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Abstract

Marine planktonic organisms play a crucial role in trophic networks, global biogeochemical cy-

cles, and climate regulation. Biogeochemical models simulate planktonic ecosystems dynamics

to understand and predict climate change. In most biogeochemical models, planktonic diversity

is implemented either through plankton functional types (PFT), i.e. theoretical entities grouping

planktonic organisms according to shared functional capacities (e.g., calcifiers, nitrogen fixers

or silicifiers), or functional traits, i.e. morphological, physiological or phenological features mea-

surable at the individual level that effect growth, reproduction or survival (e.g. feeding modes,

production of toxins or body size). These methods imply an a priori and restricted choice of the

considered types or traits of planktonic organisms, potentially leading to oversimplified represen-

tations of planktonic diversity in models. Unprecedented amounts of meta-omics data on marine

planktonic communities were recently collected at global scales, calling for the use of data-driven

methodologies to determine and quantify the potential and realized functional traits of planktonic

organisms in-situ. My objective in this thesis was therefore to determine how to use meta-omics

data to quantify the distribution of functional traits in the environment. In a first part, I present

how omics data can be used to describe and quantify specific, a priori selected traits in the global

ocean. A particular focus is made on two functional traits: mixotrophy, from which the genomic

basis is poorly known, and dimethyl sulfide (DMS) production, from which the genomic basis is

well understood. I show how metabarcoding data on one hand and functional genomic markers

on the other hand allow to decipher the biogeography of functional traits, identifying limits and

advantages of the two types of data. In a second part, I present an approach allowing to detect pu-

tative protein families in metagenomics data that can be associated with functional traits, without

any a priori choice of functional traits of interest. By quantifying the response of these emergent

clusters to physico-chemical gradients in the global ocean, I show how this approach could allow

to predict the functional composition of planktonic communities from environmental data in the

near future. Finally, I use my results to discuss the potential of meta-omics data as a means of

realistically representing the diversity of planktonic communities in biogeochemical models.

Keywords: Omics; Biogeochemistry; Functional traits; Plankton; Biogeography.



Résumé

Les organismes planctoniques marins jouent un rôle crucial dans les réseaux trophiques, les cy-

cles biogéochimiques globaux et la régulation du climat. Les modèles biogéochimiques simule

la dynamique des écosystèmes planctoniques pour comprendre et prédire le changement clima-

tique. Dans la plupart de ces modèles, la diversité planctonique est représentée soit sous forme

de types fonctionnels planctoniques (PFT), i.e. par des entités théoriques classant les organ-

ismes planctoniques selon leurs capacités fonctionnelles (e.g. organismes calcifiants, fixateurs

d’azote, ou silicifiants), ou bien de traits fonctionnels, i.e. des caractéristiques morphologiques,

physiologiques ou phénologiques mesurables au niveau individuel qui affectent la croissance, la

reproduction ou la survie (e.g. modes trophiques, production de toxines ou taille corporelle). Un

choix a priori et restreint des types planctoniques ou traits fonctionnels considérés est donc néces-

saire, pouvant conduire à des représentations simplifiées de la diversité planctoniques dans les

modèles. Des quantités inédites de données méta-omiques sur les communautés planctoniques

ont récemment été collectées à l’échelle de l’océan global, appelant à l’utilisation de méthodes

permettant de déterminer et quantifier les traits fonctionnels potentiels et réalisés des organismes

planctoniques à partir de ces données in-situ. Mon objectif au cours de cette thèse fut donc de

déterminer comment utiliser les données méta-omiques afin de quantifier la distribution de traits

fonctionnels dans l’environnement. Dans une première partie, je présente comment les données

omiques peuvent être utilisées pour décrire et quantifier dans l’océan global des traits spécifiques,

choisis a priori. Deux traits fonctionnels sont utilisés en exemple: la mixotrophie, dont la base

génomique est mal connue, et la production de diméthylsulfure (DMS), dont la base génomique

est relativement bien étudiée. Je montre comment les données de métabarcoding d’une part et

des marqueurs génomiques fonctionnels d’autre part permettent de décrire la biogéographie des

traits fonctionnels, en identifiant les limites et les avantages des deux types de données. Dans une

deuxième partie, je présente une approche permettant de faire émerger des familles protéiques

putatives pouvant être associés à des traits fonctionnels au sein des données de métagénomique,

sans choix a priori de traits fonctionnels d’intérêt. En quantifiant la réponse de ces familles

aux gradients physico-chimiques dans l’océan global, je montre comment cette approche pour-

rait permettre de prédire la composition fonctionnelle des communautés planctoniques à partir de

données environnementales dans un avenir proche. Enfin, j’utilise mes résultats pour discuter du

potentiel des données méta-omiques comme moyen de représenter de manière réaliste la diversité

des communautés planctoniques dans les modèles biogéochimiques.

Mots-clefs: Omiques; Biogéochimie; Traits Fonctionnels; Plancton; Biogéographie.



L’homme et la mer

Homme libre, toujours tu chériras la mer !

La mer est ton miroir ; tu contemples ton âme

Dans le déroulement infini de sa lame,

Et ton esprit n’est pas un gouffre moins amer.

Tu te plais à plonger au sein de ton image ;

Tu l’embrasses des yeux et des bras, et ton coeur

Se distrait quelquefois de sa propre rumeur

Au bruit de cette plainte indomptable et sauvage.

Vous êtes tous les deux ténébreux et discrets :

Homme, nul n’a sondé le fond de tes abîmes ;

Ô mer, nul ne connaît tes richesses intimes,

Tant vous êtes jaloux de garder vos secrets !

Et cependant voilà des siècles innombrables

Que vous vous combattez sans pitié ni remord,

Tellement vous aimez le carnage et la mort,

Ô lutteurs éternels, ô frères implacables !

Charles Baudelaire

Figure 1 – Picture taken by Joana Roussillon on board of the Atalante during the MOOSE 2018
expedition, on which I had the great pleasure to participate.
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Chapter 1

General introduction

1.1 The role of marine plankton diversity in global biogeo-

chemical cycles

1.1.1 Marine plankton diversity
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Figure 1.1 – Range of body size and abundance in logarithmic scales for viruses, prokaryotes,
unicellular eukaryotes (commonly called protists) and multicellular eukaryotes (including metazoans
and macro-algae). A scale of macroscopic references was added to help apprehend the extent of size
diversity among planktonic organisms. Size and abundance ranges were extracted from Pesant et
al. (2015), but the size scale of pluricellular eukaryotes was extended to include larger organisms
like jellyfish or sargass that can reach over a meter in length.

The word plankton is derived from the ancient Greek πλαγκτoζ ("planktos"), meaning wan-

derer. It was used for the first time by Viktor Hensen at the end of the XIXth century, to

describe the animals and plants floating in the see (Hensen, 1887). The term plankton

now regroups all the living organisms that can not swim against the currents, in oppo-
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Chapter 1. General introduction

sition to the nekton, corresponding to the living organisms swimming freely across water

masses. Planktonic organisms range from a few nanometers to a few meters in size, and

include viruses, archaea, bacteria, as well as unicellular and multicellular eukaryotes

((Pesant et al., 2015), Figure 1.1).

Box 1: Ecological roles and trophic modes
Autotrophs: Organisms that produce organic matter from 
inorganic substances. 

Phototrophs: Autotrophic organisms producing organic matter 
from photosynthesis, using light as an energy source and 
inorganic nutrients. 

Heterotrophs: Organisms that depend on pre-formed organic 
matter for nutrition. 

Mixotrophs: Organisms that are both capable of auto- and 
heterotrophy.  

Parasites: Organisms feeding strictly at the expense of an host 
organism, permanently or during a phase of its life cycle. 

Parasitoids: Parasites that always kill their host. 

Symbiosis: Close, prolonged association between two or more 
different organisms of different species that may, but does not 
necessarily, benefit each member. 

Symbiont: Organism in a symbiotic relationship. 

Phagocytosis: Nutrition mode involving the engulfment and 
digestion of particulate matter. 

Primary production: Production of organic matter by 
autotrophs. 

Secondary production: Production of organic matter by 
heterotrophs.

The bacterioplankton gather plank-

tonic prokaryotic cells, whose

abundance reaches about 1030 in

the ocean subsurface (Whitman

et al., 1998). It includes a vast

diversity of organisms spanning

across two domains of life (Fig-

ure 1.2). The bacterioplankton

includes heterotrophic prokaryotes

(see Box 1), that are responsible

for the recycling of organic mat-

ter into inorganic nutrients in the

ocean (Ducklow, 1999). It also in-

cludes small autotrophic prokary-

otes (see Box 1), like Prochlorococ-

cus, which was estimated to be the

most abundant photosynthetic or-

ganism on earth (Partensky et al.,

1999). Autotrophic species of the

bacterioplankton are sometimes found in symbiosis (see Box 1) with eukaryotic organ-

isms, for example the cyanobacteria Synechococcus is found in symbiosis with dinoflag-

ellate genus like Ornithocercus. Such ecological relationships between planktonic organ-

isms play key roles in marine ecosystems’ dynamics (Worden et al., 2015) (Figure 1.3).

Among planktonic eukaryotes, the most abundant group of organisms is usually con-

sidered to be the copepods, crustaceans that are sometimes even described as the most

abundant multicellular animal on earth (Bron et al., 2011). Marine planktonic unicellular

eukaryotes (or protists) constitute the majority of lineages across the eukaryotic tree of life

(Worden et al., 2015) (Figure 1.2). Historically, planktonic eukaryotes have been divided

in two compartments based on their trophic regime. Phytoplankton corresponds to pho-

tosynthetic organisms, in opposition to the zooplankton, corresponding to heterotrophic

organisms. Phytoplanktonic organisms are mostly unicellular and represent only 1% of

the photosynthetic biomass on earth, but are responsible for 45% of the global net pri-

14
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B

A

Figure 1.2 – Phylogenetic diversity of prokaryotic (A) and eukaryotic (B) marine plankton. (A)
Maximum-likelihood phylogenetic tree based on 16 concatenated single-copy phylogenetic mark-
ers extracted from 2,631 re-assembled genomes of prokaryotic plankton (Tully et al., 2018). These
genomes were assembled from 234 marine metagenomic samples from the Tara Oceans expedition
(details on metagenome-assembled genomes are available in section 1.3.2). The black nodes on
branches indicate bootstrap values >0.75, the color of polygons on branches extremities is coding
for the phyla while their size is proportional to the number of genomes associated to the correspond-
ing branch. Figure from Tully et al. (2018). (B) Diversity tree of eukaryotic plankton synthesizing
information from morphological, phylogenetic (comparisons between a few marker genes from a
large diversity of organisms) and phylogenomic (comparisons between parts of genomes or even
full genomes of a large diversity of organisms) criteria. Seven "supergroups" are highlighted in
colour, and pictures on the sides illustrate the morphological diversity of eukaryotes. Clockwise
from right: archaeplastids (rhodophytes, chlorophytes, streptophytes); amoebozoa (tubulinids, ar-
cellinids, mycetozoans); opisthokonts (fungus, microsporidians, choanoflagellates, cnidarians, bila-
terians); excavates (parabasalians, oxymonads, euglenids); rhizaria (acantharians, foraminiferans,
chlorarachniophytes); alveolates (ciliates, dinoflagellates); stramenopiles (labyrinthulids, synuro-
phytes, diatoms, phaeophytes, actinophryids); unassigned [cryptomonads, katablepharids, hapto-
phytes]. Figure from (Worden et al., 2015).
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Chapter 1. General introduction

mary production (see Box 1, Field et al. (1998); Falkowski et al. (2004)). Zooplankton

includes a wide diversity of organisms, from unicellular heterotrophs to jellyfish, passing

by small crustaceans and planktonic larvae of nektonic organisms. They play a key role

in marine ecosystems as grazers of the phytoplankton (Figure 1.3), and hence as sec-

ondary producers in marine food webs (See Box 1, Calbet et al. (2001)). However, this

dichotomy modeled on the one observed between embryophytes and metazoans in terres-

trial ecosystems is only poorly representing the diversity of trophic modes found among

marine planktonic organisms (Flynn et al., 2013). Indeed, many marine unicellular eu-

karyotes are able to feed both through photosynthesis and by predating other organisms

(Stoecker et al., 2017). These widely abundant organisms blurring the line between au-

totrophy and heterotrophy are called mixotrophs (see Box 1, Flynn et al. (2013)), and

their hybrid position in the food chain constitutes a good example of the large diversity of

ecological roles achieved by planktonic organisms (Figure 1.3).

Grazing of 
eukaryotes

Grazing of 
prokaryotes

Parasitism

Primary production Secondary production

Primary production

Second. production

Remineralization

Figure 1.3 – Ecological and biogeochemical roles in marine planktonic ecosystems. Protists from
4 size ranges and 4 trophic regimes are depicted, with their ecological interactions represented by
arrows. Phototrophs and mixotrophs fix atmospheric CO2 into organic matter through photosynthesis
(primary production), before being grazed on by heterotrophs (secondary production, red arrows).
The organic matter then travels through higher levels of the food web, which are not represented
in this diagram. Parasitoids (see Box 1) and viruses, which are not depicted here, can cause the
death of their hosts (blue dotted arrows), which leads to a release of organic matter and an increase
of available nutrients in the water column. Bacteria are represented as a unique simplified group
in this diagram, but contain both phototrophic and heterotrophic organisms. Bacteria notably have
the important role of remineralizing organic matter back to inorganic nutrients and carbon dioxide,
which are then available for primary production. Figure modified from Caron et al. (2017).

The component of biodiversity that dictates the number of ecological functions achieved

in an ecosystem is often described as functional diversity (Tilman et al., 1997), while

the term taxonomic diversity is used to describe the biodiversity in terms of distinct
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taxa/species, and the term phylogenetic diversity to illustrate the evolutive divergence

between taxa/species (Naeem et al., 2012). Similar metrics can be computed for these

three facets of diversity, like the functional,taxonomic or phylogenetic richness (i.e. how

many functions, species or lineages are present ?) and evenness (i.e. are there domi-

nant functions, species or lineages ?) of a community (Mason et al., 2005; Cadotte et al.,

2010). These various facets of diversity are sometimes coupled (Galand et al., 2018),

as functional capacities of organisms are shaped by their evolutive history, but a single

taxonomic or phylogenetic group can also have a great diversity of ecological functions.

Dinoflagellates for example, are a functionally diverse lineage of planktonic unicellular

eukaryotes that include autotrophic, mixotrophic, symbiotic or even parasitic organisms,

some of which producing toxins (Meng et al., 2017)). In this thesis, I will mainly focus on

the links between the functional diversity of marine plankton and global biogeochemical

cycles, which are driven by planktonic organisms.

1.1.2 Marine biogeochemical cycles driven by planktonic communities

The physiology of planktonic organisms and their ecological interactions have multiple

impacts on global biogeochemical cycles, notably including the carbon, nitrogen, phos-

phorus, sulfur or iron cycles. I will now detail the role of planktonic organisms in some

of these elemental cycles, and how it highlights the necessity to take planktonic commu-

nities into account when studying climate.

1.1.2.1 The carbon cycle

The ocean contains about 39,000 PgC (1 PgC = 1015 grams of carbon), which is more

than 46 times the amount of carbon present in the atmosphere, and about 10 times

the one found in terrestrial soils, permafrost and vegetation (Ciais et al., 2013; Le Quéré

et al., 2018). Carbon stocks in the ocean are mainly distributed in two pools: the dissolved

inorganic carbon (DIC, about 38,000 PgC), which corresponds to carbon dioxide, carbonic

acid, bicarbonate and carbonate ions, and the dissolved organic carbon (DOC, about 700

PgC) (Ciais et al., 2013; Le Quéré et al., 2018). The pool of carbon corresponding to

living organisms represents 3 PgC (Ciais et al., 2013; Siegenthaler and Sarmiento, 1993).

The majority of the ocean carbon pool is located in intermediate and deep waters, where

about 98% of the DIC is stored (Ciais et al., 2013; Siegenthaler and Sarmiento, 1993).

By absorbing and stocking carbon, oceans take up to a third of anthropogenic carbon

emissions, hence mitigating climate change impacts on the biosphere (Siegenthaler and

Sarmiento, 1993). It is then essential to understand how carbon fluxes operate in the
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ocean to be able to predict the impacts of climate change.

Fluxes of carbon within the ocean are governed by four main processes, described as

carbon pumps: the solubility pump, the biological pump (also called the soft tissue pump),

the carbonate pump and the microbial pump (Siegenthaler and Sarmiento (1993); Herndl

and Reinthaler (2013); Ducklow et al. (2001); Jiao et al. (2010), Figure 1.4).
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Figure 1.4 – Planktonic organisms interact to fix carbon on geological time scales in the ocean.
The biological carbon pump is depicted in the green kernel, while the microbial carbon pump is
represented by the yellow scheme on the right. Atmospheric carbon is either sequestered through the
export of particulate organic matter (POM) produced by the biological carbon pump, or the creation
of refractory dissolved organic matter (RDOM) produced by the microbial carbon pump. Diagram
modified from Jiao et al. (2010).

The solubility pump is an abiotic process, where atmospheric carbon is chemically ab-

sorbed by oceanic waters before reaching the deep layers of the ocean through thermo-

haline circulation, where it can stay more than 1000 years before reaching surface again

(Volk and Hoffert, 1985). Sometimes called the physical carbon pump, the solubility pump

is very different from the biological, carbonate and microbial ones, which are all governed

by biotic processes.

The biological carbon pump starts with the fixation of dissolved inorganic carbon by au-

totrophic organisms through primary production, i.e. the synthesis of organic matter from

inorganic carbon (Figure 1.4). The primary production of marine planktonic organisms

leads to the net fixation of 45-50 Gt C per year, which is comparable to the 45-68 Gt C

fixed per year by terrestrial plants (Longhurst et al., 1995; Chavez et al., 2011). The pro-

duced organic matter is then transferred along food webs, and exported towards ocean’s
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depths through the sedimentation of organisms’ dead bodies and fecal pellets (Ducklow

et al., 2001; Legendre et al., 2015) (Figure 1.4). When the organic matter reaches the

ocean floor, it can stay sequestrated on geological time scales, i.e. up to millions of years

(Ducklow et al., 2001; Herndl and Reinthaler, 2013; Legendre et al., 2015). The biological

carbon pump is estimated to cause the sinking of between 0.3 and 0.7 PgC per year at a

2000 m depth, which represents between 0.6 and 1.3% of the organic carbon produced

by primary production.

The carbonate pump also refers to the sinking of biological matter towards the ocean

floor, this time under the form of carbonate shells produced by calcifying planktonic

organisms, such as coccolithophores or forams (Volk and Hoffert, 1985). But the magni-

tude of the carbonate pump is harder to estimate than the one of the biological pump, as

the production of carbonate shells leads to a release of CO2 in the surrounding waters,

and eventually to the atmosphere (Legendre et al., 2015). The carbonate pump is even

sometimes called the carbonate counter-pump (Legendre et al., 2015).

The microbial carbon pump differs from the three other pumps as it does not correspond to

a vertical flux of carbon. Instead, the microbial carbon pump includes all biotic reactions

allowing to switch from the most labile forms of DOC, which are short-lived (hours to

days) and accessible to micro-organisms for decomposition, to the most refractory forms

of DOC, which are long lived (20 to 40,000 years) and resistant to microbial decomposition

(Legendre et al., 2015) (Figure 1.4). Since the decomposition of DOC by microbes leads to

a production of CO2 through a reaction called remineralization, the amounts of labile and

refractory DOC directly influence oceanic carbon stocks (Jiao et al., 2010; Legendre et al.,

2015). Hence, biological processes leading to the production of refractory DOC from labile

DOC can be seen as carbon sequestration processes, analog to the three other carbon

pumps.

I showed how biogenic fluxes of carbon from the atmosphere to the ocean are mainly

driven by primary production. Marine primary production can be limited by multiple

factors, notably nitrogen, phosphorus and trace elements like iron. I will now illustrate

how planktonic communities play important roles in the biogeochemical cycles of these

limiting substrates.

1.1.2.2 The nitrogen and phosphorus cycles

In the 1930s, Alfred Clarence Redfield identified that multiple elements were present in

near constant ratio both in phytoplanktonic cells and in the marine water, giving his

name to the famous Redfield ratio (Redfield, 1934). More precisely, he identified the
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carbon:nitrogen:phosphorus ratio to always be near 106:16:1, before new observations

showed that this ratio could slightly change depending on phytoplankton species and

environmental conditions (Redfield, 1934; Martiny et al., 2014). Redfield also observed

that when nitrogen or phosphorus was depleted, it was always also the case for the

other, making it hard to identify which element was the most limiting one for primary

production (Redfield, 1934). This observation led to debates between oceanographers,

with most geologists identifying phosphate as the limiting nutrient, while most biologists

argued for nitrogen being the main limiter of primary productivity (Gruber, 2004; Tyrrell,

1999).

Since the beginning of the century, phosphorus impact on carbon fluxes is considered to

be influential on geological time scales, while nitrogen’s impact on primary production is

considered to be more immediate (Gruber, 2004). This is mostly explained by the fact that

phosphorus enters oceanic waters only through abiotic processes (Baturin, 2003). River

runoffs constitute about 80% of the total phosphorus supply into oceans, the rest being

provided by volcanism, coastal abrasion, atmospheric precipitations, glacier erosion and

groundwater discharge (Baturin, 2003). Inorganic phosphorus then either sediments or

is assimilated by phytoplankton, and stays trapped in the Ocean for long time scales,

ranging from 10,000 to 270,000 years (Baturin, 2003). On the opposite, marine nitrogen

fluxes are mostly biologically driven (Gruber, 2004; Baturin, 2003).

Nitrogen is found in 5 relatively stable forms in the ocean (which is more than most other

elements), and is used to synthesize structural elements of living cells and produce their

metabolic energy (Gruber, 2004). These forms are dinitrogen (N2), ammonium (NH4
+),

nitrate (NO3
-), nitrite (NO2

-) and nitrous oxide (N2O), to which we can add all organic

compounds containing nitrogen, like urea for instance (Gruber, 2004). Switches between

all these different forms can be operated through oxidation-reduction reactions, mostly

biologically regulated (Gruber, 2004). However, the most abundant chemical form of

nitrogen, N2, can not be assimilated by most organisms. Indeed, the assimilation of

N2, or nitrogen fixation, can only be achieved by organisms called diazotrophs (Figure

1.5). Until recently, only some Cyanobacteria genera like Trichodesmium were known to

be diazotrophs, but multiple uncultured planktonic taxa like the Cyanobacteria UCYN-

A or some Proteobacteria and Planctomycetes were identified as nitrogen fixers thanks

to their genomic signature (Zehr, 2011a; Delmont et al., 2018) (more on that in section

1.3.2.2). Non-diazotrophic phytoplankton can only absorb bioavailable nitrogen (i.e. not

dinitrogen), mainly under the form of ammonium, which is released in large quantities by

bacteria through remineralization and requires a very low energetic cost to be absorbed

(Gruber, 2004). Most phytoplankton can also assimilate nitrate, nitrite and urea through
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enzymes reducing oxidized nitrogen to ammonium, but under higher energetic costs (Zehr,

2011a).

Processes closing the nitrogen cycle by allowing the release of N2 back to the atmosphere

are also biologically mediated. Two main metabolic reactions allow the dinitrogen re-

lease to the atmosphere: denitrification and anaerobic ammonia oxydation, or anammox

(Gruber, 2004; Zehr, 2011a). These reductive processes occur almost only in regions

where oxygen concentrations are very low, e.g. oxygen minimum zones (OMZ), benthic

sediments or hydrothermal vents.

INTRODUCTION

T he oceans are a central feature of the biosphere, with biogeochemical links to the land and
atmosphere. Becausetheoceanscover almost threequartersof theEarth’ssurface, thechemical
reactionswithintheoceans,bothbioticandabiotic,haveprofoundeffectsonthegascompositionof
theatmosphere.T hemicroorganismsinseawater maintainthefertilityof theoceansbycatalyzing
reactions that provide nutrients for growth of higher organisms and result in production and
consumption of greenhouse gases. Many key variables control these ecosystem properties, and
nitrogen (N), thefourth most abundant element (after hydrogen, oxygen, andcarbon) in organic
matter, isoneof them. T heN cycle isacritical component of thebiogeochemical cyclesof the
water columnof theocean(Figure1

−3to+5.It iscommonlyfoundasamineoramidegroupsinorganicmatterbut
isreadilyoxidizedor reducedand, thus,hasanadditional significanceinmarinesystemsasbothan
electronacceptor anddonor for energymetabolism. It isthiscomplexity inmicrobial metabolism
that resultsin theformationandconsumptionof different chemical formsinvolvingN atoms,and
thiscomplexitydrivesthebiogeochemical cycleof N inthesea(andonEarth, ingeneral).Clearly,
N isacentral nutrient for terrestrial andaquaticsystems(Vitousek& Howarth1991) and isakey
component inglobal environmental change.Anthropogenicinfluencesonthebiogeochemistryof
N haveresulted in major changes in theEarth’sN cycle (Galloway et al. 2004, Howarth 1988),
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are not achieved through biological processes by planktonic organisms. This cycle would be different
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The marine nitrogen cycle is then largely dominated by biologically driven processes (Fig-

ure 1.5). Many of these processes have only recently been identified (Zehr, 2011a), and

we still can not culture most diazotrophs to study their metabolism in details. This makes

it difficult, even now, to close the global nitrogen budget (Gruber, 2019). Most estimates
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identify low nutrient areas like subtropical gyres to be concentrating nitrogen fixation

(Wang et al., 2019a). In these waters, nitrogen fixation seems to be the main driver of

primary production.

It was then proposed that nitrogen should be considered the proximate limiting nutrient

in oceanic systems, or local limiting nutrient, while phosphorus should be considered as

the ultimate limiting nutrient, limiting the total system productivity over longer time scale

(Tyrrell, 1999). Still, in oligotrophic areas like the Sargasso Sea, phosphate concentrations

are sufficiently low for phosphate to be the locally limiting nutrient for primary production

(Wu et al., 2000). There are also zones of the ocean where both nitrogen and phosphate

levels are high, while chlorophyll levels still remain low. In these high nutrient low

chlorophyll (HNLC) zones, trace elements like iron become the main limiting factors of

primary production (Boyd et al., 2007).

When the conditions are well adapted to primary production, i.e. light and high concen-

trations of the limiting nutrient are available, it triggers blooms of phototrophic organisms

(Boyd et al., 2007). These dense populations of planktonic organisms not only affect the

carbon, nitrogen or phosphorus cycles, but also many other important biogeochemical

cycles. Among these cycles, the sulfur cycle is one of the most influential on the climate.

1.1.2.3 Dimethyl sulfide (DMS) production by planktonic organisms and its cli-

matic impact

Oceanic dimethyl sulfide (DMS) is the first natural source of sulfur to the atmosphere

(Charlson et al., 1987; Shaw, 1983; Simó et al., 2002). It plays an important role in ma-

rine ecology, by attracting large marine predators like fishes, but also marine birds and

mammals, which seem to use it to detect planktonic blooms (Charlson et al., 1987). It is

also very influential on earth climate, by facilitating the formation and condensation of

clouds, thus significantly modifying the planet albedo (Alcolombri et al., 2015; Charlson

et al., 1987; Shaw, 1983; Simó et al., 2002). The precursor of DMS, dimethylsulfonio-

propionate (DMSP), is exclusively produced by phytoplanktonic organisms (Simó et al.,

2002) (Figure 1.5). Part of the DMSP is cleaved into DMS directly by phytoplankton lin-

eages bearing DMSP lyases, notably blooming taxa like Phaeocystis (Schoemann et al.,

2005) or Emiliania huxleyi (Alcolombri et al., 2015). The rest is released into the water

column where it becomes available to bacterioplankton (Levine et al., 2012; Simó et al.,

2002) (Figure 1.5). Bacteria can either demethylate DMSP to produce carbon and reduced

sulfur compounds, which does not lead to the production of DMS, or cleave DMSP to pro-

duce an easily accessible 3-Carbon compound and volatile DMS (Levine et al., 2012).
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Both pathways are present in diverse bacterial lineages, including alphaproteobacteria,

betaproteobacteria, gammaproteobacteria and epsilonproteobacteria, but are particularly

found in the Rhodobacterales order, including the abundant Roseobacter genus (Curson

et al., 2011). Eukaryotic and prokaryotic planktonic organisms are then responsible for

the release of DMS to the atmosphere, which impacts the ecology, the geochemistry and

the climate of marine ecosystems.

I reviewed evidences that planktonic organisms are the primary and secondary producers

in the ocean, and that their abilities to recycle organic matter, produce carbonate shells,

fix nitrogen, intake phosphorus, or build energy on sulfur compounds are all directly

affecting earth climate. But how can this functional diversity be taken into account when

it comes to modeling the functioning of marine ecosystems?

1.2 Functional types and traits to represent marine plankton

diversity in biogeochemical models

1.2.1 Biogeochemical models and their links with plankton ecology
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Figure 1.6 – Structure of a nutrient, phytoplankton, zooplankton and detritus model (NPZD model).
State variables are represented as colored boxes. N stands for nutrients, P for phytoplankton, Z for
zooplankton and D for detritus. Matter fluxes are represented by arrows. The differential equations
represent the dynamics of each state variable over time.

The use of mathematical models (see Box 2) to theoretically represent planktonic commu-

nities has been common since the early works of Fleming (1939), Riley (1946) and Steele

(1958). The first goals of such models were to better understand the drivers of seasonal

variability in planktonic communities, first by simulating the prey-predator dynamics of
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diatoms and zooplankton through a Lotka-Volterra (see Box 2) type approach (Fleming,

1939), then by representing the annual dynamics of phytoplankton concentrations in re-

sponse to environmental factors like the light intensity or the nutrient limitation (Riley,

1946). To obtain a more realistic model of the phytoplankton annual dynamics, Steele

(1958) added 2 state variables (see Box 2) interacting with phytoplankton populations:

one following the dynamics of zooplankton populations and one corresponding to nutri-

ents concentration.

Box 2: Theoretical ecology
Model: In this thesis, I will use the term ‘model’ to refer to 
mathematical models, which are mathematical representations of 
systems. In theoretical ecology, mathematical models are used to 
represent ecological systems, from simple prey-predator dynamics 
to global ecosystems. Such models allow to increase our 
understanding of the represented systems by allowing to test 
hypotheses on their global functioning, and sometimes predict their 
behavior.  

State variables: Variables that define the current state of the 
modeled system. Examples of state variables for ecosystem 
models are the biomass or population size of different groups of 
organisms, like phytoplankton and zooplankton. 

Parameters: Values that define the modeled system. Unlike state 
variable, parameters values stay fixed independently of the state of 
the system. Examples of parameters for ecosystem models are 
population carrying capacities, maximum growth rates, predation 
rates, etc… The step of defining parameters values is called 
parameterization. 

Differential equations: Equations linking one or more function(s) 
to their derivative(s). Differential equations are used in ecosystem 
models to depict the dynamics of state variables over time. The 
differential equations of ecosystem models often can not be 
resolved analytically, and have to be solved through numerical 
approximations. Such approximations are computationally greedy, 
and responsible for most of the computing costs in ecological 
models. 

Lotka-Volterra type model: Predator-prey model proposed 
independently by Alfred Lotka and Vito Volterra in the early 1900s. 
Originally representing two state-variables, prey and predator 
numbers, and using only 4 parameters: the prey growth rate, the 
predation rate, the efficiency of predation and the predator mortality 
rate. 

Ocean circulation models: Physical models describing the 
physical and thermodynamical processes of the global Ocean. 

Model coupling: The act of linking together two independent 
models. Two types of model coupling exist: offline coupling where 
outputs of one model are used as inputs in a second model, and 
online coupling, or full coupling, where feedbacks between the state 
variables of both models are defined.

From there, models simulating

the dynamics of nutrients, phyto-

plankton, zooplankton and detri-

tus, or NPZD models, became the

"go-to" tool for modeling plankton

communities dynamics (Gentle-

man, 2002) (Figure 1.6). The lim-

itations (or even absence) of com-

puter power first restricted these

models to simulations in 0 or 1

dimension (i.e. across depth in

the water column). But with the

progress in computer power, it

became possible in the late eight-

ies to come up with basin scale

and then global scale models of

planktonic dynamics. The idea

behind such models was to cou-

ple (see model coupling in Box

2) the ecological models simulat-

ing planktonic interactions with

physical models of ocean circu-

lation (see Box 2), offering the

ability to simulate the processes

influencing biogeochemical cycles

on important temporal and spatial scales. Hence, these coupled models were called bio-

geochemical models, and one of the first and most famous was the one of Fasham et al.

(1990). This model simulated the dynamics of 7 state variables: phytoplankton, zoo-

plankton, bacteria, nitrate, ammonium, dissolved organic nitrogen and detritus. It was
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coupled with a simplified vertical model of the ocean mixed layer circulation, and allowed

to obtain quantitative estimates of seasonal nitrogen fluxes in the ocean (Fasham et al.,

1990, 1993; Sarmiento et al., 1993).

The reduction of planktonic diversity to one, two or three state variables quickly raised

the question of the potential oversimplification of biological interactions in biogeochem-

ical models, already evoked by Riley in the 1940s (Anderson, 2010; Riley, 1946). In-

deed, can we hope for realistic model predictions without simulating the dynamics of key

biogeochemical actors like diazotrophs, calcifiers or remineralizing prokaryotes (Doney,

1999)? Of course, the question became even more itching with the progress in biological

knowledge about planktonic communities, and the parallel increase in computing power

allowing for the inclusion of more and more state variables into models. In the 2000s, the

first global 3-dimensional biogeochemical models including significantly more planktonic

diversity than NPZD models came out (Moore et al., 2001b; Aumont et al., 2003; Le Quéré

et al., 2005; Kishi et al., 2007). These models relied on the concept of Plankton Functional

Types (PFTs).

1.2.2 Plankton functional types and their use in biogeochemical modeling

In the early 90s, the concept of plant functional type was introduced in terrestrial plant

ecology to group plants depending on their functional response to light and water avail-

ability (Smith and Huston, 1990; Smith et al., 1993). The same concept of functional types

was evoked for planktonic organisms at that time, notably to describe the different size

fractions of zooplankton and their different biogeochemical impacts (i.e. larger zooplank-

ton grazing on larger preys, and their bigger fecal pellets sinking faster, enhancing export

rates) (Armstrong et al., 1993). However, it is only in the seminal paper of Le Quéré et al.

(2005) that the first operational 3D biogeochemical model explicitly relying on plankton

functional types (PFTs) came out. If the paper by Le Quéré et al. (2005) was the first

to clearly use the term of plankton functional type, a few anterior models had already

been using multiple functional groups of plankton. It is notably the case of Moore et al.

(2001b), who simulated the dynamics of carbon, nitrogen, phosphorus, iron, calcium

carbonate and chlorophyll in 3 functional types of phytoplankton (small phytoplankton,

diazotrophs and diatoms) and 1 type of zooplankton. This biogeochemical model was

the first attempt at representing multiple plankton functional types and multiple limiting

nutrients at global scale, but it was coupled to a grid model of ocean circulation which

did not include horizontal transport (Moore et al., 2001a). The first biogeochemical model

of similar complexity to use a 3D dynamic ocean circulation model was the one presented

in Aumont et al. (2003), simulating the dynamics of carbon, phosphate, silicate and iron
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in two functional types of phytoplankton (small phytoplankton and diatoms) and two

functional types of zooplankton (microzooplankton and mesozooplankton) (Figure 1.7).

Figure 1.7 – Structure of the PISCES-version 2 model, re-drawn from Aumont et al. (2015). State
variables are represented as colored boxes, with a color code similar as Figure 1.6. In this version
of PISCES, 4 PFTs are represented: nanophytoplankton, autotrophic silicifiers (diatoms), microzoo-
plankton and mesozooplankton. Acronyms : TALK = total alkalinity; PAR = photosynthetically
active radiations; Chl = Chlorophyll; POM = Particulate organic matter; DOM = Dissolved Organic
Matter.

In 2005, the model presented by Le Quéré et al. changed the standards for plankton

diversity representation in biogeochemical models, by proposing a model with 10 differ-

ent PFTs: pico-heterotrophs (e.g. heterotrophic bacteria and archaea), pico-autotrophs

(e.g. cyanobacteria like Prochlorococcus), diazotrophs (e.g. Trichodesmium), calcifiers

(e.g. coccolithophores), DMS producers (e.g. Phaeocystis), silicifiers (e.g. diatoms),

mixed-phytoplankton (e.g. autotrophic dinoflagellates), proto-zooplankton (e.g. ciliates),

meso-zooplankton (e.g. copepods) and macro-zooplankton (e.g. krill, jellyfish or salps).

The choice of these 10 groups was motivated by 4 reasons: (1) each PFT should have a

biogeochemical role, (2) the biomass of each PFT should be controlled by different phys-

iological, environmental or nutrient requirements, (3) the behaviour of each PFT should

have effects on other PFTs due to ecological interactions, and (4) each PFT should be

significantly abundant in at least one part of the ocean (Le Quéré et al., 2005). From

there, the use of plankton functional types in biogeochemical models became the norm,

with the number of PFTs varying from 4 or 5 to sometimes hundreds depending on the

models (Sinha et al., 2010; Aumont et al., 2015; Follows et al., 2007; Ward and Follows,
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2016; Lévy et al., 2014).
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master 2 internship to illustrate how the PFT approach could allow detailed representations of plank-
tonic functional diversity. Here, 21 PFTs are represented in colored boxes, yellow arrows correspond
to light uptake, blue arrows to nutrient uptake, black arrows to grazing and red arrows to organic
matter transfers through sinking and remineralization. The phytoplankton PFTs written in yellow
correspond to potential constitutive mixotrophs, i.e. phagotrophic algae. NC mixotrophs stands
for non-constitutive mixotrophs, i.e. mixotrophs that acquire the ability to achieve photosynthesis
through "stealing" chloroplasts to their preys or symbiosis. To my knowledge, no current biogeo-
chemical model include that level of functional diversity, as even the Dutkiewicz et al. (2020) model,
which has 350 PFTs, does not include parasitic and symbiotic relationships. Abreviations: PAR
= photosynthetically active radiation, Euka = eukaryotes, Proka = prokaryotic, Prod = producers,
Phyto = phytoplanctonic, Zoo = zooplanktonic.

Since its advent, the PFT approach has been criticized multiple times for its lack of eco-

logical justifications (Anderson, 2005; Flynn et al., 2015). Indeed, one of the underlying

assumptions behind the PFT concept is that each PFT can be modeled with a single set of

parameters. But if we take the calcifiers as example, it should regroup both autotrophic

calcifiers like coccolithophores (typically 5 to 100 microns in size) and heterotrophic cal-

cifiers like forams or ostracods (both around 1 mm in size, sometimes up to several cm),
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Chapter 1. General introduction

which play drastically distinct roles in the food webs. Hence, grouping together such a

wide diversity of organisms asks the question of how to define the right set of parameters

to model their growth in response of environmental factors (Flynn et al., 2015).

A second caveat of the PFT approach lies in the a priori choice of the functional types in-

cluded in models, which is left to the modeler. This can lead to the exclusion of groups of

organisms like mixotrophs, which are absent from the vast majority of PFT models despite

their global ecological influence (Flynn et al., 2013; Stoecker et al., 2017; Caron, 2016a).

Adding more and more PFTs to existing models could in theory resolve these issues, pro-

vided that in situ or experimental data are available to parameterize them. But it would

push towards the production of increasingly complex, harder to interpret models, and we

would need an unreachable number of PFTs to hope to exhaustively represent plankton

diversity (Frede Thingstad et al., 2010). This way, a trade off has to be made between

the quality of diversity representation in models and their complexity (Frede Thingstad

et al., 2010). To better merge the biological aspects of plankton ecology with the theo-

retical frameworks of biogeochemical modeling, it was then proposed to switch towards

approaches focused on the phenotypes of individuals, rather than functional groups or

types (Flynn et al., 2015; Allen and Polimene, 2011).

1.2.3 The functional trait approach and its use in biogeochemical modeling

1.2.3.1 Concepts and definitions

During my PhD, I participated in a review of the use of functional-trait based approaches

in aquatic ecology (Martini et al., under review, full version of the paper available in Ap-

pendix A). In this review, I created an interactive mental map of functional traits commonly

used in aquatic ecology (Figure 1.9). I was also in charge of writing the paragraph on links

between trait-based approaches and omics data (see section 1.4). Here, I will present few

of the most important points and definitions of the trait-based approach, focusing on

the contribution of functional trait trade-offs theory in biogeochemical modeling, focus-

ing on how the trait-based approach can contribute to improving the representation of

planktonic organisms in marine biogeochemical models.

Like the concept of functional types, the concepts of traits and functional traits emerged

from terrestrial ecology (McGill et al., 2006). These terms were widely used in the literature

in the past 20 years, sometimes to describe different concepts (Violle et al., 2007). Here,

we will refer to the definitions given in Violle et al. (2007) :
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1.2 Functional types and traits to represent marine plankton diversity in biogeochemical models

• A trait is any morphological, physiological or phenological feature measurable at

the individual level, from the cell to the whole-organism level, without reference to

the environment or any other level of organization.

• A functional trait is any trait that impacts fitness (i.e. reproductive success) indi-

rectly via its effects on growth, reproduction and survival.

Among functional traits, we can further differentiate potential traits, which are described

from the literature, usually at the species level, and ideally covering a large variety of envi-

ronmental conditions, from realized traits, actually measured in situ or in the laboratory

(Reu et al., 2011).

Chemical compounds for protection

= related to mixotrophy = related to DMS production

Figure 1.9 – Unified typology of aquatic functional traits, modified from Martini et al. (Appendix A).
I made an interactive mental map of this topology, available at https://github.com/EmileFaure/

AquaticFunctionalTraitsMap. The functional traits commonly used in trait-based approaches in
aquatic ecology are compiled in a common typology, where they are classified by type and eco-
logical function (as in Litchman and Klausmeier (2008)). This typology focuses on the key functional
traits that transcend taxonomic peculiarities of the different aquatic ecosystems. This typology do
not explicitly include two functional traits on which I focused during my PhD: mixotrophy and DMS
production. I added orange stars next to traits of the typology that are associated with mixotrophy,
and blue stars next to ones associated with DMS production (see main text for further explanations
on these associations).
The interactive mental map version of this typology is under the form of a network in which blue
nodes correspond to the different ecological functions depicted as columns here, while orange nodes
correspond to the different trait types depicted as lines. Each trait of the typology is then represented
as a grey node, and is linked to the ecological functions and trait type nodes corresponding to its
classification in the typology. On this interactive mental map, it is possible to hover the mouse over
a node to highlight its connections, and a simple click on a trait node will open a bibliography search
about this trait in aquatic ecology studies, while a maintained click on any node will allow you to
move it around.
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Examples of functional traits for phyto- and zooplanktonic organisms are depicted in

Figure 1.9. In this thesis, i will notably focus on two functional traits, mixotrophy and

DMS production, which are not explicitly represented in Figure 1.9. Mixotrophy can be

considered as implicitly included as a feeding mode, but also as a combination of traits

such as the photosynthesis ability and the ability to feed through phagotrophy, or as a

gradient of food preferences between full autotrophy and full heterotrophy (Figure 1.9;

Berge et al. (2017)). DMS production is a harder trait to classify in a typology, as its bene-

ficial impact on fitness still remains unclear (Levine et al., 2012). Some proposed that the

impact of DMS atmospheric release increases local winds and currents, thus increasing

the dissemination potential of DMS producers, others hypothesized that DMS acted as a

protection against harmful UV radiation, and finally DMS production was identified as a

way to create biomass in conditions of high DMSP production by phytoplankton and low

requirements in sulfur in DMS producing prokaryotes (Simó, 2001; Levine et al., 2012).

The concepts of functional types and functional traits overlap in the sense that PFT are

defined according to the functional traits of organisms, e.g. the calcifiers PFT regroups

all organisms capable of producing a carbonate shell, which is a morphological and phys-

iological feature measurable at the individual level that impacts fitness via its effect on

survival. Some models even blend the concepts of functional traits and PFT, like the

DARWIN model presented in Follows et al. (2007), where hundreds of PFT are randomly

created from a set of functional traits. The created PFTs are then competing against

each others, and only the fittest survive, allowing for the emergence of adapted functional

strategies in different zones of the Ocean (Follows et al., 2007). But soon after the appari-

tion of the first global PFT models, a new approach proposed to use functional traits to

mechanistically link phytoplankton cellular-level physiology to ecosystem-level commu-

nity patterns (Litchman et al., 2007). At the basis of this approach lied the concept of

trade-offs between functional traits.

1.2.3.2 Traits trade-offs

Traits related to growth, reproduction and survival are often quantitatively correlated,

and these correlations (or anti-correlations), described as "trade-offs", can provide a con-

tinuous view of ecological strategies among planktonic organisms (Litchman et al., 2007).

For example, a strong positive correlation exists between the maximum nutrient uptake

and the cell volume (Figure 1.10), or the half-saturation constant for nutrient uptake

and the cell volume (Edwards et al., 2012). These trade-offs allow to define a continuous

gradient of nutrient uptake strategies, for example opposing groups like diatoms with

high cell volume, maximum nutrient uptake rate and half-saturation constant for nutri-
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1.2 Functional types and traits to represent marine plankton diversity in biogeochemical models

more comprehensive sampling of natural communities,
including endpoints of the size spectrum, from picoplank-
ton to giant diatoms.

Between-taxon differences—We find strong differences
between taxa in average nutrient trait values (Figs. 3–6;
Table2). At thesametime, few between-taxon differenc-
es remain when controlling for cell volume (Table2),
indicatingthat taxonomicvariation in nutrient utilization
traits is largely driven by sizevariation. Considering raw
trait values (not corrected for volume), among marine
species differences in scaled uptakeaffinities suggest that
the relatively small haptophytes and prymnesiophytes
should bebetter competitors under P limitation, whereas
the relatively large dinoflagellates and raphidophytes
should bepoorer competitors (Fig. 7C). Thesametrends
occur for scaledN affinity, although thereareno data for
chlorophytes (Fig. 7D). Among freshwater species, the
data for scaled P affinity suggest that cyanobacteria tend
to be better competitors, whereas the desmids are poor
competitors, with diatoms and non-desmid chlorophytes
in between (Fig. 5C). There are fewer data for scaled
N affinity among freshwater species, but the present
patterns suggest that cyanobacteria may be poorer
competitors for nitrate (Fig. 5D); however, only two
cyanobacteria are present in this analysis, and one of
thesespecies can fix nitrogen, which may compensate for
low nitrate affinity.

There is significant variation inmeanmmax between taxa
(Table2), with most variation due to the fact that among
marine species, diatoms have high growth rates relative
to their cell volume, whereas among freshwater species,
cyanobacteria have low growth rates relative to their cell
volume (Fig. 3C,D). However, because of the relatively
small sizeof cyanobacteria cells, their rawgrowth ratesare
still relatively high among freshwater species, on average
(Fig. 3B).

QN
min :Q

P
min ratios—Our analysis of the structural N :P

ratio supports prior work showing broad variation in this
ratio across phytoplankton (Rhee and Gotham 1980;
K lausmeier et al. 2004). We also find that QN

min :Q
P
min is

greater on average for freshwater species. If the evolution
of thisratio isdrivenby therelativeavailabilityof N andP,
the difference between habitats may be due to greater
prevalenceof P limitation in freshwater systems(Elser et al.
2007). Alternatively, if theevolution of this ratio is driven
byallocation to resourceacquisition proteinsvs. ribosomes
(K lausmeier et al. 2004), higher ratios among freshwater
speciesmay indicateagreater tendency for nutrient or light
limitation in freshwater systems, andagreater tendency for
near-maximal growth rates in marine systems (Goldman
et al. 1979).

Comparison of scaling exponents to theoretical predic-
tions—Theobservedscalingexponentsof nutrientutilization

Fig. 4. Between-taxon variation in primary nutrient traits for freshwater species. All variables are log10-transformed. For each
taxon, mean trait valueandmeanvolumeareplotted, 6 1SE. TheSMA fits fromFig. 1areplotted asdotted lines. cyan, cyanobacteria;
diat, diatoms; chlor, non-desmid chlorophytes; desm, desmids. (A) V N

max, (B) KN, (C) QN
min, (D) V

P
max, (E) KP, (F) QP

min.
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fewer than two species. Therefore, the following groups
were compared for freshwater species: cyanobacteria,
diatoms, desmids, and non-desmid chlorophytes (desmids
wereonly present for thephosphatetraits). For themarine
species, the following groups were compared: diatoms,
dinoflagellates, chlorophytes, haptophytes, and raphido-
phytes. Wealso used t-tests to comparemean trait values
for freshwater and marinediatoms, becausediatoms from
both environmentswere relatively well represented.
Wetested for correlations between theprimary nutrient

utilization traits, which could indicate physiological trait
constraints or correlated selection pressures. Becausemost
traits arecorrelated with volume, wealso tested for partial
correlations that controlled for the combined effect of
volume on each pair of traits. Correlations between the
compositetraitsarethesubject of aseparatemanuscript, in
which we use techniques for multivariate analysis in the
presenceof missingdata to better estimatethecorrelations
between cell volume, uptake affinity, and scaled uptake
affinity for N and P (Edwards et al. 2011).

Results

Trait–volume scaling—All six of the primary nutrient
traits tend to increase with cell volume (Fig. 1). Four of
these traits haveno significant difference in slopebetween
freshwater andmarinespecies: V N

max, Q
N
min, V

P
max, andQ

P
min

(Table1; Fig. 1). In contrast, KN and KP both have
significantly different slopes for freshwater vs. marine
species, with freshwater species exhibiting a steeper slope
for KN, but exhibiting no significant relationship with
volumefor KP (Fig. 1B,E). Of the four compositenutrient
traits, P affinity, N affinity, and scaled N affinity all have
slopes that are indistinguishablefor freshwater andmarine
species. Both P affinity and N affinity increase with cell
volume, whereas scaled N affinity decreases with cell
volume (Fig. 2A,B,D). Scaled P affinity exhibits signifi-
cantly different slopes for freshwater and marine species,
with marine species showing a negative relationship with
volume, and freshwater species showing no significant
relationship (Fig. 2C). Maximum growth rate tends to
declinewith cell volume(Fig. 3A), andmarinespeciesshow
a significantly shallower slope than freshwater species
(Table1).

Between-taxon trait differences—mmax differs significant-
ly between taxa for both freshwater and marine species,
with and without controlling for volume (Table 2;
Fig. 3C,D). Because of the greater amount of data for
mmax, we also tested for differences in the allometric
exponent between taxa; SMA slopes did not differ by
taxon for freshwater (likelihood ratio 5 6.46, p 5 0.09) or
marine species (likelihood ratio 5 0.58, p 5 0.96). For
marinespecies,after controllingfor volume,meanmaximum

Fig. 1. Scalingrelationshipsbetweenprimarynutrient utilization traitsandcell volume. All variablesarelog10-transformed. Marine
speciesarelarger open circles, freshwater speciesaresmaller filled circles. Linesplotted arefromtheSMA regressionsin Table1. If there
is no significant difference in slopes between marineand freshwater species, as reported in Table1, a single solid line is plotted. If the
slopesdiffer significantly, adotted lineisplotted for themarinespeciesand adashed lineisplotted for thefreshwater species. If thereis
no significant correlation between thevariables, no line is plotted. (A) V N

max, (B) KN, (C) QN
min, (D) V

P
max, (E) KP, (F) Q P

min.
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component parameters Vmax, K, and Qmin. Vmax tends to
increasemore steeply with volume than K, resulting in an
increaseincell-specificuptakeaffinitywithvolume(Fig. 2).
When uptake affinity is scaled by Qmin, this results in a
decrease in scaled uptake affinity with increasing volume,
becausethescalingexponents of Vmax and Qmin tend to be
similar. Theexception to this trend is scaled P affinity for
freshwater species, which does not declinewith increasing
volume; thismaybedueto thefact that KP doesnot decline
with volume.

Potential constraints amongnutrient utilization traits—A
rawcorrelationanalysisrevealsapreponderanceof positive
correlationsamongnutrient traits (Table3). Thesepositive
correlations may partially constrain the evolution of
competitiveability, becausefor a given nutrient, a positive
correlation between Vmax and K, or between Vmax and
Qmin, constrains the evolution of equilibrium competitive
ability, whereas a positivecorrelation between K and Qmin
has theoppositeeffect (Litchman et al. 2007). However, if
these trait correlations are driven solely by cell size, then
the only relevant constraints for trait evolution are those
that will constrain size evolution, i.e., the trait–volume
scaling parameters (Litchman et al. 2009). Our partial
correlationanalysis, which tested for trait correlationsafter
controlling for the effect of cell volume, yielded equivocal
results. This analysis yielded only positive significant
correlations between nutrient traits, with the exception of

KP vs. KN for freshwater species, which is also negative in
the raw correlation analysis (Table3). Furthermore, the
significant correlations occurred amongpairs of traits that
were strongly correlated in the raw correlation analysis
(Table3). It therefore seems possible that the partial
correlation analysis did not succeed in fully removing the
correlatedeffect of volumeonnutrient traits. Measurement
error for either nutrient traits or cell volume, along with
plasticity in cell volume, will tend to add noiseto thetrait–
volume relationship. This noise will prevent the partial
correlation from fully removing the true relationship
betweena trait and volume. Thesameconsiderationsapply
to the negative correlations between mmax and nutrient
traits (Table3).
However, some of the partial correlations may indeed

represent constraints, or correlated selection pressures. The
negativecorrelation between KP and KN among freshwater
species is unlikely to be driven by volume, and may con-
tribute to a trade-off in competitive ability for nitrate vs.
phosphate among freshwater species. Among the positive
partial correlations, nearly all would constrain the evo-
lution of high scaled uptake affinity for a single nutrient
(for marine species, V N

max vs. QN
min, V

P
max vs. KP; for

freshwater species, V N
max vs. Q

N
min), or would constrain the

simultaneous evolution of high scaled uptake affinity for
bothnutrients(formarinespecies,V N

max vs.KP, V P
max vs.KN;

for freshwater species, V N
max vs. V P

max, V
P
max vs. QN

min).
Therefore, theserelationshipsmayrepresenteco-evolutionary

Fig. 6. Between-taxon variation in primary nutrient traits for marinespecies. All variables are log10-transformed. For each taxon,
mean trait valueand mean volumeareplotted, 6 1 SE. TheSMA fits fromFig. 1 areplotted as dotted lines. hapt, haptophytes; diat,
diatoms; chlor, chlorophytes; dino, dinoflagellates; raph. raphidophytes. (A) V N

max, (B) KN, (C) QN
min, (D) V

P
max, (E) KP, (F) Q P

min.
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A B C

D E F

(Freshwater + Marine)

Figure 1.10 – Trade-off between cell volume and maximum cell-specific nutrient uptake rate. Graphs
A, B and C represent the maximum cell-specific nitrogen uptake rate, while graphs D, E and F
represent the maximum cell-specific phosphate uptake rate. In graph A and D, data from marine
and freshwater species are represented by white-filled circles and black dots, respectively. The
graphs B and E represent the same trade-off but only taking into account freshwater taxa, and
representing the mean trait values for each taxon (+/- one standard error) instead of individual dots.
Graphs C and F are the same as B and E, this time only taking into account marine taxa. The
black and dashed lines were obtained from standardized major axis regressions, which all had a
p-value < 0.05, showing a significant correlation between cell volume and maximum cell-specific
nutrient uptake rate, independently of the ecosystem type (slopes were not significantly different
between freshwater and marine taxa). cyan = cyanobacteria; desm = desmids; chlor = non-desmid
chlorophytes; diat = diatoms; hapt = haptophytes; dino = dinoflagellates; raph = raphidophytes.
Figure modified from Edwards et al. (2012).

ent uptake, which can be related to the "velocity" or "r" strategy in theoretical ecology

(Margalef, 1978), to ones like haptophytes (including coccolithophores) with low cell vol-

ume, maximum nutrient uptake rate, and half-saturation constant for nutrient uptake

(Litchman et al., 2007; Edwards et al., 2012), which can be related to the "affinity" or "K"

strategy (Figure 1.10). This way, by using continuous quantitative relationships between

traits, it is possible to create a multidimensional trait space in which different trait com-

binations are available, corresponding to different phenotypes and ecological strategies

(Lamanna et al., 2014). Trait-based models typically use trade-offs between traits to de-

fine individual-level processes such as mortality, nutrient uptake rates, or metabolic costs

(Kiørboe et al., 2018). By including the influence of the environmental conditions on trade

offs, it is then possible to define optimal traits and trait distributions on large geographical

scales, which links trait-based models to global bigeochemical ones (Kiørboe et al., 2018).

The DARWIN model that I evoked earlier uses known trade-offs between functional traits

to shape a limited trait-space to draw the random PFTs from, and avoid the creation of
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super-dominant PFTs overrunning the ecosystem. Still, it differs from trait-based models

for it does not take into account the inter-individual variations in traits in each randomly

created PFT.

By focusing on continuous quantitative relationships between measurable individual fea-

tures, trait-based approaches allow to incorporate the notions of plasticity and phenotypic

variability between species and individual organisms (Violle et al., 2012). This key bio-

logical aspect is often absent from classic PFT modeling, where single sets of parameters

are used for each PFT, and could help introduce acclimation in biogeochemical models

(Flynn et al., 2015). Moreover, trade-offs between traits have not only been described

in phytoplankton, but also in zooplankton (Litchman et al., 2013) and microbial pop-

ulations (Litchman et al., 2015b), offering a way to describe most actors of planktonic

communities.

