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Résumé : Le changement climatique et d'autres
processus  induits  par  l'homme  modifient  les
écosystèmes, à l'échelle mondiale, à un rythme
toujours  plus  rapide.  Les  communautés
microbiennes jouent  un rôle important dans le
fonctionnement des écosystèmes, en maintenant
leur  diversité  et  leurs  services.  Ces
communautés sont façonnées par les différents
effets  environnementaux  abiotiques  auxquels
elles  sont  soumises  et  par  les  interactions
biotiques  entre  tous  les  membres  de  la
communauté.  Le projet  ANR Next-Generation
Biomonitoring (NGB) a proposé de reconstruire
des  réseaux d'interactions  à  partir  de  mesures
d'abondance obtenues par séquençage de l'ADN
environnemental  (eDNA)  et  d'utiliser  ces
réseaux pour suivre l'évolution des écosystèmes.
Dans cette thèse, menée dans le cadre du projet
NGB,  j'évalue  le  potentiel  de  deux  outils  de
reconstruction de réseaux statistiques existants,
SparCC et SPIEC-EASI, pour reconstruire des
réseaux  microbiens  afin  d'évaluer  le
changement des écosystèmes. Les communautés
microbiennes  des  feuilles  de  vigne  ont  été
utilisées  pour  différencier  deux  pratiques
agricoles  différentes,  en  identifiant  les
métriques de réseau appropriées pour capturer le
changement d'écosystème. Les expériences ont
montré que, bien qu'il soit difficile d'obtenir des
réseaux  répliqués,  même  dans  les  mêmes
conditions  environnementales,  il  est  toujours
possible  de  différencier  les  réseaux  de
différentes  pratiques  agricoles  en  utilisant
certaines  métriques  de  réseau.  Bien  que  les
outils de reconstruction de réseaux basés sur des
statistiques  puissent  obtenir  des  réseaux
d'associations  entre  micro-organismes,  avec
précision,  ces  associations  statistiques  ne  sont
pas  des  indicateurs  directs  des  processus
écologiques d'interaction sous-jacents. 

Pour  résoudre  ce  problème,  j'ai  développé  un
nouvel outil de reconstruction de réseau appelé
Interaction  Inference  using  Explainable
Machine  Learning  (InfIntE),  basé  sur
Explainable Machine Learning (EML). L'EML
est une branche de l'apprentissage automatique
qui  utilise  les  connaissances  préalables  d'un
domaine  scientifique,  tel  que  l'écologie,  pour
déclarer  des  énoncés  logiques  de  concepts
(hypothèses)  afin  de  réaliser  des  inférences
compréhensibles par l'homme. InfIntE utilise les
règles  d'interaction  écologiques  ainsi  que  les
informations  sur  l'abondance  obtenues  par  le
séquençage  de  l'eDNA  pour  reconstruire  des
réseaux par inférence logique. Contrairement à
la  reconstruction  de  réseaux  basée  sur  des
méthodes  statistiques,  l'utilisation  de  règles
d'interaction permet de classer directement  les
interactions  déduites  selon  leur  type  (par
exemple,  mutualisme,  compétition),  ce  qui
permet d'obtenir  des réseaux d'interaction plus
informatifs  et  objectifs.  La  performance
d'InfIntE a été évaluée en utilisant des données
générées par ordinateur ainsi que des ensembles
de  données  obtenus  par  échantillonnage
d'eDNA du microbiome des feuilles de vigne.
Mes résultats montrent qu'InfIntE peut détecter
des  réseaux  d'interaction  avec  une  précision
similaire  à  celle  des  outils  statistiques  testés,
SparCC  et  SPIEC-EASI,  avec  l'avantage
significatif de la classification directe du type de
chaque interaction. 
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Abstract  : Climate  change  and other  human-
induced  processes  are  modifying  ecosystems,
globally,  at  an ever  increasing rate.  Microbial
communities  play  an  important  role  in  the
functioning  ecosystems,  maintaining  their
diversity  and services.  These communities  are
shaped  by  the  different  abiotic  environmental
effects  to  which  they  are  subjected  and  the
biotic  interactions  between  all  community
members.  The  ANR  Next-Generation
Biomonitoring  (NGB)  project  proposed  to
reconstruct  interaction  networks  from
abundance  measures  obtained  sequencing
environmental  DNA (eDNA) and to use these
networks to monitor ecosystem change. In this
thesis, conducted as part of the NGB project, I
evaluate the potential of two existing statistical
network  reconstruction  tools,  SparCC  and
SPIEC-EASI, to reconstruct microbial networks
in  order  to  evaluate  ecosystem  change.
Microbial  communities  from grapevine  leaves
were used to differentiate between two different
agricultural  practices,  identifying  the
appropriate  network  metrics  to  capture
ecosystem  change.  The  experiments  showed
that  although it  is  difficult  to  obtain  replicate
networks,  even  from  the  same  environmental
conditions,  it  is  still  possible  to  differentiate
networks  from  different  agricultural  practices
using  some  network  metrics.  Although
statistically-based network reconstruction tools
can  obtain  networks  of  associations  between
microorganisms, with accuracy, these statistical
associations  are  not  direct  indicators  of  the
underlying ecological processes of interaction. 

To  address  this  issue,  I  developed  a  new
network  reconstruction  tool  called  Interaction
Inference using Explainable Machine Learning
(InfIntE),  based  upon  Explainable  Machine
Learning (EML). EML is a branch of machine
learning which uses the prior knowledge from a
scientific domain,  such as Ecology,  to declare
logical  statements  of  concept  (hypotheses)  to
carry  out  human-understandable  inference.
InfIntE  uses  ecological  rules  of  interaction
together  with  the  abundance  information
obtained from sequencing eDNA to reconstruct
networks  by  logical  inference.  In  contrast  to
statistically-based  network  reconstruction,  the
use  of  interaction  rules  allows  direct
classification  the  inferred  interactions  to  their
type  (e.g.  mutualism,  competition),  obtaining
more  informative  and  objective  interaction
networks.  The  performance  of  InfIntE  was
evaluated using computer-generated data as well
as  datasets  obtained  by  eDNA  sampling  of
grapevine  leaf  microbiome.  My  results  show
that InfIntE can detect interaction networks with
similar accuracy to the tested statistically-based
tools,  SparCC  and  SPIEC-EASI,  with  the
significant benefit of direct classification of the
type of each interaction. 
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1 Ecosystem monitoring
All happy families are all alike; each unhappy family is unhappy in its own way.
This is the opening statement of Leo Tolstoy’s novel, Anna Karenina. While he
refers to the protagonist’s family, this statement could be extended by analogy to
many other subjects which operate through the interactions of their constituent
members. This includes the tiny mechanism of a watch, where the correct counting
of time comes only from the perfect coordination of its parts, with each faulty watch
having its own particular problems. The Anna Karenina principle can also apply
to our world as a whole, where the different ecosystems interact to support life.
And our world is changing... Fast. Climate change has known effects worldwide
and others that we expect but have yet to manifest (Araújo et al. 2005; Bohan
et al. 2022). Despite the efforts of many different institutions and international
agreements like Paris Accord of 2015 we are facing continued biodiversity and
ecosystem loss (Bellard et al. 2012) that could lead to our planet not being capable
of supporting life. Monitoring how human beings are changing the environment
can help us to understand why changes have occurred and develop management
strategies to mitigate or prevent further detrimental change from happening. Here,
invoking the Anna Karenina principle demands an holistic view of monitoring
(Moore 2001), with partial approaches no longer being an option. Each ecosystem
needs to be monitored systematically, and our belief is that the monitoring needs
to be done not by focusing on particular bio-indicators or on charismatic species,
but rather as a complete, whole picture.

This thesis was developed in the context of the French Agence Nationale de la
Recherche (ANR) Next-Generation Global Biomonitoring (NGB) project. NGB
developed around the idea of obtaining, systematically, near complete information
about the community structure of an ecosystem in order to monitor ecosystem
change (Bohan et al. 2017). To date, biomonitoring surveys have largely been lim-
ited to classical physical or ecological sampling approaches, requiring considerable
human effort and time costs, and being limited to life forms that could be directly
observed. Next generation sequencing (NGS) of environmental DNA (eDNA) has
opened up new opportunities to systematically collect information about most life-
forms present at reduced levels of human labor (Cordier et al. 2021). The NGB
project sampled eDNA from soil, water and air biomes. The source of the eDNA
genetic material present in these environmental samples is either whole organisms
(such as microbes) or cells excreted by whole organisms or from tissues (Thom-
sen & Willerslev 2015). Thus, the eDNA sequencing produced a list of sequences
present that corresponded to the ’great majority’ of the organisms - the whole
community - present in an ecosystem. Where the sampling and sequencing pro-
cess is carried out systematically, it is therefore possible to obtain a near complete
overview of the taxa (species, genus, etc.) present in an ecosystem in order to eval-
uate change in the ecosystem (Makiola et al. 2020). Following the Anna Karenina
analogy, we can now begin to get to know the members of the family and their
interactions, thanks to eDNA.

Knowing all the taxa present in an ecosystem is a first step to global scale
biomonitoring (Cordier et al. 2021). However, as previously noted, ecosystems,
are also shaped by the interactions between their constituents (McCauley et al.
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2012). We define an interaction as any action or influence of one taxa on another
that changes the abundance of one or both taxa, thereby shaping the communities
inhabiting an ecosystem (Collins 2022). Given that all the members of a com-
munity share the same space, interactions between the constituent taxa cannot
be understood out of context. Different interactions have different consequences
for a focal taxa and it is important to know all the interactions between com-
munity members to predict community-scale effects. Indeed it is the mixture of
all these different interactions, acting between all taxa in the community simulta-
neously, which determines the species richness, diversity patterns, functions and
dynamics of the microbial community (see Ohlmann et al. 2018). Interaction net-
works have been used to visualize the interactions in an ecosystem. These show
all the members of the communities as nodes of the network, with the different
interactions presented as edges joining the nodes. Networks have been used to
understand plant-pollinator relations (Lopezaraiza-Mikel et al. 2007), fish commu-
nities (Ushio et al. 2018) and microorganisms (Nicolaisen et al. 2014). The NGB
project proposed to automatically sample, sequence and infer interaction networks
to monitor ecosystems, and thereby characterise system-level responses to environ-
mental change (Blanchard 2015), with the goal of determining the key drivers of
ecosystem change.

2 Microbial communities

2.1 The study of microorganisms

Microorganisms are ubiquitous, being present in all ecosystems and participat-
ing in a massive number of ecological processes (Handelsman 2007). By biomass,
microbes are the most abundant taxa globally (Bar-On et al. 2018). Microorgan-
isms have highly flexible (adaptable) lifestyles, allowing them to live in almost
any environment, being found in extreme environments like the deep sea (Franco
et al. 2020), high temperature zones (Merkel et al. 2019) and hot springs, as three
examples. Microbes also inhabit other living beings, from plants to humans, para-
sitising them or creating mutually-dependent relationships (Bang et al. 2018). This
makes them key constituents of any ecosystem monitoring approach. The common
characteristic of these life forms, their microscopic size, limits their perception by
humans and complicates approaches to their study. In 1664, Robert Hooke was the
first person to observe the fruiting structures of moulds, using a primitive micro-
scope (Hooke 1664). This was the first recorded observation of a microbe, and the
genesis of the science of microbiology. In 1677, Antonie van Leeuwenhoek wrote
the ‘letter on the protozoa’, where he gave the first detailed description of ’animal-
cules’ - protists and bacteria - living in different environments (Lane 2015). This
was possible thanks to the improved microscope he designed. However, for the fol-
lowing centuries, the diversity and functions microorgansims remained a mystery.
It was not until the end of the nineteenth century, thanks to Louis Pasteur and
his Théorie des Germes (Pasteur et al. 1878), that the first solid theories about
microbial populations and functions were proposed, opening the door on modern
microbiology. Joseph Lister proposed the sterilization of surgery equipment (Pitt
& Aubin 2012) and Robert Koch described the causal agents of cholera and tuber-
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culosis (Koch 1884). In the early twentieth century, Alexander Fleming described
the first antibiotic compound (Fleming 1929), and thereby the first microbial in-
teraction. Most of this early microbiological work was based on microscopy and
culture studies, thanks to the not well-known contribution of Fanny Hesse (Mor-
timer 2001). The difficulties of directly observing microorganisms in their natural
habitats greatly hindered the study of microbial communities. Microbial cultures,
as artificial habitats and substrates, are not always an option since there is a great
proportion of microorganisms that are impossible to culture in a controlled me-
dia, making their study with conventional culture techniques impossible (Stewart
2012). The rapidity of microbial processes also did not facilitate understanding of
their dynamics. Improved culturomics and the invention of electron microscopy
boosted the progress of modern microbiology, but the greatest impetus to micro-
biology has come with the advent of molecular techniques and, in particular, DNA
sequencing. One of the goals of the NGB project is, precisely, to: monitor micro-
bial communities from diverse ecosystems using NGS; and, identify appropriate
pipelines to sample, sequence and infer interaction microbial networks without the
limitations of isolation and culturing of different microorganisms.

2.2 Composition of microbial communities

The microorganisms comprise a large number of taxonomic groups. It includes
all bacteria and archaea taxa as well as many eukaryotic fungi and all protists
(Hug et al. 2016). This brings a great degree of complexity to microbial studies,
particularly when this taxonomic diversity is mixed together in a microbial com-
munities. Communities can be defined as multi-species assemblages within which
organisms live and interact, in a contiguous environment (Konopka 2009). For
microbial communities, the dimensions of the continuous environment can vary
greatly, from meters, in case of some fungal structures, to micrometers. The dif-
ferent microbial taxa also vary in abundance within in a community. A few taxa
may make up the majority of the communities’ individuals while the a large part of
the taxanomic richness of the community will have a reduced abundance (Fuhrman
2009). This large taxonomic richness is reflected in the great genetic variability of
microbial communities, and high rates of mutation facilitated by the rapid repro-
duction of many microorganisms. Moreover, mechanism of horizontal transfer of
nucleic acids allow different taxa to exchange or share genetic material, even where
they have a different taxonomy (Gogarten & Townsend 2005; Saak et al. 2020).

2.3 Microbial services

Microorganisms provide ecological functions or services to all ecosystems, and
take part in most of the biological processes that sustain life (Mace et al. 2012).
This makes microbial communities an important subject of study. The ecosystem
services provided by microbes can be split in three main groups following the
Millennium Ecosystem Assessment classes (World Health Organization 2005; Saccá
et al. 2017):

• Regulating the ecosystems by controlling the development of pathogens
and reducing the levels of pollutants;
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• Supporting other biological processes by stimulating the growth of other
organisms or taking part in the nutrient cycle;

• Provisioning ecosystems with different compounds, from nutrients to sec-
ondary metabolites like antibiotics.

Microbial services also play a major role in sustaining human societies, start-
ing with the human body itself. Humans, and all other macrobial organisms, live
in constant symbiosis with a large spectrum of microorgansims, forming a com-
plex that has been called the holobiont (Margulis et al. 1991). This complex,
and the interdependencies of the host and microbiota, is conserved along time
and even inherited, reaching the point where the holobiont itself has been consid-
ered a unit of evolution (Skillings 2016). Microorganism process support nutrient
uptake (digestion) and regulate infections (Alemao et al. 2021; Gao et al. 2014).
Microorganism may also have an important role in regulating many metabolic
processes (Nieuwdorp et al. 2014). As a consequence, knowledge of the microbial
communities inhabiting a host can lead to a better understanding of health and
improve medical treatments (Costello et al. 2012). Microorganisms are also ba-
sic for the production of multiple goods, including agricultural products. Plants
release organic compounds into the soil, enhancing the development of microbial
communities, and, in exchange, these microbial communities deliver multiple ser-
vices to the plant (Riva et al. 2019). Microorganisms provide inorganic nutrients
necessary for plant development, by fixing nitrogen (Xiong et al. 2021; Moreau
et al. 2019) or decomposing organic matter (Kuzyakov & Cheng 2001; Han et al.
2020). Plant development, whether in favorable conditions or under abiotic stress,
can not be understood without consideration of the microbial communities living
in the rhizosphere (Kumar & Verma 2018). Agricultural and human health are just
two of the most relevant examples of the direct impact of microbial communities
on human societies, but research into microbial community effects now extends
to aquatic ecosystems, energy production and industrial processes(Stulberg et al.
2016). Knowledge of the dynamics of microbial communities and of drivers of
change (biotic interactions and abiotic factors) is key not only for ecosystem man-
agement but also for many fields in medicine and food production.

2.4 Microbial ecological interactions

An understanding of microbial interactions can help us to anticipate changes in
ecosystems and to make decisions to mitigate or adapt to change (Blanchard
2015). Ecological networks, encompassing all microbial taxa and their interac-
tions present, might be used as a system-wide indicator of ecosystem stability
(Bohan et al. 2017). Efficient monitoring would therefore require knowledge of the
diversity of interactions affecting the abundance of the microbial taxa, as well as
the services these taxa and their interactions might provide.

To detect microbial interactions, the first imperative is to define clearly and
explicitly what a microbial interaction is. As referred to in Section 1, an interac-
tion is any action or influence of one taxa on another that leads to a change in
abundance of one or both taxa. Intuitively, therefore, the first prerequisite for a
microbial interaction to happen is the co-occurrence of both interacting taxa in
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the same environment. However, co-occurrence is not equivalent to interaction.
We also require an action or influence. The action or influence that one microbial
may cause on others is highly diverse; potentially being as varied as the microbial
world itself. Some interactions are caused by direct contact of individuals, like
predation performed by protists (Leander 2020), while in most cases the action or
influence of microorganisms on each other is mediated by metabolites excreted into
the environment (Tshikantwa et al. 2018; Schmidt et al. 2015; Pierce & Dutton
2022). Microorganisms can directly kill other taxa in this manner, but also can
transmit information (Mencher et al. 2021) or even genetic material (Friesen et al.
2006). Monitoring requires us to focus on the interactions that shape the structure
of the ecosystem, modifying the abundance of different taxa. Thus, to monitor an
ecosystem, an interaction is considered to be any effect on the abundance of a mi-
croorganism caused by another (Faust & Raes 2012). This consideration leads to
a logical definition of an interaction that is not based on an interaction mechanism
followed by a causal action, but rather as the realised result of a mechanism and
action; an effect of abundance change.

Considering a given pair of interacting taxa, the possible interaction effects
between them can be classified as a function of an increase (↑), decrease (↓) or
no change (0) in their abundances. The different types of effect of abundance
change that can be produced by different interaction types are depicted in Table
I.1). Interactions can also involve more than two taxa, leading to more complex
combinations of effects on taxa abundances. For example, the building of some
biofilms can require the collaboration of more than two different taxa (Liu et al.
2016). This might means that interactions cannot be studied in isolation, pairwise,
but must be treated at higher orders to have a complete picture of the interactions
taking place in an ecosystem. Such biotic complexity is beyond the scope of this
thesis, and may even be beyond our computing power. Abiotic conditions, such
as temperature, humidity etc., can induce change in taxa that has the appearance
of interaction. Taxa that develop in same conditions, and respond similarly to
the abiotic conditions, can appear to have a mutualistic interaction. In the same
way, microbial taxa adapted to different abiotic conditions can seem to prey upon
or compete with one another (Derocles et al. 2018). To avoid interpreting spu-
rious correlations as interactions, it is therefore necessary to account for abiotic
conditions.

To produce a real interaction, we require that two taxa must co-occur and their
interaction must result in a realised effect on one or both of their abundances.
There is, however, a temporal delay from the moment where the interaction starts
to the time point where there is an effect on the abundance of the taxa. The tem-
poral scales of microbial interactions can be very variable. Effects on abundance
can sometimes be observed in fractions of a second or minutes, but, depending on
the interactions and ecosystems, the temporal scale can increase to days and even
months (Fuhrman et al. 2015). For example, it takes some time for an antagonistic
molecule excreted by one microorganism to contact another, produce holes in its
cell wall and then kill it. This amount of time may be considerably different to
the delay required to form a bio-film, that could increase the abundance of other
microorganisms. Interactions can also have contrasted dynamics over time. The
change in abundance of taxa involved in an interaction can stabilize even as the
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Table I.1: Interaction types as a function of the effect on the involved taxa.
Inspired by Derocles et al. 2018; Faust & Raes 2012.

Type of Inter-
action

Effect on
taxa A
abun-
dance

Effect on
taxa B
abun-
dance

Description

Amensalism 0 ↓ Taxa A causes a decrease on the
abundance of taxa B without suf-
fering any effect on the abun-
dance

Commensalism 0 ↑ Taxa B increases its abundance
thanks to the effect of Taxa A

Competition ↓ ↓ Both taxa abundance decreases
by the effect of the other. This
can be caused by direct com-
petition (directly harming the
other taxa) or exploitation com-
petition (they need the same re-
source an in consequence there
is less available)(Fredrickson &
Stephanopoulos 1981).

Mutualism ↑ ↑ The abundance of both taxa in-
creases by the effect of the other.

Neutralism 0 0 Both taxa co-occur but there is
no effect on their abundance, and
therefore, no interaction.

Parasitism or
Predation

↑ ↓ Taxa A develops at the expense
of taxa B.
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interactions continues (Gerber 2014). This is the case for exploitation competitive
interactions, for example (Figure I.1A). Here, the appearance of a new taxa starts
a competition for a resource, decreasing the abundance of the established taxa
to a point where the abundance of both taxa stabilize even as they continue to
interact. Interactions can also lead to linear or exponential increases or decreases
of the taxa involved. In the case of a decrease, the abundance of at least one taxa
may eventually be reduced to zero, causing its exclusion from the environment,
and thereby, ending the interaction (Figure I.1B). However, not all the effects on
abundance produced by an interaction are continuous in time. Figure I.1C shows
the asymptotic behaviour of the abundance of the interacting taxa, over time,
common in predator-prey interactions (Goel et al. 1971). Here, the effect in the
abundance expected for predation (↑ predator, ↓ prey) only occurs for the fraction
of time that the population of the prey is large enough to be a food resource for
the predator population (marked on the Figure in blue). For the remainder of
the time, the predator population decreases because there is not enough prey to
sustain it, and the prey population increases because it has escaped predation. If
biomonitoring sampling is not performed on the correct time scales, therefore, the
cyclic behaviour of the abundance greatly hinders interaction detection because it
is effectively masked by the dynamics (Derocles et al. 2018). Thus, to follow the
temporal development of the set of interactions happening in an ecosystem, it is
necessary to take into account the different potential interactions that could occur
and their relevant time scales.

3 Metabarcoding
As stated above, microbial interactions should be a key component of ecosystem
biomonitoring (Bohan et al. 2017), and this requires information about the oc-
currence and abundance of microorganisms in an ecosystem (Faust & Raes 2012).
Microorganisms cannot be observed with naked eye and the use of microscopes
and other optical devices for the evaluation of occurrence necessitates ecological
sampling and subsequent culturing of the microbial community, with its inher-
ent costs and biases. Quantifying the abundance of different microbial taxa using
a microscope is also difficult and lacks accuracy. It is in this context, that DNA
based techniques have the greatest potential. An environmental sample taken from
water, soil, air or other biological material potentially includes all the microorgan-
isms inhabiting that environment, and as a consequence their DNA. The process
of identifying the taxa present in eDNA samples is called metabarcoding, making
reference to the use of DNA as a unique, identifying barcode for each taxa.

Since the discovery of the structure of DNA by Watson and Crick (Watson &
Crick 1953), numerous DNA technologies have been developed to better under-
stand and explore the biology of the living world. Two of these techniques are
necessary prerequisites for the development of metabarcoding: Polymerase Chain
Reaction (PCR) and DNA sequencing. PCR is a molecular biology technique,
developed by Kary Mullis in 1983 (Mullis et al. 1986). It uses a thermal resis-
tant polymerase to produce copies of DNA regions between given DNA sequences.
These regions are detected by a pair of adaptors called primers. PCR is used to
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Figure I.1: Change in the abundances of a taxon following the establishment
of a second taxon in the media. A: Exploitative competition interaction where both
taxa arrive at an abundance equilibrium. B: Competitive exclusion process where one
taxa is able to exclude the other from the media. C: Cyclical dynamics of abundance in
predator-prey interaction.
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generate a large number of copies of the region of the DNA used for barcoding. It
is then possible to obtain the exact sequence of this region by DNA sequencing. In
1972, Walter Fiers sequenced a DNA sequence for the first time(Jou et al. 1972),
but it was a few years later that Fredrick Sanger developed the DNA sequencing
technique that was going to be widely adopted (Sanger et al. 1977). Sanger se-
quencing starts by copying the targeted DNA region using a mix of normal and
fluorescent nucleotides (one color for each type of nucleotide). When a fluores-
cent nucleotide was added to the DNA chain, the copying reaction stopped. This
produced a set of different length DNA fragments with a fluorescent nucleotide at
the last position. Then, these fragments were sorted by their size, initially using
gel electrophoresis. However, following further development, a capillary was used
to both sort the sequences by size and then detect the fluorescent nucleotide at
the end of the sequence. Since the DNA fragments were ordered by size and the
color of the fluorescent nucleotides detected indicated which nucleotide was the
final one for a given size, it was then possible to reconstruct the whole sequence
from start to the end. Sanger sequencing was used for many years, but it only
allowed the processing of a single sequence at a time. In 2005, Next Generation
Sequening (NGS) was invented as an improvement to Sanger sequencing that al-
lowed multiple sequences to be processed simultaneously (Mardis 2013). This was
achieved by adding synthetic adaptors to the DNA sequences, allowing specific
sequences to be identified and thereby permitting millions of DNA fragments from
different samples to be processed through sequencing at the same time (Hu et al.
2021). Each adaptor identifies the sample origin of the sequence and serves as a
binding point for the sequencer. NGS lead to a significant decrease in the time
and cost of sequencing, extending the use of DNA sequencing to many fields of
study, including biomonitoring of environmental samples.

3.1 Sampling and DNA extraction

The first step in sampling eDNA is to define the sampling ’universe’, which is
either the the ecosystem or environment that the samples represent (Dickie et al.
2018). It is important to clearly define the sampling universe in order to properly
select the sampling procedure to make the samples representative. For example, if
the intention is to study the microbes and their interactions in a pond, it will be
necessary to sample the different parts of the pond (perimeter, center) at different
water depths (surface, bottom, etc.). If only the surface of the pond is sampled,
the study will not reflect all the pond’s microbial communities. Once the sampling
universe is defined, it is possible to design the sampling procedure. While the
size of samples (e.g. volume of water), and their location in space and time may
depend upon the precise research question, the number of replicate samples is a
critical decision common to all eDNA surveys focused on interactions. The lack
of appropriate sample replication can lead to non-significant results. NGS may
have reduced the cost of sequencing, but these techniques are still expensive and
sampling effort has to be considered carefully in order to keep costs to effective
levels (Smart et al. 2016).

Microbial eDNA used for metabarcoding is mostly contained inside the mi-
croorganisms of the sample, thus requiring a cell lysis process to extract it. The
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great differences in cell walls and cytoplasmic membranes of across the members of
microbial communities means that a general or universal lysis procedure needs to
be adopted. These typically combine physical, chemical and enzymatic disruption
of microbial cell walls (Teng et al. 2018). DNA purification requires that any waste
biological material or inorganic traces in the lysate have to be removed, but also it
is necessary to assure that any compounds present in the sample that could dam-
age the DNA are removed (Pearman et al. 2020). Extraction kits and protocols
have now been developed to extract eDNA from a wide range of environmental
samples, greatly simplifying this previously difficult step in metabarcoding.

3.2 DNA amplification and Sequencing

The purified DNA obtained from environmental samples is amplified, increasing
the numbers of copies, using PCR. Specific primers are used to discriminate the
DNA derived from the microbial community from that of macro-organisms. Gener-
ally, DNA regions coding for ribosomal RNA are used in metabarcoding microbes
(Abdelfattah et al. 2018). The taxonomic heterogeneity of microbial communities
also adds a degree of difficulty to metabarcoding, in that there is no single pair of
primers that can be used to barcode all microorganisms. Rather it is necessary to
perform different PCR amplifications, with different primers, for each taxonomic
group studied (Francioli et al. 2021). Some of the commonly used primers for the
most important groups are shown in Table I.2.

Sequencers typically cannot sequence the whole ribosomal region, as these are
too long. Consequently, each taxonomic group has specific primer pairs that are
used to target smaller sub-regions of the ribosomal region (Beckers et al. 2016).
The resulting amplified DNA fragments typically have a length of between 100
and 550 nucleotide pairs. These fragments are then sequenced using one of the
NGS platforms available in the market. The most widely used NGS platforms
for metabarcoding are 454 pyrosequencing, various Illumina based technologies
and Ion Torrent (Aragona et al. 2022). These platforms use different protocols to
obtain the DNA sequence of each fragment, but produce similar end results; a list
of all the DNA sequences present in the amplified DNA from the ecological sample.
Each DNA region is normally sequenced in two directions, forward and reverse.
Bioinformatic processing is then done to merge the two reads to obtain a higher
resolution sequence. A measure of the quality of each sequenced nucleotide is also
obtained during sequencing. The quality measure provides information for the
likelihood that an error in identifying the correct nucleotide has occurred. Low
quality sequences can then be filtered out of the data to reduce the number of
introduced errors in the dataset (Pauvert et al. 2019).

The different NGS platforms produce similar results, and share a number of
limitations. There is a maximum amount of DNA fragments that can be processed,
called the sequencing depth. This means that the DNA sequences obtained for each
ecological sample are a sub-sample of the total available sequences, introducing a
compositionallity bias into the dataset (Gloor et al. 2017). While the first genera-
tion of NGS platforms could not process sequences longer than around 1000 base
pairs, the more recently introduced third generation sequencing technologies allow
the sequencing of much longer DNA fragments (Heeger et al. 2018; Tedersoo et al.
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2021). Longer DNA sequences provide better barcodes, at the expense of reduced
sequencing depth and other potential sequencing issues (Latz et al. 2022). Metage-
nomics studies can now also be perfromed to study the presence and abundance
of different taxa in a sample. Metagenomics uses a sequencing process called shot-
gun sequencing to obtain random reads of any part of the genome of different taxa
(Quince et al. 2017). This skips the PCR amplification step and gives information
about the whole genome of those taxa present. However, the sequencing depth
retrieved is even lower and the method demands comprehensive databases to be
able to identify where each sequence comes from in each taxon’s genome.

Table I.2: DNA region amplified to metabarcode the different taxonomic
groups present in microbial communities.

Taxonomic
group

Amplified
region

Taxonomy
Database

Literature

Bacteria 16S ribosomal
unit

SILVA ribosomal
RNA; Ribosomal
database project
(RDP); Greengenes

(Marchesi et al.
1998; Quast
et al. 2012;
Cole et al. 2014;
McDonald et al.
2012)

Fungi Internal
transcribed
spacer (ITS)
between small
and large ri-
bosomal
DNA

UNITE; Ribosomal
database project
(RDP)

(Gardes &
Bruns 1993;
Nilsson et al.
2019; Cole et al.
2014)

Archea 16S ribosomal
unit

SILVA ribosomal
RNA; Ribosomal
database project
(RDP); Greengenes

(Takai &
Horikoshi 2000;
Quast et al.
2012; Cole et al.
2014; McDonald
et al. 2012)

Protists 18S ribosomal
unit

The Protist Ribo-
somal Reference
database (PR2)

(Dollive et al.
2012; Guillou et
al. 2013)

3.3 Sequence clustering

Species are the basic unit of ecology (Mayr 1982). The definition of a species is
variable depending on the particular species-concept invoked (De Queiroz 2007).
However, there is broad agreement that individual members of the same species
will share a highly similar genotype and phenotype, and that they will perform and
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undergo similar ecological functions and processes (Ward et al. 2008). Study of
the ecological functions in an ecosystem typically use microbial species (or genera
in the case of some prokaryotes) as the functional unit. The list of DNA sequences
present in each eDNA sample represents the different species present, across the
taxonomic group targeted for sequencing (bacteria, fungi, etc.). Depending on the
sequencing depth of the platform used, the count of sequences per sample can vary
between thousands to hundreds of thousands of copies. We posit, therefore, that
sequences from individuals of the same species should be similar (or even identical),
while sequences from different species will have more differences. Grouping the
sequences by similarity produces an approximate measure of how abundant each
species is in a sample, as a function of the sequence counts (Schloss et al. 2009;
Shelton et al. 2022). There is considerable, ongoing debate about how approximate
such a measure of abundance is, due to the many different biases inherent in
the molecular biology processes of sequencing (Gloor et al. 2017; Lamb et al.
2019; Zinger et al. 2019). Normally, sequencing reads are grouped or clustered
to a reference sequence that is representative of the whole taxonomic group of
interest. The reference sequence could be the longest sequence in the group, the
most abundant sequence in the group or sequence selected at random (Links et al.
2013). The group clustered around a sequence is called an Operational Taxonomic
Unit (OTU), and it is expected to be representative of a predefined taxonomic
level, such as a species (Caron et al. 2009).

There are two main strategies to cluster the DNA sequences into OTUs: reference-
based; and, de novo. Reference-based clustering compares the DNA sequences with
a database of previously classified sequences and sequence groups that share the
same taxonomy. While this method has proved to be accurate in some cases, it
relies heavily on the quality of the sequence databases (Cline et al. 2017). Thus,
reference-based clustering algorithms may fail to identify and group unknown or
poorly studied taxa of which there may be many in a biomonitoring situation. The
alternative to reference-based clustering is de novo clustering. This methodology
does not require external taxonomic reference sources, such as databases. De novo
clustering compares the different sequences and groups them as function of an
arbitrary similarity threshold. Typically, the homology threshold is established
at 97%. This means that all sequence reads clustered to an OTU share at least
97% of sequence homology (Brown et al. 2015). This criterion allows clustering
to be applied to any metabarcoding situation, irrespective of the quality of prior
knowledge of the microbial community. Nowadays, there are numerous algorithms
that perform de novo clustering and have been widely used (Caporaso et al. 2010;
Schloss et al. 2009; Edgar 2013). It remains a matter of debate whether a common,
possibly arbitrary, similarity threshold can correctly delineate the differences be-
tween microbial species (Nguyen et al. 2016a). This is because different microbial
species have great variability in the same genome region, with some species having
99% homology, while others may be more variable, having 95% homology.

An improvement to OTU clustering using homology thresholds is amplicon de-
noising. The denoising process is based on the premise that sequences containing
simple sequencing errors are less likely to be observed than ’biologically correct’
sequences (Callahan et al. 2017). Sequences can therefore be clustered together if
the difference in nucleotide composition can be caused by a simple error of sequenc-
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ing. The pool of metabarcoding sequences is used to estimate the rate at which
one nucleotide can be substituted by another in error (Prodan et al. 2020). The
OTUs obtained by denosising algorithms are called Amplicon Sequence Variants
(ASVs) or Exact Sequence Variants (ESVs). Tools like DADA2 (Callahan et al.
2016), Deblur (Amir et al. 2017) or Unoise (Edgar 2016) can perform amplicon
denoising from metabarcoding data. DADA2, which is the most widely used of
the tools, has been shown to recover the composition of mock communities better
than clustering and other denoising tools (Pauvert et al. 2019; Prodan et al. 2020).
Nevertheless, given that the ASV inference is based on errors during the sequenc-
ing process, different ASVs may still be from the same species, and some manual
or semiautomatic curation of the obtained ASVs may be necessary (Frøslev et al.
2017). Henceforth in this thesis, I treat the terms OTU and ASV as synonyms.

The OTU inference processes provide a list of representative sequences and
the number or count of DNA reads for each clustered sequence. Usually, the
abundance information of OTUs is organized as a p x n matrix, where p is the
number of OTUs, n the number of samples in the metabarcoding survey and
each cell contains the number of sequence counts, for each OTU in each sample.
Posterior filtering processes may be done to delete chimeric sequences, generated
by the mixed amplification of two or more DNA fragments (Wang & Wang 1997).
Filtering can be performed to delete low abundance OTUs, which may be non-
informative of the ecosystem or even be errors (Cao et al. 2021).

3.4 Taxonomic assignment

Each OTU has a representative nucleotide sequence that can be compared to ex-
isting databases to gain knowledge of the taxonomic level (Phylum, Order, Genus,
Species, etc.). For each taxonomic group selected during the PCR process (Ta-
ble I.2), a manually curated reference database is then created. These databases
contain the list of DNA sequences corresponding to the amplified region of the
DNA and taxonomic information related to each sequence. This is normally stan-
dardised to genus level information for prokaryotes and species level for eukaryotes
(Nilsson et al. 2019; Quast et al. 2012; Guillou et al. 2013). It is also possible to
construct custom databases for taxonomic assignment. This option is useful when
the microbial community studied is well known (for example a mock community
in in vitro studies) or in the case of studying rare microbial taxa that are rarely
found in the existing databases (Lennard et al. 2018). The taxonomic assignment
is performed either: 1) by aligning the OTU sequence to the most similar sequence
in the database, to a given threshold (Alonso-Alemany et al. 2011); or, by 2) esti-
mating the probability (using Bayesian or other methods) that some small section
of the the OTU sequence (typically 8 nucleotides) is part of the database sequence,
and then evaluating the confidence of the estimation (Wang et al. 2007).

Assigning an OTU to a taxonomy facilitates some understanding of those
species (or genera) that are present in the ecosystem. The taxonomic assign-
ment also acts as a link between the OTU and the information contained in the
literature and in the different relevant databases of functions and processes, allow-
ing attribution of meta-data such as functional traits (Djemiel et al. 2022). The
accuracy of the taxonomic assignment at genus or species level is variable, how-

26



ever, and rarely reaches the standard of complete independence of the database or
classifier used for assignment (Edgar 2018; Rohwer et al. 2018; Joos et al. 2020).
This would mean either that the OTU was assigned to an incorrect taxon, was
incompletely assigned to some taxonomic level other than genus/species or was not
assigned at all. The sources of errors in taxonomic assignment are diverse, includ-
ing sources from sequencing and clustering errors to incomplete and ambiguous
taxonomic and sequence databases (Mathon et al. 2021).

3.5 Metabarcoding data and Community analysis

The metabarcoding process produces an OTU matrix containing the abundance
of the different OTUs in each sample, as detailed above. This matrix may also
have associated matrices of abiotic variables, for each of the different samples
and for the taxonomy of the different OTUs. Further information that can be
attached to the matrix are the alignment trees of the OTU sequences, obtaining
information on how each of the OTUs are related phylogenetically (Otu & Sayood
2003). Matrices can be stored in standardised file formats, such as a phyloseq
object (McMurdie & Holmes 2013). Prior to studying the microbial interactions,
the data obtained from metabarcoding can be used to perform multiple analyses
to characterize the microbial communities in the different samples. Measures and
metrics of OTU richness, diversity (Simpson 1949) and the evenness of relative
OTU abundance (Pielou 1966) are typically computed. These measures indicate
how the distribution of OTUs varies across the samples. Measures of microbial
community dissimilarity can be analysed to identify those samples that share more
similar microbial communities or are outliers (Chao et al. 2005; Morris et al. 2020).
Knowledge of how the microbial communities of different environmental samples
diverge can help us to comprehend the role of abiotic factors in shaping these
microbial communities, as a complement to the study of microbial interactions
within each community.

4 Interaction network inference
Interactions between microbial OTUs can not be understood in isolation. Mi-
croorganisms live in communities shaped by their constituent members’ interaction
network. The objective of the NGB project is to automatically reconstruct these
interaction networks from eDNA to monitor ecosystems (Bohan et al. 2017). Inter-
action networks can be graphically represented as a set of nodes, representing the
OTUs, connected by a set of edges, representing the interactions (Shannon et al.
2003). The size of the nodes can be homogeneous or vary with OTU abundance.
The edges can have a different thickness, representing the strength of interaction,
or color, depicting different types of interactions. Edges can also have a direction,
they are directed, which indicates that the interaction has a contrasted effects on
the taxa involved. As noted in section 2, microbes and their interactions are diffi-
cult to observe with the naked eye and, furthermore, the mechanisms and high rate
of interaction limits the possibility of observing interactions or their effects under
the microscope. Indirect techniques have to be used, therefore, to reconstruct the
interaction network of a microbial community.
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1. Sampling

2. DNA 
extraction

3. DNA 
Amplification

4. Sequencing

5. Sequence 
clustering and 
filtering

6. Network 
reconstruction

S1 S2 S3

OTU1 112 50 300

OTU2 121 0 0

OTU3 0 0 43

Figure I.2: Steps to reconstruct an interaction network using eDNA: 1. Eco-
logical samples are taken from the environment; 2. eDNA is extracted from the ecological
sample; 3. More copies of the DNA are obtained by amplification using primers specific
for a taxonomic group; 4. DNA is sequenced; 5. A bioinformatic pipeline is followed to
cluster the sequences in OTUs and obtain a measure of OTU abundance; 6. Interaction
networks are reconstructed using OTU abundance data.

The realised effect (result) of an interaction is a change in the abundance of
at least one OTU involved (Faust & Raes 2012, section 2.4). It is therefore pos-
sible to imagine that interaction network reconstruction can be done by studying
the changes in OTU abundance. Correlation measures (e.g. Spearman’s rank
correlation coefficient (Spearman 1904); Pearson correlation coefficient (Pearson
1895)) between abundance of OTU pairs between different samples have all been
interpreted as a measure of the likelihood of an interaction (Faust et al. 2012).
However, interaction networks reconstructed from correlations between abundance
metrics have to take into account a number of biases and other problems. First,
as detailed in the section 3.2, abundance data obtained by sequencing is compo-
sitional. Sequencers are only able to process a given number of DNA sequences
and, consequently, the OTU counts are relative to the maximum number of se-
quences processed (Gloor et al. 2017). If abundance information obtained from
sequencing is treated as absolute, the predicted interaction network could have
spurious edges caused by variation in sequence depth across OTUs and samples
(Li et al. 2016). Spurious edges might also be introduced to the reconstructed net-
work by abiotic sample conditions. Preference for the same conditions (humidity,
temperature, etc.) can result in a positive correlation, all without the action of an
interaction. In addition, the effect on two focal OTUs undergoing an interaction,
of the abundance of a third OTU, could induce spurious positive or negative cor-
relations depending on the type of interaction (Carr et al. 2019). Finally, OTU
presence across samples can also be subject to considerable variation caused by
the probability of colonisation of the sample (Gotelli 2000; Zhang et al. 2016).
This variation means that the OTU matrix will be sparse, with many samples
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Figure I.3: Cross-sectional and longitudinal abundance measures of four
OTUs. Cross-sectional network reconstruction uses the change in abundance of samples
at the same point in time, but different point in space for each OTU. Longitudinal net-
work reconstruction uses samples from the same point in space, but different points in
time for each OTU.

having absent OTUs that can affect the measure of correlation. There are two
main strategies to reconstruct interaction networks from metabarcoding data, us-
ing correlation, which have been proposed as solutions to circumvent some of these
biases and problems: cross-sectional inference and longitudinal inference (Figure
I.3):

4.1 Cross-sectional network inference

Cross-sectional network inference uses the correlation of abundances between dif-
ferent samples taken at the same point in time, in order to infer associations
between pairs of OTUs (Dohlman & Shen 2019). Where the between pair corre-
lation measure is significant, an association between the OTUs can be inferred.
The development of NGS techniques has stimulated the development of numerous
inference approaches focused on reconstructing microbial interactions using cross-
sectional metabarcoding data. One of the initial methodologies, proposed by Faust
et al. (2012) (Faust et al. 2012) used an ensemble of four measures of correlation:
Pearson and Spearman correlation, and Bray-Curtis and Kullback-Leibler dissimi-
larity. At the first step, a general overall score for each network edge was obtained
by combining these four measures. Then, at the second step, the significance
of this score was assessed by bootstrapping. This ensemble, among others, was
later implemented in a network inference tool called CoNet (Faust & Raes 2016).
The first widely used network inference tool offering a complete pipeline, from se-
quence counts in eDNA samples to interaction inference, was SparCC (Friedman
& Alm 2012). Published in 2012, SparCC attempted to avoid some of the biases of
compositional data by using log-transformation (Aitchison 1982) to obtain linear
Pearson’s correlations. The significance of the correlations was then computed
using a bootstrapping procedure. SparCC kick-started a decade of network re-
construction tool development, facilitated by cheap and accurate metabarcoding
datasets. While SparCC deals explicitly with sparse (zeros in the OTU matrix)
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and compositional data, it still reports many spurious associations between OTUs
due to indirect effects. Newer tools have therefore used measures other than lin-
ear correlation. CCLasso (Fang et al. 2015) and SPIEC-EASI (Kurtz et al. 2015)
used correlation of latent variables and Inverse Covariance respectively to discard
spurious associations introduced by abiotic factors and third-party, indirect OTU
effects. SPIEC-EASI adopted the StARS model for selecting true associations in
place of bootstrapping (Liu et al. 2010). The management of the sampling effect
is improved in HMSC (Ovaskainen et al. 2017) and PLN (Chiquet et al. 2019),
enhancing inference accuracy by taking into account the sample environmental
covariate data as offsets. Efforts have been made to introduce sources of informa-
tion other than the OTU abundance matrix. MPLasso (Lo & Marculescu 2017b),
for example, introduces the use of prior microbiological knowledge through data-
mining or other external sources, weighting the edges of the network as a function
of this information. Many other cross-sectional network inference tools have been
developed using different correlation based strategies, and these have recently been
extensively reviewed (Röttjers & Faust 2018; Dohlman & Shen 2019; Matchado
et al. 2021).

4.2 Longitudinal network inference

Longitudinal network inference is based on taking samples from the same micro-
bial community at different time points to infer associations as a function of the
correlations of OTU abundance over time (Dohlman & Shen 2019). The dynam-
ics of OTU abundances over time gives a more complete better picture of the
effects of interactions and their dynamics (Faust et al. 2015). Longitudinal data
are also compositional and sparse, like cross-sectional data, but since the samples
are taken repeatedly from the same environment, the possibility of introducing
spurious associations into the learning via contrasted abiotic effects is greatly re-
duced. Traditionally, time series of ecological abundance have been modelled using
the Lotka-Volterra equations (Volterra 1926; Mounier et al. 2008; Fisher & Mehta
2014), but more recently other models have been proposed for longitudinal studies
(Kodikara et al. 2022). As with cross-sectional analysis, specific tools have been de-
veloped to infer interactions from sequence count time series. For example, TIME
(Baksi et al. 2018) identifies abundance variations over time, by OTU, and clusters
taxa by similar abundance behaviours to evaluate those abundance patterns that
might be caused by an interaction. An exhaustive listing of the available tools has
been reviewed by Dohlman and Shen (2019) (Dohlman & Shen 2019).

