rather than the rest of North Sea (Inshore) samples. 

Relatedness between diseased and non-diseased individuals:

Only 10 samples fulfilled the condition of having more than one individual with liver nodules allowing the assessment of relatedness between diseased fish (Table 8. Grouping individuals according to "Detailed" histopathology disease data (Cat3 to Cat5; Table 8.5) did not reveal any significant relationship patterns in NeD07 and Liv07. Nevertheless, non-diseased fish in Rye07 were significantly more related to each other (r= 0.013; p(R G '>R G )<0.05) than fish with foci of cellular alteration (r= -0.024; p(R G '<R G )<0.1). , 1990;[START_REF] Laslett | Concentrations of dissolved and suspended particulate Cd, Cu, Mn, Ni, Pb and Zn in surface waters around the coasts of England and Wales and in Adjacent Seas[END_REF], and sourced from the Mersey Estuary [START_REF] Camacho-Ibar | Total PCBs in Liverpool Bay Sediments[END_REF]. Since then, considerable efforts have been made to improve the overall health of the estuary and an outstanding recovery of the Mersey has been reported [START_REF] Jones | Water quality and fisheries in the Mersey estuary, England: a historical perspective[END_REF]. Mirroring the trend in improving ecosystem health in the Mersey, dab from Liverpool Bay have been showing a reduction in mean EROD activity (CEFAS, 2003c;[START_REF] Kirby | The use of Ethoxyresorufin-O-deethylase (EROD) in fish as a biological effects monitoring tool[END_REF], lower levels of mercury [START_REF] Franklin | The concentration of mercury in fish taken from Liverpool Bay, UK in 2002[END_REF], and were no longer the site with the highest prevalence in liver nodules in 2003 [START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF]. In the latest published assessments, disease records of dab samples from LiV are comparable to those seen in other areas of the Irish Sea [START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF][START_REF] Stentiford | Site-specific disease profiles in fish and their use in environmental monitoring[END_REF] [START_REF] Feist | Fish pathology and disease biomarkers, in Monitoring of the quality of the marine environment, 2002-2003[END_REF], while there were 13 cases out of 419 in 2006 [START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF], indicating potential differences in the proportion of migrants exhibiting liver nodules.

Group

The problems with interpreting the role of migratory movements is the distribution of diseased fish (CEFAS, 2003b) are exemplified by those individuals displaying liver nodules in StB. No instances were recorded in 2005 or 2006 in the genotyped fish, and low incidence is recorded for those years (2.5%) [START_REF] Feist | Fish health status in the North Sea and Irish Sea 2006, in Monitoring of the quality of the marine environment, 2005-2006[END_REF]. In 2007, however, 18.8% of fish genotyped (48) were recorded with liver nodules. The extreme occurrence of liver nodules becomes even more interesting as most individuals were assigned to LiV and were close to being significantly more related to each other than random draws of the sample overall (R G =0.024; p (R G '>R G ) =0.070). Together, both tests strongly suggest that these fish have recently migrated from elsewhere, probably LiV. Again those individuals collected in 2008 were also assigned elsewhere, reinforcing the notion that the incidence of liver nodules in not something inherent to the local population in StB.

Overall the north of the Irish Sea seems like a highly dynamic area in term of dab movements;

though some trends are apparent over four years: Liverpool and Cardigan Bays may be likely sources of diseased fish for other areas where the incidence of disease is lower (Red Wharf Bay and St.Bees Point), but such patterns will only be detected if genetic data, collected simultaneously with biomonitoring information, are available.

Heterozygosity and biomarkers:

