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Chapter 1

References and organization of the
manuscript

This report presents a synthesis of my work since the end of my PhD, as well as some open
questions I would like to explore. The primary objective that guides my research is to develop
new probabilistic models taking better into account the interactions and diversity of individuals in
populations and ecosystems, to understand better their dynamics. My research has so far focused
on the development and theoretical study of individual-based stochastic models with interactions
and variable environments. These models, mainly applied to the study of population dynamics,
were motivated by questions in genetics, ecology and evolution. The manucript consists of three
chapters. Each of them begins with an introduction and a detailed bibliography on the theme
addressed, and ends with a description of the perspectives that follow from the work presented.

The following references, written during the course of my PhD thesis, will not be discussed:

• [BPS13]: V. Bansaye, J-C. Pardo, C. Smadi, On the extinction of continuous state branching
processes with catastrophes, Electronic Journal of Probability, 18, 2013,

• [Sma15]: C. Smadi, An eco-evolutionary approach of adaptation and recombination in a large
population of varying size, Stochastic Processes and their Applications, 125(5), 2015

• [BSS17]: R. Brink-Spalink, C. Smadi, Genealogies of two linked neutral loci after a selective
sweep in a large population of stochastically varying size, Advances in Applied Probability, 49(1),
2017.

The works presented in Chapter 2 mainly address the following question: does the population
under study survive with positive probability, and if not, what is its extinction rate at large times?
The framework is that of branching processes in random environment. All individuals die and give
birth independently of each other, and with a law depending on the current environment in which
the population is living. The main assumption is that the random environment has independent
and identically distributed (iid) increments, and is thus given by a random walk or a Lévy process
depending on whether the time is discrete or continuous. We will also mention some works where
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the law of the random environment depends on the population state (but for a class of possible
environments much smaller). The following references will be described or mentioned in Chapter 2
of this manuscript:

• [PPS16]: S. Palau, J-C. Pardo, C. Smadi, Asymptotic behaviour of exponential functionals of
Lévy processes with applications to random processes in random environment, ALEA Lat.
Am. J. Probab. Math. Stat., 13(2), 2016,

• [DSV20]: C. Dong, C. Smadi, V.A. Vatutin, Critical branching processes in random environment
and Cauchy domain of attraction, ALEA Lat. Am. J. Probab. Math. Stat., 17(2), 2020,

• [BPS21]: V. Bansaye, J-C. Pardo, C. Smadi, Extinction rate of continuous state branching
processes in critical Lévy environments, ESAIM: Probability and Statistics, 25, 2021,

• [MS21]: A. Marguet, C. Smadi, Long time behaviour of continuous-state nonlinear branching
processes with catastrophes, Electronic Journal of Probability, 26, 2021.

• [MS20]: A. Marguet, C. Smadi, Parasite infection in a cell population with deaths, arXiv
preprint arXiv:2010.16070, 2020,

• [Sma22]: C. Smadi, Parasite infection in a cell population with deaths and reinfections, MathS
in Action, 2022.

Chapter 3 deals with eco-evolutionary models with mutations frequent enough that the time
scales of ecology and evolution cannot be separated. We will see that it may give rise to various
and sometime unexpected evolutionary trajectories. This chapter will be based on the following
references:

• [Sma17]: C. Smadi, The effect of recurrent mutations on genetic diversity in a large population
of varying size, Acta Applicandae Mathematicae, 149(1), 2017,

• [BS17]: S. Billiard, C. Smadi, The interplay of two mutations in a population of varying
size: a stochastic eco-evolutionary model for clonal interference, Stochastic Processes and their
Applications, 127(3), 2017,

• [BCS19]: A. Bovier, L. Coquille, C. Smadi, Crossing a fitness valley as a metastable transition
in a stochastic population model, The Annals of Applied Probability, 29(6), 2019,

• [BS20]: S. Billiard, C. Smadi, Stochastic dynamics of three competing clones: Conditions and
times for invasion, coexistence, and fixation, The American Naturalist, 195(3), 2020,

• [GCS21]: A. Gonzalez Casanova, C. Smadi, Multidimensional Λ-Wright-Fisher processes with
general frequency-dependent selection, Journal of Applied Probability, 57, 2021,

• [CKS21]: L. Coquille, A. Kraut, C. Smadi, Stochastic individual-based models with power law
mutation rate on a general finite trait space, Electronic Journal of Probability, 26, 2021.
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The last chapter will be concerned with mating preferences. Up to now, I mainly explored the
questions of evolution and ecological implications of assortative mating, but I recently got interested
in the case of disassortative mating, on the occasion of the PhD Thesis of Ludovic Maisonneuve.
The following works will be described in Chapter 4:

• [CCLS18]: C. Coron, M. Costa, H. Leman, C. Smadi, A stochastic model for speciation by
mating preferences, Journal of Mathematical Biology, 76(6), 2018,

• [SLL18]: C. Smadi, H. Leman, V. Llaurens, Looking for the right mate in diploid species: How
does genetic dominance affect the spatial differentiation of a sexual trait?, Journal of Theoretical
Biology, 447, 2018,

• [CCL+19]: C. Coron, M. Costa, F. Laroche, H. Leman, C. Smadi, Emergence of homogamy in
a two-loci stochastic population model, ALEA Lat. Am. J. Probab. Math. Stat., 2020

• [MBJ+21]: L. Maisonneuve, T. Beneteau, M. Joron, C. Smadi, V. Llaurens, When do opposites
attract? A model uncovering the evolution of disassortative mating, The American Naturalist,
198, 2021,

• [MSL22]: L. Maisonneuve, C. Smadi, V. Llaurens, Evolutionary origins of sexual dimorphism:
Lessons from female-limited mimicry in butterflies, Evolution, 2022

• [MSL21]: L. Maisonneuve, M. Elias, C. Smadi, V. Llaurens, The limits of evolutionary
convergence in sympatry: reproductive interference and developmental constraints leading
to local diversity in aposematic signals, bioRxiv, 2021,

Finally, the following references will not be addressed in this document, in order to maintain a
coherent picture and to limit the size of the manuscript:

• [SV16]: C. Smadi, V.A. Vatutin, Reduced two-type decomposable critical branching processes
with possibly infinite variance, Markov Processes and Related Fields, 21(2), 2016,

• [VABS18]: M. Voinson, A. Alvergne, S. Billiard, C. Smadi, Stochastic dynamics of an epidemic
with recurrent spillovers from an endemic reservoir, Journal of Theoretical Biology, 457, 2018,

• [LSA+19]: F. Lavallée, C. Smadi, I. Alvarez, B. Reineking, F-M. Martin, F. Dommanget, S.
Martin, A stochastic individual-based model for the growth of a stand of Japanese knotweed
including mowing as a management technique, Ecological Modelling, 413, 2019,

• [CSKC19]: T. Cordonnier, C. Smadi, G. Kunstler, B. Courbaud, Asymmetric competition,
ontogenetic growth and size inequality drive the difference in productivity between two-
strata and one-stratum forest stands, Theoretical Population Biology, 130, 2019,

• [SV21a]: C. Smadi, V.A. Vatutin, Critical branching processes in random environment with
immigration: survival of a single family, Extremes, 24(3), 2021,
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• [SV21b]: C. Smadi, V.A. Vatutin, Critical branching processes in random environment with
immigration: the size of the only surviving family, Branching Processes and Related Issues,
Collected papers. On the occasion of the 75th birthday of Andrei Mikhailovich Zubkov and
70th birthday of Vladimir Alekseevich Vatutin, 2022.

• [VSB22]: M. Voinson, C. Smadi, S. Billiard, How does the host community structure affect the
epidemiological dynamics of emerging infectious diseases?, Ecological Modelling, 472, 2022.



Chapter 2

Extinction of branching processes in
random environment

2.1 Branching processes in random environment

2.1.1 Galton-Watson processes

These processes have their origin in the study of the extinction probabilities of family names in
Great Britain in the nineteenth century. The following presentation is inspired by the work of
Athreya and Ney [AN72]. Let ξ be an integer-valued random variable with law

P(ξ = k) = pk, k ≥ 0,

and Yn be the population size at time n. The generation n + 1 is composed of the descendants of
the individuals of the generation n, and conditionally to Yn, the individual (1 ≤ i ≤ Yn) of the
generation n generates ξ(i, n) descendants where the variables ξ(i, n) and ξ(j, n) are independent if
i 6= j, and of the same law as ξ, which can be written as follows:

Yn+1 =
Yn

∑
i=1

ξ(i,n).

This procedure is then iterated, the variables ξ(i, n) being independent of the variables ξ(j, p) for
i 6= j or p 6= n. The Markov chain (Yn, n ≥ 0) is called Galton-Watson process. If Y(x) is a Galton-
Watson process with an initial number of individuals Y0 = x, we have the branching property
which follows directly from the definition of the process:

Y(x + y) L= Y(1)(x) + Y(2)(y)

where Y(1) and Y(2) are independent copies of Y and L
= stands for equality in law. In terms of

modelling, this property implies the absence of competition between individuals. It is therefore
well suited when considering small populations or populations with access to a large amount of
resources.
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In the absence of precision, we will assume that Y0 = 1. For s ∈ [0, 1], the generating function f
of the random variable ξ is defined by:

f (s) := E[sξ ] =
∞

∑
i=0

pisi, s ∈ [0, 1].

We then notice that for any (s, n) ∈ [0, 1]×N,

E[sYn+1 ] = E[E[sYn+1 |Yn]] = E[E[sξ(1,n)+ξ(2,n)+...+ξ(Yn ,n) |Yn]] = E[ f (s)Yn ],

which entails, by iterating:

E[sYn ] = f (n)(s) = f ◦ f ... ◦ f︸ ︷︷ ︸
n times

, (s, n) ∈ [0, 1]×N.

The moments of the process, when they exist, can be expressed using the derivatives of f :

E[Y1] = f ′(1) and E[Yn] = ( f (n))′(1) = ( f ′(1))n,

which leads to the following definition which will be justified later.

Definition 2.1.1. If ln f ′(1) is strictly less than 0, equal to 0, or strictly greater than 0, then the process is
called subcritical, critical or supercritical respectively.

This classification is equivalent to distinguishing processes that on average decrease, remain
stable or increase. We restrict ourselves to the case p0 + p1 < 1; f is then strictly convex and
increasing over [0, 1]. Let q be the smallest root of f on [0, 1]. It is equal to 1 in the subcritical and
critical cases, and is strictly less than 1 in the supercritical case. This root will indicate the long time
behaviour of the process.

Proposition 2.1.2. The subcritical and critical processes almost surely die out. The supercritical process gets
extinct with probability q < 1, where q is the smallest root of x 7→ f (x)− x on [0, 1].

Knowing the probability of extinction, a natural question is to look at the extinction rates of
processes that almost certainly die out, and at the long-time behaviour of processes that survive.
The Markov chain

Wn := f−n(1)Yn, n ∈N

is a non-negative martingale, and thus almost surely converges to a non-negative random variable
W. The law of W can then give us information about the long-time behaviour of a supercritical
process when it does not get extinct. We have the following possibilities for the long time survival
probability of the process (we exclude the trivial case when the process is deterministic).

Theorem 2.1.3.

• Subcritical process: If ln f ′(1) < 0 and E[Y1 ln+ Y1] < ∞, there exists a finite constant c such that

P(Yn > 0) ∼ c( f ′(1))n, (n→ ∞).
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• Critical process: If ln f ′(1) = 0,

P(Yn > 0) ∼ 2
nVar(Y1)

, (n→ ∞).

• Supercritical process: If ln f ′(1) > 0 and E[Y1 ln+ Y1] < ∞, then E[W] = 1, and

P(W = 0) = P(∃n ∈N, Yn = 0|Y0 = 1) = q.

2.1.2 Galton-Watson processes in random environment

In the Galton-Watson process, the law of birth is the same for each generation, which means that the
population lives in a constant environment. In the early 1970s, Smith and Wilkinson [SW69] and
later Athreya and Karlin [AK71b, AK71a] sought to understand the effect of the environment on
population dynamics. They introduced variability in birth laws reflecting environmental variability
over generations. In the case of a population of annual plants, this variability may reflect the
variability in sunshine, rainfall or pollination rate from one year to the next, variables that have
a great influence on the quantity of offspring produced by the plants. These processes have
subsequently been studied by many authors. We refer to [BGK05, VDS13] or the recent monograph
[KV17] for known results on critical and sub-critical processes (see Definition 2.1.4). We also refer to
[BB11, BB13, Böi14] for results concerning the supercritical case. We will limit our presentation to
the monotype case and to iid environments.

A Galton-Watson process (Zn, n ∈ N) in a random environment (GWRE) can be described
in terms of its generating functions ( fn, n ∈ N). The state of the environment at time n − 1 is
denoted En. Associated with this state is a sequence of real numbers (p(n)k , k ∈N) where p(n)k is the
probability that an individual of the generation n− 1 produces k descendants in the generation n.
We thus obtain:

fn(s) := E[sZn |En, Zn−1 = 1] =
∞

∑
k=0

p(n)k sk, (s, n) ∈ [0, 1]×N.

The generating functions of the inhomogeneous Markov chain (Zn, n ∈N) corresponding to the
sequence of population sizes in the environment (E1, ..., En, ...) are then obtained by iterating the
successive generating functions:

E[sZn |E1, ..., En] = f1 ◦ f2 ◦ ... ◦ fn(s), (s, n) ∈ [0, 1]×N.

Therefore, the average of the population size Zn in the environment (E1, ..., En) is:

E[Zn|E1, ..., En] = f ′1(1)... f ′n(1) =: eSn , n ∈ N, (2.1)

where the random walk Sn is defined by:

S0 = 0, Sn = ln f ′1(1) + ... + ln f ′n(1), n ∈N. (2.2)

The simplest example of GWRE is the fractional linear case, characterized by the generating
functions

fn(s) = rn + (1− rn)
tns

1− (1− tn)s
,
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where the parameters (rn, tn) describing the state of the environment at generation n− 1 are in
[0, 1)× (0, 1] for any integer n. In this case, the probability of survival to time n of the Markov chain
(Zn, n ∈N) can be expressed by:

P(Zn > 0|E1, ..., En) =

(
e−Sn +

n

∑
k=1

1− tk

1− rk
e−Sk−1

)−1

. (2.3)

Equality (2.3) implies that under certain moment conditions, the probability of survival of the
process, P(Zn > 0|E1, ..., En), is governed by the minimum of the random walk (Sn, n ∈N) defined
in (2.2). Indeed the right-hand side of (2.3) has the order of exp(min(S0, S1, ..., Sn)). We will see
that the random walk (Sn, n ∈ N) is intimately linked to the long time behaviour of the process
(Zn, n ∈N). But before specifying more precisely this relation, we may already notice that:

P(Zn > 0) = P (P(Zn > 0|E1, ..., En)) = P

(
min

0≤i≤n
P(Zi > 0|E1, ..., En

)
≤ P

(
min

0≤i≤n
E[Zi|E1, ..., En]

)
= E[exp(min(S0, S1, ..., Sn))], (2.4)

where we applied Markov inequality, Equality (2.1) and Definition (2.2). If the random walk (Sn, n ∈
N) is not degenerate (i.e. we exclude the case S ≡ 0), it has only three possible a.s. behaviours at
infinity [Fel71]: limn→∞ Sn = +∞, limn→∞ Sn = −∞, and lim supn→∞ Sn = − lim infn→∞ Sn = +∞,
which correspond respectively to cases E[ln f ′1(1)] < 0, > 0, and = 0 when E[| ln f ′1(1)|] < ∞. In
the rest of this presentation and for the sake of simplicity we will restrict ourselves to the case where
ln f ′1(1) is integrable. It is possible to define a classification for GWRE’s similar to the Definition
2.1.1:

Definition 2.1.4. If E[ln f ′1(1)] is strictly less than 0, equal to 0, or strictly greater than 0, the Galton-Watson
process in a random environment is called subcritical, critical or supercritical.

Inequality (2.4) is sufficient to show that the process (Zn, n ∈N) almost certainly gets extinct in
subcritical and critical cases. We have in fact the equivalent of Theorem 2.1.3:

Proposition 2.1.5 (Theorem 3.1 [SW69]). Subcritical and critical processes get extinct almost surely. The
supercritical process survives with a positive probability if E[| ln(1− f1(0))|] < ∞.

The condition E[| ln(1− f1(0))|] < ∞ excludes the possibility that a sequence of "catastrophic"
environments leads to the death of the population within a few generations.

Finally, we have the following equivalent of Theorem 2.1.3 concerning the extinction rate of the
critical case and the long time behaviour of the supercritical process in the case of survival:

Theorem 2.1.6 ([AK71a, Kap74, Koz76, GK01]).

• Critical process: If E[ln f ′1(1)] = 0, 0 < Var[ln f ′1(1)] < ∞ and f ′1(1) has a non-lattice distribution,
there are positive finite constants c1 and c2 such that

P(Zn > 0) ∼ c1P(min(S0, ..., Sn) ≥ 0) ∼ c2√
n

, (n→ ∞).
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• Supercritical process: If E[Z1 ln Z1/ f ′1(1)] < ∞ and E[ln f ′1(1)] > 0, then the martingale
(Zn exp(−Sn), n ∈N) has a non-zero finite limit on the non-extinction event of the process:

lim
n→∞

Zne−Sn = W a.s., P(W > 0) = P(∀n ∈N, Zn > 0|Z0 = 1) > 0.

The behaviour of the subcritical process is more complex in the case of GWREs than in the
case of conventional Galton-Watson processes. Knowing that E[ln f ′1(1)] < 0 is not sufficient to
deduce the behaviour of the process in long time. The extinction rate in the subcritical case has
been studied, in more and more general cases by Dekking [Dek87], D’Souza and Hambly [DH97],
Guivarch and Liu [GL01], and finally by Geiger, Kersting and Vatutin [GKV03]. The heuristic that
we will present to understand the origin of the different sub-cases is inspired by [BGK05]. We recall
the definition (2.2) of the random walk (Sn, n ∈ N) and we suppose that there exists ε > 0 such
that E[e(1+ε)S1 ] < ∞. We introduce, for β ∈ [0, 1], the probability P(β) via:

E(β)[φ(E1, ..., En, Z1, ..., Zn)] : = E[φ(E1, ..., En, Z1, ..., Zn)eβSn ]
(

E[eβSn ]
)−1

= (E[eβS1 ])−nE[φ(E1, ..., En, Z1, ..., Zn)eβSn ],

for a positive function φ. The probability of survival at time n can be expressed as a function of this
new probability: for all β ∈ R+ such that E[eβS1 ] < ∞,

P(Zn > 0) = (E[eβS1 ])nE(β)[P(Zn > 0|E1, ..., En)e−βSn ].

We now continue the heuristic by admitting that P(Zn > 0|E1, ..., En) is of the order of emin(S0,S1,...,Sn),
and we are interested in the limit behaviour of the expectation:

E[emin(S0,S1,...,Sn)] = (E[eβS1 ])nE(β)[emin(S0,S1,...,Sn)−βSn ].

We will then look for a real β such that the last term does not have an exponential growth or decrease.
The term E[exp(βS1)] will then give the exponential decrease of the probability of survival, and the
term E(β)[emin(S0,S1,...,Sn)−βSn] its polynomial decrease. We can already exclude the case β > 1. Indeed
in the subcritical case the random walk (Sn, n ∈ N) drifts towards minus infinity and the term
min(S0, S1, ..., Sn)− βSn drifts towards infinity for all β > 1. Hence we look for β ∈ [0, 1]. We will
see that we can distinguish three cases according to the behaviour of the function β 7→ E[exp(βS1)]

on the interval [0, 1]. This function is well defined under our hypotheses and even admits a first
and a second derivatives on [0, 1] which have for expressions :

∂βE[exp(βS1)] = E[S1 exp(βS1)], ∂ββE[exp(βS1)] = E[S2
1 exp(βS1)] > 0.

It is thus a convex function which reaches its minimum in τ ∈ (0, 1) if E[S1 exp(S1)] > 0 and in 1
if E[S1 exp(S1)] ≤ 0. We will therefore consider successively the different signs that E[S1 exp(S1)]

can take.

• E[S1 exp(S1)] > 0: Then β 7→ E[exp(βS1)] reaches its minimum on [0, 1] in τ ∈ (0, 1), and
0 = E[S1eτS1 ] = E[eτS1 ]E(τ)[S1]. The random walk (Sn, n ∈ N) has a null expectation and
a finite variance under P(τ). The only possibility for min(S0, S1, ..., Sn) − τSn to be close
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to 0 is that min(S0, S1, ..., Sn) and τSn are close to 0. The event {S0, ..., Sn−1 ≥ 0, Sn ≤ 0}
has a probability of order n−3/2 under P(τ) (see [Épp79] Equation C of the Theorem for the
non-lattice case, and [AD99] for the lattice case). Therefore,

E(τ)[emin(S0,S1,...,Sn)−τSn ] � n−3/2

is expected in this case.

• E[S1 exp(S1)] = 0: Then in the same way, E(1)[S1] = 0 and min(S0, S1, ..., Sn)− Sn is close
to 0 if (Sn, n ∈ N) reaches its minimum on {0, ..., n} near n. As the probability of the event
{S0, ..., Sn−1 ≥ Sn} is of order n−1/2 under P(1) (Equation (7.12) Chapter XII of [Fel71]) we
expect:

E(1)[emin(S0,S1,...,Sn)−Sn ] � n−1/2.

• E[S1 exp(S1)] > 0: Then E(1)[S1] < 0 and min(S0, S1, ..., Sn) − Sn remains bounded since
(Sn, n ∈N) drifts to minus infinity under the probability P(1). We will thus have:

E(1)[emin(S0,S1,...,Sn)−Sn ] � const.

A rigorous treatment of this heuristic leads to the following asymptotics for the probability of
survival in the subcritical case (recall that S1 = ln f ′(1)).

Theorem 2.1.7 ([GKV03]). We consider the subcritical case, E[ln f ′1(1)] < 0, and introduce

τ := argminβ∈(0,1)E[ f ′1(1)
β].

Under additional moment assumptions we have the following asymptotics, where c denotes a positive finite
constant whose value can change from one line to another:

• Strong subcritical case: If E[ f ′1(1) ln f ′1(1)] < 0, then τ = 1 and

P(Zn > 0) ∼ c(E[ f ′1(1)])
n, (n→ ∞).

• Intermediate subcritical case: If E[ f ′1(1) ln f ′1(1)] = 0, then τ = 1 and

P(Zn > 0) ∼ c(E[ f ′1(1)])
nn−1/2, (n→ ∞).

• Weak subcritical case: If 0 < E[ f ′1(1) ln f ′1(1)] < ∞, then τ ∈ (0, 1) and

P(Zn > 0) ∼ c(E[ f ′1(1)
τ])nn−3/2, (n→ ∞).

Hence when the variability of the environment is small, the extinction probability is similar
to the one of the subcritical Galton-Watson process. For an average growth rate E[Z1|Z0 = 1] =
E[ln f ′1(1)] < 0, the exponential extinction rate depends on the law of the environment only if the
environment is sufficiently variable, more precisely when E[ f ′1(1) ln f ′1(1)] > 0. In order to see that
the variability of the environment is linked to this inequality it can be noted that for this inequality
to be satisfied f ′(1) must take large values. Moreover, since E[ln f ′(1)] is negative in the subcritical
case, f ′(1) must also take small values.
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2.1.3 Continuous state branching processes

Continuous state branching processes (CSBPs) are the analog in continuous time and space of
Galton-Watson processes. They were introduced by Jirina [Jivr58] and studied by many authors. Let
us mention in particular [Lam67a, Lam67b, Gre74, Gri74, Bin76] for the first works on the subject,
and [Kyp06, Li10] for recent reviews. A CSBP Y = (Yt, t ∈ R+) is a strong Markov process with
values in R+ and which satisfies the branching property. Y admits 0 and ∞ as absorbing points,
and Px denotes the law of the process starting from x. Lamperti [Lam67b] has shown that CSBPs
are the only possible scaling limits of Galton-Watson processes and that, conversely, any CSBP can
be obtained as such a scaling limit.

Here again for the sake of simplicity we will assume that (Yt, t ∈ R+) admits a first moment.
The branching property of the process implies that its Laplace exponent has the form:

Ex[e−θYt ] = e−xut(θ), (x, t, θ) ∈ R3
+, (2.5)

where ([Sil68]) the function (ut(θ), (t, θ) ∈ R2
+) is the unique solution to the differential equation:

∂

∂t
ut(θ) + ψ(ut(θ)) = 0, u0(θ) = θ, (2.6)

where for λ ≥ 0,
ψ(λ) = λψ′(0+) + γ2λ2 +

∫
(0,∞)

(e−λz − 1 + λz)µ(dz), (2.7)

for ψ′(0+) ∈ R, γ ≥ 0 and µ is a measure with support in (0, ∞) that satisfies
∫
(0,∞)(z ∧ z2)µ(dz) <

∞. The function ψ is the branching mechanism associated to Y and (2.7) is called the Lévy-
Khintchine formula.

CSBPs are spectrally positive, with jumps representing macroscopic birth events (an infinitesimal
individual gives birth to a sufficiently large number of infinitesimal individuals to be visible
macroscopically).

A CSBP can also be defined via a stochastic differential equation, a representation that we will
use later:

Theorem 2.1.8 ([FL10]). The process (Yt, t ∈ R+) is the unique strong solution to the equation

Yt = Y0 − ψ′(0+)
∫ t

0
Ysds +

∫ t

0

√
2γ2YsdBs +

∫ t

0

∫ ∞

0

∫ Ys−

0
zÑ0(ds, dz, du), (2.8)

where B is a standard Brownian motion, N0(ds, dz, du) is a Poisson random measure with intensity
dsµ(dz)du independent of B, and Ñ0 is the compensated measure of N0.

Remark 2.1.9. We have considered the case where Y admits a first moment. This implies in particular
that

∫
(0,∞)(z ∧ z2)µ(dz) < ∞, which allows to also compensate large jumps and brings out the drift

term g which governs the long time behaviour of the process. In the general case we only have∫
(0,∞)(1∧ z2)µ(dz) < ∞ and we only may compensate jumps smaller than 1.

The branching mechanism ψ uniquely determines the law of the CSBP Y. It is a convex function
null at 0. Its shape depends on the sign of ψ′(0).
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From (2.5) and (2.6) we may prove that:

Ex[Yt] = xe−ψ′(0+)t.

We then have the analog of Definitions 2.1.1 and 2.1.4.

Definition 2.1.10. If ψ′(0+) is strictly greater than 0, equal to 0, or strictly less than 0, the CSBP Y is
called subcritical, critical or supercritical, respectively.

The extinction event is defined by:

Ext :=
{

lim
t→∞

Yt = 0
}

, (2.9)

which leads to the analog of Propositions 2.1.2 and 2.1.5.

Proposition 2.1.11. The subcritical and critical processes almost surely die out. The supercritical process
survives with positive probability. More precisely,

Px(Ext) = e−xΦ(0), ∀x > 0,

where Φ(0) is the strictly positive root of ψ.

In the case of CSBPs, a distinction must be made between two events, extinction and absorption
of the process. The first was defined in (2.9), the second corresponds to the case where the process
reaches 0 in finite time:

Abs := {∃t < ∞, Yt = 0}. (2.10)

These two events do not necessarily coincide. For example the CSBP Y = (Y0e−t, t ≥ 0) satisfies
for every x ∈ R?

+, Px(Ext) = 1 and Px(Abs) = 0. So we can have extinction and not absorption. On
the other hand, if the probability that the process is absorbed is positive, the events of absorption
and extinction coincide almost surely:

Px(Abs) > 0, ∀x > 0⇔ Abs = Ext p.s.

⇔ ψ(∞) = ∞ and
∫ ∞

dsψ(s) < ∞.

CSBPs are therefore more complex objects than Galton-Watson processes. In particular, the
determination of their extinction rate is problematic since they can tend towards 0 without cancelling
out. One class of CSBPs however is well known: stable CSBPs. For β ∈ (0, 1), their jump measure µ

(see Theorem 2.1.8) is given by:

µ(dx) =
cββ(β + 1)

Γ(1− β)xβ+2 , x > 0, (2.11)

where cβ is a positive and finite constant (the case β = 1 corresponds to Feller diffusion (a Brownian
part and no jump)). The differential equation (2.6) can be explicitly solved and one can obtain an
explicit expression of the extinction rate (see e.g. Proposition 4 of [BPS13]):

Px0(Yt > 0) = 1− exp

(
−x0

(
cββ

∫ t

0
eβψ′(0+)sds

)−1/β
)

.

This allows us to derive the following analog of Theorem 2.1.3 (the result for the critical case can be
found in [KP08] p.12).
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Theorem 2.1.12. Let Y = (Yt, t ≥ 0) be a stable CSBP with β ∈ (0, 1):

1. If g = 0 (critical case)
Px0(Yt > 0) ∼ x0

(cββt)1/β
, (t→ ∞).

2. If g < 0 (subcritical case)

Px0(Yt > 0) ∼ x0

(
|ψ′(0+)|

cβ

)1/β

e−ψ′(0+)t = x0

(
|ψ′(0+)|

cβ

)1/β

(E1[Y1])
t, (t→ ∞).

In particular in the case β = 1 (Feller diffusion) we get an extinction rate similar to that of a
Galton-Watson process in the critical case:

Px0(Yt > 0) ∼ x0

γ2t
, (t→ ∞).

This is a consequence of the fact that Feller diffusion is a scaling limit of Galton-Watson process
sequences whose reproduction law has a finite variance. If

Y
(n)
t :=

1
n

Y(n)
bntc, t ≥ 0

where (Y(n), n ∈N) is a sequence of GW processes with reproduction law ξ and satisfying Y(n)
0 = n

and Var(Y(n)
1 ) < ∞ for all n ∈ N, then (Y

(n)
t , t ∈ [0, T]) converges in law when n tends towards

infinity (here T is a positive real) towards a Feller diffusion on the interval [0, T].

2.1.4 Continuous state branching processes in Lévy random environment

The construction of CSBPs as scaling limits of Galton-Watson processes raises a natural question. Is it
possible, like for the Galton-Watson processes, to immerse a CSBP in a random environment, in order
to take into account the variability of the living and reproductive conditions of the (infinitesimal)
individuals constituting the modelled populations? Here the question is more delicate. Indeed,
to make the environment vary in a discrete framework we consider a new reproduction law at
each discrete time step (or generation). In the continuous time case, the environment can vary in
multiple ways: continuously, abruptly, more or less frequently, with a variable amplitude...

We will focus on the case where the environment can be described by a Lévy process, similarly
as in the case of BPREs where the environment could be described by the random walk S. Such
CSBPs in Lévy random environment can be obtained as scaling limits of BPREs. Historically, the
existence of branching diffusions in Brownian environments constructed as scaling limits of Galton-
Watson processes in random environment has been conjectured by Keiding [Kei75] and rigorously
established by Kurtz [Kur78]. Recent work [BS15, BCM19] has focused on the scaling limits of a
large class of branching processes in variable environments (in particular a reproduction law that
could have infinite variance, bottlenecks, interactions between individuals,...), and the authors of
these works obtained, among other processes, a large class of CSBPs in Lévy environments.

Like CSBPs (recall (2.8)), the class of CSBPREs we will consider can be seen as solutions to
SDEs. This is the point of view we will adopt for the study of their extinction rate. The realization
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of generalized branching processes (with interactions, immigration, bottlenecks,...) in variable
environments as the only strong solution of SDEs is currently the subject of much work (see
for example [PP18, HLX18, FL20]). The proofs of these results are generalizations of techniques
introduced by Li and co-authors (see for example [FL10, DL12, LP12]). We will not need to apply
these results in their full generality, and so we present only the case of interest for us, namely the case
of a branching process (without additional interactions or immigration) with a finite expectation in
a random environment given by a Lévy process.

Let (Ω(b),F (b), (F (b)
t )t≥0, P(b)) be a filtered probability space satisfying the usual hypothesis

and introduce a (F (b)
t )-adapted standard Brownian motion B(b) = (B(b)

t , t ≥ 0) and an independent
(F (b)

t )-adapted Poisson random measure N(b)(ds, dz, du) defined on R3
+, with intensity dsµ(dz)du.

The measure µ is concentrated on (0, ∞) and we assume that∫
(0,∞)

(z ∧ z2)µ(dz) < ∞, (2.12)

which guarantees non-explosivity. We denote by Ñ(b) the compensated measure of N(b).
Following Theorem 2.1.8, we can define a CSBP Y = (Yt, t ≥ 0) as the unique strong solution of

the SDE

Yt = Y0 − ψ′(0+)
∫ t

0
Ysds +

∫ t

0

√
2γ2YsdB(b)

s +
∫ t

0

∫
(0,∞)

∫ Ys−

0
zÑ(b)(ds, dz, du). (2.13)

For the random environment, we consider now (Ω(e),F (e), (F (e)
t )t≥0, P(e)) a filtered probability

space satisfying the usual hypothesis and a (F (e)
t )-Lévy process K = (Kt, t ≥ 0) which is defined as

follows

Kt = αt + σB(e)
t +

∫ t

0

∫
R\(−1,1)

(ez − 1)N(e)(ds, dz) +
∫ t

0

∫
(−1,1)

(ez − 1)Ñ(e)(ds, dz), (2.14)

where α ∈ R, σ ≥ 0, B(e) = (B(e)
t , t ≥ 0) denotes a (F (e)

t )-adapted standard Brownian motion and
N(e)(ds, dz) is a (F (e)

t )-adapted Poisson random measure on R+×R with intensity dsπ(dy), which
is independent of B(e). The measure π is concentrated on R \ {0} and fulfills the following integral
condition ∫

R
(1∧ z2)π(dz) < ∞.

