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Part 1.

Preamble






This manuscript relates my scientific journey since the end of my PhD. As detailed in Section
111, after a joint PhD between the Grenoble Institute of Technology and the University of Iceland
under the direction of Jocelyn Chanussot and Jon Atli Benediktsson, I spend two years in the
MISTIS-INRIA team, with Stéphane Girard. These two experiences gave me a taste for the
statistical learning applied to remote sensing, as well as working with computers.

My initial background was “signal and image processing applied to natural signals”. During
my PhD, I studied kernel methods, and in particular the Support Vectors Machines, for the
classification and the feature extraction of hyperspectral images. During the 2000s, such field
was called statistical learning or machine learning, and significant contributions in the remote
sensing literature were obtained by casting linear problems into non-linear ones. Learning
was done by solving a convex optimization problem which had an attractive property w.r.t the
training process of neural networks: the training time was shorter, and an unique solution was
found. During that period, apart from doing science, I learned how academic science works:
Jocelyn and Jon have driven myself in the middle of big names of the Geoscience and Remote
Sensing Society (GRSS) and that makes a difference ! They also gave me a research topic that
is, twenty years later, still fashionable: Al for remote sensing (but kernel methods are now
old-fashioned and neural networks are state of the art!).

My move to MISTIS team made me discovered high dimensional statistical learning, with
a more formal approach than what I was doing during my PhD. After two years in the team,
my statistical background has increased, thanks to Stéphane, and I started mixing parametric
model and kernel methods. I still processed hyperspectral data, not over the University of Pavia
(') but over the Mars planet. However, I was not so successful in processing astrophysical data
and a little bit tired of competition for academic position. My first child was born and I was
thinking to leave academic.

At that time, I was lucky David Sheeren told me about an assistant professor position in
Toulouse that should be transformed into associated professor one year later. I came back to
Toulouse for one year, then the position was opened and I was ranked first at the competition. I
discovered a new field of research, landscape ecology, for which remote sensing and statistical
learning could help. My research topics have changed to be driven by my colleagues needs.
The idea was not to provide technical services, but to solve statistical problems that arise when
we tried to extract meaningful information from remote sensing images. I smoothly aban-
doned hyperspectral images to satellite image time series because the later were better suited
to monitor earth cover in the context of climate change.

During that period, I started questioning myself about the true performances and usefulness
of my “statistical” contribution: most of my codes does not scale correctly and it was difficult
to feed my colleagues with maps and spatialized information. It was in 2015-2016, during
the emergence of the Sentinel-2 image time series. Data were freely available, already pre-
processed by the Theia data center and the very first problem at my lab was now “how do we
store the data before analysing them?”... A change of paradigm for me, used to process small
hyperspectral data: small in term of spatial coverage, and in terms of size (few hundred of
gigabytes), w.r.t. Sentinel 2 time series.

A little bit earlier in 2014, Jordi Inglada invited my lab to join the CNES project OSO (Occu-
pation des SOls) he was initiating for the production of the first French land cover map using
machine learning and remote sensing. It was about the development of methods and a shared
software for the analysis of large scale Sentinel-2 time series. I was sceptical at the beginning:
I had distributed some toolbox (old style Matlab !) or library (new style Python !) but I was not

1ii



sure that spending so much time in developing software would be more useful than publishing
new methods. But then I realized it was at that cost I could better design and evaluate my work.
Using remote sensing to monitor small area is a nonsense: fieldworkers are better for that, I
should concentrate on large scale and the corresponding statistical and computer tools.

In 2017, the CESBIO lab integrates INRA and researcher positions were opened. I was in-
volved in the preliminary discussions as a member of DYNAFOR lab working in remote sens-
ing. As a “man-in-the-middle”, 1 was informed early that such positions were opened. With
the invaluable help of my DYNAFOR colleagues (M. Deconchat, A. Ouin, M. Goulard, M. San-
Cristobal and D. Sheeren to name few, who respectfully kill me during oral training), I passed
the researcher position competition. I started a new scientific adventure at CESBIO-lab, in
the same office than Jordi Inglada, who has confronted me to big time series 5 years ago, and
was in my PhD committee 10 years earlier, asking me something like “how do you apply the
morphological profile on large image?”.

I have started mid-July 2018 my new position. Without the teaching load, things were going
faster and since then, I have more time for project coordination. Indeed, I rapidly took over
the leadership of CNES project PARCELLE from Jordi Inglada, to promote and develop the pro-
cessing chain iota2 (https://framagit.org/iota2-project/iota2, https://labo.obs-
mip.fr/multitemp/iota2-latest-release-deep-learning-at-the-menu/). My objec-
tive was to involved different laboratories and public bodies in a co-development of an existing
open-source software that is usable both for research and large scale mapping: a difficult task
... In 2019, my colleague Prof. Nicolas Dobigeon grabbed me into the 3IA ANITI project. These
two projects perfectly supported my ongoing research project at the CESBIO lab: When Big
Data hit ecosystem monitoring.

The gitlab account of this document says that I did my first commit the [2018-08-30 Thu]. More
than 4 years latter, after COVID-19 hard time, I am done with the writing. This HDR manuscript
contains a selected resume of my scientific and administrative commitment. It should attest “the
high scientific level of the candidate, the original character of his approach in a field of science, his
ability to master a research strategy in a sufficiently broad scientific or technological field and his
ability to supervise young researchers” (https://www.legifrance.gouv.fr/loda/article_
1c/LEGIARTI000028933318). I am not sure it does, maybe you need to attend the defense to
check. Yet, its content was deeply influenced by my trajectory. I was lucky to meet colleagues
and students who have shaped my way of thinking and still continue to. All the contributions
and perspectives discussed in the manuscript owe them a lot.

I think this the time to thanks them and wish you, dear reader, a good reading ! If you find
some typo, please fill an issue here https://framagit.org/mfauvel/HDR !
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1. Introduction

1.1. Importance of ecosystems assessment

Ecosystems are fundamental for humankind. They provide services which are conventionally
divided into four categories (according to Millennium Ecosystem Assessment-2005 [Gro13]): i)
provisioning services, ii) regulating services, iii) cultural services and iv) supporting services.
Natural habitats, agricultural and urban vegetation are known to provide numerous ecosys-
tem services, including provisioning services, cultural services, and also regulating services
(e.g., crops host pest predators). For instance, urban vegetation reduces air/noise pollution and
helps in draining rainwater while parks and green spaces have recreational and cultural val-
ues [BH99], see for instance Figure 1.1. In agricultural landscapes, crop pollination is the best
known service provided by insects: 75% of the most important crops production is dependent
upon animal pollination [KVC'07]. Biological pest control is another service of high interest in
relation to the recent agri-environmental policies of pesticide use reduction.

Figure 1.1.: Central park, New York, USA. One of the most visited urban park. It hosts many
recreational activities and has a consequent variety of wildlife.

In the past decades, anthropogenic pressure on ecosystems have increased drastically, mainly
because of global population growth; urbanization and agriculture expansion are the main fac-
tors associate to this phenomenon. In particular, changes and intensification of agricultural
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practices have caused an important loss in terms of ecosystem services. Recently, because
climate change has amplified the loss of natural resources with a critical impacts on ecosys-
tem, these issues have raised attention of the citizens. To this end, policies have been adopted
worldwide to protect biodiversity and related ecosystems services. For instance, ecosystems
monitoring tends to be a mandatory baseline for public policies at local, national and interna-
tional level [DDC™15, MEW 12, un15].

Therefore, assessing the current state and trend of ecosystems is a critical question in various
fields related to land management since they are fundamental for humankind. These variables,
such as land use or land cover, reflect the nature, the role and the evolution of ecosystems, but
also the Human-Environmental interactions. They must be assessed frequently and on large spa-
tial areas because significant changes can be observed both spatially and temporally. However,
ecosystems or biodiversity assessment are usually done by intensive ground surveys which re-
quire the definition of the objects of interest and of a sampling strategy. As a consequence, they
are time-consuming, expensive and limited in terms of area covered and/or temporal periodic-
ity. Furthermore, these measurements require skilled individuals, not as the one in Figure 1.2.
For these reasons, there is a lack in ecosystem monitoring methods that can be used over large
and global scales [KTS ™ 15].

Figure 1.2.: Field survey is time consuming and does not allow covering large spatial areas with
a frequent revisit. Here a slow and awkward data collector.

1.2. Remote sensing for ecosystems monitoring

In the last decades, recent advances in remote sensor technology allow the simultaneous acqui-
sition of several (tens to hundreds) spectral wavelengths for each image pixel with a fine spatial
resolution (metric to decametric) and a frequent revisit (from daily to monthly). In addition,
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Figure 1.3.: One rural ecosystem, view from BDORTHO ® IRC. The red square represent the
extend of images displayed in the following.

several heterogeneous sensors are now available for a given location, (e.g., radar, optical and
LiDar) with various spectral, temporal and spatial resolution, see Figures 1.3, 1.4, 1.5 and 1.6 for
an example of available products for a given area. For instance, with the successful launch of
the satellite Sentinel-2 (part of the European Copernicus program') in June 2015, high spatial
resolution satellite images time series are available since the beginning of 2016. The data is
freely distributed from the European Space Agency (ESA), the French Theia Land Data Centre
and the CNES (https://peps.cnes.fr/). The metropolitan France territory is now com-
pletely mapped every 5 days at a spatial resolution of 10 meters per pixel’. For the first time,
the mapping of ecosystems is possible at a fine spatial scale with a high temporal resolution and
for several years (more than 14 years, with the satellite Sentinel-2A, 2B and their successors 2C
and 2D, each of them having a lifetime of 7 years). Furthermore, radar time series (Sentinel-1)
as well as very high spatial resolution images (spatial resolution of 0.50 cm per pixel) are also
freely provided by these public national and international infrastructures.

The most used approach to infer ecosystem services from remote sensing images is called
proxy-based, for which ecosystem services are estimated based on some extracted information
from the images [EAA ™ 10]. The figure 1.7 presents the different types of remote sensing vari-
ables used to map ecosystem services from earth observation data. Up to now, the main source
of information extracted from remote sensing images is land cover, i.e., a hard classification of
landscape into distinct classes. Land cover can be extracted automatically by some statistical

Ihttps://directory.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-
sentinel-2.

2Sentinel-2 has 4 spectral bands with spatial resolution of 10m per pixel, 6 spectral bands with spatial reso-
lution of 20m per pixels and 3 spectral bands with spatial resolution of 60m per pixels. The constellation is
composed of two satellites.
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Figure 1.4.: Pleiades view of 1.3, acquired in May, 2018: (a) Panchromatic mode, (b) and (c)
multispectral mode with a true and false color composition, respectively.

algorithms or by using available land cover data already manually extracted from remote sens-
ing images. For the former case, manual delineation or advanced classification algorithms can
be used [AGSD12, BKL" 12, IVAT17]. For the later case, the use of Corinne Land Cover® for
European Union landscape is usual, see for instance [ZMP13]. More complex framework can
be defined from the land cover, such as the Shannon index which is used to estimate the species
abundance [OWR"10].

Other remotely sensed variables can be used together with land cover layer, or in a standalone
way. Among the variety of existing spectral indices, the NDVI, and with a lesser extend the LAI
are the most used, see for instance [KBGK09, CR97, PVM 05, FFAT08]. They are usually used
to assess the Fractional Vegetation Cover of landscapes. Currently, NDVI is easier to compute
than LAL and therefore much used in the scientific community. It is particularly true in a
multitemporal setting. Marginally, remotely sensed variables such as topography or surface
temperature are used in some studies, see for instance [GRBBS08] for the use of digital elevation
models and surface temperature data for assessing ecosystem services in an Alpine region. But
very few works combine several Earth observation data source, even if it has been identified as
great opportunity to combine abiotic and structural information [JBE™ 16].

Furthermore, a past limitation to the use of such images for the analysis of ecosystems is
the duality between the spatial, spectral and the temporal resolution. Images with high spatial
resolution (few meters per pixel) usually came with a poor temporal resolution (few dates per
year acquired over the same geographical area), while images with high temporal resolution
(one image every day) had a low spatial resolution (30 to 250 meters per pixel). Hyperspectral

Shttp://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3.
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Figure 1.5.: Sentinel-2 view of 1.3.

Figure 1.6.: Hyspex (hyperspectral airborne sensor) view of 1.3, acquired in June, 2016.
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Figure 1.7.: Ecosystem services assessment with remote sensing data from [dABAD15]. LC:
Land Cover maps, NDVI: Normalized Difference Vegetation Index, LST: Land
Surface Temperatures, DEM: Digital Elevation Map, LAIL: Leaf Area Idex, CHLa:
Chlorophyll-a concentration. The numbers represent the percentage of remotely
sensed variables used in the selected literature associated to each services in
[dABAD15].

images from space usually had a low spatial resolution and a high revisit cycle. Hence, it was
not possible to analyze fine temporal evolution of ecosystems at a local spatial scale with a fine
spatial/geometrical precision. As a consequence, actual produced maps are either outdated or
at a very coarse spatial resolution [GMK15].

The Landsat open archives* and Copernicus® programs as well as the incoming hyperspectral
missions (e.g., http://www.enmap.org/orhttps://hyspiri. jpl.nasa.gov/)openenhanced
possibility to monitor Earth surface and ecosystems from remote sensing images. They pro-
vide high quality, easy to use and mostly free huge volume of data. As a result, remote sens-
ing has become a major tools to monitor ecosystems from local to global scale [PWH22].
In particular, satellite remote sensing is actually receiving a lot of attention because of its
low cost (see for instance the free and open access Sentinel data policy of the EU: https:
//scihub.copernicus.eu/). For instance, the following question “How can remote sensing-
derived products be used to value and monitor changes in ecosystem services?” was proposed in a
list of ten identified conservation questions that can be solve using remote sensing [RBE™ 15],
which goes far from the simple land cover maps. With the increased spatial, spectral and tem-
poral resolution, landscapes and ecosystems could be analyzed from local to global scale. It will
enable the identification of ecosystems configuration and composition.

1.3. New opportunities and challenges

The increased complexity of the data makes the conventional methods defined for moderate
spatial and/or temporal resolution not adapted, and therefore not suitable for extracting all
the relevant information of landscapes [HFS15]. For hyperspectral images or satellite image
time series, several hundreds of spectral/temporal acquisitions of the same scene are typically
available, while for multispectral images up to ten bands are usually provided. With increasing
dimensionality of the images in the spectral and/or temporal domain, theoretical and practi-
cal problems arise. The idea of the dimension is intuitive, driven by experiments in one-, two-

“https://landsat.usgs.gov/opening-landsat-archiveproduct-specifications and
//landsat.usgs.gov/landsat-data-access

>http://copernicus.eu/

https:
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Figure 1.8.: (a): Volume of an unit hypersphere in function of the dimension d: it shows that
the notion of neighborhood in high dimensional space is badly defined since local
neighborhood is usually empty. (b): Ratio between the volume of an unit hyper-
sphere and an unit hypercube, it shows that most of the space tends to concentrate
in the corner of an hypercube, in opposition to 2 or 3 dimensional space.

or three-dimensional spaces, and geometric concepts that are self-evident in these spaces do
not necessarily apply in higher-dimensional spaces [Lan03, Ken61], see for instance Figure 1.8.
Another example, normally-distributed data in high dimensional spaces have a tendency to
concentrate in the tails, which seems to be contradictory with its bell-shaped density func-
tion [JL98], see Figure 1.9 for an illustration. In addition, the rate of convergence of the statisti-
cal estimation decreases when the dimension grows while conjointly the number of parameters
to estimate increases, making the estimation of the model parameters very difficult [Don00].
Consequently, with a limited training set, beyond a certain limit, the analysis accuracy actually
decreases as the number of features increases [Hug68]. For the purpose of statistical learning,
these problems are related to the curse of dimensionality®.

Furthermore, as the spatial resolution increases, the use of contextual/spatial information is
needed to fully exploit the information contains in the image, see Figure 1.10 for an illustrative
scenarios. For instance, using spatial information is known to reduce the labeling uncertainty
that exits when only pixel-wise information is used, e.g., to overcome the salt and pepper ap-
pearance of the classification map. Indeed, complementary and relevant information can be
extracted from the spatial domain w.r.t spectral domain: for a given pixel it is possible to ex-
tract the size and the shape of the structure to which it belongs. This information will not be
the same if the pixel belongs to a roof or to a green area. This is also a way to discriminate be-
tween various structures made of the same materials. If spectral information alone is used, the
roofs of a private house and of a larger building will be detected as the same type of structure.
But using additional spatial information — the size of the roof, for instance — it is possible to

Results from [Hug68] should be mitigated nowadays with recent advances in stochastic optimization and over-
parametrization of deep neural networks, see for instance https://francisbach.com/rethinking-sgd-
noise/.
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Figure 1.9.: The likelihood of t = ||x|| a random variable x € R? such as x ~ A/(0,1) is given

a—
by f(t) = %, which is maximum for t* = /d — 1 [JL98]. The figure

shows several functions f in function of the dimension d, where it can be seen that
the norm of the variable deviates from zero when d increases.

classify these into two separate classes [CBF06].

In addition to the high dimensionality and the contextual information, a last important issues
is related to the temporal dimension of the data. Hypertemporal data are usually noisy due to
the occurrence of clouds and their associated shadows, see Figure 1.11. Furthermore, in the
case of Sentinel-1/2 satellite time series, the sample times are different from a given area to
another, leading to irregularly sample data: each pixel to be processed may have a different
number acquisitions, with different dates. Hence, conventional algorithms that assume a fix
and common number of feature could not be applied directly. Usually, temporal re-sampling is
performed [IAT " 15a], but this step is not linked to the final task (classification, inversion ...) and
thus might not be optimal in terms of errors. For instance, Figure 1.12 shows the reconstruction
of the NIR bands for a whole year using the Whittaker filter [Eil03]. This filter requires to set a
regularization parameter that controls the trade-off between the reconstruction error and the
smoothness of the reconstructed time series. It is usually found using ordinary cross-validation
(OCV), see the Figure 1.13. Ideally, this parameter should be selected so as to optimize the final
task (classification, prediction ...) but it is not done usually because of computational load.

