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Abstract

Marine planktonic organisms play a crucial role in trophic networks, global biogeochemical cy-
cles, and climate regulation. Biogeochemical models simulate planktonic ecosystems dynamics
to understand and predict climate change. In most biogeochemical models, planktonic diversity
is implemented either through plankton functional types (PFT), i.e. theoretical entities grouping
planktonic organisms according to shared functional capacities (e.g., calcifiers, nitrogen fixers
or silicifiers), or functional traits, i.e. morphological, physiological or phenological features mea-
surable at the individual level that effect growth, reproduction or survival (e.g. feeding modes,
production of toxins or body size). These methods imply an a priori and restricted choice of the
considered types or traits of planktonic organisms, potentially leading to oversimplified represen-
tations of planktonic diversity in models. Unprecedented amounts of meta-omics data on marine
planktonic communities were recently collected at global scales, calling for the use of data-driven
methodologies to determine and quantify the potential and realized functional traits of planktonic
organisms in-situ. My objective in this thesis was therefore to determine how to use meta-omics
data to quantify the distribution of functional traits in the environment. In a first part, I present
how omics data can be used to describe and quantify specific, a priori selected traits in the global
ocean. A particular focus is made on two functional traits: mixotrophy, from which the genomic
basis is poorly known, and dimethyl sulfide (DMS) production, from which the genomic basis is
well understood. I show how metabarcoding data on one hand and functional genomic markers
on the other hand allow to decipher the biogeography of functional traits, identifying limits and
advantages of the two types of data. In a second part, I present an approach allowing to detect pu-
tative protein families in metagenomics data that can be associated with functional traits, without
any a priori choice of functional traits of interest. By quantifying the response of these emergent
clusters to physico-chemical gradients in the global ocean, I show how this approach could allow
to predict the functional composition of planktonic communities from environmental data in the
near future. Finally, I use my results to discuss the potential of meta-omics data as a means of

realistically representing the diversity of planktonic communities in biogeochemical models.
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Résumé

Les organismes planctoniques marins jouent un réle crucial dans les réseaux trophiques, les cy-
cles biogéochimiques globaux et la régulation du climat. Les modeles biogéochimiques simule
la dynamique des écosystémes planctoniques pour comprendre et prédire le changement clima-
tique. Dans la plupart de ces modéles, la diversité planctonique est représentée soit sous forme
de types fonctionnels planctoniques (PFT), i.e. par des entités théoriques classant les organ-
ismes planctoniques selon leurs capacités fonctionnelles (e.g. organismes calcifiants, fixateurs
d’azote, ou silicifiants), ou bien de traits fonctionnels, i.e. des caractéristiques morphologiques,
physiologiques ou phénologiques mesurables au niveau individuel qui affectent la croissance, la
reproduction ou la survie (e.g. modes trophiques, production de toxines ou taille corporelle). Un
choix a priori et restreint des types planctoniques ou traits fonctionnels considérés est donc néces-
saire, pouvant conduire a des représentations simplifiées de la diversité planctoniques dans les
modeéles. Des quantités inédites de données méta-omiques sur les communautés planctoniques
ont récemment été collectées a I’échelle de l'océan global, appelant a l'utilisation de méthodes
permettant de déterminer et quantifier les traits fonctionnels potentiels et réalisés des organismes
planctoniques a partir de ces données in-situ. Mon objectif au cours de cette thése fut donc de
déterminer comment utiliser les données méta-omiques afin de quantifier la distribution de traits
fonctionnels dans l'’environnement. Dans une premiére partie, je présente comment les données
omiques peuvent étre utilisées pour décrire et quantifier dans 'océan global des traits spécifiques,
choisis a priori. Deux traits fonctionnels sont utilisés en exemple: la mixotrophie, dont la base
génomique est mal connue, et la production de diméthylsulfure (DMS), dont la base génomique
est relativement bien étudiée. Je montre comment les données de métabarcoding d’une part et
des marqueurs génomiques fonctionnels d’autre part permettent de décrire la biogéographie des
traits fonctionnels, en identifiant les limites et les avantages des deux types de données. Dans une
deuxiéme partie, je présente une approche permettant de faire émerger des familles protéiques
putatives pouvant étre associés a des traits fonctionnels au sein des données de métagénomique,
sans choix a priori de traits fonctionnels d’intérét. En quantifiant la réponse de ces familles
aux gradients physico-chimiques dans 'océan global, je montre comment cette approche pour-
rait permettre de prédire la composition fonctionnelle des communautés planctoniques a partir de
données environnementales dans un avenir proche. Enfin, j'utilise mes résultats pour discuter du
potentiel des données méta-omiques comme moyen de représenter de maniere réaliste la diversité

des communautés planctoniques dans les modéles biogéochimiques.

Mots-clefs: Omiques; Biogéochimie; Traits Fonctionnels; Plancton; Biogéographie.



L’homme et la mer

Homme libre, toujours tu chériras la mer !
La mer est ton miroir ; tu contemples ton ame
Dans le déroulement infini de sa lame,

Et ton esprit n’est pas un gouffre moins amer.

Tu te plais a plonger au sein de ton image ;
Tu U'embrasses des yeux et des bras, et ton coeur
Se distrait quelquefois de sa propre rumeur

Au bruit de cette plainte indomptable et sauvage.

Vous étes tous les deux ténébreux et discrets :
Homme, nul n’a sondé le fond de tes abimes ;
O mer, nul ne connait tes richesses intimes,

Tant vous étes jaloux de garder vos secrets !

Et cependant voila des siécles innombrables
Que vous vous combattez sans pitié ni remord,
Tellement vous aimez le carnage et la mort,

O lutteurs éternels, 6 fréres implacables !

Charles Baudelaire

Figure 1 - Picture taken by Joana Roussillon on board of the Atalante during the MOOSE 2018
expedition, on which I had the great pleasure to participate.
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Chapter “

General introduction

1.1 The role of marine plankton diversity in global biogeo-

chemical cycles

1.1.1 Marine plankton diversity
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Figure 1.1 - Range of body size and abundance in logarithmic scales for viruses, prokaryotes,
unicellular eukaryotes (commonly called protists) and multicellular eukaryotes (including metazoans
and macro-algae). A scale of macroscopic references was added to help apprehend the extent of size
diversity among planktonic organisms. Size and abundance ranges were extracted from Pesant et
al. (2015), but the size scale of pluricellular eukaryotes was extended to include larger organisms
likke jellyfish or sargass that can reach over a meter in length.

The word plankton is derived from the ancient Greek miaykro{ ("planktos"), meaning wan-
derer. It was used for the first time by Viktor Hensen at the end of the XIXth century, to
describe the animals and plants floating in the see (Hensen, 1887). The term plankton

now regroups all the living organisms that can not swim against the currents, in oppo-
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sition to the nekton, corresponding to the living organisms swimming freely across water
masses. Planktonic organisms range from a few nanometers to a few meters in size, and
include viruses, archaea, bacteria, as well as unicellular and multicellular eukaryotes

((Pesant et al., 2015), Figure 1.1).

The bacterioplankton gather plank-

tonic prokaryotic cells, whose

abundance reaches about 103 in Box 1: Ecological roles and trophic modes

Autotrophs: Organisms that produce organic matter from

the ocean subsurface (Whitman

et al., 1998). It includes a vast

inorganic substances.

Phototrophs: Autotrophic organisms producing organic matter
from photosynthesis, using light as an energy source and

. . . . inorganic nutrients.
diversity of organisms spanning g

Heterotrophs: Organisms that depend on pre-formed organic

across two domains of life (Fig- matter for nutrition.

Mixotrophs: Organisms that are both capable of auto- and

ure 1.2). The bacterioplankton
heterotrophy.

includes heterOtrophlc prOkarYOteS Parasites: Organisms feeding strictly at the expense of an host

(see Box 1), that are responsible organism, permanently or during a phase of its life cycle.

Parasitoids: Parasites that always kill their host.
for the recycling of organic mat-
Symbiosis: Close, prolonged association between two or more
different organisms of different species that may, but does not

ter into inorganic nutrients in the
necessarily, benefit each member.

ocean (Ducklow, 1999). It also in- Symbiont: Organism in a symbiotic relationship.

cludes small autotrophic prOkarY' Phagocytosis: Nutrition mode involving the engulfment and

. digestion of particulate matter.
otes (see Box 1), like Prochlorococ-
Primary production: Production of organic matter by

cus, which was estimated to be the autotrophs.

Secondary production: Production of organic matter by
heterotrophs.

most abundant photosynthetic or-
ganism on earth (Partensky et al.,
1999). Autotrophic species of the
bacterioplankton are sometimes found in symbiosis (see Box 1) with eukaryotic organ-
isms, for example the cyanobacteria Synechococcus is found in symbiosis with dinoflag-
ellate genus like Ornithocercus. Such ecological relationships between planktonic organ-

isms play key roles in marine ecosystems’ dynamics (Worden et al., 2015) (Figure 1.3).

Among planktonic eukaryotes, the most abundant group of organisms is usually con-
sidered to be the copepods, crustaceans that are sometimes even described as the most
abundant multicellular animal on earth (Bron et al., 2011). Marine planktonic unicellular
eukaryotes (or protists) constitute the majority of lineages across the eukaryotic tree of life
(Worden et al., 2015) (Figure 1.2). Historically, planktonic eukaryotes have been divided
in two compartments based on their trophic regime. Phytoplankton corresponds to pho-
tosynthetic organisms, in opposition to the zooplankton, corresponding to heterotrophic
organisms. Phytoplanktonic organisms are mostly unicellular and represent only 1% of

the photosynthetic biomass on earth, but are responsible for 45% of the global net pri-
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Figure 1.2 - Phylogenetic diversity of prokaryotic (A) and eukaryotic (B) marine plankton. (A)
Maximumlikelihood phylogenetic tree based on 16 concatenated single-copy phylogenetic mark-
ers extracted from 2,631 re-assembled genomes of prokaryotic plankton (Tully et al., 2018). These
genomes were assembled from 234 marine metagenomic samples from the Tara Oceans expedition
(details on metagenome-assembled genomes are available in section 1.3.2). The black nodes on
branches indicate bootstrap values >0.75, the color of polygons on branches extremities is coding
Jor the phyla while their size is proportional to the number of genomes associated to the correspond-
ing branch. Figure from Tully et al. (2018). (B) Diversity tree of eukaryotic plankton synthesizing
information from morphological, phylogenetic (comparisons between a few marker genes from a
large diversity of organisms) and phylogenomic (comparisons between parts of genomes or even
full genomes of a large diversity of organisms) criteria. Seven "supergroups” are highlighted in
colour, and pictures on the sides illustrate the morphological diversity of eukaryotes. Clockwise
Jrom right: archaeplastids (rhodophytes, chlorophytes, streptophytes); amoebozoa (tubulinids, ar-
cellinids, mycetozoans); opisthokonts (fungus, microsporidians, choanoflagellates, cnidarians, bila-
terians); excavates (parabasalians, oxymonads, euglenids); rhizaria (acantharians, foraminiferans,
chlorarachniophytes); alveolates (ciliates, dinoflagellates); stramenopiles (labyrinthulids, synuro-
phytes, diatoms, phaeophytes, actinophryids); unassigned [cryptomonads, katablepharids, hapto-
phytes]. Figure from (Worden et al., 2015).
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mary production (see Box 1, Field et al. (1998); Falkowski et al. (2004)). Zooplankton
includes a wide diversity of organisms, from unicellular heterotrophs to jellyfish, passing
by small crustaceans and planktonic larvae of nektonic organisms. They play a key role
in marine ecosystems as grazers of the phytoplankton (Figure 1.3), and hence as sec-
ondary producers in marine food webs (See Box 1, Calbet et al. (2001)). However, this
dichotomy modeled on the one observed between embryophytes and metazoans in terres-
trial ecosystems is only poorly representing the diversity of trophic modes found among
marine planktonic organisms (Flynn et al., 2013). Indeed, many marine unicellular eu-
karyotes are able to feed both through photosynthesis and by predating other organisms
(Stoecker et al., 2017). These widely abundant organisms blurring the line between au-
totrophy and heterotrophy are called mixotrophs (see Box 1, Flynn et al. (2013)), and
their hybrid position in the food chain constitutes a good example of the large diversity of

ecological roles achieved by planktonic organisms (Figure 1.3).

Secondary production

SE
g 3
o
58 )
o~ Grazing of
24 eukaryotes
§ o
<
= Grazing of
prokaryotes
c
SE -
T €3 -==% Parasitism
> S8
- 3%
O
£ s
S =
=4
b=
]
c
©
@
R
n

Nanoplankton
(2-20pm)

Second. production

B &=

Phototrophic Mixotrophic Heterotrophic Parasitoid Bacteria

Protists

Picoplankton
(0.2-2pm)

Figure 1.3 - Ecological and biogeochemical roles in marine planktonic ecosystems. Protists from
4 size ranges and 4 trophic regimes are depicted, with their ecological interactions represented by
arrows. Phototrophs and mixotrophs fix atmospheric CO; into organic matter through photosynthesis
(primary production), before being grazed on by heterotrophs (secondary production, red arrows).
The organic matter then travels through higher levels of the food web, which are not represented
in this diagram. Parasitoids (see Box 1) and viruses, which are not depicted here, can cause the
death of their hosts (blue dotted arrows), which leads to a release of organic matter and an increase
of available nutrients in the water column. Bacteria are represented as a unique simplified group
in this diagram, but contain both phototrophic and heterotrophic organisms. Bacteria notably have
the important role of remineralizing organic matter back to inorganic nutrients and carbon dioxide,
which are then available for primary production. Figure modified from Caron et al. (2017).

The component of biodiversity that dictates the number of ecological functions achieved
in an ecosystem is often described as functional diversity (Tilman et al., 1997), while

the term taxonomic diversity is used to describe the biodiversity in terms of distinct
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taxa/species, and the term phylogenetic diversity to illustrate the evolutive divergence
between taxa/species (Naeem et al., 2012). Similar metrics can be computed for these
three facets of diversity, like the functional,taxonomic or phylogenetic richness (i.e. how
many functions, species or lineages are present ?) and evenness (i.e. are there domi-
nant functions, species or lineages ?) of a community (Mason et al., 2005; Cadotte et al.,
2010). These various facets of diversity are sometimes coupled (Galand et al., 2018),
as functional capacities of organisms are shaped by their evolutive history, but a single
taxonomic or phylogenetic group can also have a great diversity of ecological functions.
Dinoflagellates for example, are a functionally diverse lineage of planktonic unicellular
eukaryotes that include autotrophic, mixotrophic, symbiotic or even parasitic organisms,
some of which producing toxins (Meng et al., 2017)). In this thesis, I will mainly focus on
the links between the functional diversity of marine plankton and global biogeochemical

cycles, which are driven by planktonic organisms.

1.1.2 Marine biogeochemical cycles driven by planktonic communities

The physiology of planktonic organisms and their ecological interactions have multiple
impacts on global biogeochemical cycles, notably including the carbon, nitrogen, phos-
phorus, sulfur or iron cycles. I will now detail the role of planktonic organisms in some
of these elemental cycles, and how it highlights the necessity to take planktonic commu-

nities into account when studying climate.

1.1.2.1 The carbon cycle

The ocean contains about 39,000 PgC (1 PgC = 10'5 grams of carbon), which is more
than 46 times the amount of carbon present in the atmosphere, and about 10 times
the one found in terrestrial soils, permafrost and vegetation (Ciais et al., 2013; Le Quéré
etal., 2018). Carbon stocks in the ocean are mainly distributed in two pools: the dissolved
inorganic carbon (DIC, about 38,000 PgC), which corresponds to carbon dioxide, carbonic
acid, bicarbonate and carbonate ions, and the dissolved organic carbon (DOC, about 700
PgC) (Ciais et al., 2013; Le Quéré et al., 2018). The pool of carbon corresponding to
living organisms represents 3 PgC (Ciais et al., 2013; Siegenthaler and Sarmiento, 1993).
The majority of the ocean carbon pool is located in intermediate and deep waters, where
about 98% of the DIC is stored (Ciais et al., 2013; Siegenthaler and Sarmiento, 1993).
By absorbing and stocking carbon, oceans take up to a third of anthropogenic carbon
emissions, hence mitigating climate change impacts on the biosphere (Siegenthaler and

Sarmiento, 1993). It is then essential to understand how carbon fluxes operate in the
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ocean to be able to predict the impacts of climate change.

Fluxes of carbon within the ocean are governed by four main processes, described as
carbon pumps: the solubility pump, the biological pump (also called the soft tissue pump),
the carbonate pump and the microbial pump (Siegenthaler and Sarmiento (1993); Herndl
and Reinthaler (2013); Ducklow et al. (2001); Jiao et al. (2010), Figure 1.4).

CO2

Primary
production

Phytoplankton

Biological
Pump @l \

Export

Sequestration

Sequestration

Figure 1.4 - Planktonic organisms interact to fix carbon on geological time scales in the ocean.
The biological carbon pump is depicted in the green kernel, while the microbial carbon pump is
represented by the yellow scheme on the right. Atmospheric carbon is either sequestered through the
export of particulate organic matter (POM) produced by the biological carbon pump, or the creation
of refractory dissolved organic matter (RDOM) produced by the microbial carbon pump. Diagram
modified from Jiao et al. (2010).

The solubility pump is an abiotic process, where atmospheric carbon is chemically ab-
sorbed by oceanic waters before reaching the deep layers of the ocean through thermo-
haline circulation, where it can stay more than 1000 years before reaching surface again
(Volk and Hoffert, 1985). Sometimes called the physical carbon pump, the solubility pump
is very different from the biological, carbonate and microbial ones, which are all governed

by biotic processes.

The biological carbon pump starts with the fixation of dissolved inorganic carbon by au-
totrophic organisms through primary production, i.e. the synthesis of organic matter from
inorganic carbon (Figure 1.4). The primary production of marine planktonic organisms
leads to the net fixation of 45-50 Gt C per year, which is comparable to the 45-68 Gt C
fixed per year by terrestrial plants (Longhurst et al., 1995; Chavez et al., 2011). The pro-

duced organic matter is then transferred along food webs, and exported towards ocean’s
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depths through the sedimentation of organisms’ dead bodies and fecal pellets (Ducklow
et al., 2001; Legendre et al., 2015) (Figure 1.4). When the organic matter reaches the
ocean floor, it can stay sequestrated on geological time scales, i.e. up to millions of years
(Ducklow et al., 2001; Herndl and Reinthaler, 2013; Legendre et al., 2015). The biological
carbon pump is estimated to cause the sinking of between 0.3 and 0.7 PgC per year at a
2000 m depth, which represents between 0.6 and 1.3% of the organic carbon produced
by primary production.

The carbonate pump also refers to the sinking of biological matter towards the ocean
floor, this time under the form of carbonate shells produced by calcifying planktonic
organisms, such as coccolithophores or forams (Volk and Hoffert, 1985). But the magni-
tude of the carbonate pump is harder to estimate than the one of the biological pump, as
the production of carbonate shells leads to a release of CO5 in the surrounding waters,
and eventually to the atmosphere (Legendre et al., 2015). The carbonate pump is even

sometimes called the carbonate counter-pump (Legendre et al., 2015).

The microbial carbon pump differs from the three other pumps as it does not correspond to
a vertical flux of carbon. Instead, the microbial carbon pump includes all biotic reactions
allowing to switch from the most labile forms of DOC, which are short-lived (hours to
days) and accessible to micro-organisms for decomposition, to the most refractory forms
of DOC, which are long lived (20 to 40,000 years) and resistant to microbial decomposition
(Legendre et al., 2015) (Figure 1.4). Since the decomposition of DOC by microbes leads to
a production of CO5 through a reaction called remineralization, the amounts of labile and
refractory DOC directly influence oceanic carbon stocks (Jiao et al., 2010; Legendre et al.,
2015). Hence, biological processes leading to the production of refractory DOC from labile
DOC can be seen as carbon sequestration processes, analog to the three other carbon

pumps.

I showed how biogenic fluxes of carbon from the atmosphere to the ocean are mainly
driven by primary production. Marine primary production can be limited by multiple
factors, notably nitrogen, phosphorus and trace elements like iron. I will now illustrate
how planktonic communities play important roles in the biogeochemical cycles of these

limiting substrates.

1.1.2.2 The nitrogen and phosphorus cycles

In the 1930s, Alfred Clarence Redfield identified that multiple elements were present in
near constant ratio both in phytoplanktonic cells and in the marine water, giving his

name to the famous Redfield ratio (Redfield, 1934). More precisely, he identified the
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carbon:nitrogen:phosphorus ratio to always be near 106:16:1, before new observations
showed that this ratio could slightly change depending on phytoplankton species and
environmental conditions (Redfield, 1934; Martiny et al., 2014). Redfield also observed
that when nitrogen or phosphorus was depleted, it was always also the case for the
other, making it hard to identify which element was the most limiting one for primary
production (Redfield, 1934). This observation led to debates between oceanographers,
with most geologists identifying phosphate as the limiting nutrient, while most biologists
argued for nitrogen being the main limiter of primary productivity (Gruber, 2004; Tyrrell,
1999).

Since the beginning of the century, phosphorus impact on carbon fluxes is considered to
be influential on geological time scales, while nitrogen’s impact on primary production is
considered to be more immediate (Gruber, 2004). This is mostly explained by the fact that
phosphorus enters oceanic waters only through abiotic processes (Baturin, 2003). River
runoffs constitute about 80% of the total phosphorus supply into oceans, the rest being
provided by volcanism, coastal abrasion, atmospheric precipitations, glacier erosion and
groundwater discharge (Baturin, 2003). Inorganic phosphorus then either sediments or
is assimilated by phytoplankton, and stays trapped in the Ocean for long time scales,
ranging from 10,000 to 270,000 years (Baturin, 2003). On the opposite, marine nitrogen
fluxes are mostly biologically driven (Gruber, 2004; Baturin, 2003).

Nitrogen is found in 5 relatively stable forms in the ocean (which is more than most other
elements), and is used to synthesize structural elements of living cells and produce their
metabolic energy (Gruber, 2004). These forms are dinitrogen (N3), ammonium (NH,"),
nitrate (NO3s’), nitrite (NO3") and nitrous oxide (N9O), to which we can add all organic
compounds containing nitrogen, like urea for instance (Gruber, 2004). Switches between
all these different forms can be operated through oxidation-reduction reactions, mostly
biologically regulated (Gruber, 2004). However, the most abundant chemical form of
nitrogen, Ny, can not be assimilated by most organisms. Indeed, the assimilation of
Ny, or nitrogen fixation, can only be achieved by organisms called diazotrophs (Figure
1.5). Until recently, only some Cyanobacteria genera like Trichodesmium were known to
be diazotrophs, but multiple uncultured planktonic taxa like the Cyanobacteria UCYN-
A or some Proteobacteria and Planctomycetes were identified as nitrogen fixers thanks
to their genomic signature (Zehr, 2011a; Delmont et al., 2018) (more on that in section
1.3.2.2). Non-diazotrophic phytoplankton can only absorb bioavailable nitrogen (i.e. not
dinitrogen), mainly under the form of ammonium, which is released in large quantities by
bacteria through remineralization and requires a very low energetic cost to be absorbed

(Gruber, 2004). Most phytoplankton can also assimilate nitrate, nitrite and urea through
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enzymes reducing oxidized nitrogen to ammonium, but under higher energetic costs (Zehr,

2011a).

Processes closing the nitrogen cycle by allowing the release of Ny back to the atmosphere
are also biologically mediated. Two main metabolic reactions allow the dinitrogen re-
lease to the atmosphere: denitrification and anaerobic ammonia oxydation, or anammox
(Gruber, 2004; Zehr, 2011a). These reductive processes occur almost only in regions
where oxygen concentrations are very low, e.g. oxygen minimum zones (OMZ), benthic

sediments or hydrothermal vents.
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Figure 1.5 - The roles of planktonic organisms in the nitrogen and sulfur cycles. Depth, temperature
and oxygen profiles are indicated in the left panel. A diagram of the open ocean nitrogen cycle
is depicted in the blue panel (see section 1.1.2.2 for a detailed description). The upwelling and
advection of NOs™ and the sink of particulate nitrogen (PN) are the only processes in the diagram that
are not achieved through biological processes by planktonic organisms. This cycle would be different
in an oxygen minimum zone (OMZ), in which oxygen is almost absent around 200m-1000m depths.
A diagram of the oceanic sulfur cycle is depicted in the red panel. Please note that this diagram
Jocuses on the dynamics of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), and
eludes all geologic parts of the marine sulfur cycle. The sulfur input to the ocean comes mostly from
river runoffs, here indicated as weathering. The production of DMSP and DMS relies then exclusively
on planktonic organisms. The produced DMS is ventilated to the atmosphere, which provokes the
creation and densification of clouds. See section 1.1.2.3. The two left panels are extracted from
Zehr (201 1a), while the sulfur panel was inspired by Alcolombri et al. (2015).

The marine nitrogen cycle is then largely dominated by biologically driven processes (Fig-
ure 1.5). Many of these processes have only recently been identified (Zehr, 2011a), and
we still can not culture most diazotrophs to study their metabolism in details. This makes

it difficult, even now, to close the global nitrogen budget (Gruber, 2019). Most estimates
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identify low nutrient areas like subtropical gyres to be concentrating nitrogen fixation
(Wang et al., 2019a). In these waters, nitrogen fixation seems to be the main driver of

primary production.

It was then proposed that nitrogen should be considered the proximate limiting nutrient
in oceanic systems, or local limiting nutrient, while phosphorus should be considered as
the ultimate limiting nutrient, limiting the total system productivity over longer time scale
(Tyrrell, 1999). Still, in oligotrophic areas like the Sargasso Sea, phosphate concentrations
are sufficiently low for phosphate to be the locally limiting nutrient for primary production
(Wu et al., 2000). There are also zones of the ocean where both nitrogen and phosphate
levels are high, while chlorophyll levels still remain low. In these high nutrient low
chlorophyll (HNLC) zones, trace elements like iron become the main limiting factors of

primary production (Boyd et al., 2007).

When the conditions are well adapted to primary production, i.e. light and high concen-
trations of the limiting nutrient are available, it triggers blooms of phototrophic organisms
(Boyd et al., 2007). These dense populations of planktonic organisms not only affect the
carbon, nitrogen or phosphorus cycles, but also many other important biogeochemical

cycles. Among these cycles, the sulfur cycle is one of the most influential on the climate.