The population size has no impact on the dynamics of the environment and we are considering
independent processes for demography and environment. More precisely, we work now on the
product space (Ω,F , (F )t≥0, P), where Ω = Ω(e) ×Ω(b), F = F (e) ⊗F (b), and Ft = F (e)

t ⊗F
(b)
t

for t ≥ 0, P = P(e) ⊗P(b) and we make the direct extension of B(b), N(b), B(e), N(e) and K to Ω by
projection respectively on Ω(b) and Ω(e). In particular, (B(e), N(e)) is independent of (B(b), N(b)).

Letting Z0 ∈ [0, ∞) a.s., a CSBP in a Lévy environment Z can be defined as the unique
nonnegative strong solution of the following SDE,

Zt =Z0 − ψ′(0+)
∫ t

0
Zsds +

∫ t

0

√
2γ2ZsdB(b)

s

+
∫ t

0

∫
(0,∞)

∫ Zs−

0
zÑ(b)(ds, dz, du) +

∫ t

0
Zs−dKs.

(2.15)
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The only difference with the SDE (2.13) is the addition of the environmental impact via the last term.
According to He et al. [HLX18] and Palau and Pardo [PP18], under our assumptions, pathwise
uniqueness and strong existence hold for (2.15).

2.2 Asymptotic behaviour of exponential functionals of Lévy processes

This part is based on a work in collaboration with S. Palau and J-C. Pardo [PPS16], which concerns
the long-time behaviour of a class of exponential functionals of Lévy processes. One application of
the results of this paper, which was the motivation for this study, concerns the extinction rate of
stable CSPBs in Lévy environment. Let us first present this link.

2.2.1 Extinction rate of stable CSBPs in Lévy environment

We are interested in the case where the branching mechanism is stable, that is to say

ψ(λ) = cβλβ+1, λ ∈ R,

for some β ∈ (0, 1] and cβ > 0. We call its associated CSBP a self-similar CSBP. We can define a
self-similar CSBP in a Lévy random environment as the unique non-negative strong solution to the
SDE

Zt =Z0 + 1{β=1}

∫ t

0

√
2cβZsdB(b)

s + 1{β 6=1}

∫ t

0

∫ ∞

0

∫ Zs−

0
zÑ(b)(ds, dz, du) +

∫ t

0
Zs−dKs, (2.16)

where N(b) has intensity µ(dz)dsdu and µ has been defined in (2.11).
In what follows, we introduce the auxiliary Lévy process

K̄t = ᾱt + σB(e)
t +

∫ t

0

∫
(−1,1)

vÑ(e)(ds, dv) +
∫ t

0

∫
R\(−1,1)

vN(e)(ds, dv), (2.17)

where

ᾱ = α− σ2

2
−
∫
(−1,1)

(ev − 1− v)π(dv). (2.18)

Similarly as in [BT11, BPS13], using Itô’s formula with jumps, we can compute explicitely the
Laplace transform of Zte−K̄t . It provides a closed formula for the probability of survival of Z. More
precisely, for all z, λ > 0 and t ≥ 0,

Ez

[
exp

{
− λZte−K̄t

}∣∣∣K̄] = exp

{
−z
(

λ−β + βcβ

∫ t

0
e−βKu du

)−1/β
}

. (2.19)

Letting λ go to ∞ and taking the expectation, we get

Pz

(
Zt > 0

)
= E

[
1− exp

{
−z
(

βcβ

∫ t

0
e−βK̄u du

)−1/β
}]

a.s.

As a consequence, to obtain the extinction rate for large t, we need to study the asymptotics of the
expectation of an exponential functional of a Lévy process.
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2.2.2 Asymptotic behaviour of exponential functionals of Lévy processes

We are interested in studying the exponential functional of K̄, defined by

It(K̄) :=
∫ t

0
e−K̄s ds, t ≥ 0.

There is a vast literature about exponential functionals of Lévy processes drifting to +∞ or
killed at an independent exponential time eq with parameter q ≥ 0, see for instance [BLM08, BY05,
PRvS+13]. In such cases, I∞(K̄) or Ieq(K̄) is finite almost surely with an absolute continuous density.
Most of the known results on I∞(K̄) and Ieq(K̄) are related to the knowledge of their densities or
the behaviour of their tail distributions. We refer to [BLM08, BY05, KPS+12, PRvS+13], and the
references therein, for more details about these facts.

We are interested in the case when the Lévy process K̄ does not drift to +∞ and is not killed, in
other words when It(K̄) does not converge almost surely to a finite random variable, as t goes to ∞.
More precisely, one of our aims is to study the asymptotic behaviour of

E
[

F
(

It(K̄)
)]

as t→ ∞,

where F is a function which, at infinity, is non-increasing and has polynomial decay, under some
exponential moment conditions on K̄. We find five regimes that depend on the shape of the Laplace
exponent φ (see definition in Equation (2.20)).

Before presenting the results of [PPS16], I would like to mention a work by Li and Xu [LX18],
done in parallel and with very similar results. Li and Xu used in their proofs fluctuation theory for
Lévy processes and the knowledge of Lévy processes conditioned to stay positive. Our approach is
based on a discretization of the exponential functional of Lévy processes and on the asymptotic
behaviour of functionals of semi-direct products of random variables which was described by
Guivarc’h and Liu [GL01].

Let φ be the Laplace exponent of K̄:

φ(λ) = log EeλK̄1 , λ ∈ [0, θ+), (2.20)

where
θ+ := sup {λ > 0 : φ(λ) < ∞} . (2.21)

Assume that θ+ is positive. Then φ is well defined on the interval (θ−, θ+), where

θ− := inf{λ < 0 : φ(λ) < ∞}. (2.22)

The function φ is convex, belongs to C∞(θ−, θ+) and φ(0) = 0, φ′(0+) ∈ [−∞, ∞) and φ′′(λ) > 0,
for λ ∈ (θ−, θ+). As a consequence, either φ is positive on (0, θ+) or it may have another root on
this interval. In the latter scenario, φ has at most one global minimum on (0, θ+). Whenever such a
global minimum exists, we denote by τ the position where it is reached.
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For the sake of readability, we introduce the notation

EF(t) := E [F(It(K̄))] ,

where F belongs to a particular class of continuous functions on R+ that we will now introduce.
Let k be a positive constant. We will consider functions F satisfying one of the following conditions:
there exists x0 ≥ 0 such that F(x) is non-increasing for x ≥ x0, and

(A1) F(x) = cx−p, c ∈ (0, ∞) or F satisfies

F(x) = k(x + 1)−p
[
1 + (1 + x)−ςh(x)

]
, for all x > 0,

where 0 < p ≤ τ, ς ≥ 1 and h is a Lipschitz function which is bounded.

(A2) F(x) = cx−p, c ∈ (0, ∞) or F is an Hölder function with index α > 0 satisfying

F(x) ≤ k(x + 1)−p, for all x > 0,

with p > τ.

Notice that
0 < p ≤ τ =⇒ φ′(p) ≤ 0

whereas
p > τ =⇒ φ′(p) > 0.

Then we have the five following possible asymptotic regimes.

Theorem 2.2.1. Assume that 0 < p < θ+ and recall that we are in the stable case with β ∈ (0, 1].

i) If φ′(0+) > 0 and F is a positive and continuous function which is bounded,

lim
t→∞
EF(t) = EF(∞).

ii) If φ′(0+) = 0, F satisfies (A2) and θ− < 0, then there exists a positive constant c3 such that

lim
t→∞

√
tEF(t) = c3.

iii) Suppose that φ′(0+) < 0, and thus τ exists:

a) If F satisfies (A1) and φ′(p) < 0 (p < τ), then there exists a finite constant c1 such that:

lim
t→∞

e−tφ(p)EF(t) = lim
t→∞

e−tφ(p)kE
[
It(K̄)−p] =kc1.

b) If F satisfies (A1), φ′(p) = 0 (p = τ) and φ′′(p) < ∞, then there exists a positive constant c2

such that,
lim
t→∞

√
te−tφ(p)EF(t) = lim

t→∞

√
te−tφ(p)kE

[
It(K̄)−p] =kc2.
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c) If F satisfies (A2), φ′(p) > 0 (p > τ) and τ + p < θ+ then there exists a positive constant c4

such that
lim
t→∞

t3/2e−tφ(τ)EF(t) = c4.

We will give the ideas of the proofs for the cases ii) and iii− a) because these two cases cover the
range of techniques needed to prove the other cases. The idea is to study the asymptotic behaviour
of EF(n/q) for q fixed and n large, and then to use the monotonicity of F at infinity to deduce the
asymptotic behaviour of EF(t) when t goes to infinity. To do so, we use a key result due to Guivarc’h
and Liu that we recall now:

Theorem 2.2.2 (see Theorem 2.1 in [GL01]). Let (an, bn)n≥0 be a R2
+-valued sequence of i.i.d. random

variables such that E[ln a0] = 0. Assume that b0/(1− a0) is not constant a.s. and define

A0 := 1, An :=
n−1

∏
k=0

ak and Bn :=
n−1

∑
k=0

Akbk, for n ≥ 1.

Let η, κ, ϑ be three positive numbers such that κ < ϑ, and φ̃ and ψ̃ be two positive continuous functions on
R+ such that they do not vanish and for a constant C > 0 and for every a > 0, b ≥ 0, b′ ≥ 0, we have

φ̃(a) ≤ Caκ, ψ̃(b) ≤ C
(1 + b)ϑ

, and |ψ̃(b)− ψ̃(b′)| ≤ C|b− b′|η .

Moreover, assume that

E
[
aκ

0
]
< ∞, E

[
a−η

0

]
< ∞, E

[
bη

0

]
< ∞ and E

[
a−η

0 b−ϑ
0
]
< ∞.

Then, there exist two positive constants c(φ̃, ψ̃) and c(ψ̃) such that

lim
n→∞

n3/2E [φ̃(An)ψ̃(Bn)] = c(φ̃, ψ̃) and lim
n→∞

n1/2E [ψ̃(Bn)] = c(ψ̃).

In order to apply this result, we fix q > 0 and define the sequence qn = n/q, for n ≥ 0. For k ≥ 0,
we also define

K̃(k)
u = K̄qk+u − K̄qk , for u ≥ 0,

ak = e
−K̃(k)

q(k+1)−qk and bk =
∫ q(k+1)−qk

0
e−K̃(k)

u du. (2.23)

Hence, (ak, bk) is a R2
+-valued sequence of i.i.d. random variables. Observe that

a0 = e−K̄1/q and
b0

1− a0
=

I1/q(K̄)

1− e−K̄1/q
,

which are not constant a.s. as required by Theorem 2.2.2. Moreover, we have∫ qi+1

qi

e−K̄u du = e−K̄qi bi =
i−1

∏
k=0

akbi = Aibi,

where Ai is defined as in Theorem 2.2.2. The latter identity implies

Iqn(K̄) =
n−1

∑
i=0

∫ qi+1

qi

e−K̄u du =
n−1

∑
i=0

Aibi := Bn.
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In other words, we have all the objects required to apply Theorem 2.2.2.

ii) Assume that φ′(0+) = 0. We take 0 < η < α and dp > 1 such that −θ−/dp < p and
θ− < −η < η + p < θ+, and let

(η, κ, ϑ) =

(
η,
−θ−

dp
, p
)

.

We can check that the moment conditions of Theorem 2.2.2 hold for the couple (a0, b0). Therefore
the asymptotic behaviour of EF(qn) for large n, follows from a direct application of Theorem 2.2.2,
and there exists a positive constant c(q) such that

√
nEF(qn) ∼ c(q), as n→ ∞.

To get our result, we take a positive real number t. Since the mapping s 7→ EF(s) is non-increasing,
we get

√
tEF(t) ≤

√
tEF(bqtc/q) =

√
t
bqtc

√
bqtcEF(bqtc/q).

Similarly

√
tEF(t) ≥

√
tEF((bqtc+ 1)/q) =

√
t

bqtc+ 1

√
bqtc+ 1EF((bqtc+ 1)/q).

Therefore √
tEF(t)∼c(q)q−1/2, as t→ ∞.

Moreover, we deduce that c(q)q−1/2 is positive and does not depend on q. Hence we denote this
constant by c3. This concludes the proof of point ii).

iii− a) Assume now that φ′(0) < 0 and introduce the exponential change of measure known
as the Esscher transform. According to Theorem 3.9 in Kyprianou [Kyp06], for any λ such that
φ(λ) < ∞, we can perform the following change of measure

dP(λ)

dP

∣∣∣∣
Ft

= eλK̄t−φ(λ)t, t ≥ 0 (2.24)

where (Ft)t≥0 is the natural filtration generated by K̄ which is naturally completed. Moreover,
under P(λ) the process K̄ is still a Lévy process with Laplace exponent given by

φλ(z) = φ(λ + z)− φ(λ), z ∈ R.

Now recall from Lemma II.2 in [Ber96] that the time reversal process (Kt − K(t−s)− , 0 ≤ s ≤ t)
has the same law as (Ks, 0 ≤ s ≤ t). Then

e−Kt It(−K) = e−Kt

∫ t

0
eKt−s ds =

∫ t

0
e−(Kt−Kt−s)ds

(d)
=
∫ t

0
e−Ks ds = It(K); (2.25)

Hence

It(K̄)
(L)
= e−K̄t It(−K̄), t ≥ 0,. (2.26)
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As a consequence, using the Esscher transform (2.24), with λ = p, we obtain

E
[
It(K̄)−p] = E

[
epK̄t It(−K̄)−p

]
= etφ(p)E(p) [It(−K̄)−p] , t ≥ 0. (2.27)

We can show that the decreasing function t 7→ E(p)[It(−K̄)−p] is finite for all t > 0. Recall that under
the probability measure P(p), the process K̄ is a Lévy process with mean E(p)[K̄1] = φ′(p) ∈ (−∞, 0).
Then, according to Theorem 1 in [BY05], E(p)[It(−K̄)−p] converges to E(p)[I∞(−K̄)−p], as t increases.

Hence the asymptotic behaviour is proven if we show that

EF(t) ∼ kE
[
It(K̄)−p] , as t→ ∞.

Since φ′(p) < 0, there is ε > 0 such that p(1 + ε) < θ+, φ(p(1 + ε)) < φ(p) and φ′((1 + ε)p) < 0.
Hence, from Lemma A.2 in [PPS16], we deduce that there is a constant M such that∣∣F (It(K̄))− kIt(K̄)−p∣∣ ≤ MIt(K̄)−(1+ε)p. (2.28)

In other words, it is enough to prove

E
[

It(K̄)−(1+ε)p
]
= o(etφ(p)), as t→ ∞. (2.29)

From the Esscher transform (2.24) with λ = (1 + ε)p, we deduce

E
[

It(K̄)−(1+ε)p
]
= E

[
ep(1+ε)K̄s It(−K̄)−(1+ε)p

]
= etφ(p)etφp(εp)E((1+ε)p)

[
It(−K̄)−(1+ε)p

]
.

We can prove that E((1+ε)p)[It(−K̄)−(1+ε)p] is finite for all t > 0 and as before, we can deduce that
E((1+ε)p)[It(−K̄)−(1+ε)p] has a finite limit, as t goes to ∞. We conclude by observing that φp(εp) is
negative implying that (2.29) holds. We complete the proof of point iii)-a) by observing that (2.28)
and (2.29) yield

E[F (It(K̄))] ∼ kE[It(K̄)−p], t→ ∞.

We now present two applications of Theorem 2.2.1 different from the asymptotics of survival
probability. In Section 2.4 we will present more general results on the extinction rate of CSBP in
Lévy environment in the critical case.

2.2.3 Applications

Explosion rate of stable CSBP in Lévy environment

Let β ∈ (−1, 0) and cβ < 0. According to Palau and Pardo [PP18], we can define a self-similar
branching process whose dynamics is affected by a Lévy random environment as the unique
non-negative strong solution of the stochastic differential equation

Zt =Z0 +
∫ t

0

∫ ∞

0

∫ Zs−

0
zN(b)(ds, dz, du) +

∫ t

0
Zs−dKs,

where N and K are as in (2.16), and µ is still given by (2.11), except that cβ is taken negative as
β ∈ (−1, 0). Recall (2.19): for all z, λ > 0 and t ≥ 0,

Ez

[
exp

{
− λZte−K̄t

}∣∣∣K̄] = e−z(λ−β+βcβ

∫ t
0 e−βK̄u du)

−1/β

.
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The event of explosion at fixed time t, is given by {Zt = ∞}. Letting λ go to 0, we deduce

Pz

(
Zt < ∞

∣∣∣K̄) = exp

{
−z
(

βcβ

∫ t

0
e−βK̄u du

)−1/β
}

a.s. (2.30)

Recall that when there is no environment, a self-similar CB-process explodes at time t with
probability 1− exp

{
−z(βcβt)−1/β

}
. Under the presence of a Lévy random environment three

different regimes appear for the asymptotic behaviour of the non-explosion probability, as in the
case of extinction probability. A direct application of Theorem 2.2.1 gives the explicit rate of decay
in these three cases. We refer the interested reader to Proposition 2.1 in [PPS16].

Mean population size for a logistic model in Lévy environment

We now consider an extension of the competition model introduced in Evans et al. [EHS15] and
studied by Palau and Pardo [PP18]. Following [PP18], we define a logistic process with competition
in a Lévy random environment, (Zt, t ≥ 0), as the unique strong solution to the SDE

Zt = Z0 +
∫ t

0
Zs(r− kZs)ds +

∫ t

0
Zs−dKs

where r > 0 is the drift, k > 0 is the competition, and the environment K is given by the Lévy
process defined in (2.14). Moreover, the process Z satisfies the Markov property and we have

Zt = Z0eK̄t

(
1 + kZ0

∫ t

0
eK̄s ds

)−1

, t ≥ 0,

where K is the Lévy process defined in (2.17). Applying Theorem 2.2.1, we may obtain the possible
asymptotic behaviours of Ez[Zt], where we recall that Pz denotes the law of Z starting from z. We
refer the interested reader to Proposition 2.3 [PPS16] for their expressions.

2.3 Critical Galton-Watson processes in random environment and Cauchy
domain of attraction

2.3.1 Beyond explicit expressions of the survival probability

In the previous section, we saw that the probability of extinction of a CSBP in a Lévy environment
could be expressed as the expectation of an exponential functional of the Lévy process associated
with the random environment, if the branching mechanism of the CSBP is stable. Unfortunately,
apart from the stable case, we have no explicit formula for the probability of extinction of CSBPs in
Lévy environment, and alternative strategies must be found to study the rate of extinction. The
strategy I will present now was developed by Afanasyev and coauthors in [AGK+05] in the discrete
case. Recall notations of Section 2.1.2. In [AGK+05], the authors focus on the critical case, more
precisely on the case were the random walk S is oscillating and satisfies the so-called Spitzer’s
condition (with ρ ∈ (0, 1), see below) which is a well-known assumption in fluctuation theory of
random walk (and Lévy processes). They state pathwise relationships between the dynamics of the
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BPRE and the random walk driving the random environment on the survival event. More precisely,
they prove that the survival of the process is strongly related to its survival up to the time when
the random environment reaches its running infimum. Then, they decompose its paths into two
parts, the pre-infimum and post-infimum processes. If the process survives until the time when the
random environment reaches its running infimum, then it has a positive probability to survive after
this time and, consequently, it evolves in a “favorable” environment.

In a publication with C. Dong and V.A. Vatutin [DSV20], we have extended these results to the
case where the branching process satisfies the Spitzer condition for ρ = 0 or 1. To do this we used
recent results on fluctuations of random walks in the Cauchy domain of attraction, derived first
in [Ber19] and then in [KR19] under weaker conditions. The next subsection is dedicated to the
presentation of this work.

2.3.2 Critical Galton-Watson processes in random environment and Cauchy domain of
attraction

Recall the definition of the random walk (Sn, n ∈ N) in (2.2). We assume that it satisfies the
Doney-Spitzer condition:

lim
n→∞

1
n

n

∑
m=1

P (Sm > 0) =: ρ. (2.31)

According to Bertoin and Doney [BD97], this condition is equivalent to

lim
n→∞

P (Sn > 0) =: ρ.

The case ρ ∈ (0, 1) has been studied by Afanasyev and coauthors in [AGK+05]. Under some mild
additional assumptions they proved the following equivalent for the survival probability of the
population at large times n,

P(Zn > 0) ∼ l(n)
n1−ρ

, (2.32)

where l(.) is a slowly varying function at infinity. In [DSV20] we complemented (2.32) by considering
the asymptotic behaviour of P(Zn > 0) as n→ ∞ in the cases ρ = 0 and ρ = 1.

Before stating the main results of [DSV20], let us introduce some notation and a set of assumptions
on the law of the random walk S. The main assumption is that S is in the domain of attraction of a
stable law with parameter 1. It means that there exist a slowly varying function at infinity l(·), and
two nonnegative numbers p and q, with p + q = 1, such that

P (X1 > x) ∼ p
l(x)

x
and P (X1 < −x) ∼ q

l(x)
x

, x → ∞, (2.33)

where for the sake of readability, Xi = ln f ′i (1) (recall notations in Section 2.1.2).
We can show that S satisfies the Doney-Spitzer condition with ρ = 0 (resp. ρ = 1) in the

case p > q (resp. p < q). Let us introduce two scaling sequences which play the main role in
the asymptotic behaviour of various quantities related to the random walk S. The first sequence,
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{an, n ∈N}, satisfies, as n→ ∞ the relation

l(an)

an
∼ 1

n
. (2.34)

Note that the sequence {an, n ∈N} is regularly varying with parameter 1 as n→ ∞ (see [Sen76]).
We can thus rewrite it as

an = nl1(n) (2.35)

where l1(.) is a slowly varying function. The second sequence, {hn, n ∈N}, is specified by

hn := nµ (an) where µ(x) = E
[
X11{|X1|≤x}

]
, (2.36)

and 1 is the indicator function. In addition, we suppose that

µ := E [X1] = 0. (2.37)

As in [AGK+05], we need to impose restrictions on the standardized truncated second moment
of the environment, namely:

ζk(a) :=
∞

∑
y=a

y2 fk(y)/

(
∞

∑
y=0

y fk(y)

)2

, (2.38)

for a, k ∈N. The moment condition depends on the value of ρ in the Doney-Spitzer condition (2.31).

Condition A. (ρ = 0↔ p > q) There exist a ∈N and β > 0 such that

E[ζβ
1 (a)] < ∞ and E[U(X1)ζ

β
1 (a)] < ∞,

where U is the renewal function associated with the strict descending ladder epochs of S ,

γ0 := 0, γj+1 := min
(

n > γj : Sn < Sγj

)
, j ∈N0 := N∪ {0} , (2.39)

and is defined by

U(x) :=
∞

∑
j=0

P(Sγj ≥ −x), x > 0, U (0) = 1, U (x) = 0, x < 0. (2.40)

Condition B. (ρ = 1↔ p < q) There exist a ∈N and β > 0 such that

E
[(

log+ ζ1(a)
)1+β

]
< ∞ and E

[
U(X1)

(
log+ ζ1(a)

)1+β
]
< ∞.

Recall that the moment condition in [AGK+05] under the Doney-Spitzer condition (2.31) with
ρ ∈ (0, 1) was the existence of β > 0 and a ∈N such that:

E
[(

log+ ζ1(a)
)1/ρ+β

]
< ∞ and E

[
U(X1)

(
log+ ζ1(a)

)1+β
]
< ∞.

Our Condition B is thus a natural extension of the moment condition to the case ρ = 1. In contrast,
such a natural extension for ρ = 0 would have made appear an infinite exponent for the logarithm
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and we could not obtain a moment condition on the logarithm only. Notice however that we can
take β as small as we want in Condition A.

Last, for technical reasons, we need an assumption which will be used for the case p > q only.

Condition C. There exists an integer-valued function g(x) = eo(x), x → ∞, such that

∞

∑
j=1

1/Λ(g(j)) < ∞,

where Λ is a slowly varying function (see the proof of Proposition 12 in [KR19]) defined by

Λ
(

1
1− s

)
= exp

(
∞

∑
k=1

P(Sk ≥ 0)
k

sk

)
, s ∈ [0, 1). (2.41)

As previously mentioned, the survival of a Galton-Watson process in random environment is
essentially determined by its survival until the moment when the associated random walk S reaches
its infimum. Let us introduce the running infimum of the random walk S:

Ln := min {S0, S1, ..., Sn} , n ∈N0. (2.42)

Depending on the relative positions of p and q (defined in (2.33)) or equivalently on the value of ρ (0
or 1) we have the two following possible asymptotics for the survival probability of the process Z:

Theorem 2.3.1. Assume that Conditions (2.33) and (2.37) hold.

• If p > q, and Conditions A and C hold then there exists a constant K1 ∈ (0, ∞) such that, as n→ ∞

P (Zn > 0) ∼ K1P (Ln ≥ 0) ∼ K1
l2(n)

n
, (2.43)

where l2(.) is a function slowly varying at infinity.

• If p < q and Condition B holds then there exists a constant K2 ∈ (0, ∞) such that, as n→ ∞

P (Zn > 0) ∼ K2P (Ln ≥ 0) ∼ K2l3(n),

where l3(.) is a function slowly varying at infinity.

Hence, despite the irregular behaviour of the associated random walk S (a null expectation but a
probability converging to 1 to be positive (resp. negative)), the asymptotic behaviour of the survival
probability is, except for the slowly varying function, the limit of the one obtained in [AGK+05] by
taking ρ = 0 or 1 instead of ρ ∈ (0, 1).

We will now give an idea of the proof. We will only mention the case p > q, as the proof of the
case p < q is very similar. As we have said, the survival of the population at time n is intimately
related with the minimum of the random walk S before time n, Ln. If this minimum is too small,
the population has experienced very bad conditions and died out with a probability close to one.
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We thus need to focus on trajectories of the random walk S with an exceptionally high minimum,
which is equivalent to trajectories which reach their minimum at the beginning of the trajectory.
Following [AGK+05], we thus divide the survival probability of the population process at a time
n ∈N into three terms as follows:

P (Zn > 0) =
n

∑
k=0

P (Zn > 0; τn = k)

=
N

∑
k=0

E [1− f0,n(0); τn = k] +
nε

∑
k=N+1

E [1− f0,n(0); τn = k]

+
n

∑
k=nε+1

E [1− f0,n(0); τn = k] , (2.44)

for some N ∈N to be precised later on, and a small positive ε, and where the f0,n’s correspond to
iterations of probability generating functions defined as follows: for 0 ≤ k ≤ n− 1, 0 ≤ s ≤ 1,

fk,n(s) := fk+1( fk+2(. . . ( fn(s)) . . .))

and fn,n(s) := s. The variable τn in (2.44) denotes the first time when the random walk S reaches its
minimum before time n:

τn := min
{

j ≤ n : Sj = Ln
}

.

We will prove that the second and third terms become negligible when n goes to infinity for N large
enough and ε small enough. Using that

1− f0,k(0) = P(Zk ≥ 1| f0, ..., fk) ≤ E[Zk| f0, ..., fk] = eSk

by definition of the random walk S, we can bound as follows the second term in the right hand side
of (2.44)

nε

∑
k=N+1

E [1− f0,n(0); τn = k] ≤
nε

∑
k=N+1

E [1− f0,k(0); τn = k]

=
nε

∑
k=N+1

E [1− f0,k(0); τk = k] P (Ln−k ≥ 0)

≤
nε

∑
k=N+1

E
[
eSk ; τk = k

]
P (Ln−k ≥ 0) .

By the duality principle for random walks and estimates for the extrema of the random walk S (see
Lemma 2.6 in [DSV20], we may prove that

E
[
eSk ; τk = k

]
≤ c

1
kak
∼ c

1
k2l1(k)

,

which entails
nε

∑
k=N+1

E [1− f0,n(0); τn = k] ≤ P
(

Ln(1−ε) ≥ 0
) ∞

∑
k=N+1

1
k2l1(k)

≤ C
P
(

Ln(1−ε) ≥ 0
)

aN
,
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where we used recent results on the fluctuations of S (see [Ber19, KR19]).
Now we focus on the last term of (2.44). Similarly as for the second part, we have the following

series of inequalities, where the value of the finite constant C may change from line to line and may
depend on ε:

n

∑
k=nε+1

E [1− f0,n(0); τn = k] ≤ C
n

∑
k=nε+1

1
k2l1(k)

P (Ln−k ≥ 0)

≤ C
l2(n)

n2l1(n)
= o

(
1

n3/2

)
, (2.45)

where l2 is a function slowly varying at infinity.
The last step of the proof consists in evaluating the first term of the right hand side of (2.44).

To relate this term to the value of the running infimum of the random walk S giving the random
environment, we now introduce a change of measure. Recall the definition of the renewal function
U in (2.40). One of its fundamental properties is the identity (see, for instance, [Koz77, BD94])

E [U(x + X); X + x ≥ 0] = U(x), x ≥ 0,

where X is distributed as X1. This property has often been used to construct changes of probability
measures (see for instance [GK01]), and we will use such a construction in our proof.

Denote by F the filtration consisting of the σ−algebras Fn generated by the random variables
S0, ..., Sn and Z0, ..., Zn. Taking into account U(0) = 1 (cf. (2.40)) we may introduce the probability
measures P+

n on the σ-fields Fn by means of the densities

dP+
n := U(Sn)I{Ln≥0} dP,

using that (U(Sn)I{Ln≥0}, n ∈N) Because of the martingale property the measures are consistent,
i.e., P+

n+1|Fn = P+
n . Therefore, there exists a probability measure P+ on the σ-field F∞ :=

∨
n Fn

such that
P+|Fn = P+

n , n ≥ 0 . (2.46)

We note that (2.46) can be rewritten as

E+ [Yn] = E[YnU(Sn); Ln ≥ 0] (2.47)

for every Fn–measurable non-negative random variable Yn. This change of measure is the well-
known Doob h-transform from the theory of Markov processes. In particular, under P+ the process
S becomes a Markov chain with state space R+

0 and transition kernel

P+(x; dy) :=
1

U(x)
P (x + X ∈ dy)U(y) , x ≥ 0 .

In our context, we can show that P+ can be realised as the limit of the probability of the process
conditioned to live in a nonnegative environment (in the sense that the running infimum is null). It
is the content of the next lemma, and will allow us to link the survival probability of the population
process to the probability for the running infimum to be null, to end the proof of Theorem 2.3.1.
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Lemma 2.3.2. (compare with Lemma 2.5 in [AGK+05]) Assume that Conditions (2.33) and (2.37) hold. For
k ∈N let Yk be a bounded real-valued Fk–measurable random variable. Then, as n→ ∞,

E[Yk | Ln ≥ 0] → E+ Yk .

More generally, let Y1, Y2, . . . be a uniformly bounded sequence of real-valued random variables adapted to
the filtration F , which converges P+–a.s. to some random variable Y∞. Then, as n→ ∞,

E[Yn | Ln ≥ 0] → E+ Y∞ .

We may now study the first term in the rhs of (2.44). We have

N

∑
k=0

E [1− f0,n(0); τn = k] =
N

∑
k=0

E
[
1− f Zk

k,n(0); τk = k, Lk,n ≥ 0
]

where
Lk,n = min

k≤j≤n

(
Sj − Sk

)
.

Using Lemma 2.3.2 and the independency and homogeneity of the environmental components we
conclude that for k ≤ N,

E
[
1− f Zk

k,n(0); τk = k, Lk,n ≥ 0
]

=
∞

∑
j=1

P (Zk = j, τk = k) P (Ln−k ≥ 0) E
[
1− f j

0,n−k(0)|Ln−k ≥ 0
]

∼ P (Ln ≥ 0)
∞

∑
j=1

P (Zk = j, τk = k) E+
[
1− f j

0,∞(0)
]

as n→ ∞. The last step consists in showing that

E+
[
1− f j

0,∞(0)
]
> 0.

The proof of this fact is technical and justifies the introduction of Condition C. We refer to [DSV20].
Finally, letting first n to infinity, then ε to zero and, finally, N to infinity we prove (2.43).