There was no consistent evidence for any negative effects of homozygosity in any of the biomarkers considered. However, the results are not unexpected and are in agreement with other studies evaluating pollution impacts using microsatellites [START_REF] Berckmoes | Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF]. When analysing functional molecular markers (such as enzymes, coding single nucleotide polymorphism, and gene-linked microsatellites) heterozygosity may represent a real advantage if the polymorphism at the locus is functionally diverse. On the other hand, when analysing neutral markers (such as truly neutral allozymes and microsatellites) the relationship between microsatellite heterozygosity and individual performance (heterozygosity at coding genes) is produced by genome wide linkage disequilibrium, such that high levels of homozygosity at the marker reflect equal levels of homozygosity at coding genes. However, this relationship is only expected to occur when inbreeding is evident [START_REF] David | heterozygosity-fitness correlations: new perspectives on old problems[END_REF][START_REF] Tsitrone | Heterosis, marker mutational processes and population inbreeding history[END_REF]. Although inbreeding has been reported in plaice, Pleuronectes platessa [START_REF] Hoarau | Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.)[END_REF], a close relative of dab, the genetic data obtained from dab
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were not suggestive of inbreeding in any case (all samples did not depart significantly from Hardy-Weinberg equilibrium). Even if the number of fish contributing to the next generation (effective population size) is orders of magnitude smaller than census size [START_REF] Hauser | Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus)[END_REF], the abundance of dab [START_REF] Rijnsdorp | Population biology of dab Limanda limanda in the southeastern North Sea[END_REF] would make the possibility of inbreeding (unless behaviourally driven) remote. Moreover, several of the loci employed were highly diverse (Chapter 6), and consequently, levels of heterozygosity were also correspondingly high which might confound potential signals [START_REF] David | heterozygosity-fitness correlations: new perspectives on old problems[END_REF]. Perhaps a single locus heterozygosity analysis, to take into account differences in allele diversity, might provide a better resolution between individual locus genetic diversity and biomarkers of pollution exposure [START_REF] Goudet | The correlation between inbreeding and fitness: does allele size matter?[END_REF]. Additionally, although the inbreeding measure incorporating molecular distance, d 2 , [START_REF] Coulson | Microsatellites reveal heterosis in red deer[END_REF], has been refuted as relevant in most hypothetical cases [START_REF] Tsitrone | Heterosis, marker mutational processes and population inbreeding history[END_REF], [START_REF] Goudet | The correlation between inbreeding and fitness: does allele size matter?[END_REF] suggest that perhaps in what they consider very rare situations where recent admixture of large subpopulations had occurred, the differential fitness of the outcrossed and inbred individuals might be detectable with d 2 . Therefore future analysis should be aimed at exploring the relationship between biomarkers of pollution (such as liver nodules) and single locus heterozygosity, with and without molecular distance, of those samples with evidence of recent admixture and population changes (LyB and InC).

Overall, although allozymes are better suited for studies of heterozygosity-fitness-correlations in polluted environments [START_REF] Larno | Responses of chub (Leuciscus cephalus) populations to chemical stresss, assessed by genetic markers, DNA damage and cytochrome P4501A Induction[END_REF][START_REF] Marchand | Responses of European flounder Platichthys flesus populations to contamination in different estuaries along the Atlantic coast of France[END_REF][START_REF] Peles | Population genetic structure of earthworm (Lumbricus rubellus) in soils contaminated by heavy metals[END_REF][START_REF] Maes | The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability[END_REF], their lower polymorphism limits their value as discriminators of population of origin, a limitation that outweighs their application to biomonitoring programmes. Therefore, if a choice between the markers has to be made, microsatellites emerge as a more appropriate population genetic marker for biomonitoring programmes.

Familial propensity to tumour development:

There was no increased relatedness among fish suffering liver nodules, providing no evidence for family effects on the incidence of grossly visible liver nodules. The only case with positive relatedness among dab with liver nodules was in StB07, but in this case most fish were allocated to Liv07, thus indicating the increased relatedness was probably an effect of the immigration rather than a single local "family" in StB07 being particularly prone to liver nodules. On the contrary, an interesting observation was that most groups composed of individuals afflicted with liver nodules were less related to each other than their healthy counterparts. The pattern was significant in one case (InC07), and nearly significant in two assignment test, giving more confidence to the results obtained. Therefore, it becomes paramount to develop cheaper methods of individual genotyping.

Particularly in dab, genotyping of samples covering the whole species range would increase markedly the power of assignment exercises and would help explain better the diseasegenetic relationships between locations and years. Finally, genotyping of archived dab tissues of Cardigan Bay samples prior to the widespread emergence of carcinogenic processes would help interpret the temporal trends of increased disease incidence in the late 1990's.

Chapter 9: General Discussion

Aims and themes of the thesis:

Chemical compounds derived from human activities can have conspicuous and significant effects on marine organisms. Such degradation restricts the resources and benefits man draws from the marine environment. It is in mankind's interest to protect and preserve the natural resources of such an essential feature of planet. It therefore becomes important to develop strategies that can monitor marine environmental health using reliable and sensitive indicators, as well as applying appropriate tools to minimise detrimental consequences and facilitate recovery.

Below, I provide a critique of the design of the study described in this thesis, with emphasis on constraints imposed by the available biological system and markers employed. This is followed by comments on both, biomonitoring programmes, and the use of molecular markers to detect differentiation and selection. Finally, some potential ideas for future work will be proposed.