4.3 Considerations on correlation tools for biomonitoring

Biomonitoring using interaction networks is based on the premise that OTU abun-
dance data will be obtained from eDNA samples automatically. Automating of
all the metabarcoding process would produce this abundance information with a
predetermined periodicity (Bohan et al. 2017; Cordier et al. 2021). Intuitively,
one could think that longitudinal inference tools would fit better with this peri-
odic, time series data. The objective of network based monitoring is study how
the different interaction networks evolve with time and to detect and/or antici-
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pate ecosystem change (Kortsch et al. 2015), however. Cross-sectional network
inference tools would therefore be a better option for biomonitoring given that
they provide an interaction network at each time point, where sufficient samples
are taken. Longitudinal network inference also presents two particular challenges
that limits its application to biomonitoring. First, microbial interaction temporal
scales can be variable, making it difficult to set appropriate sampling rates (Lugo-
Martinez et al. 2019). Second, longitudinal inference relies on obtaining samples of
the same microbial community at different times. While this may readily be possi-
ble for communities in aquatic environments, or even for the gut microbiome, it can
be difficult to sample the same microbial community inhabiting the soil or plant
material more than once. This hinders the automation of sampling and network
reconstruction for a wide range of ecosystems, using longitudinal approaches.

Cross-sectional network inference tools based on correlation are extremely ro-
bust to noise in experimental data and can be run rapidly on even quite large
datasets. They infer interaction networks at a given point in time and most of
them have an implementation in R or other commonly used environments that fa-
cilitate their use. There is no clear agreement, however, on the minimum number
of samples required to build a single network using network inference tools (Berry
& Widder 2014; Hirano & Takemoto 2019). The variation of the amount of in-
formation needed to build a network leads to difficulties in obtaining reproducible
networks from the same ecosystem. In addition, the often enormous variation ob-
served between networks for purportedly the same ecosystem further underscores
the requirement for a larger number of samples to detect ecosystem change using
networks. Thus, it is imperative to evaluate the reproducibility of networks pre-
dicted by current network inference tools and implement statistical methods to
obtain reliable network metrics. In this thesis, I address these issues in chapter
II, using different network metrics to study the properties of interaction networks
produced by the most widely used tools, SparCC and SPIEC-EASI.

Correlation-based tools are useful to explore associations between OTUs found
using metabarcoding. They produce interaction networks that display the differ-
ent OTUs in a microbial community and the associations between them. However,
these tools define no clear link between the positive and negative associations they
find, and the ecological mechanisms that actually generate them (Röttjers & Faust
2018; Carr et al. 2019). Associations, whether positive or negative, can be pro-
duced by a variety of different types of interaction mechanism or even be produced
spuriously, as noted at the beginning of this section. Some types of interactions
may not result in detectable correlations due to their complex nature (Pacheco &
Segrè 2019; Weiland-Bräuer 2021). Microbial ecologists therefore need to interpret
the associations proposed by the inference tools, and to assign the association to an
interaction that can produce that type of correlation. This interpretation is done
by applying their knowledge about the microbial OTUs involved and the informa-
tion available in the literature and databases, and then be tested in culture assays
to validate the proposed types of interactions (Pauvert et al. 2020; Hromada et al.
2021). Such interpretation is clearly subjective, being subject to the ecologist’s
knowledge of the literature or even their particular prejudices for a given type of
interaction. Testing the inferred and interpreted interactions using culture based
studies (culturomics) also has its limitations. Some microbial species can not be
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isolated, because either they are unknown or they do not grow in synthetic culture
media (Lagier et al. 2018). Culturomics is also expensive in time and money, and
it is possible that the culture conditions will not promote the inferred interactions,
which may be mediated by the precise availability of certain nutrients and other
metabolites in the environment (Tshikantwa et al. 2018).

An automated reconstruction of interaction networks depicting explicitly the
different interactions types would be more informative, allowing better monitoring
of an ecosystem, testing and decision making. To date, few studies have attempted
to classify microbial interactions by their type from eDNA metabarcoding data, as
there is no reliable network inference tool able to perform the direct detection and
automatic classification of interaction mechanisms (Dohlman & Shen 2019). This
is in part because the tool needs to introduce prior ecological knowledge, which
establishes a relation between the interaction type and the metabarcoding data.
Currently, no correlation based tool is able to do this. Lo et al. (2017) used prior
bibliographical data, but this simply weighted the correlations during the network
inference process and cannot do automatic classification. Explainable machine
learning, which uses logical approaches, is the only approach we have found that
might directly detect and classify network links to their interaction type.

5 Explainable machine learning

5.1 Machine learning and the black box

Statistical machine learning and, more recently, Deep Learning have been widely
and successfully used in many fields of science and engineering. They are used for
pattern recognition in images, language translation and disease prediction (Mohan
et al. 2019). Machine learning also is starting to have applications in the microbial
world. Lee et al. (2020) used deep learning to infer interactions from spatial
patterns in microscopic images and MInter is an automated text-mining tool of
microbial interactions (Lim et al. 2016).

El Naqa and Murphy (2015) define a machine learning algorithm as a "compu-
tational process that uses input data to achieve a desired task without being liter-
ally programmed to produce a particular outcome". Machine learning algorithms
are normally described as being either supervised or unsupervised. Supervised
algorithms use labelled data, previously classified by a human, to train a model
that is later used to classify new input data. Unsupervised machine learning, by
contrast, uses non classified data to construct a model that clusters the examples
using patterns in the data (Qu et al. 2019). Certain correlation based, statistical
methods to infer interactions might also be described as unsupervised statistical
learning. To infer microbial interactions, these correlation based methods would
use abundance data to train an unsupervised model that clusters pairs of inter-
acting OTUs. These approaches do not directly classify and suffer with problems
of explainability, in that they produce inferences from models that are not readily
understandable to humans.

Statistical machine learning algorithms receive the input data and construct a
model used to process the data and produce inferences as output. The model con-
structed by the algorithm automatically relates the different features of the data,
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potentially providing considerable predictive power. However, the complexity of
these models does not allow the user to understand how the model produces the
output. The model is essentially a black box model (Samek et al. 2017). In the case
of microbial interactions, the different correlation measures between abundances
will produce a network associating the OTUs, but there is no way to know what
mechanisms producing the change in the OTUs abundances are at work (Carr et
al. 2019). To tackle this black box problem for interaction inference, it is necessary
to produce explainable models that establish human understandable associations
between the different features of the data (Tonekaboni et al. 2019).

5.2 Being explainable

To make the interaction models explainable it is necessary to: 1) introduce scien-
tific domain knowledge to the inference; and, 2) make the inference process trans-
parent and understandable (Roscher et al. 2020). If it is desired that a networks
represents interactions as network edges, it is necessary to state what interaction
is and to define an appropriate mechanism (a rule or hypothesis) for each inter-
action type. These definitions can then be used to produce a model that infers
interactions from interaction effects data. Other ecological knowledge related to
interactions needs to be defined. For example, how are changes in OTU abundance
to be considered, and which features of different microbial OTUs makes them in-
teract, etc.? Once this domain knowledge is delimited and defined, the knowledge
and OTU abundance data need to be expressed in a logical, human readable for-
mat. This human readable information will then produce a human understandable
and transparent process for obtaining inference output that is both comparable
with domain knowledge and expressed in a human understandable format (Beckh
et al. 2021). The inference process is considered transparent if the user is able
to understand all of its component parts and even repeat them at small scale if
necessary (Belle & Papantonis 2021).

For machine learning processes to be human understandable they must mimic
human logic and reasoning (Dai et al. 2019). Depending on the available infor-
mation, there are different logical inference processes that produce new knowledge
(Figure I.4). In the case of microbial interaction inference, the prior information
available to us are eDNA derived OTU abundance changes and domain knowl-
edge expressed as rules of interaction. This combination, and our interest to infer
interactions denotes that the logical process we follow is one of abduction.

6 What does explainable mean?
Terms like human comprehensible and explainable, which can be linked to still
other terminology such as understandable, logical, rules and transparency, are
something we can probably all agree are things that we would want in science.
However, they are still rather unclear. What do we mean by human explainable
and what is human logic? Are there any concrete, simple examples? One example
might come from the world of translation of language. The online translation tools,
like Google Translate and DeepL, use various forms of correlation and statistical
learning to build models linking the existing corpus (data) of written English,
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Figure I.4: Logic inference processes as a function of the input information.
Deduction uses rules and causes to determine the exact effect. Induction uses causes and
effects to determine the rules that drive them. Abduction proposes plausible causes for
effects based on rules.

French, Latin, etc. As an example of use, these models might use correlations
between the frequencies of particular words in known, comparable sentences in
English and French. The model that is built can then make a translation (in-
ference) into French from English.The same process could then be repeated for
English and German, but would involve a different model.

There are other ways of imagining a translation being done, however. At school
we learn the logical rules for the use of verbs, such as to be. These rules determine
how the verb is used and also determine the placement, order and frequency of the
appearance of the verb, to be, in English. In effect the rules of use and the patterns
in the data are directly related. The rules and patterns are also readily human
comprehensible and explainable – indeed that is the job teachers do. We might
also expect that the use of the verb to be in other languages is broadly similar
to that in English and the patterns in those languages similar also. What this
means, at least in principle, is that we might use our rules for the verb to be and
our knowledge of pattern to search data of other languages for similar patterns and
thereby infer/predict words in those languages that may be similar to to be. We
might thereby discover the verbs être in French or sein in German. Conceivably,
with sufficient known rules in any one language it might be possible to infer specific
meaning to translate from one language to any other. All that is required is an
existing, known rule in one language and data with human understandable pattern.
The logical, rules-based inference process is potentially generic, with the same
model being applied to any language. Indeed, this rule / pattern approach was
at the heart of the method used by Champollion to advance the translation of
Demotic and hieroglyphic Ancient Egyptian from Ancient Greek written on the
Rosetta Stone.

Another example of explainable machine learning application is human face
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recognition. Statistical machine learning is able to compare two photos and decide
if there is the same person in both. The algorithm is trained using many pairs
of photos and it identifies different points on these photos that allow to detect a
person. However, humans can not understand why these points are chosen and
how these points define a person’s face. By contrast, using explainable machine
learning, we can define the traits that differentiate faces like nose size, separation
between eyes, lip thickness, etc. Then, train the explainable machine learning
algorithm to use these traits to compare the faces in the photos. That way, the
reason why the machine learning algorithm detects the same face in two photos
is "explainable". It might also explain why the identification is wrong or biased,
potentially improving the currently low public trust in AI.

It is a process inspired by these descriptions which we propose to use in micro-
bial ecology. We use hypothetical rules for different types of ecological interactions
that are published and explainable. We apply these to patterns in our abundance
data which we believe are caused by interactions between microbial OTUs. The
approach is at its core logical and human explainable, and scientific because this
approach has the hallmarks of ’hypothesis and test’. It is moreover, at least po-
tentially, generic with application to any appropriate ecological data-set.

6.1 Abductive/Inductive Logic Programming

Abductive/Inductive Logical Programming (A/ILP) implements the abductive
reasoning using and producing information expressed as symbolic logic. Rules
based on symbolic knowledge are an expression of human-like reasoning. Thus,
the knowledge transfer between the machine learning and the user is facilitated.
A/ILP has been used in many different fields of knowledge, including metabolic
network inference (Tamaddoni-Nezhad et al. 2006), elaborating the processes in-
volved in cow milk production (Sasaki et al. 2019), and inferring trophic relations
from observational data of arthropods (Bohan et al. 2011).

Abductive Logic Programming is typically applied to problems that can be
separated into two disjoint sets of predicates: the observable predicates and the
abducible predicates (Kakas & Papadopoulos 1996). In practice, observable predi-
cates describe the empirical observations that we are trying to model, such as OTU
abundance information. The abducible predicates - here the interactions we infer
- describe underlying relations in our model that are not observable directly but
can, through the theory, bring about observable information. We may also have
background predicates (prior knowledge), which are auxiliary relations that help
us link the observable and abducible information (Tamaddoni-Nezhad et al. 2021).
The abduction process generates hypotheses that compress a set of experimental
observations (abundance changes). The amount of information compressed can be
understood as a measure of the likelihood of an hypothesis being true, in this case
an interaction. Depending on the abduction process, information compression can
be used in different ways to decide which abducted cases are more likely to be
true.

In this thesis, the potential of A/ILP to infer microbial interactions is explored
across Chapters III and IV. In Chapter III, basic interaction rules are used to recon-
struct networks from computer-generated abundance data. Chapter III also shows
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how the domain standard A/ILP program, Progol, and its compression measures
are used to infer interactions (Muggleton 1995). In Chapter IV the interaction
rules are extended by introducing the concept of exclusion. The new rules are
used to abduce interactions of both computer-generated and real metabarcoding
datasets. In chapter IV the program used for the abduction is PyGol, a novel, fast
implementation of A/ILP (Varghese et al. 2022).

6.2 Inference Implementation

Network inference tools, whether correlation or logic based, perform complex and
computationally intensive processes. The potential users of these tools are mi-
crobial ecologists and other ecologists wanting to explore the interactions in their
metabarcoding datasets. These ecologists do not necessarily have a wide knowl-
edge of computer science. Consequently, they require network reconstruction tools
following understandable and robust inference processes, but also implementa-
tions that are easy to use and able to offer results on reasonable time scales, using
readily-available desktop computers. For the specific case of biomonitoring, sim-
plicity of use may not be important where the inference is included in automated
pipelines. However, the large amount of metabarcoding data collected for biomon-
itoring also requires efficient and fast network reconstruction tools. Thus, any
newly developed tool should take into account these needs. In Chapter V, I detail
an implementation of the abduction based network inference, called InfIntE, in
the commonly used R language (R Core Team 2022).

6.3 Interaction network validation

There is no ’golden standard’ dataset or methodology to test interaction network
inference tools (Röttjers & Faust 2018). The lack of a metabarcoding dataset
for which a significant number of interactions are known and understood, and for
which the accuracy of the network reconstruction can be evaluated as function of
the interactions detected, means that other strategies are necessary to evaluate
any method of inference. Of the many different tools that have been developed to
reconstruct interaction networks (see section 4), each publication followed its own
unique strategy to demonstrate performance. Typically, validation is carried out
using computer-generated datasets, where interactions are simulated with spec-
ified general properties, in order to compute test networks that look like those
that might be obtained from real metabarcoding data (Friedman & Alm 2012;
Chiquet et al. 2019). Computer-generated data simulates the abundance of inter-
acting OTUs over a set of samples. It has the advantage that any interaction that
appears in a test network is one that was specified at simulation; the test interac-
tions are known and can be treated as true values for the test. As consequence, the
accuracy of the network reconstruction can be automatically computed and com-
pared with the performance of other tools (Berry & Widder 2014). The problem
with this approach is that there is still considerable debate over how to simulate
network data. Each mechanism of interaction, which produces an effect on the
abundance of the OTUs, is quite distinct and there is no consensus on how to
simulate them (Weiss et al. 2016). In contrast, we believe that real metabarcoding
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data encompasses abundance changes that are the result of real interactions, but
with the cost that we do not know which interactions are at play. This means
that either the use of simulated data or real data for the demonstration of per-
formance comes with its own specific set of problems. We propose to follow an
indirect strategy that uses an ensemble of different methods to attempt to build a
complete and convincing picture of the perfromance of the A/ILP method.

The basis for this ensemble method is that we posit that two networks, recon-
structed from samples sharing the same conditions, should be more similar than
two networks reconstructed from samples with different conditions. Comparisons
of different measures of the network structure might then be used to estimate net-
work reconstruction performance. The main issue of this approach, and where care
must be taken, is in the choice of measures to show differences between networks
(Poisot et al. 2012). It is also important to bear in mind that similar network
structures, for similar groups of samples, does not guarantee that the edges rep-
resented in the network are indicative of true interactions. A second method in
the ensemble approach is to validate the network inference tools by reconstructing
networks from real metabarcoding data and using the literature, databases and do-
main expert knowledge as a source of information for validation (Lim et al. 2016;
Li et al. 2016). As I have stated in section 3, the OTU and external information
in the literature, databases and the knowledge of experts is related via the taxo-
nomic assignment of the OTUs. It is therefore not possible to obtain validation
information for OTUs that have no or incomplete taxonomic assignment (e.g. tax-
onomy only assigned to genus level). This issue also applies to information such
as microbial traits, the majority of which have yet to be discovered. This general
incompleteness means that literature, databases and domain expert based valida-
tion of interactions can only be performed in very concrete cases, and microbial
network ecology suffers from significant difficulties of obtaining general accuracy
measures.

Over the different chapters of this thesis, my ensemble approach will be used
to assess the performance of statistical and logical interaction reconstruction tools.
In Chapter II, different network structure and similarity measures will be tested
to find the differences between interaction networks inferred statistically from
grapevine leaves samples grown under different cropping systems. Computer gen-
erated data will used in Chapters III and IV to assess the performance of the
A/ILP based interaction inference. In Chapter IV, I will also use bibliographical
references from the grapevine pathobiome literature to test the performance of the
A/ILP based tool with real metabarcoding data.

7 Network Visualisation
Interaction networks have been be treated as graphical constructs to visualize
interaction data, in scientific domains from the study of social media to gene
regulation (Min et al. 2022; Ko & Brandizzi 2020). Network visualisations all
illustrate a set of features, represented as nodes, related or linked by a set of edges
each of which show the interactions happening between the nodes. In the networks
studied in this thesis, therefore, each OTU has a specific node and any interactions
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that are inferred are represented as edges joining the nodes of the OTUs undergoing
the interaction. In the case of quantitative microbial interaction networks, we can
expand this representation of a network to include edges of thickness reflecting the
strength of an interaction, with colours that differentiate interaction types.

The visualisation of the network is a key step in the exploration of the recon-
structed results that helps ecologists learn ecological information from the inferred
network. In the case of automated biomonitoring by interaction networks, net-
work visualisation could identify those features of the ecosystem and network that
are undergoing change to formulate management to mitigate or adapt to the ’un-
wanted’ changes. However, metabarcoding datasets can contain a large number of
OTUs with a considerable number of potential interactions, leading to complex in-
teraction networks, which have been described as hairballs (Röttjers & Faust 2018).
Yoghourdjian et al. 2020 showed that humans fail to correctly interpret a network
with more than 50 nodes, which is a relatively small number for many metabar-
coding datasets. It is important to provide ecologists with manageable, graphical
representations for analysis. One critical part of every network visualisation is
the positioning of the different nodes. Algorithms, such as Fruchterman-Reingold
(Fruchterman & Reingold 1991) and Kamada-Kawai (Kamada & Kawai 1989), pro-
vide network layouts that avoid the superposition of edges and produce edges with
a uniform length that can greatly simplify the visualisation (Salter-Townshend et
al. 2012). These layouts algorithms have been implemented in numerous software
tools that allow users to easily obtain the network image. Igraph (Csardi & Nepusz
2006), for example, is widely used due to its versatility and power. It can be use
in different programming environments, including R, Python and C++, and of-
fers multiple layout generation algorithms and plotting features. Igraph offers few
options for interaction with the network graphic, limiting direct user interaction
to move nodes or to select those edges to visualise. Gephi (Bastian et al. 2009)
and Cytoscape (Shannon et al. 2003) offer more interaction, allowing the user to
manage the graphs. These tools also allow user-developed plugins to be installed,
extending their feature sets (Saito et al. 2012; Kauffman et al. 2014). None of the
available tools met the specific requirements of network visualisation for my PhD;
that of analyzing the networks obtained using either statistical or explainable ma-
chine learning reconstruction tools. It was therefore necessary to develop a custom
tool for network visualisation and manipulation. This tool is detailed in chapter
V, and is based on igraph and the interactive R package Shiny (Chang et al. 2021).
The tool offers many interactive features to evaluate the networks and interaction
types, as a function of compression values. The tool was specifically developed in
R and Shiny so that it could be included in an automated biomonitoring pipeline
to evaluate reconstructed networks and enhance decision making.

8 A case of study: Grapevine foliar microbial com-
munities

The first evidence of wine production, found in Iran, are around 7500 years old
(McGovern et al. 1996). Since then, wine making and consumption has gone
hand-in-hand with the development of Eurasian civilisation, being produced in all
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subsequent societies through history (This et al. 2006). Today, wine remains one of
the most important agricultural products. The total production of grapes for wine
in the European Union was 24.1 million tonnes in 2020 (Directorate-General for
Agriculture and Rural Development 2021), occupying 3.2 million hectares of agri-
cultural land. Grapevine (Vitis vinifera) is a subject of study of great ecological,
cultural and economic importance.

8.1 The foliar microbial communities

Microbial communities are ubiquitous throughout the tissues of grapevine plants.
Microorganisms are found associated with many plant parts including the roots,
trunk, leaves and grapes (Zarraonaindia & Gilbert 2015). Microorganisms inhab-
iting the grapevine leaves are one of the key living components of the crop, as
this community is a reservoir of the microbes that colonize the grapes, having a
significant influence on the quality of wine produced (Pinto et al. 2014). Vine
leaves play a major role in plant development, being the primary site of photosyn-
thesis and regulating the plant’s water potential. The microbiota associated with
grapevine leaves is highly diverse and can vary with grapevine variety, geographic
location and season (Vionnet et al. 2018). Communities are made up of bacteria,
fungi and oomycetes (Fort et al. 2016), inhabiting both the exterior surfaces of
leaves (epiphytes) and interior tissues (endophytes) (Zarraonaindia et al. 2015).
Many members of the microbial community, and especially the endophytes, sup-
port plant responses to both abiotic and biotic stresses (Bettenfeld et al. 2021).
This leaf microbiota helps the plant to resist abiotic stresses, such as drought
and high temperatures, by detecting and signaling the stress and facilitating rapid
metabolic responses from the plant (Pacifico et al. 2019). The microbes may also
produce secondary metabolites able to reduce water loss and enhance the plant
development (Lakshmanan et al. 2017). Microbial communities also play a major
role in the biotic defense of the plant. Many grapevine diseases are caused by mi-
croorganisms and the leaves are a main target site of infection. Powdery mildew,
black-rot and downy mildew are the three main economically-important diseases
affecting grapevine in Europe (Armijo et al. 2016; Molitor & Beyer 2014). They
are respectively caused by the fungi, Erysiphe necator and Phyllosticta ampelicida,
and the oomycete Plasmopara viticola. The microbiome present upon the leaves of
vines acts as a first layer of defence against such infections. Evidence suggests that
microorganisms inhabiting the leaf can prevent the pathogens from establishing
by occupying the physical space required by the pathogen or killing it through
secondary metabolite production (Musetti et al. 2006). Some foliar microorgan-
isms can also help the plant to detect the pathogen and promote plant immune
responses (Hacquard et al. 2017).

8.2 Biomonitoring grapevine leaves’ microbial communities

Understanding and monitoring microbial communities inhabiting the grapevine
leaves could lead to better cropping practices. As noted before, microbial commu-
nities are an important part of abiotic stress resistance. Microbial communities
change when the plant is under stress (Cambon et al. 2022), and it might be possi-
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ble to use interaction networks to monitor plant stress because microbes and their
interactions yield information on processes that are protective against stress and of
stress tolerance. This information would allow a better understanding of vine stress
management for agricultural decision making. Understanding how to mitigate and
manage stress might be done by identifying and promoting specific microorgan-
isms in the microbiome that modulate the plants water needs and enhances their
growth. Microbial interaction biomonitoring gains even more importance in the
case of disease management. Microorganisms are both the cause of diseases and
the first layer of defense against microbial disease pathogens.The basic premise for
the part of this thesis, focussed on real data is that reconstructing the interaction
networks of the grapevine foliar microbiome, would lead to the identification of
potential biocontrol agents of pathogens or even potential microbial metabolites
with anti-pathogen activity (Pauvert et al. 2020). This is especially interesting
in a context where the use of chemical pesticides is being reduced, due to their
side-effects on the environment. This makes the microbial communities inhabiting
grapevine leaves an interesting case study ecosystem.

In chapter VII, I describe the pipeline (from sampling to the filtered OTU
tables) for obtaining metabarcoding datasets from grapevine leaves. In chapter II,
grapevine metabarcoding data is used to reconstruct interaction networks using
two existing statistical network inference tools. Then, different metrics, obtained
from these networks, are used to evaluate the network inference performance. In
chapter IV, the grapevine metabarcoding data is used to test the performance
of the A/ILP based network inference. In particular the grapevine pathobiome is
reconstructed, detecting and directly classifying potential antagonists of P. viticola,
the grapevine pathogen causing downy mildew that is a major economic problem,
by their type of interaction.
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Chapter II

Correlation-based approaches for
biomonitoring using DNA

41



Microbial networks inferred from
environmental DNA data for biomonitoring
ecosystem change: Strengths and pitfalls
Didac Barroso-Bergadà, Charlie Pauvert, Jessica Vallance, Laurent Delière,

David A. Bohan, Marc Buée, Corinne Vacher

Abstract:
Environmental DNA contains information on the species interaction networks that
support ecosystem functions and services. Next-Generation Biomonitoring pro-
poses the use of this data to reconstruct ecological networks in real-time and then
compute network-level properties to assess ecosystem change. We investigated
the relevance of this proposal by assessing: (1) the replicability of DNA-based
networks in the absence of ecosystem change; and, (2) the benefits and short-
comings of community- and network-level properties for monitoring change. We
selected crop-associated microbial networks as a case study since they support dis-
ease regulation services in agroecosystems and analyzed their response to change
in agricultural practice between organic and conventional systems. Using two sta-
tisticalmethods of network inference, we showed that network-level properties, es-
pecially β-properties, could detect change. Moreover, consensus networks revealed
robust signals of interactions between the most abundant species, that differed
between agricultural systems. These findings complemented those obtained with
community-level data, that showed, in particular, a greater microbial diversity in
the organic system. The limitations of network-level data included (i) the very
high variability of network replicates within each system; (ii) the low number of
network replicates per system, due to the large number of samples needed to build
each network; and, (iii) the difficulty in interpreting links of inferred networks.
Tools and frameworks developed over the last decade to infer and compare mi-
crobial networks are therefore relevant to biomonitoring, provided that the DNA
metabarcoding datasets are large enough to build many network replicates and
progress is made to increase network replicability and interpretation.

Keywords Environmental DNA, Metabarcoding, Community ecology, Ecosys-
tem services, Microbial networks, Network inference, Network comparison

1 Introduction
Interactions among organisms and with their abiotic environment regulate the
ecological processes underlying ecosystem services (Mace et al. 2012). Ecological
interactions among organisms (e.g. predation, mutualism, parasitism) at a single
point in space and time are usually represented as a network, with the organisms as
nodes and the interactions as links (Pocock et al. 2012). Current challenges focus
on understanding how and why these networks vary in space and time (Pellissier
et al. 2018; Pilosof et al. 2017), and which network properties should be conserved
or enhanced to sustain ecosystem services (Montoya et al. 2012; Raimundo et al.
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2018; Tylianakis et al. 2010). Next-Generation Biomonitoring (NGB) proposes
the reconstruction, automatically and in real-time, of ecological networks using
the Next-Generation Sequencing (NGS) of environmental DNA (eDNA) data, and
the analysis of network and community variation in space and time to detecting
and explaining changes in ecosystem functions and services (Baird & Hajibabaei
2012; Bohan et al. 2017; Derocles et al. 2018; Makiola et al. 2020). However,
before implementing NGB approaches on a large scale, we need more case studies
demonstrating the utility of DNA-based networks and the meaning of their de-
rived network metrics (Compson et al. 2019). The goal of the present study is to
fill this gap. NGB requires the reconstruction of replicated networks of ecological
interactions as well as the development of statistical tools for their comparison
and analysis. Theoretical frameworks have been developed for the comparison of
ecological networks between contrasted environmental conditions or along envi-
ronmental gradients (Delmas et al. 2018; Pellissier et al. 2018; Poisot et al. 2012;
Tylianakis & Morris 2017). By analogy with the α- and β-diversity of ecological
communities, these frameworks define α- and β-properties for ecological networks
as whole-network metrics (e.g. connectance) and dissimilarities between pairs of
networks, respectively (Pellissier et al. 2018). Community- and network-level met-
rics can be used to assess the impact of environmental changes on the number,
identity and abundance of the species forming ecological communities, and on the
structure, type and strength of their interactions, respectively. They have for in-
stance been used to evaluate the impact of agricultural practices (Morriën et al.
2017), that are a key driver of global change (Tilman et al. 2002), on species di-
versity (Tuck et al. 2014) and on pest and disease regulation services supported
by species interactions (Ma et al. 2019; Macfadyen et al. 2009; Tylianakis et al.
2007).

Networks of interactions among microorganisms appear as suitable tools for
NGB for at least three reasons: NGS techniques are the current rule for studying
microbial communities (Bálint et al. 2016); microorganisms are present in all Earth
ecosystems; and, microbial interactions are crucial to ecosystem functioning, hu-
man life and well-being (Gilbert & Neufeld 2014; Zhu & Penuelas 2020). Network
ecology, which originates from the study of trophic links between macroorganisms
(Ings et al. 2009), initially ignored interactions with and among smaller organ-
isms (Lafferty et al. 2006). But, with increasing evidence of the contribution of
microbial interactions to biogeochemical cycles (Falkowski et al. 2008), plant di-
versity and productivity (van der Heijden et al. 2008), and disease regulation in
soils (Berendsen et al. 2012), plants and animals (Brader et al. 2017; Hacquard
et al. 2017; Vayssier-Taussat et al. 2014), microbial networks are now considered
key to the understanding of ecosystem functioning (de Vries et al. 2018; Karimi
et al. 2017; Wagg et al. 2019). However, given that microbial networks inferred
from eDNA data only represent hypothesized interactions among microbial species
but rather statistical associations among molecular units that only represent puta-
tive signals for microbial interactions (Faust & Raes 2012; Röttjers & Faust 2018;
Vacher et al. 2016), it is crucial to evaluate the relevance of the derived network
properties to the assessment of change in ecosystem functioning. In this study,
we analyzed the relevance of microbial network properties to NGB, by assessing
(1) the replicability of microbial networks inferred from eDNA data in the absence
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Figure II.1: Experimental design. Foliar fungal communities were characterized in
three conventional (CONV) and three organic (ORGA) vineyard plots by a metabarcod-
ing approach. We analyzed 20 foliar samples per plot. For each plot, we obtained 20
community profiles (described in terms of amplicon sequence variants (ASV)) and one
association network (inferred either with the SparCC software developed by Friedman
& Alm, 2012 or with the SPIEC-EASI software developed by Kurtz et al, 2015). More
networks were then obtained by varying network reconstruction parameters (Figure A.3).
The effects of cropping system (CONV versus ORGA) on the grapevine foliar microbiota
were assessed with both community and network α- and β-properties.

of ecosystem change, and (2) the benefits and shortcomings of community-level
and network-level properties for detecting change. We focused on crop-associated
microbial networks since they support disease regulation services in agroecosys-
tems (Toju et al. 2018), and analyzed their response to change in agricultural
practice (conventional vs organic farming). We inferred microbial networks from
eDNA sampled from replicated agricultural plots by using two classical methods
of network inference, SparCC (Friedman & Alm 2012) and SPIEC-EASI (Kurtz
et al. 2015). We then computed α- and β-diversity metrics at the community-
and network-level to identify the level that best captures change in agricultural
practice, by using grapevine and its foliar microorganisms as the case study. These
results are then used to discuss those tools and frameworks that are best adapted
to NGB approaches.

2 Materials and methods

2.1 Study site and sampling design

Grapevine leaf samples were collected on September 10, 2015, from an experi-
mental vineyard (Figure II.1) located near Bordeaux (INRA, Villenave d’Ornon,
France; 44°47’32.2"N 0°34’36.9"W). The experimental vineyard was planted in
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Table II.1: List of community-level and network-level α- and β-properties
analyzed in the study. The number of independent observations (N) and the size of
corresponding dissimilarity matrices (S) are indicated. The last column indicates if the
property varied significantly (Yes/No) with change in the cropping system (CS).

Property Definition Reference N CS

Community α-properties

Richness Total number of amplicons
sequence variants (ASVs)

N=112 Y

Diversity (Inverse
Simpson)

Effective number of ASVs Simpson, 1949 N=112 Y

Evenness (Pielou’s
J’)

Evenness in ASV relative
abundance

Pielou, 1966 N=112 Y

Community β-properties

Compositional dis-
similarity (binary
Jaccard)

Dissimilarity of composition
due to ASV turnover

Jaccard, 1900 S=6216 Y

Compositional dis-
similarity (quanti-
tative Jaccard)

Dissimilarity of composition
due to variations in ASV rel-
ative abundance

Chao et al, 2006 S=6216 Y

Network α-properties

Number of links (L) Total number of links - N=6 N

Connectance (C) Fraction of the total number
of possible links actually real-
ized

Coleman &
Moré, 1983

N=6 N

Number of con-
nected components
(CC)

Number of groups of nodes
connected together

Martinez, 1992 N=6 N

Diameter (DIA) The longest of all the shortest
paths between two nodes

Barabási et al,
2000

N=6 N

Mean node degree
(DEG)

Mean number of links per
node

Martinez, 1992 N=6 N

Proportion of nega-
tive links (NLR)

Proportion of links for which
the SparCC correlation is
negative

Faust et al, 2015 N=6 N

Network β-properties

Topological dissim-
ilarity (Schieber’s
D)

Dissimilarity of global and lo-
cal network structure

Schieber et al,
2017

S=15 N

Association dissim-
ilarity (βWN)

Overall dissimilarity of asso-
ciations

Poisot et al,
2012

S=15 Y

Association dissim-
ilarity (βOS)

Dissimilarity of associations
between shared ASVs

Poisot et al,
2012

S=15 Y

Association dissim-
ilarity (βST)

Dissimilarity of associations
due to ASV turnover

Poisot et al,
2012

S=15 N

45



2011 and was designed to compare three cropping systems: sustainable conven-
tional agriculture (CONV), organic farming (ORGA) and pesticide-free farming
(RESI) (Deliere et al. 2014). The Vitis vinifera L. cultivar Merlot noir grafted
onto a 3309 C rootstock was used in both the CONV and ORGA cropping sys-
tems. Only the CONV and ORGA systems, that used the same cultivar but
different phytosanitary treatments, were compared in the present study to avoid
multiplying the sources of variation between systems. RESI used a resistant cul-
tivar, which has 2 Quantitative Trait Loci of partial resistance to downy mildew
and total resistance to powdery mildew. The experiment had a randomized block
design (Schielzeth & Nakagawa 2013) consisting of three blocks, each composed of
three plots, one for each of the cropping systems tested. Each plot covered an area
of 2100 m² and was composed of 20 rows of 68 vines each, with 1.60 m between
rows and 0.95 m between vines in a single row. CONV plots were managed ac-
cording to the general principles of integrated pest management (IPM), as listed in
Appendix III of the 2009/128/EC Directive (European Commission 2009). ORGA
plots were managed according to European Council Regulation (EC) No 834/2007
( Council of the European Union 2007). ORGA plots were treated with copper and
sulfur-based products, whereas additional phytosanitary products were allowed in
CONV plots (Table A.1). The cropping systems differed in terms of the types of
pesticides applied and the timing of applications, but not in terms of doses (Table
A.1). All products and active ingredients were applied between the end of April
and mid-August of 2015. Grapes were harvested on September 10, 2015. The dis-
ease incidence and severity at harvest were higher in CONV plots than in ORGA
plots for both powdery mildew (caused by the fungal pathogen Erysiphe neca-
tor) and black rot (caused by the fungal pathogen Guignardia bidwellii). Downy
mildew symptoms (caused by the oomycete pathogen Plasmopara viticola) did not
differ significantly between the cropping systems (Table A.2). Grapevine leaves
were collected in the two hours prior to grape harvest, from 20 vines per plot in
the CONV and ORGA plots (Figure II.1). We attempted to avoid edge effects
by selecting the 20 vines from the center of each plot. The third leaf above the
grapes was collected from each vine, placed in an individual bag and immediately
transported to the laboratory. In total, 120 leaves, corresponding to 1 leaf × 20
vines × 3 plots × 2 cropping systems, were collected. Leaves were processed on the
day of collection, with sterilized tools in the sterile field of a MICROBIO electric
burner (MSEI, France). Three contiguous discs of 6 mm diameter were cut from
the center of each leaf, approximately 2 cm from the midrib. They were placed in
the well of a sterile DNA extraction plate. The leaf disks were then freeze-dried
overnight (Alpha 1-4 DA Plus, Bioblock Scientific).

2.2 DNA extraction and sequencing

Leaf disks (Figure II.1) were ground with a single-glass ball mill (TissueLyser II,
Qiagen) and DNA was then extracted with a CTAB chloroform/isoamyl alcohol
(24:1) protocol. A dozen “empty” wells (i.e. containing nothing but extraction
reagents) were included on each plate as negative control samples for DNA ex-
traction. Three of these negative control samples were randomly selected and
pooled before sequencing. Three replicates of a fungal mock community, each
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consisting of an equimolar pool of DNA from 189 pure fungal strains, were also
included as positive control samples (Pauvert et al. 2019). The nuclear ribosomal
internal transcribed spacer (ITS) region, which is considered to be the univer-
sal barcode region for fungi (Schoch et al. 2012), was then amplified with the
ITS1F (5’-CTTGGTCATTTAGAGGAAGTAA-3’, (Gardes & Bruns 1993)) and
ITS2 (5’-GCTGCGTTCTTCATCGATGC-3’, (White et al. 1990)) primer pair,
which targets the ITS1 region. PCR was performed in an Eppendorf thermocycler
(Eppendorf), with a reaction mixture (25 µl final volume) consisting of 0.04 U Taq
polymerase (SilverStar DNA polymerase, Eurogentec), 1X buffer, 2 mM MgCl2,
200 µM of each dNTP, 0.2 µM of each primer, 1 ng.µl-1 bovine serum albumin
(New England BioLabs) and 2 µl DNA template. A pseudo-nested PCR protocol
was used, with the following cycling parameters: enzyme activation at 95°C for 2
min; 20 (1st PCR with regular primers; Table A.3) and then 15 (2nd nested PCR
with pre-tagged primers; Table A.3) cycles of denaturation at 95°C for 30 s, 53°C
for 30 s, 72°C for 45 s; and a final extension phase at 72°C for 10 min. “Empty”
wells (i.e. containing nothing but PCR reagents) were included on each plate as a
negative control for PCR. Three negative control samples were randomly selected
and pooled before sequencing. In addition, the PCR product of one sample per plot
was split in two, with each half of the sample sequenced independently to serve as
technical replicates for sequencing, hence forming six pairs of technical replicates
(one per plot). We checked the quality of all the PCR products by electrophoresis
in 2% agarose gels. A total of 123 samples were sent to sequencing, corresponding
to 112 well-amplified leaf samples, 6 technical replicates, 1 pooled negative extrac-
tion control, 1 pooled negative PCR control and 3 mock community replicates.
PCR products were purified (CleanPCR, MokaScience), multiplex identifiers and
sequencing adapters were added, and library sequencing on an Illumina MiSeq
platform (v3 chemistry, 2×250 bp) and sequence demultiplexing (with exact index
search) were performed at the Get-PlaGe sequencing facility (Toulouse, France).

2.3 Bioinformatic analysis

Based on the mock community included in the sequencing run, we found that
analyzing single forward (R1) sequences with DADA2 (Callahan et al. 2016) was
a good option for fungal community characterization (Pauvert et al. 2019). This
pipeline fully exploits the resolution of molecular barcodes (Callahan et al. 2016),
which is a desired feature in microbial network inference. Indeed, the taxonomic
resolution of the nodes should be fine enough to discern the variation in ecological
interactions between microbial strains (Röttjers & Faust 2018). Using DADA2
v1.6, we retained only R1 reads with less than one expected error (based on
quality scores; (Edgar & Flyvbjerg 2015)) that were longer than 100 bp, and
we then inferred amplicon sequence variants (ASV) for each sample. Chimeric
sequences were identified by the consensus method of the removeBimeras func-
tion. Taxonomic assignments were performed with RDP classifier (Wang et al.
2007), implemented in DADA2 and trained with the UNITE database v. 7.2
(UNITE Community 2017). Only ASVs assigned to a fungal phylum were re-
tained. The ASV table was then filtered as described by Galan et al. (2016) with
a custom script (github.com/cpauvert/1ba6a97b01ea6cde4398a8d531fa62f9) that
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removed ASVs from all samples for which the number of sequences was below the
cross-contamination threshold, defined as their maximum number in negative con-
trol samples. Finally, we checked the compositional similarity of the six pairs of
technical replicates, in terms of both ASV occurrence and relative abundance (Fig-
ure A.1), and we removed for each pair of technical replicates the replicate with
the lowest number of sequences. We also removed the controls. Therefore, the
final ASV table contained 1116 ASVs, 112 leaf samples and 4,760,068 high-quality
sequences.

2.4 Statistical analyses

Statistical analyses were performed with R software v3.4.1 (R Core Team 2022),
with the packages lme4 v1.1-19 (Bates et al. 2015), vegan v2.5-5 (Oksanen et
al. 2022), permute v0.9-5 (Simpson 2022), phyloseq v1.24.2 (McMurdie & Holmes
2013) including the DESeq2 extension v1.20.0 (Love et al. 2014), NST v2.0.4 (Ning
et al. 2019), and igraph v1.2.4.1 (Csardi & Nepusz 2006). Data were manipu-
lated and plots were created with reshape2 v1.4.3, plyr v1.8.4 and ggplot2 v3.2.0
(Wickham 2016), cowplot v0.9.4 (Wilke 2020), ggraph v1.0.2 (Pedersen 2022) and
VennDiagram v1.6.20 (Chen 2022).

Effect of cropping system on community α-diversity

Three community α-diversity properties were computed for each sample: rich-
ness, diversity and evenness of fungal communities (Table II.1). Generalized linear
mixed models (GLMMs) were then used to test the effect of the cropping system
on these properties. The models included the cropping system as a fixed treatment
effect and the sampling depth (defined as the total number of raw sequences per
sample) as an offset Bálint et al. 2015; McMurdie & Holmes 2014). For every
property, we compared the likelihood of a full model, including the block and its
interaction with the cropping system as random effects and a simplified model,
including only the block factor as a random effect. Community richness was de-
fined as the number of ASVs per sample. We used a logarithmic link function to
model these count data, assuming a negative binomial distribution to deal with
overdispersion (Zuur et al. 2009). Community diversity was measured with the
Inverse Simpson index (Simpson 1949) and modeled with a Gaussian distribution
and the logarithmic link function. Evenness was estimated with Pielou’s index
(Pielou 1966) and modeled with a Gaussian distribution and the logarithmic link
function. The offset was transformed according to the link function. The sig-
nificance of the fixed treatment effect was finally assessed with the Wald χ² test
(Bolker et al. 2009). Moreover, to investigate whether foliar fungal pathogens of
grapevine were responsible for variations in community α-diversity properties, we
fitted the models by including the relative abundance of sequences assigned to
the Erysiphe genus (which includes Erysiphe necator, the causal agent of powdery
mildew; Armijo et al. 2016) and the Guignardia genus (which includes Guignardia
bidwelli, the causal agent of black rot) as fixed additive effects.
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Effect of cropping system on community β-diversity

Two community β-diversity properties were calculated for each pair of samples: the
quantitative Jaccard dissimilarity and the binary Jaccard dissimilarity (Table II.1).
Permutational analyses of variance (PERMANOVAs; Anderson 2011) were then
used to evaluate the effect of the cropping system on these compositional dissimi-
larities. The models included cropping system, sampling depth (log-transformed),
block and their interaction as fixed effects. ASVs differing in abundance between
cropping systems were identified with DESeq2 (Love et al. 2014), by calculating
the likelihood ratio between a full model including block and cropping system as
fixed effects and a simplified model including only the block factor. The estimated
fold-changes in abundance were considered significant if the p-value was below
0.05 after Benjamini and Hochberg adjustment. Moreover, to understand better
the processes shaping community structure, the relative contribution of determin-
istic and stochastic processes in community assembly was assessed by following
the framework defined by Ning et al. (2019). This method provides statistics for
each sample, named the Normalized Stochasticity Ratio (NST), that ranges from
0 to 100, where 0 means a completely deterministic assembly process and 100 a
completely stochastic assembly process. NST was calculated using the tNST func-
tion with the binary and quantitative Jaccard dissimilarity indices, the FE null
model, and other parameters by default values. We used the FE null model (SIM2
in Gotelli 2000) because it is the most appropriate for comparing standardized
samples that have been collected in areas of homogeneous habitat, such as vine-
yards. This null model reshuffles ASV occurrences among samples by considering
that all samples are equally probable. NST values were calculated for each crop-
ping system and then compared using permutational analysis of variance with the
nst.panova function.

Network inference

Fungal association networks were inferred at plot level (Figure II.1) with two
widely-used methods of microbial network inference: the SparCC algorithm (Fried-
man & Alm 2012) implemented in FastSpar (Watts et al. 2018) with default
SparCC values; and, the SPIEC-EASI method (Kurtz et al. 2015) using the MB
procedure of edge selection. Both methods try to deal with the compositional
nature of metabarcoding data. In a metabarcoding dataset, the total number of
sequences per sample is arbitrary, imposed by the sequencer. Sequence counts
contain only relative abundance information for species. Methods that do not
take this feature into account can result in the identification of artifactual associa-
tions (Gloor et al. 2017). Both SparCC (Friedman & Alm 2012) and SPIEC-EASI
(Kurtz et al. 2015) attempt to overcome this bias using log ratios of counts. For
each method of network inference, ten networks per plot were constructed by vary-
ing the percentage P of the ASVs included in the network (with P ranging from
10% to 100% of the most abundant ASVs in the plot). We varied P because we
expected that it would influence the replicability of the networks. We expected, in
particular, the networks built from only the most abundant ASVs to be more repli-
cable. For the same reason, networks were also inferred after aggregating ASVs
at the genus level and removing ASVs that were not taxonomically assigned at
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this level. In all cases, the inferred microbial networks had ASVs as nodes and a
positive or negative link between ASVs in cases of significant associations between
abundance.