However, trade-offs between functional traits are: (1) often not applicable to all organisms

and/or all environments (i.e. exceptions exist to almost every trade-offs), (2) especially

challenging to assess because a lot of data are required to define a trade-off as a general

rule, and (3) difficult to compare and combine (how to prioritize the impact of different

trade-offs on fitness ?) (Flynn et al., 2015). Trait-based approaches in general also suffer

from the drawback of a priori choosing the functional traits included in the model, as

already evoked in 1.2.2. Yet, the recent wealth in omics data is now changing our vision

of planktonic diversity, which could help resolve some of these drawbacks.

1.3 Emergence of omics data to study planktonic diversity

1.3.1 Omics data and their application to plankton communities

In 1977, Frederick Sanger, Steve Nicklen and Alan Coulson presented the first rapid and

reliable DNA sequencing method (Sanger et al., 1977). Only 15 years later, the sequencing

of ribosomal RNA from environmental samples allowed for the first time to detect Archaea

in coastal marine waters (DeLong, 1992) and in the open waters of the Pacific ocean

(Fuhrman et al. (1992)). Archaea were thought to only live in extreme environments

at the time, and this is an early example of how progresses made in DNA sequencing

facilitated the sampling and analysis of full planktonic communities by bypassing the

tedious morphological identification of species in complex samples. Only a few years

later, such advances gave birth to the fields of metagenomics (See Box 3, Riesenfeld et al.

(2004); Tringe and Rubin (2005); Venter et al. (2004)).

Before the end of the century, Sanger sequencers were used at long-term oceanographic
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1.3 Emergence of omics data to study planktonic diversity

time-series like BATS to monitor seasonal changes in planktonic functional and taxonomic

diversity (Giovannoni et al., 2014). The acquired ability to quickly analyze full planktonic

communities notably led Craig Venter and his team to launch the Global Ocean Sampling,

a large scale oceanographic cruise inspired by the circumglobal naturalist expeditions of

the XIXth century (e.g. the Challenger expedition, 1872-1876) (Venter et al., 2004; Rusch

et al., 2007). This expedition started in 2003, it used Sanger sequencing, and did not

include metatranscriptomics data (See Box 3, Venter et al. (2004); Rusch et al. (2007)).

Box 3: Sequencing data
High-throughput sequencing (HTS): Techniques of DNA 
sequencing that emerged in the late 90s and were popularized in 
the 2000s. In comparison to Sanger sequencing, HTS refers to 
sequencing techniques ensuring the production of more 
sequences in a relatively shorter amount of time and to a lower 
cost. The 2nd HTS generation (from mid-2000s) offers relatively 
short reads (e.g. Illumina : from 50 to 500 bp, 454 : from 300 to 
600 bp) and the 3rd HTS generation (from ~ 2015) offers long 
reads ( >1000 pb, e.g. PacBio, Nanopore). Currently in 2020, 
plankton sequencing data usually come from Illumina 
sequencing. 

Omics: Molecular data obtained from HTS. 

Meta-omics: Molecular data obtained from the HTS of one or 
multiple communities of organisms. In this thesis I will use this 
term to refer to metagenomics, metatranscriptomics and 
metabarcoding, but it can sometimes refer to other methods such 
as metaproteomics. 

Metagenomics: Study of the DNA sequencing data of one or 
multiple communities of organisms in their environment. Was 
achieved with Sanger sequencing in the late 90s and was used 
to involve cloning steps. It is currently almost exclusively based 
on HTS.  

Metatranscriptomics: Study of the RNA sequencing data of one 
or multiple communities of organisms in their environment. 

Barcoding: Study of one or multiple molecular markers 
sequenced after a targeted PCR amplification of the 
corresponding DNA or RNA region(s). Proxy for detecting and 
quantifying taxa. Was achieved with Sanger sequencing in the 
late 90s, and sometimes still is. 

Metabarcoding: Barcoding of one or multiple communities of 
organisms in their environment. The most commonly used 
markers are hyper-variable regions (labelled V1 to V9) of the16S 
ribosomal RNA which is universal among prokaryotes and of the 
18S ribosomal RNA which is universal among eukaryotes. 

Operational taxonomic unit (OTU): Cluster of sequences 
grouped by similarity, used as a proxy of species. 

Reads: Sequences resulting from HTS.

In the mid-2000s, DNA sequenc-

ing of environmental samples be-

came an even more common

method in plankton ecology with

the advent of high-throughput se-

quencing methods (See Box 3,

Riesenfeld et al. (2004); Tringe

and Rubin (2005)). HTS allowed

to multiply the quantity of data

sequenced per day by 500,000

between 1996 and 2015, while

the costs were divided by at least

250,000 over the same time pe-

riod (Reuter et al., 2015). HTS

methods became the reference

for producing sequencing data in

planktonic ecology, both for local

studies including long term time-

series (Gilbert et al., 2010; Ga-

land et al., 2018; Arsenieff et al.,

2020), and for larger spatial scale

studies (Sunagawa et al., 2015;

Acinas et al., 2019; Kopf et al.,

2015). The most popular method

from the 2nd generation of HTS,

Illumina sequencing, used to produced relatively short reads, i.e. around 150 base pairs.

In this way, Sanger sequencing, ensuring routinely the collection of 500 base pairs se-

quences, is still used today, especially when targeting specific genes (Levine et al., 2012).

Since 2015, a 3rd generation of HTS methods were developed with the aim of produc-
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ing long reads of multiple thousands of base pairs, while keeping the cost and speed

advantages of 2nd generation sequencing (Giordano et al., 2017). For now, uses of 3rd

generation sequencing methods in planktonic ecology are quite scarce, but might become

the new standard in the next decade (Lombard et al., 2019).

A

B

Figure 1.11 – (A) Sampling route and stations of the Tara Oceans and Tara Oceans Polar Circle
campaigns. (B) Spatial representation and chronology of the sampling events conducted during a
24-48h station. The color code indicates the depth of the sampling event (surface water in red,
deep chlorophyll layer in green, mesopelagic zone in blue, and other fixed depths in white for day
deployments and grey for night deployments). The black dotted line indicates the deployment of an
Argo drifter, used to follow the water mass during sampling. Figures from Pesant et al. (2015).

Following the footsteps of the Global Ocean Sampling, other large-scale cruises were

launched in the 2000s and 2010s, this time taking advantage of the HTS to include

metatranscriptomics (see Box 3) and cover more locations and depths of sampling (Pesant
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1.3 Emergence of omics data to study planktonic diversity

et al., 2015; Acinas et al., 2019). Examples of such cruises are the Malaspina expedition in

2010-2011 (Duarte, 2015; Acinas et al., 2019), and the Tara expeditions, including Tara

Arctic in 2006-2008, Tara Oceans and Tara Oceans Polar Circle in 2009-2013, and Tara

Pacific in 2016-2018 (Figure 1.11;Karsenti et al. (2011); Planes et al. (2019)). By sampling

plankton communities along with their physico-chemical environment, such expeditions

offered the first opportunities to study the links between the environmental conditions

and planktonic taxonomic and functional diversity in the global ocean (de Vargas et al.,

2015; Sunagawa et al., 2015). The philosophy behind the Tara expeditions was described

as holistic (Karsenti et al., 2011), as it involved meta-omics, but also physico-chemical

measurements, and other methods like automatic underwater imaging, allowing to study

the entire planktonic communities from viruses to pluricellular organisms (see Figure 1.1;

Figure 1.11). A complementary approach to global scale plankton sampling was proposed

by the Ocean Sampling Day (OSD) consortium, who organized the sampling of more than

300 meta-omics samples on the same day (June 21st 2014), all across the global ocean

and with a unified protocol (Kopf et al., 2015). Finally, initiatives like the international

census of marine microbes (ICoMM) approach the idea of global scale sampling by merg-

ing and homogenizing multiple independent datasets and making them available on easily

accessible platforms (Amaral-Zettler et al., 2010). In the case of ICoMM, datasets come

from omics but also environmental data, mass spectrometry or lipid structures data,

with the goal to provide an atlas of marine unicellular organisms and their physiology

(Amaral-Zettler et al., 2010).

An unprecedented amount of meta-omics data has then been sampled in the last 20

years, but it would not be useful without reference databases. Metabarcodes and/or

Operational Taxonomic Units (OTUs, see Box 3) need to be confronted to taxonomic an-

notation databases such as PR2 (Guillou et al., 2013) or SILVA (Quast et al., 2013) to be

annotated to a lineages. Similarly, genes and transcripts obtained from metagenomics

and metatranscriptomics need to be confronted to reference databases such as KEGG

(Aramaki et al., 2019), or EggNOG (Huerta-Cepas et al., 2016) to be associated with a

function and/or an organism. Such reference databases play a key role for the analysis

of functional traits in planktonic communities through meta-omics: functional annota-

tion databases allow to make direct links between genes and metabolic pathways, some of

which can be associated with functional traits, while taxonomic databases can be coupled

with trait databases that link taxa to their potential functional traits. In the next section,

I will review some concrete examples of how meta-omics data changed our understanding

of planktonic ecosystems, notably illustrating the influence of reference databases.
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Figure 1.12 – Use of High-Throughput Sequencing (HTS) techniques to identify or measure functional
traits of aquatic organisms, from Martini et al. (in review, Appendix A). B: Barcoding, G: Genomics,
T: Transcriptomic. Sequencing can be done at the community scale (meta-omics) or at the individual
scale after manual or automatic sorting. Metabarcodes are associated to taxa, through the use of
taxonomic databases as PR2 for eukaryotes (Guillou et al., 2013) or SILVA for prokaryotes (Quast
et al., 2013). The identified taxa can then be associated with potential traits through manual trait
annotation or the use of trait databases, such as Traitbank which includes traits of lineages from the
whole tree of life (Parr et al., 2016), or the functional traits of marine protists database (Ramond et al.,
2018) (see Table 2 of Martini et al. in appendix A for a thorough list of trait databases). Genes and
transcripts sequenced through metagenomics and metatranscriptomics can be associated to taxa
and functions through databases like eggNOG (Huerta-Cepas et al., 2016), metagenomics giving
access to potential traits while metatranscriptomics allowing to measure realized traits.

1.3.2 Planktonic functional and taxonomic diversity through the lens of

meta-omics data

This section will be organized around three axes: how omics data (1) pushed us to re-scale

our view of planktonic organisms’ taxonomic and functional diversity, (2) provided new

insights in plankton-mediated biogeochemical cycles, and (3) allowed for the reconsider-

ation of long overlooked groups of organisms.

1.3.2.1 Quantifying taxonomic and functional diversity

As evoked in 1.3.1, one of the first contributions of omics data to plankton ecology was the

discovery of archaeal 16S rDNA in open water and coastal samples (Fuhrman et al., 1992;

DeLong, 1992). More recently, by analyzing about 1.7 million V9 regions of 18S rDNA

sequences from 334 size-fractionated plankton samples of the Tara Oceans expedition,

de Vargas et al. (2015) were able to detect about 110,000 OTUs, when only 11,200 species

of eukaryotic plankton had been formally described morphologically at the time, according

to these authors. About one third of these OTUs could not be associated to any known

eukaryotic group (de Vargas et al., 2015). In parallel, Sunagawa et al. (2015) detected
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35,650 prokaryotic OTU using nearly full 16S rDNA (assembled from metagetagenomic

reads) of 243 size-fractionated samples of the same expedition, from which 7% could not

be annotated at the phylum level. By analyzing together these 16S and 18S datasets,

Ibarbalz et al. (2019) recently showed that the taxonomic diversity of planktonic Bacteria,

Archaea and Eukaryota was higher at low latitudes, near the Equator, than at polar

locations, like for larger marine organisms and for terrestrial ecosystems (Hillebrand,

2004; Rombouts et al., 2009).

In addition to metabarcoding data, the recent advent of metagenome-assembled genomes

(MAGs) largely participated in increasing our knowledge about the taxonomic diversity of

planktonic organisms (n.b. MAGs are also called metagenomic species). MAGs are near-

complete genomes assembled from DNA fragments coming from metagenomes, without

using reference genomes Nielsen et al. (2014). Instead, quality-filtered reads are assem-

bled into contigs, and contigs reaching a minimum length (typically more than a few

thousand base-pairs) are then binned together according to metrics like their abundance

profiles across metagenomes (i.e. contigs with similar distribution across the samples)

and their GC content (percentage of bases that are either guanine or cytosine), allowing

to identify the groups of contigs (or "bins") coming from the same population of a single

lineage (Nielsen et al., 2014; Delmont et al., 2018; Parks et al., 2017; Tully et al., 2018).

The assembly of each bin can then give a more-or-less complete MAG (usually MAGs with

completion estimated below 50% are discarded, completion being estimated based on

the presence of sets of marker genes (Parks et al., 2015)), which can be taxonomically

and functionally annotated through comparisons with reference genomes. Although the

presence of a unique lineage/organism in the resulting MAG remains hypothetical (e.g.

phylogeneticaly distinct organisms in symbiosis could for example be binned together due

to high correlations in their abundances), tools like the manual refinement of bins and

the computation of contamination percentages estimating the amount of badly binned

contigs allow for determining high quality MAGs that can serve as proxies for taxonomic

entities, in a way similar to OTUs (Delmont et al., 2018). They bring the advantage of

giving access to near complete genomes instead of only ribosomal DNA, but also of not

using primers and including unannotated sequences. In only the last three years, Parks

et al. (2017) were able to recover nearly 8,000 MAGs from 1,550 marine and terrestrial

metagenomes, while Tully et al. (2018) reconstructed 2,631 MAGs from 234 Tara Oceans

metagenomes (Figure 1.2A), and Delmont et al. (2018) assembled 957 manually curated,

high quality MAGs from 93 Tara Oceans metagenomes. In addition to these, 76 non-

redundant and manually-curated MAGs were recently assembled from 58 bathypelagic

metagenomes (Acinas et al., 2019). Finally, (Vorobev et al., 2019) proposed a similar
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approach to MAGs binning, but this time aiming at building transcriptomes. They were

able to detect about 12,000 groups of co-abundant genes in 365 metagenomes, among

which 924 were identified as metagenomic based transcriptomes (MGTs), for they con-

tained more than 500 unigenes (i.e. groups of transcripts coming from a unique gene)

(Vorobev et al., 2019). The taxonomic assignation of unigenes among each MGT were

then used to define their taxonomy and estimate their phylogenetic homogeneity. These

MAGs do not only expand our view of taxonomic diversity among planktonic organisms

(Figure 1.2A), but also in the tree of life, with notably 11 potential new phyla detected in

the 76 bathypelagic MAGs only (Acinas et al., 2019).

Omics data also allowed to quantify the genetic diversity of plankton communities, and

to link it with functional diversity through the analysis of present and expressed genes in

hundreds of metagenomes and metatranscriptomes (Sunagawa et al., 2015; Acinas et al.,

2019; DeLong et al., 2006; Louca et al., 2016c; Galand et al., 2018). Notably, a catalog

of 47 million non-redundant genes was recently issued using 370 metagenomes of the

prokaryotes-enriched size fractions from Tara Oceans and Polar Circle expeditions (Salazar

et al., 2019). Comparing them with the gene available in reference databases, 39% of the

genes in this catalog could not be annotated with a biological function, highlighting the

gap remaining in our functional understanding of plankton genetic diversity. Similarly,

4.03 million genes were detected in 58 bathypelagic metagenomes, from which 71% had

not been detected in global surveys of the upper ocean (Acinas et al., 2019; Sunagawa

et al., 2015).

Thanks to such catalogs, it is now possible to quantify a part of the functional diver-

sity of planktonic communities corresponding to genes with annotated functions, and

notably to investigate its link with environmental conditions. This way, temperature was

identified as the main driver of genomic functional diversity in prokaryotic plankton com-

munities of the open ocean (Salazar et al., 2019). The quantification of both taxonomic

and functional diversity of plankton communities through omics data also allowed to

investigate the links between the two facets of plankton diversity on large spatial and

time scales (Sunagawa et al., 2015; Louca et al., 2016c; Galand et al., 2018). This led

to contrasting results, as the two facets of diversity were identified as decoupled when

using the Tara Oceans data (Louca et al., 2016c; Sunagawa et al., 2015), but were tightly

correlated in a coastal time-series station in the northwestern Mediterranean Sea (Ga-

land et al., 2018). Finally, recent results based on a multi-omics analysis (i.e., blending

metagenomics and metatranscriptomics) showed that changes in gene expression rates

across prokaryotic planktonic communities with similar taxonomic and genetic composi-

tion could significantly shape their functional activity (Salazar et al., 2019), adding a new
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layer of complexity to the global picture.

Omics data have led to the discovery of uncharted branches in the tree of life (Rinke et al.,

2013) and of millions of novel genes coding for proteins of unknown biological functions,

sometimes issued from organisms of unknown phylogenetic lineages (Salazar et al., 2019;

Acinas et al., 2019). This fraction of uncharacterized data has been described as the mi-

crobial dark matter, or more recently the dark side of omics, or the twilight zone, to avoid

using the poor comparison with astrophysics’ dark matter, which is theoretically pre-

dicted to exist but experimentally undetectable, pretty much the inverse from microbial

dark matter (Lobb et al. (2015); Rinke et al. (2013); Vanni et al. (2020); Figure 1.13). The

dark side of omics is present in all types of ecosystems, but is particularly significant in

aquatic metagenomes, where the share of sequences of unknown function and taxonomy

can reach up to 60% (Figure 1.13). I will now present some examples of how the func-

tional characterization of unknown genes and lineages unveiled by meta-omics data led

to discoveries of key planktonic actors in global biogeochemical cycles.

FIG. 2.—Microbial dark matter across a diversity of environmental samples. Proteins inferred (with FragGeneScan; Rho et al. 2010) based on
Metagenomic sequences from (Fondi et al. 2016), clustered based on their taxonomy (using MEGAN 6; Huson et al. 2016) and functional (using
EggNOG-mapper;Huerta-Cepasetal. 2017)annotation. Thepiechartsrepresent theproportionof proteinsfromeachtypeof environment. Thetaxonomy
annotationwasperformedusingthreeminimumpercentageof identity: 50% (panelsA andB), 85% (panelsCandD), and95% (panelsEandF). Inpanels
A, C, and E, the proteinswere clustered based on their functional annotation including the categoryS (“Function unknown”). PanelsB, D, and Fwere
clusteredwith theexclusion of thecategoryS.
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Figure 1.13 – Microbial dark matter across metagenomes from different ecosystem types. Genes
inferred from the reads of 339 environmental metagenomes (Fondi et al., 2016) are divided in four
categories depending on their taxonomic annotation (lines, based on the RAIphy algorithm (Nalban-
toglu et al., 2011)) and functional annotation (columns, based on the Pfam database (Bateman et al.,
2004)). The yellow background indicates sequences with known taxonomic and functional anno-
tations, while the grey background indicates proteins from unknown lineages and with unknown
function, hence corresponding to microbial dark matter. The number of sequences in each category
is indicated, as well as the corresponding percentage, and a pie-chart indicating the distribution of
the sequences across different ecosystem types. Proteins found in hosts (e.g. human gut micro-
biome) dominate the known/known category, while proteins from aquatic environments dominate
the microbial dark matter category. For this graph, the minimum percentage of identity used for
taxonomic annotation was 85% while the alignment e-value cut-off for functional annotations was
of 0.1. Figure modified from Bernard et al. (2018).
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1.3.2.2 Omics-based functional insights into biogeochemical cycles

As seen in section 1.1.2.2, the nitrogen cycle is largely driven by biological processes.

Until the 1990s, the filamentous cyanobacteria Trichodesmium was considered to be the

only significant diazotroph (Zehr and Kudela, 2011). Nitrogenase, the enzyme responsible

for nitrogen fixation, is composed of two parts, one of which is encoded by the nifH gene

Zehr (2011b). By amplifying nifH sequences in environmental samples, Zehr et al. (1998)

detected nitrogenase genes in multiple cyanobacteria, but also in gamma and alpha Pro-

teobacteria. Hence, by using omics data, Zehr et al. (1998) identified the cyanobacteria

Crocosphaera and the uncultivated group of cyanobacteria called UCYN-A as globally

abundant diazotrophs. By combining single cell analysis and large scale metabarcoding,

UCYN-A was later identified as a ubiquitous group of symbiotic cyanobacteria, contribut-

ing to nitrogen fixation at scales comparable to Trichodesmium (Martínez-Pérez et al.,

2016) (Figure 1.14). Even more recently, 9 non-cyanobacterial and diazotrophic MAGs

were assembled from 93 Tara Oceans metagenomes (Delmont et al., 2018). 6 of these

MAGs were annotated as Proteobacteria, while the 3 others were detected as Plancto-

mycetes, providing the first evidence of diazotrophy among this taxonomic group (Del-

mont et al., 2018). Even more surprisingly, these 9 MAGs appeared as very abundant in

the surface ocean, corresponding to up to 0.3% of all the sequences of a full metagenome

in the Pacific Ocean (Figure 1.14).

In addition to the discovery of new diazotrophs, omics data also changed our understand-

ing of the nitrification pathways in the global ocean (Zehr and Kudela, 2011). Indeed,

Venter et al. (2004) found ammonia monooxygenase genes putatively coming from Cre-

narchaea in the samples from the global ocean survey, the archeal clade identified as

abundant in the open and coastal ocean by Fuhrman et al. (1992) and DeLong (1992).

This enzyme, responsible for the oxidation of ammonium into nitrite and nitrate, or ni-

trification (see section 1.1.2.2), was then considered to be only present in Bacteria like

Nitrospira (Zehr and Kudela, 2011). Using targeted amplification of ammonia monooxyge-

nase genes in environmental samples, Francis et al. (2005) then confirmed that ammonia-

oxydizing archaea were ubiquitous and significantly abundant.

Omics data also greatly improved our understanding of the sulfur cycle (Moran et al.,

2012). The first enzyme identified as involved in DMSP demethylation, dmdA, was de-

scribed in 2006, followed a year after by the first one involved in DMSP cleavage (Howard

et al., 2006; Todd et al., 2007). Only five years after that, 4 additional enzymes involved in

the demethylation pathway and 10 additional enzymes involved in the cleavage pathway

were described (Moran et al., 2012). Metagenomics data showed that the dmdA enzyme
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UCYN-A1 was abundant throughout the tropics and subtropics.
However, the distribution of UCYN-A2 was much broader, with
relatively high abundances not only in tropical and subtropical
watersbutalsointemperatewatersextendingfar intohigher latitudes.

Populating all oceans between theArctic and Antarctic circles,
the unicellular cyanobacteria group A has a cosmopolitan distri-
bution contrasting with Trichodesmium, whose distribution and
activity is generally limited to tropical and subtropical waters with
temperaturesabove20°C (refs20,29). Given theabundanceof the
UCYN-A-haptophyteassociations, their geographicallywidespread
distribution(alsoref.30)andtheirhighN2fixationandgrowthrates
measuredhere,wehypothesizethat thisdiazotrophicsymbiosisisa
major contributor to N2fixation globally.

Methods
Sampling, hydrographyand experimental set-up. Samplingwascarriedouton
boardR/V Meteor (cruiseM96) inMay2013alonga14°N west-to-east transect in the
Tropical NorthAtlantic(Point-à-Pitre,GuadeloupetoMindelo,CapeVerde).
Temperature,salinityandchlorophylla(chla)fluorescencewereobtainedfromtheship’s
conductivity-temperature-depth(CTD)system(Sea-Bird)mountedonarosettesampler
andarearchivedinthePangaearepository(https://doi.pangaea.de/10.1594/PANGAEA.
860342).Therosettesamplerwasusedforall watersampling.TheWestern,Central and
EasternbasinsinthetropicalNorthAtlantic(Fig.1andSupplementaryFigs1and2)were
definedbasedonthehydrography.Nutrientconcentrationsweremeasuredatsixdepths
intheupper200mofthewatercolumnover28stationsacrossthetransect.N2andCO2
fixationratesweredeterminedatsixdepthsintheupper200mof14stationsusingstable
isotopetracer incubations.Theabundanceofdiazotrophphylotypeswasanalysedusing
quantitativePCR(qPCR)andmicroscopyatthesamedepthsfromwatersamplestakenat
thebeginningof thestableisotopetracer incubations.
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metagenomic sequencing data to investigate the diversity of 
nifH genes without primer bias, which led to the identifica-
tion of a mismatch in nifH4, a widely used degenerate PCR 

primer targeting the nifH gene39,49,50. Although these findings 
substantiate the previous observations madethrough PCR ampli-
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HBD-08
Phylum Planctomycetes

0%

HBD-07
Phylum Proteobacteria

0.0% 0.1% 0.2% 0.3%

HBD-06
Phylum Proteobacteria

0%

0% 0.02% 0.04% 0.06%

0.01% 0.02% 0.03% 0.05% 0.04% 0.08% 0.12% 0.16%

HBD-09
Phylum Planctomycetes

ED

editerranea
ea

,000 cell
er tre

P

.

.

.

.

um
ul

at
iv

e
di

st
rib

ut
io

o
ni

ne
 H

B
D

P N ANE IIEN AW

acific cean tlantic cean Indian Oce
outhern

cea

E

Red
e

3 m o

vera e: . 5. 7.. 7.... 7 . 5.2 . . 7
16

Fig. 3 | Abundance of nitrogen-fixing populations of Planctomycetes and Proteobacteria in the surface ocean.Top: boxplots display the square-root-
normalized cumulative relative distribution of the Planctomycetes (n = 2) and Proteobacteria (n = 7) HBDs in 93 metagenomes corresponding to 12 marine 
geographic regions (*assuming that each litre in the surface ocean contains 0.5 billion archaeal and bacterial cells83). Boxes represent the first quartile, 
median and third quartile of distribution values, and whiskers of 1.5 × interquartile range. Bottom: maps show the niche partitioning of HBD-06, HBD-07, 
HBD-08 and HBD-09 at the surface of four oceans and two seas (61 metagenomes from surface samples).

M
ea

n 
co

ve
ra

ge
 o

f n
ifH

ge
ne

s
ac

ro
ss

 m
et

ag
en

om
es

 (
lo

g)

HBD
genomes

n = 9

Orphan
genes
n = 9

HBD
genomes

n = 9

Orphan
genes
n = 9

HBD
genomes

n = 9

Orphan
genes
n = 9

FunGene
database
n = 164

0.01

1

0.001

0.1

'Ca. A. thalassa'
(Cyanobacteria)

'Ca. A. thalassa'
(Cyanobacteria)

'Ca. A. thalassa'
(Cyanobacteria)

HBD-06
HBD-09

0.0001

Zehr
database
n = 210

Amplicon
sequences
n = 12,917

0.01

1

0.001

0.1

0.01

1

0.001

0.0001

0.1

Fig. 4 | Relative abundance of the TARA Oceans nifHgenes in the context of reference collections and amplicons.Violin plots summarizing the average 
mean coverage of nifHgenes retrieved in this study, nifH reference databases46,47 and nifHamplicon sequences from a large-scale survey39 across 93 
TARA Oceansmetagenomes using a competitive read recruitment strategy. The 18 nifHgenes retrieved in this study were separated into two groups 
(‘HBD genomes’ and ‘Orphan genes’ for which we only have a scaffold) and compared to a database of nifHgene sequences. For each gene sequence, the 
coverage values were corrected by excluding nucleotide positions with coverage in the 1st and 4th quartiles to minimize the effect of non-specific mapping.

NATURE MiCRObiOLOgy | VOL 3 | JULY 2018 | 804–813 | www.nature.com/naturemicrobiology 809

A

B

C

Figure 1.14 – Global abundance of diazotrophs unveiled by omics data. (A,B) Percentage of 16S
rDNA reads annotated to UCYN-A1 (A) and UCYN-A2 (B) in samples from three datasets: ICoMM,
OSD and Tara Oceans (See Section 1.3.1 for quick description of these datasets). Figure from
Martínez-Pérez et al. (2016). (C) Maps of the sequence abundance (in % of total sample reads) of 4
diazotrophic MAGs in 61 metagenomes from the surface ocean. The two maps on the left correspond
to Proteobacteria MAGs while the two maps on the right correspond to Planctomycetes MAGs. MAGs
names begin with the acronym HBD, standing for heterotrophic bacterial diazotroph. Figure from
Delmont et al. (2018).

was extremely abundant, and could be harbored by more than 50% of bacterioplankton

cells in the surface Ocean (Moran et al., 2012; DeLong et al., 2006; Rusch et al., 2007).

At the time, metagenomics also showed that cleavage-related enzymes were two orders of

magnitude less abundant than demethylation-related ones, suggesting that some cleavage

genes remained unknown, or that the cleavage of DMSP into DMS by bacteria might not

be as important as previously thought (Moran et al., 2012). Since then, two key enzymes

responsible for DMSP cleavage have been identified: the dddK enzyme was identified as

cleaving DMSP into DMS through a previously unknown pathway in the very abundant

Pelagibacter, while the Alma1 enzyme was the first ever eukaryotic DMS-releasing enzyme

identified, and was detected in many lineages of haptophytes and dinoflagellates (Alcolom-
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bri et al., 2015). This way, missing links in the sulfur cycle highlighted by metagenomics

data were resolved through targeted, biochemical extraction and purification approaches.

1.3.2.3 Rehabilitating overlooked groups of planktonic organisms

D A V I D  A .  C A R O N

Do you know the name 
a n d  e v o l u t i o n  a r y 
affiliation of any of the 

most conspicuous groups of 
single-celled organisms in the 
world’s oceans? Did you guess 
the Rhizaria, or one of the 
more fami liar groups of plank-
ton that make up this super-
group, such as the Radiolaria,  
Acantharia or Foraminifera? If 
you didn’t, you’re not alone — 
until recently, neither did the vast 
majority of biological oceano-
graphers. Biard et al.1 report on 
page 504 of this issue that the 
abundance and biomass of these 
enigmatic species in the ocean 
are much greater than previously 
recognized. In addition, Guidi 
et al.2 (page 465) reveal the extent 
of the Rhizaria’s involvement in 
the export of carbon from the 
atmosphere to the ocean depths. 

Oceanic Rhizaria are protists: 
single-celled and some colonial 
organisms that are eukaryotic, 
meaning that they contain nuclei 
and other membrane-bound 
organelles. The Rhizaria were 
formerly thought to be phylo-
genetically related to the much 
smaller and better known amoe-
bae, because both groups feed 
by capturing and engulfing prey 
with extensions of their cyto-
plasm called pseudopodia. How-
ever, the Rhizaria can produce 
complex pseudopodial networks 
that attain sizes of more than a 
centimetre. Some species can 
even form cylindrical colonies 
approximately 1 cm in diameter 
and greater than 1 m in length3. 

These pseudopodial networks, 
and the intricate mineral skeletal structures of 
opal (SiO2), celestite (SrSO4) or calcite (CaCO3) 
that many Rhizaria form, distinguish them 
from amoebae, as does DNA-sequence infor-
mation. The supergroup Rhizaria was devised 

more than a decade ago to contain these  
morphologically complex forms, and their 
smaller amoebic cousins have been placed 
among several eukaryotic supergroups in 
modern phylogenetic schemes4.

The large oceanic Rhizaria 
entangle and engulf a wide 
range of prey in their pseudo-
podial networks5. Many species 
dwelling in the upper ocean also  
possess symbiotic algae6, which 
can contribute significantly to 
host nutrition and to total pri-
mary production in the ocean7. 
This nutritional versatility makes 
amoeboid Rhizaria well adapted 
for life in the vast stretches of 
oligo trophic (nutrient-poor) 
waters of the open ocean. 

The renowned nineteenth-
century German scientist and 
artist Ernst Haeckel immortal-
ized these species in drawings 
that captured their elegance and 
complexity (Fig. 1). Much of the 
material for Haeckel’s drawings 
came from samples returned 
by the Challenger expedition of 
1872–76, a circumnavigation of 
the planet that laid the founda-
tion for modern oceano graphy8. 
Yet, although the Rhizaria are 
valued by palaeontologists for 
climate reconstructions based 
on the fossil shell assemblages 
left by some of these species in 
deep ocean sediments, they have 
received only scant attention 
from biologists.

One of the reasons for their 
anonymity to oceanographers is 
the delicate morphologies of liv-
ing specimens. These structures 
deteriorate badly as a result of  
the methods and preservatives 
that have routinely been used for 
collection and species identifi-
cation. Some species contain no 
skeletal material, and in plankton 
samples their remains are often 
not recognizable. Substantial 
abundances of Rhizaria were 

detected by divers in the open ocean more than 
two decades ago9,10, and are visible in earlier 
underwater images11. However, truly global 
surveys have never been conducted. 

The Tara Oceans project has begun to 

O C E A N  S C I E N C E

The rise of Rhizaria
Large amoeba-like organisms known as Rhizaria have often been overlooked in studies of ocean biology and biogeochemistry.  
Underwater imaging and ecological network analyses are revealing their roles. SEE ARTICLE P.465 & LETTER P.504

Figure 1 | Abundant plankton. These illustrations by Ernst Haeckel were drawn 
from samples collected by the oceanic Challenger expedition of 1872–76. They 
depict the colony shape, central capsule structure and symbiotic algae in the 
colonial plankton Collozoum inerme, which belongs to the supergroup Rhizaria. 
Biard et al.1 and Guidi et al.2 present analysis of data collected from the Tara 
Oceans expedition that reveals an unexpectedly large abundance of Rhizaria 
in the ocean, and implicates these organisms in the vital export of carbon from 
upper ocean layers to the deep ocean.
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genetic markers from the host (18S and 28S rDNA) and the
symbionts (18S and 28S rDNA, rbcL and psbA). For more than
100 acantharian specimens analyzed, representing 25 distinct
morphospeciesand themajorityof known symbiotic families, we
found that symbionts consistently belonged to the well-known
haptophyte genus Phaeocystis. Themicroalga Phaeocystis is one
of the most extensively studied taxa of marine phytoplankton,
but has never been reported to occur in symbiosis. Free-living
Phaeocystisareubiquitousfrompolesto tropicsand fromcoastal
to open oceanwaters (25). Theyare recognized both asharmful

algaeand asoneof the fewkeystonephytoplankton genera that
shape the structure and functioning of marine ecosystems (26).
Phaeocystisnot onlyaremajor contributors to the global carbon
budget (27), but also impact sulfur cycling by producing sub-
stantial amountsof dimethylsulfoniopropionate (DMSP) and its
volatile catabolite dimethylsulfide (DMS), a climatically active
trace gas emitted from the ocean (28). In coastal areas, blooms
of Phaeocystisaredetrimental to thegrowthand reproduction of
shellfish and zooplankton and strongly impact human activities
such asfisheries, aquaculture, and tourism (25).

Fig. 1. Genetic diversity of Phaeocystis found worldwide in symbiosiswith Acantharia. The figure showsa RAxML phylogenetic reconstruction of the genus
Phaeocystisbased on concatenation of the ribosomal 18Sand 28SrDNA genesand the plastidial psbA and rbcL genes(131 taxa and 3.1 kb aligned positions).
Sequencesof Phaeocystis in symbiosisare colored according to their geographic origin, and the number of host specimensexamined (representing different
species) is indicated. Cultures of free-living Phaeocystis and their corresponding geographic origin are in black. All sequences were produced in this study
except for those indicated in boldface type (fromGenBank). Bootstrap values≥60% and Bayesian posterior probability≥0.7are given above and beneath the
node, respectively. The outgroup containsfive sequences from other members of the Haptophyta. See SI Materials and Methods for one-gene phylogenies
(Figs. S1–S4).
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Figure 1.15 – The morphologic diversity of Rhizaria. (A) Illustrations of Collozoum inerme by Ernst
Haeckel, from samples collected during the Challenger expedition (1872-76), (B) The diversity of
morphology across 3 species of Acantharea (up: Lithoptera fenestra, middle: Amphilonche elon-
gata, down: unidentified), all bearing photosynthetic symbionts. Collozoum inerme is a Collodaria
species, a group of Radiolaria forming colonies, and of which every described species bears photo-
synthetic endosymbionts (Biard et al., 2017). Acanthareans are rhizarians with celestite skeletons,
living in symbiosis with the ubiquist haptophyte Phaeocystis. Haeckel illustrations extracted from
Caron (2016b), pictures taken from Decelle et al. (2012).

The advent of meta-omics data did not only lead to the discovery of novel biogeochemi-

cally impactful organisms, but also to the identification of well-known but yet overlooked

lineages as key actors of the global ocean biogeochemistry. This is particularly well illus-

trated by the Rhizaria supergroup. This supergroup of unicellular and sometimes colonial

eukaryotes has been known since the XIXth century, as they were described by Ernst

Haeckel from samples of the Challenger expedition (1872-1876) (Figure 1.15). Rhizaria

use complex pseudopodial networks to feed on preys, and harbor skeletal structures made
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1.3 Emergence of omics data to study planktonic diversity

of opal (SiO2), celestite (SrSO4) or calcite (CaCO3) (Caron, 2016b). Many species of the

Rhizaria supergroup are also known for bearing photosynthetic endo- or ectosymbionts

(Figure 1.15), and the question of their impact on global primary productivity was already

asked in the 1990s (Caron et al., 1995). However, the amount of biological knowledge

about these organisms remained very scarce until the last decade, mainly because their

delicate skeletal structures often do not resist to sampling and preservation methods,

while they remain impossible to maintain alive in culture (Caron, 2016b). Despite earlier

evidences of their high abundance derived mostly from open ocean diving observations

(Swanberg, 1983; Michaels et al., 1995), no global survey of their abundance and diver-

sity had been conducted before the advent of meta-omics (Caron, 2016b). Also, they are

absent of all major PFT models (e.g. they were not mentioned in Le Quéré et al. (2005),

Aumont et al. (2003), or Follows et al. (2007)).

In 2012, omics data allowed to describe a widespread symbiotic relationship between

Phaeocystis and the rhizarian group of Acantharia (Decelle et al., 2012). This symbiosis

was identified through the amplification of the 18S and 28S rDNA of isolated specimens

from Acantharia, which allowed to characterize their photosymbionts as Phaeocystis, a

ubiquitous haptophyte genus found free-living (i.e. not in symbiosis) from poles to trop-

ics, which had yet never been identified in symbiotic relationships (Decelle et al., 2012).

The description of this original mode of symbiosis was soon followed by the discovery of

Rhizaria as the second most abundant lineage in Tara Oceans 18S metabarcoding data,

just after the Opisthokonta (de Vargas et al., 2015). In-situ imaging data also collected

during the Tara Oceans expedition estimated that rhizarians might constitute up to 5.2%

of the total oceanic biota carbon reservoir, confirming their greatly underestimated abun-

dance, and asking the question of their impact on global primary production (Biard et al.,

2016).

A co-occurrence based analysis of the Tara Oceans metabarcoding samples identified a

group of 49 eukaryotic OTUs to be particularly correlated to carbon export in the global

ocean, 5 of which were annotated as rhizarians (Guidi et al., 2016). Among the 5 OTUs

identified as having the most influence on carbon export, two were annotated as Col-

lodaria, a photosymbiotic group of Rhizaria (Figure 1.15A). Collodarians can either be

solitary or colonials, they live in symbiosis with micro-algae of the Brandtodinium genus,

and some species harbour an opal skeleton, while others stay "naked" (Biard et al., 2017).

They contributed to 82% of the rhizarian 18S rDNA sequence sampled during the Tara

Oceans cruise (Biard et al., 2017). These first insights into the ecological impacts of rhizar-

ians, obtained through the analysis of Tara Oceans data, were confirmed by the identi-

fication of Rhizaria as important contributors to carbon export in the California Current
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Ecosystem (Gutierrez-Rodriguez et al., 2019). This discovery relied on the metabarcoding

analysis of sediment traps, i.e. oceanographic tools collecting sinking particles in the

water column, in which Radiolaria (a branch of Rhizaria, including Collodaria and Acan-

tharea) contributed to up to 90% of the 18S rDNA reads (Figure 1.16). Omics data then

showed that rhizarians exhibit unique symbiotic relationships (Decelle et al., 2012), are

ubiquitous and globally abundant (Biard et al., 2017), and have a significant impact on

carbon export (Guidi et al., 2016; Gutierrez-Rodriguez et al., 2019; Stoecker et al., 2009).

These results, combined to the recent evidences of the essential role of Rhizaria in the

global silica cycle (Biard et al., 2018; Monferrer et al., 2020) are highlighting the necessity

of their inclusion in biogeochemical models.
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Figure 1.16 – The influence of Radiolaria on carbon export. Mean percentage of 18S rDNA reads
affiliated to different plankton taxonomic groups in samples from the California Current Ecosystem.
Samples were taken from the water column (a), from biologically fixed sediment traps (b, fixation with
formaldehyde to minimize decomposition and consumption of organic matter), and from live sediment
traps (c, no biological fixation). Radiolaria contributed to 12% of the total sequence number in the
water column, 88% in fixed traps, and 9.6% in live traps. The increase of Radiolaria abundance
in fixed traps compared to the water column samples demonstrate their high contribution to carbon
export through sedimentation. The decrease of Radiolaria abundance in live traps was probably
due to selective consumption by copepods, heterotrophic nanoflagellates, or phaeodarians in the
traps, and supposes a rapid remineralization of organic matter associated with Radiolaria.

1.4 Using omics data to bridge the gap between observed and

modeled diversity

1.4.1 Improving marine biogeochemical models using omics data

As shown in sections 1.2.2 and 1.2.3, traditional modeling approaches based on the

representation of exchanges between a few ecosystem components (i.e., nutrients, phyto-

plankton, zooplankton and detritus, or plankton functional types) have been criticized for

their lack of ecological justifications (Anderson, 2005; Flynn et al., 2015). The proposition
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of using omics data to improve the representation of planktonic diversity in biogeochem-

ical models was raised very soon after the publication of the first results from the Global

Ocean Sampling circumglobal cruise (Venter et al., 2004; Rusch et al., 2007; Hood et al.,

2007). Even though the amount of published meta-omics data was very scarce at the

time compared to what is available today, Hood et al. (2007) already stated that "(...) it is

not clear that these traditional modeling approaches will be sufficient in the face of all this

emerging microbiological and genomic information; such models need to be “told” exactly

what organisms and metabolisms exist in the ocean, and the rate coefficients that govern

their parameterizations must be specified a priori. As such, they cannot tell you what is

important and what is not.". Hood et al. (2007) also insisted on the fact that traditional

modeling approaches did not account for adaptation and evolution of planktonic organ-

isms, which could be problematic when trying to predict the effects of climate change, and

to often not explicitly represent the bacterioplankton, despite the experimental evidence

of their ecological importance.

Meta-omics data then quickly appeared as an opportunity to inform traditional models

(1) on the geographical distribution of organisms and metabolisms in the global ocean,

(2) on the response of such organisms and metabolisms to environmental conditions, and

(3) on potential new ecological theories and fundamental laws that could emerge from the

unprecedented quantity of data available (Hood et al., 2007; Allen and Polimene, 2011;

Mock et al., 2016). By providing information at the gene level, omics data theoretically

allow for a switch from species-based or trait-based models towards metabolism-based

or gene-centric models, notably inspired by systems biology, and the physics of com-

plex systems (Reed et al., 2014; Toseland et al., 2013; D’Alelio et al., 2019; Follows and

Dutkiewicz, 2011).

1.4.2 Omics-based metabolic modeling

Metabolism-based models rely on metabolic networks, which consist in a conceptual

reconstruction of the metabolic pathways occurring in a (meta)genome, based on the

functional annotation of its genes (Grossart et al., 2020; Budinich et al., 2017). In these

networks, nodes correspond to metabolites, and arrows to metabolic reactions, driven

by enzymes (Steuer et al., 2012; Budinich et al., 2017) (Figure 1.17). A metabolic net-

work can be summarized in a stoichiometric matrix, in which columns correspond to

reactions, lines correspond to metabolites, and each coefficient Sĳ correspond to the stoi-

chiometric coefficient of the metabolite Mi in the reaction Rj (Figure 1.17) (Budinich et al.,

2017). Given a set of inputs to the network (e.g. a concentration of nutrients), and under

the hypothesis that the rate of formation of internal metabolites is equal to their rate
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Fig. 5. The principles of fux balance analysis (FBA)as a two-stage constraint optimization: initially, all fux values are constraint by
individual upper and lower bounds. Then, assuming stationary conditions, themass balance constraint is applied, resulting in
relationships between intracellular fuxes: the feasible fux cone. A particular solution can be identifed byapplying optimization criteria,
such as the optimization of biomass yield (BOF). The optimal solution is not necessarily unique.

Fig. 6. The principles of FBA: a simple example. The starting point is a reaction network (upper left panel)encoded as a stoichiometric
matrix (upper right panel). Given a certainmaximal utilization that satisfes themass balance constraint and results in an optimal yield of
biomass formation, as predicted by the biomass objective function, BOF (lower left panel), the problemcan be cast into a linear
optimization problemand is solved using standard methods of linear programming. A solution for the simple example is provided in the
lower right panel. In general, the solution is not unique.
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Figure 1.17 – Example of the metabolic network modeling process. A simple metabolic network
is represented in the upper left, along with the corresponding stoichiometric matrix. The depicted
metabolic pathway leads to the production of biomass through fluxes of three metabolites, P1, P2
and L, which are represented in a 3 dimensional space in the upper right. By initializing the flux
of the first reaction r1 (here from G to M1) to 1.0, assuming steady state conditions and satisfying
mass conservation constraint, it is possible to determine a space of solutions for the values of the P1,
P2 and L fluxes (middle right graph), each leading to a value of biomass production. The biomass
production can then be optimized in this space of solutions, as presented in the bottom graphs.
Here, one optimal solution is presented, but most of the time multiple optimal solutions exist. In
these cases, other cellular objectives can be optimized in addition to biomass, like minimizing the
total amount of fluxes or the thermodynamic costs of reactions. Figure modified from Steuer et al.
(2012).

of consumption, the stoichiometric matrix can be used to compute a constrained space

of possible values for an objective function, like biomass production or growth rate (Bu-

dinich et al., 2017; Steuer et al., 2012). The optimal value for the objective function can

then be obtained by solving a linear optimization problem, and corresponds to the value

maximizing the "fitness" (i.e. the reproductive success) of the modeled organism given

the conditions (Budinich et al., 2017; Steuer et al., 2012) (Figure 1.17). This approach

is called flux balance analysis (FBA), and rely on constraint-based models. Metabolic

networks then allow for the mechanistic modeling of intra-cellular processes, and can

even be extended to model metabolisms at community scales (Budinich et al., 2017).
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Moreover, tools are now available for the automatic reconstruction of metabolic networks

(Konwar et al., 2015; Kanehisa et al., 2019), opening the door to their application on full

communities (Budinich et al., 2017; D’Alelio et al., 2019).

But to be included in metabolic networks, genes require a functional annotation (Grossart

et al., 2020), when a significant part of omics data remain poorly understood on a

functional level (Section 1.3.2.1). Reed et al. (2014) wrote that "although insightful for

laboratory studies, [the metabolic network approach] is infeasible for use in conjunction

with environmental genomics data because the majority of microbes are uncultured and

their metabolic networks are thus unknown". In only 5 years, this statement became

questionable with the advent of high quality MAGs for uncultured organisms, but illus-

trates well the necessity to have high quality genomics data and functional annotations

for the metabolism-based approach to work. Metabolic networks have also been crit-

icized for their struggle to capture temporal changes in metabolisms, like the switch

between phototrophic metabolism during the day and storage-based metabolism at night

in Cyanobacteria for example, despite the excellent quality of genomics data available

(Steuer et al., 2012). But recent advances in constraint-based modeling techniques proved

that metabolic diurnal cycles could be derived from metabolic networks (Reimers et al.,

2017). Finally, flux balance analysis analysis have yet been rarely applied on eukaryotic

organisms, at least compared to prokaryotic organisms, mainly due to the compartmen-

talization of eukaryotic cells, which adds a layer of complexity to the picture (Niklas et al.,

2010). It is why the metabolism-based approach has not yet been applied to a full bio-

geochemical model, despite its great potential for a mechanistic modeling of planktonic

organisms. Instead, all of the omics-informed biogeochemical models published in the

last decade relied on a gene-centric approach.

1.4.3 Gene-centric approach for biogeochemical modeling

In gene-centric models, organisms are grouped according to a few genes pre-selected for

their metabolic function and usually referred to as functional genes (Reed et al., 2014;

Louca et al., 2016a). For example, the first published gene-centric biogeochemical model

used 8 functional genes involved in nitrogen cycling as state variables: amoA for aerobic

ammonia oxidation, hzo for anaerobic ammonium oxidation, nor for aerobic nitrite oxi-

dation, dsr for sulfate reduction, nap for sulfide oxidation coupled to nitrate reduction,

sox for aerobic sulfide oxidation, narG for nitrate reduction, nirK for nitrite reduction,

nrf for dissimilatory nitrite reduction to ammonium and cox for aerobic respiration (Reed

et al., 2014). The model described the rate of each gene production as dependant on

nutrients and concentrations of reaction inhibitors, while the concentration of nutrients
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was in turn impacted by the abundance of the different functional genes (Reed et al.,

2014). It was applied to a 1 dimension (vertical) section of the Arabian Sea, allowing to

reproduce observed patterns of oxygen, ammonium, nitrate and nitrite concentrations,

but also observed sequence abundances of functional genes (Reed et al., 2014). A similar

approach was proposed two years later, this time modeling carbon, sulfur and nitrogen

cycles in a Canadian fjord through the modeling of 6 functional genes (Louca et al., 2016a).

This model improved the biological realism of gene-centric approaches by not only mod-

eling the DNA concentration of functional genes, but also their transcription from DNA

to mRNA, allowing for a more mechanistic representation of enzyme production, and a

better justification for comparing model outputs with metatranscriptomics data (Louca

et al., 2016a).

These early attempts led to the publication of GENOME, the first 3D (i.e. longitude,

latitude and depth) gene-centric biogeochemical model, including 20 prokaryotic gene

functional groups (Coles et al., 2017), and from which the functioning is schematized

in Figure 1.18. The model structure of GENOME was different from the ones of Reed

et al. (2014) and Louca et al. (2016a), as instead of only following genes concentrations as

state variables, it used the abundance of organisms bearing different randomly assigned

genomes and transcriptomes (Figure 1.18, the terms genomes and transcriptomes refer-

ring here to the composition in functional genes and their predicted expressions). Inspired

by emergent trait-based models such as DARWIN (Follows et al., 2007) (see section 1.2.3),

GENOME creates random organisms to which are assigned functional genes, before be-

ing included in a global circulation model where only the fittest organisms are conserved,

allowing for the emergence of the most adapted communities at each model run (Figure

1.18). It led to the observation that across different simulation runs, the community-level

metabolic rates were similar in the same geographic areas, independently of the fact that

the modeled organisms were different (Coles et al., 2017). The authors then proposed that

genomic composition of planktonic communities in the model had more influence on bio-

geochemistry than the genetic composition of the individual organisms (Coles et al., 2017).

This model-based hypothesis illustrates how gene-centric approaches allow to draw con-

clusions on functional diversity and its impact on biogeochemistry, where traditional PFT

modeling would have struggled to decouple function from taxonomy.

Gene-centric approaches have also proven useful for confronting model outputs to ex-

perimental data (Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017). Indeed, by

modeling DNA and mRNA concentrations, gene-centric models allow for direct compar-

isons with metagenomics and metatranscriptomics datasets (Figure 1.18). Despite these

improvements, all the gene-centric models published so far fail at answering to Hood’s
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Fig. 1. Organism replacement over time in the GENOME model.The first seven rows are
substrates that are constant over the model run. The next 68 rows delineate organisms by color.
Color change denotes replacement of an organism.
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Figure 1.18 – Simplified functioning of the GENOME model, built using information and figures from
Coles et al. (2017). Organisms are first randomly assigned a size from 1 µm to 2000 µm. Parameters
like substrate uptake affinity, growth rate, mortality or sinking speed are then derived from the
randomly selected size, according to experimental data (light blue box). Each organism is also
assigned a degree of complexity, which corresponds to the number of functional genes it will be able
to get. To avoid super-organisms dominating the model ecosystem, a trade-off was used to linearly
decrease the maximum growth rate as the complexity increase (orange box). Functional genes are
then randomly assigned to organisms, determining their impact on biogeochemistry (yellow box).
Examples of such functional genes are: To avoid to keep unviable organisms in the model, the ones
whose biomass did not represent more than 1% of the total community at any location were replaced
by new organisms. 68 organisms co-existed at any given time during the simulations presented in
Coles et al. (2017), as illustrated by the multicolored bars on the left green box. The evolution of 7
substrates were also modeled, which correspond to the plain bars in the left green box. The model
notably allowed to predict the concentrations of amtB and pcaH genes in the Atlantic Ocean (coding
respectively for ammonium transport and aromatic ring cleavage, right green box). On the maps in
the right green box, observed concentrations of these two genes are overlaid in circles.

concerns evoked at the beginning of this section (Hood et al., 2007). Indeed, these models

require to a priori select a set of functional genes from which the function has to be well

known (e.g light-harvesting genes, nitrification genes, nitrogen fixation genes,...), exactly

like PFT need to be a priori selected in traditional PFT models. This way, the gene centric

approach was only applied to well known pathways, mostly present in prokaryotic organ-

isms, and unrepresentative of the observed functional diversity of planktonic organisms

(Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017).
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The emergence of metabolism-based and gene-centric approaches have provided a theo-

retical framework that allow for the use of genes as structural components of biogeochem-

ical models (Mock et al., 2016; Stec et al., 2017; D’Alelio et al., 2019; Grossart et al., 2020;

Reed et al., 2014; Louca et al., 2016a; Coles et al., 2017). The gene-centric approach has

even been proven to be applicable at the scale of the entire Atlantic Ocean (Coles et al.,

2017). However, it has yet failed at increasing the diversity representation in biogeochem-

ical models, by only focusing on small numbers of functional genes (a maximum of 20 in

Coles et al. (2017)) and only prokaryotic metabolic pathways. This highlights the current

need for data-driven methods allowing for the automatic detection and quantification of

functional genes of biogeochemical and ecological importance from meta-omics data.

1.5 How to use omics data to improve planktonic diversity

representation in biogeochemical models ?

In this introduction, I have reviewed how the functionally and taxonomically diverse

planktonic communities impact global biogeochemical cycles. I have then presented

how these planktonic communities are currently represented in biogeochemical mod-

els, highlighting the gap between observed and modeled planktonic diversity. Finally, I

showed how the advent of omics data led to further understanding of plankton diversity

and contributed to the emergence of new theoretical frameworks, bearing the potential of

producing biogeochemical models with realistic representations of planktonic functional

diversity (Figure 1.19).

- realistic
+ simple

+ realistic
- simpleOmics BasedNPZD

Fasham et al., 1990

PISCES
Aumont et al., 2003

PFT

Le Quéré et al., 2005

DARWIN
Follows et al., 2007

GENOME
Coles et al., 2017 ?

Figure 1.19 – Gradient of planktonic functional and taxonomic diversity implemented in biogeochem-
ical models, with examples of key models discussed in this introduction: Fasham et al. (1990), Au-
mont et al. (2003), Le Quéré et al. (2005), Follows et al. (2007) and Coles et al. (2017). NPZD stands
for nutrient, phytoplankton, zooplankton and detritus models (see section 1.2.1), PFT stands for
plankton functional types models (see section 1.2.2), while omics-based models refer to gene-centric
and metabolism-based approaches, as well as to potential new theoretical frameworks involving
omics data and potentially allowing for a more realistic representation of planktonic diversity in
biogeochemical models (see section 1.4).

In particular, I highlighted the need for data-driven methods allowing to define model

structural components from observational data, to avoid a priori choices of the model
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PFTs, traits, genes or metabolic pathways. I demonstrated the promises carried by omics

data to tackle this issue, but identified multiple limitations emerging from their current

use in theoretical frameworks, notably the bias towards cultivated organisms and well-

described pathways in gene-centric and metabolic models, preventing us to take full

advantage of the richness of omics datasets. It led me to consider 3 main research

questions, which drove the analyses presented in the following chapters of this thesis.

1. Can we use meta-omics data to detect functional traits from which the genomic

basis is poorly known?

2. Can we use meta-omics data to predict the distribution of functional traits/genes

in the environment through statistical modeling?

3. Can the abundance and distribution of functional traits/genes be quantified in

meta-omics data without any a priori choice of focal functions and/or species?

I will try to bring answers to these questions in the following parts and chapters of this

manuscript:

In Part I, entitled From genes to functional traits in the global ocean: the mixotrophy and

DMS production case studies, I will bring answers to questions 1. and 2. using two a priori

chosen functional traits as case studies: mixotrophy, from which the genomic basis is

poorly known, and DMS production, from which the metabolism is well described. This

first part will be composed of two chapters:

Chapter 2 will focus on how metabarcoding can be used to describe the distribution

of functional traits, using mixotrophy as an illustration. In section 1.2.2 of this in-

troduction, I evoked how mixotrophic protists are often absent from biogeochemical

models, despite growing evidence of their biogeochemical importance. Here, I pro-

pose the first ever omics-based assessment of mixotrophic protists abundance in

the global ocean, showing their ubiquity and unveiling some interesting character-

istics of their biogeography. This chapter will be mainly composed of a manuscript

entitled Mixotrophic protists display contrasted biogeographies in the global ocean,

published in the ISME Journal in 2018, of which I am first author.

Chapter 3 will focus on how genomics and transcriptomics data can be used to

investigate the genomic basis of functional traits in planktonic lineages, using both

mixotrophy and DMS production as illustrations. The chapter will also expose how

genomic markers of functional traits can be used to derive quantitative predictions

of metabolic functions, through preliminary results on the analysis of the global

distribution of genomic markers of DMS production.
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Part II, entitled Data-driven approaches to identify and quantify the functional composition

of planktonic communities, will mainly be focused on questions 2. and 3., as I will present

a method allowing to use omics data to quantify gene functional groups in the global

ocean without a priori. This part will be composed of one chapter:

Chapter 4 will describe a data-driven method to identify gene functional groups

in meta-omics datasets, quantify their abundance, and study their response to

environmental gradients. The method was tested on more than 800 prokaryotic

MAGs, and machine learning techniques were used to try to predict the abundance

of their gene functional groups from the environmental context. This chapter will

be mainly composed of a manuscript entitled Towards omics-based predictions of

planktonic functional composition from environmental data, which I have submitted

as first-author to Nature Communications on the 24th of April 2020, and is currently

under review.

