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But it is no longer a question of either maps or territories. Something has
disappeared: the sovereign difference, between one and the other, that
constituted the charm of abstraction. Because it is difference which
constitutes the poetry of the map and the charm of the territory, the magic
of the concept and the charm of the real.

Jean Baudrillard, Simulacra and Simulation (1981)

First of all, whatever we say is words, and what we want to talk about is
generally not words. Second, whatever we mean by what we say is not
what the thing actually is, though it may be similar. For the thing is
always more than what we mean and is never exhausted by our concepts.
And the thing is also different from what we mean, if only because no
thought can be absolutely correct if extended indefinitely. The fact that
the thing has qualities going beyond whatever we think and say about it is
behind our notion of objective reality. Clearly, if reality were ever to
cease to show new aspects that are not in our thought, then we could
hardly say that it had an objective existence independent of us.

David Bohm and F. David Peat, Science, Order and Creativity (1987)
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Abstract

Bacterial hosts, and Escherichia coli in particular, are used extensively for the production of
industrial recombinant protein. The stress induced in the cells by this procedure is systemic -
it introduces radical changes in the finely tuned system of mRNA and protein expression. Due
to the complex and interwoven nature of the bacterial cell, it is no simple thing to understand
the type and extent of these changes. This thesis deals with the problem of understanding and
modeling such stress conditions, in which the entire cellular state is grossly affected.
I have attempted to tackle this problem in a number of ways. I first model and analyze the
regulatory mechanisms involved in the cellular response to the stress provoked by recombinant
protein expression, and show that, despite its apparent complexity, it has some unexpected and
"simple" properties. Afterwards I shift the emphasis from regulation to cellular investment of
resources. Since bioproduction is resource-wise very costly, it is reasonable to expect that many
stress effects are due to the shifts in resource investment brought on by the genetic modification
of the bacterium. For this purpose, I develop and calibrate a steady-state whole-cell model of E.
coli. It is implemented in Resource Balance Analysis, a modeling framework able to realistically
represent the cost of cellular events and account for a number of constraints under which cells
operate - those of energy, efficiency and space - which lead to resource-related cellular decisions.
This models shows good predictive power and because of its scope, level of detail and ease of
manipulation, it can be used to assist experimental design in bioproduction. Lastly, I create
a model whose purpose is to test whether the regulation of the bioproduction-induced stress
responses can be explained by the tendency of the cell to implement resource strategies optimal
for growth. For this purpose, I develop a simple time-resolved model of the heat shock response
which takes into account the cellular constraints of energy, efficiency and space. I show that the
obtained response to stress under the assumption of parsimonious resource allocation closely
resembles one determined by experiment. The conclusions drawn from the three modeling
approaches show that integrating the idea of resource allocation into cell models can help shed
light on many regulatory events and adaptations taking place during bioproduction, and the tools
developed in this thesis can help optimize the process of recombinant protein expression in
Escherichia coli.





Zusammenfassung

Bakterielle Wirte, und insbesondere Escherichia coli, werden in großem Umfang für die Produk-
tion industrieller rekombinanter Proteine verwendet. Der durch dieses Verfahren in den Zellen
induzierte Stress ist systemisch - er führt zu radikalen Veränderungen in dem fein abgestimmten
System der mRNA- und Proteinexpression. Aufgrund der komplexen und verwobenen Natur
der Bakterienzelle ist es nicht einfach, Art und Ausmaß dieser Veränderungen zu verstehen.
Diese Arbeit beschäftigt sich mit dem Problem des Verständnisses und der Modellierung solcher
Stressbedingungen, bei denen der gesamte zelluläre Zustand grob beeinträchtigt wird.
Ich habe versucht, dieses Problem auf verschiedene Weise anzugehen. Zunächst modelliere
und analysiere ich die Regulationsmechanismen, die an der zellulären Antwort auf den durch
rekombinante Proteinexpression provozierten Stress beteiligt sind, und zeige, dass sie trotz
ihrer scheinbaren Komplexität einige unerwartete und "einfache" Eigenschaften hat. Danach
verlagere ich den Schwerpunkt von der Regulation auf die zelluläre Investition von Ressourcen.
Da die Bioproduktion ressourcenmäßig sehr kostspielig ist, liegt die Vermutung nahe, dass viele
Stresseffekte auf die Verschiebungen in der Ressourceninvestition zurückzuführen sind, die
durch die genetische Modifikation des Bakteriums hervorgerufen werden. Zu diesem Zweck
entwickle und kalibriere ich ein Steady-State-Ganzzellmodell von Escherichia coli. Es ist in
Resource Balance Analysis implementiert, einem Modellierungsrahmen, der in der Lage ist, die
Kosten von zellulären Ereignissen realistisch darzustellen und eine Reihe von Einschränkungen
zu berücksichtigen, unter denen Zellen operieren, die der Energie, der Effizienz und des Platzes,
die zu ressourcenbezogenen zellulären Entscheidungen führen. Dieses Modell zeigt eine gute
Vorhersagekraft und kann aufgrund seines Umfangs, seines Detaillierungsgrads und seiner ein-
fachen Manipulierbarkeit zur Unterstützung der Versuchsplanung in der Bioproduktion verwendet
werden. Schließlich erstelle ich ein Modell, dessen Zweck es ist, zu testen, ob die Regulierung
der Bioproduktions-induzierten Stressreaktionen durch die Tendenz der Zelle, für das Wachs-
tum optimale Ressourcenstrategien zu implementieren, erklärt werden kann. Zu diesem Zweck
entwickle ich ein einfaches zeitaufgelöstes Modell der Hitzeschockreaktion, das die zellulären
Beschränkungen von Energie, Effizienz und Raum berücksichtigt. Ich zeige, dass die erhaltene
Reaktion auf Stress unter der Annahme einer sparsamen Ressourcenallokation der experimentell
ermittelten Reaktion sehr ähnlich ist. Die Schlussfolgerungen aus den drei Modellierungsansätzen
zeigen, dass die Integration der Idee der Ressourcenallokation in Zellmodelle helfen kann, Licht
in viele regulatorische Ereignisse und Anpassungen zu bringen, die während der Bioproduktion
stattfinden, und die in dieser Arbeit entwickelten Werkzeuge können helfen, den Prozess der
rekombinanten Proteinexpression in Escherichia coli zu optimieren.
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1. Introduction

Anyone who wants to analyze the properties of matter in a real problem
might want to start by writing down the fundamental equations and then
try to solve them mathematically. Although there are people who try to
use such an approach, these people are the failures in this field; the real
successes come to those who start from a physical point of view, people
who have a rough idea where they are going and then begin by making
the right kind of approximations, knowing what is big and what is small
in a given complicated situation. These problems are so complicated that
even an elementary understanding, although inaccurate and incomplete,
is worth while having, and so the subject will be one that we shall go over
and over again, each time with more and more accuracy, as we go
through our course in physics.

Richard Feynman, Lectures on Physics, Chapter 39

This thesis belongs to the expanding field of systems biology [1] and aims to study certain aspects
of living beings by finding and analyzing suitable mathematical representations, a praxis that is
commonly referred to in the field simply as modeling. My original interest in the topic came from
a somewhat naïve belief in the power of representation combined with an amazement that an
organism as complicated as a human being could function reliably, even for an instant. Because
of their extreme complexity1, the systems of interest in systems biology can be represented in
innumerable ways, each of which highlights certain aspects and ignores others. This plethora of
choice which the modeler always faces makes modeling an art of sorts.
The main research question of this thesis is how to appropriately model and understand the
systemic stress responses in bacterial cells, especially under conditions relevant for bioproduction
of recombinant protein (RP). RPs inherit their name from recombinant DNA, which is DNA
produced by merging genetic material of more than one species. Recombinant DNA can be
designed in a laboratory so as to encourage the production of foreign protein once introduced
into a host organism2. As it interferes with one of the central processes in all cells (that of protein
production), the expression of RP can have diverse effects on the cell. Some of these effects
are protein specific and are caused by the biochemical properties of the RP which introduce a
certain disbalance in the cell either via toxicity or via shifts of its metabolic or compositional
balance. However, some of the effects are more general and get provoked with a large set of
recombinantly expressed proteins. These are: (i) the change in the space available for functional
cellular components, (ii) the change in the distribution of energy, precursors, and other resources
among cellular processes, and (iii) the changes in maintenance requirements of the cellular
proteome. All these have a profound influence on the entire cellular state. In simpler organisms,

1The complexity of biological organisms is encountered on multiple levels: in terms of physical aspects relevant
for their understanding, in terms of their complex structure composed of a vast number of different chemical entities,
and especially in terms of the coordinated interaction of those parts which ensures their smooth functioning.

2The process of expressing a foreign protein in a host organism is often difficult and not necessarily always
successful.
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such as bacteria or yeast, this can be easily noticed in the reduction of their growth rate - the rate
of conversion of foodstuffs to new cells.
Bacteria, due to their ancient origins, relatively small size3 and fast reproduction have had a lot
of opportunity for improvement. Faced with the condition of limited and irregularly available
resources, energetic efficiency becomes one very desirable trait. Therefore, it is reasonable to
assume that most organisms present today, through competition and survival of the fittest, have
become as energetically efficient as possible and necessary for the ecological niches which they
occupy [4]. The logical extension of this thought is to assume that much of the regulation present
in these organisms is there to ensure this efficiency. When we introduce processes into the
cell which tamper with this efficiency and its implementation through regulation, we introduce
changes that greatly affect the state of the cell.
In this introductory chapter, I will first give a short description of the organism of interest -
Gram-negative bacterium Escherichia coli, and will explain some concepts regarding the growth
of bacterial cultures and bacterial metabolism, followed by the effects of the stress caused by
overexpression of gratuitous protein in bacterial hosts. Afterwards, I will give a description of
what is assumed under a coherent cell state. I conclude with a short description of mathematical
modeling approaches of relevance, after which I describe the experimental techniques whose
results were used in this work. The last section contains a layout of this thesis.
The three parts of the thesis that follow address the issues of (1) structural understanding of the
regulatory response activated by overexpression of protein, (2) representation of the coherent
cellular state on the level of the whole cell of E. coli and (3) application of the coherent cellular
state to the study of dynamic cellular response to heat shock.
Please note I have tried to make this thesis self-contained, and have therefore included some
information which might seem banal to the informed reader. I made this decision because of my
personal preference to study from books, and specifically from self-contained ones. Moreover, I
have often found that the devil lies in the banal: whenever knowledge is presented as obvious, it
can suppress the capacity to question it and lead to overlooking some very important assumptions
inherent in the explanation. I hope I have succeeded without making the text too burdensome for
those "in the know". Good reading!

1.1 Escherichia coli in science and industry

Genetically modified versions of E. coli are used in scientific and industrial laboratories throughout
the world [5]. This bacterium is one of the main workhorses of the pharmacological industry,
producing different metabolites and proteins of interest. The reasons for this were initially its
fast growth and ease with which it grows in chemically defined media, as well as the simplicity
of genetic modifications. Today, its usefulness is augmented by the abundance of knowledge
accumulated over the years and the versatility of tools that enable its manipulation. Many
dedicated databases summarize the metabolic, genetic, proteomic and regulatory information
gathered thus far on this organism [6].
Its structure is that typical of Gram-negative bacteria. Its cytosol, which houses its DNA and most
of its protein, is shielded from the environment by two membranes - the inner plasma membrane
and the outer membrane (made out of lipopolysaccharide and protein) between which is a layer
of peptidoglycan. The entire space between the plasma membrane the outer membrane is called
periplasm. Many RPs are expressed in the cytosol. However, as the cytosol of E. coli is crowded

3Small size is meant here as a comparison to the minimum size which guarantees the necessary stability of a
self-replicating unit [2], such as the proposed RNA world protocell [3].
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with macromolecules [7], the purification of the RPs can be difficult. In the periplasm the density
of macromolecules is much lower, rendering it an attractive place for the expression of RPs.
Protein purification from the periplasm is also much more efficient [8].
Under all growth conditions, E. coli cells precisely monitor the energetic richness (in terms of
foodstuffs) and the chemical composition of their surrounding medium and adapt to it. The
capacity of the medium to support growth will influence the internal organization of the cell. This
adaptation will often be observable in the change of the growth rate of the cells. In this thesis I
study how the introduction of a gratuitous RP influences the cellular protein production capacity,
which is one of the most costly cellular processes. Therefore, it is interesting and relevant for this
thesis to consider which cellular processes depend most heavily on the availability of resources
or - to put it in different words - which cost most resources to maintain.

1.1.1 Resources required for bacterial growth

The Christian notion of the Garden of Eden is that of a place of abundance of nature, where
the necessities of man are modest in comparison. Even if the relative abundance in which we
live today makes us somewhat blind to it, the myth carries an important message: energetic
needs are very important, not trivial to satisfy, and guide a great part of the development of all
species, making abundance seem close to the idea of ultimate fulfilment. It is thus logical when
considering the organization of an organism4 to identify the processes that require most resource
investment to be maintained.
First, I would like to explain what I mean by cellular investment of resources (for an attempt
at a systemic definition which goes along the lines of what I propose here see [9]). A cell can
loosely (and somewhat poorly) be defined as a physical implementation of a set of interdependent
functions coordinated by the needs of survival. All of these functions are implemented as complex
series of chemical reactions. In general, this set of reactions requires three types of resources:
(i) an implementational structure which facilitates the reactions, (ii) input of energy and (iii)
chemical reaction substrates. Most cellular functions rely on an implementational structure
composed of protein and RNA. The macromolecular complexes which aid in the implementation
of metabolic functions are called enzymes and comprise a great part of the cellular protein
content. Other functions implemented by protein and RNA are, for example, the duplication
of DNA, transcription into mRNA, and protein production. Energy necessary to fuel all of
these processes is most often available through high-energy bonds of certain metabolites, such
as adenosine triphosphate (ATP) and guanosine triphosphate (GTP). The building blocks for
cellular construction are either directly taken up from the growth medium or synthesized through
metabolic modification of other substrates.
Under relatively stable environmental conditions, cellular growth will mean the faithful duplica-
tion of all cellular components, most of which are macromolecules. The main macromolecular
constituents of the cell are: protein, RNA, DNA, lipids, and carbohydrates. Because of their often
complicated and to a certain degree sensitive structures, macromolecules can take up forms which
prevent them from fulfilling their biological function. Therefore, apart from the creation of new
material, the cell constantly needs to invest resources into maintenance of its existing structures.
All of the classes of macromolecules in cells require production, modification and maintenance5,
and the cost of their existence in the cell can be quantified through the cost of these three
categories. The measurements of macromolecular structure of an E. coli cell [10] show that of all

4The notions of organization and organism are closely related: organism, from Greek ὀργανισμός (organismos),
is derived from the word ὄργανον (organon), also being the origin of the word organization.

5Maintenance can be assumed to comprise degradation as its final step.
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the classes of macromolecules, proteins are by far the most abundant, and account for 50% of
the dry cell weight [11]. This is because almost all of the processes of production, modification
and maintenance of all classes of macromolecules are, at least in part, performed by proteins in
their enzymatic form. Their production requires ribosomes, very large and complex structures
composed of protein and RNA, amino acids and a high amount of energy. Many proteins need
further assistance to assume their functional form, in form of folding, re-folding, and post-
translational modification. Chaperones and proteases, which provide this kind of assistance, are
large protein complexes and often extremely costly.
Of all the other macromolecules, RNAs are the most abundant. In cells, RNAs serve as ribosome
constituents (rRNAs), as transfer RNAs (tRNAs), as messenger RNAs (mRNAs) and as small
RNAs (sRNAs). As almost all of these functions are directly related to protein production, their
synthesis cost can be assumed to be part of protein production cost. DNA in E. coli comprises
only about 3% of total dry cell weight. Even if its maintenance and duplication is a complex
process, it can be considered minor in terms of cellular resource investment compared to protein
production. Apart from metabolites present in the cytosol, the rest of the dry cell weight is
composed of the constituents of cell membranes: lipids, lipopolysaccharides, peptidoglycan, etc.
However, protein investment in the production of these components is only a minor part of the
total proteome [11].
The conclusion we can draw from this short survey is that protein production and maintenance
are what uses up most of the cellular resources. This was important to emphasize in the light of
the topic of this thesis, which is the production of RPs. Since it is so costly, it is to be expected
that this process will be under tight regulatory control and that all attempts at interfering with
it will have extensive consequences on the cellular state. Next, I shortly describe how bacterial
cultures are grown in a laboratory and give a rough outline of experiments for expression of RPs.

1.1.2 Growth of bacterial cultures

The late 19th century saw the rise of the development of experimental techniques for growth
of microorganisms in laboratory environments. In that period the first chemical (and minimal)
medium was defined [12] and first enrichment cultures got cultivated, in which the conditions
for growth of a specific microorganism were optimized [13]. Microbial growth in a laboratory is
performed in a device called bioreactor. In the simplest case, a bioreactor is a vessel containing
the growth-supporting liquid medium, usually shaken or stirred. If all the medium is provided at
the beginning of an experiment, the bioreactor can be classified as a batch reactor. If the nutrients
are supplied during culture growth, one talks of a fed batch reactor. In a continuous reactor,
nutrients are constantly supplied and products are continuously taken up from the culture (with
chemostat being the most common example). The work of this thesis assumes the growth of
cultures in a batch reactor.
Monitoring the growth of microbial cultures in batch reactors in a laboratory often showed
qualitatively very similar results. The curve displaying these results became known as the famous
growth curve, which tracks the number of viable cells over time (see Figure 1.1.1). At first, when
the cells are added to a fresh medium, they need to adapt to the new growth condition, during the
so-called lag phase. Once the cells modify their internal configuration to better suit a new growth
condition, they start growing faster. In this period, the death rate is negligible compared to the
growth rate. This phase is known as the exponential phase or log phase, and the increase in the
number of cells can be described as:

dN(t)
dt

= α(t)N(t) (1.1.1)
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Figure 1.1.1: Stylistic representation of a typical "growth curve" (the number of viable cells over time)
when microbial cultures are grown in a batch reactor, comprised of the adaptation dominated lag phase,
exponential growth phase, followed by the stationary phase brought on by the depletion of nutrients or
accumulation of toxic byproducts, finally ending in the death phase.

as was first introduced by Malthus [14] to describe the growth of populations. α(t) is known as the
growth rate and in the exponential phase it can be assumed to be more or less constant α(t) = αep.
After most of the foodstuffs has been consumed or after a toxic byproduct has accumulated in
the medium to a sufficient degree, cells enter what is known as stationary phase [15]. The name
of the phase implies that there is no change in the number of viable cells during this time. This
does not specify what exactly happens to the cells, but in fact many important changes do happen:
cells change their state from one compatible with growth to another one compatible with survival.
They become smaller in size, different in shape, their membranes become more protective of
external influence, and their internal composition more apt to shield them from different potential
sources of stress. Finally, when the resources are completely depleted, the culture enters into
the death phase (for a good overview, see [16]). In this phase, a large number of cells undergo
programmed cell death. In this way, the bacterial population sacrifices many and provides the
foodstuffs for the survival of a small part of the original population. If the experiment is left
to run for an extended period of time, the death phase is followed by the so-called long-term
stationary phase, in which there is a periodic increase and decrease in the number of viable cells,
and which can last for a very long time [17].
A great community of scientists has been studying the growth of bacterial cultures (for a historical
account see [18]). From being denounced as a field of study by one of its pioneers 6, it soon
became a field in its own right, and quite a fervent one. Under the apparent simplicity of "growth
curves", there lurk many questions regarding the regulation of synthesis of cellular material for a
broad range of growth rates [20, 21]. The work of this thesis focuses on the log phase of bacterial
growth.

1.2 Stress effects of protein overexpression
Bacteria are often used to overexpress protein of industrial or pharmacological use. The genetic
code of these bacteria is altered to express the Protein of Interest (PoI). Sometimes further
modifications are made to improve the capacity of a species to produce it. The optimization
of a species for some industrial use is called chassis design. Such PoI is generally harvested
from batch-grown cultures. The expression of PoI normally does not start from the beginning of
the culture growth, but is generally induced at some later stage. The reason for this is that the

6"The study of the growth of bacterial cultures does not constitute a specialized subject or branch of research: it is
the basic method of Microbiology.", Jacques Monod [19]
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expression of a high yield gratuitous protein hinders cellular growth and would result in slow or
even non-growing cultures.

One common type of problem in such experiments is that it leads to a significant perturbation of
the energy balance in the cell causing cells to undergo a type of starvation. Another (also very
common) kind of a problem is related to the way in which the PoI assumes its native, properly
folded and functional state. All proteins require a specific biochemical environment to fold
properly, but some proteins are more "troublesome" than others. They can require precise pH,
presence of folding assistants (chaperones) and other modification mechanisms (phosphorylation,
glycosylation). Some fold quickly, some very slowly, in iterative steps. Some proteins, which
are produced in one, but need to assume their functional state in another compartment, often
need to remain unfolded until they reach their destination. When such "demanding" proteins
are expressed in high amounts, they can interfere with the native proteome’s capacity to assume
its functional state. It is precisely these kinds of problems that are of interest in this thesis, so I
continue to describe them in more detail.

The native cellular proteome, energetically costly and abundant as it is, is under constant cellular
supervision and quality control. In order to perform their functions, the enzymes of the cell need
to maintain a specific shape, but with a certain degree of "elasticity" allowing them to undergo
conformational changes. This shape is a result of properties of the original amino acid chain and
of its interaction with the cellular environment through a notoriously complex process of folding.
To achieve this functional shape, certain enzymes need assistance. Such assistance is provided by
molecular chaperones, which can help the folding process in a number of ways: by holding the
protein in a partially unfolded form and thus slowing down its folding, by providing an isolated
environment more favorable for folding than the cytosol, or by disrupting parts of the secondary
or tertiary structure which folds in a wrong way.

Holdases bind a protein and slow down further folding, thus giving the protein higher chances
of folding in the right order. Foldases directly assist the folding of a protein. If the proteins
are not in their functional shape, they can be either unfolded, misfolded, partially or completely
folded. Unfolded proteins are those that still have not assumed their functional shape, but without
any part of them being wrongly folded. Misfolded proteins are those that have gone through
certain errors in folding which need to be corrected before the successful folding can continue. In
unfolded and misfolded form, proteins have parts of their hydrophobic "insides" exposed. These
hydrophobic patches bind equally well to other hydrophobic patches of the same protein as to
those of other proteins. In the latter case, different proteins start binding each others hydrophobic
patches and start forming aggregates, bound mixtures of misfolded proteins. These aggregates
quickly become insoluble and present a great problem for the cell as they occupy space and are
a pool of unusable resources. The cell tries to avoid their formation by refolding or degrading
misfolded proteins. To degrade protein, the cell has enzymes that are able to cleave peptide bonds
- proteases.

Chaperones and proteases are the main actors in the cellular response to the accumulation of
unfolded protein - the so-called Unfolded Protein Response (UPR). Because of its ubiquity in
RP expression experiments, the UPR will be the focus of this thesis, together with another stress
response most related to it which happens outside of the laboratory: the Heat Shock Response
(HSR). Their relation and their differences will be described in section 2.3.
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1.3 Control mechanisms in bacteria

When a certain relevant condition of their environment changes (be it positive or negative), bacteria
need to adapt in order to align their internal state in a best way possible to the environmental
condition 7. In order to achieve such adaptations, which can range from slight modifications of
the metabolism to large-scale changes of the proteomic makeup, bacteria (and cells in general)
have mechanisms in place which regulate their internal state. Because of their role in regulating
the internal cellular state to achieve a certain goal (survival, reproduction, etc.), these mechanisms
are called regulatory mechanisms. These can be incredibly diverse, and a big part of our progress
in understanding cells over the last decades has been due to our ever increasing appreciation of
the diversity of the possible ways in which cells regulate themselves. It would be difficult to
pinpoint any cellular function which is not regulated on multiple levels and through a number of
diverse mechanisms, as will become obvious in the next chapter, when describing the regulation
of the UPR.
It is first instructional to ask what kinds of stimuli can an E. coli cell perceive. As a complex chem-
ical system, it can react to the changes of its environment and internal state by sensing (among
other things) (i) temperature, which influences the structure and stability of macromolecules
and diffusion and binding of molecules in general, (ii) concentrations of ions and metabolites,
the binding of which can modulate almost all cellular functions, and (iii) concentrations of
macromolecules which serve to influence the functions of other macromolecular machines by
modulating their transcription, translation or activity. The detection of such signals can result
in a plethora of changes on all levels of cellular organization - they can influence transcription,
translation, efficiencies of particular metabolic processes, degradation of cellular macromolecules
etc. Such changes usually happen in a carefully coordinated regulatory cascade in order to bring
about the necessary systemic changes in the cellular state, such as entrance into stationary state,
change in the cell wall permeability, change in the the growth rate, etc.
This regulation is complex and layered, and here I would like to mention some of the mechanisms
of control one has to have in mind when analyzing regulation of any process. I will focus on
bacteria, and because of the great multitude of ways in which cells regulate their own states, I
will list only a subset sufficient to illustrate the vastness of such mechanisms. These can be:
• structure of DNA [22],
• methylation of DNA
• proximity of genes on DNA
• organization of multiple genes into single transcription units - operons
• distance of promoter to gene
• affinity of promoter to RNA polymerase and transcription factors
• tertiary structure of mRNA as a regulator of translation
• utilization of rare molecules in composition of biological polymers which slow down and

regulate production
• stability, conformational and functional changes of macromolecules induced by binding to

single molecules, other macromolecules, or by changes in temperature
• concentration of different metabolites and ions in the cell.

Depending on which part of the cellular adaptation it affects, regulation can be transcriptional,
post-transcriptional, translational or post-translational. Transcription is performed by a protein

7This statement can generally be considered to be true, if one refrains from specifying precisely what it means to
align the internal state in the best way possible to the environmental condition. It could be said to mean a cellular state
which has shown the highest probability of survival over time in similar conditions, but that would again be to say
little to nothing.
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complex called RNA polymerase, which binds the promoter gene regions. One type of transcrip-
tional control relevant for this thesis is implemented by the so-called σ factors, proteins which
bind and modify the affinity of the RNA polymerase DNA binding region to a specific set of
promoters [23].
Each σ factor exerts its influence through an increased transcription initiation of a set of promoters,
thus influencing the composition of the cellular mRNA and consequently, the protein pool. E.
coli has seven σ factors. One of these factors, σ70, aids the transcription of a great number of E.
coli genes under conditions of normal growth and is thus considered the housekeeping σ factor,
and is the product of the rpoD gene. The other six factors are preferentially used in specific stress
situations E. coli encounters. These are:
• σ32 - the "heat shock" σ factor, regulating the cellular adaptation to increased temperatures

(heat shock),
• σ24 - the extreme heat shock σ factor,
• σ38 - the σ factor regulating the entry into the stationary phase,
• σ28 - σ factor responsible for motility and flagellar synthesis,
• σ54 - σ factor active in regulation of nitrogen-related genes and in conditions of nitrogen

limitation, and
• σ19 - involved in the regulation of transcription of ferric citrate transport genes.

1.4 Modeling in systems biology

Since the span of potential systems of interest is great in systems biology - going from small
network motifs [24] all the way to entire cellular models [25], the span of mathematical modeling
approaches is equally broad. Here I present the modeling approaches relevant for this thesis.

1.4.1 Dynamical modeling
As the knowledge of the internal workings of the living beings accumulated, it became clear that
they are full of complex dynamical phenomena. Interest arose to understand how these dynamical
systems can exhibit certain behaviors, while functioning reliably within a wider cellular context.
The science of dynamic systems in physics and engineering has had a long and successful history
in representation, analysis and synthesis. One of the most common formalisms for modeling
dynamical systems are Ordinary Differential Equations (ODEs): equations which involve not only
different functions of the variables, but also their instantaneous change over a certain independent
variable. The independent variable in all our applications will be time and is designated here as t:

dxi(t)
dt

= f i(x1, ...,xn,u1, ...,um, t) (1.4.1)

The usage of ODEs in modeling of biological phenomena has a long history since it became
evident that cells are full of precisely controlled chemical reactions and that those can be described
through the relations of substrate and product concentrations in the form of ODEs (see section 3.1
on chemical kinetics).
The way in which the instantaneous changes of variables depend on the variables will determine
type and properties of a system. One such important property is whether this dependence is linear
or not. If it is, it is possible to find closed-form expressions for all the variables as functions of
the independent variable (time), usually as the sum of constants and time exponentials:

xi = xi(t) =C0 +C1ek1t + ...+Cneknt (1.4.2)
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where k j can be a real or a complex number. It is also possible to characterize the solutions to such
systems and determine whether they exhibit stable, unstable or oscillating behavior. If, however,
the dependence on the set of variables is nonlinear, it is often impossible to find closed-form
expressions, such as in Equation 1.4.2 and it can be difficult or impossible to determine the
stability properties of the system. Such systems might not even have existing solutions, or the
solutions might exist only within a limited period of time. The nonlinear systems generally have
a richer set of possible behaviors than the linear ones, but unlike the linear ones, which can
always be analyzed using the same set of techniques, nonlinear ODE systems require case-specific
treatment, which often is mathematically advanced.
As it turns out, most systems apt for describing biological phenomena of interest are nonlinear.
As it is often impossible to find the closed-form solutions of such systems, their behavior over
time is usually approximated numerically. The basic idea in numerical solving of ODEs is to
use the value of the tangent at one or more timepoints to approximate the future behavior of the
system. There is a number of algorithms available for such approximations and their suitability
depends on the characteristics of the particular application.
Even if it is possible to find an approximation of the behavior of a nonlinear system over time,
there are certain things this approach cannot tell us. We cannot know that the behavior we see is
"typical" as t→ ∞. We also cannot know if the observed behavior is stable for small changes in
parameter values. Such things need to be established through detailed system-specific analysis.

1.4.2 Constraint-based modeling
What are possible solutions given a number of constraints? Which is the best one according to
a certain criteria? These are the kinds of questions that one can tackle with constraint-based
modeling approaches. Researchers working in production of metabolic compounds through
bacterial fermentation were asking quite similar questions: given the restrictions imposed by the
structure of the bacterial metabolism and necessities of growth, what is the maximum yield of a
particular metabolite one can produce? In an early modeling paper [26], Papoutsakis gives a clear
and concise description of the goals of modeling:

"The establishment of thermodynamic and biochemical constraints which determine
the theoretically highest yield for each product and the calculation of these maximal
yields would be of both fundamental and practical importance. They would allow
us to establish rationally the upper bounds for the productivity of the fermentations,
which in turn can be used as a guide in feasibility studies, and experimentation for
genetic and bioreactor-productivity improvements."

As the models got more refined and manual manipulation of equations became hard, methods
based on flux balancing [27] offered an automatized solution to the problem. The method known
today as Flux Balance Analysis (FBA) introduced the use of linear optimization to find the optimal
flux distribution for a certain condition of growth, defined by imposing limits on a number of
import or export fluxes. This modeling paradigm assumes the metabolism of a cell to be in steady
state. What follows from that assumption is that the sum of all production and consumption fluxes
for all metabolites must be zero. This can be written in matrix form as:

Sν = 0 (1.4.3)

where S is the stoichiometric matrix and ν is the vector of fluxes. Typically, flux through the
so-called biomass reaction is optimized. This reaction commonly includes a great number
of compounds in a stoichiometry representing their content in the cell. These stoichiometric
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coefficients are estimated from experiments which determine the chemical cellular composition
(see [10] for an example).
Since within the FBA only the metabolism is considered in detail, while the rest of the cell is
lumped in the biomass equation, the applicability of the method to study different phenomena is
limited8. During the years, many tried circumventing this restriction by taking into account other
important cellular constraints, such as limited space [28]. Recently, the cell has successfully been
described as a set of linear constraints which take into account, among other things: metabolism,
availability of enzymes, different cellular processes (such as protein production and folding) and
limited space in all compartments [29]. This is the cellular formulation used in this thesis.

1.4.3 Dynamical modeling with constraints
If the cell is represented by a dynamical framework, it is possible to study its adaptive mechanisms
over time. The constraint-based steady-state description of the cell allows for the study of optimal
cellular configurations under given conditions, and for the analysis of the investment of resources
in different cellular processes under the assumpton of parsimonious resource allocation. The
combination of theset two approaches provides a basis for investigating the adaptation of the
cell under the set of resource allocation constraints. Such an approach enables us to situate the
dynamical system of interest into an appropriate cellular context.
One way in which the two approaches can be combined is through optimal control. Optimal
control answers the question of what is the best way to control a dynamical system to achieve a
certain goal under a set of linear equality and inequality constraints. The first question of this
nature regarded a mechanical system. It came as a challenge from Johann Bernoulli to the "most
brilliant mathematicians in the world":

"Given two points A and B in a vertical plane, what is the curve traced out by a point
acted on only by gravity, which starts at A and reaches B in the shortest time."

The field of application for optimal control today is very broad. Within its scope one can ask a
question such as: What is the best way the cell should distribute its resources to adapt itself to a
new condition under the assumption of growth rate maximization?
Let us assume that some portion of interest of the cell is described as a set of ODEs:

dxi(t)
dt

= f i(x1, ...,xn,u1, ...,um, t) (1.4.4)

where x is a vector of system states, and u the vector of controls which act on the system. It is the
goal of optimal control to determine the time course of the control vector u

u j = u j(t), j = 1, ...,m (1.4.5)

such that a certain criterion is maximized:

J = φ(x1(t f ), ...,xn(t f ), t f )+
∫ t f

t0
L(x1, ...,xn,u1, ...,um, t)dt (1.4.6)

The controls in a biological system can be, for example, the rate of mRNA or protein production.
The states of the system can be the concentrations of respective macromolecular species. Such an
approach was taken and further explored in chapter 6.

8For example, all available resources are always used, which is not the case in real organisms.
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1.5 A coherent cell state
What our pre-scientific ancestors lacked in technology, they amply made up in imagination.
As the atomic theory traces its origins at least some 2300 years into the past [30], so the first
idea of microscopic living beings greatly predates the microscope [31]. However, technological
advances did bring out a new important aspect of living beings to the forefront - they are incredibly
complex. A single bacterial cell is able to sense its chemical surroundings, move in the direction
of better foodstuffs, use a very limited set of nutrients to produce the great metabolic variety that
constitutes its cell, duplicate itself with great fidelity, produce injection like formations through
which it will secrete toxins into another organism, exchange its genetic code in a modular fashion
with other bacteria, regulate its pH, form tissue-like formations with other bacteria - the list of
fascinating phenomena is indeed very long.
All of the phenomena mentioned can rightfully be studied and formalized within the domain
of systems biology. How one chooses to formally describe a biological system will, of course,
greatly depend on its nature. When studying the information processing capacities of a signaling
pathway, the cellular context within which this system operates can well be ignored to a significant
degree without seriously affecting the analysis and conclusions thereby obtained. However, when
dealing with phenomena of systemic stress, in which one very important aspects of the cell is
perturbed - such as its capacity to produce protein - then it is exactly the state of the cell that
becomes the topic of modeling. The model of the cellular state will not always necessarily be
the same - the biological condition of interest will guide the design of a relevant cell state model.
However, to model the cellular state means to account for energetic and spatial requirements for
achieving a particular cellular configuration. The set of states which best represent the limiting
energetic and spatial requirements then become a matter of informed choice.
In this thesis, the state of the cell means the following: a mathematical formalization in which the
cell is represented with a number of states across a range of granularity, but such that these states
adhere to certain consistency restrictions. All of these restrictions can be viewed as particular
instances of one general restriction: operational capacity encoded in the cellular configuration
must be sufficient for the requirements imposed by that same configuration. An example might
help to clarify this general idea: the production flux of a certain amino acid needed for protein
synthesis puts a requirement on the minimal amount of enzyme in its synthesis pathway.
Even if the idea is quite intuitive, I think it is important to state it clearly. I have mentioned
both cellular configuration and cellular operational capacity, i.e., the amount of enzyme and the
reaction flux, or the amount of ribosome and the protein production flux. But how does protein
production flux relate to the amount of protein? In a simplistic way, one can say that the protein
production flux acts to either maintain or change the current protein make-up of the cell. When
focusing on the first possibility - that of maintenance - it is clear that the operational capacity of
the cell serves to maintain its configuration over time.
When looking at a bacterial cellular state in a coarse-grained manner, where states are lumped in
broad categories such as ribosomes and metabolic enzymes, then a good rough measure of the
cellular state is the rate of its growth [32]9. For a specific growth rate, and on a certain level of
modeling granularity, the cellular states are similar, regardless of the different conditions which
brought about that growth rate. To illustrate: to maintain the same rate of growth in different
conditions, the cell needs to maintain more or less the same flux of protein production, regardless
of the precise proteome composition. This will imply a similar amount of ribosome, which will
in turn imply that the level of RNA in both cultures will more or less be the same.

9Growth rate of bacteria is computed as ln(2)/Td , where Td is the time it takes for a growing population of bacteria
to double its size.
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Under different growth conditions, the growth rate is a type of measure of how efficiently the
foodstuffs can be converted into new cells. This approximation is grounded in the expectation
that, due to competition for limited resources, organisms have become as energetically efficient
as possible throughout the course of evolution.

1.6 Experimental techniques

The diversity, precision and ingenuity of experimental techniques available today which have
allowed for measurement of a great number of cellular features are truly impressive. Here, I
mention those relevant for this thesis.

1.6.1 Growth curve measurements
As mentioned in subsection 1.1.2, the so-called growth curve describes the number of viable
cells over time with its y-axis normally represented in log scale. The most common way to
determine the growth of the culture is to relate its density to an optical measurement, called the
Optical Density (OD). OD measurements are performed through the use of spectrophotometer,
in which a light of a particular wavelength is used to pass through an aqueous sample. The
reduction in the light intensity due to scattering and absorption is proportional to the density
of the cell culture, within a certain range. For microorganisms which do not express pigments,
most reduction of intensity is not due to absorption, but to scattering [33], meaning that in these
cases OD measurement can be considered a type of turbidity measurement. For a particular
wavelength of light used (600nm for example), the OD measurement will be marked as OD600.
As the increase in density can lead to incorrect measurements, after a certain threshold, the
samples first have to be diluted. If we want to compute the growth rate of the culture, then the
OD measurements suffice. The doubling time can be taken as the time needed for the OD to
double in the exponential phase of culture growth. Often, however, OD measurements are used
not solely to compute the growth rate, but as a way to measure the number of cells in a culture.
There is no general way to relate the number of cells to an OD measurement, since too many
parameters would need to be taken into account. Also, this relationship will be influenced by the
cellular shape (which influences the angle of scattered light) and culture density, by the shape
of the spectrophotometer and by the size of the detection sensor. Therefore, the only way to
establish a reliable relationship is by sample-specific calibration [34].

1.6.2 Proteomics
Proteomics is a name given to a variety of experimental techniques through which one can
determine presence, or the relative or absolute amount of (a subset of) proteins present in a cell or
in a culture. The most common usage of the term proteomics today involves the techniques based
on mass spectrometry (MS) [35] (even if it can mean other experimental techniques as well). As
all the experiments used for the completion of this work were of MS type, I will provide a short
description of this technique alone. In further text, the name proteomics will be assumed to mean
MS based proteomics.
Analysis of complex protein samples is a very difficult and still not fully resolved problem [36].
Due to inherent limitations of our current state-of-the-art in proteomics, all of the steps, from
sample preparation to data interpretation, are usually specifically optimized to suit the needs of
the research question at stake. Yet, certain steps are common to most proteomics experiments
and these will be outlined here. In order to be analyzed, the proteome first needs to be separated
from the rest of the cellular content. If only a part of the cell is to be analyzed, or the sample
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complexity should be reduced, the cells first need to be fractionated and necessary compartments
isolated. After protein extraction, depending on the research question, it might be necessary to
treat the sample to alter its dynamic range (high abundance protein depletion, low abundance
protein enrichment, etc.). After sample treatment, the proteins need to be "digested". Digestion is
performed by enzymes that are able to cut proteins at specific places, particular to each digestion
enzyme. The peptide mixture can be subjected to some form of sample simplification, such
as separation by mass or isoelectric point. As the mass spectrometer is a device that measures
mass to charge ratio of ions, the peptides need to be ionized before their placement into the
measurement device. The great break-throughs of the 1980s in ionisation technologies enabled
today’s common usage of MS for complex protein mixture analysis: Matrix Assisted Laser
Desorption Ionization (MALDI) [37] and ElectroSpray Ionization (ESI) [38]. Mass spectrometer
will then record the ionized macromolecules as a ratio of mass and charge - m/z ratio. The
intensity of any m/z point in the final spectrum will be the sum of intensities of all measurements
that recorded this particular m/z ratio. Finally, it is necessary to "make sense" of the resulting
spectrum. For the purpose of identification of the peptides from an m/z spectrum, databases
of sequenced and annotated genomes of the species under investigation are used. Often, MS
proteomics are designed to give either relative or absolute quantitative measures of individual
proteins in the mixture. The intensity of the MS spectrum does not correspond in any simple
way to the abundance of the protein, and two spectra cannot directly be compared to establish
relative abundance. In relative proteomics, the fact is used that the difference in peak intensity
does provide a good measure of relative abundance if the samples are measured in the same
analyte. In order to be able to distinguish one sample from the other, they are usually grown on
a medium containing a certain isotope which causes a predictable shift in protein mass. If the
quantification is to be absolute, one common solution is to spike the analyte with a protein of
known concentration or a number of proteins over a range of concentrations and thus establish a
calibration curve to transform the spectrum information into protein abundance.

1.6.3 Total amino acid concentration measurements

To understand the overall cellular state, it is necessary to know the total protein content of the
cell. Proteomics experiments cannot be used for this purpose, as they are known to have detection
issues with some of the most abundant protein groups (membrane proteins, ribosomes, etc.).
Therefore, an independent total protein concentration measurement is necessary. First, to note, a
method to measure total protein concentration, which would imply measuring the concentration
of fully formed proteins, does not exist to my best knowledge. What is actually measured is the
weight of protein per unit of volume, which can be converted into protein concentration only if
the protein sample contains a single known protein or a number of known proteins in known
ratios.
As previously mentioned, most methods used for measurement of total protein concentration
are based on measuring a certain physical, chemical or biochemical property of amino acids or
peptide bonds that can, within a certain range, be extrapolated to a measure of total amino acid
concentration (for a review of existing methods see [39]). One of the methods commonly used is
the famous Bradford essay [40], due to its simplicity, reproducibility, and relative insensibility
to some of the reagents typically used in proteomics. It relies on the property of the a dye
(Coomassie Brilliant Blue G-250) to exist in two different colors (blue and red), and to change
color from red to blue upon binding with protein. Absorbance at both of the wavelengths
indicates the amount of bound and unbound dye - a measure which can be taken to indicate the
total protein concentration within a certain range. The relation between the color and total protein
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concentration is established through calibration, for which a known concentration of a purified
protein is used. The result of the measurement is given in units of g/l, with a typical significant
range being in µg/ml.
This measurement can be converted into a measure of total amino acid concentration, under a
set of assumptions. One must assume a certain distribution of amino acids in the sample, which
allows to compute the weight of an average amino acid. Its weight and the total weight of protein
in unit volume can then be used to compute the approximate total amino acid concentration, as
was done in [32] (see Table 2, notes b and h).

1.6.4 Fluxomics

Fluxomics measures in a relative or absolute way the fluxes through a set of metabolic reactions.
Even if there is a number of techniques available for determination of metabolic fluxes, here I
will focus on just one - Metabolic Flux Analysis (MFA). The reason to focus on this technique is
its recent widespread usage and the fact that it was applied to obtain the data for the calibration
procedures in this thesis. For a good early review, see [41], where many historically significant
references can be found.
To perform MFA, certain assumptions need to be fulfilled. First, the cellular culture needs to be
either in steady-state - meaning that all of the metabolite concentrations and reaction fluxes need
to be constant, within the bounds of "cellular" noise - or in pseudo steady-state - meaning that the
rate of change should be significantly lower than the rate of measurement. Second, the part of the
metabolic network studied needs to be represented in a stoichiometric model, which is used for
interpretation of raw measurements. The measurement of metabolic fluxes is usually given in the
unit of mmol/(h×gCDW ), where CDW stands for cell dry weight.

1.7 Layout of this thesis

This thesis is organized in three parts. Part I deals with modeling and analysis of the UPR
and HSR in bacterium E. coli. It consists of two chapters: chapter 2 focuses on the dynamical
properties of UPR. It lays out the most important biological actors in this response, the proteome
quality control mechanisms (chaperones and proteases) as well as the regulatory structure in place
to protect the cell from this kind of stress. In chapter 3, I introduce the mathematical framework
used for modeling of this stress condition. This is followed by the development of the full model,
model simplification and an analysis of the properties of the simplified regulatory scheme.
Part II is dedicated to the whole-cell steady-state model of E. coli. First, in chapter 4, the RBA
framework is intuitively and then formally introduced. I then offer one practical example using a
small toy model to illustrate what kind of computations are necessary to make and simulate an
RBA model. I shortly discuss related modeling paradigms, their similarities and differences. The
last part of the chapter deals with RBApy - Python software for creating and simulating whole-cell
bacterial RBA models, with special attention given to the XML format in which these models
are encoded. chapter 5 deals specifically with the development, validation and exploration of
the whole-cell RBA model of E. coli. Special attention is given to the parameterization of the
model. I provide a number of simulations validating the applicability of the model to a range of
biological situations. I explore the different potential applications of the model in understanding
cellular regulation and discuss its potential in analyzing the costs in gratuitous protein production.
In Part III, I again explore the UPR, but this time embedded within a coherent cellular context
through a set of linear equality and inequality constraints, similar to those described in chapter 4.
This formulation allows the study dynamical cellular stress response under resource constraints, a
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point very important in production of RPs. I show that the predicted response matches quite well
the experimentally observed one.
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If you try and take a cat apart to see how it works, the first thing you have
on your hands is a non-working cat.

Douglas Adams

Bacteria, and Escherichia coli in particular, have been used for decades as protein production hosts
for industrial and research purposes. More often than not, such proteins come from species other
than the host, and are therefore called recombinant proteins. The term recombinant derives from
recombinant DNA, which has genetic material of two or more different organisms. Despite its
wide usage and great research efforts, recombinant protein technology is plagued with problems
and most of them center around producing a well folded, functional variant of the recombinant
protein [42, 43]. This problem is so common because proteins depend heavily on a precise
biochemical environment for their proper maturation, which host strains are not always able to
provide. Because the issue of proper folding is of great importance, even for native proteins, all
cells have dedicated systems for assisting the newly produced proteins to reach their destined
compartments, as well as native and functional states. When the host cells are modified to express
gratuitous recombinant protein, such proteome quality control systems get additionally activated.
Because of the central importance of the quality state of the proteome, this system is involved
in regulating many stress responses, and functions as a mediator of many recombinant protein
production related stress effects. To lay the groundwork for understanding these stress responses,
in chapter 2 I expound upon the biological background necessary for understanding these issues:
starting from the process of protein folding itself, followed by the description of a part of the
proteome quality control network in E. coli. I shortly describe the process of recombinant
protein production in E. coli as well as the stress effects related to it. Finally, I characterize in
relative detail the regulation of Heat Shock Response (HSR) and Unfolded Protein Response
(UPR), the latter being the most common stress response in recombinant protein production.
However, a complete survey of these topics is not within the scope of this thesis. Instead, the
descriptions offered here serve to provide context and scope for the model presented in chapter 3.
In chapter 3, I shortly outline the mathematical preliminaries and modeling decisions necessary
for understanding of the proposed model, and then continue to detail the dynamical model for
the onset of the unfolded protein response. After introducing a number of simplifications, we
show that the model structure allows for a single equilibrium point, regardless of the choice of
parameters. I discuss this property, quite atypical for a complex nonlinear dynamical system, yet
found often in biological systems. Finally, I examine the limitations stemming from both the
choices made in model formulation and the selection of the modeling framework itself. I pinpoint
to some important aspects of adaptation which cannot be modeled with the chosen framework.
This discussion is a prelude to the rest of the thesis, as it introduces the necessity for a different
modeling framework for understanding of this systemic stress response.





2. Recombinant protein production in E. coli

To fully appreciate the problems related to overexpression of foreign protein in bacterial cells, it is
first necessary to understand the subtleties and complexities involved in folding and maintenance
of a functional proteome. Proteins, which carry out most functions in the cell, are polypeptides -
or chains of amino acids - that can vary greatly in length and composition. In order to function,
they need to assume their native state characterized by relative stability, which allows them to
maintain the proper state under cellular conditions for long periods of time, and by flexibility
which is needed to undergo proper conformational changes necessary for their function.
Both this stability and the flexibility should be maintained across a number of conditions an
organism might encounter. One of the most important aspects of their surroundings, especially
for unicellular organisms, is temperature with its direct effect on the properties of all the cellular
components, proteins included.
On Earth, there are not so many environments which life has not populated. Among those, some
are close to our living temperatures, some are extremely hot, some extremely cold. Notably, we
find that, for example, in two bacteria inhabiting very different environments in terms of tempera-
ture, still most of the functions implemented by their cellular proteins are the same. However,
the proteins themselves do differ, as the ones in the hot-environment bacteria will need to have
higher stability in order to function. This shows us that stability is a protein property that can be
modulated according to need [44]. Particular stability of a protein might be a result of a compro-
mise between a result stable enough to maintain its functional shape, but still flexible enough to
perform function related conformational changes [45]. Combining these two requirements with
the fact that protein production is expensive, that all the proteins in the cell are different and have
unique folding, cofactor and compartment requirements, the proteome maintenance becomes
a necessary and complex system, one that exists in every living cell, and traces its origin back
the very root of the tree of life [46, 47]. Stability (and conformational flexibility) of enzymes is
directly related to the availability of this proteome maintenance machinery. Having enzymes that
are too stable is costly, because they are slow in performing their function, but having enzymes
that are less stable costs the cell in terms of the machinery in place to ensure proteome quality
[48]. In this sense, stability can be seen as a trade off between different cellular costs. I continue
by describing the process of folding and the proteome quality control systems in E. coli.

2.1 How proteins assume and maintain functional states

The so-called central dogma of molecular biology [49] explains how the sequence information
is passed from coding DNA (cDNA) to messenger RNA (mRNA), and finally to protein. All
protein information is considered to be encoded in its amino-acid sequence [50]. Under the term
protein information we can assume a set of structures a protein can reach in which it is capable
of implementing its function within a cell or an organism. The full functional structure of the
protein does not necessarily include only the amino-acid chain encoded by its gene - it can include
other chemical partners as well. These can be other proteins, RNA, DNA or ions, for example.
However, the capacity of binding all of these is encoded in the original amino-acid sequence.



34 Chapter 2. Recombinant protein production in E. coli

The functions that proteins perform in cells are exclusively related to their capacity to bind and
potentially alter other molecules or macromolecules. Protein function relates to its structure, and
this can be altered by the cell by introducing mutations into the gene coding for it if need arises.
It is important to note that the structure of a protein is not a concept as simple as structure of
objects closer to our experience. While objects we are familiar with have a well defined structure
which is usually resilient to many mechanical and chemical stresses, protein structure is a more
fluid notion. First of all, it greatly depends on the chemical or biochemical environment which
surrounds it. This requirement of a particular biochemical environment often does not imply only
a particular organism, but a particular state of that organism. For example, some proteins required
solely at a range of temperatures will achieve a functional state only within that range. Even if in
its appropriate environment, some proteins have parts or are entirely intrinsically unstructured or
disordered [51].
The process through which nascent polypeptide chains assume their functional states is called
folding and it can generally be a multi-step process, depending on the specificities of a particular
protein. For cytosolic proteins, which need not be translocated or integrated into a membrane,
this process could require some or all of the following steps: (i) co-translational folding, (ii)
spontaneous folding, (iii) chaperone-assisted folding, (iv) post-translational modification and
(v) assembly into multi-protein complexes. Since post-translational modification and complex
assembly are protein-specific, I focus on the first three steps - co-translational, spontaneous and
chaperone-assisted folding. Protein folding, as stated, is sensitive to intracellular conditions,
and does not always end successfully. Proteins, instead of assuming their native state, can
assume other states of relative stability, but in which they are unable to perform their cellular
function. This happens when a portion or an entire protein misfolds, a process which often leaves
hydrophobic patches exposed on the surface of the protein. These hydrophobic patches, which
are normally buried in the interior of the protein and are one of the important factors in achieving
protein stability, once exposed, easily bind to hydrophobic patches of nascent proteins which still
had not had a chance to fold, or to those of other misfolded proteins. This can cause creation of
potentially large insoluble protein complexes - so called aggregates or inclusion bodies. Such
deleterious effects need to be controlled, and the cell has an elaborate proteome quality control
system of chaperones and proteases in place for that purpose.

2.1.1 Protein folding
For a number of decades now, the major hypothesis as to how proteins assume their native state
from a chain of amino acids owes its formulation to Christian Anfinsen and his colleagues [52,
53], for which he got awarded a Nobel Prize in chemistry in 1972. What he and his colleagues
called the "thermodynamic hypothesis" states that [53]:

the three-dimensional structure of a native protein in its physiological milieu (solvent,
pH, ionic strength, presence of other components such as metal ions or prosthetic
groups, temperature, and other) is the one in which the Gibbs free energy of the
system is lowest; that is, that the native conformation is determined by the total-
ity of interatomic interactions and hence by the amino acid sequence, in a given
environment.

This describes one characteristic of a final native state of a protein - the one with lowest Gibbs
free energy - but it still leaves an open question as to how this is achieved. Does each protein fold
into a completely unique structure? Yes, and no. Even if all proteins are unique, there is some
kind of orderliness to their structure. Most proteins do have common structural elements, out of
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which larger, functional structural parts are formed. For example, most proteins have common
elements of what is known as secondary structure - such as α-helices and β -sheets. These (and
other) elements are then assembled into so-called protein domains, functional units of protein
structure which are able to fold independently of the rest of the protein. A protein can have one
or more such domains.
Today it is assumed that one of the most important ways in which proteins obtain and main-
tain their native state is by "hiding" of hydrophobic parts of their structure from the aqueous
environment of the cell through a process known as hydrophobic collapse 1 [54].
As both the formation of secondary structures and the hydrophobic collapse are potentially very
fast events (< 1µs for secondary structure [55] and < 100ns for hydrophobic collapse[56] 2), and
as these events are notoriously difficult to detect, the discussion is still ongoing as to the order
of events leading to a formation of a native protein state [58]. Formation of tertiary structure,
through which functional domains of the protein are formed, usually involves the formation of
non-local interactions, by which distant parts of the amino acid chain become physically close.
Co-translational folding. This complicated and still unsolved question of acquiring of native
states by proteins as is presented here (and as is often studied in vitro) is still only a part of what
takes place in a complex cellular environment and is embedded in other cellular processes. For
example, one important thing to keep in mind is that the protein begins its interaction with the
cellular environment as it is being assembled by the ribosome. The speed of translation in E.
coli varies in the range of 15 - 20 aa

s [32], while the secondary structure formation (α-helices and
β -sheets) can happen at the order of less than a microsecond [55]. This gives an indication that
for many proteins the first structural elements are formed co-translationally. When eukaryotic
proteins are expressed in bacterial hosts, they are prone to misfold. This tendency can be reduced
by reducing the speed at which they are translated [59]. It was also noted that E. coli populations
growing in rich nutrient environments do have a higher propensity for protein aggregation [60],
a fact that might be related to the speed of translation which is higher at higher growth rates,
but could also be explained through cellular distribution of resources. The translation speed in
some cases is purposefully slowed down. This slowing down of translation is called ribosome
stalling and is implemented in a variety of ways through specific characteristics of the mRNA or
amino acid sequence of a protein [61]. mRNA might purposefully exhibit a secondary structure
which allows for translation only under certain conditions [62]. In other cases, certain regions
of an mRNA might be enriched in rare codons [63]. Due to low availability of charged tRNAs
corresponding to those codons, the translation of that region will be slowed down, indicating that
it is beneficial (or necessary) for those proteins to achieve their native state. A similar purpose is
assumed for the stretches of positively charged amino acids in eukaryotes [64], and for polyproline
stretches in the amino acid chain [65] due to their bond geometry which is incompatible with the
passage through the ribosome [66].
Spontaneous folding. After exiting the ribosome, proteins can spontaneously fold. In fact, many
cellular proteins are capable of spontaneous folding, not requiring any additional assistance. The
process of spontaneous folding still is an ongoing mystery in the field of biological research. Due
to the speed at which certain folding events happen and the notorious difficulty of experimentally
keeping track of such events, it has not been easy to elucidate the events leading to a spontaneous
assuming of a native state by proteins. There are three major theories that propose the order of
events by which the native state is achieved [67]:
• Framework model [68, 69] which suggests that the native state is achieved through a

1Hydrophobic collapse is a working theory at least for a class of globular proteins.
2The duration of hydrophobic collapse can vary substantially depending on the protein in question [57].
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Table 2.1.1: Size, stoichiometry and abundance of the most important and most abundant E. coli chaper-
ones. a: data taken from [72]

Length (AA) Stoichiometry Copy per cella

TF 432 1 13128-69639

DnaJ 376 2 938-5688
DnaK 638 1 10567-45951
GrpE 197 2 4731-23174

GroEL 548 14 11204-57895
GroES 97 14 13733-59001

hierarchy of intermediate states, whereby the elements of secondary structure form first,
and are later assembled into tertiary structure.

• Hydrophobic collapse [54] in which hiding of the hydrophobic protein parts results in a
much smaller protein volume (and an intermediary state referred to as a molten globule), in
which further folding is more easily achieved.
• Nucleation - condensation mechanism [70] which proposes that the formation of secondary

and tertiary structure begins at a nucleation site, which then serves as a folding nucleus.
Folding assistance. However, some proteins require the formation of certain bonds or presence
of binding partners to function. One very typical example is the formation of disulfide bonds,
or binding of metabolites or ions. This is usually achieved by a number of proteins which assist
other proteins to assume their natural state. In 1987, John Ellis proposed the name of molecular
chaperone for a class of proteins “whose function is to ensure that the folding of certain other
polypeptide chains and their assembly into oligomeric structures occur correctly”[71].
Apart from such specific assistance, such as facilitating a formation of a particular bondf or
delivering a specific ion, certain chaperones offer a more generic kind of folding assistance. They
bind a large class of nascent proteins and help in their folding through actions of holding and
folding of unfolded protein, refolding of misfolded protein and disaggregation of aggregated
protein. This assistance begins right at the exit of the ribosome tunnel, and is continued after the
full synthesis of the protein through a coordinated action of a chaperone network. However, all of
this does not ensure that all proteins will end up in their native state. When folding errors occur
beyond the corrective capacity of the chaperone network, such proteins are degraded by a class of
proteins known as proteases. The chaperoning and proteolytic activities in the cell are the two
most important aspects of proteome quality control and maintenance.

2.1.2 Chaperoning systems in E. coli

Chaperone is a name for any macromolecular species which assists macromolecules assume their
functional state. Bacteria, archaea and eukaryotes, while possessing different chaperones, are
all equipped with the same five core chaperone families. These have been originally named by
their molecular mass, and are: HSP20, HSP60, HSP70, HSP90 and HSP100 (HSP standing for
heat shock protein). The reason I mention these rather unintuitive names is that they are still used
frequently in the literature. Perhaps the two most studied families of chaperones in E. coli are the
chaperonin HSP60 (GroEL/S) and the chaperone HSP70 (DnaK).
The HSP70 family of chaperones has been reported to have a vast number of functions in de novo
folding of protein, refolding of misfolded protein, prevention of aggregation and re-solubilization
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of aggregated protein. Experimental studies of DnaK, the most studied HSP70 E. coli chaperone,
have shown it can exhibit all of these functions under different conditions, and that it functions as
a "central hub" for the chaperone network [73]. Apart from DnaK, E. coli has two other, more
specific chaperones belonging to the HSP70 family - HscA and HscC [74]. Much like the HSP70,
the HSP60 family chaperonins have been evolutionarily conserved [75]. The chaperonin GroEL/S
- member of the HSP60 family - is involved in folding of newly synthesized proteins [76]. The
HSP100/Clp class of chaperones, and its E. coli member ClpB, is reported to have a role in
disaggregation and re-solubilization of aggregated protein in concert with other chaperones [77].
The most prominent member of the HSP90 family in E. coli is HtpG, and aids in reactivation
of inactive proteins. Chaperones of the HSP20 are small heat shock proteins which assist the
disaggregation of protein by interlacing the inclusion bodies and facilitating their dissolution.
IbpA and IbpB are most studied members of this family in E. coli [78].
In addition, E. coli has a number of chaperones which do not belong to any of the afore named
families, but perform vital roles in proteome quality maintenance. One such chaperone, and
one of the most important chaperones in E. coli, is the Trigger Factor (TF). It associates to the
ribosome and offers the first folding assistance to the proteins being synthesized [79].
Apart from the chaperones providing general assistance in folding, refolding and disaggregation,
E. coli has a number of specific chaperones in charge of delivery of metals (NarJ, CopA, IscA,
PaoD), integration of cofactors (HemW) or formation of particular bonds (DsbA/B/C/D). Here,
I focus on the two most important and well-characterized general chaperoning systems which
assist proteome quality maintenance through folding, refolding and preventing of aggregation -
DnaJK-GrpE and GroEL/S.

DnaJK-GrpE
Even if today they are mostly known as protein-specific chaperones, dnaJ and dnaK genes were
given their names for their relation to DNA replication of bacteriophage lambda [80]. Chaperone
DnaK and its co-chaperone DnaJ are transcribed from the same operon under the regulation of
σ32 dependent promoter 3. GrpE is transcribed in a single gene transcription unit, also under the
regulation of σ32.
DnaK performs the ATP-dependent chaperone activity of folding of nascent proteins, refolding of
misfolded protein, prevention of misfolding and aggregation and assembly of protein complexes
[73]. It consists of an ATPase domain and a substrate binding domain, capped by a so-called
lid domain. Its activity is regulated by its co-chaperone DnaJ, a nucleotide exchange factor, and
the binding of the substrate protein. Without the action of the two other proteins, DnaK binds
ATP very tightly (with a dissociation constant KD ≈ 1nM), hydrolyzes it very slowly (with a rate
of hydrolization khyd ≈ 0.02min−1), and releases ADP at a similar rate of ATP hydrolysis [81].
DnaJ acts to modulate the speed at which DnaK hydrolyzes ATP, while GrpE modulates the rate
at which DnaK releases bound ADP. In fact, DnaK ATPase activity alone correlates poorly with
its foldase activity, showing the importance of its complex partners for its regulation [82].
In simple terms, the proposed mechanism of DnaK-DnaJ-GrpE coordinated activity is this [83]:
ATP-bound DnaK quickly binds and dissociates substrate proteins. DnaJ exhibits greater substrate
specificity and delivers the substrates to DnaK through simultaneous ATP hydrolysis [84]. This
results in a more stable complex of ADP-bound DnaK and the substrate. GrpE finishes the cycle
of folding/holding by speeding up the release of the peptide through the exchange of ADP for
ATP, thus reducing DnaK substrate affinity [83].

3σ factors in bacteria are a special kind of transcription factors which bind the RNA polymerase and change its
affinity towards a certain set of promoters. σ32 is the so-called heat-shock sigma factor because of its activation upon
heat shock. This σ factor is discussed in detail in section 2.3
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E. coli DnaK null mutants grow slowly at intermediate growth temperatures (between 30 to
37◦C), and result in unviable cells at higher temperatures (≥ 42◦C) which do not grow even
after the subsequent lowering of temperature [85]. DnaK and TF have overlapping function in
folding of de novo synthesized proteins - neither null mutant exhibits serious growth defects
for an intermediate range of temperatures, while the double null mutant causes lethality [86].
A proteomic study has shown that DnaK has a broad range of substrates and was identified in
complex with around 700 proteins [73]. The more aggregation-prone and heterooligomer forming
proteins are statistically enriched in the set of DnaK substrates compared to the E. coli proteome
[87].
GrpE also acts as a thermosensor - at higher temperatures, it undergoes a conformational change
which again increases the affinity of DnaK to ADP and allows the bound substrates (prevent
denaturation) to remain shielded from the potential toxic effect of the cellular environment at
high temperatures. GrpE seems to be required for growth at all temperatures [88]. As this is not
true for DnaK, this might imply a function other than the nucleotide exchange factor of DnaK.

GroEL/S
GroEL-GroES complex performs an ATP-dependent chaperonin function in E. coli, and is
required in all growth conditions [89, 90, 91]. Both groEL and and groES are transcribed from
the same operon (groE) under control of a promoter transcribed by both σ32 and σ70 bound
RNA polymerase. A curious and complex nature of GroEL/S assisted folding made it a target
of extensive study. GroES forms two heptameric ring complexes that are joined back to back
(see Figure 2.1.1 A). These rings (called cis and trans) form cavities for substrate proteins which
go through cycles of occupancy and vacancy coordinated by the binding and hydrolysis of ATP
and release of ADP [92]. The interior surface of the GroEL cavity is hydrophobic and binds
to the exposed hydrophobic patches of the non-native protein [93]. Two rings exhibit allosteric
effects on one another. The bound state of one ring to 7 ATP molecules leaves the other ring
in an unbound state at physiological ATP concentrations [94]. The binding of ATP increases
the GroEL affinity for GroES, and binding of both initiates a series of conformational changes:
the hydrophobic surface of the empty cavity is oriented toward GroES, the size of the cavity
increases, and the non-native protein becomes exposed to a hydrophilic surface that promotes
folding [95].
The activity of GroEL/S is additionally regulated by temperature [96].

Figure 2.1.1: 3D structure of the GroEL-GroES complex. (A) Side view of GroEL (original source here).
GroEL forms a cylinder with two cavities (top and bottom). (B) Top view of GroEL (original source here).
(C) Side view of the GroEL-GroES complex (original source here). GroES acts as a lid of GroEL. Its
binding on one side causes a conformational change in GroES and a release of the peptide, as well as the
GroES and ADP on the opposite side. (D) Top view of GroEL-GroES complex (original source here). (All
images available in the public domain)

https://en.wikipedia.org/wiki/File:GroEL.png
https://en.wikipedia.org/wiki/File:GroEL_top.png
https://en.wikipedia.org/wiki/File:GroES-GroEL.png
https://en.wikipedia.org/wiki/File:GroES-GroEL_top.png
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2.1.3 Proteolysis and protein degradation

Proteolysis, or hydrolysis of peptide bonds, is necessary for maintaining the functional state of
the proteome. On one side, specific proteolysis is necessary for a certain class of proteins, which
need to be modified after translation by removing a peptide region, as is the case for the signal
peptide in secretion-destined proteins. On the other side, proteolysis is used to degrade aberrant
proteins which attenuates their potentially toxic effects to the rest of the cell and releases valuable
amino acids back into the metabolism. Proteases fulfill one other very important function - they
are involved in many regulatory functions, often by rapidly degrading transcription factors, thus
enabling their high production flux and fast release in case of need. Since soluble and membrane-
embedded proteins have very different structures and compositions, dedicated proteases exist for
both. Different mechanisms for peptide bond cleavage have evolved, two of which are present
in E. coli: (i) serine proteases [97] (ClpP, Lon) and (ii) metalloproteases (FtsH, RseP). [98, 99].
Here, I will mention only the most common general purpose cytosolic protease, Lon, and a
membrane protease important in the regulation of the HSR, FtsH.

Lon

Lon (also known as protease La) is an ATP-dependent cytosolic serine protease [100]. It belongs
to the class of AAA+ proteolytic machines. This class of proteases has ATPase domains which
provide energy from ATP hydrolysis for unfolding the substrate protein into an enclosed chamber
where it is subsequently degraded through the activity of the proteolytic domain. In its functional
form, it is a homohexamer that makes a ring formation [101]. Lon is transcribed as a single gene
in σ70 and σ32 dependent manner, and in an operon with ClpX in σ24 dependent manner. Lon
protease has several regulatory functions in cell division and capsule synthesis, possibly linking
proteome quality with important cellular decisions. It performs a general proteolytic function in
removal of aberrant proteins [102, 103].

FtsH

In vivo, FtsH is assembled into a hexameric ring structure [104]. Each subunit has a smaller trans-
membrane region and a larger cytoplasmic region, composed of ATPase and protease domains.
The protease domain is dependent on Zn2+ for proteolytic function. ATPase functionality seems
to facilitate the introduction of proteins into the proteolytic chamber by unfolding the substrate
proteins. The protease is found in complex with two proteins, bound on the side of the inner
membrane, HflK and HflC.
FtsH is under transcriptional regulation of two sigma factors, σ70 and σ32, and itself is an
important regulatory actor in the cell. It is known to have an essential role in lipopolysaccharide
biosynthesis, enacted by degradation of LpxC and KdtA. It fact, this seems to be the regulatory
function making this gene essential, since the FtsH null mutant suppressor mutations (sfhCs)
modulate this cellular function [105]. It is involved in the regulation of the HSR by degrading
σ32, the sigma factor responsible for transcription of many of the heat shock genes. This function
seems not to be essential, as σ32 activity can be regulated by DnaJ and DnaK [106]. Additional
FtsH substrates have been determined by a trapping approach in [107] and revealed to include IscS
(sulphur delivery protein), DadA (D-amino acid dehydrogenase), FdoH (formate dehydrogenase
subunit) and an uncharacterized protein YfgM. As a proteome quality control actor, it is reported
to remove the uncomplexed form of SecY and ATP synthase subunits [108].
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2.2 Production of recombinant protein in E. coli
E. coli has a long history of being used as an "expression system" for recombinant proteins (RP).
This history begins with the discoveries of how to cut up DNA at specific target sites with the use
of bacterial restriction enzymes [109], and how to reassemble it later by the use of DNA ligases
[110]. First experiments of the kind were done on bacterial plasmids - small circular fragments
of DNA that bacteria can excrete and take up from the environment, and which often convey
nonessential but useful genetic information (such as antibiotic resistance). Having confirmed that
a single plasmid constructed by "cutting and pasting" parts of different plasmids is biologically
functional [111], researchers soon after incorporated eukaryotic genetic material into a bacterial
plasmid [112]. This began the era of molecular cloning - introducing foreign DNA into an
organism which then continues to replicate it. In the context of RP expression, the DNA strain
carrying the protein coding sequence (cDNA) is inserted into an organism-specific expression
vector (most commonly a plasmid). The vector is introduced into the bacterial cell through
transformation [113], a natural capacity of bacteria (and E. coli among them) to take up plasmids
under certain biological conditions. Since there is no guarantee that all the cells will uptake the
plasmid, researchers developed ways to detect the transformed cells, usually by supplementing
the plasmid with a gene for antibiotic resistance. By introducing the appropriate antibiotic in the
medium, non-transformed cells are killed, ensuring the survival of the plasmid carrying cells only.
In order to make sure that the plasmid they carry is the one into which a recombinant gene has
been successfully inserted, the placement of the recombinant DNA is chosen so that it disrupts a
tag gene. One typical principle used is the disruption of the encoding region of a color producing
gene, with the lack of color indicating the presence of recombinant DNA. This allows for visual
detection of colonies carrying the target gene.
Once the culture carrying the proper recombinant DNA is isolated, it is possible to begin with
protein expression and purification. Protein expression involves growing large high-density
populations of transformed bacteria in bioreactors under optimized growth conditions. Bioreactors
most commonly used for this purpose are batch or fed-batch. Density of the culture is monitored
through OD measurements. The gene of interest is usually not expressed from the start, but is
under the control of an inducible promoter. The inducer can be a chemical introduced into the
medium, which activates the transcription of the recombinant gene, or a temperature change.
After induction, cells start producing the PoI. Once the cells have produced the PoI in sufficient
quantity, it needs to be extracted and purified from the rest of the cellular protein. For this purpose,
PoI is often equipped with a tag, a peptide extension with an affinity to a particular biochemical or
chemical substance. The tags can also serve a dual role and improve the solubility of the protein,
and can be removed chemically or enzymatically from the PoI.

2.2.1 RP production induced stress
Production of gratuitous and foreign protein in bacterial cells can have stress causing effects
upon the host. These effects can be metabolic, spatial, folding, toxicity or population related.
Metabolic stress effects are caused by an increase in energy and precursor demands imposed by
the production of the RP. One of the most common metabolic issues in RP production is that
the codons used in the recombinant gene are rare codons in the host organism. Because of its
central importance, the cell is continuously monitoring its protein producing capacity. If this
capacity becomes impaired, it is detected by the presence of uncharged tRNAs at the ribosome
binding site, and eventually leads to activation of the stringent response which completely alters
the cellular make up, as it prepares for survival, instead of growth. Apart from the usage of rare
codons, the increase in energy and precursor demands cause rearrangements in catabolism and
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anabolism. When the rate of production impairs the cell’s ability to adapt, it will lead to a stress
response.
Spatial disturbances related to RP production are caused in part by the fact that the cell is
occupied by protein not useful to its functioning. Therefore, less space is available for the cellular
configuration necessary to maintain a particular growth rate. As the cell size is tightly controlled
in E. coli [114] and depends on concentrations of a number of regulatory proteins, the occupancy
of the cytosol by the RP alters this fine-tuned regulation and disturbs the relation between the cell
size and the growth rate [115]. This can read to growth cessation or filamentous growth, during
which the E. coli cells continue growing without dividing [116].
Folding related issues are caused by an increase in the amount of newly synthesized protein
compared to the availability of the proteome quality maintenance machinery. In fact, chaperones
and proteases are often upregulated in E. coli RP production experiments. Additionally, some
RPs might depend on a very different biochemical environment for their successful folding, and
might therefore be unable to fold in E. coli, even once the proteome maintenance machinery has
been upregulated. This can cause an accumulation of misfolded and aggregated protein in the host
cells, leading to what is called the unfolded protein response, a cellular stress response in many
ways similar to the HSR. Consequently, many host strain optimizations involve co-expression of
necessary chaperones [117, 118].
Some recombinantly produced proteins are enzymes with a particular metabolic, ribonuclease
or protease activity. These proteins, even if outside their native environments, can cause toxic
effects by interacting with the host cell in the way of metabolic imbalances or degradation of
native cellular components.
When bacterial cultures are grown to high density, as is the case in the RP production processes,
they can excrete metabolic products which can additionally deter their growth. One common
example of this is the accumulation of acetate in the growth medium which impairs growth [119].
Growth related effects. All the aforementioned burdens and stress effects of RP production
have as an unavoidable consequence the decrease of the growth rate of the host population [120].
While initially the protein production experiments were performed in the log growth phase of
the bacterial culture, it later became clear that the relation between the successful high yield
production and the growth rate is not at all trivial, as different experiments have shown that it is
beneficial to decouple the growth from RP production [121], to induce at low growth rate [122,
123] or even in stationary phase [124].

2.2.2 Process optimization

As outlined, it is not easy to intuitively determine the best strategy for obtaining optimal yield.
This, in fact, is almost an obvious fact. The highly complex and optimized self-replicating bacte-
rial cell is fundamentally altered by interfering with its capacity to control its resource investment,
its rate of procreation and complete fine-tuning of its internal organisation. Additionally, a number
of stress responses may be (and often are) triggered which alter the cellular state. The codons
should be optimized in a way not to stall ribosomes to a degree which might trigger a stringent
response, but to still ensure that translation is not too fast for the proper folding of the protein.
The aspect of time adds to the complexity of the problem - is fast and intense production better
than a slow and less intense one? It would also be beneficial, of course, to use the best medium
composition and its optimal consumption (one in which the greatest investment in medium is
directed towards the production of PoI), a thing not at all trivially related to the speed of cellular
growth. The search for the best medium is typically a large part of the optimization of RP
production. Very fast we find ourselves in front of a complicated optimization problem. I will
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touch upon this perspective in the second part of my thesis.

2.3 Unfolded protein and heat shock response

Each cellular function is "surrounded" by a regulatory network ensuring its smooth "functioning".
In this section I describe the regulatory mechanisms in place to maintain the cellular proteome in a
functional state. This machinery was discovered mostly through the study of the cellular response
to heat shock and to λ -phage infection [125]. The greatest part of the disturbance introduced
into the cell by the production of RP is due to the inability of RPs to successfully fold in E. coli
environment, and is called the Unfolded Protein Response (UPR). This response corresponds to a
great degree to a response the cell mounts to an increase in temperature, through what is called
the Heat Shock Response (HSR). Because UPR can be in a way considered a subset of HSR, and
because the literature on HSR is much more extensive, we will focus our study on it. Within the
scope of the modeling relevant for this thesis, the two stresses can be assumed equal, and their
difference is noted later.
The regulatory scheme of proteome quality maintenance was first characterized and studied under
the laboratory conditions of the so-called "heat shock". In these experiments, the cell culture
would be moved from "room temperature" to a higher temperature environment. This would
provoke, among other things, expression of a number of proteins (then termed the "heat shock
proteins"), whose roles were soon shown to be involved in the maintenance of the proteome
quality which is particularly sensitive to temperature. Most common roles attributed to these
proteins are of assistance in folding and the maintenance of the folded state of the proteome and
the degradation of misfolded and damaged proteins. For detailed description of this system in E.
coli see section 2.1. It was later understood that the unfolding of the proteome caused by other
growth conditions will provoke the synthesis of the same proteostasis proteins [126]. The cellular
reaction to any condition which causes the unfolding of its proteome is termed UPR.

2.3.1 σ32-mediated unfolded protein response

The importance of σ factors in regulating bacterial stress responses has already been noted in
section 1.3. The stress σ factor σ32 (product of the rpoH gene) - also known as the heat shock
σ factor - performs an important regulatory role when cells are exposed to heat, but also when
the cell is faced with the unfolding of its proteome. In such circumstances, σ32 in great part
replaces the "housekeeping" σ factor σ70, and becomes the predominant σ factor in the cell.
This happens as the chaperones and proteases which constantly sequester and degrade this σ

factor under normal growth conditions become occupied by unfolded, misfolded and aggregated
proteins. This serves to indicate to the cell that it is not equipped with enough of proteostasis
machinery, and the released σ32 factor binds RNA polymerase and initiates the transcription of,
among other things, chaperones and proteases - the same ones that contribute to its sequestration
and degradation.
This is illustrated in Figure 2.3.1, where it is shown how the unfolding of the proteome is linked
to the activation of the σ32-mediated HSR and UPR.
Mechanism of response activation. It was in the beginning of the 80s that the researchers first
started assembling an image of how the heat shock was regulated in E. coli. In 1981, it was
discovered that a mutation in the then recently discovered htpR gene led to the inability of the cell
to induce synthesis of the then-known heat shock proteins, and thus, a putative positive regulatory
role was assigned to it [127]. A set of proteins affected by this change was identified, but the
roles of most of these proteins were not clear at the time.
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Figure 2.3.1: Relation of HSR and protein quality control. (A) Nascent proteins can assume a number of
states: unfolded, folded, misfold and aggregated (this is of course not a comprehensive list, but serves rather
the purpose of illustration). Chaperones are protein complexes in charge of holding, folding, refolding and
disaggregation of protein. Proteases are in charge of degrading misfolded or aggregated proteins. (B) HSR,
as well as UPR are regulated primarily through the action of the σ factor σ32, which, when attached to the
RNA polymerase, helps transcribe a number of genes related to proteome maintenance. σ32 is constantly
sequestered and degraded by the very same chaperones and proteases it helps transcribe. When misfolded
and aggregated proteins accumulate, they bind the proteome quality control machinery, resulting in the
rise of cellular σ32 levels.

Parallel to these discoveries, in 1983, it was shown that dnaK gene, which was by that time
already identified as encoding for one of the heat shock proteins, was a regulator of HSR. The
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strain carrying a mutation in this gene was unable to shut off the heat shock response after a
temperature increase, and kept on synthesizing heat shock proteins 2 hours into the adaptation.
Conversely, the strain overproducing dnaK had a comparatively mild response to heat shock
[128]. It was thus showed that at least one heat shock protein exhibits a negative regulatory
function in the process of adaptation.
The htpR gene was later proven to encode for σ32 which, complexed with the RNA polymerases,
induces the transcription of heat-shock promoters, and thus enacts a positive transcriptional
regulatory role in the heat shock adaptation [129]. A further link in the regulatory mechanism
was uncovered when it was shown that the regulatory effect of dnaK is related to the synthesis
and stability of σ32, as it was shown that it is the mutation in the dnaK gene which prevents the
shut-off of σ32 synthesis in the post-adaptation stage. However, the exact molecular mechanism
by which this happened was not clear [129].
The σ32 factor is a short-lived protein under normal growth conditions, with a half-life of about 1
minute. By establishing a correlation between the relative σ32 concentration and the dnaK-dnaJ
mRNA synthesis, researchers postulated that changes in concentration of σ32 regulate the HSR
[130]. The same group established the effect of the dnaK, dnaJ and grpE null mutants on
the synthesis and stability of σ32, demonstrating a difference in half-life in each of the null
mutants [131]. Today, with a better understanding of the functioning of the chaperone complex
DnaJK-GrpE, this does not come as a surprise (see section 2.1.2).
DnaK is soon shown to be a protein belonging to the then newly discovered class of molecular
chaperones [132]. Further experiments show that it is the binding, and possibly the chaperone
function of DnaK which acts as a regulator of σ32 stability [133]. A theory is proposed that it is
the sequestering of DnaK by unfolded proteins that initiates HSR [134]. While being sequestered
by unfolded protein, DnaK is not able to bind and destabilize σ32.
Role of chaperones in σ32 inactivation. With the understanding of the chaperone function of
the DnaJK-GrpE complex, it became obvious that the short half life of the σ32 factor cannot be
explained through its action alone, but that there should be another, quite possibly proteolytic
mechanism in place (such as was already discovered for other processes regulated by constant
production and degradation of transcription factors). In 1995, FtsH protease is implicated in the
degradation of σ32 [135, 136]. As already explained in section 2.1.3, FtsH is a membrane-bound
metalloprotease with distinct roles in membrane protein integration and protein secretion. By
isolating an ftsH null mutant, researchers were able to show that its role in regulating heat shock
was not essential, as the strain lacking FtsH eventually seized the production of the heat shock
proteins, albeit more slowly, and with higher steady-state levels of heat shock proteins than in the
wild type [106]. Considering the binding affinities of σ32 to RNAP and to DnaJK / GroELS, the
pure sequestration model becomes quite unlikely [137].
Temperature sensing. A further nuance in the regulation of HSR was added by the discovery that
the structure of mRNA encoding for σ32 is sensitive to temperature, and allows for higher rates
of translation upon temperature increase [138]. This regulatory effect marks a difference between
the HSR and UPR. While increase in temperature will result in a higher level of translation of
the σ32 protein, accumulation of unfolded and aggregated protein does not exhibit any known
influence upon this rate.
DnaJK-GrpE and FtsH interaction. A link was postulated between the role of chaperones and
FtsH, because σ32 is the only known substrate of FtsH which requires to be delivered to it by a
chaperone [139], thus indicating that it is a regulatory mechanism, not a biological necessity for
this protease. The actual mechanism of interaction is as of today still not clear, and researchers
have not been able to reconstruct it in vitro.
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The first proteases suspected to degrade σ32 were the cytosolic proteases of more general scope.
The discovery that it was in fact FtsH, the only essential and membrane bound protease, brought
to light the possibility that this part of the regulation serves to monitor the state of the inner
membrane proteome.
Regulation by and of σ32. σ32 is the protein product of the rpoH gene, which is under extensive
transcriptional control. This allows the cell to precisely tune its production rate in response to
many cellular signals (the significance of which is still not fully understood). It is transcribed
from at least four different promoters [140], two of them under control of the housekeeping
sigma factor σ70, one under the extreme heat shock σ factor σ24 4 and one under the control
of the nitrogen limitation factor σ54 [142], with usage of the promoters changing greatly with
temperature [141]. Additionally, it is regulated by the cAMP-CRP-CytR nucleoprotein complex
[143] and DnaA [144].
There are 99 known operons which are under the control of the σ32 promoter, with 152 genes
encoding for protein and RNA products (see Table A.2.1) 5. As can be seen from Table A.2.1,
there is a number of central cellular functions under significant regulation by σ32:

1. Post-translational modification, protein turn-over and chaperones
2. Translation, ribosomal structure and biogenesis
3. RNA processing and modification
4. Replication, recombination and repair
5. Defense mechanisms
6. Cell wall / membrane biogenesis
7. Metabolism, and in particular inorganic ion, carbohydrate and nucleotide transport and

metabolism
8. Signal transduction mechanisms

Of course, the complexity of the response triggered cannot be fully appreciated by such a list,
as almost all of the genes listed are also under other types of regulatory control which enables
for very precise regulation of their production. Still, such a list gives an overview of the changes
the cell undergoes when faced with heat shock / unfolded protein shock. Particularly, its obvious
coordination with the central cellular functions, such as translation, implies complex and systemic
adaptation [145].

4The extreme heat shock σ factor was discovered in the attempt to understand the transcriptional activation of σ32

[141].
5Data taken from EcoCyc database [6]
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Complete freedom from stress is death.

Hans Selye, Stress without distress, 1974

In this chapter I mathematically describe and analyze the regulation in E. coli responsible for
the maintenance of the quality of its proteome, and show how we can further our understanding
of this system through the exercise of modeling. In particular, we show that the structure of
this system (as represented in our model) guarantees the existence of a sole equilibrium for all
parameter values.
Several aspects of proteome quality maintenance in E. coli have already been modeled. Fold-
Eco[146] is a modeling study focusing on detailed reconstruction of the proteostasis network in
E. coli in a dynamic model which allows for inference of effects of parameters on protein destiny,
and can be used as a database of parameters related to proteostasis. On the other hand, a smaller
model of the proteostatic regulatory network has been studied in [147] and its follow-ups [148,
149]. This study proposes a link between the design of the biological regulatory ’circuit’ of the
HSR and the control systems as implemented through the science of automatic control, and it
discusses the reasoning behind such a design.
The work in this thesis, in turn, focuses on the analysis of the mathematical representation of the
system by a set of ODEs and the considerations as to the validity of such a representation. Such
nonlinear models of intracellular interactions are notoriously difficult to parameterize due to the
difficulty of associating the mathematical parameters to precise in vivo measurements and the
poor correspondence to in vitro ones. Moreover, any behavior that the system is shown to exhibit
with one set of parameters is not necessarily the behavior it would exhibit in a different point of
parameter space. In light of great difficulty in obtaining relevant parameter values for cellular
systems [150], I focus my analysis on the structure of the system and discuss the properties
evident in it.
In order to perform this analysis, I first propose a relatively detailed model of production and
assumption of different stability states of protein (unfolded, partially folded, folded, misfolded,
aggregated) and the regulatory mechanisms in place to react to the changes in the distribution of
cellular protein between these states. I then propose a number of simplifications to this model and
offer justifications as to why these simplifications can be made. The analysis of the simplified
model brings to light a property inherent in its structure - a single equilibrium point. I discuss the
potential implications of such an unexpected simplicity found in a complex nonlinear dynamical
system. After the demonstration of this property, I list a number of possible limitations of the
model, and examine the applicability of the ODE framework to represent regulatory systems with
feedback in biological systems. This discussion serves as an introduction to the rest of the thesis,
as it pinpoints the possible need for different modeling paradigms for understanding systemic
stress responses. With its focus on structural properties, this work goes along with the growing
interest in the structural analysis of biological networks (work focusing on characterization of
ODE models of metabolic networks [151, 152, 153], network motifs [154] and generic structural
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considerations of chemical reaction networks in terms of stability [155, 156], just to name a few).
The chapter begins by a short description of the mathematical framework used for the construction
of this model and its analysis.

3.1 Mathematical preliminaries

3.1.1 Mathematical modeling of chemical reactions

When studying events taking place inside of a cell, one is most often faced with interactions of
different chemical components. In this case, the cell (or its portion of interest to the researcher) is
the chemical system under study. The changes in the state of a chemical system over time happen
as a result of elementary chemical reactions. Elementary reactions are such so that the conversion
from substrates to products occurs in a single step, with no detectable chemical intermediates. One
class of elementary reactions is the unimolecular elementary reactions, in which one chemical
component goes through spontaneous alteration, either by dissotiating into smaller chemicals,
by isomerization or by radioactive decay. If the reaction involves more than one substrate, the
prerequisite of it happening is the collision of all the substrates. The simultaneous collision of
three chemical components in such a way that allows for the reaction to take place, although not
impossible, is already highly unlikely, while there are no elementary reactions involving four or
more substrates. Therefore, the only typical elementary reaction, apart from the unimolecular
one, is the bimolecular one, which involves the collision and subsequent transformation of two
substrates.
Apart from the elementary chemical reactions, a chemical system can be described by complex
chemical reactions. These might be described as a "lump-sum" of multiple elementary reactions.
The study of the temporal evolution of the state of the chemical system governed by a set of
chemical reactions falls under the domain of chemical kinetics.
A chemical system at a time t is described by a set of chemical components, a vector of their
quantities at time t and a set of reactions describing evolution of the system over time. Addition-
ally, a chemical system may incorporate a description of space in which the reactions are taking
place. This space is either modeled (such as in reaction-diffusion systems), or is represented by a
set of assumptions as to its size, mixedness and openness (or closedness) to its surroundings.
A description of each of the chemical reactions needs to include (i) a list of substrate and
product chemical components, (ii) a stoichiometric coefficient associated to each of the chemical
components - a number of units of that component used in or produced by the reaction, (iii)
a vector of quantities of each of the substrates and products and (iv) a function describing the
speed at which the reaction takes place, also known as the reaction rate. While the first two
requirements can be stated unambiguously, the third one can be measured (at least theoretically
speaking), the last requirement is subject to choice. The choice of the formulation of reaction
rates indeed makes up for a large portion of what can be called the modeler’s choice. Indeed, the
choice, even at a superficial inspection, gives eight possible ways to go: the time can be either
continuous or discrete, as well as the chemical component quantities, and the change in these
quantities can be described either deterministically or stochastically. All of the listed options can
be valid for particular chemical systems. Often, the modeler is governed not only by the estimated
suitability of a particular modeling choice, but also by her own expertise and the availability of
mathematical tools for the study of the system (given a certain choice). Even after the choice of
continuous vs. discrete and deterministic vs. stochastic has been made, the formulation of the
rate expression for a given chemical reaction does not simply follow as a consequence of the
underlying physical events. Our understanding and characterization of elementary reactions has
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greatly progressed, both in terms of experimental techniques and in silico molecular dynamics
simulation methods. Even so, a direct correspondence between the physical events taking place
and a chemical reaction rate has been established only in a very limited set of circumstances 1.
Assuming one had a good framework for description of elementary reactions, one would still be
left with the problem that most reactions one wishes to describe are complex, and the sequence of
events which leads to their taking course is often full of intermediates which are very difficult to
detect and characterize. In a complex reaction, the number of possible paths which a reaction can
take can be very great indeed.

Mass action kinetic law
One of the most common ways used to model elementary reactions has for years been the so-called
mass action kinetic law [157]. This law assumes continuous time, continuous concentrations
of the chemical components and a deterministic change in the chemical system. Although the
derivation of this law, which took form in the first part of the 19th century, was initially made on
the basis of empirical observation [158], it was later shown that such a principle can be derived
from classical thermodynamics under certain assumptions (see [159] for one such derivation).
The kinetic law of mass action states that the rate of reaction is proportional to the product of
reacting species’ active masses (concentrations) and what they called the chemical affinity [160].
For a reaction of the form:

A+B k→C (3.1.1)

kinetic law of mass action describes the changes in concentrations:

dCA

dt
=

dCB

dt
=−dCC

dt
=−kCACB (3.1.2)

where CX denotes the concentration of species X . The constant k corresponds to the original
notion of chemical affinity. While the product of concentrations relates to the probability of
collision of two possibly interacting chemical components, the interpretation of k is more subtle:
it includes the dependence of the reaction rate on temperature and the probability that the collision
will result in a reaction taking place.
While the expression in Equation 3.1.2 is often generalized to the following form:

nAA+nBB k→ nCC+nDD (3.1.3)

in which the reaction rate becomes:

dCA

dt
=

dCB

dt
=−kCnA

A CnB
B (3.1.4)

there is no evidence that this formulation can be extended to non-elementary reactions, and it is
safe to assume that any reaction involving a simultaneous collision of more than three chemical
components cannot be classified as an elementary reaction. In fact, the law was formulated as a
consequence of study of elementary reactions. The mass action law assumes that all the chemical
components are mixed homogeneously.
From the point of view of the type of differential equations used in the formulation of the reaction
rates according to the mass action kinetics law, we can see that all the ODEs are ordinary (they

1Expressions derived from thermodynamics, such as the transition state theory or the Eyring–Polanyi equation,
explain only what happens at a chemical equilibrium.
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describe change over a single variable - time), autonomous (they do not depend explicitly on
time) and in a general case nonlinear.
The mass action law has been the basis for the derivation of many other rate laws. For example,
in a simple enzymatic reaction system

E +S � ES→ E +P (3.1.5)

where E is the enzyme, S the substrate and P the product, it might be safe to assume that the rate
limiting step is the catalytic activity of the enzyme (therefore the conversion of ES to E +P),
and that the reversible binding of the substrate to the enzyme achieves equilibrium within a time
frame relevant for the catalysis. Such kind of assumptions have been used to derive different
enzyme kinetic rate laws, such as Michaelis Menten or Hill equation. These formulations offer a
single equation describing the rate at which the enzyme performs its catalytic activity, and thus
provides a "simple" description of a potentially very complex underlying process.

Rate formulation in this thesis
Even if many details are left out in this short exposition, it does serve to begin to appreciate the
subtlety involved in modeling chemical systems. Modeling cells provides additional challenges,
for a number of reasons: (i) they are not exactly well mixed containers, (ii) system volume is
subject to change, (iii) many of their species are present in such low amounts that they cannot
be considered concentrations, (iv) they are not isolated systems, but instead exchange chemical
material with their surroundings and (v) reactions happening on a membrane cannot be considered
as reactions taking place in a three dimensional space, just to name a few.
The other way in which the chemical experiment set up in laboratory conditions and those taking
place inside a cell differ is the latter are purposeful. This purpose is implemented through a
complex chemical environment of the rest of the cell which monitors and interferes with each
chemical reaction. Even if this is an argument difficult to take into account, I believe it is very
important, and can help guide our modeling efforts towards more sensible, and thus useful,
models. The reason for this is that when we model a chemical reaction taking place in a container
set up by a chemist, we don’t need to ask ourselves the question such as "What purpose does
this reaction serve?", whereas when the modeled reaction takes place within a living entity, this
question might be the single most important question one can ponder about.
In this thesis, I have chosen to model all the interactions using the afore described mass action
kinetic law. Since our system of interest is well studied, with decades of experimental effort
into elucidating the workings of each reaction, we could identify the elementary reactions of our
chemical system with a reasonable degree of confidence. Formulating the time evolution of our
chemical system in such a way allows us to use the existing analytical tools for the analysis of
nonlinear ODEs.

3.1.2 Equilibria of dynamical systems
In subsection 1.4.1, I briefly describe the kind of dynamical systems used for the implementation
of the model in this chapter. There, I also mention how complex the behavior of such dynamical
systems can be when they are nonlinear. As we see in the formulation of the "mass action law",
the dynamic description of chemical interactions often includes nonlinear terms. We have also
mentioned that for such systems it is often impossible to obtain analytical expressions for their
trajectories. However, even if we were equipped with an analytical "solution" of a nonlinear
dynamical system, that might not necessarily be the best way in which we could understand
the behavior and characteristics of the system. If, following the example from [161], we take a
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system:

ẋ = sinx (3.1.6)

and obtain an analytical expression defining its evolution in time:

t =
∣∣∣∣cscx0 + cotx0

cscx+ cotx

∣∣∣∣ (3.1.7)

where csc stands for cosecant, and cot for cotangent. This expression, while being exact, does not
contribute much to our understanding of the system - in fact - we would again need to analyze
this expression - instead of the original system - so as to gain some intuition of what possible
behaviors this system allows for.
However, we know that, chaotic systems aside 2 , dynamical systems can exhibit a number of
typical behaviors. These typical behaviors would become obvious if we would initialize the
system at a number of points xxx000 and observe what happens to the system after a long time 3. They
are related to the number and type of equilibrium points and limit cycles of the system. Given a
system whose change over time is described by:

dxxx
dt

= ẋ(t) = f (xxx) (3.1.8)

where xxx(t) ∈ Rn, equilibrium points are points xxx∗ such that:

f (xxx∗) = 0 (3.1.9)

Since this means that the change of the system over time is zero (ẋxx(t) = 0, the system that starts
out in xxx(t0) = xxx∗ remains in it forever:

xxx(t) = xxx∗, t ∈ [t0,∞) (3.1.10)

Periodic (closed) orbits of period T are such that

xxx(t) = xxx(t +T ), t ∈ [t0,+∞) (3.1.11)

While the detailed study of nonlinear dynamical systems is in terms of required mathematical
level rather difficult, in certain cases some intuition can be gained through the use of graphical
methods. As is the case with the appeal of Feynman diagrams [162], dynamic systems can
sometimes be characterized graphically by using phase portraits in a way which allows for a
good engineering-level understanding of their behavior.
This is particularly suitable for analysis of two-dimensional systems. We will take this system as
an example:

ẋ = x(x− y)

ẏ = y(2x− y) (3.1.12)

2We can indeed leave chaotic systems aside in this consideration, because the regulated and predictable behavior
necessary for the functioning of an organism has excluded chaotic systems as potential solutions to any of the regulatory
problems faced by the cell and organism.

3The number of these points could theoretically be infinite, and the observation time as well.
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PHASE PORTRAIT OF THE SYSTEM

nullclines of the
system

system trajectories

unit vectors 
pointing in the

direction of change 
over time

an unstable 
equilibrium point

Figure 3.1.1: Phase portrait of a dynamical system described by Equation 3.1.12. The red and blue dashed
lines represent nullclines associated with the variables x and y, correspondingly. The dark brown lines
are trajectories of the system initiated at different points in the phase space. The green arrows are unit
vectors pointing in the direction of change over time for x and y. The system has one equilibrium point
(x∗,y∗) = (0,0). Since there are trajectories which, if initiated in close proximity of lead away from it and
remain distant at t→ ∞, the equilibrium point is unstable.
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By setting ẋ = 0 we obtain a set of points in phase space at which x does not change over time.
This set of points (usually curves) is called a nullcline. In our case, the nullclines of x are:

x = 0 (3.1.13)

x = y (3.1.14)

While the y nullclines are:

y = 0 (3.1.15)

y = 2x (3.1.16)

The intersection of all the nullclines defines the equilibrium point of the system, which is
(x = 0,y = 0). We can graphically represent this information in a phase plot, as in Figure 3.1.1.
We notice that the nullclines for a particular variable separate the regions in which that variable
increases (positive derivative) or decreases. These regions are marked by arcs in blue and red for x
and y. Determining these regions by knowing that there can be no change in variables along their
nullclines, we are able to sketch the trajectories of the system. This allows us to conclude that the
one equilibrium point of our system is unstable, as there are trajectories which start arbitrarily
close to it, but lead away from it as t→ ∞.
This idea can in some cases be extended to systems of dimension higher than two, if it is possible
to simplify the system of nullclines until we reduce it to two expressions with two variables. In
that case, if the shape of the curves are such so that only a single intersection is possible, we can
show that the system has a single equilibrium point.

3.2 Dynamical model of HSR
With the aim to understand the behavior of the stress response in E. coli during the change in
cellular proteome quality due to unfolding, misfolding and aggregation of protein, I first propose
a model of the state of the cellular proteome (in terms of its foldedness) and the regulatory
mechanism in place to monitor and react to the changes in its quality.
In this section, I present the full model in ODE form, as graphically represented in Figure 3.2.1
and Figure 2.3.1.
As already mentioned, UPR can be considered as a subset of HSR. Therefore, the model presented
here, even if describing HSR, in fact describes both. The full heat shock regulation model
integrates the regulatory loop as represented in Figure 2.3.1 and Figure 3.2.1. It assumes constant
production of cellular protein Cp. The protein pool is divided into proteins that can spontaneously
fold Ps f which constitute a portion α of all cellular protein (and are thus produced at a rate equal
to αCp) and obligatory GroELS substrates PG (produced at rate (1−α)Cp). We include this
difference since a part of the proteome of E. coli requires GroELS under all growth conditions.
The obligate GroELS substrates are not many (∼ 85), but include 13 proteins essential under all
growth conditions [163]. Both types of protein can assume a variety of states: unfolded uP, native
nP, misfolded mP and aggregated aP. The obligate GroELS substrates can assume one additional
state: partially folded p f P. Apart from GroEL/S, this model features another chaperone complex
- the DnaJK−GrpE. This complex was chosen because of its central role in almost all the
aspects of protein de novo folding, refolding, prevention of aggregation, disaggregation and
re-solubilization of aggregated protein [73] .
While only Ps f can spontaneously fold, both Ps f and PG can, once in native state, spontaneously
unfold. Both types can be folded back into native state through binding of the chaperone. The
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Figure 3.2.1: Simplified model of the protein folding dynamics in bacteria. The cellular protein pool is
divided into two parts - proteins which require the assistance of GroELS chaperonin complex folding PG
(right side of the figure), and those that do not, and can fold spontaneously Ps f (left). Both of these types
of protein can exist in multiple states: unfolded uP, native nP, misfolded mP and aggregated aP. The
GroELS dependent protein can exist in one additional state: partially folded p f P. Proteins are produced
in their unfolded form and can achieve native form either through spontaneous (for the Ps f class) or
chaperone-assisted folding. By unfolding, the native state can change to the unfolded state. Unfolded
proteins can misfold and aggregate. Misfolded proteins can revert to the unfolded state by the action of
the chaperone. Aggregated proteins can be converted back to misfolded proteins by the action of the
chaperone.

unfolded protein can misfold, and both unfolded and misfolded protein can aggregate. Misfolded
protein can be reverted to unfolded state by the chaperones. As misfolded proteins are relatively
stable, they cannot be immediately refolded to native state, but need chaperone assistance to
revert back to the more unstable, unfolded state [164]. Once aggregated, protein can be reverted
to misfolded state by the action of the chaperone. Unfolded and misfolded protein can be subject
to degradation by the protease Lon whose concentration is assumed constant. Unfolded and
misfolded protein can be degraded by the action of the protease FtsH. All reactions are modeled
through mass action kinetics.
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The mass balance equations of the model are the following:

[Ptots f ] = [uPs f ]+ [nPs f ]+ [mPs f ]+ [aPs f ]

+ [DJK : uPs f ]+ [DJK : mPs f ]+ [DJK : aPs f ] (3.2.1)

[PtotG ] = [uPG]+ [nPG]+ [mPG]+ [aPG]

+ [DJK : uPG]+ [DJK : mPG]+ [DJK : aPG]

+ [G : uPG]+ [G : p f PG] (3.2.2)

[σ32
tot ] = [σ32]+ [DJK : σ

32]+ [DJK : σ
32 : FtsH] (3.2.3)

[DnaJKtot ] = [DnaJK]

+ [DJK : σ
32]+ [DJK : σ

32 : FtsH]

+ [DJK : uPs f ]+ [DJK : mPs f ]+ [DJK : aPs f ]

+ [DJK : uPG]+ [DJK : mPG]+ [DJK : aPG] (3.2.4)

[GroELStot ] = [GroELS]+ [G : uPG]+ [G : p f PG] (3.2.5)

[FtsHtot ] = [FtsH]+ [DJK : σ
32 : FtsH] (3.2.6)

Relation between protein in the aggregated state and aggregates (which are composed of nP

protiens):

[As f ] = nP[aPs f ] (3.2.7)

[AG] = nP[aPG] (3.2.8)

Change in total quantities:

[ ˙Ptots f ] = (1−α)Cp−µ[Ptots f ]− kdeg1 [uPs f ]− kdeg2 [mPs f ] (3.2.9)

[ ˙PtotG ] = αCp−µ[PtotG ]− kdeg1 [uPG]− kdeg2 [mPG] (3.2.10)

[ ˙
σ32

tot ] = fP(T,σ70,38,24,54)−µ[σ32
tot ]− kdeg3 [DJK : σ

32 : FtsH] (3.2.11)

[ ˙DJKtot ] = fP(σ
32)−µ[DJKtot ] (3.2.12)

[ ˙GroELStot ] = fP(σ
70,32)−µ[GroELStot ] (3.2.13)

[ ˙FtsHtot ] = fP(σ
70,32)−µ[FtsHtot ] (3.2.14)

All protein states of the spontaneous folding protein type:

[ ˙uPs f ] = (1−α)Cp−µ[uPs f ]− kdeg[Lon][uPs f ]

− kF(T )[uPs f ]+ kU(T )[nPs f ]

− kB[DJK][uPs f ]+ kD[DJK : uPs f ]

− kM(T )[uPs f ]+ kR[DJK : mPs f ]

− kA(T )[uPs f ] (3.2.15)

[ ˙nPs f ] = kF(T )[uPs f ]− kU(T )[nPs f ]+ kD2 [DJK : uPs f ] (3.2.16)

[ ˙mPs f ] = kM(T )[uPs f ]−µ[mPs f ]− kD[Lon][mPs f ]

− kB[DJK][mPs f ]+ kD[DJK : mPs f ]− kR[DJK : mPs f ]

− kA(T )[mPs f ]+ kDA[DJK : aPs f ] (3.2.17)

[ ˙aPs f ] = kA(T )[uPs f ]+ kA(T )[mPs f ]−µ[aPs f ]

− kB[DJK][aPs f ]+ kD[DJK : aPs f ] (3.2.18)
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All protein states of the proteins that require GroELS for folding:

[ ˙uPG] = αCp−µ[uPG]− kdeg[Lon][uPG]

+ kU(T )[nPG]

− kB[DJK][uPG]+ kD[DJK : uPG]

− kM(T )[uPG]+ kR[DJK : mPG]

− kA(T )[uPG] (3.2.19)

[ ˙nPG] = k f 2[G : p f PG]−µ[nPG] (3.2.20)

[ ˙mPG] = kM(T )[uPG]−µ[mPG]− kD[Lon][mPG]

− kB[DJK][mPG]− kD[DJK : mPG]

− kA(T )[mPG]+ kDA[DJK : aPG] (3.2.21)

[ ˙aPG] = kA(T )[uPG]+ kA(T )[mPG]−µ[aPG]

− kB[DJK][aPG]+ kD[DJK : aPG] (3.2.22)

Dynamics of the complexes are:

[ ˙DJK : uPs f ] = kB[DJK][uPs f ]− (kD1 + kD2)[DJK : uPs f ] (3.2.23)

[ ˙DJK : mPs f ] = kB[DJK][mPs f ]− kD[DJK : mPs f ] (3.2.24)

[ ˙DJK : aPs f ] = kB[DJK][aPs f ]− kD[DJK : aPs f ] (3.2.25)

[ ˙DJK : uPG] = kB[DJK][uPG]− kD[DJK : uPG] (3.2.26)

[ ˙DJK : mPG] = kB[DJK][mPG]− kD[DJK : mPG] (3.2.27)

[ ˙DJK : aPG] = kB[DJK][aPG]− kD[DJK : aPG] (3.2.28)

[ ˙G : uPG] = kB[G][uPG]− k f 1[G : uPG] (3.2.29)

[ ˙G : p f PG] = k f 1[G : uPG]− k f 2[G : p f PG] (3.2.30)

[ ˙DJK : σ32] = kB[DJK][σ32]− kD[DJK : σ
32] (3.2.31)

[ ˙DJK : σ32 : FtsH] = kB[DJK : σ
32][FtsH]− kdeg[DJK : σ

32 : FtsH] (3.2.32)

3.3 Model simplification
The model presented above has 24 ODEs and 6 algebraic equations. The sheer size of the model
prohibits anything but numeric simulation. In order to be able to analyze it, I first introduce a
number of assumptions and simplifications which result in a more comprehensible model.
Assumption 1 - FtsH interaction. Because there is no biological evidence that the free quantity
of FtsH is a signal relevant in regulating the σ32-mediated HSR or UPR (unlike the case of
chaperones) and the degradation proceeds fast in in vivo conditions (half-life of σ32 shorter
than 1 minute), and because its precise role in the coordination of the response is still not
well understood, I propose to make the following assumption: FtsH does not need to undergo
complexing with [DJK : σ32] in order to degrade the σ factor, but instead, degradation proceeds at
a pace proportional to [FtsHtot ][DJK : σ32]. Since in my model FtsH is used solely to degrade σ32,
which in vivo should occupy a minimal portion of the protease, it is reasonable to approximate the
available FtsH portion with the total amount 4. Furthermore, since the transcription of the ftsH
gene depends on both the housekeeping σ70 and the heat shock σ32 sigma factors, it is not trivial

4The simulation of the parameterized model yielded the portion of FtsH occupied by σ32 less than one percent
([147], Supplementary table 2).
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to represent its transcription as a function of σ32. The reason for this is that the increase in σ32 is
accompanied by a decrease in σ70, making the consequences for the transcription of ftsH unclear
without further experimental investigation. Therefore, I assume that the production of FtsH is not
dependent on the quantity of free σ32 but rather constant, making [FtsHtot ] a parameter of the
system.
Simplification 1 - Removal of GroELS. The first simplification introduced in the model is the
removal of the difference between the obligate GroELS substrates and the other proteins. While
both DnaJK-GrpE and GroELS take part in controlling for the activity of σ32, they seem to
perform the same sequestration role [165]. Due to the similarity of their regulatory role, I remove
the GroELS, and keep only the DnaJK chaperone, and thereby obtain a model simple enough to
be analyzed.
Simplification 2 - Bundling of non-native protein states. As an additional simplification, I
chose to bundle the non-native protein states (unfolded, misfolded, aggregated) into a single
non-native protein state - unfolded. Since the chaperone DnaJK through its folding, refolding and
disaggregation function interacts with all of the named non-native protein states, this simplification
still preserves the basic relation of DnaJK to non-native protein.
With these simplifications, I obtain the following model. Mass balance equations are:

[Ptots f ] = [uPs f ]+ [nPs f ]+ [DJK : uPs f ] (3.3.1)

[σ32
tot ] = [σ32]+ [DJK : σ

32] (3.3.2)

[DJKtot ] = [DJK]+ [DJK : σ
32]+ [DJK : uPs f ] (3.3.3)

Changes in total quantities are:

d[Ptots f ]

dt
= (1−α)Cp−µ[Ptots f ]− kdeguP [Lon][uPs f ] (3.3.4)

d[σ32
tot ]

dt
= fP:32(T,σ70,38,24,54)−µ[σ32

tot ]− kdeg32 [FtsHtot ][DJK : σ
32] (3.3.5)

d[DJKtot ]

dt
= fP:DJK(σ

32)−µ[DJKtot ] (3.3.6)

All protein states of the spontaneous folding protein type:

d[uPs f ]

dt
= (1−α)Cp− (kdeguP [Lon]+µ)[uPs f ]− kF(T )[uPs f ]+ kU(T )[nPs f ] · · ·

− kBD:uP [DJK][uPs f ]+ (kDD:uP + kFDJK )[DJK : uPs f ] (3.3.7)
d[nPs f ]

dt
= kF(T )[uPs f ]− (kU(T )+µ)[nPs f ]+ kFDJK [DJK : uPs f ] (3.3.8)

Complexes:

d[DJK : uPs f ]

dt
= kBD:uP [DJK][uPs f ]− (kDD:uP + kFDJK +µ)[DJK : uPs f ] (3.3.9)

[DJK : σ32]

dt
= kBD:32 [DJK][σ32]− (kDD:32 +µ)[DJK : σ

32] (3.3.10)

3.4 Existence of equilibria
In order to better comprehend the properties inherent in the structure of this system, we attempt
to determine the number of its equilibrium points.
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I resolve the complexes:

[DJK : uPs f ] =
kBD:uP

kDD:uP + kFDJK +µ
[DJK][uPs f ] = A[DJK][uPs f ],

[DJK : σ
32] =

kBD:32

kDD:32 +µ
[DJK][σ32] = B[DJK][σ32]. (3.4.1)

Next, I solve for total quantities at an equilibrium: From the ODE describing the change in the
total protein quantity 3.3.4, we deduce:

[Ptots f ] =
(1−α)Cp

µ
−

kdeguP

µ
[uPs f ] =C−D[uPs f ]. (3.4.2)

The equilibrium point associated to ODE defined by 3.3.5 is given by

[σ32
tot ] =

fP:32(T,σ70,38,24,54)

µ
−

kdeg32

µ
[FtsHtot ][DJK : σ

32]. (3.4.3)

It remains to replace [DJK : σ32] by its expression at the equilibrium, i.e. Equation 3.4.1, in order
to deduce that

[σ32
tot ] = f̃P:32(T,σ70,38,24,54,µ)−E[DJK][σ32] (3.4.4)

with f̃P:32(T,σ70,38,24,54,µ) = fP:32(T,σ70,38,24,54)/µ .

Finally, the equilibrium point of ODE defined by 3.3.6 is easily obtained and given by

[DJKtot ] =
fP:DJK(σ

32)

µ
= f̃P:DJK(σ

32,µ). (3.4.5)

At the equilibrium, by using Equation 3.3.8, the native protein is expressed as a function of free
unfolded protein and DnaJK concentrations:

[nPs f ] =
kF(T )

kU(T )+µ
[uPs f ]+

kFDJK

kU(T )+µ
[DJK : uPs f ]

=
kF(T )

kU(T )+µ
[uPs f ]+A

kFDJK

kU(T )+µ
[DJK][uPs f ]

= F(T )[uPs f ]+G(T )[DJK][uPs f ]

All the introduced constants are listed in Table 3.4.1.
By introducing the obtained expressions into the mass balance constraints, I obtain:

[uPs f ] =
C

1+D+F(T )+(A+G(T ))[DJK]
,

[σ32] =
f̃P:32(T,σ70,38,24,54,µ)

1+(B+E)[DJK]
,

[DJK] =
f̃P:DJK(σ

32,µ)

1+A[uPs f ]+B[σ32]
.

(3.4.6)
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Table 3.4.1: Definition of various constants.

A =
kBD:uP

kDD:uP + kFDJK +µ
, B =

kBD:32

kDD:32 +µ

C =
(1−α)Cp

µ
, D =

kdeguP

µ

E = B
kdeg32

µ
[FtsHtot ], F(T ) =

kF(T )
kU(T )+µ

,

G(T ) =
kFDJK

kU(T )+µ
×A =

kFDJK

kU(T )+µ
× kBD:uP

kDD:uP + kFDJK +µ
.

(a)

(b)

Figure 3.4.1: (a): Intersection of nullclines defined by 3.4.8 and 3.4.9 under the assumption that [uP] is
constant. Qualitative inspection of the curves shows that they can intersect at a single point, thus ensuring
the existence of a single equilibrium point. (b): Qualitative illustrations of the possible curves defined
by Equation 3.4.10, where the intersections of the curve with the x axis define a value of [DJK] at the
equilibrium point. One can see that regardless of the value of the parameter b (3.4.12), for all values of
[σ32]> 0, we show that [DJK] will have a single positive value, thus defining a single equilibrium point.
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Function fP:DJK([σ
32]) is assumed to be a monotonously growing function of σ32, and for the

simplicity of calculation, it is further assumed to be a linear function Ŷ1(σ
32) =Y1σ32. I introduce

new constants for the purpose of simplification, and write:

[uP] =
X1

X2 +X3[DJK]
(3.4.7)

[DJK] =
Y1[σ

32]

1+Y2[uP]+Y3[σ32]
(3.4.8)

[σ32] =
Z1

1+Z2[DJK]
(3.4.9)

The expression for [DJK] seen as a function of [σ32] is of Michaelis-Menten type, and is thus a
monotonously growing function of [σ32]. The expression for [σ32] is monotonously decreasing
with [DJK]. In such a case, for a fixed [uP], there is a single crossing that marks the equilibrium
point of the system, as illustrated in Figure 3.4.1a.
If we input the expression for [uP] into the expression for [DJK], we get a second degree
polynomial of [DJK] of a shape:

a[DJK]2 +b[DJK]+ c = 0 (3.4.10)

where

a = X3(1+Y3)[σ
32] = θ1[σ

32] (3.4.11)

b = X2 +X1Y2 +(X2Y3−X3Y1)[σ
32] = θ2 +θ3[σ

32] (3.4.12)

c =−X2Y1[σ
32] =−θ4[σ

32] (3.4.13)

with all constants X1,X2,X3,Y1,Y2,Y3,Z1,Z2 > 0, and θ1,θ2,θ4 > 0.
This equation has two solutions:

[DJK] =
−b±

√
b2−4ac

2a
(3.4.14)

or, in the expanded form:

[DJK] =
−(θ2 +θ3[σ

32])±
√

(θ2 +θ3[σ32])2 +4θ1θ4[σ32]2

2θ1[σ32]
(3.4.15)

To determine the type of solutions possible for Equation 3.4.15, we first look at the discriminant.
The constants θ1, θ2 and θ4 are always positive. θ3 can assume any value, but it is present only
under a square, and thus the expression under the root is always positive and greater than b. Since
[DJK] is necessarily non-negative, only one of the two solutions is acceptable (the positive one).
This is illustrated in Figure 3.4.1.
By showing that this solution is a strictly non decreasing function of [σ32], we know that the two
nullclines described by the expressions of [DJK] and [σ32] can intersect only at a single point,
which would define the equilibrium of the system. This is more difficult to show graphically
because [σ32] appears in all the parameters of the quadratic equation (3.4.15). Therefore, to show
that the [DJK] is a monotonous function of [σ32], I show that the derivative ∂ [DJK]/∂ [σ32] is
non negative for [σ32] ∈ R≥0

∂ [DJK]([σ32])

∂ [σ32]
=
−θ2

(
θ2 +θ3[σ

32]−
√

(θ2 +θ3[σ32])2 +4θ1θ4[σ32]2
)

2θ1[σ32]2
√
(θ2 +θ3[σ32])2 +4θ1θ4[σ32]2

(3.4.16)
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Since I have already shown that
√
(θ2 +θ3[σ32])2 +4θ1θ4[σ32]2 is positive and larger than

b = θ2 + θ3[σ
32] Therefore, the value

(
θ2 + θ3[σ

32]−
√
(θ2 +θ3[σ32])2 +4θ1θ4[σ32]2

)
will

always be negative. Since θ2 is positive, the expression in the numerator will always be positive. I
have shown that for [σ32]∈ R+, [DJK] is a strictly non decreasing function of [σ32], and therefore
the expressions Equation 3.4.15 and Equation 3.4.9 can intersect at a single point which is the
equilibrium point of the system.
I thus show that the system described by equations (Equation 3.3.1-3.3.3) under the set of
assumptions listed in the beginning of section 3.3 has a unique equilibrium point. What is
important to note is that the simplified system for which we have shown this property numbers 7
(in general) nonlinear ODEs and 3 algebraic equations. Keeping in mind that even the existence
of solutions cannot be assumed for any nonlinear dynamical system, a single equilibrium point
for the entire parameter space is indeed a very strong property.

3.5 System behavior at the equilibrium point

In order to analyze the behavior of the system at the equilibrium points by observing the influence
of variables and parameters, I refer to Equation 3.4.6 and rewrite it expanding the parameter
expressions:
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µ
+ kF (T )

kU (T )+µ
+
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µ
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(3.5.1)

The effect of chaperones. Let us first remember that the inactivation of σ32 happens due to
chaperoning by both DnaJK-GrpE and GroELS systems. Therefore, what is represented by [DJK]
variable in our system is in fact the action of all the chaperones that act on the sigma factor. If we
imagine a null mutant of one of these chaperones, that would correspond to the low amount of
[DJK] in our model and could be integrated into the model by reducing the Y1 parameter (3.4.8).
Such a change would result in a new equilibrium point with a higher level of unfolded protein
[uP] and [σ32], indicating a higher level of heat shock protein synthesis, as is the case in cells
[131]. Unfortunately, the situation in which all the chaperones which regulate σ32 levels are
knocked out is impossible to accomplish due to essentiality of GroELS in all growth situations.
Our model predicts that in this case, an equilibrium point would exist, determined solely by (apart
from folding and unfolding dynamics for the unfolded protein) the rate of dilution:

[uPs f ] =

(1−α)Cp
µ

1+
kdeguP

µ
+ kF (T )

kU (T )+µ

(3.5.2)

[DJK] = 0 (3.5.3)

[σ32] =
fP:32(T,σ70,38,24,54)

µ
(3.5.4)
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under the assumption that the production of σ32 is constant. An excessive production of the
chaperones, on the other hand, would result in lower amounts of the unfolded protein and lower
levels of σ32 at the equilibrium point, as has been shown experimentally [131].
rpoH null mutant. I further analyze the result of eliminating σ32 from our system by assuming
that fP(σ

70,38,24,54,T ) = 0, and thus simulating the situation of an rpoH null mutant. At the
equilibrium point of the system, as it is described by Equation 3.5.1, the effect of setting [σ32] = 0
would result in zero levels of chaperone, and therefore increased level of unfolded protein. In
the real heat shock regulation system, some chaperones are produced under the influence of the
housekeeping sigma factor, so the actual chaperone level would not be zero. However, the rpoH
null mutants do result in low levels of chaperones and impossibility of growth at temperatures
over 20◦C [166].
Degradation by FtsH. The parameter [FtsHtot ] appears solely in the expression for σ32, and is
bundled in the constant Z2 (Equation 3.4.9). Since I have shown that under the assumption of
positivity for all constants the system will always have a single equilibrium point, and since this
parameter will be positive even if [FtsHtot ] = 0, I conclude that the system will maintain this
property in the absence of FtsH. This has been experimentally confirmed in [106], as well as
shown in simulations of a heat shock model of similar structure in [147].
Protein folding. Assuming that the folding of proteins is completely prevented, both sponta-
neously and through the action of the chaperone (kF(T ) = 0, kFDJK = 0), the expression for the
unfolded protein reduces to:

[uPs f ] =

(1−α)Cp
µ

1+
kdeguP

µ
+

kBD:uP
kDD:uP+µ

[DJK]
(3.5.5)

while the expressions for [DJK] and [σ32] do not change significantly. One can see that because of
the binding of uP to DJK, the structure of the system can still be represented as in Equation 3.4.7.
Consequently, as the positivity for all constants still holds, the system retains the same property
of a single equilibrium point.
Growth rate. The equilibrium point of the system under analysis exists only for the positive
growth rate µ > 0. At zero growth rate, this system no longer has an equilibrium point (remem-
bering that the expressions for f̃P:DJK(σ

32) and f̃P:32(T,σ70,38,24,54) have µ in the denominator
(see Equation 3.4.5 and 3.4.4). Change in the growth rate has no simple effect on the system, but
instead depends on the exact parameter values.

3.6 Discussion
Whenever a model of a certain phenomenon is presented, it will have its limits, and its benefits.
The benefits need to fit the purpose at hand, while making sure that the limits are not important
enough for the situation of interest so as to limit the usefulness of the model.

3.6.1 New understanding of heat shock regulation
The regulation of HSR in E. coli has been studied for half a century, and still, many details remain
unclear, such as the mechanism of inactivation of σ32 by chaperones, the role of the chaperones
in its degradation, or the reason behind its degradation depending on the only essential and
membrane-anchored protease.
There have been new discoveries in the regulation mechanism that have not been included in
this thesis. Here, I shortly review the new nuances of the heat shock regulation that have been
uncovered in the last 10 years.
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In 2013, Lim et al. [167] have shown that σ32 is targeted to the membrane by the co-translational
SRP (Signal Recognition Particle) mechanism. This discovery added weight to the assumption
that σ32 regulatory mechanism monitors the state of the membrane proteome via its degradative
regulation by FtsH. Additionally, rpoH gene is exactly downstream of the operon from which
ftsY - signal recognition particle receptor - is transcribed. As σ32 is a transcriptional regulator of
the ftsX-ftsE-ftsY operon, its physical proximity might be significant [168, 169].
FtsH has poor unfoldase activity, and degrades σ32 very slowly in vitro [135]. It was initially
assumed that the action of the chaperones introduces a conformational change in σ32 which
makes it more susceptible to degradation. Researchers have been unable to confirm this, as the
addition of chaperones did not speed up the FtsH-mediated degradation of σ32 in vitro [170].
It was recently suggested that other ubiquitin-like modifier proteins might play a role in σ32

modification prior to its degradation 5 [172].

3.6.2 Growth condition
The regulatory mechanism in place to maintain a properly folded proteome in E. coli that has been
studied here is the one that gets activated when E. coli is grown aerobically in a laboratory. The
question can rightly be asked if the same mechanism is responsible for the proteome maintenance
task in the anaerobic environment, more typical for E. coli, in which the long periods of stationary
phase existence are interspersed with periods of slow growth.
The question has been posed whether heat shock as manifesting in the aerobic laboratory condi-
tions is not to a great extent caused by oxidative stress. In fact, it has been shown that in anaerobic
conditions, the rpoH null mutant is not impaired in dealing with heat stress [173], meaning that a
regulatory mechanism other than the one governed by σ32 is in control.
Be it so, the growth condition of aerobic exponential growth is still relevant for this study, because
the UPR (as a subset of the UPR) during recombinant protein production happens mostly exactly
under such laboratory growth conditions.

3.6.3 ODEs, equilibrium points and biological systems
Use of ODEs to model the reactions inside living cells arose as a result of understanding that
cells are ’chemical factories’ bereft of any elan vital, whose inner workings can be understood
in great part as chemical reactions. This understanding brought about the possibility to model
the cellular systems with already existing empirical mathematical representations for describing
chemical reactions, also known as the ’mass action law’ (see section 3.1). The mass action law
was derived for chemical reactions happening in well mixed containers with both substrates and
products present in great numbers. Although such a chemical reaction can be considered ’noisy’
6 , the mixedness of the container and the great number of particles involved allows the system
to be well represented by a number of continuous variables - concentrations, whose change
can also be considered continuous, and which can be represented by ODEs. The cell, however,
often does not resemble a well mixed container in which all the interacting species are numerous
enough to be considered concentrations. For example, a single mRNA can support production of
hundreds of proteins. Whether 5 or 9 copies of a particular mRNA exist will have great influence
on the protein copy number. Such noise present at the very core of cellular functioning (protein
production) makes it doubtful whether the cellular species can be represented well by ODE
models.

5It has been suggested that there are proteins in bacteria which have a role in ’tagging’ damaged proteins for
degradation, as do the ubiquitin proteins in eukaryotes, and are called Pup - prokaryotic ubiquitin-like proteins [171].

6From the point of view of observing the occurrences of single reactions.
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Given this situation, we could limit our modeling attempts to cellular populations. Since most
observations and measurements for bacteria have been done at population level, at which this kind
of noise becomes negligible due to averaging, it might be proper to say that our models describe
entire populations. This indeed might be a good argument for open-loop systems 7 in which
there is a cascade of effect in one direction. However, the system modeled here uses feedback to
implement control. Since feedback present in our system can be said to act only on the level of a
single cell, and in no way on the population scale, we again seem to be at an impasse.
However, numerous studies in systems biology have seen that ODE models often do recover
important behavior inherent in the systems under study (keeping in mind that these systems
greatly differ from one another and encompass a great variety of characteristics). This empirical
appropriateness in face of theoretical unsuitability makes for an interesting puzzle, one which
poses an interesting question: What does representability mean in the case of cellular systems
and ODEs? ODE systems are rich mathematical objects. Can all the conclusions reached by their
analysis and simulation be applied to the cellular system at hand?
One possible answer (on an informal level) could be that ODE models represent well what
happens in single cells not at the level of concentration, but at the level of concentration means
as averaged over a population. If this were the case, the transient behavior of the ODE system
might not necessarily carry such a great significance, while the behavior at the equilibria could
be meaningful for understanding of the biological system. Following this line of reasoning,
the presented work focused exactly on this part of system analysis. Moreover, since the actual
system in the cell is highly stochastic, the stability analysis of our ODE representation is not very
meaningful. In a deterministic setting, the multiple feedback systems often exhibit oscillations. It
may be, for example, that the cellular noise has a dithering function to augment stability of the
system [174]. Even if this last assumption is not really the case, the relation between the actual
stochastic system in the cell and an ODE representation is by no means a trivial one, and there is
no simple and general way to see if the stability of one indicates anything about the stability of
the other.

3.6.4 Modeling protein production
When modeling HSR, or UPR, we are modeling a systemic stress response which influences
some of the core cellular processes - such as production of protein. The rate at which proteins
are produced in a cell is tightly controlled, balancing the costly process with the energetic and
metabolic output capacity of the cell. When stress is induced, this rate will almost certainly
change. As the temperature increases, a cell undergoes several important changes: diffusion of
molecules in the cell changes, efficiency of chemical reactions increases, and the stability of
proteins and other macromolecules decreases. The first two changes have positive impact on
the growth capacity of the cell, while the other two represent a burden to cellular growth. The
balance of such effects will determine the rate of growth of the cell, and thus the rate of protein
production.
I have, however, represented the growth rate, which is also the rate of dilution of all the cellular
components - µ - as a constant. Considering all that has been stated above, that means to
misrepresent the actual state of affairs. It is possible to circumvent this issue by assigning an
algebraic expression for the growth rate, tying it to some other rate in the cell, such as the rate of
protein production, as was done in [175]. In the aforementioned model, the change in growth was
due to change in available nutrient, which influences the rate of precursor and energy production,
which in turn influences the rate of protein production.

7Open-loop systems are control systems which use no feedback, unlike the closed-loop systems.
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This is of course possible, but would introduce a number of problems to our analysis. First, I
would need to extend the model greatly, introducing further functional divisions into the protein
pool so as to make protein production a function of the cellular state, for which I would need to
include ribosomes, metabolic enzymes and potentially mRNAs of all the protein species. Then,
a decision would be necessary as to how to make the model sensitive to the cellular state. In
[175], the cell model adapts to the metabolic state, which is a direct consequence of the external
metabolite concentration and transporter and metabolic enzyme efficiency. Here, the changes
in the cell state and the growth rate should be a consequence of changes in metabolic enzyme
efficiency and protein stability. While it is possible to make the necessary modifications in the
line of those proposed in [175], the resulting model could only be simulated, and not analyzed,
which would defeat its purpose for this study.
However, the line of reasoning highlights an important consideration - the growth rate is a
consequence of a cellular state. How the growth rate is determined in the cell, and how this can
be modeled and simulated will be the focus of the rest of this thesis.
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In the discussion of the previous chapter, I have mentioned some difficulties in modeling systemic
stress responses with the ODE formalism. If aiming at a good representation of a coherent
cellular state (see section 1.5), one needs to introduce additional complexities and nonlinearities
into an ODE model, which (almost certainly) exclude the possibility of model analysis. The
advantage of such a model extension is to make the behavior of the modeled cell more realistic.
However, for bioengineering and bioproduction needs, the possible level of detail of an ODE
model is not sufficient. Even if there were no theoretical limit to the size of an ODE model, the
practical issues of model parameterization and simulation soon come to the foreground as the
model increases in size and complexity. For this reason, most ODE models are limited in scope to
the analysis of a relatively small regulatory system in the cell. Exceptions do exist [176], but they
are not common. Also, due to the mentioned limitations, ODE models have not had great success
in bioengineering and bioproduction industries. These industries, however, have more readily
accepted the simpler (in terms of parameterization and simulation) constraint-based genome-scale
models, which allow for some useful in silico exploration of the metabolism.
In contrast, genome-scale metabolic models could not satisfy the research needs of this work,
since they leave out the aspect most important to this work: the production, folding and assembly
of proteins. However, in the last 15 years, a number of research groups has worked to bridge
this gap, introducing modeling frameworks which allow for representation of the entire cellular
metabolism while taking into account the macromolecular composition of the cell in some ways
[28, 29, 177, 178]. Of the paradigms listed, Resource Balance Analysis (RBA) is the paradigm
most suited for taking into account all the cellular processes relevant for protein production. RBA
approach is based on the idea of coherency of the cellular state, an issue of great importance for
this thesis. Therefore, in the next two chapters I explain the ideas behind and the formulation
of the RBA problem, and I develop, parameterize and validate a whole-cell RBA model of
Escherichia coli.





4. Resource Balance Analysis

"What is it that you’ve learned, what you’re able to do?"
"I can think. I can wait. I can fast."
"That’s everything?"
"I believe, that’s everything!"
"And what’s the use of that? For example, the fasting– what is it good
for?"
"It is very good, sir. When a person has nothing to eat, fasting is the
smartest thing he could do.""

Hermann Hesse, Siddhartha

4.1 Conceptual ideas behind RBA
Allocation of resources could well be the crowning concept of modernity. It is a concept used
over an incredibly broad range of human activities: ranging from energy distribution, to business
planning all the way to self-help literature advising individuals on how to treat their most precious
resource: time (and/or money). Hand in hand with the allocation of resources comes the idea of
optimizing the allocation of resources. RBA deals with this idea on a scale of bacterial growth.
I would now like to provide an image useful for understanding the reasoning behind RBA. This
image is not accurate as it implies bacteria having a will which guides them to acquire certain
properties, it is simply useful as an illustration. Let us for a moment imagine a life of a fast
growing bacteria in a rich medium. Each cell is busy reproducing itself with a certain doubling
time 1. The food is plenty, the space is ample. But the bacteria has learnt throughout millennia
that this kind of situation will not last forever. If it does not manage to grow fast, the food will
be eaten by others. The bacteria can choose either to influence the environment to prevent such
occurrence, or to modify itself to better be able to utilize the available resources. Here we will
consider the second possibility. If they choose to direct their attention inwards, they will modify
their internal regulation to help them attain the best possible internal state to outcompete other
bacteria. This will be the state in which they attain the highest possible growth rate, which at
the same time will be the highest rate at which they are able to secure the food resources for
themselves. They can perform internal reorganization - allocate more resources to ribosomes, for
example, but then some metabolic precursors become scarce. They could allocate more resources
to metabolism, but then there are not enough ribosomes to produce all the necessary metabolic
enzymes. Finally, they develop a complex and robust regulation scheme which allows them to
achieve the "sweet spot" of resource allocation, in which each cellular process is allocated just
the right amount of resources to help the cell achieve higher growth rate. Of course, the cells
also know that if some kind of stress comes their way, they need to be ready to change their
internal configuration into a state that is more adapted to survival than to growth. This means that
cells will never be fully optimized for fast growth, but I will show that this can be a reasonable

1The doubling time is the time a single cell requires to grow to the double of its size right after the last doubling.
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assumption in certain situations, which already allow us to study the cellular configuration in
detail.

4.1.1 Resource allocation and the growth rate

Monod’s discovery on how the growth rate of bacteria depends on the external concentration of
the sole carbon source [179] lead to posing of many questions such as: what limits the maximum
growth rate of bacteria and do bacteria in fact aim to achieve a maximum possible growth rate or
not.
The appealing idea of optimality was used very early on to explain the growth of bacteria.
The model of cell growth as an optimal process proposed in 1966 managed to predict the lag
phase during batch growth of a bacterial culture by assuming that bacteria aim to optimize the
accumulation of biomass at the moment of depletion of the growth substrate [180].
The phenomenon of diauxie characterized by Monod [179] led to additional questions. Diauxie
occurs in some batch growth situations when cells are presented with two carbon sources in the
medium, but do not use them simultaneously. The bacteria first deplete the medium of the one
preferred carbon source, after which they switch to the second one. In the work that eventually
got them the Nobel Prize in Physiology, Monod and Jacob showed how diauxie is achieved
in the case of glucose and lactose, with the glucose being the preferred carbon source [181]
through a regulatory mechanism known today as catabolite repression. They showed that glucose
acts as a repressor on the synthesis of the proteins responsible for uptake and catabolysis of
lactose. While this showed how diauxie is implemented in the cell, the question of why this
happens still remained. First model to attempt at an explanation of diauxie was proposed in 1984
[182]. This work proposed that such diauxic behavior is a consequence of "judicious investment
of cellular resources in synthesizing different key proteins according to an optimal regulatory
strategy" and that the need for optimal investment of resources lies in their limited availability.
The proposed criterion of optimization is the maximization of cell mass productivity for the time
period in which at least one growth substrate is present in the medium. The problem with such a
hypothesis is that the cell has no way of predicting when exactly the medium will be depleted,
and cannot possibly adjust its behavior in the beginning of log phase according to what would be
optimal for the entire duration of growth. In their follow-up work, the same group explores the
consequences of assuming that instead of the previously used "long-term perspective", the cell
optimizes according to a "short-term perspective" [183].
The first, "long-term perspective" criterion used - that of maximization of biomass during the
entire period of growth - would be to assume that bacteria maximize their yield. Although
different definitions appear in the literature, here I define yield as the amount of biomass produced
per substrate consumed. The second, "short-term perspective" criterion of maximization of the
instantaneous rate of biomass accumulation is what is known today as growth rate maximization.
In the following years, the growth rate was shown to have an unexpected relation to the internal
state of the bacterial cell. Namely, in their work on the composition of the bacterium Salmonella
typhimurium under different growth conditions, Schaechter, Maaløe and Kjeldgaard showed that
cellular mass, RNA and DNA content can be described as a function of the growth rate [184].
Already in 1928, Henrici reported that the size of the bacterial cell changes with the rate of its
growth [185]. Bremer and Dennis [186] performed a detailed study over a wide range of growth
rates and found that certain ratios of macromolecules in the cell (like the ratio of RNA to protein)
show linear dependency on the growth rate. This and other related works suggested that such
characteristics of cells are not directly related to the medium on which they are growing, but to
the growth rate which the cells obtain in a certain medium.
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These results touched upon an ongoing debate in the field: What determines the rate of growth
of bacterial cultures given a certain medium and a growth condition - the rate of ATP synthesis,
the efficiency of the metabolism to produce precursors and energy, or the rate of synthesis of
biopolymers? Obviously, there exists a mechanism to attune the biopolymer synthesis rate to
metabolic efficiency, as the rate of translation is attuned to the availability of charged tRNAs. One
of the first attempts to model the rate of growth as a result of interaction of a choice of cellular
processes was done by Marr in 1991 [187].
RBA is a cell modeling framework that captures the basic cellular resource limitations and
under the assumption of growth maximization, predicts the metabolic fluxes, enzyme, ribosome,
chaperone and other process machinery concentrations for a particular growth medium. This
assumption of growth rate optimization, although not always correct, can be assumed valid in
a number of growth situations [188]. Often the assumption of optimal growth is not true if the
bacteria have not been evolutionarily pressured to optimize growth on a certain substrate. If such
pressure is exerted in a laboratory, they can adapt and reach growth rates very close to those
predicted experimentally under the assumption of growth rate maximization [189].

4.1.2 Concepts in RBA setting
RBA [29] is a modeling paradigm that enables the modeler to systematically take into account
the cost of different cellular processes and analyze their optimal balance under the assumption of
growth rate maximization. It models the growth of an average cell in a batch culture population
that is exponential growth phase. The modeling formalism assumes that the cell is at steady state,
growing at the rate µ . The rate of growth µ is the rate of expansion of the cellular volume:

dV
dt

= µV (4.1.1)

which can also be expressed as ln2/Td , where Td is the average doubling time within the
population 2. RBA models metabolism and a set of cellular processes all taking place within the
confines of cellular compartments of limited space (see Figure 4.2.1). Metabolism can be modeled
at the desired level of detail (from simple to full genome-scale metabolic reconstructions). The
modeled cellular processes will always include protein translation due to its central importance
in cellular resource distribution, but can also include other processes such as protein folding,
secretion, or anything that is of interest to the modeler. All of these processes are facilitated by the
so-called "molecular machines" - for metabolism the enzymes, for translation the ribosomes, for
protein folding the chaperones, etc. In order to be built, the molecular machines require cellular
resources (in terms of energy, precursors and process molecular machines), and once they are
built, they occupy cellular space. To be able to compute precisely the amount and type of cellular
resources required for their construction and the amount of space they will take up, RBA uses
the information about the exact macromolecular composition of all molecular machines. The
abundance and capacity of these molecular machines limit the fluxes in the cell: in the sense
in which the number of available ribosomes limits the flux of production of protein, and the
abundance of a metabolic enzyme limits its respective metabolic flux. As already stated, RBA
allows the model designer to decide the level of detail of the model. However, at our present state
of knowledge, even the most detailed model will leave something out - a portion of the cellular
proteome will be unrepresented. Those proteins can be assigned to the so-called non-enzymatic
"housekeeping protein" pool which the cell needs to produce.

2This can be easily computed from the respective ODE, assuming that the time it takes for the volume to grow
from V0 to 2V0 is Td .
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This modeling approach falls into the family of constraint-based models from the point of view
of mathematical formulation and into the family of cell models regarding its scope. On a black
box level, it requires (i) a metabolic reconstruction annotated with proteins associated to each
reaction, (ii) amino acid sequences of the associated proteins, (iii) a total concentration of protein
the cell has at each growth rate and (iv) specification of modeled cellular processes and their
associated process machines. It predicts the metabolic fluxes and concentrations of all molecular
and process machines at the maximum obtainable growth rate (which is also a prediction of the
model). Let us now see in more detail how such an idea can be translated into a mathematical
object.

4.2 Formulation of the RBA problem

The full conceptual and mathematical formulation of the RBA is presented in [29], while the
conceptual aspects are further elaborated in [190]. RBA describes a cell at steady state as a set of
related reaction fluxes, enzyme and cellular machine concentrations and the rate of growth. This
description is put forth by the flexible establishing of relations between the general constraints
of the cell and those imposed by the rate at which the cell is growing. General constraints are
those that the cell "needs to live with", regardless of the rate at which it is growing. These are:
(i) stoichiometry of the metabolic network, (ii) composition of metabolic enzymes and process
machines (ribosomes, chaperones), (iii) cost of cellular processes and (iv) limitation of available
cellular space. The constraints related to the growth rate concern the need to produce intracellular
species at a flux which counteracts their dilution. The bacterial colony is said to grow at a growth
rate µ if its population dynamics can be described by the following equation:

dV (t)
dt

= µ(t)V (t) (4.2.1)

where V (t) is the total volume of the cells in the colony. The steady-state assumption corresponds
to the biological situation of the so-called balanced growth regime during which the population
grows exponentially and the cellular internal composition is constant, within the limits of cellular
noise [184, 186]. The change in concentration of species x in volume V can be described as:

dCx(t)
dt

=
d
dt

Nx(t)
V (t)

=
1

V (t)
dNx

dt
− Nx(t)

V (t)
1

V (t)
dV (t)

dt
= 0 (4.2.2)

At steady state, the change in concentration is zero. Combining this with the expression for
growth rate in Equation 4.2.1, one obtains the following expression:

1
V (t)

dNx(t)
dt

= µ
Nx(t)
V (t)

= µCx(t) (4.2.3)

Therefore, the production flux required for maintaining the steady-state concentration Cx of
intracellular species x is µCx. This simple statement has three types of consequences within
RBA. First, all macromolecular machines (enzymes, process machines) need to be produced at a
rate that equals their dilution due to growth. Secondly, this, in turn, imposes a constraint on the
metabolism which needs to provide precursors and energy and absorb the byproducts released
in the process of their production. And thirdly, as is obvious from Equation 4.2.3, the flux of
production of macromolecules depends on the growth rate. This flux of production is generally
not a spontaneous process that requires solely precursors and energy, but also the related process
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machine (or a number of them) is required in sufficient amount so as to facilitate the necessary
flux. For translation this would mean:

kT R≥ µPtot (4.2.4)

where kT is the translation rate, R is the concentration of the ribosome and P is the total con-
centration of protein in the model. In RBA, the only species represented by concentration are
macromolecular species - protein, RNA and possibly DNA. Individual metabolites are not repre-
sented by a concentration, but instead only have associated stoichiometries and fluxes in all the
reactions in which they take part.
As can be seen on Figure 4.2.1, an RBA model consists of the metabolism (represented by
metabolic fluxes), macromolecular machines associated to all non-spontaneous reactions, a set of
cellular processes and their corresponding molecular machines P, and a representation of cellular
space by a notion of density D and protein concentration Ptot . The metabolism is represented
by its stoichiometric matrix S and an associated set of metabolic enzymes E. There are some
metabolites and macromolecules that are not specifically represented in the model but still need
to be produced - such as mRNA, for example. For some species, one might want to impose that a
certain concentration must be present an a certain growth rate, or that they need to be produced or
degraded with a specific flux. Such concentrations and fluxes are called target concentrations and
fluxes.

4.2.1 RBA constraints
Now I proceed to show how such constraints can be formalized. The type of the constraints will
later lead us to the type of constraint-based optimization problem to be solved.
(C1) Metabolic capability constraint
The steady state assumption imposes a constraint on the metabolism - it needs to be able to
produce all the precursors and energy required for all of the synthesis fluxes. It also needs to be
able to absorb all the metabolites released during the synthesis of cellular components. These
constraints can be formulated as:

S~ν +µ(Ce~e+Cp~p+Ctc~tc)+Ct f
~t f = 0 (4.2.5)

where S is the stoichiometric matrix, ν the vector of metabolic fluxes, Ce, Cp, Ctc and Ct f are
the matrices which, for each enzyme, process machine, target species and target flux, give the
stoichiometry of substrate metabolites required for and product metabolites generated by their
synthesis. One typical target species is housekeeping protein. That leaves us with the unknowns~ν ,
~e and ~p, which are exactly the constituents of the vector x estimated in the optimization procedure.
This constraint can be written in matrix form:

[
S µCe µCe µCtc Ct f

]

~ν
~e
~p
~tc
~t f

=~0 (4.2.6)

(C2) Capacity constraints
Capacity constraints link the abundance of a molecular machine to the flux of a reaction it can
facilitate. These kinds of constraints are relevant for enzymes and process machineries.
(C2a) Process capacity constraints
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Figure 4.2.1: Resource Balance Analysis model represents the cell growing at rate µ as a set of metabolic
fluxes and concentrations of macromolecular species - enzymes and process machines. The relation
between them is established through a number of constraints (C1 to C3). These constraints formulate a
linear feasibility problem for a particular value of µ . A series of LP feasibility problems are solved to find
the highest µ for which the problem is still feasible.
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Macromolecular processes in the RBA context are all the processes which take part in the
construction of macromolecules (translation, chaperoning, transcription, etc.), and whose cost
can be defined on the level of the individual constituent of the macromolecule (amino acid, RNA,
etc.). The most important macromolecular process (from the resource allocation perspective)
is translation, and all RBA models need to include it. As seen in Figure 4.2.1, the list of
macromolecular processes can be extended to include all such processes that are of interest
to the modeler. Each process definition needs to specify the process machinery p - such as
ribosome, chaperone or RNA polymerase) in terms of its exact macromolecular composition.
Additionally, one needs to specify the capacity of the process machinery kP in terms of the number
of individual macromolecule constituents it is able to process over time. For example, in case of
the ribosome, this is the number of amino acids over time. Since not all macromolecules need
all the processes in order to be produced, each process has an associated set of macromolecules.
This is mathematically represented by matrices Mx,x ∈ {e, p, tc, t f } whose entries represent the
cost in terms of macromolecular machinery for all the intracellular species (enzymes, process
machineries, target species) and target fluxes. As an example, each amino acid in a protein has a
machinery cost of 1 for the process of translation.
The process capacity constraints can be written in the following way:

µ(Me~e+Mp~p+Mtc~tc)+Mt f
~t f ≤ diag(kP)~p (4.2.7)

The corresponding matrix notation is:

[
0 µMe µMp−diag(kP) µMtc Mt f

]

~ν
~e
~p
~tc
~t f

≤~0 (4.2.8)

(C2b) Enzyme capacity constraints
In general, in RBA one can assume that enzymes can facilitate both the forward and backward
reaction. The flux of the reaction is limited by the enzyme concentration and its capacity (reactions
per unit of time). Therefore, one can write:

−diag(kb
E)~e≤~ν ≤ diag(k f

E)~e (4.2.9)

or:

~ν−diag(k f
E)~e≤ 0

−~ν−diag(kb
E)~e≤ 0 (4.2.10)

In a matrix form the expression becomes:

[
Ψ −diag(k f

E) 0 0 0
−Ψ −diag(kb

E) 0 0 0

]
~ν
~e
~p
~tc
~t f

≤~0 (4.2.11)

where Ψ is a matrix mapping reactions to enzymes.
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(C3) Density constraint Compartments in RBA are not only voluminous parts of the cell enclosed
by membranes, but include the membranes as well. The density constraint imposes an upper
bound on the macromolecular occupancy of all the compartments. Due to difficulties in computing
the volume and surface occupied by macromolecules and macromolecular processes, in RBA
these occupancies are expressed as concentrations of amino acids per gram of cell dry weight.
This choice of density representation is guided by the fact that the most important class of
macromolecules modeled in RBA are proteins. When computing the contribution of other
macromolecules to the density (such as RNA), they need to be scaled so as to account for the
different volume their constituent molecules (ribonucleic acids, for example) take up compared
with proteins.
These contributions of individual macromolecules to the density constraints are mathematically
represented by matrices WE , WP and WTC . Since an RBA model can have multiple compartments,
a density constraint needs to be defined for all of them. Therefore, the number of rows of the W
matrices will correspond to the number of compartments:

We~e+Wp~p+Wtc~tc ≤ ~D (4.2.12)

or in matrix notation:

[
0 We Wp Wtc 0

]

~ν
~e
~p
~tc
~t f

≤ ~D (4.2.13)

4.2.2 The linear programming problem
All the aforementioned constraints in matrix form have the same vector of unknowns. This makes
it is easy to "stack up" the matrices that multiply them from the left side into the complete matrix
of constraints that formalizes the RBA problem.



~ν ~e ~p ~tc ~t f

C1 S −µCe −µCp −µCtc −Ct f

C2a 0 µMe µMp−diag(kP) µMtc Mt f

C f
2b Ψ −diag(kE) 0 0 0

Cb
2b −Ψ −diag(kE) 0 0 0

C3 0 We Wp Wtc 0



~ν
~e
~p
~tc
~t f


=
≤
≤
≤
≤


~0
~0
~0
~0
~D

 (4.2.14)

Since~tc and ~t f are not actually vectors of unknowns, but actually parameters of the model that
need to be known at the time of simulation, they can be moved to the right-hand side of the
equation:



~ν(2nr) ~e(ne) ~p(np)

C1(nm) S µCe µCp

C2a(np) 0 µME µMP−diag(kP)
C f

2b(ne) Ψ −diag(kE) 0
Cb

2b(ne) −Ψ −diag(kE) 0
C3(nc) 0 We Wp


~ν~e
~p


=
≤
≤
≤
≤


−µCtc~tc +Ct f

~t f

−µMtc~tc−Mt f
~t f

~0
~0

~D−Wt f
~tc

 (4.2.15)



4.2 Formulation of the RBA problem 79

where nm is the number of metabolites, and nr the number of reactions (with 2nr being the number
of fluxes, taking into account the reversibility of reactions), ne number of enzymes, np number of
cellular processes and nc number of compartments.
The variables of the problem are the metabolic fluxes ~ν , the concentrations of enzymes and
processing machineries ~E and ~P and the growth rate value µ . The goal now is to find the
maximum growth rate µ for which the problem presented in Equation 4.2.15 is still feasible. In
this formulation, it is a nonlinear programming problem. The nonlinear nature of the problem
would limit the usability of the framework and prevent the development of whole-cell models.
However, it is possible to pose it as a linear programming (LP) feasibility problem for any value
of µ = µ∗ ≥ 0.

find (~ν ∈R2nr ,~e ∈Rne
+ ,~p ∈R

np
+ )

subject to:

µ = µ
∗,µ∗ ≥ 0

(C1) : − S
(nm×2nr)

~ν +µ

(
Ce

(nm×ne)
~e+ Cp

(nm×np)
~p+ Ctc

(nm×ntc )

~tc
)
+ Ct f

(nm×nt f )

~t f = ~0
(nm×1)

(C2a) : µ

(
Me

(np×ne)
~e+ Mp

(np×np)
~p+ Mtc

(np×ntc )

~tc
)
+ Mt f

(np×nt f )

~t f ≤ diag(kP)
(np×np)

~p

(C2b) : −diag(kb
E)

(ne×ne)
~e≤~ν ≤ diag(k f

E)
(ne×ne)

~e

(C3) : We
(nc×ne)

~e+ Wp
(nc×np)

~p+ Wtc
(nc×ntc )

~tc ≤ ~D
(nc×1)

(4.2.16)

Written this way, it is possible to "scan" the range of µ for which the problem 4.2.16 is feasible.
For example, by starting from an arbitrarily large growth rate µ∗ for which the problem is
infeasible, it is possible to find the maximum feasible growth rate µmax by binary search.

4.2.3 Enzyme and process machine efficiencies
The attainable fluxes through enzymes, transporters and process machines are related to their
abundance by parameters describing their efficiencies. These efficiencies can depend on the
growth rate or on the concentration of the substrate in the medium. The functions readily available
in the current RBA implementation are constant, linear, Michalis-Menten and multiplication.
Multiplication can be used to combine other function types.
Enzymes. In RBA, the efficiency associated to an enzyme is called an apparent catalytic rate.
While the catalytic rate normally describes the velocity of conversion of a bound substrate to
product, the apparent catalytic rate is a broader term. It takes into account all the effects which can
change the rate of the conversion reaction (such as temperature, pH, concentrations of substrates),
except the enzyme concentration.

kEi
app = f (T, pH, [s1], . . . , [sn]) (4.2.17)

In RBA, apparent catalytic rates are parameters of the model. They can be expressed either as
constants or as functions of the growth rate. In [191] it was shown that the apparent catalytic rate
of many enzymes shows a linear dependence of the growth rate, with most enzymes showing an
increase in kapp with the increase in µ . The reason behind this is that as the growth rate increases,
so do the substrate pools, making the apparent enzyme efficiency higher.
Transporters. In order to account for the exact composition of the medium, the efficiency
of a transporter depends on the concentration of its substrate(s) in the medium. Usually, this
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dependency is expressed as a Michaelis-Menten function of the external substrate concentration.
For a transporter Ti involved in an exhange reaction of a single external substrate s j, this relation
would be:

kTi
app = kTi

max
[s j]

KTi
M +[s j]

(4.2.18)

In case multiple substrates are transported, the overall apparent catalytic rate is a multiplication
of the corresponding Michaelis-Menten terms.
Process machines. The efficiencies of process machines is most often described as a function of
the growth rate. Ribosome efficiency was best fit to a Michaelis-Menten function of the growth
rate [191], while the efficiencies of other process machines were shown to have a linear relation
to the growth rate [192].

4.3 RBA exemplified on a toy model
When starting to use complex mathematical and computational frameworks, it does not help
when the problem at hand is high-dimensional. It becomes hard to separate errors due to
misunderstanding of conceptual ideas from errors due to indexing and similar practical issues.
Therefore, I decided to build a simple RBA model of a "toy cell", the main purpose of which
is to illustrate all the steps of translating an RBA problem description into an actual linear
programming feasibility problem. Hopefully, this model will help others to better understand the
construction of the RBA matrices, and consequently to explore their model, to find "bugs" and to
fix issues more easily.
The little cell which I build for this purpose is blatantly simple (see Figure 4.3.1) - it uses a single
type of energy molecule E and a single type of amino acid AA to assemble its scarce pool of
protein, composed of:
• Four transporter species, catalyzing the following transport reactions:

1. EP1
e

T1−→ EP1
c (import of type I energy precursor)

2. EP2
e

T2−→ EP2
c (import of type II energy precursor)

3. AAP
e

T3−→ AAP
c (import of amino acid precursor)

4. AAe
T4−→ AAc (direct import of amino acid)

• Three metabolic enzyme species, catalyzing the following conversions
1. EP1 E1−→ EP2 (conversion of type I into type II energy precursor)
2. EP2 E2−→ E (conversion of type II energy precuror into energy species)
3. AAP E3−→ AA (conversion of amino acid precursor into amino acid)

• ribosomes R and
• two target species concentrations, namely the cytosolic and membrane housekeeping

proteins (HPc,HPm).
The concentration of the target species is a parameter of the model to be computed from data.
The metabolism of the toy cell is given by the following stoichiometric matrix:

S =



T1 T2 T3 T4 E1 E2 E3

EP1 1 0 0 0 −1 0 0
EP2 0 1 0 0 1 −1 0
E 0 0 0 0 0 1 0

AAP 0 0 1 0 0 0 −1
AA 0 0 0 1 0 0 1

 (4.3.1)
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Figure 4.3.1: (A) A simple (toy) cell model developed to simplify the understanding of the construction of
an RBA problem. The metabolism of the cell has two different energy precursors for which the synthesis
price differs in terms of enzyme cost. The same is true for two amino acid precursors. Transporters,
enzymes, ribosomes and housekeeping proteins need precursors, energy and process machinery to be
produced. (B) Illustration of the "decision making" capacity of an RBA model. When a "cheaper" substrate
is available in the medium (one requiring fewer resources to utilize), it is preferred, the transporters for the
more expensive one are not expressed, and a higher growth rate is obtained.

It was chosen to capture, albeit in a limited sense, the ’decision making process’ of the cell in terms
of the most efficient utilization of resources for a defined purpose - in our case, the maximization
of growth rate. These trade-offs are realized by providing the cell two different ’pathways’ for
energy production: (1) by importing the Type I precursor

[
EP1

e
T1−→ EP1

c
E1−→ EP2

c
E2−→
a

Ec
]

and (2) by

importing the Type II precursor
[
EP2

e
T2−→ EP2

c
E2−→ Ec

]
, and two ways of amino acid production:

(1) by importing the precursor
[
AAP

e
T3−→ AAP

c
E3−→ AAc

]
and (2) by direct import of amino acids[

AAe
T4−→ AAc

]
.

The parameterization of the toy model in many ways closely resembles that of the genome-scale
model. This allows me to illustrate not only the principles of RBA, but also the practical aspects
of the process of translating biological notions into mathematical constraints, and finally into



82 Chapter 4. Resource Balance Analysis

Table 4.3.1: RBA toy example parameters.

Parameter Description Value

Ptot Total cellular protein 6−0.2µ

Fc Fraction of cytosolic protein 0.8
Fm Fraction of membrane protein 0.2
Fc(ne) Nonenzymatic protein fraction (cytosol) 0.15
Fm(ne) Nonenzymatic protein fraction (membrane) 0.2
kE

app Metabolic enzyme efficiency 10[s−1]

kT
app Transporter efficiency (substrate S) 40[S]

0.8+[S] [s
−1]

kT Ribosome efficiency 20[s−1]
nT Amino acids in transporter 2000
nE Amino acids in enzyme 1000
nHPc Amino acids in cytosolic houskeeping protein 300
nHPm Amino acids in membranous houskeeping protein 300
nR Amino acids in ribosome 10000

matrices supplied to the LP solver3. Since RBA is formulated as a linear programming problem:

maximize
x

cT x

subject to Ax = b

Cx≤ d

x≥ 0

with x representing the vector of decision variables to be identified, the problem formulation
needs to fit this schematic.
The vector of decision variables is:

~x =
[
νT1 νT2 νT3 νT4 νE1 νE2 νE3 T1 T2 T3 T4 E1 E2 E3 R

]
(4.3.2)

where~ν is the vector of fluxes through metabolic reactions, ~E a vector of enzyme concentrations
(including transporters) and ~P a vector of cellular machinery concentrations (in our case only
the ribosomes). The last two entries are not actually decision variables - they are temporarily
placed in the vector for the ease of understanding of the matrix manipulations that follow. I now
go through the constraints named in section 4.2 and explain them in full detail.
(C1) Mass conservation constraint. This constraint describes the cost of maintaining the
concentrations of macromolecular and target species at their steady-state concentrations:

S~ν +µ(Ce~e+Cp~p+Ctc~tc) = 0 (4.3.3)

Since the target concentrations ~tc = [HPc HPm] are not decision variables of the system, it is
possible to transfer them to the right hand side:

S~ν +µ(Ce~e+Cp~p) =−µCtc~tc (4.3.4)

3The LP solver used for this example is IBM’s optimization package CPLEX (and its corresponding Python
wrapper).
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Each of our macromolecular species requires a certain number of units of amino acid species AA
(consult Table 4.3.1), and three times that amount of energy species E. Thus, CE matrix is:

CE =



T1 T2 T3 T4 E1 E2 E3

EP1 0 0 0 0 0 0 0
EP2 0 0 0 0 0 0 0
E −3nT −3nT −3nT −3nT −3nE −3nE −3nE

AAP 0 0 0 0 0 0 0
AA −nT −nT −nT −nT −nE −nE −nE

 (4.3.5)

Cp and Ctc matrices are constructed in the same fashion. Negative values indicate the metabolites
are used, and the positive values, if there were any, would indicate metabolites released through
the process of construction of macromolecular species. It is now possible to construct the mass
conservation constraints, which are 5 in total - one for each metabolite (excluding the external
ones). For the target species, the expressions that would be the result of the Ctc~tc can be considered
the portion of nonenzymatic protein in each compartment and computed in the following way:

nHPcHPc = Pne
cyt(µ) = Fc(ne)×Fc×Ptot(µ)

nHPmHPm = Pne
mem(µ) = Fm(ne)×Fm×Ptot(µ) (4.3.6)

(C2) Capacity constraint. I first relate the concentration and translation rate of the ribosome to
the flux of new protein that needs to be produced:

kT R−µ
(
~Me~e+Mp~p+ ~Mtc~tc

)
= 0 (4.3.7)

Me is a vector containing the corresponding number of amino acids for each metabolic enzyme
and the same is the case for Mp and Mtc :

Me =
[
nT1 nT2 nT3 nT4 nE1 nE2 nE3

]
Mp = [nR]

Mtc =
[
nHPc nHPm

]
(4.3.8)

Next, I write the constraints on the capacities of individual enzymes and transporters. Since all
of the metabolic enzymes can facilitate reactions just in the forward direction, the following
constraints apply:

νθ ≤ k+
θ

θ , θ ∈ {T1,T2,T3,T4,E1,E2,E3} (4.3.9)

The matrix Ψ mapping metabolic fluxes to corresponding metabolic enzymes (see Equation 4.2.10)
is an identity matrix of dimension 7. This is due to the fact that the order between metabolic
enzymes and corresponding fluxes is maintained (see Equation 4.3.2), there are no reactions
catalyzed by more than one enzyme, and no backward reactions.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1





νT1

νT2

νT3

νT4

νE1

νE2

νE3


−



k+T1
0 0 0 0 0 0

0 k+T2
0 0 0 0 0

0 0 k+T3
0 0 0 0

0 0 0 k+T4
0 0 0

0 0 0 0 k+E1
0 0

0 0 0 0 0 k+E2
0

0 0 0 0 0 0 k+E3





T1
T2
T3
T4
E1
E2
E3


≤~0 (4.3.10)
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(C3) Density constraint. The cell is assumed to be able to fit a certain total amount of protein
Ptot(µ), which is distributed in the cytosol and membrane compartments (see Table 4.3.1). The
cytosolic fraction is Pcyt(µ) = FcPtot(µ) and the membrane fraction is Pmem(µ) = FcPmem(µ). In
this simple model, I assume that all the macromolecules take up space that is directly proportional
to the number of amino acids that constitute them. In this case, the model has two density
constraints, one for the cytosol, and one for the membrane:

nE1E1 +nE2E2 +nE3E3 +nRR≤ Pe
cyt(µ) (4.3.11)

nT1T1 +nT2T2 +nT3T3 +nT4T4 ≤ Pe
mem(µ) (4.3.12)

where Pe
cyt(µ) represents the enzymatic portion of the cytosolic protein and is computed as

(1−Fc(ne))×Fc×Ptot(µ). The same holds for Pe
mem = (1−Fm(ne))×Fm×Ptot(µ). This constraint

can be expressed in matrix form:

[
0 0 0 0 nE1 nE2 nE3 nR

nT1 nT2 nT3 nT4 0 0 0 0

]


T1
T2
T3
T4
E1
E2
E3
R


≤
[

Pcyt(µ)−Pe
cyt(µ)

Pmem(µ)−Pe
mem(µ)

]
(4.3.13)

The expression Pcyt(µ)−Pe
cyt(µ) equals the nonenzymatic portion of the protein, as stated in

Equation 4.3.6.
With this, all of the model constraints have been written in matrix form. The last thing left to
do is to stack up the constraints in one matrix. The full matrix of the toy RBA model is given in
section A.3.

4.3.1 Model simulation
The final toy model can now be simulated to assess its ability to qualitatively reproduce cellular
’decision making’ behavior, based on optimal allocation of resources for the maximization of
growth rate. The Python implementation of this model is available as a public Gist. In order to
run it, one needs to have the CPLEX optimizer by IBM installed, and its Python wrapper [194].
The simulation results are indicated in the bottom part of Figure 4.3.1. The yellow dots represent
all possible combinations of metabolite presence in the medium. For a number of media the
toy cell does not grow at all. This happens in cases when there is either the energy precursor or
amino acid precursor missing in the medium. All the other 11 cases will result in four different
cellular configurations, because the metabolites EP2 and AA are preferred over EP1 and AAP since
they require smaller investment in cellular resources. Therefore, when either of them is present
in the medium, it will be used and its alternative will not. As expected, when growing on the
preferred sources, the toy cell obtains the highest growth rate (see Figure 4.3.2), while the lowest
growth rate is obtained when only the non-preferred substrates are present in the medium. It is
already visible from Figure 4.3.2 how this extremely simple RBA cell shows correspondence
with experimentally determined bacterial growth laws [193] - such as the increase in total protein
quantity and fraction of total protein allotted to ribosomes with the increase in growth rate.
In RBA, the efficiency of transporters depends on the concentration of their respective substrates
in the medium. In the toy model in particular (but also often in genome-scale RBA models) this

https://gist.github.com/abulovic/f382eefd4d8e1462e591d32cd9ddb865
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Figure 4.3.2: Given the four possible nutrients available in the medium (EP1, EP2, AA and AAP) and
the 24 = 16 combinations thereof, the toy cell grows on 11. In those 11 growth situations, four different
growth rates appear, depending on the presence of preferred nutrients in the medium. The cell grows fastest
(and achieves the biggest size) when growing on AA and EP2 (µ1), regardless of the availability of other
substrates, and the slowest when only AAP and EP1 are present in the medium (µ4). Below the growth
rates, there are logical expressions describing the occurrence of that particular growth rate in terms of
precursor availability in the medium. We can see how this simple model recaptures the so-called "bacterial
growth laws" [193], such as an increase in total protein and ribosomal fraction in the total protein pool
with the increase in growth rate.

A B

Figure 4.3.3: (A) Substitution of transporter usage under a changing concentration of substrate AA
when the concentration of AAP is held constant and high. Transporter efficiency is determined by the
concentration of the substrate in the medium. While the concentration of the preferred substrate AA is low,
the cell uses the substrate AAP which is more costly in terms of resources, but its high concentration makes
the transporter TAAP more efficient. When the concentration of AA becomes high enough so that the TAA
efficiency increases until making it favorable for the cell, the cell switches to the more resource-efficient
substrate AA. (B) Cellular growth rate under changing concentration of AA. The switch to AA from AAP

results in the increase in growth rate, and therefore, more efficient utilization of cellular resources.
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efficiency is expressed as a Michaelis-Menten function of the substrate concentration - Vmax
[S]

KM+[S] .
I have already shown that when all the substrates are present in high concentrations, the AA
substrate is preferred over AAP, as it results in higher growth rate. However, if AA were available
at a low concentration, that would render its respective transporter quite inefficient, causing the
cell to utilize AAP. This situation is illustrated in Figure 4.3.2. The cell grows utilizes AAP and
grows at the same growth rate until the concentration of AA becomes high enough to render its
transporter more efficient. After that point, the cell preferentially uses AA. As the concentration
of AA continues to increase, making its transporter more efficient, the growth rate increases as
well, reflecting the fact that the cell needs to invest less resources in order to obtain the same flux.
This effect evetually comes to a saturation point, because of the Michaelis-Menten type efficiency
of the transporter.

4.4 Related modeling paradigms

RBA was first proposed in 2009 by the first author and coworkers [195], who described the cell as
a convex optimization problem. At that time, the idea of bacterial growth as a consequence of op-
timization of the cellular self-replicating process in terms of "cellular economics" and "allocation
of resources" is explored for single proteins [196], on the cellular level either phenomenologically
[197] or with small dynamical models [198].

4.4.1 FBA with molecular crowding

As briefly mentioned in subsection 1.4.2, FBA is a constraint-based modeling paradigm which
allows for predictions of metabolic fluxes based on the stoichiometry of the metabolic network and
experimentally determined quantification of certain fluxes under the assumption of maximization
of biomass production [27].

max
ν∈RN

≥0

cT
ν

subject to Sν = 0

ν ≤ b

where ν is the vector of metabolic fluxes, S is the stoichiometric matrix and b ∈ RN
>0 is the

vector by which the fluxes are constrained either to an experimentally determined value, or
to a high number (thus limiting the feasibility region of the problem). c ∈RN is a vector of
coefficients which determines which reaction will be maximized. Normally, there are one or
more "biomass" reactions in the model and vector c contains all zeros expect for a single one at a
position corresponding to the biomass reaction to be maximized. A biomass reaction typically
takes into account all the precursors, energy and ions necessary for the construction of a new cell
and the production of metabolites released by the cell during growth.
In FBA, the only limit on cellular growth is imposed by limiting the fluxes. The higher the bounds
on the fluxes, the higher will be the predicted growth rate, with no upper limit. Additionally,
when the simulated medium has a number of carbon sources, the model cell will utilize them all
and have a correspondingly higher growth rate. Therefore, the phenomenon of diauxie cannot be
captured in such a model. To circumvent such problems, a new constraint was introduced in the
FBA formulation, attempting to capture the consequences of limited cellular space [28], giving
rise to the modeling paradigm known as FBA with molecular crowding (FBAwMC). It states that
cellular volume is limited and sets the upper bound on the sum of voluminous contributions of
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enzymes:

N

∑
i=1

vinEi ≤Vmax (4.4.1)

which can be expressed in terms of enzyme concentrations by dividing the expression by cellular
mass M:

N

∑
i=1

vi[Ei]≤
Vmax

M
=

1
C

(4.4.2)

where [Ei] is the concentration of enzyme Ei and C is the cytosolic density of the bacterial cell. By
assuming that the flux through a metabolic reaction is directly proportionate to the concentration
of enzyme νi = kiEi, the constraint in Equation 4.4.2 can be expressed in terms of variables ν :

N

∑
i=1

aiνi ≤ 1 (4.4.3)

where the coefficient ai corresponds to ai =
Cvi
ki

.
As also noted in their paper, the FBAwMC does not take into account the volume taken up by
ribosomes - either by their protein or their RNA part [28]. Additionally, in comparison with RBA,
the proteins are not built by necessary substrates, energy and molecular machines, but are just
represented voluminously.

4.4.2 MOMENT

MOMENT stands for MetabOlic Modeling with ENzyme kineTics [178]. Like the two methods
described above, it extends the metabolic network with macromolecular expression. In particular,
it introduces a new set of variables representing gene products gi which are estimated during the
optimization procedure. The constraints which supplement the original FBA formulation have to
do with limiting fluxes through reactions based on the concentration of a particular gene product:

νi ≤ kcat [gi] (4.4.4)

and with limiting the amount of protein in the cell by accounting for their voluminous contribution:

∑
i

giMWi ≤C (4.4.5)

where MWi is the molar mass of a gene product gi and Ci is the parameter of the model denoting the
total protein weight. Additionally, MOMENT does not assume that instantaneous accumulation
of the biomass (growth rate) is the optimization criteria, but instead optimizes for maximal ATP
yield at minimal enzymatic usage [199]:

νAT P

νglc
− ε ∑ν

2
i (4.4.6)

Therefore, MOMENT can predict metabolic fluxes and gene product concentrations, but does not
take into account additional cellular processes nor the cellular cost of producing gene products.
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4.4.3 ME-models

ME-models take their name from the so-called M-models - genome scale models of metabolism.
In ME-models the acronym stands for modeling of metabolism and macromolecular expression
(ME). ME-models can represent a variety of cellular processes, such as the production of mRNA
and protein, protein modification and assembly [177, 200]. This is achieved by introducing a
number of "coupling constraints" to the original FBA formulation. For example, the flux of
translation of an mRNA is limited by its rate of degradation and the flux of a reaction through
an enzyme is limited by its dilution. The formation flux of the ribosome is related to the total
flux of translation, as is the formation flux of RNA polymerase to the total flux of transcription.
For example, for an enzyme, its formation flux and the flux of the reaction it facilitates are thus
related:

ν
f

Ei
−

r∈REi

∑
r

µ

ke f f
i,r

νr = 0 (4.4.7)

where REi is the set of reactions catalyzed by enzyme Ei, ν
f

Ei
the formation flux of enzyme Ei and

νr the flux through reaction r. The predictions of such a model are the metabolic fluxes, mRNA
and protein abundances.
From its scope and predicted quantities, RBA and ME-Models have a similar scope. However,
they are two problems quite differently posed and differently implemented. For example, the
RBA problem is formulated to impose a single constraint on a metabolite for the production
flux of all the molecular machines it is a part of. This makes model simulation fast and model
extension quite simple. While the constraints given in [177, 200] outline certain conceptual
differences between the two modeling paradigms, to my knowledge, no full problem formulation
of the ME-models has yet been published. This clearly makes a detailed comparison somewhat
difficult.

4.5 RBApy software

RBApy is a free Python software which helps automate the process of creating, modifying and
simulating bacterial resource allocation models encoded in an RBApy-XML format [192] (see
Figure 4.5.1).
The preRBA package of the software provides tools for the creation and modification of such
models, and it can be used as a standalone tool. The creation of a new model requires the modeler
to supply an annotated metabolic reconstruction (in Systems Biology Markup Language (SBML)
format) and a Uniprot ID [203] of the organism of interest. Using the gene associations of
all the annotated reactions, preRBA will proceed to download the available information on the
corresponding gene products from Uniprot. The information that RBApy will attempt to gather is
the following:
• Sequences of all gene products
• Cofactors required by individual proteins and their corresponding identifiers in the metabolic

reconstruction
• Protein subcellular localization
• Stoichiometries of individual proteins in enzyme complexes
• Additional chemical components the cell needs to produce (from the biomass equation).

There are a number of reasons why it is highly unlikely that preRBA will be completely suc-
cessful in gathering this information. Uniprot, for example, encodes the enzyme stoichiometry
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Figure 4.5.1: Process of creating a bacterial RBA model by using RBApy. User needs to provide
an annotated metabolic reconstruction in SBML format, Uniprot ID of the modeled organism, and a
file containing sequences of macromolecular process machines which are to be included in the model
(i.e. ribosomes, chaperones). RBApy retrieves Uniprot data on enzymes (stoichiometry) and proteins
(localization, amino acid sequence, cofactors) and creates an RBA model. This model can further be
refined with the use of (a) available calibration methods or manual editing of "helper" files which list
all ambiguous information. The simulation results can be interfaced to Escher maps [201] for flux or to
Proteomaps [202] for protein abundance visualization.

information in plain text, which is often difficult to parse without ambiguity, and gene IDs get
replaced or become obsolete. In such cases, preRBA generates the so-called helper files, which
the modeler can fill in with the missing information. After modifying the helper files, preRBA
should be called again, and a new model will be generated, updated in the places corresponding
to the newly given information. The process can be repeated until a satisfactory level of detail
and accuracy is achieved. The final model is encoded in a set of XML files which contain an
RBA model of the organism of interest (see subsection 4.5.1).

RBApy.RBA, unlike the preRBA, is better used as an API, even if a standalone script is offered. It
offers the user a programmatic access to the RBA object, enabling model modification and param-
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eterization. It also offers a default simulation scenario, in which growth rate is maximized. The
simulation results can then be exported into various formats compatible with online visualization
tools (such as Proteomaps [202] for protein or Escher maps [201] for flux visualization).

4.5.1 Model format

RBApy utilizes a novel Extensible Markup Language (XML) format to represent an RBA cellular
model. One might rightly ask if it was necessary to develop a new format in face of existing
formats. SBML [204] is a standardly used format to represent biological models and supports
constraint-based models through its Flux Balance Constraints Package [205]. This format is
well adapted for encoding of FBA models, in which most reactions are metabolic reactions, and
in which macromolecular species facilitating them are not present. However, RBA introduces
the problem of modeling macromolecular species (proteins, RNA, macromolecular complexes),
each of which needs to be produced through an action of one or more process machines. In a
reaction-centered modeling format, such as SBML, this would require addition of numerous new
reactions. For each individual macromolecule, one would need to add a specific synthesis reaction,
listing all the necessary substrates in energy and precursors and the products released. In order
to ensure the proper mass conservation, all of these terms for all the individual macromolecules
would need to be added to all the reactions of the associated substrates and products. But not
only do metabolites take part in the synthesis of macromolecules - process machines are needed
as well, as are ribosomes for translation. Would it be an acceptable solution to add ribosome
"consumption" and "release" in each of the macromolecule synthesis reactions? The situation is
further complicated by the fact that functional proteins often are formed not through the action
of one, but many cellular processes. Apart from translation, a protein might require folding and
post-translational modification. In that case, one would need to modify all the synthesis reactions
to add the necessary substrates and products required by the new process, and continue to update
all the metabolite reactions to reflect this.
These remarks suffice to make it clear that this kind of encoding is not suited for simple addition
and removal of cellular processes, nor is it suited for changing the processing requirements
of individual proteins. Additionally, the above-described reaction-centric solution adds to the
numerical complexity of the problem and could slow down or even impede the process of finding
an optimal solution of an RBA linear programming problem. RBA-xml format was developed to
resolve these issues.
For this purpose, an RBA model is split into a number of XML files. Their entire description
can be found in the official documentation [206], available on the GitHub pages of the RBApy
project. Here, I explain the functional links between them and design ideas that favored such
an organization. Metabolism is described in the metabolism.xml file in a standard way. Each
reaction specifies whether it is reversible or not, it has an associated list of substrates, products
and their stoichiometries. Additionally, each reaction by default has an enzyme associated to
it, which is listed in the enzymes.xml file, under the ID reaction_ID_enzyme. Each enzyme
entry lists the identifiers and stoichiometry of proteins that constitute it, as well as an identifier
of a function which describes its efficiency. These (and other) functions can be found in the
parameters.xml file. The composition of proteins in terms of amino acids and cofactors is
given in the proteins.xml file, as is the composition of DNA and RNA given in dna.xml and
rnas.xml files correspondingly. Cellular processes in charge of producing these proteins and
other macromolecules are described in the processes.xml file. The representation of cellular
processes is the most important novelty introduced by the RBA-xml format and is illustrated in
Figure 4.5.2. Each process is described by:

https://github.com/SysBioInra/RBApy/blob/master/docs/XML_format%20(RBApy.xml).pdf
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parameters.xml

Macromolecular
composition

Function type:
Variable:

Michaelis-Menten
Growth rate

List of substrates

composition:

Processing map

Constant translation processing:

Processing per component:

Substrates Products Machinery cost

Efficiency

rnas.xml

proteins.xml

processes.xml

compartment:
cytosol

composition:

compartment:
cytosol

Processing needs to be defined for each component that
can be found in the composition of the process substrates

Metabolite     is substrate in the production of protein. 
The difference between the metabolite production 
and consumption in the metabolic network must be 
sufficient to fuel the production of all the proteins it is 
required in.

REPRESENTATION OF CELLULAR PROCESSES IN RBApy

Figure 4.5.2: Cellular processes in RBApy are listed in the processes.xml file, where they are repre-
sented by their efficiency, the macromolecular composition of their process machinery, list of substrate
macromolecules they process and the processing map. The efficiency of the process machinery is listed in
the parameters.xml file. The composition of macromolecules is listed in proteins.xml and rnas.xml
files, where for each protein or RNA, where each macromolecule has a list of components and their
associated stoichiometries. The processing map indicates if there is a fixed cost associated with the process
(such as the cost of translation initiation) and defines the processing for each metabolite that can be found
in the composition of substrate macromolecules. Such representation of processes allows the RBApy
software to easily formulate a single constraint for each of the metabolites involved in cellular processes.
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• its efficiency,
• the composition of its macromolecular machine (as ribosomes are for translation),
• list of substrate macromolecules (all the proteins in case of translation) and
• a processing map listing a constant processing cost (such as that of translation initiation)

and a processing rule for each component that can be found in the composition of its
substrate macromolecules.

A requirement for any particular metabolite is computed as a total sum of all thus described re-
quirements, resulting in a single constraint per metabolite (constraint C1). The capacity constraint
(constraint C2) for a particular cellular process is formalized from the list of all the substrate
macromolecules and their concentrations. This kind of encoding allows a much cleaner model
construction, modification and maintenance, and was a major reason behind introducing a new
XML model encoding format.



5. An RBA model of E. coli

Beyond a critical point within a finite space, freedom diminishes as
numbers increase. This is as true of humans in the finite space of a
planetary ecosystem as it is of gas molecules in a sealed flask. The
human question is not how many can possibly survive within the system,
but what kind of existence is possible for those who do survive.

Frank Herbert, Dune

In this chapter I present all the information that was necessary for the creation, calibration and
verification of the Escherichia coli RBA model. I would first like to explain my motivation
for building this model. The topic in this study is in great part the production and secretion
of recombinant protein in Escherichia coli. Modeling of such a process is far from trivial, as
it (a) is bound to one of the cells most important functions - the production of protein, (b) is
energetically costly, (c) it introduces big changes in the cellular state due to reduction of space
and other resources available for the "normal" cellular functions, (d) it changes the rate of growth
of the population and (e) it can influence the stability and state of foldedness of the rest of the
cellular proteome. The effects (a)-(d) are basically the problems of resource allocation, while (e)
can be considered to fall in the domain of stress responses.
With most modeling paradigms often used in the field of systems biology, one would need to
resort to modeling and analyzing the dynamics of the interaction of a relatively few reactant
species [175] or to the stoichiometric analysis of the species’ metabolism. Due to the nature of
the problem, neither is particularly adapted to a detailed study of the stated problem, especially
taking into account that this work is motivated by the optimization of the industrial processes, in
which generic phenomenological conclusions are of little use. Resource Balance Analysis was,
to my knowledge, the modeling approach most suited to the study of a protein production - a
process central to cellular allocation of resources. It allows for a detailed, cell-level description
and an easy integration of an entire metabolism of the modeled organism. Apart from that, as I
will discuss in chapter 6, it provides a framework upon which dynamic models can be built, still
taking into account all the constraints which form the basis of RBA.
The RBA model of Escherichia coli was constructed through the use of RBApy software [192].
It was based on the most current genome-scale metabolic reconstruction at the time of model
creation [207] and calibrated using physiological data measurements [32] and a comprehensive
proteomics dataset [208]. The entire model along with the calibration is available at the Github
pages of SysBioIntra group: https://github.com/SysBioInra/Bacterial-RBA-models.
The metabolic reconstruction used for the creation of the E. coli RBA model is iJO1366 [207],
available on the BiGG Models database [209]. It is a compartment-specific reconstruction, with
metabolites assigned to either cytoplasm, periplasm or external compartment. It is composed
of 1805 metabolites and 2583 reactions, most of them annotated with a gene association rule.
The information on the exact sequences of all the proteins involved in the model, as well as their
stoichiometry in the enzymatic complex, necessary cofactors and localization was downloaded
from Uniprot [203] through RBApy. In the developed RBA E. coli model, apart from translation, I

https://github.com/SysBioInra/Bacterial-RBA-models
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Table 5.0.1: Values and parameters needed for parameter estimates of the RBA model of E. coli. Parameters whose value isn’t specified are dimensionless. /a - the
data sources used are the rRNA sequences.

Parameter Symbol Data sources Formula Value Unit Section

Fractions of ind. NAs in rRNA ~pNA rRNA sequence A.4
Fractions of ind. of AAs in proteome ~pAA [210] A.4
Molar masses of nucleic acids ~MWNA

g
mol A.4

Molar masses of amino acids ~MWAA
g

mol A.4
Weighted average nucleic acid ¯MWNA ~pNA

T ~MWNA 340.19 g
mol

Weighted average amino acid ¯MWAA ~pAA
T ~MWAA 108.28 g

mol
Fraction of stable RNA that is tRNA ptRNA [32] 0.14 /
Fraction of mRNA in total RNA pmRNA [211] 0.05 /
Fraction of RNA that is rRNA prRNA 1− ptRNA− pmRNA 0.81 /
Number of nucleotides per ribosome Nna/rib rRNA sequence 4593 na

rib
Ribosome scaling factor dr/R Nna/rib

¯MWNA
¯MWAA

14430 / 5.1.4
Ribosome maturation time Tmat/R [29, 212] 5 min

Ribosome efficiency kT (µ) [29, 32] kT = 27µ

0.5+µ

aa
s

Fraction of protein in CDW pp/CDW (µ) [213] −0.28µ +0.64
Fraction of RNA in CDW pR/CDW (µ) [213] 0.14µ +0.05
Fraction of cytoplasmic protein pcyt/P(µ) [208] 0.73+0.04µ 5.1.1
Fraction of inner membrane protein pim/P [208] 0.08 5.1.1
Fraction of outer membrane protein pom/P(µ) [208] 0.09−0.007µ 5.1.1
Fraction of periplasmic protein pp/P(µ) [208] 0.10−0.04µ 5.1.1
Fraction of secreted protein ps/P [208] 0.0009 / 5.1.1
Cytosolic density Dcyt see Equation 5.1.18 4.89 mmol.aa

gCDW 5.1.3
Total protein concentration Ptot(µ) 5.91−1.04µ

mmol.aa
gCDW 5.1.4
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have included the process of protein folding (chaperoning) and secretion.

5.1 Parameterization of the E. coli RBA model
In this section I describe all the steps necessary for basic parameterization of a bacterial RBA
model. However, due to the lack of experimental data suitable for a complete parameterization,
some steps could not have been performed - as is the estimation of growth rate dependent
molecular machine efficiencies. In this section, I will first discuss the estimation of the so-
called physiological parameters: (i): percentage of protein per compartment, (ii) percentage
of housekeeping protein per compartment, (iii) cytosolic density and (iv) the total amino acid
concentration. Next, the estimation of the molecular-machine-specific parameters is discussed: (i)
enzyme-specific catalytic rates and (ii) efficiencies of process machines. Finally, I provide some
information on experimental methods for the generation of the data used in parameterization of
the E. coli RBA model.

ESTIMATION OF FRACTION OF PROTEIN PER COMPARTMENT IN E. coli

experimental data
estimate

Figure 5.1.1: Linear and constant fits for the dependence of percentage of protein per compartment as the
function of the growth rate, using the data from [208] and Uniprot subcellular localization annotations.

5.1.1 Percentage of protein per compartment
In RBA, the amount of protein per compartment is represented by the concentration of amino
acids in unit of mmol.aa/gCDW . This amount is later used in the optimization procedure
as an inequality constraint limiting how much of protein produced for metabolic and process
requirements can fit into each compartment. With the change in growth rate, bacteria change their
size, and with it the amount of protein. Therefore, the protein concentration per compartment
is modeled as a function of the growth rate. The amount of protein per cell has been shown
to vary linearly with the growth rate [32]. The estimation procedure assumes that the protein
concentration per compartment is either constant or a linear function of the growth rate.
The estimates of percentages of protein per compartment necessarily all need to be non-negative
and need to sum to one.
I have used the subcellular localization information from the proteomics data from [208] (Sup-
plementary Table S13) to estimate this parameter in E. coli. For each experiment e,e ∈ E ,
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there is an associated growth rate µe, and the percentages of protein allocated to different com-
partments yc

e,c ∈ C computed from the proteomics data. It is necessary to find coefficients
ac

e,b
c
e,e ∈ E ,c ∈ C such that minimize the sum of residuals

S = ∑
e∈E ,c∈C

(
yc

e− (ac
µe +bc)

)2 (5.1.1)

Additionally, for all the growth rates µe, the goal is to minimize the difference of the sum of
percentages of protein in all compartments from 1:

Stot = ∑
e∈E

(
1− ∑

c∈C
ac

µe +bc
)2

(5.1.2)

The problem can be formulated as follows:

min
x
‖Ax− y‖2

s.t. Ax≥ 0
(5.1.3)

This formulation takes into account both the expressons in Equation 5.1.1 and Equation 5.1.2.
The vector x of unknowns contains the linear coefficients ac,bc,c ∈ C , and matrix A contains the
experimentally determined growth rates µe,e ∈ E and ones:

µ1 1 0 . . . 0 0
... 0 ...

µ1 1 0 . . . 0 0
...

. . .
0 0 . . . 0 µNE 1
...

...
0 0 . . . µNE 1
µ1 1 . . . µNE 1
...

...
µ1 1 . . . µNE 1





NE

NE

NE

c1 cNC


ac1

bc1

...
acNC

bcNC

=



yc1
e1
...

yc1
eNE
...

y
cNC
e1
...

y
cNC
eNE

1
...
1



(5.1.4)

where NE is the number of experiments and NC the number of compartments. This can be
efficiently computed if the problem is reformulated as a quadratic programming problem:

min
x

1
2 xT Qx+ cT x

s.t. Gx ≤ h
(5.1.5)

where Q = AT A, c =−AT y, G =−A, h =~0.
The result of this parameter estimation procedure for E. coli using the data available in [208] can
be seen on Figure 5.1.1. The estimated values are:

pcyt/P(µ) = 0.04µ +0.73 (5.1.6)

pim/P = 0.08 (5.1.7)

pom/P(µ) =−0.01µ +0.09, µ ∈ [0.26,1.9] (5.1.8)

pp/P(µ) =−0.04µ +0.10 (5.1.9)

ps/P = 0.0004 (5.1.10)

with Pearson correlation coefficient of R2 = 0.9997.
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5.1.2 Percentage of housekeeping protein per compartment
An RBA model will never consider all the cellular processes. Proteins inolved in the processes
that are not represented in the model are designated as housekeeping proteins. In order to take
into account the fact that the cell needs to produce them, in RBA there is a constraint ensuring
that a specific percentage of protein in all compartments will be allocated to these housekeeping
proteins. They are represented by a single protein of a length and composition which reflect
the average length and the average amino acid composition of protens in E. coli. Amino acid
composition of an average protein can be estimated from experiments determining organism’s
residue composition, such as was done in [10]. Also, the cellular description in RBA terms
might have different levels of detail for different compartments, so it is necessary do describe the
percentage of housekeeping protein for each individual compartment. The data that one can use
to determine these percentages is a quantitative proteomics experiment, in which proteins have
been assigned subcellular localization and a function. In this way, one can "count" the amount of
protein (or amino acids, to be more exact) that correspond to functions represented in the model
for each compartment. Much like in the subsection 5.1.1, I had the data to estimate this percentage
for a span of growth rates in E. coli. As the percentage of housekeeping protein in different
compartments does not relate in any way (unlike the case of total protein per compartment), this
fit can be obtained through a simple least squares procedure for each compartment independently.
The percentages of housekeeping protein per compartment were computed as:

pne
cyt(µ) = 0.011µ +0.149 (5.1.11)

pne
im(µ) =−0.041µ +0.243 (5.1.12)

pne
om(µ) = 0.017, µ ∈ [0.26,1.9] (5.1.13)

pne
p (µ) = 0.047µ +0.022 (5.1.14)

pne
s = 1 (5.1.15)

with Pearson correlation coefficient of R2 = 0.954.

5.1.3 Cytosolic density
It has been experimentally shown that E. coli cells have constant buoyant cell density independent
of the growth rate [214, 215]. It had been a surprising fact because of the great changes in cell
volume and chemical composition that E. coli undergoes as the growth rate changes. In RBA
this is represented as an assumption on the constant cytosolic density Dc[

mmol
gCDW ], which stands

for a constant volume occupied by cytosolic macromolecules per gram of cell dry weight [187].
The cytosolic macromolecues are metabolic enzymes and ribosomes, thus taking into account the
protein and rRNA content. Since proteins make up most part of the cellular space, the cytosolic
density is expressed in terms of the concentration of an average amino acid in gram of cellular dry
weight - mmol.aa

gCDW . Ribosomes take up a significant portion of the cellular volume and are composed
not only of protein, but of RNA as well. In order to express how many "average" amino acids are
contained in the RNA content of one ribosome, I define a scaling constant dr/R. "Average" amino
acid (or nucleic acid) is computed as a weighted mean of molar masses of different amino acids
(nucleic acids), weighted by their frequency in the E. coli cell.

MW NA = ~pNA
T ~MW NA MW AA = ~pAA

T ~MW AA (5.1.16)

where the ~MWx is a vector containing the molar masses of amino acids (nucleic acids) in g/mol.
Therefore, the number of average amino acids in the RNA content of one ribosome - dr/R - relates
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to the number of nucleic acids in one ribosome Naa/rib and the ratio of MW NA and MW AA:

dr/R = Naa/rib
MW NA

MW AA
= 4593

340.19
108.28

= 14430 (5.1.17)

To compute the cytosolic density, I have consolidated three relevant datasets [32, 187, 210] and
have thus chosen a growth rate which is present in all three datasets, that of 1[h−1]. Cytosolic
density can be expressed as a sum of all the cytosolic protein and of the RNA content of ribosomes
converted to average amino acid:

Dcyt = pcyt(µ)Ptot(µ)+dr/RR(µ) [
mmol.aa
gCDW

] (5.1.18)

Fraction of protein assigned to cytosol pcyt(µ) is estimated using the package RBApy.estim
from proteomics data [208] as a linear function of the growth rate. The process of estimation is
described in the supplementary text S6, to be found here (link).

pcyt = 0.04µ +0.73 (5.1.19)

What remains to be computed are the total amino acid and ribosome concentration. To compute
the total amino acid concentration in [ mmol

gCDW ], I have used the comprehensive dataset of [32], and
express it as:

Caa/CDW = Naa/CDW [
#aa

µgCDW
]× 1

Na
[mol]×106×103 [

mmol.aa
gCDW

] (5.1.20)

Na is the Avogadro constant, and NAA/CDW is the number of amino acids in a µg of cell dry
weight. The two factors 106 and 103 serve to scale the [µg] to [g] and [mol] to [mmol]. For ease
of comparison, the abbreviations used here to express the formula for total amino acid count are
the same as used in the [32]: PM stands for protein/mass expressed in units of 1017aa/OD460,
MC(µg) stands for µg of cell dry weight per 109 cells, and MC stands for OD460 units per 109

cells. I compute NAA/CDW in the following way:

Naa/CDW =
PM

MC(µg)
MC

[
#AA

µgCDW
] (5.1.21)

By inputing Equation 5.1.21 into Equation 5.1.20 I finally obtain a value for total concentration
of amino acids:

Caa/CDW =
5.2×1017[ #AA

OD460
]

433[µg/109cells]
2.5[OD460/109cells]

× 1
6.022×1023[mol−1]

×106×103 = 5
mmol.aa
µCDW

(5.1.22)

for the growth rate of µ = 1[h−1].
I compute the ribosome concentration for µ = 1[h−1] by assuming that the cell has as many active
ribosomes Ra as needed to translate the flux of total protein at steady state:

kT Ra = µCaa/CDW (5.1.23)

where the active ribosomes depend on the growth rate µ and the maturation time Tmat/R:
[Ra] = e−µTmat/R [R]− pRa [R]. By taking into account the expression for active ribosomes in
Equation 5.1.23, I obtain the following expression for the ribosome concentration:

R =
µCAA/CDW

kT × pRa

(5.1.24)

http://github.com/SysBioInra/RBApy/blob/master/docs/Parameter_estimation%20(RBApy.estim)%20-%20Text-S6.pdf
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The maturation time of ribosomes is assumed to be 5 minutes [212]. The ribosome concentration
thus computed is:

R = 7.24×10−5 [
mmol
gCDW

] (5.1.25)

By inputing the ribosomal and the total amino acid concentration in Equation 5.1.18 I finally
obtain the cytosolic density for µ = 1[h−1] from to be:

Dcyt = 4.89 [
mmol.aa
gCDW

] (5.1.26)

5.1.4 Total amino acid concentration

Total protein content is determined as a linear function of µ , by solving a system of two linear
equations with two unknowns for a set of different growth rates. The equations are:

µPtot − kT Ra = 0

pcytPtot +dr/PR = Dcyt (5.1.27)

The system for each µ is solved as:[
µ −kT e−µtmat

pcyt dr/P

][
Ptot

R

]
=

[
0

Dcyt

]
When looking at the list of data needed for the computation of Ptot , one can see that what is
needed are the percentages of cytosolic proteins for each growth rate and the cytosolic density
(which is also a function of the percentage of cytosolic protein). The type of data that could be
used for such a computation is the proteomics data, such as [208].
After solving this system for a range of values for µ = (0.4..0.1..1.9), the final linear fit of total
protein with respect to the growth rate is:

Ptot = 5.91−1.04µ

5.1.5 Default apparent catalytic rate of enzymes

Default value chosen for enzymatic efficiency is kapp = 12.5s−1, and was obtained as a best fit
for predicted growth rates to growth rates determined experimentally for cells grown in batch
cultures for 12 different media [208]. On Figure 5.1.2, I show the differences in growth rate
prediction as a consequence of change in the default enzyme efficiency value.

5.1.6 Enzyme specific catalytic rates

Even if the apparent catalytic rates of enzymes are in reality complex functions of, among other
things, substrate and product concentrations, temperature, regulation and cofacor availability,
all these effects are difficult to measure, especially systematically, for all active enzymes in a
particular in vivo situation. Due to the lack of suitable experimental data on genome scale, RBA
utilizes a simplification for the estimates of kapp values [191]. Ideally, apparent catalytic rates of
individual enzymes would be estimated either as constants or as linear functions of the growth
rate. This requires a series of comaparable proteomics and fluxomics experiments done for a
range of growth rates, as done in [191]. For the calibration of the E. coli RBA model, no such
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Figure 5.1.2: Left: predictions of growth rate for four different values of default enzyme efficiency. Right:
Change in the goodness of fit as a function of the default enzyme efficiency. The best fit is obtained for
default kapp = 12.5s−1.

range of growth rates was available. I were able to identify matching 1 proteomics and fluxomics
experiments for a single condition - batch growth on glucose. Proteomics data used was the one
measured in [208], while the fluxomics data used was one as measured in [216].
To compute the enzyme specific apparent catalytic rates for the batch growth on glucose, I first
used the flux values measured in [216] to constrain an FBA model of the metabolic reconstruction
used for the creation of the E. coli RNA model. Names of reactions and constraints on fluxes
are given in Table A.1.2. Thereby I obtain the values for the metabolic fluxes for which no
measurement was available.
Since I had only one proteomics experiment and a single value for the abundance of individual
proteins (no data available on biological replicates, for example), our kapp estimation results in a
very simple formula:

kEi
app =

ν̃i
˜[Ei]

(5.1.28)

where ν̃i is the estimated flux catalyzed by enzyme Ei, and ˜[Ei] is the estimated concentration of
the enzyme. The proteomics datasets used in the calibration give protein measures in counts per
cell. In order to transform this measure in a concentration in mmol/gCDW , we needed to know
the dry cellular weight for growth on glucose, which I took to be 417.64 [ f g] (data taken from
Supplementary of [208]). Therefore, the concentration was computed as:

˜[Ei] =
Ẽi

CDW ×R
×103 [

mmol
gCDW

] (5.1.29)

where [Ei] represents the concentration of the ith enzyme, and Ei the count per cell, and R the
Avogadro constant. Since enzymes are often composed not of a single, but of a number of
proteins with their corresponding stoichiometry, the enzyme count also needs to be estimated.
Assuming that the protein abundances are log-normally distributed, I used the geometric mean of
the individual protein abundances (corrected for their stoichiometry in the complex) to estimate
the enzyme abundance.
By using this procedure, I obtain the individual kapp estimates for 406 enzymes.

1By matching in this context I assume the same strain, same medium and a comparable growth rate.
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Figure 5.1.3: Number and type of parameters in the E. coli RBA model. (A) The two basic types of
parameters in RBA models are the molecular machinery efficiency parameters and the parameters related
to the protein occupancy of different compartments. The efficiency parameters for enzymes can be
expressed as a constant or as a linear function of the growth rate, while the efficiency of transporters
can also be represented as a Michaelis-Menten type function of the concentration of the substrate in
the medium. Proteomics and fluxomics data is generally needed for the estimation of these parameters.
The efficiencies of process machines are generally expressed as functions of the growth rate and can
be estimated from a comprehensive proteomics dataset. The compartment-related parameters are the
total amino acid concentration and the concentration of housekeeping protein per compartment. Both are
described either as constants or as linear functions of the growth rate. (B) RBA supports different function
types in describing molecular machinery efficiencies. These can be either constant, linear with respect
to growth rate, Michaelis-Menten with respect to the growth rate or substrate concentration. Users can
define additional functions if necessary. (C) Numbers relating to the E. coli model. Compartment-related
parameters are always necessary, as well as the process machinery efficiencies. In case all the enzyme
apparent catalytic rates are estimated, the E. coli RBA model requires 6378 parameters. When there is no
suitable fluxomics and proteomics data available, the parameterization of the E. coli model can be done so
as to estimate the default apparent catalytic rate for all enzymes. In this case, the model requires only 31
parameters.
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5.1.7 Efficiencies of process machines

The rate of protein translation was taken directly from the calibration done in [191], since in that
paper it was done with data for E. coli. The rate is taken to be:

kT =
27µ

0.5+µ
(5.1.30)

The efficiencies of other process machineries were estimated using proteomics datasets from [208]
for growth on 12 different carbon sources and 1 supplemented with 20 amino acids. I estimate
the total amino acid concentration flux that needs to be processed by a particular machinery, and
divide it by the abundance of the machinery, obtaining process machinery efficiency in [#AA

h ].
Folding. I consider two major chaperoning systems (GroEL/S and DnaJK) in exponential growing
cells and describe them as one cellular process having single machinery composed of the two
chaperoning systems in their right stoichiometries. I assume that this process machinery needs
to fold 10% of all protein [217]. The total concentration of amino acids that needs to be folded
per unit time can be estimated by using the value for total amino acid concentration obtained in
subsection 5.1.4.

νPf old = µ×0.1×Ptot(µ) = 0.31 [
mmol.aa
gCDW

] (5.1.31)

The total number of amino acids in the chaperone complex consisting of all subunits in their correct
stoichiometries (tig, dnaJ, dnaK, groL, groS, grpE) is NAA/ch = 10829. Number of measured
amino acids of the same complex is NAA/ch/mes = 3.8×107. Efficiency of the chaperone complex
becomes:

kCH =
νPf old

NAA/ch/mes
NAA/ch

(5.1.32)

The folding efficiency as a linear function of the growth rate is

kCH(µ) = 7.2µ +1.59 [s−1] (5.1.33)

with the coefficient of determination being R2 = 0.97.
Secretion. I model the general secretory sec pathway of Escherichia coli, since most non-
cytosolic proteins are translocated to their compartments via this pathway [218]. The concetration
of amino acids to be secreted per unit time will be:

νPsec = µ× (1− pcyt(µ))×Ptot(µ) (5.1.34)

The rest of the procedure is the same as in the case of folding, and the final linear relation between
the growth rate and secretion efficiency is

kSEC(µ) = 118.23µ−6.94 [s−1] (5.1.35)

with the coefficient of determination being R2 = 0.98.
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Figure 5.2.1: Prediction of growth rates for 12 different media: 11 minimal media and one medium with
glycerol and 20 amino acids. The experimental measurements for the growth rates were taken from [208].
’X’ marks the prediction for growth on glucose using the estimated apparent catalytic rates for individual
enzymes.

5.2 Results

5.2.1 Growth rate prediction

Using the Escherichia coli RBA model in which I have calibrated the physiological parameters, but
have used the same default apparent catalytic rate for all enzymes of 12.5 1

s (see subsection 5.1.5),
I simulated the growth on twelve different media used in [208].
Eleven of the media are minimal media with a single carbon source, given in the order of
increasing growth rate (galactose, acetate, pyruvate, fumarate, succinate, glucosamine, glycerol,
mannose, xylose, glucose, fructose), and the twelfth is is a medium with glycerol supplemented
with twenty amino acids. As can be seen on the Figure 5.2.1, predictions of the growth rate are
good (R2 = 0.58) even without enzyme-specific model calibration.

5.2.2 Predictions for growth on glucose

As explained in subsection 5.1.6, for growth on glucose it was possible to estimate the individual
enzyme catalytic rates of 417 enzymes due to the availability of appropriate proteomics [208]
and fluxomics [216] datasets in growth conditions in which the growth rate was similar enough
to indicate a similar internal cellular organization. Figure 5.2.2 shows the comparison of the
predictions obtained here to those obtained by [219] for 183 enzymes present in both datasets.
Also, in the Figure 5.2.3, section (A), it is possible to see the comparison of the cummulative
histogram of the catalytic rates obtained here with those available in the Brenda [220] database.
These catalytic rate values were used to obtain predictions for the flux distribution and the
abundances of enzymes and molecular machines. The Figure 5.2.3, section (B) shows the
comparison of the measured [216] and predicted flux values for a subset of the central carbon
metabolism fluxes and the fluxes of import of glucose and export of acetate. The exchange
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Figure 5.2.2: Comparison of the estimated catalytic rates for 183 enzymes for which [219] also offer a
prediction. The coefficient of determination between the two sets of predictions is R2 = 0.6

fluxes are predicted almost exactly. The Figure 5.2.3, sections (C) and (D) show the comparison
of the experimentally measured [208] and predicted enzyme and macromolecular machine
abundances by using the default and enzyme-specific catalytic rates respectively. There is an
obvious improvement in the quality of the predictions once the enzyme-specific catalytic rates
are available.

5.2.3 The case of dehydrogenase substitution
The respiratory chain of Escherichia coli is highly modular, with a set of molecular species func-
tioning as electron donors (NADH, formate, glucose, hydrogen, pyruvate etc.) and as electron
acceptors (oxygen, fumarate, nitrate, nitrite, etc) [221], with dedicated enzymes serving as dehy-
drogenases and reductases for different substrates. The electrons are passed from dehydrogenases
to the reductases via a quinone pool. E. coli can not only choose the substrate to use, but for
certain substrates it can use different enzymes to achieve different flux of hydrogen ions to the
periplasm per molecule of substrate [221]. This modularity enables E. coli to adapt to different
environmental situations. For example, glucose dehydrogenase, a relatively small enzyme (796
amino acids) could be preferentially used in case of growth on glucose instead of the expensive
NADH dehydrogenase (4878 amino acids) if it were not for the cofactor that this enzyme requires
for functioning and for which E. coli has no biosynthetic pathway - pyrroloquinoline quinone
(PQQ). However, if this cofactor is externaly supplied in glucose minimal media, E. coli will
exhibit chemotaxis towards it, incorporate it, switch to using the cheaper enzyme and grow faster
[222, 223]. The enzyme is easily activated, since the PQQ needs to be incorporated on the side of
the enzyme facing periplasm [224].
The original metabolic reconstruction used for the creation of the E. coli RBA model has
no mechanism to import pyrroloquinoline quinone. I have added the necessary metabolic
species (external and periplasmic PQQ), as well as the import reactions from the external to
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Figure 5.2.3: (A) Cumulative histogram of catalytic rates taken from the Brenda database [220] and the
ones obtained by the RBA model calibration in E. coli. (B) Comparison of experimentally measured
and predicted central carbon metabolism fluxes, as well as glucose import and acetate export fluxes. (C)
Comparison of experimentally measured and predicted enzyme abundances using the same default apparent
catalytic rate for all enzymes of 12.5s−1. (D) Comparison of experimentally measured and predicted
enzyme abundances using the enzyme-specific apparent catalytic rates obtained through model calibration.

the periplasmic space, one for each of the general outer membrane porins. I have performed
simulations for growth on glucose minimal media without and with the PQQ present in the
medium. In the absense of PQQ, the model predicts the usage of NADH dehydrogenase and
NADPH quinone reductase, coupled with the cytochrome oxidase bo3, growing at the growth
rate of µ = 0.61h−1. With PQQ present in the medium, the model predicts that the cell will use
the combination of glucose and NADH dehydrogenase and grow at an increased growth rate of
µ = 0.64h−1.

One can assume that the chemotaxis towards PQQ of E. coli could be a consequence of the more
efficient utilization of resources for growth followings its uptake. This demonstrates the predictive
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Table 5.2.1: Changes introduced into the wild type E. coli RBA model to mimic the CO2-fixing strain
[225]. (All metabolite identifiers except r15bD are available in the BIGG database [227])

Reaction Enzyme Modification Organism

r15bD +CO2 +H2O←→ 2×3pg+2×H+ Rubisco addition R. rubrum
r15b + O2 ←→ 3pg + 2× pglyc Rubisco addition R. rubrum
ru5pD + AT P←→ r15bD + ADP phosphoribulokinase addition S. elongatus

HCO3 + H+ ←→ CO2 + H2O carbonic anhydrase addition R. rubrum
accoa+glx+H2O−→ coa+H++malL malate synthase removal /

icit −→ glx+ succ isocytrate lyase removal /
AT P+ f 6p−→ ADP+ f d p+H+ Phosphofructokinase removal /

2pg←→ 3pg Phosphoglyc. mutase removal /
g6p+NADP←→ 6pgl +NADHP+H+ Glucose 6p dehydr. removal /

glycR +AT P−→ 3pg+ADP+H+ Glycerate kinase removal /

power of the resource allocation paradigm, as well as the advantage of having a cofactor-specific
genome-scale model in which testing of such scenarios is simple.

5.2.4 Simulating the engineered CO2-fixing E. coli strain
This passage serves to illustrate how RBA models can be used to model engineered strains by
mimicking the genetic modifications done to the wild type. For this purpose, I have modeled the
egineered CO2 fixing strain developed by [225]. The process of adjusting the model required
introducing four new reactions: two catalyzed by the type II Rubisco enzyme (from Rhodospiril-
lum rubrum ATCC 11170), one by a phosphoribulokinase (from Synechococcus elongatus PCC
7942) and one by a carbonic anhydrase (from Rhodospirillum rubrum). To model the deletions
reported in [225], I removed two reactions of the glyoxylate shunt: MALS and ICL, two of
glycolysis: PFK and PGM and one reaction of the pentose phosphate pathway: G6PDH2r. I
additionally removed one reaction of the glyoxylate metabolism (GLYCK) which is not disabled
in the engineered strain, but which is reported to be active only during the growth on glycolate as
carbon source [226]. The list of all modifications is reported in Table 5.2.1.
I have used the same default apparent catalytic rate kapp = 12.5s−1 as for the growth-rate
simulations (see subsection 5.2.1), except for the enzymes of the carbon fixation. Carbonic
anhydrase is known to be among the fastest enzymes, operating close to the diffusion limit,
so I set its efficiency to 10000s−1. Due to lack of specific information of the catalytic rate of
phosphoribulokinase, I set it to the default apparent catalytic rate of 12.5s−1.

kR
MM([CO2]) =

kMM
max [CO2]

KMM
M +[CO2]

(5.2.1)

kR
CI([CO2], [O2]) =

kCI
max[CO2]

KCI
M (1+[O2]/KCI

I )+ [CO2]
(5.2.2)

Rubisco activity is modeled either as a Michaelis-Menten function of CO2 concentration (see
Equation 5.2.1), either as competitive inhibition by oxygen (see Equation 5.2.2). I assume
the carbon dioxide is dissolved under 0.1atm and oxygen is present under normal atmospheric
conditions. Parameters for the Rubisco activity were taken as minimum, maximum and me-
dian values reported in [228]. The values of all the used Rubisco parameters can be found in
Table 5.2.2. The updated model is available on the Github pages of the SysBioInra group -
https://github.com/SysBioInra/Bacterial-RBA-models/tree/master/Escherichia-coli-CO2-fixing.

https://github.com/SysBioInra/Bacterial-RBA-models/tree/master/Escherichia-coli-CO2-fixing
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Table 5.2.2: Predictions of growth rate and percentage of Rubisco in the cytosol for two different enzyme
kinetics - Michaelis-Menten function of CO2 - kR

MM and competitive inhibition by oxygen - kR
CI .

a -
Percentage of dry weight of Rubisco in all cytosolic proteins.

Enzyme kinetics µ(h−1) pcyt
Rubisco(%)a Comment

kR
MM([CO2])

kMM
max KMM

M

1.31 446 0.1827 4.98 Median values taken from Brenda for R. rubrum
1.31 14 0.183 4.44 KM set to median KC value of [228]
0.32 14 0.1685 17.7 kmax set to lowest kcat,C value of [228]
12.6 14 0.1866 0.54 kmax set to highest kcat,C value of [228]

kR
CI([CO2], [O2])

kCI
max KCI

M KCI
I

3.16 14 446 0.1854 1.88 Median of values of [228] for kcat,C, KC and KO

0.32 14 446 0.17 16.11 kmax set to lowest kcat,C value of [228]
12.6 14 446 0.1867 0.48 kmax set to highest kcat,C value of [228]

The engineered strain grows at the growth rate of 0.12h−1 [225], much slower than its wild-type
equivalent grows on glucose (0.65h−1). The modified E. coli model predicts the growth rate
between 0.16 to 0.18h−1, with Rubisco taking up from ∼ 1 to 18% of cellular protein, depending
on the parameters chosen to model Rubisco activity. When CO2 is removed from the in silico
medium, the modified E. coli model does not support growth, which shows that CO2 is indeed a
necessary carbon source. In section A.8 I show the changes in the resource allocation between
the unmodified cell, and the two versions of the CO2-fixing E. coli - one with high and one with
low Rubisco efficiency.
With the example of this modified strain, and the ease with which I obtain realistic predictions of
growth rate and the percentage of total protein that is Rubisco without any additional parameter
estimation, I show the power of RBA models, and this calbrated E. coli model in particular. This
model can be thought of a first step towards developing a tool for in silico assisted bioengineering
experiment design.

5.3 Discussion
In this chapter, I have shown the process of development and parameterization of a genome-scale
steady-state cell model of Escherichia coli in RBA framework. With a number of different
simulations, I have demonstrated the usefulness of such a model in predicting realistic cellular
states on one hand, and regulatory events based on parsimonous resource allocation on the other.
However, the presented results only begin to cover the ways in which such a model can be used.
In this discussion I would like to suggest some future research directions which can be aided by
the use of the developed model.

5.3.1 Gratuitous protein production in RBA
Even if this thesis has its original motivation in understanding the issues in recombinant protein
production, due to time limitations, I have not been able to fully explore this issue with the E.
coli RBA model. I can imagine several ways in using such a model for bioproduction. First goes
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in the direction of analyzing the expression experiment in terms of culture growth and induction.
Since the developed RBA model is a steady-state model, in its unmodified form it cannot be used
to directly simulate a growth and induction experiment. However, it can be used to estimate the
growth rate at which the capacity of the cell to produce gratuitous proten is the highest. In the
model, the recombinant target protein can be represented by a target concentration. It is possible
to find the maximum attainable concentration of the target protein and the corresponding growth
rate. This can give us a reasonable approximation to the theoretical upper limit on the yield and
some indication on which phase of the growth is most adapted to achieving the highest product
concentration.
Secondly, RBA can help in understanding the type and amount of cellular burden imposed on
the cell by expression of recombinant protein. One can assume that that burden can be the
(i) energetic or (ii) precursor burden, (iii) burden on the process machines necessary for the
production of protein (translation, chaperoning, possibly secretion) and (iv) the burden in terms
of the occupied cellular space. Such "disection" of the burden can help in understanding what
causes the greatest growth defect and therefore has the highest impact on the cells. This can
in turn help to make informed decisions on how to alleviate the effects of a particular kind of
burden. For example, one can study the changes in the simulated metabolism caused by the
overexpression of a protein. The changes in the simulated metabolism can serve to indicate
potential overexpression or knockout targets, which could help in adapting the metabolism to the
task of producing recombinant protein [229] (instead of to that of growth and proliferation).

5.3.2 Inferring regulation by exploring the RBA model
Resource Balance Analysis models can be used, as showed in subsection 5.2.3, to infer certain
types of regulation, which are in place to provide the cell with a more resource efficient solution
under specific environmental conditions. Maybe the most famous such example of regulation due
to resource allocation which had caused quite some polemic in the field is the so-called "overflow"
metabolism, also known as the Warburg effect in cancer cells. The overflow metabolism is a name
for a metabolic strategy in which certain microbes, when growing fast, do not completely oxidize
the growth substrate through respiration, but through seemingly inefficient substrate utilization
excrete a number of "overflow" metabolites. Recently it has been shown that this strategy is in
fact more efficient in terms of proteome allocation [198, 230].
RBA model is the perfect in silico tool to aid in the understanding of such cellular decisions. One
way in which this capacity of the RBA model can be used is to predict the preferece of carbon
sources and the underlying regulatory structure of catabolite repression. Under the assumption
that the phenomenon of catabolite repression is driven by resource utilization efficiency, one
can simulate the growth on all the combinations of a choice of carbon sources. This was done
in [231]. By detecting the utilization of transporters for growth on all the combinations of 9
carbon sources (29 = 512 growth conditions), they were able to predict their utilization hierarchy
for B. subtilis with almost a perfect match to the experimentally determined one. Additionally,
while RBA cannot model the toxicity effects caused by a high presence of certain metabolites
or inorganic ions in the medium, it can serve to understand the effects on the cell when certain
chemicals necessary for growth are present in low amounts. This can help in understanding the
cell-level adaptations E. coli goes through in such situations.
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6. Dynamics under constraints

In the first part of the thesis, I have described, modeled and analyzed the regulatory network in
charge of proteome maintenance in conditions when its quality is compromised, as in the case
of heat shock. I have presented my reasoning for thinking why it is necessary to incorporate a
coherent cellular state when modeling events that bring about big rearrangements in the cell.
In the second part, I have presented RBA, a modeling framework capable of representing and
simulating coherent cellular states on genome scale. In this final part of the thesis, I will apply
the RBA principle of representing coherent cellular states to the study of HSR.
The time evolution of the cellular state will described by a system of ODEs, and the coherency
of that state through time will be ensured through a number of linear RBA-like constraints. As
in Part II, I assume that the cellular configuration reflects the goal of maximizing the growth
rate. In this way, I will study what is the cellular response to the change in temperature under
the assumption of parsimonious allocation of resources. By comparing that response to the
one obtained by studying the known HSR regulatory network, and to the one determined by
experiment, I can address the question of whether the known regulation is in place in order to
ensure (near) optimal allocation of resources for growth. A mathematical framework that allows
the posing of optimization problems for systems described by ODEs and a number of linear
constraints is optimal control. I will use this framework for the study of the optimal response of
the cell to the change in temperature in terms of parsimonious resource allocation.
Temperature change is a systemic change that perturbs the cell on many levels, the effects of
which accumulate from the most basic to the most complex: (a) the rate of diffusion and the
osmotic pressure, (b) membrane fluidity and state and stability of macromolecules, which directly
relates to (c) their enzymatic activity. Enzymatic activity of central cellular processes (such as
the metabolism and translation) then, in turn, influences the production of the rest of the cell.
The proposed model will not take into account the changes in diffusion, osmotic pressure, or
membrane fluidity, but will instead focus on enzymatic activity and stability of proteins.
In this chapter, I will shortly present the mathematical framework of optimal control, followed by
the model of the cellular adaptation to change in temperature. I then present model parameteriza-
tion and several simulations demonstrating how the optimal allocation of resources seems to be
one of the strong guiding principles behind the regulatory network organization. Lastly, I present
the simulation software and the different model versions I have developed for this study, ranging
from the simplest cellular representation involving only the ribosome and a single metabolic
enzyme, to the final model.

6.1 The optimal control problem

Let us imagine a system endowed with specific internal dynamics (a car), with controls that can
be externally operated and which influence its behavior (gas and brake pedal). If the problem of
interest is how to achieve optimum performance of such as system (get from A to B as fast as
possible), then one method for formalizing such a problem can be optimal control. If the system
can be described as an optimal control problem, it is possible to obtain the synthesis of optimal
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controls over time. This problem falls under the domain of optimization problems for continuous
dynamical systems.
Dynamic system. Let us imagine a system that can be described as a set of n system states
xi(t), i = 1,2, ...,n, and their time evolution as a set of n ordinary differential equations:

dxi

dt
= f (x1, ...,xn,u1, ...,um), i = 1,2, ...,n (6.1.1)

where the variables ui, i = 1,2, ...,r are what are called controls, which can vary over time:

ui = ui(t) (6.1.2)

As the name says, controls are used to control the behavior of the system. An example of a
control variable is the angle of the gas pedal which can (after a certain transformation) be related
to the acceleration of the car (system state).
Admissible controls. In the definition of an optimal control problem, one can impose certain
limitations on the controls. This can be done, for example, by describing a set in Rm to which
they are limited, or by describing the type of change over time they can exhibit. This defines a set
of admissible controls u(t) ∈U .
Boundary constraints. Within the optimal control problem definition, it is possible to define the
boundary constraints on system states, for initial and for terminal time: x(t0) and x(t f ).

ψ(x(t0),x(t f )) = 0 (6.1.3)

Path constraints. It is also possible to constrain the states variables at time points inside the
time interval [t0, t f ], or over the entire time interval. They can be expressed in terms of equality or
inequality:

g(x(t),u(t))≤ 0 (6.1.4)

Performance index. A part of the definition of an optimal control problem is the objective (or
performance index) to be minimized. This objective can take on a number of forms, depending
on the problem definition. The general form of the index is

J = φ [x(t f ), t f ]+
∫ t f

0
L[x(t),u(t), t]dt (6.1.5)

In the case of no integral performance index (L = 0), the problem is a Mayer optimal control
problem, and in the case of no terminal performance index (φ = 0), it is a Lagrange optimal
control problem. If both φ and L are non-zero, the problem is called a Bolza problem. Therefore,
in a general term, the optimal control problem can be described by the following optimization
formulation:

min J(x,u) = φ [x(t f ), t f ]+
∫ t f

0
L[x(t),u(t), t]dt

s.t. ˙x(t) = f (x(t),u(t), t)

u(t) ∈U

g(x(t),u(t))≤ 0

ψ(x(t0),x(t f )) = 0

(6.1.6)

The synthesis of optimal control can be obtained analytically for some relatively simple systems.
For an understanding of how this synthesis is derived, see [232]. For the original derivation of the
optimal control problem, see [233]. In this work, we used a numerical simulator Bocop [234] to
find the solutions to the optimization problem defined in the next section.
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6.2 Model of adaptation to change in temperature
In this section, I describe HSR within a cellular context using the dynamical RBA approach
described in [235]. This is a lumped description of the cell designed to model the adaptation
to heat shock in bacteria under a set of important cellular constraints. It includes metabolism,
protein production and proteome quality control in terms of chaperones (folding) and proteases
(degradation). As shown in Figure 6.2.2, the cell imports the single necessary nutrient Sext and
converts it to energy, a generic precursor species S and the "biomass" metabolite B. S is then used
to produce the rest of the cellular constituent species - the mRNAs and proteins. Metabolism
is represented by three enzymes. The so-called spontaneously folding enzyme Es f is produced
directly in its folded form. The state of this enzyme is assumed not to depend on temperature, as
it cannot unfold or aggregate. The chaperone-assisted enzyme Eca cannot fold spontaneously
but instead depends on chaperones for its folding. It can unfold and when unfolded, can also
aggregate. The third enzyme Ets is the temperature-sensitive enzyme. It can fold spontaneously,
but its folding and unfolding depend on temperature. It can also be assisted in folding by
chaperones. The aggregates of both the chaperone-assisted and the temperature-sensitive enzyme
can be digested by the protease P and converted back to the precursor species S at the expense of
some energy, proportional to the length of the enzyme. The rest of the proteome which is not
functionally represented in the model is assumed to take a certain percentage pHP of the cellular
protein and is termed housekeeping protein - HP. All of the mentioned macromolecular machines
- the ribosome R, three metabolic enzymes - Es f , Eca and Ets, the chaperone C, the protease P and
the housekeeping protein HP are produced in proportion to their relative mRNA abundance in the
total mRNA pool. All the mRNA species are synthesized directly from the metabolite S without
the assistance of specialized machinery, while the proteins require ribosome R to be produced.
The set of all protein components produced by the ribosome are:

CR = {Es f ,Eu
ca,E

u
ts,R,C,P,HP} (6.2.1)

The corresponding mRNA production fluxes are decision variables denoted as ν
mζ

P (t) : ζ ∈ CR.
The set of all protein components assisted in folding by the chaperone is:

CC = {Eu
ca,E

u
ts} (6.2.2)

The corresponding folding fluxes are decision variables ν
ζ

F (t) : ζ ∈ CC The set of all protein
components that can be degraded by the protease is:

CP = {Ea
ca,E

a
ts} (6.2.3)

The corresponding degradation fluxes are decision variables ν
ζ

D(t) : ζ ∈ CP. The concentration of
a protein species of a component ζ is designated simply as [ζ ], while its mRNA species is [mζ ].
The model contains 23 parameters, represented either by constants or by sigmoidal or exponential
functions of the temperature T .
This model is graphically depicted in Figure 6.2.1. Stated in this way, it allows us to combine the
dynamic changes to the cellular configuration under the influence of change in temperature and
resource allocation constraints. As in the steady-state RBA problem, the working assumption is
that the cell maximizes its rate of growth µ .

Protein synthesis. Proteins are synthesized from their corresponding mRNA molecules and
precursors by the macromolecular machine R - ribosome. The total flux of protein production
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Figure 6.2.1: Graphical depiction of the optimal control heat shock model. The cell is made of ribosomes,
proteome maintenance machinery (chaperones and proteases), metabolic enzymes and housekeeping
protein. Metabolism is composed of three enzyme types, which represent three broad categories of protein
with respect to their folding needs: s f - spontaneously folding, ca - chaperone-assisted and cannot fold
spontaneously and ts - temperature-sensitive, which are more prone to unfolding as the temperature
increases. Metabolic enzymes facilitate the flux of external substrate uptake. This flux is needed to fuel the
production of "biomass" species B and protein production substrate species S. Enzymes can spontaneously
fold (except the chaperone-assisted one), unfold and aggregate. They can be assisted by chaperones in
their folding and disaggregation and can be degraded by proteases in the aggregated state. Degradation
produces substrate flux which can again be used in protein production.
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is limited by the availability and the efficiency of the ribosome. The flux of the production of
a protein ζ will depend on the proportion of its mRNA mζ in the total pool of mRNA. This is
modeled by making all production fluxes of protein linearly dependent on their corresponding
mRNA concentrations, and scaled by a decision variable α . This scaling factor α : 0≤ α ≤ 1
is in place to model the possibility that not all mRNAs are being transcribed (in case there is
not enough ribosome). But, as the scaling factor is the same for all protein species, all of them
will still be transcribed proportionally to the portion of their mRNA in the total mRNA pool.
The mRNA species are not produced through the action of any particular molecular machine,
but directly from the precursors. They are modeled as voluminous species and take up space in
the cell. The flux of production of mRNA mζ is a decision variable ν

mζ

P . The time evolution of
mRNA species is given by:

[ṁζ ](t) = ν
mζ

P (t)− (µ(t)+ km
deg)[

m
ζ ](t), ζ ∈ CR (6.2.4)

where km
deg represents a faster-than-dilution degradation of mRNA that serves to achieve their

short half-lives. The time evolution of all protein species except for the chaperone-assisted
enzyme is given by:

[ζ̇ ](t) = α(t)[mζ ](t)−µ(t)[ζ ](t), ζ ∈ CR \{Eu
ca,E

u
ts} (6.2.5)

As Eca and Ets can undergo unfolding and aggregation, their dynamics are different and are given
in the next paragraph. The total production flux of protein is limited by the efficiency and the
availability of the translation apparatus R.

α(t)
ζ∈CR

∑
ζ

nζ [
m

ζ ](t)≤ kR(T (t))[R](t) (6.2.6)

Proteome maintenance. One of the enzymes, Eu
ca, requires chaperones for folding, while

Eu
ts is not their obligatory substrate but can be assisted in its folding by chaperones. Both of these

enzymes are first produced in their unfolded form: Eu
ca and Eu

ts. Their folded forms are denoted
as E f

ca and E f
ts. Once folded, they can unfold with an unfolding rate ku(T (t)) that depends on

temperature. When in unfolded form, they can spontaneously assume an aggregated state Ea
ca and

Ea
ts. Aggregation is modeled as if each protein is individually converted into the aggregated state,

without taking into account the cumulative effect of this phenomenon. This choice was made for
the sake of simplicity. A more exact but numerically infeasible approach would be something
along the lines of Smochulowski’s coagulation [236]. The aggregated proteins can be degraded
by the protease into the generic precursor metabolite S. The corresponding dynamics for the
different forms of the chaperone-assisted enzyme is:

[Ėu
ca](t) = α(t)[mEca](t)−ν

Eca
F (t)+ ku(T (t))[E f

ca](t)− (µ(t)+ kagg)[Eu
ca](t) (6.2.7)

[Ė f
ca](t) = ν

Eca
F (t)− (µ(t)+ ku(T (t)))[E f

ca](t) (6.2.8)

[Ėa
ca](t) = kagg[Eu

ca](t)−ν
Eca
D (t)−µ(t)[Ea

ca](t) (6.2.9)

The dynamics for the temperature-sensitive enzyme is different in that it can spontaneously fold
with a temperature-dependent folding rate k f (T (t)), and in its aggregated form it cannot be
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rescued by the chaperone, but only degraded by the protease.

[Ėu
ts](t) = α(t)[mEts](t)−ν

Ets
F (t)+ ku(T (t))[E

f
ts](t)− (µ(t)+ kagg + k f (T (t)))[Eu

ts](t)
(6.2.10)

[Ė f
ts](t) = k f (T (t))[Eu

ts](t)+ν
Ets
F (t)− (µ(t)+ ku(T (t)))[E

f
ts](t) (6.2.11)

[Ėa
ts](t) = kagg[Eu

ts](t)−ν
Ets
D (t)−µ(t)[Ea

ts](t) (6.2.12)

The folding fluxes are limited by the availability of the chaperone:

ζ∈CC

∑
ζ

nζ ν
ζ

F (t)≤ kC[C](t) (6.2.13)

Degradation of aggregates is limited by the availability of the protease:

ζ∈CP

∑
ζ

nζ ν
ζ

D(t)≤ kP[P](t) (6.2.14)

Metabolism. The cell is taking up external nutrient Sext whose concentration is assumed to be
constant. The flux of conversion of the external nutrient (νM) is facilitated by three metabolic
enzymes: Es f and E f

ca and E f
ts, and is limited by their availability:

νM(t)≤ kMs f (T (t))[Es f ](t) (6.2.15)

νM(t)≤ kMca(T (t))[E
f
ca](t) (6.2.16)

νM(t)≤ kMts(T (t))[E
f

ts](t) (6.2.17)

The uptake flux is converted into three metabolic fluxes - one of energy production νE
M(t), one of

precursor production νP
M(t), and one of "biomass" production νB

M(t), which produces the biomass
species B. The three metabolic fluxes (νE

M(t),νP
M(t),νB

M(t)) sum up to the flux of uptake of the
external metabolite, under appropriate stoichiometries:

νM(t) = nBν
B
M(t)+nMpν

P
M(t)+nMeν

E
M(t) (6.2.18)

The time evolution of the biomass species B is described as:

[Ḃ](t) = nBν
B
M(t)− (µ(t)+CB)[B](t) (6.2.19)

where CB is a positive constant that ensures a requirement for biomass even at zero growth rate.
I assume that the cell needs to maintain a constant concentration of B = B0. The resulting flux
expression becomes:

ν
B
M(t) =

B0

nB
(µ(t)+CB) = B̃0(µ(t)+CB) (6.2.20)

Since it is completely determined by the growth rate, νB
M(t) is not a control variable of the system.

Each of the other two metabolic fluxes, νP
M(t) and νE

M(t), takes up a predetermined portion of the
remaining of the metabolic flux when the biomass production flux has been deducted:

ν
E
M(t) = pE

(
νM(t)−nBν

B
M(t)

)
= pE

(
νM(t)−B0(µ(t)+CB)

)
(6.2.21)

ν
P
M(t) = (1− pE)

(
νM(t)−B0(µ(t)+CB)

)
pE ∈ (0,1) (6.2.22)
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The energy flux νE
M is used for both production and degradation of macromolecular species1. This

leads to the following constraint:

ν
E
M(t) =

ζ∈CR

∑
ζ

nζ

(
γ

m
p ν

mζ

P (t)+ γ
p
p α(t)[mζ ](t)

)
+ γ

m
d km

deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)+ γ
p
d

η∈CP

∑
η

nην
η

D(t) (6.2.23)

where γm
p , γ

p
p , γm

d and γ
p
d are nonnegative constants that scale the energy cost of mRNA and

protein production and degradation according to the length of the corresponding macromolecules.

Sext

S

metabolic
enzymes

macromolecules
(protein, mRNA)

"reserve"
precursor
species

production degradation

energy
flux

precursor
flux

METABOLISM

B
recycling

of precurors

Figure 6.2.2: Metabolic part of the temperature response model. External substrate uptake flux νM is split
into three fluxes (under appropriate stoichiometric relations): (i) νB - the flux of production of biomass
metabolite B, νE

M - energy flux and νP
M - precursor flux. Energy is required for both the production and

degradation of macromolecular species, while the precursors are consumed by the production, and released
by degradation. The precursors released through degradation are accumulated in the precursor storage
metabolite S. The flux νS from metabolite S is used for the production of macromolecular species.

The precursor flux νP
M is used in the production of new macromolecular species. The degradation

of those species feeds into the pool of a reserve voluminous precursor species S. This species
participates in the macromolecular density of the cell and can be utilized in the creation of new
macromolecular species. The dynamics of the species S is described by:

˙[S](t) =−νS(t)−µ(t)[S](t)

+ km
deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)︸ ︷︷ ︸
mRNA degradation

+
η∈CP

∑
η

nην
η

D(t)︸ ︷︷ ︸
protein degradation

, [S](t)≥ 0, t ∈ [t0, t f ] (6.2.24)

where νS is the flux of usage of metabolite S for the creation of new macromolecular species.
This flux, together with the metabolic precursor flux νP

M must equal the production of all new

1If necessary, this energy flux can be required in other cellular processes as well, such as protein folding or
degradaton.
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macromolecules:

νS(t)+ν
P
M(t) =

ζ∈CR

∑
ζ

nζ

(
ν

mζ

P (t)+α(t)[mζ ](t)
)

︸ ︷︷ ︸
mRNA and protein production

(6.2.25)

The schematic of the metabolism is available in Figure 6.2.2.

Temperature dependence. The temperature change is introduced in the model through tempera-
ture dependence of a number of model parameters. This is the case for the peptide elongation
rate of ribosomes (kR(T (t))), protein folding and the unfolding rates (k f (T (t)), ku(T (t))) and
metabolic rates of enzymes (kMca(T (t)), kMs f (T (t))). These parameters were made dependent
on temperature because of their importance in the HSR, and because of the availability of data
which allowed me to estimate them. Some parameters, such as the rate of protein aggregation
(kagg), rate of folding by the chaperone (kC) and the rate of degradation by the protease (kP), even
if they most probably are temperature dependent, were described by constants since there was
no data available which would allow me to estimate them. Temperature is represented in the
model by a system variable T (t), described by the first-order response system around the external
temperature value Text :

Ṫ (t) =−sT (T (t)−Text) (6.2.26)

where sT is a scaling factor determining the speed at which the internal temperature reaches a
new steady state upon achange in external temperature Text .

Growth rate. I derive the expression for the growth rate from the rate of change of volume and
concentrations of voluminous species. Voluminous species, those that take up volume in the cell,
are assumed to be all the macromolecular species and the precursor metabolite S. The set of all
macromolecular species are M:

M = {ζ : ζ ∈ CR}∪{m
ζ : ζ ∈ CR}∪{E f

ca,E
a
ca,E

f
ts,E

a
ts} (6.2.27)

and the set of all voluminous species:

V = {ζ : ζ ∈ M∪{S}} (6.2.28)

It is reasonable to assume that the volume is proportional to the weighted sum of voluminous
species

V (t) = β

i∈V

∑
x

nxNx(t) (6.2.29)

where nx is the stoichiometric coefficient denoting the number of units of precursor S stored
in the species x (for species S the stoichiometric coefficient is nS = 1), Nx is the amount of the
voluminous species x,x ∈ V and β is a constant that converts the amount of the precursor S into
units of volume. In this model, however, there is no explicit mention of species amounts, but
their concentrations. Therefore, instead of relating the volume to species amounts, it is more



6.2 Model of adaptation to change in temperature 119

convenient to relate the rate of volume change to species concentrations. The rate of change of
the total volume taken up by a bacterial culture can be described as:

dV (t)
dt

= µ(t)V (t) (6.2.30)

where µ(t) is what is commonly referred to as the growth rate. By taking a time derivative of
both sides of Equation 6.2.29, we get:

dV (t)
dt

= µ(t)V (t) = β

x∈V

∑
x

nx
dNx(t)

dt
(6.2.31)

or simply:

µ(t) = β

x∈V

∑
x

nx
1

V (t)
dNx(t)

dt
(6.2.32)

The expression dNx(t)/dt can be substituted with appropriate terms from the expression of a time
derivative of the concentration of species x:

dCx(t)
dt

=
1

V (t)
dNx(t)

dt
− Nx(t)

V (t)
dV (t)/dt

V (t)
=

1
V (t)

dNx(t)
dt

−µ(t)Cx(t) (6.2.33)

where Cx(t) is the concentration of species x. I next substitute 1
V (t)

dNx
dt with the expression from

Equation 6.2.33:

µ(t) = β

i∈V

∑
x

nx(
dCx(t)

dt
+µ(t)Cx(t)) (6.2.34)

The dynamics of all the voluminous species can generally be described by the terms of production,
conversion, degradation and dilution:

dCx(t)
dt

= νPx(t)+νCx(t)−νDx(t)−µ(t)Cx(t), νPx ,νDx ≥ 0 (6.2.35)

where νPx(t) is the flux of production of species x, νCx(t) is the flux of conversion of species
x to or from another voluminous species and νDx(t) is the flux of degradation of species x.
Degradation here assumes the removal of a voluminous species. One example of this would be
an export to a different compartment or the external medium. By introducing this expression into
Equation 6.2.34, the expression becomes:

dV (t)/dt
V (t)

= µ(t) = β

x∈V

∑
x

nx(νPx(t)+νCx(t)−νDx(t)−µ(t)Cx(t)+µ(t)Cx(t))

= β

x∈V

∑
x

nx(νPx(t)+νCx(t)−νDx(t)) (6.2.36)

In this model, all the voluminous species have zero production and degradation flux. Production
of macromolecules from precursors, and their degradation back into the precursors are both con-
version fluxes, since no macromolecular volume is thereby lost (assuming that the stoichiometry
of the two steps is equal). The only flux that can be classified as a production flux is the precursor
uptake flux νP

M, since it contributes to the accumulation of voluminous species in the cell. The
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sum of this flux and νS, the flux that determines the rate of conversion of accumulated internal
substrate S into macromolecules (see Equation 6.2.24 and Figure 6.2.2), is then distributed for
the production of all the macromolecular voluminous species.

i∈V

∑
i

νCx(t) =− νS(t)︸︷︷︸
conversion into macromolecules

+km
deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)︸ ︷︷ ︸
mRNA degradation

+
η∈CP

∑
η

nην
η

D(t)︸ ︷︷ ︸
protein degradation

(S)

+
ζ∈CR

∑
ζ

nζ ν
mζ

P (t)︸ ︷︷ ︸
production

−km
deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)︸ ︷︷ ︸
degradation

(mRNA)

+
ζ∈CR

∑
ζ

nζ α(t)[mζ ](t)︸ ︷︷ ︸
production

−
η∈CP

∑
η

nην
η

D(t)︸ ︷︷ ︸
degradation

(protein)

−ν
Eca
F (t)+ ku(T (t))[E f

ca](t)− kagg[Eu
ca](t) (E-ca-u)

+ν
Eca
F (t)− ku(T (t))[E f

ca](t) (E-ca-f)

+ kagg[Eu
ca](t) (E-ca-a)

−ν
Ets
F (t)+ ku(T (t))[E

f
ts](t)− kagg[Eu

ts](t) (E-ts-u)

+ν
Ets
F (t)− ku(T (t))[E

f
ts](t) (E-ts-f)

+ kagg[Eu
ca](t) (E-ts-a)

=−νS(t)+
ζ∈CR

∑
ζ

nζ ν
mζ

P (t)+
ζ∈CR

∑
ζ

nζ α(t)[mζ ](t) (6.2.37)

By replacing νS(t) with the expression from Equation 6.2.25, whereby νS(t) is:

νS(t) =
ζ∈CR

∑
ζ

nζ

(
ν

mζ

P (t)+α(t)[mζ ](t)
)
−ν

P
M(t) (6.2.38)

I obtain the final expression for the sum of conversion fluxes:

x∈V

∑
x

νCx(t) = ν
P
M(t) (6.2.39)

The precursor uptake flux νP
M(t) is the final result of the sum of all the conversion fluxes, and

thereby the only flux contributing to the expression of the growth rate. The expression for the
growth rate µ(t) becomes:

µ(t) = βν
P
M(t) =

1
Dc

ν
P
M(t) (6.2.40)

where Dc[
mmol.AA

gCDW ] is the so-called cytosolic density, described in detail in subsection 5.1.3. This
quantity is not the only one that could be used to convert concentrations of chemical components
into volume, but it is a convenient one. One great benefit is that Dc has already been estimated
for the whole-cell E. coli RBA model. Additionally, using the same quantity allows for an easier
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comparison of the two models.

Density constraint. At the initial time t0, the sum of all voluminous species must not exceed the
maximal cytosolic density Dc:

ζ∈V

∑
ζ

nζ [ζ ](t0)≤ Dc (6.2.41)

Performance index. The interest of this model is to study cellular resource rearrangement under
conditions of changing temperature and the assumption of growth rate maximization. Due to the
formulation of the Mayer type optimal control problem, the performance index can be stated as a
function of system states at the final time of the simulation:

J = φ [x(t f ), t f ] (6.2.42)

Since the growth rate µ is not a system variable (see Equation 6.2.40), it cannot be used directly
in the formulation of the performance index. Additionally, maximizing the maximum growth rate
at final time t f would not ensure the maximization of the growth rate throughout the simulation.
This can be circumvented by introducing the population size X as a system variable:

dX(t)
dt

= µ(t)X(t) (6.2.43)

The maximization of the population size at final time would then correspond to the maximization
of the growth rate over the entire simulation time interval. This, however, would introduce an
exponentially growing variable into the system, which could lead to numerical difficulties during
simulation. I solve this by introducing a proxy variable, which does not directly correspond to the
population size, but ensures that the objective of the optimization corresponds to the maximization
of growth rate over the entire simulation time interval:

dX(t)
dt

= µ(t) (6.2.44)

The performance index then becomes

J = X(t f ) (6.2.45)

6.2.1 Compact model representation

Our system is described by a system of differential equations:

ẋ(t) = f (x(t),u(t)) (6.2.46)
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where x(t) are system variables, and u(t) system controls. Changes in system variables over time
are described by the following ODEs:

[ṁζ ](t) =ν
mζ

P (t)− (µ(t)+ km
deg)[

m
ζ ](t), ζ ∈ CR (6.2.47)

[ζ̇ ](t) =α(t)[mζ ](t)−µ(t)[ζ ](t), ζ ∈ CR \{Eu
ca,E

u
ts}

(6.2.48)

[Ėu
ca](t) =α(t)[mEca](t)−ν

Eca
F (t)+ ku(T (t))[E f

ca](t)

− (µ(t)+ kagg)[Eu
ca](t) (6.2.49)

[Ė f
ca](t) =ν

Eca
F (t)− (µ(t)+ ku(T (t)))[E f

ca](t) (6.2.50)

[Ėa
ca](t) =kagg[Eu

ca](t)−ν
Eca
D (t)−µ(t)[Ea

ca](t) (6.2.51)

[Ėu
ts](t) =α(t)[mEts](t)−ν

Ets
F (t)+ ku(T (t))[E

f
ts](t) (6.2.52)

− (µ(t)+ kagg + k f (T (t)))[Eu
ts](t)

[Ė f
ts](t) =k f (T (t))[Eu

ts](t)+ν
Ets
F (t)− (µ(t)+ ku(T (t)))[E

f
ts](t) (6.2.53)

[Ėa
ts](t) =kagg[Eu

ts](t)−ν
Ets
D (t)−µ(t)[Ea

ts](t) (6.2.54)

[Ṡ](t) =−νS(t)−µ(t)[S](t)+

+ km
deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)+
η∈CP

∑
η

nην
η

D(t) (6.2.55)

Ẋ(t) =µ(t) (6.2.56)

The system controls u(t) are:

• νM(t) - flux of uptake of external substrate
• νS(t) - use of internal metabolite S as a precursor for the creation of new macromolecules
• ν

mζ

P (t), ζ ∈ CR - the production fluxes of all mRNA species
• ν

Ets
F (t), ν

Eca
F (t) - folding fluxes of the temperature sensitive and chaperone-assisted enzyme

• ν
Ets
D (t), ν

Eca
D (t) - degradation fluxes of the aggregated form of Ets and Eca

• α(t) ∈ [0,1] - ribosome pool occupancy scaling factor

The boundary conditions of this system Φ(x(t0), t0) = 0 are:

ζ∈CR

∑
ζ

nζ

(
[ζ ](t0)+ [mζ ](t0)

)
+nEca([E

f
ca](t0)+ [Ea

ca](t0))−Dc ≤ 0 (6.2.57)

X(t0)−X0 = 0 (6.2.58)

T (t0)−T0 = 0 (6.2.59)
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The equality and inequality path constraints, Ceq = 0 and Cin ≤ 0, of this system are:

(g.r.) Dcµ(t)−nSν
P
M(t) = 0 (6.2.60)

(met-sf) νM(t)≤ kMs f (T (t))[Es f ](t) (6.2.61)

(met-ca) νM(t)≤ kMca(T (t))[E
f
ca](t) (6.2.62)

(met-ts) νM(t)≤ kMts(T (t))[E
f

ts](t) (6.2.63)

(P-flux) ν
P
M(t)− (1− pE)

(
νM(t)−B0(µ(t)+CB)

)
= 0 (6.2.64)

(E-flux) ν
E
M(t)− pE

(
νM(t)−B0(µ(t)+CB)

)
= 0 (6.2.65)

(P-met) νS(t)+ν
P
M(t)−

ζ∈CR

∑
ζ

nζ

(
ν

mζ

P (t)−α(t)[mζ ](t)
)
= 0 (6.2.66)

(E-met) ν
E
M(t)−

ζ∈CR

∑
ζ

nζ

(
γ

m
p ν

mζ

P (t)+ γ
p
p α(t)[mζ ](t)

)
− γ

m
d km

deg

ζ∈CR

∑
ζ

nζ [
m

ζ ](t)+ γ
p
d

η∈CP

∑
η

nην
η

D(t) = 0 (6.2.67)

(ribo) α(t)
ζ∈CR

∑
ζ

nζ [
m

ζ ](t)≤ kR(T (t))[R](t) (6.2.68)

(chap)
ζ∈CC

∑
ζ

nζ ν
ζ

F (t)≤ kC[C](t) (6.2.69)

(prot)
ζ∈CP

∑
ζ

nζ ν
ζ

D(t)≤ kP[P](t) (6.2.70)

(HP-ss) α(t)[mHP](t)−µ(t)[HP0] = 0 (6.2.71)

(6.2.72)

The optimization problem is:

min
{ν

mζ

P (t):ζ∈PR},{νζ

F (t):ζ∈PC},{νζ

D(t):ζ∈PP},νM(t),νS(t),α(t)
−X(t f )

s.t. ẋ(t) = f (x(t),u(t))

Φ(x(t0), t0) = 0

Ceq(x(t),u(t)) = 0

Cin(x(t),u(t))≤ 0 (6.2.73)
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6.3 Model parameterization
In this work, I take into account the fact that temperature affects the rate of translation, the catalytic
rates of enzymes, and the rates of folding and unfolding of proteins. Ribosomes are assumed to be
produced in a properly folded form, regardless of the temperatures, as are chaperones, proteases
and the spontaneously folding enzyme Es f . The unfolding of the two other enzymes, Eca and
Ets, depends on temperatures, as does folding of the temperature-sensitive enzyme Ets. All the
parameters (temperature dependent and otherwise) of the model are given in Table 6.4.1.

6.3.1 Kinetic rate of enzymes
In choosing parameter values for the kinetic rates of all the enzymes kapp(T ) as a function of
temperature, I have not used a single set of measurements. Instead, I have combined a number
of published observations about the quantity and the type of change in the catalytic rate with
temperature. The reason behind this is that there is no genome-wide estimate of temperature
dependence on the catalytic rates of enzymes. The individual enzyme studies, due to the very
specific and unique nature of protein molecules, can hardly be extrapolated onto genome-scale.
For this reason, I have chosen to assume a catalytic rate of kapp(T = 37◦C) = 12.5s−1. This rate

Figure 6.3.1: Apparent catalytic rate of enzymes as a function of temperature. Data points are estimated
as follows: for T = 37oC, we take the value provided computed in [192] as the best fit for a number of
growth conditions kapp = 12.5s−1. As noted in [237] that the catalytic rate doubles each 10oC, we assume
the following values: kapp(27oC) = 6.25, and kapp(47oC) = 25. Finally, we assume that the increase
doesn’t continue exponentially after a range of temperatures optimal for growth of E. coli (non-Arrhenius
dependence), as noted in [238], and set kapp(60oC) = 31. Additionally, we assume that enzymes do not
perform any catalytic function at T = 0oC. These data points are fit to a sigmoidal curve kapp(T ) = a

b+ce−dT .

has been estimated as the best fit for a range of growth rates of the genome-scale RBA model
of E. coli in subsection 5.1.5 (see also Figure 5.1.2). I then take into account the observation
made in [237] that the catalytic rates of enzymes roughly doubles from every 10◦C, further
assuming that kapp(T = 27◦C) = 6.25s−1 and kapp(T = 47◦C) = 25s−1. For T = 0◦C, I take the
apparent catalytic rate to be 0. Arrhenius equation describes the exponential increase in the rate
of reaction with temperature. For enzymes, however, it has been shown that this exponential
relation breaks down after a certain temperature [238]. The potential reason behind it is that at
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higher temperatures the enzyme populates a greater variety of stable states, not all of which are
capable of catalyzing the reaction, which effectively lowers its overall catalytic rate. With this
reasoning in mind, I choose a value of kapp(T = 60◦C) = 31s−1. The functional dependence
between the catalytic rate and temperature I assume to be of sigmoidal type:

kapp(T ) =
a

b+ ce−dT (6.3.1)

By fitting the sigmoidal curve the the chosen data points, I obtain the values of the constants to
be a = 2.4, b = 0.07, c = 7.82, d = 0.12. The chosen data points and the obtained functional
dependence of the apparent catalytic rate on temperature are shown in Figure 6.3.1. The fit
was obtained by using scipy.optimize.curve_fit function, which fits the data points to a
user-defined function, using a non-linear least squares method.

6.3.2 Ribosome translation rate
In 1998, Farewell and Neidhardt analyzed what happens to the peptide chain elongation rate in E.
coli with increase in temperature [239]. They have determined that the peptide chain elongation
rate increases in the normal range of temperatures (25 to 37◦C) in the same manner as the growth
rate. At higher temperatures, the rate of growth decreases, but the peptide chain elongation
rate continues to increase. This indicates that the decrease in the growth rate is not due to the
capacity of ribosomes to produce protein, but that the reason lies elsewhere. In the low range of
temperatures, the growth rate decreased faster than the peptide elongation rate, showing that it is
also not limiting for growth at low temperatures. I use this data for the parameterization of the

Figure 6.3.2: Peptide chain elongation rate of the ribosome as a function of temperature. All the data
points (except the last one) are taken from [239]. The last data point is assumed based on the comment
in the same article claiming that after the measured range of temperatures the elongation rate begins to
decrease. As we had no numerical values for this point, we assumed that the rate stays the same after the
last measured point. The data is fit to a sigmoidal curve kT (T ) = a

b+ce−dT .

peptide chain elongation rate. I add one additional point at T ≈ 50◦C of kT = 18.6s−1. This point
is added to accommodate for a comment made in [239] that the peptide chain elongation rate
decreases after the range of temperatures for which they have published the data. As they do not
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offer a number for this observation, I have just assumed that the rate saturates after the one at the
highest measured temperature. When fitting the data to a sigmoidal curve (as in Equation 6.3.1),
the following values of constants are obtained: a = 5.83, b = 0.27, c = 33.56 and d = 0.14. The
fitting was performed as in subsection 6.3.1. The data points and the results of the fit are shown
in Figure 6.3.2.

6.3.3 Folding and unfolding rate
The folding and unfolding rates are chosen so as to exhibit the Arrhenius dependence on tempera-
ture, with both k f and ku increasing with temperature. Again, as for the catalytic rate, it is very
difficult to obtain a value of the two rates which would be meaningful for the entire proteome.
Because of this, I use a rough estimate of the two values, similar to the way they are described in
[240].

Figure 6.3.3: Protein folding and unfolding rate as a function of temperature. I assume that the unfolding
rate is dependent on temperature as described by the Arrhenius equation. Left: Arrhenius plot. Logarithm
of k f and ku depends linearly on 1/T . The data is not taken for any particular protein, but is a rough
estimate as given in [240]. Right: Transformation of the plot on the left to linear coordinates. This curves
are fit to an exponential: k = aebT−c.

This choice is depicted in Figure 6.3.3. The dependence of the logarithm of ku and k f to the
inverse of temperature is described by an exponential dependence of ku and k f on temperature.
The values thus obtained are:

k f (T ) = 1.84e0.04T−1.09 ku(T ) = 2.18e0.08T−1.38 (6.3.2)

6.3.4 Parameters without estimates
There are certain parameters in the model which has not been computed from existing data (see
Table 6.4.1). This is true for the aggregation rate of proteins and all the scaling factors relating the
distribution of total metabolic flux into precursor and energy, and the ones relating the length of
macromolecule to the cost of production and degradation in terms of energy. For these parameters
I was not able to find sufficient data which would allow me to estimate them within the time
available for the completion of my thesis.

6.4 Model simulation
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Table 6.4.1: Parameters of the optimal control model of HSR. Some parameters have been taken directly from data (such as ribosome length) or from published
literature, some estimated from published data, and some chosen without reference to data.

Parameter name Symbol Value Unit Comment

Number of S in ribosome nR 20120 From E. coli ribosome
Number of S in chaperone nC 5000 Chosen
Number of S in protease nP 5000 Chosen
Number of S in Es f nEs f 16600 Most of metabolic pool
Number of S in Eca nEca 400 2% of metabolic pool
Number of S in Ets nEts 3000 15% of metabolic pool
Number of S in HP nHP 300 Average E. coli protein

Translation efficiency kR(T ) 5.83/(0.27+33.56e−0.14T ) s−1 Estimated
Catalytic rate of enzymes kM(T ) 2.4/(0.07+7.82e−0.12T ) s−1 Estimated
Chaperone efficiency kC 25 s−1 Estimated
Protease efficiency kP 25 s−1 Estimated
Folding rate k f (T ) 1.84e(0.04T−1.09) s−1 Estimated
Unfolding rate ku(T ) 2.18e(0.08T−1.38) s−1 Estimated
Aggregation rate kagg 0.1 min−1 Chosen
mRNA degradation rate km

deg 0.1 min−1 Typical in E. coli

% of νM diverted to energy pE 0.15 Chosen
Energy cost of mRNA prod. (scaling factor) γm

p 0 Chosen
Energy cost of protein prod. (scaling factor) γ

p
p 0.1 Chosen

Energy cost of mRNA deg. (scaling factor) γm
d 0 Chosen

Energy cost of protein deg. (scaling factor) γ
p
d 0.1 Chosen

Cytosolic density Dc 4.89 mmol/gCDW Taken from [192]
Biomass steady-state concentration B0 0.387 mmol/gCDW Taken from [235]
HP steady-state concentration HP0 0.00163 mmol/gCDW Taken from [235]
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6.4.1 Receding horizon control

The goal of the above-described model is to predict the proteome rearrangement under the
conditions of changing temperature. Temperature is a state of the model, described as a first-order
system adjusting to a value set by a system parameter Text . The temperature change can therefore
be introduced by changing Text , after which the system temperature will reach a new steady state,
equal to Text .
In the optimal control problem, the solutions are optimized for the entire duration of the simu-
lation time. This means that if within a single optimal control problem one would introduce a
temperature change, the optimal solution would be the one in which the adaptation takes place
even before the temperature changes. While this is acceptable and even desired in a system where
control can be implemented externally (like a rocket or a car), it is unrealistic within a cellular
setting. Therefore, a single simulation cannot suffice for the type of investigation required for
this thesis. For this reason, I implemented a receding horizon control simulation strategy. The
optimization problem is repeatedly solved, and the solutions for step n act as constraints on the
initial values of state variables for step n+1. While in the first simulation step the optimal control
problem is described by Equation 6.2.73, every next (nth) simulation step has additional boundary
constraints which ensure continuity with the previous ((n−1)th) step. The boundary conditions
are the following:

ζ∈CR

∑
ζ

nζ

(
[ζ ](t0)+ [mζ ](t0)

)
+nEca([E

f
ca](t0)+ [Ea

ca](t0))+S(t0)−Dc ≤ 0 (6.4.1)

X(t0)−X0 = 0 (6.4.2)

T (t0)−T0 = 0 (6.4.3)
mEs f (t0)−m Es f 0 = 0 (6.4.4)

Es f (t0)−Es f 0 = 0 (6.4.5)
mEca(t0)−m Eca0 = 0 (6.4.6)

Eu
ca(t0)−Eu

ca0 = 0 (6.4.7)

E f
ca(t0)−E f

ca0 = 0 (6.4.8)

Ea
ca(t0)−Ea

ca0 = 0 (6.4.9)
mEts(t0)−m Ets0 = 0 (6.4.10)

Eu
ts(t0)−Eu

ts0 = 0 (6.4.11)

E f
ts(t0)−E f

ts0 = 0 (6.4.12)

Ea
ts(t0)−Ea

ts0 = 0 (6.4.13)
mC(t0)−m C0 = 0 (6.4.14)

C(t0)−C0 = 0 (6.4.15)
mP(t0)−m P0 = 0 (6.4.16)

P(t0)−P0 = 0 (6.4.17)

(6.4.18)

The simulation script I provide with the thesis allows for the definition of the initial temperature
and (optionally) a number of other temperatures of the system and times at which they occur.
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6.4.2 Numerical simulation
As already mentioned, each simulation step in the receding horizon simulation was performed by
the Bocop solver. Bocop is an open-source toolbox for solving optimal control problems. The
optimal control problem, as defined in Equation 6.2.73, is infinite-dimensional. What needs to
be estimated, namely the controls u(t) of the system, are continuous in time and are therefore
defined by an infinite number of points over a finite interval. To transform this problem into a
finite-dimensional optimization problem (nonlinear programming (NLP) problem), Bocop uses
the so-called direct method, through which the states and the controls of the system are discretized
in time 2. Such a discretized problem is then passed to the IpOpt solver [241], which provides
the solution to the NLP by the interior-point line search filter method. The problem defined in
Equation 6.2.73 is solved for a predefined final time through implicit Euler numerical integration
algorithm.

6.4.3 Basic model functionality
Balanced growth. It is instructional to first make sure that the model exhibits expected behavior
when growing on a single temperature. Since the external substrate is constant, it is expected
that the simulated cells will grow in the balanced regime typical of the exponential growth phase
[242], the one in which all the intracellular species are constant3. This expectation is based on the
knowledge that there is (in terms of an RBA model) just one cellular configuration that maximizes
growth [29]. To ensure the basic functionality of the receding horizon implementation, I first
compare the single simulation performed by Bocop for a fixed final time to a receding horizon
simulation performed as described in subsection 6.4.1.
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Figure 6.4.1: Simulation of growth on constant temperature of T = 37◦C. The variables shown are the
growth rate µ (in [min−1]) and a selection of system states (measured in mmol of substrate S per gCDW ).
The upper row shows the results of a single optimal control problem simulation with fixed final time
t f = 300[min]. The lower row shows the results of the receding horizon type simulation for the same
time duration. The results differ only slightly, to a degree that can be expected in a complex optimization
problem.

In Figure 6.4.1, I show that the results obtained from the two simulation methods are almost
identical, save for the numerical effects, most probably due to different time quantization. The
simulation was done for T = 37◦C. The capacity of the model to predict balanced growth is the
first and basic test of its validity. Even if I show the simulation results for a single temperature,
the balanced growth is predicted for a whole range of biologically relevant temperatures. In

2The other method by which an optimal control problem can be optimized is the so-called indirect method, by
which the optimality criterion is first obtained analytically, and is afterwards discretized to obtain a solution.

3The constancy of intracellular species is of course just a useful abstraction of the actual noisy cellular state.
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section A.9 I show how the model reaches a steady state for temperatures from 20◦C to 60◦C.
One important remark about all the simulation results is that under no condition does the system
behavior start at a steady state, but instead features initial and final "adaptation". This initial
adaptation is typical of problems that exhibit the so-called "turnpike" behavior4.
Growth rates for a range of temperatures. It is known that E. coli (like all ectotherms) has a
range of temperatures most suited for its survival and reproduction. Bellow and above this range
of temperature, growth is seriously impaired. When using the model of this chapter to simulate
growth for a range of temperatures, this feature is recovered, if only qualitatively.

Figure 6.4.2: Dependence of growth rate on temperature. The optimal predicted temperature for growth is
around 45◦C, close to the experimentally determined one of Topt ≈ 42◦C for growth on glucose. A single
point at T = 42◦C depicts the experimentally determined value [208]. The dashed vertical line shows the
temperature at which most E. coli strains stop growing [243].

In Figure 6.4.2, one can see that the predicted optimal temperature for growth is around T = 45◦C,
which is not too far from the experimentally determined value of T = 42◦C. The predicted range
of growth rates is reasonable for E. coli (the experimentally determined growth rate of E. coli
BW25113 on glucose for T = 37◦C is 0.58h−1 and for T = 42◦C is 0.66h−1 [208]).

6.4.4 Adaptation to change in temperature
The next step in model exploration is to predict the adaptation to an increase in temperature,
keeping in mind that this behavior is a reflection of a single principle, that of optimization of
resources for growth and that no regulatory effects have been accounted for. I first illustrate the
adaptation to the most common type of heat shock performed in the laboratory - the transfer
from 27 to 42◦C. Figure 6.4.3 shows the change in the growth rate, the most abundant cellular
components, and their corresponding mRNA species. As is known from experimental data, the
amount of chaperones and proteases increases upon heat shock. Further on, after a stage of
adaptation, the system enters a new steady state, as is also known of heat shock in E. coli, at least
for a range of temperatures in which the cells do not enter the stationary phase [244].
To better illustrate how the cellular investment of resources changes with temperature, in Fig-
ure 6.4.5 I show the distribution of protein in functional categories for a range of temperatures
from 20 to 60◦C. As the temperature increases, the ribosomes and metabolic enzymes become
more efficient. This is reflected in the decrease in the cellular investment in these components.
Because the increase in temperature also increases the rate of misfolding of proteins, the cellular
requirement for proteome maintenance machinery (chaperones and proteases) increases, as shown
in Figure 6.4.5.

4I have not proven that the problem falls in the category of turnpike problems, I just observe that under all
simulation conditions the problem exhibits the typical turnpike behavior, in which most of the time is spent at steady
state, preceeded and followed by a deviation from steady state.
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Figure 6.4.3: Response of the optimal control model to the change in temperature from 27 to 42◦C. The
left column shows the change in temperature, growth rate µ and the mRNA pool translation scaling factor
α , while the right part of the plot shows the predicted adaptation of major macromolecular species of the
model.

6.4.5 Comparison to the whole-cell RBA model
Even if the whole-cell RBA model developed in Part III and the simple model developed in
this chapter find themselves on opposite sides of the detail spectrum, they are based on the
same principles of parsimonious resource allocation and the constraints developed from those
principles. The parameterization used for the whole-cell model RBA of E. coli was performed
by using the data obtained with cells grown on 37◦C. It is therefore instructive to make the
comparison by simulating the growth on that temperature. For the simulation of the whole-cell
model, I use the glucose minimal medium. Apart from the fact that the model presented in this
chapter is a very simplified cellular model, one additional difference from the whole-cell model
is that in this model there is only one compartment - the cytosol. The values that I compare are
the growth rate and the percentage of ribosomes in the cytosolic fraction.
One of the very important constraints on the model - the density constraint (see subsection 4.2.1)
- is implemented in both models using the same value of the Dc = 4.89 parameter. However,
another very important parameter, namely the efficiency of the ribosome, is quite different. In the
whole-cell RBA model, this efficiency for the growth on glucose and the thus obtained growth rate
of µ = 0.65s−1 is kT = 23.52s−1. The value obtained in subsection 6.3.2, whereby the ribosome
efficiency is the function of temperature, is kT (T = 37◦C) = 13s−1.
It is due to this difference that the growth rate of the two models differs significantly for the
temperature of T = 37◦C and is µ = 0.65h−1 for the whole-cell RBA, and µ = 0.41h−1 for the
HSR model. The ribosome fractions are fR = 33.14% for the whole-cell model and fR = 39.29%
for the HSR model. However, if the ribosome efficiency is taken from the whole-cell model
and set constant to that value in the HSR model, the growth rate of the HSR model becomes
µ = 0.6h−1, and the ribosome fraction fR = 33.59%, which is quite similar to the whole-cell
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Figure 6.4.4: Response of the optimal control model to the change in temperature from 42 to 27◦C. The
left column shows the change in temperature, growth rate µ and the mRNA pool translation scaling factor
α , while the right part of the plot shows the predicted adaptation of major macromolecular species of
the model. This change in temperature leads to a decrease in the growth rate. Due to this, the cellular
adaptation to the change is slower (notice the different time span in comparison to Figure 6.4.3). Also, this
causes the mRNA pool to temporarily not be fully translated and results in a drop in α at the time of the
temperature change, which allows for a faster adaptation on the protein level.

RBA model. This shows that, on a global scale, the two models correspond well to one another.

6.5 Different model versions
During the process of development of the final optimal control model, I have made several simpler
models. These were implemented to better understand the effects of different constraints on the
numerical solubility of the optimal control problem and for the purposes of debugging. I have
developed two types of models. They differ in how the proteins are produced - with or without
the mRNA intermediate. The first model type (without mRNA production) has not been detailed
in the thesis because it has proven not to be suitable for this study. However, I can imagine that it
can be useful for educational purposes (due to its simplicity), or maybe for the study of different
biological phenomena. In this model, the synthesis flux of the protein x is under the direct control
of a control variable νx

P, making the dynamics of that protein correspond to:

d[x](t)
dt

= ν
x
P(t)−µ(t)x(t)+ . . . (6.5.1)

where . . . stands for protein conversion (such as from unfolded to folded). In comparison to that,
in the second model type, the control is exerted on mRNA production

d[mx](t)
dt

= ν
mx
P (t)− (µ(t)+ km

deg)[
mx](t) (6.5.2)
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proteome maintenance

Figure 6.4.5: Change in cellular composition for growth at different temperatures. Translation includes
ribosomes, metabolism three types of enzymes, and proteome maintenance chaperones and proteases. At
lower temperatures, the cell needs to invest more resources into translation and metabolism due to their
slower rates, but the requirements on proteome maintenance are low, as the unfolding rate is negligible. At
higher temperatures, most cellular resources are invested in proteome maintenance.

while the protein synthesis is regulated by the relative abundances of mRNAs competing for the
ribosome:

d[x](t)
dt

= α(t)[mx](t)−µ(t)x(t)+ . . . 0≤ α(t)≤ 1 (6.5.3)

Both model types are available in varying degrees of granularity, starting from the simplest -
featuring just a single enzyme and a ribosome - to the full heat shock model. All of the models
are available in two formulations necessary for the simulation as receding horizon problems (as
described in subsection 6.4.1).
For the encoding of optimal control problems, I have developed a simple and intuitive JSON
format. While Bocop does offer a format for encoding optimal control problems, I found it
somewhat difficult to edit. The reason for that is that, in Bocop, the model information is spread
out in multiple files, all of which need to be updated upon making a single change. For example,
to add a constant, one has to add it to the constants.def file, change the number of constants
in the problem.def file, and edit all the tpp files which reference constants. While this might
be feasible in a process by which a model is directly transferred from paper to the computer,
it can be burdensome and error-prone in the process of model development. By introducing a
new compact JSON format, I believe I have made model editing simpler. With the format, I
offer Python scripts with which the JSON problem formulation can be converted to the Bocop
problem formulation. The example of the simplest model (without mRNA production) encoded
in this format is given in section A.10.
All the models with and without mRNA production, as well as the scripts necessary to con-
vert them to Bocop format or to simulate them, can be found in a public Git repository -
https://github.com/abulovic/opt-ctrl-cell-models. The repository also features instructions on
what is necessary to simulate the models.

https://github.com/abulovic/opt-ctrl-cell-models
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6.6 Discussion

The developments in this chapter complement the analysis performed in chapter 3. The phe-
nomenon studied (HSR) is the same, while the methodology is different: in chapter 3 I analyze the
behavior of the system by integrating the detailed knowledge on the macromolecular interaction
leading to the regulation of the HSR, while in this chapter I assume a parsimonious allocation of
resources favoring growth and through it predict the adaptation to a change in temperature.

6.6.1 Concentrations or molecule counts

A reformulation of the problem, in which we don’t deal with concentrations but with molecule
counts, would allow for simplification of constraints. If the problem were to be formulated in
terms of molecule counts, it would not be necessary to consider dilution. The dilution term
includes the growth rate, which is described by a linear relation of control variables. Because
of this, all equations which describe a concentration of any molecule involve both system and
control variables, adding to the complexity of the problem. One drawback of the formulation
using molecule counts would be that all the species would exhibit exponential growth, which
would lead to the need of using ever-smaller integration times to correctly assess the solutions.

6.6.2 Parameter sensitivity analysis

As mentioned in subsection 6.3.4, the model features several parameters that were chosen ad hoc,
as I was not able to find the appropriate data. If such data is not available in the literature, the
next step in estimating the impact of these parameters on the outcomes of the model would be to
perform the parameter sensitivity analysis. Analytical estimates of parameter sensitivities are not
easy to obtain in the case of an optimal control problem with mixed constraints. However, to get a
first understanding of how important certain parameters are for the outcome of model simulation,
one could increase and decrease each parameter for a certain percentage, while keeping the
other parameter values fixed. The resulting change in the simulation results would be due to that
parameter change. This procedure would, in the least, allow assessing which of the non-estimated
parameters influence the simulation outcome the most, and would therefore be best to tackle with
data.

6.6.3 "Overshoot" in protein expression

In none of the simulations of temperature change was there a noticeable "overshoot" in the
protein expression levels, regardless of the increase in temperature. To my knowledge, all of the
dynamic models which tackle to describe the HSR have obtained simulations (for physiological
values of parameters) in which the levels of both chaperones and proteases "overshoot" before
settling to a new steady-state level [147, 149]. Additionally, it has been noted in [147] that the
overshooting type of response is beneficial for the cell, as it allows for faster response and a lower
steady-state level of necessary chaperones and proteases. There are some potential issues with
this conclusion. The first has been discussed in some detail already (see subsection 3.6.3) and
relates to the possibility of making conclusions about the regulation of noisy biological systems
by analyzing their deterministic dynamic representations. The second issue might be the fact that
these models do not take into account the increase of the peptide elongation rate with temperature.
If they would, the overshoot might be much more pronounced, leading to the next issue. Would
the cellular regulation be organized in a way so as to greatly overproduce the number of necessary
chaperones? Chaperones and proteases are extremely expensive in terms of resources required
for their production and the space they occupy. Their overproduction would lead to a significant
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decrease in the growth rate, which is another factor not taken into account by the aforementioned
dynamical models. Since there is no evidence that chaperones are actively degraded in E. coli,
that means that the decrease in their concentration is due solely to dilution. The decrease in the
growth rate could make the effects of dilution very slow, and it could take the cell potentially a
long time to reach the new steady-state level of the required chaperones. Also, to my knowledge,
there is no experimental data supporting the protein expression overshoot. The only time-resolved
chaperone level measurements I know of are presented in [245], and they show a steady increase
in the chaperone level over 30 minutes. This goes more in the line of results obtained in this
thesis, as well as in the work presented in [245].

6.6.4 Comparison to other simple cell models
In recent years, researchers have developed many simple cell models through which they have
attempted to analyze and explain different aspects of bacterial growth-related phenomena. The
first of these, to the best of my knowledge, was the model by Molenaar et al. [198], which
describes the cell by a set of ODEs and linear constraints under the assumption of growth rate
maximization. The problem formulation closely resembles the one proposed in this thesis, and in
general, the one proposed in RBA [195]. They formulate the problem within the framework of
nonlinear optimization, and I within the framework of optimal control. However, optimal control
problems are nonlinear optimization problems of special structure. Therefore, from a theoretical
standpoint, the difference is minimal.
The other class of small cell models can be represented by the model developed by Weisse et al.
[175], in which the cell is fully described by a set of ODE equations. Certain assumptions (such
as the constant protein content) are not represented by constraints but are directly integrated into
the ODE formulation. The benefit of such a model formulation is that it is easier to analyze with
mathematical tools and that the numerical simulation might be simpler. The scope of this model
is different than that of the one proposed in this thesis, as with this model it is not possible to
integrate assumptions about a certain objective being optimized.

6.6.5 Possible model uses
The type of model proposed in this chapter has already been implemented for bioreactor optimiza-
tion [235]. Because of its dynamical nature, the model is adapted for simulations of bioreactor
culture growth and can be used to design an optimal strategy for, for example, maximizing the
yield of biomass or wan industrial product. Because it explicitly takes into account the production
of protein and inherent growth limitations, it is suited for analysis of RP production problems.
While RP production can be triggered by introducing a certain chemical into the growth medium,
it is also possible to induce their production by increasing the temperature of the culture in a
process called heat induction. Since many problems related to RP production are related to the
capacity of the protein to fold, the increased expression of chaperones and proteases followed
by an increase in temperature might prove to be beneficial. The exact temperature at which the
effects of increased chaperone expression and increased metabolic and translation rates overweigh
the effects of higher proteome maintenance requirements could be analyzed by such a model.
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7. Conclusions

Stress is a change in the living (internal of external) condition of an organism such that it renders
its current state suboptimal. This often provokes a series of responses that aim to better align
the state of the organism to the new condition. I have studied the HSR of E. coli through
the development of a detailed regulatory ODE model and its subsequent analysis, and through
the application of a parsimonious resource allocation paradigm on a small cell model. I have
additionally developed a whole-cell RBA model of E. coli. Here I will present the conclusions I
have reached regarding the usage of modeling tools in general, and ODEs in particular, and about
the application of the parsimonious resource allocation paradigm in understanding cellular states
and regulation.

7.1 Tools and practices in systems biology

For these ideas are not the foundation of science, upon which everything
rests: that foundation is observation alone. They are not the bottom but
the top of the whole structure, and they can be replaced and discarded
without damaging it.

Sigmund Freud, On Narcissism

If you query Wolfram Alpha for the square root of −1, it will readily provide you with an answer,
i. This answer is correct under a certain set of assumptions, but those assumptions are to a
great degree hidden from the user and not stated as a part of the answer. Indeed, under different
assumptions, the provided answer would be incorrect. This was the lesson taught to us at the first
lecture of our first mathematics class at the university. The lesson is that tools can be useful, but
it can be dangerous to derive conclusions based on their results if we are not completely aware of
the assumptions that underlie their functioning. Abstracted from this simple example, this lesson
of the first day’s lecture remains one of the most valuable during my whole education.
Lying at the intersection of many sciences, systems biology requires solid knowledge of many
different fields: biology, mathematics, physics and computer science. It was my impression
during my thesis that the diversity of the backgrounds from which the researchers in systems
biology come from, combined with the complexity of problems addressed, contributes to seeing
modeling methodologies as tools that can be used almost as black boxes. It seemed to me only
natural that this could happen (and indeed it had happened to me) since a single researcher
in systems biology can and often is simultaneously facing problems that require such a broad
spectrum of knowledge that it can easily become a daunting task to have the proper theoretical
understanding needed for their successful implementation. The researcher should have a solid
enough grasp on experimental methods to be able to judge which published data can safely be
used for purposes of modeling and to be able to clearly state the data and metadata requirements
during (collaborative) experiment design. He or she should know enough about the biological
question at hand so as to be able to judge what is essential, what could be important, and what
could be disregarded in the model. He or she should have enough background in probability
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and statistics so as to know how to perform parameter estimation. It is necessary to know which
modeling tools are available so as to make an educated choice for the most appropriate one, and
then be mathematically literate enough so as to manipulate the tool, and not be manipulated
by it. Additionally, the usage of complex tools, especially when applied to large models, can
easily divert attention away from its formulation (assumptions and limitations) and focus it on
its (technically) successful application. As most models are implemented on a computer, there
should also exist an awareness of the potential numerical issues surrounding model simulation.
Some of the tools often used in systems biology (such as ODEs and FBA) have been around for
quite a long time now, enough for the new generations of modelers to not remember the original
usage, together with the assumptions and simplifications originally made in order to "tame"
the biological problem so that it can be mathematically described. However, I have found that
looking into the original publications describing the modeling methodologies offers indispensable
insight into their assumptions and their possible application, as well as helps one appreciate their
intricacy. I have also found that finding scientific literature written for other fields can help better
understand the common and diverging points of their application and therefore better appreciate
the limitations and potential usages of the modeling method. For me, one of the most important
conclusions of my thesis is that all the time devoted to the proper understanding of the modeling
techniques is time well spent, allowing me to slowly develop away from the tinkerer and towards
the hacker.
Within my thesis, I have looked into more detail into the application of ODEs and mass action
kinetics for modeling the chemical interactions of living systems through my study and modeling
of the HSR in E. coli. These considerations have led me to believe that it is prudent to be more
careful with the conclusions reached through the usage of these tools. Many models describing
chemical systems in cells involve feedback. Experimental analysis of these systems is often
based on measurements involving populations, not single cells. Any conclusions thereby reached
have to be trimmed by the fact that there can be no intracellular feedback directly detected on
the population level. Furthermore, the noise in macromolecular expression levels inside cells
directly affects the stability of these feedback systems, and conclusions reached by analyzing
deterministic models might not necessarily be meaningful.

7.2 Elegance and utility of the parsimonious resource allocation paradigm

Parsimonious resource allocation is a lens through which one can look at phenomena concerning
living beings by investigating whether an observable trait can be explained through the need of
the organism to be efficient in the use of its resources available to it. One consequence of the
study and application of this principle has been that it made clear that the understanding of any
particular regulatory system in the cell requires a good overall knowledge of the organization of
its most important functions (such as metabolism and protein production). In bacteria, almost
every type of stress will cause great changes in the entire cell because it will affect its growth,
and therefore its production of macromolecules and metabolic activity. Therefore, the study of
each type of stress will require the modeler to be aware of its global effects, even if only to make
an educated decision as to which of those can be disregarded in the modeling process.
Resource Balance Analysis is the modeling tool that allows for an integrated description of the
cell (by functionally linking its resource-relevant processes) and the prediction of cellular states
through the assumption of parsimonious resource allocation. The cell state prediction obtainable
through RBA involves the growth rate, concentrations of enzyme and macromolecular process
machines (such as ribosomes), as well as metabolic reaction fluxes. I have shown how RBA can
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be used to successfully and without detailed parameterization predict the steady-state growth of
E. coli populations and have also demonstrated its utility in explaining certain regulatory events
(as in the case of dehydrogenase substitution).
In order to study whether the regulation of the HSR can be understood through the lens of
parsimonious resource allocation, I have developed a dynamic simple cell model which includes
RBA-like constraints and maximization of growth. The model was implemented in the optimal
control framework in which one can define the dynamic behavior of the system through ODEs
and impose linear equality and inequality constraints on the system (RBA-like constraints) and
maximize a certain objective (maximization of growth). The model includes the processes most
relevant for this response: protein production, chaperoning and degradation, but doesn’t involve
any description of its regulation. The predictions of the model qualitatively correspond to what
has been observed experimentally in HSR. This shows that RBA-like constraints coupled with a
dynamic description of an adaptive cellular system and assumption of growth maximization can
successfully describe adaptation to change in temperature in E. coli, and presumably other stress
responses as well.





8. Outlook

In this chapter, I offer a few thoughts on what would be the continuation of the work done in my
thesis.

8.1 Dynamical whole-cell models

While metabolic genome-scale models have been around for quite a while, the last decade has
seen the development of genome-scale cell models. As the E. coli model developed in this
thesis, they are becoming quite accurate in predicting cellular states even when described with
a remarkably low number of parameters, illustrating the predictive power of the underlying
paradigms. As was the case with genome-scale metabolic models, these models will soon find
their way to everyday usage by researchers in both science and industry.
While all the whole-cell genome-scale modeling paradigms known to me describe the cells in
steady-state, one natural development in this field will be their dynamical counterpart. This will
allow such models to further the understanding of adaptive cellular processes (such as growth
and stress, for example), and aid in experimental design when time is of critical issue. One
example of a case when such models would be of great use is in designing experiments for the
expression of recombinant protein. Since they can account for growth defects caused by RP
expression and can reflect in detail the cellular configuration on a specific medium, they will help
in optimizing the timing of induction and duration of the culture growth. Incorporation of effects
such as temperature in these models can further help in finding the optimal conditions for such
experiments.

8.2 Exploring regulation through parsimonious resource allocation paradigm

Bacteria (especially ones that cannot form spores) are almost under constant pressure to acquire
nutrients to survive. This has led to a type of internal organization which favors parsimonious
resource allocation. Many regulatory mechanisms that exist in bacteria are in place to ensure
that the resources are not idly wasted. Parsimonious allocation of resources was shown to be the
reason behind the highly debated overflow metabolism and the diauxie shift.
It was in fact modeling which contributed to the understanding of these phenomena. Integration
of the parsimonious resource allocation paradigm, first with simple cell models, and then later
with genome-scale cell models, allowed to test in silico whether this principle can explain the
phenomena observed in vivo.
Apart from these larger rearrangements of metabolism, I have shown that with the genome-scale
cell model of E. coli this principle can be used to explain regulation involved in local metabolic
rearrangements, such as is the case in the substitution of the NADH dehydrogenase by glucose
dehydrogenase. By showing that it is possible to predict the cellular rearrangement in face
of changing temperature by the sole assumption of maximization of growth (the equivalent
of efficient resource utilization), I show that this may be the reason behind the actual cellular
regulatory mechanism.
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There is a great amount of work to be done in our understanding of how far the idea of parsimo-
nious resource allocation can be used to understand cellular states and adaptations. Adaptations
of metabolism to the medium are the first and most obvious example which has been under some
scrutiny but is still far from fully explored. Cellular adaptations in conditions of scarcity might
also be interesting to study under this paradigm.

8.3 Towards predictive whole-cell models
Even if E. coli is such a well-studied organism, there is a serious lack of data needed for the
full parameterization of a whole-cell RBA model. Some of the most important cellular features
have not been measured (such as the number of ribosomes), or have been indirectly estimated
70 years ago. There are no systematic proteomics and fluxomics experiments performed in
the same conditions which would allow for full parameterization of the E. coli RBA model.
These experiments would allow for a creation of a well-parameterized cell model of one of the
most used model organisms in research and industry. The lack of suitable omics data is often
the case because the data available is not obtained in close collaboration of experimental and
theoretical researches. It is enough that certain metadata is missing, and the whole expensive and
time cumbersome experiment can become useless for modeling purposes. The development of
predictive, well parameterized genome-scale whole-cell models will require a joint effort of the
theoretical and experimental communities.

8.4 Understanding temperature effect on cells
Temperature and the stress caused by a change in temperature is one condition that can affect all
the cells on Earth. Regardless of whether an ectotherm or an endotherm, the temperature of an
organism remains crucial: either the organism adapts to a range of temperatures within which it
can still function, or it needs to ensure through its own metabolic activity the stable temperature
at which it can live. In each of these organisms, temperature affects all of its components - the
density of its membrane, the speed at which reactions occur, the stability of its macromolecules.
There has been a lot of work done in understanding how individual cellular components react
to temperature (metabolic rate of individual enzymes and stability of proteins for example), but
(to my knowledge) not much work done in understanding how cells adapt to such radical and
simultaneous changes in all of their components. Therefore, what is known under the term of
heat shock (the unfolding of proteins and the cellular adaptive reaction to it) is only the most
obvious and well-studied systemic consequence of temperature change.
Since it is one of the basic guiding and limiting conditions for all life, I believe that a better
understanding of adaptation to temperature will provide great insight into cellular regulation and
flexibility.



9. Further thoughts

9.1 On modeling in biology

Modeling in biology might seems a new activity on the first glance, but that is true only if one
considers mathematical modeling. I think, however, modeling is a very old activity. Modeling
(for me) is an attempt to represent one’s knowledge by a system larger than the body of evidence
one is basing it on. The purpose of modeling should be extension of knowledge, projection of
the gathered facts into the unknown, whereby the unknown is transformed into a map which can
then be explored. Each map is necessarily incomplete, and the exploration of the actual territory
leads to creation of new maps. The elegance of a map lies in its simplicity and its clarity. Map
allows the mind to travel far without the burder of all the detail of the actual territory. This travel
is necessary because the keen observation of things such as is necessary in science can lead to
short sightedness and lack of enthusiasm, at least in my case. Maps are created out of need.
As I have entered the field of systems biology, I was full of questions. My questions were
mostly related to: (i) how organisms work (I list these questions in detail in section 9.2), (ii) the
internal organization of mathematical systems typically used for representation of living cells in
systems biology and (iii) the limits and range of validity of these systems when used to model
living systems. While the questions of type (i) were the driving motive for the research, and the
questions of type (ii) were interesting, fun and very rewarding, the questions of type (iii) seemed
to me the proper domain of systems biology. I have attempted to pose some of these questions,
especially in the Part I of the thesis.

9.2 A personal note

Many have pointed out that there are parts of my thesis, certain reflections or thoughts, which
seem inappropriate for a thesis work. I should be more on point, less poetic and less philosophical.
While I certainly know that many people are inclined to be sceptical about such thoughts, for me
they form the core of my scientific interest. Everything else, for me, is just roadwork that needs
to be done to chart a way to that mysterious place. The fact that I find this construction work
pleasurable and with its own awards has made me be able to persist in this often quite challenging
task. But as much as I like my construction work, and as much as it is an enjoyable exercise in
intellect, it is not at the center of what drove me to spend six years of my life in reading pages
after pages of obscure texts, full of acronyms and technical jargon. I was after something. And
that something needs to have a place in this thesis, because it has been the source of it, the path of
it, and the destination of it.
There are certain moments of clarity which impale us with their force so much that they have
the power to alter the course of our lives. I believe often the hard and cold realization of how
much our soft bodies and minds are at a mercy of external forces has been a profound source of
interest for scientists of all ages. The will to predict and control natural forces with the force of
the intellect has been a strong motive at all times. But even if the forces of the older times were
more frightening, when our control over our surroundings was less far-reaching, the forces of the



146 Chapter 9. Further thoughts

world seemed to work more on the outside, then on our inside. Today, we are plagued by this
uncomfortable feeling that we are controlled on the inside, by our own chemistry and ancestry. In
a sense, we are no longer free. There is no plausible elan vital in the 21st century.
My core of interest came out of a number of questions which plagued me at the time when I
was 22 or 23 years old. First was, why is humanity doing so poorly? With all the beauty I
could imagine myself, with all the deep understanding that sometimes shone through arts and
sciences, why is world full of mysery and violence? Is the depth and mystery I felt in my own
consciousness really limited to creating such a world? As I learned more about biology, I started
wondering at the incredible, well regulated complexity that lies underneath our behaviour. Even if
the world of human creation seems complex and large, still I felt that the magnificent complexity
of the organisation of a cell or an organism is larger still, and more impressive still. I wondered
about the relation of these two worlds. One that seems almost automatic, without will, a series of
perfectly orchestrated events. The other that must be a direct consequence of it, and yet seems
independent of it - the world of social behavior, experience, memory, emotion... The interface of
these two worlds was what interested me the most.
I will list my questions here, as naive as they were. I do not want to censor them with the
knowledge that came afterwards. I still find their naivety beautiful.

How can systems as complex as living beings (even made of a single cell) function reliably?
Millions of interacting components, organised in cells, organs, organisms...

Why does this complexity result in a behaviour such as one can observe among more complex
organisms?

Why is not harmonious organisation such as seems possible at a cellular level not extended to the
next level (individual perception, social organization)?

What kind of light does that shine on suffering? Is it just an extension of the underlying
harmonious organisation, but we, as unsuspecting vessels of evolution, are just oblivious to it?

These were my questions. This was the reason and motivation to spend years looking into how
cells work. I must say I have not managed to completely answer any of these questions.
———–
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Acronyms

ATP adenosine triphosphate.

cDNA coding DNA.
CDW cell dry weight.

ESI ElectroSpray Ionization.

FBA Flux Balance Analysis.
FBAwMC FBA with molecular crowding.

GTP guanosine triphosphate.

HSR Heat Shock Response.

LP linear programming.

MALDI Matrix Assisted Laser Desorption Ionization.
ME macromolecular expression.
MFA Metabolic Flux Analysis.
MOMENT MetabOlic Modeling with ENzyme kineTics.
mRNA messenger RNA.
MS mass spectrometry.

NLP nonlinear programming.

OD Optical Density.
ODE Ordinary Differential Equation.
ODEs Ordinary Differential Equations.

PoI Protein of Interest.
PQQ pyrroloquinoline quinone.

RBA Resource Balance Analysis.
RNA riboucleic acid.
RP recombinant protein.

SBML Systems Biology Markup Language.

TF Trigger Factor.

UPR Unfolded Protein Response.

XML Extensible Markup Language.
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A.1 Miscellaneous parameter values

Table A.1.1: Efficiencies of the secretion and folding process machines as computed by a procedure
described in subsection 5.1.7. All values are provided in units of 1/h.

Growth rate ksec kch

0.26 85692.63 12456.46
0.3 102719.05 13494.18
0.4 145285.10 16088.45

0.42 153798.31 16607.31
0.44 162311.52 17126.16
0.46 170824.73 17645.02
0.47 175081.33 17904.45
0.47 175081.33 17904.44
0.55 209134.17 19979.87
0.58 221903.98 20758.15
0.65 251700.22 22574.15
1.27 515609.71 38658.66
1.9 783775.81 55002.61

Table A.1.2: Upper and lower bounds of a set of central carbon metabolism reactions in E. coli obtained
from fluxomics measurements [216]. These bounds were set on reactions of the iJO1366 model [207]
during FBA simulation for the estimation of individual apparent catalytic rates for growth on glucose, as
explained in subsection 5.1.6. a - Reaction IDs correspond to the ones used in the iJO1366 model.

Reaction IDa Lower bound [ mmol
h×gCDW ] Upper bound [ mmol

h×gCDW ]

EX_glc__D_e -8.26 /
EX_ac_e 4.89 /
GLCptspp 7.79 8.47
G6PDH2r 2.09 2.69
GND 1.21 2.09
PGI 5.32 6.1
EDD 0.09 1.39
PFK 5.84 7.08
TKT1 0.38 0.68
TKT2 0.12 0.42
TALA 0.38 0.68
GAPD 13.03 14.71
ENO 12.09 13.77
GLCptspp + PYK 9.01 10.97
PDH 8.5 9.78
CS 1.75 2.65
ICDHyr 1.75 2.65
SUCOAS -1.73 -0.85
FUM 0.85 1.73
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A.2 σ32 regulon

Table A.2.1: List of genes in the σ32 regulon (taken from EcoCyc [6]). Next to the gene IDs are listed the
descriptions of their protein or RNA product, along with the COG category [246] to which they belong. For
the category abbreviations used here, see this webiste. The genes listed without the horizontal separation
line are transcribed from the same operon.

Gene name Function COG ID

topA DNA topoisomerase I L
yfbR dCMP phosphohydrolase F
mutL DNA mismatch repair protein L
miaA tRNA dimethylallyltransferase A
hfq RNA-binding protein A
hflX ribosome rescue factor J
hflK regulator of FtsH protease O
hflC regulator of FtsH protease O
slt soluble lytic murein transglycosylase M

rpmE 50S ribosomal subunit protein J
yjhB putative sialic acid tranporter V
yjhC putative oxidoreductase V
yibA putative lyase s V
dnaK chaperone O

tpke11 putative small RNA T
dnaJ chaperone O
xerD site-specific recombinase L
dsbC protein disulfate isomerase O
recJ ssDNA specific exonuclase L

yhdN unknown S
zntR DNA binding transcriptional activator R
htpG chaperone O
creA unknown S
creB DNA-binding transcriptional regulator K
creC sensory histidine kinase T
can carbonic anhydrase 2 P

mhpT 3-hydroxyphenylpropionic acid transporter G
ibpA small heat shock protein O
ibpB small heat shock protein O
pphA phosphoprotein phosphatase 1 T
yjaZ unknown S
bssS regulator of biofilm formation V
hspQ heat shock protein T
yafU putative IM protein S
fxsA / S
yjhI putative transcriptional regulator R
yjhH putative adolase R
yjhG D-xylonate dehydratase G
rrsA 16S ribosomal RNA J

Ctnd.

http://clovr.org/docs/clusters-of-orthologous-groups-cogs/
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Table A.2.1 – Continued from previous page

Gene name Function Functional category

ileT tRNA-Ile(GAU) J
alaT L-alanyl-tRNAalaT J
rrlA 23S ribosomal RNA J
rrfA 5S ribosomal RNA J
rrsB 16S ribosomal RNA J
gltT tRNA-Glu(UUC) J
rrlB 23S ribosomal RNA J
rrfB 5S ribosomal RNA J
rrsC 16S ribosomal RNA J
gltU tRNA-Glu(UUC) J
rrlC 23S ribosomal RNA J
rrfC 5S ribosomal RNA J
rrsD 16S ribosomal RNA J
tilD tRNA-Ile(GAU) J
alaU tRNA-Ala(UGC) J
rrlD 23S ribosomal RNA J
rrfD 5S ribosomal RNA J
thrV tRNA-Thr(GGU) J
rrfF 5S ribosomal RNA J
rrsE 16S ribosomal RNA J
tgtE tRNA-Glu(UUC) J
rrlE 23S ribosomal RNA J
rrfE 5S ribosomal RNA J
rrsG 16S ribosomal RNA J
gltW tRNA-Glu(UUC) J
rrlG 23S ribosomal RNA J
rrfG 5S ribosomal RNA J
rrsH 16S ribosomal RNA J
ileV tRNA-Ile(GAU) J
alaV tRNA-Ala(UGC) J
rrlH 23S ribosomal RNA J
rrfH 5S ribosomal RNA J
glnS glutamine - tRNA ligase A
lapA lipopolysaccharide assembly protein A M
lapB lipopolysaccharide assembly protein B M
pyrF orotidine-5’ phosphate decarboxylase F
yciH putative translation factor J
clpB chaperone O
cnoX cheperedoxin (holdase) O
yjiT unknown S
hslR RNA chaperone (50S rRNA recycling) A
hslO molecular chaperone O
ydhQ putative adhesin-related protein R
rdgB dITP/XTP pyrophosphatase F

Ctnd.
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Table A.2.1 – Continued from previous page

Gene name Function Functional category

hemW heme chaperone O
lipB lipoyl (octanoyl) transferase I
metA homoserine O-succynil transferase E
hslV peptidase component of HslVU protease O
hslU ATPase component of HslVU protease O
trmA tRNA methyltransferase A
yrfG purine nucleotidase F
hslR heat shock protein A
ldhA D-lactate dehydrogenase G
rlmE 23S RNA methyltransferase A
ftsH ATP-dependent zinc metalloprotease O
alaA glutamate - pyruvate aminotransferase E
ydeO DNA-binding transcriptional regulator K
htpX zinc dependent endoprotease O
holC DNA polymerase III subunit L
valS valine tRNA ligase A
ileS isoleucine tRNA ligase A
lspA lipoprotein signal peptidase O
fkpB peptidyl-prolyl cis-trans isomerase O
ispH 1-hydroxy-2-methyl-2-butenyl-4-diphosphate reductase Q
ycjY putative hydrolase R

mpaA murein tripeptide amidase O
yafD endonuclease/exonuclease/phosphatase domain R
yafE putative methyltransferase R
cas2 CRIPR associated endoribonuclease A
cra DNA binding transcriptional regulator K
lon Lon protease O

adiC arginine:agmatine antiporter V
grpE nucleotide exchange factor O
osmF glycine betaine ABC transporter binding protein E
yehY subunit of glycine betain ABC transporter E
yehX subunit of glycine betain ABC transporter E
yehW subunit of glycine betain ABC transporter E
raiA stationary phase translation inhibitor D

mngA 2−O−α mannosyl-D-glycerate specific PTS enzyme II G
mngB α mannosidase G
pncC NMN aminohydrolase F
pgpC phosphatidylglycerophosphatase C M
tadA tRNA adenosine34 deaminase A
mlc DNA-binding transcriptional repressor K

ynfK putative dethiobiotin synthetase R
ackA acetate kinase C
ptsH sugar non-specific of the PTS sugar system G
ptsI PTS enzyme I G

Ctnd.
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Table A.2.1 – Continued from previous page

Gene name Function Functional category

crr subunit of glucose-specific PTS enzyme II G
clpP ATP-dependent Clp protease proteolytic subunit O
clpX ATP-dependent Clp protease subunit O
prlC oligopeptidase A O
rsmJ 16S rRNA m2G1516 methyltransferase A
sdaA L-serine deaminase I E
nfuA iron sulfur cluster carrier protein O
ribE 6,7-dimethyl-8-ribityllumazine synthase H
nusB transcription antitermination protein K
thiL thiamine monophosphate kinase H

pgpA phosphatidylglycerophosphatase A M
rfaD ADP-L-glycero-D-mannoheptose 6-epimerase G
waaF ADP-heptose LPS-heptosyltransferase 2 M
waaC ADP-heptose LPS-heptosyltransferase 1 M
waaL O-antigen ligase M
bssS regulator of biofilm formation V
gapA glyceraldehyde-3-phosphate dehydrogenase A G
yeaD putative aldose 1-epimerase R
yfjV CP4-57 prophage, putative arsenite transporter R

mutM DNA formamidinopyrimidine glycosylase L
rapA RNAP binding ATPase and recycling factor K
phoP phosphorylated DNA-binding transcriptional dual regulator K
phoQ sensory histidine kinase T
groS cochaperonin GroES O
groL chaperonin GroEL O
tyrR DNA-binding transcriptional dual regulator K
rpoD σ70 factor K
casD type I-E CRISPR system cascade subunit V
casE pre-CRISPR RNA endonuclease V
cas1 multifunctional nuclease V
cas2 CRISPR-associated endoribonuclease V
ybeZ PhoH-like protein S
ybeY endoribonuclease A
ybeX CorC-HlyC family protein S

lnt apolipoprotein N-acyltransferase O
rnlA subunit of toxin-antitoxin system V
narP transcriptional dual regulator K
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A.3 Full matrix of the toy RBA model

A(µ) =



νT1 νT2 νT3 νT4 νE1 νE2 νE3 T1 T2 T3 T4 E1 E2 E3 R

ep1 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
ep2 0 1 0 0 1 −1 0 0 0 0 0 0 0 0 0
e 0 0 0 0 0 1 0 −3µnT1 −3µnT2 −3µnT3 −3µnT4 −3µnE1 −3µnE2 −3µnE3 −3µnR

aap 0 0 1 0 0 0 −1 0 0 0 0 0 0 0 0
aa 0 0 0 0 0 1 0 −µnT1 −µnT2 −µnT3 −µnT4 −µnE1 −µnE2 −µnE3 −µnR

R 0 0 0 0 0 0 0 µnT1 µnT2 µnT3 µnT4 µnE1 µnE2 µnE3 µnR− kT

νT1 1 0 0 0 0 0 0 −kT
app 0 0 0 0 0 0 0

νT2 0 1 0 0 0 0 0 0 −kT
app 0 0 0 0 0 0

νT3 0 0 1 0 0 0 0 0 0 −kT
app 0 0 0 0 0

νT4 0 0 0 1 0 0 0 0 0 0 −kT
app 0 0 0 0

νE1 0 0 0 0 1 0 0 0 0 0 0 −kE
app 0 0 0

νE2 0 0 0 0 0 1 0 0 0 0 0 0 −kE
app 0 0

νE3 0 0 0 0 0 0 1 0 0 0 0 0 0 −kE
app 0

Dc 0 0 0 0 0 0 0 0 0 0 0 nE1 nE2 nE3 nR

Dm 0 0 0 0 0 0 0 nT1 nT2 nT3 nT4 0 0 0 0





νT1

νT2

νT3

νT4

νE1

νE2

νE3

T1
T2
T3
T4
E1
E2
E3
R



=
=
=
=
=
≤
≤
≤
≤
≤
≤
≤
≤
≤
≤



0
0

3µPne
tot

0
µPne

tot
−µPne

tot
0
0
0
0
0
0
0

Pe
cyt

Pe
mem



(A.3.1)

where Pne
tot = Ptot(µ)(pc pne

c + pm pne
m ) is the total nonenzymatic protein, and where Pe

cyt = Ptot pc(1− pne
c ) and Pe

mem = Ptot pm(1− pne
m ) are the enzymatic portion in cytosol

and membrane correspondingly.
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A.4 Percentages of individual nucleic and amino acid in E. coli

Table A.4.1: Percentage of nucleic acids in the ribosomal RNA of Escherichia coli. The sequences of 5S,
16S and 23S rRNA can be found on EcoliWiki. (5S, 16S, 23S)

Nucleic acid Molar mass ( g
mol ) Percentage (%)

A 345.2 25.8
G 361.2 31.5
C 321.2 22.9
U 322.2 19.8

Table A.4.2: Percentage of amino acids in the E. coli proteome. aComputed from chemical composition
of amino acids without water. bComputed from values measured by [10]

Amino acid Molar mass ( g
mol )

a Percentage (%)b

Alanine 71.08 9.60
Arginine 156.19 5.53

Asparagine 114.10 4.51
Aspartate 115.09 4.51
Cysteine 103.14 1.71

Glutamate 128.13 4.92
Glutamine 129.16 4.92

Glycine 57.05 11.45
Histidine 137.14 1.77
Isoleucine 113.16 5.43
Leucine 113.16 8.42
Lysine 128.17 6.42

Methionine 131.20 2.87
Phenylalanine 147.18 3.46

Proline 97.12 4.13
Serine 87.08 4.03

Threonine 101.11 4.74
Tryptophan 186.21 1.06

Tyrosine 163.18 2.58
Valine 99.13 7.91

http://ecoliwiki.net/colipedia/index.php/5S_rRNA:Gene_Product(s)
http://ecoliwiki.net/colipedia/index.php/16S_rRNA:Gene_Product(s)
http://ecoliwiki.net/colipedia/index.php/23S_rRNA:Gene_Product(s)
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A.5 Flux distribution (growth on glucose, no PQQ)

Figure A.5.1: Flux distribution for growth on glucose and no PQQ in the medium. Model predicts respiration through NADH dehydrogenase.
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A.6 Flux distribution (growth on glucose, with PQQ)

Figure A.6.1: Flux distribution for growth on glucose and PQQ in the medium. Model predicts respiration through glucose dehydrogenase, which is cheaper for the
cell to produce than the NADH dehydroganse, but requires PQQ as a cofactor. This results in a higher growth rate compared to when no PQQ is available in the
medium.
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A.7 Proteomaps of growth on glucose (experiment - prediction comparison)

Figure A.7.1: Left: proteomaps showing the predicted protein abundances for E. coli growth on glucose. Right: proteomaps showing the measured protein
abundances for E. coli growth on glucose [208].
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A.8 Redistribution of resources for the simulated CO2 engineered strain
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Figure A.8.1: Comparison of cellular resource allocation for the wild type strain, and for the two CO2
fixing strains, one of low, and one of high Rubisco efficiency.
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A.9 Optimal control model steady state for a range of temperatures

Figure A.9.1: The optimal control heat shock model described in section 6.2 reaches steady state for
growth on a biologically relevant range of temperatures. The x-axis shows time evolution over 4 hours,
and the y-axis the concentrations of individual macromolecular components (numbers were left out for
sake of space).
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A.10 JSON Bocop-compatible format

{
"modelName": "Simple RBA problem",
"states":
[

{
"name": "X",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

},
"expression": "mu * X"

},
{

"name": "S_ext",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

},
"expression": "-mu * X"

},
{

"name": "E",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

},
"expression": "nu_P_E - mu * E"

},
{

"name": "R",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

},
"expression": "nu_P_R - mu * R"

}
],
"controls":
[

{
"name": "nu_P_E",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

}
},
{
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"name": "nu_P_R",
"bound": {

"type": "lower",
"lb": 0,
"ub": 2e+20

}
}

],
"parameters":
[
],
"algebraic":
[

{
"name": "mu",
"bound": {

"type": "free",
"lb": 0,
"ub": 0

}
},
{

"name": "nu_M",
"bound": {

"type": "free",
"lb": 0,
"ub": 0

}
}

],
"constants":
[

{
"name": "n_R",
"value": 180000

},
{

"name": "n_E",
"value": 20000

},
{

"name": "D_c",
"value": 4.89

},
{

"name": "k_R_slope",
"value": 84

},
{

"name": "k_R_intercept",
"value": -747.6

},
{
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"name": "k_M_slope",
"value": 120

},
{

"name": "k_M_intercept",
"value": -3000

},
{

"name": "T",
"value": 37

},
{

"name": "n_S",
"value": 0.5

},
{

"name": "n_HP",
"value": 300

},
{

"name": "X_0",
"value": 100

},
{

"name": "S_ext_0",
"value": 1000

}
],
"boundarycond":
[

{
"name": "D_init",
"bound": {

"type": "equal",
"lb": 0,
"ub": 0

},
"expression": "(E_t0 * n_E + R_t0 * n_R ) - D_c"

},
{

"name": "X_init",
"bound": {

"type": "equal",
"lb": 0,
"ub": 0

},
"expression": "X_t0 - X_0"

},
{

"name": "S_ext_init",
"bound": {

"type": "equal",
"lb": 0,
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"ub": 0
},
"expression": "S_ext_t0 - S_ext_0"

}
],
"pathconstraints":
[

{
"name": "growth_rate",
"bound": {

"type": "equal",
"lb": 0,
"ub": 0

},
"expression": "D_c * mu - (nu_P_R * n_R + nu_P_E * n_E)"

},
{

"name": "capacity_met",
"bound": {

"type": "upper",
"lb": -2e+20,
"ub": 0

},
"expression": "nu_M - (k_M_slope * T + k_M_intercept) * E"

},
{

"name": "capacity_ribo",
"bound": {

"type": "upper",
"lb": -2e+20,
"ub": 0

},
"expression": "(nu_P_R * n_R + nu_P_E * n_E) - (k_R_slope

* T + k_R_intercept) * R"
},
{

"name": "metabolism_ss",
"bound": {

"type": "equal",
"lb": 0,
"ub": 0

},
"expression": "n_S * nu_M - (n_E * nu_P_E + n_R * nu_P_R)"

}
],
"criterion": "- X",
"time":
{

"free": "none",
"initial": 0,
"final": 20

},
"discretization":
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{
"steps": 9,
"method": "euler_imp"

},
"fixed_part": "# Optimization :\noptimization.type string single\nbatch.

type integer 1\nbatch.index integer -1\nbatch.nrange integer 3\
nbatch.lowerbound double 100\nbatch.upperbound double 1000\nbatch.
directory string time_step\n\n# Initialization :\ninitialization.
type string from_init_file\ninitialization.file string none\n\n#
Parameter identification :\nparamid.type string false\nparamid.
separator string ,\nparamid.file string no_directory\nparamid.
dimension integer 0",

"solution": {
"file": "problem.sol"

}
}
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Final thoughts

Among all the many misfortunes to which we are heir, it is only fair to
admit that we are allowed the greatest degree of freedom of thought.

Andre Breton, Manifesto of Surrealism

Professionalism is environmental. Amateurism is anti-environmental.
Professionalism merges the individual into patters of total environment.
Amateurism seeks the development of the total awareness of the
individual and the critical awareness of the groundrules of society. The
amateur can afford to lose. The professional tends to classify and to
specialize, to accept uncritically the groundrules of the environment. The
groundrules provided by the mass response of his colleagues serve as a
pervasive environment of which he is contentedly unaware. The “expert”
is the man who stays put.

Marshall McLuhan, Medium is the Message

A civilized man judges and is judged according to his behavior, but even
the term "civilized" leads to confusion: a cultivated "civilized" man is
regarded as a person instructed in systems, a person who thinks in forms,
signs, representations – a monster whose faculty of deriving thoughts
from acts, instead of identifying acts with thoughts, is developed to an
absurdity. If our life lacks brimstone, Le., a constant magic, it is because
we choose to observe our acts and lose ourselves in considerations of
their imagined form instead of being impelled by their force.

Antonin Artaud, Theater and its Double
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Forgive me, father, I am not certain what my own wishes are. I shall
always take pleasure in study, how could it be otherwise? But I do not
believe that my life will be limited to study. A man’s wishes may not
always determine his destiny, his mission; perhaps there are other,
predetermining, factors.

Hermann Hesse, Narziss und Goldmund

“I don’t speak,” Bijaz said. “I operate the machine called language. It
creaks and groans, but is mine own.”.

Frank Herbert, Dune

It was not growing up that slowly applied breaks to learning but an
accumulation of “things I know”.

Frank Herbert, Dune

The theory is that my organism tends to actualize itself if I stand out of
the way. It is an article of faith.

Paul Goodman
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