
HAL Id: tel-04420517
https://hal.inrae.fr/tel-04420517

Submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging linguistic and semantic information for
relation extraction from domain-specific texts

Anfu Tang

To cite this version:
Anfu Tang. Leveraging linguistic and semantic information for relation extraction from domain-specific
texts. Information Retrieval [cs.IR]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG081�.
�tel-04420517�

https://hal.inrae.fr/tel-04420517
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
3U

PA
SG

08
1

Leveraging linguistic and semantic
information for relation extraction

from domain-specific texts
Exploitation de l’information linguistique et sémantique

pour l’extraction de relations à partir de textes en
domaine spécialisé

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat : Informatique
Graduate School : Informatique et Sciences du Numérique. Référent : Faculté des

sciences d’Orsay

Thèse préparée dans l’unité de rechercheMaIAGE (Université Paris-Saclay, INRAE),
sous la direction de Claire Nédellec, Directrice de recherche,

le co-encadrement de Pierre Zweigenbaum, Directeur de recherche
et Louise Deléger, Chargée de recherche

Thèse soutenue à Paris-Saclay, le 6 décembre 2023, par

Anfu Tang

Composition du jury
Membres du jury avec voix délibérative

Vincent Guigue Président
Professeur, Université Paris-Saclay, AgroParistech
Éric Gaussier Rapporteur & Examinateur
Professeur, Université Grenoble Alpes
Xavier Tannier Rapporteur & Examinateur
Professeur, Sorbonne Université
Laure Soulier Examinatrice
Maîtresse de conférences, Sorbonne Université

Titre: Exploitation de l’information linguistique et sémantique pour l’extraction de relations
à partir de textes en domaine spécialisé

Mots clés: Traitement automatique des langues, Extraction de relations, Modèle de langue,
Analyse syntaxique, Apprentissage profond, Base de connaissances

Résumé: Cette thèse a pour objet
l’extraction d’informations relationnelles à
partir de documents scientifiques biomédi-
caux, c’est-à-dire la transformation de texte
non structuré en information structurée ex-
ploitable par une machine. En tant que
tâche dans le domaine du traitement au-
tomatique des langues (TAL), l’extraction
de relations sémantiques spécialisées entre
entités textuelles rend explicite et formalise
les structures sous-jacentes. Les méthodes
actuelles à l’état de l’art s’appuient sur de
l’apprentissage supervisé, plus spécifique-
ment l’ajustement de modèles de langue pré-
entraînés comme BERT. L’apprentissage su-
pervisé a besoin de beaucoup d’exemples

d’apprentissages qui sont coûteux à produire,
d’autant plus dans les domaines spécialisés
comme le domaine biomédical. Les variants de
BERT, comme par exemple PubMedBERT,
ont obtenu du succès sur les tâches de TAL
dans des textes biomédicaux. Nous faisons
l’hypothèse que l’injection d’informations ex-
ternes telles que l’information syntaxique ou
la connaissance factuelle dans ces variants de
BERT peut pallier le nombre réduit de données
d’entraînement annotées. Dans ce but, cette
thèse concevra plusieurs architectures neu-
ronales basés sur PubMedBERT qui exploitent
des informations linguistiques obtenues par
analyse syntaxique ou des connaissances du
domaine issues de bases de connaissance.

Title: Leveraging linguistic and semantic information for relation extraction from domain-
specific texts

Keywords: Natural language processing, Relation extraction, Language model, Syntactic
parsing, Deep learning, Knowledge base

Abstract: This thesis aims to extract rela-
tions from scientific documents in the biomed-
ical domain, i.e. transform unstructured texts
into structured data that is machine-readable.
As a task in the domain of Natural Language
Processing (NLP), the extraction of semantic
relations between textual entities makes ex-
plicit and formalizes the underlying structures.
Current state-of-the-art methods rely on su-
pervised learning, more specifically the fine-
tuning of pre-trained language models such as
BERT. Supervised learning requires a large
amount of examples that are expensive to

produce, especially in specific domains such
as the biomedical domain. BERT variants
such as PubMedBERT have been successful
on NLP tasks involving biomedical texts. We
hypothesize that injecting external informa-
tion such as syntactic information or factual
knowledge into such BERT variants can com-
pensate for the reduced number of annotated
training data. To this end, this thesis con-
sists of proposing several neural architectures
based on PubMedBERT that exploit linguis-
tic information obtained by syntactic parsers
or domain knowledge from knowledge bases.

Synthèse en français

L’extraction de relations est une tâche importante du traitement automatique des langues (TAL)

qui a beaucoup attiré l’attention des chercheurs. Dans cette thèse, nous nous concentrons sur

l’extraction de relations à partir de textes biomédicaux. Les méthodes actuelles à l’état de l’art

s’appuient sur de l’apprentissage supervisé, plus spécifiquement sur l’ajustement de modèles de

langue pré-entraînés comme BERT. Cependant, l’annotation de textes biomédicaux destinés à for-

mer des exemples d’apprentissage est généralement coûteuse par rapport aux textes de domaine

général, et des corpus de petite taille peuvent limiter la performance de l’ajustement. Bien que des

variantes biomédicales de modèles telles que PubMedBERT aient été proposées et se soient avérées

plus performantes que BERT sur des corpus biomédicaux, le problème de la taille des corpus persiste.

Dans cette thèse nous cherchons des solutions différentes de l’augmentation du nombre d’exemples

annotés pour améliorer la performance de l’extraction de relations basée sur PubMedBERT. Nous

faisons l’hypothèse que l’injection d’informations externes telles que l’information syntaxique ou

l’information de base de connaissance (BC) peut compenser l’insuffisance d’exemples annotés et

améliorer la performance de PubMedBERT sur la tâche d’extraction de relations.

Pour injecter de l’informations syntaxiques dans PubMedBERT, nous exploitons deux types

d’informations syntaxiques : l’information de dépendance et celle de constituant. Ces deux types

d’informations syntaxiques peuvent être codés sous forme de données structurées en arbre. Nous

proposons d’abord deux méthodes augmentées par l’information de constituant : CE-PubMedBERT

et CT-PubMedBERT. L’intuition de CE-PubMedBERT est de segmenter d’abord une phrase en

groupes de mots par le parcours en profondeur de l’arbre de constituant correspondant, puis de

sommer les plongement de wordpieces pour calculer les plongements de groupes de mots. Ces

plongements sont ensuite passés à des couches d’attention supplémentaires. L’avantage de CE-

PubMedBERT est que les dépendances au niveau des wordpieces sont apprises par PubMedBERT,

et les dépendances au niveau des groupes de mots sont apprises par des couches d’attention sup-

plémentaires. CT-PubMedBERT consiste à sérialiser d’abord l’arbre de constituant, puis donner

directement la séquence obtenue en entrée à PubMedBERT. Nous supposons que PubMedBERT

peut apprendre des informations sur la structure de l’arbre de constituant utiles à la prédiction de

relations sémantiques. Nous proposons ensuite une architecture d’apprentissage multi-tâche aug-

mentée par l’information de dépendance : MTS-PubMedBERT. En plus de la tâche d’extraction de

relations, l’ajustement de PubMedBERT est également guidé par deux tâches de sondage qui sont

liées à la syntaxe. L’hypothèse est que l’ajustement sur les deux tâches de sondage injecte implicite-

ment des informations syntaxiques dans PubMedBERT, et que ces informations sont utiles pour

mieux prédire la relation sémantique. Les résultats expérimentaux sur trois corpus biomédicaux

montrent que CT-PubMedBERT et MTS-PubMedBERT entraînent systématiquement une dégra-

dation des performances, tandis que CE-PubMedBERT montre des améliorations dans certains

cas. Cependant, une analyse plus approfondie n’attribue pas l’amélioration de CE-PubMedBERT

à l’information syntaxique injectée.

Pour injecter l’information de base de connaissances dans PubMedBERT, nous exploitons les

plongements de graphes de connaissances. Nous sélectionnons RotatE, une méthode de plongement

de graphe, qui calcule un score de plausibilité pour chaque triplet (entité1, relation, entité2) dans

la base de connaissance. Nous proposons ensuite la méthode KB-PubMedBERT, dans laquelle

la représentation textuelle chaque paire d’entité candidate pour une relation calculée par PubMed-

BERT est concaténée avec un vecteur de score de plausibilité calculé par RotatE. Le vecteur de score

de plausibilité contient les scores de plausibilité de toutes les relations de la base de connaissances.

Notre hypothèse est que ces scores de plausibilité suggèrent des relations sémantiques possibles

et donc biaisent PubMedBERT pour faire de meilleures prédictions. Notre méthode est capable

d’exploiter des relations des bases de connaissance différentes des relations à prédire. Les résultats

expérimentaux montrent que KB-PubMedBERT surpasse systématiquement PubMedBERT.

Dans cette thèse, nous avons proposé quatre méthodes augmentées par des informations externes.

Les résultats expérimentaux sur trois corpus d’extraction de relations biomédicales démontrent que

l’information syntaxique ne semble pas aider à améliorer la performance de PubMedBERT, tandis

que l’information de base de connaissances s’est avérée utile. Cette conclusion n’est pas définitive

et je propose plusieurs pistes pour les travaux futurs, y compris l’optimisation des architectures

de modèles, le test de plus de corpus et de modèles de base, et la mise en production de KB-

PubMedBERT.

To my parents.

Acknowledgements

First and foremost, I would like to express my gratitude to my thesis supervisors, Claire Nédellec,

Louise Deléger, and Pierre Zweigenbaum, for their patience and support through the past three

years. I also want to give my thanks to Robert Bossy, who actively participated in my thesis su-

pervision.

I am immensely grateful to the members of my thesis committee, Éric Gaussier and Xavier Tannier,

who accepted to be rapporteurs of my thesis, Laure Soulier and Vincent Guigue, who accepted to be

my thesis examiners. Their insightful feedback motivated me to continue my research from various

perspectives.

I am thankful for the financial support provided by Digicosme LabEx, which was crucial for me to

complete my thesis.

A special word of thanks to the Saclay-IA platform of Université Paris-Saclay, for providing GPU

resources through its Lab-IA cluster.

Lastly, I want to thank my parents for their unwavering support during my thesis.

My sincere appreciation goes out to every one of you. Without your support, this accomplishment

would not have been possible.

Contents

1 Introduction 13

1.1 Problem Statement . 14

1.2 Relation Extraction: A Supervised Text Classification Problem 17

1.3 Thesis Outline . 18

2 Background and Related Work 19

2.1 Historical Notes . 20

2.1.1 Feature-based Methods . 20

2.1.2 Kernel-based Methods . 22

2.1.3 Embedding-based Methods . 23

2.2 Neural Networks Basics . 26

2.2.1 Loss Function . 28

2.2.2 Optimization . 28

2.2.2.1 Gradient Descent . 29

2.2.2.2 Back-Propagation . 30

2.2.2.3 Minibatch Stochastic Methods . 33

2.2.3 Seeds and Ensembling . 34

2.3 Tokenization . 35

2.4 Transformer . 37

2.4.1 Attention Mechanism . 37

2.4.2 Multi-Head Attention . 40

1

2.4.3 Model Architecture . 40

2.5 Transfer Learning . 42

2.6 BERT: Transformer-based Pre-trained LLM . 44

2.6.1 Pre-training of BERT . 45

2.6.2 BERT Embeddings . 47

2.6.3 Domain-specific BERT . 48

2.7 General Neural Architecture for RE . 50

2.8 Prerequisites of Biomedical Relation Extraction . 51

2.8.1 Datasets . 51

2.8.1.1 ChemProt & DrugProt . 53

2.8.1.2 Bacteria Biotope 2019 . 53

2.8.2 Data Pre-processing . 56

2.8.3 Evaluation Metric . 59

2.9 Conclusion . 60

3 Injecting Syntactic Information into BERT 63

3.1 Syntactic Analysis . 64

3.1.1 Dependency Analysis . 64

3.1.2 Constituency Analysis . 66

3.2 Related Work . 70

3.2.1 Syntactic Probes . 70

3.2.2 Syntax-enhanced Models . 72

3.2.2.1 Adjacency Matrix-based Methods 73

3.2.2.2 Syntax-aware Pre-training . 77

3.2.3 Discussion . 79

3.3 Contribution: Syntax-enhanced Models . 79

3.3.1 CE-PubMedBERT . 79

3.3.2 CT-PubMedBERT . 80

3.3.3 MTS-PubMedBERT . 82

2

3.4 Experimentation . 85

3.4.1 Data Pre-processing . 86

3.4.2 Baseline Models . 93

3.4.3 Implementation Details . 93

3.4.4 Hyperparameters . 94

3.4.5 Results . 96

3.5 Analysis & Discussion . 98

3.5.1 Impact of Parsing Quality . 98

3.5.2 Training difficulties . 104

3.5.3 Difference Between Baseline Models and Syntax-enhanced Models 104

3.6 Conclusion . 108

4 Injecting KB Information into BERT 111

4.1 Knowledge Base Basics . 112

4.2 Graph Embedding Methods . 113

4.2.1 Distance-based Methods . 113

4.2.2 Similarity-based Methods . 115

4.3 Related Work: KB-enhanced Methods . 116

4.3.1 Distant Supervision . 116

4.3.2 Fusion of Graph Embeddings . 119

4.3.3 KB-related Pre-training Tasks . 120

4.4 Contribution: KB-PubMedBERT . 121

4.4.1 Hypothesis . 121

4.4.2 Model Architecture . 122

4.5 Experimentation . 123

4.5.1 Datasets . 123

4.5.2 Domain Knowledge Bases . 124

4.5.3 Entity Normalization . 125

4.5.4 Baseline . 125

3

4.5.5 Implementation Details . 126

4.5.6 Results . 126

4.6 Analysis & Discussion . 127

4.6.1 Precision, Recall and F1-score . 127

4.6.2 Direct Links in KB . 128

4.6.3 Ablation Study . 129

4.6.4 Case Study . 130

4.7 Conclusion . 131

5 Conclusions and perspectives 135

5.1 Conclusions . 135

5.2 Perspectives . 137

5.2.1 Improvements to Proposed Methods . 137

5.2.1.1 MTS-PubMedBERT . 137

5.2.1.2 KB-PubMedBERT . 137

5.2.2 Improvements to Preprocessing . 138

5.2.3 Resource Choice . 138

5.2.4 Model Deployment . 139

4

List of Figures

1.1 A example of relation extraction from ChemProt (Krallinger et al., 2017): A relation

of CPR:4 (DOWNREGULATOR|INHIBITOR) type is annotated between an entity

of chemical type “Argatroban” and an entity of gene type “thrombin”. 14

1.2 Diagram of supervised relation extraction model. 17

2.1 The dependency graph of a sentence (source: (Bunescu and Mooney, 2005)). Entities

are marked in bold. 21

2.2 Enriched SDP from Figure 2.1 with word attributes at each position. 23

2.3 Distinct features extracted from the SDP in Figure 2.1. 23

2.4 Two architectures that are used to learn word embeddings in word2vec (source:

(Mikolov et al., 2013)): CBOW and Skip-gram. 25

2.5 A one-layer fully-connected neural network: three-dimension input and two-dimension

output. 27

2.6 An example of Multi-Layer Perceptron with 2 hidden layers. 27

2.7 Illustration of gradient descent: quadratic function. 30

2.8 Diagram of attention (source: (Vaswani et al., 2017)). Q, K, V are computed using

Equation 2.17. 38

2.9 Visualisation of the attention coefficient matrix (L = 12, H = 4) from PubMedBERT

(Gu et al., 2021) given the sentence from Figure 1.1 as input. L refers to the layer

index, and H refers to the attention head index. A value of 0.0 is marked in deep

blue, and 1.0 is marked in deep red. The sentence is tokenized using the tokenizer

from PubMedBERT. 39

5

2.10 Diagram of multi-head attention. (source: (Vaswani et al., 2017)) h refers to the

number of attention heads. 40

2.11 The model architecture of Transformer. (source: (Vaswani et al., 2017)) 41

2.12 The masked version of Figure 2.9. 42

2.13 The pre-training and fine-tuning framework of BERT. (source: (Devlin et al., 2019)) 46

2.14 Embeddings of an input tokenized sentence are the sum of token, position and seg-

ment embeddings. (source: (Devlin et al., 2019)) . 48

2.15 A general neural architecture for supervised relation extraction. 52

2.16 ChemProt and DrugProt relation types. (source: (Krallinger et al., 2017)) 54

3.1 The dependency tree of the sentence: “BERT outperforms previous deep-learning

models.” . 65

3.2 The adjacency matrix that corresponds to the dependency tree in Figure 3.1. A cell

of (word1,word2) marked in deep blue indicates that word1 and word2 are directly

linked to each other in the dependency tree; otherwise, they are not directly linked. 67

3.3 The constituency tree of the sentence: “BERT outperforms previous deep-learning

models.” . 68

3.4 The architecture of the syntactic probe proposed by Reif et al. (2019). They use the

base version of BERT that consists of 12 layers each containing 12 attention heads.

Therefore, for each pair of words, an attention vector of dimension 12× 12 = 144 is

extracted. 72

3.5 The modified transformer layer of syntax-GNN (source:(Sachan et al., 2021)). As

“some” is the only word that is not linked to “have”, α34 in the figure is not used for

computing the updated representation of “have”. 75

3.6 Two syntax-enhanced models proposed in (Sachan et al., 2021). Inputs to the two

models are word piece embeddings. (source: (Sachan et al., 2021)) 76

6

3.7 The architecture of DP-GCN (source:(Yu et al., 2020)). The dependency graph

denotes the pruned adjacency matrix (pruned by applying binary gates over it);

the semantic graph denotes the self-attention matrix computed as in the original

transformer layer. 77

3.8 The overview of K-adapter (source: (Wang et al., 2021)). 78

3.9 the architecture of CE-PubMedBERT: the wp2const block at the output of the Pub-

MedBERT model groups together the word pieces that belong to a pre-defined chunk

to compute chunk embeddings. 81

3.10 the architecture of CT-PubMedBERT: the linearization turns a constituency tree to

a sequence by DFS traversal. 82

3.11 the architecture of MTS-PubMedBERT. 85

3.12 The constituency tree that corresponds to the sentence in Figure 1.1. 87

3.13 The dependency tree that corresponds to the sentence in Figure 1.1. 90

3.14 The adjacency matrix that corresponds to the dependency tree in Figure 3.13. . . . 91

3.15 The pairwise distance matrix that corresponds to the dependency tree in Figure 3.13. 92

3.16 The architecture of PubMedBERT-extra (one of our baseline models). 94

3.17 Stratified RE performance on the subset of sentences used for manual dependency

analysis in BB-Rel. 102

3.18 Stratified RE performance on the subset of sentences used for manual dependency

analysis in DrugProt. 103

3.19 Stratified results on the validation set of three corpora: BB-Rel, ChemProt, Drug-

Prot. Examples in the validation set are regrouped based on their subject–object

surface distances. Intervals are of length 5 except two special cases 0 and ≥40. . . . 107

3.19 Stratified results on the validation set of three corpora: BB-Rel, ChemProt, Drug-

Prot. Examples in the validation set are regrouped based on their subject–object

surface distances. Intervals are of length 5 except two special cases 0 and ≥40. . . . 108

4.1 RotatE treats relations as rotation in the complex plane (source: (Sun et al., 2019). 115

4.2 Generation of distant supervision data. 117

7

4.3 Architecture of BioKGLM (source: (Fei et al., 2021)). 120

4.4 Global architecture of proposed KB-PubMedBERT model. 123

8

List of Tables

1.1 Sentences with marked entities (ChemProt) and corresponding difficulties for relation

extraction. 15

2.1 Corresponding SDPs from Figure 2.1. 21

2.2 Common features used in feature-based methods (source: (Kambhatla, 2004)). . . . 22

2.3 Comparison between three different BERT variants: BioBERT, SciBERT and Pub-

MedBERT. Since each variant has multiple versions, we choose to compare the follow-

ing versions: biobert-base-cased-v1.2 (BioBERT); scibert_scivocab_uncased (SciB-

ERT); BiomedNLP-PubMedBERT-base-uncased-abstract (PubMedBERT)1. Three

aspects are compared: pre-training corpus; if the pre-training starts from BERT

checkpoints; and if a new WordPiece vocabulary is created. 49

2.4 WordPiece tokenization results of BioBERT and PubMedBERT for some biomedical

terms. A tick indicates that the exact word exists as a word piece token in the

corresponding vocabulary. 50

2.5 Groups of ChemProt relation types. A tick in the second column indicates that the

corresponding group is used for evaluation, otherwise it is not. 54

2.6 Dataset statistics. 55

9

2.7 An annotated document (article id: 23282066) from the original DrugProt develop-

ment set (https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/

track-1/). Each entity is assigned an id and annotated relations are represented in

triples (subject entity id, object entity id, relation type). The text span correspond-

ing to each entity is also given, e.g. a span of [1202,1205) means that entity T1 is a

substring of length 3 indexed by 1202 in the original text. 57

2.8 Pre-processing result of a document (article id: 23282066) from the DrugProt devel-

opment set. 59

3.1 Definition of a subset of dependency relations (source: (de Marneffe et al., 2014)).

There are in total 65 universal dependency relations. 66

3.2 Definition of a subset of constituency tags (source: (Bies et al., 1995)). There are in

total 82 constituency tags. 69

3.3 Syntactic pairwise distances and depths are regrouped into classes. 0 is not used as

a label for syntactic distances but is kept for syntactic depths (syntactic root). . . . 84

3.4 Fixed number of epochs for each (corpus,model type) combination. 95

3.5 Hyperparameter optimization with grid search: customized grids of each model. . . 95

3.6 Optimal combination of hyperparameters for each (corpus, model type) based on the

performance on the validation set: learning rate (LR), number of extra attention

layers (EAL), α. 96

3.7 Voting F1-score for each model type (in the second column) on the three corpora. %∆

denotes the relative gain in voting F1 over PubMedBERT. The averaged F1-score and

standard deviation calculated over 5 independent runs within ensembles are presented

in the rightmost column. * and † indicate that the performance of the corresponding

model is significantly different from PubMedBERT and PubMedBERT-extra respec-

tively under a one-sided t-test with p < 0.05 (we only compare CE-PubMedBERT

and Late-Fusion to PubMedBERT-extra). 97

10

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/

3.8 Stratified results on the validation set of BB-Rel: aveds denotes the average micro

F1-score of the corresponding model on the group of examples that consist of two

sentences; avess denotes that on the group on examples that consist of a single sentence.100

3.9 Spearman’s rank coefficient rs and p-value between the number of errors (in full

parses and in SDPs) and the stratified micro F1-score obtained by Late-Fusion and

MTS-PubMedBERT. The analysis is performed on BB-Rel and DrugProt. 101

3.10 Statistics of unique errors made by each of the following models: PubMedBERT,

PubMedBERT-extra, CE-PubMedBERT, CT-PubMedBERT, Late-Fusion and MTS-

PubMedBERT. d̄ denotes the average value of the corresponding group of distances.

∗ and † respectively indicate that the value of the corresponding model is signifi-

cantly different from that of PubMedBERT and PubMedBERT-extra under a one-

sided t-test with p < 0.05 (we only compare CE-PubMedBERT and Late-Fusion to

PubMedBERT-extra). 105

4.1 A subset of triplets in CTD (Davis et al., 2021). The subject entity is of type

“chemical” and the object entity is of type “gene”. Chemical entities are linked to

MESH2 identifiers; gene entities are linked to NCBI (Federhen, 2011) identifiers. . . 113

4.2 Statistics of CTDs and Omnicrobes. 124

4.3 Sources of entity normalization for each corpus. “gold ” refers to gold normalization

annotations provided in BB-Norm (Bossy et al., 2019); “regression” refers to the

regression model proposed in (Mao and Liu, 2019). 125

4.4 Best learning rate for each (model, corpus) combination. 126

4.5 F1 scores on RE tasks. We report a/b where a represents the average score of 5

runs with different random initializations; b represents the majority voting score. ∆

indicates the score reported by Gu et al. (2021) on ChemProt. We report the two

scores to better compare our results to the SOTA results. ∗ indicates statistically

significant improvements with p < 0.05 under a t-test. 127

4.6 Precision, Recall and F1 scores on the validation sets of the three RE tasks. 128

11

4.7 Percentages of examples for which the subject and object entities are directly linked

in the KB. Bold values are significantly different from the overall percentage of the

corresponding corpus with |Z| > 2 under a Z-test. 129

4.8 KB-Pred denotes our proposed model without the PubMedBERT embedding module,

thus using only KB-derived information in its prediction. We report the average score

of 5 runs. naive refers to a model that always predicts the most frequent non-null

relation. 130

4.9 Case study: improved examples on the validation set of ChemProt and DrugProt.

Red words refer to the subject entity (chemical) and blue words refer to the object

entity (gene). The column “predictions” contains the relations predicted by the corre-

sponding model, where a bold relation refers to a correct prediction. The last column

contains relations found in the KB given the corresponding pair of entities. 132

4.10 Case study: degraded examples on the validation set of ChemProt and DrugProt.

Red words refer to the subject entity (chemical) and blue words refer to the object

entity (gene). The column “predictions” contains the relations predicted by the corre-

sponding model, where a bold relation refers to a correct prediction. The last column

contains relations found in the KB given the corresponding pair of entities. 133

12

Chapter 1

Introduction

Information extraction (IE) is a topic that has been consistently studied by researchers in the domain

of Natural Language Processing (NLP). Building efficient models that can automatically extract

structured information such as named entities or relations from unstructured texts is usually less

time-consuming and costly compared to manually extracting such information by domain experts.

Named Entity Recognition (NER) and Relation Extraction (RE) are two important steps to succeed

in an IE task. Generally, entities refer to task-specific nouns that we are interested in such as cities,

person names, or more specifically, drugs and genes in biomedical texts. NER consists of locating

these entities in the text and determining their entity types. For example, in the sentence “Obama

was born in Honolulu”, through NER the word “Obama” should be tagged as an entity of type “person

name” entity and “Honolulu” should be tagged as an entity of type “city”. Relations between these

entities are also of our interest. In the previous example, an efficient RE model should be able

to identify the relation between “Obama” and “Honolulu” as a relation of type “city of birth”. A

more complicated biomedical example is given in Figure 1.1. In this thesis, we focus on the relation

extraction task in the biomedical domain.

13

Figure 1.1: A example of relation extraction from ChemProt (Krallinger et al., 2017): A relation of
CPR:4 (DOWNREGULATOR|INHIBITOR) type is annotated between an entity of chemical type
“Argatroban” and an entity of gene type “thrombin”.

With the rapid development of Artificial Intelligence (AI) and NLP, relation extraction methods

have evolved in recent years. Progress of NLP models was made mainly by large Pre-trained

Language Models (PLM) such as BERT (Devlin et al., 2019), GPT (Radford et al., 2018, 2019;

Brown et al., 2020) and T5 (Raffel et al., 2020). These pre-trained models are supposed to capture

basic semantic information during the pre-training and adjusting their weights (fine-tuning) on

downstream tasks guided by human-annotated labels has been proved to outperform previous state-

of-the-art models on multiple NLP tasks including RE. However, new challenges appear as well with

the emergence of these new techniques.

In this introductory chapter, we first briefly describe the challenges that we face in biomedical

relation extraction, then more concretely, describe the problem from the perspective of machine

learning. The thesis outline will be presented at the end of the chapter.

1.1 Problem Statement

In an information extraction system, relation extraction usually comes after named entity recogni-

tion. Since NER is not our focus, in this thesis we always assume that extracted entity information

is provided. Given a text and entities, the objective of RE is to identify:

• if a semantic relation exists between given entities;

• the relation type in the case of existence.

In most cases, semantic relation types are pre-defined, For the example in Figure 1.1 there are 5

possible relation types (CPR:3-6, CPR:9). In practice, we usually combine the two goals mentioned

14

above into one by adding a “NULL” relation indicating that no relation exists. Therefore, the

objective of RE in Figure 1.1 is to correctly recognize the relation type between “Argatroban” and

“thrombin” as CPR:4 out of six classes: upregulator|activator, downregulator|inhibitor, angonist,

antagonist, substrate|product_of and no_relation. It is noteworthy that in our work we consider

only binary relations, i.e. candidate relations are always between two entities.

In Figure 1.1, due to the existence of a trigger word “inhibition” that links Argatroban and

thrombin, it is quite straightforward to classify the candidate relation as “downregulator | inhibitor”.

However, due to the nature of natural language, real semantic relations may be more implicit

and ambiguous. The difficulties are manifold as summarized in Table 1.1: (1) multiple candidate

relations in one sentence require the RE model to be able to distinguish different entity pairs in

the same context; (2) the RE model needs to understand negation; (3) the existence of coreference

requires the model being able to detect long-range relations, e.g. in the last row of Table 1.1,

“enzyme” is the coreference of “Delta 6 desaturase”.

sentence difficulty
This study thus demonstrates that the first administration of the
recommended starting dose of irbesartan induces a greater and
longer lasting Ang II receptor blockade than that of valsartan and
losartan in normotensive subjects.

multiple candidate relations

Disodium cromoglycate does not prevent terbutaline-induced
desensitization of beta 2-adrenoceptor-mediated cardiovascular in
vivo functions in human volunteers.

negation

The use of Delta 6 desaturase (D6D) twice in the conversion of
alpha-linolenic acid (ALA; 18:3n-3) to docosahexaenoic acid (DHA;
22:6n-3) suggests that this enzyme may play a key regulatory role in
the synthesis and accumulation of DHA from ALA.

coreference

Table 1.1: Sentences with marked entities (ChemProt) and corresponding difficulties for relation
extraction.

Challenges also come from fine-tuning large language models (LLMs) on biomedical texts. Since

we focus on BERT (Devlin et al., 2019) in our work, we will use it as an example. The performance

of BERT may be variable when it comes to domain-specific texts for two reasons: “First, BERT is

trained and tested mainly on datasets containing general domain texts (e.g. Wikipedia), it is difficult

to estimate their performance on datasets containing biomedical texts. Also, the word distributions

15

of general and biomedical corpora are quite different, which can often be a problem for biomedical

text mining models.” (Lee et al., 2020) To handle this problem, researchers have proposed domain-

specific BERT variants such as BioBERT (Lee et al., 2020) and SciBERT (Beltagy et al., 2019).

These variants have been proved to outperform BERT on biomedical tasks.

For biomedical relation extraction, like many other domain-specific tasks, another challenge is

the limited amount of high-quality annotated data. Though benchmark datasets such as ChemProt

(Krallinger et al., 2017) exist, their size is relatively small (< 100, 000 examples). This may also

have a negative impact on the performance of LLMs.

To handle these challenges, we investigate the following questions:

1. is it possible to further improve the performance of BERT on biomedical relation extraction

without increasing the size of annotated datasets?

2. what resources can be helpful for this improvement?

Syntax trees and knowledge bases (KB) are two resources that are commonly exploited for

relation extraction. A syntax tree is a representation of the underlying grammatical structure

of texts; while a knowledge base contains factual knowledge usually represented in triples. Both

syntax and factual knowledge may play an important role for RE. However, though BERT (Devlin

et al., 2019) is pre-trained on a large amount of texts, it is not explicitly pre-trained to capture

the syntactic structure of texts or learn factual knowledge in KB. Motivated by this observation,

there exist studies dedicated to enhancing BERT by integrating external information during the

pre-training or the fine-tuning stage. Some studies (Sachan et al., 2021; Wang et al., 2021) show

that integrating external knowledge improves the RE performance of neural models, while other

studies (Puccetti et al., 2021; Jawahar et al., 2019; Luo, 2021; Petroni et al., 2019; Li et al., 2022)

demonstrate that BERT has encode syntax or factual knowledge from pre-training. These two

observations are not contradictory. Even BERT has implicitly learned syntax or factual knowledge,

it does not mean that the encoded knowledge is comprehensive enough. It does not exclude the

possibility to improve BERT by injecting external knowledge into it. Based on that, we make

the principle hypothesis in this thesis: injecting syntactic information or factual knowledge may

16

improve the RE performance of BERT, and negative impacts brought by data insufficiency can be

compensated by integrated external knowledge.