2.4 Extinction rate of continuous state branching processes in critical
Lévy environments

In this section, I focus again on the continuous case. I will present a work in collaboration with
V. Bansaye and J.C. Pardo [BPS21] aiming at relaxing the assumption made in [PPS16] that the
branching mechanism is stable. In this case we do not have an explicit expression of the probability
of survival as an exponential functional of the Lévy process giving the environment. We focus on
the critical case, more precisely on oscillating Lévy environments satisfying the Spitzer’s condition
with ρ ∈ (0, 1) (see assumption (H1) below). To do so, we use two main tools in our arguments:
fluctuation theory and the asymptotic behaviour of exponential functionals of Lévy processes
satisfying Spitzer’s condition. We follow the point of view of Afanasyev et al. [AGK+05] in the
discrete time setting, described in the previous section, to deduce pathwise relationships between
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the dynamics of the CSBP in random environment and the Lévy process driving the random
environment on the survival event. As we will see below, the global picture stays unchanged
compared to [AGK+05] but new difficulties arise in the continuous space setting. For instance,
the state 0 can be polar and the process might become very close to 0 but never reach this point.
To focus on the absorption event, we use Grey’s condition which guarantees that 0 is accessible.
Another difficulty arises at the upper bound for the probability of survival. Indeed, in the discrete
setting, to bound the probability of survival we can use the fact that the probability that the process
survives at times when the environment reaches a local minimum is equal to the probability that
the current population size is bigger or equal than 1 at times when the environment reaches a local
minimum. Then Chebyshev or Markov inequality helps to obtain a suitable upper bound. In the
continuous setting, this strategy is not helpful. To overcome these difficulties, we impose some
assumptions on the branching mechanism and on the environment.

Recall notation of Section 2.1.4. In the discrete setting, we have seen that the survival of the
population is intimately related with the trajectories of the random walk S, which is such that the
process (Zne−Sn , n ∈N) is a martingale. In the continuous setting, the equivalent of this random
walk is obtained by a modification of the Lévy process K defined in (2.14). If we consider the Lévy
process K̄ defined as in (2.17), but with

α := α− ψ′(0+)− σ2

2
−
∫
(−1,1)

(ez − 1− z)π(dz), (2.48)

(ψ′(0+) was equal to 0 when we defined ᾱ in (2.18)), we obtain the following statement.

Proposition 2.4.1. For P(e) almost every w(e) ∈ Ω(e),(
exp{−Kt(w(e), .)}Zt(w(e), .) : t ≥ 0

)
is a (Ω(b),F (b), P(b))-martingale and for any t ≥ 0 and z ≥ 0,

Ez[Zt | K] = zeKt , P -a.s.

2.4.1 Properties of the Lévy environment

For simplicity, we denote by P
(e)
x (resp. E

(e)
x ) the probability (resp. expectation) associated to the

process K starting from x ∈ R, and we use the notation P(e) for P
(e)
0 (resp. E for E0), i.e.

P
(e)
x (Kt ∈ B) = P(e)(Kt + x ∈ B), for B ∈ B(R).

We assume in the sequel that K is not a compound Poisson process.

In what follows and as in the discrete case, we assume a Spitzer’s condition, i.e.

(H1)
1
t

∫ t

0
P(e)(Kt ≥ 0)dt −→ ρ ∈ (0, 1), as t→ ∞.

This condition implies that K oscillates and implicitly, from Proposition 2.4.1, that the process Z is
in the critical regime. According to Bertoin and Doney [BD97] condition (H1) is equivalent to

P(e)(Kt ≥ 0) −→ ρ ∈ (0, 1), as t→ ∞.
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Spitzer’s condition is a key condition to understand the tail distribution of first passage times
(see (2.51) for instance). Notice that if Spitzer’s condition holds and K̄ has a finite variance, then
necessarily ρ = 1/2. Examples of Lévy processes satisfying Spitzer’s condition are the standard
Brownian motion, and stable processes where ρ ∈ (0, 1) plays the role of the positivity parameter.
Furthermore, any symmetric Lévy process satisfies Spitzer’s condition with ρ = 1/2 and any Lévy
process in the domain of attraction of a stable process with positivity parameter ρ ∈ (0, 1) as t→ ∞,
satisfies Spitzer’s condition.

Our arguments on the survival event rely on the running infimum of K, here denoted by
I = (It, t ≥ 0) where

It = inf
0≤s≤t

Ks, t ≥ 0. (2.49)

To be more precise, we use fluctuation theory of Lévy processes reflected at their running infimum.
The reflected process K − I is a Markov process with respect to the filtration F (e) and whose
semigroup satisfies the Feller property (see for instance Proposition VI.1 in the monograph of
Bertoin [Ber96]). We denote by L̂ the local time of K− I at 0 in the sense of Chapter IV in [Ber96].
Similarly to the discrete framework [AGK+05], the asymptotic analysis and the role of the initial
condition involve the renewal function V̂ which is defined, for all x ≥ 0, as follows

V̂(x) := E(e)
[∫

[0,∞)
1{It≥−x}dL̂t

]
. (2.50)

The renewal function V̂ is subadditive, continuous and increasing and satisfies V̂(x) ≥ 0 for x ≥ 0
and V̂(x) > 0 for x > 0. Under Spitzer’s condition (see Theorem VI.18 in Bertoin [Ber96]) the
asymptotic behaviour of the probability that the Lévy process K remains positive, i.e. P

(e)
x (It > 0)

for x > 0, is regularly varying at ∞ with index ρ− 1,

P
(e)
x (It > 0) ∼ V̂(x)tρ−1`(t), as t→ ∞, (2.51)

where ` is a slowly varying function at infinity.

2.4.2 Extinction rate of CSBPs in critical Lévy environments

We need some assumptions to control the effect of the environment on the event of survival. The
following moment assumption is needed to guarantee the non-extinction of the process under
favorable environments,

(H2)
∫ ∞

θ ln2(θ)µ(dθ) < ∞.

The above condition is similar to x ln x moment condition on the measure µ, used in Proposition 2
in [PP17] to determine that the probability of survival of CSBP processes under Lévy environments
that drift to +∞, is positive.

As we will see below, Spitzer’s condition (H1) and assumption (H2) are sufficient conditions
to provide a lower bound for the survival probability. In order to get the upper bound, further
assumptions on the branching mechanism and the environment are required. Let

ψ0(λ) := ψ(λ)− λψ′(0+), for λ ≥ 0, (2.52)



CHAPTER 2. EXTINCTION OF BRANCHING PROCESSES IN RANDOM ENVIRONMENT 35

and assume that there exists β ∈ (0, 1], θ+ > 1 and C > 0 such that

(H3) ψ0(λ) ≥ Cλ1+β, for λ ≥ 0.

Assumption (H3) allows us to control the absorption of the process for bad environments and in
particular, it guarantees that ψ0(λ) satisfies the so-called Grey’s condition, i.e.∫ ∞ dz

ψ0(z)
< ∞, (2.53)

which is a necessary and sufficient condition for absorption of CSBPs, see for instance [Gre74].
Recently, He et al. [HLX18] have shown that this condition is also necessary and sufficient for CSBPs
in a Lévy environment to get absorbed with positive probability (see Theorem 4.1 in [HLX18]). In
our case since the process K oscillates and Grey’s condition (2.53) is satisfied then absorption occurs
a.s. according to Corollary 4.4 in [HLX18].

We may now state the main result of [BPS21].

Theorem 2.4.2. Assume that assumptions (H1)− (H3) hold. Then there exists a positive function c such
that for any z > 0,

Pz(Zt > 0) ∼ c(z)P(e)
1 (It > 0) ∼ c(z)V̂(1)tρ−1`(t), as t→ ∞,

where ` is the slowly varying function introduced in (2.51).

We point out that we only need assmptions (H1) and (H2) to ensure that the probability of
survival of the process Z satisfies

Pz(Zt > 0) ≥ c(z)P(e)
1 (It > 0) ∼ V̂(1)c(z)tρ−1`(t), as t→ ∞. (2.54)

Let us now give an idea of the proof of Theorem 4.1.2, which is similar in spirit to the proof of
the discrete case in [AGK+05], as we have explained above.

We will study the event of survival at time t, {Zt > 0} in three different situations that depend
on the behaviour of the infimum of the environment. To be more precise, we split the survival event
as follows: for z, x > 0,

Pz(Zt > 0) = P(z,x)(Zt > 0, It > 0)

+ P(z,x)(Zt > 0,−y < It ≤ 0) + P(z,x)(Zt > 0, It ≤ −y), (2.55)

where y > 0 will be chosen later on. In other words, to deduce our result, we study such events
separately for t sufficiently large.

Similarly as in the discrete setting, the first term is the leading term and can be studied via a
change of measure which lies on the martingale property of the renewal function. We can construct
the law of a CSBP in a Lévy environment conditioned to stay positive as a Doob-h transform. To be
more precise, for Λ ∈ Ft and x, z > 0, we define

P
↑
(z,x)(Λ) :=

1
V̂(x)

E(z,x)

[
V̂(Kt)1{It≥0}1Λ

]
(2.56)

(reminiscent of (2.47)). The term Lévy environment conditioned to stay positive in definition (2.56) is
justified from the following convergence result, reminiscent of Lemma 2.3.2:
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Lemma 2.4.3. Assume that Spitzer’s condition (H1) holds and let z, x > 0. For t ≥ 0 and Λ ∈ Ft, we have

lim
s→∞

P(z,x)(Λ|Ku > 0, 0 ≤ u ≤ s) = P
↑
(z,x)(Λ).

Moreover if (Ht, t ≥ 0) is a uniformly bounded process which is adapted to (Ft, t ≥ 0) and such that it
converges to H∞, as t→ ∞, P

↑
(z,x)-almost surely, then

lim
t→∞

P(z,x)
[
Ht
∣∣Ku > 0, 0 ≤ u ≤ t

]
= P

↑
(z,x)

[
H∞
]
.

In particular, let us introduce the events St = {Zt > 0}, and S∞ = {∀s ≥ 0, Zs > 0} and the
r.v.’s Yt = 1St and Y∞ = 1S∞ . Since Yt converges to Y∞, P

↑
(z,x)-almost surely, as t goes to ∞, we can

apply Lemma 2.4.3, which yields

P(z,x)(Zt > 0, It > 0) = P(z,x)(Zt > 0|It > 0)P(e)
x (It > 0)

∼ P
↑
(z,x)(∀s ≥ 0, Zs > 0)P(e)

x (It > 0), as t→ ∞.

We can prove (technical) that
P
↑
(z,x)(∀s ≥ 0, Zs > 0) > 0.

Using (2.51) we deduce

P(z,x)(Zt > 0, It > 0) ∼ c(z, x)P(e)
x (It > 0) ∼ c(z, x)V(x)t−(1−ρ)`(t), as t→ ∞,

where ` is a slowly varying function at ∞, introduced in (2.51).
Hence to prove Theorem 4.1.2, we just need to prove that the two last terms in the right hand

side of (2.55) are negligible with respect to the first term.
Let us take ε, z, x > 0 and δ ∈ (0, 1). We will show that for t and y large enough, we have

P(z,x)(Zt > 0, It−δ < −y) ≤ εP(z,x+y)(Zt > 0, It−δ > 0). (2.57)

According to Proposition 2 in [PP18] for s ∈ [0, t], the functional vt(s, λ, K) is the unique solution
of the backward differential equation

∂

∂s
vt(s, λ, K) = eKs ψ0(vt(s, λ, K)e−Ks), vt(t, λ, K) = λ, (2.58)

which implies that the quenched survival probability satisfies

P(z,x)(Zt > 0|K) = 1− e−zvt(0,∞,K−x). (2.59)

From assumption (H3) and definition (2.58), we obtain that for s ≤ t and λ ≥ 0,

∂

∂s
vt(s, λe−x, K̄− x) ≥ CeKs−x

(
vt(s, λe−x, K− x)e−Ks+x

)β+1
= Cvβ+1

t (s, λe−x, K− x)e−β(Ks−x).

This yields
1

vβ
t (0, λe−x, K− x)

− 1
λβ
≥ βCIt(β(K− x)),
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where

It(β(K− x)) :=
∫ t

0
e−β(Ks−x)ds.

Letting λ go to ∞, we obtain

vt(0, ∞, K− x) ≤
(

βCIt(β(K− x))
)−1/β . (2.60)

Using (2.59) and (2.60), we get the following upper bound

P(z,x)(Zt > 0, It−δ < −y) ≤ E
(e)
x

[(
1− e−z(βCIt(β(K−x)))

−1/β
)

1{It−δ<−y}

]
= E(e)

[(
1− e−z(βCIt(β(K)))

−1/β
)

1{It−δ<−y−x}

]
. (2.61)

For simplicity, we introduce the notation ỹ = y + x. Hence from the property of independent
increments of K, we get the following sequence of inequalities, for t ≥ 3t2 (where t2 < ∞ is defined
in [BPS21]),

E(e)
[ (

1− e−zCβ(It(β(K)))
−1/β
)

, τ−ỹ ≤ t− δ

]

≤ E(e)

1− e
−zCβ

(∫ t
τ−ỹ

e−βKs ds
)−1/β

 1{τ−ỹ≤t−δ}


≤ E(e)

[(
1− exp

{
−zCβe−ỹ

(∫ t−τ−ỹ

0
e−β
(

Kτ−ỹ+u−Kτ−ỹ

)
ds
)−1/β

})
1{τ−ỹ≤t−δ}

]

≤ E(e)

1− e
−zCβe−ỹ

(
I t+t2

2
(βK)

)−1/β


+ E(e)
[(

1− e−zCβe−ỹ(Iδ(βK))
−1/β
)]

P(e)
(

t− t2

2
< τ−ỹ ≤ t− δ

)
.

Next, using results of [PS18], Potter’s Theorem and consequences of the Spitzer condition, we
may finally obtain (2.57). This part is technical and we refer to [BPS21] for more details.

Hence we deduce

Pz(Zt > 0) = P(z,x)(Zt > 0, It−δ > 0)

+ P(z,x)(Zt > 0,−y < It−δ ≤ 0) + P(z,x)(Zt > 0, It−δ ≤ −y)

≤ P(z,x+y)(Zt > 0, It−δ > 0) + εP(z,x+y)(Zt > 0, It > 0)

≤ P(z,x+y)(Zt−δ > 0, It−δ > 0) + εP(z,x+y)(Zt > 0, It > 0)

≤
(

P(z,x+y)(Zt−δ > 0, It−δ > 0)
P(z,x+y)(Zt > 0, It > 0)

+ ε

)
P(z,x+y)(Zt > 0, It > 0),

which allows us to obtain that for every ε > 0, there exists y′ > 0 such that for t large enough

P(z,y′)(Zt > 0, It > 0) ≤ Pz(Zt > 0) ≤ (1 + ε)P(z,y′)(Zt > 0, It > 0).
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But we have also proved that

P(z,y′)(Zt > 0, It > 0) ∼ c(z, y′)P(e)
y′ (It > 0) ∼ c(z, y′)V̂(y′)t−(1−ρ)`(t), as t→ ∞,

and implicitly, we deduce

Pz(Zt > 0) ∼ c(z, y′)P(e)
y′ (It > 0) ∼ c(z, y′)V̂(y′)t−(1−ρ)`(t).

This completes the proof.

2.5 Perspectives

I have recently started to focus, in a collaboration with A. Marguet, on a general class of branching
Markov processes, in which the birth and death rates of individuals may depend on a trait that
changes over time [MS21, MS20, Sma22]. The application we have been particularly interested in is
the case of a cell population infected by parasites. Each cell contains a certain quantity of parasites
(its trait), which can evolve according to a very general dynamic, and the division and death rates
of the cells can depend on this quantity of parasites.

The strategy that we used to study these processes consists in introducing a one-dimensional
auxiliary process, also known as spinal process, whose dynamics provides information on the
dynamics of the whole cell population, via a Many-to-One formula (see [BDMT11] and references
therein). Introducing a spinal decomposition and using a Many-to-One formula is a classical method
to obtain information on the distribution of a trait in a structured branching population. It consists
in distinguishing a particular line of descent in the population, and to prove that the dynamics
of the trait along this particular lineage is representative of the dynamics of the trait of a typical
individual in the population, i.e. an individual picked uniformly at random. In particular, we
refer to [GB03, HH09, BDMT11, Clo17, Mar16, Mar19] for general results on these topics in the
continuous-time case. In our case, the auxiliary process takes the form of a non-linear branching
process evolving in a random environment; here the amount of parasites in a cell line undergoes a
negative jump when a cell divides, producing a ’catastrophe’, which, unlike the branching processes
in Lévy environment I have discussed in this chapter, has a rate of arrival that may depend on the
amount of parasites.

Such an example suggests a more general question: could we build a general framework to
study branching processes having both a structure and a dynamic depending on a time varying
environment? An even more general question would be to add interactions between individuals,
a motivating example being for instance competition for food or space. A first work concerning
interactions recently apppeared ([Ban21]). Here again, the main tool is the construction of a spinal
process. The construction of general spinal processes taking into account structure, time varying
environment and interactions thus appears as a challenging research direction for the next few
years.

I have recently started two collaborations related to these questions.
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2.5.1 Long time behaviour of bacterial consortia

Bacterial consortia are everywhere and take part in the functioning of many living systems; The
human microbiota is a striking example of this. The study of these microbiota has thus various
applications.

We recently began a collaboration with E. Cinquemani, L. Coquille, A. Leclercq Samson and
A. Marguet to better understand the role of individual and environmental stochasticities on the
long-time behaviour of these consortia. The PhD thesis of C. Medous, cosupervised with L. Coquille
and A. Marguet from October 2021, will focus on the probabilistic study of structured branching
processes with interactions (see [Ban21] for a recent work in this direction). This PhD project will
have as a starting point a prototypical example of cooperating populations of E. Coli: A producer
grows on glucose and synthesizes a heterologous protein, excreting acetate as a byproduct that
is toxic in high concentration; a cleaner species scavenges acetate from the environment, thus
favouring the growth and protein synthesis of the producer (note that this consortium has been
observed in naturally evolving E. Coli populations). The aim is also to study questions of inference,
with data at the population scale available at the Université Grenoble Alpes.

2.5.2 Consequences and evolution of somatic mutations in plants

In plants, growth is fueled by cell divisions occurring in meristems. Each shoot is produced by an
apical meristem and may bear axillary meristems, which grow out to become the apical meristems
of new shoots upon activation. As meristematic cells generate all the tissues constituting the shoot,
any mutation occurring in a meristematic cell will be present in all the cells it gave rise to, leading to
genetic mosaicism within individual plants. Importantly, meristems also give rise to reproductive
structures, which implies that somatic mutations occurring during growth may end up in gametes
and thus be transmitted to the offspring. In a collaboration with T. Lesaffre, we would like to
study the evolution of the mutation rate in plants, and the consequences of somatic mutations
accumulation for plants evolution in species with contrasting life-histories.



Chapter 3

When mutations are not so rare

3.1 Eco-evolutionnary framework

3.1.1 Adaptive dynamics

The biological theory of adaptive dynamics aims at studying the interplay between ecology and
evolution through the modelling of three basic mechanisms: heredity, mutations, and competition.
Selection results from the interactions between individuals, notably the competition for resources,
but also many other effects (predation, symbiosis, parasitism, mutualism,...). Adaptive dynamics
was first developed in the 1990ies, partly heuristically, by Metz, Geritz, Bolker, Pacala, Dieckmann,
Law, and coauthors [MGM+95, DL96, GMKM97, BP97, BP99, DL00]. A rigorous derivation of the
theory was achieved over the last decade in the context of stochastic individual-based models,
where the evolution of a population of individuals characterised by their phenotypes under the
influence of the evolutionary mechanisms of birth, death, mutation, and ecological competition in
an inhomogeneous "fitness landscape" is described as a measure valued Markov process [FM04].
Using various scaling limits involving large population size, small mutation rates, and small
mutation steps, key features described in the biological theory of adaptive dynamics, in particular
the canonical equation of adaptive dynamics, the trait substitution sequence, and the polymorphic
evolution sequence were recovered, see [CFB01, Cha06, FM04, CFM08, CM11, BBC17]. Extensions
of those results for more structured populations were investigated, for example, in [Tra08, Lem16].

The classical theories of evolution can be broadly classified into two branches: population
dynamics, that focuses on ecology, i.e. on the dynamics of population sizes as a result of interactions
between individuals and species, and population genetics, that focuses on individual genotypes
and the genealogical structure of populations. Population dynamics models are often deterministic,
and do not take into account trait variability inside species. Population genetics models are
usually stochastic and most of the time assume a constant population size. But taking into account
varying population sizes as well as stochasticity is necessary if we aim at better understanding
phenomena involving small populations, such as mutational meltdown [CMPR13], invasion of
a mutant population [Cha06], evolutionary suicide and rescue [AAB17], population extinction
time [CCM16, CCLS18], or recovery phenomena [BCM+16, BCN18]. Adaptive dynamics is to a
certain extent a combination of both population dynamics and population genetics. An important

40
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assumption of adaptative dynamics, that we will discuss later on, is the separation of the time scales
of ecology and evolution, which implies a small mutation rate.

A fundamental concept in the study of populations is the fitness of the different individuals
constituting these populations. Fitness is a concept with different meanings, which is still the object
of many discussions (see e.g. [MNG92] or Chapter 8 of [Ewe12]). In adaptive dynamics, the fitness
of individuals with a specific trait does not only depend on this trait, but also on the state of the
entire population, as a result of competition and other interactions. In fact, if a population is in
ecological equilibrium, then all co-existing traits have zero fitness (i.e. they do not grow or shrink).
Under the assumption of separation of time scales, the only relevant fitness parameter is then the
so-called invasion fitness, which is the exponential growth rate of a mutant born with a given trait
in the presence of the current equilibrium population, and will be rigorously defined in the next
subsection.

3.1.2 Model

We now describe the general model we will consider in this chapter. Specific questions on particular
cases will be studied in Sections 3.2 to 3.4, and we will treat the general case in Section 3.5.

We consider an individual-based Markov process that models the evolution of a haploid,
asexually reproducing population. The space of possible traits is given by the vertices of a (possibly
directed) finite graph G = (V, E).

For all traits v, w ∈ V and every K ∈N, we introduce the following parameters:

• bv ∈ R+, the birth rate of an individual of trait v,

• dv ∈ R+, the (natural) death rate of an individual of trait v,

• cK
v,w = cv,w/K ∈ R+, the competition imposed by an individual of trait w onto an individual

of trait v,

• µK ∈ [0, 1], the probability of mutation at birth,

• m(v, ·) ∈ Mp(V), the law of the trait of a mutant offspring produced by an individual of trait
v.

The process NK describes the state of the population, where NK
v (t) denotes the number of

individuals of trait v ∈ V alive at time t ≥ 0. We assume that edges in E mark the possibility of
mutation and hence m(v, w) > 0 if and only if (v, w) ∈ E.

Moreover, we assume that, for every v ∈ V, cv,v > 0. The parameter K is scaling the competitive
pressure and, through this self-competition, fixes the equilibrium size of the population to the order
of K. K is sometimes called carrying capacity and can be interpreted as a scaling parameter for the
available sources of food or space.
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As a consequence of our parameter definitions, the process NK is characterised by its infinitesimal
generator:

LKφ(N) = ∑
v∈V

(φ(N + δv)− φ(N))

(
Nvbv(1− µK) + ∑

w∈V
NwbwµKm(w, v)

)

+ ∑
v∈V

(φ(N − δv)− φ(N))Nv

(
dv + ∑

w∈V
cK

v,wNw

)
, (3.1)

where φ : NV → R is measurable and bounded. Such processes have been explicitely constructed
in terms of Poisson random measures in [FM04].

Due to the scaling of the competition cK, the equilibrium population is of order K. We will
essentially focus on cases where the mutation probability µK tends to zero as K → ∞. In these
cases, the process NK/K converges (on finite time intervals) to the mutation-free Lotka-Volterra
system (3.2) involving all initial coexisting resident traits. When K is large enough, the macroscopic
traits (i.e. whose population size is of order K) interact on any finite time interval according to
the corresponding mutation-free Lotka-Volterra system (see Chapter 11, Theorem 2.1 in [EK09] for
the proof of this law of large numbers): Let v ⊂ V, then the mutation-free Lotka-Volterra system
associated to v is

ṅw(t) =

(
bw − dw − ∑

v∈v
cw,vnv(t)

)
nw(t), w ∈ v, t ≥ 0. (3.2)

For a subset v ⊂ V of traits, we denote by n̄(v) ∈ RV
+ the unique equilibrium of the Lotka-

Volterra system (3.2), when it exists, and where to simplify notations, we extend it by n̄w(v) = 0 for
w /∈ v. In the case where v = {v}, we obtain from classical results on Lotka-Volterra models (see
[Cha06] for instance)

n̄v(v) = (bv − dv)/cv,v ∨ 0.

If v denotes the set of macroscopic traits, we call the traits v ∈ v such that n̄v(v) > 0 resident.
The approximate rate at which a mutant of trait w grows in a population of coexisting resident

traits v is called invasion fitness and is denoted by fw,v, where

fw,v := bw − dw − ∑
v∈v

cw,vn̄v(v). (3.3)

If fw,v > 0, the trait w is called fit. If fw,v < 0, the trait w is called unfit. In case v is reduced to a
singleton, we will also write fwv without the comma, for the sake of readability.

3.1.3 Mutation rates

The class of models described in the previous section has first been studied in the original context
of separation between evolutionary and ecological time scales. That is in the joint limit of large
populations and rare mutations such that a mutant either dies out or fixates before the next mutation
occurs. Mathematically this amounts to considering a probability of mutation satisfying

µK � 1/K ln K as K → ∞. (3.4)
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Indeed, as we have explained before, a mutant arriving in a population at equilibrium first grows
with a Malthusian parameter given by its invasion fitness (recall definition 3.3). It thus takes a time
of order ln K to reach a population size of order K, or dies in a time much smaller than ln K. Once it
has a size of order K it interacts with the other populations whose sizes are of order K according to
the Lotka-Volterra dynamical system (3.2), which reaches its equilibrium in a time of order 1. Hence
if the mutation rates satisfy (3.4), every new mutant population has time either to die, or to reach a
new (maybe coexisting with populations of different traits) equilibrium with a population size of
order K, before the arrival of the next mutation. We will call this regime "rare mutation regime" in
the sequel. The description of the succession of mutant invasions in this regime, on the mutation
time scale 1/KµK, in a monomorphic [Cha06] or polymorphic [CM11] asexual population gives rise
respectively to the so-called Trait Substitution Sequence or Polymorphic Evolution Sequence.

When adaptation is due to successive selective sweeps, with at most two competing types of
individuals at a given time, the adaptation rate is proportional to the population size, the mutation
rate, and the effect of mutation on fitness. This is, however, not true in large clonal populations:
evolution experiments with microorganisms show that multiple strains compete in a population
at a given time even though they were started with a single strain. In large clonal populations,
mutations arise at a rate higher than they invade and go to fixation, resulting in a large number of
competing clones. It has dramatic consequences on adaptation rate, which is generally slower: it is
proportional to a power of the logarithm of the population size, a phenomenon generally called
"clonal interference" or "concurrent mutations regime" [GL98, Neh13]. Clonal interference has been
observed in bacteria, viruses, yeasts, and cancer tumors (e.g., [MGME99, dVR06, HSHK06, GM12,
LRH+13, LBV+15]).

Even though the theory about invasion and fixation rates when multiple clones compete is
advanced in population genetics literature, it is based on important simplifying assumptions:
population size is a fixed parameter, and mutations are supposed to have transitive effects - that is,
mutations affect only the reproduction rates of clones and not the competitive interactions between
individuals within or between clonal strains. Such assumptions hinder the possibility of stable
coexistence of several strains in a single population in a well-mixed homogeneous environment,
where long-term coexistence and nonlinear dynamics are common ([LBD11, MLB15, GMB+17,
BCM+18]). Unpredicted evolutionary dynamics has been explained by varying mechanisms. Lang
and coauthors [LBD11] observed different replicates of yeast evolution experiments, where a lineage
showed two successive frequency peaks that they explained by the occurrence of a third cryptic
mutation affecting a preexisting lineage. Several other experiments showed coexistence of different
clonal strains in the long term, which was interpreted as evidence of frequency-dependent selection
([RT98, MSNMF06, LBD11, MLB15, GMB+17, BCM+18]). Good et al [GMB+17] in particular
showed that the observed long-term coexistence of different clonal strains cannot be due to clonal
interference only. In [RSTA94] and [KWK+14] the long-term coexistence of three lineages derived
by mutation from a single initial Escherichia coli clone in a chemostat was observed. The authors
explained it with cooperative interactions rather than competitive interactions.

Intransitive competitive interactions are of particular interest in the context of large clonal
populations since evolution experiments with microorganisms show complex dynamics even in
uniform environments with a few shared resources (often a single one). Different mechanisms can
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underlie intransitivity for competitive interactions: trade-offs, life-history traits change between
developmental stages, variability in efficiency in the use of different resources, or space (reviewed
in [Gal17]). Experimental studies have shown that intransitive competitive interactions commonly
occur in plants, bacteria, fungi, protists, corals, and lizards, in some cases both within and between
species (see for instance [SL96, AL99, TA90, NHK11, FHG17, Gal17, SLB+18]).

Theoretical works have shown that intransitive competitive interactions can promote coexistence,
even in the simplest models (e.g., the Lotka-Volterra competitive model [ML75, ZZ03, GZLA17]).
However, all theoretical works studying the effect of competitive interactions on coexistence,
including intransitivity, have used two types of criteria: either the invasibility of a species when all
others are at equilibrium (e.g., [Doe02, GZLA17, GMH18]) or the stability of the equilibrium of a
community of species (e.g., [BJMSA16]). These models have three important drawbacks. First, they
implicitly assume a large number of individuals of the different species, which, on the one hand,
hinders considering fixation as a possible final state and, on the other hand, does not give insights
into the probability of invasion of a mutant or immigrant. Second, as shown by the evolution
experiments, there is no particular reason why the community should be at equilibrium when a
mutant or an immigrant enters into a population. Investigating the conditions for the invasion of a
rare species or clonal strain assuming that the community is at equilibrium might thus not capture
the whole complexity of the dynamics. For instance, the time at which a mutant or immigrant
enters a population can dramatically affect the final state of the population. Third, they generally
do not consider the particular case of a community derived from a single strain by mutations (see,
however, [GMH18]).

These drawbacks have motivated several of my research projects. I have been interested in
models of populations with intransitive competitive interactions and mutation rates high enough
that new mutants appear before the population is at equilibrium. These works, conducted alone
[Sma17], in collaboration with a biologist [BS17, BS20], or in collaboration with mathematicians
[BCS19, CKS21], are the subject of this chapter.

3.2 Stochastic dynamics of three competing clones

In a work in collaboration with Sylvain Billiard [BS17, BS20], we explored a mutation regime where
only few types of individuals (denoted clones) are present in the population. We assume that the
initial population is at equilibrium and that two successive mutants (or immigrants) appear. The
second mutant arrives in the population before the equilibrium between the initial population and
the first mutant population is reached. We focus on this case with only three competing clones
for the sake of simplicity, but the case with a limited number (that is to say which does not go to
infinity with the population size) of clones can be handled with the same mathematical tools. We (i)
showed that multiple dynamics and final states are possible depending on mutational effects on
fitness and the time separating mutations, (ii) gave precise approximations of invasion and fixation
times and invasion probability, and (iii) explored the likelihood of the different dynamics and final
states depending on prior distributions of parameters.

Before presenting our results, I will recall what happens when one mutant arrives in a monomorphic
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population at equilibrium. This case has been studied in detail by Champagnat in [Cha06] and we
refer to this paper for the proofs.

3.2.1 One mutant

Recall notations of Section 3.1.2. Denote by 0 the type of the resident population which is initially at
equilibrium, and by 1 the mutant type. We assume that the mutants 1 are beneficial when rare. In
other words

NK(0) = bn̄0Kce0 + e1 and f10 > 0.

We can distinguish three phases in the mutant invasion: an initial phase in which the fraction of
mutant-individuals does not exceed a small and fixed value ε > 0 and where the dynamics of the
wild-type population is nearly undisturbed by the invading type. A second phase where both types
account for a non-negligible percentage of the population and where the dynamics of the population
can be well approximated by the system (3.2) with types 0 and 1. And finally a third phase where
either the roles of the types are interchanged and the wild-type population is near extinction (when
n̄0, n̄1 > 0, and f01 < 0 < f10), or the two types stay close to their coexisting equilibrium (when
n̄0, n̄1 > 0, f10, f01 > 0 and c0,0c1,1 6= c0,1c1,0). The duration of the invasion process is of order ln K
with a deterministic phase which only lasts an amount of time of order 1. More precisely, during
the first phase, when the population 1 has a size smaller than bεKc, this latter can be approximated
by a supercritical birth and death process, with respective individual birth and death rates

b1 and d1 +
c1,0

K
n̄0K = b1 − f10 < b1.