Effect of cropping system on network α-properties

Six network α-properties were calculated for each inferred network: number of
links, network density, number of connected components, diameter of the largest
component, mean node degree and proportion of negative links (Table II.1). The
effect of the cropping system on these properties was investigated by performing
Wilcoxon rank-sum tests for all values of P. The Benjamini-Hochberg procedure
was used to correct p-values for multiple testing.

Effect of cropping system on network β-properties

Four network β-properties were calculated for each pair of inferred networks (Table
II.1). The topological distance between networks was calculated with the D index
defined by Schieber et al. (2017). Schieber’s D, when applied to binary networks
(i.e. with unweighted links) captures global and local structural dissimilarities
between networks, by comparing node connectivity patterns across scales. The
dissimilarity of associations between networks, βWN, according to the framework
described by Poisot et al. (2012), was then calculated for all pairs of networks
with the binary Jaccard dissimilarity index. βWN was then partitioned into two
components (Poisot et al. 2012): the dissimilarity of associations between ASVs
common to both networks (βOS) and the dissimilarity of associations due to species
turnover (βST). In contrast to the Shieber’s D index that evaluates how nodes are
connected to neighboring nodes and to more distant nodes, these three metrics
compare lists of pairwise associations between nodes. PERMANOVA was used
to evaluate the effect of the cropping system on the topological distance between
networks (D) and the dissimilarity of associations between networks (βWN, βST
and βOS). The models included cropping system, the percentage of ASV, P, and
their interactions as fixed effects. The permutations (n=999) were constrained
within blocks. Finally, for each network inference method and every value of P,
consensus networks containing only the shared associations between the three net-
work replicates within a cropping system were built to identify robust associations
that could indicate ecological interactions between fungal strains. The number of
shared associations between the three network replicates were compared to those
obtained between three random networks simulated with the same nodes and the
same number of links. The significance of shared associations was evaluated with
a pseudo p-value, estimated from 999 simulations and defined as the probability
that the three random networks shared more associations than the three inferred
networks (Morlon et al. 2014).

3 Results
Among the 15 community- and network-level properties computed (Table II.1), 7
indicateddifferences between the organic (ORGA) and the conventional (CONV)
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system.

3.1 All community α-properties detected system change

All three community α-diversity properties - richness, diversity and evenness (Ta-
ble II.1) - were significantly higher in ORGA than CONV plots (Figure II.2 A-C
and Table A.4). Community richness, for example, equaled on average 39.69 fun-
gal ASVs per sample in ORGA plots vs 36.40 in CONV plots, with each sample
representing 0.85 cm2 of a single leaf tissue. Including the interaction between
the cropping system and the block did not significantly increase the likelihood re-
ported by the GLMM models, indicating that changes in community α-diversity
properties due to the cropping system were consistent across blocks. In contrast to
our expectations, none of the community α-diversity properties was influenced by
pathogen relative abundance (Table A.5). Pathogen abundance within each sam-
ple was estimated as the proportion of sequences assigned to the Erysiphe genus
and ranged between 0% and 36.34%, with an average of 1.12% per sample. No
ASV was assigned to the Guignardia genus and this variable was therefore not
included in the models.

3.2 All community β-properties detected system change

The two community β-diversity properties analyzed in this study - the quantitative
and binary Jaccard indices (Table II.1) - detected significant differences in commu-
nity composition between systems (Table II.2). The cropping system was a major
driver of both ASV relative abundance (Figure II.2D) and ASV presence-absence
(Figure II.2E), as indicated by the quantitative and binary Jaccard indices, re-
spectively. It explained 7.6% of the variance in ASV relative abundance and 4.5%
of the variance in ASV presence-absence (Table II.2). The block effect was also
significant, indicating that there were spatial variations in community composi-
tion at the scale of the experiment. The block explained 4.3% of the variance in
ASV relative abundance, and 2.6% of the variance in ASV presence-absence (Ta-
ble II.2). There were also large differences in composition among samples within
a plot, as indicated by the high percentage of unexplained variance (78.2% for the
quantitative Jaccard index and 85.7% for the binary Jaccard index) (Table II.2).
In line with these results, we found that the stochasticity in ASV presence-absence
was very high in both the ORGA and CONV systems (NST=78.4% and 94.8%,
respectively). Nevertheless, it decreased markedly when the relative abundance of
ASVs (NST=29.3% and 33.6%, respectively) was taken into account (Table A.6),
probably because the ASV, assigned to Aureobasidium sp. (Table II.3) was the
most abundant, represented more than half of the total number of sequences and
was highly abundant in all samples. Stochasticity in ASV presence-absence was
significantly higher in CONV plots (Table A.6). A similar trend, although non sig-
nificant, was observed for ASV relative abundance, suggesting that communities
in ORGA plots were more stable, in addition to being richer (Figure II.2A). Over-
all, the foliar fungal communities were dominated by Ascomycota in both ORGA
(87.2% of sequences) and CONV (96.8%) plots. About one-fourth of ASVs (249
over 1116) were shared between cropping systems. These shared ASVs were the
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Figure II.2: Effect of cropping system —conventional (CONV) versus or-
ganic (ORGA) — on the α-diversity and β-diversity metrics of grapevine
foliar fungal communities. A Community richness, defined as the number of ASVs.
B Community diversity, measured with the inverse Simpson index. C Community even-
ness, measured with Pielou’s index. Differences in α-diversity metrics between cropping
systems were significant (Table S4; * p<0.05; **p<0.01; ***p<0.001). D Principal co-
ordinate analysis (PCoA) was used to represent dissimilarities in composition between
samples, as assessed with the quantitative and E binary Jaccard indices. The effect of
the cropping system on both β-diversity metrics was significant, as a single effect for
the quantitative Jaccard index and in interaction with block for the binary index (Ta-
ble II.2). Green circles, squares and triangles correspond to samples collected in the
ORGA1, ORGA2 and ORGA3 plots, respectively. Orange circles, squares and triangles
correspond to the CONV1, CONV2 and CONV3 plots, respectively (Figure II.1). F Log-
transformed ratio of ASV relative abundance in CONV plots over that in ORGA plots,
for 14 ASVs identified as differentially abundant between cropping systems by DESeq2
analysis followed by Benjamini-Hochberg adjustment (Love et al. 2014).
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most abundant, representing 98.97% of the total number of sequences. Fourteen
ASVs differed significantly in abundance between the cropping systems according
to differential abundance analysis performed with DeSeq2 (Figure II.2F). For in-
stance, the causal agent of grapevine powdery mildew, Erysiphe necator, which
was among the 10 most abundant fungal species, was significantly more abundant
in CONV than in ORGA plots (Figure II.2F), according to both the visual records
of disease symptoms (Table A.2) and metabarcoding data (2% versus less than
0.1%; Table II.3). The highest abundance of this major grapevine pathogen in
samples of CONV plots was however not responsible for their lower α-diversity
(Figure II.2 A-C and Table A.5). Differential abundance analysis also revealed
that three other ASVs were significantly more abundant in CONV plots, whereas
10 other ASVs, including several yeast species (from the genera Vishniacozyma,
Sporobolomyces and Filobasidium), were significantly more abundant in ORGA
plots (Figure II.2F).

3.3 None of the network α-properties detected system change

For each method of network inference, we obtained sixty fungal association net-
works (SparCC: Figure II.3A; SPIEC-EASI: Figure A.2A), each corresponding to
one of the six vineyard plots (Figure II.1) and one of the ten values of the per-
centage P of most abundant ASVs included in the network. Whatever the network
inference method, none of the six network α-properties (Table II.1) differed be-
tween cropping systems (Table A.7 and A.9), but all were significantly correlated
with P (Table A.8 and A.10). Four network α-properties had consistent variations
with P between the two methods: the total number of links (L), the number of
connected components (CC), the network connectance (C) and the average node
degree (DEG) (Tables A.8 and A.10). Increasing the number of ASVs included in
the network increased the total number of links, linked the connected components
(hence reducing CC) and increased the average node degree. This consistent in-
crease in average node degree with P, however, masked some differences between
methods. With SPIEC-EASI, node degree increased more in abundant ASVs,
yielding a significant, positive relationship between ASV relative abundance and
node degree at P=100% (Figure A.3). This was not the case in SparCC (Figure
A.3). Despite this difference, the network connectance decreased with both meth-
ods of network inference, consistent with their sparsity assumption (Friedman &
Alm 2012; Kurtz et al. 2015).

3.4 Half of the network β-properties detect system change

Only two network β-properties, of the four computed (Table II.1), differed sig-
nificantly between cropping systems whatever the network inference method. As
with the network α-properties , the topological dissimilarity between networks,
measured with the Shieber’s D index (Schieber et al. 2017), did not differ between
cropping systems but was influenced by P, irrespective of the network inference
method (Table II.4 and Table A.11). These results are consistent with the results
obtained for node degree and network connectance, which are components of the
D index and also vary with P but do not differ between cropping systems (Tables
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Table II.2: Effect of cropping system — conventional versus organic — on
the β-diversity metrics of grapevine foliar fungal communities. Dissimilarities
in community composition between samples were assessed with both the quantitative and
binary Jaccard indices. The effects of sequencing depth (SD, log-transformed), cropping
system (CS) and block (B) on compositional dissimilarities between communities were
evaluated using permutational analysis of variance (PERMANOVA), with the number of
permutations set to 999.

Dissimilarity
index

PERMANOVA

Quantitative
Jaccard

Variable Df F.Model R2 Pr(>F)

log(Sampling_Depth)
(SD)

1 4.6601 0.0365 0.002

Cropping_System (CS) 1 9.7767 0.0765 0.001

Block (B) 2 2.7462 0.043 0.001

SD x CS 1 1.1651 0.0091 0.278

SD x B 2 1.0514 0.0165 0.328

CS x B 2 1.0999 0.0172 0.308

SD x CS x B 2 1.1698 0.0183 0.246

Residuals 100 0.7829

Total 111 1

Binary
Jaccard

Variable Df F.Model R2 Pr(>F)

log(Sampling_Depth)
(SD)

1 1.0606 0.0091 0.274

Cropping_System (CS) 1 5.2676 0.0452 0.001

Block (B) 2 1.5403 0.0264 0.001

SD x CS 1 1.0279 0.0088 0.37

SD x B 2 0.9425 0.0162 0.754

CS x B 2 1.1959 0.0205 0.022

SD x CS x Bk 2 0.97 0.0166 0.642

Residuals 100 0.8572

Total 111 1
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Figure II.3: Effect of cropping system — conventional (CONV) versus or-
ganic (ORGA) — on the α-properties and β-properties of grapevine foliar
fungal networks. A Association networks inferred from fungal metabarcoding data
with SparCC (Friedman & Alm 2012). A total of 60 networks were inferred, correspond-
ing to 2 cropping systems × 3 replicates (blocks) × 10 P values, with P the percentage of
most abundant ASVs used for network inference. Only four values of P are shown on the
Figure. B Variations in network α-properties. The following properties (Table II.1) were
calculated for each network: the number of links (L) and connected components (CC),
the network diameter (DIA) and connectance (C) and the mean degree (DEG) and neg-
ative link ratio (NLR). The percentage P of ASVs used for network reconstruction had a
significant influence on all properties (Table A.8), whereas the cropping system did not
(Table A.7). C Principal coordinate analysis (PCoA) represents dissimilarities between
networks, measured with the βOS index (Poisot et al. 2012) calculated with the binary
Jaccard index. βOS measures the dissimilarity between two networks in terms of the
presence-absence of associations between shared ASVs. The centroids for each cropping
system are represented by gray circles. The effect of the cropping system on βOS was
significant (Table II.4). Networks were inferred with SparCC (Friedman & Alm 2012).
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Table II.3: Most abundant amplicon sequence variants (ASVs) in grapevine
foliar fungal communities according to the cropping system. The relative abun-
dances (RA, in %) and ranks of ASVs were calculated for all leaf samples (TOTAL; n
= 112) and for samples collected from organic (ORGA; n = 55) and conventional plots
(CONV; n = 57).

ASV taxonomic assignment TOTAL ORGA CONV

Rank RA Rank RA Rank RA

Aureobasidium sp. 1 61.4 1 55.8 1 66.7

Cladosporium delicatulum 2 6.3 4 6.9 2 5.8

Filobasidium sp. 3 5.1 2 9.7 9 0.7

Alternaria sp. 4 4.4 5 3.9 4 5

Epicoccum nigrum 5 4.1 7 2.7 3 5.4

Cladosporium ramotenellum 6 3.5 3 7 46 <0.1

Mycosphaerella tassiana 7 3.3 8 1.8 5 4.8

Didymella sp. 8 1.4 6 2.7 33 0.1

Erysiphe necator 9 1.1 38 <0.1 6 2

Vishniacozyma victoriae 10 0.9 9 1.6 17 0.3

A.7 to A.10). By contrast, cropping system had a significant effect on the overall
dissimilarity of associations (βWN) and the dissimilarity of associations between
shared ASVs (βOS) for both SparCC networks (Table II.4 and Figure II.3C) and
SPIEC-EASI networks (Table A.11 and Figure A.2C). Cropping system also had
a significant effect on the dissimilarity of associations due to ASV turnover (βST),
but only in SparCC networks and only in interaction with P (Table II.4 and Table
A.11). These findings suggest that network variation between cropping systems are
due to the turnover in associations (captured by βOS), rather than the turnover
in ASVs (captured by βST), and show that the network β-properties defined in
the theoretical ecology framework by Poisot et al. (2012) can be used to detect
differences between cropping systems.

3.5 Network replicates within each system were highly vari-
able but shared links

Network replicates varied considerably within a cropping system, whatever the
network inference method (Figures II.4 and A.4). When all ASVs were used for
network construction with SparCC (P=100%), only 3 associations were common
to all three network replicates of the ORGA system, although 80 ASVs were shared
between the three network replicates (Figure II.4). Only 5 were common to all
three network replicates of the CONV system, although 81 ASVs were shared be-
tween the three network replicates (Figure II.4). Similar results were obtained
with SPIEC-EASI, with 1 and 5 shared associations, respectively (Figure A.4).
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Table II.4: Effect of cropping system — conventional versus organic — on
the β-properties of grapevine foliar fungal networks inferred with SparCC.
The D index quantifies the topological dissimilarity between networks (Schieber et al.
2017) whereas the other three metrics (βWN, βOS and βST), which were calculated with
the binary Jaccard index, quantify differences in associations between networks (Poisot
et al. 2012). The effect of the percentage P of the most abundant ASVs used for network
inference, and the effect of cropping system (CS) on the dissimilarities between networks
were evaluated in permutational analysis of variance (PERMANOVA). The number of
permutations was set to 999 and permutations were constrained by block.

Dissimilarity index PERMANOVA

Topological dissimilarity
(Schieber’s D)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 57.75 0.5 <0.01

Cropping_System (CS) 1 1.72 0.01 0.19

P × CS 1 0.65 0.01 0.51

Residuals 56 0.48

Total 59 1

Overall dissimilarity of as-
sociations (βWN)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 2.41 0.04 <0.01

Cropping_System (CS) 1 5 0.08 <0.01

P × CS 1 2.21 0.03 <0.01

Residuals 56 0.85

Total 59 1

Dissimilarity of associ-
ations between shared
ASVs (βOS)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 0.53 0.01 0.61

Cropping_System (CS) 1 11.07 0.16 <0.01

P × CS 1 0.56 0.01 0.57

Residuals 56 0.798

Total 59 1

Dissimilarity of associa-
tions due to ASV turnover
(βST)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 1.3 0.02 <0.01

Cropping_System (CS) 1 0.27 <0.01 1

P × CS 1 1.3 0.02 <0.01

Residuals 56 0.95

Total 59 1
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High variability of network replicates within a cropping system was observed for
all values of P and was not reduced by the aggregation of ASVs at the genus level
nor by the consideration of only the most abundant ASVs, in contrast with our
expectation.The networks inferred from only the most abundant ASV or the most
abundant genera (P=10% or 20%) barely shared any associations (Table II.5).
These low numbers of shared associations between the three networks replicates
were, however, generally significantly higher than expected from three random
networks having the same number of nodes and links (Table II.5). The number of
shared associations between the three network replicates ranged between 0 and 7,
depending on P, and the network inference method (Table II.5), while the average
number of shared associations between the random networks ranged between 0 and
1.2, suggesting that consensus networks within a cropping system (Figure A.5) do
contain robust associations but these are few in number. Five of nine consensus
associations were also found by both methods of network inference.The SparcCC
and SPIEC-EASI consensus networks obtained for P=100% in the ORGA system
shared a negative association between the dominant ASV, assigned to Aureoba-
sidium sp., and the third most abundant ASV in the ORGA system, assigned to
Cladosporium ramotenellum (Figure A.5 and Table II.3), as an example The con-
sensus networks obtained for the CONV system also shared a negative association
between the dominant ASV, assigned to Aureobasidium sp., and the third most
abundant ASV in the CONV system, assigned to Epicoccum nigrum (Figure A.5
and Table II.3). Three positive associations were also shared by the SparCC and
SPIEC-EASI consensus networks in the CONV system (Figure A.5). No associa-
tion was shared between the two cropping systems, whatever the network inference
method and despite 44 ASVs being shared (Figures II.4 and A.4 ), confirming the
significant turnover in associations detected with βOS (Table II.4 and Table A.11).

4 Discussion
The functioning of ecosystems, like that of all complex systems, emerges from
the interaction links between its components, and cannot be deduced from a sim-
ple listing of organisms (Newman et al. 2006). The concept of Next-Generation
Biomonitoring (NGB) builds on this property of complex systems and proposes
the use of networks of species interactions, rather than a simple list of species, to
monitor changes in ecosystem functioning. It also proposes that this could be done
via the automatic reconstruction of ecological networks from DNA metabarcoding
data (Bohan et al. 2017). In the present study, we focused on microbial associa-
tion networks as a tool for ecosystem monitoring because microbial networks are
present in all ecosystems, contribute to ecosystem functioning, and many meth-
ods exist to reconstruct them from DNA metabarcoding data (Weiss et al. 2016;
Dohlman & Shen 2019). We assessed the relevance of microbial networks for NGB
approaches using two criteria: (1) their replicability in the absence of environ-
mental change; and, (2) their ability to better detect environmental change than
properties at the microbial community level. We focused on a major driver of
environmental change, agricultural practices (conventional versus organic agricul-
ture). Our results demonstrated that: (1) microbial network replicates were highly
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variable within the same set of environmental conditions; and, (2) some network-
level metrics, but not all, could detect environmental change. By contrast, all
community-level metrics revealed clear-cut changes in the microbial communities
in response to environmental change (Table II.1).

The high variability of network replicates within an environmental condition
(i.e., in our study, the same cropping system) is the most surprising result of our
study. When the whole metabarcoding dataset was used to build the networks,
each network replicate was composed of about 160 nodes (fungal ASVs, in our
study) and about 3500 links between these nodes (corresponding to co-occurrence
or co-exclusion relationships between these fungi). The three network replicates
shared half of their nodes but less than 5 links (Figure II.4). Four non-mutually
exclusive hypotheses can be put forward to explain this result. First, the vari-
ability in microbial associations may reflect real ecological variability. Different
assemblages of fungal taxa could play the same role in the ecosystem because of
the functional redundancy of the taxa (Louca et al. 2016). There would thus be
several assemblages, involving different associations of taxa (and thus different
networks), adapted to the same cropping system. Second, the relative abundances
of fungal taxa, from which the networks are built, could vary within the same en-
vironmental condition because of ecological stochasticity. The fungal communities
were, like most ecological communities (McIntosh 1962), composed of a small num-
ber of ubiquitous species and a large number of rare species whose presence varied
greatly, probably because of the large degree of stochasticity in the deposition of
fungal spores (Peay & Bruns 2014). This high stochasticity in the composition
of the rare microbiome may be responsible for the large number of associations
that are unique to each network replicate and explain why the few shared asso-
ciations involved abundant taxa. Third, the relative abundances of fungal taxa,
upon which the networks are built, could vary within the same environmental con-
dition because of methodological biases. Distortions in taxa abundance may be
generated at each step of the DNA metabarcoding process, from the collection of
samples to their sequencing, and at each step of the bioinformatic processing of
the sequences (Ruppert et al. 2019). The fungal ITS region, which was used here
as a barcode (Schoch et al. 2012), is highly variable in terms of length, sequence
and number of copies (Nilsson et al. 2008; Lofgren et al. 2019), and these features
could have increased the variability in the sequence data. Metabarcoding data are
inherently noisy and this noise may explain why many associations are unique to a
network replicate. Fourth, environmental conditions, which we consider homoge-
neous within a culture system, may not be homogeneous for microorganisms. Our
experimental system and sampling protocols were designed to limit environmental
variations within a cropping system. The vineyard plots were adjacent to each
other and planted with grapevine clones. Moreover, we collected all leaves in less
than two hours and controlled for the position of the sampled leaf on the vine.
Nonetheless, the significant block effects in community composition indicate that
the fungal communities were spatially structured at the scale of the experiment,
which could account for spatial variations in networks. This poses a fundamental
problem for biomonitoring approaches. The changes we want to monitor, which
are generally large-scale changes in ecosystem functioning induced by human activ-
ities, may not necessarily be those to which microbial communities and networks
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Table II.5: Number of associations shared between network replicates within
each cropping system — conventional (CONV) and organic (ORGA) — de-
pending on the method of network inference. Networks were inferred with SparCC
(Friedman & Alm 2012) or SPIEC-EASI (Kurtz et al. 2015), by aggregating or not the
ASVs at the genus level, and by including various percentages P of the most abundant
ASVs or genera in the network. The number of shared ASVs or genera between the three
network replicates is given into brackets. For every combination of parameters, three
random networks having the same number of nodes and links than the three inferred
networks were simulated. The pseudo p-value is the probability, estimated with 999
simulations, that the three random networks shared more associations than the three
inferred networks (* p<0.05; ** p<0.01; *** p<0.001).

P (%) Network inference at the ASV level Network inference at the genus level

SPARCC SPIEC-EASI SPARCC SPIEC-EASI

ORGA CONV ORGA CONV ORGA CONV ORGA CONV

10 0 (17) 2*** (17) 0 (17) 0 (17) 0 (8) 0 (6) 0 (8) 0 (6)

20 1** (25) 2*** (23) 0 (25) 0 (23) 0 (13) 0 (13) 0 (13) 0 (13)

30 1* (36) 2* (30) 0 (36) 0 (30) 1** (14) 0 (16) 0 (14) 0 (16)

40 1* (42) 3** (44) 0 (42) 1*** (44) 1*(21) 0 (19) 0 (21) 0 (19)

50 1 (48) 3** (53) 1*** (48) 2*** (53) 1* (27) 0 (25) 0 (27) 0 (25)

60 2* (55) 3** (57) 0 (55) 4*** (57) 1* (31) 1* (28) 0 (31) 0 (28)

70 1(60) 3** (63) 1*** (60) 5*** (63) 2** (37) 0 (33) 0 (37) 0 (33)

80 1(63) 7*** (73) 1*** (63) 5*** (73) 3*** (38) 1 (36) 0 (38) 0 (36)

90 0 (71) 4** (75) 1*** (71) 6*** (75) 2* (43) 1 (42) 0 (43) 0 (42)

100 3* (80) 5** (81) 1*** (80) 5*** (81) 2* (47) 1 (47) 0 (47) 0 (47)

respond.
Our study also highlighted a major pitfall of network comparison analyses,

which is the lack of statistical power due to the low number of network replicates.
To evaluate the effect of the cropping system, we had 56 replicates per system at
the community level, but only 3 at the network level. Indeed, several communities
are needed to build a single network. This could explain why all community-level
α-properties, but no network-level α-property, detected changes triggered by the
cropping system. Despite this lack of statistical power, β-properties of microbial
networks differed significantly between cropping systems, revealing a difference in
microbial associations between organic and conventional systems. These differ-
ences were significant when network pairwise comparisons were based on shared
taxa only, suggesting that the differences between organic and conventional net-
works were not only due to the turnover of taxa between cropping systems, but
to re-associations of taxa. Overall, these results show that microbial networks in-
ferred from DNA metabarcoding data can be used to detect changes in ecosystems
if they are analyzed with network comparison tools defined by theoretical ecology
(Pellissier et al. 2018; Poisot et al. 2012). They also suggest that β-properties of
networks are better indicators of change than α-properties.

Our study also allowed us to compare two microbial network inference meth-
ods, SparCC (Fisher & Mehta 2014) and SPIEC-EASI (Kurtz et al. 2015). The
results obtained with the two methods were, overall, encouragingly consistent.
The variability of network replicates within a culture system was very high, re-
gardless of the inference method used. The number of associations per network
was lower with SPIEC-EASI than with SparCC (about 800 vs. 3500), probably
because SPIEC-EASI infers partial correlations, discarding the indirect associa-
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tions retained by SparCC (Kurtz et al. 2015). However the number of associations
shared between network replicates was very low in both cases (less than 5) (Figure
II.4 and A.4). SPIEC-EASI found slightly fewer shared associations than SparCC,
especially when the number of nodes were reduced by filtering on taxa abundance
or taxonomic aggregation. However, the shared associations detected by SPIEC-
EASI had a higher level of significance (Table II.5). These results are in line with
previous benchmarking studies showing the lower performance of SparCC com-
pared to other methods of network inference, including SPIEC-EASI (Röttjers &
Faust 2018; Hirano & Takemoto 2019) even though SparCC seems to work in low
diversity communities (Weiss et al. 2016). Both methods, however, revealed very
similar consensus associations within each cropping system. Nine associations,
in total, were shared by the network replicates and 5 were found by both meth-
ods. Although they involved ubiquitous fungal species that have been frequently
detected on grapevine, such as Aureobasidium pullulans, Epicoccum nigrum and
Cladosporium ramotenellum (Martini et al. 2009; Bensch et al. 2015; Setati et al.
2015; Swett et al. 2016; Dissanayake et al. 2018), these associations were diffi-
cult to interpret due to a lack of knowledge of microbial interactions in natura.
Nevertheless, these results show that the combination of network replicates and
inference methods permits the identification of apparently robust associations be-
tween abundant species, which could be indicative of ecological interactions.

In our study, community-level analyses were found to be more informative, from
an ecological perspective, than network-level analyses. We found that the richness,
diversity and evenness of fungal communities were significantly higher in organic
than conventional vineyards, consistent with the recent findings of Kernaghan et
al. 2017 (but see Castañeda et al. 2018). The cropping system also significantly
affected the composition of grapevine foliar fungal communities, as reported in
previous studies (Castañeda et al. 2018; Kernaghan et al. 2017; Pancher et al.
2012; Schmid et al. 2011; Varanda et al. 2016). For instance, Erysiphe necator,
the causal agent of grapevine powdery mildew, was significantly more abundant in
conventional than in organic plots according to DNA metabarcoding data. These
results were consistent with visual assessments of disease symptoms, indicating
that, despite their numerous biases, metabarcoding data do contain some quan-
titative information useful for monitoring plant disease development (Jakuschkin
et al. 2016; Makiola et al. 2020; Sapkota et al. 2015). The cause for such contrast
in the pathogen abundance is possibly the nature and timing of phytosanitary
treatments, but not the dose or number of applications that was similar in the
two systems (Table A.1). Phytosanitary treatments also influenced several yeast
strains, assigned to the genera Vishniacozyma, Sporobolomyces and Filobasidium,
that were significantly more abundant in organic plots. These yeast genera are
frequently detected on leaf surfaces due to their tolerance of irradiation and they
might influence plant growth by producing plant hormone-like metabolites (Kem-
ler et al. 2017). In addition, Vishniacozyma victoriae (ex Cryptococcus victoriae)
was reported as a biocontrol agent of postharvest diseases (Lutz et al. 2013). Other
yeasts possess valuable features of biocontrol agents inlcuding killer activities for
some Sporobolomyces yeasts (Klassen et al. 2017). The yeasts Vishniacozyma vic-
toriae and Filobasidium wieringae (ex Cryptococcus wieringae) were also reported
as moderate antagonists of several filamentous fungi (Hilber-Bodmer et al. 2017).
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Future research should investigate the interactions between these yeast species and
grapevine foliar pathogens, including powdery mildew.

In the future, we envision that the analysis of microbial interaction networks
in the phyllosphere (i.e. the microbial habitat formed by plant leaves (Vacher
et al. 2016; Vorholt 2012)) will serve the prediction of foliar disease risk in crop
plants. Plant-associated microbial interaction networks can protect plants against
disease (Hassani et al. 2018; Hacquard et al. 2017; Kemen 2014). Resistance to
pathogens is mediated by direct antagonistic interactions between the resident
microbiota and the invading pathogen species (i.e. the barrier effect;Arnold et al.
2003; Kamada et al. 2013; Kemen 2014; Koch & Schmid-Hempel 2011; Laur et al.
2018) and by indirect interactions due to the activation of the host immune system
by the resident microbiota (i.e. the priming effect;Hacquard et al. 2017; Kamada
& Kawai 1989; Perazzolli et al. 2012; Ritpitakphong et al. 2016; Vogel et al. 2016).
The subset of the host-associated microbial network, consisting of a pathogen
and its interacting partners has been termed the pathobiome (Brader et al. 2017;
Vayssier-Taussat et al. 2014). To better understand and predict disease risk, we
should identify the microbial interactions forming pathobiomes (Durán et al. 2018)
and the intrinsic network properties that hinder invasion by pathogens (Agler et
al. 2016; Murall et al. 2017; Poudel et al. 2016). NGB will require the monitoring
in real-time of these properties, based on the automated sequencing on leaf DNA.
However, our study shows that statistical network inference, as currently based
on a limited sampling effort, generates very few robust hypotheses for microbial
interactions, limiting its use to monitoring the disease regulation services provided
by the microbiota.

To conclude, here we have demonstrated that microbial networks, automat-
ically inferred from DNA metabarcoding data at the ASV level (Callahan et al.
2016) with classical methods of statistical network inference such as SparCC (Fried-
man & Alm 2012) or SPIEC-EASI (Kurtz et al. 2015), and then compared using
frameworks defined by theoretical ecologists (Pellissier et al. 2018; Poisot et al.
2012), can detect ecosystem change and therefore have a role to play in NGB ap-
proaches. Our results suggest that network β-properties were better indicators of
change than network α-properties and should be preferred in future developments
of NGB. We also showed that keeping the sequence data at the ASV level, rather
than aggregating them at higher taxonomic levels, was preferable because it in-
creased the replicability of the networks within a system. In our study, however,
inferred networks were highly variable within a system whatever the method of
network inference. Network replicates shared more associations than random net-
works of the same size, but the few shared associations involved only the most
abundant ASVs and contained little ecological information on the functioning of
the ecosystem. Future research in microbial network inference should therefore im-
prove the replicability and interpretability of networks by, for instance, inferring
ecological interaction types rather than positive and negative associations between
microorganisms. Mutual information approaches, based on maximal information
coefficients (MIC; Reshef et al. 2011) could overcome this dichotomy although
these approaches have not stood out in the inference benchmarkings done to date
(Hirano & Takemoto 2019; Weiss et al. 2016). All functional and ecological knowl-
edge available on microorganisms needs to be gathered in databases (Louca et al.
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2016; Nguyen et al. 2016a; Větrovský et al. 2020and integrated into network in-
ference processes. In a study of trophic networks, Bohan et al.(2011) showed that
logic-based machine learning is a promising tool to integrate background knowl-
edge to network inference. Future research should investigate the relevance of this
approach to microbial network inference. In our study, community-level analyses
of DNA metabarcoding data were more statistically powerful than network-level
analyses, because many samples were needed to build each network, and this re-
duced the number of network replicates by comparison with community replicates.
The number of samples recommended in the literature for building a single net-
work varies, from 25 (Berry & Widder 2014) to 200 (Hirano & Takemoto 2019).
Our study shows that networks built from fewer samples (20 in the present case)
can nevertheless detect ecosystem change, although we would advise more samples
to increase the robustness of the inferred networks. In contrast to network-level
properties, all community-level properties detected ecosystem change and provided
information important for our understanding of the ecosystem functioning, such
as for instance the higher microbial diversity and lower pathogen abundance under
organic farming. Community-level analyses should therefore not be discarded in
future developments of NGB, that will have to rely on very large DNA metabarcod-
ing datasets combined with functional databases to fully benefit from network-level
approaches.
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Chapter III

Using a Logic-based approach to
infer interactions from simulated
DNA data
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Machine learning of microbial interactions
using Abductive ILP and Hypothesis
Frequency/Compression Estimation

Didac Barroso-Bergada, Alireza Tamaddoni-Nezhad, Stephen H. Muggleton,
Corinne Vacher, Nika Galic, David A. Bohan

Abstract:
Interaction between species in microbial communities plays an important role in
the functioning of all ecosystems, from cropland soils to human gut microbiota.
Many statistical approaches have been proposed to infer these interactions from
microbial abundance information. However, these statistical approaches have no
general mechanisms for incorporating existing ecological knowledge in the inference
process. We propose an Abductive / Inductive Logic Programming (A/ILP) frame-
work to infer microbial interactions from microbial abundance data, by including
logical descriptions of different types of interaction as background knowledge in the
learning. This framework also includes a new mechanism for estimating the prob-
ability of each interaction based on the frequency and compression of hypotheses
computed during the abduction process. This is then used to identify real inter-
actions using a bootstrapping, re-sampling procedure. We evaluate our proposed
framework on simulated data previously used to benchmark statistical interaction
inference tools. Our approach has comparable accuracy to SparCC, which is one
of the state-of-the-art statistical interaction inference algorithms, but with the the
advantage of including ecological background knowledge. Our proposed frame-
work opens up the opportunity of inferring ecological interaction information from
diverse ecosystems that currently cannot be studied using other methods.

Keywords /Inductive Logic Programming (A/ILP), Interaction Network In-
ference, Machine learning of ecological networks, Hypothesis Frequency Esti-
mation (HFE)

1 Introduction
Networks of interactions between species of microbes are believed to drive many of
the biological functions that determine effects as diverse as soil health, crop growth,
and plant and human disease. Next generation sequencing of DNA samples taken
from microbial communities can produce lists of those species present and metrics
for their abundance, by treating the number of each sequence type in the sample
either as absolute or relative counts. Inferring networks from these data could
yield important results, improving our ability to manage these systems and issues
(Vacher et al. 2016). For example, learning interactions of competition or predation
of a disease-causing microbial agent could be used to identify species for biological
control, and the chemistry that is involved could lead to the development of new
drugs (Golubev 2006). Current approaches to reconstructing ecological networks of
interaction between microbial species use statistical learning to infer the presence of
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an interaction via correlation. Human experts subsequently interpret whether the
correlation indicates an interaction between the two correlated microbial species,
such as competition or predation.

Abductive/Inductive Logic Programming (A/ILP) was previously used to au-
tomatically generate plausible and testable food webs from ecological census data
(Tamaddoni-Nezhad et al. 2012). The approach in Tamaddoni-Nezhad et al.
(2012) (Tamaddoni-Nezhad et al. 2012) also included a probabilistic approach,
called Hypothesis Frequency Estimation (HFE) for estimating probabilities of hy-
pothetical trophic links based on their frequency of occurrence when randomly
sampling the hypothesis space. Through a review of the literature, it was found
that many of the learned trophic links are corroborated by the literature. In par-
ticular, links ascribed with high probability by machine learning are shown to
correspond well with those having multiple references in the literature. In some
cases novel, high probability links were suggested, some of which were subsequently
tested and confirmed in empirical studies (Tamaddoni-Nezhad et al. 2013).

In this paper we extend the A/ILP and HFE approaches in Tamaddoni-Nezhad
et al. (2012) (Tamaddoni-Nezhad et al. 2012) for the purpose of learning microbial
interactions. We will describe the existing context on interaction inference, detail
the A/ILP based inference method and evaluate this method with a benchmark
dataset. We also compare our results with SparCC, which is a state-of-the-art
statistical interaction inference algorithm.

2 Background and related work
Microbial ecologists have clear criteria for interactions between species that can
readily be transcribed into logical statements. In effect, past or ongoing interac-
tions between two microbial species will have led to changes in the abundance of
one or both species. Conceptually, therefore, two species might have undergone
or might be undergoing an interaction if there is some pattern to the changes of
the two species across a data-set. Thus, if one of the species always increases or
decreases in abundance in the presence of the other, microbial ecologists might
hypothesize an interaction between the two species. The ecological mechanisms
of these interactions, along with their expected changes in abundance of the two
species, have previously been described in Derocles et al. (2018) (Derocles et al.
2018) as shown in Table III.1.

In this paper we extend the A/ILP approach in Tamaddoni-Nezhad et al.
(2012) (Tamaddoni-Nezhad et al. 2012) with logical statements for putative micro-
bial interactions included as background knowledge, to infer ecological interactions
directly, with less or even without the intervention of humans at the interpretation
step. This direct approach would be particularly valuable for reconstructing mi-
crobial networks in previously unstudied ecosystems where human knowledge for
interpretation may effectively be non-existent (Figure III.1).

In this paper we also extend the Hypothesis Frequency Estimation (HFE) ap-
proach introduced in Tamaddoni-Nezhad et al. (2012) (Tamaddoni-Nezhad et al.
2012). Microbial ecologists rely on statistical probability estimates, typically at
the conventional 5% significance level, to evaluate the importance of a correla-
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Table III.1: Type of interactions in function of the changes in abundance
following Derocles et al. 2018.

Type of inter-
action

Effect on
Species
1 abun-
dance

Effect on
Species
2 abun-
dance

Nature of interaction

Mutualism Up Up Mutual benefits of the species

Competition Down Down Species have negative effect on
each other

Predation; Para-
sitism Up Down Parasite develops at the ex-

pense of the host

Commensalism Up Null Species 1 benefits while
Species 2 is not affected

Amensalism Down Null
Species 2 has a negative effect
on Species 1, but Species 2 is
not affected

Figure III.1: Description of the interaction inference process. Microbial com-
munities are shaped by the interaction between their members. DNA sequencing together
with bioinformatic processes allow estimation of the abundance of the different microbes
present in the communities. Using the abundance information from different communities
as training examples, and the rules of interaction as background knowledge, it is possible
to infer an interaction network that generalizes the interactions between microbes.
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tional link between any two microbial species (Röttjers & Faust 2018). Most ILP
approaches, including HFE rely on coverage based measures such as ’compression’
for selecting hypotheses.

The problem we try to address here is whether compression can be evaluated
within a statistical framework that meets the needs of microbial ecologists, to a
degree that might be sufficient to convince them of the statistical importance and
veracity of any learned interaction. In particular, we explore an extension of HFE
where both the frequency and the compression of the hypotheses are considered
within an statistical framework.

Benchmarking statistical learning approaches for inferring correlational links
have used simulated data-sets. For example, Weiss et al. (2016) (Weiss et al.
2016) produced simulated microbial data-sets to benchmark the ability of different
statistical methods, such as SparCC (Friedman & Alm 2012) and CoNet (Faust
& Raes 2016), to detect different interaction types via correlation. In this paper
we use the method of Weiss et al. (Weiss et al. 2016) to simulate ecological-
like replicated data-sets of interactions, of given interaction strengths. We then
use ILP to evaluate the presence of the simulated interactions, as a known set of
expectations. Our specific goals are to: determine the most sensitive parameter of
compression for recovering an interaction, given a discrete number of permutations;
and, evaluate the probabilistic significance of the compression parameter using a
form of bootstrapping.

3 Methods

3.1 Logical description of microbial interactions

A microbial interaction can be defined as a conserved effect on the abundance of
one microbial species caused by the presence of another microbial species. Thus,
the aim of the abductive procedure is to infer interactions, following ecological
theory to explain the observed changes in the abundance of the species. To do
this, the first step is to reflect the abundance changes between communities of each
species using logical statements, following the form: abundance(C1, C2, S1, Dir).
Here C1 and C2 symbolize two different community samples where species S1 is
present and Dir the change in direction of abundance. To calculate the change in
direction, the abundances of a species in the two different samples are compared
using a Pearson Chi-square test. The test uses the total, summed abundance of
all species in a community as the total population and checks the independence
of the abundances of the species between the two samples. Where the species
counts are found to be independent an abundance change is deemed to exist. An
increase is symbolized as an up (↑) and a decrease as a down (↓). Where the
species abundances are not independent between the two samples, a no abundance
change condition is symbolized as zero (0). The presence of each species is also
converted to logical clauses with the structure: presence(C1, S2, yes/no) where C1
refers to a sample community, S2 to a species and yes/no describes if S2 is present
in C1 or not.

The abundance change and presence logical statements are used as observations
in an abduction process conducted using the A/ILP system Progol 5.0 (Muggleton
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1995). The effect on species abundances, either up or down, is described as the
change in abundance of one species, S1, due to a second species, S2, when they
co-occur in a community, C2. To ensure that the change is caused by S2 it is
necessary to evaluate the abundance changes observed in communities where only
S2 is present, C1, to communities where both co-occur, C2.

abundance(C1, C2, S1, up) : −
presence(C2, S2, yes),

presence(C1, S2, no),

effect_up(S2, S1).

abundance(C1, C2, S1, down) : −
presence(C2, S2, yes),

presence(C1, S2, no),

effect_down(S2, S1).

(III.1)

Progol5.0 uses a standard covering algorithm to conduct the abduction process
where each observation is generalised using a multi-predicate search. This search
is carried out over all the predicates associated with ’modeh’ declarations, or ab-
ducible predicates, effect_up and effect_down. These two abducible predicates
limit the possible variations in abundance that a species can experience due to
the effect of another species. The search for the best hypotheses is guided by an
evaluation function called ’compression’ which is defined as follows:

f = p− (c+ n) (III.2)

where p is the number of observations (training examples) correctly explained by
the hypothesis (positive examples), n is the number incorrectly explained (negative
examples) and c is the length of the hypothesis (in this study, always 1 because
the hypothesis is a single fact).

At the end of the abduction process, a list of ground hypotheses with the form
effect_up/down(S2,S1) is returned, each hypothesis being supported by a compres-
sion value f . Implementations of A/ILP usually consider hypotheses with positive
compression values. However, compression also offers a quantitative measure of
information that can be used to discriminate between true and false interactions.
For this purpose, first it is necessary to normalize compression values to a common
scale. This is because while some species may not be present in all communities due
their different random distribution. It is also possible that negative interactions
reduce the abundance of a species to zero. Hence, each species will experience un-
even combinations of abundance change mechanisms that require normalization.
The normalization is performed using the logarithmic co-occurrence/occurrence
ratio of the interacting species.

For an interaction between S1 and S2 to exist, there must be a consistent and
constant effect, either up or down, on at least one of the species over all com-
munities. Hence, we use the probabilistic estimator I supporting the interaction
between S2 and S1 as defined below:
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IS2,S1 = |fup(S2, S1)− fdown(S2, S1)| (III.3)

Compression is dependent on the order in which abundance clauses used as
observations are supplied, due to the predicate search process that uses observa-
tions as seeds. To obtain reliable compression values, it is necessary to perform the
inference several times, permuting randomly the order of examples to obtain differ-
ent sampling of the hypothesis space. The permutation process will produce a set
of possible effects and a corresponding compression value for each pair of species.
Effects can be present in all the samples of the hypothesis space or just one part.
Thus, it is necessary to define an approach to use the output of the abduction pro-
cess, after sampling the hypothesis space, as a probabilistic measure. The HFE
approach (Tamaddoni-Nezhad et al. 2012) estimates probabilities for hypothetical
links in ecological networks, based on their frequency of occurrence when randomly
sampling the hypothesis space. In this approach, the compression value was not
taken into account to obtain a probabilistic measure of interaction. We propose
a different method here that extends HFE to compute a probabilistic estimator
I from the values of compression values f . In place of using the frequency of
hypotheses with positive compression over all re-samples, here a function func is
applied to the f values to obtain an estimator I which summarizes the information
contained in all the samples.

IS2,S1 = |func(fup(S2, S1)1,...,n)− func(fdown(S2, S1)1,...,m)| (III.4)

In the experiments in this paper, we examined the following func functions to
obtain the estimator, I:

• Frequency = HFE is computed for each effect.

• Independent permutations = Where there is more than one compression
value in a permutation, the sum is computed. Maximum values for each
interaction among all permutations are retained.

• Maximum = Compression values from all permutations are pooled. Then,
maximum compression is selected for each effect.

• Sum = Compression values from all permutations are pooled. Then, com-
pression is summed for each effect.

3.2 Bootstrapping

Having a probabilistic measure of the likelihood of an interaction is critical for
ecologists to interpret the networks resulting from interaction inference. This
should allow the selection of those interactions that are realistic and might then
be tested in cost- and time-expensive laboratory experiments. The most intuitive
selection method would establish a threshold for the estimator value. However,
most of the ecological systems where A/ILP interaction inference could help are
poorly described and there are no references to guide selection of such a threshold
(Röttjers & Faust 2018).
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It is a common assumption that the interaction networks shaping microbial
communities are sparse. This means that the number of interactions of each species
is only a small fraction of the total set of interactions that are possible. Thus, where
the estimator value of the observed interactions, I, is greater than the values of
non existing interactions, it is possible to assess the statistical significance of an
interaction using a bootstrapping procedure. Statistical bootstrapping is a method
of re-sampling a dataset to create new simulated datasets (Efron & Tibshirani
1993). Let d be all the compression values for effect up and effect down, involving
at least one of the potential interacting species S1 and S2, the real final estimator
value, I0, is obtained by applying equation III.4 to n compression values that
support an effect up of S2 on S1 and m compression values that supports and
effect down of S2 on S1. The bootstrapping procedure re-samples compression
values in d to obtain two new sets of values dup∗ and ddown∗ of n and m lengths,
respectively. Then, an alternative estimator value Ia is obtained applying equation
III.4 to dup∗ and ddown∗. If the re-sampling process is repeated B times, a pseudo
p-value can be computed for the potential interaction between S1 and S2 averaging
the simulated values Ia that are bigger than I0 (Li et al. 2009).