1.1.2.3 Dimethyl sulfide (DMS) production by planktonic organisms and its cli-

matic impact

Oceanic dimethyl sulfide (DMS) is the first natural source of sulfur to the atmosphere
(Charlson et al., 1987; Shaw, 1983; Sim¢ et al., 2002). It plays an important role in ma-
rine ecology, by attracting large marine predators like fishes, but also marine birds and
mammals, which seem to use it to detect planktonic blooms (Charlson et al., 1987). It is
also very influential on earth climate, by facilitating the formation and condensation of
clouds, thus significantly modifying the planet albedo (Alcolombri et al., 2015; Charlson
et al., 1987; Shaw, 1983; Simé et al., 2002). The precursor of DMS, dimethylsulfonio-
propionate (DMSP), is exclusively produced by phytoplanktonic organisms (Simo6 et al.,
2002) (Figure 1.5). Part of the DMSP is cleaved into DMS directly by phytoplankton lin-
eages bearing DMSP lyases, notably blooming taxa like Phaeocystis (Schoemann et al.,
2005) or Emiliania huxleyi (Alcolombri et al., 2015). The rest is released into the water
column where it becomes available to bacterioplankton (Levine et al., 2012; Sim¢ et al.,
2002) (Figure 1.5). Bacteria can either demethylate DMSP to produce carbon and reduced
sulfur compounds, which does not lead to the production of DMS, or cleave DMSP to pro-

duce an easily accessible 3-Carbon compound and volatile DMS (Levine et al., 2012).
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Both pathways are present in diverse bacterial lineages, including alphaproteobacteria,
betaproteobacteria, gammaproteobacteria and epsilonproteobacteria, but are particularly
found in the Rhodobacterales order, including the abundant Roseobacter genus (Curson
et al., 2011). Eukaryotic and prokaryotic planktonic organisms are then responsible for
the release of DMS to the atmosphere, which impacts the ecology, the geochemistry and

the climate of marine ecosystems.

I reviewed evidences that planktonic organisms are the primary and secondary producers
in the ocean, and that their abilities to recycle organic matter, produce carbonate shells,
fix nitrogen, intake phosphorus, or build energy on sulfur compounds are all directly
affecting earth climate. But how can this functional diversity be taken into account when

it comes to modeling the functioning of marine ecosystems?

1.2 Functional types and traits to represent marine plankton

diversity in biogeochemical models

1.2.1 Biogeochemical models and their links with plankton ecology
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Figure 1.6 - Structure of a nutrient, phytoplankton, zooplankton and detritus model (NPZD model).
State variables are represented as colored boxes. N stands for nutrients, P for phytoplankton, Z for
zooplankton and D for detritus. Matter fluxes are represented by arrows. The differential equations
represent the dynamics of each state variable over time.

The use of mathematical models (see Box 2) to theoretically represent planktonic commu-
nities has been common since the early works of Fleming (1939), Riley (1946) and Steele
(1958). The first goals of such models were to better understand the drivers of seasonal

variability in planktonic communities, first by simulating the prey-predator dynamics of
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diatoms and zooplankton through a Lotka-Volterra (see Box 2) type approach (Fleming,
1939), then by representing the annual dynamics of phytoplankton concentrations in re-
sponse to environmental factors like the light intensity or the nutrient limitation (Riley,
1946). To obtain a more realistic model of the phytoplankton annual dynamics, Steele
(1958) added 2 state variables (see Box 2) interacting with phytoplankton populations:
one following the dynamics of zooplankton populations and one corresponding to nutri-

ents concentration.

From there, models simulating

the dynamics of nutrients, phyto- Box 2: Theoretical ecology

Model: In this thesis, | will use the term ‘model’ to refer to
mathematical models, which are mathematical representations of

plankton, zooplankton and detri-

tus, or NPZD models, became the systems. In theoretical ecology, mathematical models are used to
represent ecological systems, from simple prey-predator dynamics

"go-to" tool for modeling plankton to global ecosystems. Such models allow to increase our
understanding of the represented systems by allowing to test

communities dynamics (Gentle- hypotheses on their global functioning, and sometimes predict their
behavior.

man, 2002) (Figure 1.6). The lim-

State variables: Variables that define the current state of the
itations (or even absence) of com- modeled system. Examples of state variables for ecosystem
models are the biomass or population size of different groups of
puter power first restricted these organisms, like phytoplankton and zooplankton.
Parameters: Values that define the modeled system. Unlike state
variable, parameters values stay fixed independently of the state of
the system. Examples of parameters for ecosystem models are

models to simulations in O or 1

dimension (i.e. across depth in population carrying capacities, maximum growth rates, predation
rates, etc... The step of defining parameters values is called

the water column). But with the parameterization.

progress in computer power, it Differential equations: Equations linking one or more function(s)
to their derivative(s). Differential equations are used in ecosystem

became pOSSible in the late eight— models to depict the dynamics of state variables over time. The
differential equations of ecosystem models often can not be

ies to come up with basin scale resolved analytically, and have to be solved through numerical

approximations. Such approximations are computationally greedy,
and responsible for most of the computing costs in ecological

and then global scale models of
models.

planktonic dynamics. The idea Lotka-Volterra type model: Predator-prey model proposed

independently by Alfred Lotka and Vito Volterra in the early 1900s.

behind such models was to cou- Originally representing two state-variables, prey and predator
. . numbers, and using only 4 parameters: the prey growth rate, the
ple (see model coupling in Box predation rate, the efficiency of predation and the predator mortality
rate.

2) the ecological models simulat-
Ocean circulation models: Physical models describing the

ing planktonic interactions with physical and thermodynamical processes of the global Ocean.

Model coupling: The act of linking together two independent
models. Two types of model coupling exist: offline coupling where
outputs of one model are used as inputs in a second model, and
online coupling, or full coupling, where feedbacks between the state
variables of both models are defined.

physical models of ocean circu-
lation (see Box 2), offering the
ability to simulate the processes
influencing biogeochemical cycles
on important temporal and spatial scales. Hence, these coupled models were called bio-
geochemical models, and one of the first and most famous was the one of Fasham et al.
(1990). This model simulated the dynamics of 7 state variables: phytoplankton, zoo-

plankton, bacteria, nitrate, ammonium, dissolved organic nitrogen and detritus. It was
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coupled with a simplified vertical model of the ocean mixed layer circulation, and allowed
to obtain quantitative estimates of seasonal nitrogen fluxes in the ocean (Fasham et al.,

1990, 1993; Sarmiento et al., 1993).

The reduction of planktonic diversity to one, two or three state variables quickly raised
the question of the potential oversimplification of biological interactions in biogeochem-
ical models, already evoked by Riley in the 1940s (Anderson, 2010; Riley, 1946). In-
deed, can we hope for realistic model predictions without simulating the dynamics of key
biogeochemical actors like diazotrophs, calcifiers or remineralizing prokaryotes (Doney,
1999)? Of course, the question became even more itching with the progress in biological
knowledge about planktonic communities, and the parallel increase in computing power
allowing for the inclusion of more and more state variables into models. In the 2000s, the
first global 3-dimensional biogeochemical models including significantly more planktonic
diversity than NPZD models came out (Moore et al., 2001b; Aumont et al., 2003; Le Quéré
et al., 2005; Kishi et al., 2007). These models relied on the concept of Plankton Functional
Types (PFTs).

1.2.2 Plankton functional types and their use in biogeochemical modeling

In the early 90s, the concept of plant functional type was introduced in terrestrial plant
ecology to group plants depending on their functional response to light and water avail-
ability (Smith and Huston, 1990; Smith et al., 1993). The same concept of functional types
was evoked for planktonic organisms at that time, notably to describe the different size
fractions of zooplankton and their different biogeochemical impacts (i.e. larger zooplank-
ton grazing on larger preys, and their bigger fecal pellets sinking faster, enhancing export
rates) (Armstrong et al., 1993). However, it is only in the seminal paper of Le Quéré et al.
(2005) that the first operational 3D biogeochemical model explicitly relying on plankton
functional types (PFTs) came out. If the paper by Le Quéré et al. (2005) was the first
to clearly use the term of plankton functional type, a few anterior models had already
been using multiple functional groups of plankton. It is notably the case of Moore et al.
(2001b), who simulated the dynamics of carbon, nitrogen, phosphorus, iron, calcium
carbonate and chlorophyll in 3 functional types of phytoplankton (small phytoplankton,
diazotrophs and diatoms) and 1 type of zooplankton. This biogeochemical model was
the first attempt at representing multiple plankton functional types and multiple limiting
nutrients at global scale, but it was coupled to a grid model of ocean circulation which
did not include horizontal transport (Moore et al., 2001a). The first biogeochemical model
of similar complexity to use a 3D dynamic ocean circulation model was the one presented

in Aumont et al. (2003), simulating the dynamics of carbon, phosphate, silicate and iron
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in two functional types of phytoplankton (small phytoplankton and diatoms) and two

functional types of zooplankton (microzooplankton and mesozooplankton) (Figure 1.7).
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Figure 1.7 - Structure of the PISCES-version 2 model, re-drawn from Aumont et al. (2015). State
variables are represented as colored boxes, with a color code similar as Figure 1.6. In this version
of PISCES, 4 PFTs are represented: nanophytoplankton, autotrophic silicifiers (diatoms), microzoo-
plankton and mesozooplankton. Acronyms : TALK = total alkalinity; PAR = photosynthetically
active radiations; Chl = Chlorophyll; POM = Particulate organic matter; DOM = Dissolved Organic
Matter.

In 2005, the model presented by Le Quéré et al. changed the standards for plankton
diversity representation in biogeochemical models, by proposing a model with 10 differ-
ent PFTs: pico-heterotrophs (e.g. heterotrophic bacteria and archaea), pico-autotrophs
(e.g. cyanobacteria like Prochlorococcus), diazotrophs (e.g. Trichodesmium), calcifiers
(e.g. coccolithophores), DMS producers (e.g. Phaeocystis), silicifiers (e.g. diatoms),
mixed-phytoplankton (e.g. autotrophic dinoflagellates), proto-zooplankton (e.g. ciliates),
meso-zooplankton (e.g. copepods) and macro-zooplankton (e.g. krill, jellyfish or salps).
The choice of these 10 groups was motivated by 4 reasons: (1) each PFT should have a
biogeochemical role, (2) the biomass of each PFT should be controlled by different phys-
iological, environmental or nutrient requirements, (3) the behaviour of each PFT should
have effects on other PFTs due to ecological interactions, and (4) each PFT should be
significantly abundant in at least one part of the ocean (Le Quéré et al., 2005). From
there, the use of plankton functional types in biogeochemical models became the norm,
with the number of PFTs varying from 4 or 5 to sometimes hundreds depending on the

models (Sinha et al., 2010; Aumont et al., 2015; Follows et al., 2007; Ward and Follows,
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2016; Lévy et al., 2014).
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Figure 1.8 - Structure of a complex planikton functional type (PFT) model including overlooked trophic
modes lilkke mixotrophy and parasitism (Flynn et al., 2013; Worden et al., 2015), created during my
master 2 internship to illustrate how the PFT approach could allow detailed representations of plank-
tonic functional diversity. Here, 21 PFTs are represented in colored boxes, yellow arrows correspond
to light uptalke, blue arrows to nutrient uptake, black arrows to grazing and red arrows to organic
matter transfers through sinking and remineralization. The phytoplankton PFTs written in yellow
correspond to potential constitutive mixotrophs, i.e. phagotrophic algae. NC mixotrophs stands
Jor non-constitutive mixotrophs, i.e. mixotrophs that acquire the ability to achieve photosynthesis
through "stealing” chloroplasts to their preys or symbiosis. To my knowledge, no current biogeo-
chemical model include that level of functional diversity, as even the Dutkiewicz et al. (2020) model,
which has 350 PFTs, does not include parasitic and symbiotic relationships. Abreviations: PAR
= photosynthetically active radiation, Euka = eukaryotes, Proka = prokaryotic, Prod = producers,
Phyto = phytoplanctonic, Zoo = zooplanlktonic.

Since its advent, the PFT approach has been criticized multiple times for its lack of eco-
logical justifications (Anderson, 2005; Flynn et al., 2015). Indeed, one of the underlying
assumptions behind the PFT concept is that each PFT can be modeled with a single set of
parameters. But if we take the calcifiers as example, it should regroup both autotrophic
calcifiers like coccolithophores (typically 5 to 100 microns in size) and heterotrophic cal-

cifiers like forams or ostracods (both around 1 mm in size, sometimes up to several cm),
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which play drastically distinct roles in the food webs. Hence, grouping together such a
wide diversity of organisms asks the question of how to define the right set of parameters

to model their growth in response of environmental factors (Flynn et al., 2015).

A second caveat of the PFT approach lies in the a priori choice of the functional types in-
cluded in models, which is left to the modeler. This can lead to the exclusion of groups of
organisms like mixotrophs, which are absent from the vast majority of PFT models despite
their global ecological influence (Flynn et al., 2013; Stoecker et al., 2017; Caron, 2016a).
Adding more and more PFTs to existing models could in theory resolve these issues, pro-
vided that in situ or experimental data are available to parameterize them. But it would
push towards the production of increasingly complex, harder to interpret models, and we
would need an unreachable number of PFTs to hope to exhaustively represent plankton
diversity (Frede Thingstad et al., 2010). This way, a trade off has to be made between
the quality of diversity representation in models and their complexity (Frede Thingstad
et al., 2010). To better merge the biological aspects of plankton ecology with the theo-
retical frameworks of biogeochemical modeling, it was then proposed to switch towards
approaches focused on the phenotypes of individuals, rather than functional groups or

types (Flynn et al., 2015; Allen and Polimene, 2011).

1.2.3 The functional trait approach and its use in biogeochemical modeling
1.2.3.1 Concepts and definitions

During my PhD, I participated in a review of the use of functional-trait based approaches
in aquatic ecology (Martini et al., under review, full version of the paper available in Ap-
pendix A). In this review, I created an interactive mental map of functional traits commonly
used in aquatic ecology (Figure 1.9). I was also in charge of writing the paragraph on links
between trait-based approaches and omics data (see section 1.4). Here, I will present few
of the most important points and definitions of the trait-based approach, focusing on
the contribution of functional trait trade-offs theory in biogeochemical modeling, focus-
ing on how the trait-based approach can contribute to improving the representation of

planktonic organisms in marine biogeochemical models.

Like the concept of functional types, the concepts of traits and functional traits emerged
from terrestrial ecology (McGill et al., 2006). These terms were widely used in the literature
in the past 20 years, sometimes to describe different concepts (Violle et al., 2007). Here,

we will refer to the definitions given in Violle et al. (2007) :
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e A trait is any morphological, physiological or phenological feature measurable at
the individual level, from the cell to the whole-organism level, without reference to

the environment or any other level of organization.

o A functional trait is any trait that impacts fitness (i.e. reproductive success) indi-

rectly via its effects on growth, reproduction and survival.

Among functional traits, we can further differentiate potential traits, which are described
from the literature, usually at the species level, and ideally covering a large variety of envi-
ronmental conditions, from realized traits, actually measured in situ or in the laboratory

(Reu et al., 2011).
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Figure 1.9 - Unified typology of aquatic functional traits, modified from Martini et al. (Appendix A).
I made an interactive mental map of this topology, available at https://github.com/EmileFaure/
AquaticFunctionalTraitsMap. The functional traits commonly used in trait-based approaches in
aquatic ecology are compiled in a common typology, where they are classified by type and eco-
logical function (as in Litchman and Klausmeier (2008)). This typology focuses on the key functional
traits that transcend taxonomic peculiarities of the different aquatic ecosystems. This typology do
not explicitly include two functional traits on which I focused during my PhD: mixotrophy and DMS
production. I added orange stars next to traits of the typology that are associated with mixotrophy,
and blue stars next to ones associated with DMS production (see main text for further explanations
on these associations).

The interactive mental map version of this typology is under the form of a network in which blue
nodes correspond to the different ecological functions depicted as columns here, while orange nodes
correspond to the different trait types depicted as lines. Each trait of the typology is then represented
as a grey node, and is linked to the ecological functions and trait type nodes corresponding to its
classification in the typology. On this interactive mental map, it is possible to hover the mouse over
a node to highlight its connections, and a simple click on a trait node will open a bibliography search
about this trait in aquatic ecology studies, while a maintained click on any node will allow you to
move it around.
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Examples of functional traits for phyto- and zooplanktonic organisms are depicted in
Figure 1.9. In this thesis, i will notably focus on two functional traits, mixotrophy and
DMS production, which are not explicitly represented in Figure 1.9. Mixotrophy can be
considered as implicitly included as a feeding mode, but also as a combination of traits
such as the photosynthesis ability and the ability to feed through phagotrophy, or as a
gradient of food preferences between full autotrophy and full heterotrophy (Figure 1.9;
Berge et al. (2017)). DMS production is a harder trait to classify in a typology, as its bene-
ficial impact on fitness still remains unclear (Levine et al., 2012). Some proposed that the
impact of DMS atmospheric release increases local winds and currents, thus increasing
the dissemination potential of DMS producers, others hypothesized that DMS acted as a
protection against harmful UV radiation, and finally DMS production was identified as a
way to create biomass in conditions of high DMSP production by phytoplankton and low
requirements in sulfur in DMS producing prokaryotes (Simo6, 2001; Levine et al., 2012).

The concepts of functional types and functional traits overlap in the sense that PFT are
defined according to the functional traits of organisms, e.g. the calcifiers PFT regroups
all organisms capable of producing a carbonate shell, which is a morphological and phys-
iological feature measurable at the individual level that impacts fitness via its effect on
survival. Some models even blend the concepts of functional traits and PFT, like the
DARWIN model presented in Follows et al. (2007), where hundreds of PFT are randomly
created from a set of functional traits. The created PFTs are then competing against
each others, and only the fittest survive, allowing for the emergence of adapted functional
strategies in different zones of the Ocean (Follows et al., 2007). But soon after the appari-
tion of the first global PFT models, a new approach proposed to use functional traits to
mechanistically link phytoplankton cellular-level physiology to ecosystem-level commu-
nity patterns (Litchman et al., 2007). At the basis of this approach lied the concept of

trade-offs between functional traits.

1.2.3.2 Traits trade-offs

Traits related to growth, reproduction and survival are often quantitatively correlated,
and these correlations (or anti-correlations), described as "trade-offs", can provide a con-
tinuous view of ecological strategies among planktonic organisms (Litchman et al., 2007).
For example, a strong positive correlation exists between the maximum nutrient uptake
and the cell volume (Figure 1.10), or the half-saturation constant for nutrient uptake
and the cell volume (Edwards et al., 2012). These trade-offs allow to define a continuous
gradient of nutrient uptake strategies, for example opposing groups like diatoms with

high cell volume, maximum nutrient uptake rate and half-saturation constant for nutri-
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p-value < 0.05, showing a significant correlation between cell volume and maximum cell-specific
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between freshwater and marine taxa). cyan = cyanobacteria; desm = desmids; chlor = non-desmid
chlorophytes; diat = diatoms; hapt = haptophytes; dino = dinoflagellates; raph = raphidophytes.
Figure modified from Edwards et al. (2012).

ent uptake, which can be related to the "velocity" or "r" strategy in theoretical ecology
(Margalef, 1978), to ones like haptophytes (including coccolithophores) with low cell vol-
ume, maximum nutrient uptake rate, and half-saturation constant for nutrient uptake
(Litchman et al., 2007; Edwards et al., 2012), which can be related to the "affinity" or "K"
strategy (Figure 1.10). This way, by using continuous quantitative relationships between
traits, it is possible to create a multidimensional trait space in which different trait com-
binations are available, corresponding to different phenotypes and ecological strategies
(Lamanna et al., 2014). Trait-based models typically use trade-offs between traits to de-
fine individual-level processes such as mortality, nutrient uptake rates, or metabolic costs
(Kigrboe et al., 2018). By including the influence of the environmental conditions on trade
offs, it is then possible to define optimal traits and trait distributions on large geographical
scales, which links trait-based models to global bigeochemical ones (Kigrboe et al., 2018).
The DARWIN model that I evoked earlier uses known trade-offs between functional traits

to shape a limited trait-space to draw the random PFTs from, and avoid the creation of
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super-dominant PFTs overrunning the ecosystem. Still, it differs from trait-based models
for it does not take into account the inter-individual variations in traits in each randomly

created PFT.

By focusing on continuous quantitative relationships between measurable individual fea-
tures, trait-based approaches allow to incorporate the notions of plasticity and phenotypic
variability between species and individual organisms (Violle et al., 2012). This key bio-
logical aspect is often absent from classic PFT modeling, where single sets of parameters
are used for each PFT, and could help introduce acclimation in biogeochemical models
(Flynn et al., 2015). Moreover, trade-offs between traits have not only been described
in phytoplankton, but also in zooplankton (Litchman et al., 2013) and microbial pop-
ulations (Litchman et al., 2015b), offering a way to describe most actors of planktonic

communities.

However, trade-offs between functional traits are: (1) often not applicable to all organisms
and/or all environments (i.e. exceptions exist to almost every trade-offs), (2) especially
challenging to assess because a lot of data are required to define a trade-off as a general
rule, and (3) difficult to compare and combine (how to prioritize the impact of different
trade-offs on fitness ?) (Flynn et al., 2015). Trait-based approaches in general also suffer
from the drawback of a priori choosing the functional traits included in the model, as
already evoked in 1.2.2. Yet, the recent wealth in omics data is now changing our vision

of planktonic diversity, which could help resolve some of these drawbacks.

1.3 Emergence of omics data to study planktonic diversity

1.3.1 Omics data and their application to plankton communities

In 1977, Frederick Sanger, Steve Nicklen and Alan Coulson presented the first rapid and
reliable DNA sequencing method (Sanger et al., 1977). Only 15 years later, the sequencing
of ribosomal RNA from environmental samples allowed for the first time to detect Archaea
in coastal marine waters (DeLong, 1992) and in the open waters of the Pacific ocean
(Fuhrman et al. (1992)). Archaea were thought to only live in extreme environments
at the time, and this is an early example of how progresses made in DNA sequencing
facilitated the sampling and analysis of full planktonic communities by bypassing the
tedious morphological identification of species in complex samples. Only a few years
later, such advances gave birth to the fields of metagenomics (See Box 3, Riesenfeld et al.

(2004); Tringe and Rubin (2005); Venter et al. (2004)).

Before the end of the century, Sanger sequencers were used at long-term oceanographic
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time-series like BATS to monitor seasonal changes in planktonic functional and taxonomic
diversity (Giovannoni et al., 2014). The acquired ability to quickly analyze full planktonic
communities notably led Craig Venter and his team to launch the Global Ocean Sampling,
a large scale oceanographic cruise inspired by the circumglobal naturalist expeditions of
the XIXth century (e.g. the Challenger expedition, 1872-1876) (Venter et al., 2004; Rusch
et al., 2007). This expedition started in 2003, it used Sanger sequencing, and did not
include metatranscriptomics data (See Box 3, Venter et al. (2004); Rusch et al. (2007)).

In the mid-2000s, DNA sequenc-

ing of environmental samples be- Box 3: Sequencing data

came an e€ven more common High-throughput sequencing (HTS): Techniques of DNA
sequencing that emerged in the late 90s and were popularized in
the 2000s. In comparison to Sanger sequencing, HTS refers to
sequencing techniques ensuring the production of more

method in plankton ecology with

the advent of high-throughput se- sequences in a relatively shorter amount of time and to a lower
cost. The 2nd HTS generation (from mid-2000s) offers relatively

quencing methods (See Box 3, short reads (e.g. lllumina : from 50 to 500 bp, 454 : from 300 to
600 bp) and the 3rd HTS generation (from ~ 2015) offers long

Riesenfeld et al. (2004); Tringe reads ( >1000 pb, e.g. PacBio, Nanopore). Currently in 2020,
plankton sequencing data usually come from lllumina

and Rubin (2005)). HTS allowed sequencing.

to multiply the quantity of data Omics: Molecular data obtained from HTS.

Meta-omics: Molecular data obtained from the HTS of one or

multiple communities of organisms. In this thesis | will use this

. term to refer to metagenomics, metatranscriptomics and

between 1996 and 2015, while metabarcoding, but it can sometimes refer to other methods such
as metaproteomics.

sequenced per day by 500,000

the costs were divided by at least
Metagenomics: Study of the DNA sequencing data of one or

250,000 over the same time pe- multiple communities of organisms in their environment. Was
achieved with Sanger sequencing in the late 90s and was used

riod (Reuter et al., 2015). HTS to involve cloning steps. It is currently almost exclusively based
on HTS.

methods became the reference . . :
Metatranscriptomics: Study of the RNA sequencing data of one

for producing sequencing data in or multiple communities of organisms in their environment.
Barcoding: Study of one or multiple molecular markers
sequenced after a targeted PCR amplification of the

. . . . corresponding DNA or RNA region(s). Proxy for detecting and
studies including long term time- quantifying taxa. Was achieved with Sanger sequencing in the

late 90s, and sometimes still is.
series (Gilbert et al., 2010; Ga-

planktonic ecology, both for local

Metabarcoding: Barcoding of one or multiple communities of

land et al., 2018; Arsenieff et al., organisms in their environment. The most commonly used
markers are hyper-variable regions (labelled V1 to V9) of the16S
2020), and for larger spatial scale ribosomal RNA which is universal among prokaryotes and of the

18S ribosomal RNA which is universal among eukaryotes.
studies (Sunagawa et al., 2015;

Operational taxonomic unit (OTU): Cluster of sequences
Acinas et al., 2019: Kopf et al., grouped by similarity, used as a proxy of species.
2015). The most popular method Reads: Sequences resulting from HTS.

from the 2nd generation of HTS,
Ilumina sequencing, used to produced relatively short reads, i.e. around 150 base pairs.
In this way, Sanger sequencing, ensuring routinely the collection of 500 base pairs se-

quences, is still used today, especially when targeting specific genes (Levine et al., 2012).

Since 2015, a 3rd generation of HTS methods were developed with the aim of produc-
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ing long reads of multiple thousands of base pairs, while keeping the cost and speed
advantages of 2nd generation sequencing (Giordano et al., 2017). For now, uses of 3rd
generation sequencing methods in planktonic ecology are quite scarce, but might become

the new standard in the next decade (Lombard et al., 2019).
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Figure 1.11 - (A) Sampling route and stations of the Tara Oceans and Tara Oceans Polar Circle
campaigns. (B) Spatial representation and chronology of the sampling events conducted during a
24-48h station. The color code indicates the depth of the sampling event (surface water in red,
deep chlorophyll layer in green, mesopelagic zone in blue, and other fixed depths in white for day
deployments and grey for night deployments). The black dotted line indicates the deployment of an
Argo drifter, used to follow the water mass during sampling. Figures from Pesant et al. (2015).

Following the footsteps of the Global Ocean Sampling, other large-scale cruises were
launched in the 2000s and 2010s, this time taking advantage of the HTS to include

metatranscriptomics (see Box 3) and cover more locations and depths of sampling (Pesant
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etal., 2015; Acinas et al., 2019). Examples of such cruises are the Malaspina expedition in
2010-2011 (Duarte, 2015; Acinas et al., 2019), and the Tara expeditions, including Tara
Arctic in 2006-2008, Tara Oceans and Tara Oceans Polar Circle in 2009-2013, and Tara
Pacific in 2016-2018 (Figure 1.11;Karsenti et al. (2011); Planes et al. (2019)). By sampling
plankton communities along with their physico-chemical environment, such expeditions
offered the first opportunities to study the links between the environmental conditions
and planktonic taxonomic and functional diversity in the global ocean (de Vargas et al.,
2015; Sunagawa et al., 2015). The philosophy behind the Tara expeditions was described
as holistic (Karsenti et al., 2011), as it involved meta-omics, but also physico-chemical
measurements, and other methods like automatic underwater imaging, allowing to study
the entire planktonic communities from viruses to pluricellular organisms (see Figure 1.1;
Figure 1.11). A complementary approach to global scale plankton sampling was proposed
by the Ocean Sampling Day (OSD) consortium, who organized the sampling of more than
300 meta-omics samples on the same day (June 21st 2014), all across the global ocean
and with a unified protocol (Kopf et al., 2015). Finally, initiatives like the international
census of marine microbes (ICoMM) approach the idea of global scale sampling by merg-
ing and homogenizing multiple independent datasets and making them available on easily
accessible platforms (Amaral-Zettler et al., 2010). In the case of ICoMM, datasets come
from omics but also environmental data, mass spectrometry or lipid structures data,
with the goal to provide an atlas of marine unicellular organisms and their physiology

(Amaral-Zettler et al., 2010).