To sum-up, ubiquity of satellite remote sensing data have been reached in the last decade,
both in terms of supply or demand. It represents a fantastic opportunity for the understanding
of our ecosystems. However, current methods for extracting meaningful information are not
yet ready to fully exploit this huge amount of data.

10
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Figure 1.10.: (a) University of Pavia, (b) same image than (a), but pixels position has been mod-
ified (the values of each row have been sorted in increasing order). (c) histogram
of (a) and (b). They both have the same radiometric information, while the spatial
structure in (a) in meaningful for the analysis.
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Figure 1.11.: Example of clouds and shadows in satellite image time series Sentinel-2 for the
year 2016 [HHDD10]. In blue are the water detection, green and yellow are the
clouds and their associated shadows, respectively.

12
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Figure 1.12.: Example of a temporal profile of a vegetation pixel in the NIR band of Formosat-2
for the year 2006. The blue dots correspond to not noisy data and the red ones
correspond to missing/noisy data due to the clouds/shadows. The black and gray
line correspond to the temporal reconstruction with a step of one day using the
Whittaker filter with optimal regularization parameter found by OCV and a linear
interpolation, respectively. Taken from [LOP17]
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Figure 1.13.: OCV in function of the regularization parameters A for the Whittaker smoother.
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1.4. Contributions

My research activities were and are oriented to the development of methods that allow to ex-
tract the most relevant information from the satellite images for a given task. I first focused on
the conjoint use of spatial and spectral information for the purpose of classification. It makes
me hit issues of high dimensional data, for which I have developed several machine learning
models. These developments were driven by thematic scenario, from the general land cover/use
map generation to the specific agro-ecological structures identification and characterization.
Some of these contributions are reviewed in the next section.

14



2. Scientific activities

2.1. Spectral-spatial methods

2.1.1. Mathematical morphology for remote sensing images

Mathematical Morphology (MM) is a theory for non-linear image processing [Ser88, Ser82].
Morphological operators have proven their potential in remote sensing image processing [SP02].
Several techniques have been considered with MM, ranging from image segmentation to auto-
matic extraction of objects of interest [SP02, S0i09].

MM aims to analyze spatial relationships between pixels using a set of known shape and size
(e.g., disk of radius 3 pixels), called the Structuring Element (SE) [S0i03]. The two basic MM
operators are erosion and dilation. The erosion expands objects of the image that are darker than
their surrounding, while the dilation shrinks them (and vice-versa for objects that are brighter
than their surrounding). Moreover, bright (respectively dark) structures that cannot contain
the SE are removed by erosion (dilation). Hence, both erosion and dilation are non-invertible
transformations.

Combining erosion and dilation, opening and closing operators can be defined. The opening
is defined as an erosion followed by a dilation with the same SE. The idea to dilate the eroded
image is to recover most structures of the original image, i.e., structures that were not removed
by the erosion and hence are bigger than the SE. The closing is defined as a dilation followed by
an erosion with the same SE. Hence, with opening or closing it is possible to get, for a given size
of B, which structures (buildings, roads ...) of the image are smaller than B. However, opening
and closing operators are not connected filters. For instance, two buildings can be merged into
one and thus for instance bias the analysis of the size distribution, see Figure 2.1. In order to
avoid that problem, connected operators such as geodesic operators can be used [CSS95].

Using opening/closing by reconstruction it is possible to determine the size of the differ-

Figure 2.1.: (a) Original image, (b) Opened image, (c) Closed image, (d) Geodesicaly opened
image and (e) Geodesicaly closed image. The SE was a disk of radius 3 pixels. It
can be seen on (c) that with the conventional closing the two bright buildings are
merged into one. This is not the case with the geodesic operator.
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Figure 2.2.: Morphological profile constructed with three opening/closing by reconstruction
with a circular SE of size 2, 6 and 10. The left part corresponds to the closings by re-
construction and the dark objects are progressively deleted, e.g., the shadow of the
big tree in the middle of the image. The right part corresponds to the openings by
reconstruction and the bright objects are progressively deleted, e.g. the buildings
in the upper part of the image.

ent structures of the image [PB01]. For a given size of the SE, it is possible to get structures
which are smaller (they are removed) or bigger (they are preserved) than the SE. Applying such
operators with a range of SE of growing size, one can extract information about the contrast
and the size of the structures present in the image. This concept is called granulometry. The
Morphological Profile (MP) of has been defined as the composition of a granulometry built with
opening by reconstruction and a (anti-) granulometry of built with closing by reconstruction.

From a single panchromatic image, the MP results in a multi-band image. An example of
MP is given Figure 2.2. Its uses for the classification of panchromatic images has shown a good
improvement in terms of classification accuracy [BPA03, TPKEO09, BGMF108]. However, when
considering multivalued images, such as hyperspectral images, the direct construction of the
MP is not straightforward, because of the lack of ordering relation between vector. In order to
overcome this shortcoming, several approaches have been considered (see [AL07] for a review
of several multivariate morphological filters).

One common strategy is to first extract a reduces set of relevant features, for instance using
principal component analysis, and then build the MP independently on each feature. All the
MPs are stacked together using a feature fusion approach. This leads to the so-called Extended
MP (EMP) [BPSO05], see Figure 2.3. If principal component analysis is used, the EMP can be
written as

EMP = [MPpcll sy MPPCC}

where MPy,, is the morphological profile build on the first principal component computed
in the spectral domain and c is the number of extracted components. This number is usually
set according to the cumulative explained variance. Previous works using alternative feature
reduction algorithms, such as independent component analysis (ICA), have led to equivalent
results in terms of classification accuracy.
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Figure 2.3.: Extended morphological profile build on the first two principal components. Each
of the original profile has two openings and two closings. Circular structuring ele-
ment with radius increment 4 was used (r = 4, 8).

2.1.2. Contributions to the Extended Morphological Profile

Contribution 1:

The first contribution to the EMP concerns the fusion of the original spectral information
and the EMP using a feature fusion approach, where the spectral feature and morpho-
logical feature are combined to build a large feature vector. Feature reduction can be
done for each data sets prior to the concatenation and usually helps in improving the
classification accuracy. Yet simple, this strategy provides good results on several data
sets. This work leads to the following publication [FBCS08].

Contribution 2:

My second contribution to the EMP methodology was to investigate the use of kernel
principal component analysis (KPCA) rather than linear feature extraction algorithms.
The assumption was that much more spectral information will be captured by the KPCA
than with the PCA. The following section presents the KPCA and how the KPCA was
applied to hyperspectral remote sensing images. More details can be found in [FCB09].

Kernel principal component analysis for the construction of the EMP A brief descrip-
tion of the kernel principal component analysis for feature reduction of remote sensing data is
given in this part. Theoretical foundation can be found in [SSM98, SMB99, MMR " 01].

The starting point is a set of pixel vector x; € R% i € [1,...,n]. The conventional PCA
solve the eigenvalue problem:

Av = Zyv, subject to ||v]2 =1 (2.1)
where Ty = LY (x; — my) (x; — m,)' and X, is the centered vector x. The projection
on the first k principal components is done as: xpc = [vl‘. . .‘vk]Tx.

To capture higher-order statistics, the data can be mapped onto another space H ':
. n
$:R" - H 2.2)
x — ¢(x)

where @ is a function that may be non-linear, and the only restriction on H is that it must have
the structure of a reproducing kernel Hilbert space (RKHS), not necessarily of finite dimension.

"From now, R is called the input space and 7 the feature space.
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The PCA in ‘H can be performed as in the input space, but thanks to the kernel trick [Aro50],
it can be performed directly in the input space. The kernel PCA (KPCA) solves the following
eigenvalues problem:

1
Aa = Ka, subject to ||a||2 = T (2.3)

where K is the kernel matrix constructed as follows:

k(x1,x1) k(xqy,x2) ... k(x1,%n)
K — k(XZ:, Xl) k(XZ:, Xz) . k(XZZ, Xn) . (2‘4)
k(xn., X1) k(xn., X2) ... k(xn., Xn)

The function k is the core of the KPCA. It is a positive semi-definite function on R% x RY —
R that introduces non-linearity in the processing. It is call kernel. Classical kernels are the
polynomial kernel, g € R and p e INT,

k(x,y) = ((x,y)r +9)", (2.5)

and the Gaussian kernel, 0 € RT,

_ 2
k(x,y) = exp (—%) . (2.6)

As with the conventional PCA, when (2.3) is solved, the projection is done:

n

gbllgpc(x) = Z“i’ck(xirx)' (2.7)

i=1
Note we have assumed that K is centered, otherwise it can be centered as [SS02]:

where 1, is a square matrix such as (1,);; = L

To illustrate how the KPCA works, a short example is given here. Figure 2.4 represents three
Gaussian clusters. The conventional PCA would result in a rotation of the space, that is, the
three clusters would not be identified, as shown in Figure 2.4(a). Figure 2.4(b) represents the
projection onto the first two kernel principal components (KPCs) using a Gaussian kernel. The
structure of the data is better captured than with PCA: clusters can be clearly identified on the
first KPCs.

In practice, building the EMP with KPCA can leads to substantial improvement in terms of
classification accuracy. The table 2.1 shows the classification accuracy obtained on the Uni-
versity of Pavia data set. 12 KPCs were extracted, reaching 95% of the total variance, against
3 for the conventional PCA. For this data set, an increased of 6.4% of the kappa coeflicient is
obtained.
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2.1. Spectral-spatial methods

Figure 2.4.: PCA versus KPCA. Three Gaussian clusters, and their projection onto the two prin-
cipal components (a) and onto the two first kernel principal components with a
Gaussian kernel (b). (c) and (d) represent, respectively, the contour plot of the pro-
jection onto the first component for the PCA and the KPCA with Gaussian kernel.
Note how with the Gaussian kernel the first component “fits” the individual clus-
ters. The intensity of the contour plot is proportional to the value of the projection
of the first (kernel) axis.

Table 2.1.: Classification results for the University Area data set (OA: Overall Accuracy, AA:
Average class Accuracy, k: kappa coefficient)

Feature Raw PCA+EMP KPCA+EMP

OA 79.4 92.0 96.6
AA 88.1 93.2 96.2
K 74.5 89.6 95.4
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(b)

Figure 2.5.: Morphological neighborhood. (a) Original image and fixed square neighborhood
(in red). (b) Filtered image and neighbor-set defined using area flat zones filter of
size parameter A = 30 [S0i05]. (c) Original image with the defined neighbor-set
Q.

2.1.3. Beyond the EMP: The morphological neighborhood

Geodesic opening/closing operators are appropriate in remote sensing because they preserve
shapes. However, they cannot provide a complete analysis of remotely sensed images because
they only act on the extrema (clear or dark objects) of the image [S0i05, FCB12]. Moreover,
some structures may be darker than their neighbors in some parts of the image, yet lighter than
their neighbors in others, depending on the illumination. Although this problem can be par-
tially addressed by using an alternate sequential filter (ASF) [CBP03], the MP thus provides an
incomplete description of size structures distribution. Figure 2.6 illustrates this phenomenon.
Another approach consists in defining an adaptive neighbor system for each pixel, the mor-
phological neighborhood (). The morphological neighborhood of a pixel x, ()y, is defined as the
set of pixels that belongs to the same spatial structure than x. This concept is connected to the
more general concept of adaptive image neighborhood in image processing [DP06a, DP06b].

Contribution 3:

My contribution to the definition of adapted neighborhood was developed in [FCB12]. I
use a self-complementary area filter [S0i05] to extract consistent spatially connected com-
ponents. Then a pixel-object classification is performed using a composite kernel. These
concepts are briefly discussed below, while a detailed discussion is given in [FCB12].

A self-complementary area filter is a filter that removes all structures of the image smaller
(in terms of number of pixels) than a user defined threshold, see Figure 2.6 and 2.5. The filtered
image is partitioned into flat zones. Each flat zone belongs to one single structure in the orig-
inal image, as can be seen in Figure 2.5.(b). Furthermore, the smallest structures are removed
and only the main structures of interest remain. The morphological neighborhood () was
defined as the set of pixels that belong to the same flat zone in the filtered image. The neigh-
borhoods defined in this way are applied to the original image. This neighborhood is obviously
more homogeneous and spectrally consistent than the conventional 8-connected fixed square
neighborhood, see Figure 2.5.
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Figure 2.6.: Limitations of the morphological profile. (a) Graph of the image 2.1.(a), (b) Graph
of the geodesic opening of image 2.1.(a), (c) Graph of the geodesic closing of image
2.1.(a) and (d) Graph of the image 2.1.(a) filtered by the self-complementary area
filter. From (b) and (c), it can be seen that only extrema are processed with the
geodesic operators, while all the structures are processed on (d).
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Similar to the MP, applying this filter on hyperspectral images is not possible because of
the lack of an ordering relation. The same strategy is proposed, which consists in extracting
one principal component from which the morphological neighborhood is computed. Then,
the neighborhood mask is applied on each band of the data. Once the neighborhood of each
pixel is adaptively defined, the spatial information is extracted: the vector median value of the
neighbors set ()4 is computed for every pixel x [AHN90]:

Yx = med(Q) (2.9)

where dim(x) = dim(Yx) = d, the number of spectral bands. Unlike the mean vector, the
median vector is a vector from the initial set, which ensures a certain spectral consistency since
no new spectral values are created.

In conclusion, by defining the morphological neighborhood, every pixel has two features:
the spectral feature x, which is the original value of each pixel, and the spatial feature Y,
which is the median value computed on each pixel’s adaptive neighborhood. The easiest way
to use both pieces of information would be to build a stacked vector, but it would not allow
the weighting of the different features. In my work, the kernel trick [Vap99] of the SVM was
exploited to design a composite kernel that allows the setting of the relative influence of the
extracted features. The spatial-spectral kernel KC between two samples x and z was defined as:

Koy : RTxRY — [0,1]
(x,z) — < — Wk (x,2) + kil (x, z) (2.10)
0<u<10<co

From previous experiments [FCB06], the spectral kernel is defined as:

P s RIx RY — [0, 1]

2
(x,z) +— exp <_%) (2.11)

The spatial kernel is defined as follows:

K" RIXRY - [0,1]

(xz) Y% = Y2 (2.12)
X, Z 20 G

where Yy is the spatial information. The weight y controls the relative proportion of spatial
and spectral information in the final kernel. For instance, for the class Grass, the spectral
information should be more discriminative while it should be the spatial information for the
class Building. This parameter is set during the training process, as the hyperparameter . As
an illustrative example, taken from [FCB12], Table 2.2 shows the hyperparameters of the kernel
found for one data set.

When compare to the conventional EMP, this spectral-spatial kernel leads to an increase
of the classification accuracy, as reported in the Table 2.3. However, it requires to set up an
additional kernel parameters which can be time consuming, especially for large data set. Clas-
sification maps are reported in Figure 2.7.
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Figure 2.7.: (a) False color original image of University Area. (b) Classification map using the
RBF kernel. (c) Classification map using the EMP. (d) Classification map using the
proposed kernel where A = 30.
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Table 2.2.: Kernel parameters found by 5-fold cross validation for University data set (A = 30)

Class Asphalt Meadow Gravel Tree Metal Sheet Bare Soil Bitumen Brick Shadow

U 0.3 0.1 0.1 0.1 0.9 0.5 0.1 0.2 0.4
o 0.5 1 0.5 0.5 1 1 1 0.5 4

Table 2.3.: Classification accuracies for University Area data set. The best results for each class

are reported in bold face. A is the difference between the best K and the original
kernel. K means that classification was performed using the proposed kernel and
area filtering of size A.

Class SVM EMP K2 K° K0 b 20 25 k300 35 a0 A

Asphalt 80.6 93.3 804 80.0 823 832 845 863 843 845 86.1 5.6
Meadow 684 734 722 722 751 722 763 763 785 751 751 10.0
Gravel 73.8 524 765 77.1 817 870 90.6 89.7 848 8.5 859 168
Tree 974 993 964 966 941 949 950 946 968 948 976 0.1
Metal Sheet 994 994 99.1 992 994 965 994 982 998 996 99.6 03
Bare Soil 948 619 952 943 972 956 968 940 956 983 978 34
Bitumen 915 97.6 933 945 897 915 941 939 955 961 938 4.6
Brick 91.8 951 92.0 926 96.1 944 947 958 954 953 957 4.2
Shadow 97.0 922 950 948 955 922 935 932 97.7 967 972 0.7

OA 80.1 79.8 81.8 81.8 840 827 8.3 852 86.1 849 852 59
AA 88.3 85.0 889 8.0 90.1 897 917 913 919 918 921 38
K 75.1 741 772 772 798 783 814 81.2 823 809 814 7.1

2.1.4. Object classification

One of the main limitation of the morphological neighborhood discussed above is that the
radiometric information is limited to the median value. In fact, several additional features
can be extracted from the neighborhood, either related to its radiometric content or related
to its geometry. These techniques refers to Object Base Image Analysis [Bla10]. Mean value,
standard deviation or higher moment can be extracted for each spectral bands while shape,
size, orientation or other spatial feature can be computed from the neighborhood, or more
generally the object. Many advanced image processing tools have been defined in the last
decades [BHK ' 14, MLM*17]. Depending on the application, the object can be estimated in
the image directly, e.g. as for the morphological neighborhood, using image processing tech-
niques (segmentation, filtering ...). Objects can be also defined using external data sources, e.g.,
field survey or institutional data base. In our case study, the classification of grasslands, the ob-
jects were digitized using the agricultural Land Parcel Information System “Registre Parcellaire
Graphique” (RPG) [CC14]. See figure 2.8 for an illustration.