Hence from well known properties of supercritical birth and death processes (see [AN72] for
example) we know that with a probability close to f10/b1 the 1-population size reaches the value
bεKc in a time of order ln K/ f10 for large K. The second phase can be approximated by the dynamical
system (3.2) with types 0 and 1 and the system takes a time of order 1 to get close to

• (NK
0 , NK

1 ) = (bn̄(0)
01 Kc, bn̄(1)

01 Kc) (if f01 > 0, where (n̄(0)
01 , n̄(1)

01 ) is the unique positive equilibrium
of (3.2))

• or to (NK
0 , NK

1 ) = (bε2Kc, bn̄1Kc) (if f01 < 0).

Finally, if f01 > 0 the sizes of the populations 0 and 1 stay close to their coexisting equilibrium
(bn̄(0)

01 Kc, bn̄(1)
01 Kc) during a time of order eVK for a positive V and if f01 < 0 the dynamics of the

0-population size is comparable to a subcritical birth and death process, with respective individual
birth and death rates

b0 and d0 +
c0,1

K
n̄1K = b0 + | f01| > b0.

Hence it gets extinct almost surely, in a time close to ln K/| f01|.

3.2.2 Two mutants: surprising dynamics

To summarize, for large K, the first and third phases have a duration of order at least ln K and the
second phase has a duration of order 1. Hence if a second mutation (with type 2) appears during
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Figure 3.1: The different regimes of mutation-selection in finite clonal populations. The

number of clones competing in a population at a given time depends on the rate of

favorable mutations µ, the effect of mutations on fitness S, population size K and individual

reproduction rate b. A. At most two different clones compete. B. A few competing clones.

C. A large number of competing clones.

the sweep, this occurs with high probability during the first or the third phase. We denote by α ln K
the time of occurrence of the second mutation and we distinguish three cases:

• Either the mutation 2 occurs during the first phase of the mutant 1 invasion and the 1-
population size reaches bεKc before the 2-population

• Or it occurs during the first phase but the invasion fitness f20 > 0 is large enough for the
2-population to reach size bεKc before the 1-population

• Or it occurs during the third phase.

The time of occurrence of the second mutation is a parameter in our model, α ln K, while it
is a random variable in natural and experimental conditions, depending on the mutation rate.
We expect that the dynamics observed in our model and described hereafter are most probable
only under the condition that the mutation rate is neither too high, otherwise much more than
three mutants would co-occur in the population, nor too low, otherwise the dynamics essentially
consist in the competition between two mutants. Since the total time taken by a beneficial mutant
1 to invade a resident population is of order ln K and that the total number of individuals is of
order K, we expect the dynamics that we describe when the probability of beneficial mutation per
reproductive event is of order 1/(K ln K). The regime we are studying is represented in Figure 3.1

In [BS17, BS20], we explored all the possible dynamics in the presence of two successive clones.
Here, we will only highlight the surprising behaviours we may obtain, and illustrate them by
numerical simulations. We will not provide the assumptions under which these behaviours happen,
for the sake of readability.
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Figure 3.2: Different possible dynamics: simulations of the stochastic process. Black:

Resident clone; red: clone 1, green: clone 2. (a) Clonal assistance: fixation of clone 2 is

faster with clone 1 than without (compare gray and colored curves); (b) Clonal hindrance:

fixation of clone 2 is slower with clone 1 than without (compare gray and colored curves)

Does clonal interference speed up or slow down invasion?

In population genetic models of clonal interference, the authors concluded that the presence of other
mutants slowed down the invasion of the fittest mutant as it had to outcompete some individuals
fitter than the wild type individuals [Mul32, Mul64, GL98, dVR06]. In our individual based model,
the result of the competition between two mutant subpopulations depends on the population state,
and the interplay between different mutations can take various forms. For some values of the
parameters, clonal interference does indeed slow down the invasion of a beneficial mutant. The
presence of the mutation 1 may not modify the invasion probability of the mutation 2 and the final
state of the population, but however slow down the invasion of the second one (see example in
Fig. 3.2(b)). But due to the non-transitive phenotypic interactions that our model is able to take into
account, the presence of the first mutant can also speed up the invasion of the second one, without
modifying its invasion probability and the final state of the population. This is illustrated in Fig.
3.2(a).

When do beneficial mutations annihilate adaptation?

Another interesting phenomenon can happen in our model: the occurrence of the second mutation
can annihilate the effects of the first one and lead to the final fixation of the wild type population
0 which would have been outcompeted by the first mutation alone. Such a phenomenon is not
possible in case of transitive fitnesses, as in this setting f10 > 0 and f21 > 0 necessarily imply f20 > 0.
Such a dynamics is illustrated in Fig. 3.3(d).
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Figure 3.3: Same colors as in Figure 3.2. (c) An example of clonal coexistence: Rock-

Paper-Scissor dynamics. (d) Annihilation of adaptation: Clone 0 gets finally fixed after the

successive invasions of clones 1 and 2.

At the origin of the Rock-Paper-Scissors cycles

Rock-Paper-Scissors (RPS) is a children’s game where rock beats scissors, which beat paper, which
in turn beats rock. Such competitive interactions between morphs or species in nature can lead
to cyclical dynamics, and have been documented in various ecological systems [BJ79, TA90, SL96,
KRFB02, KR04, CWA09, NHK11]. Let us present one example ([SL96]). It is concerned with pattern
of sexual selection on some male lizards. Males are associated to their throat colours, which have
three morphs. Type 0 individuals (orange throat) are polygamous and very aggressive. They control
a large territory. Type 1 individuals (dark-blue throat) are monogamous. They control a smaller
territory. Finally type 2 individuals (prominent yellow stripes on the throat, similar to receptive
females) do not engage in female-guarding behaviour but roam around in search of sneaky matings.
As a consequence of these different strategies, the type 0 outcompetes the type 1 (because males are
more aggressive), which outcompetes the type 2 (as males of type 1 are able to control their small
territory and guard their female), which in turn outcompetes the type 0 (as males of type 0 are not
very efficient in defending their territory, having to split their efforts on several females).

Neumann and Schuster [38] modelled such interactions by a three dimensional competitive
Lotka-Volterra system. In particular they proved that migrations or recurrent mutations were not
necessary ingredients to obtain limit cycles, as it was assumed in previous models (see [CHP02,
SK13] for example). They studied the long time behaviour of the system but payed little attention
to initial conditions, only assuming "the presence of all three strains in one homogeneous medium".
But the question of initial conditions is crucial. Indeed, how to explain the appearance of such
cycles whereas when only two strains are present one of them is outcompeted by the other one
and disappears? Our simple model provides a framework explaining how a cyclical RPS dynamics
emerges in an ecological system thanks to the interplay of two successive mutations. Such a
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Lower Higher
invasion probability invasion probability

( f21 < f20 or f201 < f20) ( f21 > f20 or f201 > f20)
Polymorphism Soft clonal coexistence Hard clonal coexistence
Fixation

- Faster fixation Soft clonal assistance Hard clonal assistance
- Slower fixation Soft clonal hindrance Hard clonal hindrance

Table 3.1: Categories of possible dynamics.

dynamics is illustrated in Fig. 3.3(c).

3.2.3 Likelihood of possible outcomes

We saw that a large variety of dynamics can be observed when three clones compete. The dynamics
can vary regarding their final states or invasion and fixation times. Our model allows us to predict
each possible case given any set of ecological parameters and the time when clone 2 enters the
population. How competition between three clones affects dynamics can be synthesized into six
categories (Table 3.1), depending on (i) the final state (fixation or stable coexistence), (ii) how the
invasion probability of clone 2 is affected relative to the case with only two interacting clones
(compare the invasion fitnesses f20 and f21, for instance), and (iii) how the fixation time of clone 2
is affected (longer or shorter compared with the case with two competing clones). We introduce
the following terms to describe the six possible categories of dynamics: "clonal coexistence", when
clonal interaction promotes the maintenance of polymorphism; "clonal assistance" versus "clonal
hindrance", when the fixation time of clone 2 is shortened or increased; and "soft" versus "hard",
when the invasion probability of clone 2 is lower versus higher than with only two competing
clones.

It is, however, difficult to have an overview of the likelihood of a particular dynamics, its final
state, and duration since the parameter space has many dimensions. We now aim to explore the
parameter space assuming prior distributions on the parameter space, and we aim especially at
quantifying the likelihood of the different possible final states. The complexity of the model can be
reduced by defining new parameters: ri = bi − di, the net individual reproductive rate of clone i,
and c̃i,j = ci,j/cj,j, the ratio of the between- and within-clone competitive interactions. In bacteria,
yeasts, and some eukaryotes, fitness is generally estimated as the initial growth rate (at low density)
of mutants (see table 2 in [ML06] and the appendix in [MGML12]). We thus assumed that the effect
of mutations on the growth rate of clone i follows a Fisher’s geometric model. Given that the net
reproduction rate of clone 0 is r0, we assumed that the reproductive rate of clone i is ri = r0 + xi,
with xi the effect of mutation drawn in a shifted negative gamma distribution (an approximation
of a Fisher’s geometric model [ML06]). Note that when mutation 2 enters the population during
the second stochastic phase, mutation 2 is assumed to occur in the most frequent population at
equilibrium: r2 = r1 + x2 when mutant 1 is more frequent than mutant 0, r2 = r0 + x2 otherwise.

There is, to our knowledge, no theoretical or empirical consensus on the distribution of mutation
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Figure 3.4: Posterior probability when competition coefficient is drawn in a uniform

distribution. Left and right columns: clone 2 enters in the first or third phase of the dynamics,

respectively. (a)-(b) Final states; (c)-(d) Clonal hindrance vs. clonal assistance. The growth

rate of clone 0 r0 = 2 is supposed to be at 50% from the optimum in a Fisher’s Geometric

adaptive landscape (see text for details). The ratio of competitive abilities c̃i,j = ci,j/cj,j

between clones i and j are drawn in a uniform distribution with range [1− u, 1 + u].

effects on the competitive abilities c̃i,j. Without any knowledge about the distribution of competitive
abilities, we simply assumed that the ratio of competitive interactions ci,j follows a uniform
distribution in the interval [1− u, 1 + u], with 0 ≤ u ≤ 1. Note that when u = 0, all c̃i,j = 1
and invasion fitnesses are necessarily transitive, while if u > 0, non-transitivity can occur. As u
increases, the variance of the competitive ratio c̃i,j also increases, that is, the more different the
competitive interactions between mutants can be. Finally, we assumed that the time when clone
2 enters the population α ln K is uniformly distributed and occurs during either the first or the
third phase of the dynamics. We randomly drew 106 different sets of parameters in such prior
distributions. The posterior distribution of the final states was estimated as its proportion observed
among the 106 random parameter sets.

Figure 3.4 shows the posterior probability of the dynamics and final states when mutation 2
enters the population during the first or third phase of the dynamics, assuming that the competition
abilities are drawn in a uniform distribution. When the variance of the distribution of c̃i,j is small,
all clones have similar competitive abilities (c̃i,j ∼ 1); that is, invasion fitnesses are mostly transitive.
We naturally recover predictions from population genetics models: the likeliest scenario is the
fixation of either mutant 1 or mutant 2 (Fig. 3.4c, 3.4d). Rapidly, when the variance of the uniform
distribution increases, polymorphic final states become the likeliest. When the effect of mutation on
competitive abilities becomes large (u increases), the likelihood of all dynamics rapidly reaches a
plateau. Our results suggest that nontransitive fitnesses are mostly expected to occur when several
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clones are interacting as soon as mutations affect their competitive abilities. This further supports
that clonal coexistence is likely to occur even when considering only competitive interactions.
Finally, our results show that RPS dynamics and back-to-the-initial-state dynamics are unlikely.
Comparing the left and right columns in figure 3.4 shows that the time at which clone 2 enters the
population only marginally affects the dynamics and the final states. Interestingly, comparing the
final states between cases with two or three interacting clones shows that more polymorphic final
states are expected when three clones are interacting, even though the difference is small. Whether
increasing the number of interacting clones could promote the maintenance of polymorphism even
more is an open question.

Finally, Figures 3.4(c) and 3.4(d) show the likelihood of clonal hindrance versus clonal assistance
(sensu Table 3.1). Clonal hindrance is the most probable when the competitive abilities are similar
between clones (small u). However, when the difference between competitive abilities increases
(large u), the likelihood of clonal assistance increases. When clone 2 enters the population during
the third phase of the dynamics, clonal assistance is even likelier than clonal hindrance. Globally,
our results thus suggest that clonal hindrance might indeed be an important factor affecting the
adaptation rate, but clonal assistance can be as important given that nontransitive fitnesses are
possible.

3.3 The effect of recurrent mutations on genetic diversity

Recurrent mutations are a common phenomenon in population genetics [Hal33]. They may cause
diseases [SXF+06, EXN+07, RGC+07], or reduce the fitness of an individual in a given environment
[RSB+03]. They may also be at the origin of the fixation of a new genotype. The selective sweeps
are then called "soft sweeps", as multiple copies of the selected allele contribute to a substitution
[HP05]. The other possibility is hard sweep, when selection acts on a new mutation. Soft sweeps
allow a faster adaptation to novel environments, and their importance is growing in empirical
and theoretical studies. Messer and Petrov [MP13] review a lot of evidence that soft sweeps
are common in a broad range of organisms. Hard and soft sweeps entail different footprints in
DNA in the vicinity of the newly fixed allele, called genetic signatures, and the accumulation of
genetic data available allows one to detect these signatures in current populations (see for instance
[NHBG96, TRR+07, NNS+07, SBM+09] or references in [WPM14]). To do this in an effective way, it
is necessary to identify accurately the signatures left by these different modes of adaptation.

In [Sma17], I studied the genetic signature left by a selective sweep induced by recurrent
mutations at a given locus from an allele A to an allele a under positive selection (i.e. faA > 0),
depending on the mutation frequency. I distinguished several scales for the mutation probability
per reproductive event, which entail distinct genetic signatures.

Let us describe the model under consideration. We focus on one locus with alleles inA := {A, a}.
Let ᾱ denote the complementary type of α in A: when an α individual gives birth, the newborn is of
type α with a probability 1− µαᾱ

K , and of type ᾱ with a probability µαᾱ
K . We will consider the three

following mutation scales for α ∈ A:
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Assumption 1.
µαᾱ

K ∼ λαᾱK−1, K → ∞, λαᾱ ∈ R∗+.

Assumption 2.
µαᾱ

K ∼ λαᾱK−1+β, K → ∞, λαᾱ ∈ R∗+, β ∈ (0, 1).

Assumption 3.
µαᾱ

K ∼ λαᾱ, K → ∞, λαᾱ ∈ (0, 1).

Under Assumption 1, the mutation rate at the population scale is of order one. This is the usual
scaling for diffusion approximations and it has been widely studied with the constant population
assumption (see for instance [KO78, Gri80, Nag83]). In the second regime, the product of mutation
rate and population size increases as a power law. Under the last assumption, mutations are frequent
and the population is large. The highest mutation rates have so far been reported in viruses: for
example 1.5 10−3 mutations per nucleotide, per genomic replication in the single-stranded RNA
phage Qβ10 [Dra93], 2.5 10−3 mutations per site and replication cycle in Chrysanthemum chlorotic
mottle viroid [GEFS09], or 4.1 10−3 mutations per base per cell in HIV-1 virus [CGG+15]. Moreover,
existing measures of mutation rate focus only on mean rates [DSH08]. In particular, some sites may
have a higher mutation rate that what is measured. Besides, several mutations may generate the
same phenotypic change [VDBS+13], leading to higher effective mutation rates. Viruses can also
have very high population sizes (for example up to 1012 RNA viruses in an organism [MHGC04]),
and it seems reasonable to consider such sizes as infinite as an approximation. Hence the parameter
range covered by Assumption 3 could be relevant for such viruses. As we will see in the sequel,
this is the only regime where back mutations (from a to A) have a macroscopic effect on the pattern
of allelic diversity.

As we will see, under Assumption 1, several mutant populations are growing simultaneously,
and we can approximate the diversity of a individuals at the end of the sweep. In the second
case, the a mutants are so numerous that with a probability close to one, two individuals sampled
uniformly at the end of the sweep will be descended from two different a mutants. Finally, under
Assumption 3, the distribution of the alleles a and A in the population converges to a deterministic
limit distribution.

In order to study the process in detail and discriminate between distinct haplotypes (i.e. the
genetic materials transmitted by the successive mutants generated from A), we make a distinction
between the descendants of the successive mutants generated from A. Let Ti denote the time of
birth of the ith mutant of type a, and NK

i (t) the size of its descendance at time t. In particular,

NK
i (t) = 0 ∀t < Ti and NK

a (t) = ∑
i∈N

NK
i (t), ∀t ≥ 0.

The state of the population process at time t ≥ 0 is now represented by the vector

(NK
A(t), NK

1 (t), NK
2 (t), ...).

Note that this representation is well defined as the number of mutations is almost surely finite in
every time interval under our assumptions.
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For the sake of simplicity, we assume that at time 0, the A-population is at its monomorphic
equilibrium and that the first mutant has just appeared, that is to say

NK(0) = (bn̄AKc, 1). (3.5)

We define the end of the sweep TK
F as the time at which all ancestral A type individuals have died

out, i.e. all remaining A-individuals are descendants of an a-individual via a back mutation. Then
using usual couplings with branching processes, we can show that under Assumption i ∈ {1, 2}, if
we denote (β1, β2) = (0, β),

TK
F

ln K

(
(1− βi)

faA
+

1
| fAa|

)−1

→
K→∞

1, in probability.

We are interested in the effect of selective sweeps by recurrent mutations on the genetic diversity.
This diversity will be expressed in terms of the distribution of mutant haplotypes (NK

1 (t), NK
2 (t), ...)

at the end of the sweep. In other words, we want to know if a-individuals sampled at the end of
the sweep originate from the same or from distinct a-mutant individuals. In order to describe the
haplotype distribution, we introduce the so called GEM distribution, named after Griffiths, Egen
and McCloskey:

Definition 3.3.1. Let ρ be positive. The infinite sequence of random variables (Pi, i ≥ 1) has a GEM
distribution with parameter ρ > 0 if for every i ≥ 1,

Pi
L
= Bi

i−1

∏
j=1

(1− Bj),

where (Bi, i ≥ 1) is a sequence of i.i.d. random variables with law Beta(1, ρ) whose density with respect to
the Lebesgue measure is

ρ(1− x)ρ−11[0,1](x).

We are now able to describe the relative proportions of the different haplotypes at the end of the
sweep (plus a time negligible with respect to K):

Theorem 3.3.2. For i ≥ 1 and t ≥ 0, denote by N(i),K
a (t) the size at time t of the ith oldest family among the

mutant populations having survived until time t. Let fK be a positive function such that fK = o(K) and

TK := TK
F + fK.

Then,

1. Under Assumption 1,

(NK
a (TK))

−1(N(1),K
a (TK), N(2),K

a (TK), ...) →
K→∞

(P1, P2, P3...), in law,

where (Pi, i ≥ 1) has a GEM distribution with parameter bAn̄AλaA/ba.

2. Under Assumption 2,

(NK
a (TK))

−1(N(1),K
a (TK), N(2),K

a (TK), ...) →
K→∞

(0, 0, 0...), in probability,
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where for x ∈ RN, ‖x‖ = supi∈N |xi|.

As a consequence, the relative haplotype proportions at the end of the sweep essentially differ
depending on the mutation probability scale.

The proof of Theorem 3.3.2 consists in two steps. First, during a time long but negligible with
respect to the sweep duration ln K we couple the different subpopulations issued from different
mutants with independent birth and death processes with the same law (birth rate ba and death rate
da + ca,An̄A). We use known results on birth and death processes to deduce the relative proportions
of these different mutant populations. We then construct martingales and prove that these relative
proportions stay almost constant until the end of the sweep.

Theorem 3.3.2 allows us to answer the following question: what is the probability that two
individuals sampled uniformly at random at time TK are identical by descent, or in other words
originate from the same individual alive at time 0? To answer this question, we need to define an
equivalence relation between two sampled individuals i and j:

i ∼ j ⇐⇒
{

there is no mutation in the lineages of i and j sampled at time TK

before their more recent common ancestor (backward in time)
}

.

We do not indicate the dependence on TK for the sake of readability but it will be clear in the
statement of the results. Note that the probability of the event i ∼ j does not depend on the labeling
of a-individuals at time TK as they are exchangeable. The following result is a direct consequence of
Theorem 3.3.2:

Corollary 3.3.3. Assume (4.2.1). Then,

1. Under Assumption 1,

lim
K→∞

P(i ∼ j, ∀ a-individuals i and j sampled

uniformly at random at time TK) =
1

1 + 2n̄AbAλAa/ba
.

2. Under Assumption 2,

lim
K→∞

P(i ∼ j, ∀ a-individuals i and j sampled uniformly at random at time TK) = 0.

When the mutation probabilities per reproductive event are of order one, we get a deterministic
limit via a direct application of Theorem 2.1 p. 456 in Ethier and Kurtz [EK09] (recall (3.2)): let
T > 0; under Assumption 3 and when K → ∞, the process

(NK
A(t)/K, NK

a (t)/K, 0 ≤ t ≤ T)

converges in probability for the uniform norm to the deterministic solution of{
ṅA = (bA(1− λAa)− DA − CA,AnA − CA,ana)nA + baλaAna, nA(0) = zA(0)
ṅa = (ba(1− λaA)− Da − Ca,AnA − Ca,ana)na + bAλAanA, na(0) = za(0).

(3.6)
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The dynamical system (3.6) may admit different types of fixed points that are described in Figure
3.5. We may prove that this dynamical system has different possible properties, depending on the

Figure 3.5: The different types of fixed points of system (3.6) (adapted from Figure 2.13 in

[DLA06]).

values of some functions of the system parameters. We will not give the technical conditions here
but only list these behaviours:

Theorem 3.3.4. The dynamical system (3.6) has no periodic orbit in R2
+ and admits at least two fixed points

in R2
+: (0, 0), and at least one fixed point in (R∗+)

2. Moreover,

• either there is only one fixed point in (R∗+)
2 (with an explicit expression),

• or there are two fixed points in (R∗+)
2 (with an explicit expression)

• or there are three fixed points in C2 (with an explicit expression), and as a consequence, there is one,
two, or three fixed points in (R∗+)

2.

When there is one fixed point in (R∗+)
2, it is a sink, when there are two fixed points, one of them is a sink, and

the second one a saddle-node, and when there are three fixed points, either there are two sinks and one saddle,
or there are two saddle-nodes and a sink.

To prove the absence of periodic orbits we use Dulac’s Theorem, and to find the equilibrium
points and their nature, we apply Cardano’s Method as well as known results on sectorial decomposition.

We can also obtain some convergence results for the dynamical system under some specific
conditions on the parameters that we will not describe here. We refer to [Sma17] for details.

3.4 Crossing a fitness valley

Until now we focused on mutants with positive invasion fitnesses: each mutant had an initial
positive growth rate and thus a positive probability to invade. But there may be traits with
positive invasion fitness that can be reached only through several consecutive mutation steps
[LOPA03, CBM06]. The purpose of the work [BCS19] in collaboration with A. Bovier and L. Coquille
was to analyse precisely how such an escape from a stable singularity happens in various scaling
regimes.

We proved that three essentially different dynamics may occur. In the first one, the mutation
probability is so large that many mutants (a number of order µK) are created in a time of order 1. In
this case the fixation time scale is dominated by the time needed for a successful mutant to invade
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(which is of order ln(1/µ)). The second scenario occurs if the mutation probability is smaller, but
large enough so that a fit mutant will appear before the resident population dies out. In this case
the fixation time scale is exponentially distributed and dominated by the time needed for the first
successful mutant to be born. The last possible scenario is the extinction of the population before
the emergence of the fit mutant, which occurs when the mutation probability is very small (smaller
than e−CK for a constant C to be made precise later).

Recall notations of Section 3.1.2 and in particular (3.1). We assume that there are L + 1 types in
the population, denoted {0, 1, ..., L} and that the mutation kernel may take the two following forms

m(1)
ij = δi+1,j or m(2)

ij =
1
2
(δi+1,j + δi−1,j), (3.7)

where δi,j is the Kronecker delta (1 if i = j, 0 otherwise).

We are interested in the situation where n̄0 > 0, fi0 < 0, 1 ≤ i ≤ L− 1, fL0 > 0, and f0L < 0.
Under these assumptions, all mutants created by the initial population initially have a negative
growth rate, and thus tend to die out. However, if by chance such mutants survive long enough
to give rise to further mutants, such that eventually an individual will reach the trait L, it will
found a population at this trait that, with positive probability, will grow and eliminate the resident
population through competition. Our purpose is to analyse precisely how this process happens. The
process that we want to describe can be seen as a manifestation of the phenomenon of metastability
(see, e.g., the recent monograph [BDH16] and references therein). The initial population appears
stable for a long time and makes repeated attempts to send mutants to the trait L, which will
eventually be reached and take over the entire population. Apart from scaling the population
size by taking the carrying capacity K ↑ ∞, we are also interested in the limit of small mutation
probabilities, µ = µK ↓ 0, with possibly simultaneous time rescaling. This gives rise to essentially
different asymptotics, depending on how µ tends to zero as a function of K. To be more precise, our
assumptions are the following:

Assumption 4. • Viability of the resident population: x̄0 > 0.

• Fitness valley: All traits are unfit with respect to 0 except L:

fi0 < 0, for i ∈ {1, ..., L− 1} and fL0 > 0. (3.8)

• All traits are unfit with respect to L:

fiL < 0, for i ∈ {0, ..., L− 1}. (3.9)

• The following fitnesses are different:

fi0 6= f j0 and fiL 6= f jL, for all i 6= j. (3.10)

Note that conditions (3.10) are imposed in order to lighten the analysis of the deterministic
system. Similar results are probably true without these assumptions.
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3.4.1 Deterministic limit (K, µ)→ (∞, µ), then µ→ 0

The first regime we are interested in is the case when µ is small but does not scale with the population
size. From a biological point of view, this corresponds to high mutation probabilities.

Theorem 3.4.1. Suppose that Assumption 4 holds. Take as initial condition

xµ(0) = (x̄0, 0, . . . , 0). (3.11)

Then, for i ∈ {0, ..., L}, as µ→ 0, uniformly on bounded time intervals,

log
[
xµ

i (t · log (1/µ))
]

log(1/µ)
→ xi(t), (3.12)

where xi(t) is piece-wise linear. More precisely,

1. in the case of 1-sided mutations, mij = m(1)
ij , for i ∈ {0, L− 1},

xi(t) =

{
−i, for 0 ≤ t < L/ fL0,
−i− (t− L/ fL0)mink∈[|0,i|] | fkL|, for t > L/ fL0,

(3.13)

and

xL(t) =

{
−L + fL0t, for 0 ≤ t < L/ fL0,
0, for t > L/ fL0.

(3.14)

2. in the case of 2-sided mutations, mij = m(2)
ij : consider the sequence {i1, . . . , ir} of "fitness records",

defined recursively by i1 = 0, ik = min{i ∈ {0, L− 1} : fiL < fik−1L},

xi(t) =


−i ∨ (−L− (L− i) + fL0t), for 0 ≤ t < L/ fL0,

−(L− i) ∨maxk∈{0,i}{−i− | fkL|(t− L/ fL0)}
∨maxk∈{1,r}{−ik − |i− ik| − | fik L|(t− L/ fL0)}, for t > L/ fL0.

(3.15)

Moreover,

(
xµ

0 (t log(1/µ)), xµ
L(t log(1/µ))

)
→
{

(x̄0, 0), for 0 ≤ t < L/ fL0,
(0, x̄L), for t > L/ fL0.

(3.16)

The shape of x(t) := (x0(t), . . . , xL(t)) can be seen on Figures 3.6 and 3.7 in the 1-sided and
2-sided cases, respectively.

In the 1-sided case, the rescaled deterministic process x(t) can be explained as follows: In
the first phase, the 0-population stays close to n̄0 until the L-population reaches order one. As
competition between the populations of type i and j for i, j 6= 0 is negligible in comparison to
competition between type i and type 0, for i ∈ {1, ..., L}, the i-population first stabilises around
O(µi) in a time of order o(1), then the L-population, starting from a size O(µL), grows exponentially
with rate fL0 until reaching order one (which takes a time L/ fL0) while the other types stay stable.
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Figure 3.6: Graph of x(t) in the 1-sided case mij = m(1)
ij for L = 6 and f60 =

1, ( f06, f16, f26, f36, f46, f56) = (−5,−1,−0.25,−1.5,−2,−0.05).
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Figure 3.7: Graph of x(t) in the 2-sided case mij = m(2)
ij for L = 6 and f60 =

1, ( f06, f16, f26) = (−5,−1,−0.25).

Next, a swap between populations 0 and L (two-dimensional Lotka-Volterra system) is happening
in a time of order o(1), and finally, for i 6= L, the i-population decays exponentially from O(µi)

with a rate given by the lowest (negative) fitness of its left neighbours, (minj∈[|0,i|] | f jL|) while the
L-population approaches its equilibrium density n̄L. To understand the rate of decrease during the
last phase, let us consider only the 0- and 1- populations. The competition exerted by populations
j ∈ {0, ..., L− 1} on the 0- and 1-populations is negligible with respect to the competition exerted by
the L-population, which has a size of order 1. As a consequence, xµ

0 has a dynamics close to this of
the solution to:

˙̃x0(t) = f0L x̃0(t),
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that is to say, x0(t) ≈ x0(0)e f0Lt, and x1 has a dynamics close to this of the solution to:

˙̃x1(t) = f1L x̃1(t) + µx̃0(t) = f1L x̃1(t) + µx̃0(0)e f0Lt,

that is to say

x1(t) ≈ x1(0)e f1Lt + µ
x0(0)

f0L − f1L

(
e f0Lt − e f1Lt

)
.

From this heuristics we get that

xµ
1 (t log(1/µ)) ≈ xµ

1 (0)µ
| f1L|t + µ

xµ
0 (0)

| f1L| − | f0L|

(
µ| f0L|t − µ| f1L|t

)
= µ

(
C1µ| f1L|t +

C0

| f1L| − | f0L|

(
µ| f0L|t − µ| f1L|t

))
, (3.17)

where C0 and C1 are of order 1. We thus see that the leading order is µ1+inf{| f0L|,| f1L|}t. Reasoning
in the similar way for the other populations yields that the leading order for the variation of the
i-population size (i ∈ {0, ..., L− 1}) is µi+inf{| f0L|,| f1L|,...,| fiL|}t.

In the 2-sided case, a modification of the order of magnitude of the i-population (for i 6= L)
happens due to backward mutations. The reasoning is similar to the heuristics we have just
described, except that mutants from the i-population (i ∈ {1, ..., L}) might also have an impact on
the decrease rate of the (i− 1)-population. This is the case if xµ

i /xµ
i−1 ≥ C/µ, for a positive constant

C. Under this condition the number of type-(i − 1) individuals produced by mutations of type
i-individuals has the same order as the type-(i− 1) population size.

3.4.2 Stochastic limit (K, µ)→ (∞, 0)

When the mutation probability is small, the dynamics and time scale of the invasion process depend
on the scaling of the mutation probability per reproductive event, µ, with respect to the carrying
capacity K. We consider in this section mutation probabilities with two possible forms. Either,

µ = f (K)K−1/α, with α ≥ 1 and | ln f (K)| = o(ln K), (3.18)

or
µ = o(1/K). (3.19)

For simplicity, we now only consider the mutation kernel m(1)
ij = µδi+1,j.

In a time of order one, there will be of order Kµi mutants of type i, provided that this number is
larger than 1. In particular, there will be of order KµL fit L-mutants at time one, if L/α < 1. This is
the regime of large mutation probability. In this case, the time for the L-population to hit a size of
order K is of order ln K. We obtain a precise estimate of this time, as well as of the time for the trait
L to outcompete the other traits under the same assumptions. Let us introduce

t(L, α) :=
L
α

1
fL0

+ sup
{(

1− i
α

)
1
| fiL|

, 0 ≤ i ≤ L− 1
}

.

We proved in [BCS19] that it takes a time of order t(L, α) ln K for the L-population to outcompete
the other populations and enter in a neighbourhood of its monomorphic equilibrium size n̄LK. Once
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this has happened, it stays close to this equilibrium for at least a time eKV , where V is a positive
constant. In fact the constant t(L, α) can be intuitively computed from the deterministic limit.
Indeed, for α > L, we prove that the system performs small fluctuations around the deterministic
evolution studied above: the i-population first stabilises around O(Kµi) in a time of order one, then
the L-population grows exponentially with rate fL0 until reaching order K (super-critical branching
process, needs a time close to L ln K/α fL0) while the other types stay stable. The swap between
populations 0 and L then takes a time of order one, and finally, for i 6= L, the i-population decays
exponentially from O(Kµi) to extinction with a rate given by the lowest (negative) fitness of its left
neighbours (sub-critical branching process, needs a time close to (supj∈[|0,i|](1− j/α)/| f jL|) ln K).
Thus the time until extinction of all non-L populations is close to t(L, α) ln K.

Next we consider the case of small mutation probability, when L/α > 1. In this case, there is no
L-mutant at time one, and the fixation of the trait L happens on a much longer time scale.

We define, for 0 < ρ < 1,

λ(ρ) :=
∞

∑
k=1

(2k)!
(k− 1)!(k + 1)!

ρk (1− ρ)k+1 , (3.20)

and, for bαc+ 1 ≤ i ≤ L− 1, we set ρi := bi/(bi + di + ci0 x̄0).
We also introduce for v ≥ 0 the first time the L-population reaches the size bvKc,

T(K,i)
v := inf{t ≥ 0, Xi(t) = bvKc}, (3.21)

and the time needed for the populations at all sites but L to get extinct,

T(K,Σ)
0 := inf

{
t ≥ 0, ∑

0≤i≤L−1
Xi(t) = 0

}
. (3.22)

Then we have

Theorem 3.4.2. Assume that (3.18) holds, α /∈N and 1 <α < L. Then there exist two positive constants
ε0 and c, and two exponential random variables E− and E+ with parameters

(1 + cε)
x̄0b0...bbαc
| f10|...| fbαc0|

fL0

bL

L−1

∏
i=bαc+1

λ(ρi) and (1− cε)
x̄0b0...bbαc
| f10|...| fbαc0|

fL0

bL

L−1

∏
i=bαc+1

λ(ρi),

such that, for every ε ≤ ε0,

lim inf
K→∞

P
(

E− ≤
(

T(K,L)
x̄L−ε ∨ T(K,Σ)

0

)
KµL ≤ E+

)
≥ 1− cε. (3.23)

The typical trajectories of the process are as follows: mutant populations of type i, for 1 ≤ i ≤
bαc, reach a size of order Kµi � 1 in a time of order bi−1 ln K/ fi0 (they are well approximated by
birth-death processes with immigration and their behaviour is then close to the deterministic limit),
and mutant populations of type i, for bαc + 1 ≤ i ≤ L, describe a.s. finite excursions, whose a
proportion of order µ produces a mutant of type i + 1. Finally, every L-mutant has a probability
fL0/bL to produce a population which outcompetes all other populations. The term λ(ρi) is the
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expected number of individuals in an excursion of a subcritical birth and death process of birth
rate bi and death rate di + ci0 x̄0 excepting the first individual. Hence µλ(ρi) is the approximated
probability for a type i-population (bαc+ 1 ≤ i ≤ L− 1) to produce a mutant of type i + 1, and the
overall time scale can be recovered as follows:

1. The last ’large’ population is the bαc-population, which reaches a size of order Kµbαc after a
time which does not go to infinity with K.

2. The bαc-population produces an excursion of an (bαc + 1)-population at a rate of order
Kµbαc+1, which has a probability of order µ to produce an excursion of an (bαc+ 2)-population,
and so on,

giving the order KµL.

3.4.3 On the extinction of the population

One of the key advantages of stochastic logistic birth and death processes on constant size processes
when dealing with population genetics issues is that we can compare the time scale of mutation
processes and the population lifetime. In particular, for the case of fitness valley crossing, we can
show that if the mutation probability µ is too small, the population gets extinct before the birth of
the first mutant of type L.

The quantification of the lifetime of populations with interacting individuals is a tricky question
(see [CCM16, CCM19] for recent results) and we were not able to determine necessary and sufficient
conditions for the L-mutants to succeed in invading before the population extinction. However, we
were able to provide some necessary conditions, and some sufficient conditions (see [BCS19] for
details).

3.5 Power law mutation rate on a general finite trait space

We saw in the previous section that interesting phenomena may occur when we relax the evolutionary
and ecological time scales separation and focus on power law mutation rates. We thus decided to
study this class of mutation rates in a collaboration with L. Coquille and A. Kraut. The mutation
rate µk is thus given by:

µK = K−1/α, for α > 0. (3.24)

The space of possible traits is given by the vertices of a (possibly directed) finite graph G = (V, E),
and mutations are towards nearest neighbours in the graph G. We start with a macroscopic initial
condition (that is to say of order K) and we are interested in the stochastic process given by the large
population limit under the mutation rate (3.24). In [CKS21] we describe the time evolution of the
orders of magnitude of each sub-population on the ln K time scale, as K tends to infinity. We show
that the limiting process is deterministic, given by piecewise affine continuous functions, which are
determined by an algorithm describing the changes in the fitness landscape due to the succession of
new resident or emergent types. Moreover, we give a precise description of this algorithm for any



CHAPTER 3. WHEN MUTATIONS ARE NOT SO RARE 62

finite graph G. We refer the interested reader to Theorem 2.2 and Proposition 2.3 in [CKS21].

Our proof heavily relies on couplings of the original process with logistic birth and death
processes with non-constant immigration, and the analysis of the later simpler processes on the
ln K time scale. This approach was developed by Champagnat, Méléard and Tran in [CMT19].
They considered an individual-based model for the evolution of a discrete population performing
horizontal gene transfer and mutations on V = [0, 4] ∩ δN, δ > 0. Their goal was to analyse
the trade-off between natural selection, which drives the population to higher birth-rates, and
transfer, which drives the population to lower ones. Under the mutation rate (3.24), they exhibited
parameter regimes where different evolutionary outcomes appear, in particular evolutionary suicide
and emergence of a cyclic behaviour. As in the present paper, their results characterized the time
evolution of the orders of magnitude of each sub-population on the ln K time scale, which are shown
to be piecewise affine continuous functions whose slopes are given by an algorithm describing the
succession of phases when a given type is dominant or resident. Their proofs provided us with the
main ingredients needed for our results. However, the graph structure they chose simplifies the
inductions and we have to generalise their approach to treat the case of more general graphs.

Recall notations of Section 3.1.2. It is convenient to describe the population size of a certain trait
v ∈ V by its K-exponent. For t ≥ 0,

βK
v (t) :=

ln(1 + NK
v (t ln K))

ln K
, (3.25)

which is equivalent to NK
v (t ln K) = KβK

v (t) − 1. Since the population size is restricted to order K by
the competition, βK

v ranges between 0 and 1, as K → ∞.
Mutants can be produced along (directed) edges of the graph. We denote by d(v, w) the graph

distance, i.e. the length of the shortest (directed) path from v to w in G = (V, E). For a subset v ⊂ V
we define

d(v, w) := min
v∈v

d(v, w) and d(w, v) := min
v∈v

d(w, v).

We now present some non intuitive behaviours of the population process, which stem from
the mutation scale or the generality of the mutational graph that we allow for. They are direct
applications of Theorem 2.2 and Proposition 2.3 in [CKS21]. Several examples are built on directed
graphs. Although this is not a necessary condition to obtain the desired phenomena, it allows a
simplified study (especially of the decay phases). We first introduce some notations for the sake of
readability.

Definition 3.5.1. Let w, v ∈ V and v ⊂ V. We write

1. w > v if and only if fw,v > 0, that is if w can invade in v,

2. w < v if and only if fw,v < 0, that is if w cannot invade in v,

3. w� v (or v� w) if and only if fw,v > 0 and fv,w < 0, that is if w can invade in v and fixate,

4. w ≡ v if and only if fw,v > 0 and fv,w > 0, that is if w and v can coexist,

5. w _ v if and only if fw,v < 0 and fv,w < 0, that is if w and v can neither invade in each other.
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3.5.1 Back mutations before adaptation

In the following, we build an example where the ancestry of the resident population comes from back
mutations from an ancestral trait, even if the mutations happening in between are not deleterious.

Example 1. Let us consider the graph G depicted on Figure 3.8 where V = {0, 1, 2, 3} and
E = {[0, 1], [1, 2], [2, 0], [0, 3]}. Let α > 2, an initial condition given by (n̄(0), 0, 0, 0) and a fitness
landscape given by

0� 1� 2, 3 _ 0, 3 _ 1

0 ≡ 2, 3 > {0, 2}, 2 < 3 (3.26)

f2,0 < 2 f1,0 (3.27)

f0,1 ≥ f3,1, f2,0 ≤ f1,0 (3.28)

i1 :=
1− 1/α

f0,1
<
−(1− 4/α)

f2,1
=: i2 (3.29)

In this case, on the ln K time scale, the rescaled macroscopic population jumps from traits
0− 1− 2 then to coexistence between 0 and 2, followed by the invasion and fixation of 3 which is
produced with high probability, due to Condition (3.29), by individuals of type 0 which have the
sequence 0− 1− 2 as ancestry. In other words, the final resident individuals of trait 3, although they
can be produced by individuals of trait 0 directly, come from a sequence of mutations which went
around the loop 0− 1− 2 of G. Conditions (3.26), summarized on Figure 3.8, imply phase portrait
number 8 in the classification of Zeeman [Zee93]. Condition (3.27) ensures that trait 1 becomes
resident before 2. Condition (3.28) is not necessary but allows to simplify the setting. The exponents
are drawn on Figure 3.8.

Note that this scenario can also happen in the rare mutation regime considered in [Cha06] (for
example α ∈ (0, 1)): the average waiting time until a mutant of type 1 appears is then of order
O(1/KµK) = O(K−1+1/α)� ln K. Once it has appeared, it survives with positive probability and
the succession of invasions and fixations above takes place on the ln K time scale, separated by
mutation events on the K−1+1/α time scale. What is new in our case is that such a scenario can still
take place for higher mutation rates than the ones considered in [Cha06], and on a ln K time scale.

3.5.2 Non-intuitive mutational pathways in the high mutation framework

Longer or shorter path than expected

If evolution and mutation time scales are separated (i.e. in the rare mutation regime of [Cha06] for
instance), mutations occur one at a time, and the number of successive resident traits from the wild
type to the type gathering k successively beneficial mutations is k. This is not necessarily the case if
mutations are faster, in which case it is possible to observe either more or less resident traits, as the
following examples show.

Example 2. Let us consider the directed graph G depicted on Figure 3.9, where V = {00, 01, 10, 11} and
E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condition given by (n̄00, 0, 0, 0) and a fitness
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Figure 3.8: Graph G, phase portrait of traits 0-2-3, and exponents β(t) of Example 1.

landscape given by

00� 01� 10� 11, and 01� 11

10, 11 _ 00

f11,00 < f01,00 (3.30)

f10,01 > f11,01 (3.31)

In this case, in the rare mutation regime, the rescaled macroscopic population jumps along
00− 01− 11.

In our mutation regime, the rescaled macroscopic population jumps along 00− 01− 10− 11 on
the ln K time scale. The exponents are drawn on Figure 3.9. Note that Condition (3.30) ensures that
11 does not invade before 01; it is not necessary but allows to simplify the setting. Condition (3.31)
ensures that 11 does not invade before 10.

Example 3. Let us consider the directed graph G depicted on Figure 3.9, where V = {00, 01, 10, 11} and
E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condition given by (n̄00, 0, 0, 0) and a fitness
landscape given by

01 > 00, 11� 00

10 < 00 (3.32)

01, 10 < 11
2

f11,00
<

1
f01,00

(3.33)
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Figure 3.9: Graph G and exponents β(t) for Examples 2 and 3.
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In this case, in the rare mutation regime, the rescaled macroscopic population still jumps along
00− 01− 11, under the additional assumption that f11,01 > 0.

In our mutation regime, the rescaled macroscopic population directly jumps from 00 to 11 on
the ln K time scale. More precisely, the exponents are drawn on Figure 3.9. Condition (3.33) ensures
that 11 fixates before 01. Condition (3.32) is not necessary but allows to simplify the setting.

Price of anarchy

We build an example where adding a new possible mutation path to a fit trait increases the time
until it appears macroscopically.

Example 4. Let us consider the graph G depicted on Figure 3.10, where V = {1, 2a, 2b, 3} and the edge set
is either E1 = {[1, 2a], [2a, 3], [2b, 3], [3, 2b]} or
E2 = {[1, 2a], [2a, 3], [2b, 3], [2a, 2b], [3, 2b]}. Let α > 3, an initial condition given by (n̄1, 0, 0, 0) and a
fitness landscape given by

1� 2a� 3, and 2a� 2b (3.34)

1 < 2b, and, 1, 2b < 3

f2a,1 ≥ f3,1, f2b,1, and
1

f2b,2a
<

1
f3,2a

<
2

f2b,2a
(3.35)

0 < f3,2b < f3,2a. (3.36)

In this case, if the edge set is E1, the rescaled macroscopic population jumps along traits 1− 2a− 3
in a time t1 on the ln K time scale. But if the edge set is E2, the population jumps along 1− 2a− 2b− 3
and the time to reach 3 is t2 > t1. More precisely, the exponents are drawn on Figure 3.10. Condition
(3.35) ensures that 2b invades first when the edge set is E2 but not when it is E1, in other words
β2b reaches 1 before β3 if started at 1− 1/α but not at 1− 2/α. And Condition (3.36) enlarges the
time of fixation of 3. Note that the first inequality in Condition (3.35) is not necessary but allows
to simplify the second one. In the rare mutation regime we can observe this phenomenon on the
mutation time scale, but only with probability strictly smaller than 1, since both 2b and 3 are fit with
respect to 2a and can both invade with positive probability once they are produced.

Counter cycle

Example 5. Let us consider the graph G depicted on Figure 3.11, where V = {1, 2, 3} and the edge set is
E = {[1, 2], [2, 3], [3, 1]}. Let α > 2, an initial condition given by (n̄(1), 0, 0) and a fitness landscape given
by

1� 2, 2� 3, 3� 1.

In this case, the rescaled macroscopic population jumps along traits 1− 3− 2 (in the clockwise
sense) although the mutations are directed counterclockwise. More precisely, the exponents are
drawn on Figure 3.11. Moreover, if Conditions (3.37) below are fulfilled the period is shorter and
shorter, an acceleration takes place, as it is depicted on Figure 3.11.

f2,3 > − f1,3 f1,2 > − f3,2 f3,1 > − f2,1. (3.37)
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Figure 3.10: Graph G and exponents β(t) for Example 4, with edge set E1 (above) and E2

(below).

Note that in the rare mutation regime, with the chosen parameters, there would be no evolution
since 2 < 1. Moreover, there are no parameters such that counter cyclic or accelerating behaviours
could arise.

3.5.3 Arbitrary large jumps on the ln K-time scale

A natural question to ask is if the "cut-off" α restricts the range of the jumps, on the ln K time-scale,
to traits which are at a distance less than α. The answer is no, as the following example shows.

Example 6. Let us consider the graph G depicted on Figure 3.12, where V = {0, 1, 2, 3, 4} and E =

{[0, 1], [1, 2], [2, 3], [3, 4]}. Let α ∈ (3, 4), an initial condition given by (n̄0, 0, . . . , 0) and a fitness landscape
given by

1, 2 < 0, 3, 4 > 0, 0, 1, 2, 3 < 4
1

f4,0
+
−1 + 4/α

f3,0
<

3/α

f3,0
(3.38)

In this case, the cut-off is in between traits 3 and 4 (meaning that Kµi
K → 0 for i > 3) thus

population of trait 4 vanishes at time 0. However, the rescaled macroscopic population jumps from
trait 0 to trait 4 in a time

s1 =
−1 + 4/α

f30
+

1
f40

on the ln K time scale. More precisely, the exponents are drawn on Figure 3.12. Condition (3.38)
ensures that trait 4 fixates before trait 3.

It is easy to generalize this example to construct jumps to any distance L larger than α, by taking
larger and larger fitnesses after the negative fitness region. The condition implying emergence of
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Figure 3.11: Graph G and exponents β(t) for Example 5, without Assumption 3.37 (above)

and with Assumption 3.37 (below).

trait L is then a little more technical to write, since one has to compute the time for the piecewise
affine function βL(t) (with multiple slope-breaks) to reach 1 before the other traits. Example 6
constitutes the simplest non-trivial example of this phenomenon.

Example 7. Let us consider the graph G depicted on Figure 3.13, where V = {0, 1, 2, 3, 4, 5} and E =

{[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]}. Let α ∈ (3, 4), an initial condition given by (n̄0, 0, . . . , 0) and a fitness
landscape given by

1, 2 < 0, 3, 4, 5 > 0, 0, 1, 2, 3, 4 < 5

f3,0 < f4,0 < f5,0 and
−1 + 4/α

f3,0
+
−4/α + 5/α

f4,0
+

1
f5,0

<
3/α

f3,0
. (3.39)

In this case, the cut-off is in between traits 3 and 4 (meaning that Kµi
K → 0 for i > 3) thus

population of trait 4 and 5 vanishes at time 0. However, the rescaled macroscopic population jumps
from trait 0 to trait 5 in a time

s1 =
−1 + 4/α

f3,0
+
−4/α + 5/α

f4,0
+

1
f5,0

on the ln K time scale. More precisely, the exponents are drawn on Figure 3.13. Condition (3.39)
ensures that trait 5 fixates before traits 3 and 4. The first inequality is not needed but allows to
simplify the second one. The dotted lines in the figures allow to construct the points where some
exponents become positive.
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Figure 3.12: Graph G and exponents β(t) for Example 6.
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3.5.4 Effective random walk across fitness valleys

2 effective sites

Example 8. Let us consider the graph G depicted on Figure 3.14, where V = {0, 1a, 1b, i} and E =

{[0, i], [i, 1a], [1a, 1b], [i, 1b]}. We suppose that whenever there are several outgoing edges from a vertex v,
the mutation kernel is uniform among the nearest neighboring vertices. Let α ∈ (0, 1), an initial condition
given by (n̄0, 0, . . . , 0) and a fitness landscape given by

1a� 0� 1b� 1a

i < 0, i < 1a, i < 1b.

In this case, according to [BCS19], the time to cross the fitness valley is of order O(1/Kµ2
K) =

O(K−1+2/α)� ln K, thus the first mutant of type 1a will appear on this time scale, and will invade
with positive probability. Then, in a time of order O(ln K), type 1b fixates, and one has to wait again
a time of order O(K−1+2/α) until the appearance of the next mutant of type 0. Thus, on the time
scale O(K−1+2/α), the population process converges to a jump process between the two states 0 and
1b with positive jump rates although the fitness f1b,0 is negative. More precisely, recall the definition
of λ(ρ) in (3.20) and define for (i, j) ∈ G2,

ρi,j : =
bi

bi + di + cijn̄j

Theorem 3.5.2. As K → ∞, the following convergence holds

(NK
0 , NK

1b)(tK
−1+2/α)⇒ n̄Xt δXt

for finite dimensional distributions, where Xt is a continuous time Markov chain on {0, 1b} with transition
rates

r0→1b =
n̄0b0

| fi0|
λ(ρi,0)

f1a,0

b1a
and r1b→0 =

n̄1bb1b

| fi,1b|
λ(ρi,1b)

f0,1b

b0
.

3 effective sites

Example 9. Let us consider the graph G depicted on Figure 3.14. We suppose that whenever there are several
outgoing edges from a vertex v, the mutation kernel is uniform among the nearest neighbouring vertices. Let
α ∈ (0, 1), an initial condition given by (n̄0, 0, . . . , 0) and a fitness landscape given by

1a� 0 2a� 0 2a� 1b
1b� 1a 2b� 2a 1a� 2b
0� 1b 0� 2b 1b� 2b
i < 0 j < 0 k < 1a, k < 1b

i < 1a, i < 1b j < 2a, j < 2b k < 2a, k < 2b

Thus, following [BCS19], on the time scale O(K−1+2/α), the population process converges to a
jump process between the three states {0, 1b, 2b} with positive jump rates. More precisely,
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Figure 3.14: Graph G of Examples 8 and 9.

Theorem 3.5.3. As K → ∞, the following convergence holds

(NK
0 , NK

1b, NK
2b)(tK

−1+2/α)⇒ n̄Xt δXt

for finite dimensional distributions, where Xt is a continuous time Markov chain on {0, 1b, 2b} with
transition rates:

r0→1b =
n̄0b0/2
| fi0| λ(ρi,0)

f1a,0
b1a

, r1b→0 = n̄1bb1b/2
| fi,1b|

λ(ρi,1b)
f0,1b
b0

r0→2b =
n̄0b0/2
| f j0| λ(ρj,0)

f2a,0
b2a

, r2b→0 = n̄2bb2b/2
| f j,2b|

λ(ρj,2b)
f0,2b
b0

r1b→2b =
n̄1bb1b/2
| fk,1b|

λ(ρk,1b)
f2a,1b
b2a

, r2b→1b =
n̄2bb2b/2
| fk,2b|

λ(ρk,2b)
f1a,2b
b1a

.

3.6 Perspectives

The effects of frequent changes in the phenotypes of individuals within populations, whether due to
mutations or reversible switches during an individual’s lifetime, have been the subject of increasing
interest in the literature in recent years. I would be interested in exploring some of the questions
raised in these works.

3.6.1 Effects and evolution of high mutation rates

I would like to continue studying the consequences of high mutation rates on evolutionary
trajectories. In particular, I have not studied certain biological mechanisms that are of great
importance in the evolution of populations, and whose modelling has recently made progress in the
context of random processes (in eco-evolution or population genetics). I am thinking in particular of
the horizontal gene transfer between bacteria [CMT19], and the mechanisms of dormancy [BT20].

Another issue I would like to focus on is the evolution of mutation rates. One of the results of the
work I have just presented in this chapter is that high mutation rates allow evolutionary trajectories
that could not occur if mutation rates were an order of magnitude lower. But the multiplication of
evolutionary trajectories is not necessarily beneficial. It might be interesting to study in which cases
high mutation rates are favoured or, on the contrary, counter-selected.
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3.6.2 Eco-evolution and population genetics

Another issue I would like to explore in the coming years is the links between population genetics
models and eco-evolution models. A first natural direction of research is to try to build models
aiming for the generality of adaptive dynamics and the tractability of population genetics. We have
started to do this in a collaboration with A. Gonzalez Casanova [GCS21]. Our method consisted in
generalizing the idea of Krone and Neuhauser [KN97], and Gonzalez Casanova and Spano [GCS18],
who represented the selection by allowing individuals to sample several potential parents in the
previous generation before choosing the ’strongest’ one, by allowing individuals to use any rule to
choose their parent.

Another natural question is to try to make links between population genetics models and
eco-evolution models via duality relations, in order to deduce properties of a model of one type
from properties of a model of another type. We have begun to explore such relationships in a
collaboration with A. Gonzalez Casanova and A. Wakolbinger. Starting from a population genetics
model of Muller’s ratchet, we have shown a duality relationship with competitive birth and death
models, to which recent work has been devoted, in particular the question of survival times and
distance to the quasistationary distribution [CCM16, CCM19].



Chapter 4

Evolution and consequences of mating
preferences

In the last chapter of this manuscript, we are also interested on questions about evolution. We come
back to the rare mutation regime of adaptive dynamics, and focus on mating preferences.

Sexual selection is an important part of the theory of evolution [JR09]. This term appeared
in Charles Darwin’s theory along with natural and artificial selections. This selection was first
viewed as interfering with natural selection as it may explain the existence of traits disadvantaged
by natural selection such as spectacular ornaments. Now this type of selection is much studied
and is seen as a key element in trait and species diversifications. One hypothesis arising from
Fisher idea is that mate choice evolves indirectly in response to selection acting of mating cues
[Fis30, Lan81, Ros17]. As mate choice evolves, the sexual selection acting on mating cues changes
generating feedback loops between selection on choice and mating cues such as runaway processes.

Mate choice is a process that leads to a bias in reproduction investment towards individuals
carrying certain traits (called mating cues) [Edw14]. For example, females of Heliconius butterflies
frequently show mating bias toward males with certain wing pattern [JNCM01, MCN14]. Mating
bias can be expressed before (see example in the fiddler crab Uca annulipes [BP96]) or after (see
example in the scorpionfly Harpobittacus nigriceps [Tho83]) mating. However, this definition of mate
choice is broader than active discrimination and includes numerous mechanisms that lead to non
random reproduction investment such as mechanical constraints [Bar90], molecular mechanisms
[Cis99, HM03], allochronic isolation (different times of flowering [WWV+05, SAL+06], different
arrival dates [HDW04, BFF+05]) or spatial segregation [BC00].

Mate choice is associated whit many costs. They generate a direct selection on mate preference
(see [Pom87] for a review of these costs) that limits their evolution. For example, choosy individuals
can pay a fitness cost because they refuse mating opportunities (that strongly limits the evolution of
preference in theoretical studies [SB06, KH08]). Moreover the mechanism underlying mate choice
may require specialized morphological, physiological and cognitive changes (see [Ros17] for a
review), that may induce specific metabolic costs. For instance, in the self-incompatibility system in
the genus Brassica, mate choice involves a specialized receptor-ligang association [HM03], so that
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the evolution of self-incompatibility is associated with metabolic costs implied by the production
of the specific proteins. Mate choice can also increase the investment in mate searching, because a
choosy individual needs to sample several mates to find a suitable one. This increased sampling
effort can be costly in time [KH67], in energy (as empirically estimated in antilopes [BWJR05]) and
may increase predation risk, for instance in patrolling animals [HKB12]. In addition, the evolution
of mate preferences can involve supplementary costs associated with the rebuttal. In the fly species
Musca domestica, males jump on females’ back to initiate mating and choosy females have to kick
unpreferred males to avoid mating [Sac64]. Despite the numerous associated costs, mate choice has
been observed in many species (see [Ros17]) suggesting that some positive effects should increase
the fitness of choosy individuals. Fitness advantages linked to mate choice would then promote its
evolution: these advantages can be direct, therefore improving the fitness of the chooser [Wag11]
(because of beneficial sexually transmitted infections [SM15], by decreasing risk of pre-copulatory
cannibalism [PR09], ...). But indirect fitness benefits linked to the quality of offspring might also
promote the evolution of mate preferences on certain cues.

Once mate preferences are established in the population, they generate sexual selection on the
traits exhibited by individuals during courtship, that may drive the evolution of extravagant traits
in males, following a fisherian runaway [Fis30, O’D80, Lan81]. The evolution of mate preferences
thus involves complex evolutionary processes where preferences co-evolve with the cues displayed
by the chosen individuals. This co-evolution has been observed in natural populations [GS11,
HMSP12] and in experimental studies [BC99, MP02], underpinning the importance of sexual
selection feedbacks on the evolution of mate preferences.

The different selective regimes acting on traits involved in mate choice can drive the evolution
of different types of mate preferences. Assortative mating for instance, i.e. preferential crosses
between individuals displaying a same phenotype, is common in nature (see [JBK13] for a review in
animals). The strength of assortative mating can be measured as the correlation between male and
female phenotypes or genotypes across mated pairs [JBK13, Wri21, RA06]. In natural populations of
certain species, this coefficient can also be negative, resulting from disassortative mating, whereby
individuals tend to mate preferentially with partners exhibiting a trait different from their own
[JBK13]. The selection regimes enabling the evolution of assortative vs. disassortative matings
are strikingly different. For example, natural selection can enhance reproductive success between
individuals sharing trait similarity, as in the Australian frog, Uperoleia laevigata where heavier
males hamper oviposition and lighter males do not produce enough sperm to fertilize the whole
clutch, which promotes the evolution of assortative mating [Rob90]. Contrastingly, direct selection
favouring dissimilar cue mating promotes disassortative preferences (see [IF03] for a theoretical
study). The indirect selection acting on mating cues can also shape the evolution of assortative and
disassortative mate preferences. Disruptive selection whereby different mating cues are favoured
in different habitats for instance, can promote assortative preferences that tend to increase the
number of locally adapted offspring [Kir00, KR02, DD99, Die04, Gav04, OSN08, BHK12, dCBK08].
In contrast, selection conferring fitness advantages to intermediate phenotypes is often thought
to promote disassortative mating [KS98, KN04]. Nevertheless, the selection regimes enabling the
evolution of disassortative mating are much less studied than the selective pressures involved in
the evolution of assortative mating, extensively investigated in the context of speciation [Gav04].
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Indeed, understanding mechanisms underlying speciation remains a central question in
evolutionary biology; more particularly understanding the origin of isolating barriers that prevent
gene flow among populations or within a population. Ecological speciation has been largely
studied, highlighting the relations between sexual selection and speciation, and demonstrating
negative links [SB14, SB15] as well as beneficial ones [Bou01]. Lande [Lan81] is the first one to
have popularized the idea of sexual selection promoting speciation. Then numerous authors have
dealt with it in depth [Wu85, TB95, HTY99, vDDW04, Rit07, PKM+08]. Furthermore, biological
examples of speciation that involve well studied mechanisms of sexual selection are numerous and
well documented, as the case of Hawaiian cricket Laupala [Ott89, SP02, MS05], Amazonian frog
Physalaemus [BFD+07], or the cichlid fish species of Lake Victoria [STM+08]. The role of so-called
’magic’ or ’multiple effect’ traits, which associate both adaptation to a new ecological niche and
a mate preference as enhancer of speciation has been evidenced in many experimental studies
[MWB+12] as well as theoretical ones [LK88, VDNH98]. However, identifying the role of sexual
selection itself as trigger of speciation without ecological adaptation has received less attention
[Gav14]. In Section 4.1 we will introduce and study mathematically a stochastic model accounting
for the stopping of gene flow between two subpopulations by means of sexual preference only, and
in Section 4.2.1, we will explore the conditions under which such a mating preference may invade a
population of individuals mating uniformly at random.

A meta-analysis carried out on more than 1,116 cases of assortative or disassortative mating in
animals reveals that disassortative mating is rare compared to assortative mating [JBK13]. Cases
of disassortative mating have been documented, as for instance the MHC locus in humans and
mice, where females prefer males with a genotype different from their own [WSBP95], the plumage
coloration in the white throated sparrow [Thr75], or the wing colour pattern in the mimetic butterfly
Heliconius numata [CLPPJ17]. In those cases, heterozygote advantage has been reported [JCW+21], so
that disassortative mating may increase the offspring fitness. Ihara and Feldman [IF03] also showed
that disassortative mating can be promoted when matings of pairs with different phenotypes are
more fertile. Other theoretical studies have focused on the effect of disassortative mating on the
persistence of variations at the cue locus, illustrating the fact that this mate preference may limit the
purging at the cue locus [KF68, FL69, IF03]. These results suggest that the evolution of disassortative
preferences is likely to depend on the natural selection acting at the cue locus but also on complex
feedbacks between cue polymorphism and mate choice. The aim of Section 4.2.2 will be to explore
the conditions enabling the evolution of disassortative mating.

4.1 The effect of assortative mating on speciation

In this section, I will present the work [CCLS18], realized in a collaboration with C. Coron, M. Costa
and H. Leman, in which we assumed a population of individuals mating assortatively and wanted
to understand the effect of this mating preference on the stopping of gene flow, necessary to lead to
a speciation event.

We consider a population of hermaphroditic haploid individuals characterized by their genotype
at one multi-allelic locus, and by their position on a space that is divided in several patches.
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This population is modeled by a multi-type birth and death process with competition, which is
ecologically neutral in the sense that individuals with different genotypes are not characterized by
different adaptations to environment or by different resource preferences. However, individuals
reproduce sexually according to mating preferences that depend on their genotype: two individuals
having the same genotype have a higher probability to mate. In addition to this sexual preference,
individuals can migrate from one patch to another, at a rate depending on the frequency of
individuals carrying the other genotype and living in the same patch. Examples of animals
migrating to find suitable mates are well documented [Sch88, HWE+07].

4.1.1 Two similar patches

The class of models considered is similar to the one introduced in Section 3.1.2, except that
individuals reproduce sexually and thus the birth rates are more complex. Each individual carries
an allele belonging to the genetic type space A := {A, a}, and lives in a patch i in I = {1, 2}. We
denote by E = A×I the type space, by (eα,i, (α, i) ∈ E) the canonical basis of RE , and recall that ᾱ is
the complement of α in A. The population is modeled by a multi-type birth and death process with
values in NE . More precisely, we denote by nα,i the current number of α-individuals in the patch i
and by n = (nα,i, (α, i) ∈ E) the current state of the population. The birth rate is the consequence
of the following mechanisms: at a rate B > 0, any individual encounters another individual
uniformly at random in its deme. Indeed, all the individuals are assumed to be ecologically and
demographically equivalent, thus the probability that they are at the same place at the same time is
uniform. Mathematically, the probability of encountering an individual of genotype α′ in the patch
i writes

nα′,i

nα,i + nᾱ,i
, (4.1)

at the time of the encounter. Then the probability that the encounter leads to a successful mating
with the birth of an offspring is bβ/B ≤ 1 if the two individuals carry the same genotype, and
b/B ≤ 1 otherwise. As a consequence, the birth rate of individuals with genotype α in the deme i is
equal to

λα,i(n) =b
(

nα,iβ
nα,i

nα,i + nᾱ,i
+

1
2

nα,i
nᾱ,i

nα,i + nᾱ,i
+

1
2

nᾱ,i
nα,i

nα,i + nᾱ,i

)
=bnα,i

βnα,i + nᾱ,i

nα,i + nᾱ,i
.

(4.2)

The parameter β > 1 represents the "mating preference" as two encountering individuals have a
probability β times larger to mate and give birth to a viable offspring if they carry the same allele
α ∈ A. Note that, in our model, the preference does not only bias the distribution of genotypes
among mating partners but also affects the rate of mating for choosy individuals, unlike what is
assumed in standard (population genetics) sexual selection models [Lan81, Kir82].

The death rate of α-individuals in the patch i writes

dK
α,i(n) =

(
d +

c
K
(nα,i + nᾱ,i)

)
nα,i. (4.3)
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The individual intrinsic death rate d is assumed to be non negative and less than b:

0 ≤ d < b. (4.4)

The death rate definition (4.3) implies that all the individuals are ecologically equivalent: the
competition pressure does not depend on the alleles carried by the two individuals involved in an
event of competition for food or space. Last, the migration of α-individuals from patch ī = I \ {i}
to patch i occurs at a rate

ρα,ī→i(n) = p
(

1−
nα,ī

nα,ī + nᾱ,ī

)
nα,ī = p

nα,īnᾱ,ī

nα,ī + nᾱ,ī
, (4.5)

(see Figure 4.1). The individual migration rate of α-individuals is proportional to the frequency of

Figure 4.1: Migrations of A- and a-individuals between the patches.

ᾱ-individuals in the patch. This reflects the fact that individuals prefer being in an environment
with a majority of individuals of their own type. In particular, if all the individuals living in a patch
are of the same type, there is no more migration outside this patch. Remark that the migration rate
from patch ī to i is equal for A- and a-individuals, hence to simplify notation, we denote

ρī→i(n) = ρA,ī→i(n) = ρa,ī→i(n).

The community is therefore represented at every time t ≥ 0 by a stochastic process with values
in RE :

(NK(t), t ≥ 0) = (NK
α,i(t), (α, i) ∈ E , t ≥ 0),

whose transitions are, for n ∈NE and (α, i) ∈ E :

n −→ n + eα,i at rate λα,i(n),
−→ n− eα,i at rate dK

α,i(n),
−→ n + eα,i − eα,ī at rate ρī→i(n).
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In the sequel, we will assume that the initial population sizes (NK
α,i(0), (α, i) ∈ E) are of order

K. As a consequence, we consider a rescaled stochastic process (NK(t)/K, t ≥ 0), which (as in the
previous Chapter by an application of [EK09], Chapter 11, Theorem 2.1) will be comparable to a
solution of the dynamical system

d
dt zA,1(t) = zA,1

[
b βzA,1+za,1

zA,1+za,1
− d− c(zA,1 + za,1)− p za,1

zA,1+za,1

]
+ p zA,2za,2

zA,2+za,2

d
dt za,1(t) = za,1

[
b βza,1+zA,1

zA,1+za,1
− d− c(zA,1 + za,1)− p zA,1

zA,1+za,1

]
+ p zA,2za,2

zA,2+za,2

d
dt zA,2(t) = zA,2

[
b βzA,2+za,2

zA,2+za,2
− d− c(zA,2 + za,2)− p za,2

zA,2+za,2

]
+ p zA,1za,1

zA,1+za,1

d
dt za,2(t) = za,2

[
b βza,2+zA,2

zA,2+za,2
− d− c(zA,2 + za,2)− p zA,2

zA,2+za,2

]
+ p zA,1za,1

zA,1+za,1
,

(4.6)

denoted by

(z(z
0)(t), t ≥ 0) = (z(z

0)
α,i (t), (α, i) ∈ E)t≥0

when starting from z(0) = z0 ∈ RE+.
When K is large, this convergence result allows one to derive the global behaviour of the

population process NK from the behaviour of the dynamical system (4.6). Therefore, a fine study of
(4.6) is carried out in [CCLS18]. In particular a long-time convergence of the dynamical system (4.6)
toward a stable equilibrium of interest, when starting from an explicit subset of RE+ is proven. To
state this latter, we need to introduce the parameter

ζ :=
βb− d

c
, (4.7)

which corresponds to the equilibrium size of the α-population for the dynamical system (4.6), in a
patch with no ᾱ-individuals, and to define the subset of RE+

D := {z ∈ RE+, zA,1 − za,1 > 0, za,2 − zA,2 > 0}, (4.8)

and the positive real number

p0 =

√
b(β− 1)[b(3β + 1)− 4d]− b(β− 1)

2
. (4.9)

Notice that under Assumption (4.4) and as β > 1,

p0 < b(β + 1)− 2d.

Finally, for p < b(β + 1)− 2d, we introduce the set

Kp :=
{

z ∈ D, {zA,1 + za,1, zA,2 + za,2} ∈
[

b(β + 1)− 2d− p
2c

,
2bβ− 2d + p

2c

]}
. (4.10)

Then we have the following result:

Theorem 4.1.1. Let p < p0. Then

i/ Any solution to (4.6) which starts from D converges to the equilibrium (ζ, 0, 0, ζ).
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ii/ If the initial condition of (4.6) lies in Kp, there exist two positive constants k1 and k2, depending on
the initial condition, such that for every t ≥ 0,

‖z(t)− (ζ, 0, 0, ζ)‖ ≤ k1e−k2t.

Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ).

Note that the limit reached depends on the genotype which is initially in majority in each
patch, since the subset D is invariant under the dynamical system (4.6). Secondly, when p = 0,
the results of Theorem 4.1.1 can be proven easily since the two patches are independent from each
other. The difficulty is thus to prove the result when p > 0. Our arguments allow us to deduce
an explicit constant p0 under which we have convergence to an equilibrium with reproductive
isolation between patches. However, we are not able to deduce a rigorous result for all p. Indeed,
when p increases, there is more mixing between the two patches which makes the model difficult to
study. Nevertheless simulations suggest that the result stays true.

Let us now present the main result of [CCLS18] on the probability and the time needed for the
stochastic process NK to reach a neighbourhood of the equilibria (ζ, 0, 0, ζ) or (0, ζ, ζ, 0).

Theorem 4.1.2. Assume that NK(0)/K converges in probability to a deterministic vector z0 belonging to
D, with (z0

a,1, z0
A,2) 6= (0, 0). Introduce the following bounded set depending on ε > 0:

Bε := [(ζ − ε)K, (ζ + ε)K]× {0} × {0} × [(ζ − ε)K, (ζ + ε)K].

Then there exist three positive constants ε0, C0 and m, and a positive constant V depending on (m, ε0) such
that if p < p0 and ε ≤ ε0,

lim
K→∞

P

(∣∣∣∣∣ TK
Bε

ln K
− 1

b(β− 1)

∣∣∣∣∣ ≤ C0ε, NK
(

TK
Bε
+ t
)
∈ Bmε ∀t ≤ eVK

)
= 1, (4.11)

where TK
B , B ⊂ RE+ is the hitting time of the set B by the population process NK.

Symmetrical results hold for the equilibria (0, ζ, ζ, 0), (ζ, 0, ζ, 0) and (0, ζ, 0, ζ).

This theorem gives the order of magnitude of the time to reproductive isolation between the
two patches (given by TK

Bε
), as a function of the population size scaling factor K. This isolation

time is infinite when considering the dynamical system (4.6) for which K is equal to infinity. Note
that the time needed to reach the reproductive isolation is inversely proportional to β− 1 which
suggests that the system behaves differently for β = 1 (see [CCLS18] for a study of this special
case). Moreover, the time does not depend on the parameter p. Intuitively, this can be understood
as follows: the time needed to reach a neighbourhood of the state (ζ, 0, 0, ζ) is of order 1 (recall
Theorem 4.1.1.ii/), and from this neighbourhood the time needed for the complete extinction of
the a-individuals in the patch 1 and the A-individuals in the patch 2 is much longer, it is of order
ln K (according to (4.11)). During this second phase, the migrations between the two patches are
already balanced, which entails the independence with respect to p. Furthermore, the constant
does not depend on d and c since there is no ecological difference between the two types and the
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two patches: during the second phase, the natural birth rate of the a-individuals in the patch 1 is
approximately b since the patch 1 is almost entirely filled with A-individuals, and their natural
death rate can be approximated by d + cζ = bβ where the term cζ comes from the competition
exerted by the A-individuals. Thus, their natural growth rate is approximately b− bβ which only
depends on the birth parameters.

Note that Theorem 4.1.2 gives not only an estimation of the time to reach a neighbourhood of
the limit, but also it proves that the dynamics of the population process stays a long time in the
neighbourhood of equilibria (ζ, 0, 0, ζ) or (0, ζ, ζ, 0) after this time.

Finally, the assumption (z0
a,1, z0

A,2) 6= (0, 0) is necessary to get the lower bound in (4.11). Indeed,
if (z0

a,1, z0
A,2) = (0, 0), the set Bε is reached faster, and thus only the upper bound still holds. In

this case, the speed to reach the set Bε will depend on the speed of convergence of the sequence
(NK

a,1/K, NK
A,2/K) to the limit (0, 0). In the trivial example where (NK

a,1/K, NK
A,2/K) = (0, 0), TK

B
will be of order 1 which is the time needed for the processes NK

A,1/K and NK
a,2/K to reach a

neighbourhood of the equilibrium ζ.

4.1.2 Ideas of the proofs

The first step of the proof consists in finding the equilibrium points of the dynamical system (4.6)
and determining their stability. This is achieved by classical methods.

The second step of the proof consists in proving Theorem 4.1.1. To do that, we first prove that
any trajectory reaches the compact set Kp in finite time, and stays in this set. Then, we introduce
the function V : D → R:

V(z) = ln
(

zA,1 + za,1

zA,1 − za,1

)
+ ln

(
za,2 + zA,2

za,2 − zA,2

)
, (4.12)

which is well defined as D is invariant under the dynamical system (4.6). It characterizes the
dynamics of (4.6) on Kp, and we may prove that V is a Lyapunov function if p smaller than p0. This
allows to prove that the solutions to (4.6) converge to (ζ, 0, 0, ζ) exponentially fast as soon as their
trajectory reaches the set Kp.

Finally, we need to study the extinction phase, when one type has a population size of order
smaller than K. This is achieved by couplings with subcritical multitype birth and death processes,
in the spirit of [Cha06].

4.1.3 Generalisations of the model

Until now we considered a simple model to understand the key drivers of spatial segregation
between patches. In fact, our findings are robust and we may generalise the model and show that
we can relax several assumptions and still get spatial segregation between patches.

Differences between patches

We assumed that the patches were ecologically equivalent in the sense that the birth, death and
competition rates b, d and c, respectively, did not depend on the label of the patch i ∈ I . In fact we
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could make these parameters depend on the patch, and denote them bi, di and ci, i ∈ I . In the same
way, the sexual preference βi and the migration rate pi could depend on the label of the patch i ∈ I .
As a consequence, the dynamical system (4.6) becomes

d
dt zA,1(t) = zA,1

[
b1

β1zA,1+za,1
zA,1+za,1

− d1 − c1(zA,1 + za,1)− p1
za,1

zA,1+za,1

]
+ p2

zA,2za,2
zA,2+za,2

d
dt za,1(t) = za,1

[
b1

β1za,1+zA,1
zA,1+za,1

− d1 − c1(zA,1 + za,1)− p1
zA,1

zA,1+za,1

]
+ p2

zA,2za,2
zA,2+za,2

d
dt zA,2(t) = zA,2

[
b2

β2zA,2+za,2
zA,2+za,2

− d2 − c2(zA,2 + za,2)− p2
za,2

zA,2+za,2

]
+ p1

zA,1za,1
zA,1+za,1

d
dt za,2(t) = za,2

[
b2

β2za,2+zA,2
zA,2+za,2

− d2 − c2(zA,2 + za,2)− p2
zA,2

zA,2+za,2

]
+ p1

zA,1za,1
zA,1+za,1

.

(4.13)

The set D is still invariant under this new system and the solutions to (4.13) with initial conditions
in D reach in finite time the invariant set

K′p :=
{

z ∈ D, zA,i + za,i ∈
[

bi(βi + 1)− 2di − pi

2ci
, ζi +

pī
2ci

, i ∈ I
]}

,

where
ζi :=

biβi − di

ci
.

As D is invariant under (4.13), we can define the function V as in (4.12). Its first order derivative is

d
dt

V(z(t)) = − ∑
i=1,2

zA,iza,i

zA,i + za,i

[
2bi(βi − 1) + 2pi

zA,i + za,i
− 2pi

zA,ī + za,ī

]
.

As a consequence, we can prove similar results to Theorems 4.1.1 and 4.1.2 under the assumption
that p1 and p2 satisfy

picī(2ciζi + pī) < ci(bi(βi − 1) + pi)(bī(β ī + 1)− 2dī − pī), for i ∈ I ,

and where the constant in front of the time ln K is no more 1/b(β− 1) but 1/ω1,2 with

ω1,2 =
1
2
(b1(β1− 1)+ p1 + b2(β2− 1)+ p2)−

1
2

√
(b1(β1 − 1) + p1 − b2(β2 − 1)− p2)2 + 4p1 p2.

Here, note that the constant does depend on all the parameters. Indeed, since there is no ecological
neutrality between the two patches, there are no simplifications and balancings as in the previous
model.

Migration

The migration rates under consideration increase when the genetic diversity increases. Indeed, let
us consider

H(i)
T := 1−

[(
nA,i

nA,i + na,i

)2

+

(
na,i

nA,i + na,i

)2
]

as a measure of the genetic diversity in the patch i ∈ I . Note that H(i)
T ∈ [0, 1/2] is known as the

"total gene diversity" in the patch i (see the article by [Nei75] for instance) and is widely used as a
measure of diversity. When we express the migration rates in terms of this measure, we get

ρα,ī→i(n) = p
nA,ina,i

nA,i + na,i
=

p
2
(nA,i + na,i)H(i)

T .
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Hence we can consider that the migration helps the speciation. We may prove that we can get
the same kind of result when we consider an arbitrary form for the migration rate if this latter is
symmetrical and bounded. We thus consider a more general form for the migration rate. More
precisely,

ρα,ī→i(n) = p(nA,ī, na,ī),

and we assume

p(nA,ī, na,ī) = p(na,ī, nA,ī) and p(nA,ī, na,ī)
nA,ī + na,ī

nA,īna,ī
< p0,

where p0 has been defined in (4.9). Note that the second condition on the function p imposes that as
one of the population sizes goes to 0, then so does the migration rate. In particular, this condition
ensures that the points (ζ, 0, 0, ζ), (0, ζ, ζ, 0), (0, ζ, 0, ζ) and (ζ, 0, ζ, 0) are still equilibria of the system.
Theorems 4.1.1 and 4.1.2 still hold with this new definition for the migration rate.

Number of patches

We restricted our attention to the case of two patches, but we can consider an arbitrary number
N ∈N of patches. We assume that all the patches are ecologically equivalent but that the migrant
individuals have a probability to migrate to an other patch which may depend on the geometry of
the system. Moreover, we allow the individuals to migrate outside the N patches. In other words,
for α ∈ A, i ≤ N, j ≤ N + 1 and n ∈ (NA)N ,

ρα,i→j(n) = pij
nA,ina,i

nA,i + na,i
,

where the "patch" N + 1 denotes the outside of the system.
As a consequence, we obtain the following limiting dynamical system for the rescaled process,
when the initial population sizes are of order K in all the patches: for every 1 ≤ i ≤ N,

dzA,i(t)
dt

= zA,i

[
b

βzA,i + za,i

zA,i + za,i
− d− c(zA,i + za,i)− ∑

j 6=i,j≤N+1
pij

za,i

zA,i + za,i

]

+ ∑
j 6=i,j≤N

pji
zA,jza,j

zA,j + za,j

dza,i(t)
dt

= za,i

[
b

βza,i + zA,i

zA,i + za,i
− d− c(zA,i + za,i)− ∑

j 6=i,j≤N+1
pij

zA,i

zA,i + za,i

]

+ ∑
j 6=i,j≤N

pji
zA,jza,j

zA,j + za,j
.

(4.14)

For the sake of readability, we introduce the two following notations:

pi→ := ∑
j 6=i,j≤N+1

pij and pi← := ∑
j 6=i,j≤N

pji.

Let NA be an integer smaller than N which gives the number of patches with a majority of
individuals of type A. We can assume without loss of generality that
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zA,i(0) > za,i(0), for 1 ≤ i ≤ NA, and zA,i(0) < za,i(0), for NA + 1 ≤ i ≤ N.

Let us introduce the subset of (RA+)N

DNA,N := {z ∈ (RA+)
N , zA,i − za,i > 0 for i ≤ NA and za,i − zA,i > 0 for i > NA}.

We assume that the sequence (pij)i,j∈{1,..,N} satisfies: for all i ∈ {1, .., N},

pi→ < b(β + 1)− 2d and
b(β− 1) + pi→

2cz + pi←
− ∑

j 6=i,j≤N+1

pij

b(β + 1)− 2d− pj→
> 0. (4.15)

Then we have the following result.

Theorem 4.1.3. We assume that Assumption (4.15) holds. Let us assume that ZK(0) converges in probability
to a deterministic vector z0 belonging to DNA,N with (z0

a,1, z0
A,2) 6= (0, 0). Introduce the following bounded

set depending on ε > 0:

BNA,N,ε :=
(
[(ζ − ε)K, (ζ + ε)K]× {0}

)NA
×
(
{0} × [(ζ − ε)K, (ζ + ε)K]

)N−NA
.

Then there exist three positive constants ε0, C0 and m, and a positive constant V depending on (m, ε0) such
that if ε ≤ ε0,

lim
K→∞

P

(∣∣∣∣∣ TK
Bε

ln K
− 1

b(β− 1)

∣∣∣∣∣ ≤ C0ε, NK
(

TK
BNA ,N,ε

+ t
)
∈ BNA,N,mε ∀t ≤ eVK

)
= 1,

where TK
B , B ⊂ RE+ is the hitting time of the set B by the population process NK.

The proof is really similar to the one for two patches. To handle the deterministic part of the
proof, we first show that for every initial condition on DNA,N , the solution of (4.14) reaches the set

KNA,N :=
{

z ∈
(
(R∗+)

A
)N

, {zA,i + za,i} ∈
[

b(β + 1)− 2d− pi→
2c

, ζ +
pi←
2c

]
∀i ≤ N

}
∩DNA,N .

in finite time, and that this set is invariant under (4.14). Then, we conclude with the Lyapunov
function

z ∈ KNA,N 7→ ∑
i≤NA

ln
(

zA,i + za,i

zA,i − za,i

)
+ ∑

NA<i≤N
ln
(

za,i + zA,i

za,i − zA,i

)
.

4.1.4 The effect of diploidy

Finally, in a collaboration with H. Leman and V. Llaurens, we explored the effects of genetic
architecture on the stopping of gene flow, by studying the case of diploid individuals. The
population dynamics is then very dependent on the behaviour of heterozygotes. We contrasted two
assumptions:

(1) Preference expressed towards heterozygotes is intermediate between assortative and
disassortative mating (COD 1) (β > 1 for pairs (AA, AA), (aa, aa) and (Aa, Aa), (β + 1)/2 for
pairs (AA, Aa) and (aa, Aa), and 1 for pairs (AA, aa)) and migration rate varies accordingly
because the decision to leave the patch depends on the lack of preferred partners in the patch.
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(2) Heterozygotes express no preference towards any partners (COD2), the preference parameter
is thus β for pairs (AA, AA) and (aa, aa), and 1 for all other pairs. Because of this lack of
preference, heterozygotes have no reason to look for suitable mate and thus do not migrate.

Our results show that trajectories of diploid populations assuming codominance between alleles
depart from equilibria observed in the haploid model. Notably, migration limits the probability
of population differentiation in the diploid model which was not observed in haploids. Because
migration depends on the number of individuals with different phenotypes, population
differentiation is quickly achieved in the haploid model because of a rapid decrease of migration
as soon as differentiation starts, until a complete isolation of the two populations, which fixed
different alleles. In the diploid model however, when the two alleles are codominant, the presence
of heterozygotes with intermediate phenotypes promotes migration even when populations are
initially differentiated, and frequently leads to the fixation of a single allele throughout both
connected populations. The discrepancy observed here between haploid and diploid assumptions
highlights the need to consider the effect of ploidy in spatially-structured models of trait evolution,
because the presence of an intermediate phenotype can interfere in the differentiation process.

Depending on the assumption regarding codominance, the resulting equilibrium slightly
differed. The absence of preference of heterozygotes for their own phenotypes (hypothesis COD2)
can promote polymorphism of the trait under sexual selection, notably when populations are
initially uneven. These heterozygotes do not migrate and reproduce equally with any genotypes.
When they initially occur in significant proportion within populations, they promote migration of
homozygous genotypes and limit fixation of the initially predominant allele. This contrasts with
the co-dominance drawn from hypothesis COD1, where heterozygotes can migrate and are half as
preferred by homozygotes. In this case, fixation of a single allele throughout both populations is
always achieved when the same allele is predominant in both populations initially. Heterozygote
behaviour is therefore a key parameter in the dynamics of population differentiation in mating
traits.

4.2 Evolution to sexual preferences

4.2.1 Evolution to assortative mating

As explained in the introduction of this chapter, mating preferences come with costs: for instance,
they decrease the number of potential partners, and this decrease depends on the composition
of the population. In a work in collaboration with C. Coron, M. Costa, F. Laroche and H. Leman,
we studied the conditions enabling the evolution of assortative preferences in a population where
individuals initially choose their mate uniformly at random.

We suppose that a mutation arises in the population: individuals carrying the mutation (denoted
P) have a higher (resp. smaller) reproductive success when mating with individuals of the same
(resp. different) phenotype than individuals without the mutation (denoted p).

We consider a population of individuals that reproduce sexually and compete with each other
for a common resource. Individuals are haploid and are characterized by their genotype at two loci
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located on different chromosomes. Locus 1 presents two alleles, denoted by A and a, and codes
for phenotypes, as in the previous section. Locus 2 presents two alleles denoted by P and p, and
codes for assortative mating, which is defined relatively to the first locus. The genotype of each
individual belongs to the set G := {AP, Ap, aP, ap} and the state of the population is characterized
at each time t by a vector in N4 giving the respective numbers of individuals carrying each of these
four genotypes. The dynamics of this population is thus modeled by a multi-type birth-and-death
process

(NK(t), t ≥ 0) := (NK
AP(t), NK

Ap(t), NK
aP(t), NK

ap(t), t ≥ 0)

with values in N4. As before and because we focus on the role of reproduction, the death rate of an
individual does not depend on its genotype, and is the same as in (4.3). More precisely, when the
population is in state n = (nAP, nAp, naP, nap) ∈N4 with size n = nAP + nAp + naP + nap, then the
rate at which the population looses an individual with genotype i ∈ G, is equal to

di(n) = ni

(
d +

c
K

n
)

, (4.16)

with d ∈ R+, c > 0 and K > 0. Moreover, the rate bi(n) at which an individual with genotype i ∈ G
is born, is defined by

bAP(n) = b
[

nAP +
1
n

(
β1nAP

(
nAP +

nAp

2

)
− β2

(
nAP

(
naP +

nap

4

)
+ nAp

naP

4

))
+

∆aP

2n

]
bAp(n) = b

[
nAp +

1
n

(
β1nAp

nAP

2
− β2

(
nAp

naP

4
+ nAP

nap

4

))
− ∆aP

2n

]
baP(n) = b

[
naP +

1
n

(
β1naP

(
naP +

nap

2

)
− β2

(
naP

(
nAP +

nAp

4

)
+ nap

nAP

4

))
− ∆aP

2n

]
bap(n) = b

[
nap +

1
n

(
β1nap

naP

2
− β2

(
nap

nAP

4
+ naP

nAp

4

))
+

∆aP

2n

]
,

(4.17)

where
∆aP := naPnAp − nAPnap.

The parameter b(1 + β1) with b > 0 and β1 ≥ 0 is the rate at which any individual (called first
parent) reproduces (it corresponds to the product bβ of the previous section), the second parent
being chosen uniformly in the population. Each reproduction leads to the birth of a new individual
with probability 1/(1 + β1) when the first parent carries allele p, with probability 1 if the first
parent carries allele P and both parents carry the same allele at locus 1, and with probability
(1 − β2)/(1 + β1) if the first parent carries allele P and the two parents carry different alleles
at locus 1 (hence (1− β2)b would correspond to the parameter b of the previous section). The
parameters β1 and β2 respectively quantify benefits and penalties for homogamous individuals.

We will make the following assumptions on the parameters:

1. b > d

2. β1 ≥ 0
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3. 0 ≤ β2 ≤ 1

The first assumption ensures that a population of individuals mating uniformly at random is not
doomed to a rapid extinction because of a natural death rate larger than the birth rate under uniform
random mating. The second (resp. third) assumption means that choosy individuals have a higher
(resp. smaller) probability to give birth when mating with an individual with the same (resp.
different) trait (A or a).

We assume that at time 0, all individuals mate uniformly at random (no sexual preference,
all individuals carry allele p), and that the population size is close to its long time equilibrium,
(b − d)K/c (see page 88 for details). A mutant (or a migrant) appears in the population, with
genotype αP, where α ∈ A := {A, a}. The goal of our Theorem 4.2.1 is to study a step in Darwinian
evolution, that consists in the progressive invasion of the new allele P and loss of initial allele p in the
population. The proof of this theorem relies on the study of three phases in the population dynamics
trajectories (mutant survival or extinction, mean-field phase, and resident allele extinction). The
statement of Theorem 4.2.1 requires the introduction of several quantities that we define now.

Our first goal is to determine conditions under which the mutant population has a positive
probability to survive and invade the resident population. In order to answer this question, and as
we have done in the previous chapter, we will compare the mutant population with a branching
process during the first times of the invasion: as long as the mutant population size is negligible
with respect to the carrying capacity K, the dynamics of the resident population will not be affected
by the presence of the mutants and will stay close to its initial state. In other words, the size and
proportions of the resident population will remain almost constant and the dynamics of the mutant
population will be close to the dynamics of the process N̄ = (N̄A, N̄a), which is a bi-type branching
process with the following transition rates:

(N̄A, N̄a)→ (N̄A + 1, N̄a) at rate β̄AAN̄A + β̄aAN̄a

(N̄A, N̄a)→ (N̄A, N̄a + 1) at rate β̄AaN̄A + β̄aaN̄a

(N̄A, N̄a)→ (N̄A − 1, N̄a) at rate bN̄A

(N̄A, N̄a)→ (N̄A, N̄a − 1) at rate bN̄a,

(4.18)

where for α ∈ A, ᾱ ∈ A \ {α},

β̄αα :=
b
2

(
1 + (β1 + 1)ρα −

β2

2
ρᾱ

)
, β̄αᾱ :=

b
2

(
1− β2

2

)
ρᾱ, (4.19)

and

ρA := lim
K→∞

NK
Ap(0)

NK
p (0)

and ρa := 1− ρA = lim
K→∞

NK
ap(0)

NK
p (0)

(4.20)

are the initial proportions in the resident population. The rates of this branching process have been
obtained by considering the dynamics of (NK

AP, NK
aP) described by (4.16) and (4.17) when

(NK
Ap, NK

ap) = (KρA
b− d

c
, K(1− ρA)

b− d
c

),
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NK = K b−d
c and the second order terms in NK

AP and NK
aP are neglected. We denote the extinction

probabilities of the process N̄ by

qα := P(∃t < ∞, N̄(t) = 0|N̄(0) = eα), (4.21)

α ∈ A, eA = (1, 0) and ea = (0, 1), meaning that the process starts with only one individual of
type A or a. Classical results of branching process theory (see [AN72]) ensure that these extinction
probabilities correspond to the smallest solution to the system of equations

uA(sA, sa) := b(1− sA) + β̄AA(s2
A − sA) + β̄Aa(sAsa − sA) = 0 (4.22)

ua(sA, sa) := b(1− sa) + β̄aa(s2
a − sa) + β̄aA(sAsa − sa) = 0.

Moreover, the branching process N̄ is supercritical (i.e. qA and qa are not equal to one) if and only if
its mean matrix

J :=

(
β̄AA − b β̄Aa

β̄aA β̄aa − b

)
(4.23)

has a positive eigenvalue, that is to say if and only if

β1 > β2 or ρA(1− ρA) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (4.24)

We denote by λ the maximal eigenvalue of (4.23), which is thus positive when (4.24) holds and
which will be of interest to quantify the time before invasion. Notice that J can be written as b times
a matrix only depending on (ρA, β1, β2). As a consequence, λ can be written λ = bλ̃(ρA, β1, β2). We
will use this notation in Theorem 4.2.1 to make appear the dependence on the parameters.

If the mutant population invades and its size reaches order K with K large, the population
dynamics enters a second phase during which it is well approximated (again by an application of
[EK09], Chapter 11, Theorem 2.1) by a mean field process. More precisely, if we define the rescaled
process

(ZK(t), t ≥ 0) :=

(
NK

AP(t)
K

,
NK

Ap(t)

K
,

NK
aP(t)
K

,
NK

ap(t)
K

, t ≥ 0

)
,

then it will be close to the solution of the dynamical system

żi = bi(z)− (d + cz)zi, i ∈ G, (4.25)

where z = zAP + zAp + zaP + zap is the total rescaled population size and the functions (bi, i ∈ G)
have been defined in Equation (4.17). This dynamical system has a unique solution, as the vector
field is locally Lipschitz and that the solutions do not explode in finite time [Chi06]. We will denote
by

(z(z
0)(t), t ≥ 0) = (zAP(t), zAp(t), zaP(t), zap(t), t ≥ 0)

this unique solution starting from z(0) = z0 ∈ R4
+.
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Notice that when there are only individuals of type p in the population (no sexual preferences),
the dynamical system (4.25) is {

żAp = zAp(b− d− c(zAp + zap))

żap = zap(b− d− c(zAp + zap)).

This system admits an infinity of equilibria:

• (zAp, zap) = (0, 0), which is unstable

• (zAp, zap) = (ρ(b− d)/c, (1− ρ)(b− d)/c) for all ρ ∈ [0, 1], which are non hyperbolic.

However, if we consider the equation giving the dynamics of the total population size z = zAp + zap,
we get

ż = z(b− d− cz).

Its solution, with a positive initial condition, converges to its unique stable equilibrium, (b− d)/c.
That is why we will assume that the initial population size, before the arrival of the mutant, is
(b− d)K/c.

A fine study of the dynamics of the solutions to (4.25) with our particular initial conditions,
that is to say few individuals mating assortatively at the beginning and a majority of A (or a) in
both resident and mutant populations allow us to show that the dynamical system converges to an
equilibrium where some of the variables zi, i ∈ G are equal to 0. When the population size of these i
becomes too small (of order smaller than K before rescaling), the mean fields approximation stops
being a good approximation, and we will again compare the dynamics of the small population sizes
with these of branching processes (now subcritical). The birth and death rates of these branching
processes will then provide the time to extinction of these small populations.

Combining all these steps, we are able to describe the invasion/extinction dynamics of the
mutant population, which is the subject of Theorem 4.2.1. Before stating it, we need to introduce
some last notations: a set of interest for the rescaled process ZK, for any µ > 0

Sµ :=
[

b(1 + β1)− d
c

− µ,
b(1 + β1)− d

c
+ µ

]
× {0} × {0} × {0}, (4.26)

a stopping time describing the time at which ZK reaches this set,

TSµ
:= inf{t ≥ 0, ZK(t) ∈ Sµ}, (4.27)

as well as a stopping time which gives the first time when the rescaled P-mutant population size
reaches any threshold (from below or above): for any ε ≥ 0,

TP
ε := inf

{
t > 0, NK

P (t) = bεKc
}

, (4.28)

where bxc is the integer part of x. Note that these stopping times depend on the scaling parameter
K. However, to avoid cumbersome notations, we drop the K dependency.
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Theorem 4.2.1. Assume that λ 6= 0,(
ZK

Ap(0), ZK
ap(0)

)
→

K→∞

(
ρA

b− d
c

, (1− ρA)
b− d

c

)
in probability with ρA > 1/2 and that for some α ∈ A(

NK
αP(0), NK

ᾱP(0)
)
= (1, 0).

Then there exists a Bernoulli random variable B with parameter 1− qα (recall (4.21)) such that for any
0 < µ < (b(1 + β1)− d)/c:

lim
K→∞

(
TSµ
∧ TP

0

ln K
, 1{TSµ<TP

0 }

)
= B×

(
1

bλ̃(ρA, β1, β2)
+

2
bβ1

, 1
)

, (4.29)

where the convergence holds in probability.
Moreover,

1{TP
0 <TSµ}

∣∣∣∣∣∣∣∣Nb f K(TP
0 )

K
− (0, ρA, 0, 1− ρA)

b− d
c

∣∣∣∣∣∣∣∣
1
−→
K→∞

0 in probability, (4.30)

where ‖ · ‖1 stands for the L1−norm.

Notice that if condition (4.24) does not hold, qα = 1, and the convergence in (4.29) is an almost
sure convergence to (0, 0) meaning that the mutant population dies out in a time smaller than ln K.
In this case, the allelic proportions in the resident population do not vary. Condition (4.24) gives
two possible sufficient conditions for the mutant population to invade with positive probability.
The first one imposes that the trade-off between the advantage for homogamous reproduction (β1)
and the loss for heterogamous reproduction (β2) has to be favourable enough. The second condition
requires a low level of initial allelic diversity at locus 1 (alleles A and a). In particular, even if the
advantage for homogamy is very low, very asymmetrical initial conditions (ρA close to 0 or 1) will
ensure the invasion of the mutation with positive probability. As expected, these conditions are
the same as the conditions for the approximating branching process N̄ defined on page 86 to be
supercritical. In fact, the random variable B is the indicator of survival of a version of N̄ coupled
with the mutant process.

Let us emphasize that our result ensures that when the mutant population invades (whatever
allele a or A the first mutant carries), then the final population is monomorphic, and all individuals
carry the allele a or A which was in the majority in the resident p−population. Only the mutant
invasion probability depends on the allele carried by the first P individual.

The study of the population process is more involved than in the previous references on similar
questions (see for instance [Cha06, CM11, BS17]) because the initial state of the population is not an
hyperbolic equilibrium, since alleles A and a are initially neutral. As a consequence, the fluctuations
around the initial state may be substantial and are strongly influenced by the presence of mutants,
even in a small number. We thus cannot use the classical large deviation theory [DE97], and we
need to study the dynamics of the types altogether. Moreover, again unlike in [Cha06, CM11, BS17]
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but similarly as in [CCLS18], the dynamical system arising as the limit of the rescaled population
after the invasion phase admits many (stable and unstable) fixed points and we need to identify
precisely the four dimensional zone reached by the rescaled population process after the invasion
phase in order to determine the convergence point of the dynamical system.

We were not able to obtain an explicit formula in general for the extinction probability qα of the
assortative mating mutation, solution of (4.22). However, in the particular case when there are only
A- or a-individuals in the population before the arrival of the mutant, we can derive the invasion
probability.

Proposition 4.2.2. Assume that there are only A individuals before the arrival of the mutant (ρA = 1). In
this case,

qA =
2

2 + β1

and

qa =
1

2− β2

6− β1β2 + 4β1 − β2

2 + β1
−

√(
6− β1β2 + 4β1 − β2

2 + β1

)2

− 4(2− β2)

 .

Results obtained with the help of the software Mathematica show a complex dependency with
respect to parameters. We performed numerical simulations of the extinction probabilities (qA, qa)

using Newton approximation scheme starting from (0, 0). We computed the values of qA as a
function of ρA for different values of β1 and β2. Using the symmetry of our model, we have that
qa(ρA) = qA(1− ρA). We observe on Figure 4.2 that qA is a continuous function of ρA but that it is
not differentiable near criticality.
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Figure 4.2: Values of qA as a function of ρA for different values of β1 and β2. On the left,

β2 is fixed to 0.7 and β1 varies. On the right β1 is fixed to 0.2 and β1 varies. In both cases

b = 1.

4.2.2 Evolution to disassortative mating

I have been cosupervising the PhD thesis of L. Maisonneuve with V. Llaurens since September
2019. His first research work was devoted to the study of the conditions allowing the evolution of
disassortative mating. I will briefly present his results, described in the article [MBJ+21].
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Following the theoretical framework developed by [OSN08], we investigate the evolution of
disassortative mating by assuming a diploid sexual species with balanced sex ratio, and considering
two loci C and P. The locus C controls for a trait used as a mating cue and the locus P for the mate
preference. We consider two different alleles, a and b, at locus C so that GC = {aa, ab, bb} is the set
of possible genotypes at this locus. This locus C can be under different viability selection regimes.
At the mating preference locus P, we assume two alleles: a resident allele M and a mutant allele
m. The set of possible genotypes at locus P is thus GP = {MM, Mm, mm}. The two loci recombine
with probability r at each birth event. We consider a constant population and discrete time model
and follow the genotypes frequencies over time.

We assume females to be the choosy sex [dCBK08, GB98, KH08, Lan81, OSN08], so that males
can mate with any accepting female. We assume a balanced sex-ratio and consider that the
frequencies of females and males with a given genotype are equal [dCBK08, GB98, OSN08].

We use the Quasi-Linkage-Equilibrium (QLE) analysis results presented in [OSN08]. This
approach is valid when the selection coefficients, the strength of choosiness as well as costs of
assortment are small relative to recombination. Under this hypothesis the genetic associations
(linkage disequilibria and departures from Hardy-Weinberg) are small. This approach allows to
obtain mathematical expressions of allele frequency changes at the cue and preference loci from the
Hardy-Weinberg equilibrium. This method highlights the key evolutionary mechanisms shaping
the evolution of allele frequencies at these loci. In particular, we assume that the mutant allele m
increases disassortative preference, and investigate the evolutionary forces acting on this allele.
When the hypothesis of weak selection is relaxed, we use numerical simulations to explore the
evolutionary stable level of strength of disassortative mating.

I will just highlight some of the findings and refer the interested reader to [MBJ+21] for more
precise results.

Predicted selection regimes promoting disassortative mating match empirical observations

Our results show that disassortative mating is promoted either (1) when heterozygotes at cue
locus are in average fitter that homozygotes or (2) when viability selection on cue favors the rarest
cue allele. These selection regimes promoting disassortative mating are opposed to the selection
regimes promoting assortative mating, such as homozygote advantage at cue locus or viability
selection on cue favoring the most common allele [OSN08]. Interestingly, our simulations also
show that higher levels of disassortative mating are promoted when one cue allele is dominant.
The dominance relationship can indeed decrease sexual selection and relative cost of choosiness
impairing the evolution of disassortative preferences. Simulations also highlight that higher levels
of disassortative mating are promoted when the dominant allele is disfavored when homozygous.
This effect is consistent with the observed cases of disassortative mating. For instance the butterfly
Heliconius numata displays a strong disassortative mating based on wing-pattern phenotype (in a
tetrad experiment, 3/4 of the realized crosses were involving disassortative pairs) [CLPPJ17]. In
this species, the variation in wing-pattern morphs is controlled by a supergene with three main
haplotypes [JFJ+11]. The dominant haplotypes are associated with a low survival of homozygous
larvae [JCW+21]. This case of disassortative mating seems to gather the conditions pinpointed
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by our model to enable the evolution of higher levels of disassortative mating. Similarly, in
the white-throated sparrow Zonotrichia albicollis an almost strict disassortative mating based on
plumage morphs (white or tan) has been reported [Thr75]. Two supergene haplotypes (here
referred to as t and w) control this variation in plumage coloration. Individuals with tt genotype
have a tan coloration whereas individuals carrying tw and ww genotypes have a white coloration.
However the dominant haplotype w is associated with strong genetic load, generating homozygote
disadvantage in ww individuals [TBK+16]. Individuals with white coloration may be advantaged
over tan individuals because they invest less into parental care [KF83], generating an advantage
of heterozygotes tw over homozygotes tt. Here the dominant cue allele is again associated with
a strong disadvantage when homozygous, which, according to our results, strongly favors the
emergence of disassortative preferences.

Negative feedback in the evolution of disassortative mating contrasts with the evolution of
assortative mating

A striking result from our analyses stems from the role of sexual selection generated by disassortative
preferences on its evolution, which contrasts with the evolutionary dynamics of assortative mating.
Our results confirm that the sexual selection generated by disassortative mating often limits its
own spread, as already mentioned by Nuismer et al. [NOB08]. Indeed, the disassortative mating
allele is generally associated with heterozygotes at the cue locus. Individuals with such allelic
combinations tend to preferentially mate with homozygotes, generating sexual selection disfavoring
heterozygotes at the cue locus. However, this sexual selection acting against heterozygotes depends
on the distribution of cue allele frequency. Similarly, the evolution of assortative mating is thought
to be limited by sexual selection [OSN08]. However, this negative effect of sexual selection decreases
when the proportion of homozygotes at the cue locus is high. Assortative mating usually produces
more homozygotes than random mating: a decrease in the level of heterozygosity at the cue locus is
thus expected when assortative preferences are spreading within a population. During the evolution
of assortative mating, the negative effect of sexual selection on the evolution of assortative mating
decreases as the proportion of homozygote increases. The evolution of disassortative mating may
therefore be more severely impaired by sexual selection than the evolution of assortative mating.

4.3 Perspectives

The study of questions related to the evolution of sexual preferences in an eco-evolutionary
framework, where we take into account both the variation in the composition of populations
(genetic, spatial, phenotypic, ...) and the variation in the sizes of sub-populations with different
traits (which are consequences of each other) is quite recent. This framework allows a better
understanding of the interactions between different evolutionary forces, and many questions
remain to be explored. I am continuing to study some of these questions, notably in collaboration
with V. Llaurens of the Museum National d’Histoire Naturelle.
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4.3.1 Convergent evolution and reproductive interference

During the PhD thesis of L. Maisonneuve, we explore more generally the question of the evolution
of mating preferences and their interaction with other ecological processes. In particular, one of our
current subjects of interest is the evolutionary consequence of interactions between evolutionary
convergence and reproductive interaction. In some cases, as mimicry for instance, it can be
advantageous for a species to resemble another species. However, when males of different species
resemble each other too much, females may suffer from reproductive interference, generated by
erroneous mating attempts with heterospecific males. We aim at studying the interplay of such
opposite evolutionary directions and some of their consequences, as sexual dimorphism for instance
[MSL21, MSL22].

4.3.2 Eco-evolutionary models of disassortative mating

In the continuation of my previous work, in collaboration with C. Coron, M. Costa, H. Leman and V.
Llaurens, I am also exploring various questions related to sexual preferences, using eco-evolutionary
models. For instance, we would like to understand how much disassortative mate choices increase
the number of cues maintained within populations, depending on the relative fitness advantages
associated with the different heterozygous combinations.

The evolution of mate preferences has been shown to depend on the genetic architecture
underlying mate choice. In a recent review on the evolution of assortative mating, [KSM+18]
distinguished two main mechanisms: (1) Matching model, whereby crosses preferentially occur
between individuals displaying the same cue (2) Preference/trait model, where preference alleles
control attraction toward a given cue, independently from the trait displayed by the chooser. These
two mechanisms generate different evolutionary fates for both cue and preference variations. We
would like to contrast the effects of these two mechanisms.



Bibliography

[AAB17] Diala Abu Awad and Sylvain Billiard. The double edged sword: the demographic consequences
of the evolution of self-fertilization. Evolution, 71(5):1178–1190, 2017.

[AD99] Larbi Alili and Ronald A. Doney. Wiener–hopf factorization revisited and some applications.
Stochastics: An International Journal of Probability and Stochastic Processes, 66(1-2):87–102, 1999.

[AGK+05] Valery I Afanasyev, Jochen Geiger, Götz Kersting, Vladimir A Vatutin, et al. Criticality for
branching processes in random environment. The Annals of probability, 33(2):645–673, 2005.

[AK71a] Krishna B Athreya and Samuel Karlin. Branching processes with random environments, ii:
Limit theorems. The Annals of Mathematical Statistics, 42(6):1843–1858, 1971.

[AK71b] Krishna B Athreya and Samuel Karlin. On branching processes with random environments: I:
Extinction probabilities. The Annals of Mathematical Statistics, 42(5):1499–1520, 1971.

[AL99] Avigdor Abelson and Yossi Loya. Interspecific aggression among stony corals in eilat, red sea: a
hierarchy of aggression ability and related parameters. Bulletin of Marine Science, 65(3):851–860,
1999.

[AN72] K. B. Athreya and P. E. Ney. Branching processes. Springer-Verlag Berlin, Mineola, NY, 1972.
Reprint of the 1972 original [Springer, New York; MR0373040].

[Ban21] Vincent Bansaye. Spine for interacting populations and sampling. arXiv preprint
arXiv:2105.03185, 2021.

[Bar90] Spencer C.H. Barrett. The evolution and adaptive significance of heterostyly. Trends in Ecology
& Evolution, 5(5):144 – 148, 1990.

[BB11] Vincent Bansaye and Christian Böinghoff. Upper large deviations for branching processes in
random environment with heavy tails. Electronic Journal of Probability, 16:1900–1933, 2011.

[BB13] Vincent Bansaye and Christian Böinghoff. Lower large deviations for supercritical branching
processes in random environment. Proceedings of the Steklov Institute of Mathematics, 282(1):15–34,
2013.

[BBC17] Martina Baar, Anton Bovier, and Nicolas Champagnat. From stochastic, individual-based
models to the canonical equation of adaptive dynamics in one step. Ann. Appl. Probab.,
27(2):1093–1170, 2017.

[BC99] Robert Brooks and Vanessa Couldridge. Multiple sexual ornaments coevolve with multiple
mating preferences. The American Naturalist, 154(1):37–45, 1999.

[BC00] Loïc Bollache and F Cézilly. The influence of micro-habitat segregation on size assortative
pairing in gammarus pulex (l.)(crustacea, amphipoda). Archiv für Hydrobiologie, pages 547–558,
2000.

94



BIBLIOGRAPHY 95

[BCM+16] Martina Baar, Loren Coquille, Hannah Mayer, Michael Hölzel, Meri Rogava, Thomas Tüting,
and Anton Bovier. A stochastic model for immunotherapy of cancer. Scientific reports, 6:24169,
2016.

[BCM+18] Megan G Behringer, Brian I Choi, Samuel F Miller, Thomas G Doak, Jonathan A Karty, Wanfeng
Guo, and Michael Lynch. Escherichia coli cultures maintain stable subpopulation structure
during long-term evolution. Proceedings of the National Academy of Sciences, 115(20):E4642–E4650,
2018.

[BCM19] Vincent Bansaye, Maria-Emilia Caballero, and Sylvie Méléard. Scaling limits of population and
evolution processes in random environment. Electronic Journal of Probability, 24, 2019.

[BCN18] Anton Bovier, Loren Coquille, and Rebecca Neukirch. The recovery of a recessive allele in a
mendelian diploid model. Journal of mathematical biology, pages 1–63, 2018.

[BCS19] Anton Bovier, Loren Coquille, and Charline Smadi. Crossing a fitness valley as a metastable
transition in a stochastic population model. The Annals of Applied Probability, 29(6):3541–3589,
2019.

[BD94] Jean Bertoin and Ronald A Doney. On conditioning a random walk to stay nonnegative. The
Annals of Probability, 22(4):2152–2167, 1994.

[BD97] Jean Bertoin and Ronald A Doney. Spitzer’s condition for random walks and lévy processes.
In Annales de l’Institut Henri Poincare (B) Probability and Statistics, volume 33, pages 167–178.
Elsevier, 1997.

[BDH16] Anton Bovier and Frank Den Hollander. Metastability: a potential-theoretic approach, volume 351.
Springer, 2016.

[BDMT11] Vincent Bansaye, Jean-François Delmas, Laurence Marsalle, and Viet Chi Tran. Limit theorems
for markov processes indexed by continuous time galton–watson trees. The Annals of Applied
Probability, 21(6):2263–2314, 2011.

[Ber96] Jean Bertoin. Lévy processes, volume 121. Cambridge university press Cambridge, 1996.

[Ber19] Quentin Berger. Notes on random walks in the cauchy domain of attraction. Probability Theory
and Related Fields, 175(1-2):1–44, 2019.

[BFD+07] KE Boul, WC Funk, CR Darst, DC Cannatella, and MJ Ryan. Sexual selection drives speciation in
an amazonian frog. Proceedings of the Royal Society of London B: Biological Sciences, 274(1608):399–
406, 2007.

[BFF+05] Stuart Bearhop, Wolfgang Fiedler, Robert W Furness, Stephen C Votier, Susan Waldron, Jason
Newton, Gabriel J Bowen, Peter Berthold, and Keith Farnsworth. Assortative mating as a
mechanism for rapid evolution of a migratory divide. Science, 310(5747):502–504, 2005.

[BGK05] Matthias Birkner, Jochen Geiger, and Götz Kersting. Branching processes in random
environment‚Äîa view on critical and subcritical cases. In Interacting stochastic systems, pages
269–291. Springer, 2005.

[BHK12] Claudia Bank, Joachim Hermisson, and Mark Kirkpatrick. Can reinforcement complete
speciation? Evolution, 66(1):229–239, 2012.

[Bin76] Nicholas H Bingham. Continuous branching processes and spectral positivity. Stochastic
Processes and their Applications, 4(3):217–242, 1976.



BIBLIOGRAPHY 96

[BJ79] LW Buss and JBC Jackson. Competitive networks: nontransitive competitive relationships in
cryptic coral reef environments. The American Naturalist, 113(2):223–234, 1979.

[BJMSA16] György Barabás, Matthew J. Michalska-Smith, and Stefano Allesina. The effect of intra-and
interspecific competition on coexistence in multispecies communities. The American Naturalist,
188(1):E1–E12, 2016.

[BLM08] Jean Bertoin, Alexander Lindner, and Ross Maller. On continuity properties of the law of
integrals of lévy processes. In Séminaire de probabilités XLI, pages 137–159. Springer, 2008.

[Böi14] Christian Böinghoff. Limit theorems for strongly and intermediately supercritical branching
processes in random environment with linear fractional offspring distributions. Stochastic
Processes and their Applications, 124(11):3553–3577, 2014.

[Bou01] Janette W. Boughman. Divergent sexual selection enhances reproductive isolation in
sticklebacks. Nature, 411(6840):944–948, 2001.

[BP96] Patricia R. Y. Backwell and Neville I. Passmore. Time constraints and multiple choice criteria in
the sampling behaviour and mate choice of the fiddler crab, uca annulipes. Behavioral Ecology
and Sociobiology, 38(6):407–416, 1996.

[BP97] Benjamin Bolker and Stephen W Pacala. Using moment equations to understand stochastically
driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52(3):179–197, 1997.

[BP99] Benjamin M Bolker and Stephen W Pacala. Spatial moment equations for plant competition:
understanding spatial strategies and the advantages of short dispersal. Am. Nat., 153(6):575–602,
1999.

[BPS13] Vincent Bansaye, Juan Carlos Pardo, and Charline Smadi. On the extinction of continuous state
branching processes with catastrophes. Electronic Journal of Probability, 18, 2013.

[BPS21] Bansaye, Vincent, Pardo, Juan Carlos, and Smadi, Charline. Extinction rate of continuous state
branching processes in critical lévy environments. ESAIM: PS, 25:346–375, 2021.

[BS15] Vincent Bansaye and Florian Simatos. On the scaling limits of galton-watson processes in
varying environments. Electronic Journal of Probability, 20, 2015.

[BS17] Sylvain Billiard and Charline Smadi. The interplay of two mutations in a population of varying
size: a stochastic eco-evolutionary model for clonal interference. Stochastic Processes and their
Applications, 127(3):701–748, 2017.

[BS20] Sylvain Billiard and Charline Smadi. Stochastic dynamics of three competing clones: Conditions
and times for invasion, coexistence, and fixation. The American Naturalist, 195(3):463–484, 2020.

[BSS17] Rebekka Brink-Spalink and Charline Smadi. Genealogies of two linked neutral loci after
a selective sweep in a large population of stochastically varying size. Advances in Applied
Probability, 49(1):279–326, 2017.

[BT11] Vincent Bansaye and Viet C Tran. Branching feller diffusion for cell division with parasite
infection. alea-lat. Am. J. Probab, 8(81-127):241–242, 2011.

[BT20] Jochen Blath and András Tóbiás. Invasion and fixation of microbial dormancy traits under
competitive pressure. Stochastic Processes and their Applications, 130(12):7363–7395, 2020.

[BWJR05] John Byers, Patryce Wiseman, Lee Jones, and Thomas Roffe. A large cost of female mate
sampling in pronghorn. The American Naturalist, 166(6):661–668, 2005.



BIBLIOGRAPHY 97

[BY05] Jean Bertoin and Marc Yor. Exponential functionals of lévy processes. Probability Surveys,
2:191–212, 2005.

[CBM06] Matthew C Cowperthwaite, James J Bull, and Lauren Ancel Meyers. From bad to good: Fitness
reversals and the ascent of deleterious mutations. PLoS computational biology, 2(10), 2006.

[CCL+19] Camille Coron, Manon Costa, Fabien Laroche, Hélène Leman, and Charline Smadi. Emergence
of homogamy in a two-loci stochastic population model. arXiv preprint arXiv:1902.07926, 2019.

[CCLS18] Camille Coron, Manon Costa, Hélène Leman, and Charline Smadi. A stochastic model for
speciation by mating preferences. Journal of mathematical biology, 76(6):1421–1463, 2018.

[CCM16] Jean-René Chazottes, Pierre Collet, and Sylvie Méléard. Sharp asymptotics for the quasi-
stationary distribution of birth-and-death processes. Probab. Theor. Rel. Fields, 164(1-2):285–332,
2016.

[CCM19] Jean-René Chazottes, Pierre Collet, and Sylvie Méléard. On time scales and quasi-stationary
distributions for multitype birth-and-death processes. In Annales de l’Institut Henri Poincaré,
Probabilités et Statistiques, volume 55, pages 2249–2294. Institut Henri Poincaré, 2019.

[CFB01] Nicolas Champagnat, Régis Ferrière, and Gérard Ben Arous. The canonical equation of adaptive
dynamics: A mathematical view. Selection, 2:73–83., 2001.

[CFM08] Nicolas Champagnat, Régis Ferrière, and Sylvie Méléard. From individual stochastic processes
to macroscopic models in adaptive evolution. Stochastic Models, 24(suppl. 1):2–44, 2008.

[CGG+15] José M Cuevas, Ron Geller, Raquel Garijo, José López-Aldeguer, and Rafael Sanjuán. Extremely
high mutation rate of hiv-1 in vivo. PLoS biology, 13(9), 2015.

[Cha06] Nicolas Champagnat. A microscopic interpretation for adaptive dynamics trait substitution
sequence models. Stochastic processes and their applications, 2006.

[Chi06] Carmen Chicone. Ordinary Differential Equations with Applications. Number 34 in Texts in
Applied Mathematics. Springer-Verlag New York, 2006.

[CHP02] Tamás L Czárán, Rolf F Hoekstra, and Ludo Pagie. Chemical warfare between microbes
promotes biodiversity. Proceedings of the National Academy of Sciences, 99(2):786–790, 2002.

[Cis99] Cindy R. Cisar. Mating system of the filamentous ascomycete, glomerella cingulata. Current
Genetics, 1999.

[CKS21] Loren Coquille, Anna Kraut, and Charline Smadi. Stochastic individual-based models with
power law mutation rate on a general finite trait space. Electronic Journal of Probability, 26:1–37,
2021.

[Clo17] Bertrand Cloez. Limit theorems for some branching measure-valued processes. Adv. Appl.
Probab., 49(2):549–580, 2017.

[CLPPJ17] Mathieu Chouteau, Violaine Llaurens, Florence Piron-Prunier, and Mathieu Joron.
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection
pressures. Proceedings of the National Academy of Sciences, 114(31):8325–8329, 2017.

[CM11] Nicolas Champagnat and Sylvie Méléard. Polymorphic evolution sequence and evolutionary
branching. Probability Theory and Related Fields, 151(1-2):45–94, 2011.

[CMPR13] Camille Coron, Sylvie Méléard, Emmanuelle Porcher, and Alexandre Robert. Quantifying the
mutational meltdown in diploid populations. The American Naturalist, 181(5):623–636, 2013.



BIBLIOGRAPHY 98

[CMT19] Nicolas Champagnat, Sylvie Méléard, and Viet Chi Tran. Stochastic analysis of emergence
of evolutionary cyclic behavior in population dynamics with transfer. arXiv preprint
arXiv:1901.02385, 2019.

[CSKC19] Thomas Cordonnier, Charline Smadi, Georges Kunstler, and Benoît Courbaud. Asymmetric
competition, ontogenetic growth and size inequality drive the difference in productivity
between two-strata and one-stratum forest stands. Theoretical population biology, 130:83–93, 2019.

[CWA09] Duncan D Cameron, Andy White, and Janis Antonovics. Parasite–grass–forb interactions and
rock–paper–scissor dynamics: predicting the effects of the parasitic plant rhinanthus minor on
host plant communities. Journal of Ecology, 97(6):1311–1319, 2009.

[dCBK08] Maria Angeles R. de Cara, Nick H. Barton, and Mark Kirkpatrick. A model for the evolution of
assortative mating. The American Naturalist, 171(5):580–596, 2008.

[DD99] Ulf Dieckmann and Michael Doebeli. On the origin of species by sympatric speciation. Nature,
400(6742):354–357, 1999.

[DE97] Paul Dupuis and Richard S Ellis. A weak convergence approach to the theory of large deviations.
1997, 1997.

[Dek87] Frederik Michel Dekking. On the survival probability of a branching process in a finite state iid
environment. Stochastic processes and their applications, 27:151–157, 1987.

[DH97] Juan Carlos D’souza and Ben M Hambly. On the survival probability of a branching process in
a random environment. Advances in Applied Probability, 29(1):38–55, 1997.

[Die04] Ulf Dieckmann. Adaptive Speciation. Cambridge Studies in Adaptive Dynamics. Cambridge
University Press, 2004.

[DL96] Ulf Dieckmann and Richard Law. The dynamical theory of coevolution: a derivation from
stochastic ecological processes. Journal of Mathematical Biology, 34(5-6):579–612, 1996.

[DL00] Ulf Dieckmann and Richard Law. Moment approximations of individual-based models. In
U Dieckmann, R Law, and J A J Metz, editors, The geometry of ecological interactions: simplifying
spatial complexity, pages 252–270. Cambridge University Press, 2000.

[DL12] Donald A Dawson and Zenghu Li. Stochastic equations, flows and measure-valued processes.
The Annals of Probability, 40(2):813–857, 2012.

[DLA06] Freddy Dumortier, Jaume Llibre, and Joan C Artés. Qualitative theory of planar differential systems.
Springer, 2006.

[Doe02] Michael Doebeli. A model for the evolutionary dynamics of cross-feeding polymorphisms in
microorganisms. Population Ecology, 44(2):59–70, 2002.

[Dra93] John W Drake. Rates of spontaneous mutation among rna viruses. Proceedings of the National
Academy of Sciences, 90(9):4171–4175, 1993.

[DSH08] Siobain Duffy, Laura A Shackelton, and Edward C Holmes. Rates of evolutionary change in
viruses: patterns and determinants. Nature Reviews Genetics, 9(4):267–276, 2008.

[DSV20] Congzao Dong, Charline Smadi, and Vladimir A Vatutin. Critical branching processes in
random environment and cauchy domain of attraction. ALEA Lat. Am. J. Probab. Math. Stat.,
17:877–900, 2020.



BIBLIOGRAPHY 99

[dVR06] J Arjan GM de Visser and Daniel E Rozen. Clonal interference and the periodic selection of
new beneficial mutations in escherichia coli. Genetics, 172(4):2093–2100, 2006.

[Edw14] Dominic A. Edward. The description of mate choice. Behavioral Ecology, 26(2):301–310, 08 2014.

[EHS15] Steven N Evans, Alexandru Hening, and Sebastian J Schreiber. Protected polymorphisms
and evolutionary stability of patch-selection strategies in stochastic environments. Journal of
Mathematical Biology, 71(2):325–359, 2015.

[EK09] Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence, volume
282. John Wiley & Sons, 2009.

[Épp79] MS Éppel’. A local limit theorem for first passage time. Siberian Mathematical Journal, 20:130–138,
1979.

[Ewe12] Warren J Ewens. Mathematical population genetics 1: theoretical introduction, volume 27. Springer
Science & Business Media, 2012.

[EXN+07] Hannele Erkko, Bing Xia, Jenni Nikkilä, Johanna Schleutker, Kirsi Syrjäkoski, Arto Mannermaa,
Anne Kallioniemi, Katri Pylkäs, Sanna-Maria Karppinen, Katrin Rapakko, et al. A recurrent
mutation in palb2 in finnish cancer families. Nature, 446(7133):316–319, 2007.

[Fel71] William Feller. An Introduction to Probability theory and its application Vol II. John Wiley and Sons,
1971.

[FHG17] Jonathan Friedman, Logan M Higgins, and Jeff Gore. Community structure follows simple
assembly rules in microbial microcosms. Nature ecology & evolution, 1(5):1–7, 2017.

[Fis30] Ronald Aylmer Fisher. The genetical theory of natural selection,. The Clarendon Press, Oxford,
1930.

[FL69] Catherine T. Falk and C. C. Li. Negative assortative mating: Exact solution to a simple model.
Genetics, 1969.

[FL10] Zongfei Fu and Zenghu Li. Stochastic equations of non-negative processes with jumps.
Stochastic Processes and their Applications, 120(3):306–330, 2010.

[FL20] Rongjuan Fang and Zenghu Li. Construction of continuous-state branching processes in
varying environments. arXiv preprint arXiv:2002.09113, 2020.

[FM04] N Fournier and S Méléard. A microscopic probabilistic description of a locally regulated
population and macroscopic approximations. The Annals of Applied Probability, 14(4):1880–1919,
2004.

[Gal17] Laure Gallien. Intransitive competition and its effects on community functional diversity. Oikos,
126(5):615–623, 2017.

[Gav04] Sergey Gavrilets. Fitness landscapes and the origin of species (MPB-41). Princeton University Press,
2004.

[Gav14] Sergey Gavrilets. Models of speciation: Where are we now? Journal of heredity, 105(S1):743–755,
2014.

[GB98] Sergey Gavrilets and Christine Boake. On the evolution of premating isolation after a founder
event. The American Naturalist, 152(5):706–716, 1998. PMID: 18811345.

[GB03] Hans-Otto Georgii and Ellen Baake. Supercritical multitype branching processes: the ancestral
types of typical individuals. Advances in Applied Probability, 35(4):1090–1110, 2003.



BIBLIOGRAPHY 100

[GCS18] Adrián González Casanova and Dario Spanò. Duality and fixation in ξ-wright–fisher processes
with frequency-dependent selection. The Annals of Applied Probability, 28(1):250–284, 2018.

[GCS21] Adrian Gonzalez Casanova and Charline Smadi. Multidimensional lambda-wright-fisher
processes with general frequency-dependent selection. Journal of Applied Probability, 2021.

[GEFS09] Selma Gago, Santiago F Elena, Ricardo Flores, and Rafael Sanjuán. Extremely high mutation
rate of a hammerhead viroid. Science, 323(5919):1308–1308, 2009.

[GK01] Jochen Geiger and Götz Kersting. The survival probability of a critical branching process in a
random environment. Theory of Probability & Its Applications, 45(3):517–525, 2001.

[GKV03] Jochen Geiger, Götz Kersting, and Vladimir A Vatutin. Limit theorems for subcritical branching
processes in random environment. In Annales de l’Institut Henri Poincare (B) Probability and
Statistics, volume 39, pages 593–620. Elsevier, 2003.

[GL98] Philip J Gerrish and Richard E Lenski. The fate of competing beneficial mutations in an asexual
population. Genetica, 102:127, 1998.

[GL01] Yves Guivarc’h and Quansheng Liu. Propriétés asymptotiques des processus de branchement
en environnement aléatoire. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,
332(4):339–344, 2001.

[GM12] Mel Greaves and Carlo C Maley. Clonal evolution in cancer. Nature, 481(7381):306, 2012.

[GMB+17] Benjamin H Good, Michael J McDonald, Jeffrey E Barrick, Richard E Lenski, and Michael M
Desai. The dynamics of molecular evolution over 60,000 generations. Nature, 551(7678):45–50,
2017.

[GMH18] Benjamin H Good, Stephen Martis, and Oskar Hallatschek. Adaptation limits ecological
diversification and promotes ecological tinkering during the competition for substitutable
resources. Proceedings of the National Academy of Sciences, 115(44):E10407–E10416, 2018.

[GMKM97] Stefan AH Geritz, Johan AJ Metz, Éva Kisdi, and Géza Meszéna. Dynamics of adaptation and
evolutionary branching. Physical Review Letters, 78(10):2024, 1997.

[Gre74] David R Grey. Asymptotic behaviour of continuous time, continuous state-space branching
processes. Journal of Applied Probability, 11(4):669–677, 1974.

[Gri74] Anders Grimvall. On the convergence of sequences of branching processes. The Annals of
Probability, pages 1027–1045, 1974.

[Gri80] Robert C Griffiths. Lines of descent in the diffusion approximation of neutral wright-fisher
models. Theoretical population biology, 17(1):37–50, 1980.

[GS11] Jaime L. Grace and Kerry L. Shaw. Coevolution of male mating signal and female preference
during early lineage divergence of the hawaiian cricket, laupala cerasina. Evolution, 65(8):2184–
2196, 2011.

[GZLA17] Laure Gallien, Niklaus E Zimmermann, Jonathan M Levine, and Peter B Adler. The effects of
intransitive competition on coexistence. Ecology Letters, 20(7):791–800, 2017.

[Hal33] John B S Haldane. The part played by recurrent mutation in evolution. The American Naturalist,
67(708):5–19, 1933.

[HDW04] Fabrice Helfenstein, Etienne Danchin, and Richard H Wagner. Assortative mating and sexual
size dimorphism in black-legged kittiwakes. Waterbirds, 27(3):350–354, 2004.



BIBLIOGRAPHY 101

[HH09] Robert Hardy and Simon C Harris. A spine approach to branching diffusions with applications
to l p-convergence of martingales. In Séminaire de probabilités XLII, pages 281–330. Springer,
2009.

[HKB12] Nelika K. Hughes, Jennifer L. Kelley, and Peter B. Banks. Dangerous liaisons: the predation
risks of receiving social signals. Ecology Letters, 15(11):1326–1339, 2012.

[HLX18] Hui He, Zenghu Li, and Wei Xu. Continuous-state branching processes in lévy random
environments. Journal of Theoretical Probability, 31(4):1952–1974, 2018.

[HM03] Simon J. Hiscock and Stephanie M. McInnis. Pollen recognition and rejection during the
sporophytic self-incompatibility response: Brassica and beyond. Trends in Plant Science, 8(12):606
– 613, 2003.

[HMSP12] Dawn M. Higginson, Kelly B. Miller, Kari A. Segraves, and Scott Pitnick. Female reproductive
tract form drives the evolution of complex sperm morphology. Proceedings of the National
Academy of Sciences, 109(12):4538–4543, 2012.

[HP05] Joachim Hermisson and Pleuni S Pennings. Soft sweeps: molecular population genetics of
adaptation from standing genetic variation. Genetics, 169(4):2335–2352, 2005.

[HSHK06] Matthew Hegreness, Noam Shoresh, Daniel Hartl, and Roy Kishony. An equivalence principle
for the incorporation of favorable mutations in asexual populations. Science, 311(5767):1615–
1617, 2006.

[HTY99] Masahiko Higashi, Gaku Takimoto, and Norio Yamamura. Sympatric speciation by sexual
selection. Nature, 402(6761):523–526, 1999.

[HWE+07] Olivier P Höner, Bettina Wachter, Marion L East, WJ Streich, K Wilhelm, T Burke, and H Hofer.
Female mate-choice drives the evolution of male-biased dispersal in a social mammal. Nature,
448:797–802, 2007.

[IF03] Yasuo Ihara and Marcus W Feldman. Evolution of disassortative and assortative mating
preferences based on imprinting. Theoretical Population Biology, 64(2):193 – 200, 2003.

[JBK13] Yuexin Jiang, Daniel I. Bolnick, and Mark Kirkpatrick. Assortative mating in animals. The
American Naturalist, 181(6):E125–E138, 2013. PMID: 23669548.

[JCW+21] Paul Jay, Mathieu Chouteau, Annabel Whibley, Héloïse Bastide, Hugues Parrinello, Violaine
Llaurens, and Mathieu Joron. Mutation load at a mimicry supergene sheds new light on the
evolution of inversion polymorphisms. Nature genetics, 53(3):288–293, 2021.

[JFJ+11] Mathieu Joron, Lise Frezal, Robert T. Jones, Nicola L. Chamberlain, Siu F. Lee, Christoph R.
Haag, Annabel Whibley, Michel Becuwe, Simon W. Baxter, Laura Ferguson, Paul A. Wilkinson,
Camilo Salazar, Claire Davidson, Richard Clark, Michael A. Quail, Helen Beasley, Rebecca
Glithero, Christine Lloyd, Sarah Sims, Matthew C. Jones, Jane Rogers, Chris D. Jiggins, and
Richard H. ffrench Constant. Chromosomal rearrangements maintain a polymorphic supergene
controlling butterfly mimicry. Nature, 477(7363):203–206, 2011.

[Jivr58] Miloslav Jivrina. Stochastic branching processes with continuous state space. Czechoslovak
Mathematical Journal, 8(2):292–313, 1958.

[JNCM01] Chris D. Jiggins, Russell E. Naisbit, Rebecca L. Coe, and Jam Mallet. Reproductive isolation
caused by colour pattern mimicry. Nature, 411(6835):302–305, 2001.



BIBLIOGRAPHY 102

[JR09] AG Jones and NL Ratterman. Mate choice and sexual selection: What have we learned since
darwin? PNAS, 106(1):10001–10008, 2009.

[Kap74] Norman Kaplan. A note on the supercritical branching processes with random environments.
The Annals of Probability, 2(3):509–514, 1974.

[Kei75] Niels Keiding. Extinction and exponential growth in random environments. Theoretical
Population Biology, 8(1):49–63, 1975.

[KF68] Samuel Karlin and Marcus W. Feldman. Further analysis of negative assortative mating.
Genetics, 1968.

[KF83] R. W. Knapton and J. B. Falls. Differences in parental contribution among pair types in the
polymorphic white-throated sparrow. Canadian Journal of Zoology, 61(6):1288–1292, 1983.

[KH67] Jakob P Kruijt and Jerry A Hogan. Social behavior on the lek in black grouse, lyrurus tetrix
tetrix (l.). Ardea, 55(1‚Äì2):204 – 240, 1967.

[KH08] Michael Kopp and Joachim Hermisson. Competitive speciation and costs of choosiness. Journal
of Evolutionary Biology, 21(4):1005–1023, 2008.

[Kir82] Mark Kirkpatrick. Sexual selection and the evolution of female choice. Evolution, 36(1):1–12,
1982.

[Kir00] Mark Kirkpatrick. Reinforcement and divergence under assortative mating. Proceedings of the
Royal Society of London. Series B: Biological Sciences, 267(1453):1649–1655, 2000.

[KN97] Stephen M Krone and Claudia Neuhauser. Ancestral processes with selection. Theoretical
population biology, 51(3):210–237, 1997.

[KN04] Mark Kirkpatrick and Scott L. Nuismer. Sexual selection can constrain sympatric speciation.
Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1540):687–693, 2004.

[KO78] Motoo Kimura and Tomoko Ohta. Stepwise mutation model and distribution of allelic
frequencies in a finite population. Proceedings of the National Academy of Sciences, 75(6):2868–2872,
1978.

[Koz76] Mikhail Vasil’evich Kozlov. On asymptotics of the probability of nonextinction for a critical
branching process in random environment. Teoriya Veroyatnostei i ee Primeneniya, 21(4):813–825,
1976.

[Koz77] Mikhail V Kozlov. On the asymptotic behavior of the probability of non-extinction for critical
branching processes in a random environment. Theory of Probability & Its Applications, 21(4):791–
804, 1977.

[KP08] Andreas E Kyprianou and Juan-Carlos Pardo. Continuous-state branching processes and
self-similarity. Journal of Applied Probability, 45(4):1140–1160, 2008.

[KPS+12] Alexey Kuznetsov, Juan Carlos Pardo, Mladen Savov, et al. Distributional properties of
exponential functionals of lévy processes. Electronic Journal of Probability, 17, 2012.

[KR02] Mark Kirkpatrick and Virginie Ravigné. Speciation by natural and sexual selection: Models
and experiments. The American Naturalist, 159(S3):S22–S35, 2002.

[KR04] Benjamin C Kirkup and Margaret A Riley. Antibiotic-mediated antagonism leads to a bacterial
game of rock–paper–scissors in vivo. Nature, 428(6981):412, 2004.



BIBLIOGRAPHY 103

[KR19] Igor Kortchemski and Loïc Richier. Condensation in critical cauchy bienaymé–galton–watson
trees. The Annals of Applied Probability, 29(3):1837–1877, 2019.

[KRFB02] Benjamin Kerr, Margaret A Riley, Marcus W Feldman, and Brendan JM Bohannan. Local
dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature, 418(6894):171,
2002.

[KS98] Alexey S Kondrashov and Max Shpak. On the origin of species by means of assortative mating.
Proceedings. Biological sciences, 265(1412):2273–2278, 12 1998.

[KSM+18] Michael Kopp, Maria R. Servedio, Tamra C. Mendelson, Rebecca J. Safran, Rafael L. Rodriguez,
Mark E. Hauber, Elizabeth C. Scordato, Laurel B. Symes, Christopher N. Balakrishnan, David M.
Zonana, and G. Sander van Doorn. Mechanisms of assortative mating in speciation with gene
flow: Connecting theory and empirical research. The American Naturalist, 191(1):1–20, 2018.
PMID: 29244561.

[Kur78] Thomas G Kurtz. Diffusion approximations for branching processes. In Branching processes
(Conf., Saint Hippolyte, Que., 1976), volume 5, pages 269–292, 1978.

[KV17] Götz Kersting and Vladimir Alekseevich Vatutin. Discrete time branching processes in random
environment. Wiley Online Library, 2017.

[KWK+14] Margie Kinnersley, Jared Wenger, Evgueny Kroll, Julian Adams, Gavin Sherlock, and Frank
Rosenzweig. Ex uno plures: clonal reinforcement drives evolution of a simple microbial
community. PLoS genetics, 10(6), 2014.

[Kyp06] Andreas E Kyprianou. Introductory lectures on fluctuations of Lévy processes with applications.
Springer Science & Business Media, 2006.

[Lam67a] John Lamperti. Continuous state branching processes. Bulletin of the American Mathematical
Society, 73(3):382–386, 1967.

[Lam67b] John Lamperti. The limit of a sequence of branching processes. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7(4):271–288, 1967.

[Lan81] Russell Lande. Models of speciation by sexual selection on polygenic traits. Proceedings of the
National Academy of Sciences, 78(6):3721–3725, 1981.

[LBD11] Gregory I Lang, David Botstein, and Michael M Desai. Genetic variation and the fate of
beneficial mutations in asexual populations. Genetics, 188(3):647–661, 2011.

[LBV+15] Sasha F Levy, Jamie R Blundell, Sandeep Venkataram, Dmitri A Petrov, Daniel S Fisher, and
Gavin Sherlock. Quantitative evolutionary dynamics using high-resolution lineage tracking.
Nature, 519(7542):181–186, 2015.

[Lem16] Hélène Leman. Convergence of an infinite dimensional stochastic process to a spatially
structured trait substitution sequence. Stochastics and Partial Differential Equations: Analysis and
Computations, 4(4):791–826, 2016.

[Li10] Zenghu Li. Measure-valued branching Markov processes. Springer Science & Business Media, 2010.

[LK88] R Lande and M Kirkpatrick. Ecological speciation by sexual selection. Journal of Theoretical
Biology, 133(1):85–98, 1988.

[LOPA03] Richard E Lenski, Charles Ofria, Robert T Pennock, and Christoph Adami. The evolutionary
origin of complex features. Nature, 423(6936):139–144, 2003.



BIBLIOGRAPHY 104

[LP12] Zenghu Li and Fei Pu. Strong solutions of jump-type stochastic equations. Electronic
Communications in Probability, 17(2011):1–13, 2012.

[LRH+13] Gregory I Lang, Daniel P Rice, Mark J Hickman, Erica Sodergren, George M Weinstock, David
Botstein, and Michael M Desai. Pervasive genetic hitchhiking and clonal interference in forty
evolving yeast populations. Nature, 500(7464):571–574, 2013.

[LSA+19] François Lavallée, Charline Smadi, Isabelle Alvarez, Björn Reineking, François-Marie Martin,
Fanny Dommanget, and Sophie Martin. A stochastic individual-based model for the growth
of a stand of japanese knotweed including mowing as a management technique. Ecological
Modelling, 413:108828, 2019.

[LX18] Zenghu Li and Wei Xu. Asymptotic results for exponential functionals of lévy processes.
Stochastic Processes and their Applications, 128(1):108–131, 2018.

[Mar16] Aline Marguet. Uniform sampling in a structured branching population. arXiv preprint
arXiv:1609.05678, 2016.

[Mar19] A. Marguet. A law of large numbers for branching Markov processes by the ergodicity of
ancestral lineages. ESAIM: Probab. Stat., 2019.

[MBJ+21] Ludovic Maisonneuve, Thomas Beneteau, Mathieu Joron, Charline Smadi, and Violaine
Llaurens. When do opposites attract? a model uncovering the evolution of disassortative
mating. The American Naturalist, 198(5):625–641, 2021.

[MCN14] Richard M. Merrill, Audrey Chia, and Nicola J. Nadeau. Divergent warning patterns contribute
to assortative mating between incipient heliconius species. Ecology and Evolution, 4(7):911–917,
2014.

[MGM+95] Johan AJ Metz, Stefan AH Geritz, Géza Meszéna, Frans JA Jacobs, and Joost S Van Heerwaarden.
Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction.
1995.

[MGME99] Rosario Miralles, Philip J Gerrish, Andrés Moya, and Santiago F Elena. Clonal interference and
the evolution of rna viruses. Science, 285(5434):1745–1747, 1999.

[MGML12] Fedele Manna, Romain Gallet, Guillaume Martin, and Thomas Lenormand. The high-
throughput yeast deletion fitness data and the theories of dominance. Journal of evolutionary
biology, 25(5):892–903, 2012.

[MHGC04] Andrés Moya, Edward C Holmes, and Fernando González-Candelas. The population genetics
and evolutionary epidemiology of rna viruses. Nature Reviews Microbiology, 2(4):279–288, 2004.

[ML75] Robert M May and Warren J Leonard. Nonlinear aspects of competition between three species.
SIAM journal on applied mathematics, 29(2):243–253, 1975.

[ML06] Guillaume Martin and Thomas Lenormand. The fitness effect of mutations across environments:
a survey in light of fitness landscape models. Evolution, 60(12):2413–2427, 2006.

[MLB15] Rohan Maddamsetti, Richard E Lenski, and Jeffrey E Barrick. Adaptation, clonal interference,
and frequency-dependent interactions in a long-term evolution experiment with escherichia
coli. Genetics, 200(2):619–631, 2015.

[MNG92] Johan AJ Metz, Roger M Nisbet, and Stefan AH Geritz. How should we define ‚Äòfitness‚Äô
for general ecological scenarios? Trends in Ecology & Evolution, 7(6):198–202, 1992.



BIBLIOGRAPHY 105

[MP02] Gary T. Miller and Scott Pitnick. Sperm-female coevolution in drosophila. Science,
298(5596):1230–1233, 2002.

[MP13] Philipp W Messer and Dmitri A Petrov. Population genomics of rapid adaptation by soft
selective sweeps. Trends in ecology & evolution, 28(11):659–669, 2013.

[MS05] Tamra C Mendelson and Kerry L Shaw. Sexual behaviour: rapid speciation in an arthropod.
Nature, 433(7024):375–376, 2005.

[MS20] Aline Marguet and Charline Smadi. Parasite infection in a cell population with deaths. 2020.

[MS21] Aline Marguet and Charline Smadi. Long time behaviour of continuous-state nonlinear
branching processes with catastrophes. Electronic Journal of Probability, 26:1–32, 2021.

[MSL21] Ludovic Maisonneuve, Charline Smadi, and Violaine Llaurens. The limits of evolutionary
convergence in sympatry: reproductive interference and developmental constraints leading to
local diversity in aposematic signals. bioRxiv, 2021.

[MSL22] Ludovic Maisonneuve, Charline Smadi, and Violaine Llaurens. Evolutionary origins of sexual
dimorphism: Lessons from female-limited mimicry in butterflies. Evolution, 2022.

[MSNMF06] Ram Maharjan, Shona Seeto, Lucinda Notley-McRobb, and Thomas Ferenci. Clonal adaptive
radiation in a constant environment. Science, 313(5786):514–517, 2006.

[Mul32] Hermann Joseph Muller. Some genetic aspects of sex. The American Naturalist, 66(703):118–138,
1932.

[Mul64] Hermann Joseph Muller. The relation of recombination to mutational advance. Mutation
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 1(1):2–9, 1964.

[MWB+12] Richard M Merrill, Richard WR Wallbank, Vanessa Bull, PCA Salazar, J Mallet, M Stevens, and
CD Jiggins. Disruptive ecological selection on a mating cue. Proceedings of the Royal Society of
London B: Biological Sciences, 279(1749):4907–4913, 2012.

[Nag83] Thomas Nagylaki. Evolution of a finite population under gene conversion. Proceedings of the
National Academy of Sciences, 80(20):6278–6281, 1983.

[Neh13] Richard A Neher. Genetic draft, selective interference, and population genetics of rapid
adaptation. Annual review of Ecology, evolution, and Systematics, 44:195–215, 2013.

[Nei75] Masatoshi Nei. Molecular population genetics and evolution. North-Holland Publishing Company.,
1975.

[NHBG96] Axel Nohturfft, Xianxin Hua, Michael S Brown, and Joseph L Goldstein. Recurrent g-to-a
substitution in a single codon of srebp cleavage-activating protein causes sterol resistance in
three mutant chinese hamster ovary cell lines. Proceedings of the National Academy of Sciences,
93(24):13709–13714, 1996.

[NHK11] Joshua R Nahum, Brittany N Harding, and Benjamin Kerr. Evolution of restraint in a structured
rock–paper–scissors community. Proceedings of the National Academy of Sciences, 108(Supplement
2):10831–10838, 2011.

[NNS+07] Shalini Nair, Denae Nash, Daniel Sudimack, Anchalee Jaidee, Marion Barends, Anne-Catrin
Uhlemann, Sanjeev Krishna, Francois Nosten, and Tim JC Anderson. Recurrent gene
amplification and soft selective sweeps during evolution of multidrug resistance in malaria
parasites. Molecular biology and evolution, 24(2):562–573, 2007.



BIBLIOGRAPHY 106

[NOB08] Scott L. Nuismer, Sarah P. Otto, and François Blanquart. When do host‚Äìparasite interactions
drive the evolution of non-random mating? Ecology Letters, 11(9):937–946, 2008.

[O’D80] Peter O’Donald. Genetic models of sexual selection. Cambridge University Press, 1980.

[OSN08] Sarah P. Otto, Maria R. Servedio, and Scott L. Nuismer. Frequency-dependent selection and the
evolution of assortative mating. Genetics, 179(4):2091–2112, 2008.

[Ott89] Daniel Otte. Speciation in hawaiian crickets. Speciation and its Consequences, pages 482–526,
1989.

[PKM+08] Pleuni S Pennings, Michel Kopp, G Meszéna, Ulf Dieckmann, and Joachim Hermisson. An
analytically tractable model for competitive speciation. The American Naturalist, 171(1):E44–E71,
2008.

[Pom87] Andrew Pomiankowski. The costs of choice in sexual selection. Journal of Theoretical Biology,
128(2):195 – 218, 1987.

[PP17] Sandra Palau and Juan Carlos Pardo. Continuous state branching processes in random
environment: The brownian case. Stochastic Processes and their Applications, 127(3):957–994, 2017.

[PP18] Sandra Palau and Juan Carlos Pardo. Branching processes in a lévy random environment. Acta
Applicandae Mathematicae, 153(1):55–79, 2018.

[PPS16] Sandra Palau, Juan Carlos Pardo, and Charline Smadi. Asymptotic behaviour of exponential
functionals of l\’evy processes with applications to random processes in random environment.
ALEA Lat. Am. J. Probab. Math. Stat., 13(2):1235‚Äì1258, 2016.

[PR09] Jonathan N. Pruitt and Susan E. Riechert. Male mating preference is associated with risk of
pre-copulatory cannibalism in a socially polymorphic spider. Behavioral Ecology and Sociobiology,
63(11):1573–1580, 2009.

[PRvS+13] Juan Carlos Pardo, Victor Rivero, Kees van Schaik, et al. On the density of exponential
functionals of lévy processes. Bernoulli, 19(5A):1938–1964, 2013.

[PS18] Pierre Patie and Mladen Savov. Bernstein-gamma functions and exponential functionals of lévy
processes. Electronic Journal of Probability, 23:1–101, 2018.

[RA06] David T. Redden and David B. Allison. The effect of assortative mating upon genetic association
studies: Spurious associations and population substructure in the absence of admixture.
Behavior Genetics, 36(5):678–686, Sep 2006.

[RGC+07] Hiba Risheg, John M Graham, Robin D Clark, R Curtis Rogers, John M Opitz, John B Moeschler,
Andreas P Peiffer, Melanie May, Sumy M Joseph, Julie R Jones, et al. A recurrent mutation in
med12 leading to r961w causes opitz-kaveggia syndrome. Nature genetics, 39(4):451–453, 2007.

[Rit07] Michael G Ritchie. Sexual selection and speciation. Annual Review of Ecology, Evolution, and
Systematics, 38(1):79–102, 2007.

[Rob90] Jeremy G.M. Robertson. Female choice increases fertilization success in the australian frog,
uperoleia laevigata. Animal Behaviour, 39(4):639 – 645, 1990.

[Ros17] Gil Guastoni Rosenthal. Mate choice : the evolution of sexual decision making from microbes to
humans. Princeton University Press, 2017.



BIBLIOGRAPHY 107

[RSB+03] Sjoerd Repping, Helen Skaletsky, Laura Brown, Saskia KM van Daalen, Cindy M Korver,
Tatyana Pyntikova, Tomoko Kuroda-Kawaguchi, Jan WA de Vries, Robert D Oates, Sherman
Silber, et al. Polymorphism for a 1.6-mb deletion of the human y chromosome persists through
balance between recurrent mutation and haploid selection. Nature genetics, 35(3):247–251, 2003.

[RSTA94] Frank Rosenzweig, RR Sharp, David S Treves, and Julian Adams. Microbial evolution in a
simple unstructured environment: genetic differentiation in escherichia coli. Genetics, 137(4):903–
917, 1994.

[RT98] Paul B Rainey and Michael Travisano. Adaptive radiation in a heterogeneous environment.
Nature, 394(6688):69–72, 1998.

[Sac64] Giuseppe Sacca. Comparative bionomics in the genus musca. Annual Review of Entomology,
9(1):341–358, 1964.

[SAL+06] Vincent Savolainen, Marie-Charlotte Anstett, Christian Lexer, Ian Hutton, James J. Clarkson,
Maria V. Norup, Martyn P. Powell, David Springate, Nicolas Salamin, and William J. Baker.
Sympatric speciation in palms on an oceanic island. Nature, 441:210–2013, 2006.

[SB06] Kristan A. Schneider and Reinhard Bürger. Does competitive divergence occur if assortative
mating is costly? Journal of Evolutionary Biology, 19(2):570–588, 2006.

[SB14] Maria R Servedio and Reinhard Bürger. The counterintuitive role of sexual selection in species
maintenance and speciation. Proceedings of the National Academy of Sciences, 111(22):8113–8118,
2014.

[SB15] Maria R Servedio and Reinhard Bürger. The effects of sexual selection on trait divergence in a
peripheral population with gene flow. Evolution, 69(10):2648–2661, 2015.

[SBM+09] Laura B Scheinfeldt, Shameek Biswas, Jennifer Madeoy, Caitlin F Connelly, Eric E Schadt,
and Joshua M Akey. Population genomic analysis of alms1 in humans reveals a surprisingly
complex evolutionary history. Molecular biology and evolution, 26(6):1357–1367, 2009.

[Sch88] PL Schwagmeyer. Scramble-competition polygyny in an asocial mammal: Male mobility and
mating success. The American Naturalist, 131:885–892, 1988.

[Sen76] Eugene Seneta. Functions of regular variation. In Regularly Varying Functions, pages 1–52.
Springer, 1976.

[Sil68] Martin L Silverstein. A new approach to local times. Journal of Mathematics and Mechanics,
17(11):1023–1054, 1968.

[SK13] Sebastian J Schreiber and Timothy P Killingback. Spatial heterogeneity promotes coexistence of
rock–paper–scissors metacommunities. Theoretical population biology, 86:1–11, 2013.

[SL96] Barry Sinervo and Curt M Lively. The rock–paper–scissors game and the evolution of alternative
male strategies. Nature, 380(6571):240, 1996.

[SLB+18] Santiago Soliveres, Anika Lehmann, Steffen Boch, Florian Altermatt, Francesco Carrara,
Thomas W Crowther, Manuel Delgado-Baquerizo, Anne Kempel, Daniel S Maynard, Matthias C
Rillig, et al. Intransitive competition is common across five major taxonomic groups and is
driven by productivity, competitive rank and functional traits. Journal of Ecology, 106(3):852–864,
2018.

[SLL18] Charline Smadi, Hélène Leman, and Violaine Llaurens. Looking for the right mate in diploid
species: How does genetic dominance affect the spatial differentiation of a sexual trait? Journal
of theoretical biology, 447:154–170, 2018.



BIBLIOGRAPHY 108

[SM15] Chad C Smith and Ulrich G Mueller. Sexual transmission of beneficial microbes. Trends in
Ecology & Evolution, 30(8):438 – 440, 2015.

[Sma15] Charline Smadi. An eco-evolutionary approach of adaptation and recombination in a large
population of varying size. Stochastic Processes and their Applications, 125(5):2054–2095, 2015.

[Sma17] Charline Smadi. The effect of recurrent mutations on genetic diversity in a large population of
varying size. Acta Applicandae Mathematicae, 149(1):11–51, 2017.

[Sma22] Charline Smadi. Parasite infection in a cell population with deaths and reinfections. MathS in
Action, 2022.

[SP02] Kerry L Shaw and Yvonne M Parsons. Divergence of mate recognition behavior and its
consequences for genetic architectures of speciation. The American Naturalist, 159(S3):S61–S75,
2002.

[STM+08] Ole Seehausen, Yohey Terai, I Magalhaes, K Carleton, H Mrosso, R Miyagi, I van der Sluijs,
M Schneider, M Maan, H Tachida, H Imai, and N Okada. Speciation through sensory drive in
cichlid fish. Nature, 455(7213):620–626, 2008.

[SV16] Charline Smadi and Vladimir A Vatutin. Reduced two-type decomposable critical branching
processes with possibly infinite variance. Markov Processes and Related Fields, 21(2):311–358,
2016.

[SV21a] Charline Smadi and Vladimir Vatutin. Critical branching processes in random environment
with immigration: survival of a single family. Extremes, pages 1–28, 2021.

[SV21b] Charline Smadi and Vladimir A Vatutin. Critical branching processes in random environment
with immigration: the size of the only surviving family. arXiv preprint arXiv:2109.13315, 2021.

[SW69] Walter L Smith and William E Wilkinson. On branching processes in random environments.
The Annals of Mathematical Statistics, 40(3):814–827, 1969.

[SXF+06] Eileen M Shore, Meiqi Xu, George J Feldman, David A Fenstermacher, Tae-Joon Cho, In Ho Choi,
J Michael Connor, Patricia Delai, David L Glaser, Martine LeMerrer, et al. A recurrent mutation
in the bmp type i receptor acvr1 causes inherited and sporadic fibrodysplasia ossificans
progressiva. Nature genetics, 38(5):525–527, 2006.

[TA90] Douglas R Taylor and Lonnie W Aarssen. Complex competitive relationships among genotypes
of three perennial grasses: implications for species coexistence. The American Naturalist,
136(3):305–327, 1990.

[TB95] George F Turner and Michael T Burrows. A model of sympatric speciation by sexual selection.
Proceedings of the Royal Society of London B: Biological Sciences, 260(1359):287–292, 1995.

[TBK+16] Elaina M. Tuttle, Alan O. Bergland, Marisa L. Korody, Michael S. Brewer, Daniel J. Newhouse,
Patrick Minx, Maria Stager, Adam Betuel, Zachary A. Cheviron, Wesley C. Warren, Rusty A.
Gonser, and Christopher N. Balakrishnan. Divergence and functional degradation of a sex
chromosome-like supergene. Current Biology, 26(3):344–350, 2016.

[Tho83] Randy Thornhill. Cryptic female choice and its implications in the scorpionfly harpobittacus
nigriceps. The American Naturalist, 122(6):765–788, 1983.

[Thr75] H. Bruce Throneycroft. A cytogenetic study of the white-throated sparrow, zonotrichia albicollis
(gmelin). Evolution, 29(4):611–621, 1975.



BIBLIOGRAPHY 109

[Tra08] Viet C Tran. Large population limit and time behaviour of a stochastic particle model describing
an age-structured population. ESAIM: Probab. Statist., 12:345‚Äì386, 2008.

[TRR+07] Sarah A Tishkoff, Floyd A Reed, Alessia Ranciaro, Benjamin F Voight, Courtney C Babbitt,
Jesse S Silverman, Kweli Powell, Holly M Mortensen, Jibril B Hirbo, Maha Osman, et al.
Convergent adaptation of human lactase persistence in africa and europe. Nature genetics,
39(1):31–40, 2007.

[VABS18] Marina Voinson, Alexandra Alvergne, Sylvain Billiard, and Charline Smadi. Stochastic
dynamics of an epidemic with recurrent spillovers from an endemic reservoir. Journal of
theoretical biology, 457:37–50, 2018.

[VDBS+13] Dave Van Ditmarsch, Kerry E Boyle, Hassan Sakhtah, Jennifer E Oyler, Carey D Nadell, Éric
Déziel, Lars EP Dietrich, and Joao B Xavier. Convergent evolution of hyperswarming leads to
impaired biofilm formation in pathogenic bacteria. Cell reports, 4(4):697–708, 2013.

[vDDW04] G Sander van Doorn, Ulf Dieckmann, and Franz J Weissing. Sympatric speciation by sexual
selection: a critical reevaluation. The American Naturalist, 163(5):709–725, 2004.

[VDNH98] Sanders Van Doorn, Andre J Noest, and Paulien Hogeweg. Sympatric speciation and extinction
driven by environment dependent sexual selection. Proceedings of the Royal Society of London B:
Biological Sciences, 265(1408):1915–1919, 1998.

[VDS13] Vladimir A. Vatutin, Elena E. Dyakonova, and Serik Sagitov. Evolution of branching processes
in a random environment. Proceedings of the Steklov Institute of Mathematics, 282(1):220–242, 2013.

[VSB22] Marina Voinson, Charline Smadi, and Sylvain Billiard. How does the community structure
affect epidemiological dynamics of emerging infectious diseases? Ecological Modelling, 472,
2022.

[Wag11] William E. Wagner. Chapter 6 - direct benefits and the evolution of female mating preferences:
Conceptual problems, potential solutions, and a field cricket. volume 43 of Advances in the
Study of Behavior, pages 273 – 319. Academic Press, 2011.

[WPM14] Benjamin A Wilson, Dmitri A Petrov, and Philipp W Messer. Soft selective sweeps in complex
demographic scenarios. Genetics, 198(2):669–684, 2014.

[Wri21] Sewall Wright. Systems of mating iii. assortative mating based on somatic resemblance. Genetics,
6(2):144–161, 1921.

[WSBP95] Claus Wedekind, Thomas Seebeck, Florence Bettens, and Alexander J. Paepke. Mhc-dependent
mate preferences in humans. Proceedings of the Royal Society of London. Series B: Biological Sciences,
260(1359):245–249, 1995.

[Wu85] Chung-I Wu. A stochastic simulation study on speciation by sexual selection. Evolution, pages
66–82, 1985.

[WWV+05] AE Weis, J Winterer, C Vacher, TM Kossler, CA Young, and GL LeBuhn. Phenological assortative
mating in flowering plants: the nature and consequences of its frequency dependence.
Evolutionary Ecology Research, 7(2):161–181, 2005.

[Zee93] Mary Lou Zeeman. Hopf bifurcations in competitive three-dimensional lotka–volterra systems.
Dynamics and stability of systems, 8(3):189–216, 1993.

[ZZ03] E Christopher Zeeman and Mary Lou Zeeman. From local to global behavior in competitive
lotka-volterra systems. Transactions of the American Mathematical Society, pages 713–734, 2003.


	References and organization of the manuscript
	Extinction of branching processes in random environment
	Branching processes in random environment
	Galton-Watson processes
	Galton-Watson processes in random environment
	Continuous state branching processes
	Continuous state branching processes in Lévy random environment

	Asymptotic behaviour of exponential functionals of Lévy processes
	Extinction rate of stable CSBPs in Lévy environment
	Asymptotic behaviour of exponential functionals of Lévy processes
	Applications

	Critical Galton-Watson processes in random environment and Cauchy domain of attraction
	Beyond explicit expressions of the survival probability
	Critical Galton-Watson processes in random environment and Cauchy domain of attraction

	Extinction rate of continuous state branching processes in critical Lévy environments
	Properties of the Lévy environment
	Extinction rate of CSBPs in critical Lévy environments

	Perspectives
	Long time behaviour of bacterial consortia
	Consequences and evolution of somatic mutations in plants


	When mutations are not so rare
	Eco-evolutionnary framework
	Adaptive dynamics
	Model
	Mutation rates

	Stochastic dynamics of three competing clones
	One mutant
	Two mutants: surprising dynamics
	Likelihood of possible outcomes

	The effect of recurrent mutations on genetic diversity
	Crossing a fitness valley
	Deterministic limit  (K,) (,), then 0
	Stochastic limit (K,)(,0)
	On the extinction of the population

	Power law mutation rate on a general finite trait space
	Back mutations before adaptation
	Non-intuitive mutational pathways in the high mutation framework
	Arbitrary large jumps on the lnK-time scale
	Effective random walk across fitness valleys

	Perspectives
	Effects and evolution of high mutation rates
	Eco-evolution and population genetics


	Evolution and consequences of mating preferences
	The effect of assortative mating on speciation
	Two similar patches
	Ideas of the proofs
	Generalisations of the model
	The effect of diploidy

	Evolution to sexual preferences
	Evolution to assortative mating
	Evolution to disassortative mating

	Perspectives
	Convergent evolution and reproductive interference
	Eco-evolutionary models of disassortative mating