1.2 Relation Extraction: A Supervised Text Classification

Problem

Though there exist studies that take the relation extraction as a sequence tagging problem (Dai

et al., 2019; Fu et al., 2019), in this thesis, we formulate relation extraction as a text classification

task: given a training set containing observations Γ = (xi, yi), i = 1, ...N. where xi ∈ X refers

to a sentence and a candidate pair of entities, yi ∈ Y refers to a label (semantic relation type),

the goal of relation extraction is to find a function f : X → Y that minimizes L(f(x), y) where

X, Y denotes respectively the input and output space, and L is a loss function that measures the

difference between predictions and true labels.

Since our work focus on pre-trained language models, we skip feature engineering, a crucial step

in classical machine learning. We present directly encoder, a neural network that turns input data

(texts in our case) to vector representations. Unlike some NLP tasks such as machine translation

(Sutskever et al., 2014), for relation extraction we have no need of decoder. Therefore, we plot the

general diagram of our supervised relation extraction model in Figure 1.2. In the figure, real lines

represent the data flow, while dashed lines represent the back-propagated gradients flow that we

use to update model weights (training). Details about back-propagation will be given in Chapter 2.

Figure 1.2: Diagram of supervised relation extraction model.

17

1.3 Thesis Outline

This introductory chapter presents the basic problem that our work is supposed to handle. We also

present the motivation and the hypothesis that we make about injecting external information into

BERT. In Chapter 2, we present background knowledge about biomedical RE, neural networks and

BERT. As our work focuses on injecting two types of external information, syntactic information and

KB information, we present respectively relevant work in Chapter 3 and Chapter 4. In Chapter 3,

we first present existing syntax-related work, then syntax-enhanced models that we propose with

related experiments. In Chapter 4, similarly we present existing KB-enhanced models and our

proposed KB-enhanced model with related experiments. Chapter 5 concludes the thesis and presents

perspectives for future work.

18

Chapter 2

Background and Related Work

As mentioned in the first chapter, our work focus on injecting external knowledge into BERT

(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) to improve the

performance of BERT on biomedical relation extraction (RE) tasks. In this chapter, we present

prerequisite knowledge before diving into details about BERT enhancements. This chapter is orga-

nized as follows:

1. A historical overview of biomedical RE methods (Section 2.1);

2. Neural network basics (Section 2.2);

3. Key components of BERT (Section 2.3-Section 2.6): WordPiece (Wu et al., 2016) tokenization;

the base architecture Transformer (Vaswani et al., 2017); the theoretical base of the pre-

training-fine-tuning framework; pre-training details; domain-specific BERT variants;

4. A general neural architecture for RE (Section 2.7);

5. Biomedical RE (Section 2.8): benchmark datasets, evaluation metrics, etc.

19

2.1 Historical Notes

Before Pre-trained Large Language Models (PLLM), relation extraction had been studied for

decades. In this section, we briefly present precedent relation extraction methods in order to help

better understand how relation extraction methods have evolved. Classical relation extraction

methods can be divided into three categories: feature-based, kernel-based, or embedding-based.

The evolution of relation extraction methods from feature or kernel-based models to end-to-end

models conforms to the trend in the domain of Natural Language Processing (NLP): while NLP

models used to rely on highly task-specific and manually-designed features, they have evolved to au-

tomatically extracting useful features from data using vector representations of words. Researchers

increasingly search to build first a unified architecture to learn general linguistic knowledge, then

adapt this architecture to specific tasks such as relation extraction or machine translation.

2.1.1 Feature-based Methods

A feature refers to a measurable characteristic that can be used as input to machine learning models.

For example, if we want to predict the number of customers in a store, the weather might be an

important feature (there might be more customers on rainy days than on sunny days). For feature-

based relation extraction methods (Kambhatla, 2004; Jiang and Zhai, 2007; Rink and Harabagiu,

2010), we need to determine which features may be helpful and manually design these features.

Popular features for RE are mainly lexical, syntactic, or semantic:

1. Bag-of-words (BOW) (Harris, 1954): the BOW consists of representing a text as a counter

of words that keeps word frequencies while ignoring the order of words and the syntactic

structure. This feature can be extended to prefixes, suffixes, or character N-grams (consecutive

N characters).

2. Part-Of-Speech (POS) tags: in grammar, the POS tags are used to describe the syntactic

categories of words. Common POS tags in English include noun, verb, adjective, adverb; for

some languages POS tags include case or gramatical gender.

20

3. Named entity types: the category of entity is considered to be important for RE. For example,

in the sentence of Figure 1.1, it is useful to know that “argatroban” is a chemical, and “thrombin”

is a protein.

4. Syntactic structure: dependency analysis is a commonly used resource to extract syntactic

features. In a dependency tree, words are linked by dependency relations based on the un-

derlying syntactic structure. Details about dependency trees will be given in Chapter 3. A

commonly used syntactic features is the Shorest Dependency Path (SDP). Given a dependency

tree and a pair of entities e1 and e2, the possible semantic relationship R(e1, e2) is “almost

exclusively concentrated in the shortest path between e1 and e2 in the undirected version of the

dependency graph.” (Bunescu and Mooney, 2005) This hypothesis may not always hold, but

it is often useful combine SDP with other features. An example of the dependency tree and

SDP is shown respectively in Figure 2.1 and Table 2.1.

5. Hypernyms: in linguistics, the hypernym of a word w refers to a more general term than w.

The relation between w and its hypernym is the lexical relation between labels of concepts in

a knowledge base where the concepts would be linked by “is_a”, or a type-subtype relation.

For example, “dog” is the hypernym of “labrador”, and “animal” is the hypernym of “dog”.

Figure 2.1: The dependency graph of a sentence (source: (Bunescu and Mooney, 2005)). Entities
are marked in bold.

Relation Shortest Dependency Path (SDP)
protesters AT stations protesters −→ seized ←− stations
workers AT stations workers −→ holding ←− protesters −→ seized ←− stations

Table 2.1: Corresponding SDPs from Figure 2.1.

In most cases, these features can be obtained by either data pre-processing (e.g. POS tags from

21

Feature name Description
words the words of both the arguments and all the words in between.

entity types the entity type of both arguments.

overlap

the number of words (if any) separating the two arguments; the
number of other entities in between; a flag indicating whether the
two arguments are in the same noun phrase, verb phrase, or
prepositional phrase.

dependency tree the words, POS tags, and chunk labels of the words on which the
arguments are dependent in the dependency tree.

constituency tree
similar to SDP, the shortest path connecting the two arguments in
the constituency tree, and the path annotated with constituency
tags.

Table 2.2: Common features used in feature-based methods (source: (Kambhatla, 2004)).

syntactic parsers) or existing resources (e.g. hypernyms from WordNet). Feature-based methods

consist of directly using relevant features, adapting existing features to specific tasks, and exploiting

new features. To give an insight into what features are used in practice, Table 2.2 lists the features

used in (Kambhatla, 2004).

These features are extracted and then passed to a Maximum Entropy classifier to classify the

candidate pairs as being in a relationship or not; if a relationship exists, they are also used to predict

the relation type.

2.1.2 Kernel-based Methods

Unlike feature-based methods, instead of feeding features to a classifier, kernel-based methods (Haus-

sler et al., 1999) consist of computing the similarity between examples. For relation extraction, the

intuition is to put similar examples in the same category, i.e. an example similar to training exam-

ples containing a certain relation is considered more likely to contain the same relation. Different

kernels (Zelenko et al., 2003; Zhou et al., 2007; Bunescu and Mooney, 2005; Valsamou, 2017; Tang

et al., 2021) are proposed specifically for relation extraction. A good example of kernel-based meth-

ods is the method proposed by Bunescu and Mooney (2005). The method consists of first extracting

SDPs from dependency trees, then obtaining word attributes as a set of features for each position

along the SDP. After that, they compute the Cartesian product over the set of features of each posi-

22

tion. Let us take the SDP in Figure 2.1 as an example. By replacing each word with corresponding

attributes, we get the enriched SDP as shown in Figure 2.2. Computing the Cartesian product over

the SDP generates 48 distinct features in Figure 2.3.

Figure 2.2: Enriched SDP from Figure 2.1 with word attributes at each position.

Figure 2.3: Distinct features extracted from the SDP in Figure 2.1.

However, exhaustively computing features for each SDP is not optimal because the number of

features explodes with the increase of SDP length. Since in kernel-based methods we only care

about the similarity between examples, we can directly compute the number of common features

between each pair of SDPs rather than explicitly extracting high-dimensional features. The kernel

function can be written as:

K(x,y) =

 0 m ̸= n∏N
i=1 c(xi, yi), m = n

(2.1)

where x = x1x2...xm and y = y1y2...yn represent two SDPs, and xi denotes the feature set at the

i-th position of x (same for yi). c(xi, yi) denotes the number of the common attributes between

xi and yi. Since SVM (Cortes and Vapnik, 1995) is kernel-based, it suffices to insert the kernel

function 2.1 into SVM for classification.

2.1.3 Embedding-based Methods

Word embeddings refer to continuous vector representations of words. In this section, we only

focus on word embeddings learned by neural networks (Mikolov et al., 2013; Pennington et al.,

23

2014; Bojanowski et al., 2017). Compared to manually designed features of texts, word embeddings

have the following advantages: (1) as by-products of training, they can be generated from large

unannotated texts; (2) unlike manually created features of words, they are not fixed during the

training, therefore can be better adapted to different NLP tasks; (3) they encode similarities between

words. Embedding-based relation extraction methods use pre-trained word embeddings to initialize

the vector representations of words. Similar to BERT-based methods that we will present later in

this chapter, embedding-based methods apply the principle of transfer learning (Section 2.5), but

the main difference is that for embedding-based methods, only word embeddings are pre-trained,

while for BERT-based methods pre-trained weights of intermediate layers are also kept. In this

section, we present embedding-based methods without illustrating how neural networks work, a

brief introduction to neural networks will be given at the beginning of Section 2.2.

Mikolov et al. (2013) propose two architectures to learn word embeddings: CBOW (Continuous

Bag Of Words) and Skip-gram. Given a sequence of words, CBOW consists of predicting the

current word using previous and future words within a fixed window as context. Inversely, Skip-

gram consists of predicting surrounding words of the current word within a certain range. Diagrams

of both architectures are shown in Figure 2.4. Continuous word embeddings learned in this way

encode contextual similarities between words, and in most cases using them in neural architectures

for downstream NLP tasks (Zhang et al., 2017; Nguyen and Grishman, 2015; Xu et al., 2015)

outperforms previous feature-based or kernel-based methods. To include word embeddings in a

neural network, an embedding layer is added just behind the network input. If we denote the

vocabulary by V and the embedding dimension by d, then the corresponding embedding matrix

E ∈ R|V |×d. Suppose that a sequence containing integer indexes of length N (index1, ..., indexN)

is fed into an embedding layer, where indexi indicates that the i-th word is indexed by indexi in

V , then the output of the embedding layer O ∈ RN×d. The function of an embedding layer is

equivalent to lookup operations in E, each indexi is represented by the corresponding word vector

without consideration of its position in the sequence.

Different types of neural architectures can be used in embedding-based RE methods. For exam-

ple, Nguyen and Grishman (2015) proposes to use Convolutional Neural Network (CNN) for RE.

24

Figure 2.4: Two architectures that are used to learn word embeddings in word2vec (source: (Mikolov
et al., 2013)): CBOW and Skip-gram.

The intuition of CNN is to apply the convolutional operator on input vector representations within

a sliding window of fixed length. In the NLP scenario, the function of a convolutional operator

is similar to extracting features over several continuous words. The CNN RE model proposed by

(Nguyen and Grishman, 2015) consists of four parts:

1. An embedding layer to convert words to continuous word embeddings;

2. Convolutional layers to extract features of consecutive words;

3. A pooling layer to extract most important features;

4. A linear layer with a softmax activation to compute probabilities of relation types.

where a softmax function maps an input vector x = (x1, ...xN) to a probability vector containing

values entre 0 and 1:

softmax(x) =
exi∑N
j=1 e

xj

(2.2)

25

This CNN RE model is very representative because it contains the most essential components

of a neural RE model. Modifications can be made to adapt this architecture to relation extraction

and obtain better performance: Zhang et al. (2017) propose to use Glove (Pennington et al., 2014)

embeddings, introduce position embeddings and replace CNN by LSTM (Hochreiter and Schmid-

huber, 1997); Miwa and Bansal (2016) propose to separately encode word sequences by LSTM

layers and dependency subtrees by tree-structured LSTM layers; Xu et al. (2015) propose to input

directly SDPs and apply LSTM layers to encode different types of information along SDPs such as

Part-Of-Speech (POS) tags, dependency relations, etc.

2.2 Neural Networks Basics

In the previous section, we introduced embedding-based methods that belong to the category of

neural networks. Analogous to the human brain, a neural network contains connected nodes, and

each node receives signals from others. Signals from different nodes are not equally important,

therefore edges between nodes should have different weights. The simplest case of a neural network

is a one-layer fully-connected network as shown in Figure 2.5; fully-connected indicates that nodes

at the output are connected with every input node. Input to this network x = (x1, x2, x3) is a 3-D

vector; output y = (y1, y2) is a 2-D vector; wij represents the weight of the edge connecting xi to

yj. The value of yj can be written as a weighted sum: yj =
∑3

i=1 xiwij. wij can be packed into

a weight matrix W =

w11 w21 w31

w12 w22 w32

 then we have: y = Wx. Since this transformation is

linear, we want to add non-linearity to the network to expand its expressivity. A common solution

is to add a non-linear function σ named “activation” onto the layer output such that y = σ(Wx).

According to the universal approximation theorem (Hornik et al., 1989), theoretically a multi-layer

neural network with non-linear activation can approximate any function. Based on that, we create

a Multi-Layer Perceptron (MLP) by stacking fully-connected layers with non-linear activation. The

architecture of an MLP with two hidden layers is shown in Figure 2.6. There exist different types

of neural networks, each designed for different scenarios such as Convolutional Neural Networks

(Goodfellow et al., 2016b), LSTM (Hochreiter and Schmidhuber, 1997), Transformer (Vaswani

26

Figure 2.5: A one-layer fully-connected neural network: three-dimension input and two-dimension
output.

Figure 2.6: An example of Multi-Layer Perceptron with 2 hidden layers.

et al., 2017). Though these neural networks differ in architectures, they are similar in essence:

multi-layer structure; layers composed of neurons with different connectivity. For example, the

convolutional neural network abandons the full connectivity of MLP and changes to connect nodes

only to adjacent nodes of the last layer within a certain range.

When we apply a neural network to a specific task, we need to adjust the weights inside the

network to certain values such that the output is close to or equal to our expectations. This process

of weight value adjustment is known as “training”. To understand the training process, we need to

respond to the following questions:

• How can we measure the dissimilarity between the output and our expectation?

27

• How can we automatically adjust weight values to “adapt” a neural network to a specific task?

• Does randomness affect the training process? How can we mitigate its negative impact?

In the rest of this section, we focus on the three questions above.

2.2.1 Loss Function

The goal of training a neural network is to minimize the dissimilarity between its output (prediction)

and our expectation (normally presented in the form of per-example labels). To achieve that, a loss

function is defined to describe this dissimilarity mathematically. Suppose that a neural network

expresses a function f : x → ŷ, where x ∈ RM denotes the input vector and ŷ ∈ RN denotes

the output vector containing probabilities of N classes. Then ŷ = f(x;θ) where θ denotes the

parameters of the neural network. We use ŷ here to distinguish the prediction from the one-hot

vector encoding the ground truth y, which is the expected output. A loss function L(ŷ,y) maps a

pair of vectors to a real value representing the dissimilarity. Thus the training process is equivalent

to solving an optimization problem:

min
θ

L(f(x;θ),y) (2.3)

In information theory, cross entropy is commonly used to compute the dissimilarity of two

probability distributions. In our case, ŷ = (ŷ1, ..., ŷN) already contains probabilities; y = (y1, ..., yN)

contains discrete values of either 0 or 1. By taking y as a vector of extreme probability values, the

per-example cross entropy loss between ŷ and y over N classes is computed by:

CrossEntropy(ŷ,y) = −
N∑
i=1

yilog(ŷi) (2.4)

2.2.2 Optimization

Nearly all training processes of neural networks consist of solving Equation 2.3. The difficulty of this

optimization problem largely depends on the form of f . Unfortunately, since in a neural network f

28

is implicitly expressed, mathematically it is hard to give an analytical solution. Intuitively, popular

solutions consist of iteratively adjusting θ such that L(ŷ,y) decreases gradually until either (1) the

loss reaches a value that is sufficiently low; (2) a maximum number of iterations is executed; (3)

the loss value stops decreasing for a long time. In this subsection, we focus on a popular iterative

algorithm to gradually decrease L(ŷ,y).

2.2.2.1 Gradient Descent

Gradient descent is one of the most widely used first-order gradient-based iterative optimization

algorithms to find a local minimum of a differentiable function. Given a differentiable f , the gradient

at a certain point p is a vector ∇f(p) whose direction is the direction in which f increases the most

and whose magnitude equals the rate of increases, i.e. df = |∇f(p)| · dr, where df represents the

increase of f and dr represents a displacement.

The intuition of gradient descent consists of always moving the point p in the opposite direction

of ∇f(p) until the magnitude of the gradient is smaller than a certain threshold, i.e. |∇f(p)| < ϵ.

Take the quadratic function f(x) = x2 for example, the corresponding trajectory of points obtained

by gradient descent is plotted in Figure 2.7. Starting from a random point p0, we move the point

always in the opposite direction of the current gradient. As shown in the figure, we approach the

minimum (red point) gradually. The magnitude of the gradient becomes smaller and smaller as in

the present case |∇f(xi)| = df
dxi

= 2 ∗ xi, lim
xi→0
|∇f(xi)| = 0 (same for another initial point p′0). The

point pi is thus expected to reach the red point when the process stops.

We can further improve this process by controlling the amount of “descent” at each step (de-

scribed by the term “step size”) in order to avoid oscillation between points around the minimum.

If we do not control the step size, it is possible that pi repeatedly enters the second quadrant and

then jumps back into the first quadrant. This oscillation may repeat infinitely such that we can

never reach the red point. To avoid a too large or too small step size, we can add a hyperparameter

γ. For the sequence of variables (x0, ..., xi, ...) corresponding to the sequence of points obtained by

gradient descent (p0, ..., pi, ...), let: xi+1 = xi − γ|∇f(xi)|. The hyperparameter γ is also known as

the “learning rate” as it controls the speed of weight updates. Setting an appropriate value for the

29

Figure 2.7: Illustration of gradient descent: quadratic function.

learning rate is crucial for succeeding in training a neural network: if the learning rate is too small,

it may cost too much time for the network to converge, while a too large learning rate may lead to

divergence, i.e. the training process stops at a point far from the minimum.

2.2.2.2 Back-Propagation

We have seen how gradient descent works in a quite simple scenario of a single-variable quadratic

function. Though the principle of gradient descent applies to more complicated functions, there

remains an unsolved problem unsolved: for neural networks, can we effectively calculate the gradient

of the loss L with respect to (w.r.t.) thousands or even millions of weights? Since in a neural

network, all trainable weights are variables of the loss function, we need to compute the gradient

of a multi-variate function. It is reasonable to think that we can calculate the derivative of L to

each variable, then “descend” simultaneously in all directions with corresponding step sizes. The

problem is thus turned into computing the derivative of L w.r.t. multiple variables.

Due to the multi-layer structure of neural networks as shown in Figure 2.6, intuitively we want

to factorize the derivative ∂L
θ(l)

as a combination of derivatives like ∂L
∂θ(l+1)

∂θ(l+1)

∂θ(l) , where θ(l) denotes

the weights of the l-th layer. Mathematically this intuition has a theoretical basis: in calculus, if

a variable z depends on the variable y, and y depends on the variable x, then y is an intermediate

variable between x and z. The chain rule states that:

30

∂z

∂x
=

∂z

∂y

∂y

∂x
(2.5)

Equation 2.5 can be extended to vector and matrix variables, thus it applies to neural networks.

This allows us to calculate ∂L
∂θ(l) for each layer and propagate gradients of previous layers to the

current layer. Since the gradient propagation is backward (starting from the loss value), this method

is known as “backpropagation”.

We take MLP as an example to illustrate how backpropagation actually works. Denote the

output of the l-th layer after activation σ by a(l) ∈ Rdl , and the output before σ by z(l) ∈ Rdl . The

feed-forward information flow can be written as:

z(l+1) = W (l+1)a(l) + b(l+1)

a(l+1) = σ(z(l+1))

(2.6)

Suppose that ∂L
∂z(l) = δ(l) ∈ Rdl , δ(l) can be used to represent how sensitive the loss value is to

neurons in the l-th layer. Compute δ(l) by the chain rule:

δ(l) =
∂L

∂z(l)

=
∂a(l)

∂z(l)

∂z(l+1)

∂a(l)

∂L

∂z(l+1)

=
∂a(l)

∂z(l)

∂z(l+1)

∂a(l)
δ(l+1) (2.7)

Recall that in vector calculus (Deisenroth et al., 2020), the derivative of a column vector y =

y1...ym w.r.t. to a column vector x = x1...xn is (here we use the denominator layout, i.e. elements

in ∂y
∂x

are arranged in the same order as x):

31

∂y

∂x
=


(∂y
∂x1

)⊤

...

(∂y
∂xn

)⊤

 =


dy1
dx1

· · · dym
dx1

...
dy1
dxn

· · · dym
dxn

 (2.8)

As σ is a point-wise activation, each element in a(l) depends only on the element at the same

position in z(l). ∂a(l)

∂z(l) is thus a diagonal matrix:

∂a(l)

∂z(l)
=


dσ(z

(l)
1)

dz
(l)
1

· · · dσ(z
(l)
1)

dz
(l)
dl

...
σ(dz

(l)
dl

)

dz
(l)
1

· · ·
σ(dz

(l)
dl

)

dz
(l)
dl

 =


σ′(z

(l)
1) · · · 0

...

0 · · · σ′(z
(l)
dl
)

 = diag(σ′(z(l))) (2.9)

where diag represents a diagonal matrix and σ′ denotes the derivative function of σ.

From Equation 2.6 we have:

z
(l+1)
i =

dl∑
k=1

W
(l+1)
ik a

(l)
k

dz
(l+1)
i

da
(l)
j

= W
(l+1)
ij

(2.10)

Combine Equation 2.8 and Equation 2.10:

∂z(l+1)

∂a(l)
=


dz

(l+1)
1

da
(l)
1

· · ·
dz

(l+1)
dl+1

da
(l)
1

...

dz
(l+1)
1

da
(l)
dl

· · ·
dz

(l+1)
dl+1

da
(l)
dl

 =


W

(l+1)
11 · · · W

(l+1)
dl+11

...

W
(l+1)
1dl

· · · W
(l+1)
dl+1dl

 = (W (l+1))⊤ (2.11)

Substitute Equation 2.9 and Equation 2.11 into Equation 2.7, we have:

δ(l) = σ′(z(l))⊙ ((W (l+1))⊤δ(l+1)) (2.12)

where⊙ denotes the element-wise multiplication. We can see that in Equation 2.12, δ(l) is dependent

on the weight of the next layer W (l+1) and δ(l+1), and no information from previous layers is needed.

32

This demonstrates that the gradient flow is backward.

2.2.2.3 Minibatch Stochastic Methods

We have described generally how gradient descent works and how to compute gradients in a neural

network effectively. There exists another problem: How do we feed training examples to a neural

model? Neither feeding examples one by one nor feeding all examples at once is a good solution:

feeding one single example at a time will slow down the training process, and a single example may

provide an inaccurate estimation of gradients; feeding all examples at once is also problematic due

to memory limitation.

An effective algorithm to handle this problem is Stochastic Gradient Descent (SGD). As an

extension of gradient descent, the principle of SGD is to sample a small subset of examples to

perform gradient steps instead of using the whole dataset. The small subset of examples extracted

at each time is also known as “minibatch”.

The loss function over a training set T = {(x1, y1), ..., (xN , yN)} can be decomposed as a sum of

per-example function L(f(xi;θ), yi) (as in Equation 2.3):

LT =
1

N

N∑
i=1

L(f(xi;θ), yi) (2.13)

The same applies to the gradient over T:

∇θLT =
1

N

N∑
i=1

∇θL(f(xi;θ), yi) (2.14)

It is possible to estimate the gradient over T using the gradient over a minibatch of examples

B = {(x1, y1), ..., (xM , yM)}. The estimate of the gradient can be formed as:

g =
1

M

M∑
i=1

∇θL(f(xi;θ), yi) (2.15)

33

Then the SGD algorithm makes a gradient step:

θ = θ − γg (2.16)

In deep learning, a complete iteration over the training set is known as an “epoch”. In practice, we

usually shuffle the training examples once at the beginning of each epoch, then extract a minibatch

in order for each gradient step.

Some studies propose enhancements to SGD (Duchi et al., 2011; Kingma and Ba, 2014; Loshchilov

and Hutter, 2017). Among different optimization algorithms, Adam (Kingma and Ba, 2014) is the

most commonly used optimizer for training large language models as in studies such as (Devlin

et al., 2019; Gu et al., 2021; Lee et al., 2020). We omit details about Adam here since illustrating

these advanced optimization algorithms is beyond the scope of neural network basics. In our work,

if no special explanation is given, we always use Adam as the optimizer in our experiments.

2.2.3 Seeds and Ensembling

The training process of neural networks is not deterministic, i.e. given the same input and hyperpa-

rameters (fixed parameters other than trainable weights of a neural model such as learning rate, and

number of hidden layers), the weights of a neural network are different after each training process.

The randomness comes from several aspects (Bouthillier et al., 2021):

• Random initialization of weights;

• Random sampling of minibatches;

• Certain strategies introduce extra randomness, e.g. Dropout (Srivastava et al., 2014) randomly

chooses a certain number of neurons to remove temporarily for regularization purposes.

Randomness can be beneficial: a good random weight initialization may lead to better con-

vergence; gradient estimation from randomly sampled examples can help optimizers avoid local

minima; strategies like Dropout can increase the robustness of neural networks and prevent over-

fitting. However, the randomness also makes the performance of neural models unstable, it is thus

34

crucial to reduce the variance of predictions obtained from neural models. One solution to handle

the high variance of neural networks is the ensembling technique. Ensembling refers to combining

predictions of various base models in order to create a robust output. In our work, we choose hard

voting as our ensembling strategy, i.e. we always choose the class predicted by most models as the

final prediction.

Another problem raised by randomness is that it is hard to reproduce experimental results. A

commonly used solution is to use fixed random seeds at the beginning of training. A random seed is

an integer that is used to initialize a pseudorandom number generator. Due to the nature of number-

generating algorithms, a number sequence generated is fully determined by the initial seed. Since

most deep learning frameworks like Pytorch (Paszke et al., 2019a) use the pseudorandom number

generator in their implementations, in practice the reproducibility of neural model predictions can

be guaranteed by simply setting the same seeds for different training processes. We follow this

convention in our experiments.

2.3 Tokenization

Tokenization is an important data preprocessing step in NLP. Most NLP methods treat a piece of

text as a sequence of tokens. A token refers to a common sub-sequence of text, which can be a

sequence of characters, a symbol, a punctuation mark, etc. Traditional tokenizers such as Stanford

CoreNLP (Manning et al., 2014) use a collection of rules to segment texts into English words or

symbols. However, since the size of word vocabulary is usually limited due to computation com-

plexity limitations, using complete words as tokens raises the Out-Of-Vocabulary (OOV) problem:

tokens encountered in the inference stage may not exist in the vocabulary (the set of words that

have been used for training), and these unrecognized tokens may degrade the performance of NLP

models. Another challenge for embedding-based methods is that even if we build a vocabulary that

is big enough to accommodate all words, vectors of low-frequency words will not be fully trained.

To handle these problems, tokenization algorithms based on sub-words are proposed. In this thesis,

we focus on the WordPiece tokenization (Wu et al., 2016).

35

As indicated in (Wu et al., 2016): “The WordPiece model is generated using a data-driven

approach to maximize the language-model likelihood of the training data, given an evolving word

definition.” Given a corpus C and a desired number of word pieces N , the WordPiece algorithm

works as follows (Schuster and Nakajima, 2012):

1. Initialize the word piece vocabulary with five special symbols used in BERT: [CLS], [SEP],

[UNK], [PAD], [MASK]. The function of special symbols will be presented in Section 2.6.

2. Tokenize the corpus first into words. For each word, add the first letter to the vocabulary;

add all subsequent letters prefixed by “##”. If there are non-English words or other symbols,

add their ASCII values;

3. Build a language model on C using the initialized word piece vocabulary;

4. Generate a new word piece by combining two word pieces (except the 5 special symbols) in

the current vocabulary. Choose the word piece that increases the likelihood over C the most

when added to the vocabulary;

5. Repeat 2 until N is reached or the likelihood increase falls below a certain threshold.

“Wordpieces achieve a balance between the flexibility of characters and efficiency of words.” (Wu

et al., 2016). With WordPiece tokenization OOV words can be segmented into word pieces and

these word pieces are guaranteed to be frequent enough. Wu et al. (2016) also reports that using

a total vocabulary between 8k and 32k word pieces achieves both good accuracy on NLP tasks

and fast decoding speed. The number of word pieces used in BERT and its variants drops in this

(8k,32k) interval. For example, there are 30k word pieces for BERT (Devlin et al., 2019); 28,996

for BioBERT (Lee et al., 2020); 28,895 for PubMedBERT (Gu et al., 2021).

To give an insight into how WordPiece tokenization works, take the sentence from Figure 1.1 as

an example. After tokenization (with the tokenizer from PubMedBERT) we obtain a word piece

sequence as follows: [CLS], arg, ##atr, ##oba, ##n, has, advantages, over, heparin, for, the,

inhibition, of, clot, , bound, thrombin, ., [SEP].

36

2.4 Transformer

Since its invention in 2017, Transformer (Vaswani et al., 2017) has been ubiquitous as the base

architecture for most Large Language Models (LLMs). Unlike the original Transformer (Vaswani

et al., 2017) with an encoder-decoder architecture (Sutskever et al., 2014), subsequent LLMs make

slight modifications. For example, BERT (Devlin et al., 2019) is an encoder-only Transformer, while

GPT (Radford et al., 2018, 2019; Brown et al., 2020) is a decoder-only Transformer. In this section,

we explain the attention mechanism and present the encoder-decoder architecture of Transformer.

2.4.1 Attention Mechanism

Bahdanau et al. (2014) first proposed the attention mechanism for machine translation tasks, but

their model architecture is a mixture of attention layers and RNN (Recurrent Neural Network) rather

than pure attention layers. The attention mechanism mimics the cognitive attention of humans.