Chapter 5 will consist in a general discussion, in which I will summarize the advantages

and limits of omics-driven approaches to increase diversity in biogeochemical models.

I will also comment on the potential combination of omics data with other data types,

such as high-throughput imaging, to improve our theoretical understanding of planktonic

ecosystems. Finally, I will question if we should keep working at the functional-trait

level, switch exclusively to gene-centric level, or maybe even try to come up with a new

conceptual framework to improve planktonic diversity representation in biogeochemical

models.
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Chapter 2

Metabarcoding as a tool to decipher the bio-

geography of functional traits

2.1 Prelude
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Figure 2.1 – Metabarcoding as an alternative to functional genomic markers for the detection of func-
tional traits with poorly known genomic basis. Metabarcodes can be associated to taxonomic lin-
eages through annotation databases such as PR2 (Guillou et al., 2013), and the number of metabar-
codes associated to each lineage is approximately proportional to its biomass (Biard et al. (2017),
more on this in the next section). A functional annotation can then allow to link lineages with func-
tional traits, based on the literature and the knowledge of experts. The abundance of metabarcodes
associated to each trait can then be computed.

In the introduction, I highlighted how omics data had been included in theoretical frame-

works with a strong bias towards well described metabolic pathways. One of the sci-

entific questions that I asked was can we use meta-omics data to detect functional traits

from which the genomic basis is poorly known?. The first step towards the integration

of functional traits in models through omics data is to find ways to detect them in-situ,
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and hopefully quantify their presence in samples. Such a quantification would allow to

explore the distribution of the detected trait, identify potential trade-offs with other traits,

and determine its affinity for specific environmental conditions, which are key elements

for the implementation of the trait in a modeling framework. The silver bullet for detecting

and quantifying a trait in the environment through omics data is the access to functional

genomic markers, i.e. one or multiple genes directly linked and/or responsible of the or-

ganism’s functional trait, and of which the genomic and transcriptomic abundances can

be used as a proxy of the trait presence and realization. But the detection and quantifica-

tion of traits that are governed by poorly known or even unknown molecular mechanisms

remains problematic (more on this issue in Chapter 3). During the first year of my the-

sis, I thus explored how metabarcoding could provide an alternative to functional genomic

markers for the detection of traits with poorly known genomic basis, relying mostly on the

manual annotation of functional traits to taxonomic lineages (Figure 2.1). In particular, I

focused my work on the functional trait of mixotrophy.
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Figure 2.2 – The different types of mixotrophy, or mixotypes. Constitutive mixotrophs have an
innate ability to fix carbon through photosynthesis, they are sometimes called ’algae that eat’.
Non-constitutive mixotrophs do not have an innate ability to fix carbon, and can be subdivided in
three subgroups depending on how they acquire this ability. Generalist non-constitutive mixotrophs
(GNCM) can steal the chloroplasts from any of their preys, while plastidic specialist non-constitutive
mixotrophs (pSNCM) can steal the chloroplasts from some specific preys. Finally endosymbiotic
specialist non-constitutive mixotrophs (eSNCM) bear photosynthtic symbionts. Pictures from Leles
et al. (2017).

Mixotrophy is a functional trait that has long been overlooked, but is now considered to be

present in the majority of protistan lineages (Flynn et al., 2013). Still, the physiology and
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ecology of mixotrophs remain poorly known, in part because as most protistan lineages,

they remain challenging to culture in labs (Flynn et al., 2013). The first description of

the global biogeography of mixotrophs was published through a review of morphological

identification data in 2017, at the beginning of my PhD (Leles et al., 2017). At the time,

no study had investigated mixotrophy in meta-omics data, despite their clear ecological

significance (Mitra et al., 2014) and the need for information about their abundance in

the open ocean (Leles et al., 2017). This lack of meta-omics based studies focusing on

mixotrophs can notably be explained by the absence of genomic markers of mixotrophy,

i.e. genes that could allow to detect mixotrophy in metagenomics and/or metatranscrip-

tomics samples. This absence can notably be explained by the fact that multiple types

of mixotrophy exist, each corresponding to organisms with distinct physiologies and be-

haviors (Detailed in figure 2.2), making it hard to identify specific metabolic pathways

associated with this trait. Mixotrophy then appeared as a perfect case study for testing

metabarcoding as an alternative to functional genomic markers, and my goal was to in-

vestigate the biogeography of mixotrophic protists in the global ocean through meta-omics

data, providing the first ever list of metabarcodes corresponding to mixotrophic lineages.

The rest of this chapter will consist in a manuscript entitled Mixotrophic protists display

contrasted biogeographies in the global ocean, published in the ISME journal in January

2019, and on which I am first author.
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Abstract: Mixotrophy, or the ability to acquire carbon from both auto- and heterotrophy, is a

widespread ecological trait in marine protists. Using a metabarcoding dataset of marine plankton

from the global ocean, 318,054 mixotrophic metabarcodes represented by 89,951,866 sequences

and belonging to 133 taxonomic lineages were identified and classified into four mixotrophic

functional types: constitutive mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM),

endo-symbiotic specialist non-constitutive mixotrophs (eSNCM), and plastidic specialist non-

constitutive mixotrophs (pSNCM). Mixotrophy appeared ubiquitous, and the distributions of the

four mixotypes were analyzed to identify the abiotic factors shaping their biogeographies. Klep-

toplastidic mixotrophs (GNCM and pSNCM) were detected in new zones compared to previous

morphological studies. Constitutive and non-constitutive mixotrophs had similar ranges of dis-

tributions. Most lineages were evenly found in the samples, yet some of them displayed strongly

contrasted distributions, both across and within mixotypes. Particularly divergent biogeographies

were found within endo-symbiotic mixotrophs, depending on the ability to form colonies or the

mode of symbiosis. We showed how metabarcoding can be used in a complementary way with

previous morphological observations to study the biogeography of mixotrophic protists and to

identify key drivers of their biogeography.
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2.2.1 Introduction

Marine unicellular eukaryotes, or protists, have a tremendous range of life styles, sizes and forms

(Caron et al., 2012), showing a taxonomic and functional diversity that remains hard to define

(de Vargas et al., 2015; Pawlowski et al., 2012). This variety of organisms is having an impact on

major biogeochemical cycles such as carbon, oxygen, nitrogen, sulfur, silica, or iron, while being

at the base of marine trophic networks (Caron et al., 2017; Keeling and Campo, 2017; Caron,

2016a; Le Quéré et al., 2005; Amacher et al., 2009). Hence, they are key actors of the global

functioning of the ocean.

Historically, marine protists have been classified into two groups depending on their trophic strat-

egy: the photosynthetic plankton (phytoplankton) and the heterotrophic plankton (zooplankton).

It is now clear that mixotrophy, i.e., the ability to combine autotrophy and heterotrophy, has been

largely underestimated and is commonly found in planktonic protists (Caron, 2016a; Stoecker

et al., 2017; Flynn et al., 2013; Selosse et al., 2017). Instead of a dichotomy between two trophic

types, their trophic regime should be regarded as a continuum between full phototrophy and

full heterotrophy, with species from many planktonic lineages lying between these two extremes

(Flynn et al., 2013). Mitra et al. 2016 have proposed a classification of marine mixotrophic

protists into four functional groups, or mixotypes. The constitutive mixotrophs, or CM, are photo-

synthetic organisms that are capable of phagotrophy, also called “phytoplankton that eat” (Mitra

et al., 2016). They include most mixotrophic nanoflagellates (e.g., Prymnesium parvum, Kar-

lodinium micrum). On the opposite, the non-constitutive mixotrophs, or “photosynthetic zoo-

plankton”, are heterotrophic organisms that have developed the ability to acquire energy through

photosynthesis (Stoecker et al., 2017). This ability can be acquired in three different ways: the

generalist non-constitutive mixotrophs (GNCM) steal the chloroplasts of their prey, such as most

plastid-retaining oligotrich ciliates (e.g., Laboea strobila), the plastidic specialist non-constitutive

mixotrophs (pSNCM) steal the chloroplasts of a specific type of prey (e.g., Mesodinium rubrum or

Dinophysis spp.), and finally the endo-symbiotic specialist non-constitutive mixotrophs (eSNCM)

are bearing photosynthetically active endo-symbionts (most mixotrophic Rhizaria from Collodaria,

Acantharea, Polycystinea, and Foraminifera, as well as dinoflagellates like Noctiluca scintillans).

As drivers of biogeochemical cycles in the global ocean, and particularly of the biological carbon

pump (Keeling and Campo, 2017; Ducklow et al., 2001; Guidi et al., 2016), marine protists are a

key part of ocean biogeochemical models (Le Quéré et al., 2005; Aumont et al., 2015; Follows et al.,

2007; Reed et al., 2014). However, physiological details of mixotrophic energy acquisition strate-

gies have only been studied in a restricted number of lineages (Stoecker et al., 2017; Johnson,

2011; Stoecker et al., 2009). They appear to be quite complex and greatly differ across mixotypes,

which makes mixotrophy hard to include in a simple model structure (Flynn and Mitra, 2009;

Ward and Follows, 2016; Berge et al., 2017; Ghyoot et al., 2017; Ward et al., 2011). Hence at

this time, mixotrophy is not included in most biogeochemical models, neglecting the amount of

carbon fixed by non-constitutive mixotrophs through photosynthesis, and missing the population

dynamics of photosynthetically active constitutive mixotrophs that can still grow under nutrient

limitation (Ghyoot et al., 2017; Mitra et al., 2014). This is most probably skewing climatic models
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predictions (Mitra et al., 2016, 2014), as well as our ability to understand and prevent future

effects of global change.

A better understanding of the environmental diversity of marine mixotrophic protists, as well as

a description of the abiotic factors driving their biogeography at global scale are still needed, in

particular to integrate them in biogeochemical models. Leles et al. 2017 attempted to tackle this

problem by reviewing about 110,000 morphological identification records of a set of more than 60

mixotrophic protists species in the ocean, taken from the Ocean Biogeographic Information System

(OBIS) database. They found distinctive patterns in the biogeography of the three different non-

constitutive mixotypes (GNCM, pSNCM, and eSNCM), highlighting the need to better understand

such diverging distributions (Leles et al., 2017). Environmental molecular biodiversity surveys

through metabarcoding have been widely used in the past fifteen years to decipher planktonic

taxonomic diversity (de Vargas et al., 2015; Stoeck et al., 2010; Bik et al., 2012; Bittner et al.,

2013). Here, we exploited the global Tara Oceans datasets (Karsenti et al., 2011; Alberti et al.,

2017; Pesant et al., 2015), and identified 133 mixotrophic lineages, that we classified into the four

mixotypes defined by Mitra et al. 2016. This first ever set of mixotrophic metabarcodes allowed

us to investigate the global biogeography of both constitutive and non-constitutive mixotrophs, in

relation with in-situ abiotic measurements. We tested (i) if new information on marine mixotrophic

protists distribution can be gained in comparison with previous morphological identifications

(Leles et al., 2017); (ii) if the constitutive mixotrophs, which are not addressed in Leles et al. 2017,

and the non-constitutive mixotrophs diverge in terms of biogeography; (iii) if the study of diversity

and abundance of environmental metabarcodes could lead to the definition of key environmental

factors shaping mixotrophic communities.

2.2.2 Materials and methods

2.2.2.1 Samples collection and dataset creation

Metabarcoding datasets from the worldwide Tara Oceans sampling campaigns that took place be-

tween 2009 and 2013 (Karsenti et al., 2011; Pesant et al., 2015) (data published in open access at

the European Nucleotide Archive under project accession number PRJEB6610) were investigated.

We analyzed 659 samples from 122 distinct stations, and for each sample, the V9-18S ribosomal

DNA region was sequenced through Illumina HiSeq (Alberti et al., 2017). Assembled and filtered

V9 metabarcodes (cf. details in de Vargas et al. (de Vargas et al., 2015)) were assigned to the

lowest taxonomic rank possible via the Protist Ribosomal Reference (PR2) database (Guillou et al.,

2013). To limit false positives, we chose to only analyze the metabarcodes (i.e., unique versions of

V9 sequences) for which the assignment to a reference sequence had been achieved with a sim-

ilarity of 95% or higher. This represents 65% of the total dataset in terms of metabarcodes and

84% in terms of total sequences. Our dataset involved 1,492,912,215 sequences, distributed into

4,099,567 metabarcodes assigned to 5071 different taxonomic assignations, going from species to

kingdom level precision.
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2.2.2.2 Defining a set of mixotrophic organisms

Among these 5071 taxonomic assignations, we searched for mixotrophic protist lineages, tak-

ing into account the four mixotypes described by Mitra et al. (Mitra et al., 2016): constitutive

mixotrophs (CM), generalist non-constitutive mixotrophs (GNCM), endo-symbiotic specialist non-

constitutive mixotrophs (eSNCM), and plastidic specialist non-constitutive mixotrophs (pSNCM).

We used the table S2 from Leles et al. (Leles et al., 2017), which is referencing 71 species or genera

belonging to three non-constitutive mixotypes (GNCM, pSNCM, and eSNCM), as well as multiple

other sources coming from the recent literature on mixotrophy (Caron, 2016a; Stoecker et al.,

2017; Flynn et al., 2013; Mitra et al., 2016; Esteban et al., 2010; Granéli et al., 2012; Liu et al.,

2010; Hansen et al., 2012; Agatha et al., 2005; Jones et al., 1993; Johnsen et al., 1999; Rhodes

and Burke, 1996; Hemleben et al., 1977; Fehrenbacher et al., 2011; Spero and Parker, 1985;

Faber et al., 1989; Kuile and Erez, 1984; Biard et al., 2017), and inputs from mixotrophic protists’

taxonomy specialists (cf. Acknowledgments section). Within the 5071 taxonomic assignations of

variable precisions, we identified 5 GNCM, 9 pSNCM, 77 eSNCM, and 42 CM lineages (detailed list

available publicly under the https://doi.org/10.6084/m9.figshare.6715754, and all metabarcodes

were tagged with their mixotypes in the PR2 database). Among these 133 taxonomic assignations

that we will call “lineages”, 92 were defined at the species level, 119 at the genus level, and the

last 14 at higher taxonomic levels where mixotrophy is always present (mostly eSNCM groups

like Collodaria). In the Chrysophyceae family, metabarcodes assigned to clades B2, E, G, H, and

I were included even though we couldn’t find a general proof that all species included in these

clades have mixotrophic capabilities. However, if we exclude the photolithophic Synurophyceae

and genera like Paraphysomonas and Spumella, which we did, a vast majority of Chrysophyceae

are considered mixotrophic (Flynn et al., 2013). The final dataset included 318 054 metabarcodes

assigned to the 133 mixotrophic lineages selected, as well as their sequence abundance in 659

samples (table available publicly under the https://doi.org/10.6084/m9.figshare.6715754).

2.2.2.3 Environmental dataset

We built a corresponding contextual dataset using the environmental variables available in the

PANGAEA repository from the Tara Oceans expeditions (Pesant et al., 2015; Ardyna et al., 2017).

The 235 environmental variables available were a priori reduced to 84, keeping only one version

of each variable that was calculated twice or more using different tools, units and/or formulas.

For example, the daily photosynthetically active radiations (PAR) were measured using 10 differ-

ent approaches, some using in situ sensors, others using satellite observations combined with

equations based on the diffuse attenuation coefficient (Morel et al., 2007). For similar reasons,

among the conductivity, the temperature, and the salinity, only the last two were kept. Then,

among the 83 remaining variables, only the ones recorded for at least half of the samples were

kept. We obtained a table composed of 57 different environmental variables (Available publicly

under the DOI 10.6084/m9.figshare.6715754). In this table, 8.67% of the values were missing.

This table contained environmental context for 658 of our 659 samples, lacking environmental

information only for the DCM of station number 120. This sample was then removed for the
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statistical analysis.

2.2.2.4 Distribution and diversity of mixotrophic protists

For each mixotype, the number of metabarcodes, the total sequence abundance and the mean

sequence abundance by metabarcode was computed (Table 2.1). Also, we measured each metabar-

code’s station occupancy, i.e., the number of stations in which it was found, and station evenness,

i.e., the homogeneity of its distribution among the stations in which it was detected (Fig. 2.4). Di-

versity of mixotrophic protists was investigated through mixotype-specific metabarcode richness

per station (Table 2.1). As the number of samples taken per station can impact the abundance

and diversity of detected metabarcodes, richness was computed only at stations for which the

maximum number of eight samples were available (40 stations over 122).

Table 2.1 – Detailed number of lineages found for each mixotype, as well as the number of metabar-
codes, the corresponding total sequence counts over all stations, the mean sequence abundance by
metabarcode, and mean metabarcode richness.
The richness was computed as the number of different metabarcodes present at each station. It was
calculated for each mixotype and means are indicated in the fifth line. Absences correspond to the
number of stations in which no sequences were detected for the corresponding mixotype.
CM constitutive mixotrophs, GNCM generalist non-constitutive mixotrophs, eSNCM endo-symbiotic
specialist non-constitutive mixotrophs, pSNCM plastidic specialist non-constitutive mixotrophs.
aThe mean indicated here was calculated using only stations having the maximum number of sam-
ples (see main text)

2.2.2.5 Global biogeography of mixotrophic protists

Two statistical analyses were performed to investigate mixotrophic protists biogeography. One

at the metabarcode level, and one at the lineage level, i.e., merging the sequence abundance of

metabarcodes sharing the same taxonomical assignation. The metabarcodes abundance table

was composed of 318,054 rows/metabarcodes, and 659 columns/samples, whereas the lineage

abundance table was composed of 133 rows/lineages and 659 columns/samples (both datasets

are available publicly at https://doi.org/10.6084/m9.figshare.6715754).

The two redundancy analyses led to very similar conclusions, but the biogeography of lineages

appeared easier to visually represent and interpret than the one of metabarcodes. Hence, we will

only present the lineage-based analysis here, before presenting and discussing the methods used

and results obtained for the metabarcodes level analysis in a separate section (Section 2.2.5).
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Our statistical model was designed to identify lineages (or metabarcodes) with contrasted bio-

geographies, and relate their presence to the environmental context. We normalized the sequence

counts from the lineage abundance matrix using a Hellinger transformation (Legendre and Legen-

dre, 1998). We used the environmental dataset and the mixotrophic lineages’ abundance matrix

as explanatory and response matrices, respectively, to conduct a redundancy analysis (RDA) (Leg-

endre and Legendre, 1998). Since redundancy analyses (RDA) cannot handle missing values in

the explanatory dataset, we replaced missing environmental variables by their means across all

samples, to keep all the environmental variables in the analysis. This option was selected over a

joint modelling approach,because of a too high collinearity among some variables, and difficulties

to define a multivariate distribution fitting the whole dataset. Environmental variables were then

centered prior to the analysis. For that, we made a species pre-selection using Escoufier’s vectors

(Escoufier, 1973), which allowed to keep only the 62 most significant mixotrophic lineages. This

method selects lineages according to a principal component analysis (PCA), sorting them based on

their correlation to the principal axes. We then used a maximum model (Y X) and a null model (Y 1)

to conduct a two directional stepwise model selection based on the Akaike information criterion

(AIC) (Borcard et al., 2011). The resulting model contained 28 response variables, among which

five were qualitative (filter size, biogeographical province sensu Longhurst (Longhurst, 1998), sea-

son, season moment,i.e. early, middle or late, and sampling depth, i.e. surface or DCM), and 23

quantitative. The latter included: longitude, bathymetry, distance to coast, mixed layer depth,

euphotic zone depth, oxygen maximum depth, ammonium at 5m, temperature, silica, oxygen,

chlorophyll a, daylight duration, absorption coefficient of colored dissolved organic matter (ac-

CDOM), calcite saturation state, Okubo-Weiss parameter, PO4, CO3, HCO3, photosynthetically

active radiations (PAR), salinity, maximum Lyapunov exponent, optical beam attenuation coeffi-

cient at 660 nm and beam attenuation coefficient of particles. Analyses and graphs were realized

with the R software version 3.4.3 (R Core Team, 2019). All scripts are available on GitHub platform

(https://github.com/upmcgenomics/MixoBioGeo).

2.2.3 Results

2.2.3.1 Global distribution and diversity of marine mixotrophic protists

Mixotrophic protists metabarcodes were detected in all the 659 samples with a total sequence

abundance of 89,951,866, representing 12.56% of the total sequence abundance in the 659 sam-

ples studied. They represented a mean of 12.64% of the total sequence abundance per sample,

with a maximum of 96.96% and a minimum of 0.01%. To avoid any potential overestimation

of mixotrophic lineages presence in the following results, we marked all records of less than a

hundred sequences as questionable. We found both eSNCM and CM in each of the 122 stations

studied (Table 2.1 and Fig. 2.3). In only two occasions the number of sequences belonging to

CM was questionable, at stations for which only one sample was sequenced. GNCM were found

absent in only two stations and their presence was questionable in 39 stations (Fig. 2.3). pSNCM

were absent at five stations (three in the Indian Ocean, and two in the Pacific Ocean) and detected
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Figure 2.3 – Global distribution of mixotypes from metabarcoding data. Maps showing for each
station the proportion of sequences (in %) belonging to each mixotype over the total number of
mixotrophic sequences. Stations in which no sequence was found were marked as absent, ones
with less than 100 sequences marked as questionable. Each Longhurst biogeographical provinces
(Longhurst, 1998) is colored in the background if more than 100 sequences are detected in at least
one of its stations.

with questionable presence in 54 additional stations, which were mostly located in the central Pa-

cific and the Indian Ocean (Fig. 2.3). We found significant amounts of sequences corresponding

to GNCM in the Central Pacific, Southern subtropical Atlantic, and Indian Ocean. The presence

of GNCM in these areas has not yet been recorded through morphological identifications dur-

ing field expeditions (Leles et al., 2017). Also, we detected more than 100 sequences of pSNCM

metabarcodes at 11 stations belonging to biogeographical provinces in which no morphological

identifications had been published (Leles et al., 2017; Longhurst, 1998), mostly in offshore areas

of the Atlantic and Pacific Ocean (Fig. 2.3). The mean evenness of mixotrophic metabarcodes

across stations was of 0.87, and 82.3% of the metabarcodes had a station evenness above 0.5

(Fig. 2.4). Station occupancy varied a lot depending on the metabarcodes, with a high density of

rare metabarcodes leading to a mean of 5.14 stations over a maximum of 122, and a standard

deviation of 7.7. However, three eSNCM metabarcodes were found in all the 122 stations, and

three CM metabarcodes were detected in 121 stations. The maximum occupancy for a GNCM

metabarcode was of 111 stations, while 92 stations was the maximum for a pSNCM metabarcode.

CM and GNCM metabarcodes showed a strong tendency towards high evenness values (Fig. 2.4,

means of 0.90 and 0.95, respectively), even for the most sequence abundant metabarcodes. Many

eSNCM metabarcodes had high evenness values, but below average values were detected for the
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most abundant ones (Fig. 2.4, global mean of 0.87). pSNCM metabarcodes had a similar mean of

evenness values (0.87), but a different distribution compared to other mixotypes (Fig. 2.4). Among

the 50 most abundant metabarcodes, 43 corresponded to Collodaria lineages, 47 were eSNCM and

3 were CM, all three assigned to Gonyaulax polygramma. GNCM and pSNCM metabarcodes had

homogeneously low sequence abundances (Fig. 2.4 and Table 2.1).

Figure 2.4 – Sequence abundance, occupancy, and spatial evenness of each mixotrophic metabar-
code across sampled stations. Each metabarcode is plotted as a bubble, with its station occupancy,
i.e., the number of stations in which it was found, and its station evenness, i.e., the homogeneity
of its distribution among the stations in which it was detected, as coordinates. Violin plots were
drawn for each mixotype on both the x and y axes. The size of each bubble is scaled to the sequence
abundance found globally for the corresponding metabarcode.

2.2.3.2 Main factors affecting the biogeography of mixotrophic protists

The redundancy analysis helped to investigate further the environmental variables responsible

for the mixotrophic protists’ biogeography. The 62 lineages selected with the Escoufier’s vector

method corresponded to 20 CM, 34 eSNCM, 3 GNCM, and 5 pSNCM. Even after selection, a sig-

nificant part of the lineages did not show any response to environmental data in their distribution

(Fig. 2.5, e.g., 19 of the 62 lineages were found between -0.01 and 0.01 on both RDA1 and

RDA2). The adjusted R-squared of the RDA was of 34.89% (41.43% unadjusted), with 24.01% of

variance explained on the two first axes (Fig. 2.5). The first RDA axis (14.96%) marks an oppo-

sition between samples from oligotrophic waters with low productivity (RDA1 > 0) and samples

from eutrophic and productive water masses (RDA1 < 0). This axis is negatively correlated to

chlorophyll concentration, particles density, ammonium concentration, absorption coefficient of
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colored dissolved organic matter (acCDOM), duration of daylight, silica, CO3, oxygen, and PO4

concentration, as well as longitude. It is positively correlated to bathymetry, deep euphotic zone,

deep oxygen maximum, deep mixed layer, as well as to the distance to coast. The second RDA

axis (9.05%) is opposing offshore and subpolar samples (RDA2 > 0) to coastal and subtropical

ones (RDA2 < 0). The axis is positively correlated to the depth of the mixed layer, the dis- tance to

coast, the bathymetry, high maximum Lyapunov exponents as well as high concentrations of PO4,

oxygen, CO3 and silica. It is negatively correlated to temperature, salinity, and photosynthetically

active radiations (PAR).
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Figure 2.5 – Impact of environmental variables on the distribution of marine mixotrophs. Triplot of the
redundancy analysis (RDA) computed on the 62 Escoufier-selected lineages, after model selection.
The adjusted R-squared of the analysis is of 34.89% (41.43% unadjusted). Each gray dot corre-
sponds to a sample, i.e., one filter at one depth at one station. The blue dashed arrows correspond
to the quantitative envir- onmental variables. Abbreviations: MLD mixed layer depth, O2MaxD O2
maximum depth, EuphzoneD euphotic zone depth, PAR photo- synthetically active radiations, Cal-
cite Sat. St. Calcite Saturation State, c_660 optical beam attenuation coefficient at 660 nm, c_part
beam attenuation coefficient of particles, acCDOM absorption coefficient of colored dissolved organic
matter. Plain arrows correspond to mixo- trophic lineages, colors indicating mixotypes. For more
readability, we do not represent all qualitative variables included in the model. That is why only the
filter centroids are appearing, even though the sampling depth, season, season moment, i.e., early,
middle or late, and bio- geographical province were used in the RDA calculation

Among the 20 CM lineages, seven clearly emerged from the redundancy analysis (Fig. 2.5)

and showed distinct biogeographies related to environmental variables. Gonyaulax polygramma,

Alexandrium tamarense, and Fragilidium mexicanum, three Dinophyceae belonging to the Gonyaula-

cales order, were mainly found in oligotrophic waters with a deep euphotic zone, warm temper-

ature, high salinity, and PAR (RDA1 > 0, RDA2 < 0). The four other CMs (involving all the
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Chrysophyceae included in the analysis as well as one Dinophyceae from the Kareniaceae family,

Karlodinium micrum) were found mostly in productive water masses (RDA1 < 0).
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Figure 2.6 – Contrasted global distributions of metabarcodes corresponding to two eSNCM lineages.
Maps of Hellinger-transformed sequence count abundances for metabarcodes assigned to the Col-
lodaria Siphonosphaera cyathina (a) and the Acantharia Acanthrometridae F3 spp. (b). These two
lineages are opposed on the first RDA axis (Fig. 2.5 and 2.8). Size and color both illustrate abun-
dance for better readability. Ellipses were drawn to highlight high abundance zones, and reveal the
differences in lineages distribution.

eSNCMs can be divided in three groups in the RDA space. The first group (RDA1 < 0) corresponds

to eSNCM species dominating rich and productive environments. It includes mainly Acantharia

and Spumellaria species. The second group (RDA1 > 0) dominates oligotrophic environments,

and includes multiple Collodaria as well as one Dinophyceae genus (Ornithocercus). Within this

group, Ornithocercus spp. is found mainly in coastal subtropical environments (RDA2 < 0), as

opposed to Sphaerozoum punctatum that is found mainly in offshore subpolar regions (RDA2 >

0). Siphonosphaera cyathina lies between these two trends as it is found only in oligotrophic

samples, but is not influenced by temperature or bathymetry (Figs. 2.5 and 2.6). The third

group corresponds to the eSNCM lineages that can be interpreted as distributed homogeneously

in regards of the environmental data we are using (e.g., lineages with the shortest arrows in Fig.

2.5). These notably include the 12 Foraminifera lineages present in the RDA. Looking at filters

centroids in the RDA space (Fig. 2.5), we can suppose that eSNCM lineages dominating eutrophic

systems (RDA1 < 0) are smaller in size than those dominating oligotrophic ones (RDA1 > 0).

Out of the five pSNCM included in the RDA, only Mesodinium rubrum, the most abundant one,

is distinctively represented in the RDA space. This suggests that the other pSNCM have homoge-

67



Chapter 2. Metabarcoding as a tool to decipher the biogeography of functional traits

neous distributions in response to our environmental variables. Mesodinium rubrum dominates

eutrophic environments, independently from the bathymetry or the temperature (RDA1 < 0, RDA2

≈ 0). We find a similar pattern for GNCM, with only Pseudotontonia simplicidens well represented

in the RDA space out of the three species included in the analysis. Like M. rubrum, Pseudoton-

tonia simplicidens is the most abundant species in its group and it is mainly found in eutrophic

waters (RDA1 < 0).

2.2.4 Discussion

2.2.4.1 Mixotrophy occurs everywhere in the global ocean

Our metabarcoding survey confirms that marine mixotrophic protists are ubiquitous in the global

ocean (Leles et al., 2017), possibly extending the known range of distribution of two mixotypes

(Figs. 2.3 and 2.4). Mixotrophic organisms represented more than 12% of the sequences in

the complete Tara Oceans metabarcoding dataset, showing that they should not be understated.

We found contrasted biogeographies among metabarcodes and their corresponding lineages, both

within and across mixotypes (Figs. 2.4, 2.5, 2.6 and Section 2.2.5). We found constitutive

mixotrophs (CM) and endo-symbiotic specialist non-constitutive mixotrophs (eSNCM) metabar-

codes at all the 122 stations included in this global study (Table 2.1 and Fig. 2.4), verifying that

these two mixotypes are the most abundant in the ocean (Leles et al., 2017). This dominance of

eSNCM and CM in our data is also linked to the relatively high number of metabarcodes avail-

able for these two mixotypes in databases. Using 1360 generalist non-constitutive mixotrophs

(GNCM) metabarcodes corresponding to only five lineages, we detected them in ten biogeograph-

ical provinces (Longhurst, 1998) where no morphological identification had been recorded before

(Leles et al., 2017). GNCM metabarcodes had consistently high evenness values, and some had

station occupancy records comparable to the most abundant eSNCM and CM metabarcodes (Fig.

2.4). These results support the hypothesis of a globally ubiquitous distribution of GNCM. Plastidic

specialist non-constitutive mixotrophs (pSNCM) were found in five provinces in which no record

existed so far from morphological identification field studies (Leles et al., 2017). However, these

observations were often in a questionable range in terms of sequence abundance (Fig. 2.3), and

the overall distribution of pSNCM in our data appears as very concordant with morphological

observations (Leles et al., 2017). pSNCM metabarcodes had dominantly low station evenness val-

ues, which again supports the conclusions of Leles et al. 2017 that identified pSNCM as highly

seasonal and spatially restricted in their distribution.

While building our set of mixotrophic lineages, some widespread and potentially mixotrophic

genera did not appear, such as Ceratium spp., Tontonia spp., Amphisolenia spp., Triposolenia

spp., or Citharistes spp., mainly because of a poor representation in the PR2 database. Also, we

decided to only consider metabarcodes with more than 95% similarity to a reference sequence.

This threshold could be too selective for some species and not enough for some others, as single

similarity threshold are hardly efficient when studying whole eukaryotic populations (Wu et al.,

2015; Brown et al., 2015). For example, some species appeared with low sequence abundance in
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the data even though they couldnot have been sampled, such as three lacustrine species, e.g.,

Poteriospumella lacustris. Considering these biases and the sometimes relatively low sequence

counts (marked as questionable in Fig. 2.3), some of the new GNCM and pSNCM records we

observed should be considered with care, as they could be over-estimated or even sometimes

artefactual. However, the low number of lineages found for these two mixotypes in PR2 and in

our dataset are leading us to think that we were unable to capture the whole GNCM and pSNCM

communities. This supposes a global underestimation of GNCM and pSNCM abundances in our

results.

Tara Oceans metabarcoding dataset is built on snapshot samples taken irregularly during a 3-

year cruise, hence allowing no proper seasonal variations investigations. However, morphological

identifications of mixotrophic protists revealed seasonal variations in their abundance, with Meso-

dinium biomass blooming in spring in coastal seas for example (Leles et al., 2017). As metabar-

coding datasets have been successfully applied on time series to detect species successions across

gradients of time and space (Egge et al., 2013; Gilbert et al., 2010; DeLong et al., 2006), it would

be interesting to similarly investigate seasonal trends in mixotrophic communities. Our set of

mixotrophic lineages and metabarcodes being publicly available, our method will be applicable to

any other metabarcoding dataset, including time series. It will also be open to inputs and updates

from the global scientific community.

2.2.4.2 The contrasted biogeographies of marine mixotypes

Constitutive mixotrophs

Constitutive mixotrophs (CM) have very diverse feeding behaviors, with some species requiring

phototrophy to grow, others phagotrophy, and some being obligate mixotrophs (Stoecker et al.,

2009). They were described in all waters of the global ocean (Arenovski et al., 1995; Safi and

Hall, 1999; Moorthi et al., 2009; Unrein et al., 2010; Sanders and Gast, 2012). We found them

distributed in a range of conditions almost as wide as non-constitutive mixotrophs (Figs. 2.3 and

2.5). Among highly abundant lineages, most were dominantly found in eutrophic and shallow

habitats. However, a few dinoflagellates were found to be highly dominant in oligotrophic, sub-

tropical waters, showing how wide of a range of conditions constitutive mixotrophs can grow in

(Fig. 2.5). This illustrates how mixotrophy can allow organisms to dominate ecosystems even

when environmental conditions are poorly adapted to purely phototrophic or heterotrophic organ-

isms. When taken explicitly into account in biogeochemical models, marine mixotrophs increase

carbon export by up to 30% (Ward and Follows, 2016). Hence, their global ubiquity supposes that

the carbon export of the biological carbon pump could be underestimated in both oligotrophic and

eutrophic areas (Mitra et al., 2016).

Plastidic specialist and generalist non-constitutive mixotrophs (pSNCM and GNCM)

Like Leles et al. 2017, we found pSNCM and GNCM to have quite similar biogeographies (Fig.

2.5, Section 2.2.5). Sequence abundance of most of the metabarcodes for these two mixotypes

was homogeneously low (Table 2.1), but the two most abundant species, Mesodinium rubrum
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(pSNCM) and Pseudotontonia simplicidens (GNCM), were found mostly in coastal and eutrophic

waters, consistently with Leles et al.’s 2017 morphological observations (Fig. 2.5, Section 2.2.5).

No species-level barcode is available in the PR2 database for the Tontonia genus, and only one

can be found for Pseudotontonia and Laboea genera, even though morphological records of these

GNCM are numerous (Leles et al., 2017). Experiments using meso- and microcosms combined with

individual counts and morphological identification have found that GNCM ciliates can represent

up to half of the individuals in ciliate communities of the photic zone (Mitra et al., 2016; Calbet

et al., 2012; Dolan and PÉrez, 2000). A proportion we would have trouble to reach with the five

lineages we were able to consider, knowing that there are 8686 different ciliate lineages available in

PR2. This highlights the urgent need for supplementing 18S reference databases for mixotrophic

ciliates.

Endo-symbiotic specialist non-constitutive mixotrophs (eSNCM)

Endo-symbiotic specialist non-constitutive mixotrophs (eSNCM) is by far the most widespread

and abundant non-constitutive mixotype in the global ocean (Figs. 2.3 and 2.4) (Leles et al.,

2017; Biard et al., 2017; Decelle et al., 2012). Their biogeography stands out, with a lot of highly

abundant ubiquitous lineages, and some other specialized towards certain types of ecosystems

(Fig. 2.5). They represent 95.7% of the sequence counts in our study and correspond to 90.7%

of the metabarcodes (Table 2.1), which highlights their abundance and diversity. The very high

number of rDNA copies present in Rhizaria orders such as Collodaria (Biard et al., 2017) might

lead the eSNCM to appear more abundant in metabarcoding datasets than they ecologically are.

However, in oligotrophic open oceans the Rhizaria biomass is estimated to be equivalent to that

of all other mesozooplankton (Biard et al., 2016), and positively correlated to the carbon export

(Guidi et al., 2016), showing how ecologically important they can be.

Investigating the divergent biogeographies of Collodaria and Acantharia

Collodaria are living either as solitary large cells or as colonies (Biard et al., 2017), which explains

why they are predominantly found in macro-sized (180–2000 µm) filter samples (Fig. 2.5). All

described Collodaria species so far harbor photosynthetic endo-symbionts, mostly identified as

the dinoflagellate species Brandtodinium nutricula (Biard et al., 2017; Probert et al., 2014). These

dinoflagellates are able to get in and out of their symbiotic state, which implies a light and/or

reversible effect of the Collodarian host on its symbiont metabolism (Probert et al., 2014). Based on

the same metabarcoding dataset, Collodaria were described as particularly abundant and diverse

in the oligotrophic open ocean (Biard et al., 2017). In our results, Collodaria dominate oligotrophic,

relatively deep waters (Figs. 2.5 and 2.6a). These Collodaria appear opposed to another set of

Rhizaria (Acantharia and Spumellaria) linked to eutrophic and shallow waters (Figs. 2.5 and 2.6b,

Section 2.2.5). Acantharia are found ubiquitously in the global ocean, but display particularly

high sequence abundances in some specific regions (Decelle et al., 2012). Mixotrophic Acantharia

live in symbiosis with the cosmopolitan haptophyte Phaeocystis, which is highly abundant and

ecologically active in its free-living phase (Decelle et al., 2012). Unlike the one of Collodaria,

this symbiosis is irreversible: an algal symbiont can not go back to its free-living phase (Decelle

et al., 2012). Our results suppose that these specific symbiotic modes could enable Acantharia
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and Collodaria to dominate different ecosystems (Figs. 2.5 and 2.6). Moreover, living in colonies

as Collodaria could help to dominate oligotrophic systems, e.g., by accumulating more food and

nutrients through their gelatinous extra-cellular matrix (Decelle et al., 2012). Experiments and

modeling studies should help to investigate the contribution of this assumption, comparing food

acquisition capacity and growth rates of free individuals versus in colony.

2.2.4.3 Towards an integration of mixotrophic diversity into marine ecosystem

models

The future of marine communities’ modeling lies in the integration of omics datasets into modeling

frameworks (Reed et al., 2014; Stec et al., 2017; Dick, 2017; Mock et al., 2016; Coles et al., 2017).

The use of metabolic networks and gene-centric methods has already shown very promising results

in modeling prokaryotic ecological dynamics (Reed et al., 2014; Coles et al., 2017). However,

eukaryotic metabolic complexity makes these methods hard to apply on protists for now, and

we still lack a universal theoretical framework on how to integrate such methods into concrete

modeling (Stec et al., 2017). Mixotrophic protists are physiologically complex, and their feeding

behavior can vary drastically on short time scales (Stoecker et al., 2017). It will then take a few

more years of comparative genomics and transcriptomics studies before being able to model their

physiology with purely gene-based approaches. Still, mechanistic models of mixotrophy exist and

are quite complex (Flynn et al., 2013; Ghyoot et al., 2017), even if the one from Ghyoot et al. 2017

could be implemented in a global biogeochemical model (Shuter, 1979). Most models make the

choice to represent either one or two (NCM and CM) types of organisms able to play the role of

all mixotypes depending on parameterization. However, no global agreement has been reached

on to what extent the different mixotypes should be modeled. This is mainly due to a lack of

quantitative and comparative data on the global impact of grazing and carbon fixation by the

different mixotypes (Millette et al., 2018). With our study, we show how meta-omics data can be

used to identify groups of organisms distributed differently in response to the environment. It

also allows the identification of ecological traits and environmental factors potentially responsible

for these divergences. This information can be used to identify key species or lineages, and

design controlled experiments with variations of targeted environmental factors to produce the

quantitative data needed by modelers. Considering our results, we propose that host-symbiont

dynamics of eSNCM should be investigated as a trait playing a potential role on Rhizaria ability to

thrive in oligotrophic conditions. Particularly, the mechanisms behind holobiont formation and

its potential reversibility could play major roles on eSNCM carbon fixation in various nutrient

conditions. Future experiments comparing responses of Collodaria and Acantharia holobionts to

different stresses in terms of grazing and carbon fixation could lead to a better understanding of

the physiological differences between their two modes of symbiosis. Also, our results suggest that

the metabolic flexibility of CM should allow this mixotype to grow in almost any conditions, with

individual species probably spanning continuously between complete autotrophy and complete

heterotrophy. The risk is then to create a “perfect beast” mixotroph dominating all systems

(Flynn and Mitra, 2009). To avoid that, we need more comparative data on grazing and carbon
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fixation of obligate phototrophs versus obligate heterotrophs in response to nutrient depletion

and environmental fluctuation. Here again, meta-omics data could help to identify candidates for

efficient experiment designs. Finally, the small number of lineages of GNCM and pSNCM in our

study makes it hard to come up with strongly supported conclusions on whether they should be

differentiated in models or not. They seem to share similar biogeographies using snapshot data

(Fig. 2.5, Section 2.2.5), but considering that they have different abilities for conserving stolen

chloroplasts over time, it might not be the case when looking at a time series analysis (Stoecker

et al., 2009; Johnson et al., 2007; Schoener and McManus, 2012).

Our study uses meta-omics data to investigate the global distribution and biogeography of mixotrophic

protists in the ocean. Our results, currently based on metabarcoding data, complement mor-

phological records and will be complemented in the near future by metagenomics and meta-

transcriptomics studies. The latter will allow to distinguish the protists with mixotrophic capabili-

ties from the ones with ongoing mixotrophic activity. This could lead to quantitative estimations of

mixotrophic rates in environmental samples, allowing a sharpened study of mixotrophic protists

ecology in the global ocean. It could also lead to a metabolic description of complex processes like

kleptoplasty and endo-symbiosis, hence facilitating the modeling of mixo- trophic behaviors and

its incorporation in ocean biogeo- chemical models.

2.2.5 Supplementary: Metabarcodes level redundancy analysis (RDA)

Methods

Starting with 318 054 metabarcodes in our dataset, we had to use strong selection thresholds to

build a parsimonious redundancy analysis model. The Escoufier’s vector method is quite robust

and only asks for one threshold definition in order to select variables (Escoufier, 1973), and hence

was used when working at the lineage level. However, the escouf function implemented in the

R package pastecs (https://github.com/phgrosjean/pastecs) is not adapted to large datasets, and

we couldn’t apply the same method at the V9 metabarcode level. Instead, we selected metabar-

codes based on rarity and variance of their abundance profiles. First, we only kept the 272 471

metabarcodes appearing in more than one station. Then, we arbitrarily selected the metabarcodes

with a variance greater than 0.0001 in their Hellinger transformed abundance profiles. These 363

metabarcodes represented 0.1% of the total dataset in terms of metabarcodes, but 21.1% in terms

of sequence abundance.

The environmental variables were modified following the same steps as for the lineages level

RDA. Similarly, model selection was run using a two directional AIC-based stepwise selections.

The resulting model contained 5 qualitative response variables (filter, biogeographical province

(Longhurst, 1998), Ocean region, season moment and depth), as well as 37 quantitative response

variables (CO3, HCO3, carbon flux, carbon total, density, PAR, 5m depth NO2, surface NO2, day-

light duration, bathymetry, surface NO3, 5m depth NO3, salinity, iron, moon phase, acCDOM,

longitude, distance to coast, chlorophyll A, latitude, SST gradient, water residence time, calcite

and aragonite saturation states, Lyapunov exponent, nitracline depth, ammonium, temperature,

fluorescence, mixed-layer depth, oxygen, depth of oxygen maximum as well as 5 different scatter-
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ing coefficients measuring particular density).

Figure 2.7 – Visualization of the metabarcodes involved in our statistical analyses. The two plots
correspond to the bubble plot already presented in figure 2. On the left, bubbles corresponding
to metabarcodes that were not included in the lineage RDA are blurred. On the right, bubbles
corresponding to metabarcodes that were not included in the metabarcode RDA are blurred.

Results

The 363 metabarcodes selected corresponded to 92 CM, 257 eSNCM, 5 GNCM and 9 pSNCM (Fig-

ure 2.7). Even after selection, a significant part of the metabarcodes did not show any response

to environmental data in their distribution (Figure 2.8 in supplementary materials). The adjusted

R- squared of the RDA model was of 31.1% (versus 34.89% in the lineage level RDA), with 10.7%

of variance explained by the two first axes (versus 24.01% in the lineage level RDA). The first RDA

axis (5.8%) marks an opposition between samples from oligotrophic waters with low productiv-

ity (RDA1<0) and samples from eutrophic and productive water masses (RDA1>0). This axis is

positively correlated to chlorophyll concentrations, carbon flux, CO3, ammonium concentration,

absorption coefficient of colored dissolved organic matter (acCDOM), gradient of sea surface tem-

perature as well as to 5 different coefficients measuring the particle density of the water. It is

negatively correlated to deep nitracline, deep mixed layer, as well as to deep oxygen maximum.

The second RDA axis (4.9%) is opposing subpolar samples (RDA2<0) to subtropical ones (RDA2>0).

The axis is negatively correlated to the density, latitude, iron concentrations, salinity, CO3, oxy-

gen, longitude, HCO3 and total carbon. It is positively correlated to temperature, NO2, NO3,

bathymetry, photosynthetically active radiations (PAR), day length and ammonium.

Among the 92 CM metabarcodes, only a few clearly emerged from the redundancy analysis (Figure

2.8) and showed distinct biogeographies related to environmental variables. Three metabarcodes

assigned to Gonyaulax polygramma, a Dinophyceae belonging to the Gonyaulacales order, were

found in oligotrophic waters (RDA1<0, RDA2 0). Metabarcodes assigned to the Dinophyceae

Fragilidium mexicanum and Alexandrium tamarense were also found in this area of the triplot.

The other well represented CM metabarcodes (assigned to a few Chrysophyceae, a couple of

Chrysochromulina species and a Dinophyceae from the Kareniaceae family, Karlodinium micrum)

were found in productive water masses (RDA1>0).

eSNCMs can be divided in three groups in the RDA space. The first group (RDA1>0, RDA2 0)
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Figure 2.8 – Impact of environmental variables on the distribution of marine mixotrophs. Triplot of the
redundancy analysis (RDA) computed on the 363 selected metabarcodes, after model selection, see
Section 2.2.5 for details on the methods used. The adjusted R-squared of the analysis is of 31.1%.
Each grey dot corresponds to a sample, i.e. one filter at one depth at one station. The blue dashed
arrows correspond to the quantitative environmental variables. Abbreviations are as follows: MLD
= mixed layer depth, O2MaxD = O2 maximum depth, c_660nm = optical beam attenuation coefficient
at 660 nm, c_part = beam attenuation coefficient of particles, c_470nm = optical beam attenuation
coefficient at 470 nm, acCDOM = absorption coefficient of colored dissolved organic matter, SST
Gradient = Sea surface temperature gradient. Plain arrows correspond to mixotrophic metabarcodes,
colors indicating mixotypes. The qualitative variable indicating filter sizes is represented through
orange centroids. For more readability, we did not represent all quantitative and qualitative variables
included in the model.

corresponds to eSNCM metabarcodes dominating rich and productive coastal environments. It in-

cludes only Acantharia and Spumellaria assigned metabarcodes. The second group (RDA1<0)

dominates oligotrophic environments, and includes multiple Collodaria metabarcodes as well

as a few metabarcodes assigned to a Dinophyceae genus (Ornithocercus). Within this group,

metabarcodes can be found both in subtropical environments (RDA2>0), and in subpolar regions

(RDA2<0). Some lineages like Acrosphaera spp. can even be dominant in the two conditions,

showing intra-lineage variation in their biogeography. The third group corresponds to the eSNCM

metabarcodes that are badly represented in the space of the redundancy analysis (e.g. represented

with the shortest arrows in Figure 2.8), but that can be interpreted as distributed homogeneously

in regards of the environmental data we are using. These notably include all the Foraminifera

metabarcodes present in the RDA. Looking at filters centroids in the RDA space (Figure 2.8), we

can suppose that mixotrophic organisms dominating eutrophic systems (RDA1>0) are smaller in

size than those dominating oligotrophic ones (RDA1<0).
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Only two pSNCM metabarcodes appeared well represented in the RDA triplot, both corresponding

to Mesodinium rubrum.

Out of the five GNCM metabarcodes included in the analysis, only two were well represented in

the RDA space, both assigned to Pseudotontonia simplicidens. These metabarcodes were mainly

found in eutrophic waters (RDA1>0).

Discussion

The results from the metabarcode RDA are very concordant with the ones obtained through the

lineage level analysis presented in the main manuscript. Indeed, if the selected environmental

variables were slightly different, the global organization of the RDA space was similar in the two

analyses. The mixotypes were distributed very similarly in regard of environmental variables

when comparing lineage and metabarcode level analyses. There are evident similarities between

the distribution of metabarcodes on Figure 2.8, and the one of their corresponding lineages on

Figure 2.5. This way, the two analyses conducted led to extremely similar discussion points and

conclusions.

Building a redundancy analysis model at the metabarcode level allows to investigate intra-species,

intra-genus, intra-families and intra-order variabilities in terms of biogeography. Theses variabili-

ties can’t be observed when aggregating metabarcodes into broader lineages, where for example all

undefined Collodaria taxa are pooled together. A good example of this problem is the Acrosphaera

spp. case. On Figure 2.7, we observe that a few of the most abundant metabarcodes belonging

to eSNCM lineages were not selected in the lineage RDA. These metabarcodes are all assigned to

Acrosphaera spp. and Collodaria_X lineages, and can display different biogeographies (e.g. the

three Acrosphaera spp. metabarcodes represented on Figure 2.8). By merging sequence abun-

dances of metabarcodes with different biogeographical patterns, we attenuate their statistical

signal, and it could explain why Acrosphaera spp. was not selected in our lineage RDA.

However, the overall intra-lineage variability seemed to be very limited to Collodaria lineages. Also,

the opposite effect could be spotted when comparing our analyses. For example, three metabar-

codes of Gonyaulax polygramma were found in our metabarcode level RDA, with arrows pointing

in the exact same direction (Figure 2.8). Hence, the low intra-lineage variability led to informa-

tion redundancy in the metabarcode RDA representation. In our lineage based RDA, we had 3

species of dinoflagellates with similar biogeographies selected and well represented: Gonyaulax

polygramma, Fragilidium mexicanum and Alexandrium tamarense (Figure 2.5), giving more vi-

sual impact to the statistical analysis. Moreover, to build an interpretable metabarcode-level

RDA, we could only include in the model 0.1% of the mixotrophic metabarcodes found in the Tara

Oceans dataset, focusing only on the most abundant ones (Figure 2.7). It highlights the diffi-

culty of selecting only ecologically interesting and non-redundant metabarcodes out of a complete

omics dataset. Operational Taxonomical Units (OTUs) can help to answer this issue, but they

can also make things worse, especially when constructed using a single similarity threshold for

a whole complex eukaryotic population (Brown et al., 2015). During this project, we constructed

97%, 99%, and one difference OTUs using multiple algorithms, but always found contradictions

between our original taxonomical assignations and the obtained metabarcode clusters. The algo-
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rithms we used were the usearch software (Edgar, 2010) (functions -cluster_otus and -cluster_fast)

and the swarm software (Mahé et al., 2015) (using the d=1 parameter: one base pair difference

between sequences).

All analyses and graphs were realized with the R software version 3.4.3 (R Core Team, 2019), us-

ing the packages vegan version 2.4-5 (Oksanen et al., 2017) and ggplot2 version 2.2.1 (Wickham,

2009). For the functions implying randomness, the char2seed function from package TeachingDe-

mos v2.10 (Snow, 2016) was used setting “Faure” as a seed. All scripts are available on GitHub

(https://github.com/upmcgenomics/MixoBioGeo).
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2.3 Conclusion: Going further than metabarcoding

In the concluding remarks of the article presented in this chapter, I evoked how metagenomics and

metatranscriptomics studies should in a near future complement morphological and metabarcoding-

based observations. For that, one of the strategy should be to define a set of functional genomic

markers of mixotrophy, which would allow to quantify mixotrophs and their activity in metage-

nomics and metatranscriptomics samples. In the next chapter, I will review some of the methods

available to detect such markers, and how they could help to build links between genes and

functional traits.
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Chapter 3

Detecting functional traits in meta-omics data

through the use of genomic markers

In chapter 2, I showed how metabarcoding could be used to decipher the biogeography of mixotrophs,

for which no functional genomic markers are available yet. I evoked the limits linked to such a

use of metabarcoding, like quantification biases due to copy number variations, the necessity to

annotate traits to taxonomic databases or the fact that metabarcodes can not reflect the level of

realization of a trait (e.g. mixotrophic species can be detected through metabarcoding but it can

not give any insights on their realized mixotrophic activity at the time of sampling). The identifi-

cation of genomic markers of functional traits avoids most of these limitations, as such markers

are detectable in metagenomes and metatranscriptomes, can be detected in known and unknown

species as long as their sequence is conserved across distinct lineages, and can be related to mea-

sures of a trait realization. But the identification of such functional genomics markers from lab

experiments and environmental data is often challenging, and multiple traits of biogeochemical

importance such as mixotrophy, size, or reproduction strategy still lack genomic markers. In this

chapter, I will first illustrate how the access to a known functional genomic marker allows for the

quantitative exploration of a functional trait biogeography with more precision than metabarcod-

ing, using the demethylation of DMSP as an example. Then, I will review the available methods for

identifying genomic markers of functional traits with poorly known genomic basis, and illustrate

them with a case study aiming at detecting markers of mixotrophy in dinoflagellates. Finally, I will

evoke the important challenge of mining for functional traits in taxonomically and/or functionally

unannotated data, and some recent progresses made considering this issue.

This chapter will include preliminary results partly derived from the work of two masters students

I supervised during spring 2019: Nina Guerin a 1st year I supervised during 6 weeks, and Aurélie

Pham, a 2nd year master student I supervised during 6 months. Nina focused on genomic markers

of DMS production whereas Aurélie investigated dinoflagellate transcriptomes looking for genomic

markers of mixotrophy.
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3.1 Genomic markers of functional traits: simple versus com-

plex traits

In medicine and agronomy, simple traits are defined as being inherited through Mendelian trans-

mission patterns (trait value defined by the dominant allele of a gene inherited from the parents,

whom each transmit only one allele to the descendant), while complex traits do not conform to

such patterns (due to factors like incomplete dominance, polygenic or polyallelic interactions)

(Peltonen et al., 2000; Sonah et al., 2015; Zak et al., 2017). But in prokaryotic and eukaryotic

micro-organisms, even traits that are encoded by one single gene with a simple allelic-dominance

scheme can be transmitted horizontally (i.e. by an other organisms with no parental link) (Koonin

et al., 2001; Keeling and Palmer, 2008), questioning the applicability of this definition to the

planktonic world. This is why I will classify traits as simple or complex based on the complexity of

their genomic basis rather than their inheritance patterns. I will consider simple functional traits

as encoded by one gene, or a few genes corresponding to enzymes involved in a single metabolic

pathway (e.g. the production of DMS through the cleavage of DMSP which can be achieved by at

least 8 enzymes, or nitrogen fixation which is encoded by the nifH genes), and complex traits as

coded by multiple genes distributed at different loci and taking part in distinct metabolic pathways

(e.g. body or cell size, and most reproduction and behavioral traits). In the following section, I will

focus on methods aiming at the discovery of genomic markers of simple functional traits.

3.2 Identifying markers of simple functional traits

3.2.1 State of the art: biochemical extractions and genome manipulations

Genomic markers of simple functional traits can be studied through targeted wet-lab experiments,

like biochemical extraction approaches or genome manipulation techniques (e.g. gene knock-outs

or the move of DNA fragments into host strains). For example, nitrogenase, the enzyme responsible

for dinitrogen fixation in microorganisms, was first described through biochemical extractions and

analyses in the 60s, long before the omics era (Eady and Postgate, 1974; Hardy and Burns, 1968).

The purification of nitrogenase from about 20 prokaryotic organisms allowed to describe the en-

zyme structure as highly conserved across diazotrophic species (Chatt et al., 1978; Zehr et al.,

2003). Thanks to this observation, the hypothesis of an evolutionarily conserved nitrogenase pro-

tein complex was proposed, and the hybridization of genomes from different diazotrophic bacteria

allowed to identify and sequence nifH genes (Mevarech et al., 1980; Ruvkun and Ausubel, 1980).

Then, the omics era allowed to detect new globally abundant diazotrophs using nifH sequences

(See section 1.3.2.2).