I0 = |func(fup(S2, S1)1,...,n)− func(fdown(S2, S1)1,...,m)|
Ia = |func(d∗up1,...,n)− func(d∗down

1,...,m)|

p− value =
B∑

b=1

{(Iab ≥ I0)}/B
(III.5)

3.3 Simulated data-sets

The aim of ILP based network inference is to use logical descriptions of interactions
to detect and classify those interactions between species as a function of the eco-
logical mechanism that drives them. Hence, a simulation model to generate test-
datasets should follow the different ecological mechanisms that they are simulating
(Faust & Raes 2012). Information required for network inference is structured in
tables, where each row contains the information for a species and each column con-
tains the information for a microbial community. Each cell summarizes the count
of individuals of each species in each community (abundance). Weiss et al. (2016)
(Weiss et al. 2016) proposed a simulation model to create computer-generated ta-
bles including the effects of ecological-like, linear interactions. The model uses
the log-normal distribution to simulate the abundance of non-interacting species
in a set of microbial communities or samples. The log-normal distribution has
been shown to appropriately model the abundance distributions of microbial com-
munities (Shoemaker et al. 2017). Interactions are then introduced by modifying
the abundance of species in accordance with the different ecological mechanisms
(Faust & Raes 2012). For any two species, say S1 and S2, the abundance modifi-
cations only happen in communities where the species co-occur. The abundance
modification is based on the effect that S2 has on S1. If the effect is positive,
the abundance of S1 increases as a function of the abundance of S2, modulated
by a strength of the interaction. If the effect is negative, the abundance of S1 is

73



  

Observations
abundance(c1,c32,s1,down).
abundance(c50,c11,s26,down).
abundance(c46,c11,s8,up).
abundance(c25,c13,s32,up).
abundance(c20,c18,s2,up).
abundance(c41,c44,s30,up).
abundance(c5,c32,s31,down).
presence(c19,s5,no).
presence(c17,s1,yes).
presence(c20,s22,yes).
presence(c34,s6,yes).

Ecological Theory
abundance(C1,C2,S1,up):-
presence(C2,S2,yes),
presence(C1,S2,no),
effect_up(S2,S1).

abundance(C1,C2,S1,down):-
presence(C2,S2,yes),
presence(C1,S2,no),
effect_down(S2,S1).

Abduced effects
effect_up(s9,s15,15854).
effect_up(s18,s21,18725).
effect_up(s11,s12,6197).
effect_up(S19,s20,904).
effect_down(s21,s3,2504).
effect_down(s5,s22,4016).
effect_down(s32,s1,9878).

Inferred interactions 
interaction(s18,s21).
interaction(s5,s22).
interaction(s32,s1).

Figure III.2: Summary of the inference process of microbial interactions us-
ing A/ILP. Observations are obtained assessing the abundance change between OTUs.
The ecological theory describes how the presence of an OTU can affect the abundance
of a second OTU. Abduction is performed using the observations and theory. Signif-
icant interactions are assessed by bootstrapping the compression value from different
permutations of observations

decreased following a similar mechanism. In the case that the interaction affects
both species, their abundance is modified in parallel.

Using the method proposed in Weiss et al. (2016) (Weiss et al. 2016) we
generated three tables containing the abundances of 16 pairs of interacting species
in 100 communities. The tables were simulated using interactions of different
strength values (2, 3 and 5), and four different ecological mechanisms: amensalism,
commensalism, competition and mutualism (Derocles et al. 2018).

3.4 Compositionality and bias

Modern sequencing technologies allow us to recover information about microbial
communities from samples of environmental DNA. As noted in Section 1, the
number of times that a DNA sequence from a species is ’read’ in a sample can be
used as a measure of abundance or count. A sequencer can only read a limited
number of sequences in a sample, and these are shared amongst species, imposing a
compositional bias on the data (Gloor et al. 2017). Thus, to generate ecological-like
microbial tables it is necessary to re-introduce compositionality into the simulated
data-sets. To do this, we normalized the sequencing depth as probabilities in a
multinomial distribution and then sampled the distribution to obtain the simulated
counts across a common sequencing depth.
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4 Experimental evaluation
The performance of the A/ILP based microbial inference (Figure III.2) is evaluated
using the computer-generated datasets. First, it is tested the number of samples
of the hypothesis space and the different functions used to obtain the I statistic.
Then the best setting found in the first experiment is used to asses the performance
of the bootstrapping procedure compared with a threshold for I and SparCC. The
simulated data and the code used to perform the experimental evaluation have
been included in a public repository1.

4.1 Experiment 1

Null Hypothesis 1:

Using the estimator I as defined in (III.4) using different functions does not lead to
higher accuracy over the frequency-based approach HFE for predicting microbial
interactions.

Materials and Methods:

The three computer-generated tables described in section 2.1, computed using
the methodology of Weiss et al. (2016) (Weiss et al. 2016), are used to test the
performance of functions used to obtain the estimators. 100 abductions of possible
effects are performed for each table. The observations produced from the tables
are randomly permuted at each execution. The logical description of effect is used
as background knowledge. Then the estimators are obtained using the different
functions described previously.

Since the interactions that drive the abundances of the computer-generated
tables are known, it is possible to treat interaction inference as a classification
problem. Interactions can be classified between existing and non existing and
the estimator values obtained using the different functions are the classification
accuracy. Thus, the area under the curve (AUC) of the true positive rate against
the false positive rate (ROC curve) can be used as a measure of performance. AUC
is computed for all functions at n permutations = 1, 5, 10, 25 and 50. An ANOVA
test is performed together with a Tuckey’s range test to asses the significance of
differences of AUC values between all functions.

Results and Discussion:

AUC values for the different methodologies to obtain estimators and number of
permutations are displayed in Figure III.3. As expected, values of AUC increase
as the number of permutations used for the inference increases. These stabilize
at around n = 50 permutations. AUC values are similar where the strength of
interaction is reduced, being significantly lower at the highest strength. This can
be explained by the low performance of the logical model in describing the specific
case of a negative interaction reducing the abundance of a given species to 0, the
likelihood of which increases with stronger interactions. This ecological process,

1https://github.com/didacb/Machine-learning-of-microbial-interaction
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Figure III.3: Area under the ROC curve values (AUC) obtained using differ-
ent number of permutations. Each plot shows the AUCs obtained for interactions of
different strengths. Each line represents a method used to obtain the estimators. Error
bars show the standard deviation of the means.

76



called exclusion, greatly reduces the co-occurrence between species and, as a con-
sequence, the information available to infer an interaction. Maximum compression
used to obtain I is the metric that gives the highest values of AUC, for any given
number of permutations and interaction strengths. HFE, Sum and independent
permutations have similar AUC values at strength 2 and 5 while the independent
permutation method performs best at strength 3. The ANOVA shows that all
functions have significantly different AUC values, except independent permuta-
tions and HFE at strength 2. Consequently, the null hypothesis can be rejected
because the method using the maximum compression values to obtain I performs
better than HFE in all cases.

4.2 Experiment 2

Null Hypothesis 2:

The bootstrapping procedure described in Sec 3.2 leads to lower accuracy compared
to the optimal threshold and other statistical methods for interaction inference.

Materials and Methods:

The Bootstrapping procedure is conducted using the three computer generated
tables used in the preceding experiment. The procedure uses the maximum com-
pression to obtain the I estimator. Two different bootstrapping techniques are
evaluated: ordinary and strata. Ordinary bootstrapping performs the bootstrap-
ping independently on all compression values while the strata method constrains
the bootstrapping to compression values by effect. Interactions with p value < 0.05
are considered to exist. Bootstrapping accuracy is compared with the accuracy of
prediction using an optimal threshold for I estimator. The optimal threshold met-
ric is obtained automatically from the ROC curves of the preceding test using the
pROC R package best threshold method (Robin et al. 2011). To have a reference
for comparing the performance of A/ILP inferring interactions, the interaction
inference was also performed using SparCC (Friedman & Alm 2012), a widely
used statistical inference tool. The process was performed using the FastSpar 1.0
implementation (Watts et al. 2018) with default parameters.

Results and Discussion:

Accuracy measures are displayed in Table III.2. Ordinary bootstrap presents bet-
ter accuracy than strata bootstrap at strength = 2 and 3, while strata performs
better at strength = 5. However, ordinary bootstrap allows the detection of a
larger number of true positives in contrast to strata. We believe this to be the
better option to use for detecting interactions, therefore. In all cases bootstrap
accuracy is higher than the optimal threshold accuracy. Bootstrapped A/ILP sen-
sitivity values are significantly lower than SparCC at all strengths. However, the
specificity values are slightly higher. Thus, SparCC has a greater number of false
positives, while A/ILP generates a higher number of false negatives. This produces
similar accuracy measures for SparCC and bootstrapped A/ILP, independent of
the interaction strength. We therefore reject the null hypothesis.
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5 Discussion and conclusion
This work proposes a framework to infer ecological-like microbial interactions that
allows us to use abundance information and descriptions of interactions as logic
statements for obtaining a probabilistic measure of the significance of a given inter-
action, based on compression values. By using logical descriptions of interactions,
microbial ecologists can apply their knowledge not only to the interpretation of
results but also to the inference process itself.

Tamaddoni-Nezhad et al. (2013) (Tamaddoni-Nezhad et al. 2013) showed how
the introduction of ecological expertise (in the form of background knowledge)
to the interaction inference can lead to interesting results for invertebrate food
webs, and we believe that the work presented here will facilitate similar results for
microbial networks.

Interactions between species can be driven by different mechanisms, thus it
is necessary to obtain a common quantitative measure of these interactions for
appropriate ecological interpretation. Statistical relation learning (SRL) has been
used to obtain quantitative measures using ILP-like representations and inference
(Getoor & Taskar 2007). However, most of the cases where SRL has been used
requires probabilistic data, where each observation has an associated probability.
However, the observations obtained from NGS data are purely deterministic; a
species is either present or not in a given community, and its abundance in this
community is also an invariable number. Other authors have proposed different
methods to perform probabilistic approaches to deterministic data, such as us-
ing a binary matrix obtained from a deterministic process to obtain a support
vector machine (Amini et al. 2007). The idea of using compression as a prob-
abilistic estimation was also used by Bryant et al. (2001) (Bryant et al. 2001)
in their implementation of ASE-Progol. ASE-Progol uses compression to select
between contradictory candidate hypothesis. Tamaddoni-Nezhad et al. (2012)
(Tamaddoni-Nezhad et al. 2012) developed the Hypothesis Frequency Estimation
approach for sampling and estimating the probability of abductive hypotheses. We
extended this idea to use the value of compression as a measure for estimating the
likelihood of any given interaction. To do this, it is necessary to sample the hy-
pothesis space enough times to ensure that the distribution of compression values
obtained for each interaction is representative of all the possible values. Our first
experiment showed that a re-sampling of 50 times is enough in a setting involving
32 species and 50 communities, given that the AUC values obtained using a larger
sampling were not significantly different. This experiment also showed that re-
taining the maximum compression values among all hypothesis space samples has
greater accuracy than using the HFE, or the other numeric metrics of compres-
sion tested, independent of the strength of interactions. This is consistent with
the predicate search algorithm of Progol5.0 which selects the hypothesis with the
maximum compression from all possible hypotheses (Muggleton & Bryant 2000).
Lastly, it is important to note that the AUC values decreased in all cases where
the interactions were strong enough to cause exclusion (Derocles et al. 2018). In
future applications of A/ILP-based interaction inference, it will be important to
incorporate logical rules describing exclusion in the learning.

Bootstrapping is a statistic technique used in many areas of knowledge dis-
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covery. It has also been applied in statistical inference of interactions (Friedman
& Alm 2012). We showed that the bootstrapping procedure has better accuracy
values than the optimal thresholds obtained using ROC curves. Thus, it is pos-
sible to use this procedure for real data, where the interactions are unknown and
the ROC curves cannot be used. Even though bootstrapping offers good accu-
racy and specificity measures, the sensitivity of inference is insufficient to detect
all true interactions. As noted previously, this is in part related to the effect of
interaction-derived exclusion of one or both species. It is also due to a restrictive
effect of the bootstrapping procedure. Where the bootstrapping is constrained
by the effect of abundance, leading to a low number of examples, the sensitivity
is low. It is expected that, in real cases where each species interacts with more
than one species providing more high compression values for the bootstrapping,
the sensitivity will increase.

Weiss et al. (2016) (Weiss et al. 2016) used their method of generate ecological-
like datasets, as described in section 3.3, to benchmark many of these interaction
inference tools. Comparing the results obtained by SparCC in Weiss et al. (2016)
(Weiss et al. 2016) and in this work, a reduction in the number of interacting
species reduced specificity and increased sensitivity. However the accuracy values
remained similar. A/ILP inference using bootstrap obtained accuracy measures
in the same range as SparCC, using the same computer-generated data. This
accuracy can be further improved by expanding the range of logical descriptions
to other ecological effects and interactions, such as exclusion. Also, it makes
it possible to include other sources of biological and ecological information from
existing databases as background knowledge.

Our work shows that A/ILP can be used to infer ecological interactions accu-
rately from computer-generated datasets, using an estimator obtained from com-
pression as a numeric measure of interaction and a bootstrap procedure to detect
true interactions. Hence, A/ILP interaction inference has the potential to become
a valuable tool for microbial ecologists for the inference of ecological interactions.
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Table III.2: Performance of the bootstrapping estimator compared with op-
timal threshold obtained from the ROC curve and SparCC. The three datsets
used for the interaction inference have 16 real interactions over 496 possible interactions.

Strength 2

Optimal threshold Ordinary Bootstrap SparCC

Total 40 13 26

TP 13 9 12

FP 27 4 14

TN 453 476 466

FN 3 7 4

Sensitivity 0.812 0.562 0.75

Specificity 0.944 0.992 0.971

Accuracy 0.94 0.978 0.964

Strength 3

Optimal threshold Ordinary Bootstrap SparCC

Total 69 7 31

TP 14 6 11

FP 55 10 20

TN 425 479 460

FN 2 10 5

Sensitivity 0.875 0.375 0.688

Specificity 0.885 0.998 0.958

Accuracy 0.885 0.978 0.95

Strength 5

Optimal threshold Ordinary Bootstrap SparCC

Total 50 27 40

TP 12 10 13

FP 38 17 27

TN 442 463 453

FN 4 6 3

Sensitivity 0.75 0.625 0.812

Specificity 0.921 0.965 0.944

Accuracy 0.915 0.954 0.94
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Chapter IV

Logic-based inference of ecological
interactions from environmental
DNA data
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Explainable inference of the diversity of
microbial interactions. Unravelling the
Dark Web: explainable inference of the

diversity of microbial interactions
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Vacher, Nika Galic, David A. Bohan

Abstract:
The functional diversity of microbial communities emerges from a combination
of the great number of species and the many interaction types, such as com-
petition, mutualism, predation or parasitism, in microbial ecological networks.
Understanding the relationship between microbial networks and the services and
functions delivered by the microbial communities is a key challenge for Microbial
Ecology, particularly as so many of these interactions are difficult to observe and
characterize. We believe that this ’Dark Web’ of interactions could be unrav-
elled using an explainable machine learning approach, called Abductive/Inductive
Logic Programming (A/ILP) in the R package InfIntE, which uses mechanistic
rules (interaction hypotheses) to infer directly the network structure and interac-
tion types. Here we attempt to unravel the dark web of the plant microbiome
using metabarcoding data sampled from the grapevine foliar microbiome. Using
synthetic, simulated data, we first show that it is possible to satisfactorily recon-
struct microbial networks using explainable machine learning. Then we confirm
that the dark web of the grapevine microbiome is diverse, being composed of a
range of interaction types consistent with the literature. This first attempt to use
explainable machine learning to infer microbial interaction networks advances our
understanding of the ecological processes that occur in microbial communities and
allowed us to infer specific types of interaction within the grapevine microbiome
that could be validated through experimentation. This work will have potentially
valuable applications, such as the discovery of antagonistic interactions that might
be used to identify potential biological control agents within the microbiome.

Keywords Explainable AI, Abduction, Microbial Interactions, Networks

1 Introduction

1.1 The Dark Web of microbial communities

The high taxonomic, morphological and functional diversity of microbial commu-
nities (Konopka 2009) emerges from a combination of the great number of species
and the many interaction types in the ecological networks of the microbiome.
These ecological interactions, typically involving metabolites produced or used by
the interacting species (Tshikantwa et al. 2018), result in economically and socially
important ecosystem services and functions, including biofilm formation (Magana
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et al. 2018), nitrogen fixation (Shrestha et al. 2007) and disease regulation (Ishaq
2017; Hacquard et al. 2017), and structure the communities of microbial organisms
observed in nature (Faust & Raes 2012). The abundance of any two species in a
community will be determined by whether they participate in a pairwise inter-
action and the precise ecological interaction type, as well as being influenced by
other biotic and abiotic factors (de Vries et al. 2012). Where the abundance of
both species is observed to decline, this might be hypothesised to come about as
a result of a competitive interaction. Predation can lead to an increase in abun-
dance of one species at the expense of the other (Faust & Raes 2012), although
the dependence of the predator on the prey might mask this effect (Derocles et al.
2018). Mutualistic interactions might result in both species increasing in abun-
dance, while amensalism and commensalism will cause a differential benefit or cost
to the abundance of only one of the species. It is the mixture of all these different
interactions, acting between all species in the ecological network simultaneously,
which determines the species richness, diversity patterns, functions and dynamics
of the microbial community.

Understanding the relationship between microbial interactions and the services
and functions delivered by the microbiome is a key challenge for Microbial Ecol-
ogy. We expect, for example, that interactions such as competition or predation
that might result in declines in the abundance of species will be associated with
ecosystem services, such as biological control of microbial pathogens (Musetti et al.
2007; Poveda et al. 2021). The great challenge is that these interactions can be
difficult to evaluate directly, due to the complexities of observing microbial species
in-situ or to the difficulties of culturing microbial species in the laboratory (Wu
et al. 2019; Crhanova et al. 2019), rendering estimation of species presence and
abundance difficult. Many microbial taxa remain unknown to science, forming
what has been termed a microbial "Dark Matter" (Marcy et al. 2007). As a conse-
quence, many of the interactions of microbial ecological networks are unobserved;
they are ’Dark Webs’ that with the additional problems of observing microbial
species contribute to our poor understanding of these systems. This limits our
ability to advance the science of the microbiome. In this paper, we attempt to
unravel the dark web of the microbiome using direct inference of specific types of
ecological interactions from DNA metabarcoding data.

1.2 Inferring microbial correlation networks

Analysis of microbial species and communities in situ has been greatly facilitated
by metabarcoding surveys of environmental DNA samples amplified using generic
primers for particular taxonomic groupings (Thomsen & Willerslev 2015; Ruppert
et al. 2019). The process of sequencing the sampled eDNA yields information
on the number of DNA copies of each sequence that with care can be treated
as quantitative information for the count of the different taxa in the microbial
community. Pipelines like VSEARCH (Rognes et al. 2016) cluster the counts into
operational taxonomic units (OTU) in each sample by their similarity (Pauvert
et al. 2019), under the assumption that sequences with the greatest similarity
represent phylogenetically similar organisms (He et al. 2015). Other pipelines, like
Dada2 (Callahan et al. 2016), find amplicon sequence variants (ASVs), identical
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Table IV.1: Interactions types as described in Derocles et al. 2018. (Derocles
et al. 2018)

Type of Inter-
action

Effect
on

taxa A
abun-
dance

Effect
on

taxa B
abun-
dance

Description

Amensalism 0 ↓ Taxa A causes a decrease on the
abundance of taxa B without suf-
fering any effect on the abun-
dance

Commensalism 0 ↑ Taxa B increases its abundance
thanks to the effect of Taxa A

Competition ↓ ↓ Both taxa abundance decreases
by the effect of the other. This
can be caused by direct com-
petition (directly harming the
other taxa) or exploitation com-
petition (they need the same re-
source an in consequence there
is less available)(Fredrickson &
Stephanopoulos 1981).

Mutualism ↑ ↑ The abundace of both taxa in-
creases by the effect of the other.

Neutralism 0 0 Both taxa co-occur but there is
no effect on their abundance, and
therefore, no interaction.

Parasitism or
Predation

↑ ↓ Taxa A develops at the expense
of taxa B.
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sequences which could vary due possible sequencing errors.
DNA sequencers can only process a given number of DNA sequences in any

given metabarcoding run and the environmental samples within a run are usually
equimolarly pooled before sequencing. As a consequence, each sample theoret-
ically receives the same number of sequences, whatever the initial abundance of
the species composing it. The sequencing data produced is therefore compositional
(Gloor et al. 2017), reflecting the relative abundance of the species within each
sample but not their absolute abundance. The inherent biases of compositional
data are typically controlled for by applying log-transformations to the sequence
count data. SparCC (Friedman & Alm 2012) infers networks using linear Pear-
son correlation between the log-transformed components, for example. CCLasso
uses Lasso to infer the correlation network (Fang et al. 2015) and SPIEC-EASI
uses inverse covariance or neighbourhood selection and StARS to obtain the most
stable network (Kurtz et al. 2015; Liu et al. 2010). PLN-network uses the Poisson-
LogNormal model, where sequence counts follow Poisson distributions, and intro-
duces sequencing depth as an offset. Then, uses different model selection methods
like StARS or EBIC (Chiquet et al. 2019).

Statistical associations between counts has been used to infer possible interac-
tions between OTUs, and to hypothesise microbial networks (Faust & Raes 2012;
Weiss et al. 2016; Röttjers & Faust 2018). The frameworks for network inference,
such as those described above, have robust theoretical statistical foundations, and
the tools are typically flexible, fast and robust to noise in the metabarcoding sam-
ple data (Dohlman & Shen 2019; Weiss et al. 2016). However the taxa (nodes)
and interactions (edges) of the networks that are produced need considerable in-
terpretation, post-analysis, as to their ecological importance. Positive or negative
statistical assocations do not indicate causality and are not specific indicators of a
type of interaction. This interpretation problem resembles the black box problem
found in many fields of knowledge where statistical machine-learning is applied
(Castelvecchi 2016). The tool may detect that something is happening, from the
available data, but it cannot provide a mechanistic understanding of the under-
lying process. A mechanistic interpretation can only be provided post-hoc using
expert knowledge or the literature (Tamaddoni-Nezhad et al. 2021). Explanatory
machine learning (XML) has been proposed as one possible solution to the black
box problem (Ai et al. 2021; Gilpin et al. 2018). Here, we use a form of XML,
called Abductive/Inductive Logic Programing (A/ILP), to detect and then clas-
sify ecological interactions directly from microbial metabarcode samples. A/ILP
infers interactions by searching the data using ecological rules for each type of
interaction, defined a priori by the user, thereby providing explanatory or com-
prehensible output of networks with the edges that are a direct expression of the
result of the rules.

Abductive ILP (A/ILP) has previously been used to provide a symbolic, mech-
anistic explanation of metabolic regulation (Tamaddoni-Nezhad et al. 2004) and
to reconstruct food webs of trophic interactions from invertebrate abundance data
(Bohan et al. 2011). To our knowledge it has never been used on microbial com-
munity sequence data or to infer numerous types of interaction simultaneously.
This has in part been due to the intensive computational requirements of XML
approaches and their lower robustness to ecological noise. It may also be due to
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the much more limited experience of logical approaches amongst ecologists, by
comparison with the more familiar approaches of statistics. The A/ILP approach
we detail proceeds through two steps: first to demonstrate an ability to detect links
of a particular type; and, second, to asses the validity of the ecological interaction
networks that are produced. The first step of this process uses synthetic data for
the different types of ecological interactions, generated as described in Weiss et al.,
2016 (Weiss et al. 2016). This allows us to verify whether we can both detect and
classify interactions, by their correct type, with appropriate levels of significance.
The A/ILP is then used in the second step to unravel the dark webs of the different
interaction types from real microbial eDNA sequence data, sampled from healthy
and symptomatic leaves of grapevine, Vitis vinifera L. during downy mildew epi-
demics, caused by Plasmopara viticola. Interactions reducing the abundance of P.
viticola (e.g. competition, amensalism) could guide future experimental research
on biological control of mildew.

2 Materials and Methods

2.1 Hypothesis framework for learning microbial ecological
interactions using abductive logic

Explainable approaches to inferring ecological interactions start with a clear dec-
laration of the rules for an ecological interaction. The mechanisms of ecological
interactions between any two, or possibly more, OTUs might be described in a
multitude of different ways (Faust & Raes 2012; Tshikantwa et al. 2018). We
posit that the minimum common facts for all hypothesised interactions are that:
the two OTUs undergoing an interaction should be present together in at least
one sample; and, at least one of the OTUs involved in an interaction undergoes
a change in abundance. Here, abundance is understood as a measure of the size
of an OTU population in a sample and is derived from the number of OTU se-
quence reads found in each sample. Thus, to evaluate change in abundance of all
OTUs, across all samples, the sequence counts of an OTU and the total sequence
depths in any two samples collected in the same biotic and abiotic conditions, are
used to construct a contingency table, with the significance of the change in OTU
abundance between the samples being evaluated by a χ2-test of independence.
Significant changes are then classified either as an increase, up, or as a decrease,
down, compared to the relative abundance of the OTU, in the two samples. Sym-
bolically, this can be expressed as the logic clause abundance(s1, x, y, up/down).
Here, s1 is any given OTU, (x, y), are two given samples sharing the same con-
ditions and up/down describes the direction of the significant abundance change.
The abundance changes are computed in this way across all OTUs in all samples.
This avoids many of the compositional biases inherent in treating DNA sequence
data as counts since only the counts from the same OTU are compared and the
total sequence depth is taken into account by the χ2-test of independence. The
presence, yes, or absence, no, of an OTU in a sample, x, can be expressed as the
clause: presence(s1, x, yes/no).

The abductive logic process uses these clauses to find possible explanations (ef-
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fects) for the observed changes in abundance and presence using a priori hypothe-
ses for ecological interactions that reflect the existing state of ecological knowledge,
present in the literature. In this case, we hypothesise that an interaction will have
occurred where the presence of at least one OTU (s1) produced a consistent effect
on the abundance of another OTU (s2) in the samples. The logical relationships
for the effect of such an interaction can be described from the abundance and
presence clauses as:

effect_up(s1, s2) if:





abundance(x, y, s2, up)

presence(s1, x, no)

presence(s1, y, yes)

effect_down(s1, s2) if:





abundance(x, y, s2, down)

presence(s1, x, no)

presence(s1, y, yes)

(IV.1)

Where OTU s2 has a greater abundance in sample y than in the sample x,
due to the presence of OTU s1 in sample y and its absence in sample x, then this
might suggest the beginnings of a pattern. Should this pattern be consistent across
different sample pair combinations, then the abduction process would infer an up
effect of s1 on s2. A pattern is considered consistent if the number of observations
following such pattern is considerably larger than the number of observations con-
tradicting it. Effect_down would be abduced from consistent down effect of s1 on
the abundance of s2.

The abduction process computes a compression value for each possible effect
between two OTUs in the dataset. Compression is a numerical measure represent-
ing the amount of observations that support each abduced effect (Muggleton 1995),
and therefore indicates how likely an interaction is to have occurred. We require
that an interaction should have consistent effect across different sample combina-
tions. This means that to be important an interaction should give a greater effect
in one direction than the other, all other things being equal. We therefore compute
an overall statistic for the likelihood of interaction, I, as the difference between
the compressions for the up and down effects (Barroso-Bergada et al. 2022).

Detection of significant interactions

For each pair of OTUs that are considered, the value of I is treated as the weight
of a directed edge in an ecological interaction network. Setting a threshold, λ, for
the absolute value, I, selects a list of inferred edges for a network. λ = 0 would
select all possible edges, while a λ = max(I) would deliver an empty network with
no edges selected. max(I) = nobservations and it is dependent on the number of
observations in a dataset, however, and it is not possible to establish a common
λ value for the reconstruction of any network. We therefore select the significant
interaction edges empirically using a subsampling methodology called StARS (Liu
et al. 2010). The StARS procedure subsamples 80% of the samples, multiple
times, and performs the abduction of network edges. The most stable network
of interactions is then identified using the frequency that the edges appear at
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different values of λ. Here we use 50 resamplings of the data and 50 λ values
linearly increasing from 0 to max(I). The number of sub-samples and length of
lambda path are selected following the recommendations of Muller et al., 2016
(Müller et al. 2016), with a restrictive stability threshold of 0.01 so as to minimise
the number of false positive interactions.

Classification of interaction types

The StARS procedure selects those interactions of a network that have a consistent
direction of effect of s1 on s2 and s2 on s1, and may therefore be treated as
significant. The direction of these detected interactions, up, down or no effect
detected, are characteristic of particular interaction types and can be used to
classify the types of interaction directly (Faust & Raes 2012; Derocles et al. 2018).
Thus, where the abundance of s2 increases in the presence of s1, effect_up(s2, s1)
and s1 also consistently goes up in the presence of s2 effect_up(s1, s2) it becomes
possible to classify the interaction that is inferred as one of mutualism that benefits
both OTUs. effect_down(s2, s1) and effect_down(s1, s2), by contrast, could be
assigned to a competition interaction, due to the interaction costs to the abundance
of both OTUs. Across all possible inferred pairwise combinations of up, down and
no change between the OTUs in the dataset it becomes possible to classify directly
the ecological interactions of mutualism, predation, competition, commensalism
and amensalism (Table, (Faust & Raes 2012), many of which cannot readily be
observed or measured in classical microbial experiments.

Modelling ecological exclusion

Ecological interactions that cause the abundance of an OTU to decrease can lead,
in extremis, to its exclusion from a sample. Some OTUs may also depend upon
the presence of a second OTU in order to exist within a sample. The hypoth-
esis of interaction described thus far does not take into account the possibility
of such exclusion or mutual dependence that could affect markedly the numbers
of zeros in the sample data and our ability to detect interactions. We therefore
expand the hypothesis of interaction framework to entail these exclusion and mu-
tual dependence cases. This can be described by logical clauses with the form
abundance(x, y, s1, app/dis), where app symbolises a change from 0 to a numbers
of counts of OTU s1 between the samples x and y, and dis symbolises a change
from a positive number of counts to 0. Significance of change is equally assessed
using a χ2-test of independence. The theory is expanded as:

effect_up(s1, s2) if:





abundance(x, y, s2, up) or abundance(x, y, s2, app)

presence(s1, x, no)

presence(s1, y, yes)

effect_down(s1, s2) if:





abundance(x, y, s2, down) or abundance(x, y, s2, dis)

presence(s1, x, no)

presence(s1, y, yes)

(IV.2)
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It is important to note that this ‘with exclusion’ formulation of the theory
considers that the effect caused by s1 on s2 or vice versa, is consistent irrespective
of whether the result is an up/down or app/diss. This explicitly includes the
possibility that an interaction can cause both a reduction in the abundance of an
OTU and ultimately its exclusion. This formulation of the theory with exclusion
also allows the I statistic to be computed as previously described.

Implementation of the abductive process for inferring ecological inter-
actions

A full description of the logical process of abduction and of A/ILP is not given
here, but can be found in Kakas et al. (1992) and Muggleton (1995)(Kakas et al.
1992; Muggleton 1995). Rather we detail the specific implementation of abductive
network inference in a new R package, InfIntE (INFerence of INTeractions using
Explainable machine learning, Figure IV.1. InfIntE parses the OTU count data
into logical clauses using the R base package tools (R Core Team 2022). The
logical clauses and hypotheses of interaction are run in PyGol, which is a high-
performance implementation of A/ILP newly developed for Python, which has
very short execution times (Varghese et al. 2022; Varghese & Tamaddoni-Nezhad
2022). InfIntE uses the R package, reticulate (Ushey et al. 2022), to provide
the logical clauses to PyGol and then retrieve the abduced compression values
and I statistic. PyGol generates bottom clauses, as seed examples, and finds the
abducible effects on OTU abundance covering the given example with maximum
compression. Model selection by StARS is then conducted in the R pulsar package
(Müller et al. 2016). A custom pulsar function uses the bottom clause to abduce
subsets of the OTU table and then retrieves the interaction networks along the
λ path. This whole pipeline is performed in InfIntE as a single R function and
typically takes 3 to 4 hours to execute for a dataset consisting of 80 OTUs and 60
samples.

2.2 Experiment 1: Generating synthetic, ecological-like data
for verification

Many methodologies have been proposed to simulate the effect of interactions in
metabarcoding data, based on the assumption that interactions cause a change in
the sequence counts of OTUs involved. We use the broadly-accepted models for
generating ecological interaction data proposed by Weis et al. (2016)(Weiss et al.
2016; Tackmann et al. 2019). These models simulate changes in counts in an OTU
table, caused by specific interaction types that we expect to be able to detect and
classify with InfIntE. The Weiss et al. (2016) models produce the OTU tables for
the counts of p non-interacting OTUs over n samples using a lognormal distribution
(Shoemaker et al. 2017). These counts are then forced to increase or decrease as
a function of the counts of the interacting OTUs, modulated by a strength of
interaction, s. The generated OTU tables consist of simulated abundances of the
p OTUs simulating either amensalism, commensalism, competition or mutualism
interactions following the abundance modifications proposed in Faust et al. 2012
(Faust & Raes 2012). Each simulated interaction type will have a different effect
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on the abundance of the OTUs involved in the interaction. For example, if a
mutualism interaction is simulated, the abundance of both OTUs will be increased
in the samples where they co-occur. To introduce compositionality to the data,
the relative counts of an OTU in a sample are used as a probability to sample a
multinomial distribution at a common sample size.

The number of samples is an important variable in network inference (Berry &
Widder 2014). As a consequence, we generate OTU tables with different number
of samples, n, to assess the effects of sampling effort on InfIntE performance. For
each sample size, n = 20, 30, 40, 50, 60, 70, 80, 90, we create three OTU tables with
strengths of interaction, s = 2, 3 and 5, and p = 80 OTUs to obtain a total of 72
OTU tables mixing the four types of interactions. The number of p = 80 OTUs
was chosen to reflect the number of abundant OTUs typically observed in our
metabarcoding microbial datasets from agriculture.

Inference and detection of interactions from simulated data

InfIntE was used to infer interaction networks for each of the simulated OTU
tables for the hypotheses of interaction both with and without exclusion. The
area under the receiver operating characteristic curve (AUC)(Fan et al. 2006) was
then evaluated. The AUC was treated as a measure of how well the tool detected
interactions in the simulated datasets that we knew to be real, i.e. present in the
dataset, or false, i.e. not present in the dataset. The interaction inference was also
done using the statistical inference tools, SparCC (Friedman & Alm 2012) and
SPIEC-EASI glasso (Kurtz et al. 2015), to provide a performance comparison for
interaction detection between our logical inference approach and current statistical
networks inference tools that have been broadly adopted in microbial ecology. The
SparCC inference was done in FastSpar v1.0.0 (Watts et al. 2018) and SPIEC-
EASI glasso inference was run in the R package SpiecEasi v1.1.2, both with their
respective default settings. The I statistic was computed for the with and without
exclusion hypotheses in InfIntE. SparCC correlations were obtained directly and
SPIEC-EASI correlations were obtained from the inverse covariance matrix at
λ = 0. Given that these three different tools produce different kinds of interaction
networks, either classified interaction or correlational networks, the largest value
of I or correlation, obtained for each pair of OTUs, was used for comparing the
performance of the statistics used by the different tools.

Evaluating the accuracy of interaction detection and classification in
simulated datasets

For the two hypotheses of interaction, without and with exclusion, the accuracy of
InfIntE and the StARS procedure to detect simulated interactions, was computed
using the function:

Accuracy =
TP + TN

N
(IV.3)

where true positives, TP , are the true real simulated interactions detected by
the StARS selection, TN are the true non-interacting pairs of OTUs within the
simulated dataset, and N is the total number of possible interactions that might
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exist in a fully saturated network. The evaluation of the interaction selection of
SparCC was performed using the default bootstrapping procedure with 999 permu-
tations. The SPIEC-EASI pipeline uses the StARS procedure to select important
interactions as a function of edge stability. The default parameters of StARS model
selection in SPIEC-EASI are 20 subsamples and a stability threshold of 0.05.

2.3 Experiment 2: Inferring networks from real data

We used InfIntE to reconstruct the ecological interaction networks on leaves sam-
pled from the grapevine (Vitis vinifera in 9 vineyards in France. Our goal was
to detect and classify all interaction types amongst amplicon sequence variants
(ASVs) within the leaf phyllosphere. ASVs are a high resolution type of OTUs
that cluster the sequences as a function of possible sequencing errors (Callahan
et al. 2017). Fungal ASV tables were constructed from samples of healthy and
symptomatic parts of vine leaves. In total, 60 leaves were sampled in each vine-
yard, giving a total of 534 samples in the dataset. The symptomatic part of the
leaves were identified as having lesions caused by the downy mildew, Plasmopara
viticola. Sequencing was performed using pairs of primers to barcode the fungal
communities. A bioinformatic pipeline, including dada2 (Callahan et al. 2016) and
posterior filtering, was applied to obtain the final ASV tables. The filtered fungal
dataset contains abundance information for 650 ASVs. Automatic taxonomic as-
signment using the UNITE all eukaryotes v8.3 database (Abarenkov et al. 2021)
did not assign all ASVs to taxa. As a consequence, taxonomic assignment of non-
assigned ASVs was done in the BLAST utility of the NCBI platform (Altschul
et al. 1990). The ASV sequence alignment with highest score was selected. Where
an ASV sequence had the same maximum score for more than one species in the
database, taxonomic assigment was done to the genus level. The abundance of P.
viticola was assessed by qPCR as an absolute, non compositional count. Change
in the abundance of P. viticola was then computed using the count values obtained
across the different samples. The up/down was considered significant if the loga-
rithmic absolute amount of P. viticola DNA differed by 0.05 between samples. A
full explanation and description of the sampling design and bioinformatic pipeline
production of the ASVs is given in Barroso-Bergada et al. (2022).

Inference using InfIntE of the grapevine phyllosphere data was performed in-
dependently for each vineyard. The network inference was computed for only the
top 80 most abundant ASVs and the PCR abundance data of P. viticola. All 60
samples from each vineyard were used for the inference.

Evaluating the significance of interactions using predictions of change

Most microbial community interactions are unknown or poorly understood. There
is therefore no complete and understood microbial network that might be used
to evaluate the accuracy of the interactions detected and classified by InfIntE,
of which we are aware. It is necessary, therefore, to evaluate the significance of
inferred interactions using the data itself. Changes in OTU abundance, caused
by an ecological interaction, can be used to compute predictive accuracy. InfIntE
does this using a k-fold cross-validation that predicts abundance changes using the
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I statistic. Abundance change observations are randomly divided into 5 equal size,
20%, folds of the dataset. Interaction inference is then performed using InfIntE
on 4 randomly selections of these folds, leaving one fold for validation. The I
statistic for the effects of OTUs on, for example, s1 in sample y, are retained
and the up/down is predicted from the I sum value of effect up and effect down.
Predictive accuracy is then tested by computing the number of correctly predicted
abundance changes across the validation fold.

2.4 Statistical Analysis

All statistical analyses were conducted in the R v4.1.3 (R Core Team 2022). Plots
were made using ggplot2 v3.3.5 (Wickham 2016) and cowplot v1.1.1 (Wilke 2020).
The AUC of each inferred network was measured using the using the pROC package
v1.18.0 (Robin et al. 2011).

3 Results

3.1 Experiment 1: Generating synthetic, ecological-like net-
works

Modelling exclusion increases I statistic predictive power

The InfIntE AUC for the I statistic was higher when interactions were inferred
with exclusion than without exclusion (Figure IV.2A). This difference became
ever greater for datasets with higher strengths of interaction and for smaller sam-
ple sizes. Sample size had an important effect on the AUC, independent of the
strength of interaction and the hypothesis of interaction used, plateauing at about
60 samples. The InfIntE AUC varied by up to 20% between hypotheses without
and with exclusion and from 20 to 90 samples. The AUC obtained for the InfIntE
I statistic with exclusion was similar to the AUC obtained by the correlation val-
ues computed in SparCC or in SPIEC-EASI (Figure IV.2B). The AUC for SparCC
and SPIEC-EASI, varied with the number of samples. The strength of simulated
ecological interaction had a negligible effect. No significant difference was found
in AUC values between the three network inference tools.

Accuracy of InfIntE detection of interactions increases with sample size

The accuracy of InfIntE with exclusion using StARS model selection varied sig-
nificantly with the sample size (Figure IV.2C), increasing to a plateau at ap-
proximately 60 samples. InfIntE accuracy did not change with the strength of
simulated interaction. SparCC and SPIEC-EASI showed levels of accuracy that
did not depend on the number of samples, but SPIEC-EASI accuracy was higher
than SparCC. InfIntE accuracy was lower than SPIEC-EASI and SparCC at small
sample sizes, but was comparable to both at higher sampling effort.
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Figure IV.2: Relationship between number of samples and interaction infer-
ence performance for different strengths of interaction. Datasets were computer-
generated simulating four different interaction types: amensalism, commensalism, com-
petition and mutualism. A: Area under the roc curve values (AUC)(Fan et al. 2006)
obtained by I statistic with and without exclusion. Larger AUC values represent better
specificity and sensitivity in interaction detection. I statistic is used by InfIntE as a
numeric measure of interaction. B: Area under the roc curve values (AUC) obtained
by InfIntE’s I statistic and SparCC and SPIEC-EASI correlation like measures. InfIntE
used the hypothesis of interactions including exclusion. SparCC and SPIEC-EASI were
executed with default settings. C: Accuracy of interaction detection computed as de-
scribed in section 2.2. InfIntE used the hypothesis of interactions including exclusion.
SparCC and SPIEC-EASI were executed with default settings.
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InfIntE classification of simulated interactions

The classification of interactions performed by InfIntE at a fixed sample size of
60, was dependent on the interaction type simulated (Figure IV.3). More than
90% of the synthetic commensalism interactions were detected, and of all of these
were then correctly classified. Most mutualism interactions where also detected
by InfIntE, and the majority of these were correctly classified. Those that were
wrongly classified were classed as commensalism interactions. Slightly less than
20% of competition interactions were detected by InfIntE. The great majority of
these were classified correctly, when detected. Synthetic amensalism interactions
were not detected by InfIntE. The InfIntE inference produced low numbers of false
positives. Where these occurred, all detected links were classified as commensal-
ism.

SparCC detected almost all synthetic interactions simulated as mutualism,
commensalism or competition. About 25% of the simulated ammensalism inter-
actions were also detected. This detection came at the cost of an elevated rate
of false positive detections compared to InfIntE. SPIEC-EASI showed detection
performance similar to InfIntE, detecting the majority of synthetic commensal-
ism and mutualism interactions. It had greater difficulty in detecting synthetic
competition and still poorer performance in detecting amensalism. SPIEC-EASI
produced very low rates of false positives.

3.2 Experiment 2: Inferring complex networks, the Dark
Web, from real data

Structure of interaction types in the foliar networks of grapevine

The interaction networks of each of the nine vineyards (Figure IV.5) were predicted
to comprise all the different types of ecological interaction (Derocles et al. 2018),
Table IV.1). The interaction networks did not show unconnected sub-networks,
and the total number of interactions varied from 551 to 1410, depending on the
vineyard. The predominant interactions in all 9 vineyards were commensalism
and competition, each comprising at least 30% of the total interactions in most
networks. Commensalism accounted for 74.5% and competition 13.7% of the in-
teractions in one vineyard. Amensalism interactions never made up more than
17% of interactions and mutualism varied from 2.5 to 8.7%. Interactions classified
as predation were not found at all in 2 vineyards and never represented more than
0.7% of the total inferred interactions. When the capacity of the inferred net-
works to predict abundance changes was evaluated using k-fold cross-validation,
predictive accuracy was estimated to be approximately 75% of the observations in
the test fold (Figure IV.4), when at least 50% of the sample dataset was used for
inference. No difference in accuracy was found between the vineyards for a given
standard percentage of the sample dataset.

Identifying potential biological control agents using InfIntE inference

A total of 20 fungal ASVs, corresponding to 12 different species and 2 genera, were
identified as potential antagonists of P. viticola (Table IV.2). Of these, five fungal
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Figure IV.4: Accuracy of abundance change prediction in grapevine metabar-
coding data as a function of the number of observations used for the inference. Each
dataset consisted of 60 samples. Each point presents the mean accuracy of prediction for
different fold combinations of the 9 vineyards

ASVs from the genera Alternaria and Fusarium genus have already appeared in
the literature as P. viticola antagonists (Musetti et al. 2006; Ghule et al. 2018).
These ASVs were classified to have competition interactions with P. viticola in at
least one of the vineyard networks. The fungal species, Aureobasidium pullulans,
was also inferred to have a competition interaction with the pathogen, and has
been described antagonist of P. viticola(Harm et al. 2011). ASVs corresponding to
the genera Cladosporium, Phlebia, Sporobolomyces and Vishniacozyma have not
previously been described as antagonists of P. viticola, but have been identified as
antagonist of pathogens in other foliar systems. ASVs assigned to Mycosphaerella
tassiana and two species from the Filobasidium genus were also classified as an-
tagonistic to P. viticola by inference, but these are not described as antagonists in
the literature and represent new potential biocontrol agents.

4 Discussion
Our work shows that it is possible to reconstruct and then explore the dark web of
the grapevine foliar microbiome, through the direct classification of a diversity of
interactions using explainable machine learning. The combination of A/ILP and
simple hypotheses for ecological interactions, defined a priori and coded within
the InfIntE R package, works satisfactorily. It accurately detects and classifies
computer generated interactions when enough samples are available. We use it to
detect, classify and thereby infer interaction types from real DNA sequence data
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Figure IV.5: Interaction networks predicted for each of the 9 different vine-
yards in the dataset, inferred using InfIntE. Each vineyard dataset was composed by 60
samples. The edge colours follow the interaction typology. The pie chart associated with
each network indicates the relative percentage of each interaction type in the network
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for validation against the literature, reflecting well the interactions that have pre-
viously been proposed (Table IV.1). This first attempt to use explainable machine
learning to infer microbial interaction networks is a first step towards making the
link between generic ecological hypothesis that scientists define and the inference of
specific types of interaction within the microbiome that can be validated through
experimentation. This showed that the dark web of the microbiome is diverse,
being composed of a range of interaction types consistent with the hypotheses of
interaction we have used. These include antagonistic interactions that might be
used to identify potential biological control agents of P. viticola within the foliar
microbiome of grapevines.