Given a sequence, the intuition is to assign a weight wij to each pair of elements (ei, ej) representing

the importance of ej to ei, where ei refers to the i-th element in the sequence. This mechanism

allows thus each element to focus on important segments rather than the whole sequence. This

mechanism consists of computing the output of an attention function (Vaswani et al., 2017):

An attention function can be described as mapping a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all vectors. The output is

computed as a weighted sum of the values, where the weight assigned to each value is

computed by a compatibility function of the query with the corresponding key.

For simplicity, assume that queries, keys and values have the same dimension d. In the scenario

of NLP, the input to Transformer is a sequence of word pieces (tokenized text by the WordPiece

tokenizer): (wp1, wp2, ..., wpN). Then we have the corresponding word piece embedding matrix

E ∈ RN×d. Queries (Q), keys (K) and values (V) are computed by:

Q = EWQ,K = EWK ,V = EWV (2.17)

37

Figure 2.8: Diagram of attention (source: (Vaswani et al., 2017)). Q, K, V are computed using
Equation 2.17.

where WQ ∈ Rd×d, WK ∈ Rd×d and WV ∈ Rd×d are trainable weights. The output of the attention

function is then computed by:

Attention(Q,K,V) = softmax(
QKT

√
d

)V (2.18)

Suppose that A = softmax(QKT
√
d
), then A is a N ×N matrix and aij is the weight that the i-th

word piece wpi assigns to the j-th word piece wpj, i.e. the “attention” that wpi pays to wpj. It is

noteworthy that A is not symmetric since WQ and WK are different. The diagram of attention is

shown in Figure 2.8. To give an insight into attention coefficients, we compute the matrix containing

attention coefficients for the sentence in Figure 1.1 and plot the result in Figure 2.9. Coefficients of

each the i-th row represent the attention weights between the i-th token and all other tokens.

Equation 2.18 can be further decomposed to explain the intuition of the attention mechanism.

To compute the updated embedding of the i-th word piece v′i given A and V , we have:

(v′i)j =
N∑
k=1

aikVkj (2.19)

Omit j in the Equation 2.19, v′i can be written as a weighted sum of value vectors in V:

v′i =
N∑
k=1

aikvk (2.20)

38

Figure 2.9: Visualisation of the attention coefficient matrix (L = 12, H = 4) from PubMedBERT
(Gu et al., 2021) given the sentence from Figure 1.1 as input. L refers to the layer index, and H
refers to the attention head index. A value of 0.0 is marked in deep blue, and 1.0 is marked in deep
red. The sentence is tokenized using the tokenizer from PubMedBERT.

39

Figure 2.10: Diagram of multi-head attention. (source: (Vaswani et al., 2017)) h refers to the
number of attention heads.

where vk refers to the input embedding of the k-th word piece.

2.4.2 Multi-Head Attention

The attention function consists of computing once linear projections WQ, WK , WV as shown in

Equation 2.17. We can further enrich the representations learned by the attention mechanism: by

performing the attention function multiple times and learning different linear projections at each

time. Outputs of each attention function are then concatenated. “Multi-head attention allows the

model to jointly attend to information from different representation subspaces at different positions.”

(Vaswani et al., 2017). The diagram of multi-head attention is shown in Figure 2.10.

2.4.3 Model Architecture

In this part, we present the encoder-decoder architecture proposed in the original article of Trans-

former (Vaswani et al., 2017). The architecture is shown in Figure 2.11. Though current LMs do

not inherit exactly the same architecture, most of them use a similar architecture that is composed

of stacked attention layers.

As shown in Figure 2.11, each attention layer in the encoder contains two sub-layers: a multi-

head self-attention sub-layer and a fully-connected sub-layer. A non-linear activation is used in the

fully-connected sub-layer to add non-linearity to the network (same as the function of σ in MLP;

40

Figure 2.11: The model architecture of Transformer. (source: (Vaswani et al., 2017))

refer to Section 2.2). Both sub-layers connect the input and output by the residual connection (He

et al., 2016), a type of skip-connection that is able to ease the optimization of neural networks. The

residual connection provides an additional path of data flow by directly connecting the input and

output. Suppose that we have an input x and a function F expressed by a neural sub-layer. The

output of residual connection is F(x)+x. Besides, layer normalization (Ba et al., 2016) is performed

on the outputs of both sub-layers. The layer normalization consists of re-centering and re-scaling

the inputs to neurons of the same layer in order to accelerate the convergence of the network. The

operation of residual connection and layer normalization is marked as “Add & Norm” in Figure 2.11.

The output of the last attention layer in the encoder is used as input to each attention layer in the

decoder.

The attention layer in the decoder is slightly different: each layer contains a masked multi-head

attention sub-layer. “Masked” means that the attention coefficient matrix is lower triangular, i.e.

41

Figure 2.12: The masked version of Figure 2.9.

each token is only allowed to attend to previous tokens. Take the example from Figure 2.9, the

corresponding masked matrix should be as shown in Figure 2.12. The masked attention sub-layer

is created for the auto-regressive scenario, i.e. when generating texts, previously predicted tokens

are used as context to predict the next token. The final output of the decoder is then passed to a

linear layer with a softmax activation to compute the probabilities of target classes.

2.5 Transfer Learning

The concept of transfer learning comes from the field of representation learning. Learning good

representations is important because the difficulty of information processing tasks may depend on

how the information is represented. “Generally speaking, a good representation is the one that

makes a subsequent learning task easier.” (Goodfellow et al., 2016c). For example, dense word

vectors computed by context-based prediction tasks (as presented in Subsection 2.1.3) are better

representations than one-hot word vectors: one-hot word vectors are less informative as every pair

of one-hot word vectors are the same L2 distance away from each other; while the L2 distance

42

between each pair of dense word vectors is found to encode their semantic similarity (Mikolov et al.,

2013). Experiments also demonstrate that using dense vectors in NLP tasks usually leads to better

performance.

The process of training a neural network can be regarded as a kind of representation learning. In

the scenario of relation extraction, in most cases the last layer is a linear classifier with a softmax ac-

tivation, and the rest of the layers actually provides a representation to this classifier. Furthermore,

the intermediate representations can be shared by different tasks. Good representations benefit not

only RE but also other NLP tasks. This observation leads to the idea of transfer learning: Transfer

learned knowledge (shared intermediate representations) to various tasks. The benefits of transfer

learning are manifold:

1. It is possible to train a neural network that learns general representations only once, then

continue training this network on downstream tasks. This is less time-consuming compared

to training a neural network from scratch for each downstream task. The process of learning

general knowledge is known as “pretraining”, and the process of adapting a general architecture

to specific tasks is known as “fine-tuning”;

2. Manually-annotated data is not necessary for pre-training. For example, the CBOW model

in word2vec (Mikolov et al., 2013) predicts the current word based on its context. Though

the prediction task is supervised, labels can be generated automatically from unlabelled texts

(which is why the term “unsupervised pre-training” is sometimes used).

The first benefit of transfer learning can be explained by a practical observation: “The choice

of initial parameters for a deep neural network can have a significant regularizing effect on the

model (and, to a lesser extent, that it can improve optimization.)” (Goodfellow et al., 2016a) As

mentioned above, this “pretraining plus fine-tuning” strategy uses weights learned from the unsuper-

vised learning stage as the weight initialization for the fine-tuning stage, which is generally a better

initialization than a random one. Another explanation is that features learned from unsupervised

pretraining may also be useful for the supervised task. It is quite evident for some NLP tasks:

understanding semantic similarities between words is helpful to determine how similar two texts are

43

(Semantic Textual Similarity).

To summarize, transfer learning consists of learning from a large amount of unlabeled data and a

relatively small amount of labeled data. In most cases, a general network is pre-trained on unlabeled

data, then fine-tuned on labeled data of downstream tasks. Some extreme cases of transfer learning

exist such as few-shot (zero-shot) learning: a few (or zero) labeled examples are given in the input

to a pre-trained LM, and no weight is updated.

2.6 BERT: Transformer-based Pre-trained LLM

In previous sections, we have presented the self-attention mechanism and discussed the advantages of

transfer learning. BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al.,

2019) inherits the encoder architecture of Transformer and is pre-trained based on the principle of

transfer learning. The originality of BERT comes from several aspects:

1. Segment embeddings are introduced in BERT along with token embeddings and position

embeddings,;

2. BERT proposes two bidirectional pre-training tasks that are found to be effective for down-

stream NLP tasks;

The success of BERT demonstrates the importance of transfer learning. since BERT, the pre-

training and fine-tuning framework has become mainstream in the field of NLP (Devlin et al.,

2019):

BERT advances the state of the art for eleven NLP tasks [...] We show that pre-trained

representations reduce the need for many heavily-engineered task-specific architectures.

BERT is the first fine-tuning based representation model that achieves state-of-the-art

performance on a large suite of sentence-level and token-level tasks, outperforming many

task-specific architectures.

In this section, we first present the pre-training tasks of BERT, then focus on BERT variants that

are proposed to adapt BERT to domain-specific scenarios. Because the architecture of BERT is “al-

44

most” identical to the Transformer encoder, we will skip the introduction of the model architecture.

The main differences between BERT and the Transformer encoder in terms of model architecture

are: BERT uses Gelu (Hendrycks and Gimpel, 2016) as the activation in fully connected sub-layers

rather than the previously popular Relu; and BERT contains more attention layers.

2.6.1 Pre-training of BERT

Generative Transformer-based models such as GPT-2 (Radford et al., 2019) use Language modeling

as the pre-training task. It consists of modeling the probability of a sentence s = (t1, t2, ..., tn). This

joint probability can be factorized as the product of conditional probabilities (Jelinek, 1980; Bengio

et al., 2000):

p(s) =
N∏
i=1

p(tn|t1, ..., tn−1) (2.21)

A main advantage of using language modeling is that it only allows each token to “see” previous

tokens, which is mandatory for an auto-regressive model because there is no context from the right

side in the decoding stage. However, this characteristic is not necessary for an encoder like BERT.

A downside of using language modeling is that when predicting the current token, only contexts

from the left side are used. Therefore, BERT chooses to use bidirectional contexts. Besides, in

order to prevent each token from “seeing” itself, the authors propose to randomly replace a token

with a special symbol “[MASK]” and then ask the model to predict the masked token. This pre-

training task is named Masked Language Model (MLM). Unlike Equation 2.21, the objective of

MLM changes to maximize:

p(ti) = p(ti|t1, ..., ti−1, ti+1, ..., tn) (2.22)

where ti is selected to be masked. However, simply replacing all target tokens with [MASK] is

problematic since no tokens are masked in fine-tuning data. To mitigate this, the authors propose

to optimize this strategy further (Devlin et al., 2019):

The training data generator chooses 15% of the token positions at random for prediction.

45

If the i-th token is chosen, we replace the i-th token with (1) the [MASK] token 80% of

the time (2) a random token 10% of the time (3) the unchanged i-th token 10% of the

time.

Since BERT uses WordPiece tokenization, they mask 15% of word piece tokens in each sequence

randomly, “no special consideration given to partial word pieces.” (Devlin et al., 2019)

Since certain NLP tasks such as QA (Question Answering) require BERT to have the ability

to understand relations between sentences, a second binarized pre-training task is proposed: Next

Sentence Prediction (NSP). Given a pair of sentences, the NSP task consists of predicting if one

sentence follows another in the original document. Pre-training data is generated for NSP tasks

such that (Devlin et al., 2019):

when choosing the sentences A and B for each pre-training example, 50% of the time B

is the actual next sentence that follows A (labeled as IsNext), and 50% of the time it is

a random sentence from the corpus (labeled as NotNext).

Though the NSP task is found to be beneficial to some tasks like QA (Devlin et al., 2019), some

studies (Liu et al., 2019; Joshi et al., 2020) question the necessity of it. Despite this controversy,

all BERT variants used in our experiments are pre-trained with both MLM and NSP tasks. An

example of the pre-training and fine-tuning procedure is shown in Figure 2.13.

Figure 2.13: The pre-training and fine-tuning framework of BERT. (source: (Devlin et al., 2019))

46

The pre-training data of BERT is extracted from two sources: BookCorpus (800M words) (Zhu

et al., 2015) and English Wikipedia (2,500M words). BookCorpus contains 11,038 free books from

the web, each book has more than 20k words. English Wikipedia is an online collaborative encyclo-

pedia, and the total volume of the compressed texts of its articles amounted to 20 GB (November

2022).

Except for [MASK], there exist other special symbols used in BERT:

[CLS]: inserted at the beginning of each input sentence; the vector representation of [CLS] is

used as the sentence representation for the NSP task;

[SEP]: inserted at the end of each input sentence or between two sentences (used to separate

two sentences in a sentence pair for the NSP task);

[UNK]: used to denote an unrecognized word piece;

[PAD]: added at the end of each sentence so that sentences in a minibatch have the same

length;

2.6.2 BERT Embeddings

As mentioned in Subsection 2.1.3, a token embedding itself encodes no positional information.

However, the lack of positional information can be supplemented by position embeddings. There are

three types of embedding in BERT: token embedding, position embedding, and segment embedding.

Each type of embedding is represented as a matrix in the architecture of BERT and used to initialize

vector representations of the input. The three types of embedding share the same vector dimension

d:

• Token embeddings refer to dense vectors corresponding to word pieces in the vocabulary of

BERT. Denote the vocabulary by V and token embedding matrix by Etoken, then Etoken ∈

R|V |×d;

• Position embeddings encode the positions of each token in the sequence. Unlike the sinusoid

position embeddings used in the original Transformer (Vaswani et al., 2017), BERT uses

47

absolute position embeddings, i.e. positions are represented by integer indexes of tokens.

This encoding method fixes the maximum length of input sequences. Therefore, BERT cannot

accept sequences longer than a fixed value L (e.g. 512 for BERTbase). Denote the position

embedding matrix by Eposition, then Eposition ∈ RL×d;

• Segment embeddings are created specifically for the NSP task. The segment embedding matrix

can be denoted by Esegment ∈ R2×d, there are only two vectors in Esegment, each encoding a

segment value 0 or 1. A token that belongs to the first sentence has a value of 0 in the segment

sequence, otherwise has a value of 1. For the NSP task, given a pair of sentences, the two

sentences are separated by a special symbol [SEP].

An input tokenized sentence is turned into three sequences before being passed to the BERT

encoder: a word piece index sequence, a position index sequence, and a segment value sequence.

Each of the three sequences is then turned into embeddings by a lookup operation respectively in

Etoken, Eposition and Esegment. The sum of the three embeddings is then computed and used as the

input to the BERT encoder. This procedure is shown in Figure 2.14.

Figure 2.14: Embeddings of an input tokenized sentence are the sum of token, position and segment
embeddings. (source: (Devlin et al., 2019))

2.6.3 Domain-specific BERT

Though BERT has outperformed previous state-of-the-art models over many downstream NLP

tasks, directly fine-tuning it on biomedical texts has limitations (Lee et al., 2020):

48

First, BERT is trained and tested mainly on datasets containing general domain texts

(e.g. Wikipedia), it is difficult to estimate their performance on datasets containing

biomedical texts. Also, the word distributions of general and biomedical corpora are

quite different, which can often be a problem for biomedical text mining models.

To handle this problem, a solution is to pre-train BERT on biomedical texts. Based on this

hypothesis, biomedical BERT variants have been proposed such as BioBERT (Lee et al., 2020),

SciBERT (Beltagy et al., 2019), and PubMedBERT (Gu et al., 2021).

Most BERT variants share the same architecture as vanilla BERT. They differ from each other

mainly in the following aspects: (1) pre-training corpus; (2) pre-training initialization; (3) Word-

Piece vocabulary. We list the comparison results between BioBERT, SciBERT and PubMedBERT

in Table 2.3.

BERT variant pre-training corpus initialized from BERT? new WordPiece vocabulary?

BioBERT

English Wikipedia
Book Corpus

PubMed Abstracts
PMC Full-text articles

SciBERT Semantic Scholar
PubMedBERT PubMed Abstracts

Table 2.3: Comparison between three different BERT variants: BioBERT, SciBERT and Pub-
MedBERT. Since each variant has multiple versions, we choose to compare the following ver-
sions: biobert-base-cased-v1.2 (BioBERT); scibert_scivocab_uncased (SciBERT); BiomedNLP-
PubMedBERT-base-uncased-abstract (PubMedBERT)1. Three aspects are compared: pre-training
corpus; if the pre-training starts from BERT checkpoints; and if a new WordPiece vocabulary is
created.

Due to the large volume of biomedical data (14 million abstracts, 3.2 billion words used by

PubMedBERT) and the existence of long biomedical terms, Gu et al. (2021) emphasizes the impor-

tance of domain-specific pre-training from scratch and in-domain WordPiece vocabulary. Though

BioBERT is similar to PubMedBERT, PubMedBERT consistently outperforms BioBERT in most

downstream tasks (Gu et al., 2021). To give an insight into how in-domain vocabulary helps, we

compare the WordPiece tokenization result of BioBERT and PubMedBERT in Table 2.4. Due to

1Version names of corresponding pre-trained models of Huggingface (Wolf et al., 2020).

49

the superior performance of PubMedBERT over BioBERT when applied to biomedical texts, we

choose PubMedBERT as the base model in all our experiments.

biomedical term BioBERT PubMedBERT
diabetes
DNA d ##na

hypertension h ##yper ##tens ##ion
lidocaine lid ##oc ##aine

chloramphenicol ch ##lora ##mp ##hen ##ico ##l
acetyltransferase ace ##ty ##lt ##ran ##s ##fer ##ase

Table 2.4: WordPiece tokenization results of BioBERT and PubMedBERT for some biomedical
terms. A tick indicates that the exact word exists as a word piece token in the corresponding
vocabulary.

2.7 General Neural Architecture for RE

Now that we have basic knowledge about neural networks, we present a general neural architec-

ture commonly used for relation extraction, as shown in Figure 2.15. Suppose that we have (sen-

tence,label) pairs as input. It takes several steps to compute probabilities of relation types:

• Tokenization: an input sentence is represented as a sequence of word pieces;

• Encoding: the word piece sequence is transformed into a sequence of fixed-length embeddings

(represented as a matrix);

• Pooling: obtain the sentence embedding from the word piece embedding matrix. For BERT,

we can achieve that by simply taking the embedding of [CLS] (Gu et al., 2021; Lee et al.,

2020);

• Linear classifier with softmax (as in Equation 2.2) activation: project the sentence embedding

to a vector of dimension Nr, where Nr represents the number of possible relation types.

During the inference stage, we take the most probable relation type as the prediction; during

the training stage, a loss value is computed using the prediction ŷ and the one-hot vector of true

labels y (as mentioned in Subsection 2.2.1):

50

L(ŷ,y) = −
Nr∑
i=1

wilog(ŷi)yi (2.23)

where wi is the weight for the i-th relation type. A weighted loss function can better handle

imbalanced datasets since we can modify the importance of different relation types by adjusting wi.

wi can be calculated by:

wi =

∑Nr

j=1Nj

Ni

(2.24)

Relations with fewer examples thus have greater weights. Once L(ŷ,y) is defined, gradients of

L w.r.t. model weights can be calculated and back-propagated. A gradient-based optimizer can

then be used to train the neural model as described in Section 2.2.

2.8 Prerequisites of Biomedical Relation Extraction

We have discussed the challenges of biomedical relation extraction in the first chapter. Before diving

into details about adapting BERT to biomedical RE tasks, it is very important to find relevant

datasets since we always need data to experimentally verify if we make advances by proposing

new models. In this section, we first present benchmark datasets that are used in experiments

throughout this thesis, then basic pre-processing steps to extract structured data from raw texts.

After that, we introduce the evaluation metrics that we use.

2.8.1 Datasets

We choose three biomedical relation extraction datasets to evaluate the performance of different

models: ChemProt (Krallinger et al., 2017), DrugProt (Miranda et al., 2021) and Bacteria Biotope

Relation extraction (BB-Rel) (Bossy et al., 2019). This choice is based on multiple factors, e.g.

popularity, diversity of entity types, size of the dataset. All datasets are annotated by domain

experts, the quality of the datasets is thus guaranteed. Besides, these datasets were all created

in the context of relevant NLP challenges, so studies and experimental results prior to our work

exist, which makes it easier for us to know where the performance of our proposed models stands.

51

Figure 2.15: A general neural architecture for supervised relation extraction.

52

Post-challenge studies on these datasets also help us keep abreast of state-of-the-art models that

actually work in practical use.

2.8.1.1 ChemProt & DrugProt

We present ChemProt (Krallinger et al., 2017) and DrugProt (Miranda et al., 2021) together as they

both contain chemical/drug-protein/gene interactions, and they use the same relation hierarchy

as shown in Figure 2.16. All relation types in the figure are directed, i.e. only relations from

chemical/drug to protein/gene are annotated, not vice versa. For ChemProt, though all relation

types (leaves and nodes in the tree of Figure 2.16) are annotated, they are categorized into 10

groups based on biological semantical similarity, and a label in the form of CPR:X (Chemical-

Protein Relation) is assigned to each group (X = 1, ..., 10). For example, relations upregulator,

activator and indirect upregulator belong to the group labeled by CPR:3. Groups of relation types

are shown in Table 2.5. Only 5 out of the 10 CPRs are used for evaluation (CPR:3, CPR:4, CPR:5,

CPR:6, CPR:9).

Unlike ChemProt, DrugProt searches to “facilitate the development of more granular relation

extraction systems” (Miranda et al., 2021) and therefore relation types are not regrouped. In Drug-

Prot, 13 relation types are annotated and used for evaluation: indirect-downregulator, indirect-

upregulator, direct-regulator, activator, inhibitor, agonist, antagonist, agonist-activator, agonist-

inhibitor, product-of, substrate, substrate-product-of, and part-of. It is noteworthy that among the

10,000 documents of the DrugProt test set, only 750 documents are manually annotated and used

for evaluation in order to prevent participants from cheating. Statistics of ChemProt and DrugProt

are summarized in Table 2.6.

2.8.1.2 Bacteria Biotope 2019

The BB-Rel (Bossy et al., 2019) corpus is curated from PubMed abstracts and PubMed full-text

articles. Below we cite the representation scheme from (Bossy et al., 2019) containing four entity

types:

• Microorganism: names denoting microorganism taxa that correspond to microorganism branches

53

Figure 2.16: ChemProt and DrugProt relation types. (source: (Krallinger et al., 2017))

Group Eval? ChemProt relations belonging to the group
CPR:1 part-of
CPR:2 regulator | direct-regulator | indirect-regulator
CPR:3 upregulator | activator | indirect-upregulator
CPR:4 downregulator | inhibitor | indirect-downregulator
CPR:5 agonist | agonist-activator | agonist-inhibitor
CPR:6 antagonist
CPR:7 modulator | modulator-activator | modulator-inhibitor
CPR:8 cofactor
CPR:9 substrate | product-of | substrate-product-of
CPR:10 not

Table 2.5: Groups of ChemProt relation types. A tick in the second column indicates that the
corresponding group is used for evaluation, otherwise it is not.

54

Set # Docs # Entity mentions # RelationsChemical/Drug Gene/Protein
train 1,020 13,017 12,735 4,157
development 612 8,004 7,563 2,416
test 800 10,810 10,018 3,458

(a) ChemProt statistics.

Set # Docs # Entity mentions # RelationsChemical/Drug Gene/Protein
train 3,500 46,274 43,255 17,274
development 750 9,853 9,005 3,761
test 10,000 9,434 9,515 -

(b) DrugProt statistics. Relation annotations of the test set are not available.

Set # Docs # Entity mentions # RelationsMicroorganism Habitat Geographical Phenotype
train 125 730 1,056 34 359 1142
development 64 427 632 46 161 610
test 93 634 920 37 251 -

(c) BB-Rel statistics. Relation annotations of the test set are not available.

Table 2.6: Dataset statistics.

of the NCBI taxonomy;

• Habitat : phrases denoting physical places where microorganisms may be observed;

• Geographical : names of geographical places;

• Phenotype: expressions describing microbial characteristics.

and two directed relation types:

• lives_in relations which link a microorganism entity to its location (either a habitat or a

geographical entity, or in few rare cases a microorganism entity);

• exhibits relations which link a microorganism entity to a phenotype entity.

Descriptive statistics of BB-Rel are summarized in Table 2.6c.

55

2.8.2 Data Pre-processing

In this section, the objective of data pre-processing is limited to preparing data for BERT. Data

processing steps for syntax-enhanced and KB-enhanced models will be presented respectively in

Chapter 3 and Chapter 4. Unlike text classification datasets, relation extraction datasets provide

not only relation annotations but also named entity annotations. An example of relation and entity

annotations is given in Table 2.7. With chemical entities marked in red and gene entities marked

in blue, the original document is:

“Evaluation of animal models for intestinal first-pass metabolism of drug candidates to

be metabolized by CYP3A enzymes via in vivo and in vitro oxidation of midazolam

and triazolam. Abstract 1. To search an appropriate evaluation methodology for the

intestinal first-pass metabolism of new drug candidates, grapefruit juice (GFJ)- and ve-

hicle (tap water)-pretreated mice or rats were orally administered midazolam (MDZ)

or triazolam (TRZ), and blood levels of the parent compounds and their metabolites

were measured by liquid chromatography/MS/MS. A significant effect of GFJ to elevate

the blood levels was observed only for TRZ in mice. 2. In vitro experiments using

mouse, rat and human intestinal and hepatic microsomal fractions demonstrated that

GFJ suppressed the intestinal microsomal oxidation of MDZ and especially TRZ. Sub-

strate inhibition by MDZ caused reduction in 1’-hydroxylation but not 4-hydroxylation

in both intestinal and hepatic microsomal fractions. The kinetic profiles of MDZ oxida-

tion and the substrate inhibition in mouse intestinal and hepatic microsomal fractions

were very similar to those in human microsomes but were different from those in rat

microsomes. Furthermore, MDZ caused mechanism-based inactivation of cytochrome

P450 3A-dependent TRZ 1’-hydroxylation in mouse, rat and human intestinal micro-

somes with similar potencies. 3. These results are useful information in the analysis of

data obtained in mouse and rat for the evaluation of first-pass effects of drug candidates

to be metabolized by CYP3A enzymes.”

The pre-processing procedure can be divided into four steps:

56

subject entity id object entity id relation
T1 T14 INHIBITOR
T2 T14 SUBSTRATE

(a) Relation annotation

entity id entity type span
T1 chemical [1202,1205)
T2 chemical [1274,1277)
T3 chemical [404,413)
T4 chemical [415,418)
T5 chemical [423,432)
T6 chemical [434,437)
T7 chemical [627,630)
T8 chemical [807,810)
T9 chemical [826,829)
T10 chemical [855,858)
T11 chemical [997,1000)
T12 chemical [157,166)
T13 chemical [171,180)
T14 gene [1245,1263)
T15 gene [1536,1541)
T16 gene [105,110)

(b) Entity annotation

Table 2.7: An annotated document (article id: 23282066) from the original DrugProt
development set (https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/
track-1/). Each entity is assigned an id and annotated relations are represented in triples (subject
entity id, object entity id, relation type). The text span corresponding to each entity is also given,
e.g. a span of [1202,1205) means that entity T1 is a substring of length 3 indexed by 1202 in the
original text.

57

https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/

1. Sentence segmentation: we use the off-the-shelf parser Stanza (Qi et al., 2020; Zhang et al.,

2021) to segment each document into sentences;

2. Extraction of valid entity pairs: given entity annotations, extract all valid pairs of entities

using entity type information. Determining whether a pair of entities is valid depends on

the dataset: for example, in DrugProt we consider only chemical/drug-gene/protein relations,

therefore only (chemical/drug, gene/protein) pairs are valid. On ChemProt and DrugProt, we

only consider intra-sentence relations (since few inter-sentence relations exist), therefore any

annotated inter-sentence relation is treated as a false negative during evaluation; On BB-Rel,

we extract entity pairs that span over two sentences. In the case of candidate inter-sentence

relations, we combine the two sentences in which target entities exist and remove all sentences

in-between;

3. Adding entity markers: given each entity pair, add entity markers at the beginning and at the

end of each entity using corresponding text spans. Therefore, we have the same number of

unique sentences with entity markers as valid entity pairs. In this thesis, we use three types

of entity markers for BB-Rel and DrugProt: “@@” for subject entities; “$$” for object entities;

“¢¢” in cases when the subject and object entity refer to the same entity or their text spans

overlap. The choice of entity markers is empirical: we try to choose tokens that rarely exist in

biomedical texts and use different markers for subject and object entities to distinguish them

from each other. We keep the original entity markers in ChemProt since it is a widely used

dataset, and changing entity markers may make the comparison between different methods

less convincing. In ChemProt (Blurb), both subject and object entities are marked as “@

ENTITY $”.

4. Labeling: For each entity pair, if a relation exists, attach its relation type as the label to the

corresponding sentence. Otherwise, attach a “null” label indicating that no relation exists.

Now we use the example document presented above to illustrate our pre-processing procedure

step by step. After sentence segmentation, the document is segmented into 8 sentences. Since in

the second step we select only (chemical, gene) entity pairs, we keep only sentences with at least

58

sentence label
Evaluation of animal models for intestinal first-pass metabolism of
drug candidates to be metabolized by $$ CYP3A $$ enzymes via in
vivo and in vitro oxidation of @@ midazolam @@ and triazolam.

NULL

Evaluation of animal models for intestinal first-pass metabolism of
drug candidates to be metabolized by $$ CYP3A $$ enzymes via in
vivo and in vitro oxidation of midazolam and @@ triazolam @@.

NULL

Furthermore, @@ MDZ @@ caused mechanism-based inactivation of
$$ cytochrome P450 3A $$-dependent TRZ 1’-hydroxylation in
mouse, rat and human intestinal microsomes with similar potencies.

INHIBITOR

Furthermore, MDZ caused mechanism-based inactivation of $$
cytochrome P450 3A $$-dependent @@ TRZ @@ 1’-hydroxylation in
mouse, rat and human intestinal microsomes with similar potencies.

SUBSTRATE

Table 2.8: Pre-processing result of a document (article id: 23282066) from the DrugProt develop-
ment set.

a chemical entity and a gene entity (i.e. in the above document, only sentences with at least an

entity in red and an entity in blue are kept). Therefore, after the first step, two sentences are kept:

1. Evaluation of animal models for intestinal first-pass metabolism of drug candidates to be

metabolized by CYP3A enzymes via in vivo and in vitro oxidation of midazolam and triazolam.

2. Furthermore, MDZ caused mechanism-based inactivation of cytochrome P450 3A-dependent

TRZ 1’-hydroxylation in mouse, rat and human intestinal microsomes with similar potencies.

In each of the two sentences, two valid entity pairs can be extracted, there are thus four sentences

with inserted entity markers. With steps 2-4 combined, the pre-processing result for the example

document is presented in Table 2.8.

2.8.3 Evaluation Metric

Though different evaluation metrics exist for relation extraction, in this thesis we report only the

micro F1-score as it is the metric used in challenges related to all three datasets that we choose.

Since we have added a label null during the data pre-processing, this label is taken as the negative

class, i.e. correctly predicting null does not contribute to the final score. “Micro” here means that

we take all classes other than null as positive classes. For simplicity of expression, we assume that

each relation type is represented by an integer and the relation null is always indexed by 0.

59

Therefore, given predictions ŷ = (ŷ1, ..., ŷN) and true labels y = (y1, ..., yN), denote the set of

possible relation types by R, then we have ŷi ∈ R and yi ∈ R with i ∈ I where I = {1, ..., N}.