Understanding the effects of pollutants in particular environments is fundamental to generating the policy and regulations that aim to manage and control pollutants. Controlled laboratory experiments are well suited to understanding the effect of one chemical compound in a particular set of conditions, but they cannot emulate the complexities of the reality experienced by wild organisms. Therefore, studying directly the effects of man's largest experiment, the modification of Earth's environment, is vital for the continued existence of humankind. Biomonitoring programmes aim to evaluate the status of natural ecosystems, which combined with known anthropogenic disturbance, help understand the complex interaction between wildlife and human activities. compared to Θ' WC to detect structure at high levels of heterozygosity may amplify the differences between both marker types. [START_REF] Payseur | A genomewide comparison of population structure at STRPs and nearby SNPs in humans[END_REF] very recently published an excellent comparison of SNPs and microsatellites: Over 700 highly informative microsatellites (i.e. with alleles non-randomly distributed across populations) were analysed together with all SNPs located within 10,000 bases from each microsatellite. Therefore, microsatellites and SNPs were linked and should have gone through the same demographic and recombination events, that is, they should carry the same information regarding population structure. If so, the actual importance of mutational processes in our ability to of detect structure could be measured directly. Not surprisingly, differentiation measured as Θ WC was higher for SNPs than for microsatellites, but when measures corrected for heterozygosity (G' ST ) and the "informativeness for assignment" (I n ) statistic [START_REF] Rosenberg | Informativeness of genetic markers for inference of ancestry[END_REF] were employed, microsatellites provided much higher power for detecting population structure than neighbouring SNPs which had undergone the same demographic and recombination processes. Power to detect structure was positively correlated with the level of heterozygosity, as in the case of dab. Multi-SNP, haplotypes where several SNPs are inherited together, were suggested as having the potential to be as informative as microsatellites in human populations, though they concluded that in more recently diverged populations microsatellites would still outperform even multi-SNP haplotypes as markers of population structure.

The variance in mutation rates across microsatellite loci, which is so often considered a negative characteristic, might indeed be a source of rich phylogenetic information.

Microsatellites should be regarded as single evolutionary entities, and averaging among them restricts the understanding of the distribution of allelic states. Different microsatellites have probably emerged at different evolutionary points in time, as some are polymorphic among widely divergent species [START_REF] Primmer | A wide-range survey of cross-species microsatellite amplification in birds[END_REF], and thus will carry signatures of different past events. Furthermore, different repeat motifs mutate at different rates, and thus dinucleotides are expected to provide enhanced resolution in very recently diverged clades [START_REF] Rosenberg | Informativeness of genetic markers for inference of ancestry[END_REF], while trinucleotides and tetranucleotides have similar detection power as SNPs [START_REF] Payseur | A genomewide comparison of population structure at STRPs and nearby SNPs in humans[END_REF].

Overall, dinucleotide microsatellite markers are the most effective markers to detect population structure at low levels of differentiation, though traditional estimates of differentiation (Θ WC ) should not be employed to evaluate such differentiation.

Sampling strategy in marine organisms:

The emergence of geo-referenced individual-based analysis packages such as BARRIER (Manni & Guérard, 2004), GENELAND (Guillot et al., 2005), BAPS2 [START_REF] Corander | BAPS 2: enhanced possibilities for the analysis of genetic population structure[END_REF], and ADEGENET [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF] among others, is transforming the way studies in population genetics are designed and analysed [START_REF] Manel | Lanscape genetics: combining landscape ecology and populations genetics[END_REF]Hansen & Hemmer-Hansen, 2007;[START_REF] Selkoe | Seascape genetics and the spatial ecology of marine populations[END_REF]. In the case of dab, these programmes proved invaluable for understanding the spatial distribution, connectivity and temporal aspects of populations.

Although sample data can be analysed, these packages have mathematical algorithms designed with individuals as the core unit of analysis, and can extract patterns of cohesiveness and differentiation based on such individual data. Thereby, it is suggested that sampling schemes should reflect these developments in statistical analysis. Indeed, collecting individuals across long stretches of the sea might provide very detailed information of the exact location of barriers to gene flow. Such sampling would enable researchers to delineate population boundaries of populations with greater accuracy, with consequent advantages for studies investigating selection: the actual geographical extent of a gene pool can be delineated in relation to a coherent and collective estimate of key environmental variation. In the case of dab, such a sampling strategy, which is inherent in the biomonitoring protocol, might have facilitated the identification of the putative location of the genetic barrier between the North Sea and Irish Sea populations. Furthermore, the drive to have large sample sizes was at the cost of some biomarker information in some samples (larger samples were screened for external diseases and liver nodules than for full biomarkers).

However, within-sample information such as HWE, linkage disequilibrium, and allele frequencies was of paramount importance to detect scoring errors because these produced deviations from those statistics. Smaller sample sizes would not allow checking the genotypic data as thoroughly and in the case of low differentiation systems: slight errors can have important impacts on estimates of differentiation, migration and other population parameters [START_REF] Dewoody | Mitigating scoring errors in microsatellite data from wild populations[END_REF]. Furthermore, some biological systems are structured in such ways (i.e. isolation by distance) where there might be problems associated with estimating the number of populations from random individual sampling [START_REF] Schwartz | Why sampling scheme matters: the effect of sampling scheme on landscape genetic results[END_REF].

On the whole, the new geo-referenced programmes offer important advances on analysis of genetic data and improve understanding of patterns of connectivity and barriers to gene flow, but aiming for smaller sample sizes could potentially restrict the power to detect genotyping

Appendix:

Pairwise differentiation (Θ WC ) between samples subdivided by sexes (females and males) and years (2005,2006,2007,2008). The lines within the squares represent the division between basins.