An unprecedented amount of meta-omics data has then been sampled in the last 20
years, but it would not be useful without reference databases. Metabarcodes and/or
Operational Taxonomic Units (OTUs, see Box 3) need to be confronted to taxonomic an-
notation databases such as PR2 (Guillou et al., 2013) or SILVA (Quast et al., 2013) to be
annotated to a lineages. Similarly, genes and transcripts obtained from metagenomics
and metatranscriptomics need to be confronted to reference databases such as KEGG
(Aramaki et al., 2019), or EggNOG (Huerta-Cepas et al., 2016) to be associated with a
function and/or an organism. Such reference databases play a key role for the analysis
of functional traits in planktonic communities through meta-omics: functional annota-
tion databases allow to make direct links between genes and metabolic pathways, some of
which can be associated with functional traits, while taxonomic databases can be coupled
with trait databases that link taxa to their potential functional traits. In the next section,
I will review some concrete examples of how meta-omics data changed our understanding

of planktonic ecosystems, notably illustrating the influence of reference databases.
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Figure 1.12 - Use of High-Throughput Sequencing (HTS) techniques to identify or measure functional
traits of aquatic organisms, from Martini et al. (in review, Appendix A). B: Barcoding, G: Genomics,
T: Transcriptomic. Sequencing can be done at the community scale (meta-omics) or at the individual
scale after manual or automatic sorting. Metabarcodes are associated to taxa, through the use of
taxonomic databases as PR2 for eukaryotes (Guillou et al., 2013) or SILVA for prokaryotes (Quast
et al., 2013). The identified taxa can then be associated with potential traits through manual trait
annotation or the use of trait databases, such as Traitbank which includes traits of lineages from the
whole tree of life (Parr et al., 2016), or the functional traits of marine protists database (Ramond et al.,
2018) (see Table 2 of Martini et al. in appendix A for a thorough list of trait databases). Genes and
transcripts sequenced through metagenomics and metatranscriptomics can be associated to taxa
and functions through databases like eggNOG (Huerta-Cepas et al., 2016), metagenomics giving
access to potential traits while metatranscriptomics allowing to measure realized traits.

1.3.2 Planktonic functional and taxonomic diversity through the lens of

meta-omics data

This section will be organized around three axes: how omics data (1) pushed us to re-scale
our view of planktonic organisms’ taxonomic and functional diversity, (2) provided new
insights in plankton-mediated biogeochemical cycles, and (3) allowed for the reconsider-

ation of long overlooked groups of organisms.

1.3.2.1 Quantifying taxonomic and functional diversity

As evoked in 1.3.1, one of the first contributions of omics data to plankton ecology was the
discovery of archaeal 16S rDNA in open water and coastal samples (Fuhrman et al., 1992;
DeLong, 1992). More recently, by analyzing about 1.7 million V9 regions of 18S rDNA
sequences from 334 size-fractionated plankton samples of the Tara Oceans expedition,
de Vargas et al. (2015) were able to detect about 110,000 OTUs, when only 11,200 species
of eukaryotic plankton had been formally described morphologically at the time, according
to these authors. About one third of these OTUs could not be associated to any known

eukaryotic group (de Vargas et al., 2015). In parallel, Sunagawa et al. (2015) detected
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35,650 prokaryotic OTU using nearly full 16S rDNA (assembled from metagetagenomic
reads) of 243 size-fractionated samples of the same expedition, from which 7% could not
be annotated at the phylum level. By analyzing together these 16S and 18S datasets,
Ibarbalz et al. (2019) recently showed that the taxonomic diversity of planktonic Bacteria,
Archaea and Eukaryota was higher at low latitudes, near the Equator, than at polar
locations, like for larger marine organisms and for terrestrial ecosystems (Hillebrand,

2004; Rombouts et al., 2009).

In addition to metabarcoding data, the recent advent of metagenome-assembled genomes
(MAGs) largely participated in increasing our knowledge about the taxonomic diversity of
planktonic organisms (n.b. MAGs are also called metagenomic species). MAGs are near-
complete genomes assembled from DNA fragments coming from metagenomes, without
using reference genomes Nielsen et al. (2014). Instead, quality-filtered reads are assem-
bled into contigs, and contigs reaching a minimum length (typically more than a few
thousand base-pairs) are then binned together according to metrics like their abundance
profiles across metagenomes (i.e. contigs with similar distribution across the samples)
and their GC content (percentage of bases that are either guanine or cytosine), allowing
to identify the groups of contigs (or "bins") coming from the same population of a single
lineage (Nielsen et al., 2014; Delmont et al., 2018; Parks et al., 2017; Tully et al., 2018).
The assembly of each bin can then give a more-or-less complete MAG (usually MAGs with
completion estimated below 50% are discarded, completion being estimated based on
the presence of sets of marker genes (Parks et al., 2015)), which can be taxonomically
and functionally annotated through comparisons with reference genomes. Although the
presence of a unique lineage/organism in the resulting MAG remains hypothetical (e.g.
phylogeneticaly distinct organisms in symbiosis could for example be binned together due
to high correlations in their abundances), tools like the manual refinement of bins and
the computation of contamination percentages estimating the amount of badly binned
contigs allow for determining high quality MAGs that can serve as proxies for taxonomic
entities, in a way similar to OTUs (Delmont et al., 2018). They bring the advantage of
giving access to near complete genomes instead of only ribosomal DNA, but also of not
using primers and including unannotated sequences. In only the last three years, Parks
et al. (2017) were able to recover nearly 8,000 MAGs from 1,550 marine and terrestrial
metagenomes, while Tully et al. (2018) reconstructed 2,631 MAGs from 234 Tara Oceans
metagenomes (Figure 1.24), and Delmont et al. (2018) assembled 957 manually curated,
high quality MAGs from 93 Tara Oceans metagenomes. In addition to these, 76 non-
redundant and manually-curated MAGs were recently assembled from 58 bathypelagic

metagenomes (Acinas et al., 2019). Finally, (Vorobev et al., 2019) proposed a similar
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approach to MAGs binning, but this time aiming at building transcriptomes. They were
able to detect about 12,000 groups of co-abundant genes in 365 metagenomes, among
which 924 were identified as metagenomic based transcriptomes (MGTs), for they con-
tained more than 500 unigenes (i.e. groups of transcripts coming from a unique gene)
(Vorobev et al., 2019). The taxonomic assignation of unigenes among each MGT were
then used to define their taxonomy and estimate their phylogenetic homogeneity. These
MAGs do not only expand our view of taxonomic diversity among planktonic organisms
(Figure 1.2A), but also in the tree of life, with notably 11 potential new phyla detected in
the 76 bathypelagic MAGs only (Acinas et al., 2019).

Omics data also allowed to quantify the genetic diversity of plankton communities, and
to link it with functional diversity through the analysis of present and expressed genes in
hundreds of metagenomes and metatranscriptomes (Sunagawa et al., 2015; Acinas et al.,
2019; DeLong et al., 2006; Louca et al., 2016¢c; Galand et al., 2018). Notably, a catalog
of 47 million non-redundant genes was recently issued using 370 metagenomes of the
prokaryotes-enriched size fractions from Tara Oceans and Polar Circle expeditions (Salazar
et al., 2019). Comparing them with the gene available in reference databases, 39% of the
genes in this catalog could not be annotated with a biological function, highlighting the
gap remaining in our functional understanding of plankton genetic diversity. Similarly,
4.03 million genes were detected in 58 bathypelagic metagenomes, from which 71% had
not been detected in global surveys of the upper ocean (Acinas et al., 2019; Sunagawa

et al., 2015).

Thanks to such catalogs, it is now possible to quantify a part of the functional diver-
sity of planktonic communities corresponding to genes with annotated functions, and
notably to investigate its link with environmental conditions. This way, temperature was
identified as the main driver of genomic functional diversity in prokaryotic plankton com-
munities of the open ocean (Salazar et al., 2019). The quantification of both taxonomic
and functional diversity of plankton communities through omics data also allowed to
investigate the links between the two facets of plankton diversity on large spatial and
time scales (Sunagawa et al., 2015; Louca et al., 2016¢; Galand et al., 2018). This led
to contrasting results, as the two facets of diversity were identified as decoupled when
using the Tara Oceans data (Louca et al., 2016¢; Sunagawa et al., 2015), but were tightly
correlated in a coastal time-series station in the northwestern Mediterranean Sea (Ga-
land et al., 2018). Finally, recent results based on a multi-omics analysis (i.e., blending
metagenomics and metatranscriptomics) showed that changes in gene expression rates
across prokaryotic planktonic communities with similar taxonomic and genetic composi-

tion could significantly shape their functional activity (Salazar et al., 2019), adding a new
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layer of complexity to the global picture.

Omics data have led to the discovery of uncharted branches in the tree of life (Rinke et al.,
2013) and of millions of novel genes coding for proteins of unknown biological functions,
sometimes issued from organisms of unknown phylogenetic lineages (Salazar et al., 2019;
Acinas et al., 2019). This fraction of uncharacterized data has been described as the mi-
crobial dark matter, or more recently the dark side of omics, or the twilight zone, to avoid
using the poor comparison with astrophysics’ dark matter, which is theoretically pre-
dicted to exist but experimentally undetectable, pretty much the inverse from microbial
dark matter (Lobb et al. (2015); Rinke et al. (2013); Vanni et al. (2020); Figure 1.13). The
dark side of omics is present in all types of ecosystems, but is particularly significant in
aquatic metagenomes, where the share of sequences of unknown function and taxonomy
can reach up to 60% (Figure 1.13). I will now present some examples of how the func-
tional characterization of unknown genes and lineages unveiled by meta-omics data led

to discoveries of key planktonic actors in global biogeochemical cycles.
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Figure 1.13 - Microbial dark matter across metagenomes from different ecosystem types. Genes
inferred from the reads of 339 environmental metagenomes (Fondi et al., 2016) are divided in four
categories depending on their taxonomic annotation (lines, based on the RAIphy algorithm (Nalban-
toglu et al., 201 1)) and functional annotation (columns, based on the Pfam database (Bateman et al.,
2004)). The yellow background indicates sequences with known taxonomic and functional anno-
tations, while the grey background indicates proteins from unknown lineages and with unknown
JSunction, hence corresponding to microbial dark matter. The number of sequences in each category
is indicated, as well as the corresponding percentage, and a pie-chart indicating the distribution of
the sequences across different ecosystem types. Proteins found in hosts (e.g. human gut micro-
biome) dominate the known/known category, while proteins from aquatic environments dominate
the microbial dark matter category. For this graph, the minimum percentage of identity used for
taxonomic annotation was 85% while the alignment e-value cut-off for functional annotations was
of 0.1. Figure modified from Bernard et al. (2018).
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1.3.2.2 Omics-based functional insights into biogeochemical cycles

As seen in section 1.1.2.2, the nitrogen cycle is largely driven by biological processes.
Until the 1990s, the filamentous cyanobacteria Trichodesmium was considered to be the
only significant diazotroph (Zehr and Kudela, 2011). Nitrogenase, the enzyme responsible
for nitrogen fixation, is composed of two parts, one of which is encoded by the nifH gene
Zehr (2011b). By amplifying nifH sequences in environmental samples, Zehr et al. (1998)
detected nitrogenase genes in multiple cyanobacteria, but also in gamma and alpha Pro-
teobacteria. Hence, by using omics data, Zehr et al. (1998) identified the cyanobacteria
Crocosphaera and the uncultivated group of cyanobacteria called UCYN-A as globally
abundant diazotrophs. By combining single cell analysis and large scale metabarcoding,
UCYN-A was later identified as a ubiquitous group of symbiotic cyanobacteria, contribut-
ing to nitrogen fixation at scales comparable to Trichodesmium (Martinez-Pérez et al.,
2016) (Figure 1.14). Even more recently, 9 non-cyanobacterial and diazotrophic MAGs
were assembled from 93 Tara Oceans metagenomes (Delmont et al., 2018). 6 of these
MAGs were annotated as Proteobacteria, while the 3 others were detected as Plancto-
mycetes, providing the first evidence of diazotrophy among this taxonomic group (Del-
mont et al., 2018). Even more surprisingly, these 9 MAGs appeared as very abundant in
the surface ocean, corresponding to up to 0.3% of all the sequences of a full metagenome

in the Pacific Ocean (Figure 1.14).

In addition to the discovery of new diazotrophs, omics data also changed our understand-
ing of the nitrification pathways in the global ocean (Zehr and Kudela, 2011). Indeed,
Venter et al. (2004) found ammonia monooxygenase genes putatively coming from Cre-
narchaea in the samples from the global ocean survey, the archeal clade identified as
abundant in the open and coastal ocean by Fuhrman et al. (1992) and DeLong (1992).
This enzyme, responsible for the oxidation of ammonium into nitrite and nitrate, or ni-
trification (see section 1.1.2.2), was then considered to be only present in Bacteria like
Nitrospira (Zehr and Kudela, 2011). Using targeted amplification of ammonia monooxyge-
nase genes in environmental samples, Francis et al. (2005) then confirmed that ammonia-

oxydizing archaea were ubiquitous and significantly abundant.

Omics data also greatly improved our understanding of the sulfur cycle (Moran et al.,
2012). The first enzyme identified as involved in DMSP demethylation, dmdA, was de-
scribed in 2006, followed a year after by the first one involved in DMSP cleavage (Howard
et al., 2006; Todd et al., 2007). Only five years after that, 4 additional enzymes involved in
the demethylation pathway and 10 additional enzymes involved in the cleavage pathway
were described (Moran et al., 2012). Metagenomics data showed that the dmdA enzyme
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Figure 1.14 - Global abundance of diazotrophs unveiled by omics data. (A,B) Percentage of 16S
rDNA reads annotated to UCYN-A1 (A) and UCYN-A2 (B) in samples from three datasets: ICoMM,
OSD and Tara Oceans (See Section 1.3.1 for quick description of these datasets). Figure from
Martinez-Pérez et al. (2016). (C) Maps of the sequence abundance (in % of total sample reads) of 4
diazotrophic MAGs in 61 metagenomes from the surface ocean. The two maps on the left correspond
to Proteobacteria MAGs while the two maps on the right correspond to Planctomycetes MAGs. MAGs
names begin with the acronym HBD, standing for heterotrophic bacterial diazotroph. Figure from
Delmont et al. (2018).

was extremely abundant, and could be harbored by more than 50% of bacterioplankton
cells in the surface Ocean (Moran et al., 2012; DeLong et al., 2006; Rusch et al., 2007).
At the time, metagenomics also showed that cleavage-related enzymes were two orders of
magnitude less abundant than demethylation-related ones, suggesting that some cleavage
genes remained unknown, or that the cleavage of DMSP into DMS by bacteria might not
be as important as previously thought (Moran et al., 2012). Since then, two key enzymes
responsible for DMSP cleavage have been identified: the dddK enzyme was identified as
cleaving DMSP into DMS through a previously unknown pathway in the very abundant
Pelagibacter, while the Almal enzyme was the first ever eukaryotic DMS-releasing enzyme

identified, and was detected in many lineages of haptophytes and dinoflagellates (Alcolom-
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bri et al., 2015). This way, missing links in the sulfur cycle highlighted by metagenomics

data were resolved through targeted, biochemical extraction and purification approaches.

1.3.2.3 Rehabilitating overlooked groups of planktonic organisms

Taf XXXV

=14 Collozoum merme, Ha

Figure 1.15 - The morphologic diversity of Rhizaria. (A) Illustrations of Collozoum inerme by Ernst
Haeckel, from samples collected during the Challenger expedition (1872-76), (B) The diversity of
morphology across 3 species of Acantharea (up: Lithoptera fenestra, middle: Amphilonche elon-
gata, down: unidentified), all bearing photosynthetic symbionts. Collozoum inerme is a Collodaria
species, a group of Radiolaria forming colonies, and of which every described species bears photo-
synthetic endosymbionts (Biard et al., 2017). Acanthareans are rhizarians with celestite skeletons,
living in symbiosis with the ubiquist haptophyte Phaeocystis. Haeckel illustrations extracted from
Caron (2016b), pictures taken from Decelle et al. (2012).

The advent of meta-omics data did not only lead to the discovery of novel biogeochemi-
cally impactful organisms, but also to the identification of well-known but yet overlooked
lineages as key actors of the global ocean biogeochemistry. This is particularly well illus-
trated by the Rhizaria supergroup. This supergroup of unicellular and sometimes colonial
eukaryotes has been known since the XIXth century, as they were described by Ernst
Haeckel from samples of the Challenger expedition (1872-1876) (Figure 1.15). Rhizaria

use complex pseudopodial networks to feed on preys, and harbor skeletal structures made
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of opal (SiOs), celestite (SrSO,4) or calcite (CaCOg) (Caron, 2016b). Many species of the
Rhizaria supergroup are also known for bearing photosynthetic endo- or ectosymbionts
(Figure 1.15), and the question of their impact on global primary productivity was already
asked in the 1990s (Caron et al., 1995). However, the amount of biological knowledge
about these organisms remained very scarce until the last decade, mainly because their
delicate skeletal structures often do not resist to sampling and preservation methods,
while they remain impossible to maintain alive in culture (Caron, 2016b). Despite earlier
evidences of their high abundance derived mostly from open ocean diving observations
(Swanberg, 1983; Michaels et al., 1995), no global survey of their abundance and diver-
sity had been conducted before the advent of meta-omics (Caron, 2016b). Also, they are
absent of all major PFT models (e.g. they were not mentioned in Le Quéré et al. (2005),

Aumont et al. (2003), or Follows et al. (2007)).

In 2012, omics data allowed to describe a widespread symbiotic relationship between
Phaeocystis and the rhizarian group of Acantharia (Decelle et al., 2012). This symbiosis
was identified through the amplification of the 18S and 28S rDNA of isolated specimens
from Acantharia, which allowed to characterize their photosymbionts as Phaeocystis, a
ubiquitous haptophyte genus found free-living (i.e. not in symbiosis) from poles to trop-
ics, which had yet never been identified in symbiotic relationships (Decelle et al., 2012).
The description of this original mode of symbiosis was soon followed by the discovery of
Rhizaria as the second most abundant lineage in Tara Oceans 18S metabarcoding data,
just after the Opisthokonta (de Vargas et al., 2015). In-situ imaging data also collected
during the Tara Oceans expedition estimated that rhizarians might constitute up to 5.2%
of the total oceanic biota carbon reservoir, confirming their greatly underestimated abun-
dance, and asking the question of their impact on global primary production (Biard et al.,

2016).

A co-occurrence based analysis of the Tara Oceans metabarcoding samples identified a
group of 49 eukaryotic OTUs to be particularly correlated to carbon export in the global
ocean, 5 of which were annotated as rhizarians (Guidi et al., 2016). Among the 5 OTUs
identified as having the most influence on carbon export, two were annotated as Col-
lodaria, a photosymbiotic group of Rhizaria (Figure 1.15A). Collodarians can either be
solitary or colonials, they live in symbiosis with micro-algae of the Brandtodinium genus,
and some species harbour an opal skeleton, while others stay "naked" (Biard et al., 2017).
They contributed to 82% of the rhizarian 18S rDNA sequence sampled during the Tara
Oceans cruise (Biard et al., 2017). These first insights into the ecological impacts of rhizar-
ians, obtained through the analysis of Tara Oceans data, were confirmed by the identi-

fication of Rhizaria as important contributors to carbon export in the California Current
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Ecosystem (Gutierrez-Rodriguez et al., 2019). This discovery relied on the metabarcoding
analysis of sediment traps, i.e. oceanographic tools collecting sinking particles in the
water column, in which Radiolaria (a branch of Rhizaria, including Collodaria and Acan-
tharea) contributed to up to 90% of the 18S rDNA reads (Figure 1.16). Omics data then
showed that rhizarians exhibit unique symbiotic relationships (Decelle et al., 2012), are
ubiquitous and globally abundant (Biard et al., 2017), and have a significant impact on
carbon export (Guidi et al., 2016; Gutierrez-Rodriguez et al., 2019; Stoecker et al., 2009).
These results, combined to the recent evidences of the essential role of Rhizaria in the
global silica cycle (Biard et al., 2018; Monferrer et al., 2020) are highlighting the necessity

of their inclusion in biogeochemical models.

Water column Fixed traps Live traps

Radiolaria

Radiolaria

[l Dinophyta [l Ochrophyta [] Euk. undass. [l Cercozoa [ Haptophyta
[ Radiolaria [ Chlorophyta [[] Giliophora Il Stramenopiles_X Ml Apicomplexa

Figure 1.16 - The influence of Radiolaria on carbon export. Mean percentage of 18S rDNA reads
affiliated to different planiton taxonomic groups in samples from the California Current Ecosystem.
Samples were taken from the water column (a), from biologically fixed sediment traps (b, fixation with
Jformaldehyde to minimize decomposition and consumption of organic matter), and from live sediment
traps (c, no biological fixation). Radiolaria contributed to 12% of the total sequence number in the
water column, 88% in fixed traps, and 9.6% in live traps. The increase of Radiolaria abundance
in fixed traps compared to the water column samples demonstrate their high contribution to carbon
export through sedimentation. The decrease of Radiolaria abundance in live traps was probably
due to selective consumption by copepods, heterotrophic nanoflagellates, or phaeodarians in the
traps, and supposes a rapid remineralization of organic matter associated with Radiolaria.

1.4 Using omics data to bridge the gap between observed and

modeled diversity

1.4.1 Improving marine biogeochemical models using omics data

As shown in sections 1.2.2 and 1.2.3, traditional modeling approaches based on the
representation of exchanges between a few ecosystem components (i.e., nutrients, phyto-
plankton, zooplankton and detritus, or plankton functional types) have been criticized for

their lack of ecological justifications (Anderson, 2005; Flynn et al., 2015). The proposition
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of using omics data to improve the representation of planktonic diversity in biogeochem-
ical models was raised very soon after the publication of the first results from the Global
Ocean Sampling circumglobal cruise (Venter et al., 2004; Rusch et al., 2007; Hood et al.,
2007). Even though the amount of published meta-omics data was very scarce at the
time compared to what is available today, Hood et al. (2007) already stated that (...) it is
not clear that these traditional modeling approaches will be sufficient in the face of all this
emerging microbiological and genomic information; such models need to be “told” exactly
what organisms and metabolisms exist in the ocean, and the rate coefficients that govern
their parameterizations must be specified a priori. As such, they cannot tell you what is
important and what is not.”. Hood et al. (2007) also insisted on the fact that traditional
modeling approaches did not account for adaptation and evolution of planktonic organ-
isms, which could be problematic when trying to predict the effects of climate change, and
to often not explicitly represent the bacterioplankton, despite the experimental evidence

of their ecological importance.

Meta-omics data then quickly appeared as an opportunity to inform traditional models
(1) on the geographical distribution of organisms and metabolisms in the global ocean,
(2) on the response of such organisms and metabolisms to environmental conditions, and
(3) on potential new ecological theories and fundamental laws that could emerge from the
unprecedented quantity of data available (Hood et al., 2007; Allen and Polimene, 2011;
Mock et al., 2016). By providing information at the gene level, omics data theoretically
allow for a switch from species-based or trait-based models towards metabolism-based
or gene-centric models, notably inspired by systems biology, and the physics of com-
plex systems (Reed et al., 2014; Toseland et al., 2013; D’Alelio et al., 2019; Follows and
Dutkiewicz, 2011).

1.4.2 Omics-based metabolic modeling

Metabolism-based models rely on metabolic networks, which consist in a conceptual
reconstruction of the metabolic pathways occurring in a (meta)genome, based on the
functional annotation of its genes (Grossart et al., 2020; Budinich et al., 2017). In these
networks, nodes correspond to metabolites, and arrows to metabolic reactions, driven
by enzymes (Steuer et al., 2012; Budinich et al., 2017) (Figure 1.17). A metabolic net-
work can be summarized in a stoichiometric matrix, in which columns correspond to
reactions, lines correspond to metabolites, and each coefficient Sy correspond to the stoi-
chiometric coefficient of the metabolite M; in the reaction R; (Figure 1.17) (Budinich et al.,
2017). Given a set of inputs to the network (e.g. a concentration of nutrients), and under

the hypothesis that the rate of formation of internal metabolites is equal to their rate
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Figure 1.17 - Example of the metabolic network modeling process. A simple metabolic network
is represented in the upper left, along with the corresponding stoichiometric matrix. The depicted
metabolic pathway leads to the production of biomass through fluxes of three metabolites, P1, P2
and L, which are represented in a 3 dimensional space in the upper right. By initializing the flux
of the first reaction r1 (here from G to M1) to 1.0, assuming steady state conditions and satisfying
mass conservation constraint, it is possible to determine a space of solutions for the values of the P1,
P2 and L fluxes (middle right graph), each leading to a value of biomass production. The biomass
production can then be optimized in this space of solutions, as presented in the bottom graphs.
Here, one optimal solution is presented, but most of the time multiple optimal solutions exist. In
these cases, other cellular objectives can be optimized in addition to biomass, like minimizing the
total amount of fluxes or the thermodynamic costs of reactions. Figure modified from Steuer et al.
(2012).

of consumption, the stoichiometric matrix can be used to compute a constrained space
of possible values for an objective function, like biomass production or growth rate (Bu-
dinich et al., 2017; Steuer et al., 2012). The optimal value for the objective function can
then be obtained by solving a linear optimization problem, and corresponds to the value
maximizing the "fitness" (i.e. the reproductive success) of the modeled organism given
the conditions (Budinich et al., 2017; Steuer et al., 2012) (Figure 1.17). This approach
is called flux balance analysis (FBA), and rely on constraint-based models. Metabolic
networks then allow for the mechanistic modeling of intra-cellular processes, and can

even be extended to model metabolisms at community scales (Budinich et al., 2017).
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Moreover, tools are now available for the automatic reconstruction of metabolic networks
(Konwar et al., 2015; Kanehisa et al., 2019), opening the door to their application on full
communities (Budinich et al., 2017; D’Alelio et al., 2019).