Considering only the extraction of radiometric feature, one common assumption is to pro-
cess each band independently: no correlation between bands is used for the description of the
object. Therefore, there is a possible loss of information for the object description. To palli-
ate such limitation, we have proposed to model the distribution of pixels in a given object as a
Gaussian distribution. Hence, objects are not represented by a vector of features, but by a prob-
ability density function. We have further proposed a measure of similarity between Gaussian
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Figure 2.8.: False color Formosat-2 images of the same grassland on two close dates (June and
October) in 2013 and 2014 with the same color scale. (a) 6 June 2013, (b) 27 October
2013, (c) 5 June 2014, (d) 23 October 2014. The blue line represents the polygon
limits of the grassland.

distribution that is robust to the possible high-dimensionality of the data.

Contribution 4:

My contribution to the classification of objects is detailed in [LFGS17]. We make use of
generative mean kernel, design to work on distribution rather than samples, to define a
kernel function and derive an explicit formulation for the case of Gaussian distribution.
We also propose a formulation that allows to weight the covariance information, the
weight being set during the training step. We have applied this model on satellite image
time series for the classification of grasslands types.

We assume that the distribution of pixels X; is, conditionally to grassland” ¢;, a Gaussian
distribution NV (p;, X;), where p; is the mean vector and L; is the covariance matrix. Each
grassland g; is composed of a given number 7; of pixels x;; € RY, where k is the pixel index
such as k € {1,..,m;},i € {1,...,G}, G is the total number of grasslands, N = Y%  n;
is the total number of pixels, d = npgnr is the number of spectro-temporal variables, np is
the number of spectral bands and 77 is the number of temporal acquisitions. The empirical

%In the following, I will refer to grasslands as the objects to be classified. Strictly speaking, any kind of spatial
object can be used with the proposed model.
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estimation give:

1 ¢

o= — szz (2.13)
i]=
. 1k A T
Li = — (xip — ;) (i — ;) - (2.14)
ni—1=H

In this case, we associate with each g; its estimated distribution N (f1;, £;) and a response vari-
able y; € IR. The Gaussian modeling encodes first and second order information on the grass-
land by exploiting the variance-covariance information. It is worth noting that if we constrain
f}i = I, the identity matrix of size d, for i € [1, el G], the Gaussian modeling is reduced to
the mean vector. In the following, N (f;, £;) is denoted by N;.

Mean Map Kernels between Distributions Mean map kernels are similarity measures that
operate on distributions [MG10]. They have been used in remote sensing for semi-supervised
pixel-based learning in [GCCVBCM10]. In their work, the authors define the similarity between
two distributions p; and p; as the average of all pairwise kernel evaluations over the available
realizations of p; and p; (i.e., pixels that belong to grasslands g; or g;). It corresponds to the
empirical mean kernel (Equation (8) [GCCVBCM10)):

Tll,

K*(pi, pj) = i1 Xjm), (2.15)

””Jlml

where 7; and 7n; are the number of pixels associated with p; and p;, respectively, x;; is the
I-th realization of p;, Xjy, is the m-th realization of p; and k is a semi-definite positive kernel
function.

It is possible to include prior knowledge on the distributions by considering the generative
mean kernel [MG10]:

Kg(pi,p]-) = /]Rd /]Rd k(x,x/)ﬁi(x)ﬁj(x’)dxdx/, (2.16)

Note that Equation (2.15) acts on the realizations of p;, while Equation (2.16) acts on its esti-
mation. When dealing with a large number of samples, the latter can drastically reduce the
computational load with respect to the former.

In our grassland modeling, p; and pj are assumed to be Gaussian distributions. In that case,
if k is a Gaussian kernel such as k(x, x’) = exp(—%||x — x/||?), Equation (2.16) reduces to the
so-called Gaussian mean kernel [MFDS12]:

-1
eXp{ 0.5(a,; — ;)" ( ERVENS 1Id> (ﬁi_ﬁj)}
|+ Z; + 11,08

KC (NG, N;) = : (2.17)

where 7 is a positive regularization parameter coming from the Gaussian kernel k and | - |
stands for the determinant. This kernel is not normalized, i.e., K& (M,M) # 1, but the nor-
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malization can be achieved~easily:
K®(N;, )
KG (M’M)O.5KG (J\/}.’/\[j)OB
= KON, NG 28 4+ 47114028 + 11,0, (2.18)

RE(NLN)) =

With respect to the Kullback-Leibler Divergence (KLD) and the Jeffries-Matusita Distance
(JMD), the Gaussian mean kernel introduces a ridge regularization term ¢~ '1; in the compu-
tation of the inverse and of the determinant [Tar05]. Thus, the Gaussian mean kernel is more
suitable to measure the similarity in a high dimensional space than KLD and JMD. The value
of 7y tunes the level of regularization. It is tuned during the training process as a conventional
kernel parameter.

However, in the case of very small grasslands, two problems remain. The first lies in the
ridge regularization: in this case, so low 7y values are selected that it becomes too regularized,
and it deteriorates the information. The second problem is that the estimation of the covariance
matrix has a large variance when the number of samples used for the estimation is lower than
the number of variables. Therefore, the covariance matrix becomes a poorly-informative fea-
ture. In the following, I describe a new kernel function that allows one to weight the covariance
features with respect to the mean features.

x-Gaussian Mean Kernel Depending on the level of heterogeneity and the size of the grass-
land, the covariance matrix could be more or less important for the classification process. We
propose a kernel including an additional positive parameter a, which allows one to weight the
influence of the covariance matrix, the «-generative mean kernel:

. ol
“(pipj) /]Rd/w x, x') pi(x) @ )pj(x’)( )dxdx'. (2.19)

When p; and p; are Gaussian distributions, k is a Gaussian kernel and the normalization is
applied, the expression gives rise to the a-Gaussian mean kernel:

R* (N, Nj) =
o T (a($. L% L) —
exp {—0.5(;11- —yj) <oc(2i +X)+" Id) (#; —H

)}
& o —1y (025(h. % | ~—17 (025
(S £) + 771403 ek LR

(2.20)
Proof. First, let us write the Gaussian distribution p; to the power of a~l
al 1 1 T -1
pilxlp, E)* T = (m)m L xexp { ~0.5(x — ) T (aZ)) ! (x— ) }
11 1
(2”) 1o [Ei207w) T -1
= (27‘[)"’/2 % al/? x W X exp {—O.S(x —u) (aXi) (x— }”i)}
= «2(2m) 20O |5 2073 < p(x|py, o)
(ZZ,IX) ( |”i/ 0(21'). (2.21)
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Then, plugging Equation (2.21) in Equation (2.19), we get:

A A _1 A A
exp {—O.S(ﬁi —,ﬁ]-)T<0€Zi+OCZj+’Y_1Id) (7 _P‘j)}
laZ; + Dc)i]- + 11,00

K“(./\/’,',./\[j) = C(Zi,lx)C(Z]‘,lX) ’
which is Equation (2.17) with the covariance matrix of the Gaussian distribution scaled with

a. The constants C(X;, a) and C(X;, ) are removed when normalizing the kernel, and we get
Equation (2.20). O

It is interesting to note that particular values of a and -y lead to known results:

1. @ = 0: In this case, Equation (2.20) reduces to the Gaussian kernel between the mean
vectors. It becomes therefore equivalent to an object modeling where only the mean is
considered.

2. o = 1: It corresponds to the Gaussian mean kernel defined in Equation (2.18).

3. & — +o00: We get a distance, which works only on the covariance matrices. It is therefore
equivalent to an object modeling where only the covariance is considered.

4. v = 40 and & = 2: The a-Gaussian mean kernel simplifies to an RBF kernel built with
the Bhattacharyya distance computed between N; and ;.

This proposed kernel thus includes several similarity measures known in the literature. Fur-
thermore, new similarity measures can be defined by choosing different parameters’ configu-
ration. The a-Gaussian mean kernel (xGMK) is therefore more flexible since it can adapt to the
classification constraints. A synthetic example is given in Figure 2.9.

For the discrimination of young and old grasslands, using a 2 years long time series, the pro-
posed model improved the results both in term of computation time and classification accuracy
w.r.t conventional object based methods. Some results are reported in Figure 2.10.

2.2. Classification of high dimensional data

As discussed in the introduction, new generation of remote sensing data results in a large vol-
ume of pixels, and in the same time, in a large amount of feature associates to each pixel. In
the following, I am going to review some of my work on the classification of high dimensional
data. First, parsimony is discussed, then I discuss some of my work on functional statistic, used
when feature can be ordered (such as wavelength or time). Finally, this section is concluded by
some recent work on joint representation learning and processing.

2.2.1. Parsimonious model

Parsimonious Mahalanobis Kernel The Mahalanobis distance, dy,_, between two samples
for a given class, ¢, with covariance matrix, X is defined as :

dx, (x,z2) = \/(x —z)!IE 1 (x — z).
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Figure 2.9.: lllustration of the a-Gaussian Mean Kernel. Two classes of Gaussian distributions
are considered: the first class (red points) is such as ¢/y < 1 and the second class
(blue points) is such as ¢/u > 1. The distributions are represented in the space
(u,0). The continuous line is the decision function found by a SVM using the
«-Gaussian mean kernel with =1 and v = 1000. The dashed line is the decision
function found by a SVM using a RBF kernel using only the mean value information.

F1

o g T
Figure 2.10.: Boxplot of F1 score distribution for the classification of the old and young grass-
lands. The line in the box stands for the median, whereas the dot stands for the
mean. PMV means that each pixels of the object were classified independently and
majority voting has been apply to get one class per object/grassland. EMK is the

empirical kernel define in eq. 2.15. ¢ means that only the mean value was used a
feature and GMK and «GMK are the proposed kernel.
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Previous works on the Mahalanobis kernel [CVRGMM 07, Abe05, KA06, WYT07] were limited
by the effect of dimensionality on the matrix inversion. In [CVRGMM*07], the covariance
matrix was computed on the whole training set. The associated implicit model is that the classes
share the same covariance matrix, which is not true in practice. Diagonal and full covariance
matrices were investigated in [Abe05] for the purpose of classification and in [KA06] for the
purpose of regression. However, in a similar way, the covariance matrix was computed for all
the training samples. Computing the covariance matrix for the Mahalanobis distance with all
the training samples is equivalent to project the data on all the principal components, scale the
variance to one, and then applying the Euclidean distance. By doing so, classes could overlap
more than in the original input space and the discrimination between them would be decreased.

Contribution 5:

I propose to exploit the emptiness property of high dimensional spaces to construct a
robust parsimonious Mahalanobis kernel. I used the High Dimensional Discriminant
Analysis (HDDA) model, proposed by Bouveyron et al. in [BGS07], for the definition of
a class specific covariance matrix adapted for HD data. The specific signal and noise sub-
spaces are estimated for each considered class, ensuring a parsimonious characterization
of the classes. Following the HDDA model it is then possible to derive an explicit formu-
lation of the inverse of the covariance matrix, without any regularization or dimension
reduction. The parsimonious Mahalanobis kernel is constructed by substituting in a RBF
kernel the Euclidean distance with the Mahalanobis distance computed using the HDDA
model. This work is discussed in [FCBV13].

. 7

HDDA was originally proposed for classification or clustering with Gaussian mixture model.
The covariance matrix of the class ¢ can be written through its eigenvalue decomposition:

Z'c - QCACQE

where A, is the diagonal matrix of eigenvalues Ay, i € {1,...,d}, of . and Q. is the matrix
that contains the corresponding eigenvectors q.;. The HDDA model assumes the p, first eigen-
values are different and the remaining d — p, eigenvalues are identical. The model is similar to
PPCA, but more general in the sense that additional sub-models can be defined. In particular,
the intrinsic dimension p, are not constrained in HDDA whereas there are assumed to be equal
for each class in PPCA.

Under the HDDA framework, the covariance matrix has the following expression:

Pc d
L. = Z )\ciqciqzi + be Z qciqéi
i=1 i=pc+1

where the last d — p, eigenvalue are equal to b.. The inverse can be computed explicitly by

-1 &1 t 1 ¢ t
X, = Zf‘lciqci“‘b— Z 9Qci9ei -
i=1 "¢t Ci=pc+1
S—— < ~ ~
AC AC

This statistical model can be understood equivalently by a geometrical assumption: For each
class, the data belong to a cluster that lives in a lower dimensional space .A., namely the signal
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2.2. Classification of high dimensional data

subspace. The original input space can be decomposed as R? = A, @ A. (by construction A,
is the noise subspace which contains only white noise).
Using I = 2?21 qciqzi, I being the identity matrix, the inverse can be finally written as

Pc

1 1 1
-1 _ I DU S
= l; (Aa_ bc)q”q” + bCI. (2.22)

Standard likelihood maximization shows that the parameters (A, qci)izl,...,pc and b; can be
computed from the sample covariance matrix [BGS07].

The major advantage of such a model is that it reduces drastically the number of param-
eters to estimate for computing the inverse matrix. Indeed, with the full covariance matrix,
d(d + 3)/2 parameters are to be estimated. With the HDDA model, only d(p. +1) + 1 —
pc(pe — 1) /2 parameters are to be estimated. For instance, if d = 100 and p. = 10, 5150 pa-
rameters are needed for the full covariance and only 1056 for the HDDA model. Furthermore,
the stability is improved since the smallest eigenvalues of the covariance matrix and their cor-
responding eigenvectors, which are difficult to compute accurately, are not used in (2.22).

The regularized Mahalanobis kernel for class ¢ is constructed by substituting to the Eu-
clidean distance in the Gaussian kernel and switching eigenvalues (A.;, bc) to hyperparameters
(02,02, ) that are optimized during the training step:

ci’ “cpe+1
1/ P q1at.(x — z)]|2 R
km(x,z|c) = exp (— 5(2 i 5 2)l + sz z| )) (2.23)

i=1 Oei Tepe+1

where 0, i € {1,..., P + 1} are the hyperparameters of the kernel. The hyperparameters
have been introduced for the following reason. It is known that the principal directions are not
optimal for classification since they do not maximize any discrimination criterion. However,
they still span a subspace where there are variations in the data of the considered class. The
hyperparameters o,; allow to control which directions are more relevant (or discriminative) for
the classification process: The feature space is modified during the training process to ensure a
better discrimination between samples. In [FCBV13], I optimize these hyper-parameters using
the radius margin bound of SVM.

It is interesting to note that the regularized Mahalanobis kernel can be expressed as the
product of Gaussian kernels:

A

Pc

km(x,z|c) = ke(x,2) % | [ke(alx, aLiz). (2.24)
i=1

Experiment were conducted on several high dimensional data set. Table 2.4 shows the classifi-

cation accuracy results for the one hyperspectral data set.

Parsimonious Gaussian Process Models With C. Bouveyron and S. Girard, we have ex-
tended the HDDA model to Gaussian Process for the classification of hyperspectral remote
sensing images.
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Figure 2.11.: Values of the kernel function k(0,x) with 0 = [0,0] and x € [—1,1] x [—1,1].
The red line represents the contour line for the value 0.75. (a) is the Gaussian
kernel, (b) is the kernel (2.23) with (712 = 022 = 0.5, (c) is the kernel (2.23) with
0? = 1.5 and 02 = 0.5. The covariance matrix used was [0.6 — 0.2; —0.2 0.6]
and the signal subspace was of dimension 1, spanned by the first eigenvector of
the covariance matrix.

Table 2.4.: Classification accuracies for the different kernels in percentage of correctly classified
samples. In the first column, the numbers in brackets represent the total number of
training and testing samples for each class, respectively.

pc Gaussian PCA-Mahalanobis HDDA-Mahalanobis

Asphalt (548, 6631) 12 94.8 95.8 95.8
Meadow (540, 18649) 10 79.4 83.6 82.1
Gravel (392, 2099) 9 97.2 97.5 97.2
Tree (524, 3064) 14 94.3 98.2 98.2
Metal Sheet (265, 1345) 7 99.8 99.9 99.9
Bare Soil (532, 5029) 9 87.8 85.9 88.4
Bitumen (375, 1330) 21 98.8 98.7 99.0
Brick (514, 3682) 12 96.7 97.2 97.2
Shadow (231, 947) 14 99.9 99.9 99.9

Average class accuracy 94.3 95.2 95.3
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2.2. Classification of high dimensional data

Contribution 6:

We have proposed a family of parsimonious Gaussian process models for classification.
The idea was define a parsimonious Gaussian mixture model in the feature space induces
by kernel function. The main issue was the feature space can be infinite and therefore,
conventional multivariate model cannot be defined. To overcome this, we assume that
the projection ¢(x) was conditionally to its class, a Gaussian process. Using HDDA,
several parsimonious models were defined. This work was discussed in [FBG15].

Let S = {(xi, yi)}?zl be a set of training samples, where x; € RY, is a pixel and y; €
{1, ..., C } its class, and C the number of classes. In this work, the Gaussian kernel function

is used k(x;, x;) = exp (—’)/||xi — Xj”ﬁ{d) , with y > 0, and its associated mapping function

is denoted ¢ : R? — F (the use of another kernel is possible). Its associated feature space
JF is infinite dimensional. Therefore the conventional multivariate normal distribution used in
GMM cannot be defined in F.