The production of DMS by planktonic bacteria is an other example of a simple functional trait

related to plankton ecology with relatively well studied genomic markers. As evoked in section

1.1.2.3, eubacteria can either demethylate DMSP, which does not lead to the production of DMS, or

cleave DMSP, which leads to the production of DMS (Moran et al., 2012). The two pathways being
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concurrent, the choice between the two is often described as the DMS "bacterial switch" (Levine

et al., 2012). The enzyme starting the pathway leading to DMSP demethylation was identified

through the integration of transposons in the DMSP demethylating bacteria Silicibacter pomeroyi

(Howard et al., 2006). A mutant was identified as unable to demethylate DMSP, and the position

of its transposon allowed for the identification of the dmdA enzyme, which is now estimated to

be present in up to 40% of bacterioplankton cells in the open ocean (Moran et al., 2012). Genes

coding for the cleavage of DMSP into DMS were also identified through genome manipulation:

DNA fragments from DMS producing bacteria were introduced in non-DMS producing hosts (e.g.

E. coli), and the detection of DMS production in hosts allowed for the identification of the DNA

fragments responsible for DMS production (Todd et al., 2007).

The experiments presented in this section would be very unlikely to work for identifying the

genomic basis of complex traits. Hence, most studies investigating complex traits rely on statistical

analyses of genome and transcriptome content across multiple organisms with known traits. I will

present such methods in the next section, but first, I will illustrate how the access to a genomic

marker for a functional trait can help to decipher its response to environmental gradients.

3.2.2 A concrete example: exploring the biogeography of the dmdA enzyme

3.2.2.1 Introduction

By allowing the demethylation of DMSP in marine eubacteria, dmdA plays a key role in the

regulation of the sulfur cycle (Howard et al., 2006; Levine et al., 2012). dmdA transcription

rates can be directly related to the state of the bacterial switch between DMSP demethylation

(not leading to DMS production) and DMSP cleavage into DMS (Levine et al., 2012). A study

investigating dmdA transcription rates at the Bermuda Atlantic Time Series (BATS) over a 10

months period identified that high temperature and UV-A dose could lead to more DMSP cleavage

into DMS, while colder temperature led to more DMSP demethylation (Levine et al., 2012). These

transcription rates were obtained from qPCR using adapted primers (Levine et al., 2012). In spite

of the referencing of dmdA in functional annotation databases such as KEGG (Aramaki et al.,

2019; Salazar et al., 2019), these findings are yet to be confirmed by a global scale study. Salazar

et al. (2019) demonstrated that the transcriptomic abundance of dmdA was negatively correlated

to the ones of assimilatory sulfate reduction marker genes, using the Tara Oceans and Tara

Polar Circle datasets, and proposed that the DMSP demethylation pathway could be concurrent

with assimilatory sulfate reduction pathways for sulfur integration in the metabolism. However

they did not relate these observations to particular environmental conditions or to transcriptomic

abundances of DMSP cleavage enzymes. Here, the same global scale meta-omics and metadata

from the Tara expeditions will be used, but this time to focus on the biogeography of dmdA, and

identify the main abiotic drivers of its expression at global scale.
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3.2.2.2 Material & methods

The dataset from Tara Oceans and Tara Polar circle included 187 metatranscriptomes and 370

metagenomes sampled from 126 globally distributed sampling stations. These samples were

obtained from the surface (5-10m), the deep chlorophyll maximum (DCM, 20-200m) and the

mesopelagic layer (200-1000m), and corresponded to prokaryote and virus enriched size fractions

(0.22-1.6 µm and 0.22-3 µm). 9 epipelagic samples could not be classified as surface nor DCM,

and were annotated as mixed layer (25-200m). Metagenomics and metatranscriptomics data

were obtained through Illumina sequencing following the protocols described in Pesant et al.

(2015) and Alberti et al. (2017). Metagenomic reads were quality-filtered, assembled, gene-coding

sequences were predicted and dereplicated which led a set of 46,775,154 non-redundant genes

catalog, named the OM-RGC.v2 (available at https://www.ocean-microbiome.org; detailed methods

in Salazar et al. (2019)). This catalog was functionally annotated using BlastKOALA (Aramaki

et al., 2019) and eggNOG-mapper (Huerta-Cepas et al., 2017).

Metagenomic and metatranscriptomic abundance profiles were determined for each sample by

mapping the quality-filtered metagenomics and metatanscriptomics reads to the OM-RGC.v2 cat-

alog, and normalizing the mapped read counts by the median abundance of 10 universal single-

copy phylogenetic marker genes (see details in Salazar et al. (2019)). Finally, the profiles were

converted to variance-stabilized integer counts by dividing each profile by its maximum value,

multiplying the result by 109, and applying a log2 transformation. These normalized abundances

were used to compute metagenomic and metatranscriptomic profiles at the gene level but also at

the functional level (grouping genes according to their KEGG or eggNOG functional annotations).

Among the 187 metatranscriptomes and 370 metagenomes, 129 came from the same samples, i.e.

collected at the same location and depth using the same size fraction. For these 129 samples, an

expression profile was computed as the difference between the log2-transformed metatranscrip-

tomic and metagenomic profiles (available at https://www.ocean-microbiome.org). Here, I focused

on the 129 metagenomic, metatranscriptomic and expression profiles available for the K17486

KEGG ortholog group, corresponding to the dmdA enzyme.

The environmental context of the 129 samples, was retrieved from https://www.ocean-microbiome.

org. It corresponded to 37 variables: ID of the sample, station label, sampling layer (surface, deep

chlorophyll maximum, mesopelagic or mixed layer), sample located in the polar or non polar area,

upper threshold of the size fraction (1.6 or 3 µm), date of sampling, latitude, longitude, nominal

depth (in meters), ocean region, temperature, oxygen, chlorophyll A, total carbon, salinity, sea

surface temperature gradient, fluorescence, CO3, HCO3, water density, PO4, NO3, Si, Photosyn-

thetically active radiation (PAR), Alkalinity, Ammonium at 5m depth, Depth of the mixed layer,

Lyapunov, NO2, Depth of the O2 minimum, NO2/NO3, Nitracline, depth of the maximum Brunt-

Vaisala frequency (which is a proxy for the depth of the mixed layer), iron at 5 meter depth, depth

of the O2 maximum, Okubo Weiss parameter (values below/above 0 indicate that the sample is

inside/outside an eddy) and water residence time.

For further statistical analysis, this environmental dataset was scaled, centered, and consequently
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7 variables were removed: sample ID, date of sampling and station label because they had no

value as environmental drivers of dmdA abundance; total carbon, NO2/NO3 and NO3 because

they showed too high colinearity with other variables; and PAR because it had more than 50%

of missing values (92 NAs over the 129 samples). Each of the remaining missing values in the

dataset was replaced by the mean of the concerned variable in the 5 nearest samples in terms of

environmental profile.

All of these operations were achieved using the PreProcess command from the caret package

(Kuhn, 2008) in R version 3.5.3 (R Core Team, 2019), through options center, scale, knnImpute,

corr and nzv. The R code for this project is available at https://github.com/EmileFaure/DmdA.

3.2.2.3 Results & Discussion

Distribution of the dmdA enzyme in the global ocean
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Figure 3.1 – dmdA gene versus transcript abundance. Each dot corresponds to one of the 129
samples (a sample corresponding to a station and a given depth layer, indicated by the point
shape). Abundances are normalized, but the log transformation was not applied here to keep
positive abundances. Dots were colored according to gene expression (reflecting the ratio between
log2-transformed transcript abundance and gene abundance).

The metagenomic and metatranscriptomic abundance profiles of the samples had a Pearson cor-

relation coefficient of 0.58 (Figure 3.1). Samples from the mesopelagic layer all had a normalized

metagenomic sequence abundance below 0.25 (before log2 transformation to keep positive values;

mean of 0.14), and a metatranscriptomic transcript abundance below 0.15 (mean of 0.04). Other

depth layers exhibited higher abundance values (mean of 0.28 and 0.24 for gene and transcript
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abundance at the surface; 0.27 and 0.18 at the DCM; 0.22 and 0.14 in the mixed layer; Figure

3.1). Expression levels were comprised between a minimum of 0.04, reached in a mesopelagic

sample of the North Pacific Ocean (station TARA_109), and a maximum of 2.67, reached in a

surface sample of the southern Ocean (station TARA_084). This 2.67 maximum of expression

appeared as an outlier: it was 4.5 standard deviations above the median, and was only seconded

by a value of 1.94 (decrease of 0.72 (27%)), which was reached in a surface sample of the Arctic

Ocean (station TARA_208) (Figure 3.1, Figure 3.2). Overall, maximums of gene expression did

not correspond to maximums of gene abundance, but rather to locations with high to moderate

transcript abundance and low to moderate gene abundance (Figure 3.1).
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Figure 3.2 – Maps of dmdA gene expression at the surface (A) and at the deep chlorophyll maximum
(B). Each sample is represented as a dot, dot size and color both representing the level of gene ex-
pression. Abundance values are normalized but the log2-transformation was not applied to display
positive abundances.

The dmdA enzyme had non-zero sequence and transcript abundances in all the 129 metagenomes

and 129 metatranscriptomes, corresponding to 68 stations from the Tara expeditions, which

illustrates its ubiquity in the global ocean. Gene expression appeared higher in polar waters than

in subtropical ones (Figure 3.2), which is coherent with the observations from Levine et al. (2012),

whom related DMSP demethylation with colder temperature.

Environmental factors driving the dmdA distribution

To better identify the drivers of expression patterns, I computed a multivariate analysis of gene

abundance, transcript abundance and gene expression. In a redundancy analysis (RDA), gene

abundance, transcript abundance and gene expression were used as interest variables, while

82



3.2 Identifying markers of simple functional traits

environmental data served as explanatory variables. The complete RDA, including the 30 en-

vironmental variables, was significant (F = 10.504, p-value < 0.001). A bi-directional stepwise

model selection based on the Akaike Information Criteria was then performed to select the most

parcimonious model. The selected model contained 8 environmental variables: nominal depth,

oxygen, temperature, depth of O2 maximum, HCO3, Density, Chlorophyll A and latitude. Both

axis of the RDA axes were significant (p-value < 0.001, F = 320.1 and F = 35.34). The adjusted

R2 value of the RDA was of 72.1%, 66.49% of the variance was explained by the first axis, while

7.34% was explained by the second (Figure 3.3).
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Figure 3.3 – Triplot of the RDA. Grey dots in the background correspond to the 129 samples. Blue
arrows correspond to the 8 selected environmental variables, and red arrows correspond to the three
interest variables: gene abundance (MetaG), transcript abundance (MetaT) and gene expression
(Expr.).

The first axis of the RDA opposes samples taken at high depths (RDA>1) from samples taken

closer to the surface (RDA<1) (Figure 3.3). It confirms that gene abundance, gene expression and

especially transcript abundance are all higher in surface samples. This seems coherent consid-

ering that DMSP is produced by phytoplanktonic organisms, mostly found in the euphotic zone

(Moran et al., 2012), and that mesopelagic samples exhibited very low transcript abundance (Figre

3.1). The second axis of the RDA opposes samples from subtropical, warm waters (RDA2>0), and

samples from subpolar, cold and dense waters (RDA2<0) (Figure 3.3). The RDA confirms that gene

abundance is higher in subtropical waters, and identify it as only poorly correlated to gene ex-

pression, which is mostly high in chlorophyll rich, oxygenated waters (Figure 3.3). The mismatch

between gene abundance and expression could be explained by the presence of organisms that

are able to demethylate DMSP but are rather using the cleavage pathway in warmer conditions.
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Again, this is coherent with the results from Levine et al. (2012), whom identified the bacterial

switch to be in favor of the demethylation pathway over the cleavage one in cold waters, and our

results confirm the applicability of their findings at the global scale. The high adjusted R2 value

suggested that dmdA abundance was strongly linked to the environmental context, which led me

to explore its predictability from environmental variables using a machine learning approach.

Predictions of dmdA abundance from the environmental context

The richness of meta-omics data offers the potential to predict the distribution of functional traits

via their genomic markers in the environment through statistical modeling (Tang and Cassar,

2019). The large quantities of data collected by global meta-omics datasets allows for the con-

struction of large training sets, i.e. subsets of data that need to include a wide enough range

of conditions to be representative of the global dataset, so that statistical models can be trained

on them, while retaining a part of the samples as test sets, which are used to compare models

predictions with observations and test the models performance. Reaching this ability of predicting

the abundance for a large set of traits would (1) help attaining an unprecedented level of precision

in our knowledge of the abiotic drivers of functional diversity in planktonic communities, (2) pro-

vide quantitative insights to improve the construction and validation of biogeochemical models,

through the identification of general ecological laws governing functions distribution in the global

ocean.

Here, to test the predictability of dmdA expression, genes and transcripts abundances from en-

vironmental data, elastic net regressions were used, i.e. a combination of lasso and ridge re-

gressions, allowing to penalize uninformative predictors by shrinking their regression coefficient

towards 0. Unlike random forest regressions or neural networks, this method only uses linear

relationships between the interest variable and predictors to produce predictions, which is less

likely to lead to overfitting (i.e. an over-adaptation of the model to the training set leading to

poor capacities of predictions over additional data). Independent elastic net regressions were

computed for each of the abundance and expression profiles: one with gene abundance as the

interest variable, one with transcript abundance and one with gene expression. For each elastic

net regression, environmental variables were used as predictors, with categorical variables coded

as dummy variables (i.e. columns of 0 or 1 for each categorical level). Training sets corresponding

to 105 samples (i.e. 80% of the data) were randomly selected. Elastic net regression models were

trained on these training sets with a 3 times repeated 10 fold cross-validation process. Regular-

ization (λ, or penalty coefficient) and mixing (α, the mix level between a Lasso approach and a

Ridge one, leading to different penalizations of coefficients) parameters, were optimized for each

regression model by selecting the pair of parameters minimizing cross validation error across all

possible combinations of 10 random values of α and λ (higher numbers of combinations were

tested, not leading to better R2). Finally, I used the best models selected after cross validation and

parameters optimization to predict gene abundance, transcript abundance and gene expression

values from the test sets (i.e. 20% of the samples that were not selected in training sets). Models

performance at predicting dmdA abundance and expression was measured by computing R2 value
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from comparisons between test set observations and model predictions.
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Figure 3.4 – Comparison of observations from the test sets and predictions from the elastic net regres-
sions on (A) gene abundance, (B) transcript abundance and (C) gene expression. Red lines indicate
perfect predictions (y=x). Blue lines are simple linear regression lines, with the corresponding 95%
confidence interval indicated in grey. The R2 values indicated in red are the one of each elastic net
regression model.

The three models led to predictions of dmdA abundance and expression with R2 values comprised

between 68 and 74% (Figure 3.4).

In the gene abundance elastic net regression, 13 environmental variables had non-zero regression

coefficients, with the 5 most influential ones being: Ocean region Southern Ocean (-0.76), polar

(-0.32), temperature (0.26), nominal depth (-0.23) and chlorophyll A (0.14). These results confirm

the observations from the RDA, identifying metagenomic abundance of dmdA as higher in warm,

subtropical waters.

In the transcript abundance elastic net regression, 26 variables had non-zero coefficients, with the

5 most influential being: mesopelagic layer (-0.89), Ocean region [MS] Mediterranean Sea (-0.79),

mixed water layer (-0.66), Ocean region [SO] Southern Ocean (0.52) and nominal depth (-0.45).

Here again, observations from the RDA are confirmed, with depth appearing as the most influential

factor on transcript abundance. The elastic net regression identifies the Mediterranean Sea as a

zone of particularly low dmdA transcript abundance, but this should be taken with precaution as

only two samples from the Mediterranean sea are present in the dataset.

In the gene expression elastic net regression, 25 variables had non-zero coefficients, with the 5

most influential being: Ocean region [MS] Mediterranean Sea (-0.94), Ocean region [SO] Southern

Ocean (0.60), oxygen (0.46), mesopelagic layer (-0.42) and nominal depth (-0.35). Gene expression

then appears particularly high in the Southern Ocean, and low in the Mediterranean Sea. The

positive influence of oxygen on gene expression supposed from the RDA results is confirmed, as

is the negative correlation with depth.

Using 129 samples from the global ocean, I was able to produce predictions of dmdA gene abun-

dance, transcript abundance, and expression from the environmental context, with R2 above 65%.
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One obvious way of increasing the statistical power of our models would be the addition of more

metagenomes and metatranscriptomes to the dataset, allowing to increase the size of the training

and test sets. For example, the fact that only two samples were issued from the Mediterranean

Sea and 3 from the Southern Ocean limit the capacities to draw general conclusions on these

areas despite their significant influence as predictors. In the future it would then be interesting to

reproduce this approach on other global datasets like the Ocean Sampling Day (Kopf et al., 2015)

or Malaspina (Duarte, 2015). An elegant way to confirm the predictive abilities of models such as

the ones presented here would be to use samples from an expedition as a training set, and the

ones from an other expedition as the test set. The principal difficulty in this case would be to

homogenize the values of gene and transcript abundances across datasets to be able to compare

them. Applying the same normalization steps across datasets to maintain homogeneity would be

quite trivial, but discrepancies in sequencing methods and/or size fractions might be hard to deal

with.

By investigating the Tara Oceans and Tara Polar Circle datasets, the principal environmental

drivers of a single genomic marker coding for DMSP demethylation were identified in the global

ocean. Gene and transcript abundances of dmdA were correlated, but governed by different

drivers: gene abundance was mainly linked with temperature, while transcript abundance was

mostly explained by depth (Figure 3.3). This could be explained by the presence of organisms

bearing the dmdA enzyme at high depth, were DMSP is unavailable, making the transcription of

the demethylation enzyme useless and/or avoided. This genomic signal could notably be due to

the presence of genetic material from dead organisms sinking in the water column, which do not

appear in transcriptomic samples (Singh et al., 2009). These discrepancies led the gene expression

measures to be quite poorly correlated with gene abundance, and oxygen appeared as one of their

most important drivers. Machine learning allowed to predict dmdA gene abundance, transcript

abundance and gene expression from the environmental context with a good accuracy (Figure

3.4), demonstrating how the activity of this pathway with a strong influence on the sulfur cycle

could be determined from purely physico-chemical data. It is particularly interesting to note that

the best predictors of the different elastic net regressions were identified either as variables that

are fixed through time (e.g. depth or Ocean region), or as routinely measured variables for which

high quantities of data are available at the global scale (e.g. temperature, oxygen, chlorophyll A).

These variables being already described in the majority of biogeochemical models, the results here

suggest the potential of predicting DMSP demethylation at global scale using data issued from

models and observations, allowing to target the use of such predictions as inputs or validation

tools in biogeochemical models.

3.2.2.4 Perspectives

In the next 6 months (starting in October 2020), I plan to reproduce this approach on other

marker genes linked to the sulfur cycle, and especially on DMSP lyases, which cleave DMSP to

DMS (Moran et al., 2012). The access to both dmdA and DMSP lyases abundances would allow to

quantitatively describe the state of the bacterial switch at a global scale for the first time. But the
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cleavage pathway is trickier to study than the demethylation one, as seven different DMSP lyases

have been described in prokaryotes, and only one (dddL) corresponds to a KEGG ortholog group

(K16953). Moreover, this KEGG ortholog group is absent from the Tara Oceans and Polar circle

functional profiles.

Nina Guérin’s internship aimed at overcoming some of the difficulties encountered when study-

ing DMSP lyases in global scale datasets, by (1) constituting a database of available DMSP lyase

sequences, (2) using an alignment algorithm (Nina used Diamond, Buchfink et al. (2015)) to find

matches to the database in environmental samples. The database she computed should allow

to extract DMSP lyases gene abundance, transcript abundance and gene expression in the near

future using the same Tara dataset as described in the study presented in this section. This

will allow to provide the first meta-omics based study of the environmental factors governing the

DMSP bacterial switch, including both the demethylation and the cleavage pathways.

3.3 Exploring the genomic basis of complex functional traits

3.3.1 State of the art: linkage, association methods and comparative tran-

scriptomics

The investigation of the links between genotypes and complex traits constitutes a whole field of

research, mainly driven by medical and agronomic studies (Members of the Complex Trait Consor-

tium, 2003; Visscher et al., 2017). The goal of such studies is often to identify portions of genomes,

genes or sets of genes associated with multigenic traits like plant height and weight in agronomy

(Sonah et al., 2015), disease susceptibility in medicine (Members of the Complex Trait Consortium,

2003), and less frequently with behavioral or life-history traits in planktonic ecology (Routtu et al.,

2014). These studies aim at finding statistical links between compositional variations in genomes

(often focusing on single nucleotide polymorphisms, or SNPs) and functional traits. This can be

achieved by comparing the genetic variants of segregating biparental populations of organisms

over multiple generations, to identify quantitative trait loci (QTL) linked with variations in trait

values across individuals (Members of the Complex Trait Consortium, 2003; Sonah et al., 2015).

For example, the genomic basis of sediment browsing in the planktonic freshwater crustacean

Daphnia magna was investigated through the genotyping of 185 F2 (i.e. second generation of

offspring) recombinant individuals obtained through in-lab culture and breeding (Arbore et al.,

2016). The Daphnia genus are considered as keystone species in many ponds and lake ecosys-

tems, and Daphnia magna and Daphnia pulex are often used as model organisms (Czypionka

et al., 2019). An SNP-based genetic map of the D. magna genome was released in 2014 Routtu

et al., which led to the identification of markers for different sediment browsing strategies (Arbore

et al., 2016), but also of markers of diapause termination (diapause being a dormancy phase in

the life cycle of many invertebrates to avoid unfavourable conditions) (Czypionka et al., 2019).

In addition to QTL mapping, it is also possible to compare whole genomes of numerous organisms
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from which trait values are measured, to identify statistically significant associations between por-

tions of genomes and trait values, in which case we talk about genome wide association studies,

or GWAS (Visscher et al., 2017). QTL and GWAS approaches can even be used in conjunction,

with QTL allowing to validate and quantify the influence of candidate genes identified through

GWAS (Sonah et al., 2015). GWAS has notably been used to identify markers of infectivity in Pas-

teuria ramosa, a model bacterial pathogen of D. magna (Andras et al., 2020). Despite their ability

to decipher the genomic basis of complex functional traits, these approaches remain exclusively

applied to model planktonic organisms, for which genomes of multiple individuals are available. A

first reason is that QTL methods are based on vertical heredity of traits, and recombination events

between generations (i.e. the exchange of genetic material between organisms leading to the pro-

duction of offsprings with different traits than their parents). These methods are centered and

developed on eukaryotic multicellular organisms (Metazoa, Plants), and seem quite unadapted for

studying prokaryotes, in which horizontal transfers and clonal reproduction are common. Also,

both QTL and GWAS methods rely on the genotyping of numerous single individuals with known

trait values and/or known demographic history, often implying intensive culture and the use of

reference omic sequences to accurately detect SNPs (Visscher et al., 2017). Thus, studies focusing

on planktonic functional traits rely so far mainly on comparative transcriptomics.

Comparative transcriptomics studies compare populations of the same species or strain exposed to

varying abiotic and/or biotic conditions, with the aim to identify up-regulated and down-regulated

genes (Caron et al., 2017; Marchetti et al., 2012; McKie-Krisberg et al., 2018; Liu et al., 2016; Lv

et al., 2019). For example, experiments of mixotrophic algae (here two prasinophytes, Micromonas

polaris and Pyramimonas tychotreta) in different nutrient conditions allows to compare transcrip-

tomes of algae eating through phagotrophy (i.e. low nutrients conditions) with transcriptomes

of photosynthetically active ones (i.e. high nutrients conditions) (McKie-Krisberg et al., 2018).

Similarly, transcriptomes of three mixotrophic protists (the haptophyte Prymnesium parvum and

two chrysophytes: Dinobryon sp. and Ochromonas sp.) have been sequenced across gradients of

light (Liu et al., 2016), allowing to identify potential marker genes of phagotrophy in mixotrophic

lineages. Finally, a genome-wide transcriptomic analysis of the marine diatom Thalassiosira

pseudonana in different conditions (combinations of silicon limitation, nitrogen limitation and

iron limitation) allowed to identify genes involved in the biogenic production of the silica cell-wall

structures typical of diatoms (Mock et al., 2008).

But comparative transcriptomics do not solve all the issues evoked earlier, as sequencing compa-

rable transcriptomes across a gradient of trait values requires the focal species to be cultivable.

Also, the potential markers detected through comparative transcriptomics need to be investigated

through targeted experimental designs similar to the ones evoked in paragraph 3.2 in order to

be mechanistically validated. The accumulation of sequenced transcriptomes and the creation

of databases like the marine microbial eukaryote transcriptome sequencing project (MMETSP,

grouping almost 800 transcriptomes, Keeling et al. (2014)) now allow public access to hundreds of

transcriptomes from marine planktonic species, allowing for large scale analysis of the omic basis

of functional traits.

Meng et al. (2018) illustrated this by using the MMETSP resource to investigate the genomic basis
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Figure 3.5 – Building a sequence similarity network. Pairwise values of similarity and coverage
are computed on a set of sequences, here open reading frames (ORF) sequences as the focus is
on proteins, represented as circles with colors coding for their taxonomy. The sequence similarity
network is then built by linking together all the pairs of proteins that satisfy a certain similarity
and coverage threshold. The network is composed of singletons, i.e. proteins that did not match to
any other in the network with the selected thresholds, and connected components, i.e. subgraphs
in which at least one path allows to directly or indirectly connect two proteins. Each protein in the
network can be associated with a functional and/or taxonomic annotation, which then allows to
investigate the links between similarity, function and taxonomy at the scale of the full network, or
in connected components. Examples of possible annotations at the connected component level are
given here for illustrative purposes.

of functional diversity in dinoflagellates. They based their approach on a sequence similarity net-

work built from 46 transcriptomes of dinoflagellates strains from 28 distinct genera. A sequence

similarity network (SSN) is a graph in which nodes are proteins, and links represent the similarity

(i.e. the percentage of common amino acids) and coverage (i.e. the length of overlap between

two proteins relative to total protein length) between each pair of proteins (Figure 3.5). SSNs are

composed of singletons, i.e. proteins that are not linked to any other protein in the network, and

connected components (CCs), i.e. subgraphs in which nodes are directly or indirectly (i.e. through

other nodes) connected together, but disconnected from the rest of the network (Figure 3.5). The

first step to build an SSN is then to compute pairwise similarity and coverage measures on a set of

sequences, often through an all against all alignment (e.g. using Diamond (Buchfink et al., 2015)
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or BWA-MEM (Li, 2013)). By applying stringent thresholds on the obtained similarity and coverage

measures to build the links of the network, one can create a SSN composed of connected com-

ponents potentially sharing similar functions, and assimilable to protein families (Atkinson et al.,

2009; Cheng et al., 2014; Meng et al., 2018; Lopez et al., 2015). Statistics can then be computed

from the network, such as connected components number, sizes, density (number of observed

connections relative to the number of potential connections), or functional and taxonomical ho-

mogeneity which can be derived from the functional and taxonomic annotations of the proteins of

the network. In Meng et al. (2018), each sequence has been taxonomically and functionally an-

notated, but also tagged with the functional traits of its organism of origin: mixotrophy, toxicity,

kleptoplasty, symbiosis, parasitism, or DMSP production. The sorting of connected components

allowed to identify CCs coming exclusively from toxic organisms, or symbiotic ones for example,

which makes them good candidates as potential genomic markers of functional traits. 5 connected

components were only composed of proteins from toxic dinoflagellate species, corresponding to 49

protein coding domains among which none were functionally annotated in the Gene Ontology. In

this study, the annotation of mixotrophy was limited to ’yes’ or ’no’, with no distinction of the types

of mixotrophy, and connected components associated with mixotrophic species were not investi-

gated in details. Hence, the results of Meng et al. (2018) suppose that a more particular focus on

mixotrophy using the same data might allow to discover markers of mixotrophy in dinoflagellates,

and maybe even extend them to other mixotrophic lineages available in MMETSP.

From January to June 2019, I supervised Aurélie Pham for her Master 2 internship, which focused

on finding markers of mixotrophy in dinoflagellates. The preliminary results that I will present in

the next sections are mainly derived from her work.

3.3.2 A concrete example: Markers of mixotrophy in dinoflagellate tran-

scriptomes

3.3.2.1 Introduction

During the past decade, the historic dichotomy classifying planktonic unicellular eukaryotes as

either phytoplankton or zooplankton has been replaced by a new vision based on a distribution of

protists along a continuum from full autotrophy to full heterotrophy, in which most of the plank-

tonic organisms display mixotrophic abilities (Flynn et al., 2013; Mitra et al., 2016; Stoecker et al.,

2017; Caron, 2016a). This led to multiple efforts aiming at better understanding the biogeogra-

phy of mixotrophs, and trying to identify their potential affinity with particular environmental

conditions (Leles et al., 2017, 2019; Faure et al., 2019). These studies have either used morpho-

logical identification data (Leles et al., 2017, 2019) or metabarcoding data (Faure et al., 2019), all

identifying mixotrophs as ubiquitous and abundant, but also highlighting strong limitations in

their approaches. The main identified limit lies in the necessity of using databases of mixotrophic

species and/or the available literature to define the focal set of mixotrophic lineages, while the lack

of routine protocols to measure mixotrophic capacities led to misconceptions about the trophic

mode of most primary producers in the global ocean (Leles et al., 2019). It led these studies to
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focus on a maximum of 133 mixotrophic lineages, when more than 4300 species of phytoplankton

are morphologically described, and OTU-based estimates suppose a 3 to 8 times higher number

(de Vargas et al., 2015). There is then a strong discrepancy between the statement that most

protists display mixotrophic capacities (Flynn et al., 2013) and the number of lineages that are

included in biogeographical studies (Leles et al., 2017, 2019; Faure et al., 2019). The discovery

of genomic markers of mixotrophy would tackle this issue by allowing to directly detect and po-

tentially quantify mixotrophic activities in metagenomes and metatranscriptomes, which are now

available at global scales (de Vargas et al., 2015; Ibarbalz et al., 2019; Richter et al., 2019).

The search for genomic markers of mixotrophy has mainly focused on constitutive mixotrophy, i.e.

the ability to eat through phagotrophy in inherently photosynthetic organisms, essentially through

comparative transcriptomics approaches (McKie-Krisberg et al., 2018; Liu et al., 2016). Genes up-

regulated during the assimilation of prey chloroplasts in the plastidic-specialist non-constitutive

mixotroph dinoflagellate Nusuttodinium aeruginosum were also identified earlier this year (Onuma

et al., 2020). But none of the genes identified as upregulated in these studies seems to establish

as a good candidate for the detection of mixotrophy in environmental samples. In parallel, Burns

et al. (2018) proposed a gene-based predictive model of phagotrophy and photosynthesis using

complete genomes of 35 eukaryotic lineages. Their approach consisted in identifying protein clus-

ters based on sequence similarity that were enriched in organisms either capable of phagotrophy

or photosynthesis, allowing them to identify a set of 474 proteins associated with phagocytosis,

and one of 243 proteins associated with photosynthesis (Burns et al., 2018). Using these protein

sets, they were able to correctly predict constitutive mixotrophy in the haptophyte Prymnesium

parvum, and the absence of mixotrophy in the strictly phototrophic diatom Phaeodactylum tricor-

nutum (Burns et al., 2018). These results demonstrate the potential lying in the use of annotated

databases of whole-genomes to identify genomic markers of mixotrophy, but remains limited for

further application on marine mixotrophic plankton by the presence of only 4 genomes of marine

planktonic organisms among the 35 reference genomes selected for the study. This low represen-

tation of marine plankton among the references is explained by the fact that Burns et al. (2018)

mainly aimed at detecting phagocytose and photosynthetis marker genes in archaea, and not in

protists.

A study also using similarity-based protein clusters to identify genomic markers of metabolic func-

tions focused on the Alveolata lineage of dinoflagellates (Meng et al., 2018). These protists are

known for their high functional diversity, as the lineage include strict autotrophs (e.g. Pelago-

dinium beii), constitutive mixotrophs (i.e. phagotrophs that display an innate capability to achieve

photosynthesis, e.g. P. parvum), non-constitutive mixotrophs (i.e. heterotrophs that acquire pho-

tosynthetic capacity through the stealing of chloroplasts from any prey - generalists -, specific

preys - plastidic-specialists - or the bearing of endosymbionts - endo-symbiotic specialists -, e.g.

the plastidic specialist non-constitutive mixotroph Dinophysis acuminata), and strict heterotrophs

(e.g. Polykrikos kofoidii) (Jeong et al., 2010; Mitra et al., 2016). As I evoked in section 3.3.1, Meng

et al. (2018) used 46 dinoflagellates transcriptomes to compute a sequence similarity network, in

which they were able to retrieve connected components corresponding to highly similar clusters

of proteins, potentially coding for the same functions (Meng et al., 2018; Atkinson et al., 2009;
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Lopez et al., 2015). They were then able to identify the clusters only composed of proteins from

toxic or mixotrophic dinoflagellate species, constituting putative markers of the corresponding

functions (Meng et al., 2018). However, they annotated mixotrophy without differentiating the

different types of mixotrophy (i.e. constitutive versus non-constitutive), and did not focus on the

functional annotations in clusters identified as putative markers of mixotrophy.

Here, I will use a dataset of 47 dinoflagellate transcriptomes including 19 from mixotrophic species

to try to detect protein clusters that could serve as markers of mixotrophy in dinoflagellates.

3.3.2.2 Material & methods

Trophic modes (strict autotrophy, strict heterotrophy, constitutive mixotrophy, generalist non-

constitutive mixotrophy, plastidic-specialist non-constitutive mixotrophy or endosymbiotic-specialist

non-constitutive mixotrophy) from 798 transcriptomes of 705 species were annotated through bib-

liographic research. Among these 798 transcriptomes, 650 came from MMETSP (Keeling et al.,

2014), while transcriptomes of 45 species came from the Roscoff culture collection (http://roscoff-

culture-collection.org/), 6 came from the OCEANOMICS database (http://www.oceanomics.eu/), 1

from the Pasteur culture collection (https://webext.pasteur.fr/cyanobacteria/), and 4 from the

Meng et al. (2018) study. One transcriptome of Alexandrium minutum that was extracted from

Le Gac et al. (2016) was finally added to the dataset, constituting the only dinoflagellate transcrip-

tome of our analysis that was not already included in Meng et al. (2018). Within the 798 microbial

eukaryotic transcriptomes, I identified 105 transcriptomes of constitutive mixotrophs (from 23 dif-

ferent genera), 1 of generalist non-constitutive mixotroph, 4 of plastidic-specialist non-constitutive

mixotrophs, and 3 of endo-symbiotic non-constitutive mixotrophs (full list available in Appendix

B). Among the 47 dinoflagellate transcriptomes corresponding to 43 distinct species from 27 gen-

era, 18 came from constitutive mixotrophs and 1 came from a plastidic-specialist non-constitutive

mixotroph (D. acuminata). The methods described in Meng et al. (2018) were then used to build a

sequence similarity network (SSN) of the 47 transcriptomes: protein coding domains were detected

and functionally annotated through TransDecoder (v5.5.0, Haas et al. (2013)) and InterProScan

(v5.24-63.0, Jones et al. (2014)), before being aligned in all versus all mode using the DIAMOND

software to retrieve similarity and coverage statistics for each transcripts pair (Buchfink et al.,

2015). As only one transcriptome was added to the dataset in comparison to Meng et al. (2018),

the same thresholds were used to perform this analysis: edges with a similarity higher than 60%

and a coverage of more than 80% were conserved in order to build the SSN using the R (R Core

Team, 2019) package igraph (Csardi et al., 2006). Meng et al. (2018) selected these parameters

to maximize the number of connected components with more than 30 vertices and the number of

connected components involving a unique functional annotation.

3.3.2.3 Results and discussion

The SSN was composed of 2,901,054 proteins, including 728,916 singletons (25.1%) and 304,026

connected components, ranging from 2 to 43,480 proteins in size (Table 3.1). In comparison,
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Table 3.1 – Metrics of the dinoflagellates transcriptomes sequence similarity network. CC stands for
connected component, CM for constitutive mixotroph.

Number of CCs (%) Proteins in CCs (%)
Total CCs 304,026 (100%) 2,172,138 (100%)

CCs with at least one sequence
from a CM 143,676 (47.2%) 803,736 (36.9%)

CCs with at least one sequence
from a pSNCM 15,212 (5.0%) 33,346 (3.1%)

CCs with at least one sequence
from A. minutum (Le Gac et al.,

2016)
46,473 (15.3%) 107,672 (4.9%)

CCs with at least one sequence
from the MMETSP A. minutum

6,357 (2.1%) 10,190 (0.5%)

CCs only composed of sequences
from CMs 56,791 (18.7%) 153,340 (7%)

CCs only composed of sequences
from mixotrophs 60,864 (20%) 163,310 (7.5%)

the SSN built in Meng et al. (2018) (without the A. minutum transcriptome from Le Gac et al.

(2016)) was composed of 2,790,387 proteins including 1,514,476 singletons (54.3%) and 350,267

connected components ranging from 2 to 1600 proteins in size. The important differences in

numbers of singletons and maximum size of connected components clearly questions our choice

of using the same thresholds as Meng et al. (2018). Indeed, even though only one transcriptome

was added to the SSN, it ranked second in number of proteins in connected components, and

significantly changed the structure of the network, notably leading to the creation of 4 gigantic

connected components of more than 10,000 proteins each. These gigantic connected components

included proteins from all the 47 transcriptomes, and their functional homogeneity was poor: e.g.

more than 40 distinct functional annotations were found in the biggest CC. This indicates that

the thresholds of similarity and coverage used were probably too low and led to the construction

of chimeric connected components composed of functionally and evolutionary unrelated proteins.

The important effect of the addition of the A. minutum transcriptome on the network structure can

be explained by its important size (110,667 proteins, which makes it the fifth biggest in the data

set), and its high quality. Indeed, this transcriptome was obtained from the separate sequencing

of 18 strains of A. minutum (Le Gac et al., 2016), and contained more than 10 times more protein

coding domains than the A. minutum transcriptome already available in the MMETSP collection

(which contained 10,572 proteins). Considering that transcriptomes corresponding to different

strains of the same species were included separately in the dataset (in Meng et al. (2018), tran-

scriptomes from different strains of the same species were kept separated when their numbers

of reads were sufficient to create independent high-quality1 transcriptomes, e.g. two strains of

Brandtodinium nutricula and of Kryptoperidinium foliaceum), implementing the sequence similar-

ity network with 18 separated transcriptomes corresponding to each strains of A. minutum might

lead to better results. As evoked earlier, the impact of this added transcriptome on the network

structure could also be mitigated by a modification of the similarity and coverage thresholds, but

1in Meng et al. (2018), high-quality transcriptomes are defined as having more than 30,000 transcripts,
with 50% of the whole transcriptome in transcripts longer than 400 base pairs and read re-mapping rate
over 50%
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increasing these thresholds would lead to the creation and exclusion of singletons that were taken

in account in Meng et al. (2018), and the break of interesting connected components identified as

putative markers into multiple smaller ones. To avoid this, it could be interesting to reproduce

the study using a community detection algorithm, like Louvain (Blondel et al., 2008), which allow

to detect communities of highly connected nodes in large networks. This way, large connected

components can be subdivided in smaller communities (Watson et al., 2019). The Louvain algo-

rithm has the advantage of being fast, and to not rely on parameter choices by the user (Blondel

et al., 2008), when other algorithms like MCL ask the user to choose parameter values that are

not trivial to define (Watson et al., 2019).

Table 3.2 – Composition of the 4 connected components identified as potential markers of mixotrophy
in dinoflagellates. Species with names in green are constitutive mixotrophs while Dinophysis acumi-
nata, indicated in red, is a plastidic-specialist non-constitutive mixotroph. Functional annotations
are from InterProScan v5.24-63.0 (Jones et al., 2014).

In our SSN, 56,791 connected components were only composed of proteins from constitutive

mixotrophs, corresponding to almost a fifth of the total number of CCs (Table 3.1). These con-

nected components had a mean size of 2.7 proteins, and showed low taxonomic richness (i.e.

low number of distinct species represented in the CC), with a maximum of 7 mixotrophic species

found in the same connected component (over 18 mixotrophic species in the dataset). The four
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connected components associated only to mixotrophic species that had the highest species rich-

ness were selected as the best candidates for being potential markers of mixotrophy (Table 3.2).

Two of them were composed of 12 proteins, one of 13 and one of 15. One had proteins from 7 dif-

ferent constitutive mixotrophs, two others from 6 and one last component blended proteins from

5 constitutive and 1 plastidic-specialist non-constitutive mixotrophs (Table 3.2). Among the CCs

only composed of sequences from constitutive mixotrophs, two mixed species from two different

orders, Gonyaulacales and Peridiniales, while the third one also included a Prorocentrales species

(Figure 3.2). A phylogeny of 47 dinoflagellates transcriptomes based on 1043 orthologous protein

sets identified Gonyaulacales, Peridiniales and Prorocentrales as a clade (Stephens et al. (2018);

Figure 3.6). The three CCs identifed here could then constitute markers of constitutive mixotrophy

at the level of this clade. But they could also be phylogenetic markers of this clade with no func-

tional relation to mixotrophy. The 3 CCs did not contain any proteins from the 11 transcriptomes

of non-mixotrophic species belonging to the Gonyaulacales/Peridiniales/Prorocentrales clade in

our dataset, but they also did not include proteins from some transcriptomes of mixotrophic Peri-

diniales (e.g. Scrippsiella trochoidea) and Gonyaulacales (e.g. Ceratium fusus) (Table 3.2, Figure

3.6). It is then hard to conclude with certainty on the potential of these CCs as markers of consti-

tutive mixotrophy without further wet-lab explorations (as evoked in section 3.1), especially since

they could not be associated with any function in reference databases.

The fourth CC identified as a potential marker of mixotrophy blended 15 proteins from 4 different

orders, Gonyaulacales, Gymnodiniales, Prorocentrales and Dinophysiales (Table 3.2). It is less

likely for the proteins of this connected component to be limited to phylogenetic markers than

it was for the three other candidate CCs, because these four orders belong to a large clade also

including the Peridiniales, Suessiales and Noctilucales orders (Figure 3.6), from which no proteins

appear in the CC. It is however legitimate to question the credibility of a genomic marker that would

detect both constitutive and plastidic-specialist non-constitutive mixotrophy, as organisms from

the two trophic modes differ strongly in terms of physiology (Mitra et al., 2016). For example, this

CC could not be a marker of kleptoplasty, which can not be performed by constitutive mixoitrophs.

However, both types of mixotrophic organisms share the ability to eat through phagocytosis, and

this CC could then be tested as a marker of phagotrophy in dinoflagellates. Here again, all the

15 proteins from the connected component were ’known unknowns’, i.e. they were found in the

InterProScan database (Jones et al., 2014), but could not be associated to a biological function.

They could then constitute interesting proteins to target for wet lab experiments focusing on

phagocytosis, to check for their influence on mixotrophic abilities in dinoflagellates.

Despite the fact that mixotrophic abilities were associated with more than a hundred transcrip-

tomes of MMETSP through a literature review, no information were available in the metadata of

these transcriptomes indicating the mode of feeding of the cultivated organisms. Considering that

constitutive mixotrophs often have varying feeding behaviors, adapting their rate of mixotrophy

to their environment (McKie-Krisberg et al., 2018; Liu et al., 2016; Lv et al., 2019), it is difficult

to tell whether the transcriptomes of mixotrophic species in the MMETSP database should carry

markers of mixotrophy or not. This way, even with an improved version of the SSN, and eventually

the addition of more transcriptomes to the 798 ones that were annotated, the potential detection
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pSNCM
CM
Non-mixo

Figure 3.6 – Maximum-likelihood phylogeny of dinoflagellates inferred using 1043 orthologous pro-
tein sets issued from 47 transcriptomes of dinoflagellates, modified from Stephens et al. (2018).
Bootstrap support values are indicated at each split. Branch length is based on the rate of substitu-
tion per site. Colored dots were added next to every species that was represented in our sequence
similarity network (strains were not taken into account except for the Symbiodinium genus, in which
species could not be attributed). Red dots indicate plastidic-specialist non-constitutive mixotrophs
(pSNCM), green dots indicate constitutive mixotrophs (CM) and blue dots indicate species for which
no proofs of mixotrophy were found in the literature.

of mixotrophy markers would still be questionable regarding the data used. This illustrates well

how the fact that mixotrophy is a continuum between autotrophy and heterotrophy hardens the

analysis of its genomic basis.

3.3.2.4 Conclusion

The more reliable way to find markers of mixotrophy would be to reproduce a SSN-based approach

using transcriptomes of mixotrophic organisms issued from comparative transcriptomics studies

at a fine scale (i.e. including species sharing similar mixotrophic behaviours, and exposing them
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to similar sets of conditions). The goal should be to produce quantitative data that would allow to

sort connected components/transcript families based on expression level, implying the need for

replicates (this analysis showed the impact of sequencing depth) in different conditions favoring

certain trophic modes. Studies are already showing the way by sequencing transcriptomes of

mixotrophic species along gradients of lights and nutrients, giving us access to transcriptomes

of mixotrophs with varying levels of photosynthetic and phagotrophic capacity (McKie-Krisberg

et al., 2018; Liu et al., 2016; Lv et al., 2019). By building a sequence similarity network using

transcriptomes coming out of such experimental designs, and by analyzing it through the lens of

metadata indicating rates of phagotrophy and photosynthesis, it should be possible to find con-

nected components grouping proteins from multiple species in the same feeding behavior state.

It could allow to expand from species or strain-specific putative markers detected by comparative

transcriptomics to higher trophic levels ones. The presence of such markers could then be tested

in other, less studied mixotrophic species, or in environmental metagenomics and metatranscrip-

tomics samples.

3.4 Next challenge: linking unknown functions and unculti-

vated organisms to functional traits

Until now, I have only presented approaches based either on wet lab investigations of specific

organisms, or on the statistical investigation of large datasets of full genomes/transcriptomes.

This often implies that the focal organisms can be cultivated in labs. However, up to 99% of

microbial species remain impossible to cultivate (Rappé and Giovannoni, 2003; Rinke et al., 2013;

Watson et al., 2019; Mangot et al., 2017), so one important challenge is to associate functional

traits to poorly known and not yet culturable organisms.

As illustrated in section 3.2.2, the mining of genomic markers in metagenomes and metatranscrip-

tomes can allow to draw quantitative hypotheses on the distribution of functional traits without

distinguishing cultivated and uncultivated organisms. In a more organism-centered way, the

recent identification of hundreds of MAGs from the Tara Oceans metagenomics data allowed to

detect nitrogen fixation genes in abundant yet uncultivated Planctomycetes and Proteobacteria

(See section 1.3.2.2, Delmont et al. (2018)), genomes of uncultured picoeukaryotes and giant

viruses were retrieved from targeted single-cell genomics (Mangot et al., 2017; Needham et al.,

2019), and transcriptomes of uncultured eukaryotes were determined from metagenomic samples

(Vorobev et al., 2019). Similarly, Lannes et al. (2019) were able to detect carbon fixation pathways

in marine ultrasmall prokaryotes, without even relying on the assembly of genomes or transcrip-

tomes. Instead, they filtered sequences from metagenomes of the viral size fraction from Tara

Oceans, in order to only keep sequences affiliated to prokaryotes. This way, they identified ul-

trasmall prokaryotes to collectively harbor (i.e. without proof of presence in a single genome) the

dicarboxylate/4-hydroxybutyrate pathway and the 4-hydroxybutyrate pathway, which are both

energy efficient pathways leading to autotrophic carbon fixation (Lannes et al., 2019).

Still, 40 to 60% of the open reading frames (ORF) detected in microbiome analyses are of unknown
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function (Vanni et al., 2020; Bernard et al., 2018). To explore the function of such ORFs, one

method is to identify their remote homologs, also called distant homologs, or transitive homologs

(Lopez et al., 2015; Watson et al., 2019). The idea behind this method is to find proteins in

environmental samples that are indirectly homologous to proteins from functional annotation

databases, e.g. an unannotated homolog to a protein that has a match in functional annotation

databases (Watson et al., 2019). Lobb et al. (2015) found 15.3% of the 484,121 ORFs analyzed in

their study to be distant homologs of structurally characterized proteins, and were able to identify

hundreds of novel enzymes. Very recently, a new database and tool called AGNOSTOS came

out, that references known and unknown genes as clusters based on their sequence similarity,

allowing to very rapidly identify distant homologs of query proteins (Vanni et al. (2020); more on

this in the general discussion).

These are examples of the methods available to decipher the functional potential of uncultivated

organisms and functionally unannotated genes. However, in matters of functional traits, only

traits with well known genomic markers can be detected in meta-omics samples and in MAGs.

We can hope that in a near future, comparative transcriptomics, methods like GWAS and wet

lab experiments will allow to better describe the genomic basis of complex traits like cell size or

mixotrophy. Only then, investigating these multigenic markers in environmental samples and

uncultivated organisms will be possible. This is why I decided to test a different approach for the

next part of my thesis, trying to focus on detecting functional clusters of genes of interest without

any a priori selection based on their functional annotations.
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Chapter 4

Towards omics-based predictions of planktonic

functional composition from environmental data

4.1 Prelude

In the introduction, I highlighted how current biogeochemical modeling approaches did not allow

to define model structural components from observational data, and always relied on a priori

choices of the model PFTs, traits, genes or metabolic pathways. During the first part of my thesis,

I did not address this particular issue, as I focused my attention on two particular traits, namely

mixotrophy and DMS production. As presented in chapter 3, the investigation of a priori chosen

functional traits often implies to rely on genomic markers detected in cultivated organisms. I

presented how meta-omics data led to the detection of such markers in unexpected taxa, and

how they allowed to better understand the biogeography of functional traits independently from

taxonomical assignations. But such studies do not take full advantage of the richness of meta-

omics data, as they focus on one or a few a priori selected genes and discard the rest, including

functionally unannotated genes, even though full metagenomes and metatranscriptomes contain

information on the functional potential of planktonic communities as a whole (Vanni et al., 2020).

In the second part of my thesis, my goal was then to design an approach to extract functionally

homogeneous clusters of proteins from meta-omics data without any a priori based on their func-

tional and/or taxonomic annotation (Figure 4.1). One of the main objectives was to be able to

compute the abundance of each cluster in the environment, to be able to describe and under-

stand their biogeography. It allowed me to identify and confirm the main drivers of functional

composition in planktonic prokaryotic communities, but also to highlight proteins, functions and

MAGs particularly associated with environmental gradients in the global ocean.

In the following section, I will present a data-driven method applicable to any set of sequences,

allowing to build protein functional clusters and quantitatively link their abundance to the envi-

ronment without a priori selection of taxa or metabolic functions, while including all unannotated
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93 Tara Oceans Metagenomes

Delmont et al., 2018

1,914,171 Proteins

Environmental context for 
the 93 samples 

(Pesant et al., 2015 + climatology data)

885 Prokaryotic
environmental genomes

Delmont et al., 2018

Sequence Similarity Network
(757,457 Proteins)

Diamond  
v0.8.22

= Protein
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Protein functional cluster 1
Annotation : Nitrogen fixation

Taxonomy : Cyanobacteria

Protein functional cluster 3
Annotation : Nitrogen fixation

Taxonomy : Proteobacteria
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Figure 4.1 – Analyzing the biogeography of functionally homogeneous protein clusters obtained from
metagenome-assembled genomes. Nearly 2 millions of proteins from 885 prokaryotic MAGs are
assembled into a sequence similarity network, i.e. a graph in which nodes are proteins and links
reflect the similarity and coverage between each pair of proteins. In this toy example, the sequence
similarity network is composed of 4 connected components, or groups of nodes connected together
directly or indirectly, and disconnected form the rest of the network. Each connected component is
defined as a protein functional cluster, and examples of taxonomic and functional annotations are
indicated to illustrate the kind of information that can be retrieved from the approach. The abundance
of each protein functional cluster can be computed in environmental metagenomes, through the
mapping of environmental reads to each protein. These abundances can finally be statistically
related to the environmental context.

proteins. I decided to apply this method on the 885 prokaryotic MAGs produced by Delmont et al.

(2018), which were manually curated and appeared to me as more reliable than fully-automatically

binned ones (e.g. Parks et al. (2017) or Tully et al. (2018)). The same approach could in theory be

applied to larger datasets, and even to full Tara Oceans gene catalogs, but computational limita-

tions and the necessity to benchmark the approach with a more easy to handle dataset pushed

me to first focus on the MAGs. They appeared as good candidates as they mostly correspond

to uncultivated organisms, with poorly described functional potentials despite high abundances

across the global ocean.

The rest of this chapter will consist in a manuscript entitled Towards omics-based predictions

of planktonic functional composition from environmental data, currently undergoing modifications

after a first round of revisions in Nature Communications.
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Abstract: Marine microbes play a crucial role in climate regulation, biogeochemical cycles, and

trophic networks. Unprecedented amounts of data on planktonic communities were recently col-

lected, sparking a need for innovative data-driven methodologies to quantify and predict their

ecosystemic functions. We reanalysed 885 marine prokaryotic metagenome-assembled genomes

through a network-based approach and detected 233,756 protein functional clusters, from which

15% were functionally unannotated. We investigated all clusters’ distributions across the global

ocean through machine learning, identifying biogeographical provinces as the best predictors of

protein functional clusters’ abundance. The abundances of 2,444 clusters were predictable from

the environmental context, including 183 functionally unannotated clusters. We analyzed the

biogeography of these 2,444 clusters, identifying the Mediterranean Sea as an outlier in terms of

protein functional clusters composition. Applicable to any set of sequences, our approach con-

stitutes a step towards quantitative predictions of functional composition from the environmental

context.

4.2.1 Introduction

Planktonic organisms play an essential role in biogeochemical cycles through the capture and

export of carbon into the deep ocean, nitrogen fixation, remineralization of organic matter, or the

production of dimethyl-sulfur, hence impacting global climate (Falkowski et al., 1998; Guidi et al.,

2016; Whitman et al., 1998; Ferrera et al., 2015; Sunagawa et al., 2015). The understanding and

modeling of such biogeochemical functions is key for predicting the global functioning of oceanic

ecosystems, and especially their response to climate change (Le Quéré et al., 2005; Litchman et al.,

2015a; Follows et al., 2007). These biogeochemical functions are usually modeled by simulating

the dynamics of plankton functional types (PFT) that are theoretical entities grouping planktonic

organisms according to shared functional capacities (e.g. calcifiers, nitrogen fixers or silicifiers)

(Le Quéré et al., 2005). This approach allows to incorporate the functional diversity of marine

plankton into biogeochemical models (Follows et al., 2007; Aumont et al., 2015; Coles et al., 2017;

Leles et al., 2016), but often relies on a priori and restricted choices of the considered types of

planktonic organisms and of their physiological rates or parameters (Flynn et al., 2015). For

example, prokaryotic organisms are often lacking an explicit representation in global PFT models

(Aumont et al., 2015; Leles et al., 2016), even though more than 1030 prokaryotic cells inhabit the
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ocean’s subsurface (Whitman et al., 1998). To tackle this issue, recent works proposed to switch

towards data-driven modeling of planktonic communities and their impact on the environment,

notably through the use of high-throughput sequencing data (Coles et al., 2017; Mock et al., 2016;

Louca et al., 2016a).

Next generation sequencing technologies have led to significant advances in the knowledge of the

taxonomic and functional diversity of planktonic organisms (Sunagawa et al., 2015; Louca et al.,

2016c). Bioinformatics workflows allow the assembly of metagenome-assembled genomes (MAGs),

which are near-complete genomes retrieved from DNA fragments coming from environmentally

sequenced individuals of one or a few closely related populations (Parks et al., 2017; Tully et al.,

2018; Delmont et al., 2018; Nielsen et al., 2014). MAGs can be taxonomically annotated using

multi marker gene approaches, and organism-level functional profiles can be drawn from their

genomic content (Parks et al., 2017; Tully et al., 2018; Delmont et al., 2018). Reads from envi-

ronmental meta-omics datasets can also be mapped to their reconstructed sequences to obtain

abundance measurements both at MAG and single protein level (Delmont et al., 2018; Salazar

et al., 2019). MAGs can be considered as representative of the genetic potential of natural pop-

ulations, hence allowing to retrieve genomes of cultivable, uncultivable or even unknown species

present in the environment. They constitute a promising tool for investigating as a whole the

functional potential of known and unknown planktonic life forms.

Recently, a genomics-based model revealed that the gene content of planktonic communities is

more relatable to biogeochemical gradients than taxonomic content (Coles et al., 2017). In another

study, omics data were used to quantitatively estimate global nitrogen fixers abundance through

machine learning algorithms (Tang and Cassar, 2019). It illustrates how quantitative, data-driven

biogeochemical models can be built from global omics datasets. However, these studies focused

only on a relatively small number of well-described genes (e.g. nif or amtB genes, involved in

dinitrogen and ammonium fixation, respectively) (Coles et al., 2017; Tang and Cassar, 2019),

far from exploiting the rich functional diversity observed in omic samples. This way, the large

proportion of unknown sequences detected in environmental meta-omics datasets, that is to say

the open reading frames (ORFs) which can not be linked to any biological functions (usually around

40% for prokaryotes, and about 50% for eukaryotes), is as yet untapped (Ferrera et al., 2015;

Sunagawa et al., 2015; Salazar et al., 2019; de Vargas et al., 2015; Acinas et al., 2019; Carradec

et al., 2018). Besides, many meta-omics studies have either focused on semi-quantitative diversity

and interactions surveys at global scales (de Vargas et al., 2015; Lima-Mendez et al., 2015), on

specific taxonomic groups (e.g. Collodaria (Biard et al., 2017)) or on particular biological functions

(such as nitrogen fixation or mixotrophy (Delmont et al., 2018; Tang and Cassar, 2019; Faure

et al., 2019)). A recent study has grouped protein sequences of marine planktonic prokaryotes

according to their annotated metabolic pathways to investigate their differential abundance and

expression, mainly focusing on pre-selected biogeochemical functions such as photosynthesis

or nitrogen fixation (Salazar et al., 2019). By investigating the response of biogeochemistry-

related protein groups to environmental conditions, significant differences in terms of presence

and expression were identified between polar and non-polar areas, and between mesopelagic and

surface depths (Salazar et al., 2019). These results highlight the potential of function-clustering
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based approaches for deciphering global ocean biogeochemistry, but could be further extended

by skipping any sequence pre-selection step requiring database-dependent metabolic pathways

annotations.