But to be included in metabolic networks, genes require a functional annotation (Grossart
et al., 2020), when a significant part of omics data remain poorly understood on a
functional level (Section 1.3.2.1). Reed et al. (2014) wrote that "although insightful for
laboratory studies, [the metabolic network approach] is infeasible for use in conjunction
with environmental genomics data because the majority of microbes are uncultured and
their metabolic networks are thus unknown’. In only 5 years, this statement became
questionable with the advent of high quality MAGs for uncultured organisms, but illus-
trates well the necessity to have high quality genomics data and functional annotations
for the metabolism-based approach to work. Metabolic networks have also been crit-
icized for their struggle to capture temporal changes in metabolisms, like the switch
between phototrophic metabolism during the day and storage-based metabolism at night
in Cyanobacteria for example, despite the excellent quality of genomics data available
(Steuer et al., 2012). But recent advances in constraint-based modeling techniques proved
that metabolic diurnal cycles could be derived from metabolic networks (Reimers et al.,
2017). Finally, flux balance analysis analysis have yet been rarely applied on eukaryotic
organisms, at least compared to prokaryotic organisms, mainly due to the compartmen-
talization of eukaryotic cells, which adds a layer of complexity to the picture (Niklas et al.,
2010). It is why the metabolism-based approach has not yet been applied to a full bio-
geochemical model, despite its great potential for a mechanistic modeling of planktonic
organisms. Instead, all of the omics-informed biogeochemical models published in the

last decade relied on a gene-centric approach.

1.4.3 Gene-centric approach for biogeochemical modeling

In gene-centric models, organisms are grouped according to a few genes pre-selected for
their metabolic function and usually referred to as functional genes (Reed et al., 2014;
Louca et al., 2016a). For example, the first published gene-centric biogeochemical model
used 8 functional genes involved in nitrogen cycling as state variables: amoA for aerobic
ammonia oxidation, hzo for anaerobic ammonium oxidation, nor for aerobic nitrite oxi-
dation, dsr for sulfate reduction, nap for sulfide oxidation coupled to nitrate reduction,
sox for aerobic sulfide oxidation, narG for nitrate reduction, nirK for nitrite reduction,
nrf for dissimilatory nitrite reduction to ammonium and cox for aerobic respiration (Reed
et al., 2014). The model described the rate of each gene production as dependant on

nutrients and concentrations of reaction inhibitors, while the concentration of nutrients
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was in turn impacted by the abundance of the different functional genes (Reed et al.,
2014). It was applied to a 1 dimension (vertical) section of the Arabian Sea, allowing to
reproduce observed patterns of oxygen, ammonium, nitrate and nitrite concentrations,
but also observed sequence abundances of functional genes (Reed et al., 2014). A similar
approach was proposed two years later, this time modeling carbon, sulfur and nitrogen
cycles in a Canadian fjord through the modeling of 6 functional genes (Louca et al., 2016a).
This model improved the biological realism of gene-centric approaches by not only mod-
eling the DNA concentration of functional genes, but also their transcription from DNA
to mRNA, allowing for a more mechanistic representation of enzyme production, and a
better justification for comparing model outputs with metatranscriptomics data (Louca

et al., 2016a).

These early attempts led to the publication of GENOME, the first 3D (i.e. longitude,
latitude and depth) gene-centric biogeochemical model, including 20 prokaryotic gene
functional groups (Coles et al., 2017), and from which the functioning is schematized
in Figure 1.18. The model structure of GENOME was different from the ones of Reed
et al. (2014) and Louca et al. (2016a), as instead of only following genes concentrations as
state variables, it used the abundance of organisms bearing different randomly assigned
genomes and transcriptomes (Figure 1.18, the terms genomes and transcriptomes refer-
ring here to the composition in functional genes and their predicted expressions). Inspired
by emergent trait-based models such as DARWIN (Follows et al., 2007) (see section 1.2.3),
GENOME creates random organisms to which are assigned functional genes, before be-
ing included in a global circulation model where only the fittest organisms are conserved,
allowing for the emergence of the most adapted communities at each model run (Figure
1.18). It led to the observation that across different simulation runs, the community-level
metabolic rates were similar in the same geographic areas, independently of the fact that
the modeled organisms were different (Coles et al., 2017). The authors then proposed that
genomic composition of planktonic communities in the model had more influence on bio-
geochemistry than the genetic composition of the individual organisms (Coles et al., 2017).
This model-based hypothesis illustrates how gene-centric approaches allow to draw con-
clusions on functional diversity and its impact on biogeochemistry, where traditional PFT

modeling would have struggled to decouple function from taxonomy.

Gene-centric approaches have also proven useful for confronting model outputs to ex-
perimental data (Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017). Indeed, by
modeling DNA and mRNA concentrations, gene-centric models allow for direct compar-
isons with metagenomics and metatranscriptomics datasets (Figure 1.18). Despite these

improvements, all the gene-centric models published so far fail at answering to Hood’s
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Figure 1.18 - Simplified functioning of the GENOME model, built using information and figures from
Coles et al. (2017). Organisms are first randomly assigned a size from 1 umto 2000 um. Parameters
like substrate uptake affinity, growth rate, mortality or sinking speed are then derived from the
randomly selected size, according to experimental data (light blue box). Each organism is also
assigned a degree of complexity, which corresponds to the number of functional genes it will be able
to get. To avoid super-organisms dominating the model ecosystem, a trade-off was used to linearly
decrease the maximum growth rate as the complexity increase (orange box). Functional genes are
then randomly assigned to organisms, determining their impact on biogeochemistry (yellow box).
Examples of such functional genes are: To avoid to kkeep unviable organisms in the model, the ones
whose biomass did not represent more than 1% of the total community at any location were replaced
by new organisms. 68 organisms co-existed at any given time during the simulations presented in
Coles et al. (2017), as illustrated by the multicolored bars on the left green box. The evolution of 7
substrates were also modeled, which correspond to the plain bars in the left green box. The model
notably allowed to predict the concentrations of amtB and pcaH genes in the Atlantic Ocean (coding
respectively for ammonium transport and aromatic ring cleavage, right green box). On the maps in
the right green box, observed concentrations of these two genes are overlaid in circles.

concerns evoked at the beginning of this section (Hood et al., 2007). Indeed, these models
require to a priori select a set of functional genes from which the function has to be well
known (e.g light-harvesting genes, nitrification genes, nitrogen fixation genes,...), exactly
like PFT need to be a priori selected in traditional PFT models. This way, the gene centric
approach was only applied to well known pathways, mostly present in prokaryotic organ-
isms, and unrepresentative of the observed functional diversity of planktonic organisms

(Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017).



Chapter 1. General introduction

The emergence of metabolism-based and gene-centric approaches have provided a theo-
retical framework that allow for the use of genes as structural components of biogeochem-
ical models (Mock et al., 2016; Stec et al., 2017; D’Alelio et al., 2019; Grossart et al., 2020;
Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017). The gene-centric approach has
even been proven to be applicable at the scale of the entire Atlantic Ocean (Coles et al.,
2017). However, it has yet failed at increasing the diversity representation in biogeochem-
ical models, by only focusing on small numbers of functional genes (a maximum of 20 in
Coles et al. (2017)) and only prokaryotic metabolic pathways. This highlights the current
need for data-driven methods allowing for the automatic detection and quantification of

functional genes of biogeochemical and ecological importance from meta-omics data.

1.5 How to use omics data to improve planktonic diversity

representation in biogeochemical models ?

In this introduction, I have reviewed how the functionally and taxonomically diverse
planktonic communities impact global biogeochemical cycles. I have then presented
how these planktonic communities are currently represented in biogeochemical mod-
els, highlighting the gap between observed and modeled planktonic diversity. Finally, I
showed how the advent of omics data led to further understanding of plankton diversity
and contributed to the emergence of new theoretical frameworks, bearing the potential of
producing biogeochemical models with realistic representations of planktonic functional
diversity (Figure 1.19).

GENOME
Fasham et al., 1990 Le Quéré etal., 2005 Colesetal., 2017

- realistic
+ simple

+ realistic
- simple

PISCES DARWIN
Aumont et al., 2003 Follows et al., 2007

Figure 1.19 - Gradient of planktonic_functional and taxonomic diversity implemented in biogeochem-
ical models, with examples of key models discussed in this introduction: Fasham et al. (1990), Au-
mont et al. (2003), Le Quéré et al. (2005), Follows et al. (2007) and Coles et al. (2017). NPZD stands
Jor nutrient, phytoplankton, zooplankton and detritus models (see section 1.2.1), PFT stands for
plankton functional types models (see section 1.2.2), while omics-based models refer to gene-centric
and metabolism-based approaches, as well as to potential new theoretical frameworks involving
omics data and potentially allowing for a more realistic representation of planktonic diversity in
biogeochemical models (see section 1.4).

In particular, I highlighted the need for data-driven methods allowing to define model

structural components from observational data, to avoid a priori choices of the model
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PFTs, traits, genes or metabolic pathways. I demonstrated the promises carried by omics
data to tackle this issue, but identified multiple limitations emerging from their current
use in theoretical frameworks, notably the bias towards cultivated organisms and well-
described pathways in gene-centric and metabolic models, preventing us to take full
advantage of the richness of omics datasets. It led me to consider 3 main research

questions, which drove the analyses presented in the following chapters of this thesis.

1. Can we use meta-omics data to detect functional traits from which the genomic

basis is poorly known?

2. Can we use meta-omics data to predict the distribution of functional traits/genes

in the environment through statistical modeling?

3. Can the abundance and distribution of functional traits/genes be quantified in

meta-omics data without any a priori choice of focal functions and/or species?

I will try to bring answers to these questions in the following parts and chapters of this

manuscript:

In Part I, entitled From genes to functional traits in the global ocean: the mixotrophy and
DMS production case studies, 1 will bring answers to questions 1. and 2. using two a priori
chosen functional traits as case studies: mixotrophy, from which the genomic basis is
poorly known, and DMS production, from which the metabolism is well described. This

first part will be composed of two chapters:

Chapter 2 will focus on how metabarcoding can be used to describe the distribution
of functional traits, using mixotrophy as an illustration. In section 1.2.2 of this in-
troduction, I evoked how mixotrophic protists are often absent from biogeochemical
models, despite growing evidence of their biogeochemical importance. Here, I pro-
pose the first ever omics-based assessment of mixotrophic protists abundance in
the global ocean, showing their ubiquity and unveiling some interesting character-
istics of their biogeography. This chapter will be mainly composed of a manuscript
entitled Mixotrophic protists display contrasted biogeographies in the global ocean,

published in the ISME Journal in 2018, of which I am first author.

Chapter 3 will focus on how genomics and transcriptomics data can be used to
investigate the genomic basis of functional traits in planktonic lineages, using both
mixotrophy and DMS production as illustrations. The chapter will also expose how
genomic markers of functional traits can be used to derive quantitative predictions
of metabolic functions, through preliminary results on the analysis of the global

distribution of genomic markers of DMS production.
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Part II, entitled Data-driven approaches to identify and quantify the_functional composition
of planktonic communities, will mainly be focused on questions 2. and 3., as I will present
a method allowing to use omics data to quantify gene functional groups in the global

ocean without a priori. This part will be composed of one chapter:

Chapter 4 will describe a data-driven method to identify gene functional groups
in meta-omics datasets, quantify their abundance, and study their response to
environmental gradients. The method was tested on more than 800 prokaryotic
MAGs, and machine learning techniques were used to try to predict the abundance
of their gene functional groups from the environmental context. This chapter will
be mainly composed of a manuscript entitled Towards omics-based predictions of
planktonic functional composition from environmental data, which I have submitted
as first-author to Nature Communications on the 24th of April 2020, and is currently

under review.

Chapter 5 will consist in a general discussion, in which I will summarize the advantages
and limits of omics-driven approaches to increase diversity in biogeochemical models.
I will also comment on the potential combination of omics data with other data types,
such as high-throughput imaging, to improve our theoretical understanding of planktonic
ecosystems. Finally, I will question if we should keep working at the functional-trait
level, switch exclusively to gene-centric level, or maybe even try to come up with a new
conceptual framework to improve planktonic diversity representation in biogeochemical

models.
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Figure 2.1 - Metabarcoding as an alternative to _functional genomic markers _for the detection of func-
tional traits with poorly known genomic basis. Metabarcodes can be associated to taxonomic lin-
eages through annotation databases such as PR2 (Guillou et al., 2013), and the number of metabar-
codes associated to each lineage is approximately proportional to its biomass (Biard et al. (2017),
more on this in the next section). A functional annotation can then allow to link lineages with func-
tional traits, based on the literature and the knowledge of experts. The abundance of metabarcodes
associated to each trait can then be computed.

In the introduction, I highlighted how omics data had been included in theoretical frame-
works with a strong bias towards well described metabolic pathways. One of the sci-
entific questions that I asked was can we use meta-omics data to detect functional traits
Jfrom which the genomic basis is poorly known?. The first step towards the integration

of functional traits in models through omics data is to find ways to detect them in-situ,
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and hopefully quantify their presence in samples. Such a quantification would allow to
explore the distribution of the detected trait, identify potential trade-offs with other traits,
and determine its affinity for specific environmental conditions, which are key elements
for the implementation of the trait in a modeling framework. The silver bullet for detecting
and quantifying a trait in the environment through omics data is the access to functional
genomic markers, i.e. one or multiple genes directly linked and/or responsible of the or-
ganism’s functional trait, and of which the genomic and transcriptomic abundances can
be used as a proxy of the trait presence and realization. But the detection and quantifica-
tion of traits that are governed by poorly known or even unknown molecular mechanisms
remains problematic (more on this issue in Chapter 3). During the first year of my the-
sis, I thus explored how metabarcoding could provide an alternative to functional genomic
markers for the detection of traits with poorly known genomic basis, relying mostly on the
manual annotation of functional traits to taxonomic lineages (Figure 2.1). In particular, I

focused my work on the functional trait of mixotrophy.

Innate capability of fixing C ? Non-constitutive
Mixotrophs (NCM)

Constitutive
Mixotrophs (CM) C-fixation acquired from
specific prey ?

Karlodinium spp.

C-fixation mediated by Dinophysis spp.
symbionts ?

Strombidium spp.

Plastidic specialist
non-constitutive

mixotrophs (pSNCM)

Figure 2.2 - The different types of mixotrophy, or mixotypes. Constitutive mixotrophs have an
innate ability to fix carbon through photosynthesis, they are sometimes called ’algae that eat’.
Non-constitutive mixotrophs do not have an innate ability to fix carbon, and can be subdivided in
three subgroups depending on how they acquire this ability. Generalist non-constitutive mixotrophs
(GNCM) can steal the chloroplasts from any of their preys, while plastidic specialist non-constitutive
mixotrophs (pSNCM) can steal the chloroplasts from some specific preys. Finally endosymbiotic
specialist non-constitutive mixotrophs (eSNCM) bear photosynthtic symbionts. Pictures from Leles
etal (2017).

Mixotrophy is a functional trait that has long been overlooked, but is now considered to be

present in the majority of protistan lineages (Flynn et al., 2013). Still, the physiology and
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ecology of mixotrophs remain poorly known, in part because as most protistan lineages,
they remain challenging to culture in labs (Flynn et al., 2013). The first description of
the global biogeography of mixotrophs was published through a review of morphological
identification data in 2017, at the beginning of my PhD (Leles et al., 2017). At the time,
no study had investigated mixotrophy in meta-omics data, despite their clear ecological
significance (Mitra et al., 2014) and the need for information about their abundance in
the open ocean (Leles et al., 2017). This lack of meta-omics based studies focusing on
mixotrophs can notably be explained by the absence of genomic markers of mixotrophy,
i.e. genes that could allow to detect mixotrophy in metagenomics and/or metatranscrip-
tomics samples. This absence can notably be explained by the fact that multiple types
of mixotrophy exist, each corresponding to organisms with distinct physiologies and be-
haviors (Detailed in figure 2.2), making it hard to identify specific metabolic pathways
associated with this trait. Mixotrophy then appeared as a perfect case study for testing
metabarcoding as an alternative to functional genomic markers, and my goal was to in-
vestigate the biogeography of mixotrophic protists in the global ocean through meta-omics

data, providing the first ever list of metabarcodes corresponding to mixotrophic lineages.

The rest of this chapter will consist in a manuscript entitled Mixotrophic protists display
contrasted biogeographies in the global ocean, published in the ISME journal in January

2019, and on which I am first author.
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Abstract: Mixotrophy, or the ability to acquire carbon from both auto- and heterotrophy, is a
widespread ecological trait in marine protists. Using a metabarcoding dataset of marine plankton
from the global ocean, 318,054 mixotrophic metabarcodes represented by 89,951,866 sequences
and belonging to 133 taxonomic lineages were identified and classified into four mixotrophic
functional types: constitutive mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM),
endo-symbiotic specialist non-constitutive mixotrophs (eSNCM), and plastidic specialist non-
constitutive mixotrophs (pSNCM). Mixotrophy appeared ubiquitous, and the distributions of the
four mixotypes were analyzed to identify the abiotic factors shaping their biogeographies. Klep-
toplastidic mixotrophs (GNCM and pSNCM) were detected in new zones compared to previous
morphological studies. Constitutive and non-constitutive mixotrophs had similar ranges of dis-
tributions. Most lineages were evenly found in the samples, yet some of them displayed strongly
contrasted distributions, both across and within mixotypes. Particularly divergent biogeographies
were found within endo-symbiotic mixotrophs, depending on the ability to form colonies or the
mode of symbiosis. We showed how metabarcoding can be used in a complementary way with
previous morphological observations to study the biogeography of mixotrophic protists and to

identify key drivers of their biogeography.
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2.2.1 Introduction

Marine unicellular eukaryotes, or protists, have a tremendous range of life styles, sizes and forms
(Caron et al., 2012), showing a taxonomic and functional diversity that remains hard to define
(de Vargas et al., 2015; Pawlowski et al., 2012). This variety of organisms is having an impact on
major biogeochemical cycles such as carbon, oxygen, nitrogen, sulfur, silica, or iron, while being
at the base of marine trophic networks (Caron et al., 2017; Keeling and Campo, 2017; Caron,
2016a; Le Quéré et al., 2005; Amacher et al., 2009). Hence, they are key actors of the global

functioning of the ocean.

Historically, marine protists have been classified into two groups depending on their trophic strat-
egy: the photosynthetic plankton (phytoplankton) and the heterotrophic plankton (zooplankton).
It is now clear that mixotrophy, i.e., the ability to combine autotrophy and heterotrophy, has been
largely underestimated and is commonly found in planktonic protists (Caron, 2016a; Stoecker
et al.,, 2017; Flynn et al., 2013; Selosse et al., 2017). Instead of a dichotomy between two trophic
types, their trophic regime should be regarded as a continuum between full phototrophy and
full heterotrophy, with species from many planktonic lineages lying between these two extremes
(Flynn et al., 2013). Mitra et al. 2016 have proposed a classification of marine mixotrophic
protists into four functional groups, or mixotypes. The constitutive mixotrophs, or CM, are photo-
synthetic organisms that are capable of phagotrophy, also called “phytoplankton that eat” (Mitra
et al., 2016). They include most mixotrophic nanoflagellates (e.g., Prymnesium parvum, Kar-
lodinium micrum). On the opposite, the non-constitutive mixotrophs, or “photosynthetic zoo-
plankton”, are heterotrophic organisms that have developed the ability to acquire energy through
photosynthesis (Stoecker et al., 2017). This ability can be acquired in three different ways: the
generalist non-constitutive mixotrophs (GNCM) steal the chloroplasts of their prey, such as most
plastid-retaining oligotrich ciliates (e.g., Laboea strobila), the plastidic specialist non-constitutive
mixotrophs (pSNCM) steal the chloroplasts of a specific type of prey (e.g., Mesodinium rubrum or
Dinophysis spp.), and finally the endo-symbiotic specialist non-constitutive mixotrophs (eSNCM)
are bearing photosynthetically active endo-symbionts (most mixotrophic Rhizaria from Collodaria,

Acantharea, Polycystinea, and Foraminifera, as well as dinoflagellates like Noctiluca scintillans).

As drivers of biogeochemical cycles in the global ocean, and particularly of the biological carbon
pump (Keeling and Campo, 2017; Ducklow et al., 2001; Guidi et al., 2016), marine protists are a
key part of ocean biogeochemical models (Le Quéré et al., 2005; Aumont et al., 2015; Follows et al.,
2007; Reed et al., 2014). However, physiological details of mixotrophic energy acquisition strate-
gies have only been studied in a restricted number of lineages (Stoecker et al., 2017; Johnson,
2011; Stoecker et al., 2009). They appear to be quite complex and greatly differ across mixotypes,
which makes mixotrophy hard to include in a simple model structure (Flynn and Mitra, 2009;
Ward and Follows, 2016; Berge et al., 2017; Ghyoot et al., 2017; Ward et al., 2011). Hence at
this time, mixotrophy is not included in most biogeochemical models, neglecting the amount of
carbon fixed by non-constitutive mixotrophs through photosynthesis, and missing the population
dynamics of photosynthetically active constitutive mixotrophs that can still grow under nutrient

limitation (Ghyoot et al., 2017; Mitra et al., 2014). This is most probably skewing climatic models
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predictions (Mitra et al., 2016, 2014), as well as our ability to understand and prevent future

effects of global change.

A better understanding of the environmental diversity of marine mixotrophic protists, as well as
a description of the abiotic factors driving their biogeography at global scale are still needed, in
particular to integrate them in biogeochemical models. Leles et al. 2017 attempted to tackle this
problem by reviewing about 110,000 morphological identification records of a set of more than 60
mixotrophic protists species in the ocean, taken from the Ocean Biogeographic Information System
(OBIS) database. They found distinctive patterns in the biogeography of the three different non-
constitutive mixotypes (GNCM, pSNCM, and eSNCM), highlighting the need to better understand
such diverging distributions (Leles et al., 2017). Environmental molecular biodiversity surveys
through metabarcoding have been widely used in the past fifteen years to decipher planktonic
taxonomic diversity (de Vargas et al., 2015; Stoeck et al., 2010; Bik et al., 2012; Bittner et al.,
2013). Here, we exploited the global Tara Oceans datasets (Karsenti et al., 2011; Alberti et al.,
2017; Pesant et al., 2015), and identified 133 mixotrophic lineages, that we classified into the four
mixotypes defined by Mitra et al. 2016. This first ever set of mixotrophic metabarcodes allowed
us to investigate the global biogeography of both constitutive and non-constitutive mixotrophs, in
relation with in-situ abiotic measurements. We tested (i) if new information on marine mixotrophic
protists distribution can be gained in comparison with previous morphological identifications
(Leles et al., 2017); (ii) if the constitutive mixotrophs, which are not addressed in Leles et al. 2017,
and the non-constitutive mixotrophs diverge in terms of biogeography; (iii) if the study of diversity
and abundance of environmental metabarcodes could lead to the definition of key environmental

factors shaping mixotrophic communities.

2.2.2 Materials and methods

2.2.2.1 Samples collection and dataset creation

Metabarcoding datasets from the worldwide Tara Oceans sampling campaigns that took place be-
tween 2009 and 2013 (Karsenti et al., 2011; Pesant et al., 2015) (data published in open access at
the European Nucleotide Archive under project accession number PRJEB6610) were investigated.
We analyzed 659 samples from 122 distinct stations, and for each sample, the V9-18S ribosomal
DNA region was sequenced through Illumina HiSeq (Alberti et al., 2017). Assembled and filtered
V9 metabarcodes (cf. details in de Vargas et al. (de Vargas et al., 2015)) were assigned to the
lowest taxonomic rank possible via the Protist Ribosomal Reference (PR2) database (Guillou et al.,
2013). To limit false positives, we chose to only analyze the metabarcodes (i.e., unique versions of
V9 sequences) for which the assignment to a reference sequence had been achieved with a sim-
ilarity of 95% or higher. This represents 65% of the total dataset in terms of metabarcodes and
84% in terms of total sequences. Our dataset involved 1,492,912,215 sequences, distributed into
4,099,567 metabarcodes assigned to 5071 different taxonomic assignations, going from species to

kingdom level precision.
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2.2.2.2 Defining a set of mixotrophic organisms

Among these 5071 taxonomic assignations, we searched for mixotrophic protist lineages, tak-
ing into account the four mixotypes described by Mitra et al. (Mitra et al., 2016): constitutive
mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM), endo-symbiotic specialist non-
constitutive mixotrophs (eSNCM), and plastidic specialist non-constitutive mixotrophs (pSNCM).
We used the table S2 from Leles et al. (Leles et al., 2017), which is referencing 71 species or genera
belonging to three non-constitutive mixotypes (GNCM, pSNCM, and eSNCM), as well as multiple
other sources coming from the recent literature on mixotrophy (Caron, 2016a; Stoecker et al.,
2017; Flynn et al., 2013; Mitra et al., 2016; Esteban et al., 2010; Granéli et al., 2012; Liu et al.,
2010; Hansen et al., 2012; Agatha et al., 2005; Jones et al., 1993; Johnsen et al., 1999; Rhodes
and Burke, 1996; Hemleben et al., 1977; Fehrenbacher et al., 2011; Spero and Parker, 1985;
Faber et al., 1989; Kuile and Erez, 1984; Biard et al., 2017), and inputs from mixotrophic protists’
taxonomy specialists (cf. Acknowledgments section). Within the 5071 taxonomic assignations of
variable precisions, we identified 5 GNCM, 9 pSNCM, 77 eSNCM, and 42 CM lineages (detailed list
available publicly under the https://doi.org/10.6084/m9.figshare.6715754, and all metabarcodes
were tagged with their mixotypes in the PR2 database). Among these 133 taxonomic assignations
that we will call “lineages”, 92 were defined at the species level, 119 at the genus level, and the
last 14 at higher taxonomic levels where mixotrophy is always present (mostly eSNCM groups
like Collodaria). In the Chrysophyceae family, metabarcodes assigned to clades B2, E, G, H, and
I were included even though we couldn’t find a general proof that all species included in these
clades have mixotrophic capabilities. However, if we exclude the photolithophic Synurophyceae
and genera like Paraphysomonas and Spumella, which we did, a vast majority of Chrysophyceae
are considered mixotrophic (Flynn et al., 2013). The final dataset included 318 054 metabarcodes
assigned to the 133 mixotrophic lineages selected, as well as their sequence abundance in 659

samples (table available publicly under the https://doi.org/10.6084/m9.figshare.6715754).

2.2.2.3 Environmental dataset

We built a corresponding contextual dataset using the environmental variables available in the
PANGAEA repository from the Tara Oceans expeditions (Pesant et al., 2015; Ardyna et al., 2017).
The 235 environmental variables available were a priori reduced to 84, keeping only one version
of each variable that was calculated twice or more using different tools, units and/or formulas.
For example, the daily photosynthetically active radiations (PAR) were measured using 10 differ-
ent approaches, some using in situ sensors, others using satellite observations combined with
equations based on the diffuse attenuation coefficient (Morel et al., 2007). For similar reasons,
among the conductivity, the temperature, and the salinity, only the last two were kept. Then,
among the 83 remaining variables, only the ones recorded for at least half of the samples were
kept. We obtained a table composed of 57 different environmental variables (Available publicly
under the DOI 10.6084/m9.figshare.6715754). In this table, 8.67% of the values were missing.
This table contained environmental context for 658 of our 659 samples, lacking environmental

information only for the DCM of station number 120. This sample was then removed for the
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statistical analysis.