To overcome this, let us assume that gb(x), conditionally on ¥ = c, is a Gaussian process on
J C R with mean g and covariance function I.. We note ¢(x),; the projection of ¢(x) on the
eigenfunction q; using the following scalar product

qC] /‘P qC]

Hence, for all ¥ > 1, random vectors on R" defined by [¢(x)1, ..., ¢(X),] are, conditionally
on y = ¢, multivariate normal vectors. In IR’, it is now possible to use the GMM decision rule
for class ¢ [McL92]:

! Xi) — 7 Yej 2
De(p(x)) =Y [W )~ #er o) +1n(ch)} ~2In(n.) (2.25)

j=1 Agj

where A is the M eigenvalue of T, sorted in decreasing order, q.j its associated eigenfunction
and 7. the prior probability of class c. The classification of x; is done to class ¢ if D (¢(x;)) <
D. (4)(Xi)>, v'el,...,C [McL92].

If the Gaussian process is not degenerated (i.e., Aj # 0, Vj), 7 has to be large to get a good
approximation of the Gaussian process. Unfortunately, only a part of the above equation can
be computed from a finite training sample set:

< Xi) = W C'2
D.( (xz))=2{<¢( ) ~ B 9q)

» » + ln()\cj)} — 2In(7t.)

(. 4
-~

computable quantity

by [OOSR )

(. J/

non computable quantity

where 7. = min(#n,,r) and 7, is the number of training samples of class ¢. Consequently, the
decision rule cannot be computed in the feature space if ¥ > n., forc =1,...,C.
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Table 2.5.: List of sub-models of the parsimonious Gaussian process model.

Model Variance inside F qcj Pe
Variance outside JF.: Common

pGPo Free Free Free
PGPy Free Free Common
pG P2 Common within groups Free Free
pGPs3 Common within groups Free Common
pG P4 Common between groups Free Common
pGPs5  Common within and between groups  Free Free

pGPs  Common within and between groups Free Common

Variance outside JF.: Free

npGPo Free Free Free
npGP, Free Free Common
npGP; Common within groups Free Free
npGP3 Common within groups Free Common
npGPy Common between groups Free Common

To make the above computational problem tractable, it is proposed to use a parsimonious
Gaussian process model in the feature space for each class. These models assume that each
class is located in a low-dimensional subspace of the kernel feature space. In [BFG14], it was
assumed the noise level is common to all classes (Definition 1). In [FBG15], they were extended
to the situation where the noise level can be dependent on the class (Definition 2).

Definition 1 (Parsimonious Gaussian process with common noise). A parsimonious Gaussian
process with common noise is a Gaussian process ¢(x) for which, conditionally toy = c, the
eigen-decomposition of its covariance operator X is such that

Al. It exists a dimension r < 400 such that AC]- =0forj>randforallc=1,...,C.

A2. It exists a dimension p. < min(r,n.) such that A = A for pc < j < r and for all
c=1,...,C.

Definition 2 (Parsimonious Gaussian process with class specific noise). A parsimonious Gaus-
sian process with class specific noise is a Gaussian process ¢(x) for which, conditionally toy = c,
the eigen-decomposition of its covariance operator X is such that

A3. It exists a dimension rc < r such that A¢;; = 0 forallj > rc and forallc =1,...,C. When
r = +oo, it is assumed thatr. = n. — 1.

A4. It exists a dimension p. < 1. such that )Lcj = Ac forj > pcandj < re, and for all
c=1,...,C.

Assumptions A1 and A3 are motivated by the quick decay of the eigenvalues for a Gaussian
kernel [BBM08]. Hence, it is possible to find r < 400 (or 7,) such as A, ~ 0. Assumptions
A2 and A4 express that the data of each class live in a specific subspace of size p., the signal
subspace, of the feature space. The variance in the signal subspace for class ¢ is modeled by
parameters Acq, ..., Acp, and the variance in the noise subspace is modeled by A or A.. This
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2.2. Classification of high dimensional data

Table 2.6.: Experimental results in terms of accuracy and processing time. The values reported
correspond to the average results obtained on 20 repetitions. Boldface results indi-
cate best results for a given data set. Multiple boldface results indicate that differ-
ences between them are not statistically significant.

Kappa coefficient ‘ Processing time (s)

University KSC  Heves University KSC Heves

pGPo 0.768 0.920  0.664 18 31 148
pGP1 0.793 0.922 0.671 18 33 151
pG P2 0.617 0.844  0.588 18 31 148
pGPs3 0.603 0.842  0.5%94 19 33 152
pGPy 0.661 0.870  0.595 19 34 152
pGPs 0.567 0.820  0.582 18 32 148
pGPe 0.610 0.845  0.583 19 34 152
npGPo 0.730 0.911  0.640 17 31 148
npGP1 0.792 0.921 0.677 18 33 151
npGPr 0.599 0.838  0.573 18 31 148
npGPs 0.578 0.817  0.585 19 33 152
npGPy 0.578 0.817  0.585 19 33 152
KDC 0.786 0.924  0.666 98 253 695
RF 0.646 0.853  0.585 3 3 18
SVM 0.799 0.928 0.658 10 28 171

model is referred to by pG Py for the common-noise assumption or npG Py for the class-specific
noise assumption.

From these models, it is possible to derive several sub-models. Table 2.5 lists the different
sub-models that can be built from pGPy and npGP,.

Model inference and fast estimation of the hyperparameters are discussed in the original
paper. We ends up to perform problems similar to Kernel PCA, one for each class, with some
additional constraint when common parameters exists between class specific model.

I choose to report only the main results of the original paper. In table 2.6, results are presented
on three real data set.

Parsimony exploits the emptiness property of high dimensional space. Another interesting
property of hypertemporal or hyperspectral data is the existence of high correlations between
consecutive variables (i.e., two consecutive spectral bands or temporal acquisition), inducing for
instance ill-conditioned covariance matrix. One way to work around such statistical problem
in the hyperspectral setting consists in considering the i" sampled pixel x; as a discretized
version of the curve x; := {Xi(A); A € [Amin, Amax] }» Where the word curve stands for a real
quantity x;(A) varying continuously with the wavelength A (for the hypertemporal setting,
the curve varies continuously with the time). Such modeling is considered in the next section.

2.2.2. Functional data analysis

Functional data analysis (FDA) is the branch of statistics devoted to the analysis of functional
data, i.e. curves. It has received a lot of attention in the 2000s [RS02, RS05a, FV06]. How-
ever, few works have considered these techniques in the framework of hyperspectral or hy-
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Figure 2.12.: Synthetic illustration of (a) thee random curves and (b) corresponding vectorial

observations.

pertemporal remote sensing images processing. Yet, formalizing the pixel spectro-temporal
features as curves enjoys the advantage to consider intrinsic feature like the order of the wave-
lengths/temporal acquisition or the shape of the hyperspectra/hypertemporal profiles (e.g. through
explicit derivatives). With F. Ferraty, we have investigated the potential of FDA in the context

of hyperspectral data classification, during a joint Phd thesis work.

Contribution 7:

We first compare state of the art FDA methods with conventional multivariate machine
learning techniques for the classification of hyperspectral data. This work was published
in [ZFF18] and it shows the potential of FDA methods. Then we have defined a novel
non-parametric functional operator to account for the noise in the hyperspectral data.
It consist of a kernel presmoothing step on the noisy functional predictor. After that,
the kernel estimator of the regression operator is built using the smoothed functional
covariate instead of the original corrupted one. In particular, we have proved that the
convergence rate of the nested estimator apply on noisy data is similar to the conven-
tional estimator obtain on clean data [FZF19].

Experimental assessment of FDA The following notation are defined for the particular
case of FDA and hyperspectral data: [x1,...,Xxn] stand for samples of the random curves
Xi = {Xxi(A); A € [Amin, Amax]} and [x1, ..., xy] are the corresponding d-dimensional ran-
dom vectors containing the discretized hyperspectra on [Ay, ..., Ay]. The figure 2.12 provides
an illustration of such notation.

Two ways are mostly used to handle functional data. One way consists in operating a basis
expansion of the functional data, then applying standard multivariate methods on the coeffi-
cients of this decomposition. This approach is discussed in our paper [ZFF18, Section 2.3].

The other way keeps the functional framework of the data, applying on it approximates of
functional operators. In our work, we use the so-called NonParametric Functional Discrimina-
tion (NPFD). NPFD belongs to the general nonparametric functional data analysis framework
proposed in Ferraty and Vieu [FV06]. Given our hyperspectral classification context, the non-
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2.2. Classification of high dimensional data

parametric functional model can be defined for each class ¢ € {1,...,C} by a regular operator
re(xi) := P(y = ¢|X = x;), mapping an observed hyperspectrum y; at pixel i into the range
[0; 1]. Only smoothness hypothesis about these C operators 71, . . ., ¢ are required by this ap-
proach. Remark that P(y = ¢|X = x;) = E (l[y:C”X = Xi)- Therefore, forc = 1,...,C,
the conditional probability IP(y = c¢|X = x;), or equivalently the operator 7., can be estimated
using a functional adaptation of the Nadaraya-Watson kernel estimator [Nad64, Wat64]:

Pe(xi) = " K(@) ’

(2.26)

where  is a smoothing parameter, K is an asymmetric kernel function defined on [0; 1] and
0 is a proximity measure between two functions, which choice has been restricted to some
pseudo-metrics family. This way, this classification estimation problem can be written as a
regression estimation problem. Once each conditional probability P(y = c|X = y;) is esti-
mated for c = 1,...,C, the class y; is predicted following the MAP rule, assigning x; to the
class which estimated membership probability is the highest:

yi = arg max P(y = c|lX = xi).
In practice, the choice of the scale parameter /1 is replaced by an equivalent choice of a k-
nearest neighbours parameter k, changing a continuous parameter by a discrete one, in order
to facilitate the implementation of this method.

Eight classification methods have been compared on three hyperspectral data set: Ridge reg-
ularized Gaussian Mixture Models (RGMM), High-Dimensional Discriminant Analysis (HDDA),
Support Vector Machines (SVM), Random Forest (RF), NonParametric Functional Discrimina-
tion (NPFD), Functional Multinomial Logistic Model (FMLM), Functional Support Vector Ma-
chines (FSVM) and Functional Random Forest (FRF). The R software [R C15] has been used.
The three later methods use basis expansion approach mentioned above. More details about
computations are available in supplemental material of [ZFF18].

Three experimental protocols have been applied on each dataset. The first protocol studies
the influence of a balanced learning sample size on the classification performance. The sec-
ond protocol provides the case of unbalanced learning set. Two approaches are compared; the
number of learning pixels per class is either proportional to the corresponding total number
of pixels available in the class, or proportional to its corresponding average standard deviation
over all spectral bands. Both cases have been calibrated to contain the same number of learning
pixels (either 30 x C or 480 x C). The third protocol compares the robustness of the methods
to noise in learning labels. We chose the framework of Bouveyron and Girard [BG09]. These
three protocols have been repeated 50 times such as a new training set has been generated for
each repetition. The Cohen’s Kappa [CG98] has been chosen to compare the methods perfor-
mances. This criterion is a statistic measuring the inter-rater agreement, taking into account
the agreement occurring by chance. For the 50 independent repetitions, the means and stan-
dard deviations of the Cohen’s Kappa criterion are reported in Table 2.7. I chose to report only
the last case of the first and third protocol (480 learning pixels for each class, with and without
label noise) in this document. Full results are given in the paper [ZFF18].
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Table 2.7.: Cohen’s Kappa (< 100) computed on the three data set.

Data set Label noise =RGMM HDDA SVM RF FMLM NPFD FSVM FRF

Pavi No  888(0.5) 780 (1.6) 90.1(0.5) 80.2 (1.1) 79.4 (0.8) 87.3(0.6) 85.6(0.7) 77.4(0.9)

avia Yes  66.4(3.1) 42.8(42) 86.9(0.8) 78.1(1.3) 66.0 (1.1) 84.6(0.9) 81.6(1.0) 755 (1.3)

ALSA No  642(0.8) 61.5(24) 77.3(0.4) 70.0 (0.4) 702 (0.3) 79.5(0.3) 79.5(0.3) 71.1(0.3)

Yes  59.7(1.3) 52.0(23) 71.3(0.6) 689 (0.4) 635 (0.8) 77.8(0.3) 73.8(0.5) 69.5 (0.4)

AVIRIS No  81.1(09) 741(07) 80.2(0.8) 77.8(1.0) 74.1(1.0) 825(0.7) 84.2(0.7) 78.1(0.9)

Yes 694 (19) 482 (3.1) 714 (12) 75.8(1.2) 68.1(1.0) 81.4(0.7) 783 (1.2) 754 (1.2)
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Figure 2.13.: Three contamination scenario: (a) noise with constant variance, (b) the noise has

two values (low before 0.5 and high after) and (c) the noise has its value that in-
creased quadratically from the center (¢(A)? = (A — 0.5)?).

From the results, NPFD competes with state of the art classifiers, and is particularly robust
to label noise. Other functional method, based on basis expansion are less accurate: the choice
and the design of the basis function are difficult to tune in practice and can cause severe over-
smoothing of the original data. On the contrary, NPFD is modified in the next section to allow a
smoothing of the original data that is learned during the specific task of classification, to ensure
an optimal reconstruction of the data.

Nonparametric regression for contaminated functional predictor In this work, we
have supposed that we observe a contaminated version of the spectra:

X' (A) =x(A) +n(A)
where # is a random process independent of (), y) such as
1. E[n(A)] =0,
2. E[p(M)yn(A)] = (M) 1hp,
3. 0,% twice differentiable.

This modeling offer the possibility to account for heteroscedeastic noise in the sample, i.e., noise
that can vary as a function of the wavelength or the time. See figure 2.13 for an illustration.
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Figure 2.14.: Classification accuracy

In [FZF19] we have proposed a nested estimators, that estimate both the noise-free spectra
and the regression operator :

Z?zl yi (h_15(X/)€1))

P(x) = (2.27)
= Ky (hy '8 (x, 1))
where X; is obtained through
Ks(hs(A;) 1A = A;
< = B QIR () (- 1)) o2

2 =1 Ks( (Aj)_l(/\ - A]’))

and g is a smoothing parameter depending on the variable A. This parameter allows to adapt
the smoothing effect accordingly to the noise of each spectral/temporal component.
Under some mild conditions, it is possible to prove [FZF19]:

1. The nested estimator 7 converges to the true operator .

2. The rate of convergence is not decreased in comparison to the situation where noise-free
samples are observed as soon as d is much larger than n.

3. The rate of convergence is increased when the ratio d/# is increased.

When have performed experimental simulation a small training set context (30 samples per
class) on the University data set. Results are given in figure 2.14, results on simulated data can
found in the original paper [FZF19]. It can be seen that the proposed perform well w.r.t. to
others classifiers. However, the processing time is really high: in our work the parameters
hs were tuned using cross-validation which made this approach not applicable in large scale
scenario.

Functional data analysis with Gaussian processes One strategy to develop faster com-
putational methods was to move from a non-parametric model to a parametric model. With
S. Girard, we have continued this functional approach for the classification satellite image time
series, with a joint PhD work (Alexandre Constantin). In particular we have investigated the
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2.2. Classification of high dimensional data

possibility to process SITS with irregular temporal sampling. I presented this issues in 1.3, it is
illustrated here in figure 2.15 with Sentinel-2 data.

In this work, we wanted to take benefit of the functional modeling using a parametric model,
in order to scale the model to large data set. We choose to use Gaussian process (GP).

Contribution 8:

During the PhD work of A. Constantin, we have proposed a multivariate Gaussian pro-
cess based on the linear combination of independent GPs [CFG22]. We use functional
basis and parametric covariance/kernel function to model the temporal behavior. This
model allows to perform Bayesian classification and imputation of irregular time series
and scale linearly with the number of training samples. This is a special case of Linear
model of Coregionalization [Goo97].

7

We have made use of the Matrix-Variate Gaussian Distribution, defined on random matrices:

Definition 3. The matrix-variate normal distribution MN , ; [Daw81] is defined for all p X g
random matrices Y* as:

Y* ~ MN (M, E, A) if and only if vec(Y*) ~ Npz(vec(M),Z ® A),

where M is a p X q matrix, . and A are symmetric positive definite matrices of size g X q and
p X p respectively.

We used the following notation:

myp1 Mmi2 T
« IfM = then vec(M) = [mq1, mp1, mq1p, mop| .
| M) = | |

0'11A s 0’1qA
 Kronecker product: X ® A = ) :

Under such assumptions, the PDF can be written as
_ _ 1
p(Y*) = (2m) P72 |2 P2 |A| 77 exp <—§tr [A—l(y* -M)z (Y —-M)T

Such distribution is well suited to model structured data, and structured covariance matrix,
that can take the form of a matrix measurement. The above definition imposes that the corre-
lation between rows does not change w.r.t. lines of the matrix, and vice-versa. With SITS, we
have a temporal multispectral measurements for each observed pixel Y;:

yin(t1) - yal(ty)
Y — : (2.29)

| yipitl) e Yip(tg)

where y;;(t;) is the observed reflectance for band b at time #;. Using a matrix-variate normal
model amounts to assume that the correlation between spectral bands does not change during
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the time or season, and that the temporal correlation is the same whatever the spectral bands
considered.
Concretely, this modeling reduces the number of parameters to estimate and the computa-

tional complexity (matrix inversion and determinant) since the effective degree of freedom of
(pq)(gqﬂ) to (P(P+1);Q(4+1))

the covariance matrix is reduced from
of the Kronecker product.

Yet we cannot used this modeling directly because the size (number of temporal measure-
ments) varies according to the pixels, i.e., g depends on the pixel with irregularly sampled pixels.
In [CFG22], we have extended this matrix-variate model to multivariate Gaussian process to
release the dependence of a common temporal grid. The idea was to model the process rather
than the observations themselves (even if the parameters of the process will be learned with
the observations).