The work also shows potential for improvement to the learning by improving
the description of the existing hypotheses and the definition of new hypothesis
for types of interaction we have not considered here. The explainable approach
of A/ILP emphasises the description of ecological interactions. The interaction
hypotheses we have defined describe the process by which two species interact,
contingent on the way that their respective abundances change, using simple eco-
logical descriptions (Faust & Raes 2012; Derocles et al. 2018). In our work we
extended the definition of these hypotheses to include the ecological process of
exclusion, whereby the action of one species can cause the exclusion of the other,
and found an improvement in the learning with a marked increase in the power
to discriminate true interactions. This serves as a good indication that our simple
generic interaction hypothesis are only one representation of ecological interaction
and could be further improved to infer interaction networks which reflect better the
ecological reality of microbial interactions. The work of Bohan et al. (Bohan et al.
2011) showed that A/ILP predation interaction hypothesis, which included species
traits, produced explainable food web networks for invertebrates. The networks
that are inferred by A/ILP are therefore dependent upon and reflect the quality
of our ecological knowledge and theory for the hypothesis of interaction, mak-
ing InfIntE a potentially valuable tool for unravelling the Dark Webs of different
ecosystems.

There is no standard dataset in microbial ecology, of which we are aware, for
evaluating network inference tools (Röttjers & Faust 2018). In this paper, we
used the models of Weiss et al. (Weiss et al. 2016) to generate synthetic datasets
of ecological-like interactions to evaluate and test the combined performance of
InfIntE and our simple ecological rules. While these datasets could be criticised
for being simplified approximations of the different typologies of interaction, as
changes in the abundance of simulated microbial taxa (Faust & Raes 2012), our
analysis suggests that the I statistic, computed in InfIntE, was able to discriminate
interactions of different types accurately where sufficient samples were available.
All approaches to inferring networks are sensitive to sample size (Hirano & Take-
moto 2019) and the appropriate number of samples is a matter of considerable
debate in the literature. For the simulated datasets, we found that InfIntE net-
work inference and accuracy became stable at around 60 samples per netwrok
sharing the same abiotic conditions. The strength of the simulated interactions
seems not to have an important effect on the performance of the A/ILP inference.
A change in abundance of around 20% of the total OTU abundance was suffi-
cient to detect an interaction, and greater changes in abundance did not have an
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important effect on the probability of detection.
We find that where the number of samples was large enough, InfIntE and our

interaction hypotheses could detect simulated interactions with an accuracy com-
parable to SparCC and SPIEC-EASI, that use correlation-like statistics. Both
SparCC and SPIEC-EASI can detect interactions to this level of accuracy at 20
samples, suggesting that they may be a better option for network inference at re-
duced sampling effort, but with the consequence that link classification will need to
be performed by experts based on their knowledge in microbiology and pathology.
Within each interaction type, the InfIntE approach detects the simulated interac-
tions with a probability similar to those that SparCC and SPIEC-EASI infer to be
a possible interaction of unknown type. Moreover, the InfIntE approach does this
with many fewer false positives than SparCC and a similar level of false positive
to SPIEC-EASI. Subsequent classification by InfIntE is dependent upon the type
of interaction simulated, however. Competition and amensal interactions, which
can cause the detrimental exclusion of the interacting OTUs, present difficulties
both of detection and of classification. This result is consistent with the findings
of Weiss et al. (Weiss et al. 2016), who have found that the detection of simulated
detrimental interactions is difficult for all inference procedures due to the loss of
information that comes with the exclusion of one or both interacting taxa. InfIntE
detects detrimental interactions less well than SPIEC-EASI, and while incorporat-
ing exclusion as part of the hypothesis of interaction does improve the accuracy of
detection, our InfIntE approach has still lower detection performance. We would
note, however, that the competition interactions that are detected by the InfIntE
approach are classified correctly to a high probability and with a near zero rate of
false positives. This suggests that where competition interactions are detected and
classified in a dataset, we would expect this classification to be accurate even as
some competition interactions are not detected. In general, given this early stage
in the development of A/ILP approaches for learning microbial interactions, the
InfIntE approach detects interactions to an accuracy similar SparCC and SPIEC-
EASI. It also does so with the benefit of direct, automatic classification, which it
achieves with good accuracy for the simulated datasets.

The application of the InfIntE approach to real metabarcoding data for the
fungal microbiome of grapevine leaves yielded networks that varied across the
nine vineyards of the dataset, only being shared a single interaction by the nine
vineyards. This result is consistent with the few consensus interactions found
by Barroso-Bergada et al. (2021) along different vineyard plots. Each network
showed a diversity of interaction types, including interactions that are typically
dark and difficult to observe using classical ecological approaches. The most fre-
quently found interaction types were classified as commensalism and competition
interactions that may be based on energy tranfer chains (Tshikantwa et al. 2018)
or the exploitations of resources, such as space (Lloyd & Allen 2015). Predation
interactions were rarely classified, and this may be due to problems of detection
with this type of interaction being masked by other interaction types (Derocles
et al. 2018). The inclusion of qPCR data for the grapevine pathogen, P. viticola,
allowed the prediction of subnetworks centred on this disease-causing agent, with
a view to understanding its ecology and the potential for management. While
chemical pesticides are commonly used to protect grapevine plants from P. viti-
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Table IV.2: Potential Plasmopara viticola antagonists found by InfIntE. The
table shows the fungal species found to have a potential interaction able to reduce the
abundance of P. viticola. A bibliographical search in Google Scholar, Pubmed and Science
Direct was conducted to identify whether potential antagonists have previously been
described as biocontrol agents of P. viticola or other pathogens in the literature. The
keywords used for the search were the name of the potential antagonist, "Plasmopara
viticola", "biocontrol" and "antagonist". Those taxa identified with an asterisk were not
automatically assigned to a taxonomic grouping in UNITE and required manual curation
and assignment using BLAST. When there was more than one OTU assigned to the same
species having the same interaction it is noted with xn, where n is the number of OTUs

Name Vineyard Interaction Bibliography
against plas-
mopara

Bibliography
biocontrol

Cladosporium
delicatulum

I competition Kohl et al. 2019;
Baharvandi et al.
2015; Becker et al.
2020

Mycosphaerella
tassiana

I competition

Alternaria sp.* A amensalism Mussetti et al.
2006

Alternaria alter-
nata*

I competition Mussetti et al.
2006, 2007

Alternaria bra-
sicae

B competition Duhan et al. 2021

Aureobasidium
pullulans*

I competition Harm et al. 2011

Filobasidium
chernovii

Ix2 competition

Filobasidium
magnum*

D competition

Fusarium sp.* A, B, E competition Ghule et al. 2018;
Bakshi et al. 2001

Phlebia rufa E amensalism White and Boddy
1992

Sporobolomyces
roseus

Ix3 competition Janisiewicz et al.
1994; Filonow et
al. 1996;

Sporobolomyces
pararoseus*

A,G competition Li et al. 2017 (in
grapes)

Vishniacozyma
victoriae

B,C amensalism,
competition

Gramisci et al.
2018; Lutz et al.
2020

Vishniacozyma
carnescens

D amensalism Becker et al. 2020
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cola in conventional vineyards, the potential for developing resistance to fungicides
and the needs of organic growers has driven a search for alternative and or com-
plementary methods of pest control. Our expectation for this disease is that P.
viticola interacts with the microbiome during infection of grapevines, with some
members of the microbial community facilitating the invasion of the pathogen and
still others acting as antagonists (Thambugala et al. 2020). We used InfIntE and
the ecological hypotheses of interaction to identify those taxa that might act as
P. viticola-antagonists and might therefore represent candidate biological control
agents. A total of 14 taxa were hypothesised to be antagonistic to P. viticola,
with the predominant interactions inferred being of competition and more rarely
amenalism. The list of biocontrol candidates included five fungi taxa already iden-
tified in the literature as P. viticola antagonists (Bakshi et al. 2001; Duhan et al.
2021; Ghule et al. 2018; Harm et al. 2011; Musetti et al. 2006; Musetti et al. 2007).
Six of the remaining taxa have also been proposed as biocontrol agents of differ-
ent pathogens in other foliar systems. We also propose Mycosphaerella tassiana
and two species from the Filobasidium genus as potential biological control agents.
These literature validations give us some confidence that the InfIntE approach cor-
rectly classifies interactions, allowing us to unravel an approximation of the dark
web of microbial interactions and the pathobiome.

Our InfIntE approach introduces the use of explainable machine learning to mi-
crobial interaction inference. Explainable machine learning has had a limited use
in Ecology due, at least in part, to its often-intensive computational requirements
and lower robustness to noise in comparison to statistical learning. The duration
of an explainable approach increases exponentially with the size of the dataset,
limiting the interactivity and scale of the learning that can be done (Varghese
et al. 2022). Moreover, explainable machine learning approaches have been largely
limited to researchers in the field of logic that has a distinct theoretical framework
and suite of methodologies with which Ecologists are unfamiliar. InfIntE uses a
new implementation of A/ILP called PyGol, written in Python. Ecologists are
more familiar with Python, facilitating its use. PyGol is also much faster than
previous A/ILP implementations and appears more robust to noise in datasets.
This has seen the time required to run the explainable machine learning we use
here decrease from several days to a few hours, for a dataset with 60 samples and
80 OTUs. Most importantly, this promotes a much more interactive, experimen-
tal approach to the inference, because the time costs of mistakes in coding are
much lower, which has seen our work advance markedly. This increase in speed of
computation has also opened up new avenues of research into the microbial Dark
Web. Other sources of information, such as functional information from databases
like Funguild (Nguyen et al. 2016b) or Faprotax (Louca et al. 2016), can readily
be included in the logical hypothesis in InfIntE to infer interactions with greater
descriptive precision, potentially further improving the inference process and our
understanding of these systems. Future developments should also consider testing
between alternative descriptions of interactions, such as those based on ecological
functions or taxonomy. New hypotheses for ecological interactions might also ex-
tend to rules that describe effects on more than the two interacting taxa considered
here (Weiss et al. 2016).
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Chapter V

InfIntE: a generic, logic-based
inference tool for learning networks
in R
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1 R package
Explainable Machine Learning (EML) is an alternative approach to the more
widely used statistical machine learning, with potential application to a broad
range of learning situations (Roscher et al. 2020). EML uses domain knowledge
to discover new understanding, from data, in a human understandable process
(Beckh et al. 2021). There has been a significant increase in the use of EML in
recent years, as part of an initiative to understand what increasingly complex ma-
chine learning models do and thereby increase confidence and trust in the learning.
There are two main reasons why EML has not been much used in microbiology
and ecology to date. The first was the requirement to have algorithms able to per-
form computation in a reasonable amount of time while dealing with the inherent
noise of biological data. These limitations are beginning to be solved, particularly
with programs like PyGol that implements a new approach to hypothesis search,
drastically decreasing execution times and offering significant robustness to noise
(Varghese et al. 2022). The second reason why EML use has not been widely
adopted is the specialism necessary to work with logic. Microbial and ecological
hypotheses and domain knowledge need to be expressed as logical statements, in
abstruse programming languages like Prolog (Wielemaker et al. 2012). The con-
cepts, structure and know-how of logic programming represents a steep learning
curve that is a significant barrier to adoption. The documentation of logic pro-
gramming tools is also conspicuous by its absence. Microbiologists and ecologists
tend to be analytical generalists, preferring applications that require little pro-
gramming skill and that can be run using a few commands. Most correlation
based network reconstruction tools have an implementation in the statistical soft-
ware environment R (R Core Team 2022) (e.g. Sparcc, CCLasso, SPIEC-EASI,
HMSC, PLN, MPLasso (Kurtz et al. 2015; Fang et al. 2015; Ovaskainen et al.
2017; Chiquet et al. 2019; Lo & Marculescu 2017b), implemented as an easy-to-
install R package. The learning can normally be launched by a single command,
to perform the network reconstruction from an OTU table. These R packages also
have documentation detailing both how it is used and the process implemented in
each function.

The application of EML to reconstruct interaction networks is described in
Chapter IV. To make InfIntE an option that ecologists and microbiologists could
consider for inferring interaction networks, it is necessary to provide them with an
easy to use tool. InfIntE was therefore encoded as an R package from the start (R
Core Team 2022), because it is well used and accepted among all potential users.
The package has been developed to have a single function to perform network
reconstruction in a single run. This saves users from dealing directly with the
logical programming language since InfIntE converts the data to logic statements
automatically and these are then parsed to PyGol (Varghese et al. 2022) to per-
form the logical abduction process of possible effects on OTU abundances. The
InfIntE R package and pipeline is detailed in Figure IV.1. In order to help any
potential user, a vignette (shown in the following pages) was written to detail how
to install and run InfIntE. The vignette illustrates the use of InfIntE as a single
function, detailing the whole pipeline as a series of steps. The vignette uses the
metabarcoding dataset described in the Annex B (Barroso-Bergadà et al. 2022).
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The InfIntE package can be download from a private GitHub repository with per-
mission, but we will make this repository public once the articles describing InfInE
are published.

105



Vignette InfIntE

What is InfIntE?

InfIntE stands for Inference of Interactions using Explainable machine learning. This package uses abundance
data to directly infer ecological interactions using PyGol, an Abductive/Inductive logic program. The
interactions inferred are directly classified by its interaction type.

Table of contents

1. Installation
2. Example Data
3. Interaction Inference
4. Step by Step
5. Use of absolute data

Installation

InfIntE and required packages are installed using devtools

library(devtools)
if(!"InfIntE" %in% rownames(installed.packages())){

install_github("didacb/InfIntE")
}
library(InfIntE)

One of the steps of the interaction inference is the abduction. Abduction is performed using PyGol. PyGol
is written in c. To compile PyGol and obtain the functions for abduction run:

load_PyGol()

For now PyGol only works in linux environments. If there is nay problem with the compilation be sure that
the following linux packages are installed:

• cython
• python-dev

Example Data

To show how InfIntE works we will use wheat foliar fungal ASV data. The data characteristics are detailed
here. The ASV data is in phyloseq format. First, let’s import and subset the data to obtain a manageable
size.
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#Import data
library(phyloseq)
data("BCM_16S_wheat_phyloseq_filtered_lulu")
wheat_metadata<- sample_data(BCM_16S_wheat_phyloseq_filtered_lulu)

#Keep only green samples from march
selected_samples<- wheat_metadata$Date == "03_18" &

wheat_metadata$Specie == "wheat" &
wheat_metadata$Variety == "Apa" &
wheat_metadata$Tissue == "G"

asv_subset<- prune_samples(selected_samples, BCM_16S_wheat_phyloseq_filtered_lulu)

#Keep only the most abundant ASVs
asv_subset<- prune_taxa(taxa_sums(asv_subset)>1000, asv_subset)

The wheat fungal community has many different fungal genus represented

library(ggplot2)
plot_bar(asv_subset, fill = "Genus")+theme(axis.text.x = element_blank())
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Interaction Inference

To infer interactions, InfIntE offers a homonymous function to perform the whole pipeline in a single step
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library(igraph)
#Infer interactions
interactions<- infinte(otu_tb = otu_table(asv_subset, taxa_are_rows = T),

exclusion = TRUE, ncores = 25)

#Get network
network_graph<-graph_from_data_frame(interactions$selected_interactions)

#Change ASV names to genus
V(network_graph)$name<- data.frame(tax_table(asv_subset))[V(network_graph)$name,]$Genus

#Add color to different interactions
library(RColorBrewer)
colors_edges<- brewer.pal(5, "Set2")

E(network_graph)$color<- sapply(E(network_graph)$lnk, function(x){
colors_edges[which(unique(E(network_graph)$lnk)==x)]

})
#Plot
set.seed(123)
lay <- layout.kamada.kawai(network_graph)
plot(network_graph, layout=lay, vertex.size=2,

vertex.label.cex = 0.75, edge.arrow.size=0.5 )
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Step by step

But what InfIntE exactly does? It uses an hypothesis of interaction written as a logical relation between
presence, abundance and effects in abundance.

hypothesis<-
c("abundance(C1,C2,S1,up):-presence(C2,S2,yes)&presence1(C1,S2,no)&effect_up(S2,S1)",

"abundance(C1,C2,S1,app):-presence(C2,S2,yes)&presence1(C1,S2,no)&effect_up(S2,S1)",
"abundance(C1,C2,S1,down):-presence(C2,S2,yes)&presence1(C1,S2,no)&effect_down(S2,S1)",
"abundance(C1,C2,S1,dis):-presence(C2,S2,yes)&presence1(C1,S2,no)&effect_down(S2,S1)")

Then transforms the ASV matrix into logic clauses related by the hypothesis

# Join absolute and compositional data in a table
otu_data <- join_abundances(otu_tb=otu_table(asv_subset, taxa_are_rows = T),

absolute_abundance = NULL, depth = NULL)

# All possible pairs of samples
comparisons <- get_comparsions(length(otu_data$samp_names))

# Get head logic clauses
head_clauses <- lapply(rownames(otu_data$otu_tb), function(otu) {

pos <- which(rownames(otu_data$otu_tb) == otu)
abundances <- do.call(

what = otu_data$abundance_function[pos],
args = list(

"otu_abundance" = otu_data$otu_tb[pos, , drop = FALSE],
"comparisons" = comparisons, "depth" = otu_data$depth, "exclusion" = TRUE

)
)
return(abundances)

})

head_clauses <- unlist(head_clauses)

# Get Body logic clauses
body_clauses <- get_presence(otu_data)

head(body_clauses)

## [1] "presence(c1,s1,yes)." "presence(c2,s1,no)." "presence(c3,s1,no)."
## [4] "presence(c4,s1,no)." "presence(c5,s1,yes)." "presence(c6,s1,no)."

It uses PyGol to generate the bottom clause and abduce the effects on the OTU abundance caused by other
ASVs. InfIntE renames the ASVs during the abduction optimize process.

# Produce bottom clause
bottom_clauses <- get_bottom_clause(otu_data = otu_data,

head_clauses = head_clauses,
body_clauses = body_clauses)

# Abduce effects
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abduced_effects <- abduce(bottom = bottom_clauses, hypothesis = hypothesis)

# Get I values
abduced_effects <- get_I_values(abduced_effects)#Infer interactions

head(abduced_effects)

## sp1 sp2 lnk comp
## 1 s1 s1 effect_up 5506
## 2 s1 s10 effect_down 560
## 3 s1 s11 effect_up 417
## 4 s1 s12 effect_up 120
## 5 s1 s13 effect_up 446
## 6 s1 s14 effect_up 430

To select the interactions InfIntE uses the pulsar package to run the StARS model selection

# Length observations
mx <- length(bottom_clauses$head)

# Lambda distribution
lambda <- pulsar::getLamPath(max = mx, min = 0, 50, FALSE)

# Pulsar execution
pulsar_output <- pulsar::pulsar(t(otu_data$otu_tb),

fun = pulsar_infinte,
fargs = list(lambda = lambda, bottom_clauses = bottom_clauses,

hypothesis = hypothesis, exclusion = TRUE, otu_data = otu_data),
rep.num = 50, lb.stars = TRUE, ub.stars = TRUE, thresh = 0.01, ncores = 25,

)

# Format output to dataframe
fitted_model <- pulsar::refit(pulsar_output, criterion = "stars")
interactions <- data.frame(igraph::get.edgelist(

igraph::graph_from_adjacency_matrix(fitted_model$refit$stars)))

head(interactions)

## X1 X2
## 1 s38 s1
## 2 s9 s1
## 3 s23 s12
## 4 s37 s12
## 5 s30 s14
## 6 s30 s18

As a last step InfIntE classifies the interactions by its type

# Take values from abduced effects dataframe
interactions <- abduced_effects[paste0(abduced_effects[, 1], abduced_effects[, 2])

%in% paste0(interactions[, 1], interactions[, 2]), ]
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# Classify and give back original names
interactions <- classify_interactions(interactions)
interactions <- return_names(interactions, otu_data$otu_names)

#Get network
network_graph<-graph_from_data_frame(interactions)

#Change ASV names to genus
V(network_graph)$name<- data.frame(tax_table(asv_subset))[V(network_graph)$name,]$Genus

#Add color to different interactions
library(RColorBrewer)
colors_edges<- brewer.pal(5, "Set2")

E(network_graph)$color<- sapply(E(network_graph)$lnk, function(x){
colors_edges[which(unique(E(network_graph)$lnk)==x)]

})

#Plot
set.seed(123)
lay <- layout.kamada.kawai(network_graph)
plot(network_graph, layout=lay, vertex.size=2,

vertex.label.cex = 0.75, edge.arrow.size=0.5 )
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Use of absolute data

InfIntE can also use absolute abundance data, complementing the compositional data obtained from eDNA.
In this example we will use the qPCR measurements of the pathogen Z. tritici available in the metadata.

#Retrieve absolute abundance
absolute_abundance<- t(data.frame(sample_data(asv_subset))[,7,drop=FALSE])
absolute_abundance<- ifelse(is.na(absolute_abundance),0,absolute_abundance)
#Infer interactions
interactions<- infinte(otu_tb = otu_table(asv_subset,

taxa_are_rows = T), ncores = 25,
absolute_abundance = absolute_abundance, exclusion = TRUE)

#Get network
network_graph<-graph_from_data_frame(interactions$selected_interactions)
#Change ASV names to genus
zymo.pos<- grep("Zymoseptoria", V(network_graph)$name)

V(network_graph)$name<- data.frame(tax_table(asv_subset))[V(network_graph)$name,]$Genus
V(network_graph)$name[zymo.pos]<- "Zymoseptoria"
#Add color to different interactions
library(RColorBrewer)
colors_edges<- brewer.pal(5, "Set2")
E(network_graph)$color<- sapply(E(network_graph)$lnk, function(x){

colors_edges[which(unique(E(network_graph)$lnk)==x)]})
#Plot
set.seed(123)
lay <- layout.kamada.kawai(network_graph)
plot(network_graph, layout=lay, vertex.size=2,

vertex.label.cex = 0.75, edge.arrow.size=0.5 )
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2 Network visualization
Ecological interaction networks are complex representations of an ecological re-
ality, with many different kinds of interactions and taxonomic units potentially
being displayed. This complexity means that it can be difficult to explore and
obtain appropriate information from ecological networks. Indeed, complex net-
works have been described as ’hairballs’ that are impossible to disentangle. In
chapters II, III.5 and IV, several existing tools were examined as part of network
analysis. But, analysis is only one part of data exploration. Visualization is also
an necessary way to obtain information from networks. Cytoscape is the most
widely used tool for network visualization (Saito et al. 2012). It is an open source
application that offers many plugins to adapt the application and output to user
needs. Nevertheless, we have found that the solutions offered in Cytoscape are not
suitable for visualizing the networks obtained using EML, for which it is necessary
to assess network structure across modified compression thresholds, interactively.
We therefore decided to develop an interactive application for EML network visu-
alisation, based on the shiny R package (Chang et al. 2021). The application uses
the output obtained from InfIntE or other network reconstruction tools, to pro-
duce a network graph that can be customised, facilitating network interpretation.
The app is intuitive and can be used on any computer with R installed. It can
also be used to share constructed networks for feedback from ecologists, thereby
further improving network inference by incorporating domain knowledge.

Figure V.1 is a screenshot of the interactive tool. The left-hand panel includes
all the visualisation options of the tool. The user can select:

• The interaction network file to visualise. The file has to contain a table with
four columns and one interaction per row. The first two columns must be
the two interaction OTUs, the third column must be the numeric measure
of interaction (e.g. compression) and the fourth the interaction type.

• The taxonomic table to apply to the OTU names. This is specifically de-
signed to use the taxonomies obtained from phyloseq objects.

• The layout to apply to the network. New layout functions can be readily be
included to extend network visualisation.

• Whether to show the direction of the interactions. For some interaction
types (e.g commensalism), the effect caused to the OTU by the interaction
differs. As a consequence, it may be interesting to see the direction of the
interaction.

• The threshold of compression (or other metric of interaction importance) to
be applied, in order to select those interactions to be shown in the network.

• The interaction types to be shown.

• The thickness of the edge, so as to display the interaction important metric
(e.g compression).

• The label size.
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• A second network for comparison. Edges will then be colored as a function
of the coincidence between the edges of the two networks, in place of their
interaction type.

The right-hand panel shows the image of the network, showing the OTU name
of each node. The interactions are shown as lines of different color depending on
the interaction type. A single-click selects an interaction or OTU, and highlights
all the other OTUs and interactions linked to it. A double click on a node of the
network can be used to move it around, changing the conformation of the network.
The OTU is then deselected by double-clicking. The network image can be saved
using the dialogue box under the network image.
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Chapter VI

Discussion
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1 General Discussion
This thesis was done as part the Agence National de la Recherche (ANR) Next-
Generation Global Biomonitoring (NGB) project. As a consequence, both the
project and this Ph.D. share a similar objective of developing a framework for the
use of interaction networks for automated monitoring of ecosystems (Bohan et al.
2017). This framework was envisioned to have three pillars: 1) the automated
sampling and sequencing of DNA; 2) the use of bioinformatic pipelines to obtain
OTU abundances; and, 3) network reconstruction and analysis. For the first pillar
of the approach, the different research groups in the NGB consortium identified
potential monitoring-interesting ecosystems and developed appropriate pipelines
for their sampling and DNA sequencing. This work is detailed in Dubart et al.,
(2021). This thesis was developed to focus on doing the second and third pillars,
using data-sets created in the first pillar. Among all the available ecosystems and
taxa that were biomonitored in NGB, I focused on microbial communities for two
main reasons. Microorganisms are ubiquitous, being present in all ecosystems,
and they are difficult to monitor using any technique other than metabarcoding.
With that in mind, the main question to answer was whether interaction networks
could be used to monitor microbial communities? At first glance, this seems
a pretty straightforward question. There are many statistically-based, network
reconstruction tools available, and these seem pretty robust (Röttjers & Faust
2018; Dohlman & Shen 2019). It therefore appeared that the answer would come
from building correlation networks, using statistical approaches, and comparing
them, and thereby the monitoring would be done. But, when one starts to consider
this question in detail, things get more complicated.

The first complication appeared around the use of the term interaction. What is
a microbial interaction? Plenty of examples and definitions of the diversity of eco-
logical interactions can be found in the literature (Derocles et al. 2018; Tshikantwa
et al. 2018). The complication is whether the networks of correlations produced by
statistical approaches capture the evident diversity of ecological interactions in na-
ture. Given the aim of biomonitoring is to take decisions to manage the ecosystems,
any reconstructed interaction networks should report interaction change and give
enough information to decision-makers for appropriate decision-making. Identify-
ing this initial complication led quickly to many others that could be formulated
as research questions. For example: what are the sampling requirements necessary
to appropriately represent the interactions of a microbial community; and, how do
we detect change in the complex networks that might be constructed? It is here
that the principal difficulty of this Ph.D. topic lies. It requires a multidisciplinary
approach to answer all these questions. Ecology and Microbiology are the basic
domains of research necessary to define and understand microbial interactions.
Bioinformatics and Statistics provide the methods to process the metabarcoding
data and reconstruct the interaction networks. To this we add the logic required
to bridge the gap between our ecological knowledge and network reconstruction.
This bridge was the Explainable Machine Learning (EML).

Explainable machine learning uses the understanding from a particular knowl-
edge domain to process information in a human understandable way (Tamaddoni-
Nezhad et al. 2021). EML made it possible to use the ecological definitions for
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different interaction types, taken from the literature, as hypotheses to reconstruct
microbial networks. These networks would, in principle, thereby exhibit links for
each of the different interaction types hypothesised, giving a richer and fuller in-
sight into the structure and function of microbial communities. This thesis is a
first step towards an EML-based network reconstruction approach to biomonitor-
ing and identifies the elements required for robust network based biomonitoring
using metabarcode data.

1.1 Can metabarcoding data be used for biomonitoring?

The development of Next Generation Sequencing (NGS) approaches have lead to
the establishment of standard pipelines for DNA sampled from the environment
(eDNA), extraction of eDNA, sequencing and identification and clustering of the
obtained sequences into OTUs. These pipelines also give count information for
the abundance of sequences, and therefore species, in a sample. The consensus
amongst scientists is that eDNA sequencing with an appropriate set of primers
produces an accurate list of the taxa present in the environment (Burki et al.
2021). There is no agreement, however, for how accurate the counts are, as mea-
sures of abundance, following clustering and denoising of the sequence information.
Some authors have stressed the importance of different biases that are introduced
during metabarcoding, creating a distorted estimate of community abundances in
the sequence counts of the OTUs (Fonseca 2018; Carr et al. 2019; Santi et al.
2021). Experiments using mock communities have shown that relatively accurate
abundance measures can be obtained where appropriate sequencing and bioinfor-
matic pipelines are followed (McGovern et al. 2018; Pauvert et al. 2019). This
is consistent with the tests done with microbial communities as part of the NGB
project (Dubart et al. 2021). The metabarcoding data used during this thesis fol-
lowed the recommendations from these authors to obtain abundance information
of the different ASVs found in grapevine leaves. In chapters II and VII, I detail how
these metabarcoding datasets were obtained using the molecular biology pipelines,
including DADA2, which is probably the most widely employed tool for ASV infer-
ence. Post-processing of ASVs to discard contaminants and low abundance ASVs
that are more prone to be uninformative, used a specifcally designed pipeline (Cao
et al. 2021). Similar pipelines could be developed to yield abundance information
for reconstructing interaction networks, potentially allowing an automated sam-
pling, sequencing and bioinformatic processing (Bohan et al. 2017). Obtaining the
abundance data is therefore not an impediment, in principle, preventing network-
based biomonitoring of ecosystems. Community diversity measures of ASV count
data, analyzed in chapters II and VII, also show that microbial communities di-
verge when there is a change in the ecosystem, due either to a different cropping
system or to grapevine disease status. As a consequence, we expect that recon-
structed interaction networks should also reflect these changes, bringing a richer
insight into the structure and function of microbial communities with ecosystem
change.
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1.2 Can explainable machine learning be used to infer in-
teractions?

The networks reconstructed with correlation-based tools require interpretation by
ecologists and microbiologists to obtain significant knowledge. This interpretation
is subjective, being limited by the knowledge of the interpreter, the information
available in databases and the literature, and the biases of each person doing the in-
terpretation. Our goal of building explainable networks, useful for biomonitoring,
demanded a network reconstruction procedure that avoids this subjective interpre-
tation via a direct classification of the interaction mechanism between all interact-
ing OTUs. The first step of this development, detailed in the chapter III.5, showed
that it is possible to use explainable machine learning and a basic definition of in-
teraction to accurately reconstruct networks from cross-sectional, eDNA sequence
counts. The procedure used CProgol (Muggleton 1995), an explainable machine
learning language for doing Abudctive/Inductive Logic Programming (A/ILP), to
abduce the effects on the abundance of OTUs due to a hypothesised interaction.
The abduction used the abundance of OTUs, from metabarcoding, together with
a simple hypothesis of interaction describing the effect on OTU abundance, to
obtain an estimate of Compression (Muggleton & Bryant 2000). The value of
compression represents the amount of provided information supporting each ef-
fect on abundance. We formulated a framework to calculate a statistic, I, that
quantifies the constancy of effect of an interaction on OTU abundance, using the
compression values. This used the explicit assumption that to be important, an
interaction should have a consistent effect direction on OTU abundance (up or
down) over the whole data-set. Compression has previously been used to obtain
probabilistic measures of abduced effects in different applications (Bryant et al.
2001; Tamaddoni-Nezhad et al. 2012). The potential of the A/ILP for recon-
structing networks was evaluated by bootstrapping the OTU abundance changes
to obtain significance estimates for the I values, thereby discriminating true from
false interactions.

This framework was tested using an ecological-like model to generate different
interaction types, as proposed by Weiss et al., (2016) (Weiss et al. 2016). Interac-
tion datasets were generated by simulating the abundance of non-interacting OTUs
and then modifying their abundance to mimic different interaction types, such as
competition, commensalism, etc. The simulated interactions are modulated by a
variable that defines the strength of the interaction on the abundance. The tests
showed that it was possible to detect true interactions, with A/ILP, with an ac-
curacy comparable to SparCC (Friedman & Alm 2012), one of the most widely
used statistical network reconstruction tools. The SparCC results were broadly
consistent with the findings of Weiss et al., (2016) and Tackmann et al., (2019).
However, I found that the simple hypothesis of interaction used for the A/ILP
learning was flawed. Detecting absent OTUs, due to the effects of strong negative
interactions that led to exclusion, was difficult or even impossible because it was
not considered in the hypothesis. The learning framework also illustrated some
problems of implementation. The A/ILP abduction, when done in CProgol, took
several hours to infer links for a relatively small dataset of 40 OTUs and 50 sam-
ples (Varghese et al. 2022). Given that a bootstrapping procedure for this size of
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data-set also needed at least 100 re-samplings, the total execution time for a single
OTU table was of the order of a few days. CProgol was written in C, some 20
years ago (Muggleton & Bryant 2000), and this code is no longer compliant with
modern C compilers, significantly complicating the operational burden of running
EML abduction on modern computers.

1.3 Can explainable machine learning be improved?

To address these issues, the EML framework to infer interaction networks was
extended. In chapter IV, I detail how the improvement was developed. I started
by evaluating different A/ILP machine learning languages for abduction, such as
CProgol and Aleph (Srinivasan 2001). Our collaborators recently developed Py-
Gol (Varghese et al. 2022), a much faster, python-based implementation of A/ILP
and this simplified our choices. PyGol is able to obtain compression values from
the same datasets at between 10 and 60 times faster than CProgol (Varghese et al.
2022), Figure A.6). The reduction of computation times from hours to minutes
simplifies EML development by reducing the time required for testing, and thereby
promoting a more interactive and experimental approach. The risks of a CProgol
run made in error are much lower in PyGol. As a consequence of PyGol’s efficiency,
larger metabarcoding datasets can be learned on reasonable time scales, making
the use of explainable machine learning for monitoring a realistic possibility. The
method of discrimination of true interactions, from false, using the I statistic ob-
tained from compression was also changed. Given that the previous bootstrapping
procedure required a high number of re-samplings (Li et al. 2009) and did not take
into account the stability of the different edges of the network, we adopted the
StARS model selection procedure (Liu et al. 2010). The use of StARS reduced
both the number of re-samplings that are necessary (Müller et al. 2016), reducing
further the run times, and the number of false positives in the networks inferred
from computer generated data by accounting for edge stability.

Together with these procedural improvements, the hypothesis of interaction
was expanded to include the possibility of OTU exclusion and interdependence.
The I statistic, obtained from this expanded theory, was found to be better at
detecting computer-generated competition and amensalistic interactions. That a
modified hypothesis of interaction can lead to different performance for detecting
interactions illustrates the future potential of explainable machine learning for
network reconstruction. Any ecological hypothesis, when expressed as a logical
relation, could be used for abduction. Each obtained network would then be
representative of the hypothesis used, depending the accuracy of detection and
the utility of the hypothesis for describing the interactions in the ecosystem.

This improved framework for interaction network reconstruction was imple-
mented as a tool within an R package (R Core Team 2022) called InfIntE (INFer-
ence of INTeractions using Explainable machine learning) that calls PyGol as the
engine for abduction. The tool has an automatic pipeline which: 1) transforms
an OTU table into logic clauses; 2) abduces the effects on the abundance using a
given set of hypotheses of interaction; 3) selects the edges of the network by calcu-
lating I values and running StARS; and 4) then directly classifies the significant
interactions to their interaction type (Figure IV.1).
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1.4 It is possible to perform a direct classification of inter-
action types using explainable machine learning?

InfIntE classifies the detected interactions by their type as a function of the ef-
fects on the abundance of the involved OTUs (Table I.1). The performance of the
InfIntE interaction classification was evaluated in chapter IV using a combination
of the ecological models to simululate interactions, from Weiss et al. (2016), and
the OTU data of grapevine foliar communities, as described in chapter VII. The
InfIntE detection of computer-generated amensalism and competition interactions
detrimental to OTU abundance was significantly lower than the detection of ben-
eficial interactions, such as commensalism and mutualism. This suggested that
even where the incorporation of exclusion in the hypothesis increased the perfor-
mance of InfIntE, the detection of detrimental interactions still posed considerable
difficulties, caused by the lack of information provided by zero data in the OTU
matrix. This issue is not unique to InfIntE, but is also shared with the statis-
tical based inference (Connor et al. 2017). However, InfIntE correctly classified
the majority of the computer generated interactions detected, indicating that the
hypotheses of interaction and the classification mechanism were appropriate to
identify the types of interactions based on the abundance changes. Consequently,
we consider that where InfIntE detects an interaction, this interaction will be
correctly classified. This posit was corroborated by reconstructing the microbial
interactions on grapevine leaves suffering from downy mildew. Downy mildew is
caused by the pathogen Plasmopara viticola, and due its impact in the grape pro-
duction, pathogen interactions within the microbiome are an important subject
of interest. Indeed the literature lists a number of fungal species described as P.
viticola antagonists. All these previously discovered species, when present in our
datasets, were shown to have detrimental interactions with the pathogen using In-
fIntE. This suggests, with some strength, that the interaction classification using
real data works.

It is difficult to find work done to establish a link between an interaction type
and its ecological meaning in the literature. Possibly the best examples of inter-
action type classification have been done using longitudinal (time series) metabar-
coding data and adaptions of the Lotka-Volterra population dynamical functions
(Tsai et al. 2015; Lo & Marculescu 2017a; Pinto et al. 2022). Proposals have also
been made to simulate interactions types as a function of the metabolic pathways
found in databases (Pacheco et al. 2019; Sambamoorthy & Raman 2022) and the
literature (Sun et al. 2021). To date, however, there are no techniques to infer
interaction types from interaction mechanisms/hypotheses in cross-sectional data,
making InfIntE the first approach to deal with this subject.

Interaction types give insight into both how microbial communities are struc-
tured and how they might evolve (Pacheco et al. 2019). Interactions can have a
great economic importance for ecological regulation and Ecosystem Services, such
as for biocontrol (Musetti et al. 2006) and for the economic use of microbial com-
munities in industry and industrial processes (Ghosh et al. 2016). The proportion
of the different interactions types in a network provides information on microbial
community assembly, dynamics and resilience and might therefore potentially be
used for biomonitoring.
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1.5 Considerations on InfIntE

The development of InfIntE required a continuous cycle of improvement, testing
and validation. The performance of the different hypotheses of interaction and
edge selection methods was tested using computer-generated datasets. Then, when
I was satisfied that InfIntE offered sufficient performance, it was evaluated by
reconstructing interaction networks from grapevine datasets, specifically focused
on the pathobiome. The use of computer-generated data provided evidence that
InfIntE can utilise OTUs tables with abundance changes caused by different types
of interactions to reconstruct and classify those interactions at play. The use of
5-fold validation of grapevine community data demonstrated that InfIntE could
also recover information from real datasets, reconstructing the pathobiome by
detecting and classifying interactions based upon mechanisms expected from the
literature. Overall, this suggests that InfIntE is a tool that has potential utility for
reconstructing interaction networks, classified by their interaction types. It is, in
addition, implemented in an easy-to-use R package that is available for ecologists
wishing to use explainable machine learning to explore metabarcoding data.

1.6 Which network reconstruction tool should I choose for
biomonitoring?

During my Ph.D., I have used two existing statistical network reconstruction tools,
SparCC (Friedman & Alm 2012) and SPIEC-EASI (Kurtz et al. 2015), and devel-
oped an explainable machine learning based tool, InfIntE (chapters IV and V). The
choice of the two statistical tools, among all the available options, was determined
by their proven performance and wide use by microbial ecologists. This ensured
that publications that benchmarked these tools, as methods of reconstructing net-
works from metabarcoding data, were also available. These statistical tools and
InfIntE perform cross-sectional network inference using samples from an ecosystem
taken at the same point in time. They have different strengths and weaknesses,
offering different options to users for monitoring ecosystems and obtaining eco-
logical knowledge. The value of each approach, and an any decision as to which
one to use, varies as a function of the sampling size, the data and the need for
information to support decision making.

Are interaction networks inferred from metabarcoding data replicable?

The principle of using interaction networks to monitor ecosystems is that we might
detect changes in the interactions of networks that anticipate changes in the ecosys-
tem. This principle presumes that interaction networks will change systematically
when subjected to an ecosystem pressure or driver, whether biotic or abiotic. Con-
sequently, it also assumes that networks will not change if they are not subject to
ecosystem drivers. The first requirement for network reconstruction tools is that
they deliver reproducible output, therefore. Networks obtained from the same
ecosystem at the same time must be the similar, within the limits of sampling
errors. The reproducibility of the three tools was evaluated using computer gener-
ated datasets that forced interactions in random OTU populations (Chapter IV).
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No other factors influenced the OTU abundance data. For all three tools, the de-
viation of interaction detection accuracy between datasets with similar numbers of
replicates and conditions was non significant. This indicates that, even where the
tools use a level of randomness for re-sampling to assess interaction significance,
they all detect the same network links when the conditions are the same.

Real metabarcoding data is riddled with many biases, from sampling through to
the bioinformatic process, all of which might limit reproducibility. Such variability
was evident even in samples of grapevine leaves from the same abiotic conditions.
SparCC and SPIEC-EASI produced one to five consensus interactions, from the
three networks reconstructed from conventional and organic samples. Only one
consensus interaction was inferred by InfIntE between the interaction networks
from nine vineyards. This divergence between computer-generated and real data
suggests one possible explanation; that the lack of reproducibility is due to the
high variance and stochasticity within and between microbial communities on the
grapevine leaves (Ning et al. 2019; Peay & Bruns 2014). This would preclude
reproducibility even though models simulating OTU abudances have previously
been shown to accord well with real OTU abundances (Shoemaker et al. 2017). It
should also be noted that conditions that are considered identical during sampling
can include a myriad of unobserved biotic and abiotic differences. Our belief is
that interaction networks are hard to construct from metabarcoding data, and
that reproducibility depends on factors that affect the sample composition and
abundance, as well as the number of sample replicates.

How many samples are necessary to reconstruct a network

There is no agreement in the literature on what is the minimum number of samples
that are required to reconstruct a network. The recommended number ranges from
20 to several hundreds, depending on the source (Berry & Widder 2014; Hirano &
Takemoto 2019). Sampling and sample number has important implications for any
experimental or monitoring approach. The cost in time and money to sequence a
sample has decreased markedly, thanks to next-generation sequencing. However,
it is still expensive to obtain a sequence dataset from several hundreds of eDNA
samples. Some upper limitation on data collection and the number of samples
to be processed is necessary, simply for affordability. Insufficient sampling, by
contrast, could result in non-informative interaction networks, invalidating the
whole experiment.

Tests using different sized simulation datasets showed a detection accuracy that
differed as a function of the sample number and the tool used. The accuracies of
SparCC and SPIEC-EASI plateaued at around 20 samples, with more samples
not improving the computed accuracy. InfIntE, by contrast, needed a number
of samples closer to 50 for accuracy to plateau. In general, network reconstruc-
tion benchmarking exercises, including those that have considered SparCC and
SPIEC-EASI, have used an excess of samples and therefore have not evaluated the
sampling effort as a variable in the network reconstruction process (Weiss et al.
2016; Röttjers & Faust 2018). As we have seen, the sample size can have important
effects on the interaction detection. Typically, 20 to 50 samples is an affordable
number of samples for a metabarcoding essay. These sample sizes are not a point
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of critical decision-making between the different tools, therefore. InfIntE can also
use this order of the number of samples to classify the interaction types. However,
for cases where only really limited number of samples are available and no interac-
tion classification is required, statistical-based network inference tools would offer
a valuable, first exploratory approach, possibly to justify further sampling and the
use of InfIntE.

Can ecosystem change be assessed using interaction networks?

Interaction networks obtained from metabarcoding data are highly dependent on
the condition of the samples from which they are inferred. Even sets of samples
from same abiotic conditions, location and time points could produce different
networks (Galiana et al. 2022). My work suggests that the networks produced
by statistical and logical learning approaches are accurate representations of the
interactions that caused the changes in the OTU abundance (chapters II & IV).
Thus, network metrics can be used to evaluate change in interaction networks to
assess ecosystem change (Tylianakis et al. 2010; Pellissier et al. 2018). Tests done
using SparCC and SPIEC-EASI have shown that network α-diversity measures
such as the number of edges or network diameter (Barabási et al. 2000), could not
differentiate interaction networks from organic or conventional grapevine crops.
Some network β-diversity measures, like the dissimilarity of associations (Poisot
et al. 2012), could indicate differences between interaction networks from different
cropping practices. These network metrics have not yet been used to evaluate the
performance of InfIntE.

The networks obtained from different vineyards across France (chapter VII) are
expected to be different, given the great geographical distance between them. We
also expect that the networks obtained using InfIntE will reflect ecosystem change,
since its accuracy is comparable to SparCC and SPIEC-EASI. It is important to
remark that not all the differences found between networks were due to OTU
change or presence. Networks also changed due to network plasticity (Gray et al.
2021), with links appearing or disappearing between networks. When combined
with the few consensus interactions found across different networks, these findings
point to a preliminary hypothesis that microbial interactions may not be conserved
in an ecosystem and may be highly sensitive to the different factors and variables
of the ecosystem. Even small variation in these factors and variables, whether
abiotic (e.g. increase of temperature) or biotic (e.g. appearance of a new species)
could exert a selective pressure across all possible interactions leading to a sweep
of change across the network. It might be that the interaction networks then
stabilize to a new stable state (Yuan et al. 2021). As a consequence, reconstructed
interaction networks, irrespective of the used tool for reconstruction, are promising
and sensitive ecological structure for the monitoring of ecosystems, where the
metrics to compare networks are appropriate. This may be particularly relevant
in a general context of global climate change were network modification might be
the first indicator of the systemic risk of ecosystem change.
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Do interaction networks provide information to manage ecosystems?

Detection of ecosystem change is important if we are to mitigate the change effects
that climate change and other human-derived drivers cause to ecosystems (Cordier
et al. 2021). When such change is detected, it is also necessary to take appropriate
management decisions to mitigate the change, to conserve biodiversity and the
delivery of ecosystem services. One of the main objectives of this thesis has been
to provide ecologists with the necessary methodology to facilitate decision making
at large scales using eDNA derived ecological networks. A key step in this is to ex-
plore the interaction networks. To this end we have designed an interactive tools to
visualise and compare interaction networks (chapter V). The most important part
of my work, nonetheless, is EML methods to obtain interaction networks that are
explainable in terms of our ecological knowledge and hypotheses, and objectively
classify directly the different microbial interaction types present. This work, en-
coded within the network reconstruction tool InfIntE, is a small, first step, towards
the use of explainable machine learning for interaction network reconstruction. It
establishes a baseline to obtain relevant ecological knowledge from metabarcoding
data, directly and objectively, while reducing the subjective interpretation of the
results often required for statistical approaches. This differentiates InfIntE from
the statistical learning tools, such as SparCC and SPIEC-EASI. While InfIntE can
detect interaction and reproduce networks with the same accuracy as SparCC and
SPIEC-EASI, where sufficient samples are available, it does this with the benefit of
directly classifying ecological interactions thereby retrieving significant ecological
knowledge.