2.2.2.4 Distribution and diversity of mixotrophic protists

For each mixotype, the number of metabarcodes, the total sequence abundance and the mean
sequence abundance by metabarcode was computed (Table 2.1). Also, we measured each metabar-
code’s station occupancy, i.e., the number of stations in which it was found, and station evenness,
i.e., the homogeneity of its distribution among the stations in which it was detected (Fig. 2.4). Di-
versity of mixotrophic protists was investigated through mixotype-specific metabarcode richness
per station (Table 2.1). As the number of samples taken per station can impact the abundance
and diversity of detected metabarcodes, richness was computed only at stations for which the

maximum number of eight samples were available (40 stations over 122).

Mixotypes CM eSNCM pSNCM  GNCM
Number of lineages used in this study 42 77 9 5
Number of V9 metabarcodes 26,015 288,536 2143 1360
Total sequence abundance 3,581,751 86,098,397 208.096 63.622
Mean sequence counts per metabarcode 137.7 298.4 97.1 46.8
Mean metabarcode richness per station” (std dev) 2162 (1115) 18502 (9238) 67 (102) 84 (111)
Number of absences/station 0/122 0/122 5/122 3/122

Table 2.1 - Detailed number of lineages found for each mixotype, as well as the number of metabar-
codes, the corresponding total sequence counts over all stations, the mean sequence abundance by
metabarcode, and mean metabarcode richness.

The richness was computed as the number of different metabarcodes present at each station. It was
calculated for each mixotype and means are indicated in the fifth line. Absences correspond to the
number of stations in which no sequences were detected for the corresponding mixotype.

CM constitutive mixotrophs, GNCM generalist non-constitutive mixotrophs, eSNCM endo-symbiotic
specialist non-constitutive mixotrophs, pSNCM plastidic specialist non-constitutive mixotrophs.
“The mean indicated here was calculated using only stations having the maximum number of sam-
ples (see main text)

2.2.2.5 Global biogeography of mixotrophic protists

Two statistical analyses were performed to investigate mixotrophic protists biogeography. One
at the metabarcode level, and one at the lineage level, i.e., merging the sequence abundance of
metabarcodes sharing the same taxonomical assignation. The metabarcodes abundance table
was composed of 318,054 rows/metabarcodes, and 659 columns/samples, whereas the lineage
abundance table was composed of 133 rows/lineages and 659 columns/samples (both datasets

are available publicly at https://doi.org/10.6084/m9.figshare.6715754).

The two redundancy analyses led to very similar conclusions, but the biogeography of lineages
appeared easier to visually represent and interpret than the one of metabarcodes. Hence, we will
only present the lineage-based analysis here, before presenting and discussing the methods used

and results obtained for the metabarcodes level analysis in a separate section (Section 2.2.5).
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Our statistical model was designed to identify lineages (or metabarcodes) with contrasted bio-
geographies, and relate their presence to the environmental context. We normalized the sequence
counts from the lineage abundance matrix using a Hellinger transformation (Legendre and Legen-
dre, 1998). We used the environmental dataset and the mixotrophic lineages’ abundance matrix
as explanatory and response matrices, respectively, to conduct a redundancy analysis (RDA) (Leg-
endre and Legendre, 1998). Since redundancy analyses (RDA) cannot handle missing values in
the explanatory dataset, we replaced missing environmental variables by their means across all
samples, to keep all the environmental variables in the analysis. This option was selected over a
joint modelling approach,because of a too high collinearity among some variables, and difficulties
to define a multivariate distribution fitting the whole dataset. Environmental variables were then
centered prior to the analysis. For that, we made a species pre-selection using Escoufier’s vectors
(Escoufier, 1973), which allowed to keep only the 62 most significant mixotrophic lineages. This
method selects lineages according to a principal component analysis (PCA), sorting them based on
their correlation to the principal axes. We then used a maximum model (Y X) and a null model (Y 1)
to conduct a two directional stepwise model selection based on the Akaike information criterion
(AIC) (Borcard et al., 2011). The resulting model contained 28 response variables, among which
five were qualitative (filter size, biogeographical province sensu Longhurst (Longhurst, 1998), sea-
son, season moment,i.e. early, middle or late, and sampling depth, i.e. surface or DCM), and 23
quantitative. The latter included: longitude, bathymetry, distance to coast, mixed layer depth,
euphotic zone depth, oxygen maximum depth, ammonium at 5m, temperature, silica, oxygen,
chlorophyll a, daylight duration, absorption coefficient of colored dissolved organic matter (ac-
CDOM), calcite saturation state, Okubo-Weiss parameter, PO4, CO3, HCO3, photosynthetically
active radiations (PAR), salinity, maximum Lyapunov exponent, optical beam attenuation coeffi-
cient at 660 nm and beam attenuation coefficient of particles. Analyses and graphs were realized
with the R software version 3.4.3 (R Core Team, 2019). All scripts are available on GitHub platform

(https://github.com/upmcgenomics/MixoBioGeo).

2.2.3 Results

2.2.3.1 Global distribution and diversity of marine mixotrophic protists

Mixotrophic protists metabarcodes were detected in all the 659 samples with a total sequence
abundance of 89,951,866, representing 12.56% of the total sequence abundance in the 659 sam-
ples studied. They represented a mean of 12.64% of the total sequence abundance per sample,
with a maximum of 96.96% and a minimum of 0.01%. To avoid any potential overestimation
of mixotrophic lineages presence in the following results, we marked all records of less than a
hundred sequences as questionable. We found both eSNCM and CM in each of the 122 stations
studied (Table 2.1 and Fig. 2.3). In only two occasions the number of sequences belonging to
CM was questionable, at stations for which only one sample was sequenced. GNCM were found
absent in only two stations and their presence was questionable in 39 stations (Fig. 2.3). pSNCM

were absent at five stations (three in the Indian Ocean, and two in the Pacific Ocean) and detected
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Figure 2.3 - Global distribution of mixotypes from metabarcoding data. Maps showing for each
station the proportion of sequences (in %) belonging to each mixotype over the total number of
mixotrophic sequences. Stations in which no sequence was found were marked as absent, ones
with less than 100 sequences marked as questionable. Each Longhurst biogeographical provinces
(Longhurst, 1998) is colored in the background if more than 100 sequences are detected in at least
one of its stations.

with questionable presence in 54 additional stations, which were mostly located in the central Pa-
cific and the Indian Ocean (Fig. 2.3). We found significant amounts of sequences corresponding
to GNCM in the Central Pacific, Southern subtropical Atlantic, and Indian Ocean. The presence
of GNCM in these areas has not yet been recorded through morphological identifications dur-
ing field expeditions (Leles et al., 2017). Also, we detected more than 100 sequences of pSNCM
metabarcodes at 11 stations belonging to biogeographical provinces in which no morphological
identifications had been published (Leles et al., 2017; Longhurst, 1998), mostly in offshore areas
of the Atlantic and Pacific Ocean (Fig. 2.3). The mean evenness of mixotrophic metabarcodes
across stations was of 0.87, and 82.3% of the metabarcodes had a station evenness above 0.5
(Fig. 2.4). Station occupancy varied a lot depending on the metabarcodes, with a high density of
rare metabarcodes leading to a mean of 5.14 stations over a maximum of 122, and a standard
deviation of 7.7. However, three eSNCM metabarcodes were found in all the 122 stations, and
three CM metabarcodes were detected in 121 stations. The maximum occupancy for a GNCM
metabarcode was of 111 stations, while 92 stations was the maximum for a pSNCM metabarcode.
CM and GNCM metabarcodes showed a strong tendency towards high evenness values (Fig. 2.4,
means of 0.90 and 0.95, respectively), even for the most sequence abundant metabarcodes. Many

eSNCM metabarcodes had high evenness values, but below average values were detected for the
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most abundant ones (Fig. 2.4, global mean of 0.87). pSNCM metabarcodes had a similar mean of
evenness values (0.87), but a different distribution compared to other mixotypes (Fig. 2.4). Among
the 50 most abundant metabarcodes, 43 corresponded to Collodaria lineages, 47 were eSNCM and
3 were CM, all three assigned to Gonyaulax polygramma. GNCM and pSNCM metabarcodes had

homogeneously low sequence abundances (Fig. 2.4 and Table 2.1).
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Figure 2.4 - Sequence abundance, occupancy, and spatial evenness of each mixotrophic metabar-
code across sampled stations. Each metabarcode is plotted as a bubble, with its station occupancy,
i.e., the number of stations in which it was found, and its station evenness, i.e., the homogeneity
of its distribution among the stations in which it was detected, as coordinates. Violin plots were
drawn for each mixotype on both the x and y axes. The size of each bubble is scaled to the sequence
abundance found globally for the corresponding metabarcode.

2.2.3.2 Main factors affecting the biogeography of mixotrophic protists

The redundancy analysis helped to investigate further the environmental variables responsible
for the mixotrophic protists’ biogeography. The 62 lineages selected with the Escoufier’s vector
method corresponded to 20 CM, 34 eSNCM, 3 GNCM, and 5 pSNCM. Even after selection, a sig-
nificant part of the lineages did not show any response to environmental data in their distribution
(Fig. 2.5, e.g., 19 of the 62 lineages were found between -0.01 and 0.01 on both RDA1 and
RDAZ2). The adjusted R-squared of the RDA was of 34.89% (41.43% unadjusted), with 24.01% of
variance explained on the two first axes (Fig. 2.5). The first RDA axis (14.96%) marks an oppo-
sition between samples from oligotrophic waters with low productivity (RDA1 > 0) and samples
from eutrophic and productive water masses (RDA1 < 0). This axis is negatively correlated to

chlorophyll concentration, particles density, ammonium concentration, absorption coefficient of
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colored dissolved organic matter (acCDOM), duration of daylight, silica, CO3, oxygen, and PO4
concentration, as well as longitude. It is positively correlated to bathymetry, deep euphotic zone,
deep oxygen maximum, deep mixed layer, as well as to the distance to coast. The second RDA
axis (9.05%) is opposing offshore and subpolar samples (RDA2 > 0) to coastal and subtropical
ones (RDA2 < 0). The axis is positively correlated to the depth of the mixed layer, the dis- tance to
coast, the bathymetry, high maximum Lyapunov exponents as well as high concentrations of PO4,
oxygen, CO3 and silica. It is negatively correlated to temperature, salinity, and photosynthetically

active radiations (PAR).
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Figure 2.5 - Impact of environmental variables on the distribution of marine mixotrophs. Triplot of the
redundancy analysis (RDA) computed on the 62 Escoufier-selected lineages, after model selection.
The adjusted R-squared of the analysis is of 34.89% (41.43% unadjusted). Each gray dot corre-
sponds to a sample, i.e., one filter at one depth at one station. The blue dashed arrows correspond
to the quantitative envir- onmental variables. Abbreviations: MLD mixed layer depth, O2MaxD O2
maximum depth, EuphzoneD euphotic zone depth, PAR photo- synthetically active radiations, Cal-
cite Sat. St. Calcite Saturation State, c_660 optical beam attenuation coefficient at 660 nm, c_part
beam attenuation coefficient of particles, acCDOM absorption coefficient of colored dissolved organic
matter. Plain arrows correspond to mixo- trophic lineages, colors indicating mixotypes. For more
readability, we do not represent all qualitative variables included in the model. That is why only the
filter centroids are appearing, even though the sampling depth, season, season moment, i.e., early,
middle or late, and bio- geographical province were used in the RDA calculation

Among the 20 CM lineages, seven clearly emerged from the redundancy analysis (Fig. 2.5)

and showed distinct biogeographies related to environmental variables. Gonyaulax polygramma,

Alexandrium tamarense, and Fragilidium mexicanum, three Dinophyceae belonging to the Gonyaula-

cales order, were mainly found in oligotrophic waters with a deep euphotic zone, warm temper-

ature, high salinity, and PAR (RDA1l > O, RDA2 < 0). The four other CMs (involving all the
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Chrysophyceae included in the analysis as well as one Dinophyceae from the Kareniaceae family,

Karlodinium micrum) were found mostly in productive water masses (RDA1 < 0).
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Figure 2.6 - Contrasted global distributions of metabarcodes corresponding to two eSNCM lineages.
Maps of Hellinger-transformed sequence count abundances for metabarcodes assigned to the Col-
lodaria Siphonosphaera cyathina (a) and the Acantharia Acanthrometridae F3 spp. (b). These two
lineages are opposed on the first RDA axis (Fig. 2.5 and 2.8). Size and color both illustrate abun-
dance for better readability. Ellipses were drawn to highlight high abundance zones, and reveal the
differences in lineages distribution.

eSNCMs can be divided in three groups in the RDA space. The first group (RDA1 < 0) corresponds
to eSNCM species dominating rich and productive environments. It includes mainly Acantharia
and Spumellaria species. The second group (RDA1l > 0) dominates oligotrophic environments,
and includes multiple Collodaria as well as one Dinophyceae genus (Ornithocercus). Within this
group, Ornithocercus spp. is found mainly in coastal subtropical environments (RDA2 < 0), as
opposed to Sphaerozoum punctatum that is found mainly in offshore subpolar regions (RDA2 >
0). Siphonosphaera cyathina lies between these two trends as it is found only in oligotrophic
samples, but is not influenced by temperature or bathymetry (Figs. 2.5 and 2.6). The third
group corresponds to the eSNCM lineages that can be interpreted as distributed homogeneously
in regards of the environmental data we are using (e.g., lineages with the shortest arrows in Fig.
2.5). These notably include the 12 Foraminifera lineages present in the RDA. Looking at filters
centroids in the RDA space (Fig. 2.5), we can suppose that eSNCM lineages dominating eutrophic

systems (RDA1 < 0) are smaller in size than those dominating oligotrophic ones (RDA1 > 0).

Out of the five pSNCM included in the RDA, only Mesodinium rubrum, the most abundant one,
is distinctively represented in the RDA space. This suggests that the other pSNCM have homoge-
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neous distributions in response to our environmental variables. Mesodinium rubrum dominates
eutrophic environments, independently from the bathymetry or the temperature (RDA1 < 0, RDA2
~ 0). We find a similar pattern for GNCM, with only Pseudotontonia simplicidens well represented
in the RDA space out of the three species included in the analysis. Like M. rubrum, Pseudoton-
tonia simplicidens is the most abundant species in its group and it is mainly found in eutrophic

waters (RDA1 < 0).

2.2.4 Discussion

2.2.4.1 Mixotrophy occurs everywhere in the global ocean

Our metabarcoding survey confirms that marine mixotrophic protists are ubiquitous in the global
ocean (Leles et al., 2017), possibly extending the known range of distribution of two mixotypes
(Figs. 2.3 and 2.4). Mixotrophic organisms represented more than 12% of the sequences in
the complete Tara Oceans metabarcoding dataset, showing that they should not be understated.
We found contrasted biogeographies among metabarcodes and their corresponding lineages, both
within and across mixotypes (Figs. 2.4, 2.5, 2.6 and Section 2.2.5). We found constitutive
mixotrophs (CM) and endo-symbiotic specialist non-constitutive mixotrophs (eSNCM) metabar-
codes at all the 122 stations included in this global study (Table 2.1 and Fig. 2.4), verifying that
these two mixotypes are the most abundant in the ocean (Leles et al., 2017). This dominance of
eSNCM and CM in our data is also linked to the relatively high number of metabarcodes avail-
able for these two mixotypes in databases. Using 1360 generalist non-constitutive mixotrophs
(GNCM) metabarcodes corresponding to only five lineages, we detected them in ten biogeograph-
ical provinces (Longhurst, 1998) where no morphological identification had been recorded before
(Leles et al., 2017). GNCM metabarcodes had consistently high evenness values, and some had
station occupancy records comparable to the most abundant eSNCM and CM metabarcodes (Fig.
2.4). These results support the hypothesis of a globally ubiquitous distribution of GNCM. Plastidic
specialist non-constitutive mixotrophs (pSNCM) were found in five provinces in which no record
existed so far from morphological identification field studies (Leles et al., 2017). However, these
observations were often in a questionable range in terms of sequence abundance (Fig. 2.3), and
the overall distribution of pSNCM in our data appears as very concordant with morphological
observations (Leles et al., 2017). pSNCM metabarcodes had dominantly low station evenness val-
ues, which again supports the conclusions of Leles et al. 2017 that identified pSNCM as highly

seasonal and spatially restricted in their distribution.

While building our set of mixotrophic lineages, some widespread and potentially mixotrophic
genera did not appear, such as Ceratium spp., Tontonia spp., Amphisolenia spp., Triposolenia
spp., or Citharistes spp., mainly because of a poor representation in the PR2 database. Also, we
decided to only consider metabarcodes with more than 95% similarity to a reference sequence.
This threshold could be too selective for some species and not enough for some others, as single
similarity threshold are hardly efficient when studying whole eukaryotic populations (Wu et al.,

2015; Brown et al., 2015). For example, some species appeared with low sequence abundance in
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the data even though they couldnot have been sampled, such as three lacustrine species, e.g.,
Poteriospumella lacustris. Considering these biases and the sometimes relatively low sequence
counts (marked as questionable in Fig. 2.3), some of the new GNCM and pSNCM records we
observed should be considered with care, as they could be over-estimated or even sometimes
artefactual. However, the low number of lineages found for these two mixotypes in PR2 and in
our dataset are leading us to think that we were unable to capture the whole GNCM and pSNCM
communities. This supposes a global underestimation of GNCM and pSNCM abundances in our

results.

Tara Oceans metabarcoding dataset is built on snapshot samples taken irregularly during a 3-
year cruise, hence allowing no proper seasonal variations investigations. However, morphological
identifications of mixotrophic protists revealed seasonal variations in their abundance, with Meso-
dinium biomass blooming in spring in coastal seas for example (Leles et al., 2017). As metabar-
coding datasets have been successfully applied on time series to detect species successions across
gradients of time and space (Egge et al., 2013; Gilbert et al., 2010; DeLong et al., 2006), it would
be interesting to similarly investigate seasonal trends in mixotrophic communities. Our set of
mixotrophic lineages and metabarcodes being publicly available, our method will be applicable to
any other metabarcoding dataset, including time series. It will also be open to inputs and updates

from the global scientific community.

2.2.4.2 The contrasted biogeographies of marine mixotypes

Constitutive mixotrophs

Constitutive mixotrophs (CM) have very diverse feeding behaviors, with some species requiring
phototrophy to grow, others phagotrophy, and some being obligate mixotrophs (Stoecker et al.,
2009). They were described in all waters of the global ocean (Arenovski et al., 1995; Safi and
Hall, 1999; Moorthi et al., 2009; Unrein et al., 2010; Sanders and Gast, 2012). We found them
distributed in a range of conditions almost as wide as non-constitutive mixotrophs (Figs. 2.3 and
2.5). Among highly abundant lineages, most were dominantly found in eutrophic and shallow
habitats. However, a few dinoflagellates were found to be highly dominant in oligotrophic, sub-
tropical waters, showing how wide of a range of conditions constitutive mixotrophs can grow in
(Fig. 2.5). This illustrates how mixotrophy can allow organisms to dominate ecosystems even
when environmental conditions are poorly adapted to purely phototrophic or heterotrophic organ-
isms. When taken explicitly into account in biogeochemical models, marine mixotrophs increase
carbon export by up to 30% (Ward and Follows, 2016). Hence, their global ubiquity supposes that
the carbon export of the biological carbon pump could be underestimated in both oligotrophic and

eutrophic areas (Mitra et al., 2016).
Plastidic specialist and generalist non-constitutive mixotrophs (pSNCM and GNCM)

Like Leles et al. 2017, we found pSNCM and GNCM to have quite similar biogeographies (Fig.
2.5, Section 2.2.5). Sequence abundance of most of the metabarcodes for these two mixotypes

was homogeneously low (Table 2.1), but the two most abundant species, Mesodinium rubrum
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(pPSNCM) and Pseudotontonia simplicidens (GNCM), were found mostly in coastal and eutrophic
waters, consistently with Leles et al.’s 2017 morphological observations (Fig. 2.5, Section 2.2.5).
No species-level barcode is available in the PR2 database for the Tontonia genus, and only one
can be found for Pseudotontonia and Laboea genera, even though morphological records of these
GNCM are numerous (Leles et al., 2017). Experiments using meso- and microcosms combined with
individual counts and morphological identification have found that GNCM ciliates can represent
up to half of the individuals in ciliate communities of the photic zone (Mitra et al., 2016; Calbet
et al., 2012; Dolan and PErez, 2000). A proportion we would have trouble to reach with the five
lineages we were able to consider, knowing that there are 8686 different ciliate lineages available in
PR2. This highlights the urgent need for supplementing 18S reference databases for mixotrophic

ciliates.
Endo-symbiotic specialist non-constitutive mixotrophs (eSNCM)

Endo-symbiotic specialist non-constitutive mixotrophs (eSNCM) is by far the most widespread
and abundant non-constitutive mixotype in the global ocean (Figs. 2.3 and 2.4) (Leles et al.,
2017; Biard et al., 2017; Decelle et al., 2012). Their biogeography stands out, with a lot of highly
abundant ubiquitous lineages, and some other specialized towards certain types of ecosystems
(Fig. 2.5). They represent 95.7% of the sequence counts in our study and correspond to 90.7%
of the metabarcodes (Table 2.1), which highlights their abundance and diversity. The very high
number of rDNA copies present in Rhizaria orders such as Collodaria (Biard et al., 2017) might
lead the eSNCM to appear more abundant in metabarcoding datasets than they ecologically are.
However, in oligotrophic open oceans the Rhizaria biomass is estimated to be equivalent to that
of all other mesozooplankton (Biard et al., 2016), and positively correlated to the carbon export

(Guidi et al., 2016), showing how ecologically important they can be.
Investigating the divergent biogeographies of Collodaria and Acantharia

Collodaria are living either as solitary large cells or as colonies (Biard et al., 2017), which explains
why they are predominantly found in macro-sized (180-2000 pm) filter samples (Fig. 2.5). All
described Collodaria species so far harbor photosynthetic endo-symbionts, mostly identified as
the dinoflagellate species Brandtodinium nutricula (Biard et al., 2017; Probert et al., 2014). These
dinoflagellates are able to get in and out of their symbiotic state, which implies a light and/or
reversible effect of the Collodarian host on its symbiont metabolism (Probert et al., 2014). Based on
the same metabarcoding dataset, Collodaria were described as particularly abundant and diverse
in the oligotrophic open ocean (Biard et al., 2017). In our results, Collodaria dominate oligotrophic,
relatively deep waters (Figs. 2.5 and 2.6a). These Collodaria appear opposed to another set of
Rhizaria (Acantharia and Spumellaria) linked to eutrophic and shallow waters (Figs. 2.5 and 2.6b,
Section 2.2.5). Acantharia are found ubiquitously in the global ocean, but display particularly
high sequence abundances in some specific regions (Decelle et al., 2012). Mixotrophic Acantharia
live in symbiosis with the cosmopolitan haptophyte Phaeocystis, which is highly abundant and
ecologically active in its free-living phase (Decelle et al., 2012). Unlike the one of Collodaria,
this symbiosis is irreversible: an algal symbiont can not go back to its free-living phase (Decelle

et al., 2012). Our results suppose that these specific symbiotic modes could enable Acantharia
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and Collodaria to dominate different ecosystems (Figs. 2.5 and 2.6). Moreover, living in colonies
as Collodaria could help to dominate oligotrophic systems, e.g., by accumulating more food and
nutrients through their gelatinous extra-cellular matrix (Decelle et al., 2012). Experiments and
modeling studies should help to investigate the contribution of this assumption, comparing food

acquisition capacity and growth rates of free individuals versus in colony.

2.2.4.3 Towards an integration of mixotrophic diversity into marine ecosystem

models

The future of marine communities’ modeling lies in the integration of omics datasets into modeling
frameworks (Reed et al., 2014; Stec et al., 2017; Dick, 2017; Mock et al., 2016; Coles et al., 2017).
The use of metabolic networks and gene-centric methods has already shown very promising results
in modeling prokaryotic ecological dynamics (Reed et al., 2014; Coles et al., 2017). However,
eukaryotic metabolic complexity makes these methods hard to apply on protists for now, and
we still lack a universal theoretical framework on how to integrate such methods into concrete
modeling (Stec et al., 2017). Mixotrophic protists are physiologically complex, and their feeding
behavior can vary drastically on short time scales (Stoecker et al., 2017). It will then take a few
more years of comparative genomics and transcriptomics studies before being able to model their
physiology with purely gene-based approaches. Still, mechanistic models of mixotrophy exist and
are quite complex (Flynn et al., 2013; Ghyoot et al., 2017), even if the one from Ghyoot et al. 2017
could be implemented in a global biogeochemical model (Shuter, 1979). Most models make the
choice to represent either one or two (NCM and CM) types of organisms able to play the role of
all mixotypes depending on parameterization. However, no global agreement has been reached
on to what extent the different mixotypes should be modeled. This is mainly due to a lack of
quantitative and comparative data on the global impact of grazing and carbon fixation by the
different mixotypes (Millette et al., 2018). With our study, we show how meta-omics data can be
used to identify groups of organisms distributed differently in response to the environment. It
also allows the identification of ecological traits and environmental factors potentially responsible
for these divergences. This information can be used to identify key species or lineages, and
design controlled experiments with variations of targeted environmental factors to produce the
quantitative data needed by modelers. Considering our results, we propose that host-symbiont
dynamics of eSNCM should be investigated as a trait playing a potential role on Rhizaria ability to
thrive in oligotrophic conditions. Particularly, the mechanisms behind holobiont formation and
its potential reversibility could play major roles on eSNCM carbon fixation in various nutrient
conditions. Future experiments comparing responses of Collodaria and Acantharia holobionts to
different stresses in terms of grazing and carbon fixation could lead to a better understanding of
the physiological differences between their two modes of symbiosis. Also, our results suggest that
the metabolic flexibility of CM should allow this mixotype to grow in almost any conditions, with
individual species probably spanning continuously between complete autotrophy and complete
heterotrophy. The risk is then to create a “perfect beast” mixotroph dominating all systems

(Flynn and Mitra, 2009). To avoid that, we need more comparative data on grazing and carbon
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fixation of obligate phototrophs versus obligate heterotrophs in response to nutrient depletion
and environmental fluctuation. Here again, meta-omics data could help to identify candidates for
efficient experiment designs. Finally, the small number of lineages of GNCM and pSNCM in our
study makes it hard to come up with strongly supported conclusions on whether they should be
differentiated in models or not. They seem to share similar biogeographies using snapshot data
(Fig. 2.5, Section 2.2.5), but considering that they have different abilities for conserving stolen
chloroplasts over time, it might not be the case when looking at a time series analysis (Stoecker

et al., 2009; Johnson et al., 2007; Schoener and McManus, 2012).

Our study uses meta-omics data to investigate the global distribution and biogeography of mixotrophic
protists in the ocean. Our results, currently based on metabarcoding data, complement mor-
phological records and will be complemented in the near future by metagenomics and meta-
transcriptomics studies. The latter will allow to distinguish the protists with mixotrophic capabili-
ties from the ones with ongoing mixotrophic activity. This could lead to quantitative estimations of
mixotrophic rates in environmental samples, allowing a sharpened study of mixotrophic protists
ecology in the global ocean. It could also lead to a metabolic description of complex processes like
kleptoplasty and endo-symbiosis, hence facilitating the modeling of mixo- trophic behaviors and

its incorporation in ocean biogeo- chemical models.