, and we can take advantage

Definition 4. We define a Multivariate Gaussian Processes (MGP), conditionally to Z = c, as
Y(t) = AW (t) + m(t)
with Y(t) € RP, W.(t) € R?, m:(t) € R?, A, € RP*? and

Wyl Z=c~GP(0,K.),Vbedl,...,p},
Wy L Wy, Vb0 € {1,...,p}>%

We write Y|Z = ¢ ~ MGP,(m¢, K, A).

Then we assume that our observed pixel is a multivariate stochastic process which can be
modelled as a mixture of MGP:

Definition 5. Mixture of MGP (M2GP) is defined as

C
Y~ ) P(Z=c)MGP,(m,,K,A,).
-1

c

Using definitions 3, 4 and 5 the following proposition holds:
Proposition 1. IfY ~ M2GP then Y* = [Y(t1),...,Y(tq)] is a p x q random matrix such as:
Y| Z=c~ MNpg(Mc, I, AcA]),
with
« M, = (m¢(tq),...,me(ty)),
* L is the covariance matrix defined by X, , = Kc(t), ty) for all (1, " e{1,...,q}%
Equivalently: vec(Y*)|Z = ¢ ~ Npg(vec(Mc), Zc ® AcA[).

We use parametric functions of the time for the mean and covariance function (full proof
in [CFG22]):
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« Parametric mean: m. is modeled by a weighted sum of ] basis functions { ¢; } ]]-:1: m;(t) =

Z}:l & p,i9;(t). Let B be the design matrix of size | X g and & = [&c1,. .., &cp]  ama-
trix of size p X | then we have
MC — acB.

« Parametric kernel: K is chosen in a set of parametric kernel indexed by 0: £. = X(6,.).
The Gaussian kernel defined eq. (2.6) was used in this work.

Using the proposition 1 and such parametrization, we end up with the following conditional
PDF, where parameters to be optimized are independent of the sample time:

Y| Zi = c~ MNpg, (a:B;, Ei(6,), )

where colored letters refer to learnable parameters, and B;, X; are time/pixel dependent. The
resulting negative log-likelihood (NLL) is

(ac, B, ) =p Z log |Z;(6:)| + nclog | |
i|Z7‘:C

vr| Y (Y - weB) {60} (Y —acBy) {AA L
i|Z;=c

+ constant

which can be minimized by solving C independent minimization problems. The complexity is
linear w.r.t. the number of pixels, and cubic w.r.t. the number of time sample (usually low). A
conventional constrained gradient descent was used to minimize the NLL.

This NLL is similar to the one of a conventional vectorial Gaussian mixture model, but it
differs in two points:

1. There is no need to have samples of the same size,
2. The estimation of the covariance matrix is regularized by the Kronecker structure.

This model is able to learn from irregularly sample pixel and to infer the class of a given pixel
whatever its sample time, using MAP rule. A by-product of the model is its ability to impute
missing values using Bayesian estimate: for a given sample Y observed at {ty,...,t5,} = T;
and an unobserved time t*, the imputation is performed as a weighted imputation of each class-
Gaussian conditional imputation:

C
Y7 (1) ~ Y P(Z = YN (o (, X0), A, T) )
c=1

where the class membership is estimated with the posterior of the model and p is the conditional-
distribution of the pixel at time t* given the observation of the pixel at times {t1,...,t;} = T;:

o 1 (8,YF) = &b + (Y5 — &cBy) {Z4(0.)) 'k (t, T8,

L e
1
Ac(t, T)) [K(t,t!ﬂc) k(t*, Ti|0:) T {Z;(8.) ) k(t,E]GC)]®ACAC,
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with b* = [@1(+*),..., ¢;(t*)] and k(t*, T;|8c) = [K(t*, t1]0c), ..., K(¢*,t1|0c)] .

We have performed simulation with about 190,000 learning pixels and compared the clas-
sification accuracy with standard vector models (with a proper linear temporal interpolation
to have samples on the same temporal grid). Ten independent runs were done and averaged
results are reported in 2.8 (and full results in [CFG22]).

Table 2.8.: Classification accuracy for the classification of S2 SITS. QDA is the Gaussian mixture
model with a ridge regularization (or quadratic discriminant analysis), HDDA is a
QDA model with a sparse covariance matrix [BGS07], lin-SVM is a linear SVM with
a specific solver for large scale data (liblinear, https://www.csie.ntu.edu.tw/
~cjlin/liblinear/) and RF is random forest.

Average F1 std F1

M2GP 63.1 115
HDDA 556  2.70
QDA 64.2 136
lin-SVM 694  1.78
RF 742 178

Non-parametric methods (RF and SVM) provide the best classification results in terms of
F1-score. Interestingly, the covariance sparsity assumption of HDDA results in worse results
in terms of classification accuracy than QDA. The Kronecker structure and the irregular sam-
pling of M2GP lead to an accuracy similar to QDA but lower than non-parametric techniques.
We thus believe that the M2GP covariance structure is well suited to deal with irregularly
sampled SITS, as classification accuracy are closed to QDA ones, but the M2GP model is not
flexible enough to reach the performance of non-parametric methods. The Gaussian (and thus
unimodal) assumption for the class conditional density might be too limiting and should be
relaxed in future works (see perspectives in section 3).

Figure 2.16 shows a reconstruction of a pixel time series in the visible and near infra red
Sentinel-2 bands. The third date was cloudy but not tagged as such from the data provider:
the linear interpolation is highly impacted by the outliers, while the proposed method is not
affected. Furthermore, it is possible to draw confidence interval for the imputation.

In [CFG22], a detailed analysis of the model outputs (temporal and spectral correlation, mean
function) is given: the interested reader could consult the article.

2.2.3. Joint representation learning and processing

Another conventional strategy to circumvent issues related to high-dimensional data is to per-
form feature reduction or feature extraction. This strategy is termed “Representation learn-
ing” [BCV12] in the machine learning literature. However, such techniques are usually per-
formed independently from the final objective. For instance, PCA maximizes the projected
variance, but maximizing the variance is not necessarily related to classification accuracy. Sim-
ilarly, spectral unmixing techniques allows to decompose a pixel into pure components that
provide meaningful physical information but this is usually not a representation that perform
well in the context of classification.
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Figure 2.16.: Time series Reconstruction for three methods: linear interpolation (red dashed
line), Whittaker smoothing (black dotted line) and Gaussian process in black (gray
region corresponds to 95% confidence interval). Black dot points are the original
values from the irregularly sampled time-series
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Figure 2.17.: Joint spectral unmixing and classification.

For this reason, we have investigated the definition of algorithms that perform jointly repre-
sentation learning and processing task (e.g., classification). This work was done during the PhD
thesis of Adrien Lagrange, co-supervised with Prof. Nicolas Dobigeon.

Contribution 9:

Our contributions were the development of unified frameworks that perform jointly rep-
resentation learning and classification tasks. A coupling term, based on a clustering task,
link the two adversarial objectives during the optimization process. In order to learn
the parameters of the model, two strategies were investigated: the first one was based
on Bayesian modeling [LFMD19]; the second one was based on the PALM optimization
algorithm [LFM ™ 20]. The latter scales better w.r.t number of available samples while the
former is more robust w.r.t error in labels.

7

In this manuscript, I choose to report results from [LFM™20]. The model proposed is de-
scribed in the figure 2.17. This model performs jointly spectral unmixing and classification. For
the unmixing, the endmember M samples are supposed to be known while for the classification
some samples are available with their corresponding ground-truth. These two operations are
combined trough the clustering step that links the estimated abundances A to the membership
C. Variables in red in the figure are the free parameters of the model, that are learned with the
data.

Individually, the different steps are

« Sparse linear mixture model on the original spectra: The observations are represented
by a sparse linear combination of elementary signatures [BDF10]

in || X — MA||2+ A, ||A 2.30
min | IF+Aa [[All; (2:30)

withM € R¥*": endmember matrix (spectra of elementary components), A = [a; ...ap| €
R"*P: abundance matrix, # the number of pixels of the image and d the number of spec-
tral components.
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« Relaxed k-means on the abundance matrix A:

min ||A — BZ||7, (2.31)
ZeSE,B-0

where the matrix B = [by...bg] € R®*K contains the centroid of clusters. The con-
strain Z = 0 and sum-to-one constraints on Z are used to interpret z, as probability
vectors while B = 0 are enforced to interpret the rows as averaged abundances.

« Semi-supervised linear classification on the feature vector Z: We use the cross-entropy
loss function and TV-norm spatial regularizer (the quadratic loss was also used in [LFM ™ 20]).

) . 2
min o —M Z Zci,p log (sigm(q;.zp)) + Aq [1QI[ + Ac ICll g1y /
Q,Cues‘c‘ pePieC

where q;. denotes the i row of Q.

Combining all these optimization problem leads to the following co-factorization problem

min Ao ||Y — MAJF + Aq Al
A=0,Q,ZeS%

cues B0

~M Y dp ) ciplog (sigm(qizp)) +Aq QI + Ac | Cllyry
peP ieC

+12||A - BZ|3 (2.32)

which is a non-convex, non-smooth optimization problem. We have proposed to solve it using
proximal alternating linearized minimization (PALM [BST14]).

We compared the proposed algorithm with quadratic (Q) and cross-entropy (CE) classifica-

tion losses, denoted respectively by Cofact-Q and Cofact-CE, to state-of-the-art classification

and unmixing methods. First, one considered competing method was the random forest (RF)
classifier, which has been extensively used for the hyperspectral image classification. Addi-

tionally, the performance of the classification method proposed in [UMH19] has been eval-
uated. This method, referred to as SSFPCA+SVM, relies on a so-called spectrally-segmented
folded PCA (SSFPCA) as a feature extraction step, followed by a RBF-kernel SVM classifier.
The parameters of SSFPCA have been set based on the study provided in the original pa-
per. Parameters of the RF and the SVM have been adjusted using cross-validation with a
grid-search strategy and we used the implementations provided in the scikit-learn Python li-

brary [PVG'11]. Then, two unmixing methods proposed in [BDF10] has been tested, namely

the fully constrained least squares (rc-SUnSAL) and the constrained sparse regression (CSR-

SUnSAL). rc-SUnSAL basically relies on the same data fitting term considered in the proposed
co-factorization method, under non-negativity and sum-to-one constraints applied to the abun-

dance vectors. Conversely, the csR-SUnSAL problem removes the sum-to-one constraint and
introduces af1-norm penalization on the abundance vectors. It thus solves (2.30) where the as-

sociated regularization parameter Ay, is tuned using a grid-search strategy. These two methods

use an augmented Lagrangian splitting algorithm to recover the abundance vectors. Addition-

ally, these abundance vectors are subsequently used as input features of a multinomial logistic

regression classifier (MLR). This classifier is linear and its combination with the csr-SUnSAL
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Table 2.9.: AISA data: unmixing and classification results.

Model Fl-mean Kappa RE Time (s)
RF 0.912 (£4.2 x 1073)  0.835 (£1.2 x 1072) N\A 41 (£1)
SSFPCA+SVM 0.464 (£4.5 x 1073)  0.466 (£1.9 x 1072) N\A 398 (+12)
FC-SUnSAL+MLR  0.428 (£3.9 x 1072)  0.433 (£3.8 x 1072)  0.298 (+1.9 x 1073) 512 (+96)
csR-SURSAL+MLR  0.610 (£6.9 x 1072)  0.618 (£8.0 x 1072)  0.304 (+2.0 x 1075) 529 (+61)
D-KSVD 0.396 (£9.5 x 1072)  0.406 (£9.9 x 1072)  0.303 (£7.6 x 107%) 10475 (£129)
LC-KSVD 0.600 (£4.0 x 1072)  0.594 (£3.0 x 1072)  0.303 (+4.0 x 107%) 3780 (+320)
Cofact-Q 0.824 (£2.0 x 1072)  0.652 (£2.5x 1072)  0.310 (£1.6 x 107%) 7303 (+139)
Cofact-CE 0.876 (£1.6 x 1072)  0.759 (£3.5 x 1072)  0.310 (1.4 x 107%) 4382 (£257)

unmixing algorithm, referred to as csr-SUnSAL+MLR, yields a sequential counterpart of the
proposed Cofact-CE method. In particular, comparing the resulting classification performance
with the performance of Cofact-CE allows the benefit of introducing the clustering coupling
term to be assessed.

Besides, the proposed method has been also compared with the discriminative K-SVD (D-
KSVD) method proposed in [ZL10]. The D-KSVD problem has strong similarities with the
proposed co-factorization problem. Indeed, it corresponds to a fy-penalized representation
learning and a classification with a quadratic loss. It aims at learning a dictionary suitable
for the classification problem and performs a linear classification on the coding vectors. For
this reason, the dictionary is only used as an initialization for D-KSVD, while it remains fixed
for the unmixing and proposed co-factorization methods. Similarly, the label consistent K-
SVD (LC-KSVD) is also considered [JLD11]. This model has been proposed as an improvement
of D-KSVD where an additional term ensures that the dictionary elements are class-specific.
Hyperparameters of D-KSVD and LC-KSVD have been manually adjusted in order to get the
best results.

When implementing the PALM algorithm, the normalized regularization parameters in (2.32)
have been fixed as 7\0 =100,A1 = A =1, A, = Aq —0.1and }\C =103, Finally, the number
of clusters has been set to K = 10. The influence of these parameters are empirically studied in
the associated companion report [LFM ' 19]. Simulation have been performed on the Aisa data
set. Results are given in Table 2.9 and metrics and their standard deviation have been computed
over random 5 trials.

Reconstruction errors (RE) is the only figure-of-merit to assess the quality of the represen-
tation learning. REs appear to be very similar for all algorithms. Concerning classification
results, the results reported in Table 2.9 show that the classification maps recovered by the
Cofact-CE is very closed to the one obtained by RF, whereas others methods fails to provide
reasonable results. The comparison between the representation learning-based algorithms is
clear and the both Cofact methods perform better than LC-KSVD and D-KSVD.

One of very interesting feature of the Cofact method is the possibility of examining the
clusters obtained as a byproduct. The centroids B estimated by the Cofact method can be inter-
preted as average behaviors of abundance vectors. Corresponding virtual spectral signatures
can be obtained by right-multiplying the dictionary M by this estimated abundance-like matrix
B. The first line in Figure 2.18 shows these spectral centroids for each cluster. Accessing this
kind of information is precious in term of image interpretation since it offers the possibility
of visualizing any class multi-modality. To illustrate, the second line of Figure 2.18 shows the
mean spectra associated with the subclass ground-truth. Clearly, both lines exhibit strong sim-
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ilarities, with spectral diversity (hence multi-modality) for the 1st, 3rd and 4rd classes. This
illustrates the relevance of the clusters recovered by the proposed co-factorization method.
This work has been pursued in the PhD work of. E. Giry-Fouquet. See for instance [GFM21].

2.3. Thematic application

My initial area of interest was urban areas. As objects of interest in these areas have typi-
cal shape and size that depend on there use rather than they physical nature, spatial-spectral
methods were especially useful. I was interested to analyse every urban object, with no specific
attention to particular ones. I mainly proposed anisotropic methods such as ones discussed in
2.1. Then, after my recruitment at Dynafor-lab, I focused on particular vegetation objects, that
are of interest in landscape ecology. In this report, I choose to discuss about three elements:
Hedgerows, Trees species and Grasslands. I deliberately skip urban tree which is something I
am not working on anymore. Reader that are interested can take a look at [AFZ " 19, ADZ" 18].

2.3.1. Hedgerows detection

The first one was the hedgerows. These semi-natural elements are essential in the agricultural
landscapes. They are the main components of the green infrastructure plans defined for con-
servation planning from the local to the global (statewide) scale [WRWV10]. For instance in
France, one conclusion of the “environment round table” is the need of a cartography of the
“green belt network” (or green infrastructures) [ERT]. Another example is given by the Euro-
pean Union which conditions its funding to farmers based on how they maintain hedges inside
their farms [AAW10].

In the past, small and linear woody elements were mapped manually, by visual interpretation
of aerial photographs, or by traditional field-based recognition. Obviously, this approach was
highly time consuming and not appropriate for large areas. Besides, the small green veining
objects were not always included in the spatial databases produced by the National Mapping
Agencies, or not distinguished by category [THL11]. In addition, when this is the case, their
cartographic representation does not necessarily fit the user needs because green veining ob-
jects like hedgerows are very application dependent [BBB00]. For instance, the useful minimum
length to define a linear woody object as a hedge may differ according to the species studied
and its dispersion ability.

Contribution 10:

My contribution was the use of local orientation feature for the detection of hedgerows
in very high resolution images [FABT13]. This feature was computed using advanced
orientation opening algorithm.

In order to map hedgerows from very high resolution images, I propose to apply directional
morphological filters [S0i03, ST01] for the detection of hedges. Directional filters allow the pro-
cessing of an image in a defined direction. Hence, it is possible to preserve or remove objects
according to their orientations and also enable the discrimination of objects with different ori-
entations in the image from objects with no main orientation. Similarly to the Morphological
Profile, we compute several Morphological Directional Profile (MDP) with various orientation
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Figure 2.18.: AISA data: (1st row) Ground-truth map of sub-classes and clustering recovered by Cofact-CE, (2nd row) for each class,
spectral centroids of the clusters recovered by Cofact-CE composing the class, (3rd row) for each class, mean spectra of the

ground-truth sub-classes composing the class.
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Figure 2.19.: Directional morphological profile for (a) a pixel that belongs to an hedgerows and
(b) a pixel that belongs to a forest. Hedgerows pixel has a local orientation feature
of 0.24 and forest pixel of 0.05.

parameter and we define the local orientation LO(x) is defined as the difference between the
maximum value and the minimum value of the MDP:

LO(x) = max (MDP(x)) — m@in (MDP(x)). (2.33)

This property is very important for the discrimination of the hedges from the other woody
structures. Indeed, when hedges are observed at the meter scale, they have a specific orientation
in the spatial space while forest area not. See for instance Figure 2.19.