In this study, we followed a similar approach while avoiding any a priori choices of particular

genes or metabolic pathways. We used 51 quantitative and qualitative environmental variables to

detect both known and unknown protein clusters that are sensitive to environmental gradients.

We re-analysed 885 high quality MAGs from marine prokaryotic plankton belonging to the Bacteria

(n=820) and Archaea (n=65) domains, assembled by Delmont et al. (Delmont et al., 2018) using

93 Tara Oceans picoplanktonic metagenomes from the surface of the global ocean. With these

almost 2 million sequences, we built functional clusters of proteins using a sequence similarity

network, i.e. a graph in which nodes are protein sequences, and edges represent the similarity

and coverage between each pair of sequences (Atkinson et al., 2009; Forster et al., 2015; Meng

et al., 2018; Bittner et al., 2010; Lopez et al., 2015). Such approaches allow for the construction

of sequence clusters putatively homogenous in function (Atkinson et al., 2009), and were recently

used to investigate the genomic basis of functional diversity in prokaryotes (Cheng et al., 2014), in

a lineage of eukaryotes (Meng et al., 2018), or in natural microbial communities (Lopez et al., 2015).

Particularly, we are here interested in knowing if the abundance of some protein clusters could be

predicted from environmental data in the oceanic ecosystem. For example, is the distribution of

biogeochemistry-related protein clusters more sensitive to environmental gradients than the one

of other clusters? We thus explored the biogeography of environment-related protein clusters in

light of their potential functional and / or taxonomic annotation, in order to identify the ones being

specific to certain environmental conditions, such as oligotrophic or particularly cold waters.

We introduce here a data-driven, large-scale, fast and automatable approach, potentially appli-

cable to any set of environmental sequences, which involves (1) the network-based construction

of sequence clusters, putatively homogeneous in function, (2) the functional annotation of these

clusters, (3) the calculation of environmental abundance values for each of these protein clus-

ters through environmental reads re-mapping, and (4) the description of statistical relationships

between cluster abundances and environmental gradients through machine learning and con-

strained ordination methods. We then present the first biogeographical analysis of known and

unknown prokaryotic protein functional clusters identified as sensitive to environmental gradients

in the global ocean, with no a priori choice of specific functions or taxa.

4.2.2 Results

4.2.2.1 From sequence similarity network to protein functional clusters

We analysed the 1,914,171 proteins from 885 prokaryotic MAGs from marine plankton, recovered

from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara

Oceans samples (Delmont et al., 2018). 39.6% of the MAGs’ proteins (757,457) were involved in

our sequence similarity network, i.e. they had at least one similarity relationship with another

protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see Methods).
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51.1% of the network proteins could be annotated to 4,922 unique molecular function IDs in the

KEGG database (Aramaki et al., 2019), associated with 327 distinct metabolic pathways (a full list

of these pathways is displayed in Table S1, available in appendix C). 85.2% of the network pro-

teins were annotated to 17,009 eggNOG functional descriptions (Huerta-Cepas et al., 2017, 2016).

Table 4.1 – Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence
similarity network of MAGs proteins. Functional scores are based on the functional annotation of
MAGs proteins, with a functional homogeneity score of 1 meaning that all proteins in a PFC share
the same annotation, while a score of 0 indicates that all proteins have different annotations (see
Methods for details). By “unknown proteins” we refer both to sequences with no match in databases
(KEGG and/or eggNOG) and to sequences existing in databases but with no functional and/or
taxonomic annotation. Taxonomy scores are based on taxonomic annotations of MAGs available
from Delmont et al. 2018. This way, the 6,367 PFCs with only proteins from MAGs unannotated at
the phylum level were only composed of proteins coming from the 45 Bacteria MAGs of unidentified
phylum. Detailed functional and taxonomic annotations for each protein sequence are available
online, as well as detailed sizes and functional/taxonomy scores for each PFC (see Data availability
section).

The sequence similarity network involved 233,756 connected components (CCs), i.e. groups of

nodes (here proteins) connected together by at least one path and disconnected from the rest

of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs re-

mained without any functional annotation (i.e. all sequences from the CC were unmatched in the

databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8%

were functionally unannotated for both databases. We ranked the functional homogeneity of CCs

involving at least one functional annotation from 0 (all annotations in the CC are different) to 1 (all

annotations in the CC are the same), and found mean homogeneity scores of 0.99 over 1 for KEGG

annotations and 0.94 over 1 for eggNOG ones (see Methods for score calculation details). Only

88 (0.04%) CCs had an homogeneity score below 0.5 in both annotation databases, all with sizes

below 5 proteins. 177 PFCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins

in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter

106



4.2 Towards omics-based predictions of planktonic functional composition from environmental data

considered each CC as a protein functional cluster (PFC), numeroted from #1 to #233,756.

To check for the influence of taxonomic relationships between the MAGs on our PFCs, we com-

puted different metrics based on MAGs taxonomic annotations provided by Delmont et al. 2018

(Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate

100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining

5% corresponding to Bacteria MAGs of unidentified phyla (Delmont et al., 2018). Only 1,330 PFCs

(0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous

at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that

PFCs studied here were generally not specific from a single class, order, family, genus or MAG

(Table 1). 7,834 PFCs (3.4%) were only composed of proteins with no functional annotation in

KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes

ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarcheota MAGs

(12,458; 60.6%), Bacteria MAGs of unidentified phylum (2,742; 13.3%), Candidatus Marinimicro-

bia MAGs (2,451; 11.9%), Proteobacteria MAGs (1,528; 7.4%), Acidobacteria MAGs (1,031; 5%),

Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79;

0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We here-

after considered these functionally and taxonomically unknown PFCs as “microbial dark matter”

(Rinke et al., 2013; Bernard et al., 2018). Their nucleotidic sequences are available in separate

supplementary files (see Data availability section). The abundance of microbial dark matter PFCs

was significantly different from the abundance of other PFCs in 85 samples over 93 (Wilcoxon test,

p-value <0.05). The median abundance of microbial dark matter PFCs was higher than the one of

other PFCs in 36 of these 85 samples, and lower in the 49 others. Further details on dark matter

PFCs’ abundance are available in the Detection of the rare biosphere section.

4.2.2.2 Identification of protein functional clusters highly related to environmen-

tal gradients

To identify the PFCs that responded the most to environmental gradients, we first selected the

228,914 clusters with non-zero variance abundance profiles (i.e. at least 10% of distinct abun-

dance values across all samples, and less than a 95 to 5 ratio between the most and the second

most observed abundance value). We then built random forest regression models for each of these

228,914 clusters. We used the sequence abundances as response variables, or labels, and 51

environmental variables as explanatory variables (see Methods for details of model training and

tuning). About a fifth of the random forest regression models showed a clear statistical signal:

44,653 models (19.5%) had R2 values over 0.25, corresponding to PFCs linked to environmental

conditions, and 2,444 (1.1%) had values over 0.5 (Figure 4.2A), corresponding to PFCs highly

linked to environmental gradients. The mean R2 value over all models was 0.09, with a maximum

of 0.91 (Figure 4.2A). Longhurst biogeographical provinces (Longhurst, 1998) were detected as the

most important predictor in 90,235 models (39.4%), and were in the top 3 most important pre-

dictors in 166,639 models (72.8%) (Figure 4.2B). Among models with biogeographical provinces

as the best predictor, the mean R2 reached 0.15. Temperature was in the top 3 most important
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Table 4.2 – Metrics computed on the 2,444 protein functional clusters detected as particularly linked
to environmental gradients (hlePFCs). Functional scores are based on the functional annotation of
MAGs proteins, with a functional homogeneity score of 1 meaning that all proteins in a PFC share
the same annotation, while a score of 0 indicates that all proteins have different annotations (See
Methods). By “unknown proteins” we refer both to sequences with no match in databases (KEGG
and/or eggNOG) and to sequences existing in databases but with no functional and/or taxonomic
annotation. Taxonomy scores are based on taxonomic annotations of MAGs from Delmont et al.
2018

predictors in 11,856 models (5.2%). Models with temperature as the best predictor had a mean

R2 of 0.29, which is the highest value of all quantitative variables.

We focused on the 2,444 PFCs associated with models showing R2 values over 0.5, hereafter called

“hlePFCs” for highly linked to environmental conditions protein functional clusters. 207 KEGG

pathways were associated with the 2,444 hlePFCs, i.e. 63% of the pathways identified on the

full network were detected in hlePFCs (c.f. Table S1 in Appendix C for a detailed list). Among

commonly detected pathways (arbitrary threshold of at least 1000 detections in the similarity

sequence network, more details in the Links between models R2 and their associated metabolic

pathways section), the 5 most conserved pathways after selection were methane metabolism

(2.63% of the PFCs associated to this pathway were hlePFCs), ribosome (2.43%), carbon fixation in

photosynthetic organisms (2.28%), carbon fixation pathways in prokaryotes (2.01%) and pentose

phosphate pathway (1.99%).

The functional homogeneity of the 2,444 hlePFCs was similar to the one of the total 233,756 PFCs

(Table 1, Table 2). In parallel, proportions of functionally unannotated hlePFCs were lower and

the proportion of hlePFCs only composed of unannotated proteins in both functional databases

was divided by two (from 14.8% to 7.5%).

The proportions of hlePFCs homogenous at the phylum, class and order level were comparable to
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Figure 4.2 – (A) Boxplot distribution of R2 values of all the 228,914 random forest models. Each
point corresponds to a model, the y axis corresponding to the R2 values, and the x axis position
being randomized for visual representation. The mean R2 value over all models was of 0.09, with a
maximum of 0.91. (B) Rank of importance of each environmental variable in models with positive R2

values. Ranks were attributed from 1 for the most important to 51 for the least important variable
in each model.

the one of the total PFCs and superior or equal to 70% (Table 1, Table 2). The trend differed at

the family and genus level, where only 84.4% and 29.6% of the hlePFCs with at least one protein

annotated were associated to a single taxonomic annotation, while this proportion was of 95.3%

and 91.9% in the total PFCs (Table 1, Table 2). This way, hlePFCs tended to mix more taxa at the

family and genus levels than the rest of the PFCs, while retaining a high functional homogeneity.

The proportion of taxonomically unannotated hlePFCs was lower than the one of total PFCs at the

phylum, class and order levels, but was higher at the family and genus levels (Table 1, Table 2).

24 of the 7,834 PFCs (i.e. 0.3%) tagged as microbial dark matter (i.e. PFCs without any functional

annotation and without taxonomic information under the phylum level) were selected among the

2,444 hlePFCs. These 24 hlePFCs corresponded to 49 proteins belonging to 12 unique MAGs,

annotated as Proteobacteria (n = 5), Euryarchaeota (n = 3), Candidatus Marinimicrobia (n = 2),

and Bacteria unannotated at Phylum level (n = 2).

4.2.2.3 Global biogeography of the protein functional clusters highly linked to en-

vironmental gradients

The canonical correspondence analysis (CCA) achieved on the 2,444 hlePFCs to investigate their

biogeographical repartition had an R2 value of 72.9%, and was significant (p-value < 0.001).

The first axis (20.62% of explained variance) opposed warm and oligotrophic waters (CCA1>0) to

cold and nutrient rich waters (CCA1<0) (Figure 4.3). The second axis (17.03%) mostly opposed

samples from the Mediterranean Sea (CCA2>0) to the rest of the samples. At the exception of

Mediterranean samples, samples from geographically close biogeographical provinces appeared

close to each other in the CCA space, with samples from the Southern Ocean and the Atlantic
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Figure 4.3 – Canonical correspondence analysis (CCA) on abundances of the 2,444 protein functional
clusters highly linked to environmental variables (hlePFCs). hlePFCs are represented as black dots,
quantitative environmental variables as arrows, and samples as circles colored according to their
biogeographical province (correspondence between 4 letters codes used here and full biogeograph-
ical provinces names, as well as descriptions of all other environmental variables are displayed in
Table S2, available in Appendix C). For simplification issues, other qualitative variables (Season
moment and Ocean region) were not represented. On the right and upper panels, density plots
are represented along each axis, illustrating the density of functionally annotated and unannotated
hlePFCs based on KEGG annotations (i.e. functionally annotated hlePFCs contain at least one func-
tionally annotated protein; functionally unannotated hlePFCs contain only functionally unannotated
proteins). The mean hlePFC density was of 0.27 along CCA1 (standard deviation = 0.34, maximum
= 1.38), and 0.21 along CCA2 (standard deviation = 0.23, maximum = 0.94). The mean difference
in density between functionally annotated and unannotated hlePFCs along CCA1 was of 0.06 (stan-
dard deviation = 0.07, maximum = 0.28). The mean density difference between annotated and
unannotated hlePFCs along CCA2 was 0.04 (standard deviation = 0.03, maximum = 0.13). Similar
observations were done using eggNOG annotations densities (Figure 4.4).

zones on the left, Pacific Ocean in the middle and Indian Ocean on the right (Figure 4.3). The

two closest samples from the Mediterranean ones in the CCA space were from the closest Atlantic

station to the strait of Gibraltar (station TARA_004) at the entrance of the Mediterranean Sea, and

the second closest Red Sea station to the Suez canal mouth (station TARA_032) (Figure 4.3).

Combining the CCA results with the functional annotation of hlePFCs, we identified several

metabolic pathways enriched in particular environmental conditions (Figure 4.5). Carotenoid

biosynthesis was enriched in the Mediterranean Sea (CCA2>0), as well as flagellar assembly and

oxidative phosphorylation pathways, while mismatch repair and DNA replication pathways were

enriched in nutrient rich, cold waters (Figure 4.5; Figure 4.7). Pathways related to biogeochemical

functions (e.g. carbon fixation pathways in prokaryotes or methane metabolism) or linked to eco-

logical interactions between organisms (e.g. biosynthesis of antibiotics, quorum sensing or ABC
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Figure 4.4 – Density plots illustrating the proportions of functional known and unknown hlePFCs
along CCA1 and CCA2 axes, based on eggNOG annotations (i.e. a known hlePFC corresponds to
a protein cluster in which at least one sequence has an eggNOG assignment; an unknown hlePFC
corresponds to a protein cluster without any eggNOG assignment). The mean hlePFC density was
of 0.26 along CCA1 (standard deviation = 0.32, maximum = 1.27), and 0.21 along CCA2 (standard
deviation = 0.21, maximum = 0.82). The mean difference in density between functional known and
unknown hlePFCs along CCA1 was of -0.0006 (standard deviation = 0.1, maximum = 0.34). The
mean density difference between known and unknown hlePFCs along CCA2 was 0.03 (standard
deviation = 0.1, maximum = 0.33).

Figure 4.5 – Barycenters of the positions of protein functional clusters highly linked to the environ-
ment (hlePFCs) associated to 6 selected metabolic pathways and to microbial dark matter in the
canonical correspondence analysis (CCA) space. These barycenters were selected for their periph-
eral positions in the CCA space. Pathways with barycenters in shades of pink were related to
cold rich waters only, while those with barycenters in shades of orange were mostly associated
to Mediterranean samples. The barycenter of microbial dark matter hlePFCs (i.e. hlePFCs with-
out functional annotation and taxonomical assignment below the phylum level) was represented in
black, and was strongly associated to Mediterranean samples. Error bars correspond to the stan-
dard deviations of hlePFCs positions on x and y axes. Size of barycenters represent their number
of associated hlePFCs, with the exact corresponding values written in white in each barycenter.
Colored arrows indicate the environmental conditions associated with the different zones of the CCA
space (See Figure 4.3).
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transporters) were present homogeneously in the CCA space (Figure 4.7). Nitrogen metabolism

was an exception as it was only associated with hlePFCs that were quite central in the CCA space

(Figure 4.7), corresponding mainly to Pacific and North Atlantic samples. No particular niche

showed an overabundance of functionally unannotated hlePFCs (Figure 4.3), while the 24 micro-

bial dark matter hlePFCs were strongly associated to Mediterranean samples (Figure 4.5, Figure

4.9B).

We then examined the position of hlePFCs associated with different levels of taxonomic annotations

in the CCA space. hlePFCs containing sequences from the phylum Candidatus Marinimicrobia

were over-abundant in Mediterranean samples (Figure 4.6A). It was the only phylum with a strong

association to a particular niche in the CCA space (cf. the larger standard deviation bars for

other phyla on Figure 4.6A). hlePFCs containing proteins of Opitutae, Dehalococcoidetes and

Betaproteobacteria classes were mostly positioned on the positive side of CCA2, corresponding

to Mediterranean samples, but with standard deviation bars spanning to negative values (Figure

4.6B). hlePFCs containing Betaproteobacteria proteins were rare in warm and oligotrophic samples

from the Indian Ocean (Figure 4.6). hlePFCs containing proteins from two classes of cyanobacteria

(Prochlorales and Chroococcales) were particularly abundant in warm and oligotrophic waters

(CCA1 > 0 and CCA2 < 0).

191 hlePFCs were highly overabundant in the Mediterranean Sea (CCA2>2.0), corresponding to

422 proteins from 34 different MAGs of 6 classes. 26 of these MAGs originated from the same

assembly performed by Delmont et al. 2018 on Mediterranean samples, and accounted for 410

proteins. This predominance of MAGs from one particular assembly was not observed for another

assembly along CCA2 (Figure 4.8). A similar yet less marked pattern was observed along CCA1,

with 350 and 344 of the 992 proteins of hlePFCs correlated to cold and rich waters (CCA1 < -1)

coming from MAGs of the Atlantic South-East and Atlantic South-West assemblies, respectively

(Figure 4.8).

Our analysis allowed to identify environmental variables driving the abundance of functionally

unannotated hlePFCs. For example, PFC #90,349 was composed of 9 unannotated proteins com-

ing from 4 different MAGs (3 Flavobacteriales, 1 Gammaproteobacteria), and had a strong response

to high temperature (Figure 4.9A), as well as other environmental variables (R2 value of 0.504 for

the associated random forest model). Conversely, PFCs #102,286 (2 proteins coming from the

same Saprospiraceae), #210,456 (2 proteins from two distinct Flavobacteriaceae), and #161,812

(2 proteins from the same Flammeovirgaceae) were highly linked to cold temperature (Figure 4.9A).

PFCs #172,160, #176,586 and #177,371 were microbial dark matter hlePFCs overabundant in

Mediterranean samples.

Positions of all functionally and/or taxonomically unannotated hlePFCs in the CCA space, the

most important drivers of their abundance according to random forest models, the nucleotidic

sequences of their proteins and their MAGs of origins are all publicly accessible (link in Data

availability section).
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Figure 4.6 – Distribution in the canonical correspondence analysis (CCA) space of the barycenters of
protein functional clusters highly linked to the environment (hlePFCs) associated to particular taxa:
(A) 4 selected phylum and (B) 6 selected classes. These taxa were selected because they had the
most peripheral barycenters’ positions in the CCA space. Error bars correspond to the standard
deviations of hlePFCs positions on CCA1 and CCA2 axes for each taxa. The size of barycenters
represents the number of associated hlePFCs for each taxa, with the exact corresponding values
written in white in each barycenter. Colored arrows indicate the environmental conditions associated
with the different zones of the CCA space (c.f. Figure 4.3).
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Figure 4.7 – Convex hulls englobing all hlePFCs associated to different pathways in the CCA two-
dimensional space. On each graph, black dots represent hlePFCs that are not associated to the
focal pathway, while yellow dots represent hlePFCs containing at least one sequence associated to
the focal pathway. Convex hulls were drawn in different colors depending on the type of pathway.
Pathways associated to cold and rich waters are included in blue convex hulls, while the ones
associated to mediterranean samples are in red convex hulls. We also selected three pathways
linked to inter-organisms interactions, in orange hulls, and three pathways related to biogeochemical
functions in green hulls. Finally, two black convex hulls englobing all functional unknown PFCs were
represented, one for KEGG annotations and another for eggNOG ones.

4.2.2.4 Detection of the rare biosphere

By defining microbial dark matter protein functional clusters (PFCs) as made of proteins func-

tionally unannotated and taxonomically unannotated under the phylum level, we selected quite

abundant PFCs, probably missing most of the “ rare biosphere ” (Lynch and Neufeld, 2015) (See

main text). To check for the impact of our choice of definition, we investigated the abundance

of microbial dark matter PFCs using other thresholds of taxonomic annotation to define micro-

bial dark matter.w 12,895 PFCs were only composed of proteins with no functional annotation

in KEGG and eggNOG databases, and had no taxonomic annotation under the class level. The

abundance of these 12,895 PFCs was significantly different from the one of the rest of PFCs in

88 samples over 93 (Wilcoxon test, p-value <0.05). Their median abundance was lower in 32 of

these 88 samples, and higher in the 56 others. 20,166 PFCs were only composed of proteins

with no functional annotation in KEGG and eggNOG databases, and had no taxonomic annota-

tion under the order level. The abundance of these 20,166 PFCs was significantly different from

the one of the rest of PFCs in 84 samples over 93 (Wilcoxon test, p-value <0.05). Their median

abundance was lower in 65 of these 84 samples, and higher in the 19 others. 32,737 PFCs were

only composed of proteins with no functional annotation in KEGG and eggNOG databases, and

had no taxonomic annotation under the family level. The abundance of these 32,737 PFCs was
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Figure 4.8 – Barycenters of the protein functional clusters highly linked to environmental gradients
(hlePFCs) from 5 selected assemblies in the canonical correspondence analysis (CCA) space. These
assemblies were selected because they had the most peripheral barycenters’ positions in the CCA
space. Error bars correspond to the standard deviations of hlePFC positions on CCA1 and CCA2
axis for each assembly. Size of barycenters represent the number of associated hlePFCs for each
assembly, with the exact corresponding values written in white in each barycenter, except for the
Red Sea assembly for which it is written in red next to the barycenter. Colored arrows indicate the
environmental conditions associated with the different zones of the CCA space (See Figure 4.3).

significantly different from the one of the rest of PFCs in all samples (Wilcoxon test, p-value <0.05),

and their median abundance was lower in all samples but one, a surface sample from the Indian

Ocean (TARA_064). This way, step by step considering PFCs taxonomically unannotated under

the class, order and family level as microbial dark matter led to a decrease of median abundance

of microbial dark matter PFCs at each step. It then seems that the “ rare biosphere ” was better

detected when including unidentified lineages of known class, order or family, than when using

only unidentified lineages of known phylum. As stated in the main text, this can be explained

by the lack of knowledge about the abundants Archaea and Candidatus Marinimicrobia phyla.

Although, we could also argue that using MAGs might not be the best way to observe the “ rare

biosphere ”. Indeed, the binning of contigs into MAGs relying mainly on co-abundance profiles

(Delmont et al., 2018; Parks et al., 2017; Tully et al., 2018) , it is likely that organisms with very

low and erratic abundances over samples could be missed in the binning steps.

4.2.2.5 Links between models R2 and their associated metabolic pathways

The 228,914 random forest produced models with R 2 values ranging from -0.38 to 0.91. We

investigated the mean R 2 values of models grouped by their associated metabolic pathways. The

maximum mean value of 30% was obtained for the calcium signaling pathway, but only 1 model

was associated to it. Among pathways associated to at least 100 proteins, values ranged from
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Figure 4.9 – (A) Relationships between normalized sequence abundance and temperature for 6 se-
lected protein functional clusters highly linked to the environment (hlePFCs) that were only composed
of functionally unannotated sequences. The three graphs on the left, in purple, correspond to the
three hlePFCs functionally unannotated in both KEGG and eggNOG databases that had the low-
est positions on the first axis of the canonical correspondence analysis (CCA1) (cold and nutrient
rich waters). The three graphs in the middle, in green, correspond to the three hlePFCs function-
ally unannotated in both KEGG and eggNOG databases that had the highest positions on CCA1
(oligotrophic and warm waters). (B) Relationships between normalized sequence abundance and
location of sampling, whether in the Mediterranean Sea or not, for 3 microbial dark matter hlePFCs
(only functionally unannotated sequences and no taxonomic annotations under the phylum level).
These 3 hlePFCs had the highest positions among microbial dark matter PFCs on the second axis of
the canonical correspondence analysis (CCA2) (correlated to Mediterranean samples).

5.6% to 17.1%, showing that no common pathway could be associated to particularly high R

2 values. 16 negative values were observed, mostly corresponding to human-related metabolic

pathways, e.g. rheumatoid arthritis, cocaine addiction, thyroid hormone signaling pathway, or

pancreatic secretion. We then investigated the metabolic pathways associated to PFCs highly

linked to environmental gradients (hlePFCs), to check if some pathways were more associated to

hlePFCs than others. 121 pathways were not detected at all in hlePFCs (Table S1 in appendix C).

The most selected pathway was biosynthesis of vancomycin group antibiotics , with 4.65% of its

associated PFCs being hlePFCs. But this pathway was associated to only 43 PFCs in total, and 2

of them only were hlePFCs. Similarly, other rare pathways appeared as well selcted even though

they did not make much sense for planktonic communities, like prostate cancer (66 associated

PFCs, 4.54% in hlePFCs) or cardiac muscle contraction (182 associated PFCs, 4.40% in hlePFCs).

This is why we decided to focus on more abundant pathways only. A threshold of 200 associated

PFCs was too low, as pathways like Parkinson disease (associated to 215 PFCs) or Alzheimer
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disease (associated to 371 PFCs were still among the most selected pathways). At a threshold

of 500 associated PFCs, we had 98 unique pathways, with still some unrelated to prokaryotic

communities like thermogenesis (591 associated PFCs, 2.71% in hlePFCs) or pathways in cancer

(555 associated PFCs, 1.26% in hlePFCs). But results were already close to the ones presented in

the main text (using a threshold of 1000 associated PFCs), with methane metabolism , ribosome

, carbon fixation in photosynthetic organisms and pentose phosphate pathway in the top 10 of

most selected pathways among hlePFCS. Keeping a threshold of 500 associated pathways, we

could even add the photosynthesis pathway to this list, which was the 7th most selected pathway

(641 associated pathways, 2.18% in hlePFCs). Using a threshold of 1000 associated pathways as

presented in the main text, we were able to focus only on the 62 most common pathways, which

were all making sense in a planktonic ecology context.

4.2.3 Discussion

4.2.3.1 Functional composition of prokaryotic plankton communities is driven by

interactions between multiple environmental factors rather than by single

variables

Building statistical models including 51 environmental variables to test for their effect on protein

functional clusters (PFCs) abundance, we were able to quantify the impact of each variable both

globally and in each individual random forest model. Our results hence give access to the most

influential predictors of 228,914 protein functional cluster’s abundances (see Data availability

section), while pushing towards a consideration of other variables in addition to temperature and

oxygen when studying prokaryotic communities functional composition. Indeed, water tempera-

ture is commonly presented as the most influential determinant of the taxonomic and functional

composition of prokaryotic communities (Sunagawa et al., 2015; Salazar et al., 2019; Delmont

et al., 2017). Here, we found temperature to be one of the best quantitative predictors of PFC

abundance. Still, it was determined as less important than other quantitative variables like iron,

carbonate or oxygen concentrations, but also salinity or bathymetry. However, when temperature

was the most important variable in a model, it highly increased abundance predictions accu-

racy (mean R2 values three times higher than the one over all models), showing how influential

this variable is on at least some ecosystemic functions. Among all environmental predictors,

Longhurst biogeographical provinces (Longhurst, 1998) were by far the most important variable in

our random forest models, and were well distinguished on the canonical correspondence analysis

(CCA) triplot (Figure 4.3). Longhurst provinces represent homogeneous areas both in terms of

physico-chemical and ecological conditions (Longhurst, 1998). Here we thus suggest that func-

tional composition is more impacted by interactions between multiple variables, than by one or a

few variables like it has been previously suggested (Sunagawa et al., 2015; Salazar et al., 2019).

This result adds to a similar observation made by a recent global biogeographical analysis of

planktonic communities, finding Longhurst biogeographical provinces to match the distribution

of viruses, bacteria and eukaryotes smaller than 20 µm (Richter et al., 2019). Sampling depth had
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among the lowest impacts on our regression models, confirming the weak differences in functional

composition between surface and deep chlorophyll maximum samples of picoplankton (Salazar

et al., 2019).

4.2.3.2 Identifying protein functional clusters and metabolic pathways associated

with particular environmental conditions

The identification of biogeographical provinces as best predictors of PFC’s abundance can be in-

terpreted as a consequence of the Baas Becking hypothesis ‘everything is everywhere, but the

environment selects’ (Wit and Bouvier, 2006; Fondi et al., 2016), which implies that all microbes

are potentially ubiquitous, but dominant taxa depend on the environmental niche. A precedent

study observed this pattern at the proteic level, by comparing protein families sampled in dif-

ferent ecosystems such as sea water, sludge water or soils, and showing that the ecosystem

type had more impact on protein families composition than geographical distance (Fondi et al.,

2016). Similarly, by identifying Longhurst biogeographical provinces to be the best predictors

of PFCs abundance, we verify that environmental niches are the most determinant drivers of

marine prokaryotic communities functional composition. However, the fact that 80.5% of our

PFCs showed poor responses to environmental conditions challenges the extent of applicability of

the Baas Becking hypothesis at the proteic level, at least within a single ecosystem. It could be

explained by the high decoupling observed between functional diversity and taxonomic diversity

among marine prokaryotic communities (Louca et al., 2016c). Indeed, functional redundancy

among prokaryotes can lead to stable functional diversity even with high taxonomic variability

(Louca et al., 2016b). In our analysis, we chose to focus on changes in communities functions

because it could lead to more stable abundance measures than when relying on taxonomic en-

tities, and provide thus more valuable information on the ecosystem functioning and associated

biogeochemical functions (Louca et al., 2016c; Salazar et al., 2019; Louca et al., 2016b).

Still, 19.5% of the PFCs were linked to environmental gradients, and 1.1% showed very strong

responses to particular environmental conditions. Among these 2,444 PFCs identified as highly

linked to environmental gradients (hlePFCs), we observed a clear distinction between the ones

associated with polar nutrient-rich waters and those abundant in tropical nutrient-poor ones,

which is coherent with classical observations in marine ecology (Faure et al., 2019; Ibarbalz

et al., 2019). Metabolic pathways like DNA replication or mismatch repair could be associated

with eutrophic conditions and colder waters (Figure 4.5), potentially reflecting the higher growth

potential and metabolic activity of micro-organisms in the eutrophic conditions of the polar sum-

mer (Alonso-Sáez et al., 2008). No particular metabolic pathway could be associated with warm

and oligotrophic waters, but proteins from two classes of Cyanobacteria were overrepresented in

hlePFCs abundant in these waters, which may reflect that cyanobacteria are particularly abundant

in tropical, nutrient-poor waters (Flombaum et al., 2013). Among commonly observed pathways,

methane metabolism, carbon fixation in photosynthetic organisms and carbon fixation pathways

in prokaryotes were three of the 4 most selected pathways in hlePFCs, and were correlated to a

wide range of physico-chemical conditions (Figure 4.7). Hence, such key biogeochemical func-
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tions are quite ubiquitously present in the global ocean, but can be achieved by different actors

and protein families depending on the environmental conditions. One exception was the nitro-

gen metabolism pathway, which was mainly associated with Pacific and North Atlantic samples,

corroborating results obtained with the same set of MAGs (Delmont et al., 2018).

More surprisingly, we identified Mediterranean samples as clear outliers, with an important part

of hlePFCs showing higher abundances in Mediterranean samples than elsewhere. These samples

were notably characterized by a relative over-abundance of metabolic functions like carotenoid

biosynthesis and flagellar assembly, and an over-abundance of proteins from MAGs of the Can-

didatus Marinimicrobia phylum, which is only composed of poorly known and yet uncultivable

bacteria of potentially high biogeochemical impact (Hawley et al., 2017). Our strongest hypothesis

to explain these patterns lies in the fact that the Mediterranean Sea is a semi-enclosed sea that

experienced multiple isolation and colonization events (Patarnello et al., 2007). For some pelagic

species, the strait of Gibraltar constitutes a phylogeographic barrier causing genetic contrasts

between Atlantic and Mediterranean populations (Patarnello et al., 2007; Lowe et al., 2012). Here,

we identified most Atlantic samples to be closer to Pacific ones than to Mediterranean ones in

terms of hlePFCs composition, at the exception of one which came from the mouth of the strait

of Gibraltar. Also, the Mediterranean Sea was the only biogeographical zone exhibiting a strong

over-abundance of locally assembled proteins. This way, hlePFCs overabundant in Mediterranean

samples shared only very few links with proteins from MAGs of other assemblies in our sequence

similarity network, highlighting their functional and taxonomical originality. We then propose

that the strait of Gibraltar and the Suez canal could shape the genetic and functional structure of

some planktonic prokaryotic populations, as it is observed in some eukaryotic species (Patarnello

et al., 2007; Lowe et al., 2012).

4.2.3.3 Mining the unknown to identify potential key organisms and proteins

The main originality of our approach is its ability to take into account both annotated and unan-

notated sequences. It enables the identification of PFCs composed of functionally unannotated

sequences, of taxonomically unannotated sequences, and of both, leading here to the inclusion

of at least 15% more proteins than methods excluding functionally unannotated sequences. By

including 7,834 PFCs corresponding to 20,552 protein sequences that could not be annotated

under the phylum level nor to a biological function, we propose an original way to highlight the

response of microbial dark matter abundance to environmental gradients. While a previous study

estimated that the inclusion of microbial dark matter sequences could increase by up to 58% the

amount of analysed sequences (Bernard et al., 2018), we provide here a pragmatic bioinformatic

pipeline which helps to extend our knowledge in environmental microbiology.

It is often proposed that most of the unidentified microbial diversity could come from rare organ-

isms, described as the ‘rare biosphere’, and which are considered as diversity reservoirs able to

respond rapidly to environmental changes (Logares et al., 2014; Lynch and Neufeld, 2015). Our

results partly corroborate this theory (see Detection of the rare biosphere), but we also found the

7,834 microbial dark matter PFCs to be relatively overabundant in 41% of our samples. This can
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be explained by the fact that 72.5% of the proteins from our microbial dark matter PFCs came

from Candidatus Marinimicrobia and Euryarcheota MAGs, two yet poorly studied and uncultivable

phyla identified as highly abundant in the global ocean, and potentially impacting biogeochemistry

(Hawley et al., 2017; Santoro et al., 2019; Francis et al., 2005).

Our analysis allowed to describe the biogeography of 183 functionally unannotated hlePFCs, which

might participate in metabolic pathways involved in functional responses to peculiar environmen-

tal conditions. They included 24 microbial dark matter hlePFCs, mainly found in Mediterranean

samples and related to Candidatus Marinimicrobia MAGs. Our method being applicable to any

set of sequences, we predict that an accumulation of similar results on multiple datasets will help

identify recurrent unannotated protein clusters linked to specific environmental niches (Wyman

et al., 2018). It could further help targeting wet lab studies towards the description of unknown

proteins particularly adapted to specific conditions, like subtropical nutrient-poor waters or oxy-

gen minimum zones (Hawley et al., 2017). However, functionally unannotated hlePFCs sometimes

contained proteins from only one MAG, and in this case their response to environmental gradi-

ents could be a reflection of the global abundance of this MAG instead of a real functional level

response. We then advise future wet lab investigations to mainly select PFCs involving proteins

from different MAGs. To pave the way for such further analyses, we have provided all nucleotide

sequences for each microbial dark matter PFC, as well as the statistics associated with their

response to environmental gradients (see Data availability).

4.2.3.4 Towards more global quantitative studies of meta-omics at the function

level

Statistical models in this study were based on the abundances of each PFC in 93 metagenomic

samples. For each random forest model, 75% of the samples (i.e. 70 samples) were used as a

training set. Even though each model was run 10 times on 10 distinct training sets, it remains

a relatively low amount of samples to do abundance predictions and extrapolations at the global

ocean scale (as a way of comparison, 181 samples allowed to predict diatoms abundance from

environmental data in a chinese river (Shin et al., 2019)). Hence, machine learning models were

not used to provide extrapolated predictions in this study, but to detect protein functional clusters

highly linked to environmental gradients and the main drivers of their biogeography. However,

as more and more omics datasets are collected in the global ocean (Salazar et al., 2019; Acinas

et al., 2019; Vorobev et al., 2020; Planes et al., 2019), we assume that similar approaches could

be conducted with much more samples in the near future, which should increase models’ perfor-

mances. By using less than 100 samples, we were nonetheless able to obtain 2,444 models with

R2 values over 0.5. It highlights the potential of such quantitative approaches for predicting the

abundance of key protein families in the global ocean. Moreover, our dataset was only composed

of metagenomics samples, when it is hypothesized that a big part of prokaryotic communities

response to environmental change comes from variations in gene expression (Moran et al., 2013).

This assumption was recently disputed (Salazar et al., 2019), but applying our method to meta-

transcriptomes in the future would allow to use the environmental context to predict protein
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expressions instead of metagenome sequence abundances, which could help improve the accu-

racy of models predictions.

In the future, biogeochemical modeling should benefit from our ability to quantify and predict

biological functions using environmental and omics data (Coles et al., 2017; Mock et al., 2016;

Stec et al., 2017; Tang and Cassar, 2019). Through our quantitative and data-driven analysis,

we have shown one illustration of how metagenomics data can be used without a priori choices of

taxon or metabolic function to (1) identify key environmental drivers of planktonic communities

functional composition, such as biogeographical provinces, (2) detect potential key protein families

and organisms with original biogeographies and (3) investigate the microbial dark matter response

to environmental fluctuations. We have then paved the way for more quantitative analysis taking

advantage of the richness of global omics datasets, both at the functional and taxonomic level,

which should in the long term increase our ability to better predict future global climate.

4.2.4 Methods

4.2.4.1 Samples collection and metagenome-assembled genomes (MAGs)

We focused our study on the 885 non-eukaryotic MAGs made publicly available (Delmont et al.,

2018). The whole bioinformatic workflow designed to build these MAGs, as well as all the links

leading to the fasta files and Anvi’o profiles for each MAG can be found at http://merenlab.org/

data/tara-oceans-mags/. These MAGs were built from 93 Tara Oceans metagenomes retrieved

from 61 surface samples and 32 deep chlorophyll maximum samples collected worldwide in

the global ocean, using a size filter targeting free-living microorganisms (0.2-3 µm). Original

metagenomes are available under the European Bioinformatics Institute (EBI) repository with

project ID ERP001736. To date, the work achieved by Delmont et al. 2018 constitutes the only

database of manually refined MAGs constructed using the Tara Oceans project data. Automated

binning efforts provided larger numbers of MAGs and focused on multiple size fractions (Tully

et al., 2018), but are subject to higher binning errors, causing sometimes obvious contigs mis-

placement (as discussed here: https://bjtully.github.io/posts/2018/10/re-visiting-tmed-mags/).

Further information on the MAGs’ genomic features, such as their completion or GC content, can

be found in the supplementary table 5 of Delmont et al. 2018.

4.2.4.2 Gene detection and quantification

Prodigal v2.6.3 (Hyatt et al., 2010) was run to retrieve the nucleotide and protein sequences of each

detected gene for each of the 885 MAGs. By concatenation, one nucleotide and one protein fasta

files were finally created, containing each in total 1,914,171 sequences. The nucleotide sequences

were then used for the mapping and quantification step (hereafter developed) whereas the protein

sequences were used for building the sequence similarity network (cf. next paragraph).

The nucleotide file was used as an index to quantify the MAGs’ genes abundance in the 93

metagenomes used by Delmont et al. for the MAGs binning process (Delmont et al., 2018). For this,
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we mapped metagenome reads to the MAGs gene catalog using the quant function from Salmon

v.0.11.3 (Patro et al., 2017) in quasi-mapping mode, with the following parameters ‘–libType A

–meta –incompatPrior 0.0 –seqBias –gcBias –biasSpeedSamp’. To normalize the obtained read

counts, we divided them by the gene length, and by the total of sequenced reads per sample, then

multiplied them by 10e9. The obtained value is analogous to an RNA-seq transcripts per million

value (TPM), except that TPM calculation is based on the total amount of reads that mapped to

the transcripts index, while we used here the total amount of reads that has been sequenced in

each sample (e.g. mapped + unmapped). In fact, the underlying assumption behind TPM and

other RNA-seq orientated normalizations is that all compared samples should come from similar

tissues, hence displaying a comparable number of mapped reads, which is incompatible with en-

vironmental metagenomics. Indeed, Tara Oceans samples contain variable quantities of biological

matter coming from different sampling in the global ocean, leading them to have very variable

amounts of total sequenced and mapped reads. Typically, if a sample has a high total number of

sequenced reads but a low number of mapped reads, it will still display high abundance values

for the few mapping reads when using the classic TPM normalization, while it would not be the

case with our method.

4.2.4.3 Building a Sequence Similarity Network (SSN) from 885 prokaryotic MAGs

A Sequence Similarity Network (SSN) is a graph object in which vertices correspond to sequences

and edges represent the similarity and coverage between pairs of sequences (Atkinson et al., 2009;

Meng et al., 2018; Lopez et al., 2015; Rizzolo et al., 2019). Diamond v0.8.22 was used in blastp

mode to compute the percentage of similarity between every pair of proteins detected in the MAGs,

using options ‘-e 1e-3 -p 30 –sensitive’. A sequence similarity network was built with the diamond

output using 80% identity and 80% coverage threshold. This coverage threshold is commonly used

in SSN studies (Meng et al., 2018; Lopez et al., 2015; Rizzolo et al., 2019) and we also tested 4

other similarity thresholds: 70%, 75%, 85% and 90%. We selected the intermediary 80% identity

threshold to minimize the amount of singletons, while maximizing the functional homogeneity

between linked proteins.

4.2.4.4 Extracting, annotating and quantifying protein functional clusters in the

Sequence Similarity Network (SSN)

A SSN is made of singletons (vertice or sequence without any homology with other sequences)

and connected components (subgraphs composed of at least two vertices disconnected from the

rest of the network). In our case, a connected component (CC) corresponds to a group of at

least two protein sequences that are linked together (directly or via neighbors), and that have no

link with other groups of sequences in the SSN. We assume that the proteins contained in a CC

potentially share a similar molecular function (Forster et al., 2015; Meng et al., 2018; Atkinson

et al., 2009; Rizzolo et al., 2019). The term “protein family” is often used to describe such clusters

of homologous proteins, but as this term is related to the description of evolutionary relationships,
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we here prefer the use of protein functional clusters (PFC).

Our SSN was composed of 233,756 protein functional clusters, including 757,457 proteins (i.e.

1,156,714 singletons were excluded from the analysis). These proteins were functionally annotated

using eggNOG mapper v4.5.1 (Huerta-Cepas et al., 2016, 2017) and KofamScan (Aramaki et al.,

2019). EggNOG emapper was run using the diamond mode and the –no_annot flag. It produced a

table containing seed orthologous sequences for 677,684 of our proteins (89.5%), the rest of them

not being similar enough from any sequence in the eggNOG database. The annotation phase was

then launched on these 677,684 proteins, using the seed orthologous sequences table as input

to the emapper function, and the –annotate_hits_table flag. We obtain an annotation table with

GO IDs, KEGG IDs, and eggNOG descriptions. KoFamScan was launched with default options

and -mapper flag. The KEGG API was then used to retrieve KEGG pathways ID and descriptions

for each KEGG ID identified by KoFamScan in our protein catalog. To assess for the functional

homogeneity in our protein functional clusters, we computed an homogeneity score Fhom:

Nannot > 1⇒ Fhom = 1 − Nannot
Nprot

Nannot == 1⇒ Fhom = 1

With Nannot the number of unique annotation terms found in the PFC (either KEGG IDs or eggNOG

terms), and Nprot the number of proteins in the PFC.

As multiple eggNOG terms can exist for similar functions (e.g. ‘UBA-ThiF-type NAD FAD binding

protein’ and ‘UBA-THIF-type NAD FAD binding’), they can lead to artifactually low homogeneity

scores. For this reason, protein functional clusters with low homogeneity scores obtained with

the EggNOG database were tagged as poorly homogeneous but were kept in the analysis.

Statistics on functionally unannotated PFCs presented in Table 1 and Table 2 include both (1)

query sequences that did not match to any reference in public databases, and (2) query sequences

that match to one or multiple references in public databases, but could not yet be associated to

any biological function.

To assess taxonomic diversity in our PFCs, we used the taxonomic annotation of the 885 MAGs

provided by Delmont et al. 2018. This taxonomic annotation was inferred from 43 single-copy

core genes through a combined use of CheckM (Parks et al., 2015), RAST (Aziz et al., 2008) and

manual BLAST searches (See Delmont et al. (2018) for further details).

We computed a mean abundance for each protein functional cluster in each of the 93 metagenomes,

using relative protein abundances (see Gene detection and quantification). We obtained an abun-

dance table composed of 233,756 rows, corresponding to protein functional clusters, and 93

columns, corresponding to the 93 Tara Oceans metagenomes used in the study.

4.2.4.5 Environmental dataset

For each of the 93 Tara Oceans metagenomes, we retrieved the environmental context from Faure

et al. (https://figshare.com/articles/Data_MixoBioGeo_Faure_et_al_2018/6715754) 2019. To com-

plete this environmental dataset, we added 10 climatology variables retrieved from the World

Ocean Atlas (Boyer et al., 2018): temperature, salinity, density, conductivity, dissolved oxygen,

percent oxygen saturation, apparent oxygen utilization, silicate, phosphate and nitrate. For tem-
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perature, salinity and conductivity we retrieved the mean and the mean seasonal anomaly at each

sampling point (precision of 1°) over the 2005-2012 period. Only the mean was retrieved for den-

sity. For the 6 other variables, we retrieved the mean and the mean seasonal anomaly at each

sampling point (precision of 1°) over all available years. In total, we obtained 74 environmental

variables, that we reduced to 51 by getting rid of near zero variance variables and too highly

correlated ones, using options “nzv” and “corr” from the preProcess function of the caret package

(Kuhn, 2008) in R (R Core Team, 2019). A detailed description of these variables is available in

Table S2 (Appendix C). We then scaled and centered the 51 selected environmental variables, and

used a k-nearest neighbours approach to replace NA values (6.6% of the data) by the mean of the

concerned variable in the 5 nearest samples in terms of global environmental profile (knnImpute

option from caret’s preProcess function (Kuhn, 2008)).

4.2.4.6 Identification of protein functional clusters varying along environmental

gradients

Among the 233,756 protein functional clusters, we detected 4,842 (2,1%) clusters with near zero

variance using caret preProcess function (Kuhn, 2008), i.e. they had less than 10% of abundance

values across all samples that were distinct, and a ratio between the most common abundance

value and the second most common one that was higher than 95 to 5. These clusters were

removed from further statistical analysis. We built a random forest regression model for each of the

remaining 228,914 protein functional clusters, using the environmental variables as predictors

of cluster relative abundance. To suppress eventual biases linked to over/underfitting due to

training set selection, each model was launched 10 times using 10 different training sets built

using 75% of the 93 samples available. For each iteration, i.e., for each pair of training set and

protein functional cluster, 500 trees were built. For each model, we computed the mean prediction

error over the 10 iterations, as well as the mean R2, and the mean rank of importance in the

model for each environmental predictor. The mean R2 was used to discriminate protein functional

clusters following significant environmental gradients from the ones showing no response to the

environmental context. Specifically, we considered every model with R2 values over the arbitrary

threshold of 0.5 to be very tightly linked to environmental gradients. Different thresholds ranging

from 0.25 to 0.75 were tried, thresholds higher than 0.5 tended to select a few hundreds of PFCs,

mainly the ones overabundant in the Mediterranean Sea, while too low thresholds tended to

diminish the R2 value and readability of the canonical correspondence analysis (cf next section).

All random forest models were launched using the randomForest R package (Liaw and Wiener,

2002).

4.2.4.7 Biogeography of protein functional clusters (PFCs) linked to environmental

gradients

We used a canonical correspondence analysis (CCA) to describe in a more integrated way the

relationships between PFCs and environmental variables. The CCA used the relative abundance
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table of all PFCs linked to environmental gradients (mean R2 of random forest regressions >

0.5) as response variables, and 13 selected environmental variables as explanatory variables:

biogeographical province, ocean region, season moment (i.e. early / middle / late), temperature,

depth of the euphotic zone, longitude, maximum sampling depth, optical backscattering coefficient

at 470nm, depth of the O2 minimum, calcite saturation state, fluorescence, NO3, chlorophyll A.

The 13 environmental variables were selected through a backward and forward stepwise selection

based on the AIC criterion (Legendre and Legendre, 1998).

Using positions of PFCs in the two first dimensions of the CCA space (37.65% of variance), we

computed a barycenter position for each metabolic pathway detected among PFCs (Figure 4.6).

Similarly, we computed barycenters for phyla, classes and genomic assemblies in the CCA space

(Figure 4.9, 4.7, 4.8). We also represented pathways distributions along each CCA axis using

boxplots, to help identify pathways that were the most characteristic of certain environmental

conditions (then represented in Figure 4.6). Finally, convex hulls englobing all PFCs associated

to a pathway were drawn for a selection of pathways corresponding to (1) pathways enriched

in cold and eutrophic waters, (2) pathways enriched in Mediterranean samples, (3) pathways

linked to inter-organisms interactions, (4) pathways associated to biogeochemical functions, and

(5) pathways composed of only unknown sequences (Figure 4.7).

Data availability

Instructions on how to build or download the MAGs used in this study are available at http:

//merenlab.org/data/tara-oceans-mags/. All other data used in this study are available at https:

//figshare.com/s/b33fc72a62db44b7192f. All bash and R codes necessary to reproduce our analysis

are available at https://github.com/EmileFaure/MAGsProteinFunctionalClusters.
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4.3 Conclusion: bridging the gap between observations and

modeling

The approach presented in this chapter and the preliminary results of section 3.2.2 both show

promising results of gene or protein functional clusters quantification and prediction using meta-

omics and environmental data. While section 3.2.2 focused on the a priori selected dmdA gene,

I presented in this chapter a method which enables to create protein functional clusters without

a priori, and analyze their biogeography. I showed how such protein functional clusters could

be related to functional traits and to taxonomy, the two of them not being completely decoupled

by this approach. Indeed, with the similarity and coverage thresholds that I used I showed that

metabolic functions could be associated to multiple distinct protein functional clusters, which

could correspond to proteins coding for the same function in distinct phylogenetic groups. This

specificity of our approach could be seen as a drawback compared to other options like the creation

of clusters based uniquely on functional annotation (e.g. by Kegg IDs like in Salazar et al. (2019)),

which theoretically allow to entirely decouple function from taxonomy (e.g. all sequences with

the same KEGG ID are found in the same cluster independently from their taxonomy in Salazar

et al. (2019)). However, these other approaches (1) do not include functional unknowns (or in

separate analysis) and (2) are heavily dependant on the used database, whereas our approach

includes unknowns and only depends on the similarity and coverage thresholds used in the

sequence similarity network, for which multiple sets of values can easily be compared, producing

functional clusters of different granularities. I believe it makes our approach more inclusive,

and thus more adapted to answer diverse questions by varying the thresholds of similarity and

coverage to push towards a decoupling of taxonomy and function (low thresholds), a coupling of

both (high thresholds), or an intermediate solution. In the following general discussion, I will come

back on the findings presented in chapters 2, 3 and 4, discussing their relevance for trait-based

approaches and particularly trait-based models, discussing their limits and proposing future ways

of improvements. I will propose ideas on how to concretely integrate these data-driven approaches

in trait-based modeling studies.
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Chapter 5

General discussion and perspectives

5.1 Detecting and quantifying functional traits using meta-

omics data

5.1.1 Summary of the principal results

Throughout this thesis, I demonstrated that the richness of meta-omics data allows to decipher

trait/environment associations, providing new insights on functional traits biogeographies. I

achieved this using 3 main methods: the annotation of metabarcoding data to detect a priori

selected traits in chapter 2, the quantification of a priori selected genomic markers in chapter 3,

and the quantification of gene functional clusters without any a priori choice of function or species

in chapter 4. All these methods were applied on data from the Tara Oceans project, but remain

applicable to any other meta-omics datasets.

In the introduction, I raised 3 scientific issues that served as the guidelines of my thesis work:

1. Can we use meta-omics data to detect functional traits from which the genomic basis is poorly

known?

In chapter 2, I showed how metabarcoding data allowed to detect mixotrophs in the global

ocean, despite the absence of genomic markers of mixotrophy. The results of this chapter

demonstrate that metabarcoding data can help to study the biogeography of any functional

trait, as long as a manual or database-based annotation of traits to metabarcodes is possi-

ble. However, this approach comes with quantitative limitations inherent to metabarcoding

data, on which I will come back later in this discussion (Section 5.1.2.1). This is why in

chapter 3, I presented how network-based approaches combined to wet lab investigations

might allow to detect genomic markers of functional traits. But the limited results obtained

when trying to identify genomic markers of mixotrophy during my thesis combined to the

few available in the literature so far tend to show that we might not be ready yet for the

quantification of some key complex traits in meta-omics data (See section 5.1.2.2).
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2. Can we use meta-omics data to predict the distribution of functional traits/genes in the envi-

ronment through statistical modeling?

Overall, the results presented in this thesis show meta-omics data as an efficient tool to

quantitatively describe the global distribution of plankton functional traits. In Chapter 2,

I showed how metabarcoding data could be used to decipher the biogeography of plankton

functional traits, by providing the first ever omics-based biogeography of mixotrophic pro-

tists. In chapter 3, I showed how machine learning methods could be used to predict the

gene abundance, transcript abundance and gene expression of an enzyme with a key bio-

geochemical role, only using environmental data as predictors. In chapter 4, I showed that

similar methods could be applied on hundred thousands of gene functional groups in just a

few days of computing, allowing to automatically identify gene functional groups responding

tightly to environmental gradients. Around 80% of the gene functional groups were only

poorly predictable from the environment, thus this second question remain open for many

genes and functions. Still, I provided in this thesis some clear evidence of the possibility

to use machine learning to model the response of gene functional groups to environmental

fluctuations.

3. Can the abundance of gene functional groups be quantified in meta-omics data without any

a priori choice of focal functions and/or species?

One of the main criticisms made to plankton functional types and gene functional groups

approaches lies in the necessity to a priori define functional types or groups without any

guarantee to represent the actual functional diversity of natural planktonic communities.

Focusing on the search for specific, pre-defined traits in meta-omics data seemed to repro-

duce the same flaw. Hence in chapter 4 I presented a network-based approach allowing to

define gene functional groups without any a priori choice of function or species. Through

this approach I showed that it was possible to make gene functional groups emerge from

meta-omics samples, and to quantify their abundance in the global ocean.

I will now highlight the remaining challenges regarding the detection and quantification of func-

tional traits in meta-omics data. Then, in the second part of this discussion, I will provide some

insights and ideas on how the richness of meta-omics data could be used to inform new kinds of

trait-based models.

5.1.2 Main challenges remaining to detect and quantify functional traits in

meta-omics data

5.1.2.1 The metabarcoding approach to study functional traits and its limits

Metabarcoding offers a relatively affordable and direct access to lists of present lineages in meta-

omics samples, and remain widely used in biodiversity surveys of natural planktonic communities

(Santoferrara, 2019). In Chapter 2, I manually annotated the mixotypes of 133 lineages, which

allowed to study their distribution in the global ocean. A similar approach was conducted by
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Ramond et al. (2018), who annotated a wider set of 30 biological traits to 2,007 taxonomic lineages

detected in metabarcoding data obtained from 277 water samples taken off the coastal North-

East Atlantic Ocean. This annotation allowed to (i) identify 6 functional groups corresponding

to lineages sharing similar traits, and (ii) quantify the functional diversity of coastal protistan

communities, identifying it as coupled to taxonomic diversity (Ramond et al., 2019). These results

and the ones presented in Chapter 2 both show the annotation of traits to lineages identified in

metabarcoding data as a promising tool to move towards more realistic diversity representations

in trait-based studies.

The main difficulty in applying this methodology lies in the annotation of potential traits to

metabarcodes and/or OTUs, which is time-consuming, and prone to oversights and mistakes.

However, this drawback might become less and less problematic in the years to come, as metabar-

coding databases such as EukRef (Del Campo et al., 2018) and PR2 (Guillou et al., 2013) start

to include potential functional trait information at the species level. The mixotrophy annotation

provided in chapter 2 should notably appear in the next PR2 database iteration, and Ramond

et al. (2018) recently published a metabarcoding database including the annotation of 30 func-

tional traits to more than 2000 protistan lineages (i.e. maximum and minimum size, klepto-

plastidy, coloniality, production of DMS,...). Integrating information from the many available trait

databases (a complete list of trait databases including traits from marine and freshwater species is

available in table 2 from Martini et al., in appendix A), which are mostly not yet related to metabar-

codes but only to taxonomic references, should allow for an increase in the amount of annotated

traits in metabarcoding databases. Although these trait databases might help to automatize the

metabarcode to trait annotation process, they are unfortunately marred with multiple flaws. The

first one is a clear bias in species representation, with for example only 9% of all UK demersal

(i.e. living near or on the bottom) marine fauna annotated with 8 fundamental functional traits in

online databases (body size, diet, feeding method, reproductive timing, fecundity, larval dispersal,

adult dispersal and longevity), with a clear difference in annotations between fish (median of 6

annotated traits) and invertebrates (median of 1 annotated trait, with body size being the most

frequently annotated one) (Tyler et al., 2012). The second main flaw of trait databases lies in the

lack of a common vocabulary across the different fields using trait-based approaches, and in the

heterogeneity of data formats and units (Schneider et al. (2019), see also paragraph 2.1 and 2.2 in

appendix A), making it difficult to compare and use multiple databases. Finally, metadata in trait

databases often poorly describe the methods and conditions in which the traits were measured.