2.2.5 Supplementary: Metabarcodes level redundancy analysis (RDA)

Methods

Starting with 318 054 metabarcodes in our dataset, we had to use strong selection thresholds to
build a parsimonious redundancy analysis model. The Escoufier’s vector method is quite robust
and only asks for one threshold definition in order to select variables (Escoufier, 1973), and hence
was used when working at the lineage level. However, the escouf function implemented in the
R package pastecs (https://github.com/phgrosjean/pastecs) is not adapted to large datasets, and
we couldn’t apply the same method at the V9 metabarcode level. Instead, we selected metabar-
codes based on rarity and variance of their abundance profiles. First, we only kept the 272 471
metabarcodes appearing in more than one station. Then, we arbitrarily selected the metabarcodes
with a variance greater than 0.0001 in their Hellinger transformed abundance profiles. These 363
metabarcodes represented 0.1% of the total dataset in terms of metabarcodes, but 21.1% in terms
of sequence abundance.

The environmental variables were modified following the same steps as for the lineages level
RDA. Similarly, model selection was run using a two directional AIC-based stepwise selections.
The resulting model contained 5 qualitative response variables (filter, biogeographical province
(Longhurst, 1998), Ocean region, season moment and depth), as well as 37 quantitative response
variables (CO3, HCOS3, carbon flux, carbon total, density, PAR, 5m depth NO2, surface NO2, day-
light duration, bathymetry, surface NO3, 5m depth NOS3, salinity, iron, moon phase, acCDOM,
longitude, distance to coast, chlorophyll A, latitude, SST gradient, water residence time, calcite
and aragonite saturation states, Lyapunov exponent, nitracline depth, ammonium, temperature,

fluorescence, mixed-layer depth, oxygen, depth of oxygen maximum as well as 5 different scatter-
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ing coefficients measuring particular density).
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Figure 2.7 - Visualization of the metabarcodes involved in our statistical analyses. The two plots
correspond to the bubble plot already presented in figure 2. On the left, bubbles corresponding
to metabarcodes that were not included in the lineage RDA are blurred. On the right, bubbles
corresponding to metabarcodes that were not included in the metabarcode RDA are blurred.

Results

The 363 metabarcodes selected corresponded to 92 CM, 257 eSNCM, 5 GNCM and 9 pSNCM (Fig-
ure 2.7). Even after selection, a significant part of the metabarcodes did not show any response
to environmental data in their distribution (Figure 2.8 in supplementary materials). The adjusted
R- squared of the RDA model was of 31.1% (versus 34.89% in the lineage level RDA), with 10.7%
of variance explained by the two first axes (versus 24.01% in the lineage level RDA). The first RDA
axis (5.8%) marks an opposition between samples from oligotrophic waters with low productiv-
ity (RDA1<0) and samples from eutrophic and productive water masses (RDA1>0). This axis is
positively correlated to chlorophyll concentrations, carbon flux, CO3, ammonium concentration,
absorption coefficient of colored dissolved organic matter (acCDOM), gradient of sea surface tem-
perature as well as to 5 different coefficients measuring the particle density of the water. It is
negatively correlated to deep nitracline, deep mixed layer, as well as to deep oxygen maximum.
The second RDA axis (4.9%) is opposing subpolar samples (RDA2<0) to subtropical ones (RDA2>0).
The axis is negatively correlated to the density, latitude, iron concentrations, salinity, CO3, oxy-
gen, longitude, HCO3 and total carbon. It is positively correlated to temperature, NO2, NO3,
bathymetry, photosynthetically active radiations (PAR), day length and ammonium.

Among the 92 CM metabarcodes, only a few clearly emerged from the redundancy analysis (Figure
2.8) and showed distinct biogeographies related to environmental variables. Three metabarcodes
assigned to Gonyaulax polygramma, a Dinophyceae belonging to the Gonyaulacales order, were
found in oligotrophic waters (RDA1<0, RDA2 0). Metabarcodes assigned to the Dinophyceae
Fragilidium mexicanum and Alexandrium tamarense were also found in this area of the triplot.
The other well represented CM metabarcodes (assigned to a few Chrysophyceae, a couple of
Chrysochromulina species and a Dinophyceae from the Kareniaceae family, Karlodinium micrum)

were found in productive water masses (RDA1>0).

eSNCMs can be divided in three groups in the RDA space. The first group (RDA1>0, RDA2 0)
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Figure 2.8 - Impact of environmental variables on the distribution of marine mixotrophs. Triplot of the
redundancy analysis (RDA) computed on the 363 selected metabarcodes, after model selection, see
Section 2.2.5 for details on the methods used. The adjusted R-squared of the analysis is of 31.1%.
Each grey dot corresponds to a sample, i.e. one filter at one depth at one station. The blue dashed
arrows correspond to the quantitative environmental variables. Abbreviations are as follows: MLD
= mixed layer depth, O;MaxD = O, maximum depth, c_660nm = optical beam attenuation coefficient
at 660 nm, c_part = beam attenuation coefficient of particles, c_470nm = optical beam attenuation
coefficient at 470 nm, acCDOM = absorption coefficient of colored dissolved organic matter, SST
Gradient = Sea surface temperature gradient. Plain arrows correspond to mixotrophic metabarcodes,
colors indicating mixotypes. The qualitative variable indicating filter sizes is represented through
orange centroids. For more readability, we did not represent all quantitative and qualitative variables
included in the model.

corresponds to eSNCM metabarcodes dominating rich and productive coastal environments. It in-
cludes only Acantharia and Spumellaria assigned metabarcodes. The second group (RDA1<0)
dominates oligotrophic environments, and includes multiple Collodaria metabarcodes as well
as a few metabarcodes assigned to a Dinophyceae genus (Ornithocercus). Within this group,
metabarcodes can be found both in subtropical environments (RDA2>0), and in subpolar regions
(RDA2<0). Some lineages like Acrosphaera spp. can even be dominant in the two conditions,
showing intra-lineage variation in their biogeography. The third group corresponds to the eSNCM
metabarcodes that are badly represented in the space of the redundancy analysis (e.g. represented
with the shortest arrows in Figure 2.8), but that can be interpreted as distributed homogeneously
in regards of the environmental data we are using. These notably include all the Foraminifera
metabarcodes present in the RDA. Looking at filters centroids in the RDA space (Figure 2.8), we
can suppose that mixotrophic organisms dominating eutrophic systems (RDA1>0) are smaller in

size than those dominating oligotrophic ones (RDA1<0).
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Only two pSNCM metabarcodes appeared well represented in the RDA triplot, both corresponding
to Mesodinium rubrum.

Out of the five GNCM metabarcodes included in the analysis, only two were well represented in
the RDA space, both assigned to Pseudotontonia simplicidens. These metabarcodes were mainly

found in eutrophic waters (RDA1>0).
Discussion

The results from the metabarcode RDA are very concordant with the ones obtained through the
lineage level analysis presented in the main manuscript. Indeed, if the selected environmental
variables were slightly different, the global organization of the RDA space was similar in the two
analyses. The mixotypes were distributed very similarly in regard of environmental variables
when comparing lineage and metabarcode level analyses. There are evident similarities between
the distribution of metabarcodes on Figure 2.8, and the one of their corresponding lineages on
Figure 2.5. This way, the two analyses conducted led to extremely similar discussion points and

conclusions.

Building a redundancy analysis model at the metabarcode level allows to investigate intra-species,
intra-genus, intra-families and intra-order variabilities in terms of biogeography. Theses variabili-
ties can’t be observed when aggregating metabarcodes into broader lineages, where for example all
undefined Collodaria taxa are pooled together. A good example of this problem is the Acrosphaera
spp. case. On Figure 2.7, we observe that a few of the most abundant metabarcodes belonging
to eSNCM lineages were not selected in the lineage RDA. These metabarcodes are all assigned to
Acrosphaera spp. and Collodaria_X lineages, and can display different biogeographies (e.g. the
three Acrosphaera spp. metabarcodes represented on Figure 2.8). By merging sequence abun-
dances of metabarcodes with different biogeographical patterns, we attenuate their statistical
signal, and it could explain why Acrosphaera spp. was not selected in our lineage RDA.

However, the overall intra-lineage variability seemed to be very limited to Collodaria lineages. Also,
the opposite effect could be spotted when comparing our analyses. For example, three metabar-
codes of Gonyaulax polygramma were found in our metabarcode level RDA, with arrows pointing
in the exact same direction (Figure 2.8). Hence, the low intra-lineage variability led to informa-
tion redundancy in the metabarcode RDA representation. In our lineage based RDA, we had 3
species of dinoflagellates with similar biogeographies selected and well represented: Gonyaulax
polygramma, Fragilidium mexicanum and Alexandrium tamarense (Figure 2.5), giving more vi-
sual impact to the statistical analysis. Moreover, to build an interpretable metabarcode-level
RDA, we could only include in the model 0.1% of the mixotrophic metabarcodes found in the Tara
Oceans dataset, focusing only on the most abundant ones (Figure 2.7). It highlights the diffi-
culty of selecting only ecologically interesting and non-redundant metabarcodes out of a complete
omics dataset. Operational Taxonomical Units (OTUs) can help to answer this issue, but they
can also make things worse, especially when constructed using a single similarity threshold for
a whole complex eukaryotic population (Brown et al., 2015). During this project, we constructed
97%, 99%, and one difference OTUs using multiple algorithms, but always found contradictions

between our original taxonomical assignations and the obtained metabarcode clusters. The algo-
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rithms we used were the usearch software (Edgar, 2010) (functions -cluster_otus and -cluster_fast)
and the swarm software (Mahé et al., 2015) (using the d=1 parameter: one base pair difference

between sequences).

All analyses and graphs were realized with the R software version 3.4.3 (R Core Team, 2019), us-
ing the packages vegan version 2.4-5 (Oksanen et al., 2017) and ggplot2 version 2.2.1 (Wickham,
2009). For the functions implying randomness, the char2seed function from package TeachingDe-
mos v2.10 (Snow, 2016) was used setting “Faure” as a seed. All scripts are available on GitHub

(https://github.com/upmcgenomics/MixoBioGeo).
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2.3 Conclusion: Going further than metabarcoding

In the concluding remarks of the article presented in this chapter, I evoked how metagenomics and
metatranscriptomics studies should in a near future complement morphological and metabarcoding-
based observations. For that, one of the strategy should be to define a set of functional genomic
markers of mixotrophy, which would allow to quantify mixotrophs and their activity in metage-
nomics and metatranscriptomics samples. In the next chapter, I will review some of the methods
available to detect such markers, and how they could help to build links between genes and

functional traits.
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Chapter B

Detecting functional traits in meta-omics data

through the use of genomic markers

In chapter 2, I showed how metabarcoding could be used to decipher the biogeography of mixotrophs,
for which no functional genomic markers are available yet. I evoked the limits linked to such a
use of metabarcoding, like quantification biases due to copy number variations, the necessity to
annotate traits to taxonomic databases or the fact that metabarcodes can not reflect the level of
realization of a trait (e.g. mixotrophic species can be detected through metabarcoding but it can
not give any insights on their realized mixotrophic activity at the time of sampling). The identifi-
cation of genomic markers of functional traits avoids most of these limitations, as such markers
are detectable in metagenomes and metatranscriptomes, can be detected in known and unknown
species as long as their sequence is conserved across distinct lineages, and can be related to mea-
sures of a trait realization. But the identification of such functional genomics markers from lab
experiments and environmental data is often challenging, and multiple traits of biogeochemical
importance such as mixotrophy, size, or reproduction strategy still lack genomic markers. In this
chapter, I will first illustrate how the access to a known functional genomic marker allows for the
quantitative exploration of a functional trait biogeography with more precision than metabarcod-
ing, using the demethylation of DMSP as an example. Then, I will review the available methods for
identifying genomic markers of functional traits with poorly known genomic basis, and illustrate
them with a case study aiming at detecting markers of mixotrophy in dinoflagellates. Finally, I will
evoke the important challenge of mining for functional traits in taxonomically and/or functionally

unannotated data, and some recent progresses made considering this issue.

This chapter will include preliminary results partly derived from the work of two masters students
I supervised during spring 2019: Nina Guerin a 1st year I supervised during 6 weeks, and Auré€lie
Pham, a 2nd year master student I supervised during 6 months. Nina focused on genomic markers
of DMS production whereas Aurélie investigated dinoflagellate transcriptomes looking for genomic

markers of mixotrophy.
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3.1 Genomic markers of functional traits: simple versus com-

plex traits

In medicine and agronomy, simple traits are defined as being inherited through Mendelian trans-
mission patterns (trait value defined by the dominant allele of a gene inherited from the parents,
whom each transmit only one allele to the descendant), while complex traits do not conform to
such patterns (due to factors like incomplete dominance, polygenic or polyallelic interactions)
(Peltonen et al., 2000; Sonah et al., 2015; Zak et al., 2017). But in prokaryotic and eukaryotic
micro-organisms, even traits that are encoded by one single gene with a simple allelic-dominance
scheme can be transmitted horizontally (i.e. by an other organisms with no parental link) (Koonin
et al., 2001; Keeling and Palmer, 2008), questioning the applicability of this definition to the
planktonic world. This is why I will classify traits as simple or complex based on the complexity of
their genomic basis rather than their inheritance patterns. I will consider simple functional traits
as encoded by one gene, or a few genes corresponding to enzymes involved in a single metabolic
pathway (e.g. the production of DMS through the cleavage of DMSP which can be achieved by at
least 8 enzymes, or nitrogen fixation which is encoded by the nifH genes), and complex traits as
coded by multiple genes distributed at different loci and taking part in distinct metabolic pathways
(e.g. body or cell size, and most reproduction and behavioral traits). In the following section, I will

focus on methods aiming at the discovery of genomic markers of simple functional traits.

3.2 Identifying markers of simple functional traits

3.2.1 State of the art: biochemical extractions and genome manipulations

Genomic markers of simple functional traits can be studied through targeted wet-lab experiments,
like biochemical extraction approaches or genome manipulation techniques (e.g. gene knock-outs
or the move of DNA fragments into host strains). For example, nitrogenase, the enzyme responsible
for dinitrogen fixation in microorganisms, was first described through biochemical extractions and
analyses in the 60s, long before the omics era (Eady and Postgate, 1974; Hardy and Burns, 1968).
The purification of nitrogenase from about 20 prokaryotic organisms allowed to describe the en-
zyme structure as highly conserved across diazotrophic species (Chatt et al., 1978; Zehr et al.,
2003). Thanks to this observation, the hypothesis of an evolutionarily conserved nitrogenase pro-
tein complex was proposed, and the hybridization of genomes from different diazotrophic bacteria
allowed to identify and sequence nifH genes (Mevarech et al., 1980; Ruvkun and Ausubel, 1980).
Then, the omics era allowed to detect new globally abundant diazotrophs using nifH sequences

(See section 1.3.2.2).

The production of DMS by planktonic bacteria is an other example of a simple functional trait
related to plankton ecology with relatively well studied genomic markers. As evoked in section
1.1.2.3, eubacteria can either demethylate DMSP, which does not lead to the production of DMS, or
cleave DMSP, which leads to the production of DMS (Moran et al., 2012). The two pathways being
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concurrent, the choice between the two is often described as the DMS "bacterial switch" (Levine
et al., 2012). The enzyme starting the pathway leading to DMSP demethylation was identified
through the integration of transposons in the DMSP demethylating bacteria Silicibacter pomeroyi
(Howard et al., 2006). A mutant was identified as unable to demethylate DMSP, and the position
of its transposon allowed for the identification of the dmdA enzyme, which is now estimated to
be present in up to 40% of bacterioplankton cells in the open ocean (Moran et al., 2012). Genes
coding for the cleavage of DMSP into DMS were also identified through genome manipulation:
DNA fragments from DMS producing bacteria were introduced in non-DMS producing hosts (e.g.
E. coli), and the detection of DMS production in hosts allowed for the identification of the DNA
fragments responsible for DMS production (Todd et al., 2007).

The experiments presented in this section would be very unlikely to work for identifying the
genomic basis of complex traits. Hence, most studies investigating complex traits rely on statistical
analyses of genome and transcriptome content across multiple organisms with known traits. I will
present such methods in the next section, but first, I will illustrate how the access to a genomic

marker for a functional trait can help to decipher its response to environmental gradients.

3.2.2 A concrete example: exploring the biogeography of the dmdA enzyme

3.2.2.1 Introduction

By allowing the demethylation of DMSP in marine eubacteria, dmdA plays a key role in the
regulation of the sulfur cycle (Howard et al., 2006; Levine et al., 2012). dmdA transcription
rates can be directly related to the state of the bacterial switch between DMSP demethylation
(not leading to DMS production) and DMSP cleavage into DMS (Levine et al., 2012). A study
investigating dmdA transcription rates at the Bermuda Atlantic Time Series (BATS) over a 10
months period identified that high temperature and UV-A dose could lead to more DMSP cleavage
into DMS, while colder temperature led to more DMSP demethylation (Levine et al., 2012). These
transcription rates were obtained from qPCR using adapted primers (Levine et al., 2012). In spite
of the referencing of dmdA in functional annotation databases such as KEGG (Aramaki et al.,
2019; Salazar et al., 2019), these findings are yet to be confirmed by a global scale study. Salazar
et al. (2019) demonstrated that the transcriptomic abundance of dmdA was negatively correlated
to the ones of assimilatory sulfate reduction marker genes, using the Tara Oceans and Tara
Polar Circle datasets, and proposed that the DMSP demethylation pathway could be concurrent
with assimilatory sulfate reduction pathways for sulfur integration in the metabolism. However
they did not relate these observations to particular environmental conditions or to transcriptomic
abundances of DMSP cleavage enzymes. Here, the same global scale meta-omics and metadata
from the Tara expeditions will be used, but this time to focus on the biogeography of dmdA, and

identify the main abiotic drivers of its expression at global scale.
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3.2.2.2 Material & methods

The dataset from Tara Oceans and Tara Polar circle included 187 metatranscriptomes and 370
metagenomes sampled from 126 globally distributed sampling stations. These samples were
obtained from the surface (5-10m), the deep chlorophyll maximum (DCM, 20-200m) and the
mesopelagic layer (200-1000m), and corresponded to prokaryote and virus enriched size fractions
(0.22-1.6 pm and 0.22-3 um). 9 epipelagic samples could not be classified as surface nor DCM,
and were annotated as mixed layer (25-200m). Metagenomics and metatranscriptomics data
were obtained through Illumina sequencing following the protocols described in Pesant et al.
(2015) and Alberti et al. (2017). Metagenomic reads were quality-filtered, assembled, gene-coding
sequences were predicted and dereplicated which led a set of 46,775,154 non-redundant genes
catalog, named the OM-RGC.v2 (available at https://www.ocean-microbiome.org; detailed methods
in Salazar et al. (2019)). This catalog was functionally annotated using BlastKOALA (Aramaki
et al., 2019) and eggNOG-mapper (Huerta-Cepas et al., 2017).

Metagenomic and metatranscriptomic abundance profiles were determined for each sample by
mapping the quality-filtered metagenomics and metatanscriptomics reads to the OM-RGC.v2 cat-
alog, and normalizing the mapped read counts by the median abundance of 10 universal single-
copy phylogenetic marker genes (see details in Salazar et al. (2019)). Finally, the profiles were
converted to variance-stabilized integer counts by dividing each profile by its maximum value,
multiplying the result by 10°, and applying a log, transformation. These normalized abundances
were used to compute metagenomic and metatranscriptomic profiles at the gene level but also at
the functional level (grouping genes according to their KEGG or eggNOG functional annotations).
Among the 187 metatranscriptomes and 370 metagenomes, 129 came from the same samples, i.e.
collected at the same location and depth using the same size fraction. For these 129 samples, an
expression profile was computed as the difference between the logs-transformed metatranscrip-
tomic and metagenomic profiles (available at https://www.ocean-microbiome.org). Here, I focused
on the 129 metagenomic, metatranscriptomic and expression profiles available for the K17486

KEGG ortholog group, corresponding to the dmdA enzyme.

The environmental context of the 129 samples, was retrieved from https://www.ocean-microbiome.
org. It corresponded to 37 variables: ID of the sample, station label, sampling layer (surface, deep
chlorophyll maximum, mesopelagic or mixed layer), sample located in the polar or non polar area,
upper threshold of the size fraction (1.6 or 3 um), date of sampling, latitude, longitude, nominal
depth (in meters), ocean region, temperature, oxygen, chlorophyll A, total carbon, salinity, sea
surface temperature gradient, fluorescence, CO3, HCO3, water density, PO4, NO3, Si, Photosyn-
thetically active radiation (PAR), Alkalinity, Ammonium at 5m depth, Depth of the mixed layer,
Lyapunov, NOy, Depth of the O, minimum, NO3 /NOg, Nitracline, depth of the maximum Brunt-
Vaisala frequency (which is a proxy for the depth of the mixed layer), iron at 5 meter depth, depth
of the Oy maximum, Okubo Weiss parameter (values below/above O indicate that the sample is

inside/outside an eddy) and water residence time.

For further statistical analysis, this environmental dataset was scaled, centered, and consequently
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7 variables were removed: sample ID, date of sampling and station label because they had no
value as environmental drivers of dmdA abundance; total carbon, NO,/NO3z and NO3 because
they showed too high colinearity with other variables; and PAR because it had more than 50%
of missing values (92 NAs over the 129 samples). Each of the remaining missing values in the
dataset was replaced by the mean of the concerned variable in the 5 nearest samples in terms of

environmental profile.

All of these operations were achieved using the PreProcess command from the caret package
(Kuhn, 2008) in R version 3.5.3 (R Core Team, 2019), through options center, scale, knnlmpute,

corr and nzv. The R code for this project is available at https://github.com/EmileFaure/DmdA.

3.2.2.3 Results & Discussion

Distribution of the dmdA enzyme in the global ocean
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Figure 3.1 - dmdA gene versus transcript abundance. Each dot corresponds to one of the 129
samples (a sample corresponding to a station and a given depth layer, indicated by the point
shape). Abundances are normalized, but the log transformation was not applied here to keep
positive abundances. Dots were colored according to gene expression (reflecting the ratio between
log2-transformed transcript abundance and gene abundance).

The metagenomic and metatranscriptomic abundance profiles of the samples had a Pearson cor-
relation coefficient of 0.58 (Figure 3.1). Samples from the mesopelagic layer all had a normalized
metagenomic sequence abundance below 0.25 (before log, transformation to keep positive values;
mean of 0.14), and a metatranscriptomic transcript abundance below 0.15 (mean of 0.04). Other

depth layers exhibited higher abundance values (mean of 0.28 and 0.24 for gene and transcript
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abundance at the surface; 0.27 and 0.18 at the DCM; 0.22 and 0.14 in the mixed layer; Figure
3.1). Expression levels were comprised between a minimum of 0.04, reached in a mesopelagic
sample of the North Pacific Ocean (station TARA 109), and a maximum of 2.67, reached in a
surface sample of the southern Ocean (station TARA_084). This 2.67 maximum of expression
appeared as an outlier: it was 4.5 standard deviations above the median, and was only seconded
by a value of 1.94 (decrease of 0.72 (27%)), which was reached in a surface sample of the Arctic
Ocean (station TARA 208) (Figure 3.1, Figure 3.2). Overall, maximums of gene expression did
not correspond to maximums of gene abundance, but rather to locations with high to moderate

transcript abundance and low to moderate gene abundance (Figure 3.1).
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Figure 3.2 - Maps of dmdA gene expression at the surface (A) and at the deep chlorophyll maximum
(B). Each sample is represented as a dot, dot size and color both representing the level of gene ex-
pression. Abundance values are normalized but the log2-transformation was not applied to display
positive abundances.

The dmdA enzyme had non-zero sequence and transcript abundances in all the 129 metagenomes
and 129 metatranscriptomes, corresponding to 68 stations from the Tara expeditions, which
illustrates its ubiquity in the global ocean. Gene expression appeared higher in polar waters than
in subtropical ones (Figure 3.2), which is coherent with the observations from Levine et al. (2012),

whom related DMSP demethylation with colder temperature.
Environmental factors driving the dmdA distribution

To better identify the drivers of expression patterns, I computed a multivariate analysis of gene
abundance, transcript abundance and gene expression. In a redundancy analysis (RDA), gene

abundance, transcript abundance and gene expression were used as interest variables, while
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environmental data served as explanatory variables. The complete RDA, including the 30 en-
vironmental variables, was significant (F = 10.504, p-value < 0.001). A bi-directional stepwise
model selection based on the Akaike Information Criteria was then performed to select the most
parcimonious model. The selected model contained 8 environmental variables: nominal depth,
oxygen, temperature, depth of Oy maximum, HCOgs, Density, Chlorophyll A and latitude. Both
axis of the RDA axes were significant (p-value < 0.001, F = 320.1 and F = 35.34). The adjusted
R? value of the RDA was of 72.1%, 66.49% of the variance was explained by the first axis, while
7.34% was explained by the second (Figure 3.3).
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Figure 3.3 - Triplot of the RDA. Grey dots in the background correspond to the 129 samples. Blue
arrows correspond to the 8 selected environmental variables, and red arrows correspond to the three
interest variables: gene abundance (MetaG), transcript abundance (MetaT) and gene expression

(Expr.).

The first axis of the RDA opposes samples taken at high depths (RDA>1) from samples taken
closer to the surface (RDA<1) (Figure 3.3). It confirms that gene abundance, gene expression and
especially transcript abundance are all higher in surface samples. This seems coherent consid-
ering that DMSP is produced by phytoplanktonic organisms, mostly found in the euphotic zone
(Moran et al., 2012), and that mesopelagic samples exhibited very low transcript abundance (Figre
3.1). The second axis of the RDA opposes samples from subtropical, warm waters (RDA2>0), and
samples from subpolar, cold and dense waters (RDA2<0) (Figure 3.3). The RDA confirms that gene
abundance is higher in subtropical waters, and identify it as only poorly correlated to gene ex-
pression, which is mostly high in chlorophyll rich, oxygenated waters (Figure 3.3). The mismatch
between gene abundance and expression could be explained by the presence of organisms that

are able to demethylate DMSP but are rather using the cleavage pathway in warmer conditions.
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Again, this is coherent with the results from Levine et al. (2012), whom identified the bacterial
switch to be in favor of the demethylation pathway over the cleavage one in cold waters, and our
results confirm the applicability of their findings at the global scale. The high adjusted R? value
suggested that dmdA abundance was strongly linked to the environmental context, which led me

to explore its predictability from environmental variables using a machine learning approach.

Predictions of dmdA abundance from the environmental context

The richness of meta-omics data offers the potential to predict the distribution of functional traits
via their genomic markers in the environment through statistical modeling (Tang and Cassar,
2019). The large quantities of data collected by global meta-omics datasets allows for the con-
struction of large training sets, i.e. subsets of data that need to include a wide enough range
of conditions to be representative of the global dataset, so that statistical models can be trained
on them, while retaining a part of the samples as test sets, which are used to compare models
predictions with observations and test the models performance. Reaching this ability of predicting
the abundance for a large set of traits would (1) help attaining an unprecedented level of precision
in our knowledge of the abiotic drivers of functional diversity in planktonic communities, (2) pro-
vide quantitative insights to improve the construction and validation of biogeochemical models,
through the identification of general ecological laws governing functions distribution in the global

ocean.