I investigated such techniques in [FAB*13], coupled with a detection algorithm. Some
hedgerows mapping are provided in Figures 2.20.

2.3.2. Tree species classification

Forest ecosystems provide essential services to human society. Beyond the production of mul-
tiple resources (timber, energy, foods), these ecosystems play a major role in carbon sequestra-
tion, regulating biogeochemical cycles and climate. Mapping tree species is therefore crucial to
assess forest ecosystems and their services. Several works have been done using remote sens-
ing to map tree species: using very high resolution images [LPT"15], airborne hyperspectral
images [FA13] or multi-temporal images [ZL14].
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Figure 2.20.: Hedgerows detection.

Contribution 11:

We explore the benefits of using a very dense high spatial resolution multispectral
Formosat-2 image time-series for mapping 13 tree species in temperate forests, for 9
consecutive years, with state of the art machine learning techniques to pre-process the
time series, extract relevant dates and spectral features and classify the pixels [SFJ " 16,
KDF'19]. We have enlightened the importance of spatial auto-correlation for the vali-
dation of the classification accuracy.

Using a Formosat dense time series, we classify the tree species each year. In [SFJ"16], we
have reported very high classification accuracy, but we had suspected some overconfidence in
our discussion. To assess the robustness of the results, we further compared the intra-annual
stability, i.e., does the classifier predict the same class for several consecutive years (it should
1. Figure 2.21 shows that strong instability, which is something that cannot happen with tree
species.

As a consequence, in [KDF"19] we took care of the spatial auto-correlation to evaluate the
classification accuracy. Based on the Moran Index [Crel5], a spatial cross-validation was used
to build spatially independent folds that were used to estimation the accuracy of the classifi-
cation in terms of accuracy. It reveals a strong positive bias in validation based on the usual
LOO-CV strategy for splitting reference data, as shown in table 2.10.

These results show the importance of accounting for the spatial auto-correlation when eval-
uating the accuracy in remote sensing. Surprisingly, few studies take this point into considera-
tion although it is critical in particular for small data set (such as the hyperspectral one: Pavia,
AVIRIS and so on). This may explain the current trend of 99% percent of accuracy observed
with highly parameterized models (such as CNNs) [ZLJ ™19, CYXM20] ...
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Figure 2.21.: Annual classifications of tree species in a mixed forest composed of different
conifers and broad-leaf species. Instability was observed in the conifer planta-
tions composed of Black pine, Silver fir and Douglas fir.

Table 2.10.: Accuracy report of spatial leave-one-out cross-validation (SLOO) sampling strategy
and leave-one-out cross-validation (LOO) for each single-year classification based
on OA statistics.

2007 2008 2009 2010 2011 2012 2013 2014

S-LOO 048 0.57 0.55 056 055 0.58 0.60 0.58
LOO 099 098 099 098 097 098 0.99 1.00
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2.3.3. Grasslands

Grasslands are today one of the most endangered ecosystems due to land use change, agri-
cultural intensification, and abandonment [PBS05]. Grasslands host a unique biodiversity,
which support the provision of key ecosystem services such as carbon storage, food production
crop pollination, pest regulation and contribute to landscape scale amenities such as landscape
scenic view. Yet, despite recent regulation in favor of grasslands, agriculture intensification,
abandonment and urbanization generate a decrease of both grasslands surface area and plant
diversity [0’M12, NHA " 16] leading to a loss of biodiversity (plants, insects, birds) and its re-
lated ecosystem services. Therefore, there is an urgent need to monitor grasslands over large
extents in order to assess their current state in terms of area covered but also to estimate their
plant diversity and their carrying capacity for insect populations.

Contribution 12:

I start to work on grasslands during the PhD Thesis of Mailys Lopes, co-supervised with
Stéphane Girard. During her PhD, we work on the classification of management practices
and on the estimation of biodiversity using dense satellite image time series [LOP17].
This work has been continued in [FLD " 20] with a full year of radar and optical Sentinel-
1&-2 observations and leads to the very first mapping of grasslands biodiversity indices
at a decameter spatial resolution with remote sensing images.

J

In the following I am doing an overview of [FLD"20]. We used Sentinel’s optical and radar
SITS to estimate plant taxonomic and functional diversity in grasslands over a a large spatial
extent (40 000 km?) for one growing season. Fifteen months of acquisitions of Sentinel-1&-2
images were used to predict at the pixel level plant diversity indices (richness, Shannon and
Simpson diversity indices) and functional diversity indices related to pollination (flower diver-
sity, insect dependence) of grasslands located in farmed landscapes in the southwest of France.
Various linear and non-linear algorithms were investigated to cover different kinds of possible
statistical relationships between the biodiversity indices and the SITS.

Botanical surveys were conducted in 83 plots from distinct grasslands between April and
May 2018 after the flowering and before the mowing. The average distance between two plots
was 13.4 km with a standard deviation of 9.1 km and the minimum and the maximum distances
were 0.08 km and 44.37 km, respectively. Each plot was composed of 5 quadrats of 1 square
meter area. The center of each quadrat corresponded to the theoretical center of a Sentinel-
2 pixel. The grasslands were digitized using the agricultural Land Parcel Information System
“Registre Parcellaire Graphique” (RPG).

Plants were identified at the species level and the abundance of each species was estimated
by its cover percentage value in the one square meter area, according to 12 bins, see Table 2.11.
Vegetation height was measured in two locations in each quadrat and averaged. A total of 415
quadrats (leading to 415 Sentinel pixels), belonging to 83 grasslands, was recorded and used in
this study.

Three indices were computed:

1. plant richness S, defined as the number of plant species in quadrat g,
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Table 2.11.: Plant cover percentage bins.

Coverage estimation  Assigned value

(%) (%)

[1,2.5] 1
[2.5,7.5] 5
7.5,11.5] 10
[11.5,20] 15

[21,30] 25

(31, 40] 35

[41,50] 45

[51,60] 55

[61,70] 65

[71,80] 75

[81,90] 85

[91,99] 95

100 100
2. the Shannon diversity index
5q

H'(q) = — ; Pgs ln(qu),

where pgs is the relative abundance of the species s in quadrat 4,

3. Simpson index of diversity (refers to Simpson index in the paper for simplicity),
5q
L(E]) =1- Z Pés
s=1

The Shannon index measures heterogeneity taking into account the number of species and the
relative abundance of each species, while the Simpson index is the inverse of a dominance index
reflecting how much the community is dominated (or not) by few species.

Four Sentinel-2 tiles of Level 2A were downloaded from the Theia Land Data Centre>, corre-
sponding to all available acquisitions between August 26, 2017 and December 03, 2018*. Only
the bands natively at 10 m/pixel were used in the experiments (blue, green, red and near-
infrared). All the acquisitions were re-sampled and gap-filled (to handle clouds and shadows)
onto the same set of dates (every 10 days, starting from 2017-08-29 and ending in 2018-12-02),
as proceeded in [IAT " 15b]. The final SITS contains 47 dates, in the visible and near infrared
bands, corresponding to a total of 188 spectro-temporal features. The normalized difference
vegetation index (NDVI) and the first principal components, accounting for 99% of the total
variance, were extracted as alternative features.

Sentinel-1 Level-1 GRD (Ground Range Detected) time series recorded in interferometric
wide swath mode were used. Four orbits corresponding to the Sentinel-2 extent were down-
loaded from the French Sentinel collaborative ground segment®, corresponding to the same

Shttp://www.theia-land.fr/en/presentation/products

“Images tagged as composed of more than 90% of cloudy pixels by the MAJA processing chain are not processed
by the data center.

Shttps://peps.cnes.fr/rocket/\#/home
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temporal period as Sentinel-2 time series. GRD time series were calibrated to 4, orthorectified
and filtered using a multi-temporal spatial filter (https://gitlab.orfeo-toolbox.org/sl-
tiling/s1tiling) [QY01]. The parameters of the spatio-temporal filter were a spatial window
of size 55 pixels and all the dates were used for the temporal filters. VV and VH polarizations
were processed as well as the ratio VV/VH. The features were re-sampled onto the same set of
dates (every 10 dates starting from 2017-08-27 to 2018-11-30).

Figure 2.22 presents the reconstructed NDVI (in black) and 7°(VV) polarization (in blue) for
descending orbits of the five quadrats for four plots as well as their corresponding detected
shadows and clouds.

The accuracy of the prediction of a biodiversity variable value y was assessed using the
coefficient of determination (r%) [DS98]:

Y (vi — 9i)?
221 (yi - y_)z

where 11, is the number of validation sample, y; is the true biodiversity variable value associated
with the i*" sample, 1; is its corresponding predicted value and 7 is the mean value of the
validation sample.

In order to correctly estimate 72, the k-fold cross validation was used. Cross-validation di-
rectly estimates the generalization error of a given method [HTF09, Chap. 7]: The data is split
into K almost equal-size folds, and the model is fitted on K — 1 folds. The prediction error, here
12, is computed on the remaining unseen fold. This process is done for all foldsk = 1,2,...,K.
The average error over the K folds is the estimated generalization error.

However, in our experimental setting, the 5 quadrats corresponding to one plot are spatially
correlated and this must be taken into account when constructing the K folds of the cross-
validation [HV96]. It was proposed in this work to perform a grouped cross validation by
splitting the samples according to their plot membership [PPNH17, LRPM " 14]: quadrats from
a same plot are all included in one fold and not shared among several folds. Hence, in the
experiments, a five fold-grouped cross validation was performed, where the first four folds
contain 16 plots (80 quadrats) and the last fold contains 19 plots (95 quadrats). The same splits
were used for all experiments, i.e., the error assessment was done using the same folds whatever
the methods, data sources and indices.

Best results for each variable corresponding to an average 72 > 0.3 are presented Table 2.12.
All results can be found in [FLD"20] as well as a detailed discussion. In short, best results are
obtained with Random Forest with raw Sentinel-2 features.

Prediction of the Simpson index at the pixel level was done for all the grassland parcels iden-
tified from the Land Parcel Information System (RPG) over the four Sentinel-2 tiles with the
data and method that resulted in the highest prediction accuracy (i.e., R-IR satellite data and
RF algorithm, see Table 2.12). The confidence interval was also computed. Figure 2.23 shows
an extract of the predicted Simpson value in a square of 1 km? centered on the plot 10_470.
It also shows a very high spatial resolution aerial image from 2016 over the same extent as
well as the confidence interval associated with the prediction of the Simpson index obtained
with the Random Forest. Extracts for all plots are provided in the supplementary materials of
[FLD20].

By using dense S2 and S1 SITS, this work contributed to the remote sensing of grasslands
biodiversity using new generation high resolution SITS. This study indicates that the temporal

r?=1-
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2.3. Thematic application

Plot 943 2647, Shannon index=0

NDVI

NDVI

T\

NDVI

NDVI

Figure 2.22.: Reconstructed S2-NDVI (in black) and S1-VV polarization (in blue) with a 10 days
step for different plots. For each plot, the 5 pixels corresponding to each quadrat
are plotted. The red vertical lines indicate the dates of the detected clouds and
shadows for the raw S2 pixels, before the gap-filling.
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Table 2.12.: Estimated accuracy for the best predicted variables (#> > 0.3) and the correspond-
ing standard deviation (7,2) of the 5-fold spatial cross validation.

Data Variable Method #2 (o
RIR  Simpson RF 0.45 0.13
RIR  Shannon RF 043 0.13
S2 Color Diversity RF 0.40 0.08
S1S2 Richness KRidge 034 0.15

S1S2 Insect Dependence KRidge 032 0.15
S1S2  Flowers Richness KRidge  0.32 0.16

S1S2 Reward Index GPRBF 032 0.20
0.91 . 0.4
a 0.69 0.3
0.46 0.2
0.23 0.11
0 0.01

Figure 2.23.: Simpson index around plot 132_1699. (a) Very high spatial resolution aerial image
from 2016, (b) Prediction of the Simpson value for pixels corresponding to grass-
lands in the national agricultural Land Parcel Information System and (c) Confi-
dence interval value associated to the prediction.

information contained in the SITS can compensate for the limited spectral information and
spatial resolution compared to hyperspectral imagery. Another finding is that the spatial auto-
correlation tends to bias the estimation of the prediction accuracy and thus, should be taken
into account during validation. The contribution of this work does not lie in selecting the best
set of dates nor the best machine learning regression methods but in assessing the potential of
Sentinel-1 and -2 dense times series as explanatory variables for the prediction of grasslands
biodiversity indices. We believe that our results, using large scale data with various agricultural
practices for different meteorological and topographic conditions, demonstrate the capacity
of such data to monitor grasslands from an ecological viewpoint. In particular, intra-parcel
variability was highlighted in this work and can be monitored over large areas.
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My move to the CESBIO lab as an INRAe researcher has confronted my research to large scale
data with their spatial non-stationarity and big data issues counterparts:

« The spatial non-stationarity was not significant for small extent coverage areas, such as
all the hyperspectral data used in my past works. It implies that some of my results
obtained may not generalize well and the observed improvements in terms of accuracy
might be due to over-fitting over a small spatial area. This is indeed even more critical for
recent deep models learn on small spatial extends, with millions of parameters to learn.

« The high data volume implies that some of the proposed complex methods, such as the
spatial-spectral or the functional ones, don’t scale to such massive data. Hence, they are
unusable for most of real case studies and apart from theoretical consideration, they do
not help other researchers to solve their problems.

In my opinion, the use of machine learning in remote sensing should face these two is-
sues, which are essential components of the ecosystem monitoring problem. Using satellites
to monitor small areas is overkill and in-situ or in field analysis is much more relevant. As
such, machine learning should be used to monitor ecosystems at large scale to solve end-users
application needs. In the context of climate change, remote sensing would be an important tool
if we succeed to interact with environmental science.

In the following I am going to review perspectives of my research from two related points
of view: thematic and methodological.

3.1. Thematic perspectives

My thematic perspectives are oriented to the production of maps of ecosystem variables, related
tp functions and associated services', for a continuum over the time and the spatial domains.
This is a mandatory condition to monitor states and trends of ecosystem. Being a member of
the ECODIV INRAe scientific department (https://www.inrae.fr/en/divisions/ecodiv),
my work will focus on grasslands, crops and forests ecosystems as well as their interfaces.
My main object of research is the definition of standard ecosystem variables (EV) that can be
monitored and compared over large scales from Earth observation images. A primarily set of
these ESV can be directly derived from the Essential Biodiversity Variables [PFWT13], such as
land cover, phenology, or habitat structure. But other variables should be defined according to
the extended information provided by recent satellite missions. For instance, taxonomic diver-
sity as well as species occurrence can now be monitored from Earth observation data. A critical

'Ecosystem functions are related to the physical or biological process of an ecosystem (e.g., photosynthesis).
Ecosystem services are defined as the benefits people obtain from ecosystems functions (e.g., carbon capture
or biomass production) [dWB02].
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Figure 3.1.: Thematic and methodological perspectives.
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aspect will be the ability of these variables to cope with several configuration of landscapes, e.g.,
different level of anthropization and urbanization. These variables will be related to the state
and trends of ecosystem services or functions (supply, demand and benefit) [dWB02, BBC " 22].

The Figure 3.1 provides a mind map of the thematic perspectives, divided into two type of
EV, related to the trend and the state of the ecosystem. Maybe the most used variable is land
cover and land use maps. I have been working since the beginning of my career on this type
of problem. Even if it has been solved for general cases (see for instance the OSO products:
https://www.theia-land.fr/en/product/land-cover-map/) there is room for improve-
ment. In particular, the spatial continuity of the prediction should be improved to ensure an
homogeneity of the prediction over the cover area. This problem affects large scale classifi-
cation methods that split the spatial cover into spatial regions to reduce the computational
complexity. Such issue is illustrated in Figure 3.2. To enforce spatial continuity, I believe in
breaking the spatial stationarity assumption usually made in machine learning: the class sta-
tistical properties may change along the spatial position on Earth. I will discuss more about
the technical aspect of this in the next section. Another important aspect of research concerns
the extraction of semantic information, much more usable and informative for end-users. For
instance, parcels with the same crops type (i.e., identical land-cover/use) can correspond to
several agricultural practices (conventional, bio ...): in the current land cover maps they are
identified by the same classes, but should be in the future discriminates into different classes
because their effects on landscape are differents. This requires in particular to consider the
spatial context.

Land cover maps are usually exploited to produce landscape composition (what are the
species in the landscape) and configuration layers (how the elements of the landscape are spa-
tially organized) that are used as proxy of different ecosystem services. However, they are based
on a binary representation of the landscape (a pixel belongs to only one class, absolutely). I
would like to investigate “continuous” landscape representation to derive composition and con-
figuration index.

In addition to state variables of landscape, other time related ecologic variables need to be
mapped at large scale. In particular, I have initiated work to estimate phenological variables for
rapeseed and grasslands. Phenometrics are key variables to monitor vegetation w.r.t. climate
changes. Yet, relying on databases to learn a machine learning model, such as for BBCH phenos-
tages of rapeseed (https://en.wikipedia.org/wiki/BBCH-scale (canola)), mightbe prob-
lematic for long term monitoring: such data is hard to collect and scarcely available. That is
why, I have started to consider the computation of unsupervised phenometrics using raw time
series. In particular, I currently investigate the Dynamic Habitat Index (DHI) variables, which
are variables about the temporal behavior of the observed pixels. At the spatial resolution of
Sentinel-2 SITS, clouds and shadows are an important source of noise and require specific ef-
fort. The figure 3.3 shows such problems: a strong spatial discontinuity is observed that match
the (imperfect) clouds mask provided by CNES.