The classified interaction types proved to be useful for identifying all known
antagonists of the pathogen Plasmopara viticola in metabarcoding samples from
nine vineyards (chapter IV). Importantly, the methodology also predicted (discov-
ered) three previously unknown antagonists as candidate biological control agents
of P. viticola for future testing. Interaction types also have potential utility for
biomonitoring. If a correlation association between two microorganisms stops, it
might have many explanations. But, where ecologists also know that the associa-
tion was due to a commensal interaction, for example, they might then conjecture
that one of the microorganisms stopped producing the nutrient source for the
other (Tshikantwa et al. 2018). Inferred classified interactions ultimately provide
a better ecological explanation of change for ecosystem biomonitoring.

2 Future perspectives

2.1 InfIntE testing

InfIntE is the first explainable machine learning approach to be applied to the
inference of microbial interactions. By the end of my Ph.D., InfIntE works as a
standalone tool that can perform the reconstruction of interaction networks with
sufficient precision to be compared against known interactions in the literature.
The tool is encoded as an R package and stored and curated in a Github repository.
My objective, in coding an R package, was to make InfIntE readily available to
any ecologist with an interest in reconstructing networks using explainable machine
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learning. The development of an R package is a constant and continuous process
that does not end with the publication of the package. There is a necessary and
ongoing process of testing and feedback from different end-users to identify and
solve any possible bugs that might appear. To date, InfIntE has been tested by
a few users, on a limited number of datasets, all of whom have been working in a
Linux environment. The tool requires ongoing support and further testing, under
different operating system environments and settings to ensure that there are no
compatibility issues. The communication between R and PyGol’s python scripts
that are used to perform the abduction, are particularly sensitive. New versions of
python have broken previous versions of the tool because the script no longer ran in
the way expected during development. The network visualization tool also needs
further development and feedback from the user community. This development
should, in particular, address feedback that shapes the visualisation tool to user
needs. The ease-of-use of this interactive tool should also be further improved to
make sure that it can be used by any ecologist, even those without great computer
skills, rendering the tool able to visualize relevant ecological knowledge from one
or more interaction networks, and especially those ones reconstructed by InfIntE.

2.2 InfIntE improvement

The flexibility that explainable machine learning offers means that there is al-
ways room for further improvements in hypotheses, based upon the solid founda-
tions established for InfIntE, as described here. Explainable machine learning uses
knowledge from different scientific domains to discover new knowledge, following
a human understandable process. The domain knowledge used in InfIntE to in-
fer interactions is simple, logical hypotheses for how the abundances of different
OTUs were affected by interactions with other OTUs. In chapter IV, I show that
these initial hypotheses of interaction could be extended to include the possibil-
ity of exclusion of an OTU, caused by an interaction. In principle, it is possible
to provide InfIntE with any logical hypothesis of interaction. The inclusion of
new hypotheses of interaction, describing for example interactions involving more
than two OTUs or interaction dynamics by including time, could help in the mod-
elling and comprehension of more complex ecosystems. This would be useful in
the case of interactions that change depending upon the life stage of the OTUs
involved. Interactions might be hypothesised as a function of the ecology of the
OTU (Chagnon et al. 2016), rather than abundance. In chapter IV, both metabar-
code and pathogen qPCR data are employed to reconstruct pathobiome networks,
illustrating how different sources of information about the OTU abundance can
be used simultaneously in the inference. This could be expanded to include a
great variety of abundance data, such as counts made using a microscope (Daley
& Hobbie 1975) and spectrophotometric quantification (Zhou et al. 1998). What
is required is data from a methodology that robustly quantifies the changes in
abundance between samples. The use of InfIntE could also be extended to eco-
logical other domains than the microbial, such as to learn interactions between
invertebrates. This would only require appropriate descriptions of interactions, as
logical hypotheses, and data for the change in abundance of the species concerned.

Domain knowledge is a broad, catch-all term for any information that might be
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used to inform a process of learning. Any appropriate domain knowledge related
to microorganisms could be included in the InfIntE learning where the knowledge
can be related, logically, to the hypothesis of interaction used. The sources of mi-
crobial domain knowledge can include the expertise of ecologists, published papers
and databases, such as for the traits of microorganisms for example. Including
such knowledge in ecological network reconstruction would produce more accurate
ecological networks, via more highly refined hypotheses of interaction. The link
between this domain knowledge and the OTU abundance data is made using the
taxonomic assignment of the OTU. As noted in chapter I, taxonomic assignment
is performed by comparing the OTU sequence to curated sequences present in
databases. This means that the assignment is highly dependant on the quality
of the sequences and information in the database, and some of these can be very
poor. Microbial taxonomy is also in constant flux, with the latin binomial nomen-
clature changing over time and some taxa having multiple names. This requires
that the taxonomic assignment is regularly updated. If and when these issues
are addressed, however, the introduction of different sources of domain knowledge
into the hypotheses would result in an improvement of the network reconstruction.
Microorganisms have many different ecological and functional characteristics, in-
cluding body size, requirements for growth, metabolic pathways (Pacheco et al.
2019; Sambamoorthy & Raman 2022), ecological functions, and organisms with
which they interact. Some of these characteristics or traits are stored in online
databases, which could serve as valuable sources of domain knowledge. Informa-
tion and the ecological function can be found in Fungaltraits (Põlme et al. 2020),
Funguild (Nguyen et al. 2016b) and Faprotax (Louca et al. 2016). Metabolic infor-
mation is curated in Metacyc (Caspi et al. 2014), Kegg (Kanehisa & Goto 2000)
and Uniprot (The UniProt Consortium 2021). The NCBI (Sayers et al. 2022),
FungiDB (Basenko et al. 2018) and MycoBank (Robert et al. 2013) have taxo-
nomic and genetic data. Mechanisms can sometimes be postulated between dif-
ferent traits and characteristics. For example, a given metabolic pathways might
produce a particular ecological function. It then becomes possible, for certain
OTUs, to include the trait data as part of the search for ecological interactions,
improving the network inference. Metabolic pathway information has already been
used to infer interactions (Pacheco et al. 2019; Sambamoorthy & Raman 2022),
but this was an isolated learning approach and it has never been used in metabar-
coding based interaction inference.

OTU sequences are obtained by amplifying different parts of the eDNA coding
for ribosomal RNA, depending on the taxonomic group of study. This part of the
DNA has also been used to obtain evolutionary information. Ribosomal sequence
alignment between two or more ASVs gives a distance measure related to the
evolutionary distance between the ASVs (Van de Peer et al. 1993). ASVs that
are closer, evolutionarily, are expected to share similar characteristics and traits.
Thus, similarity between ASV sequences might also be used as domain knowledge
to improve network inference. This information might also be included in the
network reconstruction and provide insights into whether microorganisms with
similar traits interact similarly, etc.. Where abiotic, environmental conditions at
sampling can be recorded, these might be introduced into the inference process to
control for sampling biases. This has been already done for some statistically based
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interaction reconstruction tools (Ovaskainen et al. 2017; Chiquet et al. 2019).
EML is not only limited to using logical abduction for inference. There are

other forms of EML that could be used to obtain relevant ecological knowledge
from metabarcoding data. Ecologically, it would be especially interesting to ex-
amine the possibilities that the branch of EML called meta-interpretative learning
(MIL) offers. MIL uses observations (the abundance change produced by interac-
tions) and domain knowledge (e.g. functional information contained in databases)
to learn (infer) new rules (Muggleton et al. 2014). For our microbial case, the rules
learned would be new hypotheses of interaction. Comparing computer generated
hypotheses of interaction with the hypotheses accepted by microbial ecologists
could potentially revolutionise our understanding of how microorganisms interact.
These rules would first and foremost have to be comprehensible to scientists; they
would have to make sense. Tammaddoni-Nezhad et al., (2013) reconstructed pre-
dation rules in toy invertebrate networks, extracted from larger networks, learning
that species with large body size eat smaller bodied species (big things eat small
things). These rules were comprehensible as they directly reflected ecological the-
ory for who eats whom in invertebrate systems (Bohan et al. 2011). MIL might
therefore provide microbial ecology with novel interaction theory. MIL remains a
nascent technology, however, and there are questions as to how well it can deal
with the noise inherent in ecological data. Recent developments have started to
provide evidence that once developed MIL has utility for the learning rules from
images (Muggleton et al. 2018) and is also robust to noisy data (Patsantzis &
Muggleton 2021).

2.3 Interaction testing

All the network reconstruction tools studied as part of this thesis use inference
to produce a list of significant predictions of association between microorganisms.
This list, obtained in silico from eDNA sequencing data, is grounded upon the
effects on the abundance caused by an interaction. Irrespective of the degree of
accuracy that can be ascribed to the different tools using various analytical cal-
culations, the acceptance of an interaction as producing output that has value for
science can only come with subsequent in vivo tests of the each interaction on the
list. InfIntE was used to predict a list of P.viticola antagonists that had potential
as biocontrol agents. Some of these antagonists have already been described in the
literature, serving as a corroborative test. It is the as yet unknown antagonists
that need to be tested for their biocontrol potential in small scale lab experiments
to determine if they can have any detrimental effect on P. viticola abundance. If
these tests show that the predicted antagonism is correct, then it validates InfIntE
and also suggests that the tool could be used to identify biocontrol agents that
might ultimately be used in large scale field applications. Culture experiments of
the type necessary for validation are not straightforward, however. It is necessary
to isolate the precise species, and possibly strains, that were detected using eDNA
sequencing and therefore implicated in the networks. Some of these species may be
very difficult or even impossible to grow in laboratory conditions (Pacheco et al.
2019). Ecological functions can also vary between different strains, depending on
the strain. This is particularly marked in those taxa that employ horizontal gene
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transfer (Thomas & Nielsen 2005).
Aside from the constraints of obtaining the correct taxa for the culture exper-

iments, there are also difficulties in providing the interacting microorganisms the
same conditions that provoked the interaction (Pacheco & Segrè 2019). Direct
competition interactions that harm one or both species through the secretion of
bioactive secondary metabolites (Derocles et al. 2018), produce readily observable
results in a co-culture. Most other interactions are not so direct or observable,
and many require appropriate culture conditions. Exploitative competition, as an
example, will only happen if there is a scarcity of the resource needed by both
interacting taxa. Mutualism will only be observed if there is a common benefit
to be achieved by cooperation. Some interactions may be impossible to repro-
duce in culture media entirely. In such cases, direct inoculation of the taxa onto
a controlled substrate (like a tissue) is the only option to evaluate interactions.
For these cases, though, the absence of evidence for the interaction in the culture
experiments does not provide evidence of absence of the interaction under natural
conditions.

InfIntE appears to be an interesting tool to facilitate the development of cul-
turomics validation. This interaction inference tool classifies interactions to their
type, thereby making it much easier to define the experimental conditions neces-
sary to validate the interactions than is the case with the correlational associations
produced by statistical tools. As an example, where an interaction between two
species is automatically classified as commensalism, the test experiment might fo-
cus on identifying and detecting the compound produced by one species that is
fed upon by the other.

2.4 Final considerations

InfInte can be considered a strong basis for improving EML network reconstruc-
tion, as it is a functioning tool with demonstrable ability to reconstruct networks
using eDNA. The parameters and requirements necessary for the data used by
InfIntE to reconstruct interaction networks have been defined in this thesis. I
also detail the bioinformatic pipelines to obtain abundance changes from metabar-
coding data. Finally, the metrics necessary to compare interaction networks and
evaluate InfIntE performance are identified and tested. I believe that everything
is ready to start using InfIntE to monitor ecosystems.

This thesis begins with a reference to the book Anna Karenina and para-
phrases the narrative for how unhappy families are unhappy each in their own
way. Climate change is a source of "unhappiness" for many ecosystems. We need
to start evaluating what is happening to the world’s ecosystems, due to drivers like
climate change, and taking appropriate corrective decisions. Over the chapters of
this thesis, I have argued that it is possible to sample ecosystems for eDNA, recon-
struct the microbial interaction networks of these ecosystems and obtain ecological
knowledge on the changes that these systems undergo. Dubart et al., (2021) pro-
pose a number of different ecosystems that would be interesting to monitor from
a biomonitoring theoretical point of view, and there are many ecosystems where
monitoring would offer solutions to the many ecological problems those ecosystems
face. At the end of the novel, Anna Karenina, overwhelmed by the impossibility
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of being happy, throws herself under a train to end her life, only realising that
this is a mistake when her death is inevitable. The impulse to give up is common,
especially when the problems you face appear insurmountable. However, in most
cases the alternative to not trying is worse. Climate change, and other global
change problems, appear insurmountable and inevitable processes, but not trying
to understand their effects and to stop or to mitigate those effects will lead to the
loss of many ecosystems and cause great human suffering. I think that the work in
this thesis is a small contribution towards the ecological understanding of micro-
bial ecosystem change. I hope that it adds, in small degree, to better ecosystem
monitoring, management and protection.
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Chapter VII

Constructing ecological, microbial
community data-sets from DNA
data
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Abstract:
Grapevine downy mildew (Plasmopara viticola) is a major disease of European
cultivated grapevine (Vitis vinifera L.) against which a large amount of synthetic
pesticides are used. Developing microbial biocontrol of P. viticola could reduce the
use of pesticides in viticulture and preserve human and environmental health. To
achieve this goal, it is necessary to better understand the interactions between P.
viticola and the vine foliar microbiome. Here we present metabarcoding datasets
describing the bacterial and fungal communities from more than 200 pairs of leaf
samples collected during powdery mildew epidemics in three major wine-producing
regions in France. The microbiome of both symptomatic and asymptomatic tissues
was characterized. P. viticola abundance was quantified using qPCR. We provide
the raw metabarcoding datasets, the Amplicon Sequence Variant (ASV) tables
obtained after bioinformatic processing, the metadata describing sampling sites
and tissue health condition and the code used for bioinformatic and descriptive
statistical analysis.

1 Introduction
Downy mildew, caused by the oomycete Plasmopara viticola, is a major disease
of European cultivated grapevine, Vitis vinifera L. (Fontaine et al. 2021). A cur-
rent challenge in viticulture is to control downy mildew without using synthetic
pesticides, in order to better preserve human and environmental health. Harness-
ing the plant microbiota is one of the possible avenues to reach this objective
(Busby et al. 2017; Toju et al. 2018; D’Hondt et al. 2021). Experimental evidence
suggests that microbial communities naturally associated with leaf tissues can con-
tribute to grapevine resistance to downy mildew (Bruisson et al. 2019; Burruano
et al. 2016), through different interaction mechanisms (interference competition,
exploitative competition, hyperparasitism, immune priming). Leaf-associated mi-
croorganisms can interfere directly with P. viticola, as has been demonstrated
for several members of the Bacillus genera (Bruisson et al. 2019) and the fungal
species Alternaria alternata (Musetti et al. 2006). Some microorganisms can also
compete with the pathogen for space and resources, or parasitize the pathogen
(Zanzotto, Morroni, et al. 2016; Ghule et al. 2018). The plant microbiota can
confer pathogen resistance by priming the plant immune response (Nishad et al.
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2020; Hacquard et al. 2017). To foster the microbial biocontrol of downy mildew,
it is necessary to have a more complete understanding of the microbiome asso-
ciated with healthy and diseased tissues than currently exists. In this Resource
Announcement we present novel metabarcoding datasets describing the bacterial
and fungal communities associated with the leaves of V. vinifera, collected from
nine vineyard plots in three major French wine-producing regions during downy
mildew epidemics (Table VII.1). The datasets describe microbial communities as-
sociated with both downy mildew lesions and asymptomatic tissues. In addition
to raw metabarcoding datasets, the Resource Announcement provides the ampli-
con sequence variant (ASV) tables obtained after bioinformatic processing, the
metadata describing the sampling design and the code used for bioinformatic and
descriptive statistical analysis.

2 Methods

2.1 Sampling

Samples were collected in June and July 2018 from three vineyard plots in each
of three French wine-growing regions: Aquitaine (AQ), Champagne (CH) and
Occitanie (OC) (Table VII.1; Figure VII.2A). Samples were collected during downy
mildew (P. viticola) epidemics from 30 vines (V. vinifera L.) in each vineyard, on
rows that were not treated against the pathogen. We collected one sporulating
leaf from each vine using sterile gloves and placed it in an individual plastic bag.
Leaves were processed on the day of collection with sterilized tools in the sterile
field of a MICROBIO electric burner (MSEI, France). We collected four disks
from each leaf: Two symptomatic foliar disks of 12mm diameter were taken from
sporulating mildew lesions on each leaf (S for symptomatic) and placed together
in a 2ml autoclaved collection tube stored in a box filled with silicagel. Two
asymptomatic disks were also taken from each leaf (A for asymptomatic). Screw
caps of the tubes were left loose to allow the disks to dry. All the samples were
then freeze-dried.

2.2 DNA extraction

Total DNA was extracted with the DNeasy Plant Mini kit (Qiagen, France), with
a slightly modified version of the protocol recommended by Kerdraon et al. 2019.
Two autoclaved DNAase-free inox 420C beads were added to each tube and sam-
ples were ground at 1500 rpm with the Geno/Grinder® for 30 s, then 1 min and
1 min again, with manual shaking between each grinding step. Tubes were then
centrifuged for 1 min at 6000 x g. Leaf powder and 200µL of buffer AP1 preheated
to 60°C were mixed by vortexing the tubes for 30 s twice at 1500 x g, and cen-
trifuging them for 1 min at 3000 x g. 250µL of preheated buffer AP1 and 4.5 µL
of RNase A were added to each tube and mixed by vortexing the tubes for 30s
twice at 1500 x g. After 5 min of rest, 130µL of buffer P3 was added to each tube,
which was then mixed by gentle inversion for 15 s, incubated at -20°C for 10 min
and centrifuged for 1 min at 5000 x g. The supernatant (450µL) was transferred
to a spin column and centrifuged for 2 min at 20000 x g. The filtrate (200µL) was
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Table VII.1: Sampling design. Grapevine leaves were collected in three wine-growing
regions in France, which are presented in the table from North to South: Champagne
(CH), Aquitaine (AQ) and Occitanie (OC). Sampling took place in three vineyard plots
(A to I) per region (Figure VII.2A). The grapevine variety and the sampling date are
indicated for each plot. The GPS coordinates of each plot are given as Latitude (Lat) and
Longitude (Lon). Samples were collected during downy mildew (P. viticola) epidemics
from 30 vines (V. vinifera L.) in each vineyard at a date were the epidemics was at its
peak of infection.

Vineyard Region Lat Lon Variety Sampling Date

I Champagne 49.063127 4.008855 Pinot noir 16/07/2018

H Champagne 49.018104 3.980866 Meunier 11/07/2018

G Champagne 49.017485 3.983795 Chardonnay 11/07/2018

D Aquitaine 44.791315 -0.578224 Merlot 26/06/2018

E Aquitaine 44.707248 0.244359 Cabernet Franc 27/07/2018

F Aquitaine 44.628850 -0.263220 Merlot 27/07/2018

B Occitanie 43.506132 4.754621 Chardonnay 14/06/2018

C Occitanie 43.14223 3.13292 Gamay 15/06/2018

A Occitanie 43.113225 2.095317 Chasan 13/06/2018

transferred to a new tube, to which sodium acetate (200µL, 3 M, pH 5) and cold
2-propanol (600µL) were added. DNA was precipitated by incubation at -20°C for
a minimum of 1 hr and recovered by centrifugation (20 min, 13000 x g). The pellet
was washed twice with cold ethanol (70%), dried at 50°C for approximately 30min
and dissolved in 100µL of AE buffer. The negative extraction controls were rep-
resented by extraction reagents in an autoclaved 2ml Eppendorf tube containing
two autoclaved DNAase-free inox 420C beads.

2.3 Fungal ITS amplification

The ITS1 region of the fungal ITS rDNA gene (Schoch et al. 2012) was amplified
using primers ITS1F-ITS2 (White et al. 1990, Gardes & Bruns 1993). To avoid
a two-stage PCR protocol, each primer contained the Illumina adaptor sequence
and a tag (ITS1F: 5′- CAAGCAGAAGACGGCATACGAGATGTGACTGGAG
TTCAGACGTGTGCTCTTCCGATCTxxxxxxxxxxxxCTTGGTCATTTAGAG
GAAGTAA-3′; ITS2: 5′- AATGATACGGCGACCACCGAGATCTACACTCT
TTCCCTACACGACGCTCTTCCGATCTxxxxxxxxxxxxGCTGCGTTCTTCA
TCGATGC-3′, where "x" is the 12 nucleotide tag). The PCR mixture (20 µL
of final volume) consisted of 10 µL of 2X QIAGEN Multiplex PCR Master Mix
(2X final), 2 µL each of the forward and reverse primers (0.1 µM final), 4 µL of
water, 1 µL of 10 ng/µL BSA and 1 µL of DNA template. PCR cycling reactions
were conducted on a Veriti 96-well Thermal Cycler (Applied Biosystems) using
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the following conditions: initial denaturation at 95°C for 15 min followed by 35
cycles at 94°C for 30 s, 57°C for 90s, 72°C for 90 s with final extension of 72°C for
10 min. ITS1 amplification was confirmed by electrophoresis on a 2% agarose gel.
Two marine fungal strains (Candida oceani and Yamadazyma barbieri) were used
as positive controls as they were unlikely to be found in our samples. One positive
control included 1 µL of 10 ng/µL DNA of Candida oceani only and the other
included an equimolar mixture of both strains. The negative PCR controls were
represented by PCR mix without any DNA template. Each PCR plate contained
one negative extraction control, three negative PCR controls, one single-strain
positive control and one two-strain positive control.

2.4 Bacterial 16S amplification

The V5-V6 region of the bacterial 16S rDNA gene was amplified using primers
799F-1115R (Redford et al. 2010, Chelius & Triplett 2001) to exclude chloroplastic
DNA. To avoid a two-stage PCR protocol and reduce PCR biases, each primer
contained the Illumina adaptor sequence, a tag and a heterogeneity spacer, as
described in Laforest-Lapointe et al. 2017 (799F: 5′- CAAGCAGAAGACGGCA
TACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTxxxxxxx
xxxxxHS-AACMGGATTAGATACCCKG-3′; 1115R: 5′- AATGATACGGCGA
CCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxx
xxxxxxxxHS-AGGGTTGCGCTCGTTG-3′, where HS represents a 0-7-base-pair
heterogeneity spacer and "x" a 12 nucleotide tag). The PCR mixture (20 µL of
final volume) consisted of 10µL of 2X QIAGEN Multiplex PCR Master Mix (2X
final), 2 µL each of the forward and reverse primers (0.1 µM final), 4 µL of water,
1 µL of 10mg/ml BSA and 1 µL of DNA template. PCR cycling reactions were
conducted on a Veriti 96-well Thermal Cycler (Applied Biosystems) using the
following conditions: initial denaturation at 95°C for 15 min followed by 32 cycles
at 94°C for 30 s, 53°C for 90 s, 72°C for 90 s with final extension of 72°C for 10
min. 16S amplification was confirmed by electrophoresis on a 2% agarose gel. Two
marine bacterial strains (Sulfitobacter pontiacus and Vibrio splendidus) were used
as positive controls as they were unlikely to be found in our samples. One positive
control included 1 µL of 10 ng/µL DNA of Vibrio splendidus only and the other
included an equimolar mixture of both strains. The negative PCR controls were
represented by PCR mix without any DNA template. Each PCR plate contained
one negative extraction control, three negative PCR controls, one single-strain
positive control and one two-strain positive control.

2.5 MiSeq sequencing

PCR products were purified, quantified (Quant-it dsDNA assay kit; Invitrogen)
and used to constitute equimolar pools (Hamilton Microlab STAR robot). Mean
fragment size was determined with a Tapestation instrument (Agilent Technolo-
gies). ITS and 16S amplicons were sequenced on one and a half and two runs of
the Miseq Instrument (Illumina), respectively, with the reagent kit v2 (500 cy-
cles). Sequence demultiplexing (with an exact index search) was performed at the
PGTB sequencing facility (Genome Transcriptome Facility of Bordeaux, Pierroton,
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France) with DoubleTagDemultiplexer.

2.6 Quantification of P. viticola

The abundance of P. viticola was quantified with real-time quantitative PCR tar-
geting the ITS1 region, which was amplified using the Giop primerset (Valsesia
et al. 2005). Primers and probes sequences were synthesized by Integral DNA
Technologies, the probe was labelled with 5′HEX, an InternalZENTM and 3′IBFQ
quenchers. The protocol was the following: qPCR was carried out in a 20 µL re-
action volume with 2 µL of genomic template DNA, 900 nM of each primer, 500
nM of probe, 1X HOT FIREPol ®Probe qPCR Mix Plus no Rox (Solis BioDyne)
and sterile MilliQ water. The PCR was performed with the following parameters:
initial denaturing at 95°C for 12 min, followed by 40 cycles of 95°C, denaturing for
30 s, 60°C annealing for 1 min. Each PCR assay included duplicates of samples,
negative controls without template DNA, and six points of validated and diluted
P. viticola’s DNA. For the standard curve, P. viticola DNA (17 ng/µL) was seri-
ally diluted from 1 : 10 to 1 : 107 (concentration verified using a Qubit (Thermo
Fisher Scientific)). The obtained standard curves were generated by plotting the
DNA amounts against the CTs (threshold values at 2) measured with the Light-
Cycler®480Software, Version 1.5 with Abs Quant/Fit Points analysis (Roche).
The DNA quantification range was validated after multiple assays on triplicates
giving a PCR efficiency between 90 and 100% with a limit of quantification at
17× 10−5 ng/µL. Finally, the abundance of P. viticola in each sample was calcu-
lated as the ratio of the qPCR estimate over the total DNA amount, which was
estimated using Quant iTTM PicoGreenTM ds DNA Assay Kit (Life Technologies).

2.7 Bioinformatics

The MiSeq sequences were processed using the DADA2 pipeline v1.22.0 (Callahan
et al. 2016) implemented in R (R Core Team 2022). Primers were identified and
removed using cutadapt 3.2 (Martin 2011) and the trimmed sequences were then
parsed to the DADA2 algorithm to infer Amplicon Sequence Variants (ASVs). Se-
quencing quality scores were assessed using the plotQualityProfile function (Fig-
ure A.7). Chimeras were removed using the removeBimeraDenovo function of
DADA2. ASV taxonomic assignment was performed using an implementation of
the Naive Bayesian Classifier (Wang et al. 2007) included in the DADA2 pipeline.
The databases used for taxonomic assignment were Silva v138.1 (Quast et al. 2012)
and UNITE all eukaryotes v8.3 (Abarenkov et al. 2021) for 16S and ITS sequences,
respectively. Three tables were obtained for both the 16S and ITS datasets: an
ASV table with the sequence count in each sample; a table with the taxonomic
assignment of each ASV sequence; and, a metadata table describing the collection
conditions of each sample. The three tables were joined in a phyloseq object us-
ing the phyloseq bioconductor package v1.38.0 (McMurdie & Holmes 2013). To
filter out possible contaminants, the combined method of the isContaminant func-
tion of the DECONTAM Bioconductor package v1.14.0 (Davis et al. 2018) was
used, followed by the decontamination method described in Galan et al. 2016.
Moreover, 16S ASVs identified as chloroplastic or mitochondrial with Metaxa2.2.3
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(Bengtsson-Palme et al. 2015), or according to their taxonomic assignment in the
Silva database, were removed. The remaining ASVs were clustered using the Lulu
algorithm (Frøslev et al. 2017) with default parameters. ASVs that could not be
assigned to a bacterial or fungal phylum were removed. ASVs present in less than
1% of the samples were removed to make sure that the data were free of sequenc-
ing artifacts and low abundant contaminants (Cao et al. 2021). Finally, pairs of
samples where, at least, one of the samples had less than 1000 ASV counts were
removed.

2.8 Descriptive statistics

Variations in community alpha- and beta-diversity were analyzed using the statistic
environment R v4.1.2 (R Core Team 2022). ASV counts were rarefied to the min-
imum sample sequencing depth (Figure A.8) and alpha-diversity measures (rich-
ness, diversity and evenness) were computed using the phyloseq package. The
symptomatology effect (symptomatic vs. asymptomatic) on this measures was
assessed using a Wilcoxon rank sum paired test. The abundance of P. viticola
estimated by qPCR was also assessed using a Wilcoxon rank sum paired test.
Compositional dissimilarities among samples were estimated using the Aitchison
distance (Aitchison 1982). ASV counts were first transformed using a centered log
ratio (clr) transformation to obtain scale-invariant values (Gloor et al. 2017) and
then the euclidean distance between clr-transformed counts was used as a dissim-
ilarity index. Symptomatic (S) and Asymptomatic (A) samples were represented
in a Principal Coordinate Analysis (PCoA) and rotated using Procrustes function
from vegan package v2.6-2 (Oksanen et al. 2022. Plots were done using ggplot2
package v3.3.5 (Wickham 2016). Significance of Procrustes statistic was assessed
using a permutational analysis.

3 Results
This Resource Announcement provides the raw ITS sequence dataset, the raw 16S
sequence dataset, and the corresponding ASV tables in R phyloseq format (Mc-
Murdie & Holmes 2013). Three ASV tables are provided for each sequence dataset:
the raw ASV table which includes the positive and negative control samples; the
filtered ASV table; the filtered ASV table after aggregation of highly-similar ASVs
using LULU (Frøslev et al. 2017). Each phyloseq object includes the ASV table, a
table with the taxonomic assignment of all ASVs and a metadata table. The meta-
data include, for each sample, the sampling site (Table VII.1 and Figure VII.2A),
the tissue health condition (A or S), the P. viticola DNA concentration estimated
by qPCR and the DNA concentration before equimolar pooling. The code used
for bioinformatic and descriptive statistical analysis is also provided, as well as the
number of reads retained at each step of the bioinformatic process for each sample.

3.1 Abundance of P. viticola

The visual assessments of disease symptoms (A or S) were congruent with qPCR
data for P. viticola. The pathogen was significantly more abundant in sporulating
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Figure VII.1: Taxonomic barplots showing the relative abundance of A fungal
genera and B bacterial orders in grapevine (Vitis vinifera L.) leaves depending
on the geographic region (Champagne (CH), Aquitaine (AQ) or Occitanie (OC)) and
tissue health condition (asymptomatic (A) or sporulating downy mildew lesion (S)).
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lesions than in visually healthy samples (Figure VII.2B).

3.2 Fungal community

267 pairs of leaf DNA samples were amplified with fungal ITS primers. The se-
quencing gave a total of 19125131 raw sequences, with an average of 35814 se-
quences per sample (SD: 18449; min: 21; max: 295191). The DADA2 pipeline
(Callahan et al. 2016) retained 14513974 quality sequences representing 5559 ASVs
distributed in 531 samples. 3 samples did not generate enough quality sequences
to perform ASV inference. The final table obtained after the filtering process
and the aggregation of highly-similar ASVs using LULU (Frøslev et al. 2017) was
composed of 13633258 sequences distributed among 648 ASVs and 251 pairs of
samples. The average number of reads per sample was 27158 (SD: 14789; min:
3565; max: 228423).

Taxonomic composition The foliar fungal community was dominated by As-
comycota, which represented 55% of the total number of sequences. Ascomycota
pathogens were a small part of the fungal community. Erysiphe necator was 0.4%
of the total sequence counts while Botrytis cinerea was only the 0.002%. Basid-
iomycota represented 45% of the total number of sequences. Fungal communities
in Aquitaine and Occitanie were the most similar according to the taxonomic
barplots, while Champagne was distinguished by a greater abundance of the My-
cosphaerella genus (Figure VII.1A).

Alpha and Beta diversity Alpha diversity measures were differently affected
by the tissue health conditions. Fungal community richness differed significantly
between symptomatic and asymptomatic samples (Figure VII.3). On the other
hand, diversity and evenness were not affected by the health condition. Fun-
gal community composition differed between geographic regions and tissue health
conditions (Figure VII.2 C & E). Procrustes test was significant for reordering the
asymptomatic and symptomatic PCoA plots.

3.3 Bacterial community

267 pairs leaf DNA samples were amplified with bacterial 16S primers. The se-
quencing gave a total of 24049900 raw sequences, with an average of 45037 se-
quences per sample (SD: 25578, min: 8; max: 135255). The DADA2 pipeline
(Callahan et al. 2016) retained 20309264 quality sequences representing 12669
ASVs. 6 samples did not generate enough sequences to perform the ASV infer-
ence. The final table obtained after the filtering process and the aggregation of
highly-similar ASVs using LULU (Frøslev et al. 2017) was composed of 6512073
sequences distributed among 986 ASVs and 195 pairs of samples. The average
number of reads per sample was 16698 (SD: 16554; min: 1105; max: 86598).

Taxonomic composition The most abundant bacterial phylum was Proteobac-
teria (59.5% of sequence counts), followed by Actinobacteria (29.4%), Firmicutes
(5.2%) and Bacteroidetes (4.2%) (Figure VII.1B). Proteobacteria dominated the
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Figure VII.2: Effects of geography and disease on the leaf microbiome of
European cultivated grapevine (Vitis vinifera L.). A: Map of France showing the
location of the sampling sites. Vineyard plots A, B and C are located in Aquitaine (AQ);
D, F and E are located in Occitanie (OC); G, H and I are located in Champagne (CH). B:
Concentration of Plasmopara viticola DNA, estimated by qPCR, in sporulating mildew
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of the Principal Coordinates Analysis (PCoA) plots of symptomatic and asymptomatic
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bacterial datasets. Plots are colored by the geographic region (CH, AQ or OC) and
tissue health condition (A or S). For both datasets, the permutation test to assess the
significance of the Procrustes statistic was significant.
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community in Aquitaine and Occitanie, while Actinobacteria was the most abun-
dant phylum in Champagne (Figure VII.1B).

Alpha and Beta diversity Tissue health condition was an structuring factor of
the bacterial alpha diversity measures. Community richness, evenness and diver-
sity differed significantly between symptomatic and asymptomatic samples (Figure
VII.3). All measures tended to be higher in asymptomatic tissues than in downy
mildew lesions. As for the fungi, the bacterial community composition differed
between geographic regions and tissue health conditions (Figure VII.2 D & F).
However the bacterial communities were less spatially structured than the fungal
communities. Procrustes test was significant for reordering the asymptomatic and
symptomatic PCoA plots.

4 Future directions
This Resource Announcement provides two metabarcoding datasets describing the
changes undergone by fungal and bacterial communities of leaf tissues infected by
downy mildew (P. viticola) in untreated grapevines (V. vinifera L.) across three
geographic regions in France. With more than 500 samples sequenced for both
the bacterial 16S and fungal ITS regions, they represent a considerable sequencing
effort and provide valuable knowledge on the grapevine foliar microbiome. These
datasets could be combined with other microbiome datasets (Fort et al. 2016;
Barroso-Bergadà et al. 2021; Zarraonaindia et al. 2015; Singh et al. 2018) to define
the grapevine ‘core microbiome’, a prerequisite in the development of sustainable
viticulture (Toju et al. 2018). They also provide useful information for the inference
of microbial interaction networks (Röttjers & Faust 2018; Barroso-Bergadà et al.
2021) necessary to understand the role of microbial communities in downy mildew
development and to discover candidate biocontrol agents.

5 Availability of Data and Materials
The sequence datasets have been deposited in NCBI SRA in bioproject PR-
JNA797225 (http://www.ncbi.nlm.nih.gov/bioproject/797225) and bioproject
PRJNA797948 (http://www.ncbi.nlm.nih.gov/bioproject/797948). The biosam-
ple accession numbers are SAMN24973302 to SAMN24973835; Bioinformatic scripts
and raw and filtered ASV tables in R phyloseq format have been deposited in
Dataverse (https://doi.org/10.15454/2YDSBL). The tables showing variation in
sequence counts during the bioinformatic process and the scripts used for data
processing and statistical analysis were included in the Dataverse deposit (https:
//doi.org/10.15454/2YDSBL).

6 Author contributions
Author contributions were as follows: (i) C.V. and D.A.B. conceived and coor-
dinated the study; (ii) F.D., I.D. and S.G. designed the sampling and collected
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samples and metadata; (iii) M.M., J.F.A., E.C. and E.G. developed protocols and
performed the molecular biological work; (iv) D.B.B. performed data analysis and
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Figure A.1: Dendrogram plot of compositional dissimilarities between tech-
nical replicates for sequencing. Technical replicates were created by splitting six
lots of PCR products in half and sequencing the two halves independently. The PCR
products used were those corresponding to the leaf collected on vine number 24 (L24)
in each of the six plots studied (ORGA1, ORGA2, ORGA3, CONV1, CONV2, CONV3;
see Figure 1). Compositional dissimilarities between samples were computed with A the
binary Jaccard index and B the quantitative Jaccard index. The dendrogram was built
using a hierarchical clustering algorithm (complete linkage method). Compositional dis-
similarities between the two technical replicates of the same sample were significantly
smaller than the dissimilarities among samples (PERMANOVA: F = 39.98; R2 = 0.97;
p = 0.001).
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Figure A.2: Effect of cropping system — conventional (CONV) versus or-
ganic (ORGA) — on the α-properties and β-propertie of grapevine foliar
fungal networks. A Association networks inferred from fungal metabarcoding data
with SPIEC-EASI (Kurtz et al. 2015). A total of 60 networks were inferred, correspond-
ing to 2 cropping systems × 3 replicates (blocks) × 10 P values, with P the percentage
of most abundant ASVs used for network inference. Only four values of P are shown on
the Figure. B Variations in network α-properties. The following properties (Table II.1)
were calculated for each network: the number of links (L) and connected components
(CC), the network diameter (DIA) and connectance (C) and the mean degree (DEG) and
negative link ratio (NLR). The percentage P of ASVs used for network reconstruction
had a significant influence on all properties (Table A.10), whereas the cropping system
did not (Table A.9). C Principal coordinate analysis (PCoA) represents dissimilarities
between networks, measured with the βOS index (Poisot et al. 2012) calculated with the
binary Jaccard index. βOS measures the dissimilarity between two networks in terms
of the presence-absence of associations between shared ASVs. The centroids for each
cropping system are represented by gray circles. The effect of the cropping system on
βOS was significant, in interaction with the percentage P of most abundant ASVs used
for network inference (Table A.11). Networks were inferred with SPIEC-EASI (Kurtz
et al. 2015).
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Figure A.3: Normalized degree of nodes in networks inferred with A SparCC
or B SPIEC-EASI. Nodes were classified according to the relative abundance of their
corresponding ASVs. Abundance class 0-10 corresponds to the 10%most abundant nodes,
while abundance class 90-100 corresponds to the 10% less abundant nodes. Normalized
degree was obtained by dividing the node degree by n-1, where n is the total number of
nodes in the network. The effect of abundance class on the normalized node degree was
analyzed with ANOVA followed by post-hoc Tukey’s test. Effect of abundance class was
significant in both cases (SparCC: F = 6.797, p < 0.001; SPIEC-EASI: F = 173.8, p <
0.001).
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Figure A.5: Consensus networks between the three network replicates for the
organic (ORGA) and the conventional (CONV) cropping systems depending
on the method for network inference. Network nodes represent fungal ASVs and
links represent significant positive (+) or negative (-) associations common to the three
network replicates (Fig. 6 and S4). The fungal ASVs absent from a network are indicated
in gray. Networks were inferred with SparCC (Friedman & Alm 2012) or SPIEC-EASI
(Kurtz et al. 2015).
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Figure A.6: Comparison of the performance of Progol, Pygol and Aleph.
ROC curves showing the performance of I statistic computed from the compression
values obtained from abducing 9 computer generated datasets. Data-sets are randomly
generated following the ecological models of Weiss et al. (2016). Higher area under the
curve (AUC) indicates better predictive power. Line color show the A/ILP programm
used.
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Figure A.7: Average quality scores distribution in function of sequence po-
sition for the sequenced ITS A and 16S B input fastq files. Fastq files were
obtained sequencing the eDNA present in grapevine leaves. The plot was done using the
plotQualityProfile function of the DADA2 pipeline.
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Figure A.8: Rarefaction curves showing the variation of ASV richness in
function of the rarefied sequencing depth for the ITS and 16S metabarcoding
datasets. Each plot shows the rarefaction curve for asymptomatic (A) and sporulating
downy mildew lesion (S) samples.
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Table A.1: List of phytosanitary products and active ingredients applied in
the year of the sampling campaign, together with their normalized dose (also
referred to as the treatment frequency index). PM = powdery mildew, caused by
the fungal pathogen Erysiphe necator and DM = downy mildew, caused by the oomycete
pathogen Plasmopara viticola. Leaf sampling was performed on September 10, 2015, more
than one month after the last phytosanitary treatment and a couple of hours before
grape harvest. The treatment frequency index did not differ between cropping systems
(ANOVA: df = 21; F = 0.436; p = 0.516).

Date Cropping
System

Fungicides Active ingredi-
ents

Target
disease

PM DM

2015-04-30 ORGA Heliocuivre© Copper 0.145

2015-04-30 ORGA Citrothiol DG© Micronized sulfur 0.371

2015-05-07 CONV Chaoline© Fosetyl aluminum
+ metirame

0.292

2015-05-07 CONV Dynali© Cyflufenamid +
difenoconazole

0.289

2015-05-13 ORGA Heliocuivre© Copper 0.167

2015-05-13 ORGA Citrothiol DG© Micronized sulfur 0.4

2015-05-19 CONV Cabrio Top© Metirame-zinc +
pyraclostrobin

0.5

2015-05-28 ORGA Citrothiol DG© Micronized sulfur 0.8

2015-05-28 ORGA Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.533

2015-06-04 CONV Vivando© Metrafenone 0.833

2015-06-04 CONV Chaoline© Fosetyl aluminum
+ metirame

0.708

2015-06-09 ORGA Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.533

2015-06-09 ORGA Citrothiol DG© Micronized sulfur 0.6

2015-06-25 ORGA Citrothiol DG© Micronized sulfur 0.6

2015-06-25 CONV Citrothiol DG© Micronized sulfur 0.6

2015-07-01 ORGA Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.533

2015-07-01 CONV Cabrio Top© Metirame-zinc +
pyraclostrobin

0.75

2015-07-17 ORGA Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.4

2015-07-17 ORGA Heliocuivre© Copper 0.083

2015-07-17 CONV Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.4

2015-07-17 CONV Heliocuivre© Copper 0.083

2015-08-03 ORGA Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.533

2015-08-03 CONV Bouillie Bordelaise
RSR® Disperss® NC

Copper 0.533
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Table A.2: Effect of cropping system — conventional (CONV) versus or-
ganic (ORGA) — on the incidence and severity of foliar disease symptoms at
harvest time (2015-09-07). Disease incidence is defined as the percentage of leaves
displaying symptoms, whereas disease severity is defined as the percentage leaf damage.
Symptom incidence and severity were estimated visually on 40 grapevines for each plot
(40 × 3 per cropping system). The mean values are reported for each cropping system as
a percentage. Wald χ2 tests were used for comparisons after linear mixed model analysis
with cropping system as a fixed effect and block as a random effect.

Disease ORGA (%) CONV (%) χ2 p-value

Downy

Mildew
Incidence 0.749 0.688 0.57 0.45

Severity 0.037 0.03 1.93 0.164

Powdery

Mildew
Incidence 0.113 1.346 12.49 <0.001

Severity 0.003 0.102 7.97 0.005

Black rot Incidence 0.188 0.354 19.02 <0.001

Severity 0.007 0.014 5.49 0.019

Table A.3: Primer pairs used to amplify the fungal ITS1 region.

1st PCR with regular primers (bold)

Forward ITS1F: 5’-CTTGGTCATTTAGAGGAAGTAA-3’

Reverse ITS2: 5’-GCTGCGTTCTTCATCGATGC-3’

2nd nested PCR with pre-tagged primers (italics)

Forward ITS1F-pre-tag: 5’-
CTTTCCCTACACGACGCTCTTCCGATCT
CTTGGTCATTTAGAGGAAGTAA-3’

Reverse ITS2-pre-tag: 5’-
GGAGTTCAGACGTGTGCTCTTCCGATCT
GCTGCGTTCTTCATCGATGC-3’
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Table A.4: Effect of cropping system — conventional (CONV) versus organic
(ORGA) — on community α-properties. Generalized linear mixed models included
the cropping system as a fixed treatment effect and the sampling depth as an offset. For
every community α-property (as defined in Table II.1), we compared the likelihood of a
full model including the block and its interaction with the cropping system as random
effects and a simplified model including only the block factor as random effect. Only the
results of the best model are shown. The ORGA system was taken as the reference.

Fixed effects Estimate SE z P(>|z|)

Richness

(Intercept) -6.9569 0.0466 -149.4 <2e-16

Cropping_System (CONV) -0.1206 0.0554 -2.2 0.029

Diversity

(Intercept) -9.5533 0.0655 -145.7 <2e-16

Cropping_System (CONV) -0.3079 0.107 -2.9 0.004

Evenness

(Intercept) -11.6042 0.0675 -171.9 <2e-16

Cropping_System (CONV) -0.281 0.0787 -3.6 <0.001

Random effects Variance SD

Richness

Block 0.0019 0.0433

Residual

Diversity

Block 0 0

Residual 2.126 1.458

Evenness

Block 0.0025 0.0504

Residual 0.0194 0.1393
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Table A.5: Effect of cropping system — conventional (CONV) versus organic
(ORGA) — on community α-properties. Generalized linear mixed models included
the cropping system and the proportion of reads assigned to the Erysiphe genus as fixed
effects and the sampling depth as an offset. For every community α-property (as defined
in Table II.1), we compared the likelihood of a full model including the block and its
interaction with the cropping system as random effects and a simplified model including
only the block factor as random effect. Only the results of the best model are shown.
The ORGA system was taken as the reference.