Here, to test the predictability of dmdA expression, genes and transcripts abundances from en-
vironmental data, elastic net regressions were used, i.e. a combination of lasso and ridge re-
gressions, allowing to penalize uninformative predictors by shrinking their regression coefficient
towards 0. Unlike random forest regressions or neural networks, this method only uses linear
relationships between the interest variable and predictors to produce predictions, which is less
likely to lead to overfitting (i.e. an over-adaptation of the model to the training set leading to
poor capacities of predictions over additional data). Independent elastic net regressions were
computed for each of the abundance and expression profiles: one with gene abundance as the
interest variable, one with transcript abundance and one with gene expression. For each elastic
net regression, environmental variables were used as predictors, with categorical variables coded
as dummy variables (i.e. columns of O or 1 for each categorical level). Training sets corresponding
to 105 samples (i.e. 80% of the data) were randomly selected. Elastic net regression models were
trained on these training sets with a 3 times repeated 10 fold cross-validation process. Regular-
ization (A, or penalty coefficient) and mixing (a, the mix level between a Lasso approach and a
Ridge one, leading to different penalizations of coefficients) parameters, were optimized for each
regression model by selecting the pair of parameters minimizing cross validation error across all
possible combinations of 10 random values of a and A (higher numbers of combinations were
tested, not leading to better R?). Finally, I used the best models selected after cross validation and
parameters optimization to predict gene abundance, transcript abundance and gene expression
values from the test sets (i.e. 20% of the samples that were not selected in training sets). Models

performance at predicting dmdA abundance and expression was measured by computing R? value
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from comparisons between test set observations and model predictions.
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Figure 3.4 - Comparison of observations from the test sets and predictions from the elastic net regres-
sions on (A) gene abundance, (B) transcript abundance and (C) gene expression. Red lines indicate
perfect predictions (y=x). Blue lines are simple linear regression lines, with the corresponding 95%
confidence interval indicated in grey. The R? values indicated in red are the one of each elastic net
regression model.

The three models led to predictions of dmdA abundance and expression with R? values comprised
between 68 and 74% (Figure 3.4).

In the gene abundance elastic net regression, 13 environmental variables had non-zero regression
coefficients, with the 5 most influential ones being: Ocean region Southern Ocean (-0.76), polar
(-0.32), temperature (0.26), nominal depth (-0.23) and chlorophyll A (0.14). These results confirm
the observations from the RDA, identifying metagenomic abundance of dmdA as higher in warm,
subtropical waters.

In the transcript abundance elastic net regression, 26 variables had non-zero coefficients, with the
5 most influential being: mesopelagic layer (-0.89), Ocean region [MS] Mediterranean Sea (-0.79),
mixed water layer (-0.66), Ocean region [SO] Southern Ocean (0.52) and nominal depth (-0.45).
Here again, observations from the RDA are confirmed, with depth appearing as the most influential
factor on transcript abundance. The elastic net regression identifies the Mediterranean Sea as a
zone of particularly low dmdA transcript abundance, but this should be taken with precaution as
only two samples from the Mediterranean sea are present in the dataset.

In the gene expression elastic net regression, 25 variables had non-zero coefficients, with the 5
most influential being: Ocean region [MS] Mediterranean Sea (-0.94), Ocean region [SO] Southern
Ocean (0.60), oxygen (0.46), mesopelagic layer (-0.42) and nominal depth (-0.35). Gene expression
then appears particularly high in the Southern Ocean, and low in the Mediterranean Sea. The
positive influence of oxygen on gene expression supposed from the RDA results is confirmed, as

is the negative correlation with depth.

Using 129 samples from the global ocean, I was able to produce predictions of dmdA gene abun-

dance, transcript abundance, and expression from the environmental context, with R? above 65%.
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One obvious way of increasing the statistical power of our models would be the addition of more
metagenomes and metatranscriptomes to the dataset, allowing to increase the size of the training
and test sets. For example, the fact that only two samples were issued from the Mediterranean
Sea and 3 from the Southern Ocean limit the capacities to draw general conclusions on these
areas despite their significant influence as predictors. In the future it would then be interesting to
reproduce this approach on other global datasets like the Ocean Sampling Day (Kopf et al., 2015)
or Malaspina (Duarte, 2015). An elegant way to confirm the predictive abilities of models such as
the ones presented here would be to use samples from an expedition as a training set, and the
ones from an other expedition as the test set. The principal difficulty in this case would be to
homogenize the values of gene and transcript abundances across datasets to be able to compare
them. Applying the same normalization steps across datasets to maintain homogeneity would be
quite trivial, but discrepancies in sequencing methods and/or size fractions might be hard to deal

with.

By investigating the Tara Oceans and Tara Polar Circle datasets, the principal environmental
drivers of a single genomic marker coding for DMSP demethylation were identified in the global
ocean. Gene and transcript abundances of dmdA were correlated, but governed by different
drivers: gene abundance was mainly linked with temperature, while transcript abundance was
mostly explained by depth (Figure 3.3). This could be explained by the presence of organisms
bearing the dmdA enzyme at high depth, were DMSP is unavailable, making the transcription of
the demethylation enzyme useless and/or avoided. This genomic signal could notably be due to
the presence of genetic material from dead organisms sinking in the water column, which do not
appear in transcriptomic samples (Singh et al., 2009). These discrepancies led the gene expression
measures to be quite poorly correlated with gene abundance, and oxygen appeared as one of their
most important drivers. Machine learning allowed to predict dmdA gene abundance, transcript
abundance and gene expression from the environmental context with a good accuracy (Figure
3.4), demonstrating how the activity of this pathway with a strong influence on the sulfur cycle
could be determined from purely physico-chemical data. It is particularly interesting to note that
the best predictors of the different elastic net regressions were identified either as variables that
are fixed through time (e.g. depth or Ocean region), or as routinely measured variables for which
high quantities of data are available at the global scale (e.g. temperature, oxygen, chlorophyll A).
These variables being already described in the majority of biogeochemical models, the results here
suggest the potential of predicting DMSP demethylation at global scale using data issued from
models and observations, allowing to target the use of such predictions as inputs or validation

tools in biogeochemical models.

3.2.2.4 Perspectives

In the next 6 months (starting in October 2020), I plan to reproduce this approach on other
marker genes linked to the sulfur cycle, and especially on DMSP lyases, which cleave DMSP to
DMS (Moran et al., 2012). The access to both dmdA and DMSP lyases abundances would allow to

quantitatively describe the state of the bacterial switch at a global scale for the first time. But the
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cleavage pathway is trickier to study than the demethylation one, as seven different DMSP lyases
have been described in prokaryotes, and only one (dddL) corresponds to a KEGG ortholog group
(K16953). Moreover, this KEGG ortholog group is absent from the Tara Oceans and Polar circle

functional profiles.

Nina Guérin’s internship aimed at overcoming some of the difficulties encountered when study-
ing DMSP lyases in global scale datasets, by (1) constituting a database of available DMSP lyase
sequences, (2) using an alignment algorithm (Nina used Diamond, Buchfink et al. (2015)) to find
matches to the database in environmental samples. The database she computed should allow
to extract DMSP lyases gene abundance, transcript abundance and gene expression in the near
future using the same Tara dataset as described in the study presented in this section. This
will allow to provide the first meta-omics based study of the environmental factors governing the

DMSP bacterial switch, including both the demethylation and the cleavage pathways.

3.3 Exploring the genomic basis of complex functional traits

3.3.1 State of the art: linkage, association methods and comparative tran-

scriptomics

The investigation of the links between genotypes and complex traits constitutes a whole field of
research, mainly driven by medical and agronomic studies (Members of the Complex Trait Consor-
tium, 2003; Visscher et al., 2017). The goal of such studies is often to identify portions of genomes,
genes or sets of genes associated with multigenic traits like plant height and weight in agronomy
(Sonah et al., 2015), disease susceptibility in medicine (Members of the Complex Trait Consortium,
2003), and less frequently with behavioral or life-history traits in planktonic ecology (Routtu et al.,
2014). These studies aim at finding statistical links between compositional variations in genomes
(often focusing on single nucleotide polymorphisms, or SNPs) and functional traits. This can be
achieved by comparing the genetic variants of segregating biparental populations of organisms
over multiple generations, to identify quantitative trait loci (QTL) linked with variations in trait
values across individuals (Members of the Complex Trait Consortium, 2003; Sonah et al., 2015).
For example, the genomic basis of sediment browsing in the planktonic freshwater crustacean
Daphnia magna was investigated through the genotyping of 185 F2 (i.e. second generation of
offspring) recombinant individuals obtained through in-lab culture and breeding (Arbore et al.,
2016). The Daphnia genus are considered as keystone species in many ponds and lake ecosys-
tems, and Daphnia magna and Daphnia pulex are often used as model organisms (Czypionka
et al., 2019). An SNP-based genetic map of the D. magna genome was released in 2014 Routtu
et al., which led to the identification of markers for different sediment browsing strategies (Arbore
et al., 2016), but also of markers of diapause termination (diapause being a dormancy phase in
the life cycle of many invertebrates to avoid unfavourable conditions) (Czypionka et al., 2019).

In addition to QTL mapping, it is also possible to compare whole genomes of numerous organisms
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from which trait values are measured, to identify statistically significant associations between por-
tions of genomes and trait values, in which case we talk about genome wide association studies,
or GWAS (Visscher et al., 2017). QTL and GWAS approaches can even be used in conjunction,
with QTL allowing to validate and quantify the influence of candidate genes identified through
GWAS (Sonah et al., 2015). GWAS has notably been used to identify markers of infectivity in Pas-
teuria ramosa, a model bacterial pathogen of D. magna (Andras et al., 2020). Despite their ability
to decipher the genomic basis of complex functional traits, these approaches remain exclusively
applied to model planktonic organisms, for which genomes of multiple individuals are available. A
first reason is that QTL methods are based on vertical heredity of traits, and recombination events
between generations (i.e. the exchange of genetic material between organisms leading to the pro-
duction of offsprings with different traits than their parents). These methods are centered and
developed on eukaryotic multicellular organisms (Metazoa, Plants), and seem quite unadapted for
studying prokaryotes, in which horizontal transfers and clonal reproduction are common. Also,
both QTL and GWAS methods rely on the genotyping of numerous single individuals with known
trait values and/or known demographic history, often implying intensive culture and the use of
reference omic sequences to accurately detect SNPs (Visscher et al., 2017). Thus, studies focusing

on planktonic functional traits rely so far mainly on comparative transcriptomics.

Comparative transcriptomics studies compare populations of the same species or strain exposed to
varying abiotic and/or biotic conditions, with the aim to identify up-regulated and down-regulated
genes (Caron et al., 2017; Marchetti et al., 2012; McKie-Krisberg et al., 2018; Liu et al., 2016; Lv
et al., 2019). For example, experiments of mixotrophic algae (here two prasinophytes, Micromonas
polaris and Pyramimonas tychotreta) in different nutrient conditions allows to compare transcrip-
tomes of algae eating through phagotrophy (i.e. low nutrients conditions) with transcriptomes
of photosynthetically active ones (i.e. high nutrients conditions) (McKie-Krisberg et al., 2018).
Similarly, transcriptomes of three mixotrophic protists (the haptophyte Prymnesium parvum and
two chrysophytes: Dinobryon sp. and Ochromonas sp.) have been sequenced across gradients of
light (Liu et al., 2016), allowing to identify potential marker genes of phagotrophy in mixotrophic
lineages. Finally, a genome-wide transcriptomic analysis of the marine diatom Thalassiosira
pseudonana in different conditions (combinations of silicon limitation, nitrogen limitation and
iron limitation) allowed to identify genes involved in the biogenic production of the silica cell-wall
structures typical of diatoms (Mock et al., 2008).

But comparative transcriptomics do not solve all the issues evoked earlier, as sequencing compa-
rable transcriptomes across a gradient of trait values requires the focal species to be cultivable.
Also, the potential markers detected through comparative transcriptomics need to be investigated
through targeted experimental designs similar to the ones evoked in paragraph 3.2 in order to
be mechanistically validated. The accumulation of sequenced transcriptomes and the creation
of databases like the marine microbial eukaryote transcriptome sequencing project (MMETSP,
grouping almost 800 transcriptomes, Keeling et al. (2014)) now allow public access to hundreds of
transcriptomes from marine planktonic species, allowing for large scale analysis of the omic basis

of functional traits.

Meng et al. (2018) illustrated this by using the MMETSP resource to investigate the genomic basis
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Figure 3.5 - Building a sequence similarity networlk. Pairwise values of similarity and coverage
are computed on a set of sequences, here open reading frames (ORF) sequences as the focus is
on proteins, represented as circles with colors coding for their taxonomy. The sequence similarity
network is then built by linking together all the pairs of proteins that satisfy a certain similarity
and coverage threshold. The network is composed of singletons, i.e. proteins that did not match to
any other in the network with the selected thresholds, and connected components, i.e. subgraphs
in which at least one path allows to directly or indirectly connect two proteins. Each protein in the
network can be associated with a functional and/or taxonomic annotation, which then allows to
investigate the links between similarity, function and taxonomy at the scale of the full network, or
in connected components. Examples of possible annotations at the connected component level are
given here for illustrative purposes.
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of functional diversity in dinoflagellates. They based their approach on a sequence similarity net-
work built from 46 transcriptomes of dinoflagellates strains from 28 distinct genera. A sequence
similarity network (SSN) is a graph in which nodes are proteins, and links represent the similarity
(i.e. the percentage of common amino acids) and coverage (i.e. the length of overlap between
two proteins relative to total protein length) between each pair of proteins (Figure 3.5). SSNs are
composed of singletons, i.e. proteins that are not linked to any other protein in the network, and
connected components (CCs), i.e. subgraphs in which nodes are directly or indirectly (i.e. through
other nodes) connected together, but disconnected from the rest of the network (Figure 3.5). The
first step to build an SSN is then to compute pairwise similarity and coverage measures on a set of

sequences, often through an all against all alignment (e.g. using Diamond (Buchfink et al., 2015)
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or BWA-MEM (Li, 2013)). By applying stringent thresholds on the obtained similarity and coverage
measures to build the links of the network, one can create a SSN composed of connected com-
ponents potentially sharing similar functions, and assimilable to protein families (Atkinson et al.,
2009; Cheng et al., 2014; Meng et al., 2018; Lopez et al., 2015). Statistics can then be computed
from the network, such as connected components number, sizes, density (number of observed
connections relative to the number of potential connections), or functional and taxonomical ho-
mogeneity which can be derived from the functional and taxonomic annotations of the proteins of
the network. In Meng et al. (2018), each sequence has been taxonomically and functionally an-
notated, but also tagged with the functional traits of its organism of origin: mixotrophy, toxicity,
kleptoplasty, symbiosis, parasitism, or DMSP production. The sorting of connected components
allowed to identify CCs coming exclusively from toxic organisms, or symbiotic ones for example,
which makes them good candidates as potential genomic markers of functional traits. 5 connected
components were only composed of proteins from toxic dinoflagellate species, corresponding to 49
protein coding domains among which none were functionally annotated in the Gene Ontology. In
this study, the annotation of mixotrophy was limited to ’yes’ or 'no’, with no distinction of the types
of mixotrophy, and connected components associated with mixotrophic species were not investi-
gated in details. Hence, the results of Meng et al. (2018) suppose that a more particular focus on
mixotrophy using the same data might allow to discover markers of mixotrophy in dinoflagellates,
and maybe even extend them to other mixotrophic lineages available in MMETSP.

From January to June 2019, I supervised Aurélie Pham for her Master 2 internship, which focused
on finding markers of mixotrophy in dinoflagellates. The preliminary results that I will present in

the next sections are mainly derived from her work.

3.3.2 A concrete example: Markers of mixotrophy in dinoflagellate tran-

scriptomes

3.3.2.1 Introduction

During the past decade, the historic dichotomy classifying planktonic unicellular eukaryotes as
either phytoplankton or zooplankton has been replaced by a new vision based on a distribution of
protists along a continuum from full autotrophy to full heterotrophy, in which most of the plank-
tonic organisms display mixotrophic abilities (Flynn et al., 2013; Mitra et al., 2016; Stoecker et al.,
2017; Caron, 2016a). This led to multiple efforts aiming at better understanding the biogeogra-
phy of mixotrophs, and trying to identify their potential affinity with particular environmental
conditions (Leles et al., 2017, 2019; Faure et al., 2019). These studies have either used morpho-
logical identification data (Leles et al., 2017, 2019) or metabarcoding data (Faure et al., 2019), all
identifying mixotrophs as ubiquitous and abundant, but also highlighting strong limitations in
their approaches. The main identified limit lies in the necessity of using databases of mixotrophic
species and/or the available literature to define the focal set of mixotrophic lineages, while the lack
of routine protocols to measure mixotrophic capacities led to misconceptions about the trophic

mode of most primary producers in the global ocean (Leles et al., 2019). It led these studies to
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focus on a maximum of 133 mixotrophic lineages, when more than 4300 species of phytoplankton
are morphologically described, and OTU-based estimates suppose a 3 to 8 times higher number
(de Vargas et al., 2015). There is then a strong discrepancy between the statement that most
protists display mixotrophic capacities (Flynn et al., 2013) and the number of lineages that are
included in biogeographical studies (Leles et al., 2017, 2019; Faure et al., 2019). The discovery
of genomic markers of mixotrophy would tackle this issue by allowing to directly detect and po-
tentially quantify mixotrophic activities in metagenomes and metatranscriptomes, which are now

available at global scales (de Vargas et al., 2015; Ibarbalz et al., 2019; Richter et al., 2019).

The search for genomic markers of mixotrophy has mainly focused on constitutive mixotrophy, i.e.
the ability to eat through phagotrophy in inherently photosynthetic organisms, essentially through
comparative transcriptomics approaches (McKie-Krisberg et al., 2018; Liu et al., 2016). Genes up-
regulated during the assimilation of prey chloroplasts in the plastidic-specialist non-constitutive
mixotroph dinoflagellate Nusuttodinium aeruginosum were also identified earlier this year (Onuma
et al., 2020). But none of the genes identified as upregulated in these studies seems to establish
as a good candidate for the detection of mixotrophy in environmental samples. In parallel, Burns
et al. (2018) proposed a gene-based predictive model of phagotrophy and photosynthesis using
complete genomes of 35 eukaryotic lineages. Their approach consisted in identifying protein clus-
ters based on sequence similarity that were enriched in organisms either capable of phagotrophy
or photosynthesis, allowing them to identify a set of 474 proteins associated with phagocytosis,
and one of 243 proteins associated with photosynthesis (Burns et al., 2018). Using these protein
sets, they were able to correctly predict constitutive mixotrophy in the haptophyte Prymnesium
parvum, and the absence of mixotrophy in the strictly phototrophic diatom Phaeodactylum tricor-
nutum (Burns et al., 2018). These results demonstrate the potential lying in the use of annotated
databases of whole-genomes to identify genomic markers of mixotrophy, but remains limited for
further application on marine mixotrophic plankton by the presence of only 4 genomes of marine
planktonic organisms among the 35 reference genomes selected for the study. This low represen-
tation of marine plankton among the references is explained by the fact that Burns et al. (2018)
mainly aimed at detecting phagocytose and photosynthetis marker genes in archaea, and not in

protists.

A study also using similarity-based protein clusters to identify genomic markers of metabolic func-
tions focused on the Alveolata lineage of dinoflagellates (Meng et al., 2018). These protists are
known for their high functional diversity, as the lineage include strict autotrophs (e.g. Pelago-
dinium beii), constitutive mixotrophs (i.e. phagotrophs that display an innate capability to achieve
photosynthesis, e.g. P. parvum), non-constitutive mixotrophs (i.e. heterotrophs that acquire pho-
tosynthetic capacity through the stealing of chloroplasts from any prey - generalists -, specific
preys - plastidic-specialists - or the bearing of endosymbionts - endo-symbiotic specialists -, e.g.
the plastidic specialist non-constitutive mixotroph Dinophysis acuminata), and strict heterotrophs
(e.g. Polykrikos kofoidii) (Jeong et al., 2010; Mitra et al., 2016). As I evoked in section 3.3.1, Meng
et al. (2018) used 46 dinoflagellates transcriptomes to compute a sequence similarity network, in
which they were able to retrieve connected components corresponding to highly similar clusters

of proteins, potentially coding for the same functions (Meng et al., 2018; Atkinson et al., 2009;
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Lopez et al., 2015). They were then able to identify the clusters only composed of proteins from
toxic or mixotrophic dinoflagellate species, constituting putative markers of the corresponding
functions (Meng et al., 2018). However, they annotated mixotrophy without differentiating the
different types of mixotrophy (i.e. constitutive versus non-constitutive), and did not focus on the
functional annotations in clusters identified as putative markers of mixotrophy.

Here, I will use a dataset of 47 dinoflagellate transcriptomes including 19 from mixotrophic species

to try to detect protein clusters that could serve as markers of mixotrophy in dinoflagellates.

3.3.2.2 Material & methods

Trophic modes (strict autotrophy, strict heterotrophy, constitutive mixotrophy, generalist non-
constitutive mixotrophy, plastidic-specialist non-constitutive mixotrophy or endosymbiotic-specialist
non-constitutive mixotrophy) from 798 transcriptomes of 705 species were annotated through bib-
liographic research. Among these 798 transcriptomes, 650 came from MMETSP (Keeling et al.,
2014), while transcriptomes of 45 species came from the Roscoff culture collection (http://roscoff-
culture-collection.org/), 6 came from the OCEANOMICS database (http://www.oceanomics.eu/), 1
from the Pasteur culture collection (https://webext.pasteur.fr/cyanobacteria/), and 4 from the
Meng et al. (2018) study. One transcriptome of Alexandrium minutum that was extracted from
Le Gac et al. (2016) was finally added to the dataset, constituting the only dinoflagellate transcrip-
tome of our analysis that was not already included in Meng et al. (2018). Within the 798 microbial
eukaryotic transcriptomes, I identified 105 transcriptomes of constitutive mixotrophs (from 23 dif-
ferent genera), 1 of generalist non-constitutive mixotroph, 4 of plastidic-specialist non-constitutive
mixotrophs, and 3 of endo-symbiotic non-constitutive mixotrophs (full list available in Appendix
B). Among the 47 dinoflagellate transcriptomes corresponding to 43 distinct species from 27 gen-
era, 18 came from constitutive mixotrophs and 1 came from a plastidic-specialist non-constitutive
mixotroph (D. acuminata). The methods described in Meng et al. (2018) were then used to build a
sequence similarity network (SSN) of the 47 transcriptomes: protein coding domains were detected
and functionally annotated through TransDecoder (v5.5.0, Haas et al. (2013)) and InterProScan
(v5.24-63.0, Jones et al. (2014)), before being aligned in all versus all mode using the DIAMOND
software to retrieve similarity and coverage statistics for each transcripts pair (Buchfink et al.,
2015). As only one transcriptome was added to the dataset in comparison to Meng et al. (2018),
the same thresholds were used to perform this analysis: edges with a similarity higher than 60%
and a coverage of more than 80% were conserved in order to build the SSN using the R (R Core
Team, 2019) package igraph (Csardi et al., 2006). Meng et al. (2018) selected these parameters
to maximize the number of connected components with more than 30 vertices and the number of

connected components involving a unique functional annotation.

3.3.2.3 Results and discussion

The SSN was composed of 2,901,054 proteins, including 728,916 singletons (25.1%) and 304,026

connected components, ranging from 2 to 43,480 proteins in size (Table 3.1). In comparison,
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Table 3.1 - Metrics of the dinoflagellates transcriptomes sequence similarity network. CC stands for
connected component, CM for constitutive mixotroph.

Number of CCs (%) Proteins in CCs (%)
Total CCs 304,026 (100%) 2,172,138 (100%)
CCs with at least one sequence 143.676 (47.2%) 803,736 (36.9%)
from a CM
CCs with at least one sequence o o
from a pSNCM 15,212 (5.0%) 33,346 (3.1%)
CCs with at least one sequence
from A. minutum (Le Gac et al., 46,473 (15.3%) 107,672 (4.9%)
2016)
CCs with at least one sequence o o
from the MMETSP A. minutum 6.357 (2.1%) 10.190 (0.5%)
CCs only composed of sequences 56,791 (18.7%) 153.340 (7%)
from CMs
CCs only composed of sequences 60.864 (20%) 163.310 (7.5%)

from mixotrophs

the SSN built in Meng et al. (2018) (without the A. minutum transcriptome from Le Gac et al.
(2016)) was composed of 2,790,387 proteins including 1,514,476 singletons (54.3%) and 350,267
connected components ranging from 2 to 1600 proteins in size. The important differences in
numbers of singletons and maximum size of connected components clearly questions our choice
of using the same thresholds as Meng et al. (2018). Indeed, even though only one transcriptome
was added to the SSN, it ranked second in number of proteins in connected components, and
significantly changed the structure of the network, notably leading to the creation of 4 gigantic
connected components of more than 10,000 proteins each. These gigantic connected components
included proteins from all the 47 transcriptomes, and their functional homogeneity was poor: e.g.
more than 40 distinct functional annotations were found in the biggest CC. This indicates that
the thresholds of similarity and coverage used were probably too low and led to the construction
of chimeric connected components composed of functionally and evolutionary unrelated proteins.
The important effect of the addition of the A. minutum transcriptome on the network structure can
be explained by its important size (110,667 proteins, which makes it the fifth biggest in the data
set), and its high quality. Indeed, this transcriptome was obtained from the separate sequencing
of 18 strains of A. minutum (Le Gac et al., 2016), and contained more than 10 times more protein
coding domains than the A. minutum transcriptome already available in the MMETSP collection
(which contained 10,572 proteins). Considering that transcriptomes corresponding to different
strains of the same species were included separately in the dataset (in Meng et al. (2018), tran-
scriptomes from different strains of the same species were kept separated when their numbers
of reads were sufficient to create independent high-quality' transcriptomes, e.g. two strains of
Brandtodinium nutricula and of Kryptoperidinium foliaceum), implementing the sequence similar-
ity network with 18 separated transcriptomes corresponding to each strains of A. minutum might
lead to better results. As evoked earlier, the impact of this added transcriptome on the network

structure could also be mitigated by a modification of the similarity and coverage thresholds, but

lin Meng et al. (2018), high-quality transcriptomes are defined as having more than 30,000 transcripts,
with 50% of the whole transcriptome in transcripts longer than 400 base pairs and read re-mapping rate
over 50%
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increasing these thresholds would lead to the creation and exclusion of singletons that were taken
in account in Meng et al. (2018), and the break of interesting connected components identified as
putative markers into multiple smaller ones. To avoid this, it could be interesting to reproduce
the study using a community detection algorithm, like Louvain (Blondel et al., 2008), which allow
to detect communities of highly connected nodes in large networks. This way, large connected
components can be subdivided in smaller communities (Watson et al., 2019). The Louvain algo-
rithm has the advantage of being fast, and to not rely on parameter choices by the user (Blondel
et al., 2008), when other algorithms like MCL ask the user to choose parameter values that are
not trivial to define (Watson et al., 2019).