But all these flaws are starting to be tackled by international initiatives like the open traits network

(Gallagher et al., 2019), and some of the major problems in using metabarcoding data to quantify

functional traits might rather come from the omics data themselves than from the databases.

The ability of metabarcoding to give a quantitatively accurate view of planktonic community is

quite debated (Lamb et al., 2019). In the past ten years, some studies showed strong relationships

between biomass and metabarcoding abundance (Hirai et al., 2015; Lindeque et al., 2013), but

others highlighted biases due to sequencing errors and to sometimes important rDNA copy number

variations across and even within species (e.g. radiolarians tend to have very high rDNA copy

numbers which could cause them to be overabundant in metabarcoding samples, Biard et al.
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(2017); Decelle et al. (2014)). Recently, a meta-analysis assessed the ability of metabarcoding

data to quantitatively estimate biomass using the data from 22 different projects, and found the

metabarcode abundance to be loosely related to biomass (slope of 0.52 in a linear regression), but

with very high variability (+/- 0.34 variance in slope) (Lamb et al., 2019). In addition to this quite

poor quantitative representation of diversity, it is important to note that metabarcode abundance

can only reflect biomass, and not the realization of functional traits. For example, metabarcoding

data can only tell whether lineages known to be capable of mixotrophy are present, but can not

give any indication on whether the lineages were feeding through mixotrophy at the moment of

sampling.

Other potential biases linked to metabarcoding that are commonly discussed in the literature in-

clude false positives (detection of a lineage that was not present in the sample) due to contamina-

tion or phylogenetically mixed OTUs, and false negatives (non-detection of a present lineage), due

to low abundance, incomplete extractions, primer mismatches or incomplete reference databases

(Santoferrara, 2019). Hence, metabarcoding can only give a biased estimate of species biomass,

and only for species that are present in metabarcodes databases, while metagenomics and meta-

transcriptomics offer access to gene and transcript abundance, which are potentially translatable

to trait realization (see Chapter 3). However, we have also shown that for complex traits like

mixotrophy, the way towards detection of genomic markers could be difficult.

5.1.2.2 Tackling the need for more genomic markers of functional traits

In chapter 3, I showed that enzymes coding for a simple functional trait could be quantified in

meta-omics data, and linked to environmental gradients. The dmdA enzyme was a good example

to display this, as it is very well conserved across organisms, and has a well known role in

DMSP catabolism (Curson et al., 2011), giving it the potential to be quantitatively linked to a

concrete functional trait. Similarly, the biology of the dinitrogen fixing nifH enzyme is well known,

and its abundance in meta-omics data was recently used to build a data-driven model of global

diazotrophs abundance (Tang and Cassar, 2019). These results illustrate well the benefits of

having access to well defined genomic markers for functional traits.

Trait-centred annotation tools

Recently, a new annotation tool called DRAM (Distilled and Refined Anotation of Metabolism) was

designed to specifically detect genomic markers of metabolic traits in genomes and metagenomes

(Shaffer et al., 2020). Crossing the functional annotations from 5 databases (Figure 5.1), this

tool automatically gives access to the list of metabolic traits in a genome or metagenome, along

with the FASTA files of the corresponding marker genes (Figure 5.1). The emergence of such trait-

centred annotation tools should be of great help for the detection of functional traits in meta-omics

data, allowing results from data-driven statistical models, like the one focusing on diazotrophs

presented in Tang and Cassar (2019) or the ones presented in Chapter 3, to be obtained on more

functional traits.

However, as I have exposed in chapter 3, genomic markers of complex traits are hard to detect
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Figure 5.1 – Towards trait-centred annotation algorithms: computational workflow of the DRAM
(Distilled and Refined Annotation of Metabolism) algorithm, extracted from Shaffer et al. (2020). The
user is asked to provide FASTA files of assembly-derived contigs, either binned into genome-resolved
data (e.g. MAGs or isolate genomes) or unbinned (e.g. metagenome contigs). The user can also
input taxonomic annotations and genome or MAGs completion files into DRAM, which will then be
included in output files. Prodigal (Hyatt et al., 2010) is used to call genes in the input file(s), before 5
databases are used to annotate them. Users can also add any annotation database of their choice.
In parallel, tRNA are detected using tRNAscan-SE (Lowe and Chan, 2016), as well as 5S, 16S and
23S rRNA fragments using barrnap (https://github.com/tseemann/barrnap). All these data are then
compiled into three files: the ’raw’ file corresponds to the ’classic’ output one would obtain from an
annotation software, the ’distillate’ file contains pathway-centric annotation and genome statistics,
and the ’product’ file is an html document indicating metabolic pathway coverage, electron transport
chain component completion and presence/absence of specific functions associated to functional
traits (e.g. methanogenesis).

and remain under-investigated. They are also hard to quantify considering that multiple loci and

genes are involved. Indeed, even if a panel of genes from multiple loci are identified as markers of

a specific trait, should we use the mean or median transcript abundance over all loci as a proxy for

trait realization? Or maybe build a statistical model to link loci abundance to trait value? These

questions remain open, and would need high quantities of data from specifically targeted wet-lab

studies in order to be answered.

High-throughput measurements of traits

We thus need to improve our ability to sequence meta-omics samples in controlled environments

(e.g. microcosms or mesocosms) with high numbers of replicates to obtain accurate quantita-

tive relationships between traits and omics content over time and changing conditions (Faust,

2019). High-throughput cultivation, i.e. simultaneous and automated cultivation of tens of mi-

crobial communities through minibioreactor arrays (Auchtung et al., 2015) or microfluidic flow
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cells (Pousti et al., 2018), was successfully applied on mock communities of prokaryotes from the

human gut, leading to accurate, data driven models of microbial interactions (Venturelli et al.,

2018; Hekstra and Leibler, 2012). In parallel, recent progresses in microfluidic greatly improved

our capacity to sort cells from aqueous environment based on their physiological properties, lead-

ing to the emergence of omics datasets sequenced from targeted single planktonic cells sorted

in-situ (Needham et al., 2019). Through high-throughput, in-lab sorting, it is possible to sort 200

to 500 cells per hour according to their functional properties based on the use of isotopic labels

on selected elements (Lee et al., 2019). Such high-throughput cell sorting techniques, associated

with high-throughput cultivation and measurement of trait values should improve our ability to

build omics datasets with high number of replicates, allowing to decipher the genomic basis of

multiple complex functional traits such as mixotrophy, body size, body shape, ability to remineral-

ize organic matter or coloniality. But such approaches will remain biased by the lack of inclusion

of yet unculturable organisms.

What about unculturable organisms?

Usually between 40 and 60% of sequences from metagenomes can not be linked to a function or

species, mostly issued from unculturable organisms (Bernard et al., 2018; Vanni et al., 2020). In

chapter 4, I did not discard the unknown sequences, and even particularly focused my attention

on them, using a sequence similarity network to group them with known and other unknown

sequences into protein functional clusters. Sequence similarity networks were used to directly

infer functions of unknown sequences, but it now appears evident that more will be needed to

decipher the globality of the dark side of omics (Arnold, 2018; Vanni et al., 2020). Very recently,

a new bioinformatic tool was proposed with the aim to build a link between known and unknown

genes from meta-omics data (Figure 5.2, Vanni et al. (2020)). Their approach combines gene clus-

tering based on similarity and the use of metadata like co-expression, phylogenetic relatedness,

biogeographical distribution or wet-lab experimental knowledge (Figure 5.2). In 1,749 microbial

metagenomes from marine and human environment where only 44% of the genes could be anno-

tated through Pfam, AGNOSTOS was able to annotate 70% of them, while identifying key lineages

responsible for most of the remaining unknown part of genes, e.g. the newly described Cand.

Riflebacteria and Cand. Patescibacteria (Vanni et al., 2020). This shows how the accumulation of

data and observations on cultivated organisms and uncultivated organisms can be combined into

frameworks allowing to make sens of the unknown, and ultimately get a better grasp of planktonic

functional diversity.

We might not be ready yet for the use of omics data to implement complex traits in mechanistically

realist biogeochemical models, or even to make accurate quantitative predictions of complex traits

realization. But the results of this thesis and the promising works that I have discussed in this

section emphasize the important progresses made in this domain in the past decade. Putting

a strong focus on the biology and genomics of complex traits, which should also help to better

understand the dark side of omics, appears essential to better understand and model functional

diversity. In parallel, we must bridge the gap between observations and biogeochemical models,

to be able to better integrate our knowledge on diversity into modeling frames.
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Figure 5.2 – Computational workflow of AGNOSTOS, a tool for shedding light on the dark side of
omics, from (Vanni et al., 2020). The idea is to bridge the known coding sequences with unknown
coding sequences using sequence composition, domain architecture and remote homology (i.e. indi-
rect homology) to build a database (DB) of gene clusters (GC). The clusters are then complemented
by meta-data such as levels of expression in metatranscriptomes, abundance in metagenomes, phy-
logenetic origin or environmental range to diffuse (or not) functional and/or taxonomic annotations
from known sequences to unknown sequences in each cluster. Overall, the pipeline uses as many
information as we have on the known coding sequence space to draw information on the unknown
coding sequence space.

5.2 How to bridge the gap between observations and biogeo-

chemical models ?

In the introduction of this thesis, I highlighted the gap between observed (i.e. measured in-situ)

and modeled functional diversity of plankton communities and its potential impacts on model

predictions. In this section, I will present a few leads on how to bridge this gap using meta-omics

data.

5.2.1 Using omics data to validate trait-based models

Trait-based models are hard to confront with most types of in-situ observations, as traits transcend

taxonomy to focus on function, which is hard to measure at community-level. New types of data

such as meta-omics, but also high-throughput imaging and satellite imagery now offer chances

to make in-situ measures at the trait-level in planktonic communities (e.g. dmdA measures of

Chapter 3, or automated detection of planktonic organisms attributes through machine learning

treatment of in-situ images (Luo et al., 2018)). But most of these data come from cruises in which

samples are taken in ’snapshots’, i.e. at one point in space and time, while global biogeochemical

models are usually run over at the scale of decades (e.g. 20 years runs for Coles et al. (2017),

10 years runs for Follows et al. (2007)). This discrepancy between the time scales of observations
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and models makes it hard to compare direct measures with model outputs. Coles et al. (2017)

managed to do it, taking advantage of using gene functional groups as model agents to compare

the abundance of two well known genes in their model and in meta-omics samples. But the

approach remained limited in the sense that the model had for goal to give a broad overview of

prokaryotic plankton functional diversity over the whole Amazon river plume region, while the

scarce number of snapshot meta-omics samples available for model validation only covered a very

small spatio-temporal range (each sample corresponding to a maximal temporal range of a few

days spent in a space of a few square kilometers). Hence, it appears to me that the best way to

validate model outputs with omics data would be to derive general statistical relationships from

observations, similar to general ecological laws, that could then be used as guidelines to check

model outputs, instead of ’point to point’ comparisons.

Chapters 3 and 4 illustrate well how the richness of meta-omics datasets can allow to derive strong

statistical relationships from observations at global scale. Such strong relationships, whether it be

between markers of different traits or between markers of a functional trait and the environment,

offer a chance to better validate model outputs with observations. Indeed, the verification of the

observed relationship in the model could serve as a kind of validation. To go further, we could

imagine using correlative models based on these relationships, inspired from the niche modelling

approach, that could give access to global maps of traits distribution on spatio-temporal scales

similar to classic biogeochemical models (Figure 5.3). For example, the study by Tang and Cassar

(2019) provide such a data-driven global scale model of diazotrophs abundance, and could help

to validate the outputs of biogeochemical models including diazotrophs, and even help to identify

the zones of good and poor performances from both models.

5.2.2 Using omics data to model individual functional traits

Trait-based models rely on the description of trade-offs between functional traits, that define the

parameters of individual-level processes such as mortality, or the acquisition and allocation of

resources (Kiørboe et al., 2018). Such trade-offs are often defined empirically, thus on limited

numbers of species, and would benefit from more mechanistic descriptions, allowing for a more

general applicability (Kiørboe et al., 2018). Omics data could help to better define trade-offs in

two ways: (i) by providing more general empirical evidence of trade-offs than wet-lab experiments

through global scale sampling, and (ii) by allowing to compute metabolic networks leading to the

identification of trade-offs in a mechanistic manner, through metabolic modeling.

In this thesis, I mainly focused on building statistical relationships between functional marker

genes and the environment, but similar approaches can be used to decipher links between genes

responsible for different functions. For example, Salazar et al. (2019) identified dmdA transcript

abundance to be significantly anti-correlated to cysN and cysD transcript abundances, two en-

zymes involved in the assimilatory sulfate reduction pathway. This supposes a trade-off between

the use of sulfate and DMSP as a source for sulfur in prokaryotes (Salazar et al., 2019). Hence,

when marker genes are available for different traits, meta-omics data offer the chance to test for

trade-offs between them using publicly available, large scale datasets.
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Figure 5.3 – Concept of correlative models, illustrated with the dmdA metagenomics sequence abun-
dance predictions obtained in chapter 3. Observations from oceanographic cruises, satellite imaging,
remotely operated underwater vehicles, and global circulation models can be used to obtain global
maps of environmental variables. These data can then be used as predictors of sequence abun-
dance for specific genes or organisms through machine learning algorithms or bayesian network
approaches. The statistical model used as an illustration here was presented in chapter 3, and
allowed to predict dmdA sequence abundance in metagenomics samples using 5 variables: Ocean
region, is the sample from polar or non polar area, temperature, depth and chlorophyll a. chapter
The illustration used for global scale predictions was taken from Sonnewald et al. (2020).

Models using genome-scale metabolic reconstruction include flux-balance analysis models (Steuer

et al., 2012; Budinich et al., 2017), as presented in the introduction, and more recently a new

generation of resource allocation models (Reimers et al., 2017; Sharma and Steuer, 2019). These

two types of models are similar in the sense that they are based on genome-scale reconstruc-

tion of metabolic networks, and the evolutionary optimality principle, i.e. the assumption that

all metabolic fluxes are set to obtain the maximal growth rate, or maximal fitness (Sharma and

Steuer, 2019). Resource allocation models are based on the idea that for a cell in a given environ-

mental condition, the acquired resources can be allocated either to non-enzymatic components,

or to the translation of catalysing enzymes, which will define the rates of metabolic reactions in

the cell (Sharma and Steuer, 2019). All reactions modeled in the cell are then bounded by the

availability of the corresponding catalyzing enzyme, which is defined by the amount of resources

spent in the translation of the enzyme. The model can then be optimized in order to select the

resource allocation option that leads to the maximal growth rate (Reimers et al., 2017; Sharma

and Steuer, 2019). The modeled cells can adopt different allocation strategies depending on the

environmental conditions, and such strategies ’automatically’ emerge from the model structure.

Resource allocation models can thus predict the physiological behaviour of bacterial cells in dif-
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ferent environments (Sharma and Steuer, 2019), in the presence of multiple competing nutrients

(Wang et al., 2019b), and model outputs allow to identify intra-cellular trade-offs leading to the

choice of one strategy or the other (Sharma and Steuer, 2019; Reimers et al., 2017).

= can be obtained from metabolic modeling

Figure 5.4 – The principles of trait-based approaches, and what metabolic modeling can bring to the
table, modified from Kiørboe et al. (2018). The figure depicts how individual-level processes can be
derived from traits through the definition of trade-offs between traits. Large scale community-level
functional attributes can then be defined as a function of the available traits and the environmental
context. Yellow boxes and arrows were added to the original figure to highlight where metabolic
modeling could be of help. Please note that the modifications made on this figure only apply to
well known unicellular organisms, at least for now (see main text). Metabolic modeling allows to
detect resource acquisition traits from genomic content, and to derive all related metabolic costs and
affinities through mechanistically realist modelling of intra-cellular trade-offs. Most defence traits,
like the production of toxin, or the building of siliceous or calcareous shells can be derived from
genomic contents. However, their influence on mortality does not depend exclusively on metabolism,
but mainly on the impact of such defence strategies on ecological interactions like predation, which
can hardly be derived from metabolic modeling. In most metabolic models, cell size and density are
fixed, thus cell size was not highlighted as derivable from metabolic modeling here. Nevertheless,
the trade offs linked with the impact of different cell sizes on metabolic costs and nutrient affinities
can already be explored through metabolic modeling. Metabolic modeling could then help to define
a data-driven set of optimal traits, and the corresponding trait distribution.

Kiørboe et al. (2018) proposed that three categories of functional traits were essential to any trait-

based approach: resource acquisition traits, defense traits, and size-related traits (Figure 5.4).

Figure 5.4 summarizes what metabolic models, i.e. models based on genome-scale metabolic

reconstruction, including flux-balance analysis and resource allocation models, can bring to such

classic trade-based approaches. But as stated in the introduction, such models are heavily limited

by data availability. For example, the biochemical resource allocation model approach presented

by Sharma and Steuer (2019) needs not only the list and nucleotidic composition of each catalyzing

enzyme of the modeled organism, but also quantitative information on their activity. While the
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authors advocate that "reasonable estimates for all required parameters exist" (Sharma and Steuer,

2019), it might not be the case for unicellular eukaryotes, and it is obviously not the case for

multicellular organisms, for which these types of approaches have not yet been adapted. It then

appears necessary to focus on better understanding the genomic and metabolic basis of functional

diversity for these promising modeling approaches to become more widely applicable, through

approaches like the ones presented in chapter 3 and 4, or the creation and general use of tools

like AGNOSTOS (Vanni et al., 2020).

I have discussed here the potential contributions of omics data to the modeling of functional traits.

But as shown in the introduction, most of the global biogeochemical models including explicit

representations of planktonic diversity rely on functional entities such as plankton functional

types or gene functional groups. In the next paragraph, I will discuss how omics and meta-omics

data might be used to better represent plankton functional diversity in such models.

5.2.3 Using omics data to improve plankton functional diversity represen-

tation in models

Until now, plankton functional type (PFT) models have always been built through a priori selec-

tions of the model agents, often with a strong focus on their biogeochemical impacts, rather than

their biological and ecological attributes (Flynn et al., 2015). The gene functional groups approach

allowed to bypass the association that often remain between PFTs and taxonomy, but remain for

now based on an a priori selection of the modeled gene groups (Coles et al., 2017). In theory, the

advent of omics data offer ways of including a more realistic view of plankton functional diversity

in ecosystem models, through the detection of in-situ functional traits and metabolic functions

(Chapter 2 and 3) or even gene functional groups (Chapter 4), but also through the automatic

biogeochemical characterization of genomes (Shaffer et al., 2020), and the functional characteri-

zation of uncultivated fractions of planktonic communities (Vanni et al., 2020). It potentially offers

the opportunity to build plankton ecosystem models with data-driven definition of agents. But

increasing diversity and agent number rhymes with increasing model complexity, and trait-based

approaches were introduced to reduce complexity compared to species-based approaches, when

the original PFT models with 10 to 15 PFT were already deemed as too complex (Frede Thingstad

et al., 2010). Here I will discuss some ideas on how omics data could be used in a reasonable way

to better represent planktonic diversity within biogeochemical models.

In ’classic’ PFT models, each PFT is represented by a single differential equation. This equation

represent the sum of source terms (e.g. reproduction, growth), minus the sum of sink terms

(e.g. mortality, predation). Such equations include the definition of a growth rate, often de-

pendent on parameters like maximum growth rate, temperature dependence of growth, and for

autotrophs light dependence of growth (Aumont et al., 2003). Such parameters are derived from

wet-lab experiments based on one or a few species deemed as representative of the concerned PFT

(Le Quéré et al., 2005). Hence, when a proposition of adding more diversity (e.g. more variables,

i.e. more PFTs) into biogeochemical models is made, the parameterization is automatically raised
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as problematic. In parallel, the fact that parameters in PFT models remain quite heavily biased

towards culturable organisms is quite problematic as well, and the idea of generalizing such pa-

rameters across a whole group of taxonomically diverse organisms (e.g. the proto-zooplankton

PFT in Le Quéré et al. (2005), which notably includes cilliates and dinoflagellates) is biologically

doubtful (Flynn et al., 2015).

Deriving parameters from genome-scale metabolic networks

Already evoked in the precedent section, genome-scale reconstruction of metabolic networks

and their associated modeling approaches offer the possibility to derive environment dependent

metabolic rates directly from omics data (Budinich et al., 2017; Steuer et al., 2012; Sharma

and Steuer, 2019; Reimers et al., 2017). Hence, in a more classic modeling context, relying

on metabolic modeling for the parameterization of growth rates, nutrient exchange rates and

biogeochemistry-related rates seems possible. Of course, it would probably only be applicable

on prokaryotes and simple traits for now (e.g. DMS production or diazotrophy, See precedent

section). Still, the advent of MAGs theoretically allows to apply genome-scale reconstruction of

metabolic networks on a great diversity of plankton organisms, and the combination of such net-

works with innovative annotation tools like DRAM (Shaffer et al., 2020) or AGNOSTOS (Vanni et al.,

2020) could be used in conjunction to automatically derive the sets of parameters representing

the physiology of a very wide diversity of organisms. In fact, considering the poor representation of

prokaryotes in many PFT models (e.g. no prokaryotes explicitly included in Aumont et al. (2003),

where the remineralization rate varies only with depth), even a small step towards more data-

driven prokaryotic diversity representation could be significant (Coles and Hood, 2016), notably

concerning remineralization estimates (Miki et al., 2008).

Using network-based approaches to define ecological interactions

PFT models also include parameters and functional response curves (e.g., Holling type (Holling,

1959; Gentleman et al., 2003)) representing ecological interactions between the different functional

types, mostly focusing on predation in current models, but that could ideally include more complex

interactions like parasitism and symbiosis as well (Worden et al., 2015). Reconstructions of food

webs in models depend mostly on parameters such as maximum grazing rates and preference for

different kinds and sizes of preys, which are hard to measure and thus often broadly estimated

from wet-lab experiments and allometric relationships (Aumont et al., 2003; Le Quéré et al., 2005).

The definition of such parameters can become particularly problematic when the number of PFTs

increase. One way to limit this problem is the use of allometric relationships to define size-

dependant parameters (e.g. Ward et al. (2012)). However, such models still rely on the classical

PFT approach.

Meta-omics data could help to resolve this issue through the use of co-occurrence networks and

machine learning. Co-occurrence networks are graphs in which nodes correspond to biological

entities (e.g. lineages, OTUs or amplicon sequence variants), and links to a measure reflecting the

co-occurrence between them (Figure 5.5). The construction of such networks in the light of the

environmental context can lead to the identification of significant positive and negative associa-

tions between biological identities, which can be interpreted as ecological interactions (Faust and
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Raes, 2012; Lima-Mendez et al., 2015; Berry and Widder, 2014). For example, a co-occurrence

network based on metabarcoding and metagenomics data from Tara Oceans allowed to draw hypo-

thetic ecological interactions between more than 9,000 taxa, including some unknown symbiotic

relations which were validated in parallel by imagery data (Lima-Mendez et al., 2015). But inter-

pretations of interactions are not straight forward, and a positive interaction could be interpreted

as cross-feeding, co-aggregation in biofilms or niche overlap among other possibilities, while a

negative interaction could be explained by a predator-prey relationship, but also amensalism,

competition, etc. (Faust and Raes, 2012).

Figure 5.5 – Co-occurrence networks to decipher ecological interactions in microbial populations,
extracted from Faust and Raes (2012). (a) Co-occurence networks are built from presence/absence
or abundance matrices, with biological entities in rows, and samples in columns. Adding environ-
mental factors in rows along with biological identities allows to better distinguish in the network if
interactions are due to similar responses to environmental gradients, or to ’true’ direct or indirect
ecological interactions. (b) From the incidence or abundance matrix, it is possible to base the con-
struction of the network on a matrix of similarity or dissimilarity, but the use of multiple regressions
is preferable as it allows to directly detect associations between more than two biological entities
at the time. Cross-validated penalized regressions (similar to the ones conducted on dmdA data in
Chapter 3) are often preferred to classic regressions to avoid over-fitting. Species with the highest
co-occurrence are given the highest score. (c) The scoring step is repeated multiple times on ran-
domized data, to obtain a Gaussian of score distribution. It allows to compute for each relationship
the probability of obtaining a score equal or higher to the observed one by chance, or p-value. (d)
Pairs of biological entities with p-value inferior to a selected threshold are drawn as links to form the
co-occurrence network. Link width and color can reflect the strength and sign of the relationship.

Overall, the inference of ecological interactions from co-occurrence networks is based on the

hypothesis that ecological interactions are the first driver of species occurrences, which is of

course debatable (Faust and Raes, 2012; Freilich et al., 2018). Hence, multiple studies aimed at

testing the ability of co-occurrence networks to detect real non-trophic and trophic interactions.

Berry and Widder (2014) used a simulated microbial community to build a co-occurrence network,

and showed that it was able to retrieve ecological interactions when following some guide rules.

These rules included for instance: the removal of infrequent taxa, the inclusion of more than 25

samples (and as many as possible), only coming from similar environments (at least from the same
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ecosystem type), or the use of corrections on relative abundances to avoid apparent correlations.

One important flaw of this study is that they assumed all species of the simulated community to

be efficiently sampled and quantified, which is probably often not the case in ’real’ data. Freilich

et al. (2018) used a different approach, as they relied on a heavily-studied ecological interaction

network derived from long-term observations as reference, and tested the ability of co-occurrence

data to retrieve the full network. They found a very poor overlap between links of the ’real’

network (from which the quality and completeness is difficult to assess) and the one derived from

the co-occurrence network (Freilich et al., 2018). However, their construction of the co-occurrence

network appeared quite poor: they did not remove infrequent species, used only presence/absence

instead of absolute or even corrected relative abundance, and most importantly included only

the tide level as an environmental factor despite using samples from 49 different sites, sampled

unevenly and possibly in different seasons (not precised in the manuscript) during a 15 years

period (Freilich et al., 2018). It is then still difficult to estimate whether co-occurrence networks

can or can not reflect ecological interactions. But here again, genome-scale reconstruction of

metabolic networks might be of help. Indeed, Freilich et al. (2011)1 demonstrated that metabolic

models offered the opportunity to predict competition and cooperation between prokaryotes. They

used 118 genome-scale metabolic networks, and predicted the metabolic interactions for each of

the 6903 corresponding species pairs based on their metabolic needs, using methods described in

(Stolyar et al., 2007). Thus, co-occurrence networks ability to retrieve ecological interactions could

be tremendously increased by using full genomes or MAGs abundance instead of metabarcoding

data or presence/absence. It would allow to integrate information from metabolic modeling and

full genome trait-centered annotations into the classic network inference frameworks.

How many plankton groups should be included ?

Meta-omics data could then improve planktonic diversity representation into models by providing

the ability to make data-driven choices of model actors, and by facilitating the parameterization

steps. But even in a case where the parameterization of a ’realistic’ diversity of PFTs would

not be problematic, the model complexity would cause (i) computational power issues and (ii)

difficulties to understand the model behaviour, making it difficult to use the model as a tool

for answering ecological questions. It then appears absolutely necessary for any biogeochemical

model including a data-driven description of planktonic diversity to include an aggregation step,

like illustrated in Figure 5.6. The idea would be to start with complete genomes, MAGs or MGTs,

and combine information from annotation tools, metabolic models, co-occurence networks and

omics-based biogeographies to detect genomes homogeneous in function and sharing similar

niches, that could then be aggregated into functional types. Biochemical resource allocation

models allow to aggregate metabolic networks into simplified, coarse-grained networks, which

could help to obtain parameters at the aggregated functional group level (Sharma and Steuer,

2019). Algorithms to automatically reduce metabolic networks to coarse-grained models also

exist (Erdrich et al., 2015). Of course, the method for aggregating the functional groups based on

the blending of such different types of information would not be straight forward. I would advocate

1Shiri Freilich, first author of Freilich et al. (2011), and Mara Freilich, first author of Freilich et al. (2018)
are different persons.
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Figure 5.6 – Conceptual scheme of a solution for integrating multiple types of data and models to
improve the representation of planktonic diversity in models. This scheme focuses on near complete
genomes and transcriptomes, which can be obtained from culture but also from meta-omics data for
metagenome-assembled genomes (MAGs) and metagenomics-based transcriptomes (MGTs). Each
genome and/or transcriptome can be functionally annotated, notably via tools specifically targeting
biogeochemical functions like the recent DRAM algorithm (Shaffer et al., 2020). Metabolic rates can
be extracted from them through metabolic network reconstruction, or resource allocation models like
the biochemical resource allocation model proposed by Sharma and Steuer (2019). Co-occurrence
networks can be used on the genomes and transcriptomes abundance to determine potential antag-
onistic or mutualistic interactions between them (Lima-Mendez et al., 2015). Finally, I demonstrated
in this thesis how statistical analyses and machine learning could help to decipher the functional
and taxonomic response to environmental gradients. This information could serve as a way to ag-
gregate genomes and transcriptomes that are sharing similar metabolims, ecological interactions
and response to environment through multivariate network analysis (see main text). To my knowl-
edge, this has not yet been done. Such aggregated genomes and transcriptomes would be analog
to functional groups, and could be integrated into different types of models, PFT like models but
also correlative models like presented in figure 5.7 (replacing gene clusters), and models involving
adaptive dynamics to simulate evolutive adaptation.

for the use of hierarchical classifiers, unsupervised clustering and similarity networks for each

separated type of information. For example, functional similarity scores could be computed based

on the number of complete KEGG pathways shared between MAGs, and these scores could be

used to compute a functional similarity network of MAGs from which functional clusters could be

derived (using connected components as in Chapter 4, or using Louvain clustering for example).

In parallel, clusters of MAGs with similar response to the environmental context could be obtained

from an unsupervised clustering of their coordinates in an RDA multidimensional space. This step

could be followed by a comparison of the genome clusters found for each information type, with

the aim to detect MAGs that appear in the same cluster for multiple information types. Ideally,

depending on the thresholds applied during the aggregation step, the model obtained could have a

more or less coarse representation of diversity, enabling to answer a variety of different ecological

questions, but always with a data-driven start.
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Challenges and limits

The modeling approach proposed in this section would have flaws like the heavy computational

power needed, the probably heavy dependence on the data used as inputs, on the tools used for

the pre-aggregation steps, and on the methods used for the aggregation step itself. As discussed in

the precedent paragraph, the detection of ecological interactions through co-occurrence networks

is still heavily debated and should definitely be improved. Also, after discussing with experts of

metabolic network modeling about the current state of the field, it appears that such an approach

could maybe be applicable on prokaryotes, focusing on well known metabolic reactions, but prob-

ably not yet on eukaryotes. Considering the recent advances presented in this discussion and the

only recent first applications of systems biology approaches in planktonic ecology, I believe that

we can hope for important progresses in the domains of genome-scale metabolic modeling and

network-based community ecology in the years to come, which will be key for integrating realistic

planktonic diversity into biogeochemical models. But integrating such a realistic diversity in ’clas-

sic’ PFT modeling frameworks would not allow to take full advantage of the available data, as it

would lead to a ’fixed’ representation of biodiversity, not including any representation of acclima-

tion or evolutive adaptation in biogeochemical models (Flynn et al., 2015). Considering that many

biogeochemical models are used over long time scale for climate predictions (Ciais et al., 2013),

the integration of multiple modeling types seems essential for a better understanding of the role

of microbial diversity in future oceans (Song et al., 2014; Flynn et al., 2015; D’Alelio et al., 2019).

5.2.4 Integrating multiple types of models to understand the role of micro-

bial diversity in biogeochemical cycles

The idea of integrating multiple types of modeling was proposed in most review papers focusing

on the future of biogeochemical models (Song et al., 2014; Flynn et al., 2015; D’Alelio et al., 2019;

Allen and Polimene, 2011). The four most frequently evoked types of models are: trait-based

models, Lotka-Volterra derived models (PFT models being mixed between trait-based and general-

ized Lotka-Volterra models), correlative/regression-based/species distribution models, and game

theory/adaptive dynamics models. The results presented in this thesis notably pushes towards

the creation of biogeochemical models inspired from correlative models (Figure 5.7).

Chapters 3 and 4 focused on the predictability of functional gene clusters abundance from the

environmental context, providing some encouraging results. Tang and Cassar (2019) provided

other compelling evidence of the possibility to use omics and environmental data to predict the

abundance of functional gene clusters. What lacks from both this study and my results is a way

to quantitatively link functional genes to biogeochemically meaningful trait realization measures.

A recent study focusing on plant traits was able to achieve this through a bayesian network

approach (Guadagno et al., 2020). Their approach relied on transcriptomic data from controlled

experiments that were coupled to measures of three traits in specimens of the globally cultivated

crop Brassica rapa: assimilation rate, photosystem efficiency and stomatal conductance. Traits

measures and leaf tissue samples for transcriptomic analysis were taken every four hours during
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Figure 5.7 – Linking environmental context to biogeochemical (BGC) outputs through gene predic-
tions. In-situ meta-omics and environmental data allow to link the environmental context with
genomic and/or transcriptomic abundance. Here I propose to treat these abundance at the func-
tional gene cluster level but it could also be possible to use non-clustered sequence abundance.
Wet lab experiments allow to link genomic and transcriptomic abundances to biogeochemical fluxes
(BGC output). The dotted arrow indicates the potential use of genomic and transcriptomic abun-
dance of some functional gene clusters to predict the one of other related clusters in the case of
clusters with significantly correlated or anti-correlated abundances. This could improve predictions
while including some kind of ecological interactions in the model (e.g. gene clusters that come from
antagonistic species should be anti-correlated in co-occurrence networks, and would not be pre-
dicted in high proportions in the same samples). The environmental context could be obtained from
a general circulation model (cf figure 5.3), and the biogeochemical outputs could in turn influence
elemental fluxes in the model, creating a correlative biogeochemical model. Illustrations were taken
from Guadagno et al. (2020), Guidi et al. (2016) and (Steuer et al., 2012).

a period of 48h, sequencing was achieved using Illumina HiSeq and reads were aligned to a

previsouly published reference genome of B. rapa (Wang et al., 2011). These coupled measures

were used to build a bayesian network, i.e. a graph where nodes are variables (here including

both trait measures and transcript abundances), and links are their conditional dependencies.

Such a network then describes the probabilistic relationships between transcript abundances and

realized traits. The network built in Guadagno et al. (2020) was able to predict trait realization

from the abundance of transcripts, while capturing the uncertainty of both the biological system

and the measures. Such an approach could be used on planktonic organisms, especially with

the recent progresses in microfluidics and high-throughput cultivation (Needham et al., 2019;

Lee et al., 2019; Faust, 2019). The combination of such an approach with metabolic networks

modeling, machine learning, and the methods used in this thesis could allow for the construction

of probabilistic biogeochemical models including a biological layer (e.g. the Gene clusters layer in

Figure 5.7). This biological layer could be removed to directly try to predict the trait realization

from the environment, as in Tang et al. (2019), where they attempted to predict nitrogen fixation

rate from environmental conditions without predicting diazotrophs abundance. But the presence

of a biological layer allows (i) to confront model outputs to observations from meta-omics datasets

in order to control model performance, and (ii) to take into account the positive and negative
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correlations between gene clusters to predict the trait output, which allows to include some kind

of biological feedback in the model and could greatly improve its performance.

Such models would be reasonable in terms of computational power, especially compared to models

based on hundreds of differential equations. They would allow to take advantage of all the richness

of the data available, as there is no need to pre-select markers or to use aggregation steps. In

fact, such a method could even include gene clusters of unknown functions, if they appear as

statistically linked to a trait and/or environmental conditions. Genomic markers of both simple

and complex traits might then emerge from the construction of such models. Finally, this approach

would allow to take into account the effects of environmental variations on trait realization, and

to estimate the uncertainty of model outputs at every step, which is not doable with a classic ’PFT’

model. This approach would then be quite complementary to more classic trait-based and PFT

approaches.

An important drawback of such an approach resides in the absence of explicit representations of

ecological interactions such as grazing, and in the absence of representation of population stocks,

which can be important for decision makers. Also, many technical challenges regarding the

construction of such models remain. Notably, in order to derive trait values from transcriptomic

composition on a significant set of different traits, we would need large amounts of data from

specifically designed wet-labs experiments, which do not exist for now. Our results of Chapter 4

also suppose that some functional genes might not be well predicted by the environment, at least

through the metagenomics data that we used. More studies using similar approaches should then

be conducted before focusing our efforts on the actual modeling process.

Among the four types of models that I evoked at the beginning of this section, adaptive dynamics

models are the only ones that I have not yet discussed. Multiple clear evidences exist of rapid

adaptation (e.g. inter-generational change (evolution) to inherited traits involving changes to the

DNA sequence; Flynn et al. (2015)) of planktonic organisms to environmental changes, and the

inclusion of this strong adaptive ability in climatic models is a key challenge (Mock et al., 2017;

Ward et al., 2019; Cermeño et al., 2016; Sauterey et al., 2015). As for now, state-of-the-art global

biogeochemical models do not take into account the adaptive potential of planktonic organisms

(Flynn et al., 2015; Ward et al., 2019). Indeed, despite existing efforts to account for acclimation,

or reversible intra-generational change through changes in expression of inherited traits (Flynn

et al., 2015), such as the use of varying stoichiometric ratios to simulate photo-acclimation (Ayata

et al., 2013), very few models manage to include proper adaptation in their formulation. This

is notably due to the fact that most biogeochemical models do not model individuals, and so the

inheritance of traits is not explicitly modeled (Flynn et al., 2015). Some methods manage to bypass

that, notably by allowing for the variation of parameters to maximize growth rate in response to

environmental changes (Toseland et al., 2013), but such approaches allow for large jumps in trait

values and reversibility of changes, which are characteristics of acclimation more than adaptation

(Flynn et al., 2015). The adaptive dynamics theory provides a clear modeling framework for the

explicit representation of adaptation in ecological models (Kisdi and Geritz, 1999).

Adaptive dynamics are based on a simple idea: a resident population with fixed traits and a
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fixed growth rate is invaded by a mutant, with slightly different parameters. If the mutant has

a positive invasion fitness, he invades the population, and becomes representative of the new

resident population. The environment being shaped by the traits of the resident population, the

invasion fitness of the mutant will depend on its per-capita growth rate in the conditions given

by the traits of the resident population (Kisdi and Geritz, 1999; Sauterey et al., 2015). In simple

systems, the invasion fitness can be obtained through analytical resolution, but this is not doable

in biogeochemical models with many state variables (Sauterey et al., 2015). The method can still

be applied to biogeochemical models through the numerical resolution of mutant’s growth rate

(Sauterey et al., 2015, 2017).

A similar approach could be conducted using resource allocation models. Toseland et al. (2013)

showed how such models allowed to predict growth rates in specific environments, and using a

similar model in an adaptive dynamics context should be feasible. The main difference between

Toseland et al. (2013) and an adaptative dynamics approach is that in Toseland et al. (2013), the

assumption is that ’everything is everywhere’ and so the parameters giving the optimal growth

rate are always selected, while in adaptive dynamics, the system must be at steady state with

fixed parameters when the mutant arrives, and the success of the mutant is entirely dependant

on who was there before him (Sauterey et al., 2015). In a model like the one presented in Figure

5.6, with data-driven metabolic networks of organisms serving as the basis for parameterization,

we could even imagine modeling the appearance of mutant by introducing random mutations at

the genome level.

5.3 Perspectives

During most of my PhD, I tried to build links between meta-omics data, functional traits and the

environmental context. If my initial goal was to find new ways of doing ’concrete’ biogeochemical

modeling, I then realized that multiple methods for the integration of sequencing data into models

already existed, and that the limiting factors were actually more often on the biological side

of things, where a significant part of unknown remains. Hence, I focused on the statistical

exploration of the functional and taxonomic composition of planktonic communities, trying to

disentangle and organize the complex richness of biological data, a step that I consider as key

for later improving diversity representation in biogeochemical models. Thus, as a post-doc, I will

keep working on large scale meta-omics data, this time focusing on prokaryotes from the Antarctic,

sampled during the Antarctic circumglobal expedition (ACE, https://spi-ace-expedition.ch/).

In particular, I hope to take advantage from the multiple datasets available from the expedition

(e.g. meta-omics datasets focusing on viruses, prokaryotes, and protists are available, as well

as metadata on the environmental context of sampling including detailed measures of primary

production and trace metals) to dig into the linking between genomic composition and trait real-

ization (upper part of the green box in Figure 5.7). Actually, I have indicated in Figure 5.7 that

this step should take place in labs, but I hope to be able to show that inter-disciplinary cruises

on highly-equipped boats like ACE provide sufficient lab power to focus on this question in-situ.
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Data from the cruise notably include in-situ mass spectrometry measures of net primary produc-

tion, which I hope to relate to prokaryotic metagenomes. Other data types could actually allow to

investigate this question, like in-situ high throughput imaging which gives information on traits

such as shape, size, defense structure, coloniality or transparency (Martini et al., under review,

Appendix A), or like satellite imagery, which is starting to be used to automatically quantify plank-

ton functional groups at the ocean surface through machine learning (El Hourany et al., 2020).

Building links between these different kinds of high-throughput data is the first step towards their

common integration into modeling frameworks, which I believe will be the future of biogeochemical

modeling.

Figure 5.8 – Furseals and the Akademik Treshnikov vessel during the third leg of the Antarctic
Circumpolar Expedition (ACE), on South Georgia Island.
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Abstract

Aquatic ecologists face challenges in identifying the general rules of the functioning of ecosystems.

A common framework, including freshwater, marine, benthic, and pelagic ecologists is needed to

bridge communication gaps and foster knowledge sharing. This framework should transcend local

specificities and taxonomy in order to provide a common ground and shareable tools to address

common scientific challenges. Here, we advocate the use of functional trait-based approaches

(FTBAs) for aquatic ecologists, and propose concrete paths to go forward. Firstly, we propose to

unify existing definitions in FTBAs to adopt a common language. Secondly, we list the numerous

databases referencing functional traits for aquatic organisms. Thirdly, we present a synthesis on

traditional as well as recent promising methods for the study of aquatic functional traits, including

imaging and genomics. Finally, we conclude with a highlight on scientific challenges and promis-

ing venues for which FTBAs should foster opportunities for future research. By offering practical

tools, our framework provides a clear path forward to the adoption of trait-based approaches in

aquatic ecology.

Keywords: Functional trait; Marine; Freshwater; Trait-based approaches; Databases: Imaging;

Omics; Aquatic ecology; Limnology; Oceanography

A.1.1 Introduction

The aquatic realm encompasses very diverse environments from freshwater ponds, lakes, and

rivers to estuaries, salt marshes, mangroves, coasts, continental shelves, deep-seas, marginal

seas, and open ocean areas. It plays a major role in the Earth’s climate system and supplies

important ecosystem services for human populations (Grizzetti et al. 2016). Yet, different aquatic

ecosystems are still studied by distinct scientific communities that have limited interactions with

each other, as illustrated by the tendency to train graduate students independently, to publish in

different journals and to attend distinct conferences (with a few exceptions, such as the Associ-

ation for the Sciences of Limnology and Oceanography (ASLO) and its conferences and journals,

including Limnology and Oceanography). Freshwater and marine ecosystems even belong to dif-

ferent Sustainable Development Goals for the United Nations, with one dedicated to the marine

environment (#14: Life below water), and another to terrestrial systems including freshwater (#15:

Life on land) (United Nations 2015).

Ecology seeks to understand interactions between organisms and the environment, as well as to

identify general rules that elucidate the functioning of ecosystems, to ultimately improve our ability
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to predict ecosystem changes (Loreau 2010). In both freshwater and marine environments, and

for both pelagic and benthic habitats, the crucial questions remain the same (Heino et al. 2015):

(1) What are the processes that control the structure and functioning of aquatic ecosystems? (2)

What ecological patterns emerge at various spatio-temporal scales, and what are their key drivers?

(3) How will aquatic organisms respond to increasing anthropogenic pressures? Some efforts have

been made to integrate aquatic ecology for planktonic (Margalef 1978; Hecky and Kilham 1988;

Leibold and Norberg 2004; Litchman and Klausmeier 2008) and benthic (Mermillod-Blondin and

Rosenberg 2006) studies. Despite recent efforts to bring the communities together (e.g. the

AQUASHIFT and DynaTrait projects priority programmes of the German Research Foundation,

or such as the bi-annual Trait workshop https://www.traitspace.com/ including limnologists,

benthic ecologists, terrestrial ecologists), a unified framework for addressing ecological questions

in pelagic and benthic habitats of both environments has been slow to develop. A recent review

highlights the potential of trait-based ecology for studying aquatic ecosystems and the need for

collaborative approaches among aquatic ecologists was emphasized (Kremer et al. 2017). In

addition to bridging the gap between freshwater and marine studies, there is a crucial need to

integrate planktonic and benthic studies, especially because of the strong coupling between these

two habitats (Griffiths et al. 2017). The present synthesis proposes a practical framework to

address these needs.

Indeed, trait-based approaches, defined in ecological research as any method that focuses on in-

dividual properties of organisms (so-called traits) rather than species, could provide this common

framework (McGill et al. 2006; Kremer et al. 2017). These approaches emerged from terrestrial

ecology when attributes at the individual level, initially used to describe ecosystem function based

on elements common to multiple species, were considered to gather individuals into functional

groups (i.e., “plant functional types”) based on their physical, phylogenetic and phenological char-

acteristics, rather than on their taxonomy (e.g. species). Trait-based models of aquatic ecosystems

can be traced back to the pioneering work of Riley in the 1940’s (Riley 1946), who modelled the

phytoplankton bloom dynamics in the North Atlantic focusing on the main physiological and

biological characteristics of phytoplankton as a group. Since earlier attempts to classify phyto-

plankton by “life-forms” (Sournia 1982; Reynolds 1988), a similar approach was applied to identify

functional groups for freshwater benthic macrofauna (Usseglio-Polatera et al. 2000, 2001), marine

benthos (Rigolet et al. 2014), benthic algae (Tapolczai et al. 2016), submerged plants (Willby et

al. 2000; Lukács et al. 2019), or marine zooplankton (Benedetti et al. 2016). The underlying

assumption is that functional grouping would make it easier to link community ecology to biogeo-

chemical processes and biodiversity to ecosystem functioning (Naeem and Wright 2003). Through

the study of functional diversity and functional traits, these approaches allow for the quantitative

assessment of community or ecosystem resistance or resilience to changes through functional

redundancy (Lavorel and Garnier 2002; McGill et al. 2006) which could potentially enhance gen-

erality and predictability in future projections of ecosystem function and service provision than

the species-centred or taxonomic approaches (Levine 2016).

In aquatic ecology alone, more than 2,476 articles were published between 1991 and 2018 using

the terms “functional trait” or “trait-based” (see Supplementary Information). The percentage of
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those publications relative to the total ones published in freshwater and marine ecology (using

those terms as keywords in Web of Science) has increased over time. This emergent and still

increasing area of research in aquatic ecology has been the topic of several recent reviews, which

summarize the state of the knowledge with regard to specific taxonomic or trophic groups, or

traits (Litchman and Klausmeier 2008; Litchman et al. 2013; Nock et al. 2016; Meunier et al.

2017; Hébert et al. 2017; Kremer et al. 2017; Beauchard et al. 2017; Degen et al. 2018; Kiørboe

et al. 2018). Previous studies focused either on one species (Pardo and Johnson 2005), on one

taxonomic group of organisms (e.g. crustaceans in Hébert et al. 2016, 2017), on one compartment

of the ecosystem (e.g. pelagic primary producers in Litchman and Klausmeier (2008); benthic

primary producers in Tapolczai et al. (2016); zooplankton in Litchman et al. (2013) and Hébert et

al. (2017); stream fish in Frimpong and Angermeier (2010)), on a particular ecosystem (e.g. oceans

in Barton et al. (2013) and Kiørboe et al. (2018) marine benthos in Degen et al. (2018); running

water benthos in Statzner and Bêche (2010)) or even on a single type of trait (e.g. size in Andersen

et al. (2016) or stoichiometric traits in Meunier et al. (2017)). A network analysis of key words

associated with the aquatic trait-based literature highlights differences between studies, both in

the terminology used to characterize traits and in the application of trait-based approaches in

studies of freshwater and marine systems (Figure A.4).

The goal of this review is to facilitate exchanges of FTBAs and their products across different

aquatic fields. To do so, we propose: 1) A table compiling the main definitions of traits that are

commonly used in trait-based studies, in addition to recommendations for using a common and

unambiguous vocabulary, 2) A unified typology of 40 aquatic functional traits that could be used

in multicompartment studies (including several biological compartments, or different habitats e.g.

sediment and water), 3) A summary of existing databases that contain information on functional

traits, 4) A review of traditional and emerging methods for estimating and using traits of aquatic

organisms, and 5) The main challenges that aquatic ecologists can now address using FTBAs and

that should inspire future studies.

A.1.2 Trait definition and aquatic trait description

The term “trait” depicts specific attributes of an individual that are both inherent and characteristic

to its nature. However, as highlighted by our literature survey (Supplementary Figure A.4 and A.5,

see also Supplementary Information), this term is used in multiple contexts to describe a diverse

set of attributes such as: “physiological traits”, “functional traits”, “life history traits”, “biological

traits”, “ecological traits”, “response traits”, “effect traits”, “behavioral traits”, etc (see Table A.1).

To avoid misunderstandings, clear definitions of these concepts are needed (Violle et al. 2007).

A.1.2.1 Adopting common definitions for aquatic FTBAs

Trait definitions vary between scientific communities, from the individual organism (e.g. life-

history traits) to the population (e.g. demographic traits), community (e.g. response traits) and

the ecosystem scale (e.g. effect traits; Hébert et al. 2017). Traits can also be directly measured

188



A.1 Functional trait-based approaches as a common framework for aquatic ecologists

Table A.1 – Main definitions related to traits in aquatic trait-based studies.

in situ (e.g. realized traits) or inferred from the literature (e.g. potential traits). Realized traits

are ultimately one of the sources for potential traits found in databases (see section A.1.3.1). To

establish a unified framework and avoid subjectivity in these definitions, we recommend the use

of the definitions that focus on the individual level only. These are the ones proposed by Violle et

al. (2007), by Litchman and Klausmeier (2008) and by Reu et al. (2011) are summarized in Table

A.1.

Since it is the diversity of organismal functions that structures communities and eventually

ecosystems, trait-based approaches should rather refer to “functional traits” (sensu Violle et al.

2007: Any trait that impacts fitness indirectly via its effects on growth, reproduction and survival)

than to “traits” and should in fact be called functional trait-based approaches. Functional traits

have been further divided into four types: life history traits, morphological traits, physiological

traits, and behavioral/mobility traits (Litchman and Klausmeier 2008; Litchman et al. 2013,

2015; Desrosiers et al. 2019). The term “ecological traits” has also been used in the context

of “functional traits” to describe the environmental preference of the organisms, especially for

benthic ones (e.g. Desrosiers et al. 2019). Where “ecological traits” refer to ecological or environ-

mental preferences of organisms, they should rather be called physiological traits (e.g. salinity

preference/tolerance) or behavioral traits (e.g. relationship with the substrate). In contrast, eco-

logical traits referring to taxonomic information, sampling location or habitat features (e.g. depth,

substratum type) should neither be considered as functional traits nor as traits.

A.1.2.2 Functional traits as a common framework beyond taxonomy to transcend

ecosystems

Functional traits provide a “common currency across biological organizational levels and taxo-

nomic groups” (Violle et al. 2014), beyond taxonomic variation and geographic or ecosystemic
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peculiarities. Firstly, functional trait-based ecology describes emergent properties related to

ecosystem functioning, without necessarily having to explicitly identify the organisms at a given

taxonomic level. Secondly, FTBAs in aquatic ecology can account for a continuous degree of

plasticity in the trait expressed (Chevenet et al. 1994), thus allowing for a better quantification

of intra-specific variability (see also A.1.4.1). Moreover, phenotypic plasticity can result in sub-

stantial intra-specific variation (Des Roches et al. 2018), with clonal differences in plasticity. For

instance, many aquatic species can exhibit a high degree of morphological plasticity in response to

different environmental cues. Zooplankters such as Daphnia can form elongated carapaces (e.g.

longer tailspines or helmets) in response to strong predation (O’Brien et al. 1979; Lüning 1992;

Swaffar and O’Brien 1996) while the freshwater phytoplankters Desmodesmus can increase the

size of their colonies to avoid mortality from numerous grazers (Lürling 2003). These are examples

among a vast amount of abilities for phenotypic plasticity that can in and of themselves be seen

as functional trait of the organisms that possess this flexibility (Barnett et al. 2007; Weithoff and

Beisner 2019). Intra-specific variability can be substantial in aquatic organisms (e.g. Sanford and

Kelly 2011), and can impact community and ecosystem dynamics similarly to inter-specific trait

variability (Des Roches et al. 2018; Raffard et al. 2019). Within the climate context, understand-

ing the drivers and link between intra- and inter-specific trait variability is another argument for

the use of FTBAs instead of species-centered approaches (Violle et al. 2012).

Figure A.1 – Unified typology of aquatic functional traits that could be used in multicompartmental
studies. This typology focuses on the key functional traits that transcend taxonomic peculiarities of
the different aquatic ecosystems. Traits are classified by type and ecological function (as in Litchman
and Klausmeier, 2008) and most of them are quantitative. The dashed lines are a representation for
similar traits crossing multiple ecological functions that are not close. A mental map providing a net-
work visualisation of this figure is available online, with each trait node linking towards associated
research articles (http://doi.org/10.5281/zenodo.3635898).

To go further towards a unified framework, we propose a common typology of functional traits

for aquatic organisms (Figure A.1). It not only follows what was previously proposed for phy-
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toplankton (Litchman and Klausmeier 2008) and zooplankton (Litchman et al. 2013; Brun et

al. 2016) but now incorporates new elements proposed for marine benthic ecosystems (Degen et

al. 2018). Moreover, in the typologies proposed by Litchman and colleagues, functional traits

are classified in one of four types (morphological, physiological, behavioral and life-history) and

associated to three main ecological functions (resource acquisition, reproduction and predator

avoidance for phytoplankton; feeding, growth/reproduction, and survival for zooplankton). Here

we propose to separate growth and reproduction into two distinct columns (Figure A.1). Compared

to earlier typologies, ours identifies key functional traits that can be used for multicompartmental

studies because they transcend the taxonomic specificities of the different aquatic ecosystems

(Salguero-Gómez et al. 2018). For instance it includes some traits that have been disregarded so

far in studies focusing on only one compartment. These traits are: water content, color, breeding

type, life-cycle, life span, diapause, reproduction strategy, salinity preference/tolerance, chemical

compounds for mating or detecting congeners, diet/food preference, allochemical compounds, dis-

semination potential, substrate relation (plankton/benthos, including substrate specific relation

for benthos), ecosystem engineering, including bioturbation/irrigation for benthos, and finally

perception/production of sounds. Most of the 40 functional traits presented in this typology can

be estimated quantitatively (Costello et al. 2015), making them good candidates for comparative

studies. In addition, a dynamic representation of this typology is proposed as an online mental

map (http://doi.org/10.5281/zenodo.3635898) which links to associated research articles. This

mental map is not only a different way to represent the functional traits proposed in Figure A.1,

but it also provides a dynamic visual representation. It can serve as a pedagogical tool for teaching

purposes and as a basis to identify trade-offs between related traits. Further work could initiate a

globally shared ontology for aquatic traits, for instance as part of Open Biological and Biomedical

Ontology (OBO) Foundry (http://obofoundry.org/).

A.1.2.3 Estimating functional diversity from functional traits

Traits are useful tools to quantify not only the functional biogeography of a system or organism,

but also the diversity of a system, its functional redundancy, and/or its likely resilience to pertur-

bations. Those traits that have been measured at the individual level, or estimated for each species

of a given community, can be used to estimate trait-based Shannon diversity (Usseglio-Polatera et

al. 2000) or Rao’s quadratic entropy indices (Rao 1982). Functional diversity (FD) and its various

dimensions, such as functional richness, functional divergence, or functional evenness (Mason et

al. 2005; Ricotta 2005) can further be quantified, either using dendrogram-based metrics (e.g.

Petchey and Gaston 2007; Mouchet et al. 2008), or from the definition of a functional space (e.g.

Villéger et al. 2008; Laliberté and Legendre 2010) Several indices taking explicitly into account

intraspecific trait variability were also proposed (e.g. Bello et al. 2011; Carmona et al. 2016).

Functional beta diversity can be estimated too, including through the more classical Biological

Trait Analysis (BTA) (e.g. Bremner et al. 2006; Beauchard et al. 2017). To aid ecologists in finding

their way among the many functional diversity metrics, several guides were published about their

definition and use (Schleuter et al. 2010; Mason et al. 2013; Mouillot et al. 2013; Carmona et
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al. 2016; Schmera et al. 2017; Legras et al. 2018). Many of these indices are sensitive to the

number and the type of traits that are considered (e.g. Legras et al. 2019), as well as to the species

richness of the communities, meaning that the comparison of sites with different richness levels

would require using comparable indices that are unbiased by species richness and trait selection.

A.1.3 Estimating and using traits: tools and limits for studying functional

traits

Several observational methods, both used in situ as well as in vitro, allow for the quantification

or identification of functional traits; but they are predominantly used in either oceanographical

or limnological applications, not both. Currently available methods to measure or estimate traits

include classical trait measurements (laboratory and field), imaging and acoustic techniques, as

well as molecular sequencing (-omics). These methods will be described in the following sections

and opportunities for sharing between scientific communities will be outlined.