Fixed effects Estimate SE z P(>|z|)

Richness

(Intercept) -6.9571 0.0469 -148.4 <2e-16

Cropping_System (CONV) -0.1255 0.0567 -2.2 0.027

Erysiphe reads % 0.2352 0.6048 0.4 0.697

Diversity

(Intercept) -9.5541 0.0652 -146.5 <2e-16

Cropping_System (CONV) -0.3347 0.1110 -3.0 0.003

Erysiphe reads % 1.3255 1.0417 1.3 0.203

Evenness

(Intercept) -11.6060 0.0694 -167.2 <2e-16

Cropping_System (CONV) -0.3043 0.0802 -3.8 <0.001

Erysiphe reads % 1.2734 0.7344 1.7 0.083

Random effects Variance SD

Richness

Block 0.00197 0.04439

Residual

Diversity

Block 0 0

Residual 2.10467 1.4507

Evenness

Block 0.00281 0.05303

Residual 0.01905 0.13801
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Table A.6: Effect of cropping system —conventional (CONV) versus organic
(ORGA) — on the level of stochasticity in community assembly. The relative
contribution of deterministic and stochastic processes to community assembly was as-
sessed for each cropping system with the Normalized Stochasticity Ratio (NST) defined
by Ning et al. (2019), that ranges from 0 to 100, where 0 means a completely deter-
ministic assembly process and 100 a completely stochastic assembly process. NST was
calculated using the tNST function with the quantitative and binary Jaccard dissimilar-
ity indices, the FE null model, and other parameters by default values. Differences in
NST values between both cropping systems were tested using permutational analysis of
variance.

ASV Dissimilarity index NST value (%) F p-value

ORGA CONV

all Quantitative Jaccard 29.28 33.62 11.6 0.416

all Binary Jaccard 78.38 94.8 404.9 0.001
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Table A.8: Effect of the percentage P of the most abundant ASVs used for
network inference on the α-properties of fungal association networks inferred
with SparCC. Spearman’s correlation coefficient and the results of Spearman’s rank
correlation tests are reported for each network property (as defined in Table II.1). The
p-values are reported after Benjamini-Hochberg adjustment.

Property Correlation (ρ) S p-value

L 0.98 839 <0.001

CC -0.63 58685 <0.001

DIA -0.84 66296 <0.001

C -0.71 61374 <0.001

DEG 0.95 1647 <0.001

NLR -0.57 56550 <0.001
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Table A.10: Effect of the percentage P of the most abundant ASVs used for
network inference on the α-properties of fungal association networks inferred
with SPIEC-EASI. Spearman’s correlation coefficient and the results of Spearman’s
rank correlation tests are reported for each network property (as defined in Table II.1).
The p-values are reported after Benjamini-Hochberg adjustment.

Property Correlation (ρ) S p-value

L 0.98 621 <0.001

CC -0.69 60722 <0.001

DIA 0.79 7723 <0.001

C -0.69 55067 <0.001

DEG 0.97 971 <0.001

NLR 0.84 5158 <0.001
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Table A.11: Effect of cropping system — conventional versus organic — on
the β-properties of grapevine foliar fungal networks inferred with SPIEC-
EASI. The D index quantifies the topological dissimilarity between networks (Schieber
et al. 2017) whereas the other three metrics (βWN, βOS and βST), which were calculated
with the binary Jaccard index, quantify differences in associations between networks
(Poisot et al. 2012). The effect of the percentage P of the most abundant ASVs used
for network inference, and the effect of cropping system on the dissimilarities between
networks were evaluated in permutational analysis of variance (PERMANOVA). The
number of permutations was set to 999 and permutations were constrained by block.

Dissimilarity index PERMANOVA

Topological dissimilarity
(Schieber’s D)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 100.89 0.65 <0.01

Cropping_System (CS) 1 0.99 0.01 0.31

P × CS 1 0.31 0 0.68

Residuals 54 0.35

Total 57 1

Overall dissimilarity of as-
sociations (βWN)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 2.689 0.04 <0.01

Cropping_System (CS) 1 5.06 0.08 <0.01

P × CS 1 2.547 0.04 <0.01

Residuals 54 0.84

Total 57 1

Dissimilarity of associ-
ations between shared
ASVs (βOS)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 3.863 0.06 <0.01

Cropping_System (CS) 1 8.799 0.13 <0.01

P × CS 1 3.145 0.05 <0.01

Residuals 54 0.77

Total 57 1

Dissimilarity of associa-
tions due to ASV turnover
(βST)

Variable Df F R2 Pr(>F)

Percent_ASV (P) 1 0.279 0.01 1

Cropping_System (CS) 1 0.2259 0.01 1

P × CS 1 0.2948 0.01 1

Residuals 54 0.97

Total 57 1
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Appendix B

Metagenomic next-generation
sequencing (mNGS) data reveals the
phyllosphere microbiome of wheat
plants infected by the fungal
pathogen Zymoseptoria tritici
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Metagenomic next-generation sequencing
(mNGS) data reveals the phyllosphere

microbiome of wheat plants infected by the
fungal pathogen Zymoseptoria tritici

Didac Barroso-Bergada, Marie Massot, Noémie Vignolles, Julie Faivre d’Arcier,
Emilie Chancerel, Erwan Guichoux, Anne-Sophie Walker, Corinne Vacher, David

A. Bohan, Valérie Laval, Frédéric Suffert

Abstract:
The fungal pathogen Zymoseptoria tritici is the causal agent of Septoria tritici
blotch (STB), a major wheat disease in Western Europe. Microorganisms inhab-
iting wheat leaves might act as beneficial, biocontrol or facilitating agents that
could limit or stimulate the development of Z. tritici. Improving our understand-
ing of microbial communities in the wheat phyllosphere would lead to new insights
into STB management. This resource announcement provides fungal and bacte-
rial metabarcoding datasets obtained by sampling wheat leaves with and with-
out symptoms caused by Z. tritici. Tissues were sampled from three commercial
wheat varieties on three sampling dates during a cropping season. Weeds around
wheat fields were sampled as well. In total, more than 450 leaf samples were col-
lected. The pathogen Z. tritici was quantified using qPCR. We provide the raw
metabarcoding datasets, the Amplicon Sequence Variant (ASV) tables obtained
after bioinformatic processing, the metadata associated to each sample (sampling
date, wheat variety and tissue health condition), a preliminary descriptive analysis
of the data, and the code used for bioinformatic and descriptive statistical analysis.

Keywords community succession, fungal pathogen, microbial diversity, mi-
crobiome, leaf microbiota, phyllosphere, wheat

1 Introduction
Wheat crops are exposed to many fungal plant pathogens, including Zymosep-
toria tritici, the causal agent of Septoria tritici blotch (STB), a major disease
in Western Europe (Fones & Gurr 2015). In field conditions, wheat leaves host
a multitude of other microorganisms — endophytic, epiphytic, pathogenic and
saprophytic (Błaszczyk et al. 2021) — some of which interact directly or indirectly
with Z. tritici (Kerdraon et al. 2019). Several taxa may also have antagonistic
or synergistic activity while interacting with other taxa, and could be considered
potential biocontrol agents or facilitating agents that can limit or stimulate STB
development (Chaudhry et al. 2020). Maximizing the chance of highlighting im-
portant interactions, for instance within co-occurrence network analysis, requires a
thorough description of communities under different biotic and abiotic conditions
(Röttjers & Faust 2018). In this resource announcement, we present fungal and
bacterial community datasets collected on wheat leaves over the course of a wheat
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cropping season, taking into account: (i) the physiological stage of wheat; (ii) the
dynamics of STB development; and (iii) different wheat cultivars. We collected
leaf samples in monovarietal plots of three wheat cultivars, at three dates over a
growing season. One of the wheat varieties carried resistance genes to STB that
also potentially impact the development of other taxa of the microbial community.
Three types of leaf sections were collected, which differed in the presence of symp-
toms caused by Z. tritici : (i) sections with no STB lesion from a visually healthy
leaf; (ii) sections with no STB lesion from a visually symptomatic leaf; and (iii)
sections with STB lesions. This dataset could be used to explore the co-occurrence
of microbial species and thereby improve our understanding of the community dy-
namics associated with the development of Z. tritici on wheat leaves. Weeds in
the margins and edges of cultivated wheat fields can act as alternative hosts for
microbial species present in the crop. For this reason, a second dataset composed
of weed leaf samples was collected to get an insight into the host range of the mi-
croorganisms associate to wheat leaves and potentially interacting with Z. tritici
in the agroecosystem.

2 Methods

2.1 Sampling

Wheat

Samples were collected in 2018 at the Grignon experimental station (Yvelines,
France; X:48.842, Y:1.943) from three varieties of winter-sown bread wheat (Triticum
aestivum). Two varieties, Soissons (SOI) and Apache (APA), were considered sus-
ceptible to Z. tritici (both rated 5 on the ARVALIS-Institut du Végétal/CTPS
scale, from 1 to 9, with 9 being to the most resistant cultivar), while the vari-
ety Cellule (CEL), carrying the gene Stb16q, was considered to be more resistant
(rated 7). Leaf samples of each variety were collected in three plots of 30 m2.
The three APA and CEL plots were independent experimental plots described in
Orellana-Torrejon et al. (202) (Orellana-Torrejon et al. 2021 while the three SOI
plots were delineated within a larger (1 ha) wheat field described in Morais et al.
(2016) (Morais et al. 2016) and Kerdraon et al. (2019) (Kerdraon et al. 2019).
Within each plot, five samples were taken at locations spaced 1 m apart along a
transect. For each sample, three pieces of leaf were collected: an asymptomatic
leaf piece taken from a leaf without any STB lesions (G); an asymptomatic leaf
piece from a leaf with STB lesions (GS); and a symptomatic leaf piece including
a portion of sporulating lesion (S), i.e. bearing pycnidia (Z. tritici asexual fruit-
ing bodies). Three sampling campaigns were performed: the first on March 14th
(SOI) and 15th (APA and CEL); the second on May 3rd; and the third on June
13th. In March and May, leaf pieces measured 5 cm long. G samples were taken
from the central part of the second leaf (F2) of a plant located as close as possible
to the sampling point. S and GS samples were collected from the third leaf (F3)
of another plant. S samples were taken from the distal part of the leaf and GS
samples were cut from the basal part (closer to the stem insertion) of the same
leaf. In June, leaf pieces measured 3 cm long because leaves were broader and
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our goal was to collect an approximately similar amount of tissue on all sampling
dates. All leaves were found to be symptomatic in June so we only collected S and
GS samples from the third leaf of different plants.

Weeds

On July 16th, samples were collected on eight species of weeds to produce a com-
plementary dataset. Some of these weeds presented symptoms, caused by unde-
termined fungal pathogens that were not Z. tritici that is specific to wheat. Five
GS and five S samples were collected on Lolium perenne (LOLPE) individuals
growing within the SOI field and on Arrhenatherum elatius (ARREL) individuals
growing on a slope 5m away from the SOI field. These two weed species were
dominant weeds at the time of sampling. Five G samples were also collected on
Senecio vulgaris (SENVU) individuals growing within the SOI field, Poa annua
(POAAN) individuals growing on the path along the SOI field, Hordeum mur-
inum (HORMU) and Plantago lanceolata (PLALA) individuals growing between
the field and the path, and Urtica dioica (URTDI) and Geranium molle (GERMO)
individuals growing on the slope 2m away from the SOI field. All leaf samples were
cut with scissors and placed in 2 ml autoclaved collection tubes. They were then
brought back to the laboratory and stored at -20°C prior to freeze-drying.

2.2 DNA extraction

Total DNA was extracted with the DNeasy Plant Mini kit (Qiagen, France), using
a protocol slightly modified from that recommended by Kerdraon et al. 2019. Two
autoclaved DNAase-free inox 420C beads were added to each tube and samples
were ground at 1500 rpm with the Geno/Grinder® for 30 s, then 1 min and 1
min again, with manual shaking between each grinding step. Tubes were then
centrifuged for 1 min at 6000 g. Leaf powder and 200µL of buffer AP1 preheated
to 60°C were mixed by vortexing the tubes for 30 s twice at 1500 g, and centrifuging
them for 1 min at 3000 g. 250µL of preheated buffer AP1 and 4.5 µL of RNase
A were added to each tube and mixed by vortexing the tubes for 30s twice at
1500 g. After 5 min of rest, 130µL of buffer P3 was added to each tube, which
was then mixed by gentle inversion for 15 s, incubated at -20°C for 10 min and
centrifuged for 1 min at 5000 g. The supernatant (450µL ) was transferred to
a spin column and centrifuged for 2 min at 20000 g. The filtrate (200µL ) was
transferred to a new tube, to which sodium acetate (200µL, 3 M, pH 5) and cold
2-propanol (600µL) were added. DNA was precipitated by incubation at -20°C for
a minimum of 1 hr and recovered by centrifugation (20 min, 13000 g). The pellet
was washed with cold ethanol (70%), dried at 50°C for about 30min, and dissolved
in 100µL of AE buffer.

2.3 Bacterial 16S amplification

The V5-V6 region of the bacterial 16S rDNA gene was amplified using primers
799F-1115R (Redford et al. 2010, Chelius & Triplett 2001) to exclude chloroplastic
DNA. To avoid a two-stage PCR protocol and reduce PCR biases, each primer
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contained the Illumina adaptor sequence, a tag and a heterogeneity spacer, as
described in Laforest-Lapointe et al. 2017 (799F: 5′- CAAGCAGAAGACGGCA
TACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTxxxxxxx
xxxxxHS-AACMGGATTAGATACCCKG-3′; 1115R: 5′- AATGATACGGCGA
CCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxx
xxxxxxxxHS-AGGGTTGCGCTCGTTG-3′, where HS represents a 0-7-base-pair
heterogeneity spacer and "x" a 12 nucleotide tag). The PCR mixture (20 µL of
final volume) consisted of 4µL of buffer Phusion High-Fidelity 5X (ThermoFisher)
(1X final), 2 µL each of the forward and reverse primers (0.2 µM final ), 2 µL of 2
mM dNTPs (200µM final), 8.2µL of water, 0.6 µL of SO, DM0, 2 µL of Phusion
Hot Start II Polymerase (ThermoFisher) and 1 µL of DNA template. PCR cycling
reactions were conducted on a Veriti 96-well Thermal Cycler (Applied Biosystems)
using the following conditions: initial denaturation at 98°C for 30s followed by
30 cycles at 98°C for 15 s, 60°C for 30 s, 72°C for 30 s with final extension of
72°C for 10 min. Two marine fungal strains (Candida oceani and Yamadazyma
barbieri) were used as positive controls as they were unlikely to be found in our
samples. One positive control included 1 µL of 10 ng/µL DNA of Candida oceani
only and the other included an equimolar mixture of both strains. The negative
PCR controls were represented by PCR mix without any DNA template. Each
PCR plate contained one negative extraction control, three negative PCR controls,
one single-strain positive control and one two-strain positive control.

2.4 Fungal ITS amplification

The ITS1 region of the fungal ITS rDNA gene (Schoch et al. 2012) was amplified
using primers ITS1F-ITS2 (White et al. 1990, Gardes & Bruns 1993). To avoid
a two-stage PCR protocol, each primer contained the Illumina adaptor sequence
and a tag (ITS1F: 5′- CAAGCAGAAGACGGCATACGAGATGTGACTGGAG
TTCAGACGTGTGCTCTTCCGATCTxxxxxxxxxxxxCTTGGTCATTTAGAG
GAAGTAA-3′; ITS2: 5′- AATGATACGGCGACCACCGAGATCTACACTCT
TTCCCTACACGACGCTCTTCCGATCTxxxxxxxxxxxxGCTGCGTTCTTCA
TCGATGC-3′, where "x" is the 12 nucleotide tag). The PCR mixture (20 µL
of final volume) consisted of 10 µL of 2X QIAGEN Multiplex PCR Master Mix
(2X final), 2µL each of the forward and reverse primers (0.1 µM final), 4 µL of
water, 1µL of 10 ng/µL BSA and 1 µL of DNA template. PCR cycling reactions
were conducted on a Veriti 96-well Thermal Cycler (Applied Biosystems) using
the following conditions: initial denaturation at 95°C for 15 min followed by 35
cycles at 94°C for 30 s, 57°C for 90 s, 72°C for 90 s with final extension of 72°C for
10 min. ITS1 amplification was confirmed by electrophoresis on a 2% agarose gel.
Two marine fungal strains (Candida oceani and Yamadazyma barbieri) were used
as positive controls as they were unlikely to be found in our samples. One positive
control included 1 µL of 10 ng/µL DNA of Candida oceani only and the other
included an equimolar mixture of both strains. The negative PCR controls were
represented by PCR mix without any DNA template. Each PCR plate contained
one negative extraction control, three negative PCR controls, one single-strain
positive control and one two-strain positive control.
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2.5 Sequencing

MiSeq sequencing, PCR products purification (CleanPCR, MokaScience), library
sequencing on an Illumina MiSeq platform (v2 chemistry, 2 × 250 bp) and sequence
demultiplexing (with exact index search) were performed at the PGTB sequencing
facility (Genome Transcriptome Platform of Bordeaux, Pierroton, France). Fungal
ITS1 amplicons were sequenced on three runs and bacterial 16S amplicons were
sequenced on four runs.

2.6 Bioinformatic treatment

The MiSeq sequences produced were processed using the DADA2 pipeline version
1.22.0 (Callahan et al. 2016) implemented in R. Primers were identified and re-
moved using cutadapt 3.2 (Martin 2011) and the trimmed sequences were then
parsed to the DADA2 algorithm. Chimeras were removed using the removeBimer-
aDenovo functionality of DADA2. Taxonomic assignment of amplicon sequence
variants (ASVs) taxonomic assignment was performed using an implementation of
the Naive Bayesian Classifier (Wang et al. 2007) included in the DADA2 pipeline.
The databases used for taxonomic assignment were the Silva v138.1 (Quast et al.
2012) and the UNITE all eukaryotes v8.3 (Abarenkov et al. 2021) for 16S and ITS
sequences, respectively. Three tables were obtained at the end of this process: an
ASV table with the sequence count in each sample; a table with the taxonomic
assignment of each ASV sequence; and a metadata table describing the collection
conditions of each sample. The three tables were joined in a phyloseq object us-
ing the phyloseq bioconductor package v1.38.0 (McMurdie & Holmes 2013). To
filter out possible contaminants, the combined method of the isContaminant func-
tion of the DECONTAM Bioconductor package v1.14.0 (Davis et al. 2018) was
used, followed by the decontamination method described in Galan et al. (2016).
Moreover, 16S ASVs identified as chloroplastic or mitochondrial with Metaxa2.2.3
(Bengtsson-Palme et al. 2015), or according to their taxonomic assignment in the
Silva database, were removed. The remaining ASVs were clustered using the Lulu
algorithm (Frøslev et al. 2017) with default parameters. ASVs that could not be
assigned to a bacterial or fungal phylum were removed. Finally, ASVs present in
less than 1% of the samples were removed to make sure that the data were free of
sequencing artifacts and low abundant contaminants (Cao et al. 2021).

2.7 Quantification of Z. tritici by qPCR

The abundance of Z. tritici in wheat tissues was estimated using the quantitative
PCR assay developed by Duvivier et al. 2013. The specific set of primers included
a forward primer (50-ATTGGCGAGAGGGATGAAGG-30), a reverse primer (50-
TTCGTGTCCCAGTGCGTGTA-30), both leading to an amplification product of
101 pb, and a Taqman fluorogenic probe (50-ACGACTCGCGGCTTTCACCCAACG-
30). The probe was labelled with a FAM fluorescent reporter dye and a BHQ-1
quencher. The quantification reaction was performed with the CFX96 Real time
System C1000 Thermal Cycler (BIORAD, USA), using hard shell PCR 96-well
WHT/CLR plates. The mix reaction was composed of reverse and forward primers
at 500 nM per reaction, the probe at 500 nM per reaction in a final volume of 25
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µL, with 5 µL of DNA introduced per well. All samples (standard DNA, eDNA
to be analysed, and negative controls) were analyzed with three replicates. The
PCR program was 95°C for 10 min and (95°C for 15 s, 60°C for 20 s, 72°C for 40
s) repeated for 40 cycles. The concentration of DNA in the unknown samples was
calculated by comparing cycle threshold (Ct) values of the samples with known
standard quantities of Z. tritici genomic DNA, using a tenfold serial dilution from
0.5 ng to 5.10-5 ng per well. Ct values were plotted against the log of the initial
concentration of Z. tritici genomic DNA to produce the standard curve used for
sample quantity determination.

2.8 Analysis

Data contained in the phyloseq object were analyzed using the statistical envi-
ronment R v4.1.2 (R Core Team 2022) to characterize the fungal and bacterial
community composition and to assess the effect of the different experimental fac-
tors on these communities. The analysis was performed using only the samples
obtained from wheat plants at March and May. Samples obtained in June were
not included in the analysis because there were no healthy (G) samples available.
DNA sequencers can only read a maximum number of sequences. As a result, the
reads obtained by the sequencer is a random sample of the total number of DNA
sequences, and thus, compositional (Gloor et al. 2017). ASV counts were trans-
formed using a clr transformation (Aitchison 1982) to obtain scale-invariant values,
avoiding the compositional effect. Then, the phyloseq R package was used to ob-
tain the euclidean distance between samples and to perform a Principal Coordinate
Analysis (PCoA). The PCoA was plotted using ggplot2 package v3.3.5 (Wickham
2016). A permutational multivariate analysis of variance (PERMANOVA) was
performed to assess the effect of the experimental design on the communities,
using the adonis2 function of the vegan R package v2.5.7 (Oksanen et al. 2022)
following the experimental formula “tissue × date × variety/plot”. Alpha diversity
measures were obtained using the phyloseq package and fitted in a generalised
mixed model using the lme4 R package v1.1-27.1 (Bates et al. 2015). Z. tritici
qPCR analysis was also fitted in a generalised mixed model using lme4.

3 Results
This resource announcement provides two sets of raw sequence files, one set ob-
tained using primers for the fungal ITS region and another obtained using primers
for the bacterial 16S region. The sequences are available in the Dataverse files
(see section Availability of Data and Materials). The raw and filtered ASV tables
obtained during the dereplication and filtering process are provided in the form
of phyloseq objects (McMurdie & Holmes 2013). Each phyloseq object includes
the ASV table, a table with the ASV taxonomic assignment and a metadata ta-
ble. The raw ASV tables also include the positive and negative control samples
used for the filtering. The samples obtained in June, as well as samples obtained
from weeds growing in the vicinity of the wheat crop, are included in the phyloseq
objects but were not analyzed in the present study. The metadata table includes,
for each sample, the wheat variety or weed species sampled, the sampling date,
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the plot, the visual assessment of symptoms and theZ. tritici DNA concentration
obtained by qPCR. The impacts of the visual assessment of symptoms, the date
and the variety on the Z. tritici DNA concentration were significant (Figure B.1A).
While the varieties Apache and Soissons are more susceptible to STB than Cellule,
the difference in the concentration of Z. tritici DNA between them were limited,
which is not surprising since sampling was based on similar leaf symptom criteria
(G, GS, S). The tables showing the change in number of reads in each sample
during the bioinformatic process are also provided in the Dataverse files.

3.1 Fungal communities

All leaf samples (n = 360) were sequenced using ITS primers and gave an average
of 31,586 raw fungal sequences per sample with a minimum of 45 reads and a
maximum of 246,434 reads per sample. The ASV inference process identified an
average of 28,178 high quality sequences per sample distributed in 2,821 unique
ASVs in the 360 samples. The ASV table obtained after the filtering process,
which deleted contaminants and low abundant ASVs, was made up of an average
of 27,609 sequences per sample distributed between 391 ASVs and 357 samples.
Three samples did not generate enough sequences to assign ASVs. The minimum
number of reads in a sample was 20 and the maximum was 223,756. Several
samples of weeds (n = 101) growing close to the field were also sequenced using
ITS primers. The bioinformatic process yielded an average of 45,631 sequences per
sample and a total of 337 ASVs from these weed samples. The minimum number of
reads in a sample was 1,331 and the maximum was 365,035. The number of reads
in each sample at each step of the bioinformatic process is supplied in the Data-
verse files. Taxonomic composition — For the wheat dataset, sequences assigned
to Ascomycota represented 74% of the total counts, while sequences assigned to
Basidiomycota represented 25 (Figure B.2A). As expected, ASVs assigned to the
genus Zymoseptoria were the most abundant (60% of the sequences). Zymosepto-
ria was also more abundant in symptomatic than in asymptomatic leaf samples.
It was also slightly more abundant in the Soissons (SOI) and the Apache (APA)
varieties, than in the Cellule (CEL) cultivar, which is less susceptible because it
carries the Stb16q resistance gene. Alpha diversity — Fungal community richness
(number of species), diversity (Shannon diversity index) and evenness (inverse
Simpson index) differed significantly between dates and tissue health conditions.
Wheat variety had a minor effect in all alpha diversity measures, being significant
only for richness and diversity. Beta diversity — The composition of wheat foliar
fungal communities (Figure B.1B) differed significantly among dates, varieties and
tissue health conditions, (Table B.1). Tissue was the most important factor, ex-
plaining 10% of the variance in the permutational analysis of variance. Samples
collected in June were not included in the analysis to avoid a potential bias caused
by the absence of healthy leaves (G samples) at that time.

3.2 Bacterial communities

The 360 samples used for ITS sequencing were also sequenced using 16S primers,
obtaining an average of 40,724 raw bacterial sequences per sample with a mini-
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mum of 0 reads and a maximum of 92,520 reads per sample. The ASV inference
process identified a mean of 31,969 high quality sequences shared between 12,349
unique ASVs in 350 samples. Ten samples did not generate enough sequences to
assign ASVs inference. The filtering process deleted contaminants and low abun-
dant ASVs. The ASV table obtained had an average of 13,964 sequences per
sample distributed between 1,495 ASVs and 340 samples. The minimum number
of reads in a sample was 2 and the maximum was 71,051. The samples of weeds
(n = 102) growing surrounding the wheat plots were also sequenced using 16S
primers. The bioinformatic process produced an average of 29,991 sequences per
sample and 1,068 unique ASVs from the weed samples. The minimum number of
reads in a sample was 30 and the maximum was 70,999. The number of reads
of each sample at each step of the bioinformatic process is supplied in the Data-
verse files. Taxonomic composition — The most abundant bacterial phyla were
Proteobacteria (39% of ASVs), followed by Actinobacteria (35%), Bacteroidetes
(12%) and Firmicutes (11%) (Figure B.2B). Proteobacteria were more evident in
later sampling dates while Actinobacteria were more present at the March sam-
pling. Tissue condition and wheat variety did not seem to have an important
effect on the community composition of the phyla. Alpha diversity — Bacterial
community richness, evenness and diversity differed significantly between tissue
health conditions. Sampling date affected richness and evenness, while wheat va-
riety only affected diversity. Beta diversity — The composition of the bacterial
communities of wheat leaves (Figure B.1C) differed significantly among dates, va-
rieties and tissue conditions, (Table B.1). As with the fungal component of the
community, date was the most important structuring factor, explaining some 8%
of the variance in the permutational analysis of variance. Samples obtained in
June were not included in the analysis to avoid a potential for bias caused by the
absence of healthy leaf samples on that sample date.

4 Conclusions
Preliminary statistical analyses revealed that sampling date, wheat variety and
STB symptoms had significant effects on fungal and bacterial communities of the
wheat phyllosphere. While the three factors tested affected the community struc-
ture, the date of sampling exhibited the strongest effect. As expected, we found a
relationship between the presence of Z. tritici assessed by eye (STB symptoms on
the leaves) and by qPCR (concentration of Z. tritici DNA within the leaf tissue).
Moreover, the large community overlap between samples from the three wheat va-
rieties (Figures B.1 B and C) suggests that microbiomes are similar despite their
variation in susceptibility to STB. These findings have implications for the con-
cept that variation in the microbiome could be relevant to define and optimize
biological control of STB taking into account the impact of the wheat varieties.
The preliminary analysis of this wheat dataset confirms the effectiveness of the
sampling strategy and the need for further in-depth investigations. For instance,
co-occurrence network analyses could be used to characterize the dynamics of the
community associated with Z. tritici and might help identify individual taxa of
interest as potential biocontrol or beneficial agents to improve wheat health. The
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weed dataset could also be examined for Z. tritici interactions with different com-
munities present on non-crop plants within and in the margins of the field.

5 Availability of Data and Materials
The sequence datasets were deposited in NCBI SRA in bioproject PRJNA803042
(https://www.ncbi.nlm.nih.gov/bioproject/803042). The biosample accession num-
bers are SAMN25610777 to SAMN25611238. Bioinformatic scripts and raw and
filtered ASV tables in R phyloseq format were deposited in Dataverse

(https://doi.org/10.15454/QTXFP9). The tables showing variation in sequence
counts during the bioinformatic process and the scripts used for data processing
and statistical analysis were included in the Dataverse deposit.
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Figure B.1: Community composition of wheat leaves. A, Abundance of the
pathogen (Zymoseptoria tritici) on wheat leaves measured using quantitative PCR. Prin-
cipal coordinates analysis plots showing the similarity of B, fungal and C, bacterial com-
munities from different samples. Ordination was performed using the Aitchison distance
(Aitchison 1982). Plots were colored by the Septoria tritici blotch symptoms: leaf sam-
ples collected on asymptomatic leaves (G), green parts of a symptomatic leaf (GS), and
symptomatic parts of a leaf (S); the sampling seasons of March, May, and June; and the
wheat varieties sampled: Apache (Apa), Cellule (Cel), and Soissons (Soi).
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Figure B.2: Relative abundance of different taxa over different sampling
dates, wheat varieties, and leaf tissue conditions. A, Relative abundance of
different fungal genera and B, relative abundance of different bacterial orders. ASV =
amplicon sequence variant. Bar plots are separated by Septoria leaf blotch symptoms:
leaf samples collected on asymptomatic leaves (G), green parts of a symptomatic leaf
(GS), and symptomatic parts of a leaf (S); the wheat varieties sampled: Apache (Apa),
Cellule (Cel), and Soissons (Soi); and the sampling dates in March, May, and June (June
is separated by a bar because no asymptomatic (G) samples were found).
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Table B.1: Permutational multivariate analysis of variance between samples.
The Aitchinson distance (Aitchison 1982) between samples in the abundance matrix is
used as a distance metric. The analysis were performed for the fungal and bacterial
ASV tables separately using the R vegan package (Oksanen et al. 2022). Factors are:
Tissue, correspondiong to septoria leaf blotch symptoms; Date, corresponding to the
sampling dates; and Variety, corresponding to the wheat varieties sampled. The plots
were considered nested to the wheat variety. Values of p = * < .05; ** < .01; *** < .001

Fungi Df Sum of squares R2 F P value

Tissue 2 1369.149 0.051 12.319 ***

Date 2 2856.615 0.107 25.702 ***

Variety 2 615.13 0.023 5.534 ***

Tissue:Date 3 968.617 0.036 5.81 ***

Tissue:Variety 4 370.541 0.014 1.667 ***

Date:Variety 4 803.509 0.03 3.615 ***

Tissue:Date:Variety 6 488.472 0.018 1.465 ***

Tissue:Date:Variety:Plot 48 3510.502 0.131 1.316 ***

Residual 285 15838.138 0.591

Total 356 26820.673 1

Bacteria Df Sum of squares R2 F P value

Tissue 2 822.805 0.017 3.699 ***

Date 2 6153.514 0.126 27.664 ***

Variety 2 1189.58 0.024 5.348 ***

Tissue:Date 3 856.926 0.017 2.568 ***

Tissue:Variety 4 574.873 0.012 1.292 *

Date:Variety 4 1918.814 0.039 4.313 ***

Tissue:Date:Variety 6 909.533 0.019 1.363 **

Tissue:Date:Variety:Plot 48 6775.259 0.138 1.269 ***

Residual 268 29806.437 0.608

Total 339 49007.741 1
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I.2 Steps to reconstruct an interaction network using eDNA:
1. Ecological samples are taken from the environment; 2. eDNA is
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II.1 Experimental design. Foliar fungal communities were charac-
terized in three conventional (CONV) and three organic (ORGA)
vineyard plots by a metabarcoding approach. We analyzed 20 foliar
samples per plot. For each plot, we obtained 20 community profiles
(described in terms of amplicon sequence variants (ASV)) and one
association network (inferred either with the SparCC software de-
veloped by Friedman & Alm, 2012 or with the SPIEC-EASI software
developed by Kurtz et al, 2015). More networks were then obtained
by varying network reconstruction parameters (Figure A.3). The
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foliar microbiota were assessed with both community and network
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II.2 Effect of cropping system —conventional (CONV) versus
organic (ORGA) — on the α-diversity and β-diversity met-
rics of grapevine foliar fungal communities. A Community
richness, defined as the number of ASVs. B Community diversity,
measured with the inverse Simpson index. C Community even-
ness, measured with Pielou’s index. Differences in α-diversity met-
rics between cropping systems were significant (Table S4; * p<0.05;
**p<0.01; ***p<0.001). D Principal coordinate analysis (PCoA)
was used to represent dissimilarities in composition between sam-
ples, as assessed with the quantitative and E binary Jaccard in-
dices. The effect of the cropping system on both β-diversity metrics
was significant, as a single effect for the quantitative Jaccard in-
dex and in interaction with block for the binary index (Table II.2).
Green circles, squares and triangles correspond to samples collected
in the ORGA1, ORGA2 and ORGA3 plots, respectively. Orange cir-
cles, squares and triangles correspond to the CONV1, CONV2 and
CONV3 plots, respectively (Figure II.1). F Log-transformed ratio
of ASV relative abundance in CONV plots over that in ORGA plots,
for 14 ASVs identified as differentially abundant between cropping
systems by DESeq2 analysis followed by Benjamini-Hochberg ad-
justment (Love et al. 2014). . . . . . . . . . . . . . . . . . . . . . . 52

II.3 Effect of cropping system — conventional (CONV) versus
organic (ORGA) — on the α-properties and β-properties
of grapevine foliar fungal networks. A Association networks
inferred from fungal metabarcoding data with SparCC (Friedman
& Alm 2012). A total of 60 networks were inferred, correspond-
ing to 2 cropping systems × 3 replicates (blocks) × 10 P values,
with P the percentage of most abundant ASVs used for network
inference. Only four values of P are shown on the Figure. B Vari-
ations in network α-properties. The following properties (Table
II.1) were calculated for each network: the number of links (L) and
connected components (CC), the network diameter (DIA) and con-
nectance (C) and the mean degree (DEG) and negative link ratio
(NLR). The percentage P of ASVs used for network reconstruction
had a significant influence on all properties (Table A.8), whereas
the cropping system did not (Table A.7). C Principal coordinate
analysis (PCoA) represents dissimilarities between networks, mea-
sured with the βOS index (Poisot et al. 2012) calculated with the
binary Jaccard index. βOS measures the dissimilarity between two
networks in terms of the presence-absence of associations between
shared ASVs. The centroids for each cropping system are repre-
sented by gray circles. The effect of the cropping system on βOS
was significant (Table II.4). Networks were inferred with SparCC
(Friedman & Alm 2012). . . . . . . . . . . . . . . . . . . . . . . . . 55
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II.4 Venn diagrams showing the number of fungal associations
common to network replicates. A Associations common to the
three network replicates inferred for the organic cropping system
(ORGA1, ORGA2, ORGA3) and B the three network replicates
inferred for the conventional cropping system (CONV1, CONV2,
CONV3), regardless of the sign of the association, in the situation
in which all ASVs were used for network construction (P=100%). C
Associations common to the six networks. Networks were inferred
with SparCC (Friedman & Alm 2012). The number of nodes shared
by the network replicates is indicated into brackets. . . . . . . . . . 59

III.1 Description of the interaction inference process. Microbial
communities are shaped by the interaction between their members.
DNA sequencing together with bioinformatic processes allow esti-
mation of the abundance of the different microbes present in the
communities. Using the abundance information from different com-
munities as training examples, and the rules of interaction as back-
ground knowledge, it is possible to infer an interaction network that
generalizes the interactions between microbes. . . . . . . . . . . . . 69

III.2 Summary of the inference process of microbial interactions
using A/ILP. Observations are obtained assessing the abundance
change between OTUs. The ecological theory describes how the
presence of an OTU can affect the abundance of a second OTU.
Abduction is performed using the observations and theory. Signif-
icant interactions are assessed by bootstrapping the compression
value from different permutations of observations . . . . . . . . . . 74

III.3 Area under the ROC curve values (AUC) obtained using
different number of permutations. Each plot shows the AUCs
obtained for interactions of different strengths. Each line represents
a method used to obtain the estimators. Error bars show the stan-
dard deviation of the means. . . . . . . . . . . . . . . . . . . . . . . 76

IV.1 Schematic diagram representing the InfIntE pipeline. The
pipeline performs: conversion of abundance data contained in the
OTU table to logical clauses, based upon our ecological knowledge;
abduction of interaction effects from the logical clauses using PyGol;
selection of important edges using StARS; and, the direct classifi-
cation of interaction types depicted by the different edge colors.
Arrows show the direction of effects or interactions. Edges without
arrow in the network represent non-directed interactions. . . . . . . 90
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IV.2 Relationship between number of samples and interaction
inference performance for different strengths of interaction.
Datasets were computer-generated simulating four different inter-
action types: amensalism, commensalism, competition and mutu-
alism. A: Area under the roc curve values (AUC)(Fan et al. 2006)
obtained by I statistic with and without exclusion. Larger AUC
values represent better specificity and sensitivity in interaction de-
tection. I statistic is used by InfIntE as a numeric measure of
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IV.3 Nightingale rose charts comparing the percentage of cor-
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Term Description

Abductive/Inductive
Logic Programming
(A/ILP)

High-level knowledge-representation framework that can
be used to solve problems based on abductive reasoning.

Amplicon Sequence
Variant (ASV)

Group of DNA amplicons that are identical considering
the probability of sequencing errors, it can be considered
as an OTU synonym

Bio-monitoring Control the changes and evolution of a biological context

Ecosystem Complex of living organisms, their physical environ-
ment, and all their interrelationships in a particular unit
of space.

Environment Delimited physical space where living organisms habit.

Environmnetal DNA
(eDNA)

DNA material obtained by sampling and environment

Explainable Machine
Learning (EML)

Machine learning branch focused in human-
understandable computation

Interaction Action or influence of one taxa on another that changes
the abundance of one or both taxa

Meta-Interpretative
Learning (MIL)

ILP technique which uses higher-order meta-rules to
support predicate invention and learning of recursive
definitions

Metabarcoding Process of identifying the taxa present in eDNA in base
to their sequence

Microbial Community multi-species assemblages within which microorganisms
live and interact, in a contiguous environment.

Microorganism Living being not observable at naked eye due its reduced
size

Next Generation Se-
quencing (NGS)

Parallel high-throughput methodology to obtain the nu-
cleotide sequencing of multiple DNA fragments

Next-Generation
Biomonitorin prject
(NGB)

Project to monitor ecosystems using automated eDNA
sampling and sequencing

Operational Taxo-
nomic Unit (OTU)

Group of DNA amplicons clustered around a sequence

Sequencing Depth Total number of sequences in a sample processed by the
sequences
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Introduction

1 Projet Next Generation Biomonitoring
L’activité humaine a un impact important sur l’environnement. L’homme modifie l’environnement
au niveau local (déforestation ou rejets polluants dans une rivière) et au niveau mondial (changement
climatique). Évaluer la façon dont nous modifions notre environnement peut nous aider à mieux
comprendre pourquoi ces changements se sont produits et à trouver des moyens de les atténuer
ou de les empêcher de se produire. L’évaluation environnementale repose en grande partie sur la
bio-surveillance des écosystèmes. Le projet Next Generation Biomonitoring (NGB) (Bohan et al.
(2017)) propose d’utiliser le séquençage de nouvelle génération (NGS) et la déduction de la structure
écologique pour améliorer la biosurveillance à l’aide de l’ADN environnemental (ADNe). L’ADNe
est l’ADN obtenu directement à partir d’échantillons environnementaux (sol, sédiments, eau, etc.)
sans aucun signe évident de matériel biologique source (Thomsen and Willerslev (2015)).

L’ADNe offre la possibilité d’obtenir des informations sur des contextes écologiques qui ne peu-
vent pas être facilement étudiées à l’aide d’autres techniques. L’une des plus importantes de ces
contextes est celle des microorganismes. Les microorganismes vivent dans des communautés com-
plexes, composées d’individus présentant de grandes différences taxonomiques, morphologiques et
fonctionnelles. La diversité des communautés microbiennes est à l’origine d’un large éventail de
processus écologiques impliquant des microbes, de la pathogénicité à la fourniture de services écosys-
témiques (Ishaq (2017)). Par conséquent, L’étude de la dynamique des communautés microbiennes
peut conduire à une meilleure compréhension des processus écologiques, et de leurs liens avec LES
activités humaines.

Les communautés microbiennes sont façonnées par leur environnement et les interactions entre
leurs membres. Ainsi, une surveillance efficace nécessite la connaissance des différentes interactions
qui affectent l’abondance des différents micro-organismes. Pour étudier les interactions, il devient
important d’obtenir des informations sur l’abondance microbienne à partir des données d’ADNe, en
regroupant ces informations en unités taxonomiques opérationnelles.

Les unités taxonomiques opérationnelles (OTU) peuvent être identifiées à partir de l’ADNe
séquencé en utilisant différentes techniques bioinformatiques (Caporaso et al. (2010) ; Schloss et al.
(2009)). Une OTU peut être définie comme le regroupement de différentes séquences d’ADNe qui
partagent une homologie supérieure à un seuil donné. Callahan et al. (2016), a développé un outil
permettant d’obtenir des variantes de séquences d’amplicons (ASV), qui sont une version à plus
haute résolution des OTU. Les comptes d’ASV/OTU sont normalement organisés dans une matrice
où chaque échantillon d’ADNe est une colonne, chaque ASV/OTU est une ligne et chaque cellule
contient le compte du nombre de séquences de chaque échantillon appartenant à chaque ASV/OTU
(Dohlman and Shen (2019)). Le nombre de séquences appartenant à la même ASV/OTU peut être
utilisé comme une mesure d’abondance (Schloss et al. (2009)). Dans le section suivante, il est décrit
le processus suivi pour obtenir les tableaux ASV qui seront utilisés dans les autres parties.

L’ASV/OTU peut être attribué à un taxon en utilisant des bases de données de référence par un
processus appelé métabarcoding. Il est donc possible de déterminer les espèces qui font partie de la
communauté présente dans un échantillon d’ADNe et leur abondance. Les communautés évoluent
cependant en permanence, façonnées par les interactions de leurs membres avec l’environnement et
les milieux (interactions abiotiques), et les autres membres de la communauté (interactions biotiques)
(Konopka (2009)). Par conséquent, pour suivre les communautés à l’aide du métabarcoding, il est
important de prendre en compte non seulement tous les facteurs abiotiques qui affectent la structure
de la communauté, comme la température, l’humidité, la composition du milieu, mais aussi les
différentes interactions entre les organismes présents.
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2 Inférence de réseaux d’interactions
Étant donné que tous les membres d’une communauté partagent le même espace, leurs interactions
ne peuvent être comprises de manière isolée. Des interactions différentes ont des conséquences
différentes pour un organisme donné et il est important de connaître toutes les interactions entre
les membres de la communauté pour prédire les effets à l’échelle de la communauté. Les réseaux
d’interaction ont été utilisés pour visualiser toutes les interactions dans un contexte écologique
donné. Ces réseaux présentent tous les membres des communautés comme les nœuds du réseau
et les différentes interactions comme les liens reliant ces nœuds. Les réseaux ont été utilisés pour
comprendre les relations plantes-pollinisateurs (Lopezaraiza-Mikel et al. (2007)), les communautés
de poissons (Ushio et al. (2018)) et les micro-organismes (Nicolaisen et al. (2014)).

Les réseaux d’interaction peuvent être déduits à partir des informations contenues dans une
matrice d’OTU. Ce processus n’est cependant pas simple. L’un des principaux problèmes que nous
devons résoudre pour l’inférence de réseaux à partir d’une matrice d’OTU est que les données
de séquençage sont compositionnelles (Gloor et al. (2017)). Les séquenceurs ne sont capables de
traiter qu’un nombre donné de séquences d’ADN et, par conséquent, le nombre d’OTU est relatif au
nombre maximal de séquences traitées. Un deuxième problème est celui de la rareté des données.
Les OTUs ne sont pas toujours présents dans tous les échantillons, ce qui conduit à des ensembles
de données gonflés à zéro. De nombreux outils statistiques, comme SparCC (Friedman and Alm
(2012)), SPIEC-EASI (Kurtz et al. (2015)), CCLasso (Fang et al. (2015)) et PLN (Chiquet et al.
(2019)), ont été développés pour inférer des réseaux à partir d’une matrice d’OTU. Ces outils sont
capables de traiter des données éparses et compositionnelles en transformant les données, et la
plupart d’entre eux ont upeuvent être utilisés sur R (Dohlman and Shen (2019)). Cependant, il n’y
a pas d’accord sur le nombre d’échantillons requis pour construire un seul réseau à l’aide d’outils
d’inférence de réseau (Berry and Widder (2014); Hirano and Takemoto (2019)). La variation de la
quantité d’informations nécessaires à la construction d’un réseau entraîne des difficultés pour obtenir
des réseaux reproductibles à partir d’un même contexte écologique. De plus, l’importante variabilité
entre les réseaux d’interaction augmente augmente le nombre d’échantillons nécessaires pour évaluer
les différences entre les réseaux. Il faut donc évaluer la reproductibilité des outils actuels d’inférence
de réseau et mettre en œuvre des méthodes statistiques pour obtenir des mesures de réseau fiables.
Nous avons abordé ces questions en utilisant différentes mesures de réseau pour étudier les propriétés
des réseaux d’interaction produits par deux outils largement utilisés, SparCC et SPIEC EASI.