Table 3.2 - Composition of the 4 connected components identified as potential marlkers of mixotrophy
in dinoflagellates. Species with names in green are constitutive mixotrophs while Dinophysis acumi-

nata, indicated in red, is a plastidic-specialist non-constitutive mixotroph. Functional annotations
are from InterProScan v5.24-63.0 (Jones et al., 2014).

Connected Number of Proteins Species Order Functional Annotation(s)
Component

Alexandrium andersonii Gonyaulacales
Alexandrium catenella Gonyaulacales
Alexandrium monilatum Gonyaulacales

CC1 12 Alexandrium tamarense Gonyaulacales Unknown
Lingulodinium polyedra Gonyaulacales
Heterocapsa sp. Peridiniales
Heterocapsa trinquera Peridiniales
Alexandrium andersonii Gonyaulacales
Alexandrium catenella Gonyaulacales
Ceratium fusus Gonyaulacales

ccz2 12 Unknown
Heterocapsa rotundata Peridiniales
Heterocapsa sp. Peridiniales
Heterocapsa trinquera Peridiniales
Alexandrium catenella Gonyaulacales
Alexandrium tamarense Gonyaulacales
Prorocentrum minimum Prorocentrales

cC3 13 Unknown
Lingulodinium polyedra Gonyaulacales
Heterocapsa sp. Peridiniales
Heterocapsa trinquera Peridiniales
Ceratium fusus Gonyaulacales
Lingulodinium polyedra Gonyaulacales
Amphidinium carterae Gymnodiniales

cC4 15 Unknown
Amphidinium massartii Gymnodiniales
Prorocentrum minimum Prorocentrales
Dinophysis acuminata Dinophysiales

In our SSN, 56,791 connected components were only composed of proteins from constitutive
mixotrophs, corresponding to almost a fifth of the total number of CCs (Table 3.1). These con-
nected components had a mean size of 2.7 proteins, and showed low taxonomic richness (i.e.
low number of distinct species represented in the CC), with a maximum of 7 mixotrophic species

found in the same connected component (over 18 mixotrophic species in the dataset). The four
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connected components associated only to mixotrophic species that had the highest species rich-
ness were selected as the best candidates for being potential markers of mixotrophy (Table 3.2).
Two of them were composed of 12 proteins, one of 13 and one of 15. One had proteins from 7 dif-
ferent constitutive mixotrophs, two others from 6 and one last component blended proteins from
5 constitutive and 1 plastidic-specialist non-constitutive mixotrophs (Table 3.2). Among the CCs
only composed of sequences from constitutive mixotrophs, two mixed species from two different
orders, Gonyaulacales and Peridiniales, while the third one also included a Prorocentrales species
(Figure 3.2). A phylogeny of 47 dinoflagellates transcriptomes based on 1043 orthologous protein
sets identified Gonyaulacales, Peridiniales and Prorocentrales as a clade (Stephens et al. (2018);
Figure 3.6). The three CCs identifed here could then constitute markers of constitutive mixotrophy
at the level of this clade. But they could also be phylogenetic markers of this clade with no func-
tional relation to mixotrophy. The 3 CCs did not contain any proteins from the 11 transcriptomes
of non-mixotrophic species belonging to the Gonyaulacales/ Peridiniales/Prorocentrales clade in
our dataset, but they also did not include proteins from some transcriptomes of mixotrophic Peri-
diniales (e.g. Scrippsiella trochoidea) and Gonyaulacales (e.g. Ceratium fusus) (Table 3.2, Figure
3.6). It is then hard to conclude with certainty on the potential of these CCs as markers of consti-
tutive mixotrophy without further wet-lab explorations (as evoked in section 3.1), especially since

they could not be associated with any function in reference databases.

The fourth CC identified as a potential marker of mixotrophy blended 15 proteins from 4 different
orders, Gonyaulacales, Gymnodiniales, Prorocentrales and Dinophysiales (Table 3.2). It is less
likely for the proteins of this connected component to be limited to phylogenetic markers than
it was for the three other candidate CCs, because these four orders belong to a large clade also
including the Peridiniales, Suessiales and Noctilucales orders (Figure 3.6), from which no proteins
appear in the CC. It is however legitimate to question the credibility of a genomic marker that would
detect both constitutive and plastidic-specialist non-constitutive mixotrophy, as organisms from
the two trophic modes differ strongly in terms of physiology (Mitra et al., 2016). For example, this
CC could not be a marker of kleptoplasty, which can not be performed by constitutive mixoitrophs.
However, both types of mixotrophic organisms share the ability to eat through phagocytosis, and
this CC could then be tested as a marker of phagotrophy in dinoflagellates. Here again, all the
15 proteins from the connected component were ’known unknowns’, i.e. they were found in the
InterProScan database (Jones et al., 2014), but could not be associated to a biological function.
They could then constitute interesting proteins to target for wet lab experiments focusing on

phagocytosis, to check for their influence on mixotrophic abilities in dinoflagellates.

Despite the fact that mixotrophic abilities were associated with more than a hundred transcrip-
tomes of MMETSP through a literature review, no information were available in the metadata of
these transcriptomes indicating the mode of feeding of the cultivated organisms. Considering that
constitutive mixotrophs often have varying feeding behaviors, adapting their rate of mixotrophy
to their environment (McKie-Krisberg et al., 2018; Liu et al., 2016; Lv et al., 2019), it is difficult
to tell whether the transcriptomes of mixotrophic species in the MMETSP database should carry
markers of mixotrophy or not. This way, even with an improved version of the SSN, and eventually

the addition of more transcriptomes to the 798 ones that were annotated, the potential detection
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Figure 3.6 - Maximum-lilkcelihood phylogeny of dinoflagellates inferred using 1043 orthologous pro-
tein sets issued from 47 transcriptomes of dinoflagellates, modified from Stephens et al. (2018).
Bootstrap support values are indicated at each split. Branch length is based on the rate of substitu-
tion per site. Colored dots were added next to every species that was represented in our sequence
similarity network (strains were not taken into account except for the Symbiodinium genus, in which
species could not be attributed). Red dots indicate plastidic-specialist non-constitutive mixotrophs
(pSNCM), green dots indicate constitutive mixotrophs (CM) and blue dots indicate species for which
no proofs of mixotrophy were found in the literature.

of mixotrophy markers would still be questionable regarding the data used. This illustrates well
how the fact that mixotrophy is a continuum between autotrophy and heterotrophy hardens the

analysis of its genomic basis.

3.3.2.4 Conclusion

The more reliable way to find markers of mixotrophy would be to reproduce a SSN-based approach
using transcriptomes of mixotrophic organisms issued from comparative transcriptomics studies

at a fine scale (i.e. including species sharing similar mixotrophic behaviours, and exposing them
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to similar sets of conditions). The goal should be to produce quantitative data that would allow to
sort connected components/transcript families based on expression level, implying the need for
replicates (this analysis showed the impact of sequencing depth) in different conditions favoring
certain trophic modes. Studies are already showing the way by sequencing transcriptomes of
mixotrophic species along gradients of lights and nutrients, giving us access to transcriptomes
of mixotrophs with varying levels of photosynthetic and phagotrophic capacity (McKie-Krisberg
et al., 2018; Liu et al., 2016; Lv et al., 2019). By building a sequence similarity network using
transcriptomes coming out of such experimental designs, and by analyzing it through the lens of
metadata indicating rates of phagotrophy and photosynthesis, it should be possible to find con-
nected components grouping proteins from multiple species in the same feeding behavior state.
It could allow to expand from species or strain-specific putative markers detected by comparative
transcriptomics to higher trophic levels ones. The presence of such markers could then be tested
in other, less studied mixotrophic species, or in environmental metagenomics and metatranscrip-

tomics samples.

3.4 Next challenge: linking unknown functions and unculti-

vated organisms to functional traits

Until now, I have only presented approaches based either on wet lab investigations of specific
organisms, or on the statistical investigation of large datasets of full genomes/transcriptomes.
This often implies that the focal organisms can be cultivated in labs. However, up to 99% of
microbial species remain impossible to cultivate (Rappé and Giovannoni, 2003; Rinke et al., 2013;
Watson et al., 2019; Mangot et al., 2017), so one important challenge is to associate functional

traits to poorly known and not yet culturable organisms.

As illustrated in section 3.2.2, the mining of genomic markers in metagenomes and metatranscrip-
tomes can allow to draw quantitative hypotheses on the distribution of functional traits without
distinguishing cultivated and uncultivated organisms. In a more organism-centered way, the
recent identification of hundreds of MAGs from the Tara Oceans metagenomics data allowed to
detect nitrogen fixation genes in abundant yet uncultivated Planctomycetes and Proteobacteria
(See section 1.3.2.2, Delmont et al. (2018)), genomes of uncultured picoeukaryotes and giant
viruses were retrieved from targeted single-cell genomics (Mangot et al., 2017; Needham et al.,
2019), and transcriptomes of uncultured eukaryotes were determined from metagenomic samples
(Vorobev et al., 2019). Similarly, Lannes et al. (2019) were able to detect carbon fixation pathways
in marine ultrasmall prokaryotes, without even relying on the assembly of genomes or transcrip-
tomes. Instead, they filtered sequences from metagenomes of the viral size fraction from Tara
Oceans, in order to only keep sequences affiliated to prokaryotes. This way, they identified ul-
trasmall prokaryotes to collectively harbor (i.e. without proof of presence in a single genome) the
dicarboxylate/4-hydroxybutyrate pathway and the 4-hydroxybutyrate pathway, which are both
energy efficient pathways leading to autotrophic carbon fixation (Lannes et al., 2019).

Still, 40 to 60% of the open reading frames (ORF) detected in microbiome analyses are of unknown
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function (Vanni et al., 2020; Bernard et al., 2018). To explore the function of such ORFs, one
method is to identify their remote homologs, also called distant homologs, or transitive homologs
(Lopez et al., 2015; Watson et al., 2019). The idea behind this method is to find proteins in
environmental samples that are indirectly homologous to proteins from functional annotation
databases, e.g. an unannotated homolog to a protein that has a match in functional annotation
databases (Watson et al., 2019). Lobb et al. (2015) found 15.3% of the 484,121 ORFs analyzed in
their study to be distant homologs of structurally characterized proteins, and were able to identify
hundreds of novel enzymes. Very recently, a new database and tool called AGNOSTOS came
out, that references known and unknown genes as clusters based on their sequence similarity,
allowing to very rapidly identify distant homologs of query proteins (Vanni et al. (2020); more on

this in the general discussion).

These are examples of the methods available to decipher the functional potential of uncultivated
organisms and functionally unannotated genes. However, in matters of functional traits, only
traits with well known genomic markers can be detected in meta-omics samples and in MAGs.
We can hope that in a near future, comparative transcriptomics, methods like GWAS and wet
lab experiments will allow to better describe the genomic basis of complex traits like cell size or
mixotrophy. Only then, investigating these multigenic markers in environmental samples and
uncultivated organisms will be possible. This is why I decided to test a different approach for the
next part of my thesis, trying to focus on detecting functional clusters of genes of interest without

any a priori selection based on their functional annotations.
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Chapter ﬂ

Towards omics-based predictions of planktonic

functional composition from environmental data

4.1 Prelude

In the introduction, I highlighted how current biogeochemical modeling approaches did not allow
to define model structural components from observational data, and always relied on a priori
choices of the model PFTs, traits, genes or metabolic pathways. During the first part of my thesis,
I did not address this particular issue, as I focused my attention on two particular traits, namely
mixotrophy and DMS production. As presented in chapter 3, the investigation of a priori chosen
functional traits often implies to rely on genomic markers detected in cultivated organisms. I
presented how meta-omics data led to the detection of such markers in unexpected taxa, and
how they allowed to better understand the biogeography of functional traits independently from
taxonomical assignations. But such studies do not take full advantage of the richness of meta-
omics data, as they focus on one or a few a priori selected genes and discard the rest, including
functionally unannotated genes, even though full metagenomes and metatranscriptomes contain

information on the functional potential of planktonic communities as a whole (Vanni et al., 2020).

In the second part of my thesis, my goal was then to design an approach to extract functionally
homogeneous clusters of proteins from meta-omics data without any a priori based on their func-
tional and/or taxonomic annotation (Figure 4.1). One of the main objectives was to be able to
compute the abundance of each cluster in the environment, to be able to describe and under-
stand their biogeography. It allowed me to identify and confirm the main drivers of functional
composition in planktonic prokaryotic communities, but also to highlight proteins, functions and

MAGs particularly associated with environmental gradients in the global ocean.

In the following section, I will present a data-driven method applicable to any set of sequences,
allowing to build protein functional clusters and quantitatively link their abundance to the envi-

ronment without a priori selection of taxa or metabolic functions, while including all unannotated
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Figure 4.1 - Analyzing the biogeography of functionally homogeneous protein clusters obtained from
metagenome-assembled genomes. Nearly 2 millions of proteins from 885 prokaryotic MAGs are
assembled into a sequence similarity network, i.e. a graph in which nodes are proteins and links
reflect the similarity and coverage between each pair of proteins. In this toy example, the sequence
similarity network is composed of 4 connected components, or groups of nodes connected together
directly or indirectly, and disconnected form the rest of the network. Each connected component is
defined as a protein functional cluster, and examples of taxonomic and functional annotations are
indicated to illustrate the kind of information that can be retrieved from the approach. The abundance
of each protein functional cluster can be computed in environmental metagenomes, through the
mapping of environmental reads to each protein. These abundances can finally be statistically
related to the environmental context.

proteins. I decided to apply this method on the 885 prokaryotic MAGs produced by Delmont et al.
(2018), which were manually curated and appeared to me as more reliable than fully-automatically
binned ones (e.g. Parks et al. (2017) or Tully et al. (2018)). The same approach could in theory be
applied to larger datasets, and even to full Tara Oceans gene catalogs, but computational limita-
tions and the necessity to benchmark the approach with a more easy to handle dataset pushed
me to first focus on the MAGs. They appeared as good candidates as they mostly correspond
to uncultivated organisms, with poorly described functional potentials despite high abundances

across the global ocean.

The rest of this chapter will consist in a manuscript entitled Towards omics-based predictions
of planiktonic functional composition from environmental data, currently undergoing modifications

after a first round of revisions in Nature Comumunications.
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Abstract: Marine microbes play a crucial role in climate regulation, biogeochemical cycles, and
trophic networks. Unprecedented amounts of data on planktonic communities were recently col-
lected, sparking a need for innovative data-driven methodologies to quantify and predict their
ecosystemic functions. We reanalysed 885 marine prokaryotic metagenome-assembled genomes
through a network-based approach and detected 233,756 protein functional clusters, from which
15% were functionally unannotated. We investigated all clusters’ distributions across the global
ocean through machine learning, identifying biogeographical provinces as the best predictors of
protein functional clusters’ abundance. The abundances of 2,444 clusters were predictable from
the environmental context, including 183 functionally unannotated clusters. We analyzed the
biogeography of these 2,444 clusters, identifying the Mediterranean Sea as an outlier in terms of
protein functional clusters composition. Applicable to any set of sequences, our approach con-
stitutes a step towards quantitative predictions of functional composition from the environmental

context.

4.2.1 Introduction

Planktonic organisms play an essential role in biogeochemical cycles through the capture and
export of carbon into the deep ocean, nitrogen fixation, remineralization of organic matter, or the
production of dimethyl-sulfur, hence impacting global climate (Falkowski et al., 1998; Guidi et al.,
2016; Whitman et al., 1998; Ferrera et al., 2015; Sunagawa et al., 2015). The understanding and
modeling of such biogeochemical functions is key for predicting the global functioning of oceanic
ecosystems, and especially their response to climate change (Le Quéré et al., 2005; Litchman et al.,
2015a; Follows et al., 2007). These biogeochemical functions are usually modeled by simulating
the dynamics of plankton functional types (PFT) that are theoretical entities grouping planktonic
organisms according to shared functional capacities (e.g. calcifiers, nitrogen fixers or silicifiers)
(Le Quéré et al., 2005). This approach allows to incorporate the functional diversity of marine
plankton into biogeochemical models (Follows et al., 2007; Aumont et al., 2015; Coles et al., 2017;
Leles et al., 2016), but often relies on a priori and restricted choices of the considered types of
planktonic organisms and of their physiological rates or parameters (Flynn et al., 2015). For
example, prokaryotic organisms are often lacking an explicit representation in global PFT models

(Aumont et al., 2015; Leles et al., 2016), even though more than 1030 prokaryotic cells inhabit the
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ocean’s subsurface (Whitman et al., 1998). To tackle this issue, recent works proposed to switch
towards data-driven modeling of planktonic communities and their impact on the environment,
notably through the use of high-throughput sequencing data (Coles et al., 2017; Mock et al., 2016;
Louca et al., 2016a).

Next generation sequencing technologies have led to significant advances in the knowledge of the
taxonomic and functional diversity of planktonic organisms (Sunagawa et al., 2015; Louca et al.,
2016c¢). Bioinformatics workflows allow the assembly of metagenome-assembled genomes (MAGs),
which are near-complete genomes retrieved from DNA fragments coming from environmentally
sequenced individuals of one or a few closely related populations (Parks et al., 2017; Tully et al.,
2018; Delmont et al., 2018; Nielsen et al., 2014). MAGs can be taxonomically annotated using
multi marker gene approaches, and organism-level functional profiles can be drawn from their
genomic content (Parks et al., 2017; Tully et al., 2018; Delmont et al., 2018). Reads from envi-
ronmental meta-omics datasets can also be mapped to their reconstructed sequences to obtain
abundance measurements both at MAG and single protein level (Delmont et al., 2018; Salazar
et al., 2019). MAGs can be considered as representative of the genetic potential of natural pop-
ulations, hence allowing to retrieve genomes of cultivable, uncultivable or even unknown species
present in the environment. They constitute a promising tool for investigating as a whole the

functional potential of known and unknown planktonic life forms.

Recently, a genomics-based model revealed that the gene content of planktonic communities is
more relatable to biogeochemical gradients than taxonomic content (Coles et al., 2017). In another
study, omics data were used to quantitatively estimate global nitrogen fixers abundance through
machine learning algorithms (Tang and Cassar, 2019). It illustrates how quantitative, data-driven
biogeochemical models can be built from global omics datasets. However, these studies focused
only on a relatively small number of well-described genes (e.g. nif or amtB genes, involved in
dinitrogen and ammonium fixation, respectively) (Coles et al., 2017; Tang and Cassar, 2019),
far from exploiting the rich functional diversity observed in omic samples. This way, the large
proportion of unknown sequences detected in environmental meta-omics datasets, that is to say
the open reading frames (ORFs) which can not be linked to any biological functions (usually around
40% for prokaryotes, and about 50% for eukaryotes), is as yet untapped (Ferrera et al., 2015;
Sunagawa et al., 2015; Salazar et al., 2019; de Vargas et al., 2015; Acinas et al., 2019; Carradec
etal., 2018). Besides, many meta-omics studies have either focused on semi-quantitative diversity
and interactions surveys at global scales (de Vargas et al., 2015; Lima-Mendez et al., 2015), on
specific taxonomic groups (e.g. Collodaria (Biard et al., 2017)) or on particular biological functions
(such as nitrogen fixation or mixotrophy (Delmont et al., 2018; Tang and Cassar, 2019; Faure
et al., 2019)). A recent study has grouped protein sequences of marine planktonic prokaryotes
according to their annotated metabolic pathways to investigate their differential abundance and
expression, mainly focusing on pre-selected biogeochemical functions such as photosynthesis
or nitrogen fixation (Salazar et al., 2019). By investigating the response of biogeochemistry-
related protein groups to environmental conditions, significant differences in terms of presence
and expression were identified between polar and non-polar areas, and between mesopelagic and

surface depths (Salazar et al., 2019). These results highlight the potential of function-clustering
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based approaches for deciphering global ocean biogeochemistry, but could be further extended
by skipping any sequence pre-selection step requiring database-dependent metabolic pathways

annotations.

In this study, we followed a similar approach while avoiding any a priori choices of particular
genes or metabolic pathways. We used 51 quantitative and qualitative environmental variables to
detect both known and unknown protein clusters that are sensitive to environmental gradients.
We re-analysed 885 high quality MAGs from marine prokaryotic plankton belonging to the Bacteria
(n=820) and Archaea (n=65) domains, assembled by Delmont et al. (Delmont et al., 2018) using
93 Tara Oceans picoplanktonic metagenomes from the surface of the global ocean. With these
almost 2 million sequences, we built functional clusters of proteins using a sequence similarity
network, i.e. a graph in which nodes are protein sequences, and edges represent the similarity
and coverage between each pair of sequences (Atkinson et al., 2009; Forster et al., 2015; Meng
et al., 2018; Bittner et al., 2010; Lopez et al., 2015). Such approaches allow for the construction
of sequence clusters putatively homogenous in function (Atkinson et al., 2009), and were recently
used to investigate the genomic basis of functional diversity in prokaryotes (Cheng et al., 2014), in
alineage of eukaryotes (Meng et al., 2018), or in natural microbial communities (Lopez et al., 2015).
Particularly, we are here interested in knowing if the abundance of some protein clusters could be
predicted from environmental data in the oceanic ecosystem. For example, is the distribution of
biogeochemistry-related protein clusters more sensitive to environmental gradients than the one
of other clusters? We thus explored the biogeography of environment-related protein clusters in
light of their potential functional and / or taxonomic annotation, in order to identify the ones being

specific to certain environmental conditions, such as oligotrophic or particularly cold waters.

We introduce here a data-driven, large-scale, fast and automatable approach, potentially appli-
cable to any set of environmental sequences, which involves (1) the network-based construction
of sequence clusters, putatively homogeneous in function, (2) the functional annotation of these
clusters, (3) the calculation of environmental abundance values for each of these protein clus-
ters through environmental reads re-mapping, and (4) the description of statistical relationships
between cluster abundances and environmental gradients through machine learning and con-
strained ordination methods. We then present the first biogeographical analysis of known and
unknown prokaryotic protein functional clusters identified as sensitive to environmental gradients

in the global ocean, with no a priori choice of specific functions or taxa.

4.2.2 Results

4.2.2.1 From sequence similarity network to protein functional clusters

We analysed the 1,914,171 proteins from 885 prokaryotic MAGs from marine plankton, recovered
from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara
Oceans samples (Delmont et al., 2018). 39.6% of the MAGs’ proteins (757,457) were involved in
our sequence similarity network, i.e. they had at least one similarity relationship with another

protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see Methods).
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51.1% of the network proteins could be annotated to 4,922 unique molecular function IDs in the
KEGG database (Aramaki et al., 2019), associated with 327 distinct metabolic pathways (a full list
of these pathways is displayed in Table S1, available in appendix C). 85.2% of the network pro-
teins were annotated to 17,009 eggNOG functional descriptions (Huerta-Cepas et al., 2017, 2016).
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Table 4.1 - Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence
similarity network of MAGs proteins. Functional scores are based on the functional annotation of
MAGs proteins, with a _functional homogeneity score of 1 meaning that all proteins in a PFC share
the same annotation, while a score of O indicates that all proteins have different annotations (see
Methods for details). By “unknown proteins” we refer both to sequences with no match in databases
(KEGG and/or eggNOG) and to sequences existing in databases but with no functional and/or
taxonomic annotation. Taxonomy scores are based on taxonomic annotations of MAGs available
Jfrom Delmont et al. 2018. This way, the 6,367 PFCs with only proteins from MAGs unannotated at
the phylum level were only composed of proteins coming from the 45 Bacteria MAGs of unidentified
phylum. Detailed functional and taxonomic annotations for each protein sequence are available
online, as well as detailed sizes and functional/taxonomy scores for each PFC (see Data availability
section).

The sequence similarity network involved 233,756 connected components (CCs), i.e. groups of
nodes (here proteins) connected together by at least one path and disconnected from the rest
of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs re-
mained without any functional annotation (i.e. all sequences from the CC were unmatched in the
databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8%
were functionally unannotated for both databases. We ranked the functional homogeneity of CCs
involving at least one functional annotation from O (all annotations in the CC are different) to 1 (all
annotations in the CC are the same), and found mean homogeneity scores of 0.99 over 1 for KEGG
annotations and 0.94 over 1 for eggNOG ones (see Methods for score calculation details). Only
88 (0.04%) CCs had an homogeneity score below 0.5 in both annotation databases, all with sizes
below 5 proteins. 177 PFCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins

in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter
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considered each CC as a protein functional cluster (PFC), numeroted from #1 to #233,756.

To check for the influence of taxonomic relationships between the MAGs on our PFCs, we com-
puted different metrics based on MAGs taxonomic annotations provided by Delmont et al. 2018
(Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate
100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining
5% corresponding to Bacteria MAGs of unidentified phyla (Delmont et al., 2018). Only 1,330 PFCs
(0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous
at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that
PFCs studied here were generally not specific from a single class, order, family, genus or MAG
(Table 1). 7,834 PFCs (3.4%) were only composed of proteins with no functional annotation in
KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes
ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarcheota MAGs
(12,458; 60.6%), Bacteria MAGs of unidentified phylum (2,742; 13.3%), Candidatus Marinimicro-
bia MAGs (2,451; 11.9%), Proteobacteria MAGs (1,528; 7.4%), Acidobacteria MAGs (1,031; 5%),
Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79;
0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We here-
after considered these functionally and taxonomically unknown PFCs as “microbial dark matter”
(Rinke et al., 2013; Bernard et al., 2018). Their nucleotidic sequences are available in separate
supplementary files (see Data availability section). The abundance of microbial dark matter PFCs
was significantly different from the abundance of other PFCs in 85 samples over 93 (Wilcoxon test,
p-value <0.05). The median abundance of microbial dark matter PFCs was higher than the one of
other PFCs in 36 of these 85 samples, and lower in the 49 others. Further details on dark matter

PFCs’ abundance are available in the Detection of the rare biosphere section.

4.2.2.2 Identification of protein functional clusters highly related to environmen-

tal gradients

To identify the PFCs that responded the most to environmental gradients, we first selected the
228,914 clusters with non-zero variance abundance profiles (i.e. at least 10% of distinct abun-
dance values across all samples, and less than a 95 to 5 ratio between the most and the second
most observed abundance value). We then built random forest regression models for each of these
228,914 clusters. We used the sequence abundances as response variables, or labels, and 51
environmental variables as explanatory variables (see Methods for details of model training and
tuning). About a fifth of the random forest regression models showed a clear statistical signal:
44,653 models (19.5%) had R? values over 0.25, corresponding to PFCs linked to environmental
conditions, and 2,444 (1.1%) had values over 0.5 (Figure 4.24), corresponding to PFCs highly
linked to environmental gradients. The mean R? value over all models was 0.09, with a maximum
of 0.91 (Figure 4.2A). Longhurst biogeographical provinces (Longhurst, 1998) were detected as the
most important predictor in 90,235 models (39.4%), and were in the top 3 most important pre-
dictors in 166,639 models (72.8%) (Figure 4.2B). Among models with biogeographical provinces

as the best predictor, the mean R? reached 0.15. Temperature was in the top 3 most important
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