A.1.3.1 Empirical studies of traits as a source for trait databases

The investigation of functional traits has been largely based on empirical studies. Such studies

rely on three complementary approaches that can be described by: 1) measurements of traits in

situ, 2) measurements of traits under controlled laboratory conditions, and 3) metadata analyses

of databases and literature (Figure A.2A). The metadata approach has been undoubtedly the most

developed across aquatic ecosystems (Degen et al. 2018; Kiørboe et al. 2018) and the literature

has been the basis of a number of reviews describing functional traits. For example, in freshwater

ecology, Kolkwitz and Marsson (1909) pioneered a compilation of types of organisms in relation

to the presence of various pollution levels. In marine ecosystems, metadata compilations allowed

mapping of key traits of marine copepods at a global scale and evaluation of their relationships

with environmental conditions (Brun et al. 2016b; Benedetti et al. 2018). One effective way to

merge functional traits with taxa, based on a variety of sources and literature, is the fuzzy coding

procedure (e.g. Chevenet et al. 1994). In functional trait-based approaches, the fuzzy coding uses

positive scores to describe the affinity of a species for the different categories of a given trait, e.g.

using “0”, “1”, “2” and “3” for species exhibiting respectively “no”, “weak”, “moderate” and “strong”

link with a given trait category (Chevenet et al. 1994; Usseglio-Polatera et al. 2000). When a trait

applies to a subset of the different stages of the species life cycle (egg, larva, pupa, and adult),

the relative duration of each stage is considered in assigning appropriate scores to the different

categories of this trait. To standardize the description of species attributes, trait category scores

are converted into a relative abundance distribution so that the sum of the trait category scores

for an individual trait and a given taxon equals one. This technique of coding is robust enough to

compensate for different types and levels of information available for different taxa.

Table A.2 – Online databases documenting functional traits of aquatic organisms. Databases without
a primary focus on traits, but that also provide trait information, are included. This list is available
at https://github.com/severine13/FonctionalTrait_databases.
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Name of the database Taxonomic groups of interest 

and habitats 
Reference Brief description Web link 

Traitbank - 
Encyclopedia of Life 

All taxa across the tree of life, 
including marine and freshwater 
organisms 

(Parr et al. 
2014) 

Provides traits, measurements, 
interactions and other facts. 
Actively growing resource covering 
all ecosystems (not restricted to 
aquatic ecosystems). 

http://eol.org/info/5
16 

Bromeliad 
invertebrate traits 

Aquatic invertebrates in 
bromeliads from South America 

(Céréghino et 
al. 2018) 

12 functional traits of 852 taxa https://knb.ecoinfor
matics.org/#view/d
oi:10.5063/F1VD6
WMF 

South-East Australian 
freshwater 
macroinvertebrate 
traits 

Freshwater macroinvertebrates 
from South-East Australia  

(Schäfer et al. 
2011) 

9 traits, described at the family 
level for 172 taxa 

Supplementary 
information to the 
article 

EPA Freshwater 
Biological Traits 
Database 

Freshwater macroinvertebrates 
from North America rivers and 
streams 

(U.S. EPA. 
2012) 

Includes functional traits (e.g. life 
history, mobility, morphology traits) 
but also ecological and habitat 
information for 3,857 North 
American taxa. 

https://www.epa.go
v/risk/freshwater-bi
ological-traits-data
base-traits 

Biological Traits 
Information Catalogue 
(BIOTIC)  

Benthic marine macrofauna and 
macroalgae 

(MARLIN 2006) Includes 40 biological trait 
categories. 

http://www.marlin.a
c.uk/biotic 

EMODnet Biology 
database 

European seaweeds (Robuchon et 
al. 2015) 
 

Functional traits (morphology, life 
history, ecophysiology) and 
ecological information (incl. 
biogeography) for the 1800 
seaweed species listed in Europe.   

Ongoing work 

Functional traits of 
marine macrophytes 

European marine macrophytes, 
including seaweeds 

(Jänes et al. 
2017) 

Functional traits (morphology, 
ecophysiology) and ecological 
information for 68 species. 

https://www.datadr
yad.org/resource/d
oi:10.5061/dryad.9
64pf/1 

POLYTRAITS Marine polychaetes (Faulwetter et 
al. 2014) 

47 traits describing morphological, 
behavioural, physiological, 
life-history characteristics, as well 
as the environmental preferences, 
for a total of 27198 trait records for 
952 species. 

http://polytraits.life
watchgreece.eu/ 

The Arctic Traits 
Database  

Marine organisms from the 
Arctic 

(Degen and 
Faulwetter 
2019) 

Traits for 478 species-level taxa. https://www.univie.
ac.at/arctictraits/tea
m 

WoRMS Marine 
Species Traits portal 

Marine species (WoRMS 
Editorial Board 
2019) 

Provides 10 traits that have been 
prioritized within​ ​EMODnet Biology​, 
as part of the World Register of 
Marine Species (WoRMS). 

http://www.marines
pecies.org/traits/ind
ex.php 

Functional traits of 
marine protists 

Marine protists, including fungi. (Ramond et al. 
2018) 

Provides 30 functional traits for 
2,007 taxonomic references 
associated to V4 18S rDNA 
sequences. 

https://doi.org/10.1
7882/51662 

COPEPEDIA/ 
COPEPOD 

Marine plankton (O’Brien 2014) Database of plankton taxa 
distribution maps, photographs, 
biometric traits, and genetic 
markers.  

https://www.st.nmfs
.noaa.gov/copepod
/documentation/co
ntact-us.html 

Trait database for 
marine copepods 

Marine pelagic copepods (Brun 2017) Trait databases providing 9,306 
records for 14 functional traits of 
about 2,600 species. 

https://doi.pangaea
.de/10.1594/PANG
AEA.862968 
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Mediterranean 
copepods' functional 
traits 

Marine copepods present in the 
Mediterranean Sea 
 

(Benedetti 
2015; Benedetti 
et al. 2016) 

Seven functional traits for 191 
species. 

https://doi.org/10.1
594/PANGAEA.85
4331 

Freshwater Ecology European freshwater organisms 
belonging to fish, 
macro-invertebrates, 
macrophytes, diatoms and 
phytoplankton  

(Schmidt-Kloibe
r and Hering 
2015) 

Covers environmental preferences, 
distribution patterns, and functional 
traits for 20,000 taxa. 

https://www.freshw
aterecology.info/ 
 

Phytoplankton of 
temperate lakes 

 

Phytoplankton of temperate 
lakes 

(Rimet and 
Druart 2018) 

Database of morphological and 
physiological traits of more than 
1,200 taxa. 

https://zenodo.org/r
ecord/1164834#.X
RNrPXvgrOR 

 FishBase Fish (Froese and 
Pauly 2019; 
Beukhof et al. 
2019) 

Provides information on 34,100 
species, including traits related to 
trophic ecology and life history. 

www.fishbase.org 
https://doi.org/10.1
594/PANGAEA.90
0866​. 

The Coral Trait 
Database 

Coral species from the global 
oceans 

(Madin et al. 
2016) 

Includes 68,494 coral observations 
with 106,462 trait entries of 158 
traits for 1,548 coral species. 

https://coraltraits.or
g/ 

FishTraits Freshwater fishes of the United 
States. 

 

 
 

  

(Frimpong and 
Angermeier 
2010) 

More than 100 traits are informed 
for 809 fish species of the USA, 
including 731 native and 78 exotic 
species. 

http://www.fishtraits
.info/ 

ECOTAXA Marine planktonic eukaryotes 
and prokaryotes (Viruses in 
prep.) 

(Picheral et al. 
2017) 

50 morphological features including 
size, shape or opacity. 

http://ecotaxa.obs-
vlfr.fr/ 
 
http://ecotaxa.sb-ro
scoff.fr 

Protist Ribosomal 
Reference database 
(PR2) 

Protists (Guillou et al. 
2013) 

Sequence database for which the 
inclusion of functional traits is under 
development. 

https://github.com/
pr2database/pr2dat
abase 

Eukaryotic Reference  
Database (EukRef) 

A wide range of eukaryotic 
organisms across the tree of life 

(del Campo et   
al. 2018) 
 

Collaborative annotation initiative 
for referencing 18S rRNA 
sequences, for which the inclusion 
of functional traits is under 
development. 

https://eukref.org 

The Kyoto 
Encyclopedia of 
Genes and Genomes 
(KEGG) 

A wide range of organisms 
across the tree of life 

(Kanehisa and  
Goto 2000) 

Collection of databases on 
genomes and biological pathways 
that provides molecular-level 
information on gene functions, 
which could inform on potential 
functional traits. 

https://www.genom
e.jp/kegg/ 
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Figure A.2 – Main methods to study traits. A: Use of empirical studies to measure realized traits
(in laboratory or in situ) or to estimate potential traits from the literature. The abundance frequency
the modalities a given trait can be used to code trait profile by taxon using fuzzy coding and
thereby inform trait databases. B: Use of imaging and acoustic techniques to identify or measure
functional traits of aquatic organisms from sampling, images/sound recording, features extraction
to databases (ZooVis picture has been kindly provided by H. Bi). C: Use of sequencing techniques to
identify or measure functional traits. Sequencing can be done at the community scale (meta-omics)
or at the individual scale after manual or automatic sorting. (Meta)B: (Meta)Barcoding, (Meta)G:
(Meta)Genomics, (Meta)T: (Meta)Transcriptomic.

In recent years, numerous open access databases recording functional traits have been developed

to document traits included in existing databases (Table A.2). This diversity of databases gathers

trait information not only for widely studied traits (e.g. body size or feeding strategy), but also for

less common traits or for those that are more difficult to measure (e.g. age at first reproduction,

migration mode, or nutrient affinities). Some large trait databases were published online and open

access (e.g. Herring 1987; Barnett et al. 2007; Benedetti 2015; Hébert et al. 2016; Degen and

Faulwetter 2019), thus allowing for follow-up studies that compare and merge trait data across

taxa, species and environments. In some instances (e.g. freshwater invertebrates) published

databases rapidly became foundational for environmental assessment procedures (e.g. Mondy et

al. 2012; Mondy and Usseglio-Polatera 2013; Larras et al. 2017). The main caveat of these FTBAs
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is that only a limited number of species and/or traits have been reported so far, thus not yet

allowing for a generalisation of findings across taxa, the definition of fitness landscapes, and/or

the characterisation of ecological niches or responses to environmental change. Indeed, these

databases often focus on the dominant and most easily sampled or cultivable species. Moreover,

metadata associated with trait measurement methods are usually lacking. Until now, shortfalls in

the knowledge of many aquatic taxa (Troudet et al. 2017) restrict the application of trait databases

at the community scale and remain a limiting factor for the integration of FTBAs into macroecology

(Tyler et al. 2012; Borgy et al. 2017). However, the main limit so far to provide and share trait

data remains the lack of an ecological standard for data (Schneider et al. 2018). Attempts to

increase unification are currently emerging on various fronts such as the terminology of traits

(e.g. Schmera et al. 2015 for stream ecology), the cross-taxa compatibility of functional traits (e.g.

Weiss and Ray 2019 for plants and animals) or the actual measurements of such traits (e.g. Moretti

et al. 2017 for terrestrial invertebrates). Large efforts are still needed to combine and integrate

all these various trait databases (Degen et al. 2018), but applying Open Science principles should

accelerate trait-based science (see for example the Open Traits Network initiative, Gallagher et

al. 2019). Such databases are already numerous, large-sized and of increasing complexity.

Therefore, their manipulation requires strong computational abilities (Durden et al. 2017). As

a result, aquatic research is evolving into a more biostatistical- and bioinformatical-based field,

enabling the extraction of large-scale information on traits and putting to full use taxonomic

surveys recorded over time. Despite this, naturalist taxonomic knowledge per se remains critical

and future challenges in ecology will undoubtedly benefit from a combination of modern functional

trait-based approaches and a modern integrative taxonomic knowledge.

The traits documented by these databases originate from direct measurements of realized traits

in the laboratory or in situ (Figure A.2A). Laboratory experiments allow for the quantification

of functional traits of model species within a large range of controlled environmental conditions.

They provide a well-constrained system, both in physical variables and species content, to measure

functional traits at the individual level. However, they are often limited to a few cultured species

that do not necessarily reflect the actual functional diversity and complexity of whole ecosystems,

as should FTBAs do. One of the few examples of lab-measured traits tested the existence of

trade-offs across many phytoplankton species between maximum growth rate, competitive ability

for phosphorus acquisition, and ability to store phosphorus (Edwards et al. 2013a).

In recent years, innovative instruments and tools have become available to measure in situ new

functional traits. They include imaging and genomics tools that have the potential to provide a

comprehensive picture of aquatic ecosystem composition, structure and function. Their imple-

mentation should greatly help advance the use of functional traits in aquatic studies.

A.1.3.2 Imaging and acoustic techniques

Imaging systems are best suited for the quantification of morphological traits, such as size, trans-

parency, bioluminescence or shape (Forest et al. 2012; Barton et al. 2013; Fontana et al. 2014;

Andersen et al. 2016), but also for the estimation of some behavioral (e.g. motility or substrate re-
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lationships), life-history or physiological traits (Table A.1; Figure A.2B,Schmid et al. 2018; Ohman

2019). Imagery has been used as a tool in marine science since the 1950’s and a variety of imaging

systems have been successfully developed to record individual characteristics (see imaging and

acoustic instruments listed in Table A.3; e.g. Lombard et al. 2019). Over the last 15 years, novel

imaging techniques have allowed for rapid and less-intrusive visual observation of organisms’

traits from pico- to macro-scales (e.g. (Culverhouse et al. 2006; Stemmann et al. 2008; Sieracki

et al. 2010; Biard et al. 2016). To date, imaging tools have mostly been used by marine ecologists

(Table A.3), in both benthic and pelagic ecosystems, with only a few implementations in freshwater

environments (e.g. (Althaus et al. 2015; González-Rivero et al. 2016). This is mainly due to the

large amount of particles, the higher turbidity and the relatively smaller size of the crustacean

zooplankton in freshwater ecosystems. Benthic imaging tools include baited, unbaited, towed,

autonomous- and diver-operated systems (Matabos et al. 2014; de Juan et al. 2015; Mérillet et

al. 2018), while pelagic ones are mainly in situ or bench-top systems. Since the turbidity and

obstacles in benthic, coastal or river ecosystems strongly modify optical characteristics, systems

with external light are more commonly used to efficiently capture morphological traits of aquatic

organisms.

Table A.3 – Examples of instruments for imaging and acoustic assessment, used for trait description
and quantification in aquatic ecosystems.
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A major advantage of imaging systems is their variable degree of invasiveness during observation.

Imaging systems can analyse discrete measurement of water samples (living or fixed samples),

but they can also acquire in situ continuous records on living organisms. For instance, imaging

techniques applied to marine plankton revealed that the abundance of the most fragile organisms

(such as gelatinous zooplankton, Rhizaria, etc.) has been underestimated for a long time using

traditional observation techniques (e.g. Biard et al. 2016), as they tend to break when collected

using plankton nets (Stemmann et al. 2008). The use of in situ imaging systems also provides

information on poorly studied traits, such as transparency and water content of gelatinous or-

ganisms. For benthic systems, imaging techniques provide non-intrusive and non-destructive

methods that can be valuable to assess endangered habitats and/or marine protected areas and

to collect information on the distribution of large over-dispersed epifaunal species inadequately

sampled by traditional gears like grabs (e.g. Althaus et al. 2015).

In addition to classical imaging, acoustic methods (passive and active) are also tools of increasing

importance to quantify particular functional traits. Acoustic Doppler current profilers (ADCPs)

have been successfully used in lakes to capture diel migration behavior in larger planktonic

species such as the insect larval predators of zooplankton (e.g. Chaoborus; Lorke et al. 2004).

Hydrophone recordings can be used to record sound emissions by the organisms themselves.

The sounds produced by freshwater organisms represent a highly overlooked trait and such trait

recordings might provide relevant non-invasive tools to monitor the complexity and changes in

aquatic communities. In a literature survey, Desjonquères (2016) showed that at least 271 fresh-

water species amongst French aquatic fauna (89% insects, but also fish and crustaceans) pro-

duce sounds. Using continuous underwater recordings with hydrophones, it was shown that the

acoustic diversity of ponds and floodplain water bodies reflects the taxonomic diversity of aquatic

communities (Desjonquères et al. 2018). Similarly, sound production by benthic invertebrates in

the bay of Brest (France) was used to describe the soundscape and assess the ecological status of

maerl beds (Coquereau et al. 2016).

One of the main caveats of imaging methods for FTBAs is that imaging tools have a low resolution

below a certain size (most of these tools are of limited accuracy below a size limit of 200 µm for

zooplankton, and 30-40 µm for phytoplankton, see Table A.3), and may not allow for a reliable

analysis of smaller size fractions, often associated with detrital matter or particles with a lack

of discernible morphological differences. This limit is especially true for organisms without hard

structures such as naked dinoflagellates or aloricate ciliates. However, imaging and acoustic

methods generate high frequency and automated datasets at large spatial scales, with some of

them recorded by inter-calibrated instruments, which allow for their comparison and combination

in space and time (e.g. UVP for marine plankton; Table A.3). These data are also suitable for

the validation of trait-based marine ecosystem models (Kiørboe et al. 2018) and new ecological

questions have been addressed by combining both recent imaging techniques and FTBAs (Schmid

et al. 2018). New opportunities using imaging and acoustics include the evaluation of feeding

behaviors and network associations (Choy et al. 2017), filtration rates and carbon fluxes (Katĳa

et al. 2017) and migration patterns of zooplankton (Benoit-Bird and Lawson 2016).
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Because the number of images stored on acoustic and imaging systems is limited, and even short

deployment times lead to considerable data volumes, the development of artificial intelligence (AI)

techniques such as machine learning, deep learning recognition and classification has been a

crucial tipping point in the extraction of traits from these large datasets (Villon et al. 2016; Maps

et al. 2019). Bigger storage capacity, standardized learning sets for machine learning combined

with the automatized pre-processing of data directly in autonomous sampling instruments are

already under development and will be an asset for the future of functional traits quantification

by imaging.

A.1.3.3 Omics techniques for FTBAs

Another opportunity for automatic measurements of functional traits has emerged from the re-

cent rise of high-throughput sequencing techniques (HTS, also called NGS, for Next Generation

Sequencing, or “-omics” in the broader sense). These techniques provide fast and relatively cheap

nucleic acid sequencing and have opened new perspectives for investigating the structure and

functioning of aquatic communities, both in marine (Raes et al. 2011; Sunagawa et al. 2015;

Mock et al. 2016) and freshwater systems (Chonova et al. 2019). Methods based on DNA or

RNA sequencing can be used for large-scale studies of environmental samples, investigating water

samples in which any nucleic acid that is present can theoretically be retrieved.

For FTBAs, the identification of targeted DNA sequences (or metabarcoding; Bucklin et al. 2011;

Valentini et al. 2016) can be used as a first step for fast and automatic taxon recognition, prior to

the attribution of traits to the respective taxa using trait databases (Figure A.2C; Table A.2). This

was recently done to describe the biogeography of mixotrophic traits of marine protists at global

scale (Faure et al. 2019), or to estimate the functional diversity of coastal protist communities

(Ramond et al. 2019). In freshwater systems, metabarcoding of benthic diatoms was used to

assess the water quality status of rivers (Vasselon et al. 2017) and metabarcoding was combined

with text-mining or phylogenetic inference of ecological profiles and traits for biomonitoring (Keck

et al. 2018; Compson et al. 2018). Yet, metabarcoding is inherently biased in multiple ways, such

as its lack of quantitative link between the number of copies of barcodes (targeted DNA sequences)

and the biomass or abundance distribution of organisms, the risk of gene amplification from dead

material (not currently influencing ecosystem function), or the use of universal barcodes that may

not be adapted to distinguish taxa for all lineages (e.g. Deiner et al. 2017). However, the main

obstacle to using metabarcoding data for FTBAs is the low number of taxa for which barcodes have

been documented (in addition to the low number of taxa for which trait information is available).

This limitation precludes a full assessment of ecosystem structure from metabarcoding (e.g. de

Vargas et al. 2015; Le Bescot et al. 2016). Thus, a strong effort remains to be made to supplement

existing genomic databases with more taxonomically-referenced sequences and trait information

to allow the metabarcoding-based monitoring of aquatic functional traits (e.g. Ramond et al. 2018;

PR2: Guillou et al. 2013; EukRef: del Campo et al. 2018; Diat.barcode: Rimet et al. 2019).

Beyond metabarcoding, -omics approaches are of particular interest to identify or measure func-

tional traits linked to metabolic pathways (e.g. photosynthesis, nitrification, diazotrophy, cal-
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cification, etc.), using either (meta-)genomic or (meta-)transcriptomic approaches (Figure A.2C).

When combined with databases like KEGG (Kanehisa and Goto 2000), which includes the genes

(for genomics/transcriptomics), proteins (for proteomics) and metabolites (for metabolomics) im-

plied in a specific pathway, -omics approaches open up the possibility of monitoring functional

traits (defined at the individual level) across different levels of biological organisation (from organ-

isms to communities). For example, approaches that report the expression level of genes, proteins

and metabolites are increasingly used in ecotoxicology to assess functional traits (e.g. photosyn-

thesis, chemical degradation) in response to stressor(s) via targeted approaches (e.g. q-PCR on

pre-identified candidate genes, Pesce et al. 2013; Moisset et al. 2015). Although it is still very

challenging to relate -omics data to functional traits (Stec et al. 2017), the identification of certain

genes coding for particular metabolic or physiological traits (e.g. iron uptake, nitrogen fixation)

may help to directly link ecosystem structure to ecosystem functions (Mock et al. 2016), while

taking into account the majority of organisms that in fact cannot be classified based on their

morphological characteristics (e.g. picophytoplankton), and/or cannot be captured by imaging

methods due to their small size or behavior. For instance, using metagenomic data, Farrell et al.

(2018) created a machine-learning algorithm that can predict values of 65 phenotypic traits with

more than 90% accuracy, thus allowing the investigation of the functional profiles of 660 uncul-

tured marine prokaryotes based only on their metagenomically-assembled genomes or MAGs (i.e.

genomes putatively reconstructed from metagenomics data). This very promising method cannot

yet be applied to eukaryotes, as relating genes to potential traits in eukaryotes remains much

more challenging than for prokaryotes (Sunagawa et al. 2015; Salazar et al. 2019). However,

transcriptomics techniques were successfully used to estimate putative traits for marine protists

using sequence similarity network-based approaches ( toxicity and symbiosis for dinoflagellates;

Meng et al. 2018). For pluricellular organisms, many challenges remain for the application of

such methods in FTBAs, especially because of the large size of their genomes and because refer-

ence genomes are lacking (hence, the function of their DNA or RNA remains unknown). Yet, the

use of transcriptomics approaches seem promising for these organisms (e.g. Lenz et al. 2014;

Blanco-Bercial and Maas 2018).

Substantial progress remains to be made before aquatic ecologists can fully exploit -omics in-

formation using a FTBA. This includes the design of new methods to estimate the quantitative

aspects of -omics information, but also to decipher the large quantity of sequences that cannot

be assigned to any taxon in an environmental sample, and to circumvent the low proportion of

genomic functional annotation (especially for eukaryotes). However, ongoing and future -omics

studies may allow skipping taxonomic assignation and even the identification of gene functions

as an intermediary between ecosystem composition and function. Such studies would fully con-

tribute to FTBAs of aquatic ecosystems by targeting the -omics signature of relevant functional

traits (Mock et al. 2016; Stec et al. 2017).

Another application would be the use of -omics data to develop a new generation of trait-based

models (Mock et al. 2016; Stec et al. 2017; Coles et al. 2017). Metatranscriptomic data could

be used to identify physiological traits of phytoplankton, combined with a mechanistic model of

the phytoplankton cell, and used to construct a trait-based global marine ecosystem model (Mock
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et al. 2016). Emergent communities of marine microbes (from bacteria to phytoplankton) have

already been predicted by directly simulating their metagenomes and metatranscriptomes (Coles

et al. 2017). In summary, the idea of improving ecosystem models using -omics is not new (Hood

et al. 2006), but FTBAs could constitute the common framework needed for next-generation

ecosystem modellers, observers, molecular biologists, and ecologists working in limnology and

oceanography. This would advance our ecological understanding of aquatic ecosystems and the

links between ecosystem structure, function and ecosystem services or bioindicators relevant for

ecosystem monitoring and management.

Figure A.3 – Main opportunities for trait-based approaches in aquatic ecology. These four opportu-
nities are described in section A.1.4.

Using either empirical studies, imaging/acoustics, or -omics, both quantitative and qualitative

traits can be estimated. One advantage of qualitative traits is that they do not have to be measured

using the same instruments, and can be more easily described across compartments and realms.

For quantitative traits, metrics and indices, one challenge is to be able to compare trait-based

functional diversity among studies. In the next section we will focus on such traits that can

be shared between ecological compartments and we will describe new opportunities in aquatic

ecology to highlight spatio-temporal patterns, study anthropogenic impacts and better describe

trophic interactions between plankton species (Figure A.3).

A.1.4 Future opportunities for aquatic FTBAs

A.1.4.1 Going further towards a trait-based aquatic ecology by identifying key

traits

Documenting key traits in multi-compartment studies

Given that the main power of FTBAs is to transcend both taxonomy and realms, trait-based

ecological studies could result in a common set of ecological rules and theoretical principles
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that could be applied to multiple systems (e.g. benthos and pelagos, including plankton and

fish). Following our framework, aquatic functional traits could be described at various spatio-

temporal scales for both benthic and planktonic organisms, for instance taking benthic-pelagic

coupling into account. To do so, we recommend a closer collaboration among aquatic ecologists,

including process-oriented projects and comparative studies of freshwater and marine systems,

focusing on the aquatic functional traits that we have identified and on their links to ecosystem

functions (Figure A.1). In addition to morphological traits that are relatively easy to identify and

to measure (such as size, shape, cellularity, defences and colour), priority traits to be investigated

should also include: 1) life history traits such as voltinism (number of generation or breeding

per year), life cycle, life span, type of reproduction, and reproduction strategy, 2) physiological

traits such as photosynthesis ability, diet, feeding mode, salinity preference, and trophic regime,

and 3) behavioral traits like motility, dispersal potential, and substrate relation. Indeed, among

all the traits identified in Figure A.1, these traits are the most easily identified for any aquatic

organisms, including both uni- and pluricellular organisms, and cover all ecological functions

and all types of traits (Figure A.3.1). One recent example, that could lead future novelty in trait-

based studies, is the use of morphological traits estimated from multiple images. Statistically-

defined multidimensional morphological space can be synthesized from many individual images

to generate a suite of interpretable continuous traits. Looking at the spatial distribution across

the Arctic ecosystem of key traits, including body size, opacity, or appendage visibility, revealed

meaningful information of copepods distribution and ecology in relation to ice-coverage (Vilgrain et

al. under review). Such statistical approaches using these continuous traits can easily be applied

to multi-compartment studies, (for example using transparency to describe gelatinous ecological

patterns).

Documenting the trade-offs between key traits

Multi-compartmental studies that aggregate effects across species and trophic levels, hence taking

into account the network structure of a community or the food-web structure of an ecosystem,

would also enable a better understanding and quantification of the trade-offs occurring between

two or multiple traits. Trade-offs, which result from the inherent metabolic, energetic or behavioral

costs associated with each expressed trait, provide the fundamental basis to understand species

coexistence and the trait composition of communities (Ehrlich et al. 2017). In particular, the

competition-colonization trade-off is a major mechanism for biodiversity maintenance (Tilman

1994; Muthukrishnan et al. 2020; Ehrlich et al. 2020). Strong competitors able to exclude other

species in any given habitat are often slow dispersers. In contrast, poor competitors are often

strong colonizers, able to easily disperse and find unoccupied niches. A trade-off between resource

acquisition and survival (or predation vulnerability) was reported for zooplankton: organisms that

feed using feeding currents, increase their risk of being detected by predators that are sensitive to

flow disturbances (Kiørboe and Hirst 2014). Unexpected trade-offs can often explain the relative

mismatch between expected and observed individual traits in aquatic communities along gradients

of anthropogenic pressure, complexifying the trait-based diagnostic of water bodies (Resh et al.

1994; Mondy and Usseglio-Polatera 2014; Desrosiers et al. 2019). Indeed, the success of a

species in adverse conditions might be due to a particularly effective adaptation without the need
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for further adaptive traits. Moreover, investing in a given adaptation can leave fewer resources

available for the investment in another adaptation. Species of various lineages (e.g. different

phyla in invertebrate assemblages) may also solve the same ecological constraint with different

adaptations.

Trade-offs have been globally recognised as a central component of trait-based approaches in

aquatic ecology (Resh et al. 1994; Kremer et al. 2017) especially in plankton ecology (Litchman

et al. 2007, 2013, 2015; Litchman and Klausmeier 2008; Hébert et al. 2017; Kiørboe et al.

2018; Ehrlich et al. 2020). In benthic studies, there has been a clear lack of work that considers

simultaneously several traits relative to what has been done in studies on marine plankton (e.g.

Litchman et al. 2013) and in freshwater ecology (Verberk et al. 2008). As a case in point, the

term trade-off is not mentioned in the recent review on benthic traits by Degen et al. (2018).

More studies are needed to explore trade-offs among traits across compartments and realms in

order to identify the rules governing the links between traits, trade-offs, community structure and

function. To accomplish this, researchers will have to put effort on measuring multiple traits,

focusing on those related to resource acquisition, growth, storage and predation avoidance (i.e.

directly related to fitness) on a variety of taxa within the same habitat. Comparison of how

such relationships that trade-off (i.e. negatively related) change under different abiotic or biotic

conditions will allow determination of how flexible such trade-offs are as ecological conditions

change. Recently, the shape of the trade-off curve, representing the boundary of the set of feasible

trait combinations, has been described as explaining traits of co-existing species and changes in

trait values along environmental gradients (Ehrlich et al. 2017, 2020). Convex trade-offs would

facilitate the coexistence of specialized species with extreme trait values while concave trade-offs

would promote species with intermediate trait values.

To further explore trait relationships, aquatic ecologists may be inspired by what has been done in

terrestrial plant ecology: the identification of so-called trait syndromes. Trait syndromes are rela-

tionships between traits that are defined by fundamental trade-offs amongst taxa that determine

their ecological roles in ecosystems. The classic example in plant ecology is the “leaf economics

spectrum” that characterizes taxa according to the speed at which they are able to take up nu-

trients and invest in leaf biomass (Wright et al. 2004). In this vein, some work was done with

aquatic organisms by considering trade-offs amongst lotic insects (e.g. Poff et al. 2006), fishes

(e.g. Winemiller et al. 2015) and phytoplankton (e.g. Edwards et al. 2013a). By considering

trait syndromes, FTBAs are likely to better predict competitive outcomes as well as distributions

of traits across environmental gradients. We thus encourage the aquatic ecology community to

engage with the vast array of accessible trait databases provided in Table A.2 and to take the next

steps to characterize trait syndromes across the different groups of aquatic organisms.

Documenting the variability of key traits

Finally, more attention should be given to document the variability of all key traits at all or-

ganisational levels, i.e. at the community scale, between individuals in a given population (i.e.

intra-specific variability; Raffard et al. 2019), but also for one individual throughout its lifespan

(i.e. ontogenic variability; e.g. Zhao et al. 2014). Indeed, with the exception of a few studies (e.g.
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Maps et al. 2014b; Banas and Campbell 2016), intra-specific variability of traits is rarely taken

into account, mainly because of a lack of empirical information on this variability. For example,

the ability to engage fully in autotrophy or to add in heterotrophic feeding is a characteristic of

mixotrophic phytoplankton taxa. By characterizing the conditions under which one or the other

condition is utilized by a taxon, we can begin to characterize intra-specific variability. Therefore,

the question of the scale of variation of functional traits, both at community and population scales,

and its impact on ecosystem structure and functioning should be further explored, especially with

the use of new methodological development to measure traits (see section A.1.3). Trait-based

models could also be used (see review on trait-based modeling in Kiørboe et al. 2018) to quan-

tify the impact of environmental changes on the intra- and inter-specific variability of functional

traits (e.g. lipid content and size of copepods, Renaud et al. 2018), and to assess the variation of

peculiar traits along environmental gradients (Edwards et al. 2012).

Identifying key traits common in limnology and oceanography and their trade-offs, syndromes, and

variability, will allow aquatic ecologists to better address central ecological questions, including

understanding: 1) the spatial patterns of functional diversity and its drivers, 2) the effects of

environmental and anthropogenic pressures on ecosystem structure and functioning, and 3) the

interactions among organisms and associated food web organisation and dynamics. For each of

these main opportunities, we will briefly describe what has been done to date and then identify

potential ways to advance the field of aquatic ecology using FTBAs.

A.1.4.2 New opportunities emerging from the study of the spatial distribution of

aquatic traits

The description of aquatic trait biogeography

To date, trait biogeography has been studied for a few compartments in marine ecosystems,

such as marine plankton (Barton et al. 2013) including: bacterioplankton (Brown et al. 2014),

zooplankton (Prowe et al. 2019), copepods (Brun et al. 2016b; Record et al. 2018), pelagic diatoms

(Fragoso et al. 2018), estuarine fish (Henriques et al. 2017) and reef fish (e.g. Stuart-Smith et

al. 2013). Large-scale studies of the trait biogeography of freshwater organisms are more rare

(e.g. for amphibians see Trakimas et al. 2016). Aquatic trait biogeography studies covering

multi-compartments, including plankton, fish and benthos, remain scarce and usually focus on

one realm (e.g. marine organisms in Pecuchet et al. 2018). Similarly, aquatic trait biogeography

studies covering different environments (marine and freshwater) are few and usually target only

one compartment (e.g. phytoplankton in Thomas et al. 2016) .

Based on the biogeography of some key traits (e.g. size, feeding strategy), aquatic ecologists can

now relate functional traits to environmental conditions and identify general rules governing trait

diversity distribution. For instance, the description of key traits of marine copepods (body size,

offspring size and myelination) has highlighted latitudinal global patterns in trait biogeography.

These patterns are in agreement with the temperature-size rule and have unveiled relationships

between these traits and environmental conditions, such as water column transparency, but also
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biotic conditions, such as chlorophyll seasonality or phytoplankton size (Brun et al. 2016a). More

recently, the study of taxonomic and functional diversity of fish communities between two differ-

ent regions (Caribbean and Great Barrier Reef) and among three habitats (coral reef, seagrass,

and mangrove) revealed that traits and functional groups varied among habitats, whereas taxo-

nomic composition varied between regions (Hemingson and Bellwood 2018). Similar relationships

should now be tested across ecosystems, geographical regions and trophic levels to verify whether

these findings can be generalized to other aquatic organisms/ecosystems (Figure A.3.2). The trait

databases now available for many groups of aquatic organisms (see Table A.2) should provide

relevant information to explore this direction.

Using traits for revealing hidden community assembly rules at various spatial scales

Based on the spatial description of functional traits, hypotheses underlying community assem-

bly rules can also be tested and community composition can be predicted (Cadotte et al. 2015).

For example, the description of physiological and behavioral traits of dragonfly larvae in vari-

ous lakes recently suggested that traits can drive species distribution and community assembly,

through the direct impact of physiological and behavioral traits (activity rate and burst swimming

speed) on foraging and predator avoidance behavior (Start et al. 2018). The traits considered

in this study were driven by two biomolecules, the expression of which could predict more than

80% of the variation in dragonfly community structure across lakes, and which were involved

in the interactions between the dragonfly larvae and their fish predators. Measurements made

by new observational methods such as metabolomics, transcriptomics (see section A.1.3.3) or in

situ imaging (see section A.1.3.2) would nicely complement presence-absence data by providing

indication of the physiological state (e.g. healthy or stressed) of the individuals and hence help

teasing apart the ideal and realized niche of organisms.

From trait biogeography to spatial variation in functional diversity

Traits that are shared among compartments could also be used to describe the spatial variability

of functional diversity (Petchey and Gaston 2006). Among the metrics that were proposed to mea-

sure functional diversity and its different dimensions (see section A.1.2.3), aquatic ecologists have

to adopt common metrics for comparative studies. Based on these common metrics, the spatial

variation of the functional diversity of aquatic communities could be estimated across environ-

ments and in multi-compartment studies. For example, the functional diversity of macrophytes

was described along a water depth gradient in a freshwater lake (Fu et al. 2014): future studies

could cover similar environmental gradients in both freshwater and marine environments (e.g.

rivers, estuaries, coasts, islands, etc.) and also include other organisms and higher trophic levels,

both benthic and pelagic, to test whether the resulting spatial patterns of functional diversity can

be generalized. The spatial distribution of traits and functional diversity could also be used to

identify functional diversity hotspots and propose protected areas for a trait-based conservation.

The diversity of functional traits is indeed correlated to both taxonomic diversity (e.g. Petchey

and Gaston 2006) and the provision of ecosystem services. Conservation programs usually aim to

protect both. Trait-based conservation could then rely on the rarity of species traits (or functional

rarity) to identify conservation priorities (e.g. for coral reef fish in Grenié et al. 2018).
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In addition to studying spatial patterns, traits can be used to study the temporal variation of

functional diversity and how aquatic organisms respond to increasing global changes from an-

thropogenic pressures in the context of biomonitoring.

A.1.4.3 Trait response to global changes

Temporal dynamics of traits and their response to climate change

FTBAs can be used to estimate the temporal response of aquatic organisms and ecosystems to

environmental forcing (Figure A.3.3). For example, functional traits have been shown to explain

community structure and seasonal dynamics of marine phytoplankton (Edwards et al. 2013b). It

is also possible to combine classical data sets, and especially time-series of species abundance,

with trait databases described at the species level (see section A.1.3.1) to apply a FTBA to in situ

observations and/or monitoring datasets previously collected. In such reanalyses, key traits could

be targeted (see section A.1.4.1) to compare their temporal changes, identify tipping points, and

reveal trade-offs among traits. Hence, FTBAs offer novel perspectives for a posteriori (re)analysis

of historical or long term monitoring data for the study of climate change and its impact on

communities and ecosystem functioning (Pomerleau et al. 2015; Abonyi et al. 2018; Floury et al.

2018).

Marine ecologists have long since used FTBAs to study the impact of climate change on aquatic

ecosystems (c.f. purple cluster in Supplementary Figure A.4). For example, numerous marine

studies explored the response of individual size to climate change (e.g. Schmidt et al. 2006; Gen-

ner et al. 2010; Finkel et al. 2010), showing that ocean warming is likely to cause a shift towards

a larger contribution of smaller organisms to total biomass. Freshwater ecology could benefit

from this experience, but currently, two main challenges can be pointed out for both freshwater

and marine systems: the identification of links between functional traits and climate-change re-

lated variables (e.g. acidification and temperature increase in oceans, rivers and lakes; increase of

freshwater shortage/scarcity in small streams) but also the deconvolution of the effects of multiple

stressors on marine ecosystems (Mouillot et al. 2013). The joint pressure of multiple simulta-

neous stressors makes the identification of relationships between stressors and functional traits

even more complicated, since interactions (e.g. synergism, antagonism, additivity, or inhibition)

need to be taken into account. Under such conditions, monitoring functional traits of various

types (Figure A.1) may prove useful to disentangle these complex interactions.

Impact of climate change on functional diversity

The study of functional diversity may also reveal functional redundancies at the community scale,

which may have implications for ecosystem responses to climate change. As a consequence, be-

cause functional groups gather together individuals belonging to different species, the loss of a

given species with a particular function does not necessarily mean that such function will be lost

at higher ecological scale. Indeed, some ecosystems were shown to be insensitive to species loss

because multiple species share similar functional roles (mixotrophy, nutrient uptake or require-

ments), or some species only make a small contribution to the ecosystem processes (Hooper et al.
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2005). Recently, it was suggested that climate change may have minor impacts on marine zoo-

plankton functional diversity, due to strong functional redundancy (Benedetti et al. 2019). Con-

versely, climate change may have contrasting impacts on stream fishes (Buisson and Grenouillet

2009) or decrease their functional diversity (Buisson et al. 2013). By combining climate change

scenario modeling with species distribution modeling and functional trait databases, the impact

of climate change on the functional diversity of aquatic ecosystems can be assessed at broader

scales and across biological compartments and ecosystem boundaries. For aquatic insects, such

a combined modeling-FTBA study revealed the spatial patterns of vulnerability to climate change,

which also opens opportunities for biomonitoring (Conti et al. 2014). However, limitations remain

in the use of trait-based approaches for the assessment of the effects of multiple stressors in the

context of climate change, as emphasized recently by (Hamilton et al. 2019) for freshwater inverte-

brates. These authors pointed out the need to better account for trait redundancy, to better define

the appropriate spatial scales for trait applicability and to progress towards the quantification of

categorical traits.

Trait-based biomonitoring

Traditionally, the ecological health or “good environmental status” of aquatic ecosystems has been

assessed in terms of species composition or relative abundance/biomass of specific indicators,

initially within the context of the European Water Framework Directive (WFD-2000/60/CE). How-

ever, trait-based approaches offer new opportunities for the monitoring of aquatic ecosystems

(Culp et al. 2011), since they can provide new tools that transcend taxonomical denomination,

directly related to ecological functions, and exploit the traits available in open databases (Usseglio-

Polatera et al. 2000; Baird et al. 2011, see also Table A.2). To date, trait-based biomonitoring has

been mainly applied to freshwater ecosystems (cf. the corresponding cluster in Supplementary Fig-

ure A.4). Indeed, the links between traits of organisms and natural environmental variables (e.g.

pH, flow velocity) or even anthropogenic pressures (e.g. nutrient or organic matter contamination)

have been explored for decades by freshwater ecologists. More specifically, biomonitoring studies

put a strong emphasis on the definition and the attribution of traits to taxa such as freshwater

benthic macroinvertebrates (Usseglio-Polatera et al. 2000; Menezes et al. 2010), benthic diatoms

(Van Dam et al. 1994; Passy 2007) and phytoplankton (Reynolds et al. 2002). As a consequence,

the last versions of several biological indices for stream monitoring are mainly based on functional

traits (e.g. I2M2 in Mondy et al. 2012, BDI in Coste et al. 2009). Within the context of lake moni-

toring, FTBAs mainly investigated the abundance and the seasonal variability of phytoplanktonic

functional groups, as they are known to respond to nutrient concentrations (St-Gelais et al. 2017;

Huang et al. 2018). Furthermore, the traits of macroinvertebrates (e.g. reproduction mode, size)

and diatoms (e.g. auto-ecological guilds, life form) are now used in ecotoxicological and ecological

models to identify the probability that chemical and/or land use related pressures impair natural

communities (Mondy and Usseglio-Polatera 2013; Larras et al. 2017) even in multiple stressor

scenarios. Combined with statistical modeling, traits also allow deriving stressor-specific models

to assess environmental quality (e.g. focusing on invertebrates inhabiting large rivers, Desrosiers

et al. 2019).
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In comparison to routine monitoring activities in freshwater systems, the use of trait-based mon-

itoring of marine ecosystem is still in its infancy, yet under active development for coastal en-

vironments, especially through the implementation of the European Marine Strategy Framework

Directive (MSFD-2008/56/EC). FTBAs were proposed to monitor the effects of human activities

on benthic communities (e.g. Xu et al. 2018), such as bottom trawling and dredging (Tillin et al.

2006), aggregate dredging (Bolam et al. 2016) or pollution (Oug et al. 2012). These approaches

can also be used to estimate the success of management strategies, and to predict the effects

of future disturbances (including climate change) for marine benthos, by defining critical limits

beyond which ecosystem functioning is altered (Bremner 2008). However, functional traits are not

yet included in biological indicators and institutional monitoring programs of marine ecosystems,

in contrast to what is included in freshwater monitoring efforts. Assessments of functional diver-

sity could inform different MSFD indicators (such as ‘biological diversity’, ‘habitat condition’, and

‘ecosystem structure’). To our knowledge, trait-based monitoring on marine pelagic ecosystems

does not exist. Similar efforts should be extended to open ocean monitoring, for example by incor-

porating trait data in the reanalysis of long term observations such as the Continuous Plankton

Recorder (CPR) time-series in the North Atlantic existing since the 1930s (Richardson et al. 2006).

Both the European Water Framework Directive and the European Marine Strategy Framework

Directive require the estimation of the biological status of aquatic ecosystems from the evaluation

of each compartment (benthic diatoms, macrophytes and macroalgae, benthic macroinvertebrates,

phytoplankton, zooplankton, and fish) independently (e.g. Birk et al. 2012). Universal and

standardized trait-based indices for biomonitoring should now cover all compartments (Borja et

al. 2010). To this end, freshwater ecologists, who have a greater experience in multi-compartment

monitoring (Lainé et al. 2014), could inspire marine ecologists, who are more used to focus on

one compartment only (e.g. benthos, plankton, or fish).

Trait-based ecotoxicology

Besides the policy frameworks, FTBAs can also be used in ecotoxicology to highlight the impact

of various stressors (e.g. organic synthetics products) on aquatic ecosystems (Baird and Van den

Brink 2007). In fact, trait-based ecological risk assessments have been proposed as the new fron-

tier in ecotoxicology (Baird et al. 2008; Rubach et al. 2011). In freshwater systems, diatom traits

such as life form (e.g. colonial, solitary) or affinities to water quality have already been linked to

pesticides contamination (Roubeix et al. 2011). The deformation of their silicified exoskeleton (ter-

atology) has also been considered as a morphological trait that can inform on organisms exposure

to heavy metals or pesticides (Lavoie et al. 2017). Similar studies have reported the response of

freshwater benthic macroinvertebrate traits to environmental stressors (e.g. Statzner and Bêche

2010). For example, Peter et al. (2018) demonstrated that functional traits such as the feeding

mode of zooplankton can be used as indicators for the level of metal pollution in freshwater inver-

tebrates at the community level. For marine ecosystems, trait-based ecological risk assessments

remain scarce (e.g. Neuparth et al. 2002 for marine amphipods). More recently, -omics techniques

offer new ways for estimating physiological traits related to pollutant catabolism, for example, by

detecting the activity of particular genes (e.g. mercury methylating genes in the ocean, Villar et
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al. 2019). The recent development of appropriate statistical tools will help to integrate omics data

within the framework for ecological risk assessment (Larras et al. 2018). Similarly, imaging could

allow to automatically identify changes in morphological traits as a response to environmental

stressors (e.g. Maps et al. 2019). Altogether, the high-throughput acquisition of -omics data and

images could allow the detection of new environmental stressors (e.g. Bowler et al. 2009; Reid

and Whitehead 2016). Such state-of-the-art tools can contribute to the development of universal

multi-compartment indices, that could provide estimates automatically and in almost real time.

Ultimately, this could expand biomonitoring approaches beyond traditional taxonomically based

assessments.

A.1.4.4 Scaling up from functional traits to community structure and ecosystem

functions

Finally, FTBAs could be used to explore trophic interactions and food webs (Reiss et al. 2009).

Indeed, several traits directly reflect trophic interactions (e.g. diet, size, stoichiometric traits) and

can be used to better understand food web structure and dynamics (Figure A.3.4). However,

scaling-up from individual traits to populations, communities, and ecosystems requires taking

trait variation at multiple intermediate organisation scales into account (e.g. population, meta-

population, and community scales; Gibert et al. 2015). Rather than considering a collection of

traits independently, one approach is to analyse how these traits influence or reveal the biotic

interactions and trophic structure of aquatic communities. To do so, the numerous traits that are

directly related to the way consumers interact with their prey (e.g. diet, feeding modes, motility,

and perception of sounds) or the way prey interact with their predators (e.g. toxin production,

bioluminescence, migration) are emphasized in the following subparts.

Body size as a major functional trait driving trophic interactions

The functional trait of body/cell size plays a particularly important role and is often referred to

as “a master trait”. Size influences most of the ecological, physiological and behavioral functions

of organisms due to metabolic laws, underpinning trophic position and interactions that are

especially influenced by relative prey and predator sizes (Weitz and Levin 2006; Conley et al.

2018). Size or morphological characteristics can potentially be measured directly using imaging

methods (see section A.1.3.2), and could be used to infer trophic relationships. Predator traits

(i.e., body/cell size and motility type) may also be responsible for the body-size architecture of

natural food webs in freshwater, marine and terrestrial ecosystems (Brose et al. 2019). At large

spatial scales, body size and prey selection were shown to be modified by climate change and

therefore to strongly impact food webs and ecosystem functions in return (Hoegh-Guldberg and

Bruno 2010; Sheridan and Bickford 2011). For example, ocean warming was associated with a

reduction in copepod body size, which may impact upper trophic levels and ultimately fisheries

(Beaugrand et al. 2010, but see also Renaud et al. 2018). More general laws between size, trophic

interactions and environmental variables could be tested in future trait-based studies, especially

by taking advantage of automatic morphological measurements (including but not restricted to

size) through imaging. More specifically, direct observations of predator-prey interactions and
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associated traits could be performed by combining imaging (Choy et al. 2017; Ohman 2019) with

gut content and/or faeces analysis based on taxonomic and/or -omics description, such tools

being complementary and sometimes even more informative than the stable isotope methods that

have been traditionally used so far (e.g. Majdi et al. 2018).

Including stoichiometric traits to study trophic interactions

In addition to body size, stoichiometric traits are highly promising for integrating FTBAs into

food web models and to bridge the gap between community structure and ecosystem functioning

(Meunier et al. 2017). Because all organisms are composed of the same major elements (e.g.

C, N, and P), their balance not only reflects nutrient cycling in the ecosystem but also food web

topologies. Quantifying stoichiometric traits across taxonomic and trophic groups allows the

depiction of trophic interactions. In food web approaches, trophic position is associated with

significant changes in C:N:P ratios, as well as altered isotope ratios due to selective uptake. As

an example, heterotrophs are generally relatively less rich in carbon than autotrophs (Hessen

et al. 2004; Persson et al. 2010). However, while stoichiometric composition and variation

have been quantified for some species in different taxonomic groups (e.g. some plants, marine

bacteria or plankton), there is still a lack of knowledge of the C:N:P ratios and their variations for

numerous taxa, including higher-level consumers (e.g. Frost et al. 2002, 2006). Stoichiometric

gradients may also inform on some specific traits such as growth rate, food preferences, nutrient

acquisition and on some life history traits type such as fecundity, or even genome and cell size

(see review in Carnicer et al. 2015). Indeed, stoichiometric ratios have the advantage of being

directly related to organismal growth rates, which are central life history traits. The “growth

rate hypothesis” demonstrates that rapidly growing organisms commonly have low biomass C:P

and N:P ratios. This observation is explained by a high demand for P-rich ribosomal RNA, but

also by the shorter lifespan of faster growing organisms, which prevents large investments into

reserve structures (Elser et al. 1996, 2003). Consumers stoichiometry, in addition to metabolic

characteristics, also gives important information on consumers driven nutrient recycling (Allen

and Gillooly 2009). Better documenting the stoichiometric ratios of aquatic organisms in existing

trait databases would help to identify their drivers and thus improve our understanding of the

impact of stoichiometric traits on food web dynamics and ecosystem functioning.

From aquatic functional traits to global biogeochemical cycles

Finally, studying aquatic food webs following a FTBA should improve predictions of nutrient and

carbon fluxes at the ecosystem scale (Vanni and McIntyre 2016). For example, trait-based models

of food webs could be constructed to infer trophic interactions influencing ecosystem stocks and

fluxes (Woodward et al. 2005). In addition to size and stoichiometry, several other functional traits

could be taken into account in these models, such as predator foraging and prey vulnerability traits

(Boukal 2014). To do so, one promising pathway is to increase the exploitation of trait databases.

For example, global datasets of marine plankton abundances and biomass were recently coupled

with a trait-based model used to predict dominant feeding strategies in pelagic ambush predators

and to estimate the effects of these feeding traits on energy and biomass transfer efficiency (Prowe

et al. 2019). For fish, diets and trophic strategies can be predicted from their functional traits
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(Albouy et al. 2011). This approach could be extended to other aquatic organisms. Scaling-up

from individual traits to food web dynamics should ultimately contribute to better understand

the response of aquatic ecosystems to environmental changes in terms of biogeochemical cycling,

ultimately improving long-term prediction of ecosystem dynamics and feedback mechanisms to

climate.

A.1.5 Conclusions

The main goal of FTBAs is to improve our understanding of the links between community struc-

ture, ecosystem function and ecosystem service provision. The main advantages of such ap-

proaches come from the definition of traits at the individual level. Indeed, this allows for the direct

measurement of the functional traits of any organism without an additional step of taxonomic as-

signment that may be time-consuming. This can also provide access to universal ecological rules

(transcending trophic levels and ecosystems). On the contrary, FTBAs would not be adapted to

study population dynamics that require taxonomic description at the species level, nor to directly

estimate bulk properties of the communities (which would require summing of individual-level

information). For these reasons, the description and quantification of functional traits provide a

common basis across diverse ecological fields, from ecophysiology to community and ecosystem

ecology, via population and evolutionary biology. Yet, distinct questions and methods are often

specific to each identified habitat (i.e. benthic and pelagic) or even to each biological compartment

(i.e. invertebrates and diatoms for the freshwater benthic habitat). Here, we proposed functional

trait-based pathways across multiple ecological components. As a first step, we: i) homogenized

the terminology used in FTBAs and provided a common typology for aquatic functional traits that

can be used across various aquatic systems and for multi-compartment studies, ii) listed the

currently available databases dedicated to (aquatic) functional traits, iii) described classical and

emerging methods for estimating traits of marine and freshwater organisms, and iv) highlighted

some key traits that could be used for multi-compartment and trans-ecosystem studies. Estab-

lishing such a common ground among aquatic ecologists is required to further encourage and

stimulate collaborative research across disciplines. The next step would be to create a common

ontology dedicated to FTBAs, such as the Open Traits Network initiative (Gallagher et al. 2019),

in order to improve the sharing of trait information in databases.

The recent methodologies we described offer new opportunities to study traits at various scales,

from -omic sequences to whole-ecosystem approaches and biogeochemical cycles. Imaging, -omics

and modeling tools are amongst the most promising emerging approaches to work with traits

across the tree of life. We propose extending discussions within aquatic ecologists, including

freshwater, marine, benthic and pelagic fields, to better share expertise in these tools, thereby

improving our knowledge on potential and realized functional traits. With these methodologies,

FTBAs provide promising foundations for the development of integrated frameworks that combine

ecological theories with empirical knowledge across scales.
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matrix of 13,337 keywords, appearing in at least 26 publications. Based on this threshold, 100

top-keywords of the highest co-occurrence were identified. A network was built based on co-

occurrence calculations (i.e. nodes correspond to keywords, edges correspond to the strength of

the links between keywords) and for its representation the diameter of the corresponding circle

was plotted as proportional to their total occurrence in the 2,476 publications. The association

strength method (also called proximity index, for computation see van Eck and Waltman 2009)

was used to normalize the strength of the links between keywords. There were 3 clusters (blue,

orange and purple), identified as minimizing the distance between nodes (for the weighted and

parameterized variant of modularity-based clustering method used for bibliographic networks,

see Waltman et al. 2010), with a minimum size defined as 20 keywords for easier interpretation.

Trait-based modeling

Trait-based ecological models can simulate functional traits as a continuum of trait values ac-

cording to particular trade-offs (Follows and Dutkiewicz 2011). In such models, the numerical

analog of an “individual” is the numerical entity defined by a unique vector of parameters that

constitute its numerical traits. These models then simulate the response of individual phenotypic

plasticity to environmental forcing and frequently rely on optimization for maximizing individual

fitness (Smith et al. 2011). When parameters can vary to represent genotypic variability, these

models can also be used to model trait adaptation and evolution (such as temperature optimum

trait of phytoplankton growth, e.g. Grimaud et al. 2015). Most of these trait-based models fo-

cused on protists, as it may be easier to describe in a mechanistic way the functional traits and

associated trade-offs of unicellular organisms (Merico et al. 2009; Follows and Dutkiewicz 2011).

However, trait-based models were also developed for multicellular organisms such as copepods

(Prowe et al. 2019) or even fish (e.g. Andersen et al. 2016). In these models, the traits that are

the most commonly simulated are morphological and/or physiological traits, in particular traits

that relate to size and allometric relationships (e.g. Hartvig et al. 2011; Acevedo-Trejos et al.

2015; Andersen et al. 2016; Blanchard et al. 2017) and/or to resource acquisition, including

assimilation rates (e.g. Fiksen et al. 2013) or light-harvesting vs nutrient-harvesting investment

for protists (with usually a focus on pigment-related traits, e.g. (Litchman et al. 2007; Hickman

et al. 2010) or more recently on mixotrophy (e.g. Chakraborty et al. 2017; Leles et al. 2018).