Denote the number of true positives, false positives, and false negatives respectively by NTP , NFP

and NFN , we have:

NTP = |{i ∈ I|ŷi = yi & yi ̸= 0}|

NTP +NFN = |{i ∈ I|yi ̸= 0}|

NTP +NFP = |{i ∈ I|ŷi ̸= 0}|

(2.25)

Then the precision p, recall r, and micro F1-score fmicro can be computed as:

p =
NTP

NTP +NFP

r =
NTP

NTP +NFN

fmicro =
2 · p · r
p+ r

(2.26)

2.9 Conclusion

In this chapter, we started with an overview of relation extraction methods prior to fine-tuning

Large Language Models (LLMs). These methods evolve from relying heavily on manually-designed

features or kernels to end-to-end neural models that are partly pre-trained (word embedding). Then

we presented neural network basics, including measuring the dissimilarity between predictions and

true labels by a loss function, optimization basics about adjusting weights of a neural network iter-

atively, and the practical use of random seeds and the ensembling technique. After illustrating the

prerequisites for neural networks, we presented key elements to understand BERT, one of the most

commonly used LLMs: its tokenization algorithm WordPiece, the base architecture Transformer,

the transfer learning principle on which the pretraining-fine-tuning framework is built, and BERT

itself. A general neural architecture for relation extraction is then presented; it applies to most of

the current pre-trained LMs, including BERT. The final part of this chapter covers key elements of

biomedical relation extraction prerequisites. We introduced first relevant benchmark datasets, then

60

data pre-processing steps to turn raw texts into ready-to-use structured data, and at the end the

most commonly used evaluation metrics for biomedical RE tasks.

Nearly all methods that we will present in Chapter 3 and Chapter 4 are neural methods. In this

chapter, we have described general architectures and principles of neural models. In the following

two chapters, we will see how we make modifications to existing neural architectures to achieve

our objective in this thesis: injecting syntactic or knowledge base (KB) information into BERT

to enhance its performance. Generally, existing syntax-enhanced or KB-enhanced models (Subsec-

tion 3.2.2; Section 4.3) can be divided into three categories based on the modifications that they

make: (1) enriching the input; (2) adding vector representations that encode external information

inside the neural architecture; (3) adding learning objectives. This principle applies to our pro-

posed methods as well. We propose three syntax-enhanced models (Section 3.3): CE-PubMedBERT

(2nd category), CT-PubMedBERT (1st category); MTS-PubMedBERT (3rd category). The KB-

enhanced method that we propose, KB-PubMedBERT, belongs to the 2nd category.

61

62

Chapter 3

Injecting Syntactic Information into BERT

Statistical semantics (Delavenay and Delavenay, 1962) consists of applying statistical methods to

describe the meaning of words. It makes an assumption that the sense of a word depends on its

context words, i.e. words sharing a similar context are supposed to have similar meanings. Both the

CBOW model of word2vec (Mikolov et al., 2013) and the MLM pre-training task of BERT use this

hypothesis: they consist of using context words to predict the target word. Therefore, both word

embeddings and pre-trained language models like BERT are presumed to encode semantic informa-

tion. However, though under the assumption of statistical semantics, simple syntactic information

may be learned such as the POS (part of speech) of words, we are unsure whether more complex

syntactic information about the structure of texts can be learned. For natural languages, a sentence

is composed of words with different meanings, but these words cannot be randomly arranged. One

disadvantage of the bag-of-words (refer to 2.1.1) feature is that it contains only word frequencies,

whereas information about how these words are ordered is lost. Yet this lost structural information

is also important in understanding the meaning of texts.

Understanding syntactic structure can be beneficial to relation extraction (RE) tasks. Previous

studies (Bunescu and Mooney, 2005; Xu et al., 2015; Liu et al., 2015) show that using the shortest

dependency path helps extract the most relevant words to the two arguments of a candidate entity

pair, therefore improving the performance of RE. Given a long sentence such as “In vitro and

in vivo studies have shown that argatroban has advantages over heparin for the inhibition of clot-

63

bound thrombin and for the enhancement of thrombolysis with TPA.”, if our goal is to determine the

relationship between “argatroban” and “thrombin”, then we can obtain from the dependency analysis

(which will be presented in Subsection 3.1.1) the shortest dependency path (SDP): “Argatroban”,

“has”, “advantages”, “inhibition”, “thrombin”. We can see that the most important words that suggest

the existence of a relation “inhibitor” are included in the SDP. SDP is an extreme case that removes

less relevant words entirely, we can naturally extend the idea of paying more attention to words

with important syntactic roles to attention-based models. We will discuss how to achieve that later.

In this chapter, we present first two types of commonly used syntactic analyses (Section 3.1),

then focus on existing methods that exploit syntactic information to improve the performance of

relation extraction (Section 3.2). In Section 3.3 we propose three syntax-enhanced models and

test their performances on RE datasets along with an existing syntax-enhanced model. Related

experimental results and analysis will also be presented in Section 3.4 and Section 3.5. Section 3.4

and Section 3.5 are highly inspired by Tang et al. (2022).

3.1 Syntactic Analysis

Syntactic analysis consists of investigating the syntactic roles of words or relationships between

words based on certain syntactic rules. Since the syntactic structure of a sentence is not explicitly

given, we need external tools to obtain it, these external tools are also known as syntactic parsers.

In this section, we present two types of syntactic analysis: dependency analysis which consists

of discovering syntactic relationships between words, and constituency analysis which consists of

segmenting a sentence into nested parts and attributing syntactic roles to each of them.

3.1.1 Dependency Analysis

Given a tokenized sentence, the goal of dependency analysis is to describe the syntactic role of each

word by linking it with another word through a directed dependency relation. The two words linked

by a dependency relation are also known as dependent and head; each dependency relation starts

from the head and points to the dependent. Each dependency relation is a one-to-one correspon-

64

Figure 3.1: The dependency tree of the sentence: “BERT outperforms previous deep-learning mod-
els.”

dence, and every word has at least one link with another word excluding itself. Since the result of

dependency analysis contains word-to-word links, it is also known as the dependency tree (a N -ary

tree) or the dependency graph. The number of dependency relations is limited and may vary with

different versions. In this thesis, when we mention dependency analysis we always refer to Universal

Stanford Dependencies (de Marneffe et al., 2014). To illustrate how dependency analysis works, let

us take a simple example using the sentence “BERT outperforms previous deep-learning models.”.

The corresponding dependency tree is shown in Figure 3.1. The relation “nsubj” between the verb

“outperforms” and “BERT” indicates that “BERT” is the nominal subject of the verb; while the re-

lation “obj” indicates that “models” is the nominal object of the verb. “amod” shows that “previous”

is the adjectival modifier of “models”; and “compound” suggests that “deep-learning” and “models”

make up a two-word compound noun. The detailed explanation of dependency relations shown in

Figure 3.1 is summarized in Table 3.1. It is noteworthy that “root” is a special dependency relation

as it links a word to a virtual word, which is only used to explicitly indicate that a word is the

syntactic root, e.g. in the above example the syntactic root is the verb “outperforms”.

A possible way to represent a dependency graph is through its adjacency matrix. The adjacency

matrix only saves linkage information while information of the dependency relation type and the

direction of dependency relation is discarded, i.e. in each row of the adjacency matrix that corre-

65

Dependency Relation Definition

amod

An adjectival modifier of a noun (or pronoun) is any adjectival
phrase that serves to modify the noun (or pronoun). The relation
applies whether the meaning of the noun is modified in a
compositional way (e.g., large house) or an idiomatic way (hot dogs).

compound

The compound relation is used for multiword expressions (MWEs),
it is used for:

• noun compounds (e.g., phone book);

• for particle verbs (e.g., put...up);

nsubj A nominal subject (nsubj) is a noun which is the syntactic subject
and the proto-agent of a clause.

obj

The object of a verb is the second most core argument of a verb
after the subject. Typically, it is the noun phrase that denotes the
entity acted upon or which undergoes a change of state or motion
(the proto-patient).

punct The punct relation is used for any piece of punctuation in a clause

root The root grammatical relation points to the root of the sentence. A
fake node “root” is used as the governor.

Table 3.1: Definition of a subset of dependency relations (source: (de Marneffe et al., 2014)). There
are in total 65 universal dependency relations.

sponds to a certain word, positions of words that are linked to this word are filled with a value of

1, otherwise filled with a value of 0. Besides, self-connections are added to the adjacency matrix

for each word. The adjacency matrix of the dependency tree in Figure 3.1 is shown in Figure 3.2.

Though the adjacency matrix does not encode the entire information in the dependency graph, it is

easy to integrate into neural models, especially attention-based models because both the attention

matrix and the adjacency matrix contain word-to-word coefficients. We will see later in this chapter

how to exploit the adjacency matrix of the dependency graph for the purpose of injecting syntactic

information.

3.1.2 Constituency Analysis

Unlike dependency analysis, constituency analysis consists of finding the underlying hierarchical

structure that segments a sentence into constituents, where a constituent refers to a group of

words (or a group containing a single word) that functions as a single unit. In a similar way to

66

Figure 3.2: The adjacency matrix that corresponds to the dependency tree in Figure 3.1. A cell of
(word1,word2) marked in deep blue indicates that word1 and word2 are directly linked to each other
in the dependency tree; otherwise, they are not directly linked.

67

Figure 3.3: The constituency tree of the sentence: “BERT outperforms previous deep-learning
models.”

dependency analysis, the result of constituency analysis can also be represented as an N -ary tree.

The difference is that in a dependency tree, each node in intermediate levels and each leaf node

represents a word; while in a constituency tree, each non-leaf node represents a constituent and each

leaf node represents a word. The constituent represented by a non-leaf node n consists of words that

correspond to all leaf nodes in the sub-tree rooted at n. A constituency tag is attributed to each

non-leaf node describing its syntactic function. Let us take the same sentence as in the previous

subsection: “BERT outperforms previous deep-learning models.” The corresponding constituency

tree is given in Figure 3.3. If we traverse the constituency tree from the top, the sentence can be

summarized as a noun phrase (NP), a verb phrase and a punctuation, where a constituent tagged

as NP/VP indicates that the corresponding group of words plays the role of a noun/verb. The

verb phrase is then further decomposed into a verb and a noun phrase. Iteratively decomposing

each constituent into smaller constituents is the characteristic of constituency analysis. A top-down

hierarchical structure is thus built from the biggest constituent (the whole sentence) to the smallest

constituents (each word). Constituency tags can be divided into three categories: clause-level,

phrase-level, and word-level. Table 3.2 lists the definition of a subset of constituency tags from each

category.

68

Constituency Tag Definition

Clause Level

S simple declarative clause.
SBAR Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ Direct question introduced by a wh-word or a wh-phrase.

Phrase Level

ADJP Adjective Phrase.
ADVP Adverb Phrase.
CONJP Conjunction Phrase.

NP Noun Phrase.
PP Prepositional Phrase.
VP Verb Phrase.

Word Level

DT Determiner
JJ Adjective
NN Noun, singular or mass.
NNS Noun, plural.
NNP Proper noun, singular.
RB Adverb
VB Verb, base form.

VBD Verb, past tense.
VBG Verb, gerund or present participle.
VBZ Verb, 3rd person singular present.

Table 3.2: Definition of a subset of constituency tags (source: (Bies et al., 1995)). There are in
total 82 constituency tags.

69

3.2 Related Work

We have presented commonly used syntax representation in the previous section. How to integrate

these representations into neural models like BERT becomes therefore the next topic that we want

to discuss. Studies such as those of (Sachan et al., 2021; Xu et al., 2021; Yu et al., 2020) focus on

exploiting syntax representations to enhance the performance of neural models on relation extraction

tasks. Before diving into the details of existing syntax-enhanced models, we also want to investigate

the following question: Has BERT already learned syntactic information from pre-training? if so,

to what extent has it learned syntactic information? In this section, we first present relevant

studies of the probing technique that measures to what extent syntactic information is encoded by

BERT (Subsection 3.2.1), then focus on existing syntax-enhanced models (Subsection 3.2.2) that

are proposed for RE tasks.

3.2.1 Syntactic Probes

A probe refers to a supervised model designed to find information in a representation (Hewitt et al.,

2021). If syntactic information is encoded by BERT, it must have been saved in pre-trained weights

of BERT. Syntactic probes hypothesize that if we can exploit internal representations of BERT to

approximate certain syntax-related properties, it demonstrates the existence of encoded syntactic

information in BERT (the hypothesis applies to other neural language models as well). Common

targets of probing are word piece vector representation and attention matrices. Clark et al. (2019)

propose to probe individual attention heads. A word piece-level attention map is first turned into a

word-level map: the attention from a split-up word is computed as the mean of the attention weights

from its word pieces; while the attention to a split-up word is the sum of the attention weights to its

word pieces. For each word, the word receiving the most attention from it is taken as its syntactic

head. The proposed probe is evaluated on the Penn Treebank (Marcus et al., 1993) and compared

to fixed-offset baselines, i.e. for each word, the baseline with an offset n predicts always the n-th

word next to it as the syntactic head. The per-dependency comparison result shows that for certain

dependency relations, the syntactic probe performs substantially better than fixed-offset baselines,

70

showing that certain attention heads specialize to specific dependency relations. Instead of directly

using internal representations of BERT for prediction, some studies (Limisiewicz et al., 2020; Hewitt

and Manning, 2019; Reif et al., 2019) propose a simple fine-tuning method using internal BERT

representations to predict syntax-related properties. The syntactic probe thus consists of two parts:

the pre-trained BERT and a fully connected layer. If by simple fine-tuning the syntactic probe

outperforms baselines in predicting a syntactic phenomenon of interest, it suggests that syntactic

information is embedded in BERT. Hewitt et al. (2021) propose a structural probe that aims to

recover the structural properties of dependency trees. “This can be interpreted as finding the part of

the representation space that is used to encode syntax; equivalently, it is finding the distance on the

original space that best fits the tree metrics.” (Hewitt et al., 2021). There are two tree metrics to

recover: pairwise distance and depth of words in the dependency tree. For a sentence l containing n

words w1:n, denote the corresponding vector representations by h1:n. The objective of the structural

probe is to:

• use the L2 distance between a pair of vector representations (hi,hj) to estimate the distance

between wi and wj.

• use the squared norm of vector representations ∥hi∥ to estimate the depth of wi in the depen-

dency tree, i.e. the distance between wi and the root of the dependency tree.

Their experimental results show that the structural probe based on BERT is surprisingly able

to recover the dependency parse structure compared to baseline models such as a right-branching

tree or non-contextualized word embeddings. Therefore, they conclude that BERT seems to embed

the entire dependency parse tree in the space of vector representations. Similarly, Reif et al. (2019)

propose to reconstruct the dependency tree as well, but they change to exploit attention weights.

For each pair of words (wi, wj), corresponding attention weights are extracted from attention heads

across all attention layers, the vector containing these attention weights is then used to train two

probes: the first is a binary probe that predicts if a dependency relation exists between wi and wj in

the dependency tree; the second is a multi-class probe that predicts the type of dependency relation.

The architecture of the proposed syntactic probe is shown in Figure 3.4. Experiments on the Penn

71

Treebank corpus show that the binary probe and the multi-class probe obtain respectively high

accuracy of 85.8% and 71.9%, suggesting that the dependency information is encoded in attention

matrices.

Figure 3.4: The architecture of the syntactic probe proposed by Reif et al. (2019). They use the
base version of BERT that consists of 12 layers each containing 12 attention heads. Therefore, for
each pair of words, an attention vector of dimension 12× 12 = 144 is extracted.

Relevant studies above based on syntactic probes suggest that pre-trained BERT encodes syn-

tactic information, either by encoding distance information of the dependency tree in the vector

representations (depth can also be regarded as a distance) or by encoding word-to-word linkage

information in attention matrices. This discovery is important as it inspires us to design syntax-

enhanced models in subsequent sections.

3.2.2 Syntax-enhanced Models

Though BERT is found to encode syntactic information, there is no evidence that encoded syntactic

information is sufficient and that introducing external syntax is useless or harmful. On the contrary,

existing studies (Guo et al., 2021; Xiong et al., 2019; Zhang et al., 2018; Bai et al., 2021; Sachan et al.,

2021) show that integrating syntactic information can be helpful. In this section, we focus on studies

that successfully introduce syntactic information into neural models to improve the performance on

the RE task. We include studies that do not concern pre-trained language models as well, as the

methods that are used to inject syntactic information into neural models also apply to pre-trained

72

language models.

3.2.2.1 Adjacency Matrix-based Methods

Many previous syntax-enhanced methods (Sachan et al., 2021; Zhang et al., 2018; Yu et al., 2020;

Xiong et al., 2019) consist of using a graph neural network (GNN) specialized to encode dependency

information. As presented in Subsection 3.1.1, a dependency tree can be represented by an adjacency

matrix in which each entry of value 1 corresponds to a direct link between words in the dependency

tree. GNNs of various structures are designed to exploit the adjacency matrix. Zhang et al.

(2018) propose a GCN (Graph Convolutional Network) to directly insert the adjacency matrix

into convolution layers. For each word wi, instead of using a sliding window of fixed length and

summing word vectors within the window, the upgraded word vector h′
i is calculated as the sum of

word vectors that are linked to wi in the dependency tree:

h′
i = σ(

n∑
j=1

AijWhj + b)

where W and b denotes the linear transformation and the bias; A denotes the adjacency matrix.

The method proposed by Zhang et al. (2018) does not compute self-attention coefficients but directly

uses the adjacency matrix as the self-attention matrix. Sachan et al. (2021) use the adjacency matrix

as the attention mask in self-attention sublayers. To extend the dependency tree to word pieces,

for words that are segmented into multiple word pieces, extra edges are added between the first

word piece and the subsequent word pieces. Based on that, they propose syntax-GNN, which is an

encoder that consists of multiple modified transformer layers. The self-attention sublayer is replaced

by graph attention (Veličković et al., 2018), i.e. each word piece attends only to word pieces that are

linked to it in the dependency tree. Original attention weights are kept and the adjacency matrix is

used as a mask. Given original attention weights αij each representing the interaction score between

the i-th and the j-th word piece, the graph attention weight gij is computed as:

gij =
αij∑

k∈N⟩
αik

73

where N⟩ represents the set of word pieces that are linked to the i-th word piece in the dependency

tree. Figure 3.5 shows the diagram of a modified transformer layer in Syntax-GNN. Two syntax-

GNN-based models are then proposed: Late-Fusion and Joint-Fusion. Both models consist of

obtaining syntax-enhanced representations by feeding word piece representations through a syntax-

GNN containing 4 modified transformer layers. The difference is that for Late-Fusion, the syntax-

GNN is placed after BERT, while in Joint-Fusion the syntax-GNN is added before BERT. For

Late-Fusion, the outputs of pre-trained BERT and syntax-GNN are infused using the Highway

Gate (Srivastava et al., 2015) method. Instead of using a simple sum or average operation, in

Highway Gate a parameter gi is set to adjust the importance of two inputs:

gi = σ(vT
i Wg + bg)

hi = gi ⊙ vi + (1− gi)⊙ zi (3.1)

where σ denotes the sigmoid function; Wg and bg are learnable parameters. At each layer of Joint-

Fusion, the sum of syntax-GNN representations and the output from the last BERT layer is used

as input to compute the key and query vectors. The architecture of Late-Fusion and Joint-Fusion

are shown in Figure 3.6. In their experiments, Late-Fusion and Joint-Fusion are tested on Semantic

Role Labeling (SRL), NER, and RE tasks. Experimental results show that Late-Fusion provides

gains on SRL and RE tasks, and Joint-Fusion improves the performance on SRL tasks. They also

find that significant gains obtained on SRL tasks may be due to the fact that gold dependency

parses are available, while on RE tasks only parses obtained from in-domain parsers are available:

“drastic impact on the performance of the Syntax-Augmented BERT models, with substantial gains

only observed when gold parses are used.” (Sachan et al., 2021)

A drawback of the GCN method proposed by Zhang et al. (2018) is that the integrated adja-

cency matrix is fixed during the training, it is therefore unable to adjust the importance of words

to better classify relations. Yu et al. (2020) propose DP-GCN (Dynamically Pruned Graph Con-

volutional Network) in which the rethinking mechanism (Li et al., 2018) is introduced to handle

this problem. The rethinking mechanism consists of adding loops inside a neural network such that

74

Figure 3.5: The modified transformer layer of syntax-GNN (source:(Sachan et al., 2021)). As “some”
is the only word that is not linked to “have”, α34 in the figure is not used for computing the updated
representation of “have”.

75

(a) Late-Fusion (b) Joint-Fusion

Figure 3.6: Two syntax-enhanced models proposed in (Sachan et al., 2021). Inputs to the two
models are word piece embeddings. (source: (Sachan et al., 2021))

76

Figure 3.7: The architecture of DP-GCN (source:(Yu et al., 2020)). The dependency graph denotes
the pruned adjacency matrix (pruned by applying binary gates over it); the semantic graph denotes
the self-attention matrix computed as in the original transformer layer.

chosen intermediate representations are used to compute themselves in the feed-forward pass. Intu-

itively, vector representations at the output of DP-GCN are used to compute a set of binary gates

{z1, ..., zn}, where zi ∈ {0, 1} and a zi of value 1 indicates that the information from the i-th node

in the dependency graph can be used to update the vector representation of each node. Besides,

instead of simply using the adjacency matrix Aadj as the self-attention matrix as in (Zhang et al.,

2018), DP-GCN also computes the self-attention matrix Aatt as in the original transformer layer.

Binary gates are applied over both Aadj and Aatt and their average is used as the final self-attention

matrix in each layer of DP-GCN. The architecture of DP-GCN is shown in Figure 3.7. DP-GCN

is proved to outperform previous syntax-enhanced models such as GCN (Zhang et al., 2018) on a

general-domain corpus TACRED (Zhang et al., 2017).

3.2.2.2 Syntax-aware Pre-training

Since the original BERT is not pre-trained to explicitly capture syntactic information, another

solution to build a syntax-enhanced BERT is to set pre-training tasks that specialize to syntax

(Zhang et al., 2022; Wang et al., 2021; Bai et al., 2021; Xu et al., 2021). Xu et al. (2021) propose

the distance prediction (DP) task that captures global syntactic distances between words. In a

similar way to the structural probe (Hewitt and Manning, 2019), the authors hypothesize that

capturing pairwise syntactic distances between words is beneficial for BERT to be aware of the

77

Figure 3.8: The overview of K-adapter (source: (Wang et al., 2021)).

syntactic structure of texts. The DP task consists of predicting the distance matrix D in which

Dij = d(i, j), where d(i, j) refers to the length of the Shortest Dependency Path (SDP) between

the i-th and the j-th word. Vector representations of words i and j are concatenated and passed

to a linear classifier to predict d(i, j). Wang et al. (2021) propose a K-adapter that consists of two

parts: pre-trained model, and a neural network (known as an adapter) plugged outside the pre-

trained model that specializes in capturing different types of knowledge. Unlike multi-task learning,

K-adapter adopts a new training strategy: to prevent the pre-trained model from forgetting original

knowledge that is learned, parameters of the original pre-trained model are frozen in the pre-training

stage; inversely, the pre-trained model is made trainable and parameters of adapters are frozen in

the fine-tuning stage. To capture syntactic knowledge, the corresponding linguistic adapter is pre-

trained on the dependency relation prediction task: for each word, the goal of the task is to predict

the index of its syntactic head in the dependency tree. The schema of K-adapter pre-training is

shown in Figure 3.8.

78

3.2.3 Discussion

Though previous syntax-enhanced methods are found to improve the RE performance, there still

exist several limitations. Firstly, most of syntax-enhanced methods are tested on general-domain

corpora such as NYT (Riedel et al., 2010) or TACRED (Zhang et al., 2017), few studies focus

on systematically applying syntax-enhanced methods on biomedical RE tasks. Secondly, existing

syntax-enhanced methods mostly exploit dependency information while constituency parsers are

also available. Lastly, most BERT-based syntax-enhanced models consist of pre-training which

requires more computing resources compared to fine-tuning. These limitations lead us to propose

syntax-enhanced models that are different from existing ones. We wish to design syntax-enhanced

models that require no pre-training, injecting both dependency and constituency information, and

working on biomedical RE corpora.

3.3 Contribution: Syntax-enhanced Models

In this section, we present several approaches to inject syntax into BERT models, looking at methods

that use syntactic information in the form of dependencies and constituents. We first test Late-

Fusion (Subsection 3.2.2.1) that explicitly injects dependency-based syntactic information and is

not previously evaluated on biomedical RE tasks, then we propose two novel constituency-based

explicit approaches. Finally, we introduce a multi-task method that implicitly injects dependency-

based syntactic information.

3.3.1 CE-PubMedBERT

The first method we propose does not use complete constituency trees, but aims first to extract

chunks from the constituency tree and then enhance PubMedBERT (which is the model we selected

to use as our base model) with chunk information. We name this method CE-PubMedBERT

(Chunk-Enhanced-PubMedBERT). Intuitively, in addition to applying the attention mechanism

at the word piece level (which is done by PubMedBERT), we aim to compute attention weights

at the chunk level. We hypothesize that computing attention at the chunk level is beneficial for

79

relation extraction, as sentences are segmented into chunks that play the same role in constituency

grammar, therefore the phrase-level structure of texts is explicitly provided to PubMedBERT. In

this method, we first obtain chunks by grouping together word pieces that are consecutive leave

nodes in the dependency tree and share the same lowest common ancestor. For example, in the

sentence “Caffeine inhibits the checkpoint kinase ATM.”, given the corresponding constituency tree

shown in Figure 3.9, we only group together the word pieces of “the checkpoint kinase ATM”, which

share the same parent node Noun Phrase (NP) and NP is their lowest common ancestor. We do not

group together the word pieces of “inhibits the checkpoint kinase ATM”, because though they are in

the subtree rooted at the node of Verb Phrase (VP), VP is not the lowest ancestor of nodes “the”,

“checkpoint”, “kinase”, “ATM”. This process can be regarded as a kind of shallow chunking, through

which we can simplify the sentence representation by regarding chunks as individual tokens.

Figure 3.9 shows the architecture of CE-PubMedBERT. Atop the pre-training PubMedBERT,

we add a block wp2const that contains no trainable parameter but sums only word piece embeddings

that belong to the same chunk to generate chunk embeddings. Suppose that there are N word pieces

in a sentence and M chunks are extracted from the constituency tree: at the input of the wp2const

block, we have a sequence of word piece embeddings [v1,v2, ...,vN]. Inside the wp2const block, we

compute chunk embeddings by:

ui =
∑
j∈Ci

vj (3.2)

where i = 1, 2, ...,M . Ci denotes the set of word piece indexes that belong to the i-th chunk and ui

the embedding of the i-th chunk. Chunk embeddings are then fed into extra attention layers, which

share the same architecture as the transformer layers as proposed by Vaswani et al. (2017). The

output of extra attention layers is infused with the output of pre-trained PubMedBERT by Highway

Gate (Srivastava et al., 2015) as in the Late-Fusion method described in Subsection 3.2.2.1.

3.3.2 CT-PubMedBERT

While CE-PubMedBERT relies mostly on chunks, our second method, named CT-PubMedBERT

(Constituency-Tree-enhanced-PubMedBERT), aims to embed complete constituent trees. However,

80

Figure 3.9: the architecture of CE-PubMedBERT: the wp2const block at the output of the Pub-
MedBERT model groups together the word pieces that belong to a pre-defined chunk to compute
chunk embeddings.

since it is impossible to feed constituent trees directly to PubMedBERT, we choose to first turn

constituent trees into sequences. An example of the linearization of the constituency tree is shown

in Figure 3.10. By converting a constituency tree to its DFS (Depth First Search) traversal, the

resulting sequence is supposed to encode hierarchical information of the tree structure; furthermore,

we keep the constituency tags of non-leaf nodes, which provides additional information about the

tree. Besides, we keep the wordpiece-to-wordpiece attention pattern, which is the same as in stan-

dard attention layers. Constituency tags are treated as independent word pieces and are added

to the vocabulary of the word piece tokenizer. This operation certainly increases the difficulty of

fine-tuning due to the fact that word piece embeddings of these newly added constituency tags

are randomly initialized and the pre-trained PubMedBERT does not see any of them during the

pre-training phase. We still keep this model in experiments however, hypothesizing that the addi-

tional information brought by constituency tags may compensate for the negative effect caused by

introducing new word pieces.

81

Figure 3.10: the architecture of CT-PubMedBERT: the linearization turns a constituency tree to a
sequence by DFS traversal.

3.3.3 MTS-PubMedBERT

Aside from explicitly injecting syntax into PubMedBERT by modifying either the input or the

internal representations (such as attention weights), another option to integrate syntactic infor-

mation is to set syntax-aware tasks as presented in Subsection 3.2.2.2. Instead of setting syntax-

aware tasks in the pre-training stage, we choose to adopt a multi-task learning architecture that

seeks to encode syntactic information and at the same time classify relations, i.e. we add syntax-

aware tasks in the fine-tuning stage. Inspired by the structural probe (Hewitt and Manning, 2019)

(Subsection 3.2.1), our proposed architecture MTS-PubMedBERT (Multi-Task-Syntax-enhanced-

PubMedBERT) is jointly trained on:

• RE tasks: assign relation labels for the given sentence;

• distance probe task: predict pairwise word distances in the dependency tree;

• depth probe task: predict the depth of each word in the dependency tree.

The architecture of MTS-PubMedBERT is illustrated in Figure 3.11. We hypothesize that using

82

the two probing tasks in (Hewitt and Manning, 2019) as supervised objectives will force the model

to encode syntactic information and that the word piece representations enriched with syntactic

information will help better categorize relations. Unlike Hewitt et al. (2021), in our architecture

the two probing tasks are treated as classification tasks, i.e. each distance corresponds to a class

c ∈ Cdist. Similarly, each depth corresponds to a class c ∈ Cdepth. Empirically, syntactic distances

are divided into 12 classes and syntactic depths are divided into 8 classes as shown in Table 3.3.

Formally, for a sentence s represented as a word piece sequence of wps1:n, we first sum PubMed-

BERT vector representations of word pieces that belong to the same word to obtain word vector

representations hs
1:n ∈ Rm. Denote the true syntactic distance between (ws

i , w
s
j) by d̂sij and its one-

hot encoding by d̂s
ij; the predicted syntactic distance by dsij and its one-hot encoding by ds

ij. We

first apply a linear transformation to project hs
1:n into a subspace specialized to capture syntactic

distance information, then use the element-wise square of the difference vector between transformed

(hs
i ,h

s
j) to predict d̂sij:

h′s
i = (hs

i)
TWdist + bdist

ds
ij = ((h′s

i − h′s
j)⊙ (h′s

i − h′s
j))

TW1 + b1 (3.3)

where Wdist ∈ Rm×m and bdist ∈ Rm refer to the weight and bias of the first linear transformation;

W1 ∈ Rm×|Cdist| and b1 ∈ R|Cdist| the weight and bias of the second linear transformation; ⊙ denotes

the element-wise multiplication (Hadamard product). Suppose that D̂s is the true syntactic distance

matrix such that D̂s
i,j = d̂sij. D̂s is a symmetric matrix and values on the diagonal line are 0. Since

predicting 0 or values at symmetric positions is trivial, we take the upper triangular matrix of D̂s

as prediction targets. The loss function of the pairwise distance probe can thus be written as:

Ldist =
∑
s

2

|s|(|s| − 1)

|s|∑
i=1

|s|∑
j=i+1

CE(d̂s
ij,d

s
ij) (3.4)

where |s| denotes the length of s, and CE denotes the cross-entropy loss as described in Equation 2.4

83

distance (interval) class
1 0
2 1
3 2
4 3
5 4
6 5
7 6
8 7
9 8

[10, 15) 9
[15, 20) 10
≥ 20 11

(a) Syntactic distances are divided into 12 classes.

depth (interval) class
0 0
1 1
2 2
3 3
4 4
5 5

[6, 10) 6
≥ 10 7

(b) Syntactic depths are divided into 8 classes.