3 Explainable Machine Learning (EML)
Les réseaux basés sur la corrélation présentent également des problèmes non résolus pour relier
les liens du réseau aux interactions écologiques (Röttjers and Faust (2018)). Pour faire face à ces
problèmes, une alternative aux méthodes basées sur la corrélation est l’apprentissage automatique
explicable (EML). Nous avons d’abord choisi d’utiliser Progol (Muggleton (1995)), une implémen-
tation du langage de programmation logique abductive/inductive (A/ILP) pour développer un outil
d’inférence de réseau basé sur l’EML capable d’identifier les interactions écologiques à partir de
données de séquençage. A/ILP nous permet de décrire les interactions écologiques en utilisant des
règles basées sur la logique symbolique (Tshikantwa et al. (2018)). Nous pouvons alors prédire, de
manière explicite, les réseaux d’interactions. Au cours du développement de la thèse, une nouvelle
implémentation de A/ILP appelée PyGol a permis de simplifier l’utilisation de EML pour réaliser
de nombreux processus, réduisant ainsi le temps d’exécution (Varghese et al. (2022)).

L’ILP a été utilisé dans de nombreux domaines de connaissance, notamment l’inférence de réseaux
métaboliques (Tamaddoni-Nezhad et al. (2006)), l’élaboration des processus impliqués dans la pro-
duction de lait de vache (Sasaki et al. (2019)), et l’inférence de relations trophiques à partir de don-
nées d’observation d’arthropodes (Bohan et al. (2011)). Dans le cas de la reconstruction de réseaux
d’interactions microbiennes, nous proposons d’utiliser une application de l’ILP appelée Abductive
ILP (A/ILP). Le processus d’apprentissage abductif consiste à utiliser les informations contenues
dans un ensemble d’observations pour étendre une théorie, via des hypothèses inférées, afin d’enrichir
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les connaissances qui existent dans un domaine scientifique. L’abduction génère des hypothèses qui
compriment un ensemble d’observations expérimentales. La quantité d’informations comprimées
peut être comprise comme une mesure de la probabilité d’une hypothèse. La programmation logique
abductive (Kakas and Papadopoulos (1996)) est généralement appliquée à des problèmes qui peu-
vent être séparés en deux ensembles disjoints de prédicats : les prédicats observables et les prédicats
abductibles. En pratique, les prédicats observables décrivent les observations empiriques que nous
essayons de modéliser, telles que les informations sur l’abondance des espèces. Les prédicats ab-
ductibles - ici les interactions que nous déduisons - décrivent les relations sous-jacentes de notre
modèle qui ne sont pas observables directement mais qui peuvent, grâce à la théorie, apporter des
informations observables. Nous pouvons également avoir des prédicats d’arrière-plan (connaissances
préalables), qui sont des relations auxiliaires nous aidant à relier les informations observables et
abductibles (Tamaddoni-Nezhad et al. (2021)). Il n’existe pas de norme d’or pour tester les outils
d’inférence de réseaux d’interactions Röttjers and Faust (2018). Habituellement, la validation est
effectuée en combinant des ensembles de données générées par ordinateur où les interactions sont
simulées Weiss et al. (2016) avec l’évaluation des propriétés générales des ensembles de données
NGS réels où il n’est pas possible de connaître les interactions existantes Chiquet et al. (2019). Par
conséquent, il est nécessaire de valider l’inférence de réseau basée sur A/ILP en utilisant à la fois
des données synthétiques et des données NGS. Ensuite, les données écologiques NGS produites par
le métabarcodage peuvent être utilisées pour obtenir des informations écologiques pertinentes.
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Construire des ensembles de données sur les
communautés microbiennes à partir de don-
nées ADN

4 Introduction
L’inférence des réseaux d’interaction nécessite des informations précises sur la composition des
communautés microbiennes. Pour obtenir ces informations, il est d’abord nécessaire d’identifier
le contexte écologique des communautés microbiennes étudiées et de concevoir un échantillonnage
approprié pour l’ADNe. Pour éviter d’introduire des biais dans l’inférence du réseau, il est impor-
tant d’identifier les conditions abiotiques des échantillons et d’obtenir suffisamment d’échantillons
partageant ces conditions. Une fois l’échantillonnage effectué, l’ADNe doit être extrait du matériel
échantillonné, amplifié à l’aide d’amorces appropriées au groupe taxonomique étudié et séquencé
pour obtenir les séquences d’ADN de tous les organismes présents. Ensuite, un processus bioinfor-
matique est mis en œuvre pour obtenir les tableaux ASV mentionnés dans le introduction générale.
Dans cette partie est détaillé le processus d’obtention d’informations sur les communautés microbi-
ennes situées dans les feuilles de vignes provenant de vignobles de différentes régions françaises. Nous
émettons l’hypothèse que la structure de la communauté microbienne peut conférer une résistance
aux microbes pathogènes. Pour l’étude de cas de la vigne, des tissus sains et des tissus infectés
par le pathogène Plasmopara viticola ont été collectés pour évaluer le rôle des membres du réseau
microbien dans la pathogénèse.

5 Méthodes

5.1 Échantillonnage
Des échantillons ont été collectés en juin et juillet 2018 dans trois vignobles de trois régions viticoles
françaises : Aquitaine (AQ), Champagne (CH) et Occitanie (OC). Les échantillons ont été prélevés
pendant les épidémies de mildiou (Plasmopara viticola) sur 30 vignes dans chaque vignoble, sur des
rangs non traités contre le pathogène. Une feuille sporulée a été prélevée sur chaque vigne à l’aide
de gants stériles et placée dans un sac plastique individuel. Les feuilles ont été traitées le jour de la
collecte avec des outils stérilisés dans le champ stérile d’un brûleur électrique MICROBIO (MSEI,
France). Deux disques foliaires symptomatiques de 12 mm de diamètre ont été prélevés sur des
lésions de mildiou sporulant sur chaque feuille. Deux disques, considérés comme asymptomatiques,
ont également été prélevés sur chaque feuille. Les disques ont été placés individuellement dans des
tubes de collecte de 2ml autoclavés et conservés dans une boîte remplie de silicagel. Les bouchons
à vis des tubes ont été laissés desserrés pour permettre aux disques de sécher. Tous les échantillons
ont ensuite été lyophilisés.

5.2 Amplification ITS fongique
L’ADN total a été extrait avec le kit DNeasy Plant Mini (Qiagen, France), avec une version légère-
ment modifiée du protocole recommandé par Kerdraon et al. (2019). La région ITS1 du gène ITS
rDNA fongique (Schoch et al. (2012)) a été amplifiée à l’aide des amorces ITS1F-ITS2 (White et al.
(1990), Gardes and Bruns (1993)). Pour éviter un protocole PCR en deux étapes, chaque amorce
contenait la séquence adaptatrice d’Illumina et une étiquette (ITS1F : 5′ - CAAGCAGAAGACG
GCATACGAGATGTGACTGGAGTTCAGGTGCTTCCGATxxxxxxxxCTTGGTCATTTAGAG
GAAGTAA - 3′ ; ITS2 : 5′ - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACA
CGACGCTCTTCCGATCTxxxxxxxxGCTGCGTTCTTCATCGATGC - 3′, où "x" est l’étiquette
de 12 nucléotides). Deux espèces de champignons marins (Candida oceani et Yamadazyma barbieri)
ont été utilisées comme témoins positifs car il était peu probable de les trouver dans nos échantillons.
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Un contrôle positif comprenait 1 µL de 10 ng/µL d’ADN de Candida oceani, seul, et l’autre com-
prenait un mélange équimolaire des deux souches. Les contrôles PCR négatifs étaient représentés
par un mélange PCR sans matrice d’ADN. Chaque plaque PCR contenait un contrôle d’extraction
négatif, trois contrôles PCR négatifs, un contrôle positif à une seule souche et un contrôle positif à
deux souches.

5.3 Sequencing
Séquençage MiSeq - La purification des produits PCR (CleanPCR, MokaScience), le séquençage des
librairies sur une plateforme Illumina MiSeq (chimie v2, 2x250 bp) et le démultiplexage des séquences
(avec recherche d’index exact) ont été réalisés au centre de séquençage PGTB (Pierroton, France).
Les amplicons ITS1 fongiques ont été séquencés sur trois passages et les amplicons 16S bactériens
ont été séquencés sur quatre passages.

5.4 Traitement bioinformatique
Les séquences MiSeq produites ont été traitées à l’aide du pipeline DADA2 version 1.16.0 (Callahan
et al. (2016)), implémenté sur R. Les amorces ont été identifiées et supprimées à l’aide de cutadapt
2.8 (Martin (2011)) et les séquences découpées ont ensuite été analysées par l’algorithme DADA2.
DADA2 produit un tableau des variantes de séquences d’amplicons (ASV), un analogue à plus haute
résolution du tableau des OTU couramment utilisé, qui enregistre le nombre de fois où chaque vari-
ante de séquence d’amplicon a été observée dans un échantillon, dans tous les échantillons. Les
chimères ont été supprimées à l’aide de la fonctionnalité removeBimeraDenovo de DADA2. Les
séquences identiques qui avaient des longueurs différentes ont été jointes. Pour filtrer les éventuels
contaminants (séquences d’ADN qui sont ajoutées à l’échantillon pendant le processus d’extraction et
de séquençage) et les séquences (ASV) de faible abondance, un pipeline personnalisé a été développé.
Tout d’abord, la fonction isContaminant du paquet Bioconductor DECONTAM v 1.8.0(Davis et al.
(2018)) a été utilisée pour éliminer les séquences contaminantes. Ensuite, tous les contaminants
restants ont été supprimés en utilisant les contrôles positifs et négatifs, comme décrit dans Galan
et al. (2016). Les séquences identifiées comme chloroplastiques ou mitochondriales ont été sup-
primées à l’aide de Metaxa2.2 (Bengtsson-Palme et al. (2015)). Les séquences ASV avec une affec-
tation taxonomique " mitochondrie " ont également été supprimées. Une fois que toutes les ASV
contaminantes ont été supprimées, les séquences restantes ont été regroupées au niveau d’identité
de séquence de 99 %. Dans une dernière étape, les ASV présents dans moins de 1% des échantillons
ont été supprimés.

5.5 Attribution taxonomique
Une assignation taxonomique a été effectuée en utilisant une implémentation d’un classificateur
bayésien naïf inclus dans le pipeline DADA2. Les bases de données utilisées pour l’affectation
taxonomique étaient les bases de données Silva v132 (Quast et al. (2012)) et UNITE v8.1 (Nilsson
et al. (2019)) pour les séquences 16S et ITS, respectivement. Les ASV qui n’ont pas pu être assignés
à un phylum ont été supprimés. Trois tableaux ont été obtenus à la fin de ce processus : un
tableau ASV avec le nombre de séquences dans chaque échantillon ; un tableau avec l’affectation
taxonomique de chaque séquence ASV ; et, un tableau de métadonnées décrivant le plan expérimental
de chaque échantillon. Les trois tableaux ont été réunis dans un objet phyloseq à l’aide du package
bioconducteur phyloseq v1.32.0 (McMurdie and Holmes (2013)).

5.6 Analyse bioinformatique
Les données contenues dans l’objet phyloseq ont été analysées dans R v4.0.3 (R Core Team (2022))
pour évaluer la composition des communautés fongiques et bactériennes et l’effet du plan expérimen-
tal sur ces communautés. Les comptages ASV obtenus à l’aide du pipeline dada2 ont été transformés
à l’aide d’une transformation clr (Aitchison (1982)). Le paquet phyloseq a été utilisé pour obtenir
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la distance euclidienne entre les échantillons et effectuer une analyse des coordonnées principales
(PCoA) dans R. La PCoA a été tracée à l’aide du paquet ggplot v3.3.2 (Wickham (2016)). La
composition relative de la communauté a également été représentée à l’aide de ggplot. Une analyse
de variance multivariée permutationnelle (permanova), réalisée pour évaluer l’effet du plan expéri-
mental sur les communautés, a été évaluée à l’aide de la fonction adonis2 du paquet R vegan v2.5.6
(Oksanen et al. (2022)).

6 Analyse de la communauté ITS
La composition des communautés fongiques foliaires de la vigne différait significativementen fonction
des régions et des conditions tissulaires (Figure 1C). La région géographique était le facteur expéri-
mental le plus significatif, expliquant environ 11 % de la variance de la communauté fongique de la
vigne. Au sein de chaque région, le vignoble a également un impact important sur la composition de
la communauté, expliquant près de 10 % de la variance de la communauté. Les différentes conditions
climatiques (par exemple, la température, l’humidité) propres à chaque vignoble, semblent être des
facteurs important dans la structure de la communauté fongique. L’importance de l’état des tis-
sus, bien que significative, était relativement mineure. Les communautés d’Aquitaine et d’Occitanie
étaient les plus similaires, tandis que la présence plus importante du genre Mycosphaerella a modifié
la forme des communautés microbiennes de Champagne. L’abondance des genres fongiques n’était
pas significativement affectée par l’état des tissus symptomatiques ou asymptomatiques (Figure 1A).
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Figure 1: A: Composition de la communauté fongique au niveau du genre. B: Ordination des
échantillons en utilisant la distance d’Aitchinson. Les échantillons sont colorés en fonction de l’état
du tissu et de la région.
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Approches fondées sur la corrélation pour la
biosurveillance à l’aide de l’ADN

7 Introduction
L’un des objectifs du projet Next-Generation Biomonitoring est d’utiliser les données de séquençage
pour reconstruire les réseaux d’interaction écologique en temps réel, puis de calculer les propriétés au
niveau du réseau pour évaluer les changements dans l’écosystème. Pour mettre en œuvre l’utilisation
des réseaux d’interaction écologique, il est nécessaire de compter sur des méthodes fiables pour dé-
duire ces réseaux. Dans ce partie, deux méthodes d’inférence de réseaux largement utilisées, SparCC
(Friedman and Alm (2012)) et SPIEC-EASI (Kurtz et al. (2015)) sont utilisées pour inférer des
réseaux à partir de données écologiques. Nous évaluons ensuite : (1) la reproductibilité des réseaux
basés sur l’ADN en l’absence de changement dans l’écosystème ; et (2) les avantages et les incon-
vénients des propriétés au niveau de la communauté et du réseau pour le suivi du changement. Nous
avons choisi un réseau microbien associé aux cultures comme étude de cas. Les réseaux sont supposés
soutenir les services de régulation des maladies dans les agroécosystèmes. Nous avons analysé leur
réponse au changement de pratique agricole entre les systèmes biologiques et conventionnels.

8 Matériels et méthodes

8.1 Échantillonnage et séquençage
Des échantillons de feuilles de vigne ont été prélevés le 10 septembre 2015 dans un vignoble expéri-
mental. Le vignoble expérimental a été planté en 2011 pour comparer deux systèmes de culture
: l’agriculture conventionnelle durable (CONV) et l’agriculture biologique (ORGA) (Delière et al.
(2015)). Les systèmes de culture différaient par les types de pesticides appliqués et la période
d’application. Des feuilles de vigne ont été collectées dans 3 parcelles CONV et 3 parcelles ORGA
avec 19 vignes par parcelle. L’extraction de l’ADN a été effectuée selon le protocole CTAB chlo-
roforme/alcool isoamylique (24:1). La région de l’espaceur transcrit interne (ITS) du ribosome
nucléaire, qui est considérée comme la région universelle du code-barres des champignons, a été
amplifiée à l’aide d’amorces spécifiques. Le séquençage a eu lieu sur une plateforme Illumina Miseq.

8.2 Analyse bioinformatique
Les séquences brutes ont été traitées à l’aide du pipeline DADA2 (Callahan et al. (2016) comme
recommandé dans (Pauvert et al. (2019)). Le pipeline DADA2 identifie les différents Amplicon
Sequence Variants (ASV), une version à plus haute résolution des OTU. Le tableau des ASV obtenu
à l’aide du pipeline DADA2 a été filtré selon la description de (Galan et al. (2016)), en supprimant les
ASV inférieurs à la limite de contamination détectée avec les contrôles d’extraction. Avant l’inférence
des réseaux, les différentes propriétés des communautés ont été évaluées à l’aide du package R vegan
et testées à l’aide du paquet R lme4. Les réseaux ont été construits à l’aide de l’algorithme SparCC
(Friedman and Alm (2012)) mis en œuvre dans FastSpar (Watts et al. (2018)) avec les valeurs par
défaut de SparCC, et de la méthode SPIEC-EASI (Kurtz et al. (2015)) exécutée dans l’environnement
R en utilisant la procédure MB pour la sélection des bords. Pour chaque méthode d’inférence de
réseau, dix réseaux par parcelle ont été construits en faisant varier le pourcentage P des ASV inclus
dans le réseau (avec P allant de 10% à 100% des ASV les plus abondants dans la parcelle). Nous
avons fait varier P car nous nous attendions à ce qu’il influence la reproductibilité des réseaux. Nous
nous attendions, en particulier, à ce que les réseaux construits uniquement à partir des ASV les
plus abondants présentent une meilleure reproductibilité. 60 réseaux ont été obtenus, 3 parcelles
x 2 traitements x 10 valeurs de P. Les propriétés α et β au niveau du réseau ont été analysées en
utilisant Permanova pour évaluer les différences des métriques entre les systèmes de culture.
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9 Résultats
La figure 2A montre l’effet de la valeur P dans les réseaux inférés. La valeur de P a un effet
significatif sur toutes les propriétés α. Le système de culture n’a pas montré d’effet sur les réseaux
α-propriétés obtenus avec SparCC, comme on peut le voir sur la figure 2B. En revanche, le système
de culture a eu un effet significatif sur le nombre d’associations entre les ASV partagés (βOS)
pour les réseaux SparCC. Ces résultats suggèrent que la variation du réseau entre les systèmes de
culture est due à la rotation des associations (saisie par βOS), plutôt qu’à la rotation des ASV, et
montrent que les propriétés β du réseau définies dans le cadre de l’écologie théorique de Poisot et al.
(2012) peuvent détecter les différences entre les systèmes de culture. Des résultats similaires ont été
obtenus pour les réseaux inférés avec SPIEC-EASI. Aucune association n’était partagée entre les
deux systèmes de culture indépendamment de l’outil d’inférence de réseau. De plus, seuls quelques
liens étaient partagés entre des parcelles appartenant au même système de culture. Bien que ces
parcelles partagent plus d’associations que les réseaux aléatoires de même taille, le nombre réduit
d’associations partagées démontre les difficultés d’obtenir un réseau reproductible à partir des mêmes
conditions abiotiques.

10 Conclusions
1. Les mesures de β-properties au niveau du réseau peuvent détecter les changements produits

par le système de culture.

2. α-properties ne détectent pas les changements produits par les systèmes de culture. Ainsi,
les différences entre les systèmes de culture sont basées sur le renouvellement des ASV et la
réassociation des liens, et non sur les changements des caractéristiques du réseau.

3. Les réseaux microbiens obtenus à l’aide des outils existants d’inférence statistique de réseaux
varient de façon marquée entre les répliques d’un même ensemble de conditions environnemen-
tales.
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Figure 2: Effet du système de culture - conventionnel (CONV) versus biologique (ORGA) - sur les
propriétés α et les propriétés β des réseaux fongiques foliaires de la vigne. (A) Réseaux d’association
déduits des données de métabarcodage fongique avec SparCC (Friedman and Alm (2012)). Au total,
60 réseaux ont été inférés, correspondant à 2 systèmes de culture × 3 réplicats (blocs) × 10 valeurs
de P, P étant le pourcentage des ASV les plus abondants utilisés pour l’inférence des réseaux. Seules
quatre valeurs de P sont représentées sur la figure. (B) Variations des propriétés alpha du réseau. Les
propriétés suivantes ont été calculées pour chaque réseau : le nombre de liens (L) et de composants
connectés (CC), le diamètre du réseau (DIA) et la connectivité (C) ainsi que le degré moyen (DEG)
et le ratio de liens négatifs (NLR). (C) L’analyse des coordonnées principales (PCoA) représente
les dissimilitudes entre les réseaux, mesurées avec l’indice βOS (Poisot et al. (2012)) calculé avec
l’indice binaire de Jaccard.
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Utilisation d’une approche basée sur la logique
pour déduire des interactions à partir de don-
nées d’ADN simulées

11 Introduction
Comme nous l’avons montré dans le partie précédente, les méthodes statistiques existantes pour
déduire les réseaux d’interactions microbiennes peuvent être utilisées pour explorer les interactions
possibles qui peuvent être déduites d’un tableau ASV. Cependant, il est difficile d’établir une relation
entre les associations suggérées à partir de la corrélation et les véritables interactions microbiennes.
Il est donc difficile de fournir une interprétation écologique correcte à partir des réseaux d’interaction
déduits. A/ILP pourrait potentiellement résoudre ce problème. Les connaissances écologiques ex-
istantes peuvent être utilisées par A/ILP pour déduire, directement, les interactions écologiques,
contournant ainsi la nécessité de l’étape d’interprétation. Dans ce partie, nous décrivons la mise en
œuvre de l’inférence d’interaction basée sur le PIILA et la méthodologie utilisée pour l’évaluer.

Tester la performance des réseaux d’inférence écologique en utilisant des données réelles de com-
munautés microbiennes est difficile car il y a peu ou pas d’informations sur la majorité des interac-
tions. Par conséquent, les performances de l’inférence A/ILP sont évaluées dans cette partie à l’aide
d’une méthodologie in silico proposée par Weiss et al. (2016). La méthodologie Weiss et al. (2016)
simule des tableaux ASV répliqués de type écologique en utilisant différents mécanismes écologiques
d’interaction. Ensuite, A/ILP est utilisé pour évaluer la présence des interactions simulées, comme
un ensemble connu d’attentes. Ce calcul de test produit une statistique de test qui est utilisée pour
déterminer la méthodologie la plus sensible ; et, évaluer la signification probabiliste de la statistique
pour la discrimination des interactions.

12 Méthodes

12.1 Inférence d’interaction A/ILP
Le processus d’inférence de l’interaction A/ILP est divisé en cinq étapes différentes :

1. Transformation des données: Les informations d’abondance contenues dans la matrice
ASV sont transformées en clauses logiques. Les clauses logiques sont basées sur une variation
de l’abondance entre les échantillons, calculée à l’aide d’un test du Khi-deux.

2. Description logique de l’effet d’abondance: La description des interactions, comprise
comme un effet sur l’abondance de l’espèce en interaction, est exprimée à l’aide de clauses
logiques. Une espèce peut provoquer deux effets sur l’abondance d’autres espèces, une aug-
mentation (vers le haut) ou une diminution (vers le bas).

3. Abduction des interactions: Les descriptions logiques des effets dans l’abondance et les
clauses logiques décrivant les changements d’abondance sont ensuite utilisées dans le pro-
gramme A/ILP, Progol, pour déduire les effets que les espèces ont sur les autres espèces.
Ce processus, appelé abduction, renvoie une valeur de compression. La compression est une
mesure numérique de la quantité d’information qui soutient chaque effet.

4. Calcul de l’estimateur I: Le processus d’abduction dépend fortement de l’ordre dans lequel
les clauses logiques sont fournies. Par conséquent, il est nécessaire de répéter le processus
d’abduction plusieurs fois en permutant l’ordre des clauses logiques. Ensuite, toutes les valeurs
de compression permutées sont mises en commun, et différentes méthodologies sont employées
pour obtenir une valeur d’estimateur final pour une interaction I. Les performances de la
statistique I calculée à l’aide des différentes méthodologies sont testées dans une évaluation
expérimentale.
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5. Bootstrapping de l’estimateur de I: Les valeurs de compression obtenues à partir de dif-
férentes permutations sont rééchantillonnées dans un processus de bootstrapping pour obtenir
la signification statistique des différents estimateurs de I.

12.2 Ensembles de données simulées
Weiss et al. (2016) a proposé un modèle de simulation pour créer des tableaux générés par ordinateur
incluant les effets des interactions linéaires de type écologique. Le modèle utilise la distribution log-
normale pour simuler l’abondance des espèces sans interaction dans un ensemble de communautés
microbiennes ou d’échantillons. Les interactions sont ensuite introduites en modifiant l’abondance
des espèces selon les différents mécanismes d’interaction écologique suivant Faust and Raes (2012).
En utilisant la méthode proposée dans Weiss et al. (2016), nous avons généré trois tableaux con-
tenant les abondances de 16 paires d’espèces en interaction dans 50 communautés. Les tableaux ont
été simulés en utilisant des interactions de différentes valeurs de force (2, 3 et 5), et quatre mécan-
ismes d’interaction écologique différents : amensalisme, commensalisme, compétition et mutualisme
Derocles et al. (2018). Comme un séquenceur ne peut lire qu’un nombre limité de séquences dans un
échantillon, et que celles-ci sont partagées entre les espèces, l’imposition d’un biais de composition
dans les données (Gloor et al. (2017)). Pour générer des tableaux microbiens de type écologique,
il est donc nécessaire de réintroduire la compositionnalité dans les ensembles de données simulées.
Pour ce faire, nous avons normalisé la profondeur de séquençage sous forme de probabilités dans une
distribution multinomiale, puis nous avons rééchantillonné la distribution pour obtenir les comptes
simulés à travers une profondeur de séquençage commune.

13 Évaluation expérimentale
Les performances de l’inférence microbienne basée sur A/ILP sont évaluées à l’aide des ensembles
de données générés par ordinateur. Tout d’abord, nous testons un certain nombre d’échantillons de
l’espace des hypothèses et différentes fonctions pour obtenir la statistique I. Ensuite, le meilleur
paramètre est utilisé pour évaluer les performances de la procédure de bootstrapping par rapport à
un seuil pour I et SparCC.

Figure 3: Description du processus d’inférence des interactions. Les communautés microbiennes
sont façonnées par l’interaction entre leurs membres. Le séquençage de l’ADN et les processus
bioinformatiques permettent d’estimer l’abondance des différents microbes présents dans les commu-
nautés. En utilisant les informations sur l’abondance des différentes communautés comme exemples
d’apprentissage, et les règles d’interaction comme connaissances de base, il est possible d’inférer un
réseau d’interaction qui généralise les interactions entre les microbes.
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13.1 Expérience 1
Hypothèse nulle 1:

L’utilisation de l’estimateur I tel que défini dans (12.1) à l’aide de différentes fonctions n’entraîne pas
une précision supérieure à celle de l’approche basée sur la fréquence Hypothesis Frequency Estimator
(Tamaddoni-Nezhad et al. (2013)) pour la prédiction des interactions microbiennes.

Matériels et méthodes:

Tableaux générés par ordinateur, comme décrit dans la section 2.1, calculés selon la méthodologie
de Weiss et al. (2016), 100 abductions d’effets possibles sont effectuées pour chaque tableau. Les
observations produites à partir des tableaux sont permutées aléatoirement à chaque exécution. La
description logique de l’effet est utilisée comme connaissance de base. Ensuite, les estimateurs sont
obtenus en utilisant les différentes fonctions décrites précédemment.

Puisque les interactions qui déterminent les abondances des tableaux générés par l’ordinateur sont
connues, il est possible de traiter l’inférence des interactions comme un problème de classification. Les
interactions peuvent être classées comme existantes ou non existantes et les valeurs des estimateurs
obtenues en utilisant les différentes fonctions indiquent la précision de la classification. Ainsi, l’aire
sous la courbe (AUC) du taux de vrais positifs par rapport au taux de faux positifs (courbe ROC)
peut être utilisée comme mesure de la performance. L’AUC est calculée pour toutes les fonctions
aux permutations = 1, 5, 10, 25 et 50 enlèvements. Un test ANOVA est effectué, ainsi qu’un test
d’amplitude de Tuckey, pour évaluer la significativité des différences de valeurs de l’AUC entre toutes
les fonctions.

Résultats et discussion:

Les valeurs de l’AUC pour les différentes méthodologies d’obtention des estimateurs et le nombre
de permutations sont présentées dans la figure 4. Comme prévu, les valeurs de l’AUC augmentent
à mesure que le nombre de permutations utilisées pour l’inférence augmente. Elles se stabilisent à
environ n = 50 permutations. Les valeurs de l’AUC sont similaires lorsque la force d’interaction
simulée est faible, étant significativement plus faibles à la force d’interaction simulée la plus élevée.
Cela peut s’expliquer par la faible performance du modèle logique pour le cas spécifique d’une in-
teraction réduisant à 0 l’abondance d’une espèce donnée, dont la probabilité augmente avec la force
des interactions. Ce processus écologique, appelé exclusion, réduit fortement la cooccurrence entre
espèces et, par conséquent, l’information disponible pour inférer une interaction. La compression
maximale utilisée pour obtenir I est la métrique qui donne les valeurs les plus élevées de l’AUC,
pour un nombre donné de permutations et de forces d’interaction. Les permutations HFE, Sum et
indépendantes ont des valeurs d’AUC similaires aux forces 2 et 5, tandis que la méthode de permu-
tation indépendante est plus performante à la force 3. L’ANOVA montre que toutes les fonctions
ont des valeurs d’AUC significativement différentes, à l’exception des permutations indépendantes
et des permutations indépendantes.

13.2 Expérience 2
Matériel et méthodes:

La procédure de bootstrapping est réalisée à l’aide des trois tableaux générés par ordinateur utilisés
dans l’expérience précédente. Comme expliqué dans la section 3.2, la procédure utilise la compression
maximale pour obtenir l’estimateur I. Deux techniques différentes de bootstrapping sont évaluées
: ordinaire et par strates. Le bootstrapping ordinaire effectue le bootstrapping indépendamment
sur toutes les valeurs de compression tandis que la méthode strata contraint le bootstrapping aux
valeurs de compression par effet. Les interactions avec une valeur p < 0.05 sont considérées comme
existantes. La précision du bootstrapping est comparée à la précision de la prédiction en utilisant
un seuil optimal pour l’estimateur I. La métrique du seuil optimal est obtenue automatiquement à
partir des courbes ROC du test précédent en utilisant la méthode du meilleur seuil du package R
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Figure 4: Aire sous la courbe ROC (AUC) obtenue en utilisant différents nombres de permutations.
Chaque graphique montre les AUC obtenues en déduisant des interactions de différentes forces.
Chaque ligne représente une méthode utilisée pour obtenir les estimateurs. Les barres d’erreur
indiquent l’écart type des moyennes.
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pROC, selon Robin et al. (2011). Afin de disposer d’une référence pour comparer la performance de
l’inférence des interactions par A/ILP, l’inférence des interactions a également été réalisée à l’aide de
SparCC Friedman and Alm (2012), un outil d’inférence statistique largement utilisé. Le processus a
été réalisé en utilisant la mise en œuvre FastSpar 1.0 (Watts et al. (2018)) avec les paramètres par
défaut.

Résultats et discussion:

Les mesures de précision sont présentées dans le tableau 1. Le bootstrap ordinaire présente une
meilleure précision que le bootstrap par strates à la force d’interaction = 2 et 3, tandis que les
strates sont plus performantes à la force = 5. Cependant, le bootstrap ordinaire permet la détection
d’un plus grand nombre de vrais positifs contrairement au strata. Nous pensons donc que c’est
la meilleure option à utiliser pour la détection des interactions. Dans tous les cas, la précision du
bootstrap est supérieure à la précision du seuil optimal. Les valeurs de sensibilité "bootstrapped"
A/ILP sont significativement inférieures à celles de SparCC à toutes les forces. Cependant, les
valeurs de spécificité sont légèrement supérieures. Ainsi, SparCC présente un grand nombre de
faux positifs, tandis que A/ILP génère un plus grand nombre de faux négatifs. Cela produit des
mesures de précision similaires pour SparCC et A/ILP bootstrapped, indépendamment de la force
de l’interaction. Nous rejetons donc l’hypothèse nulle.

14 Conclusions
1. Notre travail montre que A/ILP peut être utilisé pour déduire avec précision des interactions

de type écologique à partir de jeux de données générés par ordinateur.

2. La compression maximale est la meilleure méthodologie pour calculer les statistiques I à partir
des valeurs de compression.

3. La procédure de bootstrapping permet de discriminer les liens avec une précision acceptable.
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Table 1: Performance de l’estimateur bootstrapping comparé au seuil optimal obtenu à partir de
la courbe ROC et de SparCC. Les trois ensembles de données utilisés pour l’inférence d’interaction
ont 16 interactions réelles sur 496 interactions possibles.

Strength 2
Optimal threshold Ordinary Bootstrap SparCC

Total 40 13 26
TP 13 9 12
FP 27 4 14
TN 453 476 466
FN 3 7 4
Sensitivity 0.812 0.5620.75
Specificity 0.944 0.992 0.971
Accuracy 0.94 0.978 0.964

Strength 3
Optimal threshold Ordinary Bootstrap SparCC

Total 69 7 31
TP 14 6 11
FP 55 10 20
TN 425 479 460
FN 2 10 5
Sensitivity 0.875 0.375 0.688
Specificity 0.885 0.998 0.958
Accuracy 0.885 0.978 0.95

Strength 5
Optimal threshold Ordinary Bootstrap SparCC

Total 50 27 40
TP 12 10 13
FP 38 17 27
TN 442 463 453
FN 4 6 3
Sensitivity 0.75 0.625 0.812
Specificity 0.921 0.965 0.944
Accuracy 0.915 0.954 0.94
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Inférence logique des interactions à partir de
données environnementales sur l’ADN
14.1 La toile noire des communautés microbiennes
La diversité fonctionnelle des communautés microbiennes résulte de la combinaison du grand nombre
d’espèces et des nombreux types d’interaction, tels que la compétition, le mutualisme, la prédation
ou le parasitisme, dans les réseaux écologiques microbiens. Comprendre la relation entre les réseaux
microbiens et les services et fonctions fournis par les communautés microbiennes est un défi majeur
pour l’écologie microbienne, d’autant plus que nombre de ces interactions sont difficiles à observer
et à caractériser. Nous pensons que cette "toile noire" d’interactions pourrait être démêlée en
utilisant une approche d’apprentissage automatique explicable, appelée programmation logique ab-
ductive/inductive (A/ILP) dans le package R InfIntE, qui utilise des règles mécanistes (hypothèses
d’interaction) pour déduire directement la structure du réseau et les types d’interaction. Nous ten-
tons ici de démêler la toile noire du microbiome des plantes en utilisant des données de métabarcodage
échantillonnées à partir du microbiome foliaire de la vigne. En utilisant des données synthétiques
simulées, nous montrons d’abord qu’il est possible de reconstruire de manière satisfaisante les réseaux
microbiens en utilisant l’apprentissage automatique explicable. Nous confirmons ensuite que la toile
noire du microbiome de la vigne est diversifiée, étant composée d’une gamme de types d’interactions
conformes à la littérature. Cette première tentative d’utilisation de l’apprentissage automatique
explicable pour déduire les réseaux d’interaction microbienne fait progresser notre compréhension
des processus écologiques qui se produisent dans les communautés microbiennes et nous a permis
de déduire des types spécifiques d’interaction au sein du microbiome de la vigne qui pourraient être
validés par l’expérimentation. Ce travail aura des applications potentiellement précieuses, comme
la découverte d’interactions antagonistes qui pourraient être utilisées pour identifier des agents de
contrôle biologique potentiels au sein du microbiome.

15 Matériaux et méthodes

15.1 Cadre d’hypothèse pour l’apprentissage des interactions écologiques
microbiennes par logique abductive

Les approches explicatives pour déduire les interactions écologiques commencent par une déclaration
claire des règles d’une interaction écologique. Les mécanismes des interactions écologiques entre deux
OTU, voire plus, peuvent être décrits d’une multitude de façons différentes (Faust and Raes, 2012;
Tshikantwa et al., 2018). Nous posons que les faits communs minimums pour toutes les interactions
hypothétiques sont les suivants : les deux OTUs subissant une interaction doivent être présentes
ensemble dans au moins un échantillon ; et, au moins une des OTUs impliquées dans une interaction
subit un changement d’abondance. Ici, l’abondance est comprise comme une mesure de la taille d’une
population d’OTUs dans un échantillon et est dérivée du nombre de lectures de séquences d’OTUs
trouvées dans chaque échantillon. Ainsi, pour évaluer le changement d’abondance de toutes les OTU,
dans tous les échantillons, le nombre de séquences d’une OTU et la profondeur totale des séquences
dans deux échantillons prélevés dans les mêmes conditions biotiques et abiotiques, sont utilisés pour
construire un tableau de contingence, l’importance du changement d’abondance des OTU entre les
échantillons étant évaluée par un test d’indépendance de χ2. Les changements significatifs sont
alors classés soit comme une augmentation, up, soit comme une diminution, down, par rapport à
l’abondance relative de l’OTU, dans les deux échantillons. Symboliquement, cela peut être exprimé
par la clause logique abundance(s1, x, y, up/down). Ici, s1 est une OTU donnée, (x, y), sont deux
échantillons donnés partageant les mêmes conditions et up/down décrit la direction du changement
d’abondance significatif. Les changements d’abondance sont calculés de cette manière pour tous les
OTUs dans tous les échantillons. Cela permet d’éviter de nombreux biais de composition inhérents
au traitement des données de séquences d’ADN sous forme de comptages, puisque seuls les comptages
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d’une même OTU sont comparés et que la profondeur totale de la séquence est prise en compte par
le test d’indépendance χ2. La présence, yes, ou l’absence, no, d’une OTU dans un échantillon, x,
peut être exprimée par la clause : presence(s1, x, yes/no).

Le processus de logique abductive utilise ces clauses pour trouver des explications possibles
(effets) pour les changements observés dans l’abondance et la présence en utilisant des hypothèses
a priori pour les interactions écologiques qui reflètent l’état actuel des connaissances écologiques,
présentes dans la littérature. Dans ce cas, nous émettons l’hypothèse qu’une interaction aura eu lieu
lorsque la présence d’au moins une OTU (s1) a produit un effet cohérent sur l’abondance d’une autre
OTU (s2) dans les échantillons. Les relations logiques pour l’effet d’une telle interaction peuvent
être décrites à partir des clauses d’abondance et de présence comme suit :

effect_up(s1, s2) if:





abundance(x, y, s2, up)

presence(s1, x, no)

presence(s1, y, yes)

effect_down(s1, s2) if:





abundance(x, y, s2, down)

presence(s1, x, no)

presence(s1, y, yes)

(1)

15.2 Détection d’interaction
Pour chaque paire d’OTUs considérée, la valeur de I est traitée comme le poids d’une arête dirigée
dans un réseau d’interaction écologique. En fixant un seuil, λ, pour la valeur absolue, I, on sélec-
tionne une liste d’arêtes inférées pour un réseau. Un seuil de λ = 0 sélectionnerait toutes les arêtes
possibles, tandis qu’un seuil de λ = max(I) donnerait un réseau vide, sans arêtes sélectionnées.
Cependant, max(I) = nobservations et il dépend du nombre d’observations dans un ensemble de
données, et il n’est pas possible d’établir une valeur commune de λ pour la reconstruction d’un
réseau quelconque. Nous sélectionnons donc les arêtes d’interaction significatives de manière em-
pirique en utilisant une méthodologie de sous-échantillonnage appelée StARS (Liu et al., 2010). La
procédure StARS sous-échantillonne 80% des échantillons, plusieurs fois, et effectue l’abduction des
bords du réseau. Le réseau d’interactions le plus stable est ensuite identifié en utilisant la fréquence
d’apparition des bords à différentes valeurs de λ. Nous utilisons ici 50 rééchantillonnages des don-
nées et 50 valeurs de λ augmentant linéairement de 0 à max(I). Le nombre de sous-échantillons et
la longueur du chemin lambda sont choisis en suivant les recommandations de Muller et al., 2016
(Müller et al., 2016), avec un seuil de stabilité restrictif de 0,01 de manière à minimiser le nombre
d’interactions faussement positives. Tout le processus suivi pour inférer et classer les interactions est
implémenté dans un package R appelé Inference of Interactions using Explainable Machine Learning.
Il est détaillé dans la figure 5.

16 Résultats

16.1 Expérience 1 : évaluation d’InfIntE avec des données générées par
ordinateur

. InfIntE a été utilisé pour inférer des réseaux d’interaction pour chaque tableau d’OTU simulé
(comme décrit dans (Weiss et al., 2016)) pour les hypothèses d’interaction. L’aire sous la courbe
caractéristique d’exploitation du récepteur (AUC)(Fan et al., 2006) a ensuite été évaluée. L’AUC a
été traitée comme une mesure de l’efficacité avec laquelle l’outil a détecté des interactions dans les
ensembles de données simulées que nous savions être réelles, c’est-à-dire présentes dans l’ensemble
de données, ou fausses, c’est-à-dire non présentes dans l’ensemble de données. L’inférence des inter-
actions a également été réalisée à l’aide des outils d’inférence statistique SparCC (Friedman2012)
et SPIEC-EASI glasso (Kurtz2015), afin de comparer les performances de détection des interactions
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entre notre approche d’inférence logique et les outils d’inférence de réseaux statistiques actuels,
largement adoptés en écologie microbienne. L’inférence SparCC a été réalisée dans FastSpar v1.0.0
(Watts et al., 2018) et l’inférence glasso SPIEC-EASI a été exécutée dans le paquet R SpiecEasi
v1.1.2, tous deux avec leurs paramètres par défaut respectifs. La statistique I a été calculée pour
les hypothèses avec et sans exclusion dans InfIntE. Les corrélations SparCC ont été obtenues di-
rectement et les corrélations SPIEC-EASI ont été obtenues à partir de la matrice de covariance
inverse à λ = 0. Étant donné que ces trois outils différents produisent différents types de réseaux
d’interaction, soit des réseaux d’interaction classés, soit des réseaux corrélationnels, la plus grande
valeur de I ou de corrélation, obtenue pour chaque paire d’OTU, a été utilisée pour comparer les
performances des statistiques utilisées par les différents outils (figure 6).

16.2 Expérience 2 : Identification d’agents potentiels de lutte biologique
par inférence InfIntE

Les réseaux d’interaction issus de données réelles sur la vigne ont été inférés à l’aide de InfIntE. Un
total de 20 ASV fongiques, correspondant à 12 espèces et 2 genres différents, ont été identifiés comme
antagonistes potentiels de P. viticola (Tableau 2). Parmi ceux-ci, cinq ASV fongiques des genres
Alternaria et Fusarium genus sont déjà apparus dans la littérature comme des antagonistes de P.
viticola (Musetti et al., 2006; Ghule et al., 2018). Ces ASV ont été classés pour avoir des interactions
de compétition avec P. viticola dans au moins un des réseaux de vignobles. L’espèce fongique,
Aureobasidium pullulans, a également été inférée comme ayant une interaction de compétition avec
le pathogène, et a été décrite comme antagoniste de P. viticola(Harm et al., 2011). Les ASV
correspondant aux genres Cladosporium, Phlebia, Sporobolomyces et Vishniacozyma n’ont pas été
décrits précédemment comme antagonistes de P. viticola, mais ont été identifiés comme antagonistes
de pathogènes dans d’autres systèmes foliaires. Les ASV attribuées à Mycosphaerella tassiana et
deux espèces du genre Filobasidium ont également été classées comme antagonistes de P. viticola
par inférence, mais elles ne sont pas décrites comme antagonistes dans la littérature et représentent
de nouveaux agents de biocontrôle potentiels.

17 Conclusions
1. L’EML peut être utilisé pour détecter les interactions dans la même plage de précision que les

autres outils statistiques.

2. L’EML application, Infinte, peut classer les interactions par type, en détectant les antagonistes
potentiels des agents pathogènes.

3. InfInte est codé dans un package R et sera disponible pour tout utilisateur.
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Figure 6: Relation entre le nombre d’échantillons et les performances d’inférence
d’interaction pour différentes forces d’interaction. Les ensembles de données ont été générés
par ordinateur en simulant quatre types d’interaction différents : amensalisme, commensalisme,
compétition et mutualisme. A: Valeurs de l’aire sous la courbe (AUC)(Fan et al., 2006) obtenues
par la statistique I avec et sans exclusion. Des valeurs AUC plus élevées représentent une meilleure
spécificité et sensibilité dans la détection des interactions. La statistique I est utilisée par InfIntE
comme une mesure numérique de l’interaction. B: Valeurs de l’aire sous la courbe (AUC) obtenues
par la statistique I d’InfIntE et les mesures similaires à la corrélation SparCC et SPIEC-EASI.
InfIntE a utilisé l’hypothèse d’interactions incluant l’exclusion. SparCC et SPIEC-EASI ont été
exécutés avec les paramètres par défaut. C: Précision de la détection des interactions calculée en
fonction de toutes les interactions possibles. InfIntE a utilisé l’hypothèse d’interactions incluant
l’exclusion. SparCC et SPIEC-EASI ont été exécutés avec les paramètres par défaut.
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Table 2: Les antagonistes potentiels de Plasmopara viticola trouvés par InfIntE. Le tableau montre
les espèces fongiques trouvées pour avoir une interaction potentielle capable de réduire l’abondance
de P. viticola. Une recherche bibliographique dans Google Scholar, Pubmed et Science Direct a
été effectuée afin d’identifier si les antagonistes potentiels avaient déjà été décrits comme agents
de biocontrôle du P. viticola ou d’autres pathogènes dans la littérature. Les mots-clés utilisés
pour la recherche étaient le nom de l’antagoniste potentiel, "Plasmopara viticola", "biocontrôle" et
"antagoniste". Les taxons identifiés par un astérisque n’ont pas été automatiquement assignés à
un groupe taxonomique dans UNITE et ont dû être traités manuellement et assignés à l’aide de
BLAST. Lorsque plus d’une OTU a été attribuée à la même espèce ayant la même interaction, cela
est indiqué par xn, où n est le nombre d’OTU
.

Name Vineyard Interaction Bibliography
against plasmopara

Bibliography bio-
control

Cladosporium deli-
catulum

I competition Kohl et al. 2019; Ba-
harvandi et al. 2015;
Becker et al. 2020

Mycosphaerella
tassiana

I competition

Alternaria sp.* A amensalism Mussetti et al. 2006
Alternaria alter-
nata*

I competition Mussetti et al. 2006,
2007

Alternaria brasicae B competition Duhan et al. 2021
Aureobasidium pul-
lulans*

I competition Harm et al. 2011

Filobasidium cher-
novii

Ix2 competition

Filobasidium
magnum*

D competition

Fusarium sp.* A, B, E competition Ghule et al. 2018;
Bakshi et al. 2001

Phlebia rufa E amensalism White and Boddy
1992

Sporobolomyces
roseus

Ix3 competition Janisiewicz et al.
1994; Filonow et al.
1996;

Sporobolomyces
pararoseus*

A,G competition Li et al. 2017 (in
grapes)

Vishniacozyma
victoriae

B,C amensalism,
competition

Gramisci et al. 2018;
Lutz et al. 2020

Vishniacozyma
carnescens

D amensalism Becker et al. 2020
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