Some models have also focused on modeling life history traits, such as copepod dormancy (Maps

et al. 2014) or bivalve fecundity and age at maturity (Sarà et al. 2013). Another type of trait-

based model relies on traits to define functional groups whose dynamics are explicitly simulated,

such as the Plankton Ecology Group (PEG) models (Sommer et al. 1986, 2012) or the Plankton

Functional Type (PFT) models (Le Quere et al. 2005; Hood et al. 2006). In these models, traits are

usually fixed parameters (e.g. size, nutrient assimilation rates, trophic regime) that are used in a

mechanistic approach of ecological and physiological processes relying on trade-offs between the

fundamental functions of the organisms (e.g. Smith et al. 2014). Functional types based on size,

feeding modes and ecosystem engineering (bioturbation) have also been used for modeling ben-

thic fauna (e.g. Chardy and Dauvin 1992; Rosenberg 2001; Alexandridis et al. 2017). Dynamic

Energy Budget (DEB) models (Nisbet et al. 2000) could also be seen as trait-based models that

rely on the DEB theory (Kooĳman and Kooĳman 2000) and its trade-offs among energy allocation.
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Several models actually borrow from both approaches by defining, for example, a few groups of

organisms for which life-cycle strategies or peculiar trade-offs are hardwired, while allometric re-

lationships to the size master trait allow for inter-individual or inter-specific variability within the

functional groups (e.g. Ward et al. 2012). Finally, statistical trait-based models (involving sta-

tistical relationships rather than differential equations based on mechanistic assumptions) have

also been developed, for instance for relating functional traits to body trace metal concentrations

in freshwater invertebrates (Peter et al. 2018) . Trait-based models were used for simulating

the distribution of traits at the community scale (Andersen and Beyer 2006), emergent trait bio-

geography (Follows et al. 2007; Record et al. 2013), size spectrum (e.g. Andersen et al. 2016),

competition among species and/or seasonal dynamics (Merico et al. 2009; Terseleer et al. 2014;

Leblanc et al. 2018), impact of traits on biogeochemical cycles (Stamieszkin et al. 2015; Coles et

al. 2017), or impact of human pressures such as fishing on trait and trophic structure (Andersen

and Pedersen, 2010). Traitbased models can also be used for estimating unknown traits, for in-

stance from phylogeny (Bruggeman 2011) or for estimating the inter- and intra-specific variability

of traits (Maps et al. 2014). A description of some examples of trait-based models developed in

marine ecology can be found in Kiørboe et al. (2018), with a special focus on optimality-based

resource acquisition in unicellular plankton and size-based trophic dynamics of fish communi-

ties. To our knowledge, mechanistic trait-based models developed for benthic organisms remain

relatively scarce (e.g. Sarà et al. 2013) and have considered size, ecosystem engineering, adult

motility, fecundity and dispersal. A few statistical trait-based models have also been developed for

these organisms (e.g. Peter et al. 2018). With the exception of a few studies (e.g. Maps et al. 2014;

Banas and Campbell 2016), the intra-specific variability of the traits is poorly or not taken into

account, mainly because of the lack of empirical information on this variability. A first perspective

for trait-based modeling could then be to tackle this question of inter-individual variation of traits

and its impact on ecosystem structure and functioning. Trait-based models can for instance be

used to quantify the impact of environmental changes on the intra- and inter-specific variability

of functional traits (e.g. inter-individual variability of lipid content and inter-specific variability of

size of Arctic copepods in the Barents Sea, Renaud et al. 2018). A second perspective would be

the development of a new generation of trait-based models using -omics data (Mock et al. 2016;

Stec et al. 2017; Coles et al. 2017). Metatranscriptomic data could for instance be used to identify

physiological traits of phytoplankton, combined to a mechanistic model of the phytoplankton cell,

and used to construct a trait-based global marine ecosystem model (Mock et al. 2016). Emergent

communities of marine microbes (from bacteria to phytoplankton) have also been predicted by

directly simulating their metagenomes and metatranscriptomes (Coles et al. 2017). Such models

could then be used for estimating functional trait plasticity across ecosystems. The idea of im-

proving ecosystem models using - omics is not new (Hood et al. 2006), but functional trait-based

approaches could constitute the common framework needed for modellers, observers, molecular

biologists, and ecologists working in limnology and oceanography.
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Supplementary Figures

Figure A.4 – Bibliographic network representing the database of publications on traitbased ap-
proaches. Three clusters of co-occurring keywords were identified within this network. The first
(in orange) and the second (in purple) clusters mainly refer to two different ecosystems. The “fresh-
water”, “river” and “stream” ecosystems drive the first cluster as well as “invertebrate” organisms,
while the second cluster refers to “marine” ecosystems with “fish”, “zooplankton” and “phytoplank-
ton” organisms. These clusters highlight different ecological questions either linked to “indicators”
and “land-use” (cluster 1 in orange) or to “food webs” and “climate-change” (cluster 2 in purple). The
third cluster (in blue) is mainly associated with theoretical ecology, grouping “biodiversity”, “com-
munity”, “ecology”, “ecological functioning” and “pattern” showing numerous links rather evenly
distributed between freshwater and marine ecosystem studies. This third cluster also refers to
“sediment” or “organic matter”, two components transcending both limnology and oceanography.
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Figure A.5 – The percentage of publications relative to all the ones published in freshwater and marine
ecology showing an increase over time, based on a literature survey (described in Supplementary
Information). This percentage has increased over time, reaching about 0.5% in 2017. More recently,
these two terms began to appear in the Web of Science research fields identified as: “genetics”,
“microbiology” and “technology” (Figure A.4).
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Appendix B

113 transcriptomes of mixotrophic protists

Taxonomy and access numbers for each of the 113 transcriptomes of mixotrophic species identified

among the 798 used in Chapter 3.
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Supergroup Phylum Class Genus Species NCBI ID ENA ID Mixotrophy Mixotype Reference

Alveolata Ciliophora Spirotrichea Strombidium rassoulzadegani 1082188 SRR1296873 Yes GNCM

Haraguchi, L., Jakobsen, H. H., Lundholm, N., & 
Carstensen, J. (2018). Phytoplankton Community 
Dynamic: A Driver for Ciliate Trophic Strategies. 
Front. Mar. Sci, 5, 272.

Alveolata Ciliophora Heterotrichea Climacostomum virens 49980 SRR1300461 Yes eSNCM

Reisser, W., Fischer-Defoy, D., Staudinger, J., 
Schilling, N., & Hausmann, K. (1984). The 
endosymbiotic unit ofClimacostomum virens 
andChlorella sp. I. Morphological and 
physiological studies on the algal partner and its 
localization in the host cell. Protoplasma, 119(1-2), 
93-99.

Alveolata Ciliophora Prostomatea Tiarina fusa 693140 SRR1296771 Yes eSNCM

Mordret, S., Romac, S., Henry, N., Colin, S., 
Carmichael, M., Berney, C., ... & Decelle, J. 
(2016). The symbiotic life of Symbiodinium in the 
open ocean within a new species of calcifying 
ciliate (Tiarina sp.). The ISME journal, 10(6), 1424.

Rhizaria Foraminifera Miliolida Sorites sp 126664 SRR1296734 Yes eSNCM

Wecker, P., Fournier, A., Bosserelle, P., Debitus, 
C., Lecellier, G., & Berteaux-Lecellier, V. (2015). 
Dinoflagellate diversity among nudibranchs and 
sponges from French Polynesia: insights into 
associations and transfer. Comptes Rendus 
Biologies, 338(4), 278-283.

Alveolata Ciliophora Litostomatea Mesodinium pulex 283647 SRR1296764 Yes pSNCM

Tarangkoon, W., & Hansen, P. J. (2011). Prey 
selection, ingestion and growth responses of the 
common marine ciliate Mesodinium pulex in the 
light and in the dark. Aquatic Microbial Ecology, 
62(1), 25-38.

Alveolata Ciliophora Litostomatea Myrionecta rubra 283649 SRR1296700 Yes pSNCM

Jones, R. I. (2000). Mixotrophy in planktonic 
protists: an overview. Freshwater Biology, 45(2), 
219-226.

Alveolata Dinoflagellata Dinophyceae Dinophysis acuminata 47934 SRR1296701 Yes pSNCM

Stoecker, D. K., Hansen, P. J., Caron, D. A., & 
Mitra, A. (2017). Mixotrophy in the marine 
plankton. Annual Review of Marine Science, 9, 
311-335.

Rhizaria Foraminifera Rotaliida Elphidium margaritaceum 933848 SRR1300475 Yes pSNCM

Pillet, L., & Pawlowski, J. (2012). Transcriptome 
analysis of foraminiferan Elphidium margaritaceum 
questions the role of gene transfer in 
kleptoplastidy. Molecular Biology and Evolution, 
30(1), 66-69.

Alveolata Dinoflagellata Dinophyceae Akashiwo sanguinea 143672 SRR1294464 Yes CM Park, J., Jeong, H. J., Du Yoo, Y., & Yoon, E. Y. 
(2013). Mixotrophic dinoflagellate red tides in 
Korean waters: distribution and ecophysiology. 
Harmful Algae, 30, S28-S40.

Alveolata Dinoflagellata Dinophyceae Akashiwo sanguinea 143672 SRR1294462 Yes CM
Alveolata Dinoflagellata Dinophyceae Akashiwo sanguinea 143672 SRR1294463 Yes CM
Alveolata Dinoflagellata Dinophyceae Akashiwo sanguinea 143672 SRR1294461 Yes CM

Alveolata Dinoflagellata Dinophyceae Alexandrium andersonii 327968 SRR1300512 Yes CM

Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., 
Kim, J. H., Jang, S. H., ... & Kim, J. S. (2016). 
Mixotrophic ability of the phototrophic 
dinoflagellates Alexandrium andersonii, A. affine, 
and A. fraterculus. Harmful algae, 59, 67-81.

Alveolata Dinoflagellata Dinophyceae Alexandrium catenella 2925 SRR1296704 Yes CM

Legrand, C., & Carlsson, P. (1998). Uptake of high 
molecular weight dextran by the dinoflagellate 
Alexandrium catenella. Aquatic microbial ecology, 
16(1), 81-86.

Alveolata Dinoflagellata Dinophyceae Alexandrium monilatum 311494 SRR1296897 Yes CM Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., 
Kim, J. H., & Kim, K. Y. (2015). Mixotrophy in the 
nematocyst–taeniocyst complex-bearing 
phototrophic dinoflagellate Polykrikos hartmannii. 
Harmful Algae, 49, 124-134.

Alveolata Dinoflagellata Dinophyceae Alexandrium monilatum 311494 SRR1296895 Yes CM
Alveolata Dinoflagellata Dinophyceae Alexandrium monilatum 311494 SRR1296896 Yes CM
Alveolata Dinoflagellata Dinophyceae Alexandrium monilatum 311494 SRR1296898 Yes CM
Alveolata Dinoflagellata Dinophyceae Alexandrium temarense 2926 SRR1300222 Yes CM Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., 

Kim, S. T., Lee, S. H., ... & Yih, W. H. (2005). 
Feeding by phototrophic red-tide dinoflagellates: 
five species newly revealed and six species 
previously known to be mixotrophic. Aquatic 

Alveolata Dinoflagellata Dinophyceae Alexandrium temarense 2926 SRR1300221 Yes CM
Alveolata Dinoflagellata Dinophyceae Alexandrium temarense 2926 SRR1296766 Yes CM
Alveolata Dinoflagellata Dinophyceae Alexandrium temarense 2926 SRR1296765 Yes CM
Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1294392 Yes CM Jeong, H. J., Lee, K. H., Du Yoo, Y., Kang, N. S., 

Song, J. Y., Kim, T. H., ... & Potvin, E. (2018). 
Effects of light intensity, temperature, and salinity 
on the growth and ingestion rates of the red-tide 
mixotrophic dinoflagellate Paragymnodinium 
shiwhaense. Harmful Algae, 80, 46-54.

Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1294391 Yes CM
Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1296757 Yes CM
Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1296758 Yes CM
Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1294393 Yes CM
Alveolata Dinoflagellata Dinophyceae Amphidinium carterae 2961 SRR1294394 Yes CM

Alveolata Dinoflagellata Dinophyceae Amphidinium massartii 160604 SRR1296892 Yes CM

Meng, A., Corre, E., Probert, I., Gutierrez‐
Rodriguez, A., Siano, R., Annamale, A., ... & Not, 
F. (2018). Analysis of the genomic basis of 
functional diversity in dinoflagellates using a 
transcriptome‐based sequence similarity network. 
Molecular ecology, 27(10), 2365-2380.

Alveolata Dinoflagellata Dinophyceae Ceratium fusus 2916 SRR1300300 Yes CM Baek, S. H., Shimode, S., & Kikuchi, T. (2007). 
Reproductive ecology of the dominant 
dinoflagellate, Ceratium fusus, in coastal area of 
Sagami Bay, Japan. Journal of Oceanography, 
63(1), 35-45.Alveolata Dinoflagellata Dinophyceae Ceratium fusus 2916 SRR1300301 Yes CM

Alveolata Dinoflagellata Dinophyceae Gonyaulax spinifera 66791 SRR1300518 Yes CM

Stoecker, D. K. (1999). Mixotrophy among 
Dinoflagellates 1. Journal of Eukaryotic 
Microbiology, 46(4), 397-401.

Alveolata Dinoflagellata Dinophyceae Gymnodinium catenatum 39447 SRR1296705 Yes CM

Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., 
Kim, S. T., Lee, S. H., ... & Yih, W. H. (2005). 
Feeding by phototrophic red-tide dinoflagellates: 
five species newly revealed and six species 
previously known to be mixotrophic. Aquatic 
microbial ecology, 40(2), 133-150.

Alveolata Dinoflagellata Dinophyceae Heterocapsa rotundata 89963 SRR1296810 Yes CM

Jeong, H. J. (2011). Mixotrophy in Red Tide Algae 
Raphidophytes 1. Journal of Eukaryotic 
Microbiology, 58(3), 215-222.

Alveolata Dinoflagellata Dinophyceae Heterocapsa triquetra 66468 SRR1296978 Yes CM

Legrand, C., Graneli, E., & Carlsson, P. (1998). 
Induced phagotrophy in the photosynthetic 
dinoflagellate Heterocapsa triquetra. Aquatic 
Microbial Ecology, 15(1), 65-75.

Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296744 Yes CM

Glibert, P. M., Burkholder, J. M., Kana, T. M., 
Alexander, J., Skelton, H., & Shilling, C. (2009). 
Grazing by Karenia brevis on Synechococcus 
enhances its growth rate and may help to sustain 
blooms. Aquatic Microbial Ecology, 55(1), 17-30.

Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296952 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296851 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296748 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296749 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296750 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296852 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296743 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296853 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296854 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296714 Yes CM
Alveolata Dinoflagellata Dinophyceae Karenia brevis 156230 SRR1296712 Yes CM
Alveolata Dinoflagellata Dinophyceae Karlodinium micrum 407301 SRR1300327 Yes CM Calbet, A., Bertos, M., Fuentes-Grünewald, C., 

Alacid, E., Figueroa, R., Renom, B., & Garcés, E. 
(2011). Intraspecific variability in Karlodinium 
veneficum: growth rates, mixotrophy, and lipid 

Alveolata Dinoflagellata Dinophyceae Karlodinium micrum 407301 SRR1300325 Yes CM
Alveolata Dinoflagellata Dinophyceae Karlodinium micrum 407301 SRR1300326 Yes CM
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Alveolata Dinoflagellata Dinophyceae Lingulodinium polyedra 160621 SRR1300255 Yes CM Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., 
Kim, S. T., Lee, S. H., ... & Yih, W. H. (2005). 
Feeding by phototrophic red-tide dinoflagellates: 
five species newly revealed and six species 
previously known to be mixotrophic. Aquatic 

Alveolata Dinoflagellata Dinophyceae Lingulodinium polyedra 160621 SRR1300257 Yes CM
Alveolata Dinoflagellata Dinophyceae Lingulodinium polyedra 160621 SRR1300256 Yes CM
Alveolata Dinoflagellata Dinophyceae Lingulodinium polyedra 160621 SRR1300258 Yes CM

Alveolata Dinoflagellata Dinophyceae Prorocentrum lima 39448 SRR1300465 Yes CM

Meng, A., Corre, E., Probert, I., Gutierrez‐
Rodriguez, A., Siano, R., Annamale, A., ... & Not, 
F. (2018). Analysis of the genomic basis of 
functional diversity in dinoflagellates using a 
transcriptome‐based sequence similarity network. 
Molecular ecology, 27(10), 2365-2380.

Alveolata Dinoflagellata Dinophyceae Prorocentrum micans 2945 SRR1300466 Yes CM

Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., 
Kim, S. T., Lee, S. H., ... & Yih, W. H. (2005). 
Feeding by phototrophic red-tide dinoflagellates: 
five species newly revealed and six species 
previously known to be mixotrophic. Aquatic 
microbial ecology, 40(2), 133-150.

Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296785 Yes CM

Johnson, M. D. (2015). Inducible mixotrophy in the 
dinoflagellate Prorocentrum minimum. Journal of 
Eukaryotic Microbiology, 62(4), 431-443.

Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296784 Yes CM
Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296788 Yes CM
Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296752 Yes CM
Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296754 Yes CM
Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296787 Yes CM
Alveolata Dinoflagellata Dinophyceae Prorocentrum minimum 39449 SRR1296753 Yes CM

Alveolata Dinoflagellata Dinophyceae Pyrocystis lunula 2972 SRR1300467 Yes CM

Meng, A., Corre, E., Probert, I., Gutierrez‐
Rodriguez, A., Siano, R., Annamale, A., ... & Not, 
F. (2018). Analysis of the genomic basis of 
functional diversity in dinoflagellates using a 
transcriptome‐based sequence similarity network. 
Molecular ecology, 27(10), 2365-2380.

Alveolata Dinoflagellata Dinophyceae Scrippsiella trochoidea 71861 SRR1296761 Yes CM Jeong, H. J., Du Yoo, Y., Park, J. Y., Song, J. Y., 
Kim, S. T., Lee, S. H., ... & Yih, W. H. (2005). 
Feeding by phototrophic red-tide dinoflagellates: 
five species newly revealed and six species 

Alveolata Dinoflagellata Dinophyceae Scrippsiella trochoidea 71861 SRR1296760 Yes CM

Alveolata Dinoflagellata Dinophyceae Scrippsiella trochoidea 71861 SRR1296759 Yes CM

Archaeplastida Chlorophyta Mamiellophyceae Mantoniella antarctica 81844 SRR1300318 Yes CM

McKie-Krisberg, Z. M., Gast, R. J., & Sanders, R. 
W. (2015). Physiological responses of three 
species of Antarctic mixotrophic phytoflagellates to 
changes in light and dissolved nutrients. Microbial 
ecology, 70(1), 21-29.

Archaeplastida Chlorophyta Mamiellophyceae Micromonas commoda 38833 SRR1300457 Yes CM 
Unrein, F., Gasol, J. M., Not, F., Forn, I., & 
Massana, R. (2014). Mixotrophic haptophytes are 
key bacterial grazers in oligotrophic coastal 
waters. The ISME journal, 8(1), 164.

Archaeplastida Chlorophyta Mamiellophyceae Micromonas polaris 38833 SRR1300367 Yes CM
Archaeplastida Chlorophyta Mamiellophyceae Micromonas pusilla 38833 SRR1300456 Yes CM
Archaeplastida Chlorophyta Mamiellophyceae Micromonas sp 38833 SRR1300458 Yes CM
Archaeplastida Chlorophyta Mamiellophyceae Micromonas sp 38833 SRR1300455 Yes CM

Hacrobia Haptophyta Prymnesiophyceae Chrysochromulina brevifilum 156173 SRR1300415 Yes CM

McKie-Krisberg, Z. M. (2014). Phagotrophy in 
photosynthetic eukaryotic microbes from polar 
environments. Temple University.

Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1296973 Yes CM
Liu, Z., Jones, A. C., Campbell, V., Hambright, K. 
D., Heidelberg, K. B., & Caron, D. A. (2015). Gene 
expression in the mixotrophic prymnesiophyte, 
Prymnesium parvum, responds to prey availability. 
Frontiers in microbiology, 6, 319.

Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1296769 Yes CM
Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1296917 Yes CM
Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1294411 Yes CM
Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1300223 Yes CM
Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1294412 Yes CM
Hacrobia Haptophyta Prymnesiophyceae Prymnesium parvum 97485 SRR1296710 Yes CM

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 SRR1300405 Yes CM

Archibald, J. M., Rogers, M. B., Toop, M., Ishida, 
K. I., & Keeling, P. J. (2003). Lateral gene transfer 
and the evolution of plastid-targeted proteins in the 
secondary plastid-containing alga Bigelowiella 
natans. Proceedings of the National Academy of 
Sciences, 100(13), 7678-7683.

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 SRR1300359 Yes CM

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 SRR1300357 Yes CM

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 SRR1296871 Yes CM

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 SRR1300358 Yes CM

Rhizaria Cercozoa
Filosa-
Chlorarachnea Bigelowiella natans 227086 Yes CM

Stramenopiles Ochrophyta Chrysophyceae Dinobryon sp 98059 SRR1296865 Yes CM Kamjunke, N., Henrichs, T., & Gaedke, U. (2006). 
Phosphorus gain by bacterivory promotes the 
mixotrophic flagellate Dinobryon spp. during re-
oligotrophication. Journal of plankton research, 
29(1), 39-46.

Stramenopiles Ochrophyta Chrysophyceae Dinobryon sp 98059 SRR1294384 Yes CM

Stramenopiles Ochrophyta Chrysophyceae Dinobryon sp 98059 SRR1296864 Yes CM
Stramenopiles Ochrophyta Chrysophyceae Ochromonas sp 2985 SRR1300383 Yes CM Maranger, R., Bird, D. F., & Price, N. M. (1998). 

Iron acquisition by photosynthetic marine 
phytoplankton from ingested bacteria. Nature, 
396(6708), 248.

Stramenopiles Ochrophyta Chrysophyceae Ochromonas sp 2985 SRR1300317 Yes CM
Stramenopiles Ochrophyta Chrysophyceae Ochromonas sp 420556 SRR1296863 Yes CM
Stramenopiles Ochrophyta Chrysophyceae Ochromonas sp 420556 SRR1296767 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Chattonella subsalsa 44440 SRR1300238 Yes CM

Jeong, H. J. (2011). Mixotrophy in Red Tide Algae 
Raphidophytes 1. Journal of Eukaryotic 
Microbiology, 58(3), 215-222.

Stramenopiles Ochrophyta Raphidophyceae Chattonella subsalsa 44440 SRR1300239 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Chattonella subsalsa 44440 SRR1300240 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Chattonella subsalsa 44440 SRR1300237 Yes CM

Stramenopiles Ochrophyta Raphidophyceae Fibrocapsa japonica 94617 SRR1300377 Yes CM

Jeong, H. J. (2011). Mixotrophy in Red Tide Algae 
Raphidophytes 1. Journal of Eukaryotic 
Microbiology, 58(3), 215-222.

Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296775 Yes CM

Jeong, H. J. (2011). Mixotrophy in Red Tide Algae 
Raphidophytes 1. Journal of Eukaryotic 
Microbiology, 58(3), 215-222.

Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296777 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296797 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296798 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296776 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296915 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 536046 SRR1296856 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296916 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 536046 SRR1296857 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 536046 SRR1296858 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296914 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296913 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 2829 SRR1296799 Yes CM
Stramenopiles Ochrophyta Raphidophyceae Heterosigma akashiwo 536046 SRR1296859 Yes CM

Supergroup Phylum Class Genus Species NCBI ID ENA ID Mixotrophy Mixotype Reference
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Appendix C

Supplementary tables Faure et al. 2020

Table S1: List of Kegg metabolic pathways detected in protein functional clusters (PFCs). The

number of occurrences in the 233,756 PFCs and in the 2,444 PFCs highly linked to environmental

gradients (hlePFCs) are given for each pathway. The percentage of occurrences among hlePFCs

is also given for each pathway, reflecting how the pathway was selected by our random forest

approach.
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Table S1

Pathway description Total occurrences Occurrences 
among hlePFCs

Percentage of occurrences 
among hlePFCs

Biosynthesis of vancomycin group antibiotics 43 2 4.65116279069767

Antigen processing and presentation 66 3 4.54545454545455

Estrogen signaling pathway 66 3 4.54545454545455

IL-17 signaling pathway 66 3 4.54545454545455

Progesterone-mediated oocyte maturation 66 3 4.54545454545455

Prostate cancer 66 3 4.54545454545455

Th17 cell differentiation 66 3 4.54545454545455

Cardiac muscle contraction 182 8 4.3956043956044

Phenylpropanoid biosynthesis 167 7 4.19161676646707

Linoleic acid metabolism 24 1 4.16666666666667

Parkinson disease 215 8 3.72093023255814

Glycosphingolipid biosynthesis - ganglio series 27 1 3.7037037037037

Non-alcoholic fatty liver disease (NAFLD) 225 8 3.55555555555556

Apoptosis - fly 118 4 3.38983050847458

Other types of O-glycan biosynthesis 30 1 3.33333333333333

Huntington disease 276 9 3.26086956521739

Alzheimer disease 371 12 3.23450134770889

Salmonella infection 124 4 3.2258064516129

PI3K-Akt signaling pathway 94 3 3.19148936170213

Phenazine biosynthesis 190 6 3.15789473684211

Various types of N-glycan biosynthesis 32 1 3.125

RNA polymerase 329 10 3.03951367781155

Legionellosis 270 8 2.96296296296296

Shigellosis 141 4 2.83687943262411

Carotenoid biosynthesis 145 4 2.75862068965517

Thermogenesis 591 16 2.7072758037225

NOD-like receptor signaling pathway 338 9 2.66272189349112

Plant-pathogen interaction 304 8 2.63157894736842

Methane metabolism 1563 41 2.62316058861164

Acarbose and validamycin biosynthesis 82 2 2.4390243902439

Type II diabetes mellitus 123 3 2.4390243902439

Ribosome 4603 112 2.43319574190745

Human papillomavirus infection 124 3 2.41935483870968

Protein processing in endoplasmic reticulum 126 3 2.38095238095238

Chloroalkane and chloroalkene degradation 129 3 2.32558139534884

C5-Branched dibasic acid metabolism 653 15 2.29709035222052

Carbon fixation in photosynthetic organisms 1140 26 2.28070175438596

Epithelial cell signaling in Helicobacter pylori infection 44 1 2.27272727272727

beta-Lactam resistance 640 14 2.1875

Photosynthesis 641 14 2.18408736349454

Pathogenic Escherichia coli infection 187 4 2.13903743315508

Chagas disease (American trypanosomiasis) 48 1 2.08333333333333

alpha-Linolenic acid metabolism 49 1 2.04081632653061
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Histidine metabolism 936 19 2.02991452991453

Isoquinoline alkaloid biosynthesis 99 2 2.02020202020202

Carbon fixation pathways in prokaryotes 2092 42 2.00764818355641

Pentose phosphate pathway 1358 27 1.98821796759941

Geraniol degradation 458 9 1.96506550218341

African trypanosomiasis 51 1 1.96078431372549

Citrate cycle (TCA cycle) 1499 29 1.9346230820547

Biosynthesis of various secondary metabolites - part 2 104 2 1.92307692307692

MAPK signaling pathway - fly 52 1 1.92307692307692

Prodigiosin biosynthesis 574 11 1.91637630662021

Pertussis 53 1 1.88679245283019

Viral carcinogenesis 159 3 1.88679245283019

Cationic antimicrobial peptide (CAMP) resistance 533 10 1.87617260787993

D-Arginine and D-ornithine metabolism 54 1 1.85185185185185

Fructose and mannose metabolism 925 17 1.83783783783784

Biofilm formation - Pseudomonas aeruginosa 765 14 1.83006535947712

Propanoate metabolism 1921 35 1.82196772514315

Carbon metabolism 6538 119 1.82012847965739

Ethylbenzene degradation 55 1 1.81818181818182

Oxidative phosphorylation 2874 52 1.80932498260264

Biofilm formation - Escherichia coli 613 11 1.79445350734095

Vancomycin resistance 448 8 1.78571428571429

Amino sugar and nucleotide sugar metabolism 1738 31 1.78365937859609

Porphyrin and chlorophyll metabolism 1907 34 1.78290508652333

Glycosphingolipid biosynthesis - globo and isoglobo series 57 1 1.75438596491228

RNA degradation 912 16 1.75438596491228

Biosynthesis of amino acids 8454 148 1.75065057960729

Central carbon metabolism in cancer 345 6 1.73913043478261

2-Oxocarboxylic acid metabolism 1788 31 1.7337807606264

AMPK signaling pathway 176 3 1.70454545454545

beta-Alanine metabolism 647 11 1.70015455950541

Cell cycle - Caulobacter 1194 20 1.6750418760469

Biotin metabolism 1016 17 1.67322834645669

Tuberculosis 180 3 1.66666666666667

Two-component system 3963 66 1.66540499621499

Peptidoglycan biosynthesis 1350 22 1.62962962962963

Cushing syndrome 62 1 1.61290322580645

Polyketide sugar unit biosynthesis 186 3 1.61290322580645

Renal cell carcinoma 62 1 1.61290322580645

Biosynthesis of secondary metabolites 18860 303 1.60657476139979

Tryptophan metabolism 1623 26 1.60197165742452

Biosynthesis of ansamycins 126 2 1.58730158730159

Glyoxylate and dicarboxylate metabolism 2525 40 1.58415841584158

Valine, leucine and isoleucine biosynthesis 1074 17 1.5828677839851

ABC transporters 4189 66 1.57555502506565

Glucagon signaling pathway 381 6 1.5748031496063
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Inositol phosphate metabolism 318 5 1.57232704402516

Synthesis and degradation of ketone bodies 510 8 1.56862745098039

HIF-1 signaling pathway 511 8 1.56555772994129

Quorum sensing 3451 54 1.56476383656911

Phenylalanine, tyrosine and tryptophan biosynthesis 1866 29 1.55412647374062

Biosynthesis of antibiotics 13874 215 1.5496612368459

Aminoacyl-tRNA biosynthesis 2650 41 1.54716981132075

Alanine, aspartate and glutamate metabolism 1817 28 1.5410016510732

Longevity regulating pathway 65 1 1.53846153846154

Microbial metabolism in diverse environments 12774 194 1.51870987944262

Butanoate metabolism 1913 29 1.51594354417146

Glycolysis / Gluconeogenesis 1848 28 1.51515151515152

Peroxisome 530 8 1.50943396226415

Fatty acid metabolism 2455 37 1.5071283095723

Fatty acid degradation 1067 16 1.49953139643861

Valine, leucine and isoleucine degradation 1738 26 1.49597238204833

Chlorocyclohexane and chlorobenzene degradation 268 4 1.49253731343284

Folate biosynthesis 1883 28 1.48698884758364

Sulfur relay system 876 13 1.48401826484018

Fatty acid biosynthesis 1550 23 1.48387096774194

Lipopolysaccharide biosynthesis 1281 19 1.4832162373146

Phenylalanine metabolism 1417 21 1.48200423429781

Terpenoid backbone biosynthesis 1284 19 1.4797507788162

Type I diabetes mellitus 68 1 1.47058823529412

Monobactam biosynthesis 479 7 1.46137787056367

Antifolate resistance 411 6 1.45985401459854

Nitrogen metabolism 685 10 1.45985401459854

Pyruvate metabolism 2551 37 1.45041160329283

Flagellar assembly 1534 22 1.43415906127771

Metabolic pathways 45830 652 1.42264891992145

Cysteine and methionine metabolism 2115 30 1.41843971631206

Glycerophospholipid metabolism 1135 16 1.40969162995595

Limonene and pinene degradation 357 5 1.40056022408964

Arginine biosynthesis 1179 16 1.35708227311281

Bacterial secretion system 1916 26 1.35699373695198

Glycine, serine and threonine metabolism 2656 36 1.35542168674699

One carbon pool by folate 1041 14 1.34486071085495

Drug metabolism - other enzymes 967 13 1.34436401240951

Dioxin degradation 75 1 1.33333333333333

Lysine degradation 1126 15 1.33214920071048

Protein export 1660 22 1.32530120481928

Carbapenem biosynthesis 151 2 1.32450331125828

Nucleotide excision repair 908 12 1.3215859030837

Base excision repair 1081 14 1.29509713228492

Styrene degradation 542 7 1.29151291512915

Thiamine metabolism 700 9 1.28571428571429
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Novobiocin biosynthesis 312 4 1.28205128205128

Pathways in cancer 555 7 1.26126126126126

Tropane, piperidine and pyridine alkaloid biosynthesis 238 3 1.26050420168067

Insulin resistance 159 2 1.25786163522013

Fluorobenzoate degradation 160 2 1.25

Purine metabolism 3695 46 1.24492557510149

FoxO signaling pathway 81 1 1.23456790123457

Nicotinate and nicotinamide metabolism 1215 15 1.23456790123457

Longevity regulating pathway - worm 742 9 1.21293800539084

Vitamin B6 metabolism 497 6 1.20724346076459

Glycosaminoglycan degradation 250 3 1.2

Ubiquinone and other terpenoid-quinone biosynthesis 669 8 1.19581464872945

Homologous recombination 1840 22 1.19565217391304

Fluid shear stress and atherosclerosis 671 8 1.19225037257824

Primary immunodeficiency 85 1 1.17647058823529

Aminobenzoate degradation 851 10 1.17508813160987

Necroptosis 341 4 1.17302052785924

Pantothenate and CoA biosynthesis 1450 17 1.17241379310345

Lysine biosynthesis 1112 13 1.16906474820144

Riboflavin metabolism 601 7 1.16472545757072

Pyrimidine metabolism 2181 25 1.14626318202659

Benzoate degradation 1225 14 1.14285714285714

Caprolactam degradation 526 6 1.14068441064639

Longevity regulating pathway - multiple species 263 3 1.14068441064639

Cyanoamino acid metabolism 357 4 1.12044817927171

Atrazine degradation 90 1 1.11111111111111

Glucosinolate biosynthesis 182 2 1.0989010989011

Glycerolipid metabolism 643 7 1.08864696734059

Pentose and glucuronate interconversions 559 6 1.07334525939177

Lipoic acid metabolism 190 2 1.05263157894737

Streptomycin biosynthesis 382 4 1.04712041884817

PPAR signaling pathway 383 4 1.0443864229765

DNA replication 1437 15 1.04384133611691

Starch and sucrose metabolism 576 6 1.04166666666667

Sulfur metabolism 1065 11 1.03286384976526

Steroid hormone biosynthesis 291 3 1.03092783505155

Arginine and proline metabolism 1659 17 1.02471368294153

Galactose metabolism 491 5 1.0183299389002

Phosphatidylinositol signaling system 198 2 1.01010101010101

Xylene degradation 100 1 1.00

Selenocompound metabolism 724 7 0.966850828729282

D-Alanine metabolism 211 2 0.947867298578199

Tyrosine metabolism 535 5 0.934579439252336

Mismatch repair 1519 14 0.921658986175115

Adipocytokine signaling pathway 112 1 0.892857142857143

D-Glutamine and D-glutamate metabolism 336 3 0.892857142857143
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Insulin signaling pathway 112 1 0.892857142857143

Sphingolipid metabolism 345 3 0.869565217391304

Glutathione metabolism 1160 10 0.862068965517241

Ferroptosis 119 1 0.840336134453782

Meiosis - yeast 126 1 0.793650793650794

Other glycan degradation 126 1 0.793650793650794

Phosphotransferase system (PTS) 127 1 0.78740157480315

Chemical carcinogenesis 387 3 0.775193798449612

Hepatocellular carcinoma 389 3 0.77120822622108

Thyroid hormone synthesis 130 1 0.769230769230769

Metabolism of xenobiotics by cytochrome P450 396 3 0.757575757575758

Biofilm formation - Vibrio cholerae 926 7 0.755939524838013

Ascorbate and aldarate metabolism 269 2 0.743494423791822

Drug metabolism - cytochrome P450 409 3 0.733496332518337

Bacterial chemotaxis 846 6 0.709219858156028

Lysosome 293 2 0.68259385665529

Platinum drug resistance 454 3 0.66079295154185

Phosphonate and phosphinate metabolism 154 1 0.649350649350649

Toluene degradation 171 1 0.584795321637427

Glutamatergic synapse 172 1 0.581395348837209

GABAergic synapse 184 1 0.543478260869565

Biosynthesis of unsaturated fatty acids 195 1 0.512820512820513

RNA transport 206 1 0.485436893203883

Taurine and hypotaurine metabolism 332 1 0.301204819277108

Degradation of aromatic compounds 701 2 0.285306704707561

Alcoholism 33 0 Not detected among hlePFCs

Amoebiasis 8 0 Not detected among hlePFCs

Amphetamine addiction 7 0 Not detected among hlePFCs

Amyotrophic lateral sclerosis (ALS) 50 0 Not detected among hlePFCs

Apelin signaling pathway 10 0 Not detected among hlePFCs

Apoptosis 51 0 Not detected among hlePFCs

Apoptosis - multiple species 31 0 Not detected among hlePFCs

Arabinogalactan biosynthesis - Mycobacterium 46 0 Not detected among hlePFCs

Arachidonic acid metabolism 107 0 Not detected among hlePFCs

Autophagy - animal 11 0 Not detected among hlePFCs

Autophagy - yeast 75 0 Not detected among hlePFCs

Bacterial invasion of epithelial cells 6 0 Not detected among hlePFCs

Basal transcription factors 16 0 Not detected among hlePFCs

Betalain biosynthesis 12 0 Not detected among hlePFCs

Bile secretion 9 0 Not detected among hlePFCs

Biosynthesis of enediyne antibiotics 15 0 Not detected among hlePFCs

Biosynthesis of siderophore group nonribosomal peptides 25 0 Not detected among hlePFCs

Biosynthesis of type II polyketide products 17 0 Not detected among hlePFCs

Biosynthesis of various secondary metabolites - part 3 2 0 Not detected among hlePFCs

Bisphenol degradation 9 0 Not detected among hlePFCs

Bladder cancer 6 0 Not detected among hlePFCs
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Calcium signaling pathway 3 0 Not detected among hlePFCs

cAMP signaling pathway 9 0 Not detected among hlePFCs

Carbohydrate digestion and absorption 5 0 Not detected among hlePFCs

Cell cycle 12 0 Not detected among hlePFCs

Cholesterol metabolism 18 0 Not detected among hlePFCs

Choline metabolism in cancer 8 0 Not detected among hlePFCs

Cholinergic synapse 3 0 Not detected among hlePFCs

Chronic myeloid leukemia 2 0 Not detected among hlePFCs

Circadian rhythm 4 0 Not detected among hlePFCs

Cocaine addiction 7 0 Not detected among hlePFCs

Colorectal cancer 31 0 Not detected among hlePFCs

Cutin, suberine and wax biosynthesis 10 0 Not detected among hlePFCs

Cytosolic DNA-sensing pathway 1 0 Not detected among hlePFCs

Dopaminergic synapse 8 0 Not detected among hlePFCs

ECM-receptor interaction 59 0 Not detected among hlePFCs

EGFR tyrosine kinase inhibitor resistance 10 0 Not detected among hlePFCs

Endocytosis 5 0 Not detected among hlePFCs

Epstein-Barr virus infection 31 0 Not detected among hlePFCs

Ether lipid metabolism 29 0 Not detected among hlePFCs

Fanconi anemia pathway 21 0 Not detected among hlePFCs

Fatty acid elongation 1 0 Not detected among hlePFCs

Fc gamma R-mediated phagocytosis 5 0 Not detected among hlePFCs

Flavone and flavonol biosynthesis 3 0 Not detected among hlePFCs

Flavonoid biosynthesis 34 0 Not detected among hlePFCs

Furfural degradation 25 0 Not detected among hlePFCs

Glycosylphosphatidylinositol (GPI)-anchor biosynthesis 1 0 Not detected among hlePFCs

GnRH signaling pathway 5 0 Not detected among hlePFCs

Hepatitis B 43 0 Not detected among hlePFCs

Hepatitis C 43 0 Not detected among hlePFCs

Herpes simplex virus 1 infection 42 0 Not detected among hlePFCs

Human cytomegalovirus infection 31 0 Not detected among hlePFCs

Human immunodeficiency virus 1 infection 31 0 Not detected among hlePFCs

Human T-cell leukemia virus 1 infection 20 0 Not detected among hlePFCs

Hypertrophic cardiomyopathy (HCM) 7 0 Not detected among hlePFCs

Influenza A 43 0 Not detected among hlePFCs

Insect hormone biosynthesis 13 0 Not detected among hlePFCs

Isoflavonoid biosynthesis 2 0 Not detected among hlePFCs

Kaposi sarcoma-associated herpesvirus infection 31 0 Not detected among hlePFCs

Leishmaniasis 3 0 Not detected among hlePFCs

Lipoarabinomannan (LAM) biosynthesis 32 0 Not detected among hlePFCs

Mannose type O-glycan biosynthesis 1 0 Not detected among hlePFCs

MAPK signaling pathway - plant 128 0 Not detected among hlePFCs

MAPK signaling pathway - yeast 13 0 Not detected among hlePFCs

Measles 42 0 Not detected among hlePFCs

MicroRNAs in cancer 28 0 Not detected among hlePFCs

Mineral absorption 13 0 Not detected among hlePFCs
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mRNA surveillance pathway 32 0 Not detected among hlePFCs

mTOR signaling pathway 10 0 Not detected among hlePFCs

Naphthalene degradation 25 0 Not detected among hlePFCs

Neomycin, kanamycin and gentamicin biosynthesis 20 0 Not detected among hlePFCs

Neuroactive ligand-receptor interaction 18 0 Not detected among hlePFCs

N-Glycan biosynthesis 42 0 Not detected among hlePFCs

Nitrotoluene degradation 48 0 Not detected among hlePFCs

Non-homologous end-joining 20 0 Not detected among hlePFCs

Nonribosomal peptide structures 17 0 Not detected among hlePFCs

Notch signaling pathway 2 0 Not detected among hlePFCs

Osteoclast differentiation 9 0 Not detected among hlePFCs

p53 signaling pathway 31 0 Not detected among hlePFCs

Pancreatic cancer 5 0 Not detected among hlePFCs

Pancreatic secretion 4 0 Not detected among hlePFCs

Parathyroid hormone synthesis, secretion and action 16 0 Not detected among hlePFCs

Penicillin and cephalosporin biosynthesis 81 0 Not detected among hlePFCs

Phagosome 6 0 Not detected among hlePFCs

Phospholipase D signaling pathway 5 0 Not detected among hlePFCs

Photosynthesis - antenna proteins 17 0 Not detected among hlePFCs

Polycyclic aromatic hydrocarbon degradation 106 0 Not detected among hlePFCs

Primary bile acid biosynthesis 48 0 Not detected among hlePFCs

Prion diseases 6 0 Not detected among hlePFCs

Prolactin signaling pathway 21 0 Not detected among hlePFCs

Proteasome 41 0 Not detected among hlePFCs

Protein digestion and absorption 19 0 Not detected among hlePFCs

Proteoglycans in cancer 95 0 Not detected among hlePFCs

Proximal tubule bicarbonate reclamation 41 0 Not detected among hlePFCs

Ras signaling pathway 5 0 Not detected among hlePFCs

Renin-angiotensin system 37 0 Not detected among hlePFCs

Renin secretion 7 0 Not detected among hlePFCs

Retinol metabolism 13 0 Not detected among hlePFCs

Retrograde endocannabinoid signaling 32 0 Not detected among hlePFCs

Rheumatoid arthritis 9 0 Not detected among hlePFCs

Ribosome biogenesis in eukaryotes 221 0 Not detected among hlePFCs

RIG-I-like receptor signaling pathway 4 0 Not detected among hlePFCs

Secondary bile acid biosynthesis 22 0 Not detected among hlePFCs

Serotonergic synapse 7 0 Not detected among hlePFCs

Sesquiterpenoid and triterpenoid biosynthesis 33 0 Not detected among hlePFCs

Small cell lung cancer 31 0 Not detected among hlePFCs

Sphingolipid signaling pathway 17 0 Not detected among hlePFCs

Staphylococcus aureus infection 3 0 Not detected among hlePFCs

Staurosporine biosynthesis 24 0 Not detected among hlePFCs

Steroid biosynthesis 29 0 Not detected among hlePFCs

Steroid degradation 61 0 Not detected among hlePFCs

Stilbenoid, diarylheptanoid and gingerol biosynthesis 34 0 Not detected among hlePFCs

Tetracycline biosynthesis 3 0 Not detected among hlePFCs
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Thyroid hormone signaling pathway 1 0 Not detected among hlePFCs

Tight junction 21 0 Not detected among hlePFCs

Toxoplasmosis 31 0 Not detected among hlePFCs

Vibrio cholerae infection 8 0 Not detected among hlePFCs

Viral myocarditis 31 0 Not detected among hlePFCs

Wnt signaling pathway 6 0 Not detected among hlePFCs

Yersinia infection 2 0 Not detected among hlePFCs

Zeatin biosynthesis 83 0 Not detected among hlePFCs
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Table S2

VARIABLE ID TYPE LEVELS DESCRIPTION

Season Qualitative

Winter

Season of sampling
Spring

Summer

Autumn

Season moment Qualitative

Winter_early

Season moment of sampling

Winter_middle

Winter_late

Spring_early

Spring_middle

Spring_late

Summer_early

Summer_middle

Summer_late

Autumn_early

Autumn_middle

Autumn_late

Depth Qualitative
SRF Qualitative depth, either surface 

or deep chlorophyll maximumDCM

Marine biome Qualitative

Coastal Biome

Biome of the sampling station
Polar Biome

Trades Biome

Westerlies Biome

Ocean region Qualitative

[IO] Indian Ocean (MRGID:
1904)

Ocean region of the sampling 
station

[MS] Mediterranean Sea 
(MRGID:1905)

[NAO] North Atlantic Ocean 
(MRGID:1912)

[NPO] North Pacific Ocean 
(MRGID:1908)

[RS] Red Sea (MRGID:4264)

[SAO] South Atlantic Ocean 
(MRGID:1914)

 [SO] Southern Ocean (MRGID:
1907)

[SPO] South Pacific Ocean 
(MRGID:1910)

[ANTA] Antarctic Province 
(MRGID:21502)

VARIABLE ID
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Biogeographical province Qualitative

[ARAB] Northwest Arabian Sea 
Upwelling Province (MRGID:
21475)

Biogeographical province of the 
sampling station, sensu 
Longhurst. The 4 letter code 
between brackets were used on 
Figure 3.

[BENG] Benguela Current 
Coastal Province (MRGID:
21470)

[CAMR] Central American 
Coastal Province (MRGID:
21494)

[CARB] Caribbean Province 
(MRGID:21466)

[CHIL] Chile-Peru Current 
Coastal Province (MRGID:
21495)

[EAFR] Eastern Africa Coastal 
Province (MRGID:21473)

[FKLD] Southwest Atlantic 
Shelves Province (MRGID:
21469)

[GFST] Gulf Stream Province 
(MRGID:21454)

[GUIA] Guianas Coastal 
Province (MRGID:21463)

[ISSG] Indian South Subtropical 
Gyre Province (MRGID:21472)

[MEDI] Mediterranean Sea, 
Black Sea Province (MRGID:
21465)

[MONS] Indian Monsoon Gyres 
Province (MRGID:21471)

[NAST-E] North Atlantic 
Subtropical Gyral Province 
(MRGID:21467)

[NAST-W] North Atlantic 
Subtropical Gyral Province 
(MRGID:21455)

[NPST] North Pacific Subtropical 
and Polar Front Provinces 
(MRGID:21484)

[PEOD] Pacific Equatorial 
Divergence Province (MRGID:
21489)

[PNEC] North Pacific Equatorial 
Countercurrent Province 
(MRGID:21488)

[REDS] Red Sea, Persian Gulf 
Province (MRGID:21474)

[SATL] South Atlantic Gyral 
Province (MRGID:21459)

TYPE LEVELS DESCRIPTIONVARIABLE ID
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[SPSG] South Pacific 
Subtropical Gyre Province, 
North and South (MRGID:
21486)

Latitude Quantitative Latitude of sampling station

Longitude Quantitative Longitude of sampling station

Depth bottom max Quantitative Maximum depth of sampling

CO3 Quantitative CO3 concentration at sampling 
station

Alkalinity total Quantitative Alkalinity at sampling station

Calcite saturation state Quantitative Calcite saturation state at 
sampling station

NO2 Quantitative NO2 concentration  at sampling 
station

Si Quantitative Silicium concentration  at 
sampling station

NO3 Quantitative NO3 concentration  at sampling 
station

Temperature Quantitative Temperature in celsius degrees 
at sampling station

Salinity Quantitative Salinity at sampling station

Oxygen Quantitative Oxygen concentration at 
sampling station

ChlorophyllA Quantitative Chlorophyll A concentration at 
sampling station

Opt backscat coef 470nm Quantitative Optical backscattering 
coefficient, 470nm, includes 
backscattering by particulate 
and dissolve matter and water 
molecules. 

Fluorescence Quantitative Fluorescence of colored 
dissolved organic matter

Moon phase prop Quantitative Moon phase proportion during 
sampling

Sunshine duration Quantitative Sunshine duration per day 
during sampling period

Iron 5m Quantitative Iron concentration at 5m depth 
at sampling station

Ammonium 5m Quantitative Ammonium concentration at 5m 
depth at sampling station

NO2 5m Quantitative NO2 concentration at 5m depth 
at sampling station

NO3 5m Quantitative NO3 concentration at 5m depth 
at sampling station

TYPE LEVELS DESCRIPTIONVARIABLE ID
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Gradient surface temp SST Quantitative Horizontal gradient of sea 
surface temperature at sampling 
station, during an 8 days period 
around sampling time

Okubo weiss Quantitative Okubo-Weiss parameter at the 
sampling station

Lyapunov Quantitative Maximum Lyapunov exponent 
at sampling date and station

Residence time Quantitative Residence time of the water 
mass at sampling date and 
station

Depth euphotic zone Quantitative Depth of the euphoric zone at 
sampling station

Depth mixed layer Quantitative Depth of the mixed layer at 
sampling station

Depth chloro max Quantitative Depth of the chlorophyll 
maximum at sampling station

Depth max Brunt Väisälä Quantitative Depth of maximum Brunt 
Väisälä frequency at sampling 
station

Depth Max O2 Quantitative Depth of the oxygen maximum 
at sampling station

Depth Min O2 Quantitative Depth of the oxygen minimum 
at sampling station

Depth nitracline Quantitative Depth of the nitracline at 
sampling station

Carbon flux Quantitative Carbon flux at the sampling 
station

DepthBathy Quantitative Bathymetric depth at the 
sampling station

Coast_Distance Quantitative Shortest distance to the coast 
from sampling station

t_se Quantitative Mean temperature seasonal 
anomaly over the 2005-2012 
period at sampling station (1° 
resolution). File ID : 
woa13_A5B2_t00_01v2.nc

s_se Quantitative Mean salinity seasonal anomaly 
over the 2005-2012 period at 
sampling station (1° resolution). 
File ID : 
woa13_A5B2_s00_01v2.nc

I_an Quantitative Mean density over the 
2005-2012 period at sampling 
station (1° resolution). File ID : 
woa13_A5B2_I00_01.nc

TYPE LEVELS DESCRIPTIONVARIABLE ID
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C_se Quantitative Mean conductivity seasonal 
anomaly over the 2005-2012 
period at sampling station (1° 
resolution). File ID : 
woa13_A5B2_C00_01.nc

o_se Quantitative Mean dissolved oxygen 
seasonal anomaly over all 
available years at sampling 
station (1° resolution). File ID : 
woa13_all_o00_01.nc

O_an Quantitative Mean % of oxygen saturation 
over all available years at 
sampling station (1° resolution). 
File ID : woa13_all_O00_01.nc

O_se Quantitative Mean % of oxygen saturation 
seasonal anomaly over all 
available years at sampling 
station (1° resolution). File ID : 
woa13_all_O00_01.nc

i_se Quantitative Mean silicate concentration 
seasonal anomaly over all 
available years at sampling 
station (1° resolution). File ID : 
woa13_all_i00_01.nc

n_se Quantitative Mean nitrate concentration 
seasonal anomaly over all 
available years at sampling 
station (1° resolution). File ID : 
woa13_all_n00_01.nc

p_se Quantitative Mean phosphate concentration 
seasonal anomaly over all 
available years at sampling 
station (1° resolution). File ID : 
woa13_all_p00_01.nc

TYPE LEVELS DESCRIPTIONVARIABLE ID

�5
259





Appendix D

Curriculum Vitae

261



Plankton ecology - Bioinformatics - Quantitative analysis - Omics  
Numerical ecology - Functional traits - Biogeochemical cycles 

Profile PhD student in marine ecology and bioinformatics at the Laboratoire d’océanographie de 
Villefranche-sur-Mer (LOV), and the ISYEB, Sorbonne university, Paris. My PhD project is 
entitled « Contributions of meta-omics data to the detection and quantification of 
functional traits in marine planktonic ecosystems ».


Curriculum	 PhD Student, Sorbonne Université – October 2017—Present

	 Interfaces pour le vivant (IPV) doctoral school.

	 Co-supervisors: Sakina-Dorothée Ayata & Lucie Bittner.


	 Interdisciplinary Masters in Life Sciences, Ecole Normale Supérieure – 2015—2017

	 Major in theoretical ecology and modeling. Ranked 1st over 68 students.

	 Main classes followed: computational biology, ecological systems modeling, ecology of 

microbial populations, oceanography, statistics, mathematics for biologists, multivariate 
statistics (summer school at the oceanographic laboratory of Villefranche sur mer).


	 

	 Bi-disciplinary licence of biology and mathematics, Station biologique de Roscoff, 

Université Pierre et Marie Curie – 2012-2015

	 Selective cursus, diploma obtained with highest distinction (2nd over 15 students). 

	 Third year abroad as an exchange student at California State University Monterey Bay.


Research experiences	 M2 internship, Laboratoire d’analyse de données de séquençage haut-débit, Sorbonne 
Université - January 2017 - June 2017


	 « From omics to biogeochemical processes modeling in the Ocean »

	 Co-supervisors: Sakina-Dorothée Ayata & Lucie Bittner.


	 M1 internship, Treml Lab, The University of Melbourne - February 2016 - June 2016

	 « Modeling climate change impacts on multi-species marine populations connectivity 

across the Indo-Pacific Ocean. »

	 Supervisor: Eric Treml.


	 Undergraduate voluntary internships

	 « Modeling the fitness of cry-wolf plants », 6 weeks, ENS, supervisor: Minus Van Baalen

	 « Study of the impact of the hivernal storms of 2013-14 on the biodiversity of 

macrobenthic populations of Brittany », 2 months, Station biologique de Roscoff, co-
supervisors: Caroline Broudin & Eric Thiébaut 

Skills	 Language

	 French: Native	 	 	 English: Fluent	 	 	 German: Intermediate


	 Computer sciences

	 High proficiency: R, UNIX, bash, awk, bioinformatics tools (Diamond, Prodigal, Salmon, 

Anvi’o, eggNOG mapper,…).


	 Intermediate proficiency: Matlab, Python, Mathematica.


	 Beginner: ArcGIS, C++.
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workshops Faure E, Ayata SD, Bittner L. From genes to functional traits in the global ocean: building 
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	 International summer school on networks and evolution, in Roscoff.

	 Société française de statistiques workshop on Network approaches, inference and 

modeling, in Fréjus.

	 

	 2018

	 Faure E, Aumont O, Bittner L, Ayata S-D. From omics to biogeochemical modeling in the 

global ocean. AGU-ASLO Ocean Sciences Meeting in Portland, Oregon (Oral 
presentation).




	 Faure E, Not F, Benoiston A-S, Labadie K, Bittner L, Ayata S-D. Ubiquitous yet contrasted 
biogeography of mixotrophic protists in the global ocean. ISME international 
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	 Faure E, Bittner L, Benoiston A-S, Aumont O., Ayata S-D. From omics to biogeochemical 

processes modeling in the Ocean. AMEMR conference in Plymouth (Poster 
presentation).


	 EBAME microbial ecogenomics workshop in Brest.


Student supervision Aurélie Pham, M2 internship, Master Sciences de la Mer, Sorbonne Universités  - 

	 January - June 2019

	 Co-supervision with Lucie Bitter. Evaluation of mixotrophic capacity in dinoflagellates 

through the use of omics data. Internship validated with the mark of 14.85/20.

	 Nina Guérin, M1 internship, Master Mécanismes du Vivant et Environnement, MNHN - 

April - June 2019

	 Co-supervision with Lucie Bittner. Evaluation of dimethylsulfur production by prokaryotic 

planktonic organisms through the use of omics data. Internship validated (14.97/20).


Teaching February - March 2020

Modeling workshop for 1st year Masters students (24 hours). Focus on planktonic 
ecology modeling. Included 4 teaching hours, 20 tutoring hours, as well as collecting 
and grading reports for 4 groups of students.


October 2019

	 Introduction to environmental metagenomics for 2nd year master students (12 hours). 

Presentation of the Tara datasets, practical on sequence homolog detection in the OM-
RGC catalog, and quick multivariate analysis of homologs distribution. 


January - February 2019

Modeling workshop for 1st year Masters students (20 hours). Focus on planktonic 
ecology modeling. Included 4 teaching hours, 16 tutoring hours, as well as collecting 
and grading reports for 4 groups of students.


	 December 2018

	 Part of the jury for professional insertion orals of 1st year undergraduate students (4 

hours).


	 July 2018

	 Teaching assistant during the multivariate statistics summer school held in the 

Villefranche-sur-Mer Oceanographic laboratory (18 hours).


Grants and prizes 2019

	 Korean institute for ocean science and technology (KIOST) grant for attending the IMBER 

Future Oceans 2 conference (300 €).

	 Société française de statistiques (SFdS) grant for attending the workshop on network 

approaches, inference and modeling (695 €).




2018

	 GDR Génomique Environnementale travel grant to make an oral presentation at the ISME 

international symposium in Leipzig (500 €).


2017

	 Interfaces pour le vivant (IPV) doctoral school grant for a three year PhD (>50,000 €).


Public outreach Press communications presenting/citing my research
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acteur-meconnu-de-la-photosynthese/


	 Actions

	 Part of the Planktomania project animators, presenting the planktonic world to 

schoolchildren through high technology vulgarization materials (3D movies, interactive 
card games, VR videos, 3D printed models,…).


Oceanographic May 2018 
Cruises MOOSE campaign, 16 days in the mediterranean Sea on IFREMER’s Atalante, with 

transects between Toulon, Minorque, Sardinia, and Perpignan. Biological sampling 
through plankton nets.
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