Table 3.3: Syntactic pairwise distances and depths are regrouped into classes. 0 is not used as a
label for syntactic distances but is kept for syntactic depths (syntactic root).

(Subsection 2.2.1).

For the depth probe task, denote the true syntactic depth of ws
i by p̂si and its one-hot encoding

by p̂s
i ; the predicted syntactic distance by psi and its one-hot encoding by ps

i . Similarly, we first

apply a linear transformation to project h1:n to a subspace that is specialized in capturing syntactic

depth information, then use transformed hi to predict p̂si :

h′′s
i = (hs

i)
TWdepth + bdepth

ps
i = h′′s

i W2 + b2 (3.5)

where Wdepth ∈ Rm×m, bdepth ∈ Rm, W2 ∈ Rm×|Cdepth|, b2 ∈ R|Cdepth| are learnable parameters. The

loss function of the depth probe task can be written as:

Ldepth =
∑
s

1

|s|

|s|∑
i=1

CE(p̂s
i ,p

s
i) (3.6)

For the RE task, we take the vector representation of [CLS] hs
[CLS] to predict the true label of

relation ŷs:

ys = hs
[CLS]W3 + b3 (3.7)

84

Figure 3.11: the architecture of MTS-PubMedBERT.

where ys is the one-hot encoding of predicted relation; W3 ∈ Rm×|R| and b3 ∈ |R| are learnable

parameters; R denotes the set of relation labels. The loss function of the RE task is:

LRE =
∑
s

CE(ŷs,ys) (3.8)

The loss of MTS-PubMedBERT is the sum of the above three losses. We add a parameter α to

control the importance of syntactic information, the final loss function is:

LMTS =
LRE + α(Ldist + Ldepth)

1 + α
(3.9)

3.4 Experimentation

In this section, we present details about our experiments of applying four syntax-enhanced mod-

els CE-PubMedBERT, CT-PubMedBERT, Late-Fusion and MTS-PubMedBERT, along with two

baseline models (Subsection 3.4.2) on three corpora: ChemProt, DrugProt and BB-Rel. We start

85

with data pre-processing (Subsection 3.4.1) that turns texts into data readable by each of the

syntax-enhanced models, then present implementation details (Subsection 3.4.3), and hyperparam-

eter search (Subsection 3.4.4). At the end of the section, we present experimental results (Subsec-

tion 3.4.5) on each of the three corpora. Our code is available at: https://github.com/Maple177/

syntax-enhanced-RE.

3.4.1 Data Pre-processing

We start from datasets that are pre-processed as presented in Subsection 2.8.2. To begin with, we

use off-the-shelf syntactic parsers to perform the dependency analysis and the constituency analysis

on each of the datasets. For the dependency analysis, we use a biomedical version of Stanza (Zhang

et al., 2021), which is a variant of the BiLSTM-based deep biaffine model trained on the CRAFT

treebank (Verspoor et al., 2012)1. Since the CRAFT treebank contains full-text PubMed articles

in which entity mentions of chemicals, genes and proteins are annotated, we choose this version of

Stanza because we think that texts in the CRAFT treebank are similar to the datasets on which

we conduct experiments. For the constituency analysis, we choose a previous state-of-the-art model

the Berkeley neural parser (Kitaev and Klein, 2018), which is a self-attentive encoder trained on

the Penn Treebank (Marcus et al., 1993). For each of the four syntax-enhanced models, we take

the sentence in Figure 1.1 as an example to illustrate the pre-processing steps.

CE-PubMedBERT. The goal of pre-processing for CE-PubMedBERT is to obtain chunks from

a constituency tree. Since the constituency analysis splits a sentence into nested parts, the difficulty

is to select which chunks to extract from nested constituents. We design an algorithm based on

DFS (Depth-First Search) to solve this problem. Iteratively, the DFS traversal of a tree starts at

the root node of the tree (or a subtree), then explores its leftmost subtree until the deepest node

in the subtree is visited. After that, the algorithm returns to the root node and explores the next

subtree from the left. This step is repeated until every node in the tree is visited. As shown in

Figure 3.12, in the case of a constituency tree, a DFS traversal retrieving the values of leaf nodes

1https://bionlp-corpora.sourceforge.net/CRAFT/

86

https://github.com/Maple177/syntax-enhanced-RE
https://github.com/Maple177/syntax-enhanced-RE
https://bionlp-corpora.sourceforge.net/CRAFT/

Figure 3.12: The constituency tree that corresponds to the sentence in Figure 1.1.

simply restores the original list of words. We make modifications to the DFS algorithm such that

contiguous leaf nodes that share the same lowest ancestor (LCA) node are considered as a chunk

(Subsection 3.3.1). For example, in Figure 3.12, “the” and “inhibition” both belong to a constituent

“NP” and “NP” is their LCA, they are thus grouped to make up a chunk “the inhibition”. Though

“of”, “clot-bound” and “thrombin” belong to the constituent “PP”, “of” is not regrouped with “clot-

bound” and “thrombin” since “clot-bound” and “thrombin” share “NP” as their LCA while “of” does

not. Besides, nodes labeled by word-level constituent tags are removed, e.g. “heparin” is a word-level

constituent “NN” as well as a phrase-level constituent “NP”, but it is only considered as “NP” and

thus regrouped with “over”. Therefore, the result of pre-processing for the sentence in Figure 1.1 is:

“Argatroban”, “has”, “advantages”, “over heparin”, “for”, “the inhibition”, “of”, “clot-bound thrombin”,

“.”. The pseudocode of the modified DFS algorithm is presented in Algorithm 1. After we obtain

chunks from the constituency tree, we add entity markers to mark the entity spans. The final

pre-processing result that we obtain should be: “@ @ Argatroban @ @”, “has”, “advantages”, “over

heparin”, “for”, “the inhibition”, “of”, “clot-bound $ $ thrombin $ $”, “.”. In practice, we output the

list of index spans that correspond to each chunk.

87

Algorithm 1 Modified DFS algorithm for data pre-processing of CE-PubMedBERT.
1: function DFS(tree,index)
2: L← 0 ▷ number of leaf nodes in tree
3: St ← [] ▷ index spans of tree
4: Sc ← [] ▷ temporary index spans
5: for all subtree ∈ tree do
6: if subtree.length=1 then
7: Sc.append(index)
8: L← L+ 1
9: index← index+ 1

10: else
11: if Sc is not empty then
12: St.append(Sc)
13: Sc ← []
14: end if
15: Lsubtree, Ssubtree ← DFS(subtree,index)
16: index← index+ Lsubtree

17: L← L+ Lsubtree

18: St.extend(Ssubtree)
19: end if
20: end for
21: if Sc is not empty then
22: St.append(Sc)
23: end if
24: return L, St

25: end function

88

CT-PubMedBERT. For CT-PubMedBERT we search to insert constituency tags before the

first word of each constituent. We ignore word-level constituency tags to avoid producing too long

sequences (due to the length limitation of BERT input). Therefore, word-level constituent tags are

ignored. Given the constituency tree in Figure 3.12, the pre-processing result for CT-PubMedBERT

is: “[S]”, “[NP]”, “Argatroban”, “[VP]”, “has”, “[NP]”, “advantages”, “[PP]”, “over”, “inhibition”, “[PP]”,

“for”, “[NP]”, “[NP]”, “the”, “inhibition”, “[PP]”, “of”, “[NP]”, “clot-bound”, “thrombin”. Constituency

tags are wrapped in “[]” because they are added to the vocabulary of BERT and treated as special

symbols like [CLS]. We use a DFS-based algorithm similar to Algorithm 1 for CT-PubMedBERT

as presented in Algorithm 2.

Algorithm 2 Modified DFS algorithm for data pre-processing of CT-PubMedBERT.
1: function DFS(tree,index)
2: L← 0 ▷ number of leaf nodes in tree
3: T ← [tree.label] ▷ linearized tree
4: for all subtree ∈ tree do
5: if subtree.length=1 then
6: T .append(index)
7: L← L+ 1
8: index← index+ 1
9: else

10: Lsubtree, Tsubtree ← DFS(subtree,index)
11: index← index+ Lsubtree

12: L← L+ Lsubtree

13: T .extend(Tsubtree)
14: end if
15: end for
16: return L, T
17: end function

Late-Fusion. The Late-Fusion method consists of injecting dependency information by applying

an adjacency matrix as the attention mask in transformer layers (Subsection 3.2.2). Since the

adjacency matrix is similar to the attention matrix, it is easy to integrate it into neural models.

However, the adjacency matrix is symmetric as it takes dependency relations as undirected, therefore

partial information about the dependency tree is lost. Figure 3.13 shows the dependency tree

corresponding to the sentence in Figure 1.1. The dependency tree is first extended to word pieces

as in (Sachan et al., 2021): for a word tokenized into multiple word pieces, the first word piece is

89

Figure 3.13: The dependency tree that corresponds to the sentence in Figure 1.1.

used as the representative of the word and is linked to other head word pieces in the adjacency

matrix. Subsequent word pieces are linked to the first word piece. We further link [CLS] and [SEP]

to the syntactic root of the sentence. Besides, entity markers are linked to the entity. In case of a

multi-word entity, entity markers are linked to the syntactic head of the entity. The word piece-level

adjacency matrix corresponding to the dependency tree in Figure 3.13 is shown in Figure 3.14.

MTS-PubMedBERT. MTS-PubMedBERT requires pairwise word distances and the depth of

each word in the dependency graph as labels. It is common to use the Dijkstra algorithm (Dijkstra,

1959) to find the minimal distance between two nodes in a graph. However, since in the dependency

graph edges are regarded as equally weighted, we can use a simpler BFS (Breadth First Search)

traversal to solve this problem. Starting from a given node ns, we first traverse nodes in its 1-

hop neighborhood N1, i.e. nodes that are directly linked to the ns and are therefore 1 distance

away from ns. Then we iteratively traverse nodes in the i-hop neighborhood of ns until the target

node nt is reached. The BFS algorithm is illustrated in Algorithm 3. Once we obtain the pairwise

distance matrix, we can obtain the depths of words in the dependency tree by retrieving the row that

corresponds to the syntactic root in the distance matrix. Figure 3.15 shows the pairwise distance

matrix that corresponds to the example in Figure 1.1. As “has” is the root of the dependency

tree (Figure 3.13), values in the second row in the matrix represent the depths of words in the

dependency tree.

90

Figure 3.14: The adjacency matrix that corresponds to the dependency tree in Figure 3.13.

91

Figure 3.15: The pairwise distance matrix that corresponds to the dependency tree in Figure 3.13.

92

Algorithm 3 BFS algorithm for data pre-processing of MTS-PubMedBERT.
1: function BFS(G,ns,nt)
2: V ← {ns} ▷ A set saving nodes that are already visited
3: Q← [(ns, 0)] ▷ A queue saving nodes to visit
4: while Q is not empty do
5: u, d← Q.popleft()
6: for all edges from u to v ∈ G do
7: if v is nt then
8: return d+ 1
9: end if

10: if v /∈ V then
11: V .add(v)
12: Q.append((v,d+ 1))
13: end if
14: end for
15: end while
16: end function

3.4.2 Baseline Models

We set two baseline models in our experiments: PubMedBERT and PubMedBERT-extra. Since

extra attention layers are added in CE-PubMedBERT and Late-Fusion, we need to exclude the

impact of extra attention layers. We thus build PubMedBERT-extra by adding a certain number

of attention layers atop the pre-trained PubMedBERT without introducing any syntactic informa-

tion. Similar to CE-PubMedBERT and Late-Fusion, the outputs of the pre-trained PubMedBERT

and added attention layers are passed to the Highway Gate (Srivastava et al., 2015) as shown in

Figure 3.16.

3.4.3 Implementation Details

Implementation of all models is based on HuggingFace’s transformer (Wolf et al., 2020) and Pytorch

(Paszke et al., 2019b). For all of the six models (four syntax-enhanced models and two baseline

models), we initialize parameters from PubMedBERT checkpoints released on Huggingface2. In

cases where extra attention layers (as in CE-PubMedBERT or Late-Fusion) are added atop Pub-

MedBERT, extra layers are randomly initialized. Specifically, for CT-PubMedBERT, we add 24

2https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract

93

https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract

Figure 3.16: The architecture of PubMedBERT-extra (one of our baseline models).

constituency tags as new word pieces into the vocabulary of the PubMedBERT word piece tokenizer,

and randomly initialize corresponding word piece embeddings. We fine-tune each model with mono

32 G NVIDIA V100 Graphics processing unit (GPU) for a fixed number of epochs, and save the

checkpoint that gives the best performance on the validation set during fine-tuning. Table 3.4 sum-

marizes the number of epochs that are used for each (corpus, model type) combination. We use

the AdamW (Loshchilov and Hutter, 2017) optimizer in all experiments with a learning rate sched-

uler. The learning rate is linearly increased to a target value during the first 10 % steps and then

linearly decays to 0 at the end of training. In Subsection 2.2.3 we have introduced the ensembling

technique, we adopt this strategy in our experiments. For each model type, we fine-tune the same

neural architecture 5 times with different random seeds and combine the results of all models by

majority voting. Random seeds are fixed across different model types to exclude the influence of

random initializations.

3.4.4 Hyperparameters

For each type of model, we use grid search to determine the optimal hyperparameters. Instead of

applying the same grid for all models, we establish first a hyperparameter grid and then slightly

94

BB-Rel ChemProt DrugProt

PubMedBERT 60 60 20

PubMedBERT-extra 60 60 20

CE-PubMedBERT 60 60 20

CT-PubMedBERT 60 60 20

Late-Fusion 60 60 20

MTS-PubMedBERT 60 30 10

Table 3.4: Fixed number of epochs for each (corpus,model type) combination.

adjust the search space for each model according to preliminary experiments. Due to the limitation

of computing resources, we fix the batch size to 16 for all model types except MTS-PubMedBERT.

The batch size for MTS-PubMedBERT is fixed at 8 due to the RAM (Random Access Memory)

limitation. Our hyperparameter grid search therefore focuses on three hyperparameters: learning

rate (LR), the number of extra attention layers (EAL) and the weighting coefficient (α) of syntactic

loss (for MTS-PubMedBERT only). Adapted hyperparameter grids of each model are summarized

in Table 3.5. ‘-’ indicates that the corresponding hyperparameter is not useful for the correspond-

ing model type. We test hyperparameter combinations in the Cartesian product of the available

parameter set: for example, for the Late-Fusion model, we construct 9 ensembles each with one pa-

rameter combination out of 9. On each corpus, the hyperparameter combination that leads to the

best performance on the validation set is used for inference on the test set. For all our experiments,

we use a single NVIDIA Tesla V100 GPU of the Lab-IA GPU cluster (provided by the Saclay-IA

platform of Université Paris-Saclay).

Model type LR EAL α

PubMedBERT {1e−5, 2e−5, 3e−5, 5e−5} - -
PubMedBERT-extra {1e−5, 3e−5, 5e−5} {1, 2, 4} -
CE-PubMedBERT {1e−5, 3e−5, 5e−5} {1, 2, 4} -
CT-PubMedBERT {1e−5, 2e−5, 3e−5, 5e−5} - -
Late-Fusion {1e−5, 3e−5, 5e−5} {1, 2, 4} -
MTS-PubMedBERT {3e−5, 5e−5, 7e−5} - {0.1, 0.5, 1.0}

Table 3.5: Hyperparameter optimization with grid search: customized grids of each model.

95

Model type LR EAL α

PubMedBERT 3e−5 - -
PubMedBERT-extra 3e−5 4 -
CE-PubMedBERT 3e−5 2 -
CT-PubMedBERT 2e−5 - -
Late-Fusion 3e−5 1 -
MTS-PubMedBERT 3e−5 - 0.1

(a) Optimal hyperparameters on BB-Rel.

Model type LR EAL α

PubMedBERT 1e−5 - -
PubMedBERT-extra 1e−5 2 -
CE-PubMedBERT 3e−5 4 -
CT-PubMedBERT 1e−5 - -
Late-Fusion 1e−5 1 -
MTS-PubMedBERT 3e−5 - 0.1

(b) Optimal hyperparameters on ChemProt.

Model type LR EAL α

PubMedBERT 2e−5 - -
PubMedBERT-extra 1e−5 2 -
CE-PubMedBERT 1e−5 4 -
CT-PubMedBERT 2e−5 - -
Late-Fusion 1e−5 4 -
MTS-PubMedBERT 3e−5 - 0.1

(c) Optimal hyperparameters on DrugProt.

Table 3.6: Optimal combination of hyperparameters for each (corpus, model type) based on the
performance on the validation set: learning rate (LR), number of extra attention layers (EAL), α.

3.4.5 Results

In this part, we present the results that we obtain for each of the six model types: PubMedBERT,

PubMedBERT-extra, CE-PubMedBERT, CT-PubMedBERT, Late-Fusion and MTS-PubMedBERT.

For each model type, we report the performance on the test set using the optimal combination of

hyperparameters. The summary of optimal hyperparameters is shown in Table 3.6. The detailed

summary of experimental results is presented in Table 3.7. We present voting F1-scores for all

model types. To give an overview of the variance between models in the same ensemble, we also

show averaged F1-scores with standard deviation for each model type.

96

Model F1 (vote) %∆ F1 (ave ± std)

Baseline Models

PubMedBERT 68.8 - 66.9± 1.2
PubMedBERT-extra 70.6 +1.8 68.1± 1.2

Syntax-enhanced Models

CE-PubMedBERT 70.2 +1.4 67.6± 1.8
CT-PubMedBERT∗ 65.9 -2.9 64.3± 1.7
Late-Fusion 68.9 +0.1 66.6± 1.5
MTS-PubMedBERT 68.2 -0.6 67.1± 1.5

(a) Results on BB-Rel.

Model F1 (vote) %∆ F1 (ave ± std)

Baseline Models

PubMedBERT 78.2 - 77.1± 0.4
PubMedBERT-extra 78.4 +0.2 77.3± 0.5

Syntax-enhanced Models

CE-PubMedBERT† 78.0 -0.2 76.6± 0.5
CT-PubMedBERT∗ 75.6 -2.6 73.6± 1.2
Late-Fusion 77.9 -0.3 76.9± 0.2
MTS-PubMedBERT∗ 73.9 -4.3 72.2± 0.6

(b) Results on ChemProt.

Model F1 (vote) %∆ F1 (ave ± std)

Baseline Models

PubMedBERT 77.2 - 75.8± 0.5
PubMedBERT-extra∗ 77.8 +0.6 76.6± 0.4

Syntax-enhanced Models

CE-PubMedBERT 77.3 +0.1 76.3± 0.7
CT-PubMedBERT∗ 74.4 -2.8 73.3± 0.3
Late-Fusion∗ 78.0 +0.8 76.8± 0.4
MTS-PubMedBERT∗ 72.5 -4.7 71.2± 0.5

(c) Results on DrugProt.

Table 3.7: Voting F1-score for each model type (in the second column) on the three corpora. %∆
denotes the relative gain in voting F1 over PubMedBERT. The averaged F1-score and standard
deviation calculated over 5 independent runs within ensembles are presented in the rightmost col-
umn. * and † indicate that the performance of the corresponding model is significantly different
from PubMedBERT and PubMedBERT-extra respectively under a one-sided t-test with p < 0.05
(we only compare CE-PubMedBERT and Late-Fusion to PubMedBERT-extra).

97

3.5 Analysis & Discussion

Our first observation based on Table 3.7 is that CT-PubMedBERT and MTS-PubMedBERT give

worse performances than PubMedBERT in terms of voting F1-scores on the three corpora: BB-Rel,

ChemProt and DrugProt. Regarding average F1-scores, CT-PubMedBERT degrades the perfor-

mance by a significant margin on the three corpora, and MTS-PubMedBERT degrades the perfor-

mance significantly on ChemProt and DrugProt. Though MTS-PubMedBERT outperforms Pub-

MedBERT on BB-Rel regarding average F1-scores, the slight gain is not statistically significant.

Surprisingly, PubMedBERT-extra consistently outperforms PubMedBERT, and the difference is

even statistically significant on DrugProt. CE-PubMedBERT and Late-Fusion obtain high F1-

scores and outperform PubMedBERT on BB-Rel and DrugProt, but their performance is never

statistically better than PubMedBERT-extra, therefore the improvement is not caused by syntactic

information but is more likely due to added attention layers. Based on the general performances, our

first conclusion is that integrated syntactic information, either constituency or dependency informa-

tion, does not help improve the performance on the RE task. It is noteworthy that for Late-Fusion,

we obtain similar results to Sachan et al. (2021). Their experimental results show that Late-Fusion

slightly improves the performance of RE over BERT (+0.29) on a general-domain RE corpus. In

our case, the gain obtained by Late-Fusion over PubMedBERT is also not significant (respectively

+0.1, -0.3, and +0.8 respectively on BB-Rel, ChemProt and DrugProt). However, since they do

not set a baseline like PubMedBERT-extra as we do, they attribute this improvement to integrated

dependency information. We dispute this conclusion and think that the slight improvement is due

to extra attention layers added in Late-Fusion.

3.5.1 Impact of Parsing Quality

Sachan et al. (2021) study the impact of parsing quality and report that substantial gains are ob-

served only when gold parses are used. We thus hypothesize that the degradation (CT-PubMedBERT,

MTS-PubMedBERT) or the ineffectiveness (CE-PubMedBERT, Late-Fusion) of injected syntactic

information might be partly due to the quality of syntactic parses obtained from the off-the-shelf

98

parsers. Since manually performing constituency analysis and comparing two constituency parses

are more complicated compared to dependency analysis, we choose to only analyze the parsing qual-

ity of Stanza (Zhang et al., 2021), which is the dependency parser that is used in our experiments.

We manually evaluated dependency analysis on a small subset of sentences in the validation set of

BB-Rel and DrugProt (37 sentences for BB-Rel; 48 sentences for DrugProt). We exclude ChemProt

due to the similarity between ChemProt and DrugProt: they both contain PubMed abstracts and

both consist of identifying chemical-gene interactions. Firstly, we divide sentences in the validation

set into groups according to the length of the dependency path between the two arguments of the

candidate relation. Then we randomly sample sentences from each group. For each sentence, we

manually examine the dependency parse provided by Stanza and report two values: the number

of erroneous dependency links on the full parses and the number of erroneous dependency links in

the dependency path between the two arguments of the candidate relation. The number of errors

on the full-dependency parses allowed us to compute an “Unlabelled Attachment” Precision score

of 91.13 (on BB-Rel) and 94.96 (on DrugProt). Compared to Stanza reporting 91.09 as Unlabeled

Attachment Score on the CRAFT treebank (on which the version of Stanza that we use is trained),

although we cannot make a direct comparison (since their score is an F1-score), it is fair to conclude

that the quality of dependency parses from Stanza is acceptable on the subset of sentences that we

extracted.

During the manual analysis, we identified two issues in BB-Rel that may cause unnecessary

errors. Firstly, as mentioned in Subsection 2.8.2, processed data of BB-Rel contains examples

that consist of two sentences (for inter-sentence relations). As we input these examples directly to

Stanza, they are treated as a single sentence. Stanza has difficulty analyzing dependency relations

between words originally from different sentences. To verify the impact of having double-sentence

examples, we correspondingly divide the examples in the validation set of BB-Rel into two groups,

and report the RE performance of PubMedBERT, Late-Fusion and MTS-PubMedBERT on each

group. We report the average performance of Late-Fusion and MTS-PubMedBERT (for each ar-

chitecture we train multiple models) respectively on the two groups. Denote the performance on

two-sentence examples by aveds; the performance on single-sentence examples by avess. The result

99

is given in Table 3.8. We observe that the performance of double-sentence examples is consistently

much lower than that of single-sentence examples, which is not out of our expectation due to the

difficulty of predicting inter-sentence relations. However, the value of avess
aveds

of Late-Fusion and MTS-

PubMedBERT drop compared to that of PubMedBERT, indicating the negative impact of having

double-sentence examples for syntax-enhanced models. For Late-Fusion, the injected dependency

information helps improve the RE performance on single-sentence examples, but degrades the RE

performance on double-sentence examples. For MTS-PubMedBERT, the dependency information

degrades performance on all examples, but the degradation is greater on double-sentence examples

than on single-sentence ones. The second issue in the BB-Rel corpus is the existence of many

abbreviation-related periods. Since in BB-Rel abbreviations of microorganism names such as “E.

coli” and “B. fragilis” are frequent, Stanza is likely to be confused by the periods contained in the

abbreviations.

aveds avess
avess
aveds

PubMedBERT 0.20 0.77 3.87
Late-Fusion 0.17 0.78 4.45
MTS-PubMedBERT 0.05 0.76 15.91

Table 3.8: Stratified results on the validation set of BB-Rel: aveds denotes the average micro F1-
score of the corresponding model on the group of examples that consist of two sentences; avess
denotes that on the group on examples that consist of a single sentence.

We further analyze whether there exists a negative correlation between the number of errors

(in full sentences and in SDPs) in the dependency parse and the RE performance of Late-Fusion

and MTS-PubMedBERT, which are enhanced with dependency information. We gather sentences

that share the same number of errors and calculate micro F1-scores on sentences from each group.

Note that “no_relation” is not counted in the calculation of micro F1-scores, so we remove groups

that include only examples labeled as “no_relation” (otherwise, in the stratified results, zero micro

F1-scores would be reported for these groups, which are unrepresentative). The stratified results on

BB-Rel and DrugProt are respectively shown in Figure 3.17 and Figure 3.18. We observe that on

both BB-Rel and DrugProt, the stratified F1-score shows no sign of being correlated to the number

of total errors; meanwhile the stratified score decreases with the number of errors in the SDP, though

100

Model rs p-value

total errors
Late-Fusion -0.12 0.41
MTS-PubMedBERT -0.12 0.41

errors in the SDP
Late-Fusion -0.5 0.33
MTS-PubMedBERT -0.5 0.33

(a) Analysis using the Spearman’s rank coefficient on BB-Rel.

Model rs p-value

total errors
Late-Fusion 0.27 0.70
MTS-PubMedBERT 0.09 0.56

errors in the SDP
Late-Fusion -0.80 0.10
MTS-PubMedBERT -0.63 0.18

(b) Analysis using the Spearman’s rank coefficient on DrugProt.

Table 3.9: Spearman’s rank coefficient rs and p-value between the number of errors (in full parses
and in SDPs) and the stratified micro F1-score obtained by Late-Fusion and MTS-PubMedBERT.
The analysis is performed on BB-Rel and DrugProt.

not monotonically. To confirm that, we further compute the Spearson’s rank coefficient between

the two variables, the result is given in Table 3.9. We report the correlation coefficient rs for which

a value of 1 indicates an exact positive correlation, -1 indicates an exact negative correlation and

0 indicates no correlation. Besides, a p-value is computed, representing the possibility of rejecting

the hypothesis that input two variables are correlated. In our case, we expect a negative rs close to

-1 and a small p-value (< 0.05), which indicates that a strong negative correlation exists. Our first

observation from Table 3.9 is that on both BB-Rel and DrugProt, the number of total errors is not

correlated to the RE performance since rs values are close to 0 and p-values are high. In terms of

the number of errors in the SDP, for BB-Rel there is no sign of negative correlation due to the rs of

-0.5 and p-values of 0.33; for DrugProt, both rs of Late-Fusion and MTS-PubMedBERT are close to

-1 (<-0.5), and both p-values are relatively small. However, both p-value are still above 0.05, which

means the null hypothesis does not hold and there is no statistically negative correlation between

the number of errors in the SDP and the RE performance. In a nutshell, we find no statistically

negative correlation between the parser quality and the RE performance.

101

(a) Stratified results on BB-Rel: by the number of total errors in the dependency parse.

(b) Stratified results on BB-Rel: by the number of errors in the SDP.

Figure 3.17: Stratified RE performance on the subset of sentences used for manual dependency
analysis in BB-Rel.

102

(a) Stratified results on DrugProt: by the number of total errors in the dependency parse.

(b) Stratified results on DrugProt: by the number of errors in the SDP.

Figure 3.18: Stratified RE performance on the subset of sentences used for manual dependency
analysis in DrugProt.

103

3.5.2 Training difficulties

Besides the quality of syntactic parsers, we also hypothesize that the degradation in performance

of the CT-PubMedBERT and MTS-PubMedBERT models may be due to the difficulty of training

neural networks. We had speculated that constituency tag information and hierarchical information

of the constituency tree encoded in the linearized sequence would compensate the possible degra-

dation caused by adding constituent tags as new word pieces, but this hypothesis is not supported

by the experimental results. For MTS-PubMedBERT, using the same learning rate to jointly train

the neural network on three tasks may not be ideal for making a balance between the three training

objectives.

3.5.3 Difference Between Baseline Models and Syntax-enhanced Models

Though the improved performance of CE-PubMedBERT and Late-Fusion is likely due to added

attention layers, and CT-PubMedBERT and MTS-PubMedBERT consistently degrade the perfor-

mance of RE, we are unsure about if syntax-enhanced models behave similarly to baseline models.

More specifically, we want to figure out if syntax-enhanced models give better performance than

baseline models on long-distance relations. We examine the following questions:

1. Do syntax-enhanced models make unique errors that differ from errors of baseline models?

2. Do syntax-enhanced models outperform baseline models on long-distance relations?

To answer the first question, we choose to identify erroneous predictions made by each of the

six models in the validation set of each corpus. To examine the difference between groups of wrong

predictions, common mistakes made by all models are removed. Because it is hard to manually

examine these errors and find the differences, for each group of mistakes we choose to calculate

statistics related to the inter-argument distance: the number of words between the arguments of a

candidate relation denoted by dsubj−obj; the length of the dependency path between the arguments

denoted by dSDP . The result is shown in Table 3.10.

We observe that on ChemProt, for all syntax-enhanced models, dsubj−obj and dSDP are greater

than that of PubMedBERT. Though on DrugProt, except for MTS-PubMedBERT, dsubj−obj and

104

Model # unique errors d̄subj−obj d̄SDP

PubMedBERT 133 20.3 5.8
PubMedBERT-extra 117 17.8 5.6
CE-PubMedBERT 122 21.6† 5.9
CT-PubMedBERT 164 22.0 5.5
Late-Fusion 112 23.5† 6.1†
MTS-PubMedBERT 146 20.1 5.4∗

(a) Statistics on the validation set of BB-Rel.

Model # unique errors d̄subj−obj d̄SDP

PubMedBERT 365 16.2 5.9
PubMedBERT-extra 359 15.8 6.0
CE-PubMedBERT 305 17.7† 6.1
CT-PubMedBERT 580 18.7∗ 6.1
Late-Fusion 349 16.7 6.1
MTS-PubMedBERT 554 18.6∗ 5.9

(b) Statistics on the validation set of ChemProt.

Model # unique errors d̄subj−obj d̄SDP

PubMedBERT 602 20.8 6.3
PubMedBERT-extra 545 19.7 6.1∗
CE-PubMedBERT 545 20.2 6.3
CT-PubMedBERT 671 20.4 6.1
Late-Fusion 564 19.9 6.2
MTS-PubMedBERT 860 21.3 6.2

(c) Statistics on the validation set of DrugProt.