Last but not least, in order to be useful in the public debate, the extracted information (land
cover, phenometrics, ecosystem services ...) should be accompanied by uncertainty measures
describing the level of confidence associated to the extracted indices. Perfect accuracy in the
processing of such data is unrealistic and these uncertainties would be a valuable complemen-
tary information. In particular, when evaluating different scenarios and their impacts on land-
scape, it is mandatory to use such confidence intervals (or its Bayesian counterpart, credible
intervals).
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Figure 3.2.: Spatial discontinuity of the land cover classification between two regions. The black

line is the separation between regions: it can be seen that class membership pre-
diction is not continuous along the boundary. This is clearly a drawback since the
observed landscape is continuous. The Figure was taken for Valentine Bellet per-
sonnal works.

(a)

Figure 3.3.: Influence of clouds and shadows on the computation of the minimum of NDVI along
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one year of observation. (a) A very high spatial resolution image of the area, (b) the
naive computation of the observed minimum value of the NDVI for one year of
observation. From (b), the darker area in the middle of the image correspond to a
non-detection of clouds for one (unknown) date of the SITS.
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3.2. Methodological perspectives

Big data in satellite remote sensing bring new challenges and opportunities in many ways [CPB " 16].
In addition to large scale and spatial issues, multi-source data coming from various on-board
sensors provide complementary observations over the same ecosystem, as discussed in the
introduction of the manuscript (see section 1.2). Furthermore, the volume of heterogeneous re-
mote sensing data is increasing rapidly with commercial (e.g. PlanetScope) and (inter-)national
agency missions. Therefore, it is critical to develop algorithms that ingest data with various
physical natures and sampling resolution.

As a brief summary of section 1.3, from a statistical learning” perspectives such algorithms

should be

robust to the curse of dimensionality,
« able to work with irregularly sampled and multi-resolution/source data,
« able to scale w.r.t the number of samples,

« able to use prior information about the structure of the data (physics, temporal & spatial
correlation ...).

These methodological questions have been aggregated during my different scientific experi-
ence, yet each number has increased since 2010: more dates, more spectral bands, more sensors,
more samples with larger area. In twenty years, a few Gigabyte of data have been transformed
into tens of Terabyte and my two cores CPU have been transformed into hundreds of distributed
CPU/GPU. I am convinced that it is not a matter of scale, this is rather a change of paradigm
on how to process the data with distributed storage and/or processing units and how we can
include prior information in the processing.

The Figure 3.1 provides also a graphical summary of my methodological perspectives. The
first line of research concerns the structure of the EO data: most of the freely available data
(covering most of the emerged land) can be considered as image time series, with varying
spatial and temporal resolution. For instance, for a given area, optical and radar time series
area available, together with their related products, such as Leaf Area Index (LAI), Land Sur-
face Temperature (LST), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) ...
which can be viewed as a function of the time variable. In order to take into account this tem-
poral structure, I have started to work using functional statistics with non-parametric models
(PhD work of A. Zullo) and Gaussian processes (PhD work of A. Constantin and V. Bellet).
In my future work, I need to include the spatial domain into the structure. Up to now, for
computational issues, the spatial stationarity was assumed in the two models, i.e., the class
conditional density function does not change w.r.t. the spatial location of pixels. Undoubtedly,
this assumption is mostly false in practice. Spatio-temporal models are natural candidates, but
some issues need to be solved to make them usable on large scale data. I expect that large scale
learning strategies will offer reliable solution: stochastic optimisation coupled with variational
strategy and modern software implementation (GPU and massively parallel implementation).
Some works are currently investigated in the PhD work of V. Bellet for variational Gaussian
process that make use of GPU. Further, consensus algorithms provide an interesting framework

20r, to be trendy, “artificial intelligence” ...
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to distribute computation when data are stored in different locations or when some explicit so-
lution are amenable. Using ADMM framework, We had some recent results in [GFM21] for
semi-supervised learning that show significant improvement in terms of computation time.

The second line of research is related to the joint use of multisource data coming from dif-
ferent modalities: different satellite sensors, data-bases with point-wise or/and polygone-wise
measurements (see Figure 3.4 for a schematic illustration). Using spatio-temporal modeling, I
intend to learn a continuous latent multi-scale representation. Some work have been initiated
during the PhD work of A. Constantin. I plan to include in those models bio-physical a priori
such as geometrical acquisition conditions, seasonality or geographical condition as regulariz-
ers during the learning process. Functional spatio-temporal models discussed in the previous
paragraph will offer a flexible solution: the same latent process is observed by different sensors,
at its own spatio-spectro-temporal resolution. For instance, seasonality could be included as
functional constraints for some of the latent processes.

The third line of research concerns the definition of explainable and interpretable models. If
deep neural models provide excellent results in various learning tasks, they are currently hardly
explainable, i.e., it is difficult or impossible to explain outputs (being true of false). And except
from specific models (e.g., transformer) their optimized parameters do not provide meaningful
information neither about the predicted process nor their stability. It results in practice that
deep models with different optimized parameters can perform similarly. As a consequence, it
might be hazardous to include such uncontrolled estimation in a global environmental model.
A current area of research trying to address these limitations is Bayesian Deep Learning (see for
instance the special sessions at ICML https://icml.cc/virtual/2021/session/11976 and
NIPS http://bayesiandeeplearning.org/). Bayesian methods provides a natural frame-
work to integrate constraints (bio-physical, seasonality ...) using prior and posterior distribu-
tions over the model parameters. They also deal with uncertainty in the inference step with
their ability to output distributions rather than point estimates. Bayesian methods were lim-
ited to small to medium data sets because their high computational load. But recent advances,
such as amortized variational inference and stochastic gradient, have shown that it is possible
to learn such models with a moderate increase of the computation load.

A Generic example A theoretical framework would be to assumed that the considered pro-
cess Z (R, T, l[J) (class label, pheno-dates, LAI ...) at a spatial resolution R, time T and spa-
tial coordinate ¥ is explained by a (non-)linear link operator gz over L latent processes Y,
¢ €{1,...,L} at spatial resolution r} :

ZR, 7, 9) = g-( 0], T ) (T ) + E(R, T, 9)

where E would model the measurement error. Each latent process Y, would be inferred from
the available sources (SITS, field measurements, etc ...) X;, s € {1,...,S5}:

Yo(re, T, ) = fo (Xl(”i{r TL ), ..., Xs(rd, TSrlP);‘P)

where T is all the temporal acquisition available (past or futures w.r.t. T) for the source s
and f; a non-stationary (w.r.t ) operator. Simple assumption would be to consider linear
operators such as in [NKCB14], but last developments in representation learning and deep
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Point-wise measurements

Polygon measurement

S1 pixel

¢

Spot-6 pixels

L — S2 pixel

Figure 3.4.: Schematic illustration of multi-source data. For a given location, data with various
modalities are available: In this diagram, a Sentinel-2 pixels is complemented by
16 Spot-6 pixels, 1 pixel from Sentinel-1 and field survey in a form of polygons
describing the area to which the pixel belongs to and two point-wise measurement
located inside the pixel location. Remote sensing data are ubiquitous (yet at varying
resolution) while field data are sparsely available.
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auto-encoder (as well as oldest kernel methods) have clearly shown the superiority of non-
linear transformations.

As such, I believe that (deep) neural networks are natural candidate for the construction of
the latent processes while simpler link operator ¢ are needed to be able to estimate the full
posterior distribution of Z in a Bayesian setting.

Note The M2GP model presented in section 2.2.2 is a simple case of the above model where:

L = p the number of spectral measurements,

The number of sources is 1, the Sentinel-2 SITS,

The latent variables Y] are a smoothed functional representation of the original temporal
spectra,

f1 is a learned linear operator,

The link operator g, is a arg max function of the class-conditional propability.

3.3. Researcher perspectives

3.3.1. Expertise

I am heavily involved in the GRSS (Geoscience and Remote Sensing Society - https://www.

grss—ieee.org/). This technical society of the Institute of Electrical and Electronics Engineers
(IEEE) brings together researchers and practitioners around geoscience and remote sensing
to understand and monitor continental and oceanic ecosystems. The work published by this
society concerns the means of collecting (sensor, satellite mission, etc.) and processing methods
(machine learning, Al etc.) of the data. Publications in the GRSS are Open Access, via fees for
some journals, or by default for others. The average proofreading time is around 2.5 months, for
3 to 4 reviewers per paper. Even if certain review practices (open peer review for example) have
not yet arrived in the GRSS (more generally in the IEEE) the proofreading process is of good
quality. I am Associate Editor of the journal Trans. on Geoscience and Remote Sensing since
2018, for which I manage about forty papers per year. I participate in the annual organization of
the IGARSS international conference (setting up oral and poster sessions for around 120 papers
per year).

Until 2020 I was also responsible for the European chapters of the GRSS, but I resigned be-
cause actions I was able to carry out were closer to canvassing than to scientific animation. I
also resigned in 2020 from my role as associate editor of the journal MDPI Remote Sensing for
disagreeing with the policy of evaluation of submitted papers (proofreading time too short - 10
days + voucher if done in less than 7 days - and irrelevant reviewers added automatically in
particular).

I believe in peer review system, but currently, I am worried about the injunction to review
more papers, with shorten reviewing time. Some journals exhibit a first decision to the authors
time in almost 20 days: from my experience, it results most of the time in binary reviews (accept
or reject) with a small amount of comments. In my opinion, this is contradictory to what is a
review process: apart detecting voluntary flaws and plagiarism, reviewers help the (associate)
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editor to assess the novelty, significance and the suitability to the selected journal. Editor and
reviewers also help authors to improve their work by suggesting changes in the paper, or by
pointing out related works. This process need times in many parts: select proper reviewers with
a sufficient number, let them review the paper (voluntarily!), collect the reviews and sometimes
manage conflicting reviews.

As the COVID109 crisis shown, fast science is not synonym of good science. I am in favour
of more openness, rather than shorter reviewing time, in the current system: reviews and
responses should be made available with the accepted papers, codes and data set should be
provided and made available for reproducibility. These practices are now common in other
fields:

« inmachine learning journals a git repository is always provided with the published paper;

« in environmental science, data papers are used to share data set.

In the future, my objective is to promote such practices in the GRSS and the different expertise
process I am involved with. Yet, slowing the reviewing process is not an easy task.

3.3.2. Teaching (Masters, PhD, ...)

Having spent 7 years at INP-Toulouse as an MCF, I am still well integrated into training courses
of the University of Toulouse. I usually supervise or co-supervise one or two M2 trainees each
year, and occasionally M1. Per year, I have on average two co-supervised PhD students and
one post-doctoral student under my supervision.

I co-organize a one-week doctoral training every year since 2018 (except in 2021 due to
COVID), “Data Science 4 Geoscience” where we present statistical data analysis tools applied to
geoscience. I also regularly organize internal training sessions in the laboratory (Data Science
@ CESBIO - http://osr-cesbio.ups-tlse.fr/gitlab_cesbio/activites-ia/ds-cb).
Occasionally, I organize continuous training actions.

All productions (theoretical content, computer codes, data, etc.) used in the various interven-
tions are made available online in open access (licence GPLV3) using version management and
collaborative editing software, git mainly (see CV latter in the document for a list of deposits).

These various training actions allow me to stay in contact with students and academic/industrial
specialists from Toulouse in earth observation. I can thus orient some of my interventions ac-
cording to current scientific issues. For example, in recent years, the use of Al in earth ob-
servation sciences has taken a growing place in both research and operational issues. I thus
proposed interventions on theoretical and practical aspects in the master’s course and for the
doctoral school, and on the use of “operational” tools during continuing education workshops.
In the future, I plan to maintain around forty hours of teaching annually.

3.3.3. Interaction with civil society

I am regularly solicited for expertise on space remote sensing and monitoring of the environ-
ment in various events. Especially,

« In 2019, I participated in a round table entitled “Al, a revolution for earth observation”
organized by the Aerospace Valley competitiveness cluster (https://www.aerospace-
valley.com/),
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« In 2020, I presented CESBIO’s activities in Al and earth observation at the INRAe stand
during the Agricultural Show,

« In 2021, I was interviewed by a journalist from Cash Investigation for a program on CAP.

« In 2022, I did a meeting with journalist of Epsiloon (https://www.epsiloon.com/)
about monitoring vegetation from space.

I believe it’s important to participate in these kinds of events and I will surely pursue in the
future, even if I don’t really feel prepared for this type of exercise. In this regard, I appreciated
being able to discuss with the communication department of INRAe Occcitanie Toulouse before
my discussion with the journalist from Cash Investigation.

A have also participate to some mediation (2 half days in 2021) in primary school to explain
why spatial data is useful to monitor our environment. The figure 3.5 shows some non-digital
material have been made for this event...

Figure 3.5.: An home made support for kids (credit for the creation goes to Noémie, and the
white bear was lend by Rémi) !
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4.1.

4.2.

4.1. Current position

Current position

Name Mathieu Fauvel
Birth June, 05 1981 (41 years old)
Position 1st grade researcher (Since July 2018)

Laboratory UMR IRD-CNES-CNRS-UPS-INRAe 5126 CESBIO

Education & professional experience

4.2.1. Education

2007: I obtained a joint PhD degree from the INPG and the University of Iceland, under
the supervision of Jocelyn Chanussot and Jon Atli Benediktsson.

Spectral and spatial methods for the classification of urban remote sensing data.

2004: I graduated in electrical engineering from the Grenoble National Polytechnical
Institute (INPG), France, and I received the M.S degree in image and signal processing
from the INPG.

4.2.2. Professional experience

4.3.

2019-2023: Associate researcher to a Research Chair of 31A ANITI (Artificial and Natural
Intelligence Toulouse Institute).
Since 2018: 1st grade researcher INRAe at CESBIO lab.
2011-2018: I was an associate professor at the INP Toulouse.
— 2017-2018: CNRS delegation (50%) at CESBIO lab.
— 2012: I was a visiting professor at the University of Iceland (April-June).
2010-2011: I was an assistant professor at the INP Toulouse.
2008-2010: I was a post-doctoral fellow in the MISTIS INRIA team.
2007-2008: I was an assistant professor at the INP Grenoble.
2004-2007: I spent one year at the University of Iceland, during my PhD.

Research Activities

4.3.1. Projects

This section lists projects [ have been (am) involved. Except specific mention, I was/am the lead
of the project.

2021: Impact study of the implementation of herd protection measures against predators.
Funded by Conseil Départemental 64, Communauté d’Agglomération du Pays Basque,
Conseil Régional Nouvelle Aquitaine, French gouvernement. The objective is to propose
several scenarios and solutions for the herds predation risks. I am in co-charge of the
realization of specific land cover and potential risks of predation maps.

2019-2023: ANR 3IA ANITI. Funded by the ANR. The ambition of the ANITI project is
to develop a new generation of artificial intelligence called hybrid Al combining data-
driven machine learning techniques with symbolic and formal methods for expressing
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properties and constraints and carrying out logical reasoning. This approach will pro-
vide better guarantees in terms of reliability, robustness and the ability to explain and
interpret the results of the algorithms used, while ensuring social acceptability and eco-
nomic viability. Such guarantees are required by many applications targeted by the
project, such as autonomous vehicles of the future. ANITI will bring together more
than 200 researchers from universities, engineering schools, scientific and technolog-
ical research organizations, and about thirty companies in the Toulouse region. I am
co-chair of the AI Research Chair “Fusion-based inference from heterogeneous data”
(http://dobigeon.perso.enseeiht.fr/aniti/).

2019-2024: TOSCA PARCELLE. Funded by the CNES. It concerns the development and
the validation of a processing chain for the analysis of massive satellite image time series
at the national scale. 8 French laboratories collaborate to mutualise algorithms and data
into this processing chain.

2019-2023: ANR MAESTRIA. The MAESTRIA project (Multi-modAl Earth obServaTion
Image Analysis) aims to solve the methodological challenges related to the fully auto-
matic analysis of the massive amount of images acquired by Earth Observation platforms.
MAESTRIA targets to generate land-cover and land-use descriptions at country scale at
many spatial resolutions and sets of classes. The ultimate goal is to provide a continuum
of spatially and semantically consistent products, that are relevant for many end-users
and applications. Both public policies at local or national levels and scientific models will
benefit from such kinds of products for climate modelling, urban planning, crop moni-
toring or impact assessment of surface changes. The project is led by Clement Mallet. I
am in charge of the workpackage 2.

2017-2018: TOSCA Project HYPERBIO. Funded by the CNES, it concerns the classifi-
cation of tree species and the estimation of biodiversity variables from hyperspectral
images. The consortium is composed of ONERA Toulouse, IRSTEA Montpellier and DY-
NAFOR Lab. The project was led by Jean-Baptiste Feret.

2015-2018: TOSCA Project CES OSO. Funded by the CNES, it concerns the definition
and the implementation of operational processing chain to derive products of land cover
and land used at the national scale. This project is led by Jordi Inglada.

2015-2018: MUESLI Project (MUltiscale mapping of Ecosystem Services by very high
spatial resolution hyperspectral. and LiDAR remote sensing Imagery). Funded by the
Toulouse University, which provides 220 k€ financial support to this 3-years.
2013-2017: ANR ASTERIX. Funded by the ANR (French National Research Agency) in
the program JCJC (Young Researchers), which provides a 275 k€ financial support to this
4-year initiative (2013-2017). This project was led by Sébastien Lefévre.

2013-2014: AMOR (Analyse d’iMages de télédétection a grande dimension tempORelle).
Funded by the GDR ISIS. In collaboration with R. Flamary, S. Valero-Valbuena and M.
Dalla Mura.

2013-2016: ANISETTE (ANalyse fonctionnelle d’'Images a grande dimension SpEcTrale
et TemporellE : application a la caractérisation des éléments semi-naturels en écologie du
paysage). Co funded by the CNES and the Midi-Pyrénées region . In collaboration with
M. Goulard from the DYNAFOR lab and F. Ferraty and P. Vieu from the IMT.
2012-2013: CARNAGE (CARactérisation d’éléments semi-NAturels dans les images satel-
litaires pléiades pour la Gestion de 'Environnement), project supported by the INP Toulouse.
In collaboration with M. Goulard from the DYNAFOR lab and F. Ferraty and P. Vieu from


http://dobigeon.perso.enseeiht.fr/aniti/
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4.3. Research Activities

the IMT.

+ 2011-2012: SMI - INP Toulouse. Visiting scholar at the University of Iceland, Reykjavik,

Iceland.

4.3.2. Supervision

Post-doctoral

1.

2.

3.

4.

Tatsumi Uezato, Spectral unmixing for the estimation of landscape heterogeneity and
ecosystem services assessment, January 2017 - December 2018.

Remi Duflot, Multiscale Mapping of Ecosystem Services by Very High Spatial Resolu-
tion Hyperspectral and Lidar Remote Sensing Imagery, April 2017 - December 2017.
Fabio Nor-guttler, Detection of the Flavescence dorée grapevine disease by hyperspec-
tral imagery Spectral signatures analysis and development of a specific vegetation index,
May 2016- April 2017.

Vincent Thierion, Multiscale Mapping of Ecosystem Services by Very High Spatial Res-
olution Hyperspectral and Lidar Remote Sensing Imagery, January 2016 - August 2016.

PhD Students

1.

Valentine Bellet, Artificial Intelligence for Ecosystem Monitoring using Remote Sens-
ing and Digital Agriculture Data. Supervisors: Mathieu Fauvel and Jordi Inglada (2020-
2023).

Erwan Giry Fouquet, Very large scale learning for remote sensing image time series clas-
sification. Supervisors: Mathieu Fauvel and Clement Mallet (2018-2021). Thesis not
defended, now at Liberty Rider.

Alexandre Constantin, Analysis of big satellite image time series, Supervisors: Stéphane
Girard and Mathieu Fauvel (2018-2021). Now post-doctoral researcher position
within the GAIA team in GIPSA-lab.

Adrien Lagrange, Multi-resolution learning for hierarchical analysis of hyperspectral and
hypertemporal images. Supervisors: Nicolas Dobigeon and Mathieu Fauvel (2016-2019).
Now at Agenium Space.

Josselyn Aval, Towards an automatic mapping of heritage trees in urban area. Super-
visors: Xavier Briotet and Emmanuel Zenou. Co-supervisors: Sophie Fabre, Mathieu
Fauvel and David Sheeren (2015-2018). Now at Hytech-Imaging.

Mailys Lopes, Remote Sensing in landscape ecology: statistics in high dimension for spa-
tial multiresolution and the high temporal resolution, Supervisors: Mathieu Fauvel and
Stéphane Girard (2014-2017). Now at Terranis.

Anthony Zullo, Functional analysis of high dimensional remote sensing images: appli-
cation to the charaterization of semi-natural objects in landscape ecology. Supervisors:
Mathieu Fauvel and Frédéric Ferraty (2013-2016).

Pedram Ghamisi, Spectral and Spatial Techniques for the Classification of Hyperspec-
tral Images. Supervisors: Jon Atli Benediktsson, Jocelyn Chanussot and Mathieu Fauvel
(2012-2015).

Engineers

1.

Héléene Touchais, Large-scale land-cover mapping, November 2022 - October 2024.
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Hugo Trentesaux, Large-scale land-cover mapping, October 2021 - July 2022.

Lucas Schwaab, Impact study of the implementation of herd protection measures against
predators, March - December 2021.

Benjamin Tardy, Large-scale land-cover mapping, January 2019 - May 2020.
Donatien Dallery, CES THEIA “Operational Land Cover”, November 2016 - May 2017.
Achievement: http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-carte-
s2-2016/.

Audrey Choné, CES THEIA “Operational Land Cover”, May 2016 - September 2016.
Carole Planque, Extraction of agro-ecological infrastructure by remote sensing, Septem-
ber 2013 - August 2014.

Msc Students

1.

10.
11.
12.

13.
14.
15.

16.

Emma Senechal, Détection des dates de Fauches de prairies a partir de série temporelle
Sentinel-2, 2022.

Victor Cathala, Spectro-Temporal Feature Extraction for the classification on Satellite
Image Time Series with Variational Gaussian Processes, 2022.

Pratvi Kalavadiya, Construction d’indices de dynamique temporelle des habitats a par-
tir de série temporelle d’images Sentinel-2, 2021.

Thierry Gaubert, Estimation de métriques phénologiques a partir de séries temporelles
d’images satellites, 2020.

. Sylvain Jourdanat, Extraction of LiDar feature for the estimation of landscapes met-

rics/variables an ecosystem services assessment, 2017.

Adrien Lagrange, Operational feature selection in Gaussian mixtures models, 2016.
Donatien Dallery, Grasslands monitoring using satellite image time series, effect of
ages and practices on the spectral profile, 2016.

Veliborka Josipovic, Analysis of Forest using satellite image time series, 2015.

Marc Lang, Grass land analysis with satellite image time series, 2015.

Clement Deschene, Feature extraction in hyperspectral images analysis, 2014.
Anthony Zullo, Hyperspectral images analysis with functional statistics, 2013.
Benoit Arbelot, Detection of hedges in a rural landscape using a local orientation fea-
ture: from linear opening to path opening , 2012.

Quentin Labourey, Road extraction in a dense urban area on multi-modal data, 2012.
Fanny Collard, Hedge detection with stereoscopic VHR images, 2011.

Sergi Mercade, Hyperspectral Images Classification for Urban Area Characterization,
2008.

Alberto Villa, Gradient Optimization for SVM hyperparameters, 2007.

4.4. Scientific commitment

4.4.1. International activities

Working Group

+ Member of the CES Theia (Centre d’Expertise Scientifique) Variables pour la biodiversité
« IEEE Senior Member, n° 92293737.
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4.4. Scientific commitment

« From 2016 to April 2020, I was member of the GRSS Chapter Committee. In charge of the
European coordination.

« I was the president of the IEEE Geoscience and Remote Sensing Society French Chapter
(2013-2016), with Mauro Dalla Mura (secretary) and Emmanuel Trouvé (treasurer). Web-
site of the Chapter.

Editorial board
1. Associate Editor

« Since Jully 2018, I have joined the editorial board of the IEEE Transactions on Geo-
science and Remote Sensing as an Associate Editor.

« Since January 2018 to April 2020, I was in the editorial board of the MPDI Remote
Sensing as an Associate Editor of the Section Board for Remote Sensing Image Pro-
cessing.

e From December 2015 to December 2018, I was in the editorial board of the IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing as an
Associate Editor.

2. Guest Editor

a) Guest editor of the Special Issue “Operational Land Cover/Land Use Mapping”,
MDPI Remote Sensing, 2019.

b) Guest editor of the Special Issue on Recent Advances in Processing of High-Spatial-
Resolution Remote Sensing Data, IEEE JSTARS, 2018.

c) Guest editor of the Special Issue Classification and Feature Extraction for Remote
Sensing Image Analysis, MDPI Remote Sensing, 2018.

d) Guest editor of the Special Issue Hyperspectral Remote Sensing of Forest and Trees
outside Forests Ecosystems, MDPI Remote Sensing, 2018.

e) Guest editor of the Special Issue on Analysis and Applications of Multitemporal
data, IEEE JSTARS, 2016.

f) Guest editor of the Special Issue on Information Extraction From High-Spatial-
Resolution Optical Remotely Sensed Imagery, IEEE JSTARS, 2015.

Reviewer Iam serving as a reviewer for several international journals and conferences. An
(incomplete) resume of my activity can be seen on Publons: https://publons.com/author/
1292527 /mathieu-fauvel#
« Journals
— IEEE Transactions on Geoscience and Remote Sensing
— IEEE Geoscience and Remote Sensing Letters
— IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
— IEEE Geoscience and Remote Sensing Magazine
— IEEE Transactions on Image Processing
— ELSEVIER Signal Processing
— ELSEVIER Pattern Recognition Letters
— ELSEVIER Information Fusion
— ELSEVIER Computers & Geosciences
- ELSEVIER Digital Signal Processing
— ELSEVIER Remote Sensing of Environnement
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— MDPI Remote Sensing
— Computational Statistics and Data Analysis
Conferences
— IEEE International Conference on Acoustics, Speech and Signal Processing
IEEE International Geoscience and Remote Sensing Symposium
IEEE International Workshop on Machine Learning and Signal Processing
IEEE International Workshop on the Analysis of Multitemporal Remote Sensing
Images
European Signal Processing Conference
Colloque GRETSI

I am also regularly contacted by national institutes to review funding applications (ANR,
Research Foundation - Flanders, ...).

Conference committees

Special Session Co-Organiser, Contexte et défis en traitement du signal et des images pour
I'analyse des données de télédétection de derniére génération, GRETSI Nancy, 2022.
Session Organizers (Data analysis methods) of the IEEE Interntional Geoscience and
Remote Sensing Symposium, since 2018.

Scientific Committe Member, National workshop of hyperspectral Group, 2019, Toulouse,
France.

Technical Committee Member, National Conference on Photogrammetry and Re-
mote Sensing. 2018, Paris, France.

Technical Committee Member, Learning with functional data. Workshop, 2016, Lille,
France.

Technical Committee Member, IEEE Workshop on the Analysis of Multitemporal
Remote Sensing Images, 2015, Annecy, France.

Technical Committee Member, workshop Télédétection de la biodiversité : état des
lieux et perspectives. Joint seminar: GAR MAGIS (AP “Analyse d’images pour lesuivi
des milieux”) - ZA Alpes (CNRS) - IEEE GRSS French Chapter, 2014, Grenoble, France.
Technical Committee Member, IEEE Workshop on Hyperspectral Image and Signal
Processing: Evolutions in Remote Sensing, 2009, Grenoble, France.

Tutorials and scientific schools
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Course (1 day), Large scale analysis of satellite images time series with Iota software,
Toulouse, France 2021 and 2022 (https://gitlab.cesbio.omp.eu/fauvelm/formation-
iota2 and https://docs.iota2.net/training/labworks.html)

Doctoral Course, Data Sciences for Geosciences, 5 days, Toulouse, France 2020.
Doctoral Course, Data Sciences for Geosciences, 5 days, Brest, France 2019.

Course (1/2 day), Introduction to Machine Learning: Data classification, Toulouse (https:
//framagit.org/mfauvel/omp machine learning)

Doctoral Course, Data Sciences for Geosciences, 5 days, Grenoble, France 2018.
Lecturer (2 days) on Hyperspectral Remote Sensing at the First Algerian Geoscience and
Remote Sensing Spring School 2017.

Course (1/2 day) on Introduction to Kernel Methods: Classification of Multivariate Data at
School of Astrostatistics 2015: Clustering and Classification.
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4.4. Scientific commitment

+ Tutorial (1/2 day) on Image analysis of hyperspectral data using mathematical morphology
at the 6" Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote
Sensing.

4.4.2. Awards and distinction

+ 2016, Best chapter award jointly from
— the Geoscience and Remote Sensing Society,
— the IEEE France Section.
« 2015, “Prime d’Excellence Scientifique” (PES).
2015, INP INNOV award for scientific insights for the MUESLI project.
+ 2012, Best reviewer award, IEEE Transaction on Geoscience and Remote Sensing.
+ 2013, Recipient of the IEEE GRSS 2013 Transactions Prize Paper Award for the paper:

“Spectral and Spatial Classification of Hyperspectral Data Using SVMs and
Morphological Profile” M. Fauvel, J. A. Benediktsson, J. Chanussot and J. R.
Sveinsson IEEE Transaction on Geoscience and Remote Sensing, vol. 46, n°
11, pages 3804-3814, November, 2008.

4.4.3. Thesis committees

1. Benjamin Tardy, Data fusion for land cover classification using obsolete data base, CES-
BIO, 2019. Examinateur.

2. Charlotte Pelletier, Cartographie de l'occupation des sols a grande échelle a partir d’images
a hautes résolutions. CESBIO 2014-2017. Examinateur.

3. Iona Ilea, Classification robuste sur l'espace des matrices de covariance: application a
la texture et aux images de télédétection polarimétriques Radar a Ouverture Synthétique.
These de doctorat, University of Bordeaux and Universitatea tehnica (Cluj-Napoca, Roumanie),
Janvier 2017. Examinateur.

4. Arnaud Lebris, Optimisation de la configuration d’un instrument superspectral aéroporté
pour la classification : application au milieu urbain. Thése de doctorat, Université Paris
Est. Décembre 2015. Examinateur.

5. Francois Cokelaer, Quality control using 3D X-ray tomography. These de doctorat,
Grenoble Institut of Technology, 22 Février 2013. Examinateur.

4.4.4. Thesis monitoring committees

1. Anthony Frion, Apprentissage de systémes dynamiques pour les séries temporelles
d’images multispectrales, IMT Atlantique 2021-2024.

2. Yoél Zerah, Modeles Génératifs Profonds pour la détections de changements d’Occupation
des Sols a partir de séries Temporelles d’Images Satellitaires, UMR CESBIO 2020-2023.

3. Rollin Gimenez, Exploitation de données optiques hyperspectrales et multispectrales mul-
titemporelles pour la cartographie des espéces végétales suivant leur sensibilité a I’anthropisation
en lien a des activités industrielles. ONERA - TotalEnergies - Lab. Ecologie fonctionnelle
et Env., 2020-2023.

4. Donald Luna, Study of the resilience of permanent grasslands in response to climatic
extremes with remote sensing image. UMR INRAe Ecosystem Prairial, 2020-2023.
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4.7.

. Benjamin Tardy, Data fusion for land cover classification using obsolete data base. CES-

BIO 2017-2020.

Charlotte Pelletier, Cartographie de ’'occupation des sols a grande échelle a partir d’images
a hautes résolutions. CESBIO 2014-2017.

Emmanuelle Cano, Cartographie des formations forestiéres des Pyrénées et analyse de
changements - Utilisation de séries temporelles d'images satellitaires. Laboratoire de Télédé-
tection et de Gestion des Territoires, Ecole d’Ingénieurs de Purpan, 2013-2016.

Administrative commitment

Co-Animator of the ANITI theme “Learning with complex data”, 2019-2023

Member of CNECA (Section 3) for 2018-2021

In charge of the CESBIO working group “Land Cover/Land Use”

Director of the Engineering and Digital Sciences Teaching Department at the Na-
tional Institute of Agronomy of Toulouse (ENSAT) September 2015 - August 2018. I was
the founder of the teaching department.

Member of the selection committee for associate professor position in ENSAT, n° 4054,
CNU 68.

Elected representative of the associate professor of the DYNAFOR lab, 2013-2015.

Public Event

2019: Forum Aerospace Valley (https://www.aerospace-valley.com/sites/default/
files/documents/events/programme forum 2019 3.pdf)

2020: Salon International de 'agriculture with INRAe (https://twitter.com/MaFauvel/
status/1231880929594920960/photo/1)

2022: Afterwork Club des Partenaires Industriel ANITI (https://aniti.univ-toulouse.
fr/2022/06/14/afterwork-apprendre-avec-peu-de-donnees-ou-a-partir-de-
donnees-complexes/)

Teaching activities

4.7.1. ANITI

As a co-chair of the ANITI research project, I gave around 64 h/eq. TP per year on Machine
learning applied to geosience and remote sensing, mainly in the INP Toulouse MASTER SIGMA
(http://sigma.univ-toulouse.fr/fr/index.html) and in the Toulouse graduate school
of Earth and Space Science (https://tess.omp.eu/).

The material can be found here: https://mfauvel.frama.io/machine-learning/

4.7.2. INP Toulouse

I was an associate professor at the INP Toulouse from 2010 to 2018. I gave a full service each
year mainly in remote sensing, applied image processing and machine learning with application
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4.8. List of publications

to land management. The table 4.1 provides an overview of my teaching load, not including
all the administrative responsibilities. In 2015 I founded a new teaching department at ENSAT
(Engineering and Digital Sciences') and from 2015 to 2018, I headed it.

Table 4.1.: Average annual teaching load at INP Toulouse

School  Grades Name Format Load
ENSAT L3 Introduction to remote sensing Lectures 07:30
ENSAT M1 Remote sensing for land management Lectures + Labworks  66:40
ENSAT M2 Introduction to remote sensing Lectures + Labworks ~ 21:00
ENSAT M2 Python for remote sensing Lectures + Labworks ~ 21:00
ENSAT M2 Remote sensing and GIS Project Projects 15:00
N7 M2 Signal and Image proc. applied to remote sensing Lectures + Labworks ~ 20:00
ENSAT M2 Computer programming project Projects 20:00
ENSAT M1 Caesura year management 02:00
ENSAT M1-2 Internship management 06:00
ENSAT M2 Jury examinator 06:00
ENSAT Head of SIN Department 15:00

Total 200:10

4.7.3. INP Grenoble

During my PhD thesis, my post-doc position and my two assistant professor positions, I gave
several lectures and labworks for an volume of approximately 610 hours. The table 4.2 summa-
rize these activities.

Table 4.2.: Past 2011 teaching load

Topics Load Grades School

Signal processing 130 L3 & M1 ENSIEG

Image processing 180 M1 & M2 ENSIEG, ENSE?

Remote Sensing 150 L3 & M1 & M2 ENSIEG, ENSE3, ENSAT
Industrial data processing 44 M1 ENSIEG
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