Table 3.10: Statistics of unique errors made by each of the following models: PubMed-
BERT, PubMedBERT-extra, CE-PubMedBERT, CT-PubMedBERT, Late-Fusion and MTS-
PubMedBERT. d̄ denotes the average value of the corresponding group of distances. ∗ and † re-
spectively indicate that the value of the corresponding model is significantly different from that of
PubMedBERT and PubMedBERT-extra under a one-sided t-test with p < 0.05 (we only compare
CE-PubMedBERT and Late-Fusion to PubMedBERT-extra).

105

dSDP of syntax-enhanced models are slightly smaller compared to PubMedBERT, the difference is

not statistically significant. On BB-Rel, inversely only dsubj−obj and dSDP of MTS-PubMedBERT are

smaller compared to PubMedBERT; in terms of dSDP , the difference is even statistically significant.

To our surprise, on the three corpora, dsubj−obj or dSDP of PubMedBERT-extra is smaller than

PubMedBERT; the difference is even statistically significant in terms of dSDP on DrugProt. By

comparing CE-PubMedBERT, Late-Fusion to PubMedBERT-extra, we observe that dsubj−obj and

dSDP of CE-PubMedBERT and Late-fusion are consistently greater than PubMedBERT-extra, in

some cases the difference is statistically significant. Therefore, our response to question (1) is that

unique errors made by syntax-enhanced models may differ from baseline models, but contrary to our

expectation they are slightly more likely to make mistakes on long-distance relations than baseline

models.

To confirm if syntax-enhanced models behave differently from baseline models on long-distance

relations, we further propose to divide examples in the validation set into groups by dsubj−obj

and compute per-group micro-average F1-scores of the six models. The result is shown in Fig-

ure 3.19. Comparison between baseline models and syntax-enhanced models overturns our hy-

pothesis that integrated syntactic information may improve performance on long-distance relations.

CT-PubMedBERT and MTS-PubMedBERT are consistently worse than PubMedBERT in each

distance interval; while the performance of CE-PubMedBERT and Late-Fusion are highly cor-

related to the performance of PubMedBERT-extra. Therefore, we conclude that improvement of

CE-PubMedBERT and Late-Fusion is caused by added attention layers rather than injected syntac-

tic information. There is another argument that supports this conclusion: In MTS-PubMedBERT

we add a parameter α to control the importance of the losses of syntactic probe tasks. As shown

in Table 3.6 the optimal α for MTS-PubMedBERT on each corpus is 0.1 (out of {0.1, 0.5, 1.0}),

proving that MTS-PubMedBERT tends to learn less syntactic information in order to obtain better

performance on the validation set.

106

(a) Stratified results on BB-Rel.

(b) Stratified results on ChemProt.

Figure 3.19: Stratified results on the validation set of three corpora: BB-Rel, ChemProt, DrugProt.
Examples in the validation set are regrouped based on their subject–object surface distances. In-
tervals are of length 5 except two special cases 0 and ≥40.

107

(c) Stratified results on DrugProt.

Figure 3.19: Stratified results on the validation set of three corpora: BB-Rel, ChemProt, DrugProt.
Examples in the validation set are regrouped based on their subject–object surface distances. In-
tervals are of length 5 except two special cases 0 and ≥40.

3.6 Conclusion

In this chapter, we have studied the effect of integrating syntactic information into pre-trained

PubMedBERT on biomedical RE tasks. We first reviewed studies on the syntactic probes (Sub-

section 3.2.1) that demonstrate the ability of BERT to encode syntactic information, then intro-

duced existing syntax-enhanced methods (Subsection 3.2.2). A limitation of existing methods is

that they focus on general-domain corpora and most of them search to inject dependency infor-

mation in the form of the adjacency matrix. This motivated us to propose our syntax-enhanced

models that inject both constituency and dependency information, and systematically evaluate

our models on three biomedical RE corpora: BB-Rel, ChemProt, DrugProt. We conducted ex-

periments (Section 3.4) using three proposed models and an existing model: CE-PubMedBERT,

CT-PubMedBERT, Late-Fusion and MTS-PubMedBERT. Aside from PubMedBERT, we set an-

other baseline model PubMedBERT-extra (Subsection 3.4.2) as contrast to CE-PubMedBERT and

Late-Fusion. Experimental results show that among syntax-enhanced models, PubMedBERT-extra,

108

CE-PubMedBERT and Late-Fusion consistently give better or close performance compared to Pub-

MedBERT; while CT-PubMedBERT and MTS-PubMedBERT consistently degrade the RE perfor-

mance possibly due to training difficulties (Subsection 3.5.2).

We then perform an analysis that focuses on two aspects: (1) Does the quality of syntactic parses

influence the RE performance? (Subsection 3.5.1) (2) Do syntax-enhanced models behave differently

compared to baseline models? (Subsection 3.5.3) We manually identified errors in the dependency

parses to respond to the first question. Due to the double-sentence problem (Subsection 3.5.1) that

we found existing in BB-Rel, we perform a stratification analysis and find that injected dependency

information degrades the RE performance on double-sentence examples (on which Stanza is con-

sidered likely to produce errors). This observation seems to prove our hypothesis that the parsing

quality is positively correlated to the RE performance of syntax-enhanced models. We further con-

duct a quantitative analysis by statistically identifying if a negative correlation exists between the

number of errors in dependency parses and the RE performance of syntax-enhanced models. To our

surprise, statistical results show that no significant negative correlation exists. The two observations

from the stratified results and statistical results seem to be contradictory but can be explained by

the fact that the statistical results are built on small-sized examples (85 examples). This opens

up a perspective for more extensive analysis that would involve manual analysis of more examples.

Manually examining errors in constituency parses is also worth investigating. For the second ques-

tion, our hypothesis was that syntax-enhanced models may better handle long-distance relations.

Therefore, we first examined unique errors made by each model and expected that baseline models

tend to make errors in long-distance relations. However, our statistical results prove the opposite.

We then stratified the examples on the validation set of each corpus based on the subject-object

distance of the candidate relation. We observe that CE-PubMedBERT and Late-Fusion outperform

PubMedBERT for long-distance relations (subj-obj distance ≥ 40); however, their performances are

highly correlated to another baseline model, PubMedBERT-extra. Based on this observation, we

attribute the improvements made by CE-PubMedBERT and Late-Fusion to added attention layers

rather than injected syntactic information.

Our proposed methods do not succeed in improving the RE performance by injecting syntactic

109

information. Nevertheless, it does not mean that syntactic information can never be helpful for

biomedical RE, only that it isn’t so in the settings that we investigated. Our experimental results

may be biased to the neural architectures that we designed. Training strategies also play an impor-

tant role. Our analysis needs further investigation to consolidate the conclusions that we obtained.

Besides, increasing the number of corpora and testing different base models is also important for

future work.

110

Chapter 4

Injecting KB Information into BERT

Factual knowledge refers to common knowledge in any domain. Since the pre-training of BERT does

not explicitly incorporate any factual knowledge, we hypothesize that injecting factual knowledge

may improve the ability of BERT. Mastering factual knowledge can be beneficial. For example, it

helps eliminate ambiguity. Given the sentence “Apple has increased its investment in AI technology”,

it is important for BERT to understand that “Apple” is a technology company rather than a fruit.

With the help of factual knowledge, it would be easy for BERT to distinguish between the two

concepts. This distinction is easy for a layman, but factual knowledge in specific domains such as

the biomedical domain is less obvious to non-experts. In some cases, it is hard for a non-expert to

deduce if a biomedical term refers to a protein or a chemical without prior knowledge. However,

this information can be easily accessed using knowledge bases (KB), which is a set of facts verified

by domain experts.

In recent years, injecting factual knowledge from domain KBs into BERT is a topic that has

received much attention (Zhang et al., 2019b; Hao et al., 2020). In this chapter, we first introduce

knowledge base basics (Section 4.1), then present graph embeddings that vectorize KB informa-

tion (Section 4.2). Since exploiting graph embeddings is not the only solution to inject factual

knowledge, in Section 4.3 we review existing methods that enhance pre-trained BERT-like LMs

with KB information (Section 4.3). At the end of the chapter, we propose our KB-enhanced model

KB-PubMedBERT, experimental results and analysis (Section 4.4, Section 4.5 and Section 4.6).

111

Section 4.4, Section 4.5 and Section 4.6 are inspired by Tang et al. (2023).

4.1 Knowledge Base Basics

A knowledge base is often annotated and maintained by a group of domain experts, and frameworks

like Semantic Web (Berners-Lee et al., 2023) allow us to publish and share knowledge bases. A KB

stores factual knowledge about a specific domain by interpreting knowledge as relations between

entities or concepts. For example, knowing that “Apple” is a technology company, in a KB we

link the entity “Apple” and the concept “technology company” by a relation “is_a”. The difference

between entities and concepts is that concepts are abstract while entities are concrete instances of

concepts. Therefore, a KB may be hierarchical due to relations between entities and concepts, or

relations between low-level concepts and high-level concepts. For example, the entity “Labrador” is

an example of the concept “Dog”; and “Dog” is a subtype of a more abstract concept “Animal”. In

this section, for simplicity we use “entity” to refer to both entities and concepts in KBs.

A common representation of factual knowledge is a triplet in the form of (esubj, r, eobj), where esubj

and eobj refer to the subject and object entities respectively, and r refers to the relation in between.

For example, (“Apple”,“is_a”,“company”) represents that “Apple” is an entity of type “company”;

while (“Steve Jobs”,“founder_of”,“Apple”) corresponds to the fact that Steve Jobs created the Apple

company. Since entities and relations are shared among triplets, a knowledge base can also be

regarded as a knowledge graph in which entities are vertices and relations are edges. Each triplet

thus represents a connection in the graph.

Commonly used knowledge bases in the biomedical domain include DrugBank (Wishart et al.,

2018), the Comparative Toxicogenomics Database (CTD) (Davis et al., 2021), the UMLS (Boden-

reider, 2004). In Table 4.1 we list several triplets from CTD to give insight into the composition of a

domain KB. CTD contains interactions between entities of different types such as chemicals, genes,

diseases, and phenotypes. We use CTD in subsequent experiments for our proposed KB-enhanced

model on ChemProt and DrugProt, as in the two corpora we focus on extracting relations between

chemicals and genes.
1https://www.ncbi.nlm.nih.gov/mesh/

112

https://www.ncbi.nlm.nih.gov/mesh/

Subject entity Subject ID Relation Object entity Object ID
Cellulose D002482 increases expression PTGS2 5743
5-methylurapidil C057446 affects binding ADRA1A 148
Chlorthalidone D002752 increases activity REN 5972
Tretinoin D014212 decreases expression A1BG 1
Hydroxyl Radical D017665 increases abundance XDH 7498
5-fluoro-2’-deoxyuridine C576827 affects response to substance DHFR 1719
Glimepiride C057619 decreases activity ABCB11 8647
Lactose D007785 affects binding LGALS3 3958
Labetalol D007741 decreases reaction PRL 5617
Sulfates D013431 decreases activity CA1 759

Table 4.1: A subset of triplets in CTD (Davis et al., 2021). The subject entity is of type “chemical”
and the object entity is of type “gene”. Chemical entities are linked to MESH1 identifiers; gene
entities are linked to NCBI (Federhen, 2011) identifiers.

4.2 Graph Embedding Methods

The success of word embedding methods has inspired researchers to investigate how to vectorize

graph-structured data. A knowledge base can be represented as a graph: each entity is taken as a

vertice; each relation is taken as an edge; a triplet is therefore an edge linking two vertices. Graph

embedding methods are thus helpful in learning vector representations of KB entities and relations.

The objective of graph embedding methods can be formulated as follows: Given a graph G = (E ,R),

compute embedding matrices EE ∈ R|E|×dE and ER ∈ R|R|×dR respectively for every entity e ∈ E

and relation r ∈ R in the corresponding KB. Entity and relation vectors are of dimensions dE and

dR respectively. Based on the difference between learning objectives, existing graph embedding

methods can be divided into two types: distance-based methods and similarity-based methods. To

put it simply, distance-based methods try to minimize the distance between connected vertices in

the vector space. Similarity-based methods try to put vertices that share similar neighborhoods

close to each other in the vector space.

4.2.1 Distance-based Methods

The core of distance-based methods (Bordes et al., 2013; Sun et al., 2019; Lin et al., 2015; Nguyen

et al., 2016) is to define a distance function for each triplet d(esubj, r, eobj), where esubj, eobj, r

denote vectors of esubj, eobj and r. Bordes et al. (2013) propose TransE, which takes relations as

113

translations in the vector space. By defining d(esubj, r, eobj) = ∥esubj + r − eobj∥, the plausibility

of each triplet (esubj, r, eobj) is inversely proportional to the distance between eobj and the vector

of the subject entity plus a relation-specific translation esubj + r. An SGD optimizer is then used

to minimize d(esubj, r, eobj) and maximize d(e′
subj, r, e

′
obj), where (esubj, r, eobj) exists in KB and

(e′subj, r, e
′
obj) does not. Since a pair of entities may correspond to multiple relations, extensions

of TransE such as those of (Lin et al., 2015; Nguyen et al., 2016) are proposed. For example,

Nguyen et al. (2016) propose STransE, which enriches the distance function of TransE with two

relation-specific matrices: d(esubj, r, eobj) = ∥Wr,1esubj + r −Wr,2eobj∥. By projecting esubj, eobj

into a relation-specific subspace before translation, the expressivity of STransE is further improved

compared to TransE.

In addition to translation, to better handle symmetric relations, Sun et al. (2019) proposes to

take relations as rotation in the complex space. Given a triplet (esubj, r, eobj), the distance function

is defined as:

d(esubj, r, eobj) = ∥esubj ◦ r − eobj∥ (4.1)

where ◦ is the element-wise product. To guarantee that rotation does not affect the modulus of

entity embeddings, r is restrained such that ri ∈ C and |ri| = 1. Therefore, each element of r can be

represented as ri = eiθr,i , which represents a rotation by θr,i radians as shown in Figure 4.1. Similar

to TransE, RotatE also uses a loss function that maximizes d(esubj, r, eobj) for existing triplets in

KB and d(e′
subj, r, e

′
obj) for non-existing triplets. The loss function of RotatE is formulated as:

L = −logσ(γ − d(esubj, r, eobj))−
1

k

k∑
i=1

logσ(d(e′i
subj, r, e

′i
obj)− γ) (4.2)

where γ is a fixed margin, σ is the sigmoid function and (e′subji, r, e
′
obji) is the i-th non-existing

triplet in KB generated by negative sampling.

Due to the superior performance of RotatE on multiple benchmark knowledge graphs (Sun

et al., 2019), in this thesis we use RotatE as the method to embed knowledge bases in subsequent

experiments.

114

Figure 4.1: RotatE treats relations as rotation in the complex plane (source: (Sun et al., 2019).

4.2.2 Similarity-based Methods

Inspired by word embedding methods like word2vec (Mikolov et al., 2013), the intuition of similarity-

based methods (Perozzi et al., 2014; Grover and Leskovec, 2016; Ribeiro et al., 2017; Hamilton

et al., 2017) is that nodes with similar contexts should be close to each other in the vector space.

However, unlike natural languages, nodes in graphs are not naturally ordered. To handle this

problem, Perozzi et al. (2014) proposes an algorithm “random walk”. Starting from a random node,

the algorithm consists of sampling uniformly nodes from the neighborhood of the current node,

therefore generating a sequence of nodes that are “contiguous” in the graph. Node sequences are

then treated like texts as in word2vec, and the Skip-Gram architecture is used to learn node features.

Subsequent studies improve the random walk algorithm. Instead of uniform sampling, Grover and

Leskovec (2016) propose to perform the random walk using probability-based rules. Given a previous

jump from node t → u, probabilities of the next transition u → v are modulated by d(t, v), which

denotes the distance between t and v. Adjustable parameters are added for d(t, v) = 0, 1, 2, in order

to bias the random walk towards capturing either local or global structures of the graph. To take

structural similarities between nodes into consideration, Ribeiro et al. (2017) further proposes to

build a multi-layer graph based on the original graph and perform a random walk that is allowed to

traverse between layers. In the k-th layer, the transition probability between node u and v depends

on their k-hop neighborhood similarity, i.e. similarity between ordered degree sequences of nodes

that are k-distance away from u and v. Intuitively, if a node has many similar nodes in the current

layer, it is encouraged to move to higher layers where nodes are more likely to share the same

115

neighborhood structure with it. Therefore, structurally similar nodes have more chances to be put

in adjacent positions in node sequences generated by the proposed optimized random walk.

Since most random walk-based methods only generate node sequences, no relation embedding

is learned. This is one of the reasons why we choose distance-based graph embedding methods over

similarity-based methods. Because distinguishing between different KB relations is important, we

think that relation embeddings are very important resources.

4.3 Related Work: KB-enhanced Methods

Many attempts have been made to enhance pre-trained language models with knowledge base

information. In this section, we present previous studies that can be divided into three categories:

• Distant Supervision (DS) (Subsection 4.3.1): The intuition is to improve model performance

by training on large-scale data generated by aligning triplets in KB with unlabeled texts. In

this section, we explain the principle of DS and also present methods that are proposed to

improve the quality of DS data;

• Fusion of Graph Embeddings (Subsection 4.3.2): The intuition is to integrate entity or relation

embeddings obtained using a graph embedding method into a neural model to enhance its

performance;

• KB-related pre-training tasks (Subsection 4.3.3): The intuition is to pre-train language models

to capture factual knowledge by introducing pre-training tasks such as entity linking or entity

classification.

In the next section, we propose our KB-enhanced model that falls in the second class, i.e. we

enhance BERT using pre-trained graph embeddings in the fine-tuning stage.

4.3.1 Distant Supervision

As mentioned in Section 1.1, a main challenge for domain-specific RE tasks is the limited amount

of available annotated data. First introduced by Mintz et al. (2009) for relation extraction, distant

116

Figure 4.2: Generation of distant supervision data.

supervision (DS) is a technique that exploits knowledge bases to handle this limitation. The intuition

of distant supervision is that if a pair of entities (esubj,eobj) has a relation r in an existing knowledge

base, then any sentence that contains (esubj,eobj) is likely to express the relation r, where esubj

and eobj refer to the head and tail entity respectively. Based on this assumption, it is possible

to collect a large amount of weakly labeled data. The diagram of DS data generation is shown in

Figure 4.2. Though this method does not guarantee the accuracy of labeling, training a RE classifier

with a mixture of human-annotated data and a large amount of weakly-labeled data was found to

give better performance than only with a small amount of human-annotated data as shown in (Su

et al., 2019; Iinuma et al., 2022; Hao et al., 2020). For example, Iinuma et al. (2022) propose first

to align triplets from three biomedical knowledge bases with entity pairs from PubMed texts to

create DS data, then train two BioRoberta (Lewis et al., 2020b) models respectively on DS data

and the human-annotated DrugProt (Miranda et al., 2021) training set. Experiments show that the

concatenation of text representations from both models gives the best performance on the DrugProt

test set compared to baselines trained without or only with DS data.

However, the basic assumption of distant supervision does not always hold. Also, it is possible

that only part of the triplets are actually expressed in sentences. Thus part of the knowledge base

remains unused. Two common errors are frequently encountered in DS data:

• False positives: A sentence containing an entity pair may not express the relation between

117

the two entities even though it exists in the knowledge base. For example, though there

exists a relation capital_of between “Paris” and “France”, this relation is not expressed by

the sentence “France increases the security level in Paris.”;

• False negatives: An entity pair may be wrongly annotated as having no relation between the

two entities due to incomplete knowledge bases.

To reduce wrong labels, a common way is to build a dataset annotated by DS, then hold out

a split of the data as the test set and use the rest of the data to train a classifier that assigns

relations to entity pairs. A benchmark dataset for DS relation extraction is New York Times

(NYT) (Riedel et al., 2010), which is created by aligning Freebase (Bollacker et al., 2008) with the

NYT corpus automatically. Previous studies such as (Zeng et al., 2015; Min et al., 2013; Yang et al.,

2019; Ye and Ling, 2019; Takamatsu et al., 2012) focus on de-noising DS data by evaluating their

model performance on benchmark datasets such as NYT. Zeng et al. (2015) proposes to apply multi-

instance learning, i.e. treat sentences containing the same entity pair as a bag and only use the most

correct sentence from each bag to train the DS classifier. In the inference stage, a bag is positively

labeled only when at least one sentence in the bag is positively labeled by a certain relation. Ye

and Ling (2019) proposes to combine attention mechanism with multi-instance learning. Intra-bag

attention weights between sentences sharing the same entity pair are calculated and then used to

calculate the bag representation. Furthermore, bags labeled by the same relation are regrouped

into a group, and inter-bag attention weights are calculated to assign higher weights to those bags

that are close to others. Min et al. (2013) focuses on handling the false negatives. They propose

to add latent variables l which model true bag-level labels and treat existing labels z assigned by

DS as observations, then relate l with z by conditional probabilities such that wrong labels caused

by KB incompleteness have a chance to be corrected during the Expectation-Maximization (EM)

training. Wang et al. (2018) proposes to abandon hard labels assigned by DS, but changes to

only use prior KB information derived from graph embedding methods. Similar to TransE (Bordes

et al., 2013), for an existing triplet (esubj,r,eobj), the intuition is to replace the relation embedding

of r by embeddings of sentences sharing (esubj, eobj). The assumption of TransE is thus upgraded:

esubj + s ≈ eobj , where s ∈ S and S refers to the bag of sentences that share the entity tuple

118

(esubj, eobj).

Another disadvantage of distant supervision methods is that in most cases, we require the

knowledge base to contain the target relations of RE tasks. However, in practical use it may be

difficult to find an available KB that contains exactly the target relations of the RE task. To solve

this problem, a possible solution is to create a mapping between KB relations and target relations

of RE tasks. For example, Iinuma et al. (2022) manually link Drugbank (Wishart et al., 2018)

relations to target relations in DrugProt. A drawback of this method is that errors in the relation

mapping may add extra noise to data generated by DS. Mapping is not always possible, or does not

convey equivalence.

4.3.2 Fusion of Graph Embeddings

As shown in 4.2, it is possible to obtain vector representations of nodes and edges in a KB. Therefore,

a possible solution for the integration of KB information into pre-trained LMs is to use pre-trained

KB graph embeddings. In this section, we focus on methods that integrate pre-trained graph embed-

dings with no need of pre-training. Papaluca et al. (2022) proposes to first feed complete sentences

to BERT, then average textual representations of tokens that belong to each entity to obtain en-

tity textual representations xBERT
entity . Final entity representations are the concatenation of textual

representations and pre-trained TransE entity embeddings: xentity = [xBERT
entity ,x

graph
entity]. Finally, the

representations of subject and object entity are passed to a biaffine layer B for relation classification,

where the function of a biaffine layer is: B(x1,x2) = xT
1Ux2+W (x1∥x2)+b. Roy and Pan (2021)

tests multiple KB-enhanced methods including ClinicalBERT-EE-KGE, which consists of using first

three types of KB embeddings (concept embeddings, semantic type embeddings, semantic group

embeddings) related to candidate entities to predict the KB relation (from UMLS (Bodenreider,

2004)) between them, then concatenate the corresponding relation embedding and all entity embed-

dings with the sentence embedding obtained from ClinicalBERT (Alsentzer et al., 2019) for relation

classification. Fei et al. (2021) proposes BioKGLM by post-training BERT to predict entity tokens

that are masked. BERT layers are divided into three tiers, at the output of each tier pre-trained

entity embeddings are infused with token representations at the masked positions. The proposed

119

Figure 4.3: Architecture of BioKGLM (source: (Fei et al., 2021)).

architecture of BioKGLM is shown in Figure 4.3.

4.3.3 KB-related Pre-training Tasks

As mentioned in Section 2.6, BERT is pre-trained on MLM and NSP tasks. None of these pre-

training tasks is designed to learn factual knowledge. Therefore, researchers propose to enhance

BERT by introducing additional pre-training tasks to learn factual knowledge from KB. Peters et al.

(2019) proposes KnowBERT (Knowledge-enhanced BERT), which computes first entity represen-

tations by combining pre-trained entity embeddings obtained from KB and word piece embeddings

of BERT selected by entity spans, then updates entity representations using span-level attention.

Besides MLM and NSP, an Entity Linking (EL) loss is added for pre-training which consists of

predicting correct KB concepts for each entity. Similarly, Zhang et al. (2019b) proposes ERNIE

(Enhanced Language Representation with Informative Entities), which computes the sum of pre-

trained entity embeddings and corresponding word piece embeddings as entity representations, then

randomly masks token-entity alignments and pre-trains BERT to predict them. Michalopoulos et al.

(2021) tries to “soften” the MLM tasks by making use of Concept Unique Identifier (CUI) in UMLS.

120

They propose to perform multi-label classification for MLM tasks, predicting not only the masked

word but also UMLS synonyms that share the same CUI, e.g. if “lung” is masked, then BERT

is asked to predict “pulmonary” as well since “lung” and “pulmonary” have the same CUI. Hao

et al. (2020) propose to generate pre-training data directly using triplets in KB. They propose to

first generate examples in the form of “[CLS] entity1 relation entity2 [SEP]” (positive examples if

(entity1,relation,entity2) exists in the KB; otherwise negative examples), then build a binary classi-

fier based on BERT that predicts if the relation really exists between entity1 and entity2 in KB.

4.4 Contribution: KB-PubMedBERT

4.4.1 Hypothesis

Most previous KB-enhanced models such as (Papaluca et al., 2022; Fei et al., 2021; Zhang et al.,

2019b) focus on integrating KB entity information into pre-trained language models. However, we

argue that incorporating KB relation information is important too, especially for RE tasks. As

mentioned at the end of 4.3.1, one challenge that we are facing with KB relations is that in most

cases, relations in available KBs are different from the target relations of RE tasks. Nevertheless,

relations in a domain-specific KB are likely to be relevant to those of the RE task. Therefore, finding

a way to relate KB relations to task relations is crucial in building a KB-enhanced model for RE.

Iinuma et al. (2022) used a manually created map to convert KB relations to target relations. We

propose KB-PubMedBERT, which takes this idea further by removing the manual mapping step

and having the neural model learn the mapping automatically. We hypothesize that our proposed

model is capable of building a soft mapping between KB relations and task relations, and that

adding these suggested, hypothetical relations on top of the PubMedBERT encoding of the text

can improve the performance on RE tasks.

Compared to existing KB-enhanced methods, KB-PubMedBERT brings the following advan-

tages:

• No identity constraint on relation types in KB: Our method applies in scenarios where KB

relations are not exactly the same as target RE task relations;

121

• Low cost: Our method requires no additional pre-training, and uses the existing RotatE graph

embedding method to integrate KB information.

4.4.2 Model Architecture

Figure 4.4 shows an overview of our model architecture. The model takes two inputs: the input

sentence s, and the concept identifiers of the subject and object entities esubj, eobj. The concept

embedding layer and the relation embedding layer are respectively initialized with pre-trained con-

cept embeddings and relation embeddings using RotatE. After initialization, concept and relations

embeddings are fine-tuned during model training. The data flow in our model is as follows. First

we obtain concept embeddings for the subject and object esubj , eobj by looking up the concept

embedding layer; then we obtain the M scores for each KB relation:

scorei = γ − ∥esubj ◦ ri − eobj∥ (4.3)

where γ is a fixed margin (as presented in subsection 4.2.1), i = 1, 2, ...,M , and M denotes the

number of KB relations. According to the definition of RotatE, the distance ∥esubj◦ri−eobj∥ should

be small for existing triplets in KB, thus scorei reflects the plausibility of the triplet (esubj, ri, eobj).

Following the convention of using the [CLS] embedding as the pooling vector to represent the

sentence, denoting that vector by h[CLS], we get the mixed representation:

hconcat = [h[CLS];hscore] (4.4)

where [;] denotes vector concatenation, and hscore is an M -dimensional vector containing the KB

relation scores. The mixed representation is then passed to a fully connected layer with softmax

activation that computes the probabilities of task relations. The whole model is fine-tuned to

minimize the cross entropy loss, with non-frozen PubmedBERT weights.

122

Figure 4.4: Global architecture of proposed KB-PubMedBERT model.

4.5 Experimentation

4.5.1 Datasets

We use the three benchmark datasets presented in subsection 2.8.1: BB-Rel, ChemProt and Drug-

Prot. Though we do not require that the chosen KB contains exactly the same relations of RE

tasks, relations in KB still need to be relevant. Besides, if a certain entity type does not exist,

the performance of our KB-enhanced method can not be evaluated on examples containing entities

of the corresponding type. Therefore, for BB-Rel we only keep examples containing entity types

that are present in the chosen KB, i.e., microorganism and habitat entities. This subset of BB-Rel

is named BB-Relp and contains only one type of semantic relation, the lives_in relation (plus the

“null” relation used for negative examples).

123

4.5.2 Domain Knowledge Bases

We select appropriate KBs for different corpora. For ChemProt and DrugProt, we choose CTD

(Davis et al., 2021) (presented in Section 4.1), which contains normalized entities such as chemicals

(normalized to MESH concepts), genes (normalized to NCBI Gene concepts) and diseases (normal-

ized to MESH or OMIM concepts). Multiple types of relations exist in CTD such as chemical-gene

interactions, chemical-phenotype interactions and gene-disease associations. Since target relations

of ChemProt and DrugProt are chemical-gene interactions, we extract a subset of CTD containing

only chemical-gene interactions. This subset is named by CTDs. For BB-Rel, we choose Omnicrobe

(Dérozier et al., 2023), which contains normalized entities such as microorganisms (normalized to

NCBI concepts), habitat (normalized to OntoBiotope concepts), and phenotypes (normalized to On-

toBiotope concepts). Three relations exist in Omnicrobe: microorganism-habitat relation “lives_in”,

microorganism-phenotype relation “exhibits” and microorganism-use relation “studied_for”. Simi-

larly, we extract a subset of Omnicrobe, Omnicrobes, that contains only “lives_in” relations. The

data of Omnicrobes comes from three manually curated databases: CIRM2, BacDive3 and Gen-

Bank4. It is worth noticing that Omnicrobes is independent of the Bacteria Biotope dataset (Bossy

et al., 2019). To incorporate hierarchical information between entities, we link existing microorgan-

ism and habitat entities in Omnicrobe with their parent concepts by a relation “is_a” respectively

from NCBI (Federhen, 2011) and OntoBiotope (Nédellec et al., 2018), then add obtained triplets

to Omnicrobes. Statistics of CTDs and Omnicrobes are given in Table 4.2.

KB name # unique entities # unique relations relation type
CTDs 68178 134 chemical-gene interactions

Omnicrobes 2056587 2 lives_in, is_a

Table 4.2: Statistics of CTDs and Omnicrobes.

2https://www6.inrae.fr/cirm_eng/The-CIRM
3https://bacdive.dsmz.de/
4https://www.ncbi.nlm.nih.gov/genbank/

124

https://www6.inrae.fr/cirm_eng/The-CIRM
https://bacdive.dsmz.de/
https://www.ncbi.nlm.nih.gov/genbank/

4.5.3 Entity Normalization

Though KB-PubMedBERT does not require KB relations to be the same as those of RE tasks,

we still need to align entities in texts to concepts. In our experiments, in cases where entity

normalization is given, we use gold normalization. Otherwise, we use existing pre-trained models

to perform entity normalization. It is noteworthy that entities may be normalized to concepts that

do not exist in the KB: a KB may not cover all concepts that are used as labels for a pre-trained

entity normalization model. On Chemprot and Drugprot, we normalize entities using BioSyn5 (Sung

et al., 2020). On BB-Relp, we directly use gold normalization on the train and validation sets since

they are available. On the test set, we use a regression model from the best participant (Mao and

Liu, 2019) in the BB-Norm task (Bossy et al., 2019) to normalize microorganism entities to the

NCBI (Federhen, 2011) taxonomy of species, and the state-of-the-art model C-Norm (Ferré et al.,

2020) to normalize habitat entities to concepts from Onto-Biotope (Nédellec et al., 2018). Table 4.3

summarizes the sources of entity normalization for each corpus.

ChemProt & BB-Relp
DrugProt

train BioSyn gold
dev BioSyn gold
test BioSyn C-Norm, regression

Table 4.3: Sources of entity normalization for each corpus. “gold ” refers to gold normalization
annotations provided in BB-Norm (Bossy et al., 2019); “regression” refers to the regression model
proposed in (Mao and Liu, 2019).

4.5.4 Baseline

We use the pre-trained PubMedBERT as a baseline, since it is the model from which our model is

derived. On each task, that baseline model is fine-tuned to classify target relations. Comparing KB-

PubMedBERT to the baseline directly shows whether integrating KB information helps to classify

relations.

5We use two public pre-trained models: biosyn-sapbert-bc5cdr-chemical for chemicals; biosyn-sapbert-bc2gn for
genes.

125

4.5.5 Implementation Details

We use the official implementation 6 of RotatE (Sun et al., 2019) to calculate KB concept and

relation embeddings. Empirically, we keep the dimension of concept and relation embeddings at

200, γ at 24.0. It might occur that some entities are normalized to concepts that do not exist in

the KB, in this case we randomly initialize the embeddings for these concepts. For all datasets, we

use the model performance on the development set as the metric to find optimal hyperparameters.

We only search the optimal learning rate from the set (1e−5, 2e−5, 3e−5, 5e−5). Table 4.4 provides

the optimal learning rates. In the same way as in previous works such as (Gu et al., 2021), we

use a slanted triangular scheduler for the learning rate, which consists of increasing the learning

rate from 0 to a target value, then linearly decreasing to 0 at the end of training. We always use

the first 10% steps for this learning rate warmup. For all models, we perform 5 runs using the

same model architecture with different random seeds and using the majority voting to compute the

voting score of each model. We use a single NVIDIA Tesla V100 GPU for all our experiments. It

is worth noting that changing GPU cards may lead to minor or, in some cases, even a 0.1 to 0.2

difference in F1-score, i.e. affecting the reproducibility of experimental results. Our code is available

at: https://github.com/Maple177/RE_with_RotatE_graph_embs.

ChemProt DrugProt BB-Relp
PubMedBERT - 3e−5 5e−5

KB-PubMedBERT 2e−5 2e−5 2e−5

Table 4.4: Best learning rate for each (model, corpus) combination.

4.5.6 Results

We compare KB-PubMedBERT to the state-of-the-art (SOTA) models on each corpus:

1. For ChemProt: BioM-BERT (Alrowili and Shanker, 2021) which is a BERT model pre-trained

on PubMed and PubMed Central (PMC) literature;

6https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

126

https://github.com/Maple177/RE_with_RotatE_graph_embs
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

ChemProt DrugProt BB-Relp
PubMedBERT 77.1 ± 0.4 (77.2∆) / 78.2 75.8 ± 0.5 / 77.2 64.4 ± 0.7 / 65.3
KB-PubMedBERT 77.8 ± 0.1 ∗ / 79.2 77.6 ± 0.4 ∗ / 77.9 65.7 ± 1.0 ∗ / 66.5
SOTA 80.0 / - - / 79.7 - / 64.8

Table 4.5: F1 scores on RE tasks. We report a/b where a represents the average score of 5 runs
with different random initializations; b represents the majority voting score. ∆ indicates the score
reported by Gu et al. (2021) on ChemProt. We report the two scores to better compare our results
to the SOTA results. ∗ indicates statistically significant improvements with p < 0.05 under a t-test.

2. For DrugProt: an ensemble of 10 pre-trained RoBERTa-large-PM-M3-Voc (Lewis et al., 2020a)

with input enriched by chemical definitions curated from CTD (Weber et al., 2022);

3. For BB-Relp: A 12-layer Transformer model pre-trained on BooksCorpus, English Wikipedia,

PubMed and PMC corpus. (Zhang et al., 2019a)

Table 4.5 summarizes the experimental results. We observe that our KB-PubMedBERT con-

sistently outperforms the baseline model on all three corpora, which shows the effectiveness of our

method of KB information injection.

Comparing our method to existing SOTA models, KB-PubMedBERT outperforms previous

SOTA on BB-Relp. Though our model does not outperform SOTA models on ChemProt and

DrugProt, the gap in performance might be explained by model sizes: both SOTA models have

more layers and more parameters than KB-PubMedBERT.

4.6 Analysis & Discussion

4.6.1 Precision, Recall and F1-score

To further investigate the behavior of our proposed model, aside from the F1-score, we also calculate

precision and recall on the validation set and show them in Table 4.6. We observe that on ChemProt,

both precision and recall are improved, which naturally leads to an improvement in F1-score. On

DrugProt, precision is slightly degraded while recall is improved: it seems that the integrated

KB information helps to balance precision and recall. On BB-Relp, only precision is improved

while recall stays unchanged, again helping to balance the two. Therefore, in all three cases, KB

127

precision recall F1
ChemProt
PubMedBERT 80.7 80.4 80.5
KB-PubMedBERT 81.5 81.9 81.7
DrugProt
PubMedBERT 80.2 76.4 78.2
KB-PubMedBERT 79.5 78.8 79.2
BB-Relp
PubMedBERT 65.9 74.8 70.0
KB-PubMedBERT 66.8 74.8 70.6

Table 4.6: Precision, Recall and F1 scores on the validation sets of the three RE tasks.

information injected by graph embeddings improves F1-score by balancing (or keeping the balance

of) precision and recall.

4.6.2 Direct Links in KB

Given two concepts associated with two input entity mentions, RotatE graph embeddings make it

possible to compute scores for all KB relations. However, direct links between these concepts, i.e.,

relations that actually exist between them in the KB, are likely to be more reliable than inferred

relations that do not explicitly exist in the KB between these concepts.

One might thus hypothesize that the existence in the KB of direct links between these concepts

might be the main source of information that helps improve predictions. We thus test whether the

improved cases, i.e., those predicted wrongly by PubMedBERT but correctly by KB-PubMedBERT,

are linked to a higher proportion of direct links.

For this purpose, we divide examples in the validation sets of RE tasks into four categories:

1. easy: both PubMedBERT and KB-PubMedBERT give correct predictions;

2. hard: both models give wrong predictions;

3. improved: PubMedBERT gives wrong predictions while KB-PubMedBERT gives correct pre-

dictions;

4. degraded: PubMedBERT gives correct predictions while KB-PubMedBERT gives wrong pre-

dictions.

128

ChemProt DrugProt BB-Relp
% easy 15.7 27.0 13.2
% hard 17.0 31.2 15.7
% improved 22.8 30.1 11.9
% degraded 14.2 28.5 13.2

Table 4.7: Percentages of examples for which the subject and object entities are directly linked
in the KB. Bold values are significantly different from the overall percentage of the corresponding
corpus with |Z| > 2 under a Z-test.

We then calculate the percentage of examples with directly linked subject and object entities in

each of the four groups in each corpus and test whether the percentage in each group is significantly

different compared to the overall percentage in the corresponding corpus. Table 4.7 displays these

percentages. The results reject the above hypothesis: although in ChemProt, the “improved” group

contains significantly more examples with directly linked subject and object entities, in DrugProt

this difference is not significant, while in BB-Relp the “improved” group contains even fewer examples

with direct links. Besides, in DrugProt, the “hard” group has a significantly higher percentage.

In conclusion, the observed improvement in RE performance is not explained by the percentage

of examples with direct links that exist in the KB. It seems that non-direct links play a role in

the improvement of KB-PubMedBERT, and more factors are involved here, but we need further

investigation to elucidate.

4.6.3 Ablation Study

To verify how much the graph embedding module in our model is able to detect the target RE

relations by itself, we conduct experiments in which we completely remove PubMedBERT from our

model. This means that we only use the (subject, object) entity pair to predict the interaction type

via RotatE graph embeddings. We compare the resulting relation classifier to a naive model that

always predicts the most frequent non-null relation. Table 4.8 shows the results on the test set of

the three corpora.

We observe that even with no context, our model significantly outperforms the naive model on

ChemProt and DrugProt. This shows that the scores of fine-grained KB relations obtained from

RotatE graph embeddings are helpful. On BB-Relp, the naive model can easily outperform our

129

ChemProt DrugProt BB-Relp
KB-Pred 23.8 ± 1.6 19.5 ± 1.0 26.6 ± 0.3
naive 17.3 12.3 38.3

Table 4.8: KB-Pred denotes our proposed model without the PubMedBERT embedding module,
thus using only KB-derived information in its prediction. We report the average score of 5 runs.
naive refers to a model that always predicts the most frequent non-null relation.

model because there is only one non-null relation.

4.6.4 Case Study

To get an insight into the behavior of our proposed model, we manually examine improved and

degraded examples, where the definition of improved and degraded examples remains the same as

in the previous subsection (Subsection 4.6.2). Selected improved and degraded examples are respec-

tively given in Table 4.9 and Table 4.10. We observe that PubMedBERT predicts “no_relation” for

most of the examples improved by KB information, i.e. false negatives originally predicted by Pub-

MedBERT can be corrected by KB-PubMedBERT. Besides, the KB relation between arguments of

an improved example is found to be close to the relation of the RE task as shown in Table 4.9. For

example, KB relations “decreasesˆactivity” and “decreasesˆreaction” are found to help predict the

relation “inhibitor”; “increasesˆexpression” helps predict the relation “activator”. It demonstrates

the effectiveness of introducing KB information. However, KB relations are not always useful. We

find that in some cases, KB relations can be harmful:

• False positives: KB-PubMedBERT can be biased to predict a relation that is close to a KB

relation. In some cases, KB-PubMedBERT favors KB information over textual information,

and predicts a non-null relation even though the relation is not expressed in texts (4-th and

5-th examples in Table 4.10);

• Multiple KB relations: There may exist multiple KB relations for a given pair of entities. These

KB relations seem to confuse KB-PubMedBERT (such as the 1st, 2nd and 3rd examples in

Table 4.10) if they are quite different from each other. For example, in the third example

in Table 4.10, “decreasesˆreaction” and “increasesˆactivity” describe two opposite chemical-

130

gene interactions. The existence of “increasesˆactivity” may prevent KB-PubMedBERT from

predicting “downregulator | inhibitor”.

• Lack of precision: For the last example in Table 4.10, KB-PubMedBERT predicts “indirect-

downregulator” while the true relation is “inhibitor”. In ChemProt, the two relations are

regrouped into a single class, while in DrugProt they are taken as two separate classes. The

prediction of KB-PubMedBERT may be biased to “indirect-downregulator” due to the KB

suggestion “decreasesˆreaction”, which is not false but is not accurate enough.

4.7 Conclusion

In this chapter, we review the composition of knowledge bases and existing graph embedding

methods that can be used to vectorize knowledge base information. Then we focus on previous

KB-enhanced methods that can be divided into three classes: distant supervision methods, which

consist of extracting large-scale training data from unlabeled data; graph embedding-based methods

explicitly integrate knowledge graph embeddings into neural architectures; methods belonging to

the third class make language models capture knowledge base information implicitly by adding a

pre-training objective.

Inspired by the graph embedding method RotatE, we propose our KB-enhanced model KB-

PubMedBERT. Since RotatE provides a way to compute the plausibility of any triplet (esubj, r, eobj),

we search to exploit RotatE graph embeddings to compute scores of each KB relation given a candi-

date entity pair, then integrate the scores into PubMedBERT by concatenation. Our experimental

results show that KB-PubMedBERT consistently outperforms PubMedBERT, and even outperforms

the state-of-the-art model on BB-Relp. The ablation study and case study show the effectiveness

of injected KB information. The main advantage of our proposed method is that we do not re-

quire the selected knowledge base to contain the same relations as those of the RE task, therefore

the applicability is improved compared to previous KB-enhanced models. Besides, our proposed

method requires no pre-training or extra training data, and it can be easily transferred to other

domain-specific corpora.

131

sentence with KB? predictions KB relations
Imatinib inhibits RET-mediated
MTC cell growth affecting RET
protein levels in vitro in a
dose-dependent manner.

no_relation

downregulator
| inhibitor

decreasesˆphosphorylation

Binding of cGMP to GAF-A
increases cNPK phosphorylation of
PDE5 and improves catalytic site
affinity for cGMP or inhibitors.

no_relation

upregulator
| activator

increasesˆabundance

The CYP3A4 activity could be
induced 2-fold by rifampicin, whereas
CYP2C9 activity remained equally
high.

no_relation

activator increasesˆexpression

Binding and transactivation assays
were used to compare affinities and
transcriptional activities of
adapalene and tretinoin for the
nuclear transcription factors, retinoic
acid receptors (RARs).

no_relation

direct-
regulator

decreasesˆexpression

we investigated the role of
PPAR-alpha in gemfibrozil-mediated
inhibition of iNOS.

no_relation
inhibitor affectsˆcotreatment,

decreasesˆreaction
Selective inhibition of PDE5 is a
rational therapeutic approach in ED,
as proved by the clinical success of
sildenafil.

no_relation

inhibitor decreasesˆactivity

The molecular mechanism studies
suggested that neoechinulin A may
block the phosphorylation of
mitogen-activated protein kinase
(MAPK) molecule p38, apoptosis
signal-regulating kinase 1 (ASK-1)
and nuclear translocation of nuclear
factor-kB (NF-kB) p65 and p50
subunits.

no_relation

indirect-
downregulator

affectsˆlocalization,
decreasesˆreaction

Among the possible transporters
involved in the uptake of Cd(2+)
and Mn(2+), the expression of ZIP8
(Zrt-, Irt-related protein 8), encoded
by Slc39a8, showed a marked
suppression in both RBL-Cdr and
RBL-Mnr cells.

no_relation

substrate
|product_of

increasesˆimport

Table 4.9: Case study: improved examples on the validation set of ChemProt and DrugProt. Red
words refer to the subject entity (chemical) and blue words refer to the object entity (gene). The
column “predictions” contains the relations predicted by the corresponding model, where a bold
relation refers to a correct prediction. The last column contains relations found in the KB given
the corresponding pair of entities.

132

sentence with KB? predictions KB relations
The following alpha(2)-adrenoceptor
antagonists were applied: BRL44408
(alpha(2A)-selective), ARC239
(alpha(2B)- and alpha(2C)-selective).

no_relation

antagonist decreasesˆactivity,
affectsˆbinding

Arsenic inhibits autophagic flux
activating the Nrf2-Keap1 pathway
in a p62-dependent manner.

upregulator
|activator
downregulator
|inhibitor

decreasesˆexpression,
increasesˆabundance

Known VR1 antagonists (BCTC,
thio-BCTC and capsazepine) were
also able to block the response of
TRPM8 to menthol (IC(50):
0.8+/-1.0, 3.5+/-1.1 and 18+/-1.1
microM, respectively).

downregulator
|inhibitor

antagonist decreasesˆreaction,
increasesˆactivity

Ponatinib (AP24534) is a multikinase
inhibitor with in vitro and clinical
activity in tyrosine kinase inhibitor
(TKI)-resistant chronic myeloid
leukemia, irrespective of BCR-ABL
KD mutation.

no_relation

downregulator
|inhibitor

decreasesˆactivity

These findings suggest that
troglitazone inhibits antigen-induced
LT production in the IgE-sensitized
RBL-2H3 cells and
A23187-stimulated rat peritoneal
neutrophils by direct inhibition of
5-LOX activity.

no_relation

activator increasesˆactivity

Finally, PLA2 inhibitor methyl
arachidonyl fluorophosphonate
blocked the PUFA effects on COX-2
induction, promoter activity and
arachidonic acid mobilization
suggesting involvement of AA
metabolites in PPAR activation.

inhibitor

indirect-
downregulator

decreasesˆreaction

Table 4.10: Case study: degraded examples on the validation set of ChemProt and DrugProt. Red
words refer to the subject entity (chemical) and blue words refer to the object entity (gene). The
column “predictions” contains the relations predicted by the corresponding model, where a bold
relation refers to a correct prediction. The last column contains relations found in the KB given
the corresponding pair of entities.

133

We conducted case studies respectively for improved examples (on which KB-PubMedBERT

corrects erroneous predictions made by PubMedBERT) and degraded examples (on which KB-

PubMedBERT spoils originally correct predictions made by PubMedBERT). The case study on

improved examples demonstrates concretely how injected KB information helps; while the case

study reveals the limitations of KB-PubMedBERT and opens up perspectives for future work. As

presented in Subsection 4.6.4, the analysis of degraded examples shows that KB-PubMedBERT

may focus more on suggestions from the KB and make erroneous predictions, ignoring textual

information. This is likely due to the fact that in KB-PubMedBERT, we simply concatenate vector

representations summarizing KB information and textual information, no learnable weights are

added to control the quantity of the introduced KB information. Possible solutions would be to

introduce a neural layer such as Highway Gate (Srivastava et al., 2015) that specializes in infusing

two vector representations, or compute attention coefficients between token embeddings and most

plausible KB relation embeddings. Secondly, the case study on degraded examples also shows

the negative impact of having multiple KB relations between a pair of entities. In these cases,

KB-PubMedBERT seems to be confused by KB suggestions, especially when KB relations are quite

different from each other, e.g. “increasesˆreaction” and “decreasesˆreaction” may both exist between

a chemical and a gene in a KB. This impact may be partly explained by the choice of the graph

embedding method. Since RotatE learns a relation-specific rotation in the complex space, it does

not handle well the cases where multiple KB relations exist between the same entity pair. However,

changing graph embedding methods cannot handle the case of having KB relations that express

opposite interactions. In this case, KB suggestions are required to change with contexts and can

not be fixed. For now, we have no clue how to solve this problem and we leave it for future work.

Lastly, we have not yet exhaustively investigated the effectiveness of our model architecture since we

have only tested PubMedBERT as the base language model and RotatE as the graph embedding

method. More extensive experiments using combinations of different BERT variants and graph

embedding methods would give more insight into the effectiveness of the method. It is also worth

testing more biomedical RE corpora such as i2b2 (Uzuner et al., 2011) and DDI (Herrero-Zazo et al.,

2013).

134

Chapter 5

Conclusions and perspectives

In this chapter, we first summarize what has been studied in this thesis, then present perspectives

for future work.

5.1 Conclusions

The invention of pre-trained large language models (LLM) like BERT improves the performance

of multiple NLP tasks including relation extraction (RE). Domain-specific BERT variants further

extend this improvement to texts of specific domains such as biomedical texts. However, since

the pre-training of BERT does not involve any syntactic or knowledge base (KB) information, our

objective in this thesis was to investigate if introducing this external information may improve

the performance of BERT on biomedical relation extraction tasks. We chose PubMedBERT, a

biomedical BERT variant, as the cornerstone of our proposed methods and chose three biomedical

RE corpora as benchmarks: BB-Rel, ChemProt and DrugProt. We then proposed several BERT-

based models enhanced by either syntactic (Section 3.3) or KB (Section 4.4) information:

• CE-PubMedBERT: word piece embeddings that correspond to a chunk are summed to ob-

tain chunk embeddings; then chunk embeddings are passed to extra attention layers after

PubMedBERT;

• CT-PubMedBERT: constituency trees are linearized into sequences and then passed to Pub-

135

MedBERT;

• MTS-PubMedBERT: the RE task is jointly trained with two tasks that consist of recovering

structural properties of dependency trees;

• KB-PubMedBERT: the textual representation obtained from PubMedBERT is concatenated

with a vector containing plausibility scores of KB relations obtained by RotatE, a graph

embedding method.

Two baseline models were set in experiments: PubMedBERT and PubMedBERT-extra (Sub-

section 3.4.2). We also tested an existing syntax-enhanced model Late-Fusion that has not yet

been evaluated on biomedical corpora. Experimental results on syntax-enhanced models show

that CE-PubMedBERT and Late-Fusion outperform PubMedBERT on two of the datasets, BB-

Rel and DrugProt. However, further stratified results demonstrate that the performance of CE-

PubMedBERT and Late-Fusion are highly correlated to PubMedBERT-extra, leading us to conclude

that observed improvements of CE-PubMedBERT and Late-Fusion are not due to integrated syntac-

tic information but to extra layers added to the base model. The other two syntax-enhanced models,

CT-PubMedBERT and MTS-PubMedBERT, do not work as expected, possibly due to training dif-

ficulties. Therefore, we conclude that syntactic information does not help improve biomedical RE

performance. This conclusion is not definitive, and further experiments with new neural architec-

tures and training strategies are needed to clarify whether syntactic information may be useful for

biomedical RE.

KB-PubMedBERT, the KB-enhanced model that we proposed, succeeded in improving the

biomedical RE performance on the three corpora that we selected: BB-Rel, ChemProt, DrugProt.

In general, experimental results show that plausibility scores of KB relations help PubMedBERT

better classify relations. Our case study confirms the effectiveness of integrated KB information,

though it also shows certain negative impacts of exploiting KB suggestions.

136

5.2 Perspectives

We have mentioned in this thesis that possible improvements can be made by modifying model

architectures or training strategies. We summarize them in this section along with other future

works.

5.2.1 Improvements to Proposed Methods

5.2.1.1 MTS-PubMedBERT

The degradation of MTS-PubMedBERT may be explained in two ways: (1) since predicting syn-

tactic pairwise distances and depths is treated as a classification task, mapping from distance or

depth values to classes may have an impact on the performance of MTS-PubMedBERT. We con-

ducted experiments using a relatively strict mapping, i.e., each distance or depth value corresponds

to a class (except for values larger than a certain threshold is mapped to a class). A clue of in-

vestigation is to use a less strict mapping. (2) We used the same learning rate for three tasks of

MTS-PubMedBERT during fine-tuning, which may not be optimal for the neural network to con-

verge. A second interesting enhancement would consist of trying different learning rates respectively

for the three tasks.

5.2.1.2 KB-PubMedBERT

As presented in Section 4.7, subsequent studies following KB-PubMedBERT may consist of adding

a neural layer such as HighWay Gate (Srivastava et al., 2015) (used in Late-Fusion) that specializes

in infusing the textual representation and the KB representation. Using the attention mechanism

over token embeddings and KB relation embeddings is another option: instead of concatenating the

vector containing plausibility scores of KB relations, tokens and most plausible KB relations would

attend to each other, and both token embeddings and relation embeddings would be updated.

A novelty of KB-PubMedBERT is that the selected KB is not required to contain the exact

same relations as the RE task. Experimental results show that our method did improve the RE

performance using a KB containing relations that are different from those of the RE task, but KB

137

relations and the target relations are still similar (they are the same in the case of BB-Rel). A

further investigation direction is to identify to what extent KB relations can be different from those

of the RE task and at the same time provide gains for KB-PubMedBERT over PubMedBERT.

A possible objective for this study is to find an indicator that measures the “usefulness” of a KB

with respect to a RE task. For example, due to the non-existing entity problem, we can use the

percentage of entities that exist in the KB as an indicator. We believe that this study would be

helpful for KB selection and may further increase the applicability of KB-PubMedBERT.

5.2.2 Improvements to Preprocessing

We have mentioned in Subsection 3.5.1 several problems in the dependency parses for BB-Rel:

double-sentence problem; periods; abbreviations. These problems can be mitigated by pre-processing.

For example, to handle the double-sentence problem, we can input the two sentences separately and

combine the two dependency trees by linking their syntactic roots, or linking coreferences (if exist)

to their antecedents. For problematic abbreviations, we can create a mapping to replace abbrevia-

tions with full names of entities. As mentioned in Subsection 4.5.3, entities may be normalized to

concepts that do not exist in the KB. Since in KB-PubMedBERT, we create random embeddings

for these entities, we believe that the performance of KB-PubMedBERT can be further improved if

we can decrease the number of non-existing entities. This can be achieved by pre-processing: for a

given entity, pre-trained entity normalization models usually predict top-K (the value of K varies

with different models) concepts, but in our experiments, we always chose the most probable concept

as the prediction. In the case that the most probable concept does not exist in the KB, using instead

less probable concepts that exist in the KB would mitigate the problem of non-existing entities. It

would be a tradeoff between the normalization accuracy and the number of non-existing entities.

5.2.3 Resource Choice

A limitation of our work is that we use PubMedBERT as the base model through our experiments

and we test only three corpora, therefore our observation and conclusion may not be representative

enough and may be biased to the choice of corpus and base model. Further systematic investigation

138

is needed to obtain a global insight. Future work consists of testing different combinations of

resources: additional biomedical RE corpora such as i2b2 (Uzuner et al., 2011) and DDI (Herrero-

Zazo et al., 2013); additional domain-specific BERT variants such as BioBERT (Lee et al., 2020),

SciBERT (Beltagy et al., 2019) and BioLinkBERT (Yasunaga et al., 2022). For KB-PubMedBERT,

extensive experiments may consist of testing different combinations of (corpus, base model, graph

embedding model): additional graph embedding models exist such as TransE and STranE. Since in

specific domains, knowledge bases are often small-sized and cover only part of the domain knowledge,

it may also be interesting to try merging different domain-specific KBs to form a more extensive

KB. This may also help mitigate the problem of non-existing entities.

5.2.4 Model Deployment

Since KB-PubMedBERT gives promising results, we are considering deploying it to production and

integrating it into AlvisNLP (Ba and Bossy, 2016), an NLP pipeline developed and maintained by

the Bibliome group of INRAE that consists of multiple modules such as Named Entity Recognition

and Entity Normalization. Once KB-PubMedBERT is integrated into AlvisNLP, it can be used by

domain-specific applications such as Omnicrobe1. Omnicrobe gathers comprehensive information

on microbial biodiversity (habitats, phenotypes and usages of microorganisms) as automatically

extracted from text sources of publications and databases. Because our current implementation of

KB-PubMedBERT is only for experimental usage, extra work is needed for deployment including

wrapping our model in the pipeline and possible optimization of codes to reduce training and

inference time.

1https://omnicrobe.migale.inrae.fr/

139

https://omnicrobe.migale.inrae.fr/

140

Publications During the Thesis

Tang, A., Nédellec, C., Zweigenbaum, P., Deléger, L., & Bossy, R. 2021. Global alignment for

relation extraction in Microbiology. In Junior Conference on Data Science and Engineering.

Tang, A., Deleger, L., Bossy, R., Zweigenbaum, P., & Nédellec, C. 2022. Do syntactic trees en-

hance Bidirectional Encoder Representations from Transformers (BERT) models for chemical–drug

relation extraction?. Database, 2022, baac070.

Tang, A., Bossy, R., Deléger, L., Nédellec, C., & Zweigenbaum, P. 2023. Exploitation de plonge-

ments de graphes pour l’extraction de relations biomédicales. In 18e Conférence en Recherche

d’Information et Applications-16e Rencontres Jeunes Chercheurs en RI-30e Conférence sur le Traite-

ment Automatique des Langues Naturelles (TALN)-25e Rencontre des Étudiants Chercheurs en In-

formatique pour le Traitement Automatique des Langues (pp. 298-310). ATALA.

141

142

Bibliography

S. Alrowili and V. Shanker. BioM-transformers: Building large biomedical language models with

BERT, ALBERT and ELECTRA. In Proceedings of the 20th Workshop on Biomedical Language

Processing, pages 221–227, Online, June 2021. Association for Computational Linguistics. doi:

10.18653/v1/2021.bionlp-1.24. URL https://aclanthology.org/2021.bionlp-1.24.

E. Alsentzer, J. Murphy, W. Boag, W.-H. Weng, D. Jindi, T. Naumann, and M. McDermott.

Publicly available clinical BERT embeddings. In Proceedings of the 2nd Clinical Natural Language

Processing Workshop, pages 72–78, Minneapolis, Minnesota, USA, June 2019. Association for

Computational Linguistics. doi: 10.18653/v1/W19-1909. URL https://aclanthology.org/

W19-1909.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

M. Ba and R. Bossy. Interoperability of corpus processing workflow engines: the case of alvisnlp/ml

in openminted. Cross-Platform Text Mining and Natural Language Processing Interoperability,

pages 15–18, 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and

translate. CoRR, abs/1409.0473, 2014.

J. Bai, Y. Wang, Y. Chen, Y. Yang, J. Bai, J. Yu, and Y. Tong. Syntax-BERT: Improving pre-trained

transformers with syntax trees. In Proceedings of the 16th Conference of the European Chapter

of the Association for Computational Linguistics: Main Volume, pages 3011–3020, Online, Apr.

143

https://aclanthology.org/2021.bionlp-1.24
https://aclanthology.org/W19-1909
https://aclanthology.org/W19-1909

2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.262. URL

https://aclanthology.org/2021.eacl-main.262.

I. Beltagy, K. Lo, and A. Cohan. Scibert: Pretrained language model for scientific text. In EMNLP,

2019.

Y. Bengio, R. Ducharme, and P. Vincent. A neural probabilistic language model. Advances in

neural information processing systems, 13, 2000.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web: A new form of web content that

is meaningful to computers will unleash a revolution of new possibilities. In Linking the World’s

Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web, pages 91–103.

Scientific American, 2023.

A. Bies, M. Ferguson, K. Katz, R. MacIntyre, V. Tredinnick, G. Kim, M. A. Marcinkiewicz, and

B. Schasberger. Bracketing guidelines for treebank ii style penn treebank project. University of

Pennsylvania, 97:100, 1995.

O. Bodenreider. The unified medical language system (umls): integrating biomedical terminology.

Nucleic acids research, 32(suppl_1):D267–D270, 2004.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword infor-

mation. Transactions of the association for computational linguistics, 5:135–146, 2017.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collaboratively created

graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’08, page 1247–1250, New York,

NY, USA, 2008. Association for Computing Machinery. ISBN 9781605581026. doi: 10.1145/

1376616.1376746. URL https://doi.org/10.1145/1376616.1376746.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings

for modeling multi-relational data. Advances in neural information processing systems, 26, 2013.

144

https://aclanthology.org/2021.eacl-main.262
https://doi.org/10.1145/1376616.1376746

R. Bossy, L. Deléger, E. Chaix, M. Ba, and C. Nédellec. Bacteria biotope at BioNLP open shared

tasks 2019. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks, pages 121–131,

Hong Kong, China, Nov. 2019. Association for Computational Linguistics. doi: 10.18653/v1/

D19-5719. URL https://aclanthology.org/D19-5719.

X. Bouthillier, P. Delaunay, M. Bronzi, A. Trofimov, B. Nichyporuk, J. Szeto, N. Mohammadi Sep-

ahvand, E. Raff, K. Madan, V. Voleti, et al. Accounting for variance in machine learning bench-

marks. Proceedings of Machine Learning and Systems, 3:747–769, 2021.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information

processing systems, 33:1877–1901, 2020.

R. Bunescu and R. Mooney. A shortest path dependency kernel for relation extraction. In Pro-

ceedings of Human Language Technology Conference and Conference on Empirical Methods in

Natural Language Processing, pages 724–731, Vancouver, British Columbia, Canada, Oct. 2005.

Association for Computational Linguistics. URL https://aclanthology.org/H05-1091.

K. Clark, U. Khandelwal, O. Levy, and C. D. Manning. What does BERT look at? an analysis

of BERT’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and

Interpreting Neural Networks for NLP, pages 276–286, Florence, Italy, Aug. 2019. Association

for Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https://aclanthology.org/

W19-4828.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995.

D. Dai, X. Xiao, Y. Lyu, S. Dou, Q. She, and H. Wang. Joint extraction of entities and overlapping

relations using position-attentive sequence labeling. In Proceedings of the AAAI conference on

artificial intelligence, volume 33, pages 6300–6308, 2019.

A. P. Davis, C. J. Grondin, R. J. Johnson, D. Sciaky, J. Wiegers, T. C. Wiegers, and C. J. Mattingly.

Comparative toxicogenomics database (ctd): update 2021. Nucleic acids research, 49(D1):D1138–

D1143, 2021.

145

https://aclanthology.org/D19-5719
https://aclanthology.org/H05-1091
https://aclanthology.org/W19-4828
https://aclanthology.org/W19-4828

M.-C. de Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter, J. Nivre, and C. D. Man-

ning. Universal Stanford dependencies: A cross-linguistic typology. In Proceedings of the

Ninth International Conference on Language Resources and Evaluation (LREC’14), pages 4585–

4592, Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA). URL

http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf.

M. P. Deisenroth, A. A. Faisal, and C. S. Ong. Mathematics for Machine Learning, pages 155–157.

Cambridge University Press, 2020.

E. Delavenay and K. M. Delavenay. An introduction to machine translation. Modern Language

Review, 57:73, 1962. URL https://api.semanticscholar.org/CorpusID:161770638.

S. Dérozier, R. Bossy, L. Deléger, M. Ba, E. Chaix, O. Harlé, V. Loux, H. Falentin, and C. Nédellec.

Omnicrobe, an open-access database of microbial habitats and phenotypes using a comprehensive

text mining and data fusion approach. PloS one, 18(1):e0272473, 2023.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-

ume 1 (Long and Short Papers), pages 4171–4186, 2019.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):

269–271, 1959.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research, 12:2121–2159, 07 2011.

S. Federhen. The NCBI Taxonomy database. Nucleic Acids Research, 40(D1):D136–D143, 12 2011.

ISSN 0305-1048. doi: 10.1093/nar/gkr1178. URL https://doi.org/10.1093/nar/gkr1178.

H. Fei, Y. Ren, Y. Zhang, D. Ji, and X. Liang. Enriching contextualized language model from knowl-

edge graph for biomedical information extraction. Briefings in bioinformatics, 22(3):bbaa110,

2021.

146

http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://api.semanticscholar.org/CorpusID:161770638
https://doi.org/10.1093/nar/gkr1178

A. Ferré, L. Deléger, R. Bossy, P. Zweigenbaum, and C. Nédellec. C-Norm: a neural ap-

proach to few-shot entity normalization. BMC bioinformatics, 21(23):579, 2020. doi: 10.1186/

s12859-020-03886-8. URL https://doi.org/10.1186/s12859-020-03886-8.

T.-J. Fu, P.-H. Li, and W.-Y. Ma. GraphRel: Modeling text as relational graphs for joint entity

and relation extraction. In Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics, pages 1409–1418, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1136. URL https://aclanthology.org/P19-1136.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, chapter Representation Learning,

pages 521–522. MIT Press, Cambridge, MA, USA, 2016a. URL http://www.deeplearningbook.

org.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, chapter Representation Learning,

pages 321–334. MIT Press, Cambridge, MA, USA, 2016b. URL http://www.deeplearningbook.

org.

I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, chapter Representation Learning,

pages 517–518. MIT Press, Cambridge, MA, USA, 2016c. URL http://www.deeplearningbook.

org.

A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the

22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages

855–864, 2016.

Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann, J. Gao, and H. Poon.

Domain-specific language model pretraining for biomedical natural language processing. ACM

Transactions on Computing for Healthcare (HEALTH), 3(1):1–23, 2021.

Z. Guo, G. Nan, W. Lu, and S. B. Cohen. Learning latent forests for medical relation extraction.

In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJ-

CAI’20, 2021. ISBN 9780999241165.

147

https://doi.org/10.1186/s12859-020-03886-8
https://aclanthology.org/P19-1136
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,

page 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

B. Hao, H. Zhu, and I. C. Paschalidis. Enhancing clinical bert embedding using a biomedical

knowledge base. In 28th International Conference on Computational Linguistics (COLING 2020),

2020.

Z. S. Harris. Distributional structure. <i>WORD</i>, 10(2-3):146–162, 1954. doi: 10.1080/

00437956.1954.11659520. URL https://doi.org/10.1080/00437956.1954.11659520.

D. Haussler et al. Convolution kernels on discrete structures. Technical report, Citeseer, 1999.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

D. Hendrycks and K. Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian

error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.08415.

M. Herrero-Zazo, I. Segura-Bedmar, P. Martínez, and T. Declerck. The ddi corpus: An annotated

corpus with pharmacological substances and drug–drug interactions. Journal of Biomedical In-

formatics, 46(5):914–920, 2013. ISSN 1532-0464. doi: https://doi.org/10.1016/j.jbi.2013.07.011.

URL https://www.sciencedirect.com/science/article/pii/S1532046413001123.

J. Hewitt and C. D. Manning. A structural probe for finding syntax in word representations.

In Proceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 4129–4138, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

doi: 10.18653/v1/N19-1419. URL https://aclanthology.org/N19-1419.

J. Hewitt, K. Ethayarajh, P. Liang, and C. Manning. Conditional probing: measuring usable

information beyond a baseline. In Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, pages 1626–1639, Online and Punta Cana, Dominican Republic,

148

https://doi.org/10.1080/00437956.1954.11659520
http://arxiv.org/abs/1606.08415
https://www.sciencedirect.com/science/article/pii/S1532046413001123
https://aclanthology.org/N19-1419

Nov. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.122.

URL https://aclanthology.org/2021.emnlp-main.122.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,

1997.

K. Hornik, M. B. Stinchcombe, and H. L. White. Multilayer feedforward networks are universal

approximators. Neural Networks, 2:359–366, 1989.

N. Iinuma, M. Miwa, and Y. Sasaki. Improving supervised drug-protein relation extraction with

distantly supervised models. In Proceedings of the 21st Workshop on Biomedical Language Pro-

cessing, pages 161–170, Dublin, Ireland, May 2022. Association for Computational Linguistics.

doi: 10.18653/v1/2022.bionlp-1.16. URL https://aclanthology.org/2022.bionlp-1.16.

G. Jawahar, B. Sagot, and D. Seddah. What does BERT learn about the structure of language?

In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 3651–3657, Florence, Italy, July 2019. Association for Computational Linguistics. doi:

10.18653/v1/P19-1356. URL https://aclanthology.org/P19-1356.

F. Jelinek. Interpolated estimation of markov source parameters from sparse data. In Proc. Work-

shop on Pattern Recognition in Practice, 1980, 1980.

J. Jiang and C. Zhai. A systematic exploration of the feature space for relation extraction. In Human

Language Technologies 2007: The Conference of the North American Chapter of the Association

for Computational Linguistics; Proceedings of the Main Conference, pages 113–120, Rochester,

New York, Apr. 2007. Association for Computational Linguistics. URL https://aclanthology.

org/N07-1015.

M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy. Spanbert: Improving pre-

training by representing and predicting spans. Transactions of the association for computational

linguistics, 8:64–77, 2020.

149

https://aclanthology.org/2021.emnlp-main.122
https://aclanthology.org/2022.bionlp-1.16
https://aclanthology.org/P19-1356
https://aclanthology.org/N07-1015
https://aclanthology.org/N07-1015

N. Kambhatla. Combining lexical, syntactic, and semantic features with maximum entropy mod-

els for information extraction. In Proceedings of the ACL interactive poster and demonstration

sessions, pages 178–181, 2004.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,

2014.

N. Kitaev and D. Klein. Constituency parsing with a self-attentive encoder. In Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),

pages 2676–2686, Melbourne, Australia, July 2018. Association for Computational Linguistics.

doi: 10.18653/v1/P18-1249. URL https://aclanthology.org/P18-1249.

M. Krallinger, O. Rabal, S. A. Akhondi, M. P. Pérez, J. Santamaría, G. P. Rodríguez, G. Tsatsaronis,

A. Intxaurrondo, J. A. López, U. Nandal, et al. Overview of the biocreative vi chemical-protein

interaction track. In Proceedings of the sixth BioCreative challenge evaluation workshop, volume 1,

pages 141–146, 2017.

J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. Biobert: a pre-trained biomedical

language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020.

P. Lewis, M. Ott, J. Du, and V. Stoyanov. Pretrained language models for biomedical and

clinical tasks: Understanding and extending the state-of-the-art. In Proceedings of the 3rd

Clinical Natural Language Processing Workshop, pages 146–157, Online, Nov. 2020a. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2020.clinicalnlp-1.17. URL https:

//aclanthology.org/2020.clinicalnlp-1.17.

P. Lewis, M. Ott, J. Du, and V. Stoyanov. Pretrained language models for biomedical and clinical

tasks: understanding and extending the state-of-the-art. In Proceedings of the 3rd Clinical Natural

Language Processing Workshop, pages 146–157, 2020b.

S. Li, X. Li, L. Shang, Z. Dong, C. Sun, B. Liu, Z. Ji, X. Jiang, and Q. Liu. How pre-trained

language models capture factual knowledge? a causal-inspired analysis. In Findings of the

150

https://aclanthology.org/P18-1249
https://aclanthology.org/2020.clinicalnlp-1.17
https://aclanthology.org/2020.clinicalnlp-1.17

Association for Computational Linguistics: ACL 2022, pages 1720–1732, Dublin, Ireland, May

2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.136. URL

https://aclanthology.org/2022.findings-acl.136.

X. Li, Z. Jie, J. Feng, C. Liu, and S. Yan. Learning with rethinking: Recurrently improving

convolutional neural networks through feedback. Pattern Recognition, 79:183–194, 2018.

T. Limisiewicz, D. Mareček, and R. Rosa. Universal Dependencies According to BERT: Both More

Specific and More General. In Findings of the Association for Computational Linguistics: EMNLP

2020, pages 2710–2722, Online, Nov. 2020. Association for Computational Linguistics. doi: 10.

18653/v1/2020.findings-emnlp.245. URL https://aclanthology.org/2020.findings-emnlp.

245.

Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings for knowledge

graph completion. In Proceedings of the AAAI conference on artificial intelligence, volume 29,

2015.

Y. Liu, F. Wei, S. Li, H. Ji, M. Zhou, and H. Wang. A dependency-based neural network for relation

classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (Vol-

ume 2: Short Papers), pages 285–290, Beijing, China, July 2015. Association for Computational

Linguistics. doi: 10.3115/v1/P15-2047. URL https://aclanthology.org/P15-2047.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-

anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference

on Learning Representations, 2017.

Z. Luo. Have attention heads in bert learned constituency grammar? EACL 2021, page 8, 2021.

151

https://aclanthology.org/2022.findings-acl.136
https://aclanthology.org/2020.findings-emnlp.245
https://aclanthology.org/2020.findings-emnlp.245
https://aclanthology.org/P15-2047

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky. The stan-

ford corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the

association for computational linguistics: system demonstrations, pages 55–60, 2014.

J. Mao and W. Liu. Integration of deep learning and traditional machine learning for knowledge

extraction from biomedical literature. In Proceedings of The 5th Workshop on BioNLP Open

Shared Tasks, pages 168–173, Hong Kong, China, Nov. 2019. Association for Computational

Linguistics. doi: 10.18653/v1/D19-5724. URL https://aclanthology.org/D19-5724.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Building a large annotated corpus of

English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993. URL https:

//aclanthology.org/J93-2004.

G. Michalopoulos, Y. Wang, H. Kaka, H. Chen, and A. Wong. UmlsBERT: Clinical domain

knowledge augmentation of contextual embeddings using the Unified Medical Language System

Metathesaurus. In Proceedings of the 2021 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, pages 1744–1753, Online,

June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.139.

URL https://aclanthology.org/2021.naacl-main.139.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781, 2013.

B. Min, R. Grishman, L. Wan, C. Wang, and D. Gondek. Distant supervision for relation extraction

with an incomplete knowledge base. In Proceedings of the 2013 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages

777–782, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL https:

//aclanthology.org/N13-1095.

M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction with-

out labeled data. In Proceedings of the Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP,

152

https://aclanthology.org/D19-5724
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://aclanthology.org/2021.naacl-main.139
https://aclanthology.org/N13-1095
https://aclanthology.org/N13-1095

pages 1003–1011, Suntec, Singapore, Aug. 2009. Association for Computational Linguistics. URL

https://aclanthology.org/P09-1113.

A. Miranda, F. Mehryary, J. Luoma, S. Pyysalo, A. Valencia, and M. Krallinger. Overview of

drugprot biocreative vii track: quality evaluation and large scale text mining of drug-gene/protein

relations. In Proceedings of the seventh BioCreative challenge evaluation workshop, pages 11–21,

2021.

M. Miwa and M. Bansal. End-to-end relation extraction using LSTMs on sequences and tree

structures. In Proceedings of the 54th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1105–1116, Berlin, Germany, Aug. 2016. Association

for Computational Linguistics. doi: 10.18653/v1/P16-1105. URL https://aclanthology.org/

P16-1105.

C. Nédellec, R. Bossy, E. Chaix, and L. Deléger. Text-mining and ontologies: new approaches to

knowledge discovery of microbial diversity. arXiv preprint arXiv:1805.04107, 2018.

D. Q. Nguyen, K. Sirts, L. Qu, and M. Johnson. STransE: a novel embedding model of entities and

relationships in knowledge bases. In Proceedings of the 2016 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages

460–466, San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.

18653/v1/N16-1054. URL https://aclanthology.org/N16-1054.

T. H. Nguyen and R. Grishman. Relation extraction: Perspective from convolutional neural net-

works. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Pro-

cessing, pages 39–48, Denver, Colorado, June 2015. Association for Computational Linguistics.

doi: 10.3115/v1/W15-1506. URL https://aclanthology.org/W15-1506.

A. Papaluca, D. Krefl, H. Suominen, and A. Lenskiy. Pretrained knowledge base embeddings

for improved sentential relation extraction. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics: Student Research Workshop, pages 373–382, Dublin,

153

https://aclanthology.org/P09-1113
https://aclanthology.org/P16-1105
https://aclanthology.org/P16-1105
https://aclanthology.org/N16-1054
https://aclanthology.org/W15-1506

Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-srw.29.

URL https://aclanthology.org/2022.acl-srw.29.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance

Deep Learning Library. Curran Associates Inc., Red Hook, NY, USA, 2019a.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,

B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran

Associates, Inc., 2019b. URL https://proceedings.neurips.cc/paper_files/paper/2019/

file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

J. Pennington, R. Socher, and C. Manning. GloVe: Global vectors for word representation.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543, Doha, Qatar, Oct. 2014. Association for Computational Linguistics.

doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/D14-1162.

B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’14, page 701–710, New York, NY, USA, 2014. Association for Computing

Machinery. ISBN 9781450329569. doi: 10.1145/2623330.2623732. URL https://doi.org/10.

1145/2623330.2623732.

M. E. Peters, M. Neumann, R. Logan, R. Schwartz, V. Joshi, S. Singh, and N. A. Smith. Knowledge

enhanced contextual word representations. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 43–54, Hong Kong, China, Nov. 2019. Association

154

https://aclanthology.org/2022.acl-srw.29
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aclanthology.org/D14-1162
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732

for Computational Linguistics. doi: 10.18653/v1/D19-1005. URL https://aclanthology.org/

D19-1005.

F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller. Language

models as knowledge bases? In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong, China, Nov. 2019. Association for

Computational Linguistics. doi: 10.18653/v1/D19-1250. URL https://aclanthology.org/

D19-1250.

G. Puccetti, A. Miaschi, and F. Dell’Orletta. How do bert embeddings organize linguistic knowledge?

In Proceedings of deep learning inside out (DeeLIO): the 2nd workshop on knowledge extraction

and integration for deep learning architectures, pages 48–57, 2021.

P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning. Stanza: A Python natural language

processing toolkit for many human languages. In Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics: System Demonstrations, 2020. URL https://nlp.

stanford.edu/pubs/qi2020stanza.pdf.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding by

generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al. Language models are

unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu.

Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of

Machine Learning Research, 21(1):5485–5551, 2020.

E. Reif, A. Yuan, M. Wattenberg, F. B. Viegas, A. Coenen, A. Pearce, and B. Kim. Visualizing and

measuring the geometry of bert. Advances in Neural Information Processing Systems, 32, 2019.

155

https://aclanthology.org/D19-1005
https://aclanthology.org/D19-1005
https://aclanthology.org/D19-1250
https://aclanthology.org/D19-1250
https://nlp.stanford.edu/pubs/qi2020stanza.pdf
https://nlp.stanford.edu/pubs/qi2020stanza.pdf

L. F. Ribeiro, P. H. Saverese, and D. R. Figueiredo. struc2vec: Learning node representations

from structural identity. In Proceedings of the 23rd ACM SIGKDD international conference on

knowledge discovery and data mining, pages 385–394, 2017.

S. Riedel, L. Yao, and A. McCallum. Modeling relations and their mentions without labeled text. In

Proceedings of the 2010 European Conference on Machine Learning and Knowledge Discovery in

Databases: Part III, ECML PKDD’10, page 148–163, Berlin, Heidelberg, 2010. Springer-Verlag.

ISBN 3642159389.

B. Rink and S. Harabagiu. Utd: Classifying semantic relations by combining lexical and semantic

resources. In Proceedings of the 5th international workshop on semantic evaluation, pages 256–

259, 2010.

A. Roy and S. Pan. Incorporating medical knowledge in BERT for clinical relation extrac-

tion. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 5357–5366, Online and Punta Cana, Dominican Republic, Nov. 2021. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.435. URL https:

//aclanthology.org/2021.emnlp-main.435.

D. Sachan, Y. Zhang, P. Qi, and W. L. Hamilton. Do syntax trees help pre-trained transformers

extract information? In Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Main Volume, pages 2647–2661, Online, Apr. 2021.

Association for Computational Linguistics. doi: 10.18653/v1/2021.eacl-main.228. URL https:

//aclanthology.org/2021.eacl-main.228.

M. Schuster and K. Nakajima. Japanese and korean voice search. In 2012 IEEE international

conference on acoustics, speech and signal processing (ICASSP), pages 5149–5152. IEEE, 2012.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(56):

1929–1958, 2014. URL http://jmlr.org/papers/v15/srivastava14a.html.

156

https://aclanthology.org/2021.emnlp-main.435
https://aclanthology.org/2021.emnlp-main.435
https://aclanthology.org/2021.eacl-main.228
https://aclanthology.org/2021.eacl-main.228
http://jmlr.org/papers/v15/srivastava14a.html

R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. Advances in neural

information processing systems, 28, 2015.

P. Su, G. Li, C. Wu, and K. Vijay-Shanker. Using distant supervision to augment manually anno-

tated data for relation extraction. PloS one, 14(7):e0216913, 2019.

Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational

rotation in complex space. arXiv preprint arXiv:1902.10197, 2019.

M. Sung, H. Jeon, J. Lee, and J. Kang. Biomedical entity representations with synonym marginal-

ization. In ACL, 2020.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks.

Advances in neural information processing systems, 27, 2014.

S. Takamatsu, I. Sato, and H. Nakagawa. Reducing wrong labels in distant supervision for relation

extraction. In Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 721–729, Jeju Island, Korea, July 2012. Association

for Computational Linguistics. URL https://aclanthology.org/P12-1076.

A. Tang, C. Nédellec, P. Zweigenbaum, L. Deléger, and R. Bossy. Global alignment for relation

extraction in microbiology. In Junior Conference on Data Science and Engineering, 2021.

A. Tang, L. Deléger, R. Bossy, P. Zweigenbaum, and C. Nédellec. Do syntactic trees enhance Bidi-

rectional Encoder Representations from Transformers (BERT) models for chemical–drug relation

extraction? Database, 2022:baac070, 08 2022. ISSN 1758-0463. doi: 10.1093/database/baac070.

URL https://doi.org/10.1093/database/baac070.

A. Tang, R. Bossy, L. Deléger, C. Nédellec, and P. Zweigenbaum. Exploitation de plongements

de graphes pour l’extraction de relations biomédicales. In C. Servan and A. Vilnat, editors, 18e

Conférence en Recherche d’Information et Applications – 16e Rencontres Jeunes Chercheurs en

RI – 30e Conférence sur le Traitement Automatique des Langues Naturelles – 25e Rencontre

157

https://aclanthology.org/P12-1076
https://doi.org/10.1093/database/baac070

des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues, pages

298–310, Paris, France, 2023. ATALA. URL https://hal.science/hal-04130138.

Ö. Uzuner, B. R. South, S. Shen, and S. L. DuVall. 2010 i2b2/va challenge on concepts, assertions,

and relations in clinical text. Journal of the American Medical Informatics Association, 18(5):

552–556, 2011.

D. Valsamou. Extraction d’Information pour les réseaux de régulation de la graine chez Arabidopsis

Thaliana. PhD thesis, 2017. URL http://www.theses.fr/2017SACLS027. Thèse de doctorat

dirigée par Zweigenbaum, Pierre et Nédellec, Claire Informatique Université Paris-Saclay (Co-

mUE) 2017.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-

sukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph atten-

tion networks. In International Conference on Learning Representations, 2018. URL https:

//openreview.net/forum?id=rJXMpikCZ.

K. Verspoor, K. B. Cohen, A. Lanfranchi, C. Warner, H. L. Johnson, C. Roeder, J. D. Choi, C. Funk,

Y. Malenkiy, M. Eckert, et al. A corpus of full-text journal articles is a robust evaluation tool

for revealing differences in performance of biomedical natural language processing tools. BMC

bioinformatics, 13(1):1–26, 2012.

G. Wang, W. Zhang, R. Wang, Y. Zhou, X. Chen, W. Zhang, H. Zhu, and H. Chen. Label-free

distant supervision for relation extraction via knowledge graph embedding. In Proceedings of

the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2246–2255,

Brussels, Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi: 10.18653/

v1/D18-1248. URL https://aclanthology.org/D18-1248.

R. Wang, D. Tang, N. Duan, Z. Wei, X. Huang, J. Ji, G. Cao, D. Jiang, and M. Zhou. K-

Adapter: Infusing Knowledge into Pre-Trained Models with Adapters. In Findings of the As-

sociation for Computational Linguistics: ACL-IJCNLP 2021, pages 1405–1418, Online, Aug.

158

https://hal.science/hal-04130138
http://www.theses.fr/2017SACLS027
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://aclanthology.org/D18-1248

2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.121. URL

https://aclanthology.org/2021.findings-acl.121.

L. Weber, M. Sänger, S. Garda, F. Barth, C. Alt, and U. Leser. Chemical–protein relation extraction

with ensembles of carefully tuned pretrained language models. Database, 2022, 2022.

D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson,

C. Li, Z. Sayeeda, et al. Drugbank 5.0: a major update to the drugbank database for 2018.

Nucleic acids research, 46(D1):D1074–D1082, 2018.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,

M. Funtowicz, et al. Transformers: State-of-the-art natural language processing. In Proceedings of

the 2020 conference on empirical methods in natural language processing: system demonstrations,

pages 38–45, 2020.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,

K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo,

H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. R. Smith, J. Riesa, A. Rud-

nick, O. Vinyals, G. S. Corrado, M. Hughes, and J. Dean. Google’s neural machine translation

system: Bridging the gap between human and machine translation. ArXiv, abs/1609.08144, 2016.

W. Xiong, F. Li, M. Cheng, H. Yu, and D. Ji. Bacteria biotope relation extraction via lexical chains

and dependency graphs. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks,

pages 158–167, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. doi:

10.18653/v1/D19-5723. URL https://aclanthology.org/D19-5723.

Y. Xu, L. Mou, G. Li, Y. Chen, H. Peng, and Z. Jin. Classifying relations via long short term

memory networks along shortest dependency paths. In Proceedings of the 2015 Conference on

Empirical Methods in Natural Language Processing, pages 1785–1794, Lisbon, Portugal, Sept.

2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1206. URL https:

//aclanthology.org/D15-1206.

159

https://aclanthology.org/2021.findings-acl.121
https://aclanthology.org/D19-5723
https://aclanthology.org/D15-1206
https://aclanthology.org/D15-1206

Z. Xu, D. Guo, D. Tang, Q. Su, L. Shou, M. Gong, W. Zhong, X. Quan, D. Jiang, and

N. Duan. Syntax-enhanced pre-trained model. In Proceedings of the 59th Annual Meeting

of the Association for Computational Linguistics and the 11th International Joint Conference

on Natural Language Processing (Volume 1: Long Papers), pages 5412–5422, Online, Aug.

2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.420. URL

https://aclanthology.org/2021.acl-long.420.

K. Yang, L. He, X.-y. Dai, S. Huang, and J. Chen. Exploiting noisy data in distant supervision

relation classification. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long

and Short Papers), pages 3216–3225, Minneapolis, Minnesota, June 2019. Association for Compu-

tational Linguistics. doi: 10.18653/v1/N19-1325. URL https://aclanthology.org/N19-1325.

M. Yasunaga, J. Leskovec, and P. Liang. LinkBERT: Pretraining language models with doc-

ument links. In Proceedings of the 60th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 8003–8016, Dublin, Ireland, May 2022.

Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.551. URL https:

//aclanthology.org/2022.acl-long.551.

Z.-X. Ye and Z.-H. Ling. Distant supervision relation extraction with intra-bag and inter-bag atten-

tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pages 2810–2819, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

doi: 10.18653/v1/N19-1288. URL https://aclanthology.org/N19-1288.

B. Yu, X. Mengge, Z. Zhang, T. Liu, W. Yubin, and B. Wang. Learning to prune dependency

trees with rethinking for neural relation extraction. In Proceedings of the 28th International

Conference on Computational Linguistics, pages 3842–3852, Barcelona, Spain (Online), Dec. 2020.

International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.341.

URL https://aclanthology.org/2020.coling-main.341.

160

https://aclanthology.org/2021.acl-long.420
https://aclanthology.org/N19-1325
https://aclanthology.org/2022.acl-long.551
https://aclanthology.org/2022.acl-long.551
https://aclanthology.org/N19-1288
https://aclanthology.org/2020.coling-main.341

D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction. Journal of machine

learning research, 3(Feb):1083–1106, 2003.

D. Zeng, K. Liu, Y. Chen, and J. Zhao. Distant supervision for relation extraction via piecewise

convolutional neural networks. In Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 1753–1762, Lisbon, Portugal, Sept. 2015. Association for

Computational Linguistics. doi: 10.18653/v1/D15-1203. URL https://aclanthology.org/

D15-1203.

Q. Zhang, C. Liu, Y. Chi, X. Xie, and X. Hua. A multi-task learning framework for extracting

bacteria biotope information. In Proceedings of The 5th Workshop on BioNLP Open Shared Tasks,

pages 105–109, Hong Kong, China, Nov. 2019a. Association for Computational Linguistics. doi:

10.18653/v1/D19-5716. URL https://aclanthology.org/D19-5716.

S. Zhang, W. Lijie, X. Xiao, and H. Wu. Syntax-guided contrastive learning for pre-trained language

model. In Findings of the Association for Computational Linguistics: ACL 2022, pages 2430–

2440, 2022.

Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning. Position-aware attention and

supervised data improve slot filling. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 35–45, Copenhagen, Denmark, Sept. 2017. Association

for Computational Linguistics. doi: 10.18653/v1/D17-1004. URL https://aclanthology.org/

D17-1004.

Y. Zhang, P. Qi, and C. D. Manning. Graph convolution over pruned dependency trees improves rela-

tion extraction. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 2205–2215, Brussels, Belgium, Oct.-Nov. 2018. Association for Computational

Linguistics. doi: 10.18653/v1/D18-1244. URL https://aclanthology.org/D18-1244.

Y. Zhang, Y. Zhang, P. Qi, C. D. Manning, and C. P. Langlotz. Biomedical and clinical English

model packages for the Stanza Python NLP library. Journal of the American Medical Informatics

Association, 06 2021. ISSN 1527-974X.

161

https://aclanthology.org/D15-1203
https://aclanthology.org/D15-1203
https://aclanthology.org/D19-5716
https://aclanthology.org/D17-1004
https://aclanthology.org/D17-1004
https://aclanthology.org/D18-1244

Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun, and Q. Liu. ERNIE: Enhanced language representa-

tion with informative entities. In Proceedings of the 57th Annual Meeting of the Association for

Computational Linguistics, pages 1441–1451, Florence, Italy, July 2019b. Association for Compu-

tational Linguistics. doi: 10.18653/v1/P19-1139. URL https://aclanthology.org/P19-1139.

G. Zhou, M. Zhang, D. Ji, and Q. Zhu. Tree kernel-based relation extraction with context-sensitive

structured parse tree information. In Proceedings of the 2007 Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computational Natural Language Learning (EMNLP-

CoNLL), pages 728–736, 2007.

Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning

books and movies: Towards story-like visual explanations by watching movies and reading books.

In Proceedings of the IEEE international conference on computer vision, pages 19–27, 2015.

162

https://aclanthology.org/P19-1139

	page_couverture_thèse (1)
	thesis_tang
	Introduction
	Problem Statement
	Relation Extraction: A Supervised Text Classification Problem
	Thesis Outline

	Background and Related Work
	Historical Notes
	Feature-based Methods
	Kernel-based Methods
	Embedding-based Methods

	Neural Networks Basics
	Loss Function
	Optimization
	Gradient Descent
	Back-Propagation
	Minibatch Stochastic Methods

	Seeds and Ensembling

	Tokenization
	Transformer
	Attention Mechanism
	Multi-Head Attention
	Model Architecture

	Transfer Learning
	BERT: Transformer-based Pre-trained LLM
	Pre-training of BERT
	BERT Embeddings
	Domain-specific BERT

	General Neural Architecture for RE
	Prerequisites of Biomedical Relation Extraction
	Datasets
	ChemProt & DrugProt
	Bacteria Biotope 2019

	Data Pre-processing
	Evaluation Metric

	Conclusion

	Injecting Syntactic Information into BERT
	Syntactic Analysis
	Dependency Analysis
	Constituency Analysis

	Related Work
	Syntactic Probes
	Syntax-enhanced Models
	Adjacency Matrix-based Methods
	Syntax-aware Pre-training

	Discussion

	Contribution: Syntax-enhanced Models
	CE-PubMedBERT
	CT-PubMedBERT
	MTS-PubMedBERT

	Experimentation
	Data Pre-processing
	Baseline Models
	Implementation Details
	Hyperparameters
	Results

	Analysis & Discussion
	Impact of Parsing Quality
	Training difficulties
	Difference Between Baseline Models and Syntax-enhanced Models

	Conclusion

	Injecting KB Information into BERT
	Knowledge Base Basics
	Graph Embedding Methods
	Distance-based Methods
	Similarity-based Methods

	Related Work: KB-enhanced Methods
	Distant Supervision
	Fusion of Graph Embeddings
	KB-related Pre-training Tasks

	Contribution: KB-PubMedBERT
	Hypothesis
	Model Architecture

	Experimentation
	Datasets
	Domain Knowledge Bases
	Entity Normalization
	Baseline
	Implementation Details
	Results

	Analysis & Discussion
	Precision, Recall and F1-score
	Direct Links in KB
	Ablation Study
	Case Study

	Conclusion

	Conclusions and perspectives
	Conclusions
	Perspectives
	Improvements to Proposed Methods
	MTS-PubMedBERT
	KB-PubMedBERT

	Improvements to Preprocessing
	Resource Choice
	Model